WorldWideScience

Sample records for bulk isotropic negative-index

  1. Intra-connected three-dimensionally isotropic bulk negative index photonic metamaterial

    International Nuclear Information System (INIS)

    Guney, Durdu; Koschny, Thomas; Soukoulis, Costas

    2010-01-01

    Isotropic negative index metamaterials (NIMs) are highly desired, particularly for the realization of ultra-high resolution lenses. However, existing isotropic NIMs function only two-dimensionally and cannot be miniaturized beyond microwaves. Direct laser writing processes can be a paradigm shift toward the fabrication of three-dimensionally (3D) isotropic bulk optical metamaterials, but only at the expense of an additional design constraint, namely connectivity. Here, we demonstrate with a proof-of-principle design that the requirement connectivity does not preclude fully isotropic left-handed behavior. This is an important step towards the realization of bulk 3D isotropic NIMs at optical wavelengths.

  2. Nested structures approach in designing an isotropic negative-index material for infrared

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Malureanu, Radu; Lavrinenko, Andrei

    2009-01-01

    We propose a new generic approach for designing isotropic metamaterial with nested cubic structures. As an example, a three-dimensional isotropic unit cell design "Split Cube in Cage" (SCiC) is shown to exhibit an effective negative refractive index on infrared wavelengths. We report on the refra......We propose a new generic approach for designing isotropic metamaterial with nested cubic structures. As an example, a three-dimensional isotropic unit cell design "Split Cube in Cage" (SCiC) is shown to exhibit an effective negative refractive index on infrared wavelengths. We report...

  3. The split cube in a cage: bulk negative-index material for infrared applications

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Menzel, C.; Rockstuhl, C.

    2009-01-01

    We propose the split cube in a cage (SCiC) design for application in producing a bulk metamaterial. Applying realistic material data for thin silver films, we observe an immediate convergence of the effective parameters obtained with a number of layers towards the bulk properties. Results...... are obtained by two different numerical techniques: the Fourier modal method and the finite integrals method, thus ensuring their validity. The SCiC exhibits a refractive index of −0.6 for frequencies close to the telecommunication bands. The fast convergence of effective parameters allows consideration...... of the SCiC as a bulk (effectively homogeneous) negative-index metamaterial even for a single layer. The bulk-like nature together with the cubic symmetry of the unit cell make the SCiC a promising candidate for potential applications at telecommunication frequencies....

  4. On metallic gratings coated conformally with isotropic negative-phase-velocity materials

    International Nuclear Information System (INIS)

    Inchaussandague, Marina E.; Lakhtakia, Akhlesh; Depine, Ricardo A.

    2008-01-01

    Application of the differential method (also called the C method) to plane-wave diffraction by a perfectly conducting, sinusoidally corrugated metallic grating coated with a linear, homogeneous, isotropic, lossless dielectric-magnetic material shows that coating materials with negative index of refraction may deliver enhanced maximum nonspecular reflection efficiencies in comparison to coating materials with positive index of refraction

  5. On metallic gratings coated conformally with isotropic negative-phase-velocity materials

    Energy Technology Data Exchange (ETDEWEB)

    Inchaussandague, Marina E. [GEA-Grupo de Electromagnetismo Aplicado, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina); CONICET-Consejo Nacional de Investigaciones Cientificas y Tecnicas, Rivadavia 1917, Buenos Aires (Argentina)], E-mail: mei@df.uba.ar; Lakhtakia, Akhlesh [CATMAS-Computational and Theoretical Materials Sciences Group, Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802-6812 (United States)], E-mail: akhlesh@psu.edu; Depine, Ricardo A. [GEA-Grupo de Electromagnetismo Aplicado, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina); CONICET-Consejo Nacional de Investigaciones Cientificas y Tecnicas, Rivadavia 1917, Buenos Aires (Argentina)], E-mail: rdep@df.uba.ar

    2008-03-31

    Application of the differential method (also called the C method) to plane-wave diffraction by a perfectly conducting, sinusoidally corrugated metallic grating coated with a linear, homogeneous, isotropic, lossless dielectric-magnetic material shows that coating materials with negative index of refraction may deliver enhanced maximum nonspecular reflection efficiencies in comparison to coating materials with positive index of refraction.

  6. Isotropic Negative Thermal Expansion Metamaterials.

    Science.gov (United States)

    Wu, Lingling; Li, Bo; Zhou, Ji

    2016-07-13

    Negative thermal expansion materials are important and desirable in science and engineering applications. However, natural materials with isotropic negative thermal expansion are rare and usually unsatisfied in performance. Here, we propose a novel method to achieve two- and three-dimensional negative thermal expansion metamaterials via antichiral structures. The two-dimensional metamaterial is constructed with unit cells that combine bimaterial strips and antichiral structures, while the three-dimensional metamaterial is fabricated by a multimaterial 3D printing process. Both experimental and simulation results display isotropic negative thermal expansion property of the samples. The effective coefficient of negative thermal expansion of the proposed models is demonstrated to be dependent on the difference between the thermal expansion coefficient of the component materials, as well as on the circular node radius and the ligament length in the antichiral structures. The measured value of the linear negative thermal expansion coefficient of the three-dimensional sample is among the largest achieved in experiments to date. Our findings provide an easy and practical approach to obtaining materials with tunable negative thermal expansion on any scale.

  7. High symmetry versus optical isotropy of a negative-index metamaterial

    DEFF Research Database (Denmark)

    Menzel, Christoph; Rockstuhl, Carsten; Lliew, Rumen

    2010-01-01

    condition since it is usually assumed that light does not resolve the spatial details of MM but experiences the properties of an effective medium, which is then optically isotropic. In this work we challenge this assumption by analyzing the isofrequency surfaces of the dispersion relation of the split cube...... in carcass negative index MM. We show that this MM is basically optically isotropic but not in the spectral domain where it exhibits negative refraction. The primary goal of this contribution is to introduce a tool that allows to probe a MM against optical isotropy....

  8. Tapping of Love waves in an isotropic surface waveguide by surface-to-bulk wave transduction.

    Science.gov (United States)

    Tuan, H.-S.; Chang, C.-P.

    1972-01-01

    A theoretical study of tapping a Love wave in an isotropic microacoustic surface waveguide is given. The surface Love wave is tapped by partial transduction into a bulk wave at a discontinuity. It is shown that, by careful design of the discontinuity, the converted bulk wave power and the radiation pattern may be controlled. General formulas are derived for the calculation of these important characteristics from a relatively general surface contour deformation.

  9. Negative refraction of inhomogeneous waves in lossy isotropic media

    International Nuclear Information System (INIS)

    Fedorov, V Yu; Nakajima, T

    2014-01-01

    We theoretically study negative refraction of inhomogeneous waves at the interface of lossy isotropic media. We obtain explicit (up to the sign) expressions for the parameters of a wave transmitted through the interface between two lossy media characterized by complex permittivity and permeability. We show that the criterion of negative refraction that requires negative permittivity and permeability can be used only in the case of a homogeneous incident wave at the interface between a lossless and lossy media. In a more general situation, when the incident wave is inhomogeneous, or both media are lossy, the criterion of negative refraction becomes dependent on an incidence angle. Most interestingly, we show that negative refraction can be realized in conventional lossy materials (such as metals) if their interfaces are properly oriented. (paper)

  10. Proton spin-lattice relaxation in a liquid crystal-Aerosil complex above the bulk isotropization temperature

    Energy Technology Data Exchange (ETDEWEB)

    Anoardo, E.; Grinberg, F.; Vilfan, M.; Kimmich, R

    2004-02-16

    We present a study of the molecular dynamics in an octylcyanobiphenyl (8CB)-Aerosil complex above the bulk isotropization temperature. Using proton nuclear magnetic relaxation experiments in the laboratory frame (T{sub 1}{sup -1}) and in the rotating-frame (T{sub 1{rho}}{sup -1}), we found a notable increase of the relaxation rates in the kHz frequency range as compared to the bulk 8CB liquid crystal at the same temperature. The field-cycling technique was used for the laboratory frame experiments while a conventional apparatus was used for the rotating frame method. The observed behavior is analyzed with the aid of Monte Carlo simulations on the basis of a two-phase fast-exchange model distinguishing surface-ordered and bulk phases. Two processes affecting the low frequency relaxation could be identified: reorientation mediated by translational displacements, accounting for molecular reorientations, and exchange losses of molecules from the surface to the bulk.

  11. Nested structures approach for bulk 3D negative index materials

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Malureanu, Radu; Lavrinenko, Andrei

    2009-01-01

    constitutive elements possess cubic symmetry, thus we preserve it for the whole unit cell. The concept can be applied for any frequencies; however, we are targeting optical and THz ranges. We report on numerical characterization of two particular designs, called as “split-cube-in-cage” and “split......-cube-in-carcass”, revealing negative index behaviour. Two approaches are applied – effective parameters approximation and phenomenological one, showing excellent correlation in results. The designs show good results in isotropy of effective properties and their convergence with the thickness of a sample. Apart from design...

  12. Three-Dimensionally Isotropic Negative Refractive Index Materials from Block Copolymer Self-Assembled Chiral Gyroid Networks

    KAUST Repository

    Hur, Kahyun

    2011-10-17

    Metamaterials are engineered artificial materials that offer new functionalities such as super-resolution imaging and cloaking. Calculations of the photonic properties of three-dimensionally isotropic metamaterials with cubic double gyroid and alternating gyroid morphologies from block copolymer self-assembly are presented.

  13. Fabrication of High-performance Sm-Fe-N isotropic bulk magnets by a combination of High-pressure compaction and current sintering

    Energy Technology Data Exchange (ETDEWEB)

    Takagi, Kenta, E-mail: k-takagi@aist.go.jp [Materials Research Institute for Sustainable Development, National Institute of Advanced Industrial Science and Technology (AIST), Nagoya 463-8560 (Japan); Nakayama, Hiroyuki; Ozaki, Kimihiro; Kobayashi, Keizo [Materials Research Institute for Sustainable Development, National Institute of Advanced Industrial Science and Technology (AIST), Nagoya 463-8560 (Japan)

    2012-04-15

    TbCu{sub 7}-type Sm-Fe-N coarse powders in the flake form were consolidated without a bonding medium using a low-thermal-load process of current sintering combined with high-pressure compression. When compacted at 1.2 GPa, the relative density of the powder was increased by 80% with close stacking of the flake particles. Although the subsequent current heating was only briefly performed at a low temperature of 400 Degree-Sign C to avoid decomposition, the compact was consolidated into a rigid bulk in which the particles were bonded at the atomic level. Finally, by using cyclic compaction, this process produced bulk magnets with a density of 92% that exhibited the highest maximum energy product (BH)max of 16.2 MGOe, which surpasses that of conventional isotropic Sm-Fe-N bond magnets. - Highlights: Black-Right-Pointing-Pointer We conduct a consolidation of Sm{sub 1}Fe{sub 7}N bulk magnets without thermal decomposition. Black-Right-Pointing-Pointer Rapid current sintering with high-pressure compaction is used as a low-thermal-load process. Black-Right-Pointing-Pointer In this process, sintering occurs at a temperature of 400 Degree-Sign C, which is below the decomposition point. Black-Right-Pointing-Pointer As a result, bulk magnets with a density of over 92% are obtained without decomposition. Black-Right-Pointing-Pointer These magnets exhibit the highest (BH)max (16.2 MGOe) among isotropic Sm-Fe-N magnets.

  14. Soft network materials with isotropic negative Poisson's ratios over large strains.

    Science.gov (United States)

    Liu, Jianxing; Zhang, Yihui

    2018-01-31

    Auxetic materials with negative Poisson's ratios have important applications across a broad range of engineering areas, such as biomedical devices, aerospace engineering and automotive engineering. A variety of design strategies have been developed to achieve artificial auxetic materials with controllable responses in the Poisson's ratio. The development of designs that can offer isotropic negative Poisson's ratios over large strains can open up new opportunities in emerging biomedical applications, which, however, remains a challenge. Here, we introduce deterministic routes to soft architected materials that can be tailored precisely to yield the values of Poisson's ratio in the range from -1 to 1, in an isotropic manner, with a tunable strain range from 0% to ∼90%. The designs rely on a network construction in a periodic lattice topology, which incorporates zigzag microstructures as building blocks to connect lattice nodes. Combined experimental and theoretical studies on broad classes of network topologies illustrate the wide-ranging utility of these concepts. Quantitative mechanics modeling under both infinitesimal and finite deformations allows the development of a rigorous design algorithm that determines the necessary network geometries to yield target Poisson ratios over desired strain ranges. Demonstrative examples in artificial skin with both the negative Poisson's ratio and the nonlinear stress-strain curve precisely matching those of the cat's skin and in unusual cylindrical structures with engineered Poisson effect and shape memory effect suggest potential applications of these network materials.

  15. A two-dimensional uniplanar transmission-line metamaterial with a negative index of refraction

    International Nuclear Information System (INIS)

    Elek, Francis; Eleftheriades, George V

    2005-01-01

    A uniplanar transmission-line (TL) network has been loaded with lumped elements (chip or printed), enabling one to achieve a two-dimensional (2D) uniplanar negative-refractive-index (NRI) metamaterial. The metamaterial consists of a 2D array of unit cells, composed of TL sections connected in series and loaded in a specified manner. The unit cell dimensions can be designed to be much smaller than the operating wavelength, enabling one to identify the structure as an effective medium, with a negative index of refraction. This NRI metamaterial supports transverse electric (TE) waves, as opposed to related previous work on NRI-TL media that supported transverse magnetic (TM) waves. The dispersion characteristics are calculated using a simple, fast 2D loaded TL model with periodic (Bloch) boundary conditions. Subsequently the dispersion relation is simplified in the homogeneous limit, thus allowing one to identify effective permittivities and permeabilities, which are shown to be simultaneously negative. Simulations demonstrating the negative refraction of a plane wave on an interface between such a NRI uniplanar metamaterial and a commensurate positive-refractive-index (PRI) metamaterial verify the validity of the proposed concept and theory. A fully printed unit cell is presented at microwave frequencies (∼10 GHz) along with a prescription for synthesizing an isotropic 3D transmission line NRI metamaterial based on this unit cell

  16. A finite-density calculation of the surface tension of isotropic-nematic interfaces

    International Nuclear Information System (INIS)

    Moore, B.G.; McMullen, W.E.

    1992-01-01

    The surface tension of the isotropic-nematic interface in a fluid of intermediate-sized hard particles is studied and calculated. The transition from isotropic to nematic is fixed to occur in a continuous fashion by varying the biaxiality of the model particles. A reversal in the preferred orientation of the bulk nematic relative to the isotropic-nematic interface suggests an oblique orientation of the bulk nematic. 32 refs., 8 figs

  17. Negative index effects from a homogeneous positive index prism

    Science.gov (United States)

    Marcus, Sherman W.; Epstein, Ariel

    2017-12-01

    Cellular structured negative index metamaterials in the form of a right triangular prism have often been tested by observing the refraction of a beam across the prism hypotenuse which is serrated in order to conform to the cell walls. We show that not only can this negative index effect be obtained from a homogeneous dielectric prism having a positive index of refraction, but in addition, for sampling at the walls of the cellular structure, the phase in the material has the illusory appearance of moving in a negative direction. Although many previous reports relied on refraction direction and phase velocity of prism structures to verify negative index design, our investigation indicates that to unambiguously demonstrate material negativity additional empirical evidence is required.

  18. All-angle negative refraction and active flat lensing of ultraviolet light.

    Science.gov (United States)

    Xu, Ting; Agrawal, Amit; Abashin, Maxim; Chau, Kenneth J; Lezec, Henri J

    2013-05-23

    Decades ago, Veselago predicted that a material with simultaneously negative electric and magnetic polarization responses would yield a 'left-handed' medium in which light propagates with opposite phase and energy velocities--a condition described by a negative refractive index. He proposed that a flat slab of left-handed material possessing an isotropic refractive index of -1 could act like an imaging lens in free space. Left-handed materials do not occur naturally, and it has only recently become possible to achieve a left-handed response using metamaterials, that is, electromagnetic structures engineered on subwavelength scales to elicit tailored polarization responses. So far, left-handed responses have typically been implemented using resonant metamaterials composed of periodic arrays of unit cells containing inductive-capacitive resonators and conductive wires. Negative refractive indices that are isotropic in two or three dimensions at microwave frequencies have been achieved in resonant metamaterials with centimetre-scale features. Scaling the left-handed response to higher frequencies, such as infrared or visible, has been done by shrinking critical dimensions to submicrometre scales by means of top-down nanofabrication. This miniaturization has, however, so far been achieved at the cost of reduced unit-cell symmetry, yielding a refractive index that is negative along only one axis. Moreover, lithographic scaling limits have so far precluded the fabrication of resonant metamaterials with left-handed responses at frequencies beyond the visible. Here we report the experimental implementation of a bulk metamaterial with a left-handed response to ultraviolet light. The structure, based on stacked plasmonic waveguides, yields an omnidirectional left-handed response for transverse magnetic polarization characterized by a negative refractive index. By engineering the structure to have a refractive index close to -1 over a broad angular range, we achieve Veselago

  19. An empirical method to estimate bulk particulate refractive index for ocean satellite applications

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, T.; Desa, E.; Mascarenhas, A.A.M.Q.; Matondkar, S.G.P.; Naik, P.; Nayak, S.R.

    An empirical method is presented here to estimates bulk particulate refractive index using the measured inherent and apparent optical properties from the various waters types of the Arabian Sea. The empirical model, where the bulk refractive index...

  20. Physics of negative refractive index materials

    International Nuclear Information System (INIS)

    Ramakrishna, S Anantha

    2005-01-01

    In the past few years, new developments in structured electromagnetic materials have given rise to negative refractive index materials which have both negative dielectric permittivity and negative magnetic permeability in some frequency ranges. The idea of a negative refractive index opens up new conceptual frontiers in photonics. One much-debated example is the concept of a perfect lens that enables imaging with sub-wavelength image resolution. Here we review the fundamental concepts and ideas of negative refractive index materials. First we present the ideas of structured materials or meta-materials that enable the design of new materials with a negative dielectric permittivity, negative magnetic permeability and negative refractive index. We discuss how a variety of resonance phenomena can be utilized to obtain these materials in various frequency ranges over the electromagnetic spectrum. The choice of the wave-vector in negative refractive index materials and the issues of dispersion, causality and energy transport are analysed. Various issues of wave propagation including nonlinear effects and surface modes in negative refractive materials (NRMs) are discussed. In the latter part of the review, we discuss the concept of a perfect lens consisting of a slab of a NRM. This perfect lens can image the far-field radiative components as well as the near-field evanescent components, and is not subject to the traditional diffraction limit. Different aspects of this lens such as the surface modes acting as the mechanism for the imaging of the evanescent waves, the limitations imposed by dissipation and dispersion in the negative refractive media, the generalization of this lens to optically complementary media and the possibility of magnification of the near-field images are discussed. Recent experimental developments verifying these ideas are briefly covered

  1. Integrated dual-tomography for refractive index analysis of free-floating single living cell with isotropic superresolution.

    Science.gov (United States)

    B, Vinoth; Lai, Xin-Ji; Lin, Yu-Chih; Tu, Han-Yen; Cheng, Chau-Jern

    2018-04-13

    Digital holographic microtomography is a promising technique for three-dimensional (3D) measurement of the refractive index (RI) profiles of biological specimens. Measurement of the RI distribution of a free-floating single living cell with an isotropic superresolution had not previously been accomplished. To the best of our knowledge, this is the first study focusing on the development of an integrated dual-tomographic (IDT) imaging system for RI measurement of an unlabelled free-floating single living cell with an isotropic superresolution by combining the spatial frequencies of full-angle specimen rotation with those of beam rotation. A novel 'UFO' (unidentified flying object) like shaped coherent transfer function is obtained. The IDT imaging system does not require any complex image-processing algorithm for 3D reconstruction. The working principle was successfully demonstrated and a 3D RI profile of a single living cell, Candida rugosa, was obtained with an isotropic superresolution. This technology is expected to set a benchmark for free-floating single live sample measurements without labeling or any special sample preparations for the experiments.

  2. Optical bulk and surface waves with negative refraction

    International Nuclear Information System (INIS)

    Agranovich, V.M.; Shen, Y.R.; Baughman, R.H.; Zakhidov, A.A.

    2004-01-01

    In materials with negative refraction, the direction of wave propagation is opposite to the direction of the wave vector. Using an approach that characterizes the optical response of a medium totally by a generalized dielectric permittivity, ε-bar (ω,k-bar), we discuss the possibility of seeing negative refraction for optical waves in a number of nonmagnetic media. These include bulk waves in organic materials and in gyrotropic materials where additional exciton-polariton waves can have a negative group velocity. It is known that dispersion of surface waves can be engineered by tailoring a surface transition layer. We show how this effect can be used to obtain surface waves with negative refraction

  3. Isotropic and anisotropic nanocrystalline NdFeB bulk magnets prepared by binder-free high-velocity compaction technique

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Xiangxing [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Liu, Zhongwu, E-mail: zwliu@scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Yu, Hongya [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Xiao, Zhiyu [School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640 (China); Zhang, Guoqing [Science and Technology on Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095 (China)

    2015-09-15

    NdFeB powders were consolidated into nanocrystalline bulk magnets by a near-net-shape process of high-velocity compaction (HVC) at room temperature with no binder employed. The nanostructure can be maintained after compaction. The compacted magnets with relatively high density can inherit the coercivity of the starting powders. The mechanical strength of the HVCed magnet after heat treatment is comparable to that of the conventional bonded NdFeB magnets. The anisotropic magnet has also been prepared by hot deformation using HVCed magnet as the precursor. The remanence value along the pressing direction increased from 0.64 to 0.95 T and maximum energy product (BH){sub max} increased from 65 to 120 kJ/m{sup 3} after hot deformation. The processing–structure–properties relationships for both isotropic and anisotropic magnets are discussed. - Highlights: • HVC is a feasible binder-free approach for preparing NdFeB magnets. • The compacted magnets can inherit the coercivity of the starting powders. • The magnets post heat treatment have compression strength higher than bonded magnets. • The approach of HVC is a potential pre-process for anisotropic NdFeB bulk magnets.

  4. Isotropic and anisotropic nanocrystalline NdFeB bulk magnets prepared by binder-free high-velocity compaction technique

    International Nuclear Information System (INIS)

    Deng, Xiangxing; Liu, Zhongwu; Yu, Hongya; Xiao, Zhiyu; Zhang, Guoqing

    2015-01-01

    NdFeB powders were consolidated into nanocrystalline bulk magnets by a near-net-shape process of high-velocity compaction (HVC) at room temperature with no binder employed. The nanostructure can be maintained after compaction. The compacted magnets with relatively high density can inherit the coercivity of the starting powders. The mechanical strength of the HVCed magnet after heat treatment is comparable to that of the conventional bonded NdFeB magnets. The anisotropic magnet has also been prepared by hot deformation using HVCed magnet as the precursor. The remanence value along the pressing direction increased from 0.64 to 0.95 T and maximum energy product (BH) max increased from 65 to 120 kJ/m 3 after hot deformation. The processing–structure–properties relationships for both isotropic and anisotropic magnets are discussed. - Highlights: • HVC is a feasible binder-free approach for preparing NdFeB magnets. • The compacted magnets can inherit the coercivity of the starting powders. • The magnets post heat treatment have compression strength higher than bonded magnets. • The approach of HVC is a potential pre-process for anisotropic NdFeB bulk magnets

  5. Gigantic negative magnetoresistance in the bulk of a disordered topological insulator

    Science.gov (United States)

    Breunig, Oliver; Wang, Zhiwei; Taskin, A. A.; Lux, Jonathan; Rosch, Achim; Ando, Yoichi

    2017-05-01

    With the recent discovery of Weyl semimetals, the phenomenon of negative magnetoresistance (MR) is attracting renewed interest. Large negative MR is usually related to magnetism, but the chiral anomaly in Weyl semimetals is a rare exception. Here we report a mechanism for large negative MR which is also unrelated to magnetism but is related to disorder. In the nearly bulk-insulating topological insulator TlBi0.15Sb0.85Te2, we observed gigantic negative MR reaching 98% in 14 T at 10 K, which is unprecedented in a nonmagnetic system. Supported by numerical simulations, we argue that this phenomenon is likely due to the Zeeman effect on a barely percolating current path formed in the disordered bulk. Since disorder can also lead to non-saturating linear MR in Ag2+δSe, the present finding suggests that disorder engineering in narrow-gap systems is useful for realizing gigantic MR in both positive and negative directions.

  6. Gigantic negative magnetoresistance in the bulk of a disordered topological insulator

    Science.gov (United States)

    Breunig, Oliver; Wang, Zhiwei; Taskin, A A; Lux, Jonathan; Rosch, Achim; Ando, Yoichi

    2017-01-01

    With the recent discovery of Weyl semimetals, the phenomenon of negative magnetoresistance (MR) is attracting renewed interest. Large negative MR is usually related to magnetism, but the chiral anomaly in Weyl semimetals is a rare exception. Here we report a mechanism for large negative MR which is also unrelated to magnetism but is related to disorder. In the nearly bulk-insulating topological insulator TlBi0.15Sb0.85Te2, we observed gigantic negative MR reaching 98% in 14 T at 10 K, which is unprecedented in a nonmagnetic system. Supported by numerical simulations, we argue that this phenomenon is likely due to the Zeeman effect on a barely percolating current path formed in the disordered bulk. Since disorder can also lead to non-saturating linear MR in Ag2+δSe, the present finding suggests that disorder engineering in narrow-gap systems is useful for realizing gigantic MR in both positive and negative directions. PMID:28541291

  7. Evolution of polarization in an atomic vapour with negative refractive index

    International Nuclear Information System (INIS)

    Zhuang Fei; Shen Jianqi

    2006-01-01

    A three-level Lambda-configuration atomic vapour may exhibit simultaneously negative permittivity and permeability in the optical frequency band, and an isotropic left-handed vapour medium could therefore be realized within the framework of quantum optics. One of the most remarkable features of the present scheme is that both the refractive index and the photon helicity reversal inside the vapour can be controllably manipulated by an external coupling light field. The phenomenological Hamiltonian that describes the process of helicity reversal is constructed and the time-dependent Schroedinger equation governing the time evolution of the polarization states of the lightwave is solved by means of the Lewis-Riesenfeld invariant theory. The transition between the polarization states (and hence the accompanied photon helicity reversal), which is exactly analogous to the transition operation between bits in digital circuit, may be valuable for the development of new techniques in quantum optics and would have potential applications in information technology

  8. Fundamentals of negative refractive index optical trapping: forces and radiation pressures exerted by focused Gaussian beams using the generalized Lorenz-Mie theory.

    Science.gov (United States)

    Ambrosio, Leonardo A; Hernández-Figueroa, Hugo E

    2010-11-04

    Based on the generalized Lorenz-Mie theory (GLMT), this paper reveals, for the first time in the literature, the principal characteristics of the optical forces and radiation pressure cross-sections exerted on homogeneous, linear, isotropic and spherical hypothetical negative refractive index (NRI) particles under the influence of focused Gaussian beams in the Mie regime. Starting with ray optics considerations, the analysis is then extended through calculating the Mie coefficients and the beam-shape coefficients for incident focused Gaussian beams. Results reveal new and interesting trapping properties which are not observed for commonly positive refractive index particles and, in this way, new potential applications in biomedical optics can be devised.

  9. Forecasting Dry Bulk Freight Index with Improved SVM

    Directory of Open Access Journals (Sweden)

    Qianqian Han

    2014-01-01

    Full Text Available An improved SVM model is presented to forecast dry bulk freight index (BDI in this paper, which is a powerful tool for operators and investors to manage the market trend and avoid price risking shipping industry. The BDI is influenced by many factors, especially the random incidents in dry bulk market, inducing the difficulty in forecasting of BDI. Therefore, to eliminate the impact of random incidents in dry bulk market, wavelet transform is adopted to denoise the BDI data series. Hence, the combined model of wavelet transform and support vector machine is developed to forecast BDI in this paper. Lastly, the BDI data in 2005 to 2012 are presented to test the proposed model. The 84 prior consecutive monthly BDI data are the inputs of the model, and the last 12 monthly BDI data are the outputs of model. The parameters of the model are optimized by genetic algorithm and the final model is conformed through SVM training. This paper compares the forecasting result of proposed method and three other forecasting methods. The result shows that the proposed method has higher accuracy and could be used to forecast the short-term trend of the BDI.

  10. Calculation of beam paths in optical systems containing inhomogeneous isotropic media with cylindrical distribution of the refractive index

    International Nuclear Information System (INIS)

    Grammatin, A.P.; Degen, A.B.; Katranova, N.A.

    1995-01-01

    A system of differential equations convenient for numerical computer integrating is proposed to calculate beam paths, elementary astigmatic beams, and the optical path in isotropic media with cylindrical distribution of the refractive index. A method for selecting the step of this integration is proposed. This technique is implemented in the program package for computers of the VAX series meant for the computer-aided design of optical systems. 4 refs

  11. Chiral metamaterials: from optical activity and negative refractive index to asymmetric transmission

    International Nuclear Information System (INIS)

    Li, Zhaofeng; Mutlu, Mehmet; Ozbay, Ekmel

    2013-01-01

    We summarize the progress in the development and application of chiral metamaterials. After a brief review of the salient features of chiral metamaterials, such as giant optical activity, circular dichroism, and negative refractive index, the common method for the retrieval of effective parameters for chiral metamaterials is surveyed. Then, we introduce some typical chiral structures, e.g., chiral metamaterial consisting of split ring resonators, complementary chiral metamaterial, and composite chiral metamaterial, on the basis of the studies of the authors’ group. The coupling effect during the construction of bulk chiral metamaterials is mentioned and discussed. We introduce the application of bianisotropic chiral structures in the field of asymmetric transmission. Finally, we mention a few directions for future research on chiral metamaterials. (review article)

  12. Probing near-normally propagating bulk acoustic waves using pseudo-reflection geometry Brillouin spectroscopy

    Science.gov (United States)

    Parsons, L. C.; Andrews, G. T.

    2012-09-01

    Pseudo-reflection geometry Brillouin spectroscopy can be used to probe acoustic wave dispersion approximately along the surface normal of a material system while avoiding the difficulties associated with specularly reflected light encountered in an ideal reflection configuration. As an example of its application, we show analytically that it can be used to determine both the refractive index and bulk acoustic mode velocities of optically-isotropic non-metallic materials and confirm the utility of the approach via a series of experiments on fused quartz, gallium phosphide, water, and porous silicon films.

  13. Multiphase composites with extremal bulk modulus

    DEFF Research Database (Denmark)

    Gibiansky, L. V.; Sigmund, Ole

    2000-01-01

    are described. Most of our new results are related to the two-dimensional problem. A numerical topology optimization procedure that solves the inverse homogenization problem is adopted and used to look for two-dimensional three-phase composites with a maximal effective bulk modulus. For the combination...... isotropic three-dimensional three-phase composites with cylindrical inclusions of arbitrary cross-sections (plane strain problem) or transversely isotropic thin plates (plane stress or bending of plates problems). (C) 2000 Elsevier Science Ltd. All rights reserved....

  14. Towards a Negative Refractive Index in an Atomic System

    Science.gov (United States)

    Simmons, Zach; Brewer, Nick; Yavuz, Deniz

    2014-05-01

    The goal of our experiments is to obtain a negative index of refraction in the optical region of the spectrum using an atomic system. The concept of negative refraction, which was first predicted by Veselago more than four decades ago, has recently emerged as a very exciting field of science. Negative index materials exhibit many seemingly strange properties such as electromagnetic vectors forming a left-handed triad. A key potential application for these materials was discovered in 2000 when Pendry predicted that a slab with a negative refractive index can image objects with a resolution far better than the diffraction limit. Thus far, research in negative index materials has primarily focused on meta-materials. The fixed response and often large absorption of these engineered materials motivates our efforts to work in an atomic system. An atomic media offers the potential to be actively modified, for example by changing laser parameters, and can be tuned to cancel absorption. A doped crystal allows for high atomic densities compared to other atomic systems. So far we have identified a transition in such a material, Eu:YSO, as a candidate for these experiments and are performing spectroscopy on this material.

  15. Bulk viscosity and cosmological evolution

    International Nuclear Information System (INIS)

    Beesham, A.

    1996-01-01

    In a recent interesting paper, Pimentel and Diaz-Rivera (Nuovo Cimento B, 109(1994) 1317) have derived several solutions with bulk viscosity in homogeneous and isotropic cosmological models. They also discussed the properties of these solutions. In this paper the authors relate the solutions of Pimentel and Diaz-Rivera by simple transformations to previous solutions published in the literature, showing that all the solutions can be derived from the known existing ones. Drawbacks to these approaches of studying bulk viscosity are pointed out, and better approaches indicated

  16. Inverse radiation problem of temperature distribution in one-dimensional isotropically scattering participating slab with variable refractive index

    International Nuclear Information System (INIS)

    Namjoo, A.; Sarvari, S.M. Hosseini; Behzadmehr, A.; Mansouri, S.H.

    2009-01-01

    In this paper, an inverse analysis is performed for estimation of source term distribution from the measured exit radiation intensities at the boundary surfaces in a one-dimensional absorbing, emitting and isotropically scattering medium between two parallel plates with variable refractive index. The variation of refractive index is assumed to be linear. The radiative transfer equation is solved by the constant quadrature discrete ordinate method. The inverse problem is formulated as an optimization problem for minimizing an objective function which is expressed as the sum of square deviations between measured and estimated exit radiation intensities at boundary surfaces. The conjugate gradient method is used to solve the inverse problem through an iterative procedure. The effects of various variables on source estimation are investigated such as type of source function, errors in the measured data and system parameters, gradient of refractive index across the medium, optical thickness, single scattering albedo and boundary emissivities. The results show that in the case of noisy input data, variation of system parameters may affect the inverse solution, especially at high error values in the measured data. The error in measured data plays more important role than the error in radiative system parameters except the refractive index distribution; however the accuracy of source estimation is very sensitive toward error in refractive index distribution. Therefore, refractive index distribution and measured exit intensities should be measured accurately with a limited error bound, in order to have an accurate estimation of source term in a graded index medium.

  17. An Improved Isotropic Periodic Sum Method That Uses Linear Combinations of Basis Potentials

    KAUST Repository

    Takahashi, Kazuaki Z.; Narumi, Tetsu; Suh, Donguk; Yasuoka, Kenji

    2012-01-01

    Isotropic periodic sum (IPS) is a technique that calculates long-range interactions differently than conventional lattice sum methods. The difference between IPS and lattice sum methods lies in the shape and distribution of remote images for long-range interaction calculations. The images used in lattice sum calculations are identical to those generated from periodic boundary conditions and are discretely positioned at lattice points in space. The images for IPS calculations are "imaginary", which means they do not explicitly exist in a simulation system and are distributed isotropically and periodically around each particle. Two different versions of the original IPS method exist. The IPSn method is applied to calculations for point charges, whereas the IPSp method calculates polar molecules. However, both IPSn and IPSp have their advantages and disadvantages in simulating bulk water or water-vapor interfacial systems. In bulk water systems, the cutoff radius effect of IPSn strongly affects the configuration, whereas IPSp does not provide adequate estimations of water-vapor interfacial systems unless very long cutoff radii are used. To extend the applicability of the IPS technique, an improved IPS method, which has better accuracy in both homogeneous and heterogeneous systems has been developed and named the linear-combination-based isotropic periodic sum (LIPS) method. This improved IPS method uses linear combinations of basis potentials. We performed molecular dynamics (MD) simulations of bulk water and water-vapor interfacial systems to evaluate the accuracy of the LIPS method. For bulk water systems, the LIPS method has better accuracy than IPSn in estimating thermodynamic and configurational properties without the countercharge assumption, which is used for IPSp. For water-vapor interfacial systems, LIPS has better accuracy than IPSp and properly estimates thermodynamic and configurational properties. In conclusion, the LIPS method can successfully estimate

  18. An Improved Isotropic Periodic Sum Method That Uses Linear Combinations of Basis Potentials

    KAUST Repository

    Takahashi, Kazuaki Z.

    2012-11-13

    Isotropic periodic sum (IPS) is a technique that calculates long-range interactions differently than conventional lattice sum methods. The difference between IPS and lattice sum methods lies in the shape and distribution of remote images for long-range interaction calculations. The images used in lattice sum calculations are identical to those generated from periodic boundary conditions and are discretely positioned at lattice points in space. The images for IPS calculations are "imaginary", which means they do not explicitly exist in a simulation system and are distributed isotropically and periodically around each particle. Two different versions of the original IPS method exist. The IPSn method is applied to calculations for point charges, whereas the IPSp method calculates polar molecules. However, both IPSn and IPSp have their advantages and disadvantages in simulating bulk water or water-vapor interfacial systems. In bulk water systems, the cutoff radius effect of IPSn strongly affects the configuration, whereas IPSp does not provide adequate estimations of water-vapor interfacial systems unless very long cutoff radii are used. To extend the applicability of the IPS technique, an improved IPS method, which has better accuracy in both homogeneous and heterogeneous systems has been developed and named the linear-combination-based isotropic periodic sum (LIPS) method. This improved IPS method uses linear combinations of basis potentials. We performed molecular dynamics (MD) simulations of bulk water and water-vapor interfacial systems to evaluate the accuracy of the LIPS method. For bulk water systems, the LIPS method has better accuracy than IPSn in estimating thermodynamic and configurational properties without the countercharge assumption, which is used for IPSp. For water-vapor interfacial systems, LIPS has better accuracy than IPSp and properly estimates thermodynamic and configurational properties. In conclusion, the LIPS method can successfully estimate

  19. "Peak-tracking chip" (PTC) for bulk refractive index sensing and bioarray sensing

    KAUST Repository

    Bougot-Robin, Kristelle; Austin, H. Robert; Benisty, Henri; Hsing, I-Ming; Kodzius, Rimantas; Li, Shunbo; Wen, Weijia; Zhang, Yinghua

    2013-01-01

    Resonant techniques are of wide interest to detect variation of effective refractive index at a chip surface. Both Surface Plasmon Resonance (SPR) and dielectric resonant waveguide (RWGs) can be exploited. Through their design, RWGs allow more flexibility (size of the biomolecule to detect, detection angle…). Using specially designed RWG “Peak-tracking chip”, we propose to use spatial information from a simple monochromatic picture as a new label-free bioarray technique. We discuss robustness, sensitivity, multiplex detection, fluidic integration of the technique and illustrate it through bulk refractive index sensing as well as specific recognition of DNA fragment from gyrase A.

  20. "Peak-tracking chip" (PTC) for bulk refractive index sensing and bioarray sensing

    KAUST Repository

    Bougot-Robin, Kristelle

    2013-10-20

    Resonant techniques are of wide interest to detect variation of effective refractive index at a chip surface. Both Surface Plasmon Resonance (SPR) and dielectric resonant waveguide (RWGs) can be exploited. Through their design, RWGs allow more flexibility (size of the biomolecule to detect, detection angle…). Using specially designed RWG “Peak-tracking chip”, we propose to use spatial information from a simple monochromatic picture as a new label-free bioarray technique. We discuss robustness, sensitivity, multiplex detection, fluidic integration of the technique and illustrate it through bulk refractive index sensing as well as specific recognition of DNA fragment from gyrase A.

  1. Validity of the isotropic thermal conductivity assumption in supercell lattice dynamics

    Science.gov (United States)

    Ma, Ruiyuan; Lukes, Jennifer R.

    2018-02-01

    Superlattices and nano phononic crystals have attracted significant attention due to their low thermal conductivities and their potential application as thermoelectric materials. A widely used expression to calculate thermal conductivity, presented by Klemens and expressed in terms of the relaxation time by Callaway and Holland, originates from the Boltzmann transport equation. In its most general form, this expression involves a direct summation of the heat current contributions from individual phonons of all wavevectors and polarizations in the first Brillouin zone. In common practice, the expression is simplified by making an isotropic assumption that converts the summation over wavevector to an integral over wavevector magnitude. The isotropic expression has been applied to superlattices and phononic crystals, but its validity for different supercell sizes has not been studied. In this work, the isotropic and direct summation methods are used to calculate the thermal conductivities of bulk Si, and Si/Ge quantum dot superlattices. The results show that the differences between the two methods increase substantially with the supercell size. These differences arise because the vibrational modes neglected in the isotropic assumption provide an increasingly important contribution to the thermal conductivity for larger supercells. To avoid the significant errors that can result from the isotropic assumption, direct summation is recommended for thermal conductivity calculations in superstructures.

  2. Low-loss negative index metamaterials for X, Ku, and K microwave bands

    Directory of Open Access Journals (Sweden)

    David A. Lee

    2015-04-01

    Full Text Available Low-loss, negative-index of refraction metamaterials were designed and tested for X, Ku, and K microwave frequency bands. An S-shaped, split-ring resonator was used as a unit cell to design homogeneous slabs of negative-index metamaterials. Then, the slabs of metamaterials were cut unto prisms to measure experimentally the negative index of refraction of a plane electromagnetic wave. Theoretical simulations using High-Frequency Structural Simulator, a finite element equation solver, were in good agreement with experimental measurements. The negative index of refraction was retrieved from the angle- and frequency-dependence of the transmitted intensity of the microwave beam through the metamaterial prism and compared well to simulations; in addition, near-field electromagnetic intensity mapping was conducted with an infrared camera, and there was also a good match with the simulations for expected frequency ranges for the negative index of refraction.

  3. Bulk viscous cosmology in early Universe

    Indian Academy of Sciences (India)

    The effect of bulk viscosity on the early evolution of Universe for a spatially homogeneous and isotropic Robertson-Walker model is considered. Einstein's field equations are solved by using `gamma-law' equation of state = ( - 1)ρ, where the adiabatic parameter gamma () depends on the scale factor of the model.

  4. Smith-Purcell radiation from a grating of negative-index material

    International Nuclear Information System (INIS)

    Li, D.; Hangyo, M.; Yang, Z.; Asakawa, M.R.; Miyamoto, S.; Tsunawaki, Y.; Takano, K.; Imasaki, K.

    2011-01-01

    Smith-Purcell radiation from an electric line charge that moves, at constant speed, parallel to a grating made of metamaterial with negative index is analyzed. Through theoretical analysis and computations, we show that the Smith-Purcell radiation is stronger from a grating of negative-index material, than that from a positive-index material and perfect conductor. Also, we found that the radiation strongly depends on the values of permeability and permittivity. Calculations on grating with saw-like profile and rectangular profile are also carried out and demonstrated.

  5. Creating Materials with Negative Refraction Index using Topology Optimization

    DEFF Research Database (Denmark)

    Christiansen, Rasmus Ellebæk; Sigmund, Ole

    is used for regularizationand a projection step applied to obtain clean 0/1 designs. A continuation scheme is used to avoidstagnation in the optimization. Metamaterials with negative refraction index designed using this method are presented. The angular dependence of the refraction index......We apply topology optimization along with full modeling of the electromagnetic (acoustic) field to create metamaterials with negative refraction index. We believe that our approach can be used in the design of metamaterials with specific effective permittivity and permeability e.g. by adapting....... The direction of propagation for the prescribed wave is chosen to match the angle of incidence of the incoming plane wave and its position isused to select the refraction index for the slab. We introducing a continuous design field and apply The Method of Moving Asymptotes to perform the optimization. A filter...

  6. Tunable negative index metamaterial using yttrium iron garnet

    International Nuclear Information System (INIS)

    He, Yongxue; He, Peng; Dae Yoon, Soack; Parimi, P.V.; Rachford, F.J.; Harris, V.G.; Vittoria, C.

    2007-01-01

    A magnetic field tunable, broadband, low-loss, negative refractive index metamaterial is fabricated using yttrium iron garnet (YIG) and a periodic array of copper wires. The tunability is demonstrated from 18 to 23 GHz under an applied magnetic field with a figure of merit of 4.2 GHz/kOe. The tuning bandwidth is measured to be 5 GHz compared to 0.9 GHz for fixed field. We measure a minimum insertion loss of 4 dB (or 5.7 dB/cm) at 22.3 GHz. The measured negative refractive index bandwidth is 0.9 GHz compared to 0.5 GHz calculated by the transfer function matrix theory and 1 GHz calculated by finite element simulation

  7. Superluminal and negative delay times in isotropic-anisotropic one-dimensional photonic crystal

    Science.gov (United States)

    Ouchani, N.; El Moussaouy, A.; Aynaou, H.; El Hassouani, Y.; El Boudouti, E. H.; Djafari-Rouhani, B.

    2017-11-01

    In this work, we investigate the possibility of superluminal and negative delay times for electromagnetic wave propagation in a linear and passive periodic structure consisting of alternating isotropic and anisotropic media. This phenomenon is due to the birefringence of the anisotropic layers of the structure. By adjusting the orientations of these layers, the delay times of transmitted waves can be controlled from subluminality to superluminality and vice versa. Numerical results indicate that the apparent superluminal propagation of light occurs inside the photonic band-gaps when the principal axes of the anisotropic layers are parallel or perpendicular to the fixed axes. For other orientations of these layers, tunneling and superluminal regimes appear inside the photonic bandgaps and in the allowed bands for frequencies close to the transmission minima. The effect of the number of unit cells of the photonic crystal structure on the propagation of light with superluminal and negative delay times is also investigated. We show that the structure exhibits the Hartman effect in which the tunneling delay time of the electromagnetic wave through the photonic band-gap of the structure converges asymptotically to a finite value with increasing the number of layers. The Green's function approach has been used to derive the transmission and reflection coefficients, the density of states, and the delay times of electromagnetic waves propagating through the structure. The control of the magnitude and the sign of the delay time of light propagation represent a key point in slow and fast light technologies. The proposed structure in this study represents a new system for controlling the delay times of wave propagation without a need of active or non-linear media as well as lossy or asymmetric periodic structures.

  8. Origami with negative refractive index to generate super-lenses

    International Nuclear Information System (INIS)

    Guenneau, Fanny; Chakrabarti, Sangeeta; Guenneau, Sebastien; Ramakrishna, S Anantha

    2014-01-01

    Negative refractive index materials (NRIM) enable unique effects including superlenses with a high degree of sub-wavelength image resolution, a capability that stems from the ability of NRIM to support a host of surface plasmon states. Using a generalized lens theorem and the powerful tools of transformational optics, a variety of focusing configurations involving complementary positive and negative refractive index media can be generated. A paradigm of such complementary media are checkerboards that consist of alternating cells of positive and negative refractive index, and are associated with very singular electromagnetics. We present here a variety of multi-scale checkerboard lenses that we call origami lenses and investigate their electromagnetic properties both theoretically and computationally. Some of these meta-structures in the plane display thin bridges of complementary media, and this highly enhances their plasmonic response. We demonstrate the design of three-dimensional checkerboard meta-structures of complementary media using transformational optics to map the checkerboard onto three-dimensional corner lenses, the only restriction being that the corresponding unfolded structures in the plane are constrained by the four color-map theorem. (paper)

  9. First principles study of optical properties of molybdenum disulfide: From bulk to monolayer

    Science.gov (United States)

    Hieu, Nguyen N.; Ilyasov, Victor V.; Vu, Tuan V.; Poklonski, Nikolai A.; Phuc, Huynh V.; Phuong, Le T. T.; Hoi, Bui D.; Nguyen, Chuong V.

    2018-03-01

    In this paper, we theoretically study the optical properties of both bulk and monolayer MoS2 using first-principles calculations. The optical characters such as: dielectric function, optical reflectivity, and electron energy-loss spectrum of MoS2 are observed in the energy region from 0 to 15 eV. At equilibrium state the dielectric constant in the parallel E∥ x and perpendicular E∥ z directions are of 15.01 and 8.92 for bulk while they are 4.95 and 2.92 for monolayer MoS2, respectively. In the case of bulk MoS2, the obtained computational results for both real and imaginary parts of the dielectric constant are in good agreement with the previous experimental data. In the energy range from 0 to 6 eV, the dielectric functions have highly anisotropic, whereas they become isotropic when the energy is larger than 7 eV. For the adsorption spectra and optical reflectivity, both the collective plasmon resonance and (π + σ) electron plasmon peaks are observed, in which the transition in E∥ x direction is accordant with the experiment data more than the transition in E∥ z direction is. The refractive index, extinction index, and electron energy-loss spectrum are also investigated. The observed prominent peak at 23.1 eV in the energy-loss spectra is in good agreement with experiment value. Our results may provide a useful potential application for the MoS2 structures in electronic and optoelectronic devices.

  10. Lossless acoustic half-bipolar cylindrical cloak with negative-index metamaterial

    Science.gov (United States)

    Lee, Yong Y.; Ahn, Doyeol

    2018-05-01

    A lossless acoustic half-bipolar cylindrical cloak that has an exposed bottom is considered. Here, we show that a cloak that includes a complementary region including a negative-index medium inside of the cloaking shell works in the illumination direction independently even in the presence of the exposed bottom of the structure. This is due to the fact that the phase velocity of the wave in the normal direction can be cancelled in the presence of a boundary containing a negative-index medium that reduces scattering significantly.

  11. An isotropic suspension system for a biaxial accelerometer using electroplated thick metal with a HAR SU-8 mold

    International Nuclear Information System (INIS)

    Lee, Jin Seung; Lee, Seung S

    2008-01-01

    In this paper, a novel approach is developed to design an isotropic suspension system using thick metal freestanding micro-structures combining bulk micro-machining with electroplating based on a HAR SU-8 mold. An omega-shape isotropic suspension system composed of circular curved beams that have free switching of imaginary boundary conditions is proposed. This novel isotropic suspension design is not affected by geometric dimensional parameters and always achieves matching stiffness along the principle axes of elasticity. Using the finite element method, the isotropic suspension system was compared with an S-shaped meandering suspension system. In order to realize the suggested isotropic suspension system, a cost-effective fabrication process using electroplating with the SU-8 mold was developed to avoid expensive equipment and materials such as deep reactive-ion etching (DRIE) or a silicon-on-insulator (SOI) wafer. The fabricated isotropic suspension system was verified by electromagnetic actuation experiments. Finally, a biaxial accelerometer with isotropic suspension system was realized and tested using a vibration generator system. The proposed isotropic suspension system and the modified surface micro-machining technique based on electroplating with an SU-8 mold can contribute towards minimizing the system size, simplifying the system configuration, reducing the system price of and facilitating mass production of various types of low-cost sensors and actuators

  12. The Space-Time Continuum as a Transversely Isotropic Material and the Meaning of the Temporal Coordinate

    International Nuclear Information System (INIS)

    Christov, C. I.

    2010-01-01

    A transversely isotropic elastic continuum is considered in four dimensions, three of which are isotropic, and the properties of the material change only related to the fourth dimension. The model employs two dilational and three shear Lame coefficients. The isotropic dilational coefficient is assumed to be much larger than the second dilational coefficient, and the three shear coefficients. This amounts to a material that is virtually incompressible in the three isotropic dimensions. The first and third shear coefficients are positive, while the second shear coefficient is assumed to be negative. As a result, in the equations of elastic equilibrium, the second derivatives of the displacement with respect to the fourth coordinate enter with negative sign. This makes the equations hyperbolic, with a fourth dimension opposing to the other three. The hyperbolic nature of the fourth dimension allows to be interpreted as time.

  13. Estimation of transversely isotropic material properties from magnetic resonance elastography using the optimised virtual fields method.

    Science.gov (United States)

    Miller, Renee; Kolipaka, Arunark; Nash, Martyn P; Young, Alistair A

    2018-03-12

    Magnetic resonance elastography (MRE) has been used to estimate isotropic myocardial stiffness. However, anisotropic stiffness estimates may give insight into structural changes that occur in the myocardium as a result of pathologies such as diastolic heart failure. The virtual fields method (VFM) has been proposed for estimating material stiffness from image data. This study applied the optimised VFM to identify transversely isotropic material properties from both simulated harmonic displacements in a left ventricular (LV) model with a fibre field measured from histology as well as isotropic phantom MRE data. Two material model formulations were implemented, estimating either 3 or 5 material properties. The 3-parameter formulation writes the transversely isotropic constitutive relation in a way that dissociates the bulk modulus from other parameters. Accurate identification of transversely isotropic material properties in the LV model was shown to be dependent on the loading condition applied, amount of Gaussian noise in the signal, and frequency of excitation. Parameter sensitivity values showed that shear moduli are less sensitive to noise than the other parameters. This preliminary investigation showed the feasibility and limitations of using the VFM to identify transversely isotropic material properties from MRE images of a phantom as well as simulated harmonic displacements in an LV geometry. Copyright © 2018 John Wiley & Sons, Ltd.

  14. Creating double negative index materials using the Babinet principle with one metasurface

    Science.gov (United States)

    Zhang, Lei; Koschny, Thomas; Soukoulis, C. M.

    2013-01-01

    Metamaterials are patterned metallic structures which permit access to a novel electromagnetic response, negative index of refraction, impossible to achieve with naturally occurring materials. Using the Babinet principle, the complementary split ring resonator (SRR) is etched in a metallic plate to provide negative ɛ, with perpendicular direction. Here we propose a new design, etched in a metallic plate to provide negative magnetic permeability μ, with perpendicular direction. The combined electromagnetic response of this planar metamaterial, where the negative μ comes from the aperture and the negative ɛ from the remainder of the continuous metallic plate, allows achievement of a double negative index metamaterial (NIM) with only one metasurface and strong transmission. These designs can be used to fabricate NIMs at microwave and optical wavelengths and three-dimensional metamaterials.

  15. A generalized cost Malmquist index in DEA for DMUs with negative data

    Directory of Open Access Journals (Sweden)

    Ghasem Tohidi

    2014-10-01

    Full Text Available In some data envelopment analysis (DEA applications, some inputs of DMUs have negative values with positive cost. This paper generalizes the global cost Malmquist productivity index to compare the productivity of different DMUs with negative inputs in any two periods of times under variable returns to scale (VRS technology, and then the generalized index is decomposed to several components. The obtained components are computed using the nonparametric linear programming models, known as DEA. To illustrate the generalized index and its components, a numerical example at three successive periods of time is given.

  16. Homogenous isotropic invisible cloak based on geometrical optics.

    Science.gov (United States)

    Sun, Jingbo; Zhou, Ji; Kang, Lei

    2008-10-27

    Invisible cloak derived from the coordinate transformation requires its constitutive material to be anisotropic. In this work, we present a cloak of graded-index isotropic material based on the geometrical optics theory. The cloak is realized by concentric multilayered structure with designed refractive index to achieve the low-scattering and smooth power-flow. Full-wave simulations on such a design of a cylindrical cloak are performed to demonstrate the cloaking ability to incident wave of any polarization. Using normal nature material with isotropy and low absorption, the cloak shows light on a practical path to stealth technology, especially that in the optical range.

  17. Textile inspired flexible metamaterial with negative refractive index

    Science.gov (United States)

    Burgnies, L.; Lheurette, É.; Lippens, D.

    2015-04-01

    This work introduces metallo-dielectric woven fabric as a metamaterial for phase-front manipulation. Dispersion diagram as well as effective medium parameters retrieved from reflection and transmission coefficients point out negative values of refractive index. By numerical simulations, it is evidenced that a pair of meandered metallic wires, arranged in a top to bottom configuration, can yield to a textile metamaterial with simultaneously negative permittivity and permeability. While the effective negative permittivity stems from the metallic grid arrangement, resonating current loop resulting from the top to bottom configuration of two meandered metallic wires in near proximity produces magnetic activity with negative permeability. By adjusting the distance between pairs of metallic wires, the electric plasma frequency can be shifted to overlap the magnetic resonance. Finally, it is shown that the woven metamaterial is insensitive to the incident angle up to around 60°.

  18. Reversible bulk-phase change of anthroyl compounds for photopatterning based on photodimerization in the molten state and thermal back reaction.

    Science.gov (United States)

    Kihara, Hideyuki; Yoshida, Masaru

    2013-04-10

    As new organic materials for rewritable photopatterning, 2-anthroyl and 9-anthroyl ester compounds were synthesized. Their bulk-phase changes (we use "bulk-phase change" as complete phase change in a mass of a material neither in a surface nor in a small quantity in this study) triggered by photodimerization under melting conditions (melt-photodimerization) and subsequent thermal back reactions were investigated. All the anthroyl compounds exhibited melting points lower than ca. 160 °C, and they were nearly quantitatively converted to the corresponding photodimers by UV irradiation at temperatures of ∼5 °C higher than their respective melting points. We found that there were two kinds of bulk-phase change behaviors through the photoreaction. Two of the anthroyl compounds remained isotropic and lost fluidity during the melt-photodimerization. The obtained photodimers exhibited robust solid-state amorphous phases at room temperature. In contrast, the other three anthroyl compounds showed crystallization during the melt-photodimerization. The resulting photodimers changed from isotropic to crystalline phases, even at high temperature. Various experiments revealed that the bulk phase of the photodimers was affected not by the existence of regioisomers but by their fluidity at the photoirradiation temperature. The latter three photodimers retained enough fluidity, reflecting their high molecular mobilities at the photoirradiation temperature at which the isothermal crystallization occurred. The other two products were not able to crystallize due to low fluidity, resulting in amorphous phases. We also found that all the photodimers reverted to the corresponding monomers by thermal back reaction and recovered their initial photochemical and thermal properties. Using these reversible bulk-phase changes of the anthroyl compounds, we successfully demonstrated rewritable photopatterning in not only negative images but also positive ones, based on the optical contrast

  19. Structures with negative index of refraction

    Science.gov (United States)

    Soukoulis, Costas M [Ames, IA; Zhou, Jiangfeng [Ames, IA; Koschny, Thomas [Ames, IA; Zhang, Lei [Ames, IA; Tuttle, Gary [Ames, IA

    2011-11-08

    The invention provides simplified negative index materials (NIMs) using wire-pair structures, 4-gap single ring split-ring resonator (SRR), fishnet structures and overleaf capacitor SRR. In the wire-pair arrangement, a pair of short parallel wires and continuous wires are used. In the 4-gap single-ring SRR, the SRRs are centered on the faces of a cubic unit cell combined with a continuous wire type resonator. Combining both elements creates a frequency band where the metamaterial is transparent with simultaneously negative .di-elect cons. and .mu.. In the fishnet structure, a metallic mesh on both sides of the dielectric spacer is used. The overleaf capacitor SRR changes the gap capacities to small plate capacitors by making the sections of the SRR ring overlap at the gaps separated by a thin dielectric film. This technique is applicable to conventional SRR gaps but it best deploys for the 4-gap single-ring structures.

  20. A single-layer wide-angle negative-index metamaterial at visible frequencies.

    Science.gov (United States)

    Burgos, Stanley P; de Waele, Rene; Polman, Albert; Atwater, Harry A

    2010-05-01

    Metamaterials are materials with artificial electromagnetic properties defined by their sub-wavelength structure rather than their chemical composition. Negative-index materials (NIMs) are a special class of metamaterials characterized by an effective negative index that gives rise to such unusual wave behaviour as backwards phase propagation and negative refraction. These extraordinary properties lead to many interesting functions such as sub-diffraction imaging and invisibility cloaking. So far, NIMs have been realized through layering of resonant structures, such as split-ring resonators, and have been demonstrated at microwave to infrared frequencies over a narrow range of angles-of-incidence and polarization. However, resonant-element NIM designs suffer from the limitations of not being scalable to operate at visible frequencies because of intrinsic fabrication limitations, require multiple functional layers to achieve strong scattering and have refractive indices that are highly dependent on angle of incidence and polarization. Here we report a metamaterial composed of a single layer of coupled plasmonic coaxial waveguides that exhibits an effective refractive index of -2 in the blue spectral region with a figure-of-merit larger than 8. The resulting NIM refractive index is insensitive to both polarization and angle-of-incidence over a +/-50 degree angular range, yielding a wide-angle NIM at visible frequencies.

  1. Optical waves in a gradient negative-index lens of a half-infinite length.

    Science.gov (United States)

    Ding, Yi S; Chan, C T; Wang, R P

    2013-10-16

    Materials with negative permittivity and permeability can overcome the diffraction limit, thereby making the sub-wavelength imaging possible. In this study, we analyze the effects of gradient index on a half-infinite perfect lens. We assume that the sharp interface between the vacuum and the negative-index material is replaced by a smooth transition profile such that the index gradually changing from positive to negative. Interestingly, we find that if the graded index profile is modeled by a tanh function, we can have closed-form analytical solutions for this problem, which is a distinct advantage as numerical solutions are not accurate for evanescent waves with large transverse wave vectors. By analyzing the analytical formulas we confirm that a nonzero total absorption can occur even for a near-zero absorption coefficient in the steady-state limit and the image plane contains multiple sub-wavelength images of an object.

  2. New criteria for isotropic and textured metals

    Science.gov (United States)

    Cazacu, Oana

    2018-05-01

    In this paper a isotropic criterion expressed in terms of both invariants of the stress deviator, J2 and J3 is proposed. This criterion involves a unique parameter, α, which depends only on the ratio between the yield stresses in uniaxial tension and pure shear. If this parameter is zero, the von Mises yield criterion is recovered; if a is positive the yield surface is interior to the von Mises yield surface whereas when a is negative, the new yield surface is exterior to it. Comparison with polycrystalline calculations using Taylor-Bishop-Hill model [1] for randomly oriented face-centered (FCC) polycrystalline metallic materials show that this new criterion captures well the numerical yield points. Furthermore, the criterion reproduces well yielding under combined tension-shear loadings for a variety of isotropic materials. An extension of this isotropic yield criterion such as to account for orthotropy in yielding is developed using the generalized invariants approach of Cazacu and Barlat [2]. This new orthotropic criterion is general and applicable to three-dimensional stress states. The procedure for the identification of the material parameters is outlined. Illustration of the predictive capabilities of the new orthotropic is demonstrated through comparison between the model predictions and data on aluminum sheet samples.

  3. Bulk density, cone index and water content relations for some Ghanian soils

    International Nuclear Information System (INIS)

    Agodzo, S.K.; Adama, I.

    2004-01-01

    Correlations were established between water content θ, bulk density ρ and cone index Δ for 4 Ghanaian soils, namely, Kumasi, Akroso, Nta and Offin series. The relationship between Δ and θ is in the form Δ = a θ 2 + b θ + c, where the correlation coefficients r 2 for the various soils were found to be very high. Similarly, Δ - ρ relationships were linear but the correlations got weaker with increasing sand content of the soil, as expected. Soil sample sizes and compaction procedures did not conform to standard procedures, yet the results did not deviate from what pertains when standard procedures are used. (author)

  4. Nottingham Prognostic Index in Triple-Negative Breast Cancer: a reliable prognostic tool?

    International Nuclear Information System (INIS)

    Albergaria, André; Ricardo, Sara; Milanezi, Fernanda; Carneiro, Vítor; Amendoeira, Isabel; Vieira, Daniella; Cameselle-Teijeiro, Jorge; Schmitt, Fernando

    2011-01-01

    A breast cancer prognostic tool should ideally be applicable to all types of invasive breast lesions. A number of studies have shown histopathological grade to be an independent prognostic factor in breast cancer, adding prognostic power to nodal stage and tumour size. The Nottingham Prognostic Index has been shown to accurately predict patient outcome in stratified groups with a follow-up period of 15 years after primary diagnosis of breast cancer. Clinically, breast tumours that lack the expression of Oestrogen Receptor, Progesterone Receptor and Human Epidermal growth factor Receptor 2 (HER2) are identified as presenting a 'triple-negative' phenotype or as triple-negative breast cancers. These poor outcome tumours represent an easily recognisable prognostic group of breast cancer with aggressive behaviour that currently lack the benefit of available systemic therapy. There are conflicting results on the prevalence of lymph node metastasis at the time of diagnosis in triple-negative breast cancer patients but it is currently accepted that triple-negative breast cancer does not metastasize to axillary nodes and bones as frequently as the non-triple-negative carcinomas, favouring instead, a preferentially haematogenous spread. Hypothetically, this particular tumour dissemination pattern would impair the reliability of using Nottingham Prognostic Index as a tool for triple-negative breast cancer prognostication. The present study tested the effectiveness of the Nottingham Prognostic Index in stratifying breast cancer patients of different subtypes with special emphasis in a triple-negative breast cancer patient subset versus non- triple-negative breast cancer. We demonstrated that besides the fact that TNBC disseminate to axillary lymph nodes as frequently as luminal or HER2 tumours, we also showed that TNBC are larger in size compared with other subtypes and almost all grade 3. Additionally, survival curves demonstrated that these prognostic factors are

  5. Relation between Raman backscattering from droplets and bulk water: Effect of refractive index dispersion

    Science.gov (United States)

    Plakhotnik, Taras; Reichardt, Jens

    2018-03-01

    A theoretical framework is presented that permits investigations of the relation between inelastic backscattering from microparticles and bulk samples of Raman-active materials. It is based on the Lorentz reciprocity theorem and no fundamental restrictions concerning the microparticle shape apply. The approach provides a simple and intuitive explanation for the enhancement of the differential backscattering cross-section in particles in comparison to bulk. The enhancement factor for scattering of water droplets in the diameter range from 0 to 60 μm (vitally important for the a priori measurement of liquid water content of warm clouds with spectroscopic Raman lidars) is about a factor of 1.2-1.6 larger (depending on the size of the sphere) than an earlier study has shown. The numerical calculations are extended to 1000 μm and demonstrate that dispersion of the refractive index of water becomes an important factor for spheres larger than 100 μm. The physics of the oscillatory phenomena predicted by the simulations is explained.

  6. The Isotropic Radio Background and Annihilating Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Dan [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Belikov, Alexander V. [Institut d' Astrophysique (France); Jeltema, Tesla E. [Univ. of California, Santa Cruz, CA (United States); Linden, Tim [Univ. of California, Santa Cruz, CA (United States); Profumo, Stefano [Univ. of California, Santa Cruz, CA (United States); Slatyer, Tracy R. [Princeton Univ., Princeton, NJ (United States)

    2012-11-01

    Observations by ARCADE-2 and other telescopes sensitive to low frequency radiation have revealed the presence of an isotropic radio background with a hard spectral index. The intensity of this observed background is found to exceed the flux predicted from astrophysical sources by a factor of approximately 5-6. In this article, we consider the possibility that annihilating dark matter particles provide the primary contribution to the observed isotropic radio background through the emission of synchrotron radiation from electron and positron annihilation products. For reasonable estimates of the magnetic fields present in clusters and galaxies, we find that dark matter could potentially account for the observed radio excess, but only if it annihilates mostly to electrons and/or muons, and only if it possesses a mass in the range of approximately 5-50 GeV. For such models, the annihilation cross section required to normalize the synchrotron signal to the observed excess is sigma v ~ (0.4-30) x 10^-26 cm^3/s, similar to the value predicted for a simple thermal relic (sigma v ~ 3 x 10^-26 cm^3/s). We find that in any scenario in which dark matter annihilations are responsible for the observed excess radio emission, a significant fraction of the isotropic gamma ray background observed by Fermi must result from dark matter as well.

  7. Design of negative refractive index metamaterial with water droplets using 3D-printing

    Science.gov (United States)

    Shen, Zhaoyang; Yang, Helin; Huang, Xiaojun; Yu, Zetai

    2017-11-01

    We numerically and experimentally demonstrate a negative refractive index (NRI) behavior in combined water droplets and photosensitive resin materials operating in the microwave regime. The NRI is achieved over a very wide frequency range in 10.27-15 GHz with bandwidth of 4.63 GHz. The simulated results approximately agree with the experimental results. The negative index band can be controlled by water droplet radius. The proposed metamaterial production process is simple and may have potential applications in broadband tunable devices.

  8. Efficient Bulk Operations on Dynamic R-Trees

    DEFF Research Database (Denmark)

    Arge, Lars Allan; Hinrichs, Klaus; Vahrenhold, Jan

    2002-01-01

    In recent years there has been an upsurge of interest in spatial databases. A major issue is how to manipulate efficiently massive amounts of spatial data stored on disk in multidimensional spatial indexes (data structures). Construction of spatial indexes (bulk loading ) has been studied...... intensively in the database community. The continuous arrival of massive amounts of new data makes it important to update existing indexes (bulk updating ) efficiently. In this paper we present a simple, yet efficient, technique for performing bulk update and query operations on multidimensional indexes. We...... present our technique in terms of the so-called R-tree and its variants, as they have emerged as practically efficient indexing methods for spatial data. Our method uses ideas from the buffer tree lazy buffering technique and fully utilizes the available internal memory and the page size of the operating...

  9. Negative running of the spectral index, hemispherical asymmetry and the consistency of Planck with large r

    International Nuclear Information System (INIS)

    McDonald, John

    2014-01-01

    Planck favours a negative running of the spectral index, with the likelihood being dominated by low multipoles l ∼< 50 and no preference for running at higher l. A negative spectral index is also necessary for the 2- Planck upper bound on the tensor-to-scalar ratio r to be consistent with values significantly larger than 0.1. Planck has also observed a hemispherical asymmetry of the CMB power spectrum, again mostly at low multipoles. Here we consider whether the physics responsible for the hemispherical asymmetry could also account for the negative running of the spectral index and the consistency of Planck with a large value of r. A negative running of the spectral index can be generated if the hemispherical asymmetry is due to a scale- and space-dependent modulation which suppresses the CMB power spectrum at low multipoles. We show that the observed hemispherical asymmetry at low l can be generated while satisfying constraints on the asymmetry at higher l and generating a negative spectral index of the right magnitude to account for the Planck observation and to allow Planck to be consistent with a large value of r

  10. Specific absorption rate analysis of broadband mobile antenna with negative index metamaterial

    Science.gov (United States)

    Alam, Touhidul; Faruque, Mohammad Rashed Iqbal; Islam, Mohammad Tariqul

    2016-03-01

    This paper presents a negative index metamaterial-inspired printed mobile wireless antenna that can support most mobile applications such as GSM, UMTS, Bluetooth and WLAN frequency bands. The antenna consists of a semi-circular patch, a 50Ω microstrip feed line and metamaterial ground plane. The antenna occupies a very small space of 37 × 47 × 0.508 mm3, making it suitable for mobile wireless application. The perceptible novelty shown in this proposed antenna is that reduction of specific absorption rate using the negative index metamaterial ground plane. The proposed antenna reduced 72.11 and 75.53 % of specific absorption rate at 1.8 and 2.4 GHz, respectively.

  11. Isotropic oscillator: spheroidal wave functions

    International Nuclear Information System (INIS)

    Mardoyan, L.G.; Pogosyan, G.S.; Ter-Antonyan, V.M.; Sisakyan, A.N.

    1985-01-01

    Solutions of the Schroedinger equation are found for an isotropic oscillator (10) in prolate and oblate spheroidal coordinates. It is shown that the obtained solutions turn into spherical and cylindrical bases of the isotropic oscillator at R→0 and R→ infinity (R is the dimensional parameter entering into the definition of prolate and oblate spheroidal coordinates). The explicit form is given for both prolate and oblate basis of the isotropic oscillator for the lowest quantum states

  12. The isotropic radio background revisited

    Energy Technology Data Exchange (ETDEWEB)

    Fornengo, Nicolao; Regis, Marco [Dipartimento di Fisica Teorica, Università di Torino, via P. Giuria 1, I–10125 Torino (Italy); Lineros, Roberto A. [Instituto de Física Corpuscular – CSIC/U. Valencia, Parc Científic, calle Catedrático José Beltrán, 2, E-46980 Paterna (Spain); Taoso, Marco, E-mail: fornengo@to.infn.it, E-mail: rlineros@ific.uv.es, E-mail: regis@to.infn.it, E-mail: taoso@cea.fr [Institut de Physique Théorique, CEA/Saclay, F-91191 Gif-sur-Yvette Cédex (France)

    2014-04-01

    We present an extensive analysis on the determination of the isotropic radio background. We consider six different radio maps, ranging from 22 MHz to 2.3 GHz and covering a large fraction of the sky. The large scale emission is modeled as a linear combination of an isotropic component plus the Galactic synchrotron radiation and thermal bremsstrahlung. Point-like and extended sources are either masked or accounted for by means of a template. We find a robust estimate of the isotropic radio background, with limited scatter among different Galactic models. The level of the isotropic background lies significantly above the contribution obtained by integrating the number counts of observed extragalactic sources. Since the isotropic component dominates at high latitudes, thus making the profile of the total emission flat, a Galactic origin for such excess appears unlikely. We conclude that, unless a systematic offset is present in the maps, and provided that our current understanding of the Galactic synchrotron emission is reasonable, extragalactic sources well below the current experimental threshold seem to account for the majority of the brightness of the extragalactic radio sky.

  13. The isotropic radio background revisited

    International Nuclear Information System (INIS)

    Fornengo, Nicolao; Regis, Marco; Lineros, Roberto A.; Taoso, Marco

    2014-01-01

    We present an extensive analysis on the determination of the isotropic radio background. We consider six different radio maps, ranging from 22 MHz to 2.3 GHz and covering a large fraction of the sky. The large scale emission is modeled as a linear combination of an isotropic component plus the Galactic synchrotron radiation and thermal bremsstrahlung. Point-like and extended sources are either masked or accounted for by means of a template. We find a robust estimate of the isotropic radio background, with limited scatter among different Galactic models. The level of the isotropic background lies significantly above the contribution obtained by integrating the number counts of observed extragalactic sources. Since the isotropic component dominates at high latitudes, thus making the profile of the total emission flat, a Galactic origin for such excess appears unlikely. We conclude that, unless a systematic offset is present in the maps, and provided that our current understanding of the Galactic synchrotron emission is reasonable, extragalactic sources well below the current experimental threshold seem to account for the majority of the brightness of the extragalactic radio sky

  14. Electromagnetic forces in negative-refractive-index metamaterials: A first-principles study

    Science.gov (United States)

    Yannopapas, Vassilios; Galiatsatos, Pavlos G.

    2008-04-01

    According to the theory of Veselago, when a particle immersed within a metamaterial with negative refractive index is illuminated by plane wave, it experiences a reversed radiation force due to the antiparallel directions of the phase velocity and energy flow. By employing an ab initio method, we show that, in the limit of zero losses, the effect of reversed radiation pressure is generally true only for the specular beam. Waves generated by diffraction of the incident light at the surface of the slab of the metamaterial can produce a total force which is parallel to the radiation flow. However, when the actual losses of the materials are taken into account, the phenomenon of reversed radiation force is evident within the whole range of a negative refractive index band.

  15. Mechanical and electronic properties of monolayer and bilayer phosphorene under uniaxial and isotropic strains.

    Science.gov (United States)

    Hu, Ting; Han, Yang; Dong, Jinming

    2014-11-14

    The mechanical and electronic properties of both the monolayer and bilayer phosphorenes under either isotropic or uniaxial strain have been systematically investigated using first-principles calculations. It is interesting to find that: 1) Under a large enough isotropic tensile strain, the monolayer phosphorene would lose its pucker structure and transform into a flat hexagonal plane, while two inner sublayers of the bilayer phosphorene could be bonded due to its interlayer distance contraction. 2) Under the uniaxial tensile strain along a zigzag direction, the pucker distance of each layer in the bilayer phosphorene can exhibit a specific negative Poisson's ratio. 3) The electronic properties of both the monolayer and bilayer phosphorenes are sensitive to the magnitude and direction of the applied strains. Their band gaps decrease more rapidly under isotropic compressive strain than under uniaxial strain. Also, their direct-indirect band gap transitions happen at the larger isotropic tensile strains compared with that under uniaxial strain. 4) Under the isotropic compressive strain, the bilayer phosphorene exhibits a transition from a direct-gap semiconductor to a metal. In contrast, the monolayer phosphorene initially has the direct-indirect transition and then transitions to a metal. However, under isotropic tensile strain, both the bilayer and monolayer phosphorene show the direct-indirect transition and, finally, the transition to a metal. Our numerical results may open new potential applications of phosphorene in nanoelectronics and nanomechanical devices by external isotropic strain or uniaxial strain along different directions.

  16. The electromagnetically induced negative refractive index in the Er3+:YAlO3 crystal

    International Nuclear Information System (INIS)

    Liu Chunxu; Zhang Jisen; Liu Junye; Jin Guang

    2009-01-01

    We carried out the negative refractive index in the solid medium Er 3+ :YAlO 3 crystal with a Λ-type four-level scheme proposed for atomic vapour by Thommen and Mandel, and Kaestel (Phys. Rev. Lett. 2006 96 053601 and 2007 98 069301) based on quantum interference and electromagnetically induced transparency (EIT). The results show that the frequency band with the negative index is much wider (∼1 MHz) than reported previously. Usually, Im[n] is always positive, corresponding to absorption, and the figure of merit (FOM, the ratio of real to imaginary, namely |Re[n]/Im[n]|) is only on the order of unity. We achieve FOM |Re[n]/Im[n]| = 4.6. The corresponding negative Im[n] is related to the stimulated emission of 4 I 13/2 → 4 I 15/2 of the rare earth ion Er 3+ under external electromagnetic fields. It is concluded that the rare earth ion doped material with abundant energy levels and various electric and magnetic transitions is an outstanding and practical candidate for the electromagnetically induced negative refractive index material.

  17. In-Situ Characterization of Isotropic and Transversely Isotropic Elastic Properties Using Ultrasonic Wave Velocities

    NARCIS (Netherlands)

    Pant, S; Laliberte, J; Martinez, M.J.; Rocha, B.

    2016-01-01

    In this paper, a one-sided, in situ method based on the time of flight measurement of ultrasonic waves was described. The primary application of this technique was to non-destructively measure the stiffness properties of isotropic and transversely isotropic materials. The method consists of

  18. Macroscopic simulation of isotropic permanent magnets

    International Nuclear Information System (INIS)

    Bruckner, Florian; Abert, Claas; Vogler, Christoph; Heinrichs, Frank; Satz, Armin; Ausserlechner, Udo; Binder, Gernot; Koeck, Helmut; Suess, Dieter

    2016-01-01

    Accurate simulations of isotropic permanent magnets require to take the magnetization process into account and consider the anisotropic, nonlinear, and hysteretic material behaviour near the saturation configuration. An efficient method for the solution of the magnetostatic Maxwell equations including the description of isotropic permanent magnets is presented. The algorithm can easily be implemented on top of existing finite element methods and does not require a full characterization of the hysteresis of the magnetic material. Strayfield measurements of an isotropic permanent magnet and simulation results are in good agreement and highlight the importance of a proper description of the isotropic material. - Highlights: • Simulations of isotropic permanent magnets. • Accurate calculation of remanence magnetization and strayfield. • Comparison with strayfield measurements and anisotropic magnet simulations. • Efficient 3D FEM–BEM coupling for solution of Maxwell equations.

  19. Brane Gas-Driven Bulk Expansion as a Precursor Stage to Brane Inflation

    International Nuclear Information System (INIS)

    Shuhmaher, Natalia; Brandenberger, Robert

    2006-01-01

    We propose a new way of obtaining slow-roll inflation in the context of higher dimensional models motivated by string and M theory. In our model, all extra spatial dimensions are orbifolded. The initial conditions are taken to be a hot dense bulk brane gas which drives an initial phase of isotropic bulk expansion. This phase ends when a weak potential between the orbifold fixed planes begins to dominate. For a wide class of potentials, a period during which the bulk dimensions decrease sufficiently slowly to lead to slow-roll inflation of the three dimensions parallel to the orbifold fixed planes will result. Once the separation between the orbifold fixed planes becomes of the string scale, a repulsive potential due to string effects takes over and leads to a stabilization of the radion modes. The conversion of bulk branes into radiation during the phase of bulk contraction leads to reheating

  20. Mapping of moveout in tilted transversely isotropic media

    KAUST Repository

    Stovas, A.; Alkhalifah, Tariq Ali

    2013-01-01

    The computation of traveltimes in a transverse isotropic medium with a tilted symmetry axis tilted transversely isotropic is very important both for modelling and inversion. We develop a simple analytical procedure to map the traveltime function from a transverse isotropic medium with a vertical symmetry axis (vertical transversely isotropic) to a tilted transversely isotropic medium by applying point-by-point mapping of the traveltime function. This approach can be used for kinematic modelling and inversion in layered tilted transversely isotropic media. © 2013 European Association of Geoscientists & Engineers.

  1. Mapping of moveout in tilted transversely isotropic media

    KAUST Repository

    Stovas, A.

    2013-09-09

    The computation of traveltimes in a transverse isotropic medium with a tilted symmetry axis tilted transversely isotropic is very important both for modelling and inversion. We develop a simple analytical procedure to map the traveltime function from a transverse isotropic medium with a vertical symmetry axis (vertical transversely isotropic) to a tilted transversely isotropic medium by applying point-by-point mapping of the traveltime function. This approach can be used for kinematic modelling and inversion in layered tilted transversely isotropic media. © 2013 European Association of Geoscientists & Engineers.

  2. Exploring the bulk in AdS /CFT : A covariant approach

    Science.gov (United States)

    Engelhardt, Netta

    2017-03-01

    I propose a general, covariant way of defining when one region is "deeper in the bulk" than another. This definition is formulated outside of an event horizon (or in the absence thereof) in generic geometries; it may be applied to both points and surfaces, and it may be used to compare the depth of bulk points or surfaces relative to a particular boundary subregion or relative to the entire boundary. Using the recently proposed "light-cone cut" formalism, the comparative depth between two bulk points can be determined from the singularity structure of Lorentzian correlators in the dual field theory. I prove that, by this definition, causal wedges of progressively larger regions probe monotonically deeper in the bulk. The definition furthermore matches expectations in pure AdS and in static AdS black holes with isotropic spatial slices, where a well-defined holographic coordinate exists. In terms of holographic renormalization group flow, this new definition of bulk depth makes contact with coarse graining over both large distances and long time scales.

  3. Plasmon-Enhanced Photonic Crystal Negative Index Materials for Superlensing Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Negative index materials (NIMs) offer tremendous potential for the formation of highly compact as well as large-area deployable thin-film optical components. Omega...

  4. Highly Conductive and Reliable Copper-Filled Isotropically Conductive Adhesives Using Organic Acids for Oxidation Prevention

    Science.gov (United States)

    Chen, Wenjun; Deng, Dunying; Cheng, Yuanrong; Xiao, Fei

    2015-07-01

    The easy oxidation of copper is one critical obstacle to high-performance copper-filled isotropically conductive adhesives (ICAs). In this paper, a facile method to prepare highly reliable, highly conductive, and low-cost ICAs is reported. The copper fillers were treated by organic acids for oxidation prevention. Compared with ICA filled with untreated copper flakes, the ICA filled with copper flakes treated by different organic acids exhibited much lower bulk resistivity. The lowest bulk resistivity achieved was 4.5 × 10-5 Ω cm, which is comparable to that of commercially available Ag-filled ICA. After 500 h of 85°C/85% relative humidity (RH) aging, the treated ICAs showed quite stable bulk resistivity and relatively stable contact resistance. Through analyzing the results of x-ray diffraction, x-ray photoelectron spectroscopy, and thermogravimetric analysis, we found that, with the assistance of organic acids, the treated copper flakes exhibited resistance to oxidation, thus guaranteeing good performance.

  5. A new miniaturized negative-index meta-atom for tri-band applications

    Directory of Open Access Journals (Sweden)

    Hossain Mohammad Jakir

    2017-07-01

    Full Text Available In this paper, a miniature negative index meta-atom was designed; simulated, fabricated and measured based on parallel incidence of electromagnetic wave that can maintain a tri-band applications in microwave spectra. Compare to the other multi-band conventional metamaterial, the proposed meta-atom structure allows miniaturization factor and follows better effective medium ratio (EMR. Finite-integration technique (FIT based computer simulation technology (CST electromagnetic simulator was adopted to examine the design of the meta-atom. It exhibits tri-band response in conjunction with backward wave property over a certain frequency band in the microwave regime. Furthermore, the effective medium ratio is considerably improved compared to previously reported metamaterial. Moreover, few parametric analyses were done with the meta-atom. The size, scattering parameters and effective medium parameters of the proposed negative index miniaturized meta-atom is appropriate for tri-band applications.

  6. Coagulase-negative Staphylococcus species in bulk milk: Prevalence, distribution, and associated subgroup- and species-specific risk factors.

    Science.gov (United States)

    De Visscher, A; Piepers, S; Haesebrouck, F; Supré, K; De Vliegher, S

    2017-01-01

    Coagulase-negative staphylococci (CNS) have become the main pathogens causing bovine mastitis in recent years. A huge variation in species distribution among herds has been observed in several studies, emphasizing the need to identify subgroup- and species-specific herd-level factors to improve our understanding of the differences in ecological and epidemiological nature between species. The use of bulk milk samples enables the inclusion of a large(r) number of herds needed to identify herd-level risk factors and increases the likelihood of recovering enough isolates per species needed for conducting subgroup- and, eventually, species-specific analyses at the same time. This study aimed to describe the prevalence and distribution of CNS species in bulk milk samples and to identify associated subgroup- and species-specific herd-level factors. Ninety percent of all bulk milk samples yielded CNS. Staphylococcus equorum was the predominant species, followed by Staphylococcus haemolyticus and Staphylococcus epidermidis. A seasonal effect was observed for several CNS species. Bulk milk samples from herds with a loose-pack or a tiestall housing system were more likely to yield CNS species compared with herds with a freestall barn, except for S. epidermidis, Staphylococcus simulans, and Staphylococcus cohnii. In September, herds in which udders were clipped had lower odds of yielding Staphylococcus chromogenes, S. simulans, and Staphylococcus xylosus, the CNS species assumed to be most relevant for udder health, in their bulk milk than herds in which udder clipping was not practiced. Bulk milk of herds participating in a monthly veterinary udder health-monitoring program was more likely to yield these 3 CNS species. Herds always receiving their milk quality premium or predisinfecting teats before attachment of the milking cluster had lower odds of having S. equorum in their bulk milk. Herds not using a single dry cotton or paper towel for each cow during premilking udder

  7. High-negative effective refractive index of silver nanoparticles system in nanocomposite films

    Science.gov (United States)

    Altunin, Konstantin K.; Gadomsky, Oleg N.

    2012-03-01

    We have proved on the basis of the experimental optical reflection and transmission spectra of the nanocomposite film of poly(methyl methacrylate) with silver nanoparticles that (PMMA + Ag) nanocomposite films have quasi-zero refractive indices in the optical wavelength range. We show that to achieve quasi-zero values of the complex index of refraction of composite materials is necessary to achieve high-negative effective refractive index in the system of spherical silver nanoparticles.

  8. Enhancement of the nonlinear optical absorption of the E7 liquid crystal at the nematic-isotropic transition

    International Nuclear Information System (INIS)

    Gomez, S.L.; Lenart, V.M.; Bechtold, I.H.; Figueiredo Neto, A.M.

    2012-01-01

    We present an experimental study of the nonlinear optical absorption of the eutectic mixture E7 at the nematic-isotropic phase transition by the Z-scan technique, under continuous-wave excitation at 532 nm. In the nematic region, the effective nonlinear optical coefficient P, which vanishes in the isotropic phase, is negative for the extraordinary beam and positive for an ordinary beam. The parameter SNL, whose definition in terms of the nonlinear absorption coefficient follows the definition of the optical-order parameter in terms of the linear dichroic ratio, behaves like an order parameter with critical exponent 0.22 ± 0.05, in good agreement with the tricritical hypothesis for the nematic isotropic transition. (author)

  9. Thermalization vs. isotropization and azimuthal fluctuations

    International Nuclear Information System (INIS)

    Mrowczynski, Stanislaw

    2005-01-01

    Hydrodynamic description requires a local thermodynamic equilibrium of the system under study but an approximate hydrodynamic behaviour is already manifested when a momentum distribution of liquid components is not of equilibrium form but merely isotropic. While the process of equilibration is relatively slow, the parton system becomes isotropic rather fast due to the plasma instabilities. Azimuthal fluctuations observed in relativistic heavy-ion collisions are argued to distinguish between a fully equilibrated and only isotropic parton system produced in the collision early stage

  10. Profit Malmquist Index and Its Global Form in the Presence of the Negative Data in DEA

    Directory of Open Access Journals (Sweden)

    Ghasem Tohidi

    2014-01-01

    Full Text Available This paper first introduces the allocative and profit efficiency in the presence of the negative data and then presents a new circular index to measure the productivity change of decision making units (DMUs for the case that the dataset contains the inputs and/or outputs with the negative values in data envelopment analysis (DEA. The proposed index is decomposed into four components in the two stages. The range directional model (RDM and the proposed efficiencies are used to compute the proposed index and its components. The interpretations of the components are presented. Finally, a numerical example is organized to illustrate the proposed index and its components at three successive periods of time.

  11. Propagation Properties of Airy Beam through Periodic Slab System with Negative Index Materials

    Directory of Open Access Journals (Sweden)

    Long Jin

    2018-01-01

    Full Text Available Based on light transfer matrix and electric field vector equation, the evolution of Airy beam propagating in periodic slab system with three negative index materials (NIMs and its transmission mechanism are investigated. The intensity profiles on emergent surface of periodic slab system and side view of Airy beam propagating in each right handed material (RHM and double negative material (DNM unit including lossless and losses DNMs are discussed. It is revealed that the self-recovery Airy beam can be achieved in long distance by using lossless periodic slab system as long as the negative refractive index nl=-nr and each unit length L=Z. As to losses slab system contained DNMs, the smaller the collision frequencies are, the better the Airy beam quality is formed. It is expected that the proposed manner of beam transmission and corresponding conclusions can be useful for extension applications of optical control, especially for optical communication and optical encryption technique.

  12. NMR signature of evolution of ductile-to-brittle transition in bulk metallic glasses.

    Science.gov (United States)

    Yuan, C C; Xiang, J F; Xi, X K; Wang, W H

    2011-12-02

    The mechanical properties of monolithic metallic glasses depend on the structures at atomic or subnanometer scales, while a clear correlation between mechanical behavior and structures has not been well established in such amorphous materials. In this work, we find a clear correlation of (27)Al NMR isotropic shifts with a microalloying induced ductile-to-brittle transition at ambient temperature in bulk metallic glasses, which indicates that the (27)Al NMR isotropic shift can be regarded as a structural signature to characterize plasticity for this metallic glass system. The study provides a compelling approach for investigating and understanding the mechanical properties of metallic glasses from the point of view of electronic structure. © 2011 American Physical Society

  13. GOLIA-RK, Structure Stress for Isotropic Materials with Creep and Temperature Fields

    International Nuclear Information System (INIS)

    Donea, J.; Giuliani, S.

    1976-01-01

    1 - Nature of the physical problem solved: Stress analysis of complex structures in presence of creep, dimensional changes and thermal field. Plane stress, plane strain, generalized plane strain and axisymmetric problems can be solved. The material is assumed to be either isotropic or transversely isotropic. Any laws of material behaviour can easily be incorporated by the user (see subroutines WIGNER and CLAW). 2 - Method of solution: Finite element method using triangular elements with linear local fields. The equations for the displacements are solved by Choleski's method. An algorithm is incorporated to calculate automatically the successive time steps in a creep problem. 3 - Restrictions on the complexity of the problem: Maximum number of elements is 700. Maximum number of nodal points is 400. The indexes of two adjacent nodes are not permitted to differ by more than 19

  14. Elastic field of approaching dislocation loop in isotropic bimaterial

    International Nuclear Information System (INIS)

    Wu, Wenwang; Xu, Shucai; Zhang, Jinhuan; Xia, Re; Qian, Guian

    2015-01-01

    A semi-analytical solution is developed for calculating interface traction stress (ITS) fields due to elastic modulus mismatch across the interface plane of isotropic perfectly bounded bimaterial system. Based on the semi-analytical approaches developed, ITS is used to correct the bulk elastic field of dislocation loop within infinite homogenous medium, and to produce continuous displacement and stress fields across the perfectly-bounded interface. Firstly, calculation examples of dislocation loops in Al–Cu bimaterial system are performed to demonstrate the efficiency of the developed semi-analytical approach; Then, the elastic fields of dislocation loops in twinning Cu and Cu–Nb bimaterial are analyzed; Finally, the effect of modulus mismatch across interface plane on the elastic field of bimaterial system is investigated, it is found that modulus mismatch has a drastic impact on the elastic fields of dislocation loops within bimaterial system. (paper)

  15. Optical bistability induced by quantum coherence in a negative index atomic medium

    International Nuclear Information System (INIS)

    Zhang Hong-Jun; Sun Hui; Li Jin-Ping; Yin Bao-Yin; Guo Hong-Ju

    2013-01-01

    Bistability behaviors in an optical ring cavity filled with a dense V-type four-level atomic medium are theoretically investigated. It is found that the optical bistability can appear in the negative refraction frequency band, while both the bistability and multi-stability can occur in the positive refraction frequency bands. Therefore, optical bistability can be realized from conventional material to negative index material due to quantum coherence in our scheme. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  16. Measurement of the refractive index dispersion of As2Se3 bulk glass and thin films prior to and after laser irradiation and annealing using prism coupling in the near- and mid-infrared spectral range

    International Nuclear Information System (INIS)

    Carlie, N.; Petit, L.; Musgraves, J. D.; Richardson, K.; Anheier, N. C. Jr.; Qiao, H. A.; Bernacki, B.; Phillips, M. C.

    2011-01-01

    The prism coupling technique has been utilized to measure the refractive index in the near- and mid-IR spectral region of chalcogenide glasses in bulk and thin film form. A commercial system (Metricon model 2010) has been modified with additional laser sources, detectors, and a new GaP prism to allow the measurement of refractive index dispersion over the 1.5-10.6 μm range. The instrumental error was found to be ±0.001 refractive index units across the entire wavelength region examined. Measurements on thermally evaporated AMTIR2 thin films confirmed that (i) the film deposition process provides thin films with reduced index compared to that of the bulk glass used as a target, (ii) annealing of the films increases the refractive index of the film to the level of the bulk glass used as a target to create it, and (iii) it is possible to locally increase the refractive index of the chalcogenide glass using laser exposure at 632.8 nm.

  17. Pleural fluid cell-free DNA integrity index to identify cytologically negative malignant pleural effusions including mesotheliomas

    International Nuclear Information System (INIS)

    Sriram, Krishna B; Courtney, Deborah; Yang, Ian A; Bowman, Rayleen V; Fong, Kwun M; Relan, Vandana; Clarke, Belinda E; Duhig, Edwina E; Windsor, Morgan N; Matar, Kevin S; Naidoo, Rishendran; Passmore, Linda; McCaul, Elizabeth

    2012-01-01

    The diagnosis of malignant pleural effusions (MPE) is often clinically challenging, especially if the cytology is negative for malignancy. DNA integrity index has been reported to be a marker of malignancy. The aim of this study was to evaluate the utility of pleural fluid DNA integrity index in the diagnosis of MPE. We studied 75 pleural fluid and matched serum samples from consecutive subjects. Pleural fluid and serum ALU DNA repeats [115bp, 247bp and 247bp/115bp ratio (DNA integrity index)] were assessed by real-time quantitative PCR. Pleural fluid and serum mesothelin levels were quantified using ELISA. Based on clinico-pathological evaluation, 52 subjects had MPE (including 16 mesotheliomas) and 23 had benign effusions. Pleural fluid DNA integrity index was higher in MPE compared with benign effusions (1.2 vs. 0.8; p<0.001). Cytology had a sensitivity of 55% in diagnosing MPE. If cytology and pleural fluid DNA integrity index were considered together, they exhibited 81% sensitivity and 87% specificity in distinguishing benign and malignant effusions. In cytology-negative pleural effusions (35 MPE and 28 benign effusions), elevated pleural fluid DNA integrity index had an 81% positive predictive value in detecting MPEs. In the detection of mesothelioma, at a specificity of 90%, pleural fluid DNA integrity index had similar sensitivity to pleural fluid and serum mesothelin (75% each respectively). Pleural fluid DNA integrity index is a promising diagnostic biomarker for identification of MPEs, including mesothelioma. This biomarker may be particularly useful in cases of MPE where pleural aspirate cytology is negative, and could guide the decision to undertake more invasive definitive testing. A prospective validation study is being undertaken to validate our findings and test the clinical utility of this biomarker for altering clinical practice

  18. Reflection from a flat dielectric film with negative refractive index

    OpenAIRE

    Hillion, Pierre

    2007-01-01

    We analyse the reflection of a TM electromagnetic field first on a flat dielectric film and second on a Veselago film with negative refractive index, both films being deposited on a metallic substrat acting as a mirror. An incident harmonic plane wave generates inside a conventional dielectric film a refracted propagating wave and an evanescent wave that does not contribute to reflection on the metallic substrat so that part of the information conveyed by the incident field is lost. At the op...

  19. A fast and robust bulk-loading algorithm for indexing very large digital elevation datasets II. Experimental results

    Science.gov (United States)

    Rodríguez, Félix R.; Barrena, Manuel

    2011-07-01

    The spatial indexing of eventually all the available topographic information of Earth is a highly valuable tool for different geoscientific application domains. The Shuttle Radar Topography Mission (SRTM) collected and made available to the public one of the world's largest digital elevation models (DEMs). With the aim of providing on easier and faster access to these data by improving their further analysis and processing, we have indexed the SRTM DEM by means of a spatial index based on the kd-tree data structure, called the Q-tree. This paper is the second in a two-part series that includes a thorough performance analysis to validate the bulk-load algorithm efficiency of the Q-tree. We investigate performance measuring elapsed time in different contexts, analyzing disk space usage, testing response time with typical queries, and validating the final index structure balance. In addition, the paper includes performance comparisons with Oracle 11g that helps to understand the real cost of our proposal. Our tests prove that the proposed algorithm outperforms Oracle 11g using around a 9% of the elapsed time, taking six times less storage with more than 96% of page utilization, and getting faster response times to spatial queries issued on 4.5 million points. In addition to this, the behavior of the spatial index has been successfully tested on both an open GIS (VT Builder) and a visualizer tool derived from the previous one.

  20. Negative Refractive Index Metasurfaces for Enhanced Biosensing

    Directory of Open Access Journals (Sweden)

    Dragan Tanasković

    2010-12-01

    Full Text Available In this paper we review some metasurfaces with negative values of effective refractive index, as scaffolds for a new generation of surface plasmon polariton-based biological or chemical sensors. The electromagnetic properties of a metasurface may be tuned by its full immersion into analyte, or by the adsorption of a thin layer on it, both of which change its properties as a plasmonic guide. We consider various simple forms of plasmonic crystals suitable for this purpose. We start with the basic case of a freestanding, electromagnetically symmetrical plasmonic slab and analyze different ultrathin, multilayer structures, to finally consider some two-dimensional “wallpaper” geometries like split ring resonator arrays and fishnet structures. A part of the text is dedicated to the possibility of multifunctionalization where a metasurface structure is simultaneously utilized both for sensing and for selectivity enhancement. Finally we give an overview of surface-bound intrinsic electromagnetic noise phenomena that limits the ultimate performance of a metasurfaces sensor.

  1. First-principles investigation of the bulk and low-index surfaces of MoSe_2

    International Nuclear Information System (INIS)

    Mirhosseini, Hossein; Roma, Guido; Kiss, Janos; Felser, Claudia

    2014-01-01

    In the framework of density functional theory, the geometry, electronic structure, and magnetic properties of the bulk and low index surfaces of MoSe_2 have been studied. We have carried out calculations with various exchange-correlation functionals to select one which is able to describe the van der Waals (vdW) interactions and gives the best geometry compared with experiments. The inclusion of the vdW forces, however, does not guarantee a reliable description for the geometry of this compound: some vdW functionals strongly overestimate the interlayer distance, similar to GGA functionals. Our investigation shows that the recently introduced optB86bvdW functional yields the best results for MoSe_2. The vdW functionals have less impact on the electronic structure: the differences between the band structures of the experimental atomic structure, calculated by the vdW-DF and PBE functionals are marginal. We have tried the HSE06 hybrid functional as well but the results are not satisfactory: the overestimated interlayer distance leads to a significant overestimation of the band gap. The band structure of the bulk and monolayer is calculated and by the analysis of the bands character the indirect to direct band-gap transition is explained. The surface energy, work function and band structure of the surfaces are calculated as well. The role of the MoSe_2 buffer layer in Cu(In,Ga)Se_2 based solar cells is discussed by considering the work function values. (authors)

  2. Observation of bulk-ion heating in a tokamak plasma by application of positive and negative current pulses in TRIAM-1

    Energy Technology Data Exchange (ETDEWEB)

    Toi, K; Hiraki, N; Nakamura, K; Mitarai, O; Kawai, Y; Itoh, S [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1980-09-01

    A positive of negative current pulse induced by a pulsed toroidal electric field much higher than the Dreicer field increases the bulk-ion temperature of the plasma centre two to three times, without macroscopic plasma destruction. The decay time of the raised ion temperature agrees well with the prediction from neoclassical transport theory. The magnitude of the positive current pulse is limited by violent current disruption, and that of the negative current by a lack of MHD equilibrium which is due to a marked reduction of the total plasma current. The relevant current-driven instabilities in the turbulent heating of a tokamak plasma, skin heating and inward transfer of the energy deposition in the skin layer are briefly discussed.

  3. Crack Tip Creep Deformation Behavior in Transversely Isotropic Materials

    International Nuclear Information System (INIS)

    Ma, Young Wha; Yoon, Kee Bong

    2009-01-01

    Theoretical mechanics analysis and finite element simulation were performed to investigate creep deformation behavior at the crack tip of transversely isotropic materials under small scale creep (SCC) conditions. Mechanical behavior of material was assumed as an elastic-2 nd creep, which elastic modulus ( E ), Poisson's ratio (v ) and creep stress exponent ( n ) were isotropic and creep coefficient was only transversely isotropic. Based on the mechanics analysis for material behavior, a constitutive equation for transversely isotropic creep behavior was formulated and an equivalent creep coefficient was proposed under plain strain conditions. Creep deformation behavior at the crack tip was investigated through the finite element analysis. The results of the finite element analysis showed that creep deformation in transversely isotropic materials is dominant at the rear of the crack-tip. This result was more obvious when a load was applied to principal axis of anisotropy. Based on the results of the mechanics analysis and the finite element simulation, a corrected estimation scheme of the creep zone size was proposed in order to evaluate the creep deformation behavior at the crack tip of transversely isotropic creeping materials

  4. Lattice Boltzmann model for three-dimensional decaying homogeneous isotropic turbulence

    International Nuclear Information System (INIS)

    Xu Hui; Tao Wenquan; Zhang Yan

    2009-01-01

    We implement a lattice Boltzmann method (LBM) for decaying homogeneous isotropic turbulence based on an analogous Galerkin filter and focus on the fundamental statistical isotropic property. This regularized method is constructed based on orthogonal Hermite polynomial space. For decaying homogeneous isotropic turbulence, this regularized method can simulate the isotropic property very well. Numerical studies demonstrate that the novel regularized LBM is a promising approximation of turbulent fluid flows, which paves the way for coupling various turbulent models with LBM

  5. Sudden Relaminarization and Lifetimes in Forced Isotropic Turbulence.

    Science.gov (United States)

    Linkmann, Moritz F; Morozov, Alexander

    2015-09-25

    We demonstrate an unexpected connection between isotropic turbulence and wall-bounded shear flows. We perform direct numerical simulations of isotropic turbulence forced at large scales at moderate Reynolds numbers and observe sudden transitions from a chaotic dynamics to a spatially simple flow, analogous to the laminar state in wall bounded shear flows. We find that the survival probabilities of turbulence are exponential and the typical lifetimes increase superexponentially with the Reynolds number. Our results suggest that both isotropic turbulence and wall-bounded shear flows qualitatively share the same phase-space dynamics.

  6. Isotropic Growth of Graphene toward Smoothing Stitching.

    Science.gov (United States)

    Zeng, Mengqi; Tan, Lifang; Wang, Lingxiang; Mendes, Rafael G; Qin, Zhihui; Huang, Yaxin; Zhang, Tao; Fang, Liwen; Zhang, Yanfeng; Yue, Shuanglin; Rümmeli, Mark H; Peng, Lianmao; Liu, Zhongfan; Chen, Shengli; Fu, Lei

    2016-07-26

    The quality of graphene grown via chemical vapor deposition still has very great disparity with its theoretical property due to the inevitable formation of grain boundaries. The design of single-crystal substrate with an anisotropic twofold symmetry for the unidirectional alignment of graphene seeds would be a promising way for eliminating the grain boundaries at the wafer scale. However, such a delicate process will be easily terminated by the obstruction of defects or impurities. Here we investigated the isotropic growth behavior of graphene single crystals via melting the growth substrate to obtain an amorphous isotropic surface, which will not offer any specific grain orientation induction or preponderant growth rate toward a certain direction in the graphene growth process. The as-obtained graphene grains are isotropically round with mixed edges that exhibit high activity. The orientation of adjacent grains can be easily self-adjusted to smoothly match each other over a liquid catalyst with facile atom delocalization due to the low rotation steric hindrance of the isotropic grains, thus achieving the smoothing stitching of the adjacent graphene. Therefore, the adverse effects of grain boundaries will be eliminated and the excellent transport performance of graphene will be more guaranteed. What is more, such an isotropic growth mode can be extended to other types of layered nanomaterials such as hexagonal boron nitride and transition metal chalcogenides for obtaining large-size intrinsic film with low defect.

  7. Angle gathers in wave-equation imaging for transversely isotropic media

    KAUST Repository

    Alkhalifah, Tariq Ali; Fomel, Sergey B.

    2010-01-01

    In recent years, wave-equation imaged data are often presented in common-image angle-domain gathers as a decomposition in the scattering angle at the reflector, which provide a natural access to analysing migration velocities and amplitudes. In the case of anisotropic media, the importance of angle gathers is enhanced by the need to properly estimate multiple anisotropic parameters for a proper representation of the medium. We extract angle gathers for each downward-continuation step from converting offset-frequency planes into angle-frequency planes simultaneously with applying the imaging condition in a transversely isotropic with a vertical symmetry axis (VTI) medium. The analytic equations, though cumbersome, are exact within the framework of the acoustic approximation. They are also easily programmable and show that angle gather mapping in the case of anisotropic media differs from its isotropic counterpart, with the difference depending mainly on the strength of anisotropy. Synthetic examples demonstrate the importance of including anisotropy in the angle gather generation as mapping of the energy is negatively altered otherwise. In the case of a titled axis of symmetry (TTI), the same VTI formulation is applicable but requires a rotation of the wavenumbers. © 2010 European Association of Geoscientists & Engineers.

  8. Angle gathers in wave-equation imaging for transversely isotropic media

    KAUST Repository

    Alkhalifah, Tariq Ali

    2010-11-12

    In recent years, wave-equation imaged data are often presented in common-image angle-domain gathers as a decomposition in the scattering angle at the reflector, which provide a natural access to analysing migration velocities and amplitudes. In the case of anisotropic media, the importance of angle gathers is enhanced by the need to properly estimate multiple anisotropic parameters for a proper representation of the medium. We extract angle gathers for each downward-continuation step from converting offset-frequency planes into angle-frequency planes simultaneously with applying the imaging condition in a transversely isotropic with a vertical symmetry axis (VTI) medium. The analytic equations, though cumbersome, are exact within the framework of the acoustic approximation. They are also easily programmable and show that angle gather mapping in the case of anisotropic media differs from its isotropic counterpart, with the difference depending mainly on the strength of anisotropy. Synthetic examples demonstrate the importance of including anisotropy in the angle gather generation as mapping of the energy is negatively altered otherwise. In the case of a titled axis of symmetry (TTI), the same VTI formulation is applicable but requires a rotation of the wavenumbers. © 2010 European Association of Geoscientists & Engineers.

  9. A Miniaturized Antenna with Negative Index Metamaterial Based on Modified SRR and CLS Unit Cell for UWB Microwave Imaging Applications

    Directory of Open Access Journals (Sweden)

    Md. Moinul Islam

    2015-01-01

    Full Text Available A miniaturized antenna employing a negative index metamaterial with modified split-ring resonator (SRR and capacitance-loaded strip (CLS unit cells is presented for Ultra wideband (UWB microwave imaging applications. Four left-handed (LH metamaterial (MTM unit cells are located along one axis of the antenna as the radiating element. Each left-handed metamaterial unit cell combines a modified split-ring resonator (SRR with a capacitance-loaded strip (CLS to obtain a design architecture that simultaneously exhibits both negative permittivity and negative permeability, which ensures a stable negative refractive index to improve the antenna performance for microwave imaging. The antenna structure, with dimension of 16 × 21 × 1.6 mm3, is printed on a low dielectric FR4 material with a slotted ground plane and a microstrip feed. The measured reflection coefficient demonstrates that this antenna attains 114.5% bandwidth covering the frequency band of 3.4–12.5 GHz for a voltage standing wave ratio of less than 2 with a maximum gain of 5.16 dBi at 10.15 GHz. There is a stable harmony between the simulated and measured results that indicate improved nearly omni-directional radiation characteristics within the operational frequency band. The stable surface current distribution, negative refractive index characteristic, considerable gain and radiation properties make this proposed negative index metamaterial antenna optimal for UWB microwave imaging applications.

  10. Imaging performance of an isotropic negative dielectric constant slab.

    Science.gov (United States)

    Shivanand; Liu, Huikan; Webb, Kevin J

    2008-11-01

    The influence of material and thickness on the subwavelength imaging performance of a negative dielectric constant slab is studied. Resonance in the plane-wave transfer function produces a high spatial frequency ripple that could be useful in fabricating periodic structures. A cost function based on the plane-wave transfer function provides a useful metric to evaluate the planar slab lens performance, and using this, the optimal slab dielectric constant can be determined.

  11. Isotropic nuclear graphites; the effect of neutron irradiation

    International Nuclear Information System (INIS)

    Lore, J.; Buscaillon, A.; Mottet, P.; Micaud, G.

    1977-01-01

    Several isotropic graphites have been manufactured using different forming processes and fillers such as needle coke, regular coke, or pitch coke. Their properties are described in this paper. Specimens of these products have been irradiated in the fast reactor Rapsodie between 400 to 1400 0 C, at fluences up to 1,7.10 21 n.cm -2 PHI.FG. The results show an isotropic behavior under neutron irradiation, but the induced dimensional changes are higher than those of isotropic coke graphites although they are lower than those of conventional extruded graphites made with the same coke

  12. Process for the preparation of isotropic petroleum coke

    International Nuclear Information System (INIS)

    Kegler, W.H.; Huyser, M.E.

    1975-01-01

    A description is given of a process for preparing isotropic coke from oil residue charge. It includes blowing air into the residue until it reaches a softening temperature of around 49 to 116 deg C, the deferred coking of the residue having undergone blowing at a temperature of around 247 to 640 deg C, at a pressure between around 1.38x10 5 and 1.72x10 6 Pa, and the recovery of isotropic coke with a thermal expansion coefficient ratio under 1.5 approximately. The isotropic coke is used for preparing hexagonal graphite bars for nuclear reactor moderators [fr

  13. Texture of low temperature isotropic pyrocarbons

    International Nuclear Information System (INIS)

    Pelissier, Joseph; Lombard, Louis.

    1976-01-01

    Isotropic pyrocarbon deposited on fuel particles was studied by transmission electron microscopy in order to determine its texture. The material consists of an agglomerate of spherical growth features similar to those of carbon black. The spherical growth features are formed from the cristallites of turbostratic carbon and the distribution gives an isotropic structure. Neutron irradiation modifies the morphology of the pyrocarbon. The spherical growth features are deformed and the coating becomes strongly anisotropic. The transformation leads to the rupture of the coating caused by strong irradiation doses [fr

  14. Pulse energy dependence of refractive index change in lithium niobium silicate glass during femtosecond laser direct writing.

    Science.gov (United States)

    Cao, Jing; Poumellec, Bertrand; Brisset, François; Lancry, Matthieu

    2018-03-19

    Femtosecond laser-induced refractive index changes in lithium niobium silicate glass were explored at high repetition rate (300 fs, 500 kHz) by polarized light microscopy, full-wave retardation plate, quantitative birefringence microscopy, and digital holographic microscopy. We found three regimes on energy increase. The first one corresponds to isotropic negative refractive index change (for pulse energy ranging 0.4-0.8 μJ/pulse, 0.6 NA, 5μm/s, 650μm focusing depth in the glass). The second one (0.8-1.2 μJ/pulse) corresponds to birefringence with well-defined slow axis orientation. The third one (above 1.2 μJ/pulse) is related to birefringence direction fluctuation. Interestingly, these regimes are consistent with crystallization ones. In addition, an asymmetric orientational writing effect has been detected on birefringence. These topics extend the possibility of controlling refractive index change in multi-component glasses.

  15. Manipulation of surface plasmon polariton propagation on isotropic and anisotropic two-dimensional materials coupled to boron nitride heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Inampudi, Sandeep; Nazari, Mina; Forouzmand, Ali; Mosallaei, Hossein, E-mail: hosseinm@coe.neu.edu [Department of Electrical and Computer Engineering, Northeastern University, 360 Huntington Ave., Boston, Massachusetts 02115 (United States)

    2016-01-14

    We present a comprehensive analysis of surface plasmon polariton dispersion characteristics associated with isotropic and anisotropic two-dimensional atomically thin layered materials (2D sheets) coupled to h-BN heterostructures. A scattering matrix based approach is presented to compute the electromagnetic fields and related dispersion characteristics of stacked layered systems composed of anisotropic 2D sheets and uniaxial bulk materials. We analyze specifically the surface plasmon polariton (SPP) dispersion characteristics in case of isolated and coupled two-dimensional layers with isotropic and anisotropic conductivities. An analysis based on residue theorem is utilized to identify optimum optical parameters (surface conductivity) and geometrical parameters (separation between layers) to maximize the SPP field at a given position. The effect of type and degree of anisotropy on the shapes of iso-frequency curves and propagation characteristics is discussed in detail. The analysis presented in this paper gives an insight to identify optimum setup to enhance the SPP field at a given position and in a given direction on the surface of two-dimensional materials.

  16. Isotropic extensions of the vacuum solutions in general relativity

    Energy Technology Data Exchange (ETDEWEB)

    Molina, C. [Universidade de Sao Paulo (USP), SP (Brazil); Martin-Moruno, Prado [Victoria University of Wellington (New Zealand); Gonzalez-Diaz, Pedro F. [Consejo Superior de Investigaciones Cientificas, Madrid (Spain)

    2012-07-01

    Full text: Spacetimes described by spherically symmetric solutions of Einstein's equations are of paramount importance both in astrophysical applications and theoretical considerations. And among those, black holes are highlighted. In vacuum, Birkhoff's theorem and its generalizations to non-asymptotically flat cases uniquely fix the metric as the Schwarzschild, Schwarzschild-de Sitter or Schwarzschild-anti-de Sitter geometries, the vacuum solutions of the usual general relativity with zero, positive or negative values for the cosmological constant, respectively. In this work we are mainly interested in black holes in a cosmological environment. Of the two main assumptions of the cosmological principle, homogeneity is lost when compact objects are considered. Nevertheless isotropy is still possible, and we enforce this condition. Within this context, we investigate spatially isotropic solutions close - continuously deformable - to the usual vacuum solutions. We obtain isotropic extensions of the usual spherically symmetric vacuum geometries in general relativity. Exact and perturbative solutions are derived. Maximal extensions are constructed and their causal structures are discussed. The classes of geometries obtained include black holes in compact and non-compact universes, wormholes in the interior region of cosmological horizons, and anti-de Sitter geometries with excess/deficit solid angle. The tools developed here are applicable in more general contexts, with extensions subjected to other constraints. (author)

  17. Isotropic compression of cohesive-frictional particles with rolling resistance

    NARCIS (Netherlands)

    Luding, Stefan; Benz, Thomas; Nordal, Steinar

    2010-01-01

    Cohesive-frictional and rough powders are the subject of this study. The behavior under isotropic compression is examined for different material properties involving Coulomb friction, rolling-resistance and contact-adhesion. Under isotropic compression, the density continuously increases according

  18. High-Q/V Monolithic Diamond Microdisks Fabricated with Quasi-isotropic Etching.

    Science.gov (United States)

    Khanaliloo, Behzad; Mitchell, Matthew; Hryciw, Aaron C; Barclay, Paul E

    2015-08-12

    Optical microcavities enhance light-matter interactions and are essential for many experiments in solid state quantum optics, optomechanics, and nonlinear optics. Single crystal diamond microcavities are particularly sought after for applications involving diamond quantum emitters, such as nitrogen vacancy centers, and for experiments that benefit from diamond's excellent optical and mechanical properties. Light-matter coupling rates in experiments involving microcavities typically scale with Q/V, where Q and V are the microcavity quality-factor and mode-volume, respectively. Here we demonstrate that microdisk whispering gallery mode cavities with high Q/V can be fabricated directly from bulk single crystal diamond. By using a quasi-isotropic oxygen plasma to etch along diamond crystal planes and undercut passivated diamond structures, we create monolithic diamond microdisks. Fiber taper based measurements show that these devices support TE- and TM-like optical modes with Q > 1.1 × 10(5) and V < 11(λ/n) (3) at a wavelength of 1.5 μm.

  19. Interactively variable isotropic resolution in computed tomography

    International Nuclear Information System (INIS)

    Lapp, Robert M; Kyriakou, Yiannis; Kachelriess, Marc; Wilharm, Sylvia; Kalender, Willi A

    2008-01-01

    An individual balancing between spatial resolution and image noise is necessary to fulfil the diagnostic requirements in medical CT imaging. In order to change influencing parameters, such as reconstruction kernel or effective slice thickness, additional raw-data-dependent image reconstructions have to be performed. Therefore, the noise versus resolution trade-off is time consuming and not interactively applicable. Furthermore, isotropic resolution, expressed by an equivalent point spread function (PSF) in every spatial direction, is important for the undistorted visualization and quantitative evaluation of small structures independent of the viewing plane. Theoretically, isotropic resolution can be obtained by matching the in-plane and through-plane resolution with the aforementioned parameters. Practically, however, the user is not assisted in doing so by current reconstruction systems and therefore isotropic resolution is not commonly achieved, in particular not at the desired resolution level. In this paper, an integrated approach is presented for equalizing the in-plane and through-plane spatial resolution by image filtering. The required filter kernels are calculated from previously measured PSFs in x/y- and z-direction. The concepts derived are combined with a variable resolution filtering technique. Both approaches are independent of CT raw data and operate only on reconstructed images which allows for their application in real time. Thereby, the aim of interactively variable, isotropic resolution is achieved. Results were evaluated quantitatively by measuring PSFs and image noise, and qualitatively by comparing the images to direct reconstructions regarded as the gold standard. Filtered images matched direct reconstructions with arbitrary reconstruction kernels with standard deviations in difference images of typically between 1 and 17 HU. Isotropic resolution was achieved within 5% of the selected resolution level. Processing times of 20-100 ms per frame

  20. Contact mechanics and friction for transversely isotropic viscoelastic materials

    NARCIS (Netherlands)

    Mokhtari, Milad; Schipper, Dirk J.; Vleugels, N.; Noordermeer, Jacobus W.M.; Yoshimoto, S.; Hashimoto, H.

    2015-01-01

    Transversely isotropic materials are an unique group of materials whose properties are the same along two of the principal axes of a Cartesian coordinate system. Various natural and artificial materials behave effectively as transversely isotropic elastic solids. Several materials can be classified

  1. Spectrum of the isotropic diffuse gamma-ray emission derived from first-year Fermi Large Area Telescope data.

    Science.gov (United States)

    Abdo, A A; Ackermann, M; Ajello, M; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cavazzuti, E; Cecchi, C; Celik, O; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Cominsky, L R; Conrad, J; Cutini, S; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; Di Bernardo, G; do Couto e Silva, E; Drell, P S; Drlica-Wagner, A; Dubois, R; Dumora, D; Farnier, C; Favuzzi, C; Fegan, S J; Focke, W B; Fortin, P; Frailis, M; Fukazawa, Y; Funk, S; Fusco, P; Gaggero, D; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giommi, P; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guillemot, L; Guiriec, S; Gustafsson, M; Hanabata, Y; Harding, A K; Hayashida, M; Hughes, R E; Itoh, R; Jackson, M S; Jóhannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Kuehn, F; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Mazziotta, M N; McConville, W; McEnery, J E; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, L S; Rodriguez, A Y; Roth, M; Ryde, F; Sadrozinski, H F-W; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Sellerholm, A; Sgrò, C; Shaw, M S; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Starck, J-L; Strickman, M S; Strong, A W; Suson, D J; Tajima, H; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vasileiou, V; Vilchez, N; Vitale, V; Waite, A P; Wang, P; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M

    2010-03-12

    We report on the first Fermi Large Area Telescope (LAT) measurements of the so-called "extragalactic" diffuse gamma-ray emission (EGB). This component of the diffuse gamma-ray emission is generally considered to have an isotropic or nearly isotropic distribution on the sky with diverse contributions discussed in the literature. The derivation of the EGB is based on detailed modeling of the bright foreground diffuse Galactic gamma-ray emission, the detected LAT sources, and the solar gamma-ray emission. We find the spectrum of the EGB is consistent with a power law with a differential spectral index gamma = 2.41 +/- 0.05 and intensity I(>100 MeV) = (1.03 +/- 0.17) x 10(-5) cm(-2) s(-1) sr(-1), where the error is systematics dominated. Our EGB spectrum is featureless, less intense, and softer than that derived from EGRET data.

  2. The Assessment of Positivity and Negativity in Social Networks: The Reliability and Validity of the Social Relationships Index

    Science.gov (United States)

    Campo, Rebecca A.; Uchino, Bert N.; Holt-Lunstad, Julianne; Vaughn, Allison; Reblin, Maija; Smith, Timothy W.

    2009-01-01

    The Social Relationships Index (SRI) was designed to examine positivity and negativity in social relationships. Unique features of this scale include its brevity and the ability to examine relationship positivity and negativity at the level of the specific individual and social network. The SRI's psychometric properties were examined in three…

  3. A coupled melt-freeze temperature index approach in a one-layer model to predict bulk volumetric liquid water content dynamics in snow

    Science.gov (United States)

    Avanzi, Francesco; Yamaguchi, Satoru; Hirashima, Hiroyuki; De Michele, Carlo

    2016-04-01

    Liquid water in snow rules runoff dynamics and wet snow avalanches release. Moreover, it affects snow viscosity and snow albedo. As a result, measuring and modeling liquid water dynamics in snow have important implications for many scientific applications. However, measurements are usually challenging, while modeling is difficult due to an overlap of mechanical, thermal and hydraulic processes. Here, we evaluate the use of a simple one-layer one-dimensional model to predict hourly time-series of bulk volumetric liquid water content in seasonal snow. The model considers both a simple temperature-index approach (melt only) and a coupled melt-freeze temperature-index approach that is able to reconstruct melt-freeze dynamics. Performance of this approach is evaluated at three sites in Japan. These sites (Nagaoka, Shinjo and Sapporo) present multi-year time-series of snow and meteorological data, vertical profiles of snow physical properties and snow melt lysimeters data. These data-sets are an interesting opportunity to test this application in different climatic conditions, as sites span a wide latitudinal range and are subjected to different snow conditions during the season. When melt-freeze dynamics are included in the model, results show that median absolute differences between observations and predictions of bulk volumetric liquid water content are consistently lower than 1 vol%. Moreover, the model is able to predict an observed dry condition of the snowpack in 80% of observed cases at a non-calibration site, where parameters from calibration sites are transferred. Overall, the analysis show that a coupled melt-freeze temperature-index approach may be a valid solution to predict average wetness conditions of a snow cover at local scale.

  4. Cospectral budget of turbulence explains the bulk properties of smooth pipe flow

    Science.gov (United States)

    Katul, Gabriel G.; Manes, Costantino

    2014-12-01

    Connections between the wall-normal turbulent velocity spectrum Ew w(k ) at wave number k and the mean velocity profile (MVP) are explored in pressure-driven flows confined within smooth walls at moderate to high bulk Reynolds numbers (Re). These connections are derived via a cospectral budget for the longitudinal (u') and wall-normal (w') velocity fluctuations, which include a production term due to mean shear interacting with Ew w(k ) , viscous effects, and a decorrelation between u' and w' by pressure-strain effects [=π (k ) ]. The π (k ) is modeled using a conventional Rotta-like return-to-isotropy closure but adjusted to include the effects of isotropization of the production term. The resulting cospectral budget yields a generalization of a previously proposed "spectral link" between the MVP and the spectrum of turbulence. The proposed cospectral budget is also shown to reproduce the measured MVP across the pipe with changing Re including the MVP shapes in the buffer and wake regions. Because of the links between Ew w(k ) and the MVP, the effects of intermittency corrections to inertial subrange scales and the so-called spectral bottleneck reported as k approaches viscous dissipation eddy sizes (η ) on the MVP shapes are investigated and shown to be of minor importance. Inclusion of a local Reynolds number correction to a parameter associated with the spectral exponential cutoff as k η →1 appears to be more significant to the MVP shape in the buffer region. While the bulk shape of the MVP is reasonably reproduced in all regions of the pipe, the solution to the cospectral budget systematically underestimates the negative curvature of the MVP within the buffer layer.

  5. Cospectral budget of turbulence explains the bulk properties of smooth pipe flow.

    Science.gov (United States)

    Katul, Gabriel G; Manes, Costantino

    2014-12-01

    Connections between the wall-normal turbulent velocity spectrum E(ww)(k) at wave number k and the mean velocity profile (MVP) are explored in pressure-driven flows confined within smooth walls at moderate to high bulk Reynolds numbers (Re). These connections are derived via a cospectral budget for the longitudinal (u') and wall-normal (w') velocity fluctuations, which include a production term due to mean shear interacting with E(ww)(k), viscous effects, and a decorrelation between u' and w' by pressure-strain effects [=π(k)]. The π(k) is modeled using a conventional Rotta-like return-to-isotropy closure but adjusted to include the effects of isotropization of the production term. The resulting cospectral budget yields a generalization of a previously proposed "spectral link" between the MVP and the spectrum of turbulence. The proposed cospectral budget is also shown to reproduce the measured MVP across the pipe with changing Re including the MVP shapes in the buffer and wake regions. Because of the links between E(ww)(k) and the MVP, the effects of intermittency corrections to inertial subrange scales and the so-called spectral bottleneck reported as k approaches viscous dissipation eddy sizes (η) on the MVP shapes are investigated and shown to be of minor importance. Inclusion of a local Reynolds number correction to a parameter associated with the spectral exponential cutoff as kη→1 appears to be more significant to the MVP shape in the buffer region. While the bulk shape of the MVP is reasonably reproduced in all regions of the pipe, the solution to the cospectral budget systematically underestimates the negative curvature of the MVP within the buffer layer.

  6. Effect of the refractive index on the hawking temperature: an application of the Hamilton-Jacobi method

    Science.gov (United States)

    Sakalli, I.; Mirekhtiary, S. F.

    2013-10-01

    Hawking radiation of a non-asymptotically flat 4-dimensional spherically symmetric and static dilatonic black hole (BH) via the Hamilton-Jacobi (HJ) method is studied. In addition to the naive coordinates, we use four more different coordinate systems that are well-behaved at the horizon. Except for the isotropic coordinates, direct computation by the HJ method leads to the standard Hawking temperature for all coordinate systems. The isotropic coordinates allow extracting the index of refraction from the Fermat metric. It is explicitly shown that the index of refraction determines the value of the tunneling rate and its natural consequence, the Hawking temperature. The isotropic coordinates in the conventional HJ method produce a wrong result for the temperature of the linear dilaton. Here, we explain how this discrepancy can be resolved by regularizing the integral possessing a pole at the horizon.

  7. Effect of the refractive index on the hawking temperature: an application of the Hamilton-Jacobi method

    Energy Technology Data Exchange (ETDEWEB)

    Sakalli, I., E-mail: izzet.sakalli@emu.edu.tr; Mirekhtiary, S. F., E-mail: fatemeh.mirekhtiary@emu.edu.tr [Eastern Mediterranean University G. Magosa, Department of Physics (Turkey)

    2013-10-15

    Hawking radiation of a non-asymptotically flat 4-dimensional spherically symmetric and static dilatonic black hole (BH) via the Hamilton-Jacobi (HJ) method is studied. In addition to the naive coordinates, we use four more different coordinate systems that are well-behaved at the horizon. Except for the isotropic coordinates, direct computation by the HJ method leads to the standard Hawking temperature for all coordinate systems. The isotropic coordinates allow extracting the index of refraction from the Fermat metric. It is explicitly shown that the index of refraction determines the value of the tunneling rate and its natural consequence, the Hawking temperature. The isotropic coordinates in the conventional HJ method produce a wrong result for the temperature of the linear dilaton. Here, we explain how this discrepancy can be resolved by regularizing the integral possessing a pole at the horizon.

  8. Visualization and computer graphics on isotropically emissive volumetric displays.

    Science.gov (United States)

    Mora, Benjamin; Maciejewski, Ross; Chen, Min; Ebert, David S

    2009-01-01

    The availability of commodity volumetric displays provides ordinary users with a new means of visualizing 3D data. Many of these displays are in the class of isotropically emissive light devices, which are designed to directly illuminate voxels in a 3D frame buffer, producing X-ray-like visualizations. While this technology can offer intuitive insight into a 3D object, the visualizations are perceptually different from what a computer graphics or visualization system would render on a 2D screen. This paper formalizes rendering on isotropically emissive displays and introduces a novel technique that emulates traditional rendering effects on isotropically emissive volumetric displays, delivering results that are much closer to what is traditionally rendered on regular 2D screens. Such a technique can significantly broaden the capability and usage of isotropically emissive volumetric displays. Our method takes a 3D dataset or object as the input, creates an intermediate light field, and outputs a special 3D volume dataset called a lumi-volume. This lumi-volume encodes approximated rendering effects in a form suitable for display with accumulative integrals along unobtrusive rays. When a lumi-volume is fed directly into an isotropically emissive volumetric display, it creates a 3D visualization with surface shading effects that are familiar to the users. The key to this technique is an algorithm for creating a 3D lumi-volume from a 4D light field. In this paper, we discuss a number of technical issues, including transparency effects due to the dimension reduction and sampling rates for light fields and lumi-volumes. We show the effectiveness and usability of this technique with a selection of experimental results captured from an isotropically emissive volumetric display, and we demonstrate its potential capability and scalability with computer-simulated high-resolution results.

  9. The revised geometric measure of entanglement for isotropic state

    International Nuclear Information System (INIS)

    Cao Ya

    2011-01-01

    Based on the revised geometric measure of entanglement (RGME), we obtain the analytical expression of isotropic state and generalize to n-particle and d-dimension mixed state case. Meantime, we obtain the relation about isotropic state E-tilde sin 2 (ρ) ≤ E re (ρ). The results indicate RGME is an appropriate measure of entanglement. (authors)

  10. Robust high pressure stability and negative thermal expansion in sodium-rich antiperovskites Na3OBr and Na4OI2

    International Nuclear Information System (INIS)

    Wang, Yonggang; Wen, Ting; Park, Changyong; Kenney-Benson, Curtis; Pravica, Michael; Zhao, Yusheng; Yang, Wenge

    2016-01-01

    The structure stability under high pressure and thermal expansion behavior of Na 3 OBr and Na 4 OI 2 , two prototypes of alkali-metal-rich antiperovskites, were investigated by in situ synchrotron X-ray diffraction techniques under high pressure and low temperature. Both are soft materials with bulk modulus of 58.6 GPa and 52.0 GPa for Na 3 OBr and Na 4 OI 2 , respectively. The cubic Na 3 OBr structure and tetragonal Na 4 OI 2 with intergrowth K 2 NiF 4 structure are stable under high pressure up to 23 GPa. Although being a characteristic layered structure, Na 4 OI 2 exhibits nearly isotropic compressibility. Negative thermal expansion was observed at low temperature range (20–80 K) in both transition-metal-free antiperovskites for the first time. The robust high pressure structure stability was examined and confirmed by first-principles calculations among various possible polymorphisms qualitatively. The results provide in-depth understanding of the negative thermal expansion and robust crystal structure stability of these antiperovskite systems and their potential applications

  11. Spontaneous radiation of a chiral molecule located near a half-space of a bi-isotropic material

    Science.gov (United States)

    Guzatov, D. V.; Klimov, V. V.; Poprukailo, N. S.

    2013-04-01

    Analytical expressions for the rate of spontaneous emission from a chiral (optically active) molecule located near a half-space occupied by a chiral (bi-isotropic) material have been obtained and analyzed in detail. It is established that the rates of spontaneous emission from the "right" and "left" enantiomers of molecules occurring near the chiral medium may significantly differ in cases of chiral materials with (i) both negative dielectric permittivity and magnetic permeability (DNG metamaterial) and (ii) negative permeability and positive permittivity (MNG metamaterial). Based on this phenomenon, DMG and MNG metamaterials can be used to create devices capable of separating right and left enantiomers in racemic mixtures.

  12. Spontaneous radiation of a chiral molecule located near a half-space of a bi-isotropic material

    Energy Technology Data Exchange (ETDEWEB)

    Guzatov, D. V., E-mail: vklimov@sci.lebedev.ru [Yanka Kupala Grodno State University (Belarus); Klimov, V. V., E-mail: klimov256@gmail.com [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Poprukailo, N. S. [Yanka Kupala Grodno State University (Belarus)

    2013-04-15

    Analytical expressions for the rate of spontaneous emission from a chiral (optically active) molecule located near a half-space occupied by a chiral (bi-isotropic) material have been obtained and analyzed in detail. It is established that the rates of spontaneous emission from the 'right' and 'left' enantiomers of molecules occurring near the chiral medium may significantly differ in cases of chiral materials with (i) both negative dielectric permittivity and magnetic permeability (DNG metamaterial) and (ii) negative permeability and positive permittivity (MNG metamaterial). Based on this phenomenon, DMG and MNG metamaterials can be used to create devices capable of separating right and left enantiomers in racemic mixtures.

  13. Spontaneous radiation of a chiral molecule located near a half-space of a bi-isotropic material

    International Nuclear Information System (INIS)

    Guzatov, D. V.; Klimov, V. V.; Poprukailo, N. S.

    2013-01-01

    Analytical expressions for the rate of spontaneous emission from a chiral (optically active) molecule located near a half-space occupied by a chiral (bi-isotropic) material have been obtained and analyzed in detail. It is established that the rates of spontaneous emission from the “right” and “left” enantiomers of molecules occurring near the chiral medium may significantly differ in cases of chiral materials with (i) both negative dielectric permittivity and magnetic permeability (DNG metamaterial) and (ii) negative permeability and positive permittivity (MNG metamaterial). Based on this phenomenon, DMG and MNG metamaterials can be used to create devices capable of separating right and left enantiomers in racemic mixtures.

  14. Cometary water-group ions in the region surrounding Comet Giacobini-Zinner - Distribution functions and bulk parameter estimates

    Science.gov (United States)

    Staines, K.; Balogh, A.; Cowley, S. W. H.; Richardson, I. G.; Sanderson, T. R.; Tsurutani, B. T.

    1991-01-01

    The bulk parameters (number density and thermal energy density) of cometary water-group ions in the region surrounding Comet Giacobini-Zinner have been derived using data from the EPAS instrument on the ICE spacecraft. The derivation is based on the assumption that the pick-up ion distribution function is isotropic in the frame of the bulk flow, an approximation which has previously been shown to be reasonable within about 400,000 km of the comet nucleus along the spacecraft trajectory. The transition between the pick-up and mass-loaded regions occurs at the cometary shock, which was traversed at a cometocentric distance of about 100,000 km along the spacecraft track. Examination of the ion distribution functions in this region, transformed to the bulk flow frame, indicates the occurrence of a flattened distribution in the vicinity of the local pick-up speed, and a steeply falling tail at speeds above, which may be approximated as an exponential in ion speed.

  15. On a hierarchical construction of the anisotropic LTSN solution from the isotropic LTSN solution

    International Nuclear Information System (INIS)

    Foletto, Taline; Segatto, Cynthia F.; Bodmann, Bardo E.; Vilhena, Marco T.

    2015-01-01

    In this work, we present a recursive scheme targeting the hierarchical construction of anisotropic LTS N solution from the isotropic LTS N solution. The main idea relies in the decomposition of the associated LTS N anisotropic matrix as a sum of two matrices in which one matrix contains the isotropic and the other anisotropic part of the problem. The matrix containing the anisotropic part is considered as the source of the isotropic problem. The solution of this problem is made by the decomposition of the angular flux as a truncated series of intermediate functions and replace in the isotropic equation. After the replacement of these into the split isotropic equation, we construct a set of isotropic recursive problems, that are readily solved by the classic LTS N isotropic method. We apply this methodology to solve problems considering homogeneous and heterogeneous anisotropic regions. Numerical results are presented and compared with the classical LTS N anisotropic solution. (author)

  16. The microwave heating mechanism of N-(4-methoxybenzyliden)-4-butylaniline in liquid crystalline and isotropic phases as determined using in situ microwave irradiation NMR spectroscopy.

    Science.gov (United States)

    Tasei, Yugo; Tanigawa, Fumikazu; Kawamura, Izuru; Fujito, Teruaki; Sato, Motoyasu; Naito, Akira

    2015-04-14

    Microwave heating effects are widely used in the acceleration of organic, polymerization and enzymatic reactions. These effects are primarily caused by the local heating induced by microwave irradiation. However, the detailed molecular mechanisms associated with microwave heating effects on the chemical reactions are not yet well understood. This study investigated the microwave heating effect of N-(4-methoxybenzylidene)-4-butylaniline (MBBA) in liquid crystalline and isotropic phases using in situ microwave irradiation nuclear magnetic resonance (NMR) spectroscopy, by obtaining (1)H NMR spectra of MBBA under microwave irradiation. When heated simply using the temperature control unit of the NMR instrument, the liquid crystalline MBBA was converted to the isotropic phase exactly at its phase transition temperature (Tc) of 41 °C. The application of microwave irradiation at 130 W for 90 s while maintaining the instrument temperature at 20 °C generated a small amount of isotropic phase within the bulk liquid crystal. The sample temperature of the liquid crystalline state obtained during microwave irradiation was estimated to be 35 °C by assessing the linewidths of the (1)H NMR spectrum. This partial transition to the isotropic phase can be attributed to a non-equilibrium local heating state induced by the microwave irradiation. The application of microwave at 195 W for 5 min to isotropic MBBA while maintaining an instrument temperature of 50 °C raised the sample temperature to 160 °C. In this study, the MBBA temperature during microwave irradiation was estimated by measuring the temperature dependent chemical shifts of individual protons in the sample, and the different protons were found to indicate significantly different temperatures in the molecule. These results suggest that microwave heating polarizes bonds in polar functional groups, and this effect may partly explain the attendant acceleration of organic reactions.

  17. REDUCED ISOTROPIC CRYSTAL MODEL WITH RESPECT TO THE FOURTH-ORDER ELASTIC MODULI

    Directory of Open Access Journals (Sweden)

    O. Burlayenko

    2018-04-01

    Full Text Available Using a reduced isotropic crystal model the relationship between the fourth-order elastic moduli of an isotropic medium and the independent components of the fourth-order elastic moduli tensor of real crystals of various crystal systems is found. To calculate the coefficients of these relations, computer algebra systems Redberry and Mathematica for working with high order tensors in the symbolic and explicit form were used, in light of the overly complex computation. In an isotropic medium, there are four independent fourth order elastic moduli. This is due to the presence of four invariants for an eighth-rank tensor in the three-dimensional space, that has symmetries over the pairs of indices. As an example, the moduli of elasticity of an isotropic medium corresponding to certain crystals of cubic system are given (LiF, NaCl, MgO, CaF2. From the obtained results it can be seen that the reduced isotropic crystal model can be most effectively applied to high-symmetry crystal systems.

  18. Comparison of three-dimensional isotropic and conventional MR arthrography with respect to the diagnosis of rotator cuff and labral lesions: Focus on isotropic fat-suppressed proton density and VIBE sequences

    International Nuclear Information System (INIS)

    Park, S.Y.; Lee, I.S.; Park, S.K.; Cheon, S.J.; Ahn, J.M.; Song, J.W.

    2014-01-01

    Aim: To compare the diagnostic accuracies of three-dimensional (3D) isotropic magnetic resonance arthrography (MRA) using fat-suppressed proton density (PD) or volume interpolated breath-hold examination (VIBE) sequences with that of conventional MRA for the diagnosis of rotator cuff and labral lesions. Materials and methods: Eighty-six patients who underwent arthroscopic surgery were included. 3D isotropic sequences were performed in the axial plane using fat-suppressed PD (group A) in 53 patients and using VIBE (group B) in 33 patients. Reformatted images were obtained corresponding to conventional images, and evaluated for the presence of labral and rotator cuff lesions using conventional and 3D isotropic sequences. The diagnostic performances of each sequence were determined using arthroscopic findings as the standard. Results: Good to excellent interobserver agreements were obtained for both 3D isotropic sequences for the evaluation of rotator cuff and labral lesions. Excellent agreement was found between two-dimensional (2D) and 3D isotropic MRA, except for supraspinatus tendon (SST) tears by both readers and for subscapularis tendon (SCT) tears by reader 2 in group B. 2D MRA and 3D isotropic sequences had high diagnostic performances for rotator and labral tears, and the difference between the two imaging methods was insignificant. Conclusions: The diagnostic performances of 3D isotropic VIBE and PD sequences were similar to those of 2D MRA

  19. Directional statistics-based reflectance model for isotropic bidirectional reflectance distribution functions.

    Science.gov (United States)

    Nishino, Ko; Lombardi, Stephen

    2011-01-01

    We introduce a novel parametric bidirectional reflectance distribution function (BRDF) model that can accurately encode a wide variety of real-world isotropic BRDFs with a small number of parameters. The key observation we make is that a BRDF may be viewed as a statistical distribution on a unit hemisphere. We derive a novel directional statistics distribution, which we refer to as the hemispherical exponential power distribution, and model real-world isotropic BRDFs as mixtures of it. We derive a canonical probabilistic method for estimating the parameters, including the number of components, of this novel directional statistics BRDF model. We show that the model captures the full spectrum of real-world isotropic BRDFs with high accuracy, but a small footprint. We also demonstrate the advantages of the novel BRDF model by showing its use for reflection component separation and for exploring the space of isotropic BRDFs.

  20. Ellipsoidal basis for isotropic oscillator

    International Nuclear Information System (INIS)

    Kallies, W.; Lukac, I.; Pogosyan, G.S.; Sisakyan, A.N.

    1994-01-01

    The solutions of the Schroedinger equation are derived for the isotropic oscillator potential in the ellipsoidal coordinate system. The explicit expression is obtained for the ellipsoidal integrals of motion through the components of the orbital moment and Demkov's tensor. The explicit form of the ellipsoidal basis is given for the lowest quantum numbers. 10 refs.; 1 tab. (author)

  1. Mechanisms of the anomalous Pockels effect in bulk water

    Science.gov (United States)

    Yukita, Shunpei; Suzuki, Yuto; Shiokawa, Naoyuki; Kobayashi, Takayoshi; Tokunaga, Eiji

    2018-04-01

    The "anomalous" Pockels effect is a phenomenon that a light beam passing between two electrodes in an aqueous electrolyte solution is deflected by an AC voltage applied between the electrodes: the deflection angle is proportional to the voltage such that the incident beam alternately changes its direction. This phenomenon, the Pockels effect in bulk water, apparently contradicts what is believed in nonlinear optics, i.e., macroscopic inversion symmetry should be broken for the second-order nonlinear optical effect to occur such as the first-order electro-optic effect, i.e., the Pockels effect. To clarify the underlying mechanism, the dependence of the effect on the electrode material is investigated to find that the Pockels coefficient with Pt electrodes is two orders of magnitude smaller than with indium tin oxide (ITO) electrodes. It is experimentally confirmed that the Pockels effect of interfacial water in the electric double layer (EDL) on these electrodes shows an electrode dependence similar to the effect in bulk water while the effects depend on the frequency of the AC voltage such that the interfacial signal decreases with frequency but the bulk signal increases with frequency up to 221 Hz. These experimental results lead to a conclusion that the beam deflection is caused by the refractive index gradient in the bulk water region, which is formed transiently by the Pockels effect of interfacial water in the EDL when an AC electric field is applied. The refractive index gradient is caused by the diffuse layer spreading into the bulk region to work as a breaking factor of inversion symmetry of bulk water due to its charge-biased ionic distribution. This mechanism does not contradict the principle of nonlinear optics.

  2. Comparison between isotropic linear-elastic law and isotropic hyperelastic law in the finite element modeling of the brachial plexus.

    Science.gov (United States)

    Perruisseau-Carrier, A; Bahlouli, N; Bierry, G; Vernet, P; Facca, S; Liverneaux, P

    2017-12-01

    Augmented reality could help the identification of nerve structures in brachial plexus surgery. The goal of this study was to determine which law of mechanical behavior was more adapted by comparing the results of Hooke's isotropic linear elastic law to those of Ogden's isotropic hyperelastic law, applied to a biomechanical model of the brachial plexus. A model of finite elements was created using the ABAQUS ® from a 3D model of the brachial plexus acquired by segmentation and meshing of MRI images at 0°, 45° and 135° of shoulder abduction of a healthy subject. The offset between the reconstructed model and the deformed model was evaluated quantitatively by the Hausdorff distance and qualitatively by the identification of 3 anatomical landmarks. In every case the Hausdorff distance was shorter with Ogden's law compared to Hooke's law. On a qualitative aspect, the model deformed by Ogden's law followed the concavity of the reconstructed model whereas the model deformed by Hooke's law remained convex. In conclusion, the results of this study demonstrate that the behavior of Ogden's isotropic hyperelastic mechanical model was more adapted to the modeling of the deformations of the brachial plexus. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Isotropic harmonic oscillator plus inverse quadratic potential in N-dimensional spaces

    International Nuclear Information System (INIS)

    Oyewumi, K.A.; Bangudu, E.A.

    2003-01-01

    Some aspects of the N-dimensional isotropic harmonic plus inverse quadratic potential were discussed. The hyperradial equation for isotropic harmonic oscillator plus inverse quadratic potential is solved by transformation into the confluent hypergeometric equation to obtain the normalized hyperradial solution. Together with the hyperangular solutions (hyperspherical harmonics), these form the complete energy eigenfunctions of the N-dimensional isotropic harmonic oscillator plus inverse quadratic potential and the energy eigenvalues are also obtained. These are dimensionally dependent. The dependence of radial solution on the dimensions or potential strength and the degeneracy of the energy levels are discussed. (author)

  4. Multifragmentation of a very heavy nuclear system (II): bulk properties and spinodal decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Frankland, J.D.; Rivet, M.F.; Borderie, B. [Paris-11 Univ., Inst. de Physique Nucleaire, 91 - Orsay (France)] [and others

    2000-07-01

    The properties of fragments and light charged particles emitted in multifragmentation of single sources formed in central 36 A.MeV Gd+U collisions are reviewed. Most of the products are isotropically distributed in the reaction c.m. Fragment kinetic energies reveal the onset of radial collective energy. A bulk effect is experimentally evidenced from the similarity of the charge distribution with that from the lighter 32 A.MeV Xe+Sn system. Spinodal decomposition of finite nuclear matter exhibits the same property in simulated central collisions for the two systems, and appears therefore as a possible mechanism at the origin of multifragmentation in this incident energy domain. (authors)

  5. Multifragmentation of a very heavy nuclear system (II): bulk properties and spinodal decomposition

    International Nuclear Information System (INIS)

    Frankland, J.D.; Rivet, M.F.; Borderie, B.

    2000-01-01

    The properties of fragments and light charged particles emitted in multifragmentation of single sources formed in central 36 A.MeV Gd+U collisions are reviewed. Most of the products are isotropically distributed in the reaction c.m. Fragment kinetic energies reveal the onset of radial collective energy. A bulk effect is experimentally evidenced from the similarity of the charge distribution with that from the lighter 32 A.MeV Xe+Sn system. Spinodal decomposition of finite nuclear matter exhibits the same property in simulated central collisions for the two systems, and appears therefore as a possible mechanism at the origin of multifragmentation in this incident energy domain. (authors)

  6. Magnetisation reversal on surface of Nd-Fe-B magnets

    International Nuclear Information System (INIS)

    Sun, H.; Woodward, R.; Street, R.

    1998-01-01

    Full text: Time dependent magnetisation processes on surface of isotropic and anisotropic Nd-Fe-B magnets were measured using a Magneto-Optic Magnetometer (MOM) and the data were analysed by means of the constitutive equation H = H(M, M). The surface magnetic viscosity parameter Λ (or fluctuation field H f ) was obtained. The activation volume v, which represents the volume of a negative magnetisation nuclei during a magnetisation reversal process was calculated from Λ. The results are compared with those of the corresponding bulk properties obtained by analysing the data measured using a Vibrating Sample Magnetometer (VSM). Similar to bulk materials, Λ for the surface magnetisation is nearly constant over a wide range of magnetisation for both isotropic and anisotropic Nd-Fe-B. However, the surface hysteresis loops are significantly different from the bulk materials, indicating a significant difference in the magnetisation reversal processes between the bulk and surface materials. The surface magnetisation reversal mechanism, its relation and influence to the bulk properties and therefore the performance of permanent magnet are discussed

  7. 3D geometrically isotropic metamaterial for telecom wavelengths

    DEFF Research Database (Denmark)

    Malureanu, Radu; Andryieuski, Andrei; Lavrinenko, Andrei

    2009-01-01

    of the unit cell is not infinitely small, certain geometrical constraints have to be fulfilled to obtain an isotropic response of the material [3]. These conditions and the metal behaviour close to the plasma frequency increase the design complexity. Our unit cell is composed of two main parts. The first part...... is obtained in a certain bandwidth. The proposed unit cell has the cubic point group of symmetry and being repeatedly placed in space can effectively reveal isotropic optical properties. We use the CST commercial software to characterise the “cube-in-cage” structure. Reflection and transmission spectra...

  8. The Oslo Health Study: A Dietary Index Estimating Frequent Intake of Soft Drinks and Rare Intake of Fruit and Vegetables Is Negatively Associated with Bone Mineral Density

    Science.gov (United States)

    Høstmark, Arne Torbjørn; Søgaard, Anne Johanne; Alvær, Kari; Meyer, Haakon E.

    2011-01-01

    Background. Since nutritional factors may affect bone mineral density (BMD), we have investigated whether BMD is associated with an index estimating the intake of soft drinks, fruits, and vegetables. Methods. BMD was measured in distal forearm in a subsample of the population-based Oslo Health Study. 2126 subjects had both valid BMD measurements and answered all the questions required for calculating a Dietary Index = the sum of intake estimates of colas and non-cola beverages divided by the sum of intake estimates of fruits and vegetables. We did linear regression analyses to study whether the Dietary Index and the single food items included in the index were associated with BMD. Results. There was a consistent negative association between the Dietary Index and forearm BMD. Among the single index components, colas and non-cola soft drinks were negatively associated with BMD. The negative association between the Dietary Index and BMD prevailed after adjusting for gender, age, and body mass index, length of education, smoking, alcohol intake, and physical activity. Conclusion. An index reflecting frequent intake of soft drinks and rare intake of fruit and vegetables was inversely related to distal forearm bone mineral density. PMID:21772969

  9. Graviton localization and Newton law for a dS4 brane in a 5D bulk

    International Nuclear Information System (INIS)

    Kehagias, A; Tamvakis, K

    2002-01-01

    We consider a dS 4 brane embedded in a five-dimensional bulk with a positive, vanishing or negative bulk cosmological constant and derive the localized graviton spectrum that consists of a normalizable zero mode separated by a gap from a continuum of massive states. We estimate the massive sector contribution to the static potential at short distances and find that only in the case of a negative bulk cosmological constant is there a range, determined by the effective four-dimensional and bulk cosmological constants, where the conventional Newton law is valid. (letter to the editor)

  10. Calculation of equivalent dose index for electrons from 5,0 to 22,0 MeV by the Monte Carlo method

    International Nuclear Information System (INIS)

    Peixoto, J.E.

    1979-01-01

    The index of equivalent dose in depth and in a sphere surface of a soft tissue equivalent material were determined by Monte Carlo method for electron irradiations from 5,0 to 22.00 MeV. The effect of different irradiation geometries which simulate the incidence of onedirectional opposite rotational and isotropic beams was studied. It is also shown that the detector of wall thickness with 0.5g/cm 2 and isotropic response com be used to measure index of equivalent dose for fast electrons. The alternative concept of average equivalent dose for radiation protection is discussed. (M.C.K.) [pt

  11. Precession of elastic waves in vibrating isotropic spheres and transversely isotropic cylinders subjected to inertial rotation

    CSIR Research Space (South Africa)

    Joubert, S

    2006-05-01

    Full Text Available and Manufacturing TRANSVERSELY ISOTROPIC CYLINDER - 1 φ φ r z a x y Ω P P O u v w z ( )1 1 1 2 1 1 rrr rz rr zr r zrz zz rz u r r z r v r r z r w r r z r ϕ ϕϕ ϕϕ ϕϕ ϕ ϕ σσ σ σ σ ρ ϕ σσ σ σ ρ ϕ σσ σ σ ρ ϕ... ∂ ∂ ∂ + + + − = ∂ ∂ ∂ ∂∂ ∂ + + + = ∂ ∂ ∂ ∂∂ ∂ + + + = ∂ ∂ ∂ && && && 6 CSIR Material Science and Manufacturing TRANSVERSELY ISOTROPIC CYLINDER - 2 ( )1 1 1 2 1 1 rrr rz rr zr r zrz zz rz u r r z r v r r z r w r r z r ϕ ϕϕ ϕϕ ϕϕ ϕ ϕ σσ σ σ σ ρ ϕ σσ σ σ ρ ϕ σσ σ σ ρ ϕ...

  12. Sensory memory during physiological aging indexed by mismatch negativity (MMN).

    Science.gov (United States)

    Ruzzoli, Manuela; Pirulli, Cornelia; Brignani, Debora; Maioli, Claudio; Miniussi, Carlo

    2012-03-01

    Physiological aging affects early sensory-perceptual processes. The aim of this experiment was to evaluate changes in auditory sensory memory in physiological aging using the Mismatch Negativity (MMN) paradigm as index. The MMN is a marker recorded through the electroencephalogram and is used to evaluate the integrity of the memory system. We adopted a new, faster paradigm to look for differences between 3 groups of subjects of different ages (young, middle age and older adults) as a function of short or long intervals between stimuli. We found that older adults did not show MMN at long interval condition and that the duration of MMN varied according to the participants' age. The current study provides electrophysiological evidence supporting the theory that the encoding of stimuli is preserved during normal aging, whereas the maintenance of sensory memory is impaired. Considering the advantage offered by the MMN paradigm used here, these data might be a useful reference point for the assessment of auditory sensory memory in pathological aging (e.g., in neurodegenerative diseases). Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Isotropic blackbody cosmic microwave background radiation as evidence for a homogeneous universe.

    Science.gov (United States)

    Clifton, Timothy; Clarkson, Chris; Bull, Philip

    2012-08-03

    The question of whether the Universe is spatially homogeneous and isotropic on the largest scales is of fundamental importance to cosmology but has not yet been answered decisively. Surprisingly, neither an isotropic primary cosmic microwave background (CMB) nor combined observations of luminosity distances and galaxy number counts are sufficient to establish such a result. The inclusion of the Sunyaev-Zel'dovich effect in CMB observations, however, dramatically improves this situation. We show that even a solitary observer who sees an isotropic blackbody CMB can conclude that the Universe is homogeneous and isotropic in their causal past when the Sunyaev-Zel'dovich effect is present. Critically, however, the CMB must either be viewed for an extended period of time, or CMB photons that have scattered more than once must be detected. This result provides a theoretical underpinning for testing the cosmological principle with observations of the CMB alone.

  14. The isotropic Universe

    International Nuclear Information System (INIS)

    Raine, D.J.

    1981-01-01

    This introduction to contemporary ideas in cosmology differs from other books on the 'expanding Universe' in its emphasis on physical cosmology and on the physical basis of the general theory of relativity. It is considered that the remarkable degree of isotropy, rather than the expansion, can be regarded as the central observational feature of the Universe. The various theories and ideas in 'big-bang' cosmology are discussed, providing an insight into current problems. Chapter headings are: quality of matter; expanding Universe; quality of radiation; quantity of matter; general theory of relativity; cosmological models; cosmological tests; matter and radiation; limits of isotropy; why is the Universe isotropic; singularities; evolution of structure. (U.K.)

  15. Hygroscopicity and bulk thermal expansion in Y2W3O12

    International Nuclear Information System (INIS)

    Sumithra, S.; Umarji, A.M.

    2005-01-01

    Negative thermal expansion material, Y 2 W 3 O 12 has been synthesized by the solid-state method and bulk thermal expansion of the material has been investigated from 300 to 1100 K. The material reversibly forms a trihydrate composition whose X-ray diffraction pattern can be indexed to an orthorhombic unit cell with a = 10.098(1) A, b = 13.315(3) A, c = 9.691(4) A. The cell volume of the hydrated pattern is 7% smaller than the unhydrated cell volume. According to the dilatometric studies, the material shows a 3-6% increase in the linear strain at about 400 K, which can be attributed to the removal of water. Sintering the material at 1473 K leads to large grain size of >100 μm, which results in a large hysteresis in the bulk thermal expansion behavior. Hot pressing at 1273 K under a uniaxial pressure of 25 MPa results in a fine-grained (2-5 μm) ceramic. Glazing the ceramic prevents moisture pick up and a linear thermal expansion over the entire temperature range 1100-300 K and an average linear thermal expansion co-efficient of -9.65 x 10 -6 /K is observed. The effect of water on the thermal expansion behavior of this system is discussed

  16. Thermal emission characteristics of a graded index semitransparent medium

    International Nuclear Information System (INIS)

    Huang Yong; Dong Sujun; Yang Min; Wang Jun

    2008-01-01

    This paper develops a numerical model for thermal radiative transfer in a two-dimensional semitransparent graded index medium. A piecewise continuous refractive index model, the linear refractive index bar model, is presented. This model is established based on three hypotheses, and has a higher precision than the bar model used previously. This paper also studies the thermal emission from a two-dimensional graded index medium, which is scattering or non-scattering. We find that it can present an obvious pattern of directional distribution at times. The refractive index distribution and absorption coefficient are the two main influential factors. This finding differs from the common belief that thermal sources, such as the incandescent filament of a light bulb, emit a quasi-isotropic light. The finding also suggests that there maybe other important applications of artificial GRIN materials

  17. An Isotropic Light Sensor for Measurements of Visible Actinic Flux in Clouds

    NARCIS (Netherlands)

    Hage, J.C.H. van der; Roode, S.R. de

    1999-01-01

    A low-cost isotropic light sensor is described consisting of a spherical diffuser connected to a single photodiode by a light conductor. The directional response to light is isotropic to a high degree. The small, lightweight, and rugged construction makes this instrument suitable not only for

  18. Design of a New Sensor for Determination of the Effects of Tractor Field Usage in Southern Spain: Soil Sinkage and Alterations in the Cone Index and Dry Bulk Density

    Directory of Open Access Journals (Sweden)

    Diego L. Valera

    2012-10-01

    Full Text Available Variations in sinkage and cone index are of crucial importance when planning fieldwork, and for determining the trafficability of farm machinery. Many studies have highlighted the link between higher values of these parameters and dramatic decreases in crop yield. Variations in the dry bulk density and cone index of clayey soil in Southern Spain were measured following each of five successive passes over the same land with the three types of tractor most widely used in the area (tracked, two-wheel drive and four-wheel drive. In addition, sinkage (rut depth of the running gear was measured using a laser microrelief profile meter. This device, which integrates three sensors, was specifically designed for these experiments, as was an electrical penetrometer to determine the cone index, and both instruments proved reliable and accurate in the field. The main goal of this study was to design, manufacture and test these new devices. The first pass caused most soil alteration when compared to successive passes for all types of tractor tested and soil conditions prevailing during the tests. (Heavier four-wheel drive tractors were found to cause greater soil damage (sinkage, cone index and dry bulk density than two-wheel drive and track tractors. There was no statistically significant difference between the two latter types. The greatest alterations were recorded in the top 10 cm of the soil. The results show that soil compaction should be avoided as much as possible. This can be achieved by ensuring that tractors always travel along the same tracks, especially in the wet season. At present these aspects are not considered by farmers in this area.

  19. Calculated isotropic Raman spectra from interacting H2-rare-gas pairs

    International Nuclear Information System (INIS)

    Gustafsson, M; Głaz, W; Bancewicz, T; Godet, J-L; Maroulis, G; Haskapoulos, A

    2014-01-01

    We report on a theoretical study of the H 2 -He and H 2 -Ar pair trace-polarizability and the corresponding isotropic Raman spectra. The conventional quantum mechanical approach for calculations of interaction-induced spectra, which is based on an isotropic interaction potential, is employed. This is compared with a close-coupling approach, which allows for inclusion of the full, anisotropic potential. It is established that the anisotropy of the potential plays a minor role for these spectra. The computed isotropic collision-induced Raman intensity, which is due to dissimilar pairs in H 2 -He and H 2 -Ar gas mixtures, is comparable to the intensities due to similar pairs (H 2 -H 2 , He-He, and Ar-Ar), which have been studied previously

  20. Kerr-effect analysis in a three-level negative index material under magneto cross-coupling

    Science.gov (United States)

    Boutabba, N.

    2018-02-01

    We discuss the feasibility of the Kerr effect in negative refractive index materials under magneto cross-coupling and reservoir interaction. The considered medium is a typical three-level atomic system where we derive both the refractive and the gain spectrum. The profiles are analyzed for a weak probe field, and for varying strengths of the strong control field. The considered scheme shows an enhancement of the Kerr nonlinearity which we attribute to the contribution of the electromagnetic components of the fields. For more realistic experimental conditions, we discuss the dependence of the Kerr effect on different thermal bath coupling constants.

  1. Multi-band Microwave Antennas and Devices based on Generalized Negative-Refractive-Index Transmission Lines

    Science.gov (United States)

    Ryan, Colan Graeme Matthew

    Focused on the quad-band generalized negative-refractive-index transmission line (G-NRI-TL), this thesis presents a variety of novel printed G-NRI-TL multi-band microwave device and antenna prototypes. A dual-band coupled-line coupler, an all-pass G-NRI-TL bridged-T circuit, a dual-band metamaterial leaky-wave antenna, and a multi-band G-NRI-TL resonant antenna are all new developments resulting from this research. In addition, to continue the theme of multi-band components, negative-refractive-index transmission lines are used to create a dual-band circularly polarized transparent patch antenna and a two-element wideband decoupled meander antenna system. High coupling over two independently-specified frequency bands is the hallmark of the G-NRI-TL coupler: it is 0.35lambda0 long but achieves approximately -3 dB coupling over both bands with a maximum insertion loss of 1 dB. This represents greater design flexibility than conventional coupled-line couplers and less loss than subsequent G-NRI-TL couplers. The single-ended bridged-T G-NRI-TL offers a metamaterial unit cell with an all-pass magnitude response up to 8 GHz, while still preserving the quad-band phase response of the original circuit. It is shown how the all-pass response leads to wider bandwidths and improved matching in quad-band inverters, power dividers, and hybrid couplers. The dual-band metamaterial leaky-wave antenna presented here was the first to be reported in the literature, and it allows broadside radiation at both 2 GHz and 6 GHz without experiencing the broadside stopband common to conventional periodic antennas. Likewise, the G-NRI-TL resonant antenna is the first reported instance of such a device, achieving quad-band operation between 2.5 GHz and 5.6 GHz, with a minimum radiation efficiency of 80%. Negative-refractive-index transmission line loading is applied to two devices: an NRI-TL meander antenna achieves a measured 52% impedance bandwidth, while a square patch antenna incorporates

  2. Isotropic quantum walks on lattices and the Weyl equation

    Science.gov (United States)

    D'Ariano, Giacomo Mauro; Erba, Marco; Perinotti, Paolo

    2017-12-01

    We present a thorough classification of the isotropic quantum walks on lattices of dimension d =1 ,2 ,3 with a coin system of dimension s =2 . For d =3 there exist two isotropic walks, namely, the Weyl quantum walks presented in the work of D'Ariano and Perinotti [G. M. D'Ariano and P. Perinotti, Phys. Rev. A 90, 062106 (2014), 10.1103/PhysRevA.90.062106], resulting in the derivation of the Weyl equation from informational principles. The present analysis, via a crucial use of isotropy, is significantly shorter and avoids a superfluous technical assumption, making the result completely general.

  3. A Novel Approach to Forecasting the Bulk Freight Market

    Directory of Open Access Journals (Sweden)

    Vangelis Tsioumas

    2017-03-01

    Full Text Available The fast-paced and ever changing freight market compels maritime executives to use sound forecasting tools. This paper aims to enhance the forecasting accuracy of the Baltic Dry Index (BDI by means of developing a multivariate Vector Autoregressive model with exogenous variables (VARX. The proposed model incorporates the Chinese steel production, the dry bulk fleet development and a new composite indicator, the Dry Bulk Economic Climate Index (DBECI. The predictive power of this approach is evaluated against a univariate ARIMA framework, which serves as a benchmark model. The selection of explanatory variables and the model specification are validated using a series of pertinent tests. The results demonstrate that the VARX model outperforms the ARIMA approach, suggesting that the selected independent variables can substantially improve the accuracy of BDI forecasts. The present study is of interest to maritime practitioners, as it provides useful insights into the direction of the freight market and allows them to make informed decisions.

  4. Torsional vibration of a pipe pile in transversely isotropic saturated soil

    Science.gov (United States)

    Zheng, Changjie; Hua, Jianmin; Ding, Xuanming

    2016-09-01

    This study considers the torsional vibration of a pipe pile in a transversely isotropic saturated soil layer. Based on Biot's poroelastic theory and the constitutive relations of the transversely isotropic medium, the dynamic governing equations of the outer and inner transversely isotropic saturated soil layers are derived. The Laplace transform is used to solve the governing equations of the outer and inner soil layers. The dynamic torsional response of the pipe pile in the frequency domain is derived utilizing 1D elastic theory and the continuous conditions at the interfaces between the pipe pile and the soils. The time domain solution is obtained by Fourier inverse transform. A parametric study is conducted to demonstrate the influence of the anisotropies of the outer and inner soil on the torsional dynamic response of the pipe pile.

  5. Design methodology of single-feed compact near-isotropic antenna design

    KAUST Repository

    Su, Zhen

    2017-06-07

    The abundance of mobile wireless devices is giving rise to a new paradigm known as Internet of Things. In this paradigm, wireless devices will be everywhere and communicating with each other. Since they will be oriented randomly in the environment, they should be able to communicate equally in all directions in order to have stable communication link. Hence, compact near isotropic antennas are required, which can enable orientation insensitive communication. In this paper, we propose a simple design methodology to design a compact near-isotropic wire antenna based on equal vector potentials. As a proof of concept, a quarter wavelength monopole antennas has been designed that is wrapped on a 3D-printed box keeping the vector potentials in three orthogonal different directions equal. By optimizing the dimension of the antenna arms, a nearly isotropic radiation pattern is thus achieved. The results show that the antenna has a maximum gain of 2.2dBi at 900 MHz with gain derivation of 9.4dB.

  6. The suite of analytical benchmarks for neutral particle transport in infinite isotropically scattering media

    International Nuclear Information System (INIS)

    Kornreich, D.E.; Ganapol, B.D.

    1997-01-01

    The linear Boltzmann equation for the transport of neutral particles is investigated with the objective of generating benchmark-quality evaluations of solutions for homogeneous infinite media. In all cases, the problems are stationary, of one energy group, and the scattering is isotropic. The solutions are generally obtained through the use of Fourier transform methods with the numerical inversions constructed from standard numerical techniques such as Gauss-Legendre quadrature, summation of infinite series, and convergence acceleration. Consideration of the suite of benchmarks in infinite homogeneous media begins with the standard one-dimensional problems: an isotropic point source, an isotropic planar source, and an isotropic infinite line source. The physical and mathematical relationships between these source configurations are investigated. The progression of complexity then leads to multidimensional problems with source configurations that also emit particles isotropically: the finite line source, the disk source, and the rectangular source. The scalar flux from the finite isotropic line and disk sources will have a two-dimensional spatial variation, whereas a finite rectangular source will have a three-dimensional variation in the scalar flux. Next, sources emitting particles anisotropically are considered. The most basic such source is the point beam giving rise to the Green's function, which is physically the most fundamental transport problem, yet may be constructed from the isotropic point source solution. Finally, the anisotropic plane and anisotropically emitting infinite line sources are considered. Thus, a firm theoretical and numerical base is established for the most fundamental neutral particle benchmarks in infinite homogeneous media

  7. Robust high pressure stability and negative thermal expansion in sodium-rich antiperovskites Na{sub 3}OBr and Na{sub 4}OI{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yonggang, E-mail: yyggwang@gmail.com, E-mail: yangwg@hpstar.ac.cn, E-mail: yusheng.zhao@unlv.edu [High Pressure Science and Engineering Center, University of Nevada, Las Vegas, Nevada 89154 (United States); Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan 450006 (China); High Pressure Synergetic Consortium (HPSynC), Geophysical Laboratory, Carnegie Institution of Washington, Argonne, Illinois 60439 (United States); Wen, Ting [Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan 450006 (China); Park, Changyong; Kenney-Benson, Curtis [High Pressure Collaborative Access Team (HPCAT), Geophysical Laboratory, Carnegie Institution of Washington, Argonne, Illinois 60439 (United States); Pravica, Michael; Zhao, Yusheng, E-mail: yyggwang@gmail.com, E-mail: yangwg@hpstar.ac.cn, E-mail: yusheng.zhao@unlv.edu [High Pressure Science and Engineering Center, University of Nevada, Las Vegas, Nevada 89154 (United States); Yang, Wenge, E-mail: yyggwang@gmail.com, E-mail: yangwg@hpstar.ac.cn, E-mail: yusheng.zhao@unlv.edu [High Pressure Synergetic Consortium (HPSynC), Geophysical Laboratory, Carnegie Institution of Washington, Argonne, Illinois 60439 (United States); Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203 (China)

    2016-01-14

    The structure stability under high pressure and thermal expansion behavior of Na{sub 3}OBr and Na{sub 4}OI{sub 2}, two prototypes of alkali-metal-rich antiperovskites, were investigated by in situ synchrotron X-ray diffraction techniques under high pressure and low temperature. Both are soft materials with bulk modulus of 58.6 GPa and 52.0 GPa for Na{sub 3}OBr and Na{sub 4}OI{sub 2}, respectively. The cubic Na{sub 3}OBr structure and tetragonal Na{sub 4}OI{sub 2} with intergrowth K{sub 2}NiF{sub 4} structure are stable under high pressure up to 23 GPa. Although being a characteristic layered structure, Na{sub 4}OI{sub 2} exhibits nearly isotropic compressibility. Negative thermal expansion was observed at low temperature range (20–80 K) in both transition-metal-free antiperovskites for the first time. The robust high pressure structure stability was examined and confirmed by first-principles calculations among various possible polymorphisms qualitatively. The results provide in-depth understanding of the negative thermal expansion and robust crystal structure stability of these antiperovskite systems and their potential applications.

  8. Effective Ginzburg–Landau free energy functional for multi-band isotropic superconductors

    International Nuclear Information System (INIS)

    Grigorishin, Konstantin V.

    2016-01-01

    Highlights: • The intergradient coupling of order parameters in a two-band superconductor plays important role and cannot be neglected. • A two-band superconductor must be characterized with a single coherence length and a single Ginzburg–Landau parameter. • Type-1.5 superconductors are impossible. • The free energy functional for a multi-band superconductor can be reduced to the effective single-band Ginzburg–Landau functional. - Abstract: It has been shown that interband mixing of gradients of two order parameters (drag effect) in an isotropic bulk two-band superconductor plays important role – such a quantity of the intergradients coupling exists that the two-band superconductor is characterized with a single coherence length and a single Ginzburg–Landau (GL) parameter. Other quantities or neglecting of the drag effect lead to existence of two coherence lengths and dynamical instability due to violation of the phase relations between the order parameters. Thus so-called type-1.5 superconductors are impossible. An approximate method for solving of set of GL equations for a multi-band superconductor has been developed: using the result about the drag effect it has been shown that the free-energy functional for a multi-band superconductor can be reduced to the GL functional for an effective single-band superconductor.

  9. Effect of aerosil dispersions on the photoinduced nematic-isotropic transition

    Energy Technology Data Exchange (ETDEWEB)

    Jayalakshmi, V; Nair, Geetha G; Prasad, S Krishna [Centre for Liquid Crystal Research, Jalahalli, Bangalore 560013 (India)

    2007-06-06

    We report differential scanning calorimetric (DSC) and dielectric measurements on the nematic-isotropic transition in the bulk and aerosil composites of a liquid-crystal mixture having a photoactive guest azobenzene compound in a non-photoactive host, 4-n-heptyl cyanobiphenyl (7CB). The DSC scans taken at different cooling rates show that, at slower rates, the bulk displays a single peak across the transition, whereas the composites in the soft gel regime exhibit a double-peak profile. Such a double-peak profile, although seen in high-resolution ac calorimetric studies, has been observed for the first time in DSC experiments. The temperature range of the region between the two peaks is comparable to that seen in ac calorimetric experiments and has similar features. This observation is significant since the appearance of the low-temperature peak in ac calorimetric data has been explained to be due to a crossover from the random-dilution to the random-field limits. This work also constitutes the first experiments on the photoisomerization driven isothermal phase transitions in liquid-crystal-aerosil composites. The studies carried out in the absence and presence of a low-magnitude UV radiation not only bring out the standard features now established for such photostimulated phase transitions, but display a few surprises. Notable among them are that (i) the photoinduced shift in the transition temperature is a non-monotonic function of the aerosil composition and appears qualitatively similar to the dependence of the transition temperature itself, and (ii) the thermal anomaly mentioned above characterizing the crossover is also seen in the temperature-dependent as well as the temporal variation of the sample capacitance for a composite in the soft gel regime. We have also evaluated, using the temporal variation of the capacitance, the different response times associated with the UV-on photochemical process as well as the UV-off thermal back-relaxation process; the

  10. Superfluid H3e in globally isotropic random media

    Science.gov (United States)

    Ikeda, Ryusuke; Aoyama, Kazushi

    2009-02-01

    Recent theoretical and experimental studies of superfluid H3e in aerogels with a global anisotropy created, e.g., by an external stress have definitely shown that the A -like phase with an equal-spin pairing in such aerogel samples is in the Anderson-Brinkman-Morel (ABM) (or axial) pairing state. In this paper, the A -like phase of superfluid H3e in globally isotropic aerogel is studied in detail by assuming a weakly disordered system in which singular topological defects are absent. Through calculation of the free energy, a disordered ABM state is found to be the best candidate of the pairing state of the globally isotropic A -like phase. Further, it is found through a one-loop renormalization-group calculation that the coreless continuous vortices (or vortex-Skyrmions) are irrelevant to the long-distance behavior of disorder-induced textures, and that the superfluidity is maintained in spite of lack of the conventional superfluid long-range order. Therefore, the globally isotropic A -like phase at weak disorder is, like in the case with a globally stretched anisotropy, a glass phase with the ABM pairing and shows superfluidity.

  11. Efficient anisotropic wavefield extrapolation using effective isotropic models

    KAUST Repository

    Alkhalifah, Tariq Ali; Ma, X.; Waheed, Umair bin; Zuberi, Mohammad

    2013-01-01

    Isotropic wavefield extrapolation is more efficient than anisotropic extrapolation, and this is especially true when the anisotropy of the medium is tilted (from the vertical). We use the kinematics of the wavefield, appropriately represented

  12. Acoustic reflection log in transversely isotropic formations

    Science.gov (United States)

    Ronquillo Jarillo, G.; Markova, I.; Markov, M.

    2018-01-01

    We have calculated the waveforms of sonic reflection logging for a fluid-filled borehole located in a transversely isotropic rock. Calculations have been performed for an acoustic impulse source with the characteristic frequency of tens of kilohertz that is considerably less than the frequencies of acoustic borehole imaging tools. It is assumed that the borehole axis coincides with the axis of symmetry of the transversely isotropic rock. It was shown that the reflected wave was excited most efficiently at resonant frequencies. These frequencies are close to the frequencies of oscillations of a fluid column located in an absolutely rigid hollow cylinder. We have shown that the acoustic reverberation is controlled by the acoustic impedance of the rock Z = Vphρs for fixed parameters of the borehole fluid, where Vph is the velocity of horizontally propagating P-wave; ρs is the rock density. The methods of waveform processing to determine the parameters characterizing the reflected wave have been discussed.

  13. Modelling dust liberation in bulk material handling systems

    NARCIS (Netherlands)

    Derakhshani, S.M.

    2016-01-01

    Dust has negative effects on the environmental conditions, human health as well as industrial equipment and processes. In this thesis, the transfer point of a belt conveyor as a bulk material handling system with a very high potential place for dust liberation is studied. This study is conducted

  14. 4D and 2D superconformal index with surface operator

    Science.gov (United States)

    Nakayama, Yu

    2011-08-01

    We study the superconformal index of the mathcal{N} = 4 super-Yang-Milles theory on S 3 × S 1 with the half BPS superconformal surface operator (defect) inserted at the great circle of S 3. The half BPS superconformal surface operators preserve the same supersymmetry as well as the symmetry of the chemical potential used in the definition of the superconformal index, so the structure and the parameterization of the superconformal index remain unaffected by the presence of the surface operator. On the surface defect, a two-dimensional (4, 4) superconformal field theory resides, and the four-dimensional super-conformal index may be regarded as a superconformal index of the two-dimensional (4, 4) superconformal field theory coupled with the four-dimensional bulk system. We construct the matrix model that computes the superconformal index with the surface operator when it couples with the bulk mathcal{N} = 4 super-Yang-Milles theory through the defect hypermultiplets on it.

  15. Isotropic transmission of magnon spin information without a magnetic field.

    Science.gov (United States)

    Haldar, Arabinda; Tian, Chang; Adeyeye, Adekunle Olusola

    2017-07-01

    Spin-wave devices (SWD), which use collective excitations of electronic spins as a carrier of information, are rapidly emerging as potential candidates for post-semiconductor non-charge-based technology. Isotropic in-plane propagating coherent spin waves (magnons), which require magnetization to be out of plane, is desirable in an SWD. However, because of lack of availability of low-damping perpendicular magnetic material, a usually well-known in-plane ferrimagnet yttrium iron garnet (YIG) is used with a large out-of-plane bias magnetic field, which tends to hinder the benefits of isotropic spin waves. We experimentally demonstrate an SWD that eliminates the requirement of external magnetic field to obtain perpendicular magnetization in an otherwise in-plane ferromagnet, Ni 80 Fe 20 or permalloy (Py), a typical choice for spin-wave microconduits. Perpendicular anisotropy in Py, as established by magnetic hysteresis measurements, was induced by the exchange-coupled Co/Pd multilayer. Isotropic propagation of magnon spin information has been experimentally shown in microconduits with three channels patterned at arbitrary angles.

  16. Scanning anisotropy parameters in horizontal transversely isotropic media

    KAUST Repository

    Masmoudi, Nabil; Stovas, Alexey; Alkhalifah, Tariq Ali

    2016-01-01

    in reservoir characterisation, specifically in terms of fracture delineation. We propose a travel-time-based approach to estimate the anellipticity parameter η and the symmetry axis azimuth ϕ of a horizontal transversely isotropic medium, given an inhomogeneous

  17. Wave propagation in isotropic- or composite-material piping conveying swirling liquid

    International Nuclear Information System (INIS)

    Chen, T.L.C.; Bert, C.W.

    1977-01-01

    An analysis is presented for the propagation of free harmonic waves in a thin-walled, circular cylindrical shell of orthotropic or isotropic material conveying a swirling flow. The shell motion is modeled by using the dynamic orthotropic version of the Sanders improved first-approximation linear shell theory and the fluid forces are described by using inviscid incompressible flow theory. Frequency spectra are presented for pipes made of isotropic material and composite materials of current engineering interest. (Auth.)

  18. Isotropic Optical Mouse Placement for Mobile Robot Velocity Estimation

    Directory of Open Access Journals (Sweden)

    Sungbok Kim

    2014-06-01

    Full Text Available This paper presents the isotropic placement of multiple optical mice for the velocity estimation of a mobile robot. It is assumed that there can be positional restriction on the installation of optical mice at the bottom of a mobile robot. First, the velocity kinematics of a mobile robot with an array of optical mice is obtained and the resulting Jacobian matrix is analysed symbolically. Second, the isotropic, anisotropic and singular optical mouse placements are identified, along with the corresponding characteristic lengths. Third, the least squares mobile robot velocity estimation from the noisy optical mouse velocity measurements is discussed. Finally, simulation results for several different placements of three optical mice are given.

  19. Investigation into the temperature dependence of isotropic- nematic phase transition of Gay- Berne liquid crystals

    Directory of Open Access Journals (Sweden)

    A Avazpour

    2014-12-01

    Full Text Available Density functional approach was used to study the isotropic- nematic (I-N transition and calculate the values of freezing parameters of the Gay- Berne liquid crystal model. New direct and pair correlation functions of a molecular fluid with Gay- Berne pair potential were used. These new functions were used in density functional theory as input to calculate the isotropic- nematic transition densities for elongation at various reduced temperatures. It was observed that the isotropic- nematic transition densities increase as the temperature increases. It was found that the new direct correlation function is suitable to study the isotropic- nematic transition of Gay- Berne liquids. Comparison to other works showed qualitative agreement

  20. Double Negative Materials (DNM), Phenomena and Applications

    Science.gov (United States)

    2009-07-01

    5697–5711. Maksimović, M., and Z. Jakšić. “Emittance and Absorptance Tailoring by Negative Refractive Index Metamaterial-Based Cantor Multilayers.” J...TOKEN=48950826 Popov, A. K., S. A. Myslivets, T. F. George , and V. M. Shalaev. “Tailoring Transparency of Negative-Index Metamaterials With Parametric...Popov, A. K., S. A. Myslivets, T. F. George , and V. M. Shalaev. “Compensating Losses in Positive- and Negative-Index Metamaterials Through

  1. Scalar properties of transversely isotropic tuff from images of orthogonal cross sections

    International Nuclear Information System (INIS)

    Berge, P.A.; Berryman, J.G.; Blair, S.C.; Pena, C.

    1997-01-01

    Image processing methods have been used very effectively to estimate physical properties of isotropic porous earth materials such as sandstones. Anisotropic materials can also be analyzed in order to estimate their physical properties, but additional care and a larger number of well-chosen images of cross sections are required to obtain correct results. Although low-symmetry anisotropic media present difficulties for two-dimensional image processing methods, geologic materials are often transversely isotropic. Scalar properties of porous materials such as porosity and specific surface area can be determined with only minor changes in the analysis when the medium is transversely isotropic rather than isotropic. For example, in a rock that is transitively isotropic due to thin layers or beds, the overall porosity may be obtained by analyzing images of cross sections taken orthogonal to the bedding planes, whereas cross sections lying within the bedding planes will determine only the local porosity of the bed itself. It is known for translationally invariant anisotropic media that the overall specific surface area can be obtained from radial averages of the two-point correlation function in the full three-dimensional volume. Layered materials are not translationally invariant in the direction of the layering, but we show nevertheless how averages of cross sections may be used to obtain the specific surface area for a transversely isotropic rock. We report values of specific surface area obtained for thin sections of Topopah Spring Tuff from Yucca Mountain, Nevada. This formation is being evaluated as a potential host rock for geologic disposal of nuclear waste. Although the present work has made use of thin sections of tuff for the images, the same methods of analysis could also be used to simplify quantitative analysis of three-dimensional volumes of pore structure data obtained by means of x-ray microtomography or other methods, using only a few representative cross

  2. Randall-Sundrum model with λ<0 and bulk brane viscosity

    International Nuclear Information System (INIS)

    Lepe, Samuel; Pena, Francisco; Saavedra, Joel

    2008-01-01

    We study the effect of the inclusion of bulk brane viscosity on brane world (BW) cosmology in the framework of the Eckart's theory, we focus in the Randall-Sundrum model with negative tension on the brane

  3. Role of shape of hole in transmission and negative refractive index of sandwiched metamaterials

    International Nuclear Information System (INIS)

    Zhong Min; Ye Yong-Hong

    2014-01-01

    Transmission and negative refractive index (NRI) of metal—dielectric—metal (MDM) sandwiched metamaterial perforated with four kinds of shapes of holes are numerically studied. Results indicate that positions of all transmission peaks of these kinds of holes are sensitive to the shape of the hole. Under the same conditions, the circular hole can obtain the maximum NRI and the rectangular hole can obtain the maximum frequency bandwidth of NRI. Moreover, the figure of merit (FOM) of the circular hole is the maximum too. As a result, we can obtain a higher NRI and FOM metamaterial by drilling circular hole arrays on MDM metamaterial. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  4. Topography-specific isotropic tunneling in nanoparticle monolayer with sub-nm scale crevices.

    Science.gov (United States)

    Wang, Guisheng; Jiao, Weihong; Yi, Lizhi; Zhang, Yuejiao; Wu, Ke; Zhang, Chao; Lv, Xianglong; Qian, Lihua; Li, Jianfeng; Yuan, Songliu; Chen, Liang

    2016-10-07

    Material used in flexible devices may experience anisotropic strain with identical magnitude, outputting coherent signals that tend to have a serious impact on device reliability. In this work, the surface topography of the nanoparticles (NPs) is proposed to be a parameter to control the performance of strain gauge based on tunneling behavior. In contrast to anisotropic tunneling in a monolayer of spherical NPs, electron tunneling in a monolayer of urchin-like NPs actually exhibits a nearly isotropic response to strain with different loading orientations. Isotropic tunneling of the urchin-like NPs is caused by the interlocked pikes of these urchin-like NPs in a random manner during external mechanical stimulus. Topography-dependent isotropic tunneling in two dimensions reported here opens a new opportunity to create highly reliable electronics with superior performance.

  5. Representations for implicit constitutive relations describing non-dissipative response of isotropic materials

    Science.gov (United States)

    Gokulnath, C.; Saravanan, U.; Rajagopal, K. R.

    2017-12-01

    A methodology for obtaining implicit constitutive representations involving the Cauchy stress and the Hencky strain for isotropic materials undergoing a non-dissipative process is developed. Using this methodology, a general constitutive representation for a subclass of implicit models relating the Cauchy stress and the Hencky strain is obtained for an isotropic material with no internal constraints. It is shown that even for this subclass, unlike classical Green elasticity, one has to specify three potentials to relate the Cauchy stress and the Hencky strain. Then, a procedure to obtain implicit constitutive representations for isotropic materials with internal constraints is presented. As an illustration, it is shown that for incompressible materials the Cauchy stress and the Hencky strain could be related through a single potential. Finally, constitutive approximations are obtained when the displacement gradient is small.

  6. Isotropic Broadband E-Field Probe

    Directory of Open Access Journals (Sweden)

    Béla Szentpáli

    2008-01-01

    Full Text Available An E-field probe has been developed for EMC immunity tests performed in closed space. The leads are flexible resistive transmission lines. Their influence on the field distribution is negligible. The probe has an isotropic reception from 100 MHz to 18 GHz; the sensitivity is in the 3 V/m–10 V/m range. The device is an accessory of the EMC test chamber. The readout of the field magnitude is carried out by personal computer, which fulfils also the required corrections of the raw data.

  7. Applications of elliptic operator theory to the isotropic interior transmission eigenvalue problem

    Science.gov (United States)

    Lakshtanov, E.; Vainberg, B.

    2013-10-01

    The paper concerns the isotropic interior transmission eigenvalue (ITE) problem. This problem is not elliptic, but we show that, using the Dirichlet-to-Neumann map, it can be reduced to an elliptic one. This leads to the discreteness of the spectrum as well as to certain results on a possible location of the transmission eigenvalues. If the index of refraction \\sqrt{n(x)} is real, then we obtain a result on the existence of infinitely many positive ITEs and the Weyl-type lower bound on its counting function. All the results are obtained under the assumption that n(x) - 1 does not vanish at the boundary of the obstacle or it vanishes identically, but its normal derivative does not vanish at the boundary. We consider the classical transmission problem as well as the case when the inhomogeneous medium contains an obstacle. Some results on the discreteness and localization of the spectrum are obtained for complex valued n(x).

  8. Randall-Sundrum model with {lambda}<0 and bulk brane viscosity

    Energy Technology Data Exchange (ETDEWEB)

    Lepe, Samuel [Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Casilla 4950, Valparaiso (Chile); Pena, Francisco [Departamento de Ciencias Fisicas, Facultad de Ingenieria, Ciencias y Administracion, Universidad de la Frontera, Avda. Francisco Salazar 01145, Casilla 54-D, Temuco (Chile); Saavedra, Joel [Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Casilla 4950, Valparaiso (Chile)], E-mail: joel.saavedra@ucv.cl

    2008-04-17

    We study the effect of the inclusion of bulk brane viscosity on brane world (BW) cosmology in the framework of the Eckart's theory, we focus in the Randall-Sundrum model with negative tension on the brane.

  9. Isotropic gates and large gamma detector arrays versus angular distributions

    International Nuclear Information System (INIS)

    Iacob, V.E.; Duchene, G.

    1997-01-01

    Angular information extracted from in-beam γ ray measurements are of great importance for γ ray multipolarity and nuclear spin assignments. In our days large Ge detector arrays became available allowing the measurements of extremely weak γ rays in almost 4π sr solid angle (e.g., EUROGAM detector array). Given the high detector efficiency it is common for the mean suppressed coincidence multiplicity to reach values as high as 4 to 6. Thus, it is possible to gate on particular γ rays in order to enhance the relative statistics of a definite reaction channel and/or a definite decaying path in the level scheme of the selected residual nucleus. As compared to angular correlations, the conditioned angular distribution spectra exhibit larger statistics because in the latter the gate-setting γ ray may be observed by all the detectors in the array, relaxing somehow the geometrical restrictions of the angular correlations. Since the in-beam γ ray emission is anisotropic one could inquire that gate setting as mentioned above, based on anisotropic γ ray which would perturb the angular distributions in the unfolded events. As our work proved, there is no reason to worry about this if the energy gate runs over the whole solid angle in an ideal 4π sr detector, i.e., if the gate is isotropic. In real quasi 4π sr detector arrays the corresponding quasi isotropic gate preserves the angular properties of the unfolded data, too. However extraction of precise angular distribution coefficient especially a 4 , requires the consideration of the deviation of the quasi isotropic gate relative to the (ideal) isotropic gate

  10. Frontal negativity: An electrophysiological index of interpersonal guilt.

    Science.gov (United States)

    Leng, Bingbing; Wang, Xiangling; Cao, Bihua; Li, Fuhong

    2017-12-01

    The present study aimed to reveal the temporal course and electrophysiological correlates of interpersonal guilt. Human participants were asked to perform multiple rounds of a dot-estimation task with their partners, while event-related potential being recorded. The paired participants were informed that they would win money if both responded correctly; otherwise, both of them would lose money. The feeling of guilt in Self-Wrong condition (SW) was significantly higher than that in Both-Wrong and Partner-Wrong conditions. At approximately 350 ms after the onset of feedback presentation, greater negativities were observed in the frontal regions in the guilt condition (i.e., SW) than those in the non-guilt condition. The guilt-modulated frontal negativity might reflect the interactions of self-reflection, condemnation, and negative emotion.

  11. Depth migration in transversely isotropic media with explicit operators

    Energy Technology Data Exchange (ETDEWEB)

    Uzcategui, Omar [Colorado School of Mines, Golden, CO (United States)

    1994-12-01

    The author presents and analyzes three approaches to calculating explicit two-dimensional (2D) depth-extrapolation filters for all propagation modes (P, SV, and SH) in transversely isotropic media with vertical and tilted axis of symmetry. These extrapolation filters are used to do 2D poststack depth migration, and also, just as for isotropic media, these 2D filters are used in the McClellan transformation to do poststack 3D depth migration. Furthermore, the same explicit filters can also be used to do depth-extrapolation of prestack data. The explicit filters are derived by generalizations of three different approaches: the modified Taylor series, least-squares, and minimax methods initially developed for isotropic media. The examples here show that the least-squares and minimax methods produce filters with accurate extrapolation (measured in the ability to position steep reflectors) for a wider range of propagation angles than that obtained using the modified Taylor series method. However, for low propagation angles, the modified Taylor series method has smaller amplitude and phase errors than those produced by the least-squares and minimax methods. These results suggest that to get accurate amplitude estimation, modified Taylor series filters would be somewhat preferred in areas with low dips. In areas with larger dips, the least-squares and minimax methods would give a distinctly better delineation of the subsurface structures.

  12. Optical and Electrical Characterization of Melt-Grown Bulk Indium Gallium Arsenide and Indium Arsenic Phosphide Alloys

    Science.gov (United States)

    2011-03-01

    spectrum, photoluminescence (PL), and refractive index measurements. Other methods such as infrared imagery and micro probe wavelength dispersing ...States. AFIT/DS/ENP/11-M02 OPTICAL AND ELECTRICAL CHARACTERIZATION OF MELT- GROWN BULK INDIUM GALLIUM ARSENIDE AND INDIUM ARSENIC PHOSPHIDE ...CHARACTERIZATION OF MELT-GROWN BULK INDIUM GALLIUM ARSENIDE AND INDIUM ARSENIC PHOSPHIDE ALLOYS Jean Wei, BS, MS Approved

  13. Experimental verification of the inverse Doppler effect in negative-index material

    Science.gov (United States)

    Feng, Lie; Chen, Jiabi; Wang, Yan; Geng, Tao; Zhuang, Songlin

    2010-10-01

    μResearch of negative-index material (NIM) is a very hot developing research field in recent years. NIM is also called left-handed material (LHM), in which the electric field [see manuscript], the magnetic field [see manuscript] and the wave vector [see manuscript] are not composed of a set of right-handed coordinates but a set of left-handed coordinates. Thus the action of electromagnetic waves in both left-handed material and right-handed material is just the opposite, for instance, the negative refraction phenomenon, the inverse Doppler effect and so on. Here we report the explicit result of the inverse Doppler effect through a photonic crystal (PC) prism at 10.6m wavelength for the first time, and the result we get from the experiment is much similar to the theoretical analysis we have deduced before. During the experiment, the CO2 laser is used as a light source, and the PC prism is used as a sample, which can move a tiny distance (1mm) uniformly with a translating stage. Based on the method of optical heterodyne, we let the emergent light from the output surface of PC prism and the reference light from light source interfere at the surface of the detector. When the translating stage moves towards the detector, the optical paths in the PC prism will be changed, and then the Doppler frequency shift will be generated. Though several different samples have been tested repeatedly, the results we get are extraordinarily similar. So we can be sure that the inverse Doppler effect really exists in the NIM at optical frequencies. To our best knowledge, this is the only experimental verification of the inverse Doppler effect in the NIM at optical frequencies at home and aboard.

  14. Electrical Double Layer-Induced Ion Surface Accumulation for Ultrasensitive Refractive Index Sensing with Nanostructured Porous Silicon Interferometers.

    Science.gov (United States)

    Mariani, Stefano; Strambini, Lucanos Marsilio; Barillaro, Giuseppe

    2018-03-23

    Herein, we provide the first experimental evidence on the use of electrical double layer (EDL)-induced accumulation of charged ions (using both Na + and K + ions in water as the model) onto a negatively charged nanostructured surface (e.g., thermally growth SiO 2 )-Ion Surface Accumulation, ISA-as a means of improving performance of nanostructured porous silicon (PSi) interferometers for optical refractometric applications. Nanostructured PSi interferometers are very promising optical platforms for refractive index sensing due to PSi huge specific surface (hundreds of m 2 per gram) and low preparation cost (less than $0.01 per 8 in. silicon wafer), though they have shown poor resolution ( R) and detection limit (DL) (on the order of 10 -4 -10 -5 RIU) compared to other plasmonic and photonic platforms ( R and DL on the order of 10 -7 -10 -8 RIU). This can be ascribed to both low sensitivity and high noise floor of PSi interferometers when bulk refractive index variation of the solution infiltrating the nanopores either approaches or is below 10 -4 RIU. Electrical double layer-induced ion surface accumulation (EDL-ISA) on oxidized PSi interferometers allows the interferometer output signal (spectral interferogram) to be impressively amplified at bulk refractive index variation below 10 -4 RIU, increasing, in turn, sensitivity up to 2 orders of magnitude and allowing reliable measurement of refractive index variations to be carried out with both DL and R of 10 -7 RIU. This represents a 250-fold-improvement (at least) with respect to the state-of-the-art literature on PSi refractometers and pushes PSi interferometer performance to that of state-of-the-art ultrasensitive photonics/plasmonics refractive index platforms.

  15. A New Theory of Non-Linear Thermo-Elastic Constitutive Equation of Isotropic Hyperelastic Materials

    Science.gov (United States)

    Li, Chen; Liao, Yufei

    2018-03-01

    Considering the influence of temperature and strain variables on materials. According to the relationship of conjugate stress-strain, a complete and irreducible non-linear constitutive equation of isotropic hyperelastic materials is derived and the constitutive equations of 16 types of isotropic hyperelastic materials are given we study the transformation methods and routes of 16 kinds of constitutive equations and the study proves that transformation of two forms of constitutive equation. As an example of application, the non-linear thermo-elastic constitutive equation of isotropic hyperelastic materials is combined with the natural vulcanized rubber experimental data in the existing literature base on MATLAB, The results show that the fitting accuracy is satisfactory.

  16. A 3D printed dual GSM band near isotropic on-package antenna

    KAUST Repository

    Zhen, Su

    2017-10-25

    In this paper, we propose an on-package dual band monopole antenna with near-isotropic radiation pattern for GSM mobile applications. The proposed antenna is well matched for both GSM 900 and 1800 bands and provides decent gain for both the bands (1.67 and 3.27 dBi at 900 MHz and 1800 MHz respectively). The antenna is printed with silver ink on a 3D printed polymer based package. The package houses the GSM electronics and the battery. By optimizing the antenna arms width and length, a near-isotropic radiation pattern is achieved. Unlike the published isotropic antennas which are either single band or large in size, the proposed antenna covers both GSM bands with required bandwidth and is only half wavelength long. The design is low cost and highly suitable for various GSM applications such as localization, in additional to conventional communication applications.

  17. A program to calculate pulse transmission responses through transversely isotropic media

    Science.gov (United States)

    Li, Wei; Schmitt, Douglas R.; Zou, Changchun; Chen, Xiwei

    2018-05-01

    We provide a program (AOTI2D) to model responses of ultrasonic pulse transmission measurements through arbitrarily oriented transversely isotropic rocks. The program is built with the distributed point source method that treats the transducers as a series of point sources. The response of each point source is calculated according to the ray-tracing theory of elastic plane waves. The program could offer basic wave parameters including phase and group velocities, polarization, anisotropic reflection coefficients and directivity patterns, and model the wave fields, static wave beam, and the observed signals for pulse transmission measurements considering the material's elastic stiffnesses and orientations, sample dimensions, and the size and positions of the transmitters and the receivers. The program could be applied to exhibit the ultrasonic beam behaviors in anisotropic media, such as the skew and diffraction of ultrasonic beams, and analyze its effect on pulse transmission measurements. The program would be a useful tool to help design the experimental configuration and interpret the results of ultrasonic pulse transmission measurements through either isotropic or transversely isotropic rock samples.

  18. Temperature-dependent study of isotropic-nematic transition for a Gay-Berne fluid using density-functional theory

    International Nuclear Information System (INIS)

    Singh, Ram Chandra

    2007-01-01

    We have used the density-functional theory to study the effect of varying temperature on the isotropic-nematic transition of a fluid of molecules interacting via the Gay-Berne intermolecular potential. The nematic phase is found to be stable with respect to isotropic phase in the temperature range 0.80≤T*≤1.25. Pair correlation functions needed as input information in density-functional theory is calculated using the Percus-Yevick integral equation theory. We find that the density-functional theory is good for studying the isotropic-nematic transition in molecular fluids if the values of the pair-correlation functions in the isotropic phase are known accurately. We have also compared our results with computer simulation results wherever they are available

  19. Phase-field-crystal model for magnetocrystalline interactions in isotropic ferromagnetic solids

    Science.gov (United States)

    Faghihi, Niloufar; Provatas, Nikolas; Elder, K. R.; Grant, Martin; Karttunen, Mikko

    2013-09-01

    An isotropic magnetoelastic phase-field-crystal model to study the relation between morphological structure and magnetic properties of pure ferromagnetic solids is introduced. Analytic calculations in two dimensions were used to determine the phase diagram and obtain the relationship between elastic strains and magnetization. Time-dependent numerical simulations in two dimensions were used to demonstrate the effect of grain boundaries on the formation of magnetic domains. It was shown that the grain boundaries act as nucleating sites for domains of reverse magnetization. Finally, we derive a relation for coercivity versus grain misorientation in the isotropic limit.

  20. Bell inequalities stronger than the Clauser-Horne-Shimony-Holt inequality for three-level isotropic states

    International Nuclear Information System (INIS)

    Ito, Tsuyoshi; Imai, Hiroshi; Avis, David

    2006-01-01

    We show that some two-party Bell inequalities with two-valued observables are stronger than the CHSH inequality for 3x3 isotropic states in the sense that they are violated by some isotropic states in the 3x3 system that do not violate the CHSH inequality. These Bell inequalities are obtained by applying triangular elimination to the list of known facet inequalities of the cut polytope on nine points. This gives a partial solution to an open problem posed by Collins and Gisin. The results of numerical optimization suggest that they are candidates for being stronger than the I 3322 Bell inequality for 3x3 isotropic states. On the other hand, we found no Bell inequalities stronger than the CHSH inequality for 2x2 isotropic states. In addition, we illustrate an inclusion relation among some Bell inequalities derived by triangular elimination

  1. Depression of nonlinearity in decaying isotropic turbulence

    International Nuclear Information System (INIS)

    Kraichnan, R.H.; Panda, R.

    1988-01-01

    Simulations of decaying isotropic Navier--Stokes turbulence exhibit depression of the normalized mean-square nonlinear term to 57% of the value for a Gaussianly distributed velocity field with the same instantaneous velocity spectrum. Similar depression is found for dynamical models with random coupling coefficients (modified Betchov models). This suggests that the depression is dynamically generic rather than specifically driven by alignment of velocity and vorticity

  2. Computations of Quasiconvex Hulls of Isotropic Sets

    Czech Academy of Sciences Publication Activity Database

    Heinz, S.; Kružík, Martin

    2017-01-01

    Roč. 24, č. 2 (2017), s. 477-492 ISSN 0944-6532 R&D Projects: GA ČR GA14-15264S; GA ČR(CZ) GAP201/12/0671 Institutional support: RVO:67985556 Keywords : quasiconvexity * isotropic compact sets * matrices Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.496, year: 2016 http://library.utia.cas.cz/separaty/2017/MTR/kruzik-0474874.pdf

  3. Geometrical considerations in analyzing isotropic or anisotropic surface reflections.

    Science.gov (United States)

    Simonot, Lionel; Obein, Gael

    2007-05-10

    The bidirectional reflectance distribution function (BRDF) represents the evolution of the reflectance with the directions of incidence and observation. Today BRDF measurements are increasingly applied and have become important to the study of the appearance of surfaces. The representation and the analysis of BRDF data are discussed, and the distortions caused by the traditional representation of the BRDF in a Fourier plane are pointed out and illustrated for two theoretical cases: an isotropic surface and a brushed surface. These considerations will help characterize either the specular peak width of an isotropic rough surface or the main directions of the light scattered by an anisotropic rough surface without misinterpretations. Finally, what is believed to be a new space is suggested for the representation of the BRDF, which avoids the geometrical deformations and in numerous cases is more convenient for BRDF analysis.

  4. Steady- and transient-state analysis of fully ceramic microencapsulated fuel with randomly dispersed tristructural isotropic particles via two-temperature homogenized model-I: Theory and method

    International Nuclear Information System (INIS)

    Lee, Yoon Hee; Cho, Bum Hee; Cho, Nam Zin

    2016-01-01

    As a type of accident-tolerant fuel, fully ceramic microencapsulated (FCM) fuel was proposed after the Fukushima accident in Japan. The FCM fuel consists of tristructural isotropic particles randomly dispersed in a silicon carbide (SiC) matrix. For a fuel element with such high heterogeneity, we have proposed a two-temperature homogenized model using the particle transport Monte Carlo method for the heat conduction problem. This model distinguishes between fuel-kernel and SiC matrix temperatures. Moreover, the obtained temperature profiles are more realistic than those of other models. In Part I of the paper, homogenized parameters for the FCM fuel in which tristructural isotropic particles are randomly dispersed in the fine lattice stochastic structure are obtained by (1) matching steady-state analytic solutions of the model with the results of particle transport Monte Carlo method for heat conduction problems, and (2) preserving total enthalpies in fuel kernels and SiC matrix. The homogenized parameters have two desirable properties: (1) they are insensitive to boundary conditions such as coolant bulk temperatures and thickness of cladding, and (2) they are independent of operating power density. By performing the Monte Carlo calculations with the temperature-dependent thermal properties of the constituent materials of the FCM fuel, temperature-dependent homogenized parameters are obtained

  5. Seeing is believing : communication performance under isotropic teleconferencing conditions

    NARCIS (Netherlands)

    Werkhoven, P.J.; Schraagen, J.M.C.; Punte, P.A.J.

    2001-01-01

    The visual component of conversational media such as videoconferencing systems communicates important non-verbal information such as facial expressions, gestures, posture and gaze. Unlike the other cues, selective gaze depends critically on the configuration of cameras and monitors. Under isotropic

  6. Focusing light in a bianisotropic slab with negatively refracting materials

    International Nuclear Information System (INIS)

    Liu Yan; Guenneau, Sebastien; Gralak, Boris; Ramakrishna, S Anantha

    2013-01-01

    We investigate the electromagnetic response of a pair of complementary bianisotropic media, which consist of a medium with positive refractive index (+ε, +μ, +ξ) and a medium with negative refractive index(−ε, −μ, −ξ). We show that this idealized system has peculiar imaging properties in that it reproduces images of a source, in principle, with unlimited resolution. We then consider an infinite array of line sources regularly spaced in a 1D photonic crystal (PC) consisting of 2n layers of bianisotropic complementary media. Using coordinate transformations, we map this system into 2D corner chiral lenses of 2n heterogeneous anisotropic complementary media sharing a vertex, within which light circles around closed trajectories. Alternatively, one can consider corner lenses with homogeneous isotropic media and map them into 1D PCs with heterogeneous bianisotropic layers. Interestingly, such complementary media are described by scalar, or matrix valued, sign-shifting parameters, which satisfy a new version of the generalized lens theorem of Pendry and Ramakrishna. This theorem can be derived using Fourier series solutions of the Maxwell–Tellegen equations, or from space–time symmetry arguments. Also of interest are 2D periodic checkerboards consisting of alternating rectangular cells of complementary media which are such that one point source in one cell gives rise to an infinite set of images with an image in every other cell. Such checkerboards can themselves be mapped into a class of 3D corner lenses of complementary bianisotropic media. These theoretical results are illustrated by finite element computations. (paper)

  7. Development of a 10 m quasi-isotropic strand assembled from 2G wires

    Science.gov (United States)

    Kan, Changtao; Wang, Yinshun; Hou, Yanbing; Li, Yan; Zhang, Han; Fu, Yu; Jiang, Zhe

    2018-03-01

    Quasi-isotropic strands made of second generation (2G) high temperature superconducting (HTS) wires are attractive to applications of high-field magnets at low temperatures and power transmission cables at liquid nitrogen temperature in virtue of their high current carrying capability and well mechanical property. In this contribution, a 10 m length quasi-isotropic strand is manufactured and successfully tested in liquid nitrogen to verify the feasibility of an industrial scale production of the strand by the existing cabling technologies. The strand with copper sheath consists of 72 symmetrically assembled 2G wires. The uniformity of critical properties of long quasi-isotropic strands, including critical current and n-value, is very important for their using. Critical currents as well as n-values of the strand are measured every 1 m respectively and compared with the simulation results. Critical current and n-value of the strand are calculated basing on the self-consistent model solved by the finite element method (FEM). Effects of self-field on the critical current and n-value distributions in wires of the strand are analyzed in detail. The simulation results show good agreement with the experimental data and the 10 m quasi-isotropic strand has good critical properties uniformity.

  8. Acoustic carpet invisibility cloak with two open windows using multilayered homogeneous isotropic material

    International Nuclear Information System (INIS)

    Ren Chun-Yu; Xiang Zhi-Hai; Cen Zhang-Zhi

    2011-01-01

    We present a method for designing an open acoustic cloak that can conceal a perturbation on flat ground and simultaneously meet the requirement of communication and matter interchange between the inside and the outside of the cloak. This cloak can be constructed with a multilayered structure and each layer is an isotropic and homogeneous medium. The design scheme consists of two steps: firstly, we apply a conformal coordinate transformation to obtain a quasi-perfect cloak with heterogeneous isotropic material; then, according to the profile of the material distribution, we degenerate this cloak into a multilayered-homogeneous isotropic cloak, which has two open windows with negligible disturbance on its invisibility performance. This may greatly facilitate the fabrication and enhance the applicability of such a carpet-type cloak. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  9. Induced piezoelectricity in isotropic biomaterial.

    Science.gov (United States)

    Zimmerman, R L

    1976-01-01

    Isotropic material can be made to exhibit piezoelectric effects by the application of a constant electric field. For insulators, the piezoelectric strain constant is proportional to the applied electric field and for semiconductors, an additional out-of-phase component of piezoelectricity is proportional to the electric current density in the sample. The two induced coefficients are proportional to the strain-dependent dielectric constant (depsilon/dS + epsilon) and resistivity (drho/dS - rho), respectively. The latter is more important at frequencies such that rhoepsilonomega less than 1, often the case in biopolymers.Signals from induced piezoelectricity in nature may be larger than those from true piezoelectricity. PMID:990389

  10. How Isotropic is the Universe?

    Science.gov (United States)

    Saadeh, Daniela; Feeney, Stephen M; Pontzen, Andrew; Peiris, Hiranya V; McEwen, Jason D

    2016-09-23

    A fundamental assumption in the standard model of cosmology is that the Universe is isotropic on large scales. Breaking this assumption leads to a set of solutions to Einstein's field equations, known as Bianchi cosmologies, only a subset of which have ever been tested against data. For the first time, we consider all degrees of freedom in these solutions to conduct a general test of isotropy using cosmic microwave background temperature and polarization data from Planck. For the vector mode (associated with vorticity), we obtain a limit on the anisotropic expansion of (σ_{V}/H)_{0}Universe is strongly disfavored, with odds of 121 000:1 against.

  11. Scanning anisotropy parameters in horizontal transversely isotropic media

    KAUST Repository

    Masmoudi, Nabil

    2016-10-12

    The horizontal transversely isotropic model, with arbitrary symmetry axis orientation, is the simplest effective representative that explains the azimuthal behaviour of seismic data. Estimating the anisotropy parameters of this model is important in reservoir characterisation, specifically in terms of fracture delineation. We propose a travel-time-based approach to estimate the anellipticity parameter η and the symmetry axis azimuth ϕ of a horizontal transversely isotropic medium, given an inhomogeneous elliptic background model (which might be obtained from velocity analysis and well velocities). This is accomplished through a Taylor\\'s series expansion of the travel-time solution (of the eikonal equation) as a function of parameter η and azimuth angle ϕ. The accuracy of the travel time expansion is enhanced by the use of Shanks transform. This results in an accurate approximation of the solution of the non-linear eikonal equation and provides a mechanism to scan simultaneously for the best fitting effective parameters η and ϕ, without the need for repetitive modelling of travel times. The analysis of the travel time sensitivity to parameters η and ϕ reveals that travel times are more sensitive to η than to the symmetry axis azimuth ϕ. Thus, η is better constrained from travel times than the azimuth. Moreover, the two-parameter scan in the homogeneous case shows that errors in the background model affect the estimation of η and ϕ differently. While a gradual increase in errors in the background model leads to increasing errors in η, inaccuracies in ϕ, on the other hand, depend on the background model errors. We also propose a layer-stripping method valid for a stack of arbitrary oriented symmetry axis horizontal transversely isotropic layers to convert the effective parameters to the interval layer values.

  12. Higher gradient expansion for linear isotropic peridynamic materials

    Czech Academy of Sciences Publication Activity Database

    Šilhavý, Miroslav

    2017-01-01

    Roč. 22, č. 6 (2017), s. 1483-1493 ISSN 1081-2865 Institutional support: RVO:67985840 Keywords : peridynamics * higher-grade theories * non-local elastic-material model * representation theorems for isotropic functions Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 2.953, year: 2016 http:// journals .sagepub.com/doi/10.1177/1081286516637235

  13. Higher gradient expansion for linear isotropic peridynamic materials

    Czech Academy of Sciences Publication Activity Database

    Šilhavý, Miroslav

    2017-01-01

    Roč. 22, č. 6 (2017), s. 1483-1493 ISSN 1081-2865 Institutional support: RVO:67985840 Keywords : peridynamics * higher-grade theories * non-local elastic-material model * representation theorems for isotropic functions Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 2.953, year: 2016 http://journals.sagepub.com/doi/10.1177/1081286516637235

  14. Negative thermal expansion near two structural quantum phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Occhialini, Connor A.; Handunkanda, Sahan U.; Said, Ayman; Trivedi, Sudhir; Guzmán-Verri, G. G.; Hancock, Jason N.

    2017-12-01

    Recent experimental work has revealed that the unusually strong, isotropic structural negative thermal expansion in cubic perovskite ionic insulator ScF3 occurs in excited states above a ground state tuned very near a structural quantum phase transition, posing a question of fundamental interest as to whether this special circumstance is related to the anomalous behavior. To test this hypothesis, we report an elastic and inelastic x-ray scattering study of a second system Hg2I2 also tuned near a structural quantum phase transition while retaining stoichiometric composition and high crystallinity. We find similar behavior and significant negative thermal expansion below 100 K for dimensions along the body-centered-tetragonal c axis, bolstering the connection between negative thermal expansion and zero-temperature structural transitions.We identify the common traits between these systems and propose a set of materials design principles that can guide discovery of newmaterials exhibiting negative thermal expansion

  15. Emittance of a finite scattering medium with refractive index greater than unity

    International Nuclear Information System (INIS)

    Crosbie, A.L.

    1980-01-01

    Refractive index and scattering can significantly influence the transfer of radiation in a semitransparent medium such as water, glass, plastics, or ceramics. In a recent article (1979), the author presented exact numerical results for the emittance of a semiinfinite scattering medium with a refractive index greater than unity. The present investigation extends the analysis to a finite medium. The physical situation consists of a finite planar layer. The isothermal layer emits, absorbs, and isotropically scatters thermal radiation. It is characterized by single scattering albedo, optical thickness, refractive index, and temperature. A formula for the directional emittance is derived, the directional emittance being the emittance of the medium multiplied by the interface transmittance. The ratio of hemispherical to normal emittance is tabulated and discussed

  16. Estimation of Bulk modulus and microhardness of tetrahedral semiconductors

    International Nuclear Information System (INIS)

    Gorai, Sanjay Kumar

    2012-01-01

    A general empirical formula was found for calculating of bulk modulus (B) and microhardness (H) from electronegativity and principal quantum number of II-VI, III-V semiconductors. Constant C1, appearing the in the expression of bulk modulus and constants C2 and C3, appearing in the expression of microhardness and the exponent M have following values respectively The numerical values of C1,C2, C3 and M are respectively 206.6, 8.234, 1.291, -1.10 for II-VI 72.4, 31.87, 7.592, -0.95 for III-V semiconductors. Both electro-negativity and principal quantum number can effectively reflect on the chemical bonding behaviour of constituent atoms in these semiconductors. The calculated values of bulk modulus and microhardness are in good agreement with the reported values in the literature. Present study helps in designing novel semiconductor materials, and to further explore the mechanical properties of these semiconductors.

  17. Numerical implementation of a transverse-isotropic inelastic, work-hardening constitutive model

    International Nuclear Information System (INIS)

    Baladi, G.Y.

    1978-01-01

    The numerical implementation of a transverse-isotropic inelastic, work-hardening plastic constitutive model is documented. A brief review of the model is presented first to facilitate the understanding of its numerical implementation. This model is formulated in terms of 'pseudo' stress invariants, so that the incremental stress-strain relationship can be readily incorporated into existing finite-difference or infinite-element computer codes. The anisotropic model reduces to its isotropic counterpart without any changes in the mathematical formulation or in the numerical implementation (algorithm) of the model. A typical example of the model and its behavior in uniaxial strain and triaxial compression is presented. (Auth.)

  18. ISOTROPIC LUMINOSITY INDICATORS IN A COMPLETE AGN SAMPLE

    International Nuclear Information System (INIS)

    Diamond-Stanic, Aleksandar M.; Rieke, George H.; Rigby, Jane R.

    2009-01-01

    The [O IV] λ25.89 μm line has been shown to be an accurate indicator of active galactic nucleus (AGN) intrinsic luminosity in that it correlates well with hard (10-200 keV) X-ray emission. We present measurements of [O IV] for 89 Seyfert galaxies from the unbiased revised Shapley-Ames (RSA) sample. The [O IV] luminosity distributions of obscured and unobscured Seyferts are indistinguishable, indicating that their intrinsic AGN luminosities are quite similar and that the RSA sample is well suited for tests of the unified model. In addition, we analyze several commonly used proxies for AGN luminosity, including [O III] λ5007 A, 6 cm radio, and 2-10 keV X-ray emission. We find that the radio luminosity distributions of obscured and unobscured AGNs show no significant difference, indicating that radio luminosity is a useful isotropic luminosity indicator. However, the observed [O III] and 2-10 keV luminosities are systematically smaller for obscured Seyferts, indicating that they are not emitted isotropically.

  19. Large Deformation Constitutive Laws for Isotropic Thermoelastic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Plohr, Bradley J. [Los Alamos National Laboratory; Plohr, Jeeyeon N. [Los Alamos National Laboratory

    2012-07-25

    We examine the approximations made in using Hooke's law as a constitutive relation for an isotropic thermoelastic material subjected to large deformation by calculating the stress evolution equation from the free energy. For a general thermoelastic material, we employ the volume-preserving part of the deformation gradient to facilitate volumetric/shear strain decompositions of the free energy, its first derivatives (the Cauchy stress and entropy), and its second derivatives (the specific heat, Grueneisen tensor, and elasticity tensor). Specializing to isotropic materials, we calculate these constitutive quantities more explicitly. For deformations with limited shear strain, but possibly large changes in volume, we show that the differential equations for the stress components involve new terms in addition to the traditional Hooke's law terms. These new terms are of the same order in the shear strain as the objective derivative terms needed for frame indifference; unless the latter terms are negligible, the former cannot be neglected. We also demonstrate that accounting for the new terms requires that the deformation gradient be included as a field variable

  20. Self-confinement of finite dust clusters in isotropic plasmas.

    Science.gov (United States)

    Miloshevsky, G V; Hassanein, A

    2012-05-01

    Finite two-dimensional dust clusters are systems of a small number of charged grains. The self-confinement of dust clusters in isotropic plasmas is studied using the particle-in-cell method. The energetically favorable configurations of grains in plasma are found that are due to the kinetic effects of plasma ions and electrons. The self-confinement phenomenon is attributed to the change in the plasma composition within a dust cluster resulting in grain attraction mediated by plasma ions. This is a self-consistent state of a dust cluster in which grain's repulsion is compensated by the reduced charge and floating potential on grains, overlapped ion clouds, and depleted electrons within a cluster. The common potential well is formed trapping dust clusters in the confined state. These results provide both valuable insights and a different perspective to the classical view on the formation of boundary-free dust clusters in isotropic plasmas.

  1. Dirac directional emission in anisotropic zero refractive index photonic crystals.

    Science.gov (United States)

    He, Xin-Tao; Zhong, Yao-Nan; Zhou, You; Zhong, Zhi-Chao; Dong, Jian-Wen

    2015-08-14

    A certain class of photonic crystals with conical dispersion is known to behave as isotropic zero-refractive-index medium. However, the discrete building blocks in such photonic crystals are limited to construct multidirectional devices, even for high-symmetric photonic crystals. Here, we show multidirectional emission from low-symmetric photonic crystals with semi-Dirac dispersion at the zone center. We demonstrate that such low-symmetric photonic crystal can be considered as an effective anisotropic zero-refractive-index medium, as long as there is only one propagation mode near Dirac frequency. Four kinds of Dirac multidirectional emitters are achieved with the channel numbers of five, seven, eleven, and thirteen, respectively. Spatial power combination for such kind of Dirac directional emitter is also verified even when multiple sources are randomly placed in the anisotropic zero-refractive-index photonic crystal.

  2. Stress-induced birefringence in the isotropic phases of lyotropic mixtures

    Science.gov (United States)

    Fernandes, P. R. G.; Maki, J. N.; Gonçalves, L. B.; de Oliveira, B. F.; Mukai, H.

    2018-02-01

    In this work, the frequency dependence of the known mechano-optical effect which occurs in the micellar isotropic phases (I ) of mixtures of potassium laurate (KL), decanol (DeOH), and water is investigated in the range from 200 mHz to 200 Hz . In order to fit the experimental data, a model of superimposed damped harmonic oscillators is proposed. In this phenomenological approach, the micelles (microscopic oscillators) interact very weakly with their neighbors. Due to shape anisotropy of the basic structures, each oscillator i (i =1 ,2 ,3 ,...,N ) remains in its natural oscillatory rotational movement around its axes of symmetry with a frequency ω0 i. The system will be in the resonance state when the frequency of the driving force ω reaches a value near ω0 i. This phenomenological approach shows excellent agreement with the experimental data. One can find f ˜2.5 , 9.0, and 4.0 Hz as fundamental frequencies of the micellar isotropic phases I , I1, and I2, respectively. The different micellar isotropic phases I , I1, and I2 that we find in the phase diagram of the KL-DeOH-water mixture are a consequence of possible differences in the intermicellar correlation lengths. This work reinforces the possibilities of technological applications of these phases in devices such as mechanical vibration sensors.

  3. Steady- and Transient-State Analyses of Fully Ceramic Microencapsulated Fuel with Randomly Dispersed Tristructural Isotropic Particles via Two-Temperature Homogenized Model—I: Theory and Method

    Directory of Open Access Journals (Sweden)

    Yoonhee Lee

    2016-06-01

    Full Text Available As a type of accident-tolerant fuel, fully ceramic microencapsulated (FCM fuel was proposed after the Fukushima accident in Japan. The FCM fuel consists of tristructural isotropic particles randomly dispersed in a silicon carbide (SiC matrix. For a fuel element with such high heterogeneity, we have proposed a two-temperature homogenized model using the particle transport Monte Carlo method for the heat conduction problem. This model distinguishes between fuel-kernel and SiC matrix temperatures. Moreover, the obtained temperature profiles are more realistic than those of other models. In Part I of the paper, homogenized parameters for the FCM fuel in which tristructural isotropic particles are randomly dispersed in the fine lattice stochastic structure are obtained by (1 matching steady-state analytic solutions of the model with the results of particle transport Monte Carlo method for heat conduction problems, and (2 preserving total enthalpies in fuel kernels and SiC matrix. The homogenized parameters have two desirable properties: (1 they are insensitive to boundary conditions such as coolant bulk temperatures and thickness of cladding, and (2 they are independent of operating power density. By performing the Monte Carlo calculations with the temperature-dependent thermal properties of the constituent materials of the FCM fuel, temperature-dependent homogenized parameters are obtained.

  4. Isotropic cosmic expansion and the Rubin-Ford effect

    International Nuclear Information System (INIS)

    Fall, S.M.; Jones, B.J.T.

    1976-01-01

    It is shown that the Rubin-Ford data (Astrophys. J. Lett. 183:L111 (1973)), often taken as evidence for large scale anisotropic cosmic expansion, probably only reflect the inhomogeneous distribution of galaxies in the region of the sample. The data presented are consistent with isotropic expansion, an unperturbed galaxy velocity field, and hence a low density Universe. (author)

  5. Indirect effect of financial strain on daily cortisol output through daily negative to positive affect index in the Coronary Artery Risk Development in Young Adults Study.

    Science.gov (United States)

    Puterman, Eli; Haritatos, Jana; Adler, Nancy E; Sidney, Steve; Schwartz, Joseph E; Epel, Elissa S

    2013-12-01

    Daily affect is important to health and has been linked to cortisol. The combination of high negative affect and low positive affect may have a bigger impact on increasing HPA axis activity than either positive or negative affect alone. Financial strain may both dampen positive affect as well as increase negative affect, and thus provides an excellent context for understanding the associations between daily affect and cortisol. Using random effects mixed modeling with maximum likelihood estimation, we examined the relationship between self-reported financial strain and estimated mean daily cortisol level (latent cortisol variable), based on six salivary cortisol assessments throughout the day, and whether this relationship was mediated by greater daily negative to positive affect index measured concurrently in a sample of 776 Coronary Artery Risk Development in Young Adults (CARDIA) Study participants. The analysis revealed that while no total direct effect existed for financial strain on cortisol, there was a significant indirect effect of high negative affect to low positive affect, linking financial strain to elevated cortisol. In this sample, the effects of financial strain on cortisol through either positive affect or negative affect alone were not significant. A combined affect index may be a more sensitive and powerful measure than either negative or positive affect alone, tapping the burden of chronic financial strain, and its effects on biology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. The Spectrum of Isotropic Diffuse Gamma-Ray Emission Between 100 Mev and 820 Gev

    Science.gov (United States)

    Ackermann, M.; Ajello, M.; Albert, A.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Brandt, T. J.; Hays, E.; hide

    2014-01-01

    The gamma-ray sky can be decomposed into individually detected sources, diffuse emission attributed to the interactions of Galactic cosmic rays with gas and radiation fields, and a residual all-sky emission component commonly called the isotropic diffuse gamma-ray background (IGRB). The IGRB comprises all extragalactic emissions too faint or too diffuse to be resolved in a given survey, as well as any residual Galactic foregrounds that are approximately isotropic. The first IGRB measurement with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope (Fermi) used 10 months of sky-survey data and considered an energy range between 200 MeV and 100 GeV. Improvements in event selection and characterization of cosmic-ray backgrounds, better understanding of the diffuse Galactic emission, and a longer data accumulation of 50 months, allow for a refinement and extension of the IGRB measurement with the LAT, now covering the energy range from 100 MeV to 820 GeV. The IGRB spectrum shows a significant high-energy cutoff feature, and can be well described over nearly four decades in energy by a power law with exponential cutoff having a spectral index of 2.32 plus or minus 0.02 and a break energy of (279 plus or minus 52) GeV using our baseline diffuse Galactic emission model. The total intensity attributed to the IGRB is (7.2 plus or minus 0.6) x 10(exp -6) cm(exp -2) s(exp -1) sr(exp -1) above 100 MeV, with an additional +15%/-30% systematic uncertainty due to the Galactic diffuse foregrounds.

  7. A simple mechanical model for the isotropic harmonic oscillator

    International Nuclear Information System (INIS)

    Nita, Gelu M

    2010-01-01

    A constrained elastic pendulum is proposed as a simple mechanical model for the isotropic harmonic oscillator. The conceptual and mathematical simplicity of this model recommends it as an effective pedagogical tool in teaching basic physics concepts at advanced high school and introductory undergraduate course levels.

  8. Magnetization reversal processes of isotropic permanent magnets with various inter-grain exchange interactions

    Directory of Open Access Journals (Sweden)

    Hiroshi Tsukahara

    2017-05-01

    Full Text Available We performed a large-scale micromagnetics simulation on a supercomputing system to investigate the properties of isotropic nanocrystalline permanent magnets consisting of cubic grains. In the simulation, we solved the Landau–Lifshitz–Gilbert equation under a periodic boundary condition for accurate calculation of the magnetization dynamics inside the nanocrystalline isotropic magnet. We reduced the inter-grain exchange interaction perpendicular and parallel to the external field independently. Propagation of the magnetization reversal process is inhibited by reducing the inter-grain exchange interaction perpendicular to the external field, and the coercivity is enhanced by this restraint. In contrast, when we reduce the inter-grain exchange interaction parallel to the external field, the coercivity decreases because the magnetization reversal process propagates owing to dipole interaction. These behaviors show that the coercivity of an isotropic permanent magnet depends on the direction of the inter-grain exchange interaction.

  9. Electron Cooling and Isotropization during Magnetotail Current Sheet Thinning: Implications for Parallel Electric Fields

    Science.gov (United States)

    Lu, San; Artemyev, A. V.; Angelopoulos, V.

    2017-11-01

    Magnetotail current sheet thinning is a distinctive feature of substorm growth phase, during which magnetic energy is stored in the magnetospheric lobes. Investigation of charged particle dynamics in such thinning current sheets is believed to be important for understanding the substorm energy storage and the current sheet destabilization responsible for substorm expansion phase onset. We use Time History of Events and Macroscale Interactions during Substorms (THEMIS) B and C observations in 2008 and 2009 at 18 - 25 RE to show that during magnetotail current sheet thinning, the electron temperature decreases (cooling), and the parallel temperature decreases faster than the perpendicular temperature, leading to a decrease of the initially strong electron temperature anisotropy (isotropization). This isotropization cannot be explained by pure adiabatic cooling or by pitch angle scattering. We use test particle simulations to explore the mechanism responsible for the cooling and isotropization. We find that during the thinning, a fast decrease of a parallel electric field (directed toward the Earth) can speed up the electron parallel cooling, causing it to exceed the rate of perpendicular cooling, and thus lead to isotropization, consistent with observation. If the parallel electric field is too small or does not change fast enough, the electron parallel cooling is slower than the perpendicular cooling, so the parallel electron anisotropy grows, contrary to observation. The same isotropization can also be accomplished by an increasing parallel electric field directed toward the equatorial plane. Our study reveals the existence of a large-scale parallel electric field, which plays an important role in magnetotail particle dynamics during the current sheet thinning process.

  10. Effects of molecular elongation on liquid crystalline phase behaviour: isotropic-nematic transition

    Science.gov (United States)

    Singh, Ram Chandra; Ram, Jokhan

    2003-08-01

    We present the density-functional approach to study the isotropic-nematic transitions and calculate the values of freezing parameters of the Gay-Berne liquid crystal model, concentrating on the effects of varying the molecular elongation, x0. For this, we have solved the Percus-Yevick integral equation theory to calculate the pair-correlation functions of a fluid the molecules of which interact via a Gay-Berne pair potential. These results have been used in the density-functional theory as an input to locate the isotropic-nematic transition and calculate freezing parameters for a range of length-to-width parameters 3.0⩽ x0⩽4.0 at reduced temperatures 0.95 and 1.25. We observed that as x0 is increased, the isotropic-nematic transition is seen to move to lower density at a given temperature. We find that the density-functional theory is good to study the freezing transitions in such fluids. We have also compared our results with computer simulation results wherever they are available.

  11. Comparisons of Soil Properties, Enzyme Activities and Microbial Communities in Heavy Metal Contaminated Bulk and Rhizosphere Soils of Robinia pseudoacacia L. in the Northern Foot of Qinling Mountain

    Directory of Open Access Journals (Sweden)

    Yurong Yang

    2017-11-01

    Full Text Available The toxic effects of heavy metal (HM contamination on plant metabolism and soil microorganisms have been emphasized recently; however, little is known about the differences in soil physical, chemical, and biological properties between bulk and rhizosphere soils contaminated with HMs in forest ecosystem. The present study was conducted to evaluate the rhizosphere effect on soil properties, enzyme activities and bacterial communities associated with Robinia pseudoacacia L. along a HM contamination gradient. Soil organic matter (SOM, available nitrogen (AN and phosphorus (AP contents were significantly higher in rhizosphere soil than those in bulk soil at HM contaminated sites (p < 0.05. Compared to bulk soil, activities of four soil enzymes indicative of C cycle (β-glucosidase, N cycle (protease, urease and P cycle (alkaline phosphatase in rhizosphere soil across all study sites increased by 47.5%, 64.1%, 52.9% and 103.8%, respectively. Quantitative PCR (qPCR and restriction fragment length polymorphism (RFLP were used to determine the relative abundance, composition and diversity of bacteria in both bulk and rhizosphere soils, respectively. The copy number of bacterial 16S rRNA gene in bulk soil was significantly lower than that in rhizosphere soil (p < 0.05, and it had significantly negative correlations with total/DTPA-extractable Pb concentrations (p < 0.01. Alphaproteobacteria, Gammaproteobacteria and Firmicutes were the most dominant groups of bacteria at different study sites. The bacterial diversity index of Species richness (S and Margalef (dMa were significantly higher in rhizosphere soil compared with those in bulk soil, although no difference could be found in Simpson index (D between bulk and rhizosphere soils (p > 0.05. Redundancy analysis (RDA results showed that soil pH, EC, SOM and total/DTPA-extractable Pb concentrations were the most important variables affecting relative abundance, composition and diversity of bacteria (p < 0

  12. Solar, interplanetary and terrestrial features associated with periods of prolonged positive and negative Dst index

    International Nuclear Information System (INIS)

    Rajaram, G.

    1989-01-01

    From a survey of the published final values of the geomagnetic index D st for the period 1958-1972, we found long time intervals of over 25-30 days, during which this index remained consistently positive (D st +) or negative (D st -). A study is made of relevant parameters on the ground, in the magnetosphere, in the solar wind and on the Sun to seek out systematic features associated with the two conditions. In order to eliminate factors arising from seasonal and solar cycle variations, we selected pairs of D st + and D st - which involve successive months of the same year, or the same month of two successive years. Three parameters which show a systematic difference between D st + and D st - intervals are found to be 1) the state of solar photospheric magnetic fields 2) the flux density of solar MeV protons measured in the magnetosphere and 3) the southward component of the interplanetary magnetic field. While the effect of the last on geomagnetic activity has been well-discussed in the literature, it is suggested that the correlations of the first two to the conditions of D st + and D st - demand a careful scrutiny of the solar-terrestrial relationship. (author)

  13. Weak convergence to isotropic complex [Formula: see text] random measure.

    Science.gov (United States)

    Wang, Jun; Li, Yunmeng; Sang, Liheng

    2017-01-01

    In this paper, we prove that an isotropic complex symmetric α -stable random measure ([Formula: see text]) can be approximated by a complex process constructed by integrals based on the Poisson process with random intensity.

  14. Scaling laws in high-energy inverse compton scattering. II. Effect of bulk motions

    International Nuclear Information System (INIS)

    Nozawa, Satoshi; Kohyama, Yasuharu; Itoh, Naoki

    2010-01-01

    We study the inverse Compton scattering of the CMB photons off high-energy nonthermal electrons. We extend the formalism obtained by the previous paper to the case where the electrons have nonzero bulk motions with respect to the CMB frame. Assuming the power-law electron distribution, we find the same scaling law for the probability distribution function P 1,K (s) as P 1 (s) which corresponds to the zero bulk motions, where the peak height and peak position depend only on the power-index parameter. We solved the rate equation analytically. It is found that the spectral intensity function also has the same scaling law. The effect of the bulk motions to the spectral intensity function is found to be small. The present study will be applicable to the analysis of the x-ray and gamma-ray emission models from various astrophysical objects with nonzero bulk motions such as radio galaxies and astrophysical jets.

  15. Hydrophobic matrix-free graphene-oxide composites with isotropic and nematic states

    Science.gov (United States)

    Wåhlander, Martin; Nilsson, Fritjof; Carlmark, Anna; Gedde, Ulf W.; Edmondson, Steve; Malmström, Eva

    2016-08-01

    We demonstrate a novel route to synthesise hydrophobic matrix-free composites of polymer-grafted graphene oxide (GO) showing isotropic or nematic alignment and shape-memory effects. For the first time, a cationic macroinitiator (MI) has been immobilised on anionic GO and subsequently grafted with hydrophobic polymer grafts. Dense grafts of PBA, PBMA and PMMA with a wide range of average graft lengths (MW: 1-440 kDa) were polymerised by surface-initiated controlled radical precipitation polymerisation from the statistical MI. The surface modification is designed similarly to bimodal graft systems, where the cationic MI generates nanoparticle repulsion, similar to dense short grafts, while the long grafts offer miscibility in non-polar environments and cohesion. The state-of-the-art dispersions of grafted GO were in the isotropic state. Transparent and translucent matrix-free GO-composites could be melt-processed directly using only grafted GO. After processing, birefringence due to nematic alignment of grafted GO was observed as a single giant Maltese cross, 3.4 cm across. Permeability models for composites containing aligned 2D-fillers were developed, which were compared with the experimental oxygen permeability data and found to be consistent with isotropic or nematic states. The storage modulus of the matrix-free GO-composites increased with GO content (50% increase at 0.67 wt%), while the significant increases in the thermal stability (up to 130 °C) and the glass transition temperature (up to 17 °C) were dependent on graft length. The tuneable matrix-free GO-composites with rapid thermo-responsive shape-memory effects are promising candidates for a vast range of applications, especially selective membranes and sensors.We demonstrate a novel route to synthesise hydrophobic matrix-free composites of polymer-grafted graphene oxide (GO) showing isotropic or nematic alignment and shape-memory effects. For the first time, a cationic macroinitiator (MI) has been

  16. Study of open systems with molecules in isotropic liquids

    Science.gov (United States)

    Kondo, Yasushi; Matsuzaki, Masayuki

    2018-05-01

    We are interested in dynamics of a system in an environment, or an open system. Such phenomena as crossover from Markovian to non-Markovian relaxation and thermal equilibration are of our interest. Open systems have experimentally been studied with ultra cold atoms, ions in traps, optics, and cold electric circuits because well-isolated systems can be prepared here and thus the effects of environments can be controlled. We point out that some molecules solved in isotropic liquid are well isolated and thus they can also be employed for studying open systems in Nuclear Magnetic Resonance (NMR) experiments. First, we provide a short review on related phenomena of open systems that helps readers to understand our motivation. We, then, present two experiments as examples of our approach with molecules in isotropic liquids. Crossover from Markovian to non-Markovian relaxation was realized in one NMR experiment, while relaxation-like phenomena were observed in approximately isolated systems in the other.

  17. Full three-dimensional isotropic carpet cloak designed by quasi-conformal transformation optics.

    Science.gov (United States)

    Silva, Daniely G; Teixeira, Poliane A; Gabrielli, Lucas H; Junqueira, Mateus A F C; Spadoti, Danilo H

    2017-09-18

    A fully three-dimensional carpet cloak presenting invisibility in all viewing angles is theoretically demonstrated. The design is developed using transformation optics and three-dimensional quasi-conformal mapping. Parametrization strategy and numerical optimization of the coordinate transformation deploying a quasi-Newton method is applied. A discussion about the minimum achievable anisotropy in the 3D transformation optics is presented. The method allows to reduce the anisotropy in the cloak and an isotropic medium could be considered. Numerical simulations confirm the strategy employed enabling the design of an isotropic reflectionless broadband carpet cloak independently of the incident light direction and polarization.

  18. Role of phase matching in pulsed second-harmonic generation: Walk-off and phase-locked twin pulses in negative-index media

    International Nuclear Information System (INIS)

    Roppo, Vito; Centini, Marco; Sibilia, Concita; Bertolotti, Mario; De Ceglia, Domenico; Scalora, Michael; Akozbek, Neset; Bloemer, Mark J.; Haus, Joseph W.; Kosareva, Olga G.; Kandidov, Valery P.

    2007-01-01

    The present investigation is concerned with the study of pulsed second-harmonic generation under conditions of phase and group velocity mismatch, and generally low conversion efficiencies and pump intensities. In positive-index, nonmetallic materials, we generally find qualitative agreement with previous reports regarding the presence of a double-peaked second harmonic signal, which comprises a pulse that walks off and propagates at the nominal group velocity one expects at the second-harmonic frequency, and a second pulse that is 'captured' and propagates under the pump pulse. We find that the origin of the double-peaked structure resides in a phase-locking mechanism that characterizes not only second-harmonic generation, but also χ (3) processes and third-harmonic generation. The phase-locking mechanism that we describe occurs for arbitrarily small pump intensities, and so it is not a soliton effect, which usually relies on a threshold mechanism, although multicolor solitons display similar phase locking characteristics. Thus, in second harmonic generation a phase-matched component is always generated, even under conditions of material phase mismatch: This component is anomalous, because the material does not allow energy exchange between the pump and the second-harmonic beam. On the other hand, if the material is phase matched, phase locking and phase matching are indistinguishable, and the conversion process becomes efficient. We also report a similar phase-locking phenomenon in negative index materials. A spectral analysis of the pump and the generated signals reveals that the phase-locking phenomenon causes the forward moving, phase-locked second-harmonic pulse to experience the same negative index as the pump pulse, even though the index of refraction at the second-harmonic frequency is positive. Our analysis further shows that the reflected second-harmonic pulse generated at the interface and the forward-moving, phase-locked pulse appear to be part of the

  19. Homogenization and isotropization of an inflationary cosmological model

    International Nuclear Information System (INIS)

    Barrow, J.D.; Groen, Oe.; Oslo Univ.

    1986-01-01

    A member of the class of anisotropic and inhomogeneous cosmological models constructed by Wainwright and Goode is investigated. It is shown to describe a universe containing a scalar field which is minimally coupled to gravitation and a positive cosmological constant. It is shown that this cosmological model evolves exponentially rapidly towards the homogeneous and isotropic de Sitter universe model. (orig.)

  20. Lagrangian statistics of particle pairs in homogeneous isotropic turbulence

    NARCIS (Netherlands)

    Biferale, L.; Boffeta, G.; Celani, A.; Devenish, B.J.; Lanotte, A.; Toschi, F.

    2005-01-01

    We present a detailed investigation of the particle pair separation process in homogeneous isotropic turbulence. We use data from direct numerical simulations up to R????280 following the evolution of about two million passive tracers advected by the flow over a time span of about three decades. We

  1. A Potential Method for Body and Surface Wave Propagation in Transversely Isotropic Half- and Full-Spaces

    Directory of Open Access Journals (Sweden)

    Mehdi Raoofian Naeeni

    2016-12-01

    Full Text Available The problem of propagation of plane wave including body and surface waves propagating in a transversely isotropic half-space with a depth-wise axis of material symmetry is investigated in details. Using the advantage of representation of displacement fields in terms of two complete scalar potential functions, the coupled equations of motion are uncoupled and reduced to two independent equations for potential functions. In this paper, the secular equations for determination of body and surface wave velocities are derived in terms of both elasticity coefficients and the direction of propagation. In particular, the longitudinal, transverse and Rayleigh wave velocities are determined in explicit forms. It is also shown that in transversely isotropic materials, a Rayleigh wave may propagate in different manner from that of isotropic materials. Some numerical results for synthetic transversely isotropic materials are also illustrated to show the behavior of wave motion due to anisotropic nature of the problem.

  2. Bulk viscous matter-dominated Universes: asymptotic properties

    Energy Technology Data Exchange (ETDEWEB)

    Avelino, Arturo [Departamento de Física, Campus León, Universidad de Guanajuato, León, Guanajuato (Mexico); García-Salcedo, Ricardo [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada - Legaria del IPN, México D.F. (Mexico); Gonzalez, Tame [Departamento de Ingeniería Civil, División de Ingeniería, Universidad de Guanajuato, Guanajuato (Mexico); Nucamendi, Ulises [Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C-3, Ciudad Universitaria, CP. 58040 Morelia, Michoacán (Mexico); Quiros, Israel, E-mail: avelino@fisica.ugto.mx, E-mail: rigarcias@ipn.mx, E-mail: tamegc72@gmail.com, E-mail: ulises@ifm.umich.mx, E-mail: iquiros6403@gmail.com [Departamento de Matemáticas, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Corregidora 500 S.R., Universidad de Guadalajara, 44420 Guadalajara, Jalisco (Mexico)

    2013-08-01

    By means of a combined use of the type Ia supernovae and H(z) data tests, together with the study of the asymptotic properties in the equivalent phase space — through the use of the dynamical systems tools — we demonstrate that the bulk viscous matter-dominated scenario is not a good model to explain the accepted cosmological paradigm, at least, under the parametrization of bulk viscosity considered in this paper. The main objection against such scenarios is the absence of conventional radiation and matter-dominated critical points in the phase space of the model. This entails that radiation and matter dominance are not generic solutions of the cosmological equations, so that these stages can be implemented only by means of unique and very specific initial conditions, i. e., of very unstable particular solutions. Such a behavior is in marked contradiction with the accepted cosmological paradigm which requires of an earlier stage dominated by relativistic species, followed by a period of conventional non-relativistic matter domination, during which the cosmic structure we see was formed. Also, we found that the bulk viscosity is positive just until very late times in the cosmic evolution, around z < 1. For earlier epochs it is negative, been in tension with the local second law of thermodynamics.

  3. Brane big bang brought on by a bulk bubble

    International Nuclear Information System (INIS)

    Gen, Uchida; Ishibashi, Akihiro; Tanaka, Takahiro

    2002-01-01

    We propose an alternative inflationary universe scenario in the context of Randall-Sundrum braneworld cosmology. In this new scenario the existence of extra dimension(s) plays an essential role. First, the brane universe is initially in the inflationary phase driven by the effective cosmological constant induced by a small mismatch between the vacuum energy in the five-dimensional bulk and the brane tension. This mismatch arises since the bulk is initially in a false vacuum. Then, false vacuum decay occurs, nucleating a true vacuum bubble with negative energy inside the bulk. The nucleated bubble expands in the bulk and consequently hits the brane, causing a hot big-bang brane universe of the Randall-Sundrum type. Here, the termination of the inflationary phase is due to the change of the bulk vacuum energy. The bubble kinetic energy heats up the universe. As a simple realization, we propose a model in which we assume an interaction between the brane and the bubble. We derive the constraints on the model parameters taking into account the following requirements: solving the flatness problem, no force which prohibits the bubble from colliding with the brane, a sufficiently high reheating temperature for the standard nucleosynthesis to work, and the recovery of Newton's law up to 1 mm. We find that a fine-tuning is needed in order to satisfy the first and the second requirements simultaneously, although the other constraints are satisfied in a wide range of the model parameters

  4. Short communication: Prevalence of methicillin resistance in coagulase-negative staphylococci and Staphylococcus aureus isolated from bulk milk on organic and conventional dairy farms in the United States.

    Science.gov (United States)

    Cicconi-Hogan, K M; Belomestnykh, N; Gamroth, M; Ruegg, P L; Tikofsky, L; Schukken, Y H

    2014-05-01

    The objective of this study was to evaluate the presence of methicillin-resistant Staphylococcus aureus and coagulase-negative Staphylococcus spp. in bulk tank milk samples from 288 organic and conventional dairy farms located in New York, Wisconsin, and Oregon from March 2009 to May 2011. Due to recent publications reporting the presence mecC (a mecA homolog not detected by traditional mecA-based PCR methods), a combination of genotypic and phenotypic approaches was used to enhance the recovery of methicillin-resistant organisms from bulk tank milk. In total, 13 isolates were identified as methicillin resistant: Staph. aureus (n=1), Staphylococcus sciuri (n=5), Staphylococcus chromogenes (n=2), Staphylococcus saprophyticus (n=3), Staphylococcus agnetis (n=1), and Macrococcus caseolyticus (n=1). The single methicillin-resistant Staph. aureus isolate was identified from an organic farm in New York, for an observed 0.3% prevalence at the farm level. The methicillin-resistant coagulase-negative staphylococci prevalence was 2% in the organic population and 5% in the conventional population. We did not identify mecC in any of the isolates from our population. Of interest was the relatively high number of methicillin-resistant Staph. sciuri recovered, as the number of isolates from our study was considerably higher than those recovered from other recent studies that also assessed milk samples. Our research suggests that the presence of a potential methicillin-resistant Staphylococcus reservoir in milk, and likely the dairy farm population in the United States, is independent of the organic or conventional production system. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. Experimental Verification of Isotropic Radiation from a Coherent Dipole Source via Electric-Field-Driven LC Resonator Metamaterials

    Science.gov (United States)

    Tichit, Paul-Henri; Burokur, Shah Nawaz; Qiu, Cheng-Wei; de Lustrac, André

    2013-09-01

    It has long been conjectured that isotropic radiation by a simple coherent source is impossible due to changes in polarization. Though hypothetical, the isotropic source is usually taken as the reference for determining a radiator’s gain and directivity. Here, we demonstrate both theoretically and experimentally that an isotropic radiator can be made of a simple and finite source surrounded by electric-field-driven LC resonator metamaterials designed by space manipulation. As a proof-of-concept demonstration, we show the first isotropic source with omnidirectional radiation from a dipole source (applicable to all distributed sources), which can open up several possibilities in axion electrodynamics, optical illusion, novel transformation-optic devices, wireless communication, and antenna engineering. Owing to the electric- field-driven LC resonator realization scheme, this principle can be readily applied to higher frequency regimes where magnetism is usually not present.

  6. Transition between bulk and surface refractive index sensitivity of micro-cavity in-line Mach-Zehnder interferometer induced by thin film deposition.

    Science.gov (United States)

    Śmietana, Mateusz; Janik, Monika; Koba, Marcin; Bock, Wojtek J

    2017-10-16

    In this work we discuss the refractive index (RI) sensitivity of a micro-cavity in-line Mach-Zehnder interferometer in the form of a cylindrical hole (40-50 μm in diameter) fabricated in a standard single-mode optical fiber using a femtosecond laser. The surface of the micro-cavity was coated with up to 400 nm aluminum oxide thin film using the atomic layer deposition method. Next, the film was progressively chemically etched and the influence on changes in the RI of liquid in the micro-cavity was determined at different stages of the experiment, i.e., at different thicknesses of the film. An effect of transition between sensitivity to the film thickness (surface) and the RI of liquid in the cavity (bulk) is demonstrated for the first time. We have found that depending on the interferometer working conditions determined by thin film properties, the device can be used for investigation of phenomena taking place at the surface, such as in case of specific label-free biosensing applications, or for small-volume RI analysis as required in analytical chemistry.

  7. New procedure to design low radar cross section near perfect isotropic and homogeneous triangular carpet cloaks.

    Science.gov (United States)

    Sharifi, Zohreh; Atlasbaf, Zahra

    2016-10-01

    A new design procedure for near perfect triangular carpet cloaks, fabricated based on only isotropic homogeneous materials, is proposed. This procedure enables us to fabricate a cloak with simple metamaterials or even without employing metamaterials. The proposed procedure together with an invasive weed optimization algorithm is used to design carpet cloaks based on quasi-isotropic metamaterial structures, Teflon and AN-73. According to the simulation results, the proposed cloaks have good invisibility properties against radar, especially monostatic radar. The procedure is a new method to derive isotropic and homogeneous parameters from transformation optics formulas so we do not need to use complicated structures to fabricate the carpet cloaks.

  8. Metrical relationships in a standard triangle in an isotropic plane

    OpenAIRE

    Kolar-Šuper, R.; Kolar-Begović, Z.; Volenec, V.; Beban-Brkić, J.

    2005-01-01

    Each allowable triangle of an isotropic plane can be set in a standard position, in which it is possible to prove geometric properties analytically in a simplified and easier way by means of the algebraic theory developed in this paper.

  9. Isotropic 2D quadrangle meshing with size and orientation control

    KAUST Repository

    Pellenard, Bertrand; Alliez, Pierre; Morvan, Jean-Marie

    2011-01-01

    We propose an approach for automatically generating isotropic 2D quadrangle meshes from arbitrary domains with a fine control over sizing and orientation of the elements. At the heart of our algorithm is an optimization procedure that, from a coarse

  10. Asymmetric transmission in prisms using structures and materials with isotropic-type dispersion.

    Science.gov (United States)

    Gundogdu, Funda Tamara; Serebryannikov, Andriy E; Cakmak, A Ozgur; Ozbay, Ekmel

    2015-09-21

    It is demonstrated that strong asymmetry in transmission can be obtained at the Gaussian beam illumination for a single prism based on a photonic crystal (PhC) with isotropic-type dispersion, as well as for its analog made of a homogeneous material. Asymmetric transmission can be realized with the aid of refraction at a proper orientation of the interfaces and wedges of the prism, whereas neither contribution of higher diffraction orders nor anisotropic-type dispersion is required. Furthermore, incidence toward a prism wedge can be used for one of two opposite directions in order to obtain asymmetry. Thus, asymmetric transmission is a general property of the prism configurations, which can be obtained by using simple geometries and quite conventional materials. The obtained results show that strong asymmetry can be achieved in PhC prisms with (nearly) circular shape of equifrequency dispersion contours, in both cases associated with the index of refraction 01. For the comparison purposes, results are also presented for solid uniform non-magnetic prisms made of a material with the same value of n. It is shown in zero-loss approximation that the PhC prism and the ultralow-index material prism (01. Possible contributions of scattering on the individual rods and diffraction on the wedge to the resulting mechanism are discussed. Analogs of unidirectional splitting and unidirectional deflection regimes, which are known from the studies of PhC gratings, are obtained in PhC prisms and solid uniform prisms, i.e. without higher diffraction orders.

  11. Bulk oil clauses

    International Nuclear Information System (INIS)

    Gough, N.

    1993-01-01

    The Institute Bulk Oil Clauses produced by the London market and the American SP-13c Clauses are examined in detail in this article. The duration and perils covered are discussed, and exclusions, adjustment clause 15 of the Institute Bulk Oil Clauses, Institute War Clauses (Cargo), and Institute Strikes Clauses (Bulk Oil) are outlined. (UK)

  12. Testing the isotropic boundary algorithms method to evaluate the magnetic field configuration in the tail

    International Nuclear Information System (INIS)

    Sergeev, V.A.; Malkov, M.; Mursula, K.

    1993-01-01

    This paper describes tests done on one model system for studying the magnetic field in the magneotail, called the isotropic boundary algorithm method. The tail field lines map into the ionosphere, and there have been two direct methods applied to study tail fields, one a global model, and the other a local model. The global models are so broad in scope that they have a hard time dealing with specific field configurations at some time and some location. Local models rely upon field measurements being simultaneously available over a large region of space to study simultaneously the field configurations. In general this is either very fortuitous or very expensive. The isotropic boundary algorithm method relys upon measuring energetic particles, here protons with energies greater than 30 keV, in the isotropic boundary at low altitudes and interpreting them as representing the boundary between stochastic and adiabatic particle motion regions in the equatorial tail current sheet. The authors have correlated particle measurements by NOAA spacecraft to study the isotropic boundary, with magnetic measurements of tail magnetic fields by the geostationary GOES 2 spacecraft. Positive correlations are observed

  13. Study of the association of atmospheric temperature and relative humidity with bulk tank milk somatic cell count in dairy herds using Generalized additive mixed models.

    Science.gov (United States)

    Testa, Francesco; Marano, Giuseppe; Ambrogi, Federico; Boracchi, Patrizia; Casula, Antonio; Biganzoli, Elia; Moroni, Paolo

    2017-10-01

    Elevated bulk tank milk somatic cell count (BMSCC) has a negative impact on milk production, milk quality, and animal health. Seasonal increases in herd level somatic cell count (SCC) are commonly associated with elevated environmental temperature and humidity. The Temperature Humidity Index (THI) has been developed to measure general environmental stress in dairy cattle; however, additional work is needed to determine a specific effect of the heat stress index on herd-level SCC. Generalized Additive Model methods were used for a flexible exploration of the relationships between daily temperature, relative humidity, and bulk milk somatic cell count. The data consist of BMSCC and meteorological recordings collected between March 2009 and October 2011 of 10 dairy farms. The results indicate that, an average increase of 0.16% of BMSCC is expected for an increase of 1°C degree of temperature. A complex relationship was found for relative humidity. For example, increase of 0.099%, 0.037% and 0.020% are expected in correspondence to an increase of relative humidity from 50% to 51%, 80% to 81%; and 90% to 91%, respectively. Using this model, it will be possible to provide evidence-based advice to dairy farmers for the use of THI control charts created on the basis of our statistical model. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. A new Class of Extremal Composites

    DEFF Research Database (Denmark)

    Sigmund, Ole

    2000-01-01

    microstructure belonging to the new class of composites has maximum bulk modulus and lower shear modulus than any previously known composite. Inspiration for the new composite class comes from a numerical topology design procedure which solves the inverse homogenization problem of distributing two isotropic......The paper presents a new class of two-phase isotropic composites with extremal bulk modulus. The new class consists of micro geometrics for which exact solutions can be proven and their bulk moduli are shown to coincide with the Hashin-Shtrikman bounds. The results hold for two and three dimensions...... and for both well- and non-well-ordered isotropic constituent phases. The new class of composites constitutes an alternative to the three previously known extremal composite classes: finite rank laminates, composite sphere assemblages and Vigdergauz microstructures. An isotropic honeycomb-like hexagonal...

  15. Bulk-Fill Resin Composites

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Havndrup-Pedersen, Cæcilie; Honoré, Daniel

    2015-01-01

    the restorative procedure. The aim of this study, therefore, was to compare the depth of cure, polymerization contraction, and gap formation in bulk-fill resin composites with those of a conventional resin composite. To achieve this, the depth of cure was assessed in accordance with the International Organization...... for Standardization 4049 standard, and the polymerization contraction was determined using the bonded-disc method. The gap formation was measured at the dentin margin of Class II cavities. Five bulk-fill resin composites were investigated: two high-viscosity (Tetric EvoCeram Bulk Fill, SonicFill) and three low......-viscosity (x-tra base, Venus Bulk Fill, SDR) materials. Compared with the conventional resin composite, the high-viscosity bulk-fill materials exhibited only a small increase (but significant for Tetric EvoCeram Bulk Fill) in depth of cure and polymerization contraction, whereas the low-viscosity bulk...

  16. Hiding levitating objects above a ground plane

    DEFF Research Database (Denmark)

    Zhang, Jingjing; Luo, Yu; Mortensen, Asger

    2010-01-01

    An approach to hiding objects levitating above a conducting sheet is suggested in this paper. The proposed device makes use of isotropic negative-refractive-index materials without extreme material parameters, and creates an illusion of a remote conducting sheet. Numerical simulations are perform...

  17. Determination of maximum negative Poisson's ratio for laminated fiber composites

    Energy Technology Data Exchange (ETDEWEB)

    Shokrieh, M.M.; Assadi, A. [Composites Research Laboratory, Mechanical Engineering Department, Center of Excellence in Experimental Solid Mechanics and Dynamics, Iran University of Science and Technology, Tehran 16846-13114 (Iran, Islamic Republic of)

    2011-05-15

    Contrary to isotropic materials, composites always show complicated mechanical behavior under external loadings. In this article, an efficient algorithm is employed to obtain the maximum negative Poisson's ratio for laminated composite plates. We try to simplify the problem based on normalization of parameters and some manufacturing constraints to overlook the additional constraint of the optimization procedure. A genetic algorithm is used to find the optimal thickness of each lamina with a specified fiber direction. It is observed that the laminated composite with the configuration of (15/60/15) has the maximum negative Poisson's ratio. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Distinguishing spin-aligned and isotropic black hole populations with gravitational waves.

    Science.gov (United States)

    Farr, Will M; Stevenson, Simon; Miller, M Coleman; Mandel, Ilya; Farr, Ben; Vecchio, Alberto

    2017-08-23

    The direct detection of gravitational waves from merging binary black holes opens up a window into the environments in which binary black holes form. One signature of such environments is the angular distribution of the black hole spins. Binary systems that formed through dynamical interactions between already-compact objects are expected to have isotropic spin orientations (that is, the spins of the black holes are randomly oriented with respect to the orbit of the binary system), whereas those that formed from pairs of stars born together are more likely to have spins that are preferentially aligned with the orbit. The best-measured combination of spin parameters for each of the four likely binary black hole detections GW150914, LVT151012, GW151226 and GW170104 is the 'effective' spin. Here we report that, if the magnitudes of the black hole spins are allowed to extend to high values, the effective spins for these systems indicate a 0.015 odds ratio against an aligned angular distribution compared to an isotropic one. When considering the effect of ten additional detections, this odds ratio decreases to 2.9 × 10 -7 against alignment. The existing preference for either an isotropic spin distribution or low spin magnitudes for the observed systems will be confirmed (or overturned) confidently in the near future.

  19. Reconstruction of atomic effective potentials from isotropic scattering factors

    International Nuclear Information System (INIS)

    Romera, E.; Angulo, J.C.; Torres, J.J.

    2002-01-01

    We present a method for the approximate determination of one-electron effective potentials of many-electron systems from a finite number of values of the isotropic scattering factor. The method is based on the minimum cross-entropy technique. An application to some neutral ground-state atomic systems has been done within a Hartree-Fock framework

  20. The effect of grain size and cement content on index properties of weakly solidified artificial sandstones

    Science.gov (United States)

    Atapour, Hadi; Mortazavi, Ali

    2018-04-01

    The effects of textural characteristics, especially grain size, on index properties of weakly solidified artificial sandstones are studied. For this purpose, a relatively large number of laboratory tests were carried out on artificial sandstones that were produced in the laboratory. The prepared samples represent fifteen sandstone types consisting of five different median grain sizes and three different cement contents. Indices rock properties including effective porosity, bulk density, point load strength index, and Schmidt hammer values (SHVs) were determined. Experimental results showed that the grain size has significant effects on index properties of weakly solidified sandstones. The porosity of samples is inversely related to the grain size and decreases linearly as grain size increases. While a direct relationship was observed between grain size and dry bulk density, as bulk density increased with increasing median grain size. Furthermore, it was observed that the point load strength index and SHV of samples increased as a result of grain size increase. These observations are indirectly related to the porosity decrease as a function of median grain size.

  1. The mobility of negative ions in superfluid 3He

    International Nuclear Information System (INIS)

    Solomaa, M.

    1982-01-01

    This article reviews recent experimental and theoretical work on the mobility of negative ions in the superfluid A and B phases of liquid 3 He. In the normal Fermi liquid at temperatures below approximately 50 mK and also in the superfluid close to the superfluid transition temperature, Tsub(c), the mobility of a negative ion may simply be considered as limited by the elastic scattering of 3 He quasiparticles. This explains the constancy of the ion mobility in the normal phase. However, underlying the rapid increase of the measured mobility in the superfluid phases there is a subtle quantum-mechanical scattering effect. Detailed solutions of the 3 He quasiparticle-negative ion scattering process in the pair-correlated state provide a simple physical picture of an energy-dependent forward-peaking phenomenon. This yields quantitative theoretical results for the ion mobility in the quasi-isotropic B phase and for the ion mobility tensor in the anisotropic A phase which agree with the experimental data. (author)

  2. On the gravitational collapse of a gas cloud in the presence of bulk viscosity

    International Nuclear Information System (INIS)

    Carlevaro, Nakia; Montani, Giovanni

    2005-01-01

    We analyse the effects induced by the bulk (or second) viscosity on the dynamics associated with the extreme gravitational collapse. The aim of the work is to investigate whether the presence of viscous corrections to the evolution of a collapsing gas cloud influences the top-down fragmentation process. To this end, we generalize the approach presented by Hunter (1962 Astrophys. J. 136 594) to include in the dynamics of the (uniform and spherically symmetric) cloud the negative pressure contribution associated with the bulk viscosity phenomenology. Within the framework of a Newtonian approach (whose range of validity is outlined), we extend to the viscous case either the Lagrangian or the Eulerian motion of the system addressed in Hunter (1962 Astrophys. J. 136 594) and we treat the asymptotic evolution in correspondence with a viscosity coefficient of the form ζ = ζ 0 ρ 5/6 (ρ being the cloud density and ζ 0 = const). We show how the adiabatic-like behaviour of the gas (i.e. when the polytropic index γ takes values 4/3 < γ ≤ 5/3) is deeply influenced by viscous correction when its collapse reaches the extreme regime toward the singularity. In fact, for sufficiently large viscous contributions, density contrasts associated with a given scale of the fragmentation process acquire, asymptotically, a vanishing behaviour which prevents the formation of sub-structures. Since in the non-dissipative case density contrasts diverge (except for the purely adiabatic behaviour γ = 5/3 in which they remain constant), we can conclude that in the adiabatic-like collapse the top-down mechanism of structure formation is suppressed as soon as enough strong viscous effects are taken into account. Such a feature is not present in the isothermal-like (i.e. 1 ≤ γ < 4/3) collapse because the sub-structure formation is yet present and outlines the same behaviour as in the non-viscous case. We emphasize that in the adiabatic-like collapse the bulk viscosity is also responsible

  3. T2-enhanced tensor diffusion trace-weighted image in the detection of hyper-acute cerebral infarction: Comparison with isotropic diffusion-weighted image

    International Nuclear Information System (INIS)

    Chou, M.-C.; Tzeng, W.-S.; Chung, H.-W.; Wang, C.-Y.; Liu, H.-S.; Juan, C.-J.; Lo, C.-P.; Hsueh, C.-J.; Chen, C.-Y.

    2010-01-01

    Background and purpose: Although isotropic diffusion-weighted imaging (isoDWI) is very sensitive to the detection of acute ischemic stroke, it may occasionally show diffusion negative result in hyper-acute stroke. We hypothesize that high diffusion contrast diffusion trace-weighted image with enhanced T2 may improve stroke lesion conspicuity. Methods: Five hyper acute stroke patients (M:F = 0:5, average age = 61.8 ± 20.5 y/o) and 16 acute stroke patients (M:F = 11:5, average age = 67.7 ± 12 y/o) were examined six-direction tensor DWIs at b = 707 s/mm 2 . Three different diffusion-weighted images, including isotropic (isoDWI), diffusion trace-weighted image (trDWI) and T2-enhanced diffusion trace-weighted image (T2E t rDWI), were generated. Normalized lesion-to-normal ratio (nLNR) and contrast-to-noise ratio (CNR) of three diffusion images were calculated from each patient and statistically compared. Results: The trDWI shows better nLNR than isoDWI on both hyper-acute and acute stroke lesions, whereas no significant improvement in CNR. Nevertheless, the T2E t rDWI has statistically superior CNR and nLNR than those of isoDWI and trDWI in both hyper-acute and acute stroke. Conclusions: We concluded that tensor diffusion trace-weighted image with T2 enhancement is more sensitive to stroke lesion detection, and can provide higher lesion conspicuity than the conventional isotropic DWI for early stroke lesion delineation without the need of high-b-value technique.

  4. Plasmon response of a metal-semiconductor multilayer 4π-spiral as a negative-index metamaterial

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadivand, Arash, E-mail: aahma011@fiu.edu; Pala, Nezih [Florida International University, Department of Electrical and Computer Engineering (United States)

    2014-12-15

    In this study, we investigate the optical response and plasmonic features of a multilayer 4π-spiral composed of metal-semiconductor arms, numerically, by employing a finite-difference time-domain method. We verified that the proposed structure is able to support strong plasmon and Fano resonances in the circular arms. We showed that the negative polarizability of the spiral provides an opportunity to consider the examined 4π-spiral structure as a meta-atom. Quantifying the effective refractive index of the structure for the presence of various semiconductor substances such as Si, GaP, and InP, we obtained the highest possible value for the associated figure of merit (FOM). Ultimately, for a finite spiral structure with a compositional and multilayer arrangement of Au and GaP arms, the FOM is determined as approximately ∼62.3.

  5. Isotropic gates in large gamma detector arrays versus angular distributions

    International Nuclear Information System (INIS)

    Iacob, V.E.; Duchene, G.

    1997-01-01

    The quality of the angular distribution information extracted from high-fold gamma-gamma coincidence events is analyzed. It is shown that a correct quasi-isotropic gate setting, available at the modern large gamma-ray detector arrays, essentially preserves the quality of the angular information. (orig.)

  6. Unusual negative magnetoresistance in Bi2Se3-ySy topological insulator under perpendicular magnetic field

    Science.gov (United States)

    Singh, Rahul; Gangwar, Vinod K.; Daga, D. D.; Singh, Abhishek; Ghosh, A. K.; Kumar, Manoranjan; Lakhani, A.; Singh, Rajeev; Chatterjee, Sandip

    2018-03-01

    The magneto-transport properties of Bi2Se3-ySy were investigated. Magnetoresistance (MR) decreases with an increase in the S content, and finally, for 7% (i.e., y = 0.21) S doping, the magnetoresistance becomes negative. This negative MR is unusual as it is observed when a magnetic field is applied in the perpendicular direction to the plane of the sample. The magneto-transport behavior shows the Shubnikov-de Haas (SdH) oscillation, indicating the coexistence of surface and bulk states. The negative MR has been attributed to the non-trivial bulk conduction.

  7. Bacterial hand contamination and transfer after use of contaminated bulk-soap-refillable dispensers.

    Science.gov (United States)

    Zapka, Carrie A; Campbell, Esther J; Maxwell, Sheri L; Gerba, Charles P; Dolan, Michael J; Arbogast, James W; Macinga, David R

    2011-05-01

    Bulk-soap-refillable dispensers are prone to extrinsic bacterial contamination, and recent studies demonstrated that approximately one in four dispensers in public restrooms are contaminated. The purpose of this study was to quantify bacterial hand contamination and transfer after use of contaminated soap under controlled laboratory and in-use conditions in a community setting. Under laboratory conditions using liquid soap experimentally contaminated with 7.51 log(10) CFU/ml of Serratia marcescens, an average of 5.28 log(10) CFU remained on each hand after washing, and 2.23 log(10) CFU was transferred to an agar surface. In an elementary-school-based field study, Gram-negative bacteria on the hands of students and staff increased by 1.42 log(10) CFU per hand (26-fold) after washing with soap from contaminated bulk-soap-refillable dispensers. In contrast, washing with soap from dispensers with sealed refills significantly reduced bacteria on hands by 0.30 log(10) CFU per hand (2-fold). Additionally, the mean number of Gram-negative bacteria transferred to surfaces after washing with soap from dispensers with sealed-soap refills (0.06 log(10) CFU) was significantly lower than the mean number after washing with contaminated bulk-soap-refillable dispensers (0.74 log(10) CFU; P soap (P soap from bulk-soap-refillable dispensers can increase the number of opportunistic pathogens on the hands and may play a role in the transmission of bacteria in public settings.

  8. Linearized holographic isotropization at finite coupling

    Energy Technology Data Exchange (ETDEWEB)

    Atashi, Mahdi; Fadafan, Kazem Bitaghsir [Shahrood University of Technology, Physics Department (Iran, Islamic Republic of); Jafari, Ghadir [Institute for Research in Fundamental Sciences (IPM), School of Physics, Tehran (Iran, Islamic Republic of)

    2017-06-15

    We study holographic isotropization of an anisotropic homogeneous non-Abelian strongly coupled plasma in the presence of Gauss-Bonnet corrections. It was verified before that one can linearize Einstein's equations around the final black hole background and simplify the complicated setup. Using this approach, we study the expectation value of the boundary stress tensor. Although we consider small values of the Gauss-Bonnet coupling constant, it is found that finite coupling leads to significant increasing of the thermalization time. By including higher order corrections in linearization, we extend the results to study the effect of the Gauss-Bonnet coupling on the entropy production on the event horizon. (orig.)

  9. Interbasis expansions for isotropic harmonic oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Shi-Hai, E-mail: dongsh2@yahoo.com [Departamento de Física, Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Edificio 9, Unidad Profesional Adolfo López Mateos, Mexico D.F. 07738 (Mexico)

    2012-03-12

    The exact solutions of the isotropic harmonic oscillator are reviewed in Cartesian, cylindrical polar and spherical coordinates. The problem of interbasis expansions of the eigenfunctions is solved completely. The explicit expansion coefficients of the basis for given coordinates in terms of other two coordinates are presented for lower excited states. Such a property is occurred only for those degenerated states for given principal quantum number n. -- Highlights: ► Exact solutions of harmonic oscillator are reviewed in three coordinates. ► Interbasis expansions of the eigenfunctions is solved completely. ► This is occurred only for those degenerated states for given quantum number n.

  10. A prognostic factor index for overall survival in patients receiving first-line chemotherapy for HER2-negative advanced breast cancer: an analysis of the ATHENA trial.

    Science.gov (United States)

    Llombart-Cussac, Antonio; Pivot, Xavier; Biganzoli, Laura; Cortes-Funes, Hernan; Pritchard, Kathleen I; Pierga, Jean-Yves; Smith, Ian; Thomssen, Christoph; Srock, Stefanie; Sampayo, Miguel; Cortes, Javier

    2014-10-01

    Evidence-based definitions of 'poor-prognosis' or 'aggressive' advanced breast cancer are lacking. We developed a prognostic factor index using data from 2203 patients treated with first-line chemotherapy plus bevacizumab for HER2-negative advanced breast cancer. The risk factors most closely associated with worse OS were: disease-free interval ≤24 months; liver metastases or ≥3 involved organ sites; prior anthracycline and/or taxane therapy; triple-negative breast cancer (TNBC); and performance status 2 or prior analgesic/corticosteroid treatment. Risk of death was increased threefold in patients with ≥3 versus ≤1 risk factors (hazard ratio 3.0 [95% CI 2.6-3.4; p < 0.001]; median 16.0 vs 38.8 months, respectively). This prognostic index may enable identification of patients with a poorer prognosis in whom more intensive systemic regimens may be appropriate. The index may also be considered in designing new trials, although it requires validation in other datasets before extrapolation to non-bevacizumab-containing therapy. ClinicalTrials.gov identifier: NCT00448591. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. A Dual Band Additively Manufactured 3D Antenna on Package with Near-Isotropic Radiation Pattern

    KAUST Repository

    Su, Zhen

    2018-04-06

    Internet of things (IoT) applications need wireless connectivity on devices with very small footprints, and in RF obscure environments. The antenna for such applications must work on multiple GSM bands (preferred choice for network connectivity), provide near isotropic radiation pattern to maintain orientation insensitive communication, be small in size so that it can be integrated with futuristic miniaturized IoT devices, and be low in cost to be implemented on billions of devices. This paper presents a novel 3D dual band near-isotropic wideband GSM antenna to fulfill these requirements. The antenna has been realized on the package of electronics through additive manufacturing to ensure efficient utilization of available space and lower cost. The proposed antenna consists of a meander line antenna that is folded on the faces of a 3D package with two variations, 0.375λ length for narrowband version and 0.67λ length for the wideband version. Theoretical conditions to achieve near isotropic radiation pattern with bent wire antennas on a 3D surface have been derived. The antenna has been optimized to operate with embedded electronics and a large metallic battery. The antenna provides 8.9% and 34.4% bandwidths, at 900 and 1800 MHz respectively with decent near isotropic radiation behavior.

  12. Efficient anisotropic quasi-P wavefield extrapolation using an isotropic low-rank approximation

    KAUST Repository

    Zhang, Zhendong

    2017-12-17

    The computational cost of quasi-P wave extrapolation depends on the complexity of the medium, and specifically the anisotropy. Our effective-model method splits the anisotropic dispersion relation into an isotropic background and a correction factor to handle this dependency. The correction term depends on the slope (measured using the gradient) of current wavefields and the anisotropy. As a result, the computational cost is independent of the nature of anisotropy, which makes the extrapolation efficient. A dynamic implementation of this approach decomposes the original pseudo-differential operator into a Laplacian, handled using the low-rank approximation of the spectral operator, plus an angular dependent correction factor applied in the space domain to correct for anisotropy. We analyze the role played by the correction factor and propose a new spherical decomposition of the dispersion relation. The proposed method provides accurate wavefields in phase and more balanced amplitudes than a previous spherical decomposition. Also, it is free of SV-wave artifacts. Applications to a simple homogeneous transverse isotropic medium with a vertical symmetry axis (VTI) and a modified Hess VTI model demonstrate the effectiveness of the approach. The Reverse Time Migration (RTM) applied to a modified BP VTI model reveals that the anisotropic migration using the proposed modeling engine performs better than an isotropic migration.

  13. Evolution of the bonding mechanism of ZnO under isotropic compression: A first-principles study

    International Nuclear Information System (INIS)

    Zhou, G.C.; Sun, L.Z.; Wang, J.B.; Zhong, X.L.; Zhou, Y.C.

    2008-01-01

    The electronic structure and the bonding mechanism of ZnO under isotropic pressure have been studied by using the full-potential linear augmented plane wave (FP-LAPW) method within the density-functional theory (DFT) based on LDA+U exchange correlation (EXC) potential. We used the theory of Atoms in Molecules (AIM) method to analyze the change of the charge transfer and the bonding strength under isotropic pressure. The results of the theoretical analysis show that charge transfer between Zn and O atomic basins nearly linearly increases with the increasing pressure. Charge density along the Zn-O bond increases under the high pressure. The bonding strength and the ionicity of Zn-O bond also increase with the increasing pressure. The linear evolution process of the bonding mechanism under isotropic pressure was shown clearly in the present paper

  14. Holographic quantum error-correcting codes: toy models for the bulk/boundary correspondence

    Energy Technology Data Exchange (ETDEWEB)

    Pastawski, Fernando; Yoshida, Beni [Institute for Quantum Information & Matter and Walter Burke Institute for Theoretical Physics,California Institute of Technology,1200 E. California Blvd., Pasadena CA 91125 (United States); Harlow, Daniel [Princeton Center for Theoretical Science, Princeton University,400 Jadwin Hall, Princeton NJ 08540 (United States); Preskill, John [Institute for Quantum Information & Matter and Walter Burke Institute for Theoretical Physics,California Institute of Technology,1200 E. California Blvd., Pasadena CA 91125 (United States)

    2015-06-23

    We propose a family of exactly solvable toy models for the AdS/CFT correspondence based on a novel construction of quantum error-correcting codes with a tensor network structure. Our building block is a special type of tensor with maximal entanglement along any bipartition, which gives rise to an isometry from the bulk Hilbert space to the boundary Hilbert space. The entire tensor network is an encoder for a quantum error-correcting code, where the bulk and boundary degrees of freedom may be identified as logical and physical degrees of freedom respectively. These models capture key features of entanglement in the AdS/CFT correspondence; in particular, the Ryu-Takayanagi formula and the negativity of tripartite information are obeyed exactly in many cases. That bulk logical operators can be represented on multiple boundary regions mimics the Rindler-wedge reconstruction of boundary operators from bulk operators, realizing explicitly the quantum error-correcting features of AdS/CFT recently proposed in http://dx.doi.org/10.1007/JHEP04(2015)163.

  15. Propagation of Electromagnetic Waves in Slab Waveguide Structure Consisting of Chiral Nihility Claddings and Negative-Index Material Core Layer

    Science.gov (United States)

    Helal, Alaa N. Abu; Taya, Sofyan A.; Elwasife, Khitam Y.

    2018-06-01

    The dispersion equation of an asymmetric three-layer slab waveguide, in which all layers are chiral materials is presented. Then, the dispersion equation of a symmetric slab waveguide, in which the claddings are chiral materials and the core layer is negative index material, is derived. Normalized cut-off frequencies, field profile, and energies flow of right-handed and left-handed circularly polarized modes are derived and plotted. We consider both odd and even guided modes. Numerical results of guided low-order modes are provided. Some novel features, such as abnormal dispersion curves, are found.

  16. Transformation optics, isotropic chiral media and non-Riemannian geometry

    International Nuclear Information System (INIS)

    Horsley, S A R

    2011-01-01

    The geometrical interpretation of electromagnetism in transparent media (transformation optics) is extended to include chiral media that are isotropic but inhomogeneous. It was found that such media may be described through introducing the non-Riemannian geometrical property of torsion into the Maxwell equations, and it is shown how such an interpretation may be applied to the design of optical devices.

  17. Classification of integrable Volterra-type lattices on the sphere: isotropic case

    International Nuclear Information System (INIS)

    Adler, V E

    2008-01-01

    The symmetry approach is used for classification of integrable isotropic vector Volterra lattices on the sphere. The list of integrable lattices consists mainly of new equations. Their symplectic structure and associated PDE of vector NLS type are discussed

  18. Bulk electric system reliability evaluation incorporating wind power and demand side management

    Science.gov (United States)

    Huang, Dange

    Electric power systems are experiencing dramatic changes with respect to structure, operation and regulation and are facing increasing pressure due to environmental and societal constraints. Bulk electric system reliability is an important consideration in power system planning, design and operation particularly in the new competitive environment. A wide range of methods have been developed to perform bulk electric system reliability evaluation. Theoretically, sequential Monte Carlo simulation can include all aspects and contingencies in a power system and can be used to produce an informative set of reliability indices. It has become a practical and viable tool for large system reliability assessment technique due to the development of computing power and is used in the studies described in this thesis. The well-being approach used in this research provides the opportunity to integrate an accepted deterministic criterion into a probabilistic framework. This research work includes the investigation of important factors that impact bulk electric system adequacy evaluation and security constrained adequacy assessment using the well-being analysis framework. Load forecast uncertainty is an important consideration in an electrical power system. This research includes load forecast uncertainty considerations in bulk electric system reliability assessment and the effects on system, load point and well-being indices and reliability index probability distributions are examined. There has been increasing worldwide interest in the utilization of wind power as a renewable energy source over the last two decades due to enhanced public awareness of the environment. Increasing penetration of wind power has significant impacts on power system reliability, and security analyses become more uncertain due to the unpredictable nature of wind power. The effects of wind power additions in generating and bulk electric system reliability assessment considering site wind speed

  19. Two-dimensional fluid-filled closed-cell cellular solid as an acoustic metamaterial with negative index

    Science.gov (United States)

    Dorodnitsyn, V.; Van Damme, B.

    2016-04-01

    A concept for acoustic metamaterials consisting of a cellular medium with fluid-filled cells is fabricated and studied experimentally. In such a system, the fluid and solid structure explicitly interact, and elastic wave propagation is coupled to both phases. Focusing here on shear wave behavior, we confirm previous numerical studies in three steps. We first measure the material deformations pertaining to three qualitatively different shear wave modes in the frequency range below 3.5 kHz. We then measure the group velocity and demonstrate that, within a certain frequency interval, the group and phase velocity have opposite signs. This shows that the system acts as a negative-index metamaterial. Finally, we confirm the presence of band gaps due to the locally resonant behavior of the cell walls. The demonstrated concept of a closed, fluid-filled cellular material as an acoustic metamaterial opens a wide space for applications.

  20. General thermo-elastic solution of radially heterogeneous, spherically isotropic rotating sphere

    Energy Technology Data Exchange (ETDEWEB)

    Bayat, Yahya; EkhteraeiToussi, THamid [Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of)

    2015-06-15

    A thick walled rotating spherical object made of transversely isotropic functionally graded materials (FGMs) with general types of thermo-mechanical boundary conditions is studied. The thermo-mechanical governing equations consisting of decoupled thermal and mechanical equations are represented. The centrifugal body forces of the rotation are considered in the modeling phase. The unsymmetrical thermo-mechanical boundary conditions and rotational body forces are expressed in terms of the Legendre series. The series method is also implemented in the solution of the resulting equations. The solutions are checked with the known literature and FEM based solutions of ABAQUS software. The effects of anisotropy and heterogeneity are studied through the case studies and the results are represented in different figures. The newly developed series form solution is applicable to the rotating FGM spherical transversely isotropic vessels having nonsymmetrical thermo-mechanical boundary condition.

  1. Isotropization in Bianchi type-I cosmological model with fermions and bosons interacting via Yukawa potential

    International Nuclear Information System (INIS)

    Ribas, M O; Samojeden, L L; Devecchi, F P; Kremer, G M

    2015-01-01

    In this work we investigate a model for the early Universe in a Bianchi type-I metric, where the sources of the gravitational field are a fermionic and a bosonic field, interacting through a Yukawa potential, following the standard model of elementary particles. It is shown that the fermionic field has a negative pressure, while the boson has a small positive pressure. The fermionic field is the responsible for an accelerated regime at early times, but since the total pressure tends to zero for large times, a transition to a decelerated regime occurs. Here the Yukawa potential answers for the duration of the accelerated regime, since by decreasing the value of its coupling constant the transition accelerated–decelerated occurs in later times. The isotropization which occurs for late times is due to the presence of the fermionic field as one of the sources of the gravitational field. (paper)

  2. Quasi-Rayleigh waves in transversely isotropic half-space with inclined axis of symmetry

    International Nuclear Information System (INIS)

    Yanovskaya, T.B.; Savina, L.S.

    2003-09-01

    A method for determination of characteristics of quasi-Rayleigh (qR) wave in a transversely isotropic homogeneous half-space with inclined axis of symmetry is outlined. The solution is obtained as a superposition of qP, qSV and qSH waves, and surface wave velocity is determined from the boundary conditions at the free surface and at infinity, as in the case of Rayleigh wave in isotropic half-space. Though the theory is simple enough, a numerical procedure for the calculation of surface wave velocity presents some difficulties. The difficulty is conditioned by necessity to calculate complex roots of a non-linear equation, which in turn contains functions determined as roots of nonlinear equations with complex coefficients. Numerical analysis shows that roots of the equation corresponding to the boundary conditions do not exist in the whole domain of azimuths and inclinations of the symmetry axis. The domain of existence of qR wave depends on the ratio of the elastic parameters: for some strongly anisotropic models the wave cannot exist at all. For some angles of inclination qR wave velocities deviate from those calculated on the basis of the perturbation method valid for weak anisotropy, though they have the same tendency of variation with azimuth. The phase of qR wave varies with depth unlike Rayleigh wave in isotropic half-space. Unlike Rayleigh wave in isotropic half-space, qR wave has three components - vertical, radial and transverse. Particle motion in horizontal plane is elliptic. Direction of the major axis of the ellipsis coincide with the direction of propagation only in azimuths 0 deg. (180 deg.) and 90 deg. (270 deg.). (author)

  3. Effect of tooth brushing on gloss retention and surface roughness of five bulk-fill resin composites.

    Science.gov (United States)

    O'Neill, Catherine; Kreplak, Laurent; Rueggeberg, Frederick A; Labrie, Daniel; Shimokawa, Carlos Alberto Kenji; Price, Richard Bengt

    2018-01-01

    To determine the effects of tooth brushing on five bulk-fill resin based composites (RBCs). Ten samples of Filtek Supreme Enamel (control), Filtek One Bulk Fill, Tetric EvoCeram Bulk Fill, SonicFill 2, SDR flow+, and Admira Fusion X-tra were light cured for 20 seconds using the Valo Grand curing light. After 24 hours storage in air at 37°C, specimens were brushed in a random order using Colgate OpticWhite dentifrice and a soft toothbrush. Surface gloss was measured prior to brushing, after 5,000, 10,000 and 15,000 back and forth brushing cycles. Surface roughness was measured after 15,000 brushing cycles using atomic force microscopy (AFM) and selected scanning electron microscope (SEM) images were taken. The data was examined using ANOVA and pair-wise comparisons using Scheffe's post-hoc multiple comparison tests (α = 0.05). Surface gloss decreased and the surface roughness increased after brushing. Two-way ANOVA showed that both the RBC and the number of brushing cycles had a significant negative effect on the gloss. One-way ANOVA showed that the RBC had a significant effect on the roughness after 15,000 brushing cycles. For both gloss and roughness, brushing had the least effect on the nano-filled control and nano-filled bulk-fill RBC, and the greatest negative effect on Admira Fusion X-tra. The SEM images provided visual agreement. There was an excellent linear correlation (R 2  = 0.98) between the logarithm of the gloss and roughness. After brushing, the bulk-fill RBCs were all rougher than the control nano-filled RBC. The nano-filled bulk-fill RBC was the least affected by brushing. Bulk-fill RBCs lose their gloss faster and become rougher than the nanofilled conventional RBC, Filtek Supreme Ultra. The nanofilled bulk-fill RBC was the least affected by tooth brushing. © 2017 Wiley Periodicals, Inc.

  4. Bacterial Hand Contamination and Transfer after Use of Contaminated Bulk-Soap-Refillable Dispensers▿†

    Science.gov (United States)

    Zapka, Carrie A.; Campbell, Esther J.; Maxwell, Sheri L.; Gerba, Charles P.; Dolan, Michael J.; Arbogast, James W.; Macinga, David R.

    2011-01-01

    Bulk-soap-refillable dispensers are prone to extrinsic bacterial contamination, and recent studies demonstrated that approximately one in four dispensers in public restrooms are contaminated. The purpose of this study was to quantify bacterial hand contamination and transfer after use of contaminated soap under controlled laboratory and in-use conditions in a community setting. Under laboratory conditions using liquid soap experimentally contaminated with 7.51 log10 CFU/ml of Serratia marcescens, an average of 5.28 log10 CFU remained on each hand after washing, and 2.23 log10 CFU was transferred to an agar surface. In an elementary-school-based field study, Gram-negative bacteria on the hands of students and staff increased by 1.42 log10 CFU per hand (26-fold) after washing with soap from contaminated bulk-soap-refillable dispensers. In contrast, washing with soap from dispensers with sealed refills significantly reduced bacteria on hands by 0.30 log10 CFU per hand (2-fold). Additionally, the mean number of Gram-negative bacteria transferred to surfaces after washing with soap from dispensers with sealed-soap refills (0.06 log10 CFU) was significantly lower than the mean number after washing with contaminated bulk-soap-refillable dispensers (0.74 log10 CFU; P soap (P soap from bulk-soap-refillable dispensers can increase the number of opportunistic pathogens on the hands and may play a role in the transmission of bacteria in public settings. PMID:21421792

  5. Revisiting polarimetry near the isotropic point of an optically active, non-enantiomorphous, molecular crystal.

    Science.gov (United States)

    Martin, Alexander T; Tan, Melissa; Nichols, Shane M; Timothy, Emily; Kahr, Bart

    2018-07-01

    Accurate polarimetric measurements of the optical activity of crystals along low symmetry directions are facilitated by isotropic points, frequencies where dispersion curves of eigenrays cross and the linear birefringence disappears. We report here the optical properties and structure of achiral, uniaxial (point group D 2d ) potassium trihydrogen di-(cis-4-cyclohexene-1,2-dicarboxylate) dihydrate, whose isotropic point was previously detected (S. A. Kim, C. Grieswatch, H. Küppers, Zeit. Krist. 1993; 208:219-222) and exploited for a singular measurement of optical activity normal to the optic axis. The crystal structure associated with the aforementioned study was never published. We report it here, confirming the space group assignment I 4¯c2, along with the frequency dependence of the fundamental optical properties and the constitutive tensors by fitting optical dispersion relations to measured Mueller matrix spectra. k-Space maps of circular birefringence and of the Mueller matrix near the isotropic wavelength are measured and simulated. The signs of optical rotation are correlated with the absolute crystallographic directions. © 2018 Wiley Periodicals, Inc.

  6. Liquid crystalline states of surfactant solutions of isotropic micelles

    International Nuclear Information System (INIS)

    Bagdassarian, C.; Gelbart, W.M.; Ben-Shaul, A.

    1988-01-01

    We consider micellar solutions whose surfactant molecules prefer strongly to form small, globular aggregates in the absence of intermicellar interactions. At sufficiently high volume fraction of surfactant, the isotropic phase of essentially spherical micelles is shown to be unstable with respect to an orientationally ordered (nematic) state of rodlike aggregates. This behavior is relevant to the phase diagrams reported for important classes of aqueous amphiphilic solutions

  7. direct method of analysis of an isotropic rectangular plate direct

    African Journals Online (AJOL)

    eobe

    This work evaluates the static analysis of an isotropic rectangular plate with various the static analysis ... method according to Ritz is used to obtain the total potential energy of the plate by employing the used to ..... for rectangular plates analysis, as the behavior of the ... results obtained by previous research work that used.

  8. MODELS OF COVARIANCE FUNCTIONS OF GAUSSIAN RANDOM FIELDS ESCAPING FROM ISOTROPY, STATIONARITY AND NON NEGATIVITY

    Directory of Open Access Journals (Sweden)

    Pablo Gregori

    2014-03-01

    Full Text Available This paper represents a survey of recent advances in modeling of space or space-time Gaussian Random Fields (GRF, tools of Geostatistics at hand for the understanding of special cases of noise in image analysis. They can be used when stationarity or isotropy are unrealistic assumptions, or even when negative covariance between some couples of locations are evident. We show some strategies in order to escape from these restrictions, on the basis of rich classes of well known stationary or isotropic non negative covariance models, and through suitable operations, like linear combinations, generalized means, or with particular Fourier transforms.

  9. Active isotropic slabs: conditions for amplified reflection

    Science.gov (United States)

    Perez, Liliana I.; Matteo, Claudia L.; Etcheverry, Javier; Duplaá, María Celeste

    2012-12-01

    We analyse in detail the necessary conditions to obtain amplified reflection (AR) in isotropic interfaces when a plane wave propagates from a transparent medium towards an active one. First, we demonstrate analytically that AR is not possible if a single interface is involved. Then, we study the conditions for AR in a very simple configuration: normal incidence on an active slab immersed in transparent media. Finally, we develop an analysis in the complex plane in order to establish a geometrical method that not only describes the behaviour of active slabs but also helps to simplify the calculus.

  10. Active isotropic slabs: conditions for amplified reflection

    International Nuclear Information System (INIS)

    Perez, Liliana I; Duplaá, María Celeste; Matteo, Claudia L; Etcheverry, Javier

    2012-01-01

    We analyse in detail the necessary conditions to obtain amplified reflection (AR) in isotropic interfaces when a plane wave propagates from a transparent medium towards an active one. First, we demonstrate analytically that AR is not possible if a single interface is involved. Then, we study the conditions for AR in a very simple configuration: normal incidence on an active slab immersed in transparent media. Finally, we develop an analysis in the complex plane in order to establish a geometrical method that not only describes the behaviour of active slabs but also helps to simplify the calculus. (paper)

  11. Soil Aggregation, Organic Carbon Concentration, and Soil Bulk Density As Affected by Cover Crop Species in a No-Tillage System

    Directory of Open Access Journals (Sweden)

    Adriano Stephan Nascente

    2015-06-01

    Full Text Available Soil aggregation and the distribution of total organic carbon (TOC may be affected by soil tillage and cover crops. The objective of this study was to determine the effects of crop rotation with cover crops on soil aggregation, TOC concentration in the soil aggregate fractions, and soil bulk density under a no-tillage system (NTS and conventional tillage system (CTS, one plowing and two disking. This was a three-year study with cover crop/rice/cover crop/rice rotations in the Brazilian Cerrado. A randomized block experimental design with six treatments and three replications was used. The cover crops (treatments were: fallow, Panicum maximum, Brachiaria ruziziensis, Brachiaria brizantha, and millet (Pennisetum glaucum. An additional treatment, fallow plus CTS, was included as a control. Soil samples were collected at the depths of 0.00-0.05 m, 0.05-0.10 m, and 0.10-0.20 m after the second rice harvest. The treatments under the NTS led to greater stability in the soil aggregates (ranging from 86.33 to 95.37 % than fallow plus CTS (ranging from 74.62 to 85.94 %. Fallow plus CTS showed the highest number of aggregates smaller than 2 mm. The cover crops affected soil bulk density differently, and the millet treatment in the NTS had the lowest values. The cover crops without incorporation provided the greatest accumulation of TOC in the soil surface layers. The TOC concentration was positively correlated with the aggregate stability index in all layers and negatively correlated with bulk density in the 0.00-0.10 m layer.

  12. Pretransitional behaviour in the vicinity of the isotropic-nematic transition of strongly polar compounds

    International Nuclear Information System (INIS)

    Sridevi, S; Krishna Prasad, S; Shankar Rao, D S; Yelamaggad, C V

    2008-01-01

    The isotropic-nematic transition, being weakly first order, exhibits pretransitional effects signifying the appearance of the nematic-like regions in the isotropic phase. In the isotropic phase, strongly polar liquid crystals, such as the popular alkyl and alkoxy cyano biphenyl behave in a non-standard fashion: whereas far away from the transition the dielectric constant ε iso has a 1/T dependence (a feature also commonly seen in polar liquids), on approaching the nematic phase the trend reverses resulting in a maximum in ε iso , at a temperature slightly above the transition, an effect explained on the basis of short-range correlations with an antiparallel association of the neighbouring molecules. Recently, there has been a revival in studies on this behaviour to possibly associate it with the order of transition. Here we report dielectric measurements carried in the vicinity of this transition for a number of compounds having different molecular structures including a bent core system, but with a common feature that the molecules possess a strong terminal polar group, nitro in one case and cyano in the rest. Surprisingly, the convex shape of the thermal variation of ε iso was more an exception than the rule. In materials that exhibit such an anomaly we find a linear correlation between δε = (ε peak -ε IN )/ε IN and δT = T peak -T IN , where ε peak is the maximum value of the dielectric constant in the isotropic phase, ε IN the value at the transition, and T peak and T IN the corresponding temperatures.

  13. Photonic-resonant left-handed medium

    International Nuclear Information System (INIS)

    Shen Jianqi

    2006-01-01

    A new scheme to realize simultaneously negative permittivity and permeability in a coherent atomic vapor medium (photonic-resonant material) via a coherent driving mechanism is suggested. It is verified that the atomic system coherently driven by a strong optical field will give rise to a negative refractive index in certain probe frequency ranges. One of the most remarkable features of the present scheme is such that a slab fabricated by the left-handed vapor medium is an ideal candidate for designing perfect lenses since the photonic-resonant atomic vapor cannot only exhibit an isotropic negative refractive index, but also provide a good impedance match at the air-medium interfaces

  14. Waterlike glass polyamorphism in a monoatomic isotropic Jagla model.

    Science.gov (United States)

    Xu, Limei; Giovambattista, Nicolas; Buldyrev, Sergey V; Debenedetti, Pablo G; Stanley, H Eugene

    2011-02-14

    We perform discrete-event molecular dynamics simulations of a system of particles interacting with a spherically-symmetric (isotropic) two-scale Jagla pair potential characterized by a hard inner core, a linear repulsion at intermediate separations, and a weak attractive interaction at larger separations. This model system has been extensively studied due to its ability to reproduce many thermodynamic, dynamic, and structural anomalies of liquid water. The model is also interesting because: (i) it is very simple, being composed of isotropically interacting particles, (ii) it exhibits polyamorphism in the liquid phase, and (iii) its slow crystallization kinetics facilitate the study of glassy states. There is interest in the degree to which the known polyamorphism in glassy water may have parallels in liquid water. Motivated by parallels between the properties of the Jagla potential and those of water in the liquid state, we study the metastable phase diagram in the glass state. Specifically, we perform the computational analog of the protocols followed in the experimental studies of glassy water. We find that the Jagla potential calculations reproduce three key experimental features of glassy water: (i) the crystal-to-high-density amorphous solid (HDA) transformation upon isothermal compression, (ii) the low-density amorphous solid (LDA)-to-HDA transformation upon isothermal compression, and (iii) the HDA-to-very-high-density amorphous solid (VHDA) transformation upon isobaric annealing at high pressure. In addition, the HDA-to-LDA transformation upon isobaric heating, observed in water experiments, can only be reproduced in the Jagla model if a free surface is introduced in the simulation box. The HDA configurations obtained in cases (i) and (ii) are structurally indistinguishable, suggesting that both processes result in the same glass. With the present parametrization, the evolution of density with pressure or temperature is remarkably similar to the

  15. Electrochemical isotropic texturing of mc-Si wafers in KOH solution

    International Nuclear Information System (INIS)

    Abburi, M.; Boström, T.; Olefjord, I.

    2013-01-01

    Boron doped multicrystalline Si-wafers were anodically polarized in 2 M KOH and 4 M KOH at 40 °C and 50 °C. The applied potentials were 25 V, 30 V, 40 V and 50 V. The morphology of the textured surfaces, the surface products and the light reflectivity were analyzed by utilizing SEM, XPS and Lambda UV/Vis/NIR spectrophotometer, respectively. Isotropic texturing was obtained. The lowest average reflectivity, 17%, was achieved after pre-etching for 10 min and polarization at 40 V for 10 min in 4 M KOH at 50 °C. That reflection value is half of that measured on a chemical pre-etched surface, 34%. By increasing the voltage to 50 V the reflectivity rises to 28%. Polarizations to 25 V and 30 V at 50 °C in both solutions give local pores in the μm-range. The etch attack initiation is located at protrusions on the surface. At 40 V and 50 V in both solutions the pores are extended onto the entire surface. The width of the pores is about 10 μm. Inside the micro-pores, nm-pores are formed; their lateral size is in the range 100 nm–200 nm. A mechanism for the anodic dissolution reactions is discussed. - Highlights: ► A method to form isotropic textures on mc-Si wafers in KOH solution is presented. ► The method is based on anodic polarization of silicon in KOH at high potentials. ► Evolution of surface morphology is studied by varying the etch parameters. ► Isotropic textures with lowest average reflectivity are obtained at 40 V. ► A reaction model for texturing mechanism is discussed in the light of XPS data

  16. Magnetic field sensor for isotropically sensing an incident magnetic field in a sensor plane

    Science.gov (United States)

    Pant, Bharat B. (Inventor); Wan, Hong (Inventor)

    2001-01-01

    A magnetic field sensor that isotropically senses an incident magnetic field. This is preferably accomplished by providing a magnetic field sensor device that has one or more circular shaped magnetoresistive sensor elements for sensing the incident magnetic field. The magnetoresistive material used is preferably isotropic, and may be a CMR material or some form of a GMR material. Because the sensor elements are circular in shape, shape anisotropy is eliminated. Thus, the resulting magnetic field sensor device provides an output that is relatively independent of the direction of the incident magnetic field in the sensor plane.

  17. Optical negative refraction by four-wave mixing in thin metallic nanostructures.

    Science.gov (United States)

    Palomba, Stefano; Zhang, Shuang; Park, Yongshik; Bartal, Guy; Yin, Xiaobo; Zhang, Xiang

    2011-10-30

    The law of refraction first derived by Snellius and later introduced as the Huygens-Fermat principle, states that the incidence and refracted angles of a light wave at the interface of two different materials are related to the ratio of the refractive indices in each medium. Whereas all natural materials have a positive refractive index and therefore exhibit refraction in the positive direction, artificially engineered negative index metamaterials have been shown capable of bending light waves negatively. Such a negative refractive index is the key to achieving a perfect lens that is capable of imaging well below the diffraction limit. However, negative index metamaterials are typically lossy, narrow band, and require complicated fabrication processes. Recently, an alternative approach to obtain negative refraction from a very thin nonlinear film has been proposed and experimentally demonstrated in the microwave region. However, such approaches use phase conjugation, which makes optical implementations difficult. Here, we report a simple but different scheme to demonstrate experimentally nonlinear negative refraction at optical frequencies using four-wave mixing in nanostructured metal films. The refractive index can be designed at will by simply tuning the wavelengths of the interacting waves, which could have potential impact on many important applications, such as superlens imaging.

  18. Qualitative and quantitative assessment of wrist MRI at 3.0T - Comparison between isotropic 3D turbo spin echo and isotropic 3D fast field echo and 2D turbo spin echo

    International Nuclear Information System (INIS)

    Jung, Jee Young; Yoon, Young Cheol; Jung, Jin Young; Choe, Bong-Keun

    2013-01-01

    Background: Isotropic three-dimensional (3D) magnetic resonance imaging (MRI) has been applied to various joints. However, comparison for image quality between isotropic 3D MRI and two-dimensional (2D) turbo spin echo (TSE) sequence of the wrist at a 3T MR system has not been investigated. Purpose: To compare the image quality of isotropic 3D MRI including TSE intermediate-weighted (VISTA) sequence and fast field echo (FFE) sequence with 2D TSE intermediate-weighted sequence of the wrist joint at 3.0 T. Material and Methods: MRI was performed in 10 wrists of 10 healthy volunteers with isotropic 3D sequences (VISTA and FFE) and 2D TSE intermediate-weighted sequences at 3.0 T. The signal-to-noise ratio (SNR) was obtained by imaging phantom and noise-only image. Contrast ratios (CRs) were calculated between fluid and cartilage, triangular fibrocartilage complex (TFCC), and the scapholunate ligament. Two radiologists independently assessed the visibility of TFCC, carpal ligaments, cartilage, tendons and nerves with a four-point grading scale. Statistical analysis to compare CRs (one way ANOVA with a Tukey test) and grades of visibility (Kruskal-Wallis test) between three sequences and those for inter-observer agreement (kappa analysis) were performed. Results: The SNR of 2D TSE (46.26) was higher than those of VISTA (23.34) and 3D FFE (19.41). CRs were superior in 2D TSE than VISTA (P = 0.02) for fluid-cartilage and in 2D TSE than 3D FFE (P < 0.01) for fluid-TFCC. The visibility was best in 2D TSE (P < 0.01) for TFCC and in VISTA (P = 0.01) for scapholunate ligament. The visibility was better in 2D TSE and 3D FFE (P 0.04) for cartilage and in VISTA than 3D FFE (P < 0.01) for TFCC. The inter-observer agreement for the visibility of anatomic structures was moderate or substantial. Conclusion: Image quality of 2D TSE was superior to isotropic 3D MR imaging for cartilage, and TFCC. 3D FFE has better visibility for cartilage than VISTA and VISTA has superior visibility for

  19. Qualitative and quantitative assessment of wrist MRI at 3.0T - Comparison between isotropic 3D turbo spin echo and isotropic 3D fast field echo and 2D turbo spin echo

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jee Young [Dept. of Radiology, Chungang Univ. Hospital, School of Medicine, Chungang Univ. (Korea, Republic of); Yoon, Young Cheol [Dept. of Radiology, Samsung Medical Center, School of Medicine, Sungkyunkwan Univ. (Korea, Republic of)], e-mail: ycyoon@skku.edu; Jung, Jin Young [Dept. of Radiology, Saint Paul' s Hospital, The Catholic Univ. (Korea, Republic of); Choe, Bong-Keun [Dept. of Preventive Medicine, School of Medicine, Kyung Hee Univ., Seoul (Korea, Republic of)

    2013-04-15

    Background: Isotropic three-dimensional (3D) magnetic resonance imaging (MRI) has been applied to various joints. However, comparison for image quality between isotropic 3D MRI and two-dimensional (2D) turbo spin echo (TSE) sequence of the wrist at a 3T MR system has not been investigated. Purpose: To compare the image quality of isotropic 3D MRI including TSE intermediate-weighted (VISTA) sequence and fast field echo (FFE) sequence with 2D TSE intermediate-weighted sequence of the wrist joint at 3.0 T. Material and Methods: MRI was performed in 10 wrists of 10 healthy volunteers with isotropic 3D sequences (VISTA and FFE) and 2D TSE intermediate-weighted sequences at 3.0 T. The signal-to-noise ratio (SNR) was obtained by imaging phantom and noise-only image. Contrast ratios (CRs) were calculated between fluid and cartilage, triangular fibrocartilage complex (TFCC), and the scapholunate ligament. Two radiologists independently assessed the visibility of TFCC, carpal ligaments, cartilage, tendons and nerves with a four-point grading scale. Statistical analysis to compare CRs (one way ANOVA with a Tukey test) and grades of visibility (Kruskal-Wallis test) between three sequences and those for inter-observer agreement (kappa analysis) were performed. Results: The SNR of 2D TSE (46.26) was higher than those of VISTA (23.34) and 3D FFE (19.41). CRs were superior in 2D TSE than VISTA (P = 0.02) for fluid-cartilage and in 2D TSE than 3D FFE (P < 0.01) for fluid-TFCC. The visibility was best in 2D TSE (P < 0.01) for TFCC and in VISTA (P = 0.01) for scapholunate ligament. The visibility was better in 2D TSE and 3D FFE (P 0.04) for cartilage and in VISTA than 3D FFE (P < 0.01) for TFCC. The inter-observer agreement for the visibility of anatomic structures was moderate or substantial. Conclusion: Image quality of 2D TSE was superior to isotropic 3D MR imaging for cartilage, and TFCC. 3D FFE has better visibility for cartilage than VISTA and VISTA has superior visibility for

  20. Split energy–helicity cascades in three-dimensional homogeneous and isotropic turbulence

    NARCIS (Netherlands)

    Biferale, L.; Musacchio, S.; Toschi, F.

    2013-01-01

    We investigate the transfer properties of energy and helicity fluctuations in fully developed homogeneous and isotropic turbulence by changing the nature of the nonlinear Navier–Stokes terms. We perform a surgery of all possible interactions, by keeping only those triads that have sign-definite

  1. Prediction of massive bleeding. Shock index and modified shock index.

    Science.gov (United States)

    Terceros-Almanza, L J; García-Fuentes, C; Bermejo-Aznárez, S; Prieto-Del Portillo, I J; Mudarra-Reche, C; Sáez-de la Fuente, I; Chico-Fernández, M

    2017-12-01

    To determine the predictive value of the Shock Index and Modified Shock Index in patients with massive bleeding due to severe trauma. Retrospective cohort. Severe trauma patient's initial attention at the intensive care unit of a tertiary hospital. Patients older than 14 years that were admitted to the hospital with severe trauma (Injury Severity Score >15) form January 2014 to December 2015. We studied the sensitivity (Se), specificity (Sp), positive and negative predictive value (PV+ and PV-), positive and negative likelihood ratio (LR+ and LR-), ROC curves (Receiver Operating Characteristics) and the area under the same (AUROC) for prediction of massive hemorrhage. 287 patients were included, 76.31% (219) were male, mean age was 43,36 (±17.71) years and ISS was 26 (interquartile range [IQR]: 21-34). The overall frequency of massive bleeding was 8.71% (25). For Shock Index: AUROC was 0.89 (95% confidence intervals [CI] 0.84 to 0.94), with an optimal cutoff at 1.11, Se was 91.3% (95% CI: 73.2 to 97.58) and Sp was 79.69% (95% CI: 74.34 to 84.16). For the Modified Shock Index: AUROC was 0.90 (95% CI: 0.86 to 0.95), with an optimal cutoff at 1.46, Se was 95.65% (95% CI: 79.01 to 99.23) and Sp was 75.78% (95% CI: 70.18 to 80.62). Shock Index and Modified Shock Index are good predictors of massive bleeding and could be easily incorporated to the initial workup of patients with severe trauma. Copyright © 2017 Elsevier España, S.L.U. y SEMICYUC. All rights reserved.

  2. A first-principles study of cementite (Fe{sub 3}C) and its alloyed counterparts: Elastic constants, elastic anisotropies, and isotropic elastic moduli

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, G., E-mail: g-ghosh@northwestern.edu [Department of Materials Science and Engineering, Robert R. McCormick School of Engineering and Applied Science, Northwestern University, 2220 Campus Drive, Evanston, IL 60208-3108 (United States)

    2015-08-15

    A comprehensive computational study of elastic properties of cementite (Fe{sub 3}C) and its alloyed counterparts (M{sub 3}C (M = Al, Co, Cr, Cu, Fe, Hf, Mn, Mo, Nb, Ni, Si, Ta, Ti, V, W, Zr, Cr{sub 2}FeC and CrFe{sub 2}C) having the crystal structure of Fe{sub 3}C is carried out employing electronic density-functional theory (DFT), all-electron PAW pseudopotentials and the generalized gradient approximation for the exchange-correlation energy (GGA). Specifically, as a part of our systematic study of cohesive properties of solids and in the spirit of materials genome, following properties are calculated: (i) single-crystal elastic constants, C{sub ij}, of above M{sub 3}Cs; (ii) anisotropies of bulk, Young’s and shear moduli, and Poisson’s ratio based on calculated C{sub ij}s, demonstrating their extreme anisotropies; (iii) isotropic (polycrystalline) elastic moduli (bulk, shear, Young’s moduli and Poisson’s ratio) of M{sub 3}Cs by homogenization of calculated C{sub ij}s; and (iv) acoustic Debye temperature, θ{sub D}, of M{sub 3}Cs based on calculated C{sub ij}s. We provide a critical appraisal of available data of polycrystalline elastic properties of alloyed cementite. Calculated single crystal properties may be incorporated in anisotropic constitutive models to develop and test microstructure-processing-property-performance links in multi-phase materials where cementite is a constituent phase.

  3. Dynamical Symmetries of Two-Dimensional Dirac Equation with Screened Coulomb and Isotropic Harmonic Oscillator Potentials

    International Nuclear Information System (INIS)

    Wang Qing; Hou Yu-Long; Jing Jian; Long Zheng-Wen

    2014-01-01

    In this paper, we study symmetrical properties of two-dimensional (2D) screened Dirac Hydrogen atom and isotropic harmonic oscillator with scalar and vector potentials of equal magnitude (SVPEM). We find that it is possible for both cases to preserve so(3) and su(2) dynamical symmetries provided certain conditions are satisfied. Interestingly, the conditions for preserving these dynamical symmetries are exactly the same as non-relativistic screened Hydrogen atom and screened isotropic oscillator preserving their dynamical symmetries. Some intuitive explanations are proposed. (general)

  4. "Peak tracking chip" for label-free optical detection of bio-molecular interaction and bulk sensing.

    Science.gov (United States)

    Bougot-Robin, Kristelle; Li, Shunbo; Zhang, Yinghua; Hsing, I-Ming; Benisty, Henri; Wen, Weijia

    2012-10-21

    A novel imaging method for bulk refractive index sensing or label-free bio-molecular interaction sensing is presented. This method is based on specially designed "Peak tracking chip" (PTC) involving "tracks" of adjacent resonant waveguide gratings (RWG) "micropads" with slowly evolving resonance position. Using a simple camera the spatial information robustly retrieves the diffraction efficiency, which in turn transduces either the refractive index of the liquids on the tracks or the effective thickness of an immobilized biological layer. Our intrinsically multiplex chip combines tunability and versatility advantages of dielectric guided wave biochips without the need of costly hyperspectral instrumentation. The current success of surface plasmon imaging techniques suggests that our chip proposal could leverage an untapped potential to routinely extend such techniques in a convenient and sturdy optical configuration toward, for instance for large analytes detection. PTC design and fabrication are discussed with challenging process to control micropads properties by varying their period (step of 2 nm) or their duty cycle through the groove width (steps of 4 nm). Through monochromatic imaging of our PTC, we present experimental demonstration of bulk index sensing on the range [1.33-1.47] and of surface biomolecule detection of molecular weight 30 kDa in aqueous solution using different surface densities. A sensitivity of the order of 10(-5) RIU for bulk detection and a sensitivity of the order of ∼10 pg mm(-2) for label-free surface detection are expected, therefore opening a large range of application of our chip based imaging technique. Exploiting and chip design, we expect as well our chip to open new direction for multispectral studies through imaging.

  5. Counter-Propagating Optical Trapping System for Size and Refractive Index Measurement of Microparticles

    National Research Council Canada - National Science Library

    Flynn, Richard A; Shao, Bing; Chachisvilis, Mirianas; Ozkan, Mihrimah; Esener, Sadik C

    2005-01-01

    .... Different from the current best technique for microparticles refractive index measurement, refractometry, a bulk technique requiring changing the fluid composition of the sample, our optical trap...

  6. Bulk viscous matter and recent acceleration of the universe

    Energy Technology Data Exchange (ETDEWEB)

    Sasidharan, Athira; Mathew, Titus K. [Cochin University of Science and Technology, Department of Physics, Kochi (India)

    2015-07-15

    We consider a cosmological model dominated by bulk viscous matter with a total bulk viscosity coefficient proportional to the velocity and acceleration of the expansion of the universe in such a way that ζ = ζ{sub 0} + ζ{sub 1}(a)/(a) + ζ{sub 2}(a)/(a). We show that there exist two limiting conditions in the bulk viscous coefficients (ζ{sub 0}, ζ{sub 1}, ζ{sub 2}) which correspond to a universe having a Big Bang at the origin, followed by an early decelerated epoch and then making a smooth transition into an accelerating epoch. We have constrained the model using the type Ia Supernovae data, evaluated the best estimated values of all the bulk viscous parameters and the Hubble parameter corresponding to the two limiting conditions. We found that even though the evolution of the cosmological parameters are in general different for the two limiting cases, they show identical behavior for the best estimated values of the parameters from both limiting conditions. A recent acceleration would occur if ζ{sub 0} + ζ{sub 1} > 1 for the first limiting conditions and if ζ{sub 0} + ζ{sub 1} < 1 for the second limiting conditions. The age of the universe predicted by this model is found to be less than that predicted from the oldest galactic globular clusters. The total bulk viscosity seems to be negative in the past and becomes positive when z ≤ 0.8. So the model violates the local second law of thermodynamics. However, the model satisfies the generalized second law of thermodynamics at the apparent horizon throughout the evolution of the universe. We also made a statefinder analysis of the model and found that it is distinguishably different from the standard ΛCDM model at present, but it shows a de Sitter type behavior in the far future of the evolution. (orig.)

  7. Contextual Risk, Maternal Negative Emotionality, and the Negative Emotion Dysregulation of Preschool Children from Economically Disadvantaged Families

    Science.gov (United States)

    Brown, Eleanor D.; Ackerman, Brian P.

    2011-01-01

    Research Findings: This study examined relations between contextual risk, maternal negative emotionality, and preschool teacher reports of the negative emotion dysregulation of children from economically disadvantaged families. Contextual risk was represented by cumulative indexes of family and neighborhood adversity. The results showed a direct…

  8. Intracranial arterial wall imaging using three-dimensional high isotropic resolution black blood MRI at 3.0 Tesla.

    Science.gov (United States)

    Qiao, Ye; Steinman, David A; Qin, Qin; Etesami, Maryam; Schär, Michael; Astor, Brad C; Wasserman, Bruce A

    2011-07-01

    To develop a high isotropic-resolution sequence to evaluate intracranial vessels at 3.0 Tesla (T). Thirteen healthy volunteers and 4 patients with intracranial stenosis were imaged at 3.0T using 0.5-mm isotropic-resolution three-dimensional (3D) Volumetric ISotropic TSE Acquisition (VISTA; TSE, turbo spin echo), with conventional 2D-TSE for comparison. VISTA was repeated for 6 volunteers and 4 patients at 0.4-mm isotropic-resolution to explore the trade-off between SNR and voxel volume. Wall signal-to-noise-ratio (SNR(wall) ), wall-lumen contrast-to-noise-ratio (CNR(wall-lumen) ), lumen area (LA), wall area (WA), mean wall thickness (MWT), and maximum wall thickness (maxWT) were compared between 3D-VISTA and 2D-TSE sequences, as well as 3D images acquired at both resolutions. Reliability was assessed by intraclass correlations (ICC). Compared with 2D-TSE measurements, 3D-VISTA provided 58% and 74% improvement in SNR(wall) and CNR(wall-lumen) , respectively. LA, WA, MWT and maxWT from 3D and 2D techniques highly correlated (ICCs of 0.96, 0.95, 0.96, and 0.91, respectively). CNR(wall-lumen) using 0.4-mm resolution VISTA decreased by 27%, compared with 0.5-mm VISTA but with reduced partial-volume-based overestimation of wall thickness. Reliability for 3D measurements was good to excellent. The 3D-VISTA provides SNR-efficient, highly reliable measurements of intracranial vessels at high isotropic-resolution, enabling broad coverage in a clinically acceptable time. Copyright © 2011 Wiley-Liss, Inc.

  9. The Effects Of Ultrasonic Application For The Microbiological Quality Of Bulk Cooking Oil

    Directory of Open Access Journals (Sweden)

    Wisnu Istanto

    2015-08-01

    Full Text Available Radiation is one of natural phenomenon that often discussed in light atomic reaction nuclear application and electromagnetic wave especially in gamma ray X ray and UV light. Commonly we usually think that they are negative deadly and dangerous for living creatures. Radiaton may be correlated with thermal phenomenon but this reasearch was applied to get audio phenomenon and radiation especially ultrasonic radiation. Sound is a particle of vibration that propagates through medium and transmitted as longitudinal wave in which the displacement of the medium is parallel to the propagation of the wave. Radiation is the emission of waves in all directions in space by vibratory sources transducers form small balls or knob 234 this study were irradiating exposing to bulk cooking oils. The bulk cooking oil was treated by the ultrasonic exposure 1.5 hours and 3 hours and 24-hour incubation that it showed no aerobic colony. And besides the untreated bulk cooking oil showed a few aerobic colonies. And also the untreated used bulk cooking oil showed more some aerobic colonies. The research results shows that ultrasonic exposure at 48 kHz for 1.5 hours can enhance the microbiological quality of bulk cooking oil for 10 day storage.

  10. Geometric Models for Isotropic Random Porous Media: A Review

    Directory of Open Access Journals (Sweden)

    Helmut Hermann

    2014-01-01

    Full Text Available Models for random porous media are considered. The models are isotropic both from the local and the macroscopic point of view; that is, the pores have spherical shape or their surface shows piecewise spherical curvature, and there is no macroscopic gradient of any geometrical feature. Both closed-pore and open-pore systems are discussed. The Poisson grain model, the model of hard spheres packing, and the penetrable sphere model are used; variable size distribution of the pores is included. A parameter is introduced which controls the degree of open-porosity. Besides systems built up by a single solid phase, models for porous media with the internal surface coated by a second phase are treated. Volume fraction, surface area, and correlation functions are given explicitly where applicable; otherwise numerical methods for determination are described. Effective medium theory is applied to calculate physical properties for the models such as isotropic elastic moduli, thermal and electrical conductivity, and static dielectric constant. The methods presented are exemplified by applications: small-angle scattering of systems showing fractal-like behavior in limited ranges of linear dimension, optimization of nanoporous insulating materials, and improvement of properties of open-pore systems by atomic layer deposition of a second phase on the internal surface.

  11. Implementation of Canny and Isotropic Operator with Power Law Transformation to Identify Cervical Cancer

    Science.gov (United States)

    Amalia, A.; Rachmawati, D.; Lestari, I. A.; Mourisa, C.

    2018-03-01

    Colposcopy has been used primarily to diagnose pre-cancer and cancerous lesions because this procedure gives an exaggerated view of the tissues of the vagina and the cervix. But, the poor quality of colposcopy image sometimes makes physician challenging to recognize and analyze it. Generally, Implementation of image processing to identify cervical cancer have to implement a complex classification or clustering method. In this study, we wanted to prove that by only applying the identification of edge detection in the colposcopy image, identification of cervical cancer can be determined. In this study, we implement and comparing two edge detection operator which are isotropic and canny operator. Research methodology in this paper composed by image processing, training, and testing stages. In the image processing step, colposcopy image transformed by nth root power transformation to get better detection result and continued with edge detection process. Training is a process of labelling all dataset image with cervical cancer stage. This process involved pathology doctor as an expert in diagnosing the colposcopy image as a reference. Testing is a process of deciding cancer stage classification by comparing the similarity image of colposcopy results in the testing stage with the image of the results of the training process. We used 30 images as a dataset. The result gets same accuracy which is 80% for both Canny or Isotropic operator. Average running time for Canny operator implementation is 0.3619206 ms while Isotropic get 1.49136262 ms. The result showed that Canny operator is better than isotropic operator because Canny operator generates a more precise edge with a fast time instead.

  12. Acoustic emission behavior under bending deformation of YBCO bulk superconductor

    International Nuclear Information System (INIS)

    Yoneda, K.; Ye, J.; Tomita, M.

    2005-01-01

    Bending tests were conducted on U-notched specimens cut from a YBCO bulk superconductor. Acoustic emission (AE) signals obtained under loading parallel or perpendicular to the c-axis were analyzed to investigate the correlation between crack growth behavior and the AE signals. As a result of analyzing log-log plots of strength (σ B ) versus total AE energy (ΣE AE ), a linear relationship was found between ΣE AE and σ B n . Cracks could be broadly divided into two types based on the value of n as an index of crack growth behavior. One type consisted of microcracks originating from cleavage planes and gas holes; these crack propagated parallel to the c-axis and had an n index value of approximately 0.7. The other type was a main crack that originated from the U-notch and had an n index value of approximately 6.5. A sample (A) loaded parallel to the c-axis showed mean bending strength of 74.8MPa. Cracks displaying two different growth patterns of n=0.7 and 6.5 were presented in this sample. Microcracks parallel to the c-axis occurred in the vicinity of 5-10MPa. This sample was characterized by mixed crack growth of a main crack and microcracks. A sample (B) loaded perpendicular to the c-axis displayed mean bending strength of 43MPa. A main crack occurred in the vicinity of 20MPa and displayed a single growth pattern of n=6.5. By analyzing AE signals in this way in the process of conducting a strength evaluation, it was possible to evaluate the failure process of the bulk superconductor in relation to the strength level induced by the applied load

  13. Diffraction of SH-waves by topographic features in a layered transversely isotropic half-space

    Science.gov (United States)

    Ba, Zhenning; Liang, Jianwen; Zhang, Yanju

    2017-01-01

    The scattering of plane SH-waves by topographic features in a layered transversely isotropic (TI) half-space is investigated by using an indirect boundary element method (IBEM). Firstly, the anti-plane dynamic stiffness matrix of the layered TI half-space is established and the free fields are solved by using the direct stiffness method. Then, Green's functions are derived for uniformly distributed loads acting on an inclined line in a layered TI half-space and the scattered fields are constructed with the deduced Green's functions. Finally, the free fields are added to the scattered ones to obtain the global dynamic responses. The method is verified by comparing results with the published isotropic ones. Both the steady-state and transient dynamic responses are evaluated and discussed. Numerical results in the frequency domain show that surface motions for the TI media can be significantly different from those for the isotropic case, which are strongly dependent on the anisotropy property, incident angle and incident frequency. Results in the time domain show that the material anisotropy has important effects on the maximum duration and maximum amplitudes of the time histories.

  14. Gravitational instability in isotropic MHD plasma waves

    Science.gov (United States)

    Cherkos, Alemayehu Mengesha

    2018-04-01

    The effect of compressive viscosity, thermal conductivity and radiative heat-loss functions on the gravitational instability of infinitely extended homogeneous MHD plasma has been investigated. By taking in account these parameters we developed the six-order dispersion relation for magnetohydrodynamic (MHD) waves propagating in a homogeneous and isotropic plasma. The general dispersion relation has been developed from set of linearized basic equations and solved analytically to analyse the conditions of instability and instability of self-gravitating plasma embedded in a constant magnetic field. Our result shows that the presence of viscosity and thermal conductivity in a strong magnetic field substantially modifies the fundamental Jeans criterion of gravitational instability.

  15. Monopole-fermion systems in the complex isotropic tetrad formalism

    International Nuclear Information System (INIS)

    Gal'tsov, D.V.; Ershov, A.A.

    1988-01-01

    The interaction of fermions of arbitrary isospin with regular magnetic monopoles and dyons of the group SU(2) and also with point gravitating monopoles and dyons of the Wu-Yang type described by the Reissner-Nordstrom metric are studied using the Newman-Penrose complex isotropic tetrad formalism. Formulas for the bound-state spectrum and explicit expressions for the zero modes are obtained and the Rubakov-Callan effect for black holes is discussed

  16. Geometry of the isotropic oscillator driven by the conformal mode

    Energy Technology Data Exchange (ETDEWEB)

    Galajinsky, Anton [Tomsk Polytechnic University, School of Physics, Tomsk (Russian Federation)

    2018-01-15

    Geometrization of a Lagrangian conservative system typically amounts to reformulating its equations of motion as the geodesic equations in a properly chosen curved spacetime. The conventional methods include the Jacobi metric and the Eisenhart lift. In this work, a modification of the Eisenhart lift is proposed which describes the isotropic oscillator in arbitrary dimension driven by the one-dimensional conformal mode. (orig.)

  17. Femtosecond laser damage threshold and nonlinear characterization in bulk transparent SiC materials

    International Nuclear Information System (INIS)

    DesAutels, G. Logan; Finet, Marc; Ristich, Scott; Whitaker, Matt; Brewer, Chris; Juhl, Shane; Walker, Mark; Powers, Peter

    2008-01-01

    Semi-insulating and conducting SiC crystalline transparent substrates were studied after being processed by femtosecond (fs) laser radiation (780 nm at 160 fs). Z-scan and damage threshold experiments were performed on both SiC bulk materials to determine each sample's nonlinear and threshold parameters. 'Damage' in this text refers to an index of refraction modification as observed visually under an optical microscope. In addition, a study was performed to understand the damage threshold as a function of numerical aperture. Presented here for the first time, to the best of our knowledge, are the damage threshold, nonlinear index of refraction, and nonlinear absorption measured values

  18. The opposing effects of isotropic and anisotropic attraction on association kinetics of proteins and colloids

    Science.gov (United States)

    Newton, Arthur C.; Kools, Ramses; Swenson, David W. H.; Bolhuis, Peter G.

    2017-10-01

    The association and dissociation of particles via specific anisotropic interactions is a fundamental process, both in biology (proteins) and in soft matter (colloidal patchy particles). The presence of alternative binding sites can lead to multiple productive states and also to non-productive "decoy" or intermediate states. Besides anisotropic interactions, particles can experience non-specific isotropic interactions. We employ single replica transition interface sampling to investigate how adding a non-productive binding site or a nonspecific isotropic interaction alters the dimerization kinetics of a generic patchy particle model. The addition of a decoy binding site reduces the association rate constant, independent of the site's position, while adding an isotropic interaction increases it due to an increased rebinding probability. Surprisingly, the association kinetics becomes non-monotonic for a tetramer complex formed by multivalent patchy particles. While seemingly identical to two-particle binding with a decoy state, the cooperativity of binding multiple particles leads to a kinetic optimum. Our results are relevant for the understanding and modeling of biochemical networks and self-assembly processes.

  19. Sheath structure in negative ion sources for fusion (invited)

    International Nuclear Information System (INIS)

    McAdams, R.; King, D. B.; Surrey, E.; Holmes, A. J. T.

    2012-01-01

    In fusion negative ion sources, the negative ions are formed on the caesiated plasma grid predominantly by hydrogen atoms from the plasma. The space charge of the negative ions leaving the wall is not fully compensated by incoming positive ions and at high enough emission a virtual cathode is formed. This virtual cathode limits the flux of negative ions transported across the sheath to the plasma. A 1D collisionless model of the sheath is presented taking into account the virtual cathode. The model will be applied to examples of the ion source operation. Extension of the model to the bulk plasma shows good agreement with experimental data. A possible role for fast ions is discussed.

  20. Bulk and surface properties of magnesium peroxide MgO2

    Science.gov (United States)

    Esch, Tobit R.; Bredow, Thomas

    2016-12-01

    Magnesium peroxide has been identified in Mg/air batteries as an intermediate in the oxygen reduction reaction (ORR) [1]. It is assumed that MgO2 is involved in the solid-electrolyte interphase on the cathode surface. Therefore its structure and stability play a crucial role in the performance of Mg/air batteries. In this work we present a theoretical study of the bulk and low-index surface properties of MgO2. All methods give a good account of the experimental lattice parameters for MgO2 and MgO bulk. The reaction energies, enthalpies and free energies for MgO2 formation from MgO are compared among the different DFT methods and with the local MP2 method. A pronounced dependence from the applied functional is found. At variance with a previous theoretical study but in agreement with recent experiments we find that the MgO2 formation reaction is endothermic (HSE06-D3BJ: ΔH = 51.9 kJ/mol). The stability of low-index surfaces MgO2 (001) (Es = 0.96 J/m2) and (011) (Es = 1.98 J/m2) is calculated and compared to the surface energy of MgO (001). The formation energy of neutral oxygen vacancies in the topmost layer of the MgO2 (001) surface is calculated and compared with defect formation energies for MgO (001).

  1. Some fundamental definitions of the elastic parameters for homogenous isotropic linear materials in road design and analysis

    CSIR Research Space (South Africa)

    De Beer, Morris

    2008-07-01

    Full Text Available - wave and ρ the material density. The elastic moduli P-wave modulus, M, is defined so that M = K + 4µ / 3 and M can then be determined by Equation 11, with a known speed Vp P MV 2 ρ = (11) It should however also... gas (such as air within compacted road materials), the adiabatic bulk modulus KS is approximately given by pKS κ= (4) Where: κ is the adiabatic index, (sometimes calledγ ); p is the pressure. In a fluid (such as moisture...

  2. Isotropic LQC and LQC-inspired models with a massless scalar field as generalised Brans-Dicke theories

    Science.gov (United States)

    Rama, S. Kalyana

    2018-06-01

    We explore whether generalised Brans-Dicke theories, which have a scalar field Φ and a function ω (Φ ), can be the effective actions leading to the effective equations of motion of the LQC and the LQC-inspired models, which have a massless scalar field σ and a function f( m). We find that this is possible for isotropic cosmology. We relate the pairs (σ , f) and (Φ , ω ) and, using examples, illustrate these relations. We find that near the bounce of the LQC evolutions for which f(m) = sin m, the corresponding field Φ → 0 and the function ω (Φ ) ∝ Φ ^2. We also find that the class of generalised Brans-Dicke theories, which we had found earlier to lead to non singular isotropic evolutions, may be written as an LQC-inspired model. The relations found here in the isotropic cases do not apply to the anisotropic cases, which perhaps require more general effective actions.

  3. A local isotropic/global orthotropic finite element technique for modeling the crush of wood in impact limiters

    International Nuclear Information System (INIS)

    Attaway, S.W.; Yoshimura, H.R.

    1989-01-01

    Wood is often used as the energy absorbing material in impact limiters, because it begins to crush at low strains, then maintains a near constant crush stress up to nearly 60% volume reduction, and then locks up. Hill (Hill and Joseph, 1974) has performed tests that show that wood is an excellent absorber. However, wood's orthotropic behavior for large crush is difficult to model. In the past, analysts have used isotropic foam-like material models for modeling wood. A new finite element technique is presented in this paper that gives a better model of wood crush than the model currently in use. The orthotropic technique is based on locally isotropic, but globally orthotropic (LIGO) (Attaway, 1988) assumptions in which alternating layers of hard and soft crushable material are used. Each layer is isotropic; however, by alternating hard and soft thin layers, the resulting global behavior is orthotropic. In the remainder of this paper, the new technique for modeling orthotropic wood crush will be presented. The model is used to predict the crush behavior for different grain orientations of balsa wood. As an example problem, an impact limiter containing balsa wood as the crushable material is analyzed using both an isotropic model and the LIGO model

  4. On a wave-particle in closed and open isotropic universes

    International Nuclear Information System (INIS)

    Campos, L. M. B. C.

    2011-01-01

    The Klein-Gordon equation satisfied by the wave function in general relativity is solved for the metric of the closed and open universe corresponding to Einstein-De Sitter-Friedmann isotropic cosmological model. The angular dependences are specified by spherical harmonics for the longitude and latitude, and for the hyperlatitude by modified spherical harmonics having as variable circular functions for the closed universe and hyperbolic functions for the open universes. The time dependence of the probabilistic wave function is similar for the closed and open universes and is obtained in the following three cases: (I) constant Hubble parameter, (II) constant decceleration parameter, and (III) uniform matter and energy distribution, which corresponds to the Hubble parameter a linear function of time. Thus six solutions are obtained, namely, the three cases I-III each for closed and open isotropic universes. For each of these six solutions is considered: (i) the existence of singularities in space-time including asymptotic time in the future or past, (ii) the square integrability of the wave function over the full extent of the four-dimensional space-time, and (iii) the existence or otherwise of a positive probability density associated with the wave function.

  5. Vacuum Expectation Value Profiles of the Bulk Scalar Field in the Generalized Randall-Sundrum Model

    International Nuclear Information System (INIS)

    Moazzen, M.; Tofighi, A.; Farokhtabar, A.

    2015-01-01

    In the generalized Randall-Sundrum warped brane-world model the cosmological constant induced on the visible brane can be positive or negative. In this paper we investigate profiles of vacuum expectation value of the bulk scalar field under general Dirichlet and Neumann boundary conditions in the generalized warped brane-world model. We show that the VEV profiles generally depend on the value of the brane cosmological constant. We find that the VEV profiles of the bulk scalar field for a visible brane with negative cosmological constant and positive tension are quite distinct from those of Randall-Sundrum model. In addition we show that the VEV profiles for a visible brane with large positive cosmological constant are also different from those of the Randall-Sundrum model. We also verify that Goldberger and Wise mechanism can work under nonzero Dirichlet boundary conditions in the generalized Randall-Sundrum model.

  6. About zone structure of a stack of a cholesteric liquid crystal and isotropic medium layers

    International Nuclear Information System (INIS)

    Gevorgyan, A H; Harutyunyan, E M; Matinyan, G K; Harutyunyan, M Z

    2014-01-01

    The optical properties of a stack of metamaterial-based cholesteric liquid crystal (CLC) layers and isotropic medium layers are investigated. CLCs with two types of chiral nihility are defined. The peculiarities of the reflection spectra of this system are investigated and it is shown that the reflection spectra of the stacks of CLC layers of these two types differ from each other. The influence of: the CLC sublayer thicknesses; incidence angle; local dielectric (magnetic) anisotropy of the CLC layers; refraction indices and thicknesses of the isotropic media layers on the reflection spectra and other optical characteristics of the system is investigated.

  7. Multi-contrast, isotropic, single-slab 3D MR imaging in multiple sclerosis

    NARCIS (Netherlands)

    Moraal, Bastiaan; Roosendaal, Stefan; Pouwels, Petra; Vrenken, Hugo; Schijndel, van Ronald; Meier, Dominik; Guttmann, Charles; Geurts, Jeroen; Barkhof, Frederik

    2008-01-01

    To describe signal and contrast properties of an isotropic, single-slab 3D dataset [double inversion- recovery (DIR), fluid-attenuated inversion recovery (FLAIR), T2, and T1-weighted magnetization prepared rapid acquisition gradient-echo (MPRAGE)] and to evaluate its performance in detecting

  8. Numerical implementation of a transverse-isotropic inelastic, work-hardening constitutive model

    International Nuclear Information System (INIS)

    Baladi, G.Y.

    1977-01-01

    During the past few decades the dramatic growth of computer technology has been paralleled by an increasing degree of complexity in material constitutive modeling. This paper documents the numerical implementation of one of these models, specifically a transverse-isotropic, inelastic, work-hardening constitutive model which is developed elsewhere by the author. (Auth.)

  9. High-Energy Laser Interaction with Gases, Droplets, and Bulk Liquids.

    Science.gov (United States)

    Jarzembski, Maurice Anthony

    Breakdown threshold intensities (I_ {rm TH}) were measured as functions of wavelengths and pressure for air, He, Ar, and Xe using a Nd:YAG pulsed laser. Multiphoton absorption dominates in the UV and cascade collision ionization dominates in the IR; however, both can be affected by other electron gain and loss processes. Presence of droplets lowers breakdown of gases due to field enhancements. Breakdown is initiated either in the droplet material or in the gas. At lambda = 0.532mum for a 50 μm dia. water droplet in He, Ar, and air for p pressure. For droplet -in-Xe, at p pressure. For droplet-in-Xe, at p 140 Torr, breakdown occurs outside the droplet and is dependent on gas pressure. Pressure dependence of breakdown was observed for 120mum dia. water droplets in Ar at p > 400 Torr. The required intensity for breakdown of droplet depends on I_{ rm TH} of bulk liquid and the effective field enhancement created by the droplet. The I _{rm TH} of droplet-in-air provides an upper limit to the propagation of a high energy laser beam in the atmosphere containing particles. By geometrical optics approach, a significant field enhancement located at the critical ring region, encircling the axis of the sphere in the forward direction at angle theta_{c}, was discovered where nonlinear processes can occur. This was confirmed experimentally and by Mie theory. Field enhancements calculated at the critical ring for water droplets of different sizes agree well with measurements. For a droplet of given size and real refractive index, the effective field enhancement and the volume over which it occurs are two important factors governing the occurrence of breakdown in droplets for both off resonance and on resonance conditions. Measurements of wavelength dependence of breakdown showed that in the UV, I_{rm TH} for droplets and bulk liquids were comparable and lower by few orders of magnitude from that of air. Transmittance and reflectance of bulk liquids in the UV change with

  10. THE SPECTRUM OF ISOTROPIC DIFFUSE GAMMA-RAY EMISSION BETWEEN 100 MeV AND 820 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, M.; Buehler, R. [Deutsches Elektronen Synchrotron DESY, D-15738 Zeuthen (Germany); Ajello, M. [Department of Physics and Astronomy, Clemson University, Kinard Lab of Physics, Clemson, SC 29634-0978 (United States); Albert, A.; Blandford, R. D.; Bloom, E. D.; Bottacini, E.; Caliandro, G. A. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Atwood, W. B. [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Baldini, L.; Bellazzini, R. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Université Paris Diderot, Service d' Astrophysique, CEA Saclay, F-91191 Gif sur Yvette (France); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Bastieri, D.; Buson, S. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Bechtol, K. [Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637 (United States); Bissaldi, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, and Università di Trieste, I-34127 Trieste (Italy); Brandt, T. J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Bregeon, J. [Laboratoire Univers et Particules de Montpellier, Université Montpellier 2, CNRS/IN2P3, F-34095 Montpellier (France); Bruel, P., E-mail: markus.ackermann@desy.de, E-mail: bechtol@kicp.uchicago.edu [Laboratoire Leprince-Ringuet, École Polytechnique, CNRS/IN2P3, F-91128 Palaiseau (France); and others

    2015-01-20

    The γ-ray sky can be decomposed into individually detected sources, diffuse emission attributed to the interactions of Galactic cosmic rays with gas and radiation fields, and a residual all-sky emission component commonly called the isotropic diffuse γ-ray background (IGRB). The IGRB comprises all extragalactic emissions too faint or too diffuse to be resolved in a given survey, as well as any residual Galactic foregrounds that are approximately isotropic. The first IGRB measurement with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope (Fermi) used 10 months of sky-survey data and considered an energy range between 200 MeV and 100 GeV. Improvements in event selection and characterization of cosmic-ray backgrounds, better understanding of the diffuse Galactic emission (DGE), and a longer data accumulation of 50 months allow for a refinement and extension of the IGRB measurement with the LAT, now covering the energy range from 100 MeV to 820 GeV. The IGRB spectrum shows a significant high-energy cutoff feature and can be well described over nearly four decades in energy by a power law with exponential cutoff having a spectral index of 2.32 ± 0.02 and a break energy of (279 ± 52) GeV using our baseline DGE model. The total intensity attributed to the IGRB is (7.2 ± 0.6) × 10{sup –6} cm{sup –2} s{sup –1} sr{sup –1} above 100 MeV, with an additional +15%/–30% systematic uncertainty due to the Galactic diffuse foregrounds.

  11. Constraints on the bulk Lorentz factor of gamma-ray bursts with the detection rate by Fermi LAT

    Science.gov (United States)

    Chen, Ye; Liu, Ruo-Yu; Wang, Xiang-Yu

    2018-05-01

    The bulk Lorentz factor(Γ) of the outflow is an essential parameter to understanding the physics of gamma-ray burst (GRB). Informations about the Lorentz factors of some individual GRBs have been obtained from the spectral features of the high-energy gamma-ray emissions (>100 MeV), assuming that the spectral breaks or cutoffs are due to the pair-production attenuation (i.e., γγ → e+e-). In this paper, we attempt to interpret the dependence of the LAT detection rate of GRBs on the number of high-energy gamma-rays, taking into account the attenuation effect. We first simulate a long-GRB sample with Monte Carlo method using the luminosity function, rate distribution with redshift and properties of the GRB spectrum. To characterize the distribution of the Lorentz factors, we assume that the Lorentz factors follow the relation Γ =Γ _0E_iso,52k, where Eiso, 52 is the isotropic photon energy in unit of 1052erg. After taking into account the attenuation effect related with the above Lorentz factor distribution, we are able to reproduce the LAT-detected rate of GRBs as the function of the number of gamma-rays for suitable choice of the values of Γ0 and k. The result suggests that the distribution of the bulk Lorentz factor for the majority of GRBs is in the range of 50 - 250.

  12. Isotropic background for interacting two fluid scenario coupled with zero mass scalar field in modified gravity

    International Nuclear Information System (INIS)

    Chirde, V.R.; Shekh, S.H.

    2016-01-01

    The modified theories of gravity have engrossed much attention in the last decade, especially f(R) gravity. In this contextual exploration, we investigate interaction between barotropic fluid and dark energy with zero-mass scalar field for the spatially homogeneous and isotropic flat FRW universe. In this universe, the field equations correspond to the particular choice of f(R) = R+bR m . The exact solutions of the field equations are obtained by applying volumetric power law and exponential law of expansion. In power and exponential law of expansion, the universe shows both matter dominated and DE era for b ≤ 0 and b ≥ 0 and remain present in dark era respectively, but power law model is fully occupying with real matter for b > 0 and for b < 0 exponential model expands with negative pressure and remain present in matter dominated phase respectively. The physical behavior of the universe has been discussed by using some physical quantities

  13. On the dual variable of the Cauchy stress tensor in isotropic finite hyperelasticity

    Science.gov (United States)

    Vallée, Claude; Fortuné, Danielle; Lerintiu, Camelia

    2008-11-01

    Elastic materials are governed by a constitutive law relating the second Piola-Kirchhoff stress tensor Σ and the right Cauchy-Green strain tensor C=FF. Isotropic elastic materials are the special cases for which the Cauchy stress tensor σ depends solely on the left Cauchy-Green strain tensor B=FF. In this Note we revisit the following property of isotropic hyperelastic materials: if the constitutive law relating Σ and C is derivable from a potential ϕ, then σ and lnB are related by a constitutive law derived from the compound potential ϕ○exp. We give a new and concise proof which is based on an explicit integral formula expressing the derivative of the exponential of a tensor. To cite this article: C. Vallée et al., C. R. Mecanique 336 (2008).

  14. Coupled thermal stress analysis of a hollow circular cylinder with transversely isotropic properties

    International Nuclear Information System (INIS)

    Tanigawa, Y.; Ootao, Y.

    1987-01-01

    If we shall analyze the thermal stress problems exactly in a transient state in continuum media, discussed with both the coupling and inertia effect, it has be shown that the thermomechanical coupling term shows a significant role than the inertia term for the common commercial alloys. In the present paper, we have considered the continuum medium with transversely isotropic material property, which has an isotropic property in r-θ plane, and analyzed the transient thermal stress problem of an infinitely long hollow circular cylinder due to an axisymmetrical partial heating. In order to get the thermal and thermoelastic fundamental differential equations separated in each field, we have introduced a perturbation technique. And then, we have carried out numerical calculations for several values of thermal and thermoelastic orthotropical parameters. (orig./GL)

  15. Supersymmetry and the constants of motion of the two-dimensional isotropic harmonic oscillator

    International Nuclear Information System (INIS)

    Torres del Castillo, G.F.; Tepper G, T.

    2002-01-01

    It is shown that the constants of motion of the two-dimensional isotropic harmonic oscillator not related to the rotational invariance of the Hamiltonian can be derived using the ideas of supersymmetric quantum mechanics. (Author)

  16. Multi-contrast, isotropic, single-slab 3D MR imaging in multiple sclerosis

    NARCIS (Netherlands)

    Moraal, B.; Roosendaal, S.D.; Pouwels, P.J.W.; Vrenken, H.; van Schijndel, R.A.; Meier, D.S.; Guttmann, C.R.G.; Geurts, J.J.G.; Barkhof, F.

    2008-01-01

    To describe signal and contrast properties of an isotropic, single-slab 3D dataset [double inversion-recovery (DIR), fluid-attenuated inversion recovery (FLAIR), T2, and T1-weighted magnetization prepared rapid acquisition gradient-echo (MPRAGE)] and to evaluate its performance in detecting multiple

  17. A simple free energy for the isotropic-nematic phase transition of rods

    NARCIS (Netherlands)

    Tuinier, R.

    2016-01-01

    A free energy expression is proposed that describes the isotropic-nematic binodal concentrations of hard rods. A simple analytical form for this free energy was yet only available using a Gaussian trial function for the orientation distribution function (ODF), leading, however, to a significant

  18. A controllable viewing angle LCD with an optically isotropic liquid crystal

    International Nuclear Information System (INIS)

    Kim, Min Su; Lim, Young Jin; Yoon, Sukin; Kang, Shin-Woong; Lee, Seung Hee; Kim, Miyoung; Wu, Shin-Tson

    2010-01-01

    An optically isotropic liquid crystal (LC) such as a blue phase LC or an optically isotropic nano-structured LC exhibits a very wide viewing angle because the induced birefringence is along the in-plane electric field. Utilizing such a material, we propose a liquid crystal display (LCD) whose viewing angle can be switched from wide view to narrow view using only one panel. In the device, each pixel is divided into two parts: a major pixel and a sub-pixel. The main pixels display the images while the sub-pixels control the viewing angle. In the main pixels, birefringence is induced by horizontal electric fields through inter-digital electrodes leading to a wide viewing angle, while in the sub-pixels, birefringence is induced by the vertical electric field so that phase retardation occurs only at oblique angles. As a result, the dark state (or contrast ratio) of the entire pixel can be controlled by the voltage of the sub-pixels. Such a switchable viewing angle LCD is attractive for protecting personal privacy.

  19. The Galactic Isotropic γ-ray Background and Implications for Dark Matter

    Science.gov (United States)

    Campbell, Sheldon S.; Kwa, Anna; Kaplinghat, Manoj

    2018-06-01

    We present an analysis of the radial angular profile of the galacto-isotropic (GI) γ-ray flux-the statistically uniform flux in angular annuli centred on the Galactic centre. Two different approaches are used to measure the GI flux profile in 85 months of Fermi-LAT data: the BDS statistical method which identifies spatial correlations, and a new Poisson ordered-pixel method which identifies non-Poisson contributions. Both methods produce similar GI flux profiles. The GI flux profile is well-described by an existing model of bremsstrahlung, π0 production, inverse Compton scattering, and the isotropic background. Discrepancies with data in our full-sky model are not present in the GI component, and are therefore due to mis-modelling of the non-GI emission. Dark matter annihilation constraints based solely on the observed GI profile are close to the thermal WIMP cross section below 100 GeV, for fixed models of the dark matter density profile and astrophysical γ-ray foregrounds. Refined measurements of the GI profile are expected to improve these constraints by a factor of a few.

  20. Apparent splitting of S waves propagating through an isotropic lowermost mantle

    KAUST Repository

    Parisi, Laura

    2018-03-24

    Observations of shear‐wave anisotropy are key for understanding the mineralogical structure and flow in the mantle. Several researchers have reported the presence of seismic anisotropy in the lowermost 150–250 km of the mantle (i.e., D” layer), based on differences in the arrival times of vertically (SV) and horizontally (SH) polarized shear waves. By computing waveforms at period > 6 s for a wide range of 1‐D and 3‐D Earth structures we illustrate that a time shift (i.e., apparent splitting) between SV and SH may appear in purely isotropic simulations. This may be misinterpreted as shear wave anisotropy. For near‐surface earthquakes, apparent shear wave splitting can result from the interference of S with the surface reflection sS. For deep earthquakes, apparent splitting can be due to the S‐wave triplication in D”, reflections off discontinuities in the upper mantle and 3‐D heterogeneity. The wave effects due to anomalous isotropic structure may not be easily distinguished from purely anisotropic effects if the analysis does not involve full waveform simulations.

  1. Apparent splitting of S waves propagating through an isotropic lowermost mantle

    KAUST Repository

    Parisi, Laura; Ferreira, Ana M. G.; Ritsema, Jeroen

    2018-01-01

    Observations of shear‐wave anisotropy are key for understanding the mineralogical structure and flow in the mantle. Several researchers have reported the presence of seismic anisotropy in the lowermost 150–250 km of the mantle (i.e., D” layer), based on differences in the arrival times of vertically (SV) and horizontally (SH) polarized shear waves. By computing waveforms at period > 6 s for a wide range of 1‐D and 3‐D Earth structures we illustrate that a time shift (i.e., apparent splitting) between SV and SH may appear in purely isotropic simulations. This may be misinterpreted as shear wave anisotropy. For near‐surface earthquakes, apparent shear wave splitting can result from the interference of S with the surface reflection sS. For deep earthquakes, apparent splitting can be due to the S‐wave triplication in D”, reflections off discontinuities in the upper mantle and 3‐D heterogeneity. The wave effects due to anomalous isotropic structure may not be easily distinguished from purely anisotropic effects if the analysis does not involve full waveform simulations.

  2. Isotropic and anisotropic pinning in TFA-grown YBa2Cu3O7−x films with BaZrO3 nanoparticles

    International Nuclear Information System (INIS)

    Palau, A; Llordés, A; Puig, T; Obradors, X; Bartolomé, E

    2011-01-01

    YBCO films grown by the trifluoroacetate (TFA) method with increasing number of BaZrO 3 (BZO) nanoparticles have been measured by in-field angular transport measurements to investigate changes in the pinning landscape. The isotropic and anisotropic contributions to the critical current density, J c (H), with the magnetic field applied in H||c and H||ab orientation have been determined, allowing us to characterize the population of isotropic and correlated defects along the c axis and ab planes. First, the influence of the YBCO oxygenation process on the formation of different sorts of anisotropic defects in standard films is demonstrated. Next, we show that the addition of non-coherent BZO nanoparticles to the YBCO matrix produces an expansion of the single-vortex pinning regime toward higher fields, due to the presence of isotropic pinning centers. Moreover, by increasing the amount of isotropic defects in the BZO nanocomposites it is possible to extend the region dominated by strong isotropic pinning centers to large magnetic fields and thus enhance the irreversibility line.

  3. Anisotropy in "isotropic diffusion" measurements due to nongaussian diffusion

    DEFF Research Database (Denmark)

    Jespersen, Sune Nørhøj; Olesen, Jonas Lynge; Ianuş, Andrada

    2017-01-01

    Designing novel diffusion-weighted NMR and MRI pulse sequences aiming to probe tissue microstructure with techniques extending beyond the conventional Stejskal-Tanner family is currently of broad interest. One such technique, multidimensional diffusion MRI, has been recently proposed to afford...... model-free decomposition of diffusion signal kurtosis into terms originating from either ensemble variance of isotropic diffusivity or microscopic diffusion anisotropy. This ability rests on the assumption that diffusion can be described as a sum of multiple Gaussian compartments, but this is often...

  4. A general index of inherent risk

    OpenAIRE

    Schnytzer, Adi; Westreich, Sara

    2009-01-01

    We extend the pioneering work of Aumann and Serrano by presenting an index of inherent riskiness of a gamble having the desirable properties of their index, while being applicable to gambles with either positive or negative expectations. As such, our index provides a measure of riskiness which is of use for both risk lovers and risk aversive gamblers, and is defined for all discrete and a large class of continuous gambles. We analyze abstract properties of our index, and present in addition t...

  5. Microhardness of bulk-fill composite materials

    OpenAIRE

    Kelić, Katarina; Matić, Sanja; Marović, Danijela; Klarić, Eva; Tarle, Zrinka

    2016-01-01

    The aim of the study was to determine microhardness of high- and low-viscosity bulk-fill composite resins and compare it with conventional composite materials. Four materials of high-viscosity were tested, including three bulk-fills: QuiXfi l (QF), x-tra fil (XTF) and Tetric EvoCeram Bulk Fill (TEBCF), while nanohybrid composite GrandioSO (GSO) served as control. The other four were low-viscosity composites, three bulk-fill materials: Smart Dentin Replacement (SDR), Venus Bulk Fill (VBF) and ...

  6. Stress state of transversally isotropic body with elliptical crack in the presence of a uniform heat flux at its surface

    International Nuclear Information System (INIS)

    Podil'chuk, Yu.N.

    1995-01-01

    An explicit solution of the state thermoelasticity problem is constructed for an infinite transversally isotropic body containing an internal elliptical crack in the isotropy plane. It is assumed that a uniform heat flux is specified at the crack surface and the body is free of external loads. Values of the stress-intensity coefficients depending on the heat flux, the crack dimensions, and the thermoelastic properties of the material are obtained. Note that the analogous problem was considered for an isotropic body. The static thermoelasticity problem for a transversally isotropic body with an internal elliptical crack at whose surface linear temperature variation is specified was solved

  7. Vibrational Averaging of the Isotropic Hyperfine Coupling Constants for the Methyl Radical

    Science.gov (United States)

    Adam, Ahmad; Jensen, Per; Yachmenev, Andrey; Yurchenko, Sergei N.

    2014-06-01

    Electronic contributions to molecular properties are often considered as the major factor and usually reported in the literature without ro-vibrational corrections. However, there are many cases where the nuclear motion contributions are significant and even larger than the electronic contribution. In order to obtain accurate theoretical predictions, nuclear motion effects on molecular properties need to be taken into account. The computed isotropic hyperfine coupling constants for the nonvibrating methyl radical CH_3 are far from the experimental values. For CH_3, we have calculated the vibrational-state-dependence of the isotropic hyperfine coupling constant in the electronic ground state. The vibrational wavefunctions used in the averaging procedure were obtained variationally with the TROVE program. Analytical representations for the potential energy surfaces and the hyperfine coupling constant surfaces are obtained in least-squares fitting procedures. Thermal averaging has been carried out for molecules in thermal equilibrium, i.e., with Boltzmann-distributed populations. The calculation methods and the results will be discussed in detail.

  8. Negative thermal expansion materials

    International Nuclear Information System (INIS)

    Evans, J.S.O.

    1997-01-01

    The recent discovery of negative thermal expansion over an unprecedented temperature range in ZrW 2 O 8 (which contracts continuously on warming from below 2 K to above 1000 K) has stimulated considerable interest in this unusual phenomenon. Negative and low thermal expansion materials have a number of important potential uses in ceramic, optical and electronic applications. We have now found negative thermal expansion in a large new family of materials with the general formula A 2 (MO 4 ) 3 . Chemical substitution dramatically influences the thermal expansion properties of these materials allowing the production of ceramics with negative, positive or zero coefficients of thermal expansion, with the potential to control other important materials properties such as refractive index and dielectric constant. The mechanism of negative thermal expansion and the phase transitions exhibited by this important new class of low-expansion materials will be discussed. (orig.)

  9. The Nurses' Well-Being Index and Factors Influencing This Index among Nurses in Central China: A Cross-Sectional Study.

    Directory of Open Access Journals (Sweden)

    Runtang Meng

    Full Text Available A discussion and analysis of factors that contribute to nurses' happiness index can be useful in developing effective interventions to improve nurses' enthusiasm, sense of honor and pride and to improve the efficiency and quality of medical services.In this study, 206 registered nurses at the 2011 annual encounter for 12 Hanchuan hospitals completed a questionnaire survey that covered three aspects of the well-being index and thus served as a comprehensive well-being and general information tool.Based on their index score, the nurses' overall happiness level was moderate. The dimensions of the happiness index are listed in descending order of their contribution to the nurses' comprehensive happiness levels: health concerns, friendly relationships, self-worth, altruism, vitality, positive emotions, personality development, life satisfaction and negative emotions. Four variables (positive emotion, life satisfaction, negative emotions, and friendly relationships jointly explained 47.80% of the total variance of the happiness index; positive emotions had the greatest impact on the happiness index.Appropriate nursing interventions can improve nurses' happiness index scores, thereby increasing nurses' motivation and promoting the development of their nursing practice.

  10. The Nurses’ Well-Being Index and Factors Influencing This Index among Nurses in Central China: A Cross-Sectional Study

    Science.gov (United States)

    Liu, Bing; Hu, Ying; Yu, Chuanhua

    2015-01-01

    Backgrounds/Objectives A discussion and analysis of factors that contribute to nurses’ happiness index can be useful in developing effective interventions to improve nurses’ enthusiasm, sense of honor and pride and to improve the efficiency and quality of medical services. Methods In this study, 206 registered nurses at the 2011 annual encounter for 12 Hanchuan hospitals completed a questionnaire survey that covered three aspects of the well-being index and thus served as a comprehensive well-being and general information tool. Results Based on their index score, the nurses’ overall happiness level was moderate. The dimensions of the happiness index are listed in descending order of their contribution to the nurses’ comprehensive happiness levels: health concerns, friendly relationships, self-worth, altruism, vitality, positive emotions, personality development, life satisfaction and negative emotions. Four variables (positive emotion, life satisfaction, negative emotions, and friendly relationships) jointly explained 47.80% of the total variance of the happiness index; positive emotions had the greatest impact on the happiness index. Conclusions Appropriate nursing interventions can improve nurses’ happiness index scores, thereby increasing nurses’ motivation and promoting the development of their nursing practice. PMID:26680594

  11. Some fundamental definitions of the elastic parameters for homogeneous isotropic linear elastic materials in pavement design and analysis

    CSIR Research Space (South Africa)

    De Beer, Morris

    2008-07-01

    Full Text Available - wave and ρ the material density. The elastic moduli P-wave modulus, M, is defined so that M = K + 4µ / 3 and M can then be determined by Equation 11, with a known speed Vp P MV 2 ρ = (11) It should however also... gas (such as air within compacted road materials), the adiabatic bulk modulus KS is approximately given by pKS κ= (4) Where: κ is the adiabatic index, (sometimes calledγ ); p is the pressure. In a fluid (such as moisture...

  12. Inelastic neutron scattering an ab-initio calculation of negative thermal expansion in Ag2O

    International Nuclear Information System (INIS)

    Gupta, M.K.; Mittal, R.; Rols, S.; Chaplot, S.L.

    2012-01-01

    The compound Ag 2 O undergoes large and isotropic negative thermal expansion over 0-500 K. We report temperature dependent inelastic neutron scattering measurements and ab-initio calculations of the phonon spectrum. The temperature dependence of the experimental phonon spectrum shows strong anharmonic nature of phonon modes of energy around 2.4 meV. The ab-initio calculations reveal that the maximum negative Grüneisen parameter, which is a measure of the relevant anharmonicity, occurs for the transverse phonon modes that involve bending motions of the Ag 4 O tetrahedra. The thermal expansion is evaluated from the ab-initio calculation of the pressure dependence of the phonon modes, and found in good agreement with available experimental data.

  13. Elastic metamaterial with simultaneously negative refraction for longitudinal and transverse waves

    Directory of Open Access Journals (Sweden)

    Ji-En Wu

    2017-10-01

    Full Text Available We present a study of elastic metamaterial that possesses multiple local resonances. We demonstrated that the elastic metamaterial can have simultaneously three negative effective parameters, i.e., negative effective mass, effective bulk modulus and effective shear modulus at a certain frequency range. Through the analysis of the resonant field, it has been elucidated that the three negative parameters are induced by dipolar, monopolar and quadrupolar resonance respectively. The dipolar and monopolar resonances result into the negative band for longitudinal waves, while the dipolar and quadrupolar resonances cause the negative band for transverse waves. The two bands have an overlapping frequency regime. A simultaneously negative refraction for both longitudinal waves and transverse waves has been demonstrated in the system.

  14. Observation of transverse patterns in an isotropic microchip laser

    International Nuclear Information System (INIS)

    Chen, Y.F.; Lan, Y.P.

    2003-01-01

    An isotropic microchip laser is used to study the characteristics of high-order wave functions in a two-dimensional (2D) quantum harmonic oscillator based on the identical functional forms. With a doughnut pump profile, the spontaneous transverse modes are found to, generally, be elliptic and hyperbolic transverse modes. Theoretical analyses reveal that the elliptic transverse modes are analogous to the coherent states of a 2D harmonic oscillator; the formation of hyperbolic transverse modes is a spontaneous mode locking between two identical Hermite-Gaussian modes

  15. Effective elastic properties of damaged isotropic solids

    International Nuclear Information System (INIS)

    Lee, U Sik

    1998-01-01

    In continuum damage mechanics, damaged solids have been represented by the effective elastic stiffness into which local damage is smoothly smeared. Similarly, damaged solids may be represented in terms of effective elastic compliances. By virtue of the effective elastic compliance representation, it may become easier to derive the effective engineering constants of damaged solids from the effective elastic compliances, all in closed form. Thus, in this paper, by using a continuum modeling approach based on both the principle of strain energy equivalence and the equivalent elliptical micro-crack representation of local damage, the effective elastic compliance and effective engineering constants are derived in terms of the undamaged (virgin) elastic properties and a scalar damage variable for both damaged two-and three-dimensional isotropic solids

  16. Femtosecond index change mechanisms and morphology of SiC crystalline materials

    International Nuclear Information System (INIS)

    DesAutels, Logan; Brewer, Christopher; Powers, Peter; Walker, Mark; Tomlin, David; Fratini, Albert; Juhl, Shane; Chen Weibin

    2009-01-01

    Femtosecond lasers have a unique ability of processing bulk transparent materials for various applications such as micromachining, waveguide manufacturing, and photonic bandgap structures just to name a few. These applications depend on the formation of micron or submicron size features that are known to be index modifications to the bulk substrate [H. Guo, H. Jiang, Y. Fang, C. Peng, H. Yang, Y. Li, Q. Gong, J. Opt. A: Pure Appl. Opt. 6 (2004) 787]. To the best of our knowledge the physical understanding of how these index-modified features are formed is still unknown, but many good theories exist such as Petite et al. [G. Petite, P. Daguzan, S. Guizard, P. Martin, in: IEEE Annual Report Conference on Electrical Insulation and Dielectric Phenomena, vol. 15, IEEE, 1995, pp. 40-44] or Tien et al. [A. Tien, S. Backus, H. Kapteyn, M. Murnane, G. Mourou, Phys. Rev. Lett. 82 (1999) 3883]. In this Letter the question on the physical cause for index changes is investigated by the combined efforts between Wright-Patterson AFB (WPAFB) and the University of Dayton (UD) using numerous imaging equipment such as TEM, AFM, NSOM, Nomarski microscopy, X-ray crystallography, Raman spectroscopy, and even diffraction efficiency experiments. With all the combined imaging equipment this research is able to present valuable data and deduce plausible theories of the physics of the index modification mechanism

  17. Comparison between 3D isotropic and 2D conventional MR arthrography for diagnosing rotator cuff tear and labral lesions: A meta-analysis.

    Science.gov (United States)

    Lee, Sun Hwa; Yun, Seong Jong; Jin, Wook; Park, So Young; Park, Ji Seon; Ryu, Kyung Nam

    2018-03-30

    Although 3D-isotropic MR arthrography has been characterized as a substitute imaging tool for rotator cuff tear (RCT) and labral lesions, it has not been commonly used in clinical practice because of controversy related to image blurring and indistinctness of structural edges. To perform a comparison of the diagnostic performance of 3D-isotropic MR arthrography and 2D-conventional MR arthrography for diagnosis of RCT (solely RCT, full/partial-thickness supraspinatus [SST]-infraspinatus [IST] tear, or subscapularis [SSc] tear) and labral lesions. Meta-analysis. Patients with shoulder pain. 3D-isotropic and 2D-conventional MR arthrography at 3.0T or 1.5T. PubMed and EMBASE were searched following the PRISMA guidelines. Bivariate modeling and hierarchical summary receiver operating characteristic modeling were performed to compare the overall diagnostic performance of 3D-isotropic and 2D-conventional MR arthrography. Multiple-subgroup analyses were performed for diagnosing RCT, full/partial-thickness SST-IST tear, SSc tear, and labral lesions. Meta-regression analyses were performed according to subject, study, and MR arthrography characteristics including 3D-isotropic sequences (turbo spine echo [TSE] vs. gradient echo [GRE]). Eleven studies (825 patients) were included. Overall, 3D-isotropic MR arthrography had similar pooled sensitivity (0.90 [95% CI, 0.87-0.93]) (P = 0.95) and specificity (0.92 [95% CI, 0.87-0.95]) (P = 0.99), relative to 2D-conventional MR arthrography (sensitivity, 0.91 [95% CI, 0.86-0.94]); specificity, 0.92 [95% CI, 0.87-0.95]). Multiple-subgroup analyses showed that sensitivities (P = 0.13-0.91) and specificities (P = 0.26-0.99) on 3D-isotropic MR arthrography for diagnosing RCT, full/partial-thickness SST-IST tear, SSC tear, and labral lesions were not significantly different from 2D-conventional MR arthrography. On meta-regression analysis, 3D-TSE sequence demonstrated higher sensitivity (P 3D-GRE for RCT and labral

  18. Bel-Robinson energy and the nature of singularities in isotropic cosmologies

    International Nuclear Information System (INIS)

    Klaoudatou, Ifigeneia; Cotsakis, Spiros

    2007-01-01

    We review our recent work on the classification of finite time singularities that arise in isotropic universes. This scheme is based on the exploitation of the Bel Robinson energy in a cosmological setting. We comment on the relation between geodesic completeness and the Bel Robinson energy and present evidence that relates the divergence of the latter to the existence of closed trapped surfaces

  19. First genomic insights into members of a candidate bacterial phylum responsible for wastewater bulking

    Directory of Open Access Journals (Sweden)

    Yuji Sekiguchi

    2015-01-01

    Full Text Available Filamentous cells belonging to the candidate bacterial phylum KSB3 were previously identified as the causative agent of fatal filament overgrowth (bulking in a high-rate industrial anaerobic wastewater treatment bioreactor. Here, we obtained near complete genomes from two KSB3 populations in the bioreactor, including the dominant bulking filament, using differential coverage binning of metagenomic data. Fluorescence in situ hybridization with 16S rRNA-targeted probes specific for the two populations confirmed that both are filamentous organisms. Genome-based metabolic reconstruction and microscopic observation of the KSB3 filaments in the presence of sugar gradients indicate that both filament types are Gram-negative, strictly anaerobic fermenters capable of non-flagellar based gliding motility, and have a strikingly large number of sensory and response regulator genes. We propose that the KSB3 filaments are highly sensitive to their surroundings and that cellular processes, including those causing bulking, are controlled by external stimuli. The obtained genomes lay the foundation for a more detailed understanding of environmental cues used by KSB3 filaments, which may lead to more robust treatment options to prevent bulking.

  20. New bounds on isotropic Lorentz violation

    International Nuclear Information System (INIS)

    Carone, Christopher D.; Sher, Marc; Vanderhaeghen, Marc

    2006-01-01

    Violations of Lorentz invariance that appear via operators of dimension four or less are completely parametrized in the Standard Model Extension (SME). In the pure photonic sector of the SME, there are 19 dimensionless, Lorentz-violating parameters. Eighteen of these have experimental upper bounds ranging between 10 -11 and 10 -32 ; the remaining parameter, k-tilde tr , is isotropic and has a much weaker bound of order 10 -4 . In this Brief Report, we point out that k-tilde tr gives a significant contribution to the anomalous magnetic moment of the electron and find a new upper bound of order 10 -8 . With reasonable assumptions, we further show that this bound may be improved to 10 -14 by considering the renormalization of other Lorentz-violating parameters that are more tightly constrained. Using similar renormalization arguments, we also estimate bounds on Lorentz-violating parameters in the pure gluonic sector of QCD

  1. Effect of dynamic strain aging on isotropic hardening in low cycle fatigue for carbon manganese steel

    International Nuclear Information System (INIS)

    Huang, Zhi Yong; Chaboche, Jean-Louis; Wang, Qing Yuan; Wagner, Danièle; Bathias, Claude

    2014-01-01

    Carbon–manganese steel A48 (French standard) is used in steam generator pipes of nuclear reactor pressure vessels at high temperatures (about 200 °C). The steel is sensitive to dynamic strain aging in monotonic tensile test and low cycle fatigue test at certain temperature range and strain rate. Its isotropic hardening behavior observed from experiments has a hardening, softening and hardening evolution with the effect of dynamic strain aging. The isotropic hardening model is improved by coupling the dislocation and dynamic strain aging theory to describe the behavior of A48 at 200 °C

  2. Effect of dynamic strain aging on isotropic hardening in low cycle fatigue for carbon manganese steel

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhi Yong, E-mail: huangzy@scu.edu.cn [Sichuan University, School of Aeronautics and Astronautics, No. 29 Jiuyanqiao Wangjiang Road, Chengdu 610064 (China); Chaboche, Jean-Louis [ONERA, DMSM, 29 avenue de la Division Lecerc, F-92320 Chatillon (France); Wang, Qing Yuan [Sichuan University, School of Aeronautics and Astronautics, No. 29 Jiuyanqiao Wangjiang Road, Chengdu 610064 (China); Wagner, Danièle; Bathias, Claude [Université ParisOuest Nanterre La Défense (France)

    2014-01-01

    Carbon–manganese steel A48 (French standard) is used in steam generator pipes of nuclear reactor pressure vessels at high temperatures (about 200 °C). The steel is sensitive to dynamic strain aging in monotonic tensile test and low cycle fatigue test at certain temperature range and strain rate. Its isotropic hardening behavior observed from experiments has a hardening, softening and hardening evolution with the effect of dynamic strain aging. The isotropic hardening model is improved by coupling the dislocation and dynamic strain aging theory to describe the behavior of A48 at 200 °C.

  3. Large area bulk superconductors

    Science.gov (United States)

    Miller, Dean J.; Field, Michael B.

    2002-01-01

    A bulk superconductor having a thickness of not less than about 100 microns is carried by a polycrystalline textured substrate having misorientation angles at the surface thereof not greater than about 15.degree.; the bulk superconductor may have a thickness of not less than about 100 microns and a surface area of not less than about 50 cm.sup.2. The textured substrate may have a thickness not less than about 10 microns and misorientation angles at the surface thereof not greater than about 15.degree.. Also disclosed is a process of manufacturing the bulk superconductor and the polycrystalline biaxially textured substrate material.

  4. Anomalies, effective action and Hawking temperatures of a Schwarzschild black hole in the isotropic coordinates

    International Nuclear Information System (INIS)

    Wu Shuangqing; Peng Junjin; Zhao Zhanyue

    2008-01-01

    Motivated by the universality of Hawking radiation and that of the anomaly cancellation technique as well as the effective action method, we investigate the Hawking radiation of a Schwarzschild black hole in the isotropic coordinates via the cancellation of gravitational anomaly. After performing a dimensional reduction from the four-dimensional isotropic Schwarzschild metric, we show that this reduction procedure will, in general, result in two classes of two-dimensional effective metrics: the conformal equivalent and the inequivalent ones. For the physically equivalent class, the two-dimensional effective metric displays such a distinct feature that the determinant is not equal to the unity √(-g)≠1, but also vanishes at the horizon, the latter of which possibly invalidates the anomaly analysis there. Nevertheless, in this paper we adopt the effective action method to prove that the consistent energy-momentum tensor T r t is divergent on the horizon but √(-g)T t r remains finite there. Meanwhile, through an explicit calculation we show that the covariant energy-momentum tensor T-tilde t r equals zero at the horizon. Therefore the validity of the covariant regularity condition that demands that T-tilde t r = 0 at the horizon has been justified, indicating that the gravitational anomaly analysis can be safely extrapolated to the case where the metric determinant vanishes at the horizon. It is then demonstrated that for the physically equivalent reduced metric, both methods can give the correct Hawking temperature of the isotropic Schwarzschild black hole, while for the inequivalent one with the determinant √(-g) = 1 it can only give half of the correct temperature. We further exclude the latter undesired result by taking into account the general covariance of the energy-momentum tensor under the isotropic coordinate transformation

  5. Weak convergence to isotropic complex S α S $S\\alpha S$ random measure

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2017-09-01

    Full Text Available Abstract In this paper, we prove that an isotropic complex symmetric α-stable random measure ( 0 < α < 2 $0<\\alpha<2$ can be approximated by a complex process constructed by integrals based on the Poisson process with random intensity.

  6. On binding energy of trions in bulk materials

    Science.gov (United States)

    Filikhin, Igor; Kezerashvili, Roman Ya.; Vlahovic, Branislav

    2018-03-01

    We study the negatively T- and positively T+ charged trions in bulk materials in the effective mass approximation within the framework of a potential model. The binding energies of trions in various semiconductors are calculated by employing Faddeev equation in configuration space. Results of calculations of the binding energies for T- are consistent with previous computational studies and are in reasonable agreement with experimental measurements, while the T+ is unbound for all considered cases. The mechanism of formation of the binding energy of trions is analyzed by comparing contributions of a mass-polarization term related to kinetic energy operators and a term related to the Coulomb repulsion of identical particles.

  7. Unbiased stereological estimation of d-dimensional volume in Rn from an isotropic random slice through a fixed point

    DEFF Research Database (Denmark)

    Jensen, Eva B. Vedel; Kiêu, K

    1994-01-01

    Unbiased stereological estimators of d-dimensional volume in R(n) are derived, based on information from an isotropic random r-slice through a specified point. The content of the slice can be subsampled by means of a spatial grid. The estimators depend only on spatial distances. As a fundamental ...... lemma, an explicit formula for the probability that an isotropic random r-slice in R(n) through 0 hits a fixed point in R(n) is given....

  8. Erythema-index of clinical patch test reactions

    DEFF Research Database (Denmark)

    Jemec, G B; Johansen, J D

    1995-01-01

    that the method could be used for the grading of eczematous reactions in a clinical setting as well. OBJECTIVE: To assess the usefulness of the erythema index for the quantification of eczematous reactions using the Derma-Spectrometer (Cortex technology, Hadsund, Denmark) in a clinical setting. METHOD......: The erythema index of 56 patch test reactions ranging from +? to +++, was compared to regional controls and negative patch tests (189). The effects of intrumental application pressure was studied in 5 volunteers. Statistical analysis was carried out using Mann-Whitney and Jonckheere-Terpstra tests. RESULTS......: The erythema-index was significantly higher in all degrees of patch test reactions than in uninvolved regional skin or negative patch tests. It also showed a significant positive trend for higher values in +, ++ and +++ reactions (P

  9. Decoupled equations for reverse time migration in tilted transversely isotropic media

    KAUST Repository

    Zhan, Ge; Pestana, Reynam C.; Stoffa, Paul L.

    2012-01-01

    Conventional modeling and migration for tilted transversely isotropic (TTI) media may suffer from numerical instabilities and shear wave artifacts due to the coupling of the P-wave and SV-wave modes in the TTI coupled equations. Starting with the separated P- and SV-phase velocity expressions for vertical transversely isotropic (VTI) media, we extend these decoupled equations for modeling and reverse time migration (RTM) in acoustic TTI media. Compared with the TTI coupled equations published in the geophysical literature, the new TTI decoupled equations provide a more stable solution due to the complete separation of the P-wave and SV-wave modes. The pseudospectral method is the most convenient method to implement these equations due to the form of wavenumber expressions and has the added benefit of being highly accurate and thus avoiding numerical dispersion. The rapid expansion method (REM) in time is employed to produce a broad band numerically stable time evolution of the wavefields. Synthetic results validate the proposed TTI decoupled equations and show that modeling and RTM in TTI media with the decoupled equations remain numerically stable even for models with strong anisotropy and sharp contrasts. © 2012 Society of Exploration Geophysicists.

  10. Simulating faults and plate boundaries with a transversely isotropic plasticity model

    Science.gov (United States)

    Sharples, W.; Moresi, L. N.; Velic, M.; Jadamec, M. A.; May, D. A.

    2016-03-01

    In mantle convection simulations, dynamically evolving plate boundaries have, for the most part, been represented using an visco-plastic flow law. These systems develop fine-scale, localized, weak shear band structures which are reminiscent of faults but it is a significant challenge to resolve the large- and the emergent, small-scale-behavior. We address this issue of resolution by taking into account the observation that a rock element with embedded, planar, failure surfaces responds as a non-linear, transversely isotropic material with a weak orientation defined by the plane of the failure surface. This approach partly accounts for the large-scale behavior of fine-scale systems of shear bands which we are not in a position to resolve explicitly. We evaluate the capacity of this continuum approach to model plate boundaries, specifically in the context of subduction models where the plate boundary interface has often been represented as a planar discontinuity. We show that the inclusion of the transversely isotropic plasticity model for the plate boundary promotes asymmetric subduction from initiation. A realistic evolution of the plate boundary interface and associated stresses is crucial to understanding inter-plate coupling, convergent margin driven topography, and earthquakes.

  11. Decoupled equations for reverse time migration in tilted transversely isotropic media

    KAUST Repository

    Zhan, Ge

    2012-03-01

    Conventional modeling and migration for tilted transversely isotropic (TTI) media may suffer from numerical instabilities and shear wave artifacts due to the coupling of the P-wave and SV-wave modes in the TTI coupled equations. Starting with the separated P- and SV-phase velocity expressions for vertical transversely isotropic (VTI) media, we extend these decoupled equations for modeling and reverse time migration (RTM) in acoustic TTI media. Compared with the TTI coupled equations published in the geophysical literature, the new TTI decoupled equations provide a more stable solution due to the complete separation of the P-wave and SV-wave modes. The pseudospectral method is the most convenient method to implement these equations due to the form of wavenumber expressions and has the added benefit of being highly accurate and thus avoiding numerical dispersion. The rapid expansion method (REM) in time is employed to produce a broad band numerically stable time evolution of the wavefields. Synthetic results validate the proposed TTI decoupled equations and show that modeling and RTM in TTI media with the decoupled equations remain numerically stable even for models with strong anisotropy and sharp contrasts. © 2012 Society of Exploration Geophysicists.

  12. Electromagnetic illusion with isotropic and homogeneous materials through scattering manipulation

    International Nuclear Information System (INIS)

    Yang, Fan; Mei, Zhong Lei; Jiang, Wei Xiang; Cui, Tie Jun

    2015-01-01

    A new isotropic and homogeneous illusion device for electromagnetic waves is proposed. This single-shelled device can change the fingerprint of the covered object into another one by manipulating the scattering of the composite structure. We show that an electrically small sphere can be disguised as another small one with different electromagnetic parameters. The device can even make a dielectric sphere (electrically small) behave like a conducting one. Full-wave simulations confirm the performance of proposed illusion device. (paper)

  13. A Multi-Sample Cs-Sputter Negative Ion Source

    International Nuclear Information System (INIS)

    Alton, G.D.; Ball, J.A.; Bao, Y.; Cui, B.; Reed, C.A.; Williams, C.

    1998-01-01

    A multi-sample Cs sputter negative-ion source, equipped with a conical-geometry, W-surface-ionizer has been designed and fabricated that permits sample changes without disruption of on-line accelerator operation. Sample changing is effected by actuating an electro-pneumatic control system located at ground potential that drives an air-motor-driven sample-indexing-system mounted at high voltage; this arrangement avoids complications associated with indexing mechanisms that rely on electronic power-supplies located at high potential. In-beam targets are identified by LED indicator lights derived from a fiber-optic, Gray-code target-position sensor. Aspects of the overall source design and details of the indexing mechanism along with operational parameters, ion optics. intensities, and typical emittances for a variety of negative-ion species will be presented in this report

  14. A Multi-Sample Cs-Sputter Negative Ion Source

    Energy Technology Data Exchange (ETDEWEB)

    Alton, G.D.; Ball, J.A.; Bao, Y.; Cui, B.; Reed, C.A.; Williams, C.

    1998-10-05

    A multi-sample Cs sputter negative-ion source, equipped with a conical-geometry, W-surface-ionizer has been designed and fabricated that permits sample changes without disruption of on-line accelerator operation. Sample changing is effected by actuating an electro-pneumatic control system located at ground potential that drives an air-motor-driven sample-indexing-system mounted at high voltage; this arrangement avoids complications associated with indexing mechanisms that rely on electronic power-supplies located at high potential. In-beam targets are identified by LED indicator lights derived from a fiber-optic, Gray-code target-position sensor. Aspects of the overall source design and details of the indexing mechanism along with operational parameters, ion optics. intensities, and typical emittances for a variety of negative-ion species will be presented in this report.

  15. A new approach to design of quasi-isotropic antenna systems for satellite applications

    DEFF Research Database (Denmark)

    Schjær-Jacobsen, Hans; Hansen, J.E.

    1976-01-01

    The new approach considered takes into account the maximum error of the quasi-isotropic radiation pattern relative to the ideal pattern. A design example involving a spherical satellite with quarter wave monopoles is used to demonstrate the effectiveness of the new approach. An investigation...

  16. Reductions in cost and greenhouse gas emissions with new bulk ship designs enabled by the Panama Canal expansion

    International Nuclear Information System (INIS)

    Lindstad, Haakon; Jullumstrø, Egil; Sandaas, Inge

    2013-01-01

    Historically, fuel costs have been small compared with the fixed costs of a bulk vessel, its crewing and management. Today, however, fuel accounts for more than 50% of the total costs. In combination with an introduction of stricter energy efficiency requirements for new vessels, this might make design improvement a necessity for all new bulk vessels. This is in contradiction to traditional bulk vessel designs, where the focus has been on maximizing the cargo-carrying capacity at the lowest possible building cost and not on minimizing the energy consumption. Moreover, the Panama Canal has historically been an important design criterion, while the new canal locks from 2014 will significantly increase the maximum size of vessels that can pass. The present paper provides an assessment of cost and emissions as a function of alternative bulk vessel designs with focus on a vessel's beam, length and hull slenderness, expressed by the length displacement ratio for three fuel price scenarios. The result shows that with slenderer hull forms the emissions drop. With today's fuel price of 600 USD per ton of fuel, emissions can thus be reduced by up to 15–25% at a negative abatement cost. - Highlights: • We have assessed cost and emissions as a function of alternative bulk vessel designs. • The design focus has been on vessel beam, length, hull slenderness and bow section length. • The assessment has taken into account three different fuel price scenarios. • When the block coefficient is reduced and the hull becomes more slender the emissions drop. • With a fuel price of 600 USD/t, emissions can be reduced by up to 15–25% at a negative abatement cost

  17. Effect of spent mushroom substrate as a bulking agent on gaseous emissions and compost quality during pig manure composting.

    Science.gov (United States)

    Li, Shuyan; Li, Danyang; Li, Jijin; Li, Yangyang; Li, Guoxue; Zang, Bing; Li, Yun

    2018-05-01

    The aim of this study was to investigate the gaseous emissions (CH 4 , N 2 O, and NH 3 ) and compost quality during the pig manure composting by adding spent mushroom substrate (SMS) as a bulking agent. The control treatment was also studied using corn stalk (CS) as a bulking agent. The experiment was conducted in a pilot scale composting reactor under aerobic condition with the initial C/N ratio of 20. Results showed that bulking agents significantly affected gaseous emissions and compost quality. Using SMS as a bulking agent improved composting efficiency by shortening the time for maturity. SMS increased germination index and humic acid of the final compost (by 13.44 and 41.94%, respectively) compared with CS. Furthermore, composting with SMS as a bulking agent could reduce nitrogen loss, NH 3 , and N 2 O emissions (by 13.57, 35.56, and 46.48%, respectively) compared with the control. SMS slightly increased CH 4 emission about 1.1 times of the CS. However, a 33.95% decrease in the global warming potential of CH 4 and N 2 O was obtained by adding SMS treatment. These results indicate that SMS is a favorable bulking agent for reducing gaseous emissions and increasing compost quality.

  18. A tilted transversely isotropic slowness surface approximation

    KAUST Repository

    Stovas, A.

    2012-05-09

    The relation between vertical and horizontal slownesses, better known as the dispersion relation, for transversely isotropic media with a tilted symmetry axis (TTI) requires solving a quartic polynomial equation, which does not admit a practical explicit solution to be used, for example, in downward continuation. Using a combination of the perturbation theory with respect to the anelliptic parameter and Shanks transform to improve the accuracy of the expansion, we develop an explicit formula for the vertical slowness that is highly accurate for all practical purposes. It also reveals some insights into the anisotropy parameter dependency of the dispersion relation including the low impact that the anelliptic parameter has on the vertical placement of reflectors for a small tilt in the symmetry angle. © 2012 European Association of Geoscientists & Engineers.

  19. Isotropic and anisotropic surface wave cloaking techniques

    International Nuclear Information System (INIS)

    McManus, T M; Spada, L La; Hao, Y

    2016-01-01

    In this paper we compare two different approaches for surface waves cloaking. The first technique is a unique application of Fermat’s principle and requires isotropic material properties, but owing to its derivation is limited in its applicability. The second technique utilises a geometrical optics approximation for dealing with rays bound to a two dimensional surface and requires anisotropic material properties, though it can be used to cloak any smooth surface. We analytically derive the surface wave scattering behaviour for both cloak techniques when applied to a rotationally symmetric surface deformation. Furthermore, we simulate both using a commercially available full-wave electromagnetic solver and demonstrate a good level of agreement with their analytically derived solutions. Our analytical solutions and simulations provide a complete and concise overview of two different surface wave cloaking techniques. (paper)

  20. Isotropic and anisotropic surface wave cloaking techniques

    Science.gov (United States)

    McManus, T. M.; La Spada, L.; Hao, Y.

    2016-04-01

    In this paper we compare two different approaches for surface waves cloaking. The first technique is a unique application of Fermat’s principle and requires isotropic material properties, but owing to its derivation is limited in its applicability. The second technique utilises a geometrical optics approximation for dealing with rays bound to a two dimensional surface and requires anisotropic material properties, though it can be used to cloak any smooth surface. We analytically derive the surface wave scattering behaviour for both cloak techniques when applied to a rotationally symmetric surface deformation. Furthermore, we simulate both using a commercially available full-wave electromagnetic solver and demonstrate a good level of agreement with their analytically derived solutions. Our analytical solutions and simulations provide a complete and concise overview of two different surface wave cloaking techniques.

  1. Angular dependence of coercivity in isotropically aligned Nd-Fe-B sintered magnets

    Science.gov (United States)

    Matsuura, Yutaka; Nakamura, Tetsuya; Sumitani, Kazushi; Kajiwara, Kentaro; Tamura, Ryuji; Osamura, Kozo

    2018-05-01

    In order to understand the coercivity mechanism in Nd-Fe-B sintered magnets, the angular dependence of the coercivity of an isotropically aligned Nd15Co1.0B6Febal. sintered magnet was investigated through magnetization measurements using a vibrating sample magnetometer. These results are compared with the angular dependence calculated under the assumption that the magnetization reversal of each grain follows the Kondorskii law or, in other words, the 1/cos θ law for isotropic alignment distributions. The calculated angular dependence of the coercivity agrees very well with the experiment for magnetic fields applied between angles of 0 and 60°, and it is expected that the magnetization reversal occurs in each grain individually followed the 1/cos θ law. In contrast, this agreement between calculation and experiment is not found for anisotropic Nd-Fe-B samples. This implies that the coercivity of the aligned magnets depends upon the de-pinning of the domain walls from pinning sites. When the de-pinning occurs, it is expected that the domain walls are displaced through several grains at once.

  2. Numerical study of the thermal degradation of isotropic and anisotropic polymeric materials

    Energy Technology Data Exchange (ETDEWEB)

    Soler, E. [Departamento de Lenguajes y Ciencias de la Computacion, ETSI Informatica, Universidad de Malaga, 29071 Malaga (Spain); Ramos, J.I. [Room I-320-D, ETS Ingenieros Industriales, Universidad de Malaga, Plaza El Ejido, s/n, 29013 Malaga (Spain)

    2005-08-01

    The thermal degradation of two-dimensional isotropic, orthotropic and anisotropic polymeric materials is studied numerically by means of a second-order accurate (in both space and time) linearly implicit finite difference formulation which results in linear algebraic equations at each time step. It is shown that, for both isotropic and orthotropic composites, the monomer mass diffusion tensor plays a role in initiating the polymerization kinetics, the formation of a polymerization kernel and the initial front propagation, whereas the later stages of the polymerization are nearly independent of the monomer mass diffusion tensor. In anisotropic polymeric composites, it has been found that the monomer mass diffusion tensor plays a paramount role in determining the initial stages of the polymerization and the subsequent propagation of the polymerization front, the direction and speed of propagation of which are found to be related to the principal directions of both the monomer mass and the heat diffusion tensors. It is also shown that the polymerization time and temperatures depend strongly on the anisotropy of the mass and heat diffusion tensors. (authors)

  3. Field-induced optically isotropic state in bent core nematic liquid crystals: unambiguous proof of field-induced optical biaxiality

    International Nuclear Information System (INIS)

    Elamain, Omaima; Komitov, Lachezar; Hegde, Gurumurthy; Fodor-Csorba, Katalin

    2013-01-01

    The behaviour of bent core (BC) nematic liquid crystals was investigated under dc applied electric field. The optically isotropic state of a sample containing BC nematic was observed under application of low dc electric fields. The quality of the dark state when the sample was inserted between two crossed polarizers was found to be superb and it did not change when rotating the sample between the polarizers. The coupling between the net molecular dipole moment and the applied dc electric field was considered as the origin of the out-of-plane switching of the BC molecules resulting in switching from the field-off bright state to the field-on dark state. The field-induced optically isotropic state is an unambiguous proof of the field-induced biaxiality in the BC nematic liquid crystal. A simple model explaining the appearance of the isotropic optical state in BC nematics and the switching of the sample slow axis between three mutually orthogonal directions under dc applied electric field is proposed. (paper)

  4. Theoretical study on the electronic and optical properties of bulk and surface (001) InxGa1-xAs

    Science.gov (United States)

    Liu, XueFei; Ding, Zhao; Luo, ZiJiang; Zhou, Xun; Wei, JieMin; Wang, Yi; Guo, Xiang; Lang, QiZhi

    2018-05-01

    The optical properties of surface and bulk InxGa1-xAs materials are compared systematically first time in this paper. The band structures, density of states and optical properties including dielectric function, reflectivity, absorption coefficient, loss function and refractive index of bulk and surface InxGa1-xAs materials are investigated by first-principles based on plane-wave pseudo-potentials method within the LDA approximation. The results agree well with the available theoretical and experimental studies and indicate that the electronic and optical properties of bulk and surface InxGa1-xAs materials are much different, and the results show that the considered optical properties of the both materials vary with increasing indium composition in an opposite way. The calculations show that the optical properties of surface In0.75Ga0.25As material are unexpected to be far from the other two indium compositions of surface InxGa1-xAs materials while the optical properties of bulk InxGa1-xAs materials vary with increasing indium composition in an expected regular way.

  5. Developing bulk exchange spring magnets

    Science.gov (United States)

    Mccall, Scott K.; Kuntz, Joshua D.

    2017-06-27

    A method of making a bulk exchange spring magnet by providing a magnetically soft material, providing a hard magnetic material, and producing a composite of said magnetically soft material and said hard magnetic material to make the bulk exchange spring magnet. The step of producing a composite of magnetically soft material and hard magnetic material is accomplished by electrophoretic deposition of the magnetically soft material and the hard magnetic material to make the bulk exchange spring magnet.

  6. Raman study of pressure effects on frequencies and isotropic line shapes in liquid acetone

    International Nuclear Information System (INIS)

    Schindler, W.; Sharko, P.T.; Jonas, J.

    1982-01-01

    The Raman line shape of the symmetric C = O stretching band at 1710 cm -1 has been measured in liquid acetone as a function of pressure from 1 bar to 4 kbar over the temperature range from -25 to 50 0 C. The experimental data obtained show several unusual features. First, there is a frequency difference of about 7 cm -1 between the polarized and depolarized components. Sceond, the isotropic linewidth GAMMA/sub iso/ decreases with increasing density, in contrast to the opposite trend usually found in other liquids. Third, the second moment M 2 (V) of the isotropic band appears to decrease with increasing density. The consideration of the experimental linewidth and frequency data leads to a conclusion that intermolecular dipole--dipole coupling between polar acetone molecules are responsible for the observed unusual behavior of , GAMMA/sub iso/, and M 2

  7. Uhlmann's geometric phase in presence of isotropic decoherence

    International Nuclear Information System (INIS)

    Tidstroem, Jonas; Sjoeqvist, Erik

    2003-01-01

    Uhlmann's mixed state geometric phase [Rep. Math. Phys. 24, 229 (1986)] is analyzed in the case of a qubit affected by isotropic decoherence treated in the Markovian approximation. It is demonstrated that this phase decreases rapidly with increasing decoherence rate and that it is most fragile to weak decoherence for pure or nearly pure initial states. In the unitary case, we compare Uhlmann's geometric phase for mixed states with that occurring in standard Mach-Zehnder interferometry [Phys. Rev. Lett. 85, 2845 (2000)] and show that the latter is more robust to reduction in the length of the Bloch vector. We also describe how Uhlmann's geometric phase in the present case could in principle be realized experimentally

  8. A spatially homogeneous and isotropic Einstein-Dirac cosmology

    Science.gov (United States)

    Finster, Felix; Hainzl, Christian

    2011-04-01

    We consider a spatially homogeneous and isotropic cosmological model where Dirac spinors are coupled to classical gravity. For the Dirac spinors we choose a Hartree-Fock ansatz where all one-particle wave functions are coherent and have the same momentum. If the scale function is large, the universe behaves like the classical Friedmann dust solution. If however the scale function is small, quantum effects lead to oscillations of the energy-momentum tensor. It is shown numerically and proven analytically that these quantum oscillations can prevent the formation of a big bang or big crunch singularity. The energy conditions are analyzed. We prove the existence of time-periodic solutions which go through an infinite number of expansion and contraction cycles.

  9. Modelling of bulk superconductor magnetization

    International Nuclear Information System (INIS)

    Ainslie, M D; Fujishiro, H

    2015-01-01

    This paper presents a topical review of the current state of the art in modelling the magnetization of bulk superconductors, including both (RE)BCO (where RE = rare earth or Y) and MgB 2 materials. Such modelling is a powerful tool to understand the physical mechanisms of their magnetization, to assist in interpretation of experimental results, and to predict the performance of practical bulk superconductor-based devices, which is particularly important as many superconducting applications head towards the commercialization stage of their development in the coming years. In addition to the analytical and numerical techniques currently used by researchers for modelling such materials, the commonly used practical techniques to magnetize bulk superconductors are summarized with a particular focus on pulsed field magnetization (PFM), which is promising as a compact, mobile and relatively inexpensive magnetizing technique. A number of numerical models developed to analyse the issues related to PFM and optimise the technique are described in detail, including understanding the dynamics of the magnetic flux penetration and the influence of material inhomogeneities, thermal properties, pulse duration, magnitude and shape, and the shape of the magnetization coil(s). The effect of externally applied magnetic fields in different configurations on the attenuation of the trapped field is also discussed. A number of novel and hybrid bulk superconductor structures are described, including improved thermal conductivity structures and ferromagnet–superconductor structures, which have been designed to overcome some of the issues related to bulk superconductors and their magnetization and enhance the intrinsic properties of bulk superconductors acting as trapped field magnets. Finally, the use of hollow bulk cylinders/tubes for shielding is analysed. (topical review)

  10. Effect of energy equation in one control-volume bulk-flow model for the prediction of labyrinth seal dynamic coefficients

    Science.gov (United States)

    Cangioli, Filippo; Pennacchi, Paolo; Vannini, Giuseppe; Ciuchicchi, Lorenzo

    2018-01-01

    The influence of sealing components on the rotordynamic stability of turbomachinery has become a key topic because the oil and gas market is increasingly demanding high rotational speeds and high efficiency. This leads the turbomachinery manufacturers to design higher flexibility ratios and to reduce the clearance of the seals. Accurate prediction of the effective damping of seals is critical to avoid instability problems; in recent years, "negative-swirl" swirl brakes have been used to reverse the circumferential direction of the inlet flow, which changes the sign of the cross-coupled stiffness coefficients and generates stabilizing forces. Experimental tests for a teeth-on-stator labyrinth seal were performed by manufacturers with positive and negative pre-swirl values to investigate the pre-swirl effect on the cross-coupled stiffness coefficient. Those results are used as a benchmark in this paper. To analyse the rotor-fluid interaction in the seals, the bulk-flow numeric approach is more time efficient than computational fluid dynamics (CFD). Although the accuracy of the coefficients prediction in bulk-flow models is satisfactory for liquid phase application, the accuracy of the results strongly depends on the operating conditions in the case of the gas phase. In this paper, the authors propose an improvement in the state-of-the-art bulk-flow model by introducing the effect of the energy equation in the zeroth-order solution to better characterize real gas properties due to the enthalpy variation along the seal cavities. The consideration of the energy equation allows for a better estimation of the coefficients in the case of a negative pre-swirl ratio, therefore, it extend the prediction fidelity over a wide range of operating conditions. The numeric results are also compared to the state-of-the-art bulk-flow model, which highlights the improvement in the model.

  11. New holographic dark energy model with constant bulk viscosity in modified f(R,T) gravity theory

    Science.gov (United States)

    Srivastava, Milan; Singh, C. P.

    2018-06-01

    The aim of this paper is to study new holographic dark energy (HDE) model in modified f(R,T) gravity theory within the framework of a flat Friedmann-Robertson-Walker model with bulk viscous matter content. It is thought that the negative pressure caused by the bulk viscosity can play the role of dark energy component, and drive the accelerating expansion of the universe. This is the motive of this paper to observe such phenomena with bulk viscosity. In the specific model f(R,T)=R+λ T, where R is the Ricci scalar, T the trace of the energy-momentum tensor and λ is a constant, we find the solution for non-viscous and viscous new HDE models. We analyze new HDE model with constant bulk viscosity, ζ =ζ 0= const. to explain the present accelerated expansion of the universe. We classify all possible scenarios (deceleration, acceleration and their transition) with possible positive and negative ranges of λ over the constraint on ζ 0 to analyze the evolution of the universe. We obtain the solutions of scale factor and deceleration parameter, and discuss the evolution of the universe. We observe the future finite-time singularities of type I and III at a finite time under certain constraints on λ . We also investigate the statefinder and Om diagnostics of the viscous new HDE model to discriminate with other existing dark energy models. In late time the viscous new HDE model approaches to Λ CDM model. We also discuss the thermodynamics and entropy of the model and find that it satisfies the second law of thermodynamics.

  12. Mining the bulk positron lifetime

    International Nuclear Information System (INIS)

    Aourag, H.; Guittom, A.

    2009-01-01

    We introduce a new approach to investigate the bulk positron lifetimes of new systems based on data-mining techniques. Through data mining of bulk positron lifetimes, we demonstrate the ability to predict the positron lifetimes of new semiconductors on the basis of available semiconductor data already studied. Informatics techniques have been applied to bulk positron lifetimes for different tetrahedrally bounded semiconductors in order to discover computational design rules. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Elastic Characterization of Transversely Isotropic Soft Materials by Dynamic Shear and Asymmetric Indentation

    Science.gov (United States)

    Namani, R.; Feng, Y.; Okamoto, R. J.; Jesuraj, N.; Sakiyama-Elbert, S. E.; Genin, G. M.; Bayly, P. V.

    2012-01-01

    The mechanical characterization of soft anisotropic materials is a fundamental challenge because of difficulties in applying mechanical loads to soft matter and the need to combine information from multiple tests. A method to characterize the linear elastic properties of transversely isotropic soft materials is proposed, based on the combination of dynamic shear testing (DST) and asymmetric indentation. The procedure was demonstrated by characterizing a nearly incompressible transversely isotropic soft material. A soft gel with controlled anisotropy was obtained by polymerizing a mixture of fibrinogen and thrombin solutions in a high field magnet (B = 11.7 T); fibrils in the resulting gel were predominantly aligned parallel to the magnetic field. Aligned fibrin gels were subject to dynamic (20–40 Hz) shear deformation in two orthogonal directions. The shear storage modulus was 1.08 ± 0. 42 kPa (mean ± std. dev.) for shear in a plane parallel to the dominant fiber direction, and 0.58 ± 0.21 kPa for shear in the plane of isotropy. Gels were indented by a rectangular tip of a large aspect ratio, aligned either parallel or perpendicular to the normal to the plane of transverse isotropy. Aligned fibrin gels appeared stiffer when indented with the long axis of a rectangular tip perpendicular to the dominant fiber direction. Three-dimensional numerical simulations of asymmetric indentation were used to determine the relationship between direction-dependent differences in indentation stiffness and material parameters. This approach enables the estimation of a complete set of parameters for an incompressible, transversely isotropic, linear elastic material. PMID:22757501

  14. High-pressure effects on isotropic superconductivity in the iron-free layered pnictide superconductor BaPd2As2

    Science.gov (United States)

    Abdel-Hafiez, M.; Zhao, Y.; Huang, Z.; Cho, C.-w.; Wong, C. H.; Hassen, A.; Ohkuma, M.; Fang, Y.-W.; Pan, B.-J.; Ren, Z.-A.; Sadakov, A.; Usoltsev, A.; Pudalov, V.; Mito, M.; Lortz, R.; Krellner, C.; Yang, W.

    2018-04-01

    While the layered 122 iron arsenide superconductors are highly anisotropic, unconventional, and exhibit several forms of electronic orders that coexist or compete with superconductivity in different regions of their phase diagrams, we find in the absence of iron in the structure that the superconducting characteristics of the end member BaPd2As2 are surprisingly conventional. Here we report on complementary measurements of specific heat, magnetic susceptibility, resistivity measurements, Andreev spectroscopy, and synchrotron high pressure x-ray diffraction measurements supplemented with theoretical calculations for BaPd2As2 . Its superconducting properties are completely isotropic as demonstrated by the critical fields, which do not depend on the direction of the applied field. Under the application of high pressure, Tc is linearly suppressed, which is the typical behavior of classical phonon-mediated superconductors with some additional effect of a pressure-induced decrease in the electronic density of states and the electron-phonon coupling parameters. Structural changes in the layered BaPd2As2 have been studied by means of angle-dispersive diffraction in a diamond-anvil cell. At 12 GPa and 24.2 GPa we observed pressure induced lattice distortions manifesting as the discontinuity and, hence discontinuity in the Birch-Murnaghan equation of state. The bulk modulus is B0=40 (6 ) GPa below 12 GPa and B0=142 (3 ) GPa below 27.2 GPa.

  15. Conservative constraints on dark matter from the Fermi-LAT isotropic diffuse gamma-ray background spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Abazajian, Kevork N.; Agrawal, Prateek; Chacko, Zackaria [Maryland Center for Fundamental Physics, Department of Physics, University of Maryland, College Park, Maryland 20742 (United States); Kilic, Can, E-mail: kev@umd.edu, E-mail: apr@umd.edu, E-mail: zchacko@umd.edu, E-mail: kilic@physics.rutgers.edu [Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854 (United States)

    2010-11-01

    We examine the constraints on final state radiation from Weakly Interacting Massive Particle (WIMP) dark matter candidates annihilating into various standard model final states, as imposed by the measurement of the isotropic diffuse gamma-ray background by the Large Area Telescope aboard the Fermi Gamma-Ray Space Telescope. The expected isotropic diffuse signal from dark matter annihilation has contributions from the local Milky Way (MW) as well as from extragalactic dark matter. The signal from the MW is very insensitive to the adopted dark matter profile of the halos, and dominates the signal from extragalactic halos, which is sensitive to the low mass cut-off of the halo mass function. We adopt a conservative model for both the low halo mass survival cut-off and the substructure boost factor of the Galactic and extragalactic components, and only consider the primary final state radiation. This provides robust constraints which reach the thermal production cross-section for low mass WIMPs annihilating into hadronic modes. We also reanalyze limits from HESS observations of the Galactic Ridge region using a conservative model for the dark matter halo profile. When combined with the HESS constraint, the isotropic diffuse spectrum rules out all interpretations of the PAMELA positron excess based on dark matter annihilation into two lepton final states. Annihilation into four leptons through new intermediate states, although constrained by the data, is not excluded.

  16. Conservative constraints on dark matter from the Fermi-LAT isotropic diffuse gamma-ray background spectrum

    International Nuclear Information System (INIS)

    Abazajian, Kevork N.; Agrawal, Prateek; Chacko, Zackaria; Kilic, Can

    2010-01-01

    We examine the constraints on final state radiation from Weakly Interacting Massive Particle (WIMP) dark matter candidates annihilating into various standard model final states, as imposed by the measurement of the isotropic diffuse gamma-ray background by the Large Area Telescope aboard the Fermi Gamma-Ray Space Telescope. The expected isotropic diffuse signal from dark matter annihilation has contributions from the local Milky Way (MW) as well as from extragalactic dark matter. The signal from the MW is very insensitive to the adopted dark matter profile of the halos, and dominates the signal from extragalactic halos, which is sensitive to the low mass cut-off of the halo mass function. We adopt a conservative model for both the low halo mass survival cut-off and the substructure boost factor of the Galactic and extragalactic components, and only consider the primary final state radiation. This provides robust constraints which reach the thermal production cross-section for low mass WIMPs annihilating into hadronic modes. We also reanalyze limits from HESS observations of the Galactic Ridge region using a conservative model for the dark matter halo profile. When combined with the HESS constraint, the isotropic diffuse spectrum rules out all interpretations of the PAMELA positron excess based on dark matter annihilation into two lepton final states. Annihilation into four leptons through new intermediate states, although constrained by the data, is not excluded

  17. High heat flux experiment on isotropic graphite using pulsed laser beam

    International Nuclear Information System (INIS)

    Kizaki, Hiroshi; Tokunaga, Kazutoshi; Fukuda, Shigehisa; Yoshida, Naoaki; Muroga, Takeo.

    1989-01-01

    In order to examine the plasma-withstanding behavior of isotropic graphite which is the leading favorite material for the first wall of nuclear fusion reactors, the pulsed thermal loading experiment was carried out by using a laser. As the result of analyzing the gas which was emitted during the pulsed thermal loading, together with the formation and release of various hydrocarbon gases, also the formation of carbon clusters due to the sublimation of carbon was observed. The vacuum characteristics and the dependence on thermal loading condition and surface treatment condition of these released gases were determined, and the problems and the way of improvement in its application to nuclear fusion reactors were elucidated. Since the isotropic graphite is of low atomic number, the radiation loss in plasma is small, and the improvement of the plasma parameters can be expected. Besides, the heat resistance and high temperature stability in vacuum are good, and the induced radioactivity is low. On the other hand, the quantity of gas occlusion is much, various hydrocarbon gases are formed at high temperature, and the wear due to sublimation arises by very high thermal loading. The experimental method, the observation of graphite surface by SEM, and the effect of carbon coating due to thermal decomposition are reported. (K.I.)

  18. Investigating source processes of isotropic events

    Science.gov (United States)

    Chiang, Andrea

    explosion. In contrast, recovering the announced explosive yield using seismic moment estimates from moment tensor inversion remains challenging but we can begin to put error bounds on our moment estimates using the NSS technique. The estimation of seismic source parameters is dependent upon having a well-calibrated velocity model to compute the Green's functions for the inverse problem. Ideally, seismic velocity models are calibrated through broadband waveform modeling, however in regions of low seismicity velocity models derived from body or surface wave tomography may be employed. Whether a velocity model is 1D or 3D, or based on broadband seismic waveform modeling or the various tomographic techniques, the uncertainty in the velocity model can be the greatest source of error in moment tensor inversion. These errors have not been fully investigated for the nuclear discrimination problem. To study the effects of unmodeled structures on the moment tensor inversion, we set up a synthetic experiment where we produce synthetic seismograms for a 3D model (Moschetti et al., 2010) and invert these data using Green's functions computed with a 1D velocity mode (Song et al., 1996) to evaluate the recoverability of input solutions, paying particular attention to biases in the isotropic component. The synthetic experiment results indicate that the 1D model assumption is valid for moment tensor inversions at periods as short as 10 seconds for the 1D western U.S. model (Song et al., 1996). The correct earthquake mechanisms and source depth are recovered with statistically insignificant isotropic components as determined by the F-test. Shallow explosions are biased by the theoretical ISO-CLVD tradeoff but the tectonic release component remains low, and the tradeoff can be eliminated with constraints from P wave first motion. Path-calibration to the 1D model can reduce non-double-couple components in earthquakes, non-isotropic components in explosions and composite sources and improve

  19. Spider Gland Fluids: From Protein-Rich Isotropic Liquid to Insoluble Super Fiber

    Science.gov (United States)

    2013-09-17

    dehydration, methanol treatment, solubilized in ionic liquids and exposed to mechanical stress. Establish the relevant processing conditions for...for liquid-state NMR techniques such as gradient coherence selection , water suppression, and pulsed field gradient self-diffusion measurements. HR...Gln, Ser) including the carbonyl resonances. All the unambiguously assignable 13C isotropic chemical shifts are listed in Tab. 1. The assignment and

  20. Handling of bulk solids theory and practice

    CERN Document Server

    Shamlou, P A

    1990-01-01

    Handling of Bulk Solids provides a comprehensive discussion of the field of solids flow and handling in the process industries. Presentation of the subject follows classical lines of separate discussions for each topic, so each chapter is self-contained and can be read on its own. Topics discussed include bulk solids flow and handling properties; pressure profiles in bulk solids storage vessels; the design of storage silos for reliable discharge of bulk materials; gravity flow of particulate materials from storage vessels; pneumatic transportation of bulk solids; and the hazards of solid-mater

  1. Ferromagnetic bulk glassy alloys

    International Nuclear Information System (INIS)

    Inoue, Akihisa; Makino, Akihiro; Mizushima, Takao

    2000-01-01

    This paper deals with the review on the formation, thermal stability and magnetic properties of the Fe-based bulk glassy alloys in as-cast bulk and melt-spun ribbon forms. A large supercooled liquid region over 50 K before crystallization was obtained in Fe-(Al, Ga)-(P, C, B, Si), Fe-(Cr, Mo, Nb)-(Al, Ga)-(P, C, B) and (Fe, Co, Ni)-Zr-M-B (M=Ti, Hf, V, Nb, Ta, Cr, Mo and W) systems and bulk glassy alloys were produced in a thickness range below 2 mm for the Fe-(Al, Ga)-(P, C, B, Si) system and 6 mm for the Fe-Co-(Zr, Nb, Ta)-(Mo, W)-B system by copper-mold casting. The ring-shaped glassy Fe-(Al, Ga)-(P, C, B, Si) alloys exhibit much better soft magnetic properties as compared with the ring-shaped alloy made from the melt-spun ribbon because of the formation of the unique domain structure. The good combination of high glass-forming ability and good soft magnetic properties indicates the possibility of future development as a new bulk glassy magnetic material

  2. Fluorescence quantum yield of thioflavin T in rigid isotropic solution and incorporated into the amyloid fibrils.

    Directory of Open Access Journals (Sweden)

    Anna I Sulatskaya

    Full Text Available In this work, the fluorescence of thioflavin T (ThT was studied in a wide range of viscosity and temperature. It was shown that ThT fluorescence quantum yield varies from 0.0001 in water at room temperature to 0.28 in rigid isotropic solution (T/η→0. The deviation of the fluorescence quantum yield from unity in rigid isotropic solution suggests that fluorescence quantum yield depends not only on the ultra-fast oscillation of ThT fragments relative to each other in an excited state as was suggested earlier, but also depends on the molecular configuration in the ground state. This means that the fluorescence quantum yield of the dye incorporated into amyloid fibrils must depend on its conformation, which, in turn, depends on the ThT environment. Therefore, the fluorescence quantum yield of ThT incorporated into amyloid fibrils can differ from that in the rigid isotropic solution. In particular, the fluorescence quantum yield of ThT incorporated into insulin fibrils was determined to be 0.43. Consequently, the ThT fluorescence quantum yield could be used to characterize the peculiarities of the fibrillar structure, which opens some new possibilities in the ThT use for structural characterization of the amyloid fibrils.

  3. Surface-enhanced Raman imaging of cell membrane by a highly homogeneous and isotropic silver nanostructure

    Science.gov (United States)

    Zito, Gianluigi; Rusciano, Giulia; Pesce, Giuseppe; Dochshanov, Alden; Sasso, Antonio

    2015-04-01

    Label-free chemical imaging of live cell membranes can shed light on the molecular basis of cell membrane functionalities and their alterations under membrane-related diseases. In principle, this can be done by surface-enhanced Raman scattering (SERS) in confocal microscopy, but requires engineering plasmonic architectures with a spatially invariant SERS enhancement factor G(x, y) = G. To this end, we exploit a self-assembled isotropic nanostructure with characteristics of homogeneity typical of the so-called near-hyperuniform disorder. The resulting highly dense, homogeneous and isotropic random pattern consists of clusters of silver nanoparticles with limited size dispersion. This nanostructure brings together several advantages: very large hot spot density (~104 μm-2), superior spatial reproducibility (SD nanotoxicity issues. See DOI: 10.1039/c5nr01341k

  4. Accurate Molecular Orientation Analysis Using Infrared p-Polarized Multiple-Angle Incidence Resolution Spectrometry (pMAIRS) Considering the Refractive Index of the Thin Film Sample.

    Science.gov (United States)

    Shioya, Nobutaka; Shimoaka, Takafumi; Murdey, Richard; Hasegawa, Takeshi

    2017-06-01

    Infrared (IR) p-polarized multiple-angle incidence resolution spectrometry (pMAIRS) is a powerful tool for analyzing the molecular orientation in an organic thin film. In particular, pMAIRS works powerfully for a thin film with a highly rough surface irrespective of degree of the crystallinity. Recently, the optimal experimental condition has comprehensively been revealed, with which the accuracy of the analytical results has largely been improved. Regardless, some unresolved matters still remain. A structurally isotropic sample, for example, yields different peak intensities in the in-plane and out-of-plane spectra. In the present study, this effect is shown to be due to the refractive index of the sample film and a correction factor has been developed using rigorous theoretical methods. As a result, with the use of the correction factor, organic materials having atypical refractive indices such as perfluoroalkyl compounds ( n = 1.35) and fullerene ( n = 1.83) can be analyzed with high accuracy comparable to a compound having a normal refractive index of approximately 1.55. With this improved technique, we are also ready for discriminating an isotropic structure from an oriented sample having the magic angle of 54.7°.

  5. Initial experience with 3D isotropic high-resolution 3 T MR arthrography of the wrist.

    Science.gov (United States)

    Sutherland, John K; Nozaki, Taiki; Kaneko, Yasuhito; J Yu, Hon; Rafijah, Gregory; Hitt, David; Yoshioka, Hiroshi

    2016-01-16

    Our study was performed to evaluate the image quality of 3 T MR wrist arthrograms with attention to ulnar wrist structures, comparing image quality of isotropic 3D proton density fat suppressed turbo spin echo (PDFS TSE) sequence versus standard 2D 3 T sequences as well as comparison with 1.5 T MR arthrograms. Eleven consecutive 3 T MR wrist arthrograms were performed and the following sequences evaluated: 3D isotropic PDFS, repetition time/echo time (TR/TE) 1400/28.3 ms, voxel size 0.35x0.35x0.35 mm, acquisition time 5 min; 2D coronal sequences with slice thickness 2 mm: T1 fat suppressed turbo spin echo (T1FS TSE) (TR/TE 600/20 ms); proton density (PD) TSE (TR/TE 3499/27 ms). A 1.5 T group of 18 studies with standard sequences were evaluated for comparison. All MR imaging followed fluoroscopically guided intra-articular injection of dilute gadolinium contrast. Qualitative assessment related to delineation of anatomic structures between 1.5 T and 3 T MR arthrograms was carried out using Mann-Whitney test and the differences in delineation of anatomic structures among each sequence in 3 T group were analyzed with Wilcoxon signed-rank test. Quantitative assessment of mean relative signal intensity (SI) and relative contrast measurements was performed using Wilcoxon signed-rank test. Mean qualitative scores for 3 T sequences were significantly higher than 1.5 T (p < 0.01), with isotropic 3D PDFS sequence having highest mean qualitative scores (p < 0.05). Quantitative analysis demonstrated no significant difference in relative signal intensity among the 3 T sequences. Significant differences were found in relative contrast between fluid-bone and fluid-fat comparing 3D and 2D PDFS (p < 0.01). 3D isotropic PDFS sequence showed promise in both qualitative and quantitative assessment, suggesting this may be useful for MR wrist arthrograms at 3 T. Primary reasons for diagnostic potential include the ability to make reformations in any

  6. Static deformation due to a long buried dip-slip fault in an isotropic

    Indian Academy of Sciences (India)

    Closed-form analytical expressions for the displacements and the stresses at any point of a two-phase medium consisting of a homogeneous, isotropic, perfectly elastic half-space in welded contact with a homogeneous, orthotropic, perfectly elastic half-space due to a dip-slip fault of finite width located at an arbitrary ...

  7. Isotropic radio background from quark nugget dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Lawson, Kyle; Zhitnitsky, Ariel R., E-mail: arz@physics.ubc.ca

    2013-07-09

    Recent measurements by the ARCADE2 experiment unambiguously show an excess in the isotropic radio background at frequencies below the GHz scale. We argue that this excess may be a natural consequence of the interaction of visible and dark matter in the early universe if the dark matter consists of heavy nuggets of quark matter. Explanation of the observed radio band excess requires the introduction of no new parameters, rather we exploit the same dark matter model and identical normalization parameters to those previously used to explain other excesses of diffuse emission from the centre of our galaxy. These previously observed excesses include the WMAP Haze of GHz radiation, keV X-ray emission and MeV gamma-ray radiation.

  8. Charged Particle Diffusion in Isotropic Random Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Subedi, P.; Matthaeus, W. H.; Chuychai, P.; Parashar, T. N.; Chhiber, R. [Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716 (United States); Sonsrettee, W. [Faculty of Engineering and Technology, Panyapiwat Institute of Management, Nonthaburi 11120 (Thailand); Blasi, P. [INAF/Osservatorio Astrofisico di Arcetri, Largo E. Fermi, 5—I-50125 Firenze (Italy); Ruffolo, D. [Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); Montgomery, D. [Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 (United States); Dmitruk, P. [Departamento de Física Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Ciudad Universitaria, 1428 Buenos Aires (Argentina); Wan, M. [Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055 (China)

    2017-03-10

    The investigation of the diffusive transport of charged particles in a turbulent magnetic field remains a subject of considerable interest. Research has most frequently concentrated on determining the diffusion coefficient in the presence of a mean magnetic field. Here we consider the diffusion of charged particles in fully three-dimensional isotropic turbulent magnetic fields with no mean field, which may be pertinent to many astrophysical situations. We identify different ranges of particle energy depending upon the ratio of Larmor radius to the characteristic outer length scale of turbulence. Two different theoretical models are proposed to calculate the diffusion coefficient, each applicable to a distinct range of particle energies. The theoretical results are compared to those from computer simulations, showing good agreement.

  9. Isotropic radio background from quark nugget dark matter

    International Nuclear Information System (INIS)

    Lawson, Kyle; Zhitnitsky, Ariel R.

    2013-01-01

    Recent measurements by the ARCADE2 experiment unambiguously show an excess in the isotropic radio background at frequencies below the GHz scale. We argue that this excess may be a natural consequence of the interaction of visible and dark matter in the early universe if the dark matter consists of heavy nuggets of quark matter. Explanation of the observed radio band excess requires the introduction of no new parameters, rather we exploit the same dark matter model and identical normalization parameters to those previously used to explain other excesses of diffuse emission from the centre of our galaxy. These previously observed excesses include the WMAP Haze of GHz radiation, keV X-ray emission and MeV gamma-ray radiation

  10. Temperature Dependence of the Viscosity of Isotropic Liquids

    Science.gov (United States)

    Jadzyn, J.; Czechowski, G.; Lech, T.

    1999-04-01

    Temperature dependence of the shear viscosity measured for isotropic liquids belonging to the three homologous series: 4-(trans-4'-n-alkylcyclohexyl) isothiocyanatobenzenes (Cn H2n+1 CyHx Ph NCS; nCHBT, n=0-12), n-alkylcyanobiphenyls (CnH2n+1 Ph Ph CN; nCB, n=2-12) and 1,n-alkanediols (HO(CH2)nOH; 1,nAD, n=2-10) were analysed with the use of Arrhenius equation and its two modifications: Vogel--Fulcher and proposed in this paper. The extrapolation of the isothermal viscosity of 1,n-alkanediols (n=2-10) to n=1 leads to an interesting conclusion concerning the expected viscosity of methanediol, HOCH2OH, the compound strongly unstable in a pure state.

  11. Isotropic and anisotropic nanocrystalline NdFeB-based magnets prepared by spark plasma sintering and hot deformation

    International Nuclear Information System (INIS)

    Liu, Z.W.; Huang, Y.L.; Huang, H.Y.; Zhong, X.C.; Yu, Y.H.; Zeng, D.C.

    2011-01-01

    Isotropic and anisotropic NdFeB permanent magnets were prepared by Spark Plasma Sintering (SPS) and SPS followed hot deformation (HD), respectively, using melt spun NdFeB ribbons with various compositions as starting materials. It is found that, based on RE-rich composition, SPSed magnets sintered at low temperatures (<700 C) almost maintained the uniform fine grain structure inherited from rapid quenching. At higher temperatures, a distinct two-zone (coarse grain and fine grain zones) structure was formed in the SPSed magnets. The SPS temperature and pressure have important effects on the grain structure, which led to the variations in the magnetic properties. By employing low SPS temperature and high pressure, high-density magnets with negligible coarse grain zone and an excellent combination of magnetic properties can be obtained. For single phase NdFeB alloy, because of the deficiency of Nd-rich phases, it is relatively difficult to consolidate micro-sized melt spun powders into high density bulk magnet, but generally a larger particle size is beneficial to achieve better magnetic properties. Anisotropic magnets with a maximum energy product of approx. equal to 38 MGOe were produced by the SPS+HD process. HD did not lead to obvious grain growth and the two-zone structure still existed in the hot deformed magnets. The results indicated that nanocrystalline NdFeB magnets without significant grain growth and with excellent properties could be obtained by SPS and HD processes. (author)

  12. Isotropic 2D quadrangle meshing with size and orientation control

    KAUST Repository

    Pellenard, Bertrand

    2011-12-01

    We propose an approach for automatically generating isotropic 2D quadrangle meshes from arbitrary domains with a fine control over sizing and orientation of the elements. At the heart of our algorithm is an optimization procedure that, from a coarse initial tiling of the 2D domain, enforces each of the desirable mesh quality criteria (size, shape, orientation, degree, regularity) one at a time, in an order designed not to undo previous enhancements. Our experiments demonstrate how well our resulting quadrangle meshes conform to a wide range of input sizing and orientation fields.

  13. Home composting using different ratios of bulking agent to food waste.

    Science.gov (United States)

    Guidoni, Lucas Lourenço Castiglioni; Marques, Roger Vasques; Moncks, Rodrigo Bilhalva; Botelho, Fabiana Torma; da Paz, Matheus Francisco; Corrêa, Luciara Bilhalva; Corrêa, Érico Kunde

    2018-02-01

    The negative environmental impacts associated with home composting may be due to the absence of a defined operation criteria for the degradation process. In addition to the potentially low environmental impact in terms of energy and water usage, which is minimal to the manufacture of the composting unit and avoiding the processing and transportation of waste or byproduct, composting at home can also promote a reduction in the emission of unpleasant gases. The proportion of the food waste and bulking agents in the composting mixture may be decisive to fulfill good practices of waste stabilization. The aim of this study was to investigate how different ratios of bulking agent and organic household waste can affect the progress and outcome of the composting process. Three treatments, varying in the ratio of rice husk: raw fruit and vegetable leftovers (70:30, 50:50, 30:70; v:v) were used in a home composting system on a pilot scale. Results show that the proportion of starting materials used in the composting mixture influenced the degradation of organic matter, nitrogen dynamics of the process and its toxicity on germinating plants. The proportions with greater amounts of food waste had higher concentrations of mineral matter, higher peak temperature, and a better initial carbon-to-nitrogen ratio, while the proportion containing 70% of bulking agent lacked odors and leachate generation and showed a low nitrogen loss. A higher proportion of food waste presented better conditions for microbiological development and less time to obtain characteristics of matured composts. A higher proportion of bulking agents resulted in favorable conditions for household handling and less potential for environmental impacts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Random isotropic one-dimensional XY-model

    Science.gov (United States)

    Gonçalves, L. L.; Vieira, A. P.

    1998-01-01

    The 1D isotropic s = ½XY-model ( N sites), with random exchange interaction in a transverse random field is considered. The random variables satisfy bimodal quenched distributions. The solution is obtained by using the Jordan-Wigner fermionization and a canonical transformation, reducing the problem to diagonalizing an N × N matrix, corresponding to a system of N noninteracting fermions. The calculations are performed numerically for N = 1000, and the field-induced magnetization at T = 0 is obtained by averaging the results for the different samples. For the dilute case, in the uniform field limit, the magnetization exhibits various discontinuities, which are the consequence of the existence of disconnected finite clusters distributed along the chain. Also in this limit, for finite exchange constants J A and J B, as the probability of J A varies from one to zero, the saturation field is seen to vary from Γ A to Γ B, where Γ A(Γ B) is the value of the saturation field for the pure case with exchange constant equal to J A(J B) .

  15. Nonlinear elastic inclusions in isotropic solids

    KAUST Repository

    Yavari, A.

    2013-10-16

    We introduce a geometric framework to calculate the residual stress fields and deformations of nonlinear solids with inclusions and eigenstrains. Inclusions are regions in a body with different reference configurations from the body itself and can be described by distributed eigenstrains. Geometrically, the eigenstrains define a Riemannian 3-manifold in which the body is stress-free by construction. The problem of residual stress calculation is then reduced to finding a mapping from the Riemannian material manifold to the ambient Euclidean space. Using this construction, we find the residual stress fields of three model systems with spherical and cylindrical symmetries in both incompressible and compressible isotropic elastic solids. In particular, we consider a finite spherical ball with a spherical inclusion with uniform pure dilatational eigenstrain and we show that the stress in the inclusion is uniform and hydrostatic. We also show how singularities in the stress distribution emerge as a consequence of a mismatch between radial and circumferential eigenstrains at the centre of a sphere or the axis of a cylinder.

  16. On isotropic cylindrically symmetric stellar models

    International Nuclear Information System (INIS)

    Nolan, Brien C; Nolan, Louise V

    2004-01-01

    We attempt to match the most general cylindrically symmetric vacuum spacetime with a Robertson-Walker interior. The matching conditions show that the interior must be dust filled and that the boundary must be comoving. Further, we show that the vacuum region must be polarized. Imposing the condition that there are no trapped cylinders on an initial time slice, we can apply a result of Thorne's and show that trapped cylinders never evolve. This results in a simplified line element which we prove to be incompatible with the dust interior. This result demonstrates the impossibility of the existence of an isotropic cylindrically symmetric star (or even a star which has a cylindrically symmetric portion). We investigate the problem from a different perspective by looking at the expansion scalars of invariant null geodesic congruences and, applying to the cylindrical case, the result that the product of the signs of the expansion scalars must be continuous across the boundary. The result may also be understood in relation to recent results about the impossibility of the static axially symmetric analogue of the Einstein-Straus model

  17. Mindful attention predicts greater recovery from negative emotions, but not reduced reactivity.

    Science.gov (United States)

    Cho, Sinhae; Lee, Hyejeen; Oh, Kyung Ja; Soto, José A

    2017-09-01

    This study investigated the role of dispositional mindful attention in immediate reactivity to, and subsequent recovery from, laboratory-induced negative emotion. One hundred and fourteen undergraduates viewed blocks of negative pictures followed by neutral pictures. Participants' emotional responses to negative pictures and subsequent neutral pictures were assessed via self-reported ratings. Participants' emotional response to negative pictures was used to index level of emotional reactivity to unpleasant stimuli; emotional response to neutral pictures presented immediately after the negative pictures was used to index level of emotional recovery from pre-induced negative emotion (residual negativity). Results indicated that mindful attention was not associated with the emotional response to negative pictures, but it was associated with reduced negative emotion in response to the neutral pictures presented immediately after the negative pictures, suggesting better recovery as opposed to reduced reactivity. This effect was especially pronounced in later experimental blocks when the accumulation of negative stimuli produced greater negative emotion from which participants had to recover. The current study extends previous findings on the relationship between dispositional mindfulness and reduced negative emotion by demonstrating that mindful attention may facilitate better recovery from negative emotion, possibly through more effective disengagement from previous stimuli.

  18. Impact of physical maltreatment on the regulation of negative affect and aggression.

    Science.gov (United States)

    Shackman, Jessica E; Pollak, Seth D

    2014-11-01

    Physically maltreated children are at risk for developing externalizing behavioral problems characterized by reactive aggression. The current experiment tested the relationships between individual differences in a neural index of social information processing, histories of child maltreatment, child negative affect, and aggressive behavior. Fifty boys (17 maltreated) performed an emotion recognition task while the P3b component of the event-related potential was recorded to index attention allocation to angry faces. Children then participated in a peer-directed aggression task. Negative affect was measured by recording facial electromyography, and aggression was indexed by the feedback that children provided to a putative peer. Physically maltreated children exhibited greater negative affect and more aggressive behavior, compared to nonmaltreated children, and this relationship was mediated by children's allocation of attention to angry faces. These data suggest that physical maltreatment leads to inappropriate regulation of both negative affect and aggression, which likely place maltreated children at increased risk for the development and maintenance of externalizing behavior disorders.

  19. Corporate Sustainability Indexes: FTSE 4 Good Index Report on Nestle

    Directory of Open Access Journals (Sweden)

    Gülay Keskin

    2018-04-01

    Full Text Available Corporate sustainability and economic business activities are focused on the social and environmental impacts. In this sense, the economic activity created by the businesses is to pursue social and environmental impacts, and producing information related to these effects is essential for the formation of structure for a sustainable business. Sustainability indices are structures edited on first generation sustainability indicators, which are structures constructed in order to share information with consumers and businesses. The most important benefits are improvements in transparency without the need for regulation of the sustainability index, better understanding of the social and environmental impact of companies and the guidance for arrangements to minimize the negative side effects of company activities. FTSE4Good is a responsible investment index designed to help investors identify companies that meet globally recognised corporate responsibility standards. It is the only index of its kind since it includes specific criteria on the responsible marketing of breast milk substitutes.

  20. Evaluating the Welfare of Index Insurance

    DEFF Research Database (Denmark)

    Harrison, Glenn W.; Martínez-Correa, Jimmy; Ng, Jia Min

    affects both the demand for the product and the welfare of individuals making take-up decisions. We study the impact of basis risk on insurance take-up and on expected welfare in a laboratory experiment with an insurance frame. We measure the expected welfare of index insurance to individuals while......Index insurance was conceived to be a product that would simplify the claim settlement process and make it more objective, reducing transaction costs and moral hazard. However, index insurance also exposes the insured to basis risk, which arises because there can be a mismatch between the index...... risks that are different from preferences exhibited for their actuarially-equivalent counterparts. We study the potential link between index insurance demand and attitudes towards compound risks. We test the hypothesis that the compound risk nature of index insurance induced by basis risk negatively...

  1. Effects of isotropic alpha populations on tokamak ballooning stability

    International Nuclear Information System (INIS)

    Spong, D.A.; Sigmar, D.J.; Tsang, K.T.; Ramos, J.J.; Hastings, D.E.; Cooper, W.A.

    1986-12-01

    Fusion product alpha populations can significantly influence tokamak stability due to coupling between the trapped alpha precessional drift and the kinetic ballooning mode frequency. Careful, quantitative evaluations of these effects are necessary in burning plasma devices such as the Tokamak Fusion Test Reactor and the Joint European Torus, and we have continued systematic development of such a kinetic stability model. In this model we have considered a range of different forms for the alpha distribution function and the tokamak equilibrium. Both Maxwellian and slowing-down models have been used for the alpha energy dependence while deeply trapped and, more recently, isotropic pitch angle dependences have been examined

  2. Thermodynamics of volume-collapse transitions in cerium and related compounds

    International Nuclear Information System (INIS)

    Bustingorry, S.; Jagla, E.A.; Lorenzana, J.

    2005-01-01

    We present a non-linear elastic model of a coherent transition with discontinuous volume change in an isotropic solid. The model reproduces the anomalous thermodynamics typical of coherent equilibrium including intrinsic hysteresis (for a pressure driven experiment) and a negative bulk modulus. The novelty of the model is that the statistical mechanics solution can be easily worked out. We find that coherency leads to an infinite-range density-density interaction, which drives classical critical behavior. The pressure width of the hysteresis loop shrinks with increasing temperature, ending at a critical point at a temperature related to the shear modulus. The bulk modulus softens with a 1/2 exponent at the transition even far from the critical point. Many well known features of the phase diagram of Ce and related systems are explained by the model

  3. Surface-induced ordering of a liquid crystal in the isotropic phase

    International Nuclear Information System (INIS)

    Miyano, K.

    1979-01-01

    A detailed account of a measurement of order parameter of a liquid crystal at the boundary by means of the wall-induced pretransitional birefringence is given. Several surface treatments were studied including surfactants and evaporated films. Although all treatments produced good alignment in the nematic phase, the boundary order parameter (hence the strength of the aligning force) in the isotropic phase differed very much depending on the treatment, indicating the diverse nature of the alignment process

  4. Modeling the subfilter scalar variance for large eddy simulation in forced isotropic turbulence

    Science.gov (United States)

    Cheminet, Adam; Blanquart, Guillaume

    2011-11-01

    Static and dynamic model for the subfilter scalar variance in homogeneous isotropic turbulence are investigated using direct numerical simulations (DNS) of a lineary forced passive scalar field. First, we introduce a new scalar forcing technique conditioned only on the scalar field which allows the fluctuating scalar field to reach a statistically stationary state. Statistical properties, including 2nd and 3rd statistical moments, spectra, and probability density functions of the scalar field have been analyzed. Using this technique, we performed constant density and variable density DNS of scalar mixing in isotropic turbulence. The results are used in an a-priori study of scalar variance models. Emphasis is placed on further studying the dynamic model introduced by G. Balarac, H. Pitsch and V. Raman [Phys. Fluids 20, (2008)]. Scalar variance models based on Bedford and Yeo's expansion are accurate for small filter width but errors arise in the inertial subrange. Results suggest that a constant coefficient computed from an assumed Kolmogorov spectrum is often sufficient to predict the subfilter scalar variance.

  5. Sound transmission through lined, composite panel structures: Transversely isotropic poro-elastic model

    Science.gov (United States)

    Kim, Jeong-Woo

    A joint experimental and analytical investigation of the sound transmission loss (STL) and two-dimensional free wave propagation in composite sandwich panels is presented here. An existing panel, a Nomex honeycomb sandwich panel, was studied in detail. For the purpose of understanding the typical behavior of sandwich panels, a composite structure comprising two aluminum sheets with a relatively soft, poro-elastic foam core was also constructed and studied. The cores of both panels were modeled using an anisotropic (transversely isotropic) poro-elastic material theory. Several estimation methods were used to obtain the material properties of the honeycomb core and the skin plates to be used in the numerical calculations. Appropriate values selected from among the estimates were used in the STL and free wave propagation models. The prediction model was then verified in two ways: first, the calculated wave speeds and STL of a single poro-elastic layer were numerically verified by comparison with the predictions of a previously developed isotropic model. Secondly, to physically validate the transversely isotropic model, the measured STL and the phase speeds of the sandwich panels were compared with their predicted values. To analyze the actual treatment of a fuselage structure, multi-layered configurations, including a honeycomb panel and several layers such as air gaps, acoustic blankets and membrane partitions, were formulated. Then, to find the optimal solution for improving the sound barrier performance of an actual fuselage system, air layer depth and glass fiber lining effects were investigated by using these multi-layer models. By using the free wave propagation model, the first anti-symmetric and symmetric modes of the sandwich panels were characterized to allow the identification of the coincidence frequencies of the sandwich panel. The behavior of the STL could then be clearly explained by comparison with the free wave propagation solutions. By performing a

  6. Isotropic three-dimensional T2 mapping of knee cartilage: Development and validation.

    Science.gov (United States)

    Colotti, Roberto; Omoumi, Patrick; Bonanno, Gabriele; Ledoux, Jean-Baptiste; van Heeswijk, Ruud B

    2018-02-01

    1) To implement a higher-resolution isotropic 3D T 2 mapping technique that uses sequential T 2 -prepared segmented gradient-recalled echo (Iso3DGRE) images for knee cartilage evaluation, and 2) to validate it both in vitro and in vivo in healthy volunteers and patients with knee osteoarthritis. The Iso3DGRE sequence with an isotropic 0.6 mm spatial resolution was developed on a clinical 3T MR scanner. Numerical simulations were performed to optimize the pulse sequence parameters. A phantom study was performed to validate the T 2 estimation accuracy. The repeatability of the sequence was assessed in healthy volunteers (n = 7). T 2 values were compared with those from a clinical standard 2D multislice multiecho (MSME) T 2 mapping sequence in knees of healthy volunteers (n = 13) and in patients with knee osteoarthritis (OA, n = 5). The numerical simulations resulted in 100 excitations per segment and an optimal radiofrequency (RF) excitation angle of 15°. The phantom study demonstrated a good correlation of the technique with the reference standard (slope 0.9 ± 0.05, intercept 0.2 ± 1.7 msec, R 2 ≥ 0.99). Repeated measurements of cartilage T 2 values in healthy volunteers showed a coefficient of variation of 5.6%. Both Iso3DGRE and MSME techniques found significantly higher cartilage T 2 values (P < 0.03) in OA patients. Iso3DGRE precision was equal to that of the MSME T 2 mapping in healthy volunteers, and significantly higher in OA (P = 0.01). This study successfully demonstrated that high-resolution isotropic 3D T 2 mapping for knee cartilage characterization is feasible, accurate, repeatable, and precise. The technique allows for multiplanar reformatting and thus T 2 quantification in any plane of interest. 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:362-371. © 2017 International Society for Magnetic Resonance in Medicine.

  7. Microwave processed bulk and nano NiMg ferrites: A comparative study on X-band electromagnetic interference shielding properties

    Energy Technology Data Exchange (ETDEWEB)

    Chandra Babu Naidu, K., E-mail: chandrababu954@gmail.com [Ceramic Composite Laboratory, Centre for Crystal Growth, SAS, VIT University, Vellore 632014, Tamilnadu (India); Madhuri, W., E-mail: madhuriw12@gmail.com [Ceramic Composite Laboratory, Centre for Crystal Growth, SAS, VIT University, Vellore 632014, Tamilnadu (India); IFW, Leibniz Institute for Solid State and Materials Research, Technische Universität Dresden, 01069 Dresden (Germany)

    2017-02-01

    Bulk and nano Ni{sub 1-x}Mg{sub x}Fe{sub 2}O{sub 4} (x = 0–1) samples were synthesized via microwave double sintering and microwave assisted hydrothermal techniques respectively. The diffraction pattern confirmed the formation of cubic spinel phases in case of both the ferrites. The larger bulk densities were achieved to the bulk than that of nano. In addition, a comparative study on X-band (8.4–12 GHz) electromagnetic interference shielding properties of current bulk and nanomaterials was elucidated. The results showed that the bulk Ni{sub 0.6}Mg{sub 0.4}Fe{sub 2}O{sub 4} composition revealed the highest total shielding efficiency (SE{sub T}) of ∼17 dB. In comparison, the shielding efficiency values of all bulk contents were higher than that of nano because of larger bulk densities. Moreover, the ac-electromagnetic parameters such as electrical conductivity (σ{sub ac}), the respective real (ε′ & μ′) and imaginary parts (ε″ & μ″) of complex permittivity and permeability were investigated as a function of gigahertz frequency. The bulk ferrites of x = 0.4 & 0.6 showed the high ε″ of 10.26 & 6.71 and μ″ of 3.65 & 3.09 respectively at 12 GHz which can work as promising microwave absorber materials. Interestingly, nanoferrites exhibited negative μ″ values at few frequencies due to geometrical effects which improves the microwave absorption. - Highlights: • Bulk and nano NiMg ferrites are prepared by microwave and hydrothermal method. • X-band EMI shielding properties are studied for both bulk and nano ferrites. • Bulk Ni{sub 0.6}Mg{sub 0.4}Fe{sub 2}O{sub 4} revealed the highest SE{sub T} of ∼17 dB at 8.4 GHz. • Bulk x = 0.4 & 0.6 showed the high ε″ and μ″ at 12 GHz for absorber applications.

  8. Simulation of bulk phases formed by polyphilic liquid crystal dendrimers

    Directory of Open Access Journals (Sweden)

    J.M. Ilnytskyi

    2010-01-01

    Full Text Available A coarse-grained simulation model for a third generation liquid crystalline dendrimer (LCDr is presented. It allows, for the first time, for a successful molecular simulation study of a relation between the shape of a polyphilic macromolecular mesogen and the symmetry of a macroscopic phase. The model dendrimer consists of a soft central sphere and 32 grafted chains each terminated by a mesogen group. The mesogenic pair interactions are modelled by the recently proposed soft core spherocylinder model of Lintuvuori and Wilson [J. Chem. Phys, 128, 044906, (2008]. Coarse-grained (CG molecular dynamics (MD simulations are performed on a melt of 100 molecules in the anisotropic-isobaric ensemble. The model LCDr shows conformational bistability, with both rod-like and disc-like conformations stable at lower temperatures. Each conformation can be induced by an external aligning field of appropriate symmetry that acts on the mesogens (uniaxial for rod-like and planar for disc-like, leading to formation of a monodomain smectic A (SmA or a columnar (Col phase, respectively. Both phases are stable for approximately the same temperature range and both exhibit a sharp transition to an isotropic cubic-like phase upon heating. We observe a very strong coupling between the conformation of the LCDr and the symmetry of a bulk phase, as suggested previously by theory. The study reveals rich potential in terms of the application of this form of CG modelling to the study of molecular self-assembly of liquid crystalline macromolecules.

  9. On the role of the transformation eigenstrain in the growth or shrinkage of spheroidal isotropic precipitations

    International Nuclear Information System (INIS)

    Fischer, F.D.; Boehm, H.J.

    2005-01-01

    The jumps of the strain and stress tensors on the surface of elastic homogeneous or inhomogeneous ellipsoidal inclusions embedded in an elastic matrix are obtained from results reported in the literature. They are used to derive closed-form expressions for the thermodynamic force in such matrix-inclusion systems that are subjected to a generally defined homogeneous transformation eigenstrain. A detailed study is presented for an isotropic spheroidal inclusion in an isotropic matrix in which the most important parameters are the inclusion's aspect ratio α and an eigenstrain triaxiality parameter d-bar. The fluctuations of the thermodynamic force are investigated for a set of specific transformation eigenstrain tensors and are presented for inclusion shapes ranging from disk-like to fiber-like spheroids

  10. Ultracompact Refractive Index Sensor Based on Surface-Plasmon-Polariton Interference

    International Nuclear Information System (INIS)

    Wang Chen; Chen Jian-Jun; Tang Wei-Hua; Xiao Jing-Hua

    2012-01-01

    Using an ultracompact groove-slit-groove (GSG) structure, a refractive index sensor with a broadband response is proposed and experimentally demonstrated. Due to the interference of surface plasmon polaritons (SPPs), the transmission spectra in the GSG structure exhibit oscillation behaviors in a broad bandwidth, and they are quite sensitive to the refractive index of the surroundings. Based on the principle, the characteristics of its refractive index sensing are demonstrated experimentally. In the experiment, the structure is illuminated with a bulk light source (not a tightly focused light source) from the back side. This decreases the difficulty of the experimental measurement and can protect strong light sources from damaging the detection samples. Meanwhile, the whole structure of the sensor can be made more ultracompact without considering the influence of the incident waves

  11. CRADA/NFE-15-05761 Report: Additive Manufacturing of Isotropic NdFeB Bonded Permanent Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Paranthaman, M Parans [ORNL

    2016-07-18

    The technical objective of this technical collaboration phase I proposal is to fabricate net shape isotropic NdFeB bonded magnets utilizing additive manufacturing technologies at the ORNL MDF. The goal is to form complex shapes of thermoplastic and/or thermoset bonded magnets without expensive tooling and with minimal wasted material. Two additive manufacturing methods; the binder jet process; and big area additive manufacturing (BAAM) were used. Binder jetting produced magnets with the measured density of the magnet of 3.47 g/cm3, close to 46% relative to the NdFeB single crystal density of 7.6 g/cm3 were demonstrated. Magnetic measurements indicate that there is no degradation in the magnetic properties. In addition, BAAM was used to fabricate isotropic near-net-shape NdFeB bonded magnets with magnetic and mechanical properties comparable or better than those of traditional injection molded magnets. The starting polymer magnet composite pellets consist of 65 vol% isotropic NdFeB powder and 35 vol% polyamide (Nylon-12). The density of the final BAAM magnet product reached 4.8 g/cm3, and the room temperature magnetic properties are: Intrinsic coercivity Hci = 8.65 kOe, Remanence Br = 5.07 kG, and energy product (BH)max = 5.47 MGOe (43.50 kJ/m3). This study provides a new pathway for preparing near-net shape bonded magnets for various magnetic applications.

  12. Random Taylor hypothesis and the behavior of local and convective accelerations in isotropic turbulence

    NARCIS (Netherlands)

    Tsinober, A.; Vedula, P.; Yeung, P.K.

    2001-01-01

    The properties of acceleration fluctuations in isotropic turbulence are studied in direct numerical simulations (DNS) by decomposing the acceleration as the sum of local and convective contributions (aL = ?u/?t and aC = u??u), or alternatively as the sum of irrotational and solenoidal contributions

  13. Design criteria for XeF2 enabled deterministic transformation of bulk silicon (100) into flexible silicon layer

    KAUST Repository

    Hussain, Aftab M.

    2016-07-15

    Isotropic etching of bulk silicon (100) using Xenon Difluoride (XeF2) gas presents a unique opportunity to undercut and release ultra-thin flexible silicon layers with pre-fabricated state-of-the-art Complementary Metal Oxide Semiconductor (CMOS) electronics. In this work, we present design criteria and mechanism with a comprehensive mathematical model for this method. We consider various trench geometries and parametrize important metrics such as etch time, number of cycles and area efficiency in terms of the trench diameter and spacing so that optimization can be done for specific applications. From our theoretical analysis, we conclude that a honeycomb-inspired hexagonal distribution of trenches can produce the most efficient release of ultra-thin flexible silicon layers in terms of the number of etch cycles, while a rectangular distribution of circular trenches provides the most area efficient design. The theoretical results are verified by fabricating and releasing (varying sizes) flexible silicon layers. We observe uniform translation of design criteria into practice for etch distances and number of etch cycles, using reaction efficiency as a fitting parameter.

  14. Design criteria for XeF2 enabled deterministic transformation of bulk silicon (100) into flexible silicon layer

    KAUST Repository

    Hussain, Aftab M.; Shaikh, Sohail F.; Hussain, Muhammad Mustafa

    2016-01-01

    Isotropic etching of bulk silicon (100) using Xenon Difluoride (XeF2) gas presents a unique opportunity to undercut and release ultra-thin flexible silicon layers with pre-fabricated state-of-the-art Complementary Metal Oxide Semiconductor (CMOS) electronics. In this work, we present design criteria and mechanism with a comprehensive mathematical model for this method. We consider various trench geometries and parametrize important metrics such as etch time, number of cycles and area efficiency in terms of the trench diameter and spacing so that optimization can be done for specific applications. From our theoretical analysis, we conclude that a honeycomb-inspired hexagonal distribution of trenches can produce the most efficient release of ultra-thin flexible silicon layers in terms of the number of etch cycles, while a rectangular distribution of circular trenches provides the most area efficient design. The theoretical results are verified by fabricating and releasing (varying sizes) flexible silicon layers. We observe uniform translation of design criteria into practice for etch distances and number of etch cycles, using reaction efficiency as a fitting parameter.

  15. Enhanced index and negative dispersion without absorption in driven cascade media

    International Nuclear Information System (INIS)

    Hu Xiangming; Xu Jun

    2004-01-01

    In this paper we investigate the dispersive and absorptive properties of a system of three-level cascade atoms driven by a strong coherent field. Three characteristic features are found. First, for the same set of atom-light interaction parameters, the indices of refraction are large at three different frequencies where the absorption vanishes. These three frequencies are determined by the resonance transition frequencies between dressed states produced by the strong driving field. Second, negative dispersion without absorption, which leads to superluminal light propagation, is achievable in the central resonance structure of the dispersion spectrum. Third, the whole absorption spectrum displays, in general, three pairs of absorption peaks and three pairs of gain (negative absorption) peaks. The minimal spacing between dressed states determines whether the outer adjacent gain peaks are separated from each other

  16. Coupling brane fields to bulk supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Parameswaran, Susha L. [Uppsala Univ. (Sweden). Theoretical Physics; Schmidt, Jonas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2010-12-15

    In this note we present a simple, general prescription for coupling brane localized fields to bulk supergravity. We illustrate the procedure by considering 6D N=2 bulk supergravity on a 2D orbifold, with brane fields localized at the fixed points. The resulting action enjoys the full 6D N=2 symmetries in the bulk, and those of 4D N=1 supergravity at the brane positions. (orig.)

  17. Confining light with negative refraction in checkerboard metamaterials and photonic crystals

    International Nuclear Information System (INIS)

    Ramakrishna, S. Anantha; Guenneau, S.; Enoch, S.; Tayeb, G.; Gralak, B.

    2007-01-01

    We present here a finite slab of triangular checkerboard of negative refractive index material that exhibits a form of extraordinary transmission. We show that such a checkerboard can be used to confine light and can act as an open resonator. Effectively even a single point of intersection between three triangular wedges of negative refractive index may act as a resonator that confines light in the limit when n tends toward -1. We find that the quality of the confinement improves by adding more triangular wedges around the initial point in a checkerboard fashion. The confinement effect is also demonstrated by using a photonic crystal that shows the negative refraction effect

  18. A Dual Band Additively Manufactured 3D Antenna on Package with Near-Isotropic Radiation Pattern

    KAUST Repository

    Su, Zhen; Klionovski, Kirill; Bilal, Rana Muhammad; Shamim, Atif

    2018-01-01

    presents a novel 3D dual band near-isotropic wideband GSM antenna to fulfill these requirements. The antenna has been realized on the package of electronics through additive manufacturing to ensure efficient utilization of available space and lower cost

  19. Magnesium diboride coated bulk niobium: a new approach to higher acceleration gradient

    Science.gov (United States)

    Civale, Leonardo; Tan, Teng; Wolak, M.; Xi, Xiaoxing; Tajima, Tsuyoshi

    Bulk niobium Superconducting Radio-Frequency cavities are a leading accelerator technology. Their performance is limited by the cavity loss and maximum acceleration gradient, which are negatively affected by vortex penetration into the superconductor when the peak magnetic field at the cavity wall surface exceeds the vortex penetration field (Hvp). It has been proposed that coating the inner wall of an SRF cavity with superconducting thin films increases Hvp. In this work, we utilized Nb ellipsoids to simulate an inverse SRF cavity and investigate the effect of coating it with magnesium diboride layer on the vortex penetration field. A significant enhancement of Hvp was observed. At 2.8 K, Hvp increased from 2100 Oe for an uncoated Nb ellipsoid to 2700 Oe for a Nb ellipsoid coated with 200 nm thick MgB2 thin film. This finding creates a new route towards achieving higher acceleration gradient in SRF cavity accelerator beyond the theoretical limit of bulk Nb.

  20. Bulk viscosity of spin-one color superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Sa' d, Basil A.

    2009-08-27

    The bulk viscosity of several quark matter phases is calculated. It is found that the effect of color superconductivity is not trivial, it may suppress, or enhance the bulk viscosity depending on the critical temperature and the temperature at which the bulk viscosity is calculated. Also, is it found that the effect of neutrino-emitting Urca processes cannot be neglected in the consideration of the bulk viscosity of strange quark matter. The results for the bulk viscosity of strange quark matter are used to calculate the r-mode instability window of quark stars with several possible phases. It is shown that each possible phase has a different structure for the r-mode instability window. (orig.)

  1. Bulk viscosity of spin-one color superconductors

    International Nuclear Information System (INIS)

    Sa'd, Basil A.

    2009-01-01

    The bulk viscosity of several quark matter phases is calculated. It is found that the effect of color superconductivity is not trivial, it may suppress, or enhance the bulk viscosity depending on the critical temperature and the temperature at which the bulk viscosity is calculated. Also, is it found that the effect of neutrino-emitting Urca processes cannot be neglected in the consideration of the bulk viscosity of strange quark matter. The results for the bulk viscosity of strange quark matter are used to calculate the r-mode instability window of quark stars with several possible phases. It is shown that each possible phase has a different structure for the r-mode instability window. (orig.)

  2. Aspects of silicon bulk lifetimes

    Science.gov (United States)

    Landsberg, P. T.

    1985-01-01

    The best lifetimes attained for bulk crytalline silicon as a function of doping concentrations are analyzed. It is assumed that the dopants which set the Fermi level do not contribute to the recombination traffic which is due to the unknown defect. This defect is assumed to have two charge states: neutral and negative, the neutral defect concentration is frozen-in at some temperature T sub f. The higher doping concentrations should include the band-band Auger effect by using a generalization of the Shockley-Read-Hall (SRH) mechanism. The generalization of the SRH mechanism is discussed. This formulation gives a straightforward procedure for incorporating both band-band and band-trap Auger effects in the SRH procedure. Two related questions arise in this context: (1) it may sometimes be useful to write the steady-state occupation probability of the traps implied by SRH procedure in a form which approximates to the Fermi-Dirac distribution; and (2) the effect on the SRH mechanism of spreading N sub t levels at one energy uniformly over a range of energies is discussed.

  3. Mehler's formulae for isotropic harmonic oscillator wave functions and application in the Green function calculus

    International Nuclear Information System (INIS)

    Caetano Neto, E.S.

    1976-01-01

    A stationary Green function is calculated for the Schroedinger Hamiltonian of the multidimensional isotropic harmonic oscillator and for physical systems, which may, somehow, have their Hamiltonian reduced to one in the form of a harmonic oscillator, for any dimension [pt

  4. Measuring negative and positive caregiving experiences: A psychometric analysis of the Caregiver Strain Index Expanded

    NARCIS (Netherlands)

    Kruithof, WJ; Post, MWM; Meily, JMA

    2015-01-01

    Objective: To compare the psychometric properties of the Caregiver Strain Index Expanded with those of the original Caregiver Strain Index among partners of stroke patients. Design and subjects: Cross-sectional validation study among 173 caregivers of stroke patients six months post-stroke. Main

  5. Maximum likelihood based multi-channel isotropic reverberation reduction for hearing aids

    DEFF Research Database (Denmark)

    Kuklasiński, Adam; Doclo, Simon; Jensen, Søren Holdt

    2014-01-01

    We propose a multi-channel Wiener filter for speech dereverberation in hearing aids. The proposed algorithm uses joint maximum likelihood estimation of the speech and late reverberation spectral variances, under the assumption that the late reverberant sound field is cylindrically isotropic....... The dereverberation performance of the algorithm is evaluated using computer simulations with realistic hearing aid microphone signals including head-related effects. The algorithm is shown to work well with signals reverberated both by synthetic and by measured room impulse responses, achieving improvements...

  6. Isotropic Surface Remeshing without Large and Small Angles

    KAUST Repository

    Wang, Yiqun; Yan, Dong-Ming; Liu, Xiaohan; Tang, Chengcheng; Guo, Jianwei; Zhang, Xiaopeng; Wonka, Peter

    2018-01-01

    We introduce a novel algorithm for isotropic surface remeshing which progressively eliminates obtuse triangles and improves small angles. The main novelty of the proposed approach is a simple vertex insertion scheme that facilitates the removal of large angles, and a vertex removal operation that improves the distribution of small angles. In combination with other standard local mesh operators, e.g., connectivity optimization and local tangential smoothing, our algorithm is able to remesh efficiently a low-quality mesh surface. Our approach can be applied directly or used as a post-processing step following other remeshing approaches. Our method has a similar computational efficiency to the fastest approach available, i.e., real-time adaptive remeshing [1]. In comparison with state-of-the-art approaches, our method consistently generates better results based on evaluations using different metrics.

  7. Isotropic Surface Remeshing without Large and Small Angles

    KAUST Repository

    Wang, Yiqun

    2018-05-18

    We introduce a novel algorithm for isotropic surface remeshing which progressively eliminates obtuse triangles and improves small angles. The main novelty of the proposed approach is a simple vertex insertion scheme that facilitates the removal of large angles, and a vertex removal operation that improves the distribution of small angles. In combination with other standard local mesh operators, e.g., connectivity optimization and local tangential smoothing, our algorithm is able to remesh efficiently a low-quality mesh surface. Our approach can be applied directly or used as a post-processing step following other remeshing approaches. Our method has a similar computational efficiency to the fastest approach available, i.e., real-time adaptive remeshing [1]. In comparison with state-of-the-art approaches, our method consistently generates better results based on evaluations using different metrics.

  8. Improved High Resolution Models of Subduction Dynamics: Use of transversely isotropic viscosity with a free-surface

    Science.gov (United States)

    Liu, X.; Gurnis, M.; Stadler, G.; Rudi, J.; Ratnaswamy, V.; Ghattas, O.

    2017-12-01

    Dynamic topography, or uncompensated topography, is controlled by internal dynamics, and provide constraints on the buoyancy structure and rheological parameters in the mantle. Compared with other surface manifestations such as the geoid, dynamic topography is very sensitive to shallower and more regional mantle structure. For example, the significant dynamic topography above the subduction zone potentially provides a rich mine for inferring the rheological and mechanical properties such as plate coupling, flow, and lateral viscosity variations, all critical in plate tectonics. However, employing subduction zone topography in the inversion study requires that we have a better understanding of the topography from forward models, especially the influence of the viscosity formulation, numerical resolution, and other factors. One common approach to formulating a fault between the subducted slab and the overriding plates in viscous flow models assumes a thin weak zone. However, due to the large lateral variation in viscosity, topography from free-slip numerical models typically has artificially large magnitude as well as high-frequency undulations over subduction zone, which adds to the difficulty in making comparisons between model results and observations. In this study, we formulate a weak zone with the transversely isotropic viscosity (TI) where the tangential viscosity is much smaller than the viscosity in the normal direction. Similar with isotropic weak zone models, TI models effectively decouple subducted slabs from the overriding plates. However, we find that the topography in TI models is largely reduced compared with that in weak zone models assuming an isotropic viscosity. Moreover, the artificial `tooth paste' squeezing effect observed in isotropic weak zone models vanishes in TI models, although the difference becomes less significant when the dip angle is small. We also implement a free-surface condition in our numerical models, which has a smoothing

  9. Gene co-expression analysis identifies gene clusters associated with isotropic and polarized growth in Aspergillus fumigatus conidia.

    Science.gov (United States)

    Baltussen, Tim J H; Coolen, Jordy P M; Zoll, Jan; Verweij, Paul E; Melchers, Willem J G

    2018-04-26

    Aspergillus fumigatus is a saprophytic fungus that extensively produces conidia. These microscopic asexually reproductive structures are small enough to reach the lungs. Germination of conidia followed by hyphal growth inside human lungs is a key step in the establishment of infection in immunocompromised patients. RNA-Seq was used to analyze the transcriptome of dormant and germinating A. fumigatus conidia. Construction of a gene co-expression network revealed four gene clusters (modules) correlated with a growth phase (dormant, isotropic growth, polarized growth). Transcripts levels of genes encoding for secondary metabolites were high in dormant conidia. During isotropic growth, transcript levels of genes involved in cell wall modifications increased. Two modules encoding for growth and cell cycle/DNA processing were associated with polarized growth. In addition, the co-expression network was used to identify highly connected intermodular hub genes. These genes may have a pivotal role in the respective module and could therefore be compelling therapeutic targets. Generally, cell wall remodeling is an important process during isotropic and polarized growth, characterized by an increase of transcripts coding for hyphal growth and cell cycle/DNA processing when polarized growth is initiated. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  10. An attempt to estimate isotropic and anisotropic lateral structure of the Earth by spectral inversion incorporating mixed coupling

    Science.gov (United States)

    Oda, Hitoshi

    2005-02-01

    We present a way to calculate free oscillation spectra for an aspherical earth model, which is constructed by adding isotropic and anisotropic velocity perturbations to the seismic velocity parameters of a reference earth model, and examine the effect of the velocity perturbations on the free oscillation spectrum. Lateral variations of the velocity perturbations are parametrized as an expansion in generalized spherical harmonics. We assume weak hexagonal anisotropy for the seismic wave anisotropy in the upper mantle, where the hexagonal symmetry axes are horizontally distributed. The synthetic spectra show that the velocity perturbations cause not only strong self-coupling among singlets of a multiplet but also mixed coupling between toroidal and spheroidal multiplets. Both the couplings give rise to an amplitude anomaly on the vertical component spectrum. In this study, we identify the amplitude anomaly resulting from the mixed coupling as quasi-toroidal mode. Excitation of the quasi-toroidal mode by a vertical strike-slip fault is largest on nodal lines of the Rayleigh wave, decreases with increasing azimuth angle and becomes smallest on loop lines. This azimuthal dependence of the spectral amplitude is quite similar to the Love wave radiation pattern. In addition, the amplitude spectrum of the quasi-toroidal mode is more sensitive to the anisotropic velocity perturbation than to the isotropic velocity perturbation. This means that the mode spectrum allowing for the mixed-coupling effect may provide constraints on the anisotropic lateral structure as well as the isotropic lateral structure. An inversion method, called mixed-coupling spectral inversion, is devised to retrieve the isotropic and anisotropic velocity perturbations from the free oscillation spectra incorporating the quasi-toroidal mode. We confirm that the spectral inversion method correctly recovers the isotropic and anisotropic lateral structure. Moreover introducing the mixed-coupling effect in the

  11. Anxiety management training for anxiety states: positive compared with negative self-statements.

    Science.gov (United States)

    Ramm, E; Marks, I M; Yuksel, S; Stern, R S

    1982-04-01

    Twelve patients complaining of chronic free-floating anxiety, usually also with panic attacks, were assigned at random to treatment by six hour-long sessions of anxiety-management training, either with positive or with negative self-statements, given over six weeks. Patients in both treatment conditions improved, with a small trend favouring positive over negative self-instruction, especially at follow-up. It is unclear how much self-instruction, rather than therapeutic attention or mere passage of time, accounted for the bulk of the modest improvement obtained.

  12. Numerical simulations of the effect of an isotropic heat field on the entropy generation due to natural convection in a square cavity

    International Nuclear Information System (INIS)

    El-Maghlany, Wael M.; Saqr, Khalid M.; Teamah, Mohamed A.

    2014-01-01

    Highlights: • Entropy generation in laminar natural convection in square cavity numerically studied. • The cavity subjected to an isotropic heat field with different intensities. • Study ranges 10 3 ⩽ Ra ⩽ 10 5 , 0 ⩽ ϕ ⩽ 10 and Pr = 0.7. • Entropy generation drastically affected by the superposition of an isotropic heat field. • CFD based empirical were derived for entropy generation as a function of Ra and φ. - Abstract: Entropy generation associated with laminar natural convection in an infinite square cavity, subjected to an isotropic heat field with different intensities; was numerically investigated for different values of Rayleigh number. The numerical work was carried out using, an in-house CFD code written in FORTRAN, which discretizes non-dimensional forms of the governing equations using the finite volume method and solves the resulting system of equations using Gauss-Seidal method utilizing a TDMA algorithm. Proper code validation was undertaken in order to establish the entropy generation calculations. It was found that the increase in the isotropic heat field intensity resulted in a corresponding exponential increase of the entropy augmentation number, and promoted high values of Bejan number within the flow. The entropy generation due to heat transfer was approximately one order of magnitude higher than the entropy generation due to fluid friction. The spatial uniformity of the Bejan number was more sensitive to the change in Rayleigh number than to the heat field intensity. The thermodynamic penalty of the isotropic heat field is shown by means of global integrals of the entropy source terms over the entire flow domain

  13. Cormic Index Profile of Children with Sickle Cell Anaemia in Lagos, Nigeria

    Directory of Open Access Journals (Sweden)

    Samuel Olufemi Akodu

    2014-01-01

    Full Text Available Background. Sickle cell disorders are known to have a negative effect on linear growth. This could potentially affect proportional growth and, hence, Cormic Index. Objective. To determine the Cormic Index in the sickle cell anaemia population in Lagos. Methodology. A consecutive sample of 100 children with haemoglobin genotype SS, aged eight months to 15 years, and 100 age and sex matched controls (haemoglobin genotype AA was studied. Sitting height (upper segment and full length or height were measured. Sitting height was then expressed as a percentage of full length/height (Cormic Index. Results. The mean Cormic Index decreased with age among primary subjects (SS and AA controls. The overall mean Cormic Index among primary subjects was comparable to that of controls (55.0±4.6% versus 54.5±5.2%; 54.8±4.5% versus 53.6±4.9% in boys and girls, respectively. In comparison with AA controls, female children with sickle cell anaemia who were older than 10 years had a significantly lower mean Cormic Index. Conclusion. There was a significant negative relationship between Cormic Index and height in subjects and controls irrespective of gender. Similarly, a significant negative correlation existed between age, sitting height, subischial leg length, weight, and Cormic Index in both subjects and controls.

  14. Bulk viscous matter and recent acceleration of the universe based on causal viscous theory

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, N.D.J.; Sasidharan, Athira; Mathew, Titus K. [Cochin University of Science and Technology, Department of Physics, Kochi (India)

    2017-12-15

    The evolution of the bulk viscous matter dominated universe has been analysed using the full causal theory for the evolution of the viscous pressure in the context of the recent acceleration of the universe. The form of the viscosity is taken as ξ = αρ{sup 1/2}. We obtained analytical solutions for the Hubble parameter and scale factor of the universe. The model parameters have been computed using the observational data. The evolution of the prominent cosmological parameters was obtained. The age of the universe for the best estimated model parameters is found to be less than observational value. The viscous matter behaves like a stiff fluid in the early phase and evolves to a negative pressure fluid in the later phase. The equation of state is found to be stabilised with value ω > -1. The local as well as generalised second law of thermodynamics is satisfied. The statefinder diagnostic shows that this model is distinct from the standard ΛCDM. One of the marked deviations seen in this model to be compared with the corresponding model using the Eckart approach is that in this model the bulk viscosity decreases with the expansion of the universe, while in the Eckart formalism it increases from negative values in the early universe towards positive values. (orig.)

  15. Bulk viscous matter and recent acceleration of the universe based on causal viscous theory

    International Nuclear Information System (INIS)

    Mohan, N.D.J.; Sasidharan, Athira; Mathew, Titus K.

    2017-01-01

    The evolution of the bulk viscous matter dominated universe has been analysed using the full causal theory for the evolution of the viscous pressure in the context of the recent acceleration of the universe. The form of the viscosity is taken as ξ = αρ 1/2 . We obtained analytical solutions for the Hubble parameter and scale factor of the universe. The model parameters have been computed using the observational data. The evolution of the prominent cosmological parameters was obtained. The age of the universe for the best estimated model parameters is found to be less than observational value. The viscous matter behaves like a stiff fluid in the early phase and evolves to a negative pressure fluid in the later phase. The equation of state is found to be stabilised with value ω > -1. The local as well as generalised second law of thermodynamics is satisfied. The statefinder diagnostic shows that this model is distinct from the standard ΛCDM. One of the marked deviations seen in this model to be compared with the corresponding model using the Eckart approach is that in this model the bulk viscosity decreases with the expansion of the universe, while in the Eckart formalism it increases from negative values in the early universe towards positive values. (orig.)

  16. The Effect of Bulk Depth and Irradiation Time on the Surface Hardness and Degree of Cure of Bulk-Fill Composites

    Directory of Open Access Journals (Sweden)

    Farahat F

    2016-09-01

    Full Text Available Statement of Problem: For many years, application of the composite restoration with a thickness less than 2 mm for achieving the minimum polymerization contraction and stress has been accepted as a principle. But through the recent development in dental material a group of resin based composites (RBCs called Bulk Fill is introduced whose producers claim the possibility of achieving a good restoration in bulks with depths of 4 or even 5 mm. Objectives: To evaluate the effect of irradiation times and bulk depths on the degree of cure (DC of a bulk fill composite and compare it with the universal type. Materials and Methods: This study was conducted on two groups of dental RBCs including Tetric N Ceram Bulk Fill and Tetric N Ceram Universal. The composite samples were prepared in Teflon moulds with a diameter of 5 mm and height of 2, 4 and 6 mm. Then, half of the samples in each depth were cured from the upper side of the mould for 20s by LED light curing unit. The irradiation time for other specimens was 40s. After 24 hours of storage in distilled water, the microhardness of the top and bottom of the samples was measured using a Future Tech (Japan- Model FM 700 Vickers hardness testing machine. Data were analyzed statistically using the one and multi way ANOVAand Tukey’s test (p = 0.050. Results: The DC of Tetric N Ceram Bulk Fill in defined irradiation time and bulk depth was significantly more than the universal type (p < 0.001. Also, the DC of both composites studied was significantly (p < 0.001 reduced by increasing the bulk depths. Increasing the curing time from 20 to 40 seconds had a marginally significant effect (p ≤ 0.040 on the DC of both bulk fill and universal studied RBC samples. Conclusions: The DC of the investigated bulk fill composite was better than the universal type in all the irradiation times and bulk depths. The studied universal and bulk fill RBCs had an appropriate DC at the 2 and 4 mm bulk depths respectively and

  17. A non-commutative formula for the isotropic magneto-electric response

    International Nuclear Information System (INIS)

    Leung, Bryan; Prodan, Emil

    2013-01-01

    A non-commutative formula for the isotropic magneto-electric response of disordered insulators under magnetic fields is derived using the methods of non-commutative geometry. Our result follows from an explicit evaluation of the Ito derivative with respect to the magnetic field of the non-commutative formula for the electric polarization reported in Schulz-Baldes and Teufel (2012 arXiv:1201.4812v1). The quantization, topological invariance and connection to a second Chern number of the magneto-electric response are discussed in the context of three-dimensional, disordered, time-reversal or inversion symmetric topological insulators. (paper)

  18. Parametric study of the deformation of transversely isotropic discs under diametral compression

    Directory of Open Access Journals (Sweden)

    Christos F. Markides

    2017-07-01

    Full Text Available The displacement field in a circular disc made of a transversely isotropic material is explored in a parametric manner. The disc is assumed to be loaded by a parabolic distribution of compressive radial stresses along two finite arcs of its periphery in the absence of any tangential (frictional stresses. Advantage is here taken of a recently introduced closed-form analytic solution for the displacement field developed in an orthotropic disc under diametral compression which was achieved adopting the complex potentials technique for rectilinear anisotropic materials as it was formulated in the pioneering work of S.G. Lekhnitskii. The analytic nature of this solution permits thorough, indepth exploration of the influence of some crucial parameters on the qualitative and quantitative characteristics of the deformation of transversely isotropic circular discs compressed between the jaws of the devise suggested by the International Society for Rock Mechanics for the standardized implementation of the Brazilian-disc test. The parameters considered include the anisotropy ratio (i.e., the ratio of the two elastic moduli characterizing the disc material, the angle between the loading axis and the planes of transverse isotropy and the length of the loaded arcs. Strongly non-linear relationships between these parameters and the components of the displacement field are revealed.

  19. Third-harmonic generation in isotropic media by focused pulses

    International Nuclear Information System (INIS)

    Tasgal, Richard S.; Band, Y.B.

    2004-01-01

    For focused pulses of light in isotropic nonlinear media, third-harmonic generation can be strongly affected by group-velocity mismatch between the fundamental and third-harmonic. There is a characteristic time determined by the group-velocity mismatch and the Rayleigh range of the focused pulse. The dynamics depend on two dimensionless quantities, namely the ratio of the characteristic time to the pulse duration and the phase-velocity mismatch times the Rayleigh range. Pulses shorter than the characteristic time have physics described by simple analytic formulas. Pulses near the characteristic time have an intermediate behavior given by an explicit but more complicated formula. Pulses longer than the characteristic time tend to the continuous-wave case

  20. Positron annihilation lifetime spectroscopy of ZnO bulk samples

    International Nuclear Information System (INIS)

    Zubiaga, A.; Plazaola, F.; Garcia, J. A.; Tuomisto, F.; Munoz-Sanjose, V.; Tena-Zaera, R.

    2007-01-01

    In order to gain a further insight into the knowledge of point defects of ZnO, positron annihilation lifetime spectroscopy was performed on bulk samples annealed under different atmospheres. The samples were characterized at temperatures ranging from 10 to 500 K. Due to difficulties in the conventional fitting of the lifetime spectra caused by the low intensity of the defect signals, we have used an alternative method as a solution to overcome these difficulties and resolve all the lifetime components present in the spectra. Two different vacancy-type defects are identified in the samples: Zn vacancy complexes (V Zn -X) and vacancy clusters consisting of up to five missing Zn-O pairs. In addition to the vacancies, we observe negative-ion-type defects, which are tentatively attributed to intrinsic defects in the Zn sublattice. The effect of the annealing on the observed defects is discussed. The concentrations of the V Zn -X complexes and negative-ion-type defects are in the 0.2-2 ppm range, while the cluster concentrations are 1-2 orders of magnitude lower

  1. Isotropic stars in general relativity

    International Nuclear Information System (INIS)

    Mak, M.K.; Harko, T.

    2013-01-01

    We present a general solution of the Einstein gravitational field equations for the static spherically symmetric gravitational interior space-time of an isotropic fluid sphere. The solution is obtained by transforming the pressure isotropy condition, a second order ordinary differential equation, into a Riccati type first order differential equation, and using a general integrability condition for the Riccati equation. This allows us to obtain an exact non-singular solution of the interior field equations for a fluid sphere, expressed in the form of infinite power series. The physical features of the solution are studied in detail numerically by cutting the infinite series expansions, and restricting our numerical analysis by taking into account only n=21 terms in the power series representations of the relevant astrophysical parameters. In the present model all physical quantities (density, pressure, speed of sound etc.) are finite at the center of the sphere. The physical behavior of the solution essentially depends on the equation of state of the dense matter at the center of the star. The stability properties of the model are also analyzed in detail for a number of central equations of state, and it is shown that it is stable with respect to the radial adiabatic perturbations. The astrophysical analysis indicates that this solution can be used as a realistic model for static general relativistic high density objects, like neutron stars. (orig.)

  2. Nano-imprint gold grating as refractive index sensor

    International Nuclear Information System (INIS)

    Kumari, Sudha; Mohapatra, Saswat; Moirangthem, Rakesh S.

    2016-01-01

    Large scale of fabrication of plasmonic nanostructures has been a challenging task due to time consuming process and requirement of expensive nanofabrication tools such as electron beam lithography system, focused ion beam system, and extreme UV photolithography system. Here, we present a cost-effective fabrication technique so called soft nanoimprinting to fabricate nanostructures on the larger sample area. In our fabrication process, a commercially available optical DVD disc was used as a template which was imprinted on a polymer glass substrate to prepare 1D polymer nano-grating. A homemade nanoimprinting setup was used in this fabrication process. Further, a label-free refractive index sensor was developed by utilizing the properties of surface plasmon resonance (SPR) of a gold coated 1D polymer nano-grating. Refractive index sensing was tested by exposing different solutions of glycerol-water mixture on the surface of gold nano-grating. The calculated bulk refractive index sensitivity was found to be 751nm/RIU. We believed that our proposed SPR sensor could be a promising candidate for developing low-cost refractive index sensor with high sensitivity on a large scale.

  3. Design criteria for XeF{sub 2} enabled deterministic transformation of bulk silicon (100) into flexible silicon layer

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Aftab M.; Shaikh, Sohail F.; Hussain, Muhammad M., E-mail: muhammadmustafa.hussain@kaust.edu.sa [Integrated Nanotechnology Laboratory (INL) and Integrated Disruptive Electronics Applications (IDEA) Laboratory, Computer Electrical Mathematical Science and Engineering Division, King Abdullah University of Science and Technology - KAUST, Thuwal 23955-6900 (Saudi Arabia)

    2016-07-15

    Isotropic etching of bulk silicon (100) using Xenon Difluoride (XeF{sub 2}) gas presents a unique opportunity to undercut and release ultra-thin flexible silicon layers with pre-fabricated state-of-the-art Complementary Metal Oxide Semiconductor (CMOS) electronics. In this work, we present design criteria and mechanism with a comprehensive mathematical model for this method. We consider various trench geometries and parametrize important metrics such as etch time, number of cycles and area efficiency in terms of the trench diameter and spacing so that optimization can be done for specific applications. From our theoretical analysis, we conclude that a honeycomb-inspired hexagonal distribution of trenches can produce the most efficient release of ultra-thin flexible silicon layers in terms of the number of etch cycles, while a rectangular distribution of circular trenches provides the most area efficient design. The theoretical results are verified by fabricating and releasing (varying sizes) flexible silicon layers. We observe uniform translation of design criteria into practice for etch distances and number of etch cycles, using reaction efficiency as a fitting parameter.

  4. Longitudinal vibration of isotropic solid rods: from classical to modern theories

    CSIR Research Space (South Africa)

    Shatalov, M

    2011-12-01

    Full Text Available Vibration of Isotropic Solid Rods: From Classical to Modern Theories Michael Shatalov1,2, Julian Marais2, Igor Fedotov2 and Michel Djouosseu Tenkam2 1Council for Scientific and Industrial Research 2Tshwane University of Technology South Africa 1...). The classical approximate theory of longitudinal vibration of rods was developed during the 18th century by J. D?Alembert, D. Bernoulli, L. Euler and J. Lagrange. This theory is based on the analysis of the one dimensional wave equation and is applicable...

  5. Porous composite with negative thermal expansion obtained by photopolymer additive manufacturing

    Directory of Open Access Journals (Sweden)

    Akihiro Takezawa

    2015-07-01

    Full Text Available Additive manufacturing (AM could be a novel method of fabricating composite and porous materials having various effective performances based on mechanisms of their internal geometries. Materials fabricated by AM could rapidly be used in industrial application since they could easily be embedded in the target part employing the same AM process used for the bulk material. Furthermore, multi-material AM has greater potential than usual single-material AM in producing materials with effective properties. Negative thermal expansion is a representative effective material property realized by designing a composite made of two materials with different coefficients of thermal expansion. In this study, we developed a porous composite having planar negative thermal expansion by employing multi-material photopolymer AM. After measurement of the physical properties of bulk photopolymers, the internal geometry was designed by topology optimization, which is the most effective structural optimization in terms of both minimizing thermal stress and maximizing stiffness. The designed structure was converted to a three-dimensional stereolithography (STL model, which is a native digital format of AM, and assembled as a test piece. The thermal expansions of the specimens were measured using a laser scanning dilatometer. Negative thermal expansion corresponding to less than −1 × 10−4 K−1 was observed for each test piece of the N = 3 experiment.

  6. 78 FR 72841 - List of Bulk Drug Substances That May Be Used in Pharmacy Compounding; Bulk Drug Substances That...

    Science.gov (United States)

    2013-12-04

    .... FDA-2013-N-1525] List of Bulk Drug Substances That May Be Used in Pharmacy Compounding; Bulk Drug... proposed rule to list bulk drug substances used in pharmacy compounding and preparing to develop a list of... Formulary monograph, if a monograph exists, and the United States Pharmacopoeia chapter on pharmacy...

  7. Overlapping illusions by transformation optics without any negative refraction material

    Science.gov (United States)

    Sun, Fei; He, Sailing

    2016-01-01

    A novel method to achieve an overlapping illusion without any negative refraction index material is introduced with the help of the optic-null medium (ONM) designed by an extremely stretching spatial transformation. Unlike the previous methods to achieve such an optical illusion by transformation optics (TO), our method can achieve a power combination and reshape the radiation pattern at the same time. Unlike the overlapping illusion with some negative refraction index material, our method is not sensitive to the loss of the materials. Other advantages over existing methods are discussed. Numerical simulations are given to verify the performance of the proposed devices.

  8. A transversely isotropic medium with a tilted symmetry axis normal to the reflector

    KAUST Repository

    Alkhalifah, Tariq Ali

    2010-05-01

    The computational tools for imaging in transversely isotropic media with tilted axes of symmetry (TTI) are complex and in most cases do not have an explicit closed-form representation. Developing such tools for a TTI medium with tilt constrained to be normal to the reflector dip (DTI) reduces their complexity and allows for closed-form representations. The homogeneous-case zero-offset migration in such a medium can be performed using an isotropic operator scaled by the velocity of the medium in the tilt direction. For the nonzero-offset case, the reflection angle is always equal to the incidence angle, and thus, the velocities for the source and receiver waves at the reflection point are equal and explicitly dependent on the reflection angle. This fact allows for the development of explicit representations for angle decomposition as well as moveout formulas for analysis of extended images obtained by wave-equation migration. Although setting the tilt normal to the reflector dip may not be valid everywhere (i.e., on salt flanks), it can be used in the process of velocity model building, in which such constrains are useful and typically are used. © 2010 Society of Exploration Geophysicists.

  9. Halo-independent determination of the unmodulated WIMP signal in DAMA: the isotropic case

    Energy Technology Data Exchange (ETDEWEB)

    Gondolo, Paolo [Department of Physics, University of Utah, 115 South 1400 East #201, Salt Lake City, Utah 84112-0830 (United States); Scopel, Stefano, E-mail: paolo.gondolo@utah.edu, E-mail: scopel@sogang.ac.kr [Department of Physics, Sogang University, Seoul 121-742 (Korea, Republic of)

    2017-09-01

    We present a halo-independent determination of the unmodulated signal corresponding to the DAMA modulation if interpreted as due to dark matter weakly interacting massive particles (WIMPs). First we show how a modulated signal gives information on the WIMP velocity distribution function in the Galactic rest frame from which the unmodulated signal descends. Then we describe a mathematically-sound profile likelihood analysis in which the likelihood is profiled over a continuum of nuisance parameters (namely, the WIMP velocity distribution). As a first application of the method, which is very general and valid for any class of velocity distributions, we restrict the analysis to velocity distributions that are isotropic in the Galactic frame. In this way we obtain halo-independent maximum-likelihood estimates and confidence intervals for the DAMA unmodulated signal. We find that the estimated unmodulated signal is in line with expectations for a WIMP-induced modulation and is compatible with the DAMA background+signal rate. Specifically, for the isotropic case we find that the modulated amplitude ranges between a few percent and about 25% of the unmodulated amplitude, depending on the WIMP mass.

  10. A transversely isotropic medium with a tilted symmetry axis normal to the reflector

    KAUST Repository

    Alkhalifah, Tariq Ali; Sava, Paul C.

    2010-01-01

    The computational tools for imaging in transversely isotropic media with tilted axes of symmetry (TTI) are complex and in most cases do not have an explicit closed-form representation. Developing such tools for a TTI medium with tilt constrained to be normal to the reflector dip (DTI) reduces their complexity and allows for closed-form representations. The homogeneous-case zero-offset migration in such a medium can be performed using an isotropic operator scaled by the velocity of the medium in the tilt direction. For the nonzero-offset case, the reflection angle is always equal to the incidence angle, and thus, the velocities for the source and receiver waves at the reflection point are equal and explicitly dependent on the reflection angle. This fact allows for the development of explicit representations for angle decomposition as well as moveout formulas for analysis of extended images obtained by wave-equation migration. Although setting the tilt normal to the reflector dip may not be valid everywhere (i.e., on salt flanks), it can be used in the process of velocity model building, in which such constrains are useful and typically are used. © 2010 Society of Exploration Geophysicists.

  11. Spin-isotropic continuum of spin excitations in antiferromagnetically ordered Fe1.07Te

    Science.gov (United States)

    Song, Yu; Lu, Xingye; Regnault, L.-P.; Su, Yixi; Lai, Hsin-Hua; Hu, Wen-Jun; Si, Qimiao; Dai, Pengcheng

    2018-02-01

    Unconventional superconductivity typically emerges in the presence of quasidegenerate ground states, and the associated intense fluctuations are likely responsible for generating the superconducting state. Here we use polarized neutron scattering to study the spin space anisotropy of spin excitations in Fe1.07Te exhibiting bicollinear antiferromagnetic (AF) order, the parent compound of FeTe1 -xSex superconductors. We confirm that the low-energy spin excitations are transverse spin waves, consistent with a local-moment origin of the bicollinear AF order. While the ordered moments lie in the a b plane in Fe1.07Te , it takes less energy for them to fluctuate out of plane, similar to BaFe2As2 and NaFeAs. At energies above E ≳20 meV, we find magnetic scattering to be dominated by an isotropic continuum that persists up to at least 50 meV. Although the isotropic spin excitations cannot be ascribed to spin waves from a long-range-ordered local-moment antiferromagnet, the continuum can result from the bicollinear magnetic order ground state of Fe1.07Te being quasidegenerate with plaquette magnetic order.

  12. Bulk viscosity in holographic Lifshitz hydrodynamics

    International Nuclear Information System (INIS)

    Hoyos, Carlos; Kim, Bom Soo; Oz, Yaron

    2014-01-01

    We compute the bulk viscosity in holographic models dual to theories with Lifshitz scaling and/or hyperscaling violation, using a generalization of the bulk viscosity formula derived in arXiv:1103.1657 from the null focusing equation. We find that only a class of models with massive vector fields are truly Lifshitz scale invariant, and have a vanishing bulk viscosity. For other holographic models with scalars and/or massless vector fields we find a universal formula in terms of the dynamical exponent and the hyperscaling violation exponent

  13. Analysis of clinically relevant values of Ki-67 labeling index in Japanese breast cancer patients.

    Science.gov (United States)

    Tamaki, Kentaro; Ishida, Takanori; Tamaki, Nobumitsu; Kamada, Yoshihiko; Uehara, Kanou; Miyashita, Minoru; Amari, Masakazu; Tadano-Sato, Akiko; Takahashi, Yayoi; Watanabe, Mika; McNamara, Keely; Ohuchi, Noriaki; Sasano, Hironobu

    2014-05-01

    It has become important to standardize the methods of Ki-67 evaluation in breast cancer patients, especially those used in the interpretation and scoring of immunoreactivity. Therefore, in this study, we examined the Ki-67 immunoreactivity of breast cancer surgical specimens processed and stained in the same manner in one single Japanese institution by counting nuclear immunoreactivity in the same fashion. We examined 408 Japanese breast cancers with invasive ductal carcinoma and studied the correlation between Ki-67 labeling index and ER/HER2 status and histological grade of breast cancer. We also analyzed overall survival (OS) and disease-free survival (DFS) of these patients according to individual Ki-67 labeling index. There were statistically significant differences of Ki-67 labeling index between ER positive/HER2 negative and ER positive/HER2 positive, ER negative/HER2 positive or ER negative/HER2 negative, and ER positive/HER2 positive and ER negative/HER2 negative groups (all P < 0.001). There were also statistically significant differences of Ki-67 labeling index among each histological grade (P < 0.001, respectively). As for multivariate analyses, Ki-67 labeling index was strongly associated with OS (HR 39.12, P = 0.031) and DFS (HR 10.85, P = 0.011) in ER positive and HER2 negative breast cancer patients. In addition, a statistically significant difference was noted between classical luminal A group and "20 % luminal A" in DFS (P = 0.039) but not between classical luminal A group and "25 % luminal A" (P = 0.105). A significant positive correlation was detected between Ki-67 labeling index and ER/HER2 status and histological grades of the cases examined in our study. The suggested optimal cutoff point of Ki-67 labeling index is between 20 and 25 % in ER positive and HER2 negative breast cancer patients.

  14. Longitudinal and bulk viscosities of expanded rubidium

    International Nuclear Information System (INIS)

    Zaheri, Ali Hossein Mohammad; Srivastava, Sunita; Tankeshwar, K

    2003-01-01

    First three non-vanishing sum rules for the bulk and longitudinal stress auto-correlation functions have been evaluated for liquid Rb at six thermodynamic states along the liquid-vapour coexistence curve. The Mori memory function formalism and the frequency sum rules have been used to calculate bulk and longitudinal viscosities. The results thus obtained for the ratio of bulk viscosity to shear viscosity have been compared with experimental and other theoretical predictions wherever available. The values of the bulk viscosity have been found to be more than the corresponding values of the shear viscosity for all six thermodynamic states investigated here

  15. Muon Knight shift and μ+ site in the monopnictide CeAs

    International Nuclear Information System (INIS)

    Schenck, A.; Amato, A.; Gygax, F.N.; Pinkpank, M.; Ott, H.R.

    1997-01-01

    The transverse field μSR-signal from μ + implanted in a CeAs single crystal shows a splitting into two components, displaying a positive and a negative Knight shift, respectively which both scale reasonably well with the magnetic bulk susceptibility above 10 K. The orientation dependence of the frequency shifts, measured at 15 K, is fully accounted for by the demagnetization field, implying an isotropic Knight shift, consistent with the μ + residing at the only interstitial site of high (cubic) symmetry, i.e., at the position (1/4,1/4,1/4). The occurrence of a split signal remains unexplained

  16. Two-point paraxial traveltime formula for inhomogeneous isotropic and anisotropic media: Tests of accuracy

    KAUST Repository

    Waheed, Umair bin; Psencik, Ivan; Cerveny, Vlastislav; Iversen, Einar; Alkhalifah, Tariq Ali

    2013-01-01

    On several simple models of isotropic and anisotropic media, we have studied the accuracy of the two-point paraxial traveltime formula designed for the approximate calculation of the traveltime between points S' and R' located in the vicinity of points S and R on a reference ray. The reference ray may be situated in a 3D inhomogeneous isotropic or anisotropic medium with or without smooth curved interfaces. The twopoint paraxial traveltime formula has the form of the Taylor expansion of the two-point traveltime with respect to spatial Cartesian coordinates up to quadratic terms at points S and R on the reference ray. The constant term and the coefficients of the linear and quadratic terms are determined from quantities obtained from ray tracing and linear dynamic ray tracing along the reference ray. The use of linear dynamic ray tracing allows the evaluation of the quadratic terms in arbitrarily inhomogeneous media and, as shown by examples, it extends the region of accurate results around the reference ray between S and R (and even outside this interval) obtained with the linear terms only. Although the formula may be used for very general 3D models, we concentrated on simple 2D models of smoothly inhomogeneous isotropic and anisotropic (~8% and ~20% anisotropy) media only. On tests, in which we estimated twopoint traveltimes between a shifted source and a system of shifted receivers, we found that the formula may yield more accurate results than the numerical solution of an eikonal-based differential equation. The tests also indicated that the accuracy of the formula depends primarily on the length and the curvature of the reference ray and only weakly depends on anisotropy. The greater is the curvature of the reference ray, the narrower its vicinity, in which the formula yields accurate results.

  17. Two-point paraxial traveltime formula for inhomogeneous isotropic and anisotropic media: Tests of accuracy

    KAUST Repository

    Waheed, Umair bin

    2013-09-01

    On several simple models of isotropic and anisotropic media, we have studied the accuracy of the two-point paraxial traveltime formula designed for the approximate calculation of the traveltime between points S\\' and R\\' located in the vicinity of points S and R on a reference ray. The reference ray may be situated in a 3D inhomogeneous isotropic or anisotropic medium with or without smooth curved interfaces. The twopoint paraxial traveltime formula has the form of the Taylor expansion of the two-point traveltime with respect to spatial Cartesian coordinates up to quadratic terms at points S and R on the reference ray. The constant term and the coefficients of the linear and quadratic terms are determined from quantities obtained from ray tracing and linear dynamic ray tracing along the reference ray. The use of linear dynamic ray tracing allows the evaluation of the quadratic terms in arbitrarily inhomogeneous media and, as shown by examples, it extends the region of accurate results around the reference ray between S and R (and even outside this interval) obtained with the linear terms only. Although the formula may be used for very general 3D models, we concentrated on simple 2D models of smoothly inhomogeneous isotropic and anisotropic (~8% and ~20% anisotropy) media only. On tests, in which we estimated twopoint traveltimes between a shifted source and a system of shifted receivers, we found that the formula may yield more accurate results than the numerical solution of an eikonal-based differential equation. The tests also indicated that the accuracy of the formula depends primarily on the length and the curvature of the reference ray and only weakly depends on anisotropy. The greater is the curvature of the reference ray, the narrower its vicinity, in which the formula yields accurate results.

  18. Numerical implementation of a transverse-isotropic inelastic, work-hardening constitutive model

    International Nuclear Information System (INIS)

    Baladi, G.Y.

    1977-01-01

    This paper documents the numerical implementation of a model, specifically a transverse-isotropic, inelastic, work-hardening constitutive model. A brief overview of the mathematical formulation of the model is presented to facilitate the understanding of its numerical implementation. The model is based on incremental flow theories for materials which have time- and temperature-independent properties and which are capable of undergoing small plastic as well as small elastic strain at each loading increment. In addition, the model is written in terms of 'pseudo' stress invariants so that the incremental anisotropic stress-strain relationship can be readily incorporated into existing finite-difference or finite-element computer codes. The isotropic version of the model is retrieved without any changes in the mathematical formulation or in the numerical implementation (algorithm) of the model. Various methods exist for incorporating inelastic constitutive models into computer programs. The method presented in this paper is appropriate for both finite-difference and finite-element codes, and is applicable for solving static as wall as dynamic problems. This method expresses the material constitutive properties as a matrix of coefficients, C (generalized tangent moduli), which relates incremental stresses to incremental strains. It possesses desirable convergence properties. In either finite-difference or finite-element applications the input quantities are the initial stress components, obtained at the end of the previous strain increment, and the new strain increments. The output quantities are the new values of the stress components

  19. Faithful transformation of quasi-isotropic to Weyl-Papapetrou coordinates: a prerequisite to compare metrics

    International Nuclear Information System (INIS)

    Pappas, G; Apostolatos, T A

    2008-01-01

    We demonstrate how one should transform correctly quasi-isotropic coordinates to Weyl-Papapetrou coordinates in order to compare the metric around a rotating star, which has been constructed numerically in the former coordinates, with an axially symmetric stationary metric, which is given through an analytical form in the latter coordinates. (comments, replies and notes)

  20. Faithful transformation of quasi-isotropic to Weyl-Papapetrou coordinates: a prerequisite to compare metrics

    Energy Technology Data Exchange (ETDEWEB)

    Pappas, G; Apostolatos, T A [Section of Astrophysics, Astronomy and Mechanics, Department of Physics, University of Athens, Panepistimiopolis Zografos GR15783, Athens (Greece)

    2008-11-21

    We demonstrate how one should transform correctly quasi-isotropic coordinates to Weyl-Papapetrou coordinates in order to compare the metric around a rotating star, which has been constructed numerically in the former coordinates, with an axially symmetric stationary metric, which is given through an analytical form in the latter coordinates. (comments, replies and notes)

  1. Terahertz electromagnetic response and its electric field manipulation of bulked silicene

    International Nuclear Information System (INIS)

    Bao, Hairui; Liao, Wenhu; Guo, Junji; Zhao, Heping; Zhou, Guanghui

    2015-01-01

    We theoretically investigate the infrared optical properties of a three-terminal silicene-based device under the irradiation of a circularly polarized terahertz (THz) electromagnetic field, utilizing the intersubband transition theorem at low temperatures. It has been demonstrated that the electronic structure of bulked silicene can be tuned to the topological insulated (TI) and band insulated (BI) state, respectively, via the back-gate voltage induced staggered sublattice potential. Furthermore, with the enhancement of the staggered sublattice potential, the refractive index, extinction coefficient and optical conductivity from the TI state spin-up and -down subbands are observed to be red- and blue-shifted, respectively, while those from the BI state spin-up and -down subbands are proved to be continually blue-shifted. The collective excitations and individual electron–hole pair excitations induced a TI and BI state electron energy loss spectrum (EELS) with a similar red- and/or blue-shift behaviour as the refractive index, extinction coefficient and optical conductivity. The obtained results may be useful in the design of the spintronic and optoelectronic devices based on silicene. (letter)

  2. The creep compliance, the relaxation modulus and the complex compliance of linear viscoelastic, homogeneous, isotropic materials

    International Nuclear Information System (INIS)

    Wong, P.K.

    1989-01-01

    This paper reports on a study to obtain the creep compliance, the relaxation modulus and the complex compliance derived from the concept of mechanical resistance for the constitutive equation of a class of linear viscoelastic, homogeneous, isotropic materials

  3. Study on the radial vibration and acoustic field of an isotropic circular ring radiator.

    Science.gov (United States)

    Lin, Shuyu; Xu, Long

    2012-01-01

    Based on the exact analytical theory, the radial vibration of an isotropic circular ring is studied and its electro-mechanical equivalent circuit is obtained. By means of the equivalent circuit model, the resonance frequency equation is derived; the relationship between the radial resonance frequency, the radial displacement amplitude magnification and the geometrical dimensions, the material property is analyzed. For comparison, numerical method is used to simulate the radial vibration of isotropic circular rings. The resonance frequency and the radial vibrational displacement distribution are obtained, and the radial radiation acoustic field of the circular ring in radial vibration is simulated. It is illustrated that the radial resonance frequencies from the analytical method and the numerical method are in good agreement when the height is much less than the radius. When the height becomes large relative to the radius, the frequency deviation from the two methods becomes large. The reason is that the exact analytical theory is limited to thin circular ring whose height must be much less than its radius. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Stackel spaces of an electrovacuum with isotropic complete sets. Formulation of problem and basic relations

    International Nuclear Information System (INIS)

    Bagrov, V.G.; Evseevich, A.A.; Obukhov, V.V.; Osetrin, K.E.

    1987-01-01

    The authors consider the problem of the classification of the Stackel spaces of the electrovacuum with isotropic complete sets. The metrics of the spaces are represented in a form that is convenient for their investigation. We obtain necessary relations for the construction of the field equations

  5. The offset-midpoint traveltime pyramid in 3D transversely isotropic media with a horizontal symmetry axis

    KAUST Repository

    Hao, Qi

    2014-12-30

    Analytic representation of the offset-midpoint traveltime equation for anisotropy is very important for prestack Kirchhoff migration and velocity inversion in anisotropic media. For transversely isotropic media with a vertical symmetry axis, the offset-midpoint traveltime resembles the shape of a Cheops’ pyramid. This is also valid for homogeneous 3D transversely isotropic media with a horizontal symmetry axis (HTI). We extended the offset-midpoint traveltime pyramid to the case of homogeneous 3D HTI. Under the assumption of weak anellipticity of HTI media, we derived an analytic representation of the P-wave traveltime equation and used Shanks transformation to improve the accuracy of horizontal and vertical slownesses. The traveltime pyramid was derived in the depth and time domains. Numerical examples confirmed the accuracy of the proposed approximation for the traveltime function in 3D HTI media.

  6. Effect of Obesity on Arch Index in Young Adults

    Directory of Open Access Journals (Sweden)

    Sneha Sameer Ganu

    2013-01-01

    Full Text Available Background: Excessive increases in weight bearing forces caused by obesity may negatively affect the lower limbs and feet but minimal research has examined the long-term loading effects of obesity on the musculoskeletal system, particularly in reference to the feet. Objectives: The purpose of the study was to investigate the effect of obesity on medial longitudinal arch of foot in young adults. Method: 60 subjects, 30 obese & 30 non obese were assessed for height & weight using standard technique. Radiographic images under static condition were used for calculating the arch index. Result: The arch index of obese subjects was significantly lower than the non obese subjects & there is a negative correlation between the BMI & the arch index. Conclusion: These results suggests that obesity lowers the medial longitudinal arch of foot.

  7. Self induced gratings in ternary SiO2:SnO2:Na2O bulk glasses by UV light seeding.

    Science.gov (United States)

    Lancry, M; Douay, M; Niay, P; Beclin, F; Menke, Y; Milanese, D; Ferraris, M; Poumellec, B

    2005-09-05

    The diffraction efficiency of gratings written in ternary SnO2:SiO2:Na2O bulk glasses rises dramatically with time after the occultation of the cw 244nm light used to write the thick hologram. This self-induced behavior lasts for several hours and ultimately leads to refractive index changes as high as 3 10-3.

  8. Highly tilted liquid crystalline materials possessing a direct phase transition from antiferroelectric to isotropic phase

    Energy Technology Data Exchange (ETDEWEB)

    Milewska, K.; Drzewiński, W. [Institute of Chemistry, Military University of Technology, 00-908 Warsaw (Poland); Czerwiński, M., E-mail: mczerwinski@wat.edu.pl [Institute of Chemistry, Military University of Technology, 00-908 Warsaw (Poland); Dąbrowski, R. [Institute of Chemistry, Military University of Technology, 00-908 Warsaw (Poland); Piecek, W. [Institute of Applied Physics, Military University of Technology, 00-908 Warsaw (Poland)

    2016-03-01

    Pure compounds and multicomponent mixtures with a broad temperature range of high tilted liquid crystalline antiferroelectric phase and a direct phase transition from antiferroelectric to isotropic phase, were obtained. X-ray diffraction analysis confirms these kinds of materials form a high tilted anticlinic phase, with a fixed layer spacing and very weak dependency upon temperature, after the transition from the isotropic phase. Due to this, not only pure orthoconic antiferroelectric liquid crystals but also those with a moderate tilt should generate a good dark state. Furthermore, due to the increased potential for forming anticlinic forces, such materials could minimize a commonly observed asymmetry of a rise and fall switching times at a surface stabilized geometry. - Highlights: • The new class of liquid crystalline materials with the direct SmC{sub A}*. • Iso phase transition were obtained. • Materials possess the layer spacing fixed and very weak dependent upon temperature. • Smectic layers without shrinkage are observed. • A good dark state can be generate in SSAFLC.

  9. Growth-induced axial buckling of a slender elastic filament embedded in an isotropic elastic matrix

    KAUST Repository

    O'Keeffe, Stephen G.

    2013-11-01

    We investigate the problem of an axially loaded, isotropic, slender cylinder embedded in a soft, isotropic, outer elastic matrix. The cylinder undergoes uniform axial growth, whilst both the cylinder and the surrounding elastic matrix are confined between two rigid plates, so that this growth results in axial compression of the cylinder. We use two different modelling approaches to estimate the critical axial growth (that is, the amount of axial growth the cylinder is able to sustain before it buckles) and buckling wavelength of the cylinder. The first approach treats the filament and surrounding matrix as a single 3-dimensional elastic body undergoing large deformations, whilst the second approach treats the filament as a planar, elastic rod embedded in an infinite elastic foundation. By comparing the results of these two approaches, we obtain an estimate of the foundation modulus parameter, which characterises the strength of the foundation, in terms of the geometric and material properties of the system. © 2013 Elsevier Ltd. All rights reserved.

  10. Locality, bulk equations of motion and the conformal bootstrap

    Energy Technology Data Exchange (ETDEWEB)

    Kabat, Daniel [Department of Physics and Astronomy, Lehman College, City University of New York,250 Bedford Park Blvd. W, Bronx NY 10468 (United States); Lifschytz, Gilad [Department of Mathematics, Faculty of Natural Science, University of Haifa,199 Aba Khoushy Ave., Haifa 31905 (Israel)

    2016-10-18

    We develop an approach to construct local bulk operators in a CFT to order 1/N{sup 2}. Since 4-point functions are not fixed by conformal invariance we use the OPE to categorize possible forms for a bulk operator. Using previous results on 3-point functions we construct a local bulk operator in each OPE channel. We then impose the condition that the bulk operators constructed in different channels agree, and hence give rise to a well-defined bulk operator. We refer to this condition as the “bulk bootstrap.” We argue and explicitly show in some examples that the bulk bootstrap leads to some of the same results as the regular conformal bootstrap. In fact the bulk bootstrap provides an easier way to determine some CFT data, since it does not require knowing the form of the conformal blocks. This analysis clarifies previous results on the relation between bulk locality and the bootstrap for theories with a 1/N expansion, and it identifies a simple and direct way in which OPE coefficients and anomalous dimensions determine the bulk equations of motion to order 1/N{sup 2}.

  11. Quantitative study of neurofilament-positive fiber length in rat spinal cord lesions using isotropic virtual planes

    DEFF Research Database (Denmark)

    von Euler, Mia; Larsen, Jytte Overgaard; Janson, A M

    1998-01-01

    analysis after spinal cord injury is needed. Length quantification of the putatively spontaneously regenerating fibers has been difficult until recently, when two length estimators based on sampling with isotropic virtual planes within thick physical sections were introduced. The applicability...

  12. Improvement of thermal shock resistance of isotropic graphite by Ti-doping

    International Nuclear Information System (INIS)

    Lopez-Galilea, I.; Ordas, N.; Garcia-Rosales, C.; Lindig, S.

    2009-01-01

    Ti-doped isotropic graphite is a promising candidate material for the strike point area of the ITER divertor due to its reduced chemical erosion by hydrogen bombardment and its high thermal shock resistance, mainly due the catalytic effect of TiC on the graphitization leading to an increase of thermal conductivity and to higher mechanical strength. Several manufacturing parameters such as oxidative stabilization treatment, carbonization cycle, graphitization temperature and dwell time during graphitization have been investigated in order to establish a relationship between these parameters and the final properties.

  13. Improvement of thermal shock resistance of isotropic graphite by Ti-doping

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Galilea, I. [Inmaculada Lopez-Galilea, CEIT and Tecnun (University of Navarra), Po de Manuel Lardizabal, 15 E-20018 San Sebastian (Spain)], E-mail: ilopez@ceit.es; Ordas, N.; Garcia-Rosales, C. [Inmaculada Lopez-Galilea, CEIT and Tecnun (University of Navarra), Po de Manuel Lardizabal, 15 E-20018 San Sebastian (Spain); Lindig, S. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, D-85748 Garching (Germany)

    2009-04-30

    Ti-doped isotropic graphite is a promising candidate material for the strike point area of the ITER divertor due to its reduced chemical erosion by hydrogen bombardment and its high thermal shock resistance, mainly due the catalytic effect of TiC on the graphitization leading to an increase of thermal conductivity and to higher mechanical strength. Several manufacturing parameters such as oxidative stabilization treatment, carbonization cycle, graphitization temperature and dwell time during graphitization have been investigated in order to establish a relationship between these parameters and the final properties.

  14. Mode locking of Yb:GdYAG ceramic lasers with an isotropic cavity

    International Nuclear Information System (INIS)

    Xu, C W; Tang, D Y; Zhu, H Y; Zhang, J

    2013-01-01

    We report on the passive mode locking of a diode pumped Yb:GdYAG ceramic laser with a near isotropic cavity. It is found that the laser could simultaneously mode lock in the two orthogonal principal polarization directions of the cavity, and the mode locked pulses of the two polarizations have identical features and are temporally perfectly synchronized. However, their pulse energy varies out-of-phase periodically, manifesting the antiphase dynamics of mode locked lasers. (letter)

  15. Phase transition induced for external field in tree-dimensional isotropic Heisenberg antiferromagnet

    OpenAIRE

    Neto, Minos A.; Viana, J. Roberto; Salmon, Octavio D. R.; Filho, E. Bublitz; de Sousa, J. Ricardo

    2017-01-01

    In this paper, we report mean-field and effective-field renormalization group calculations on the isotropic Heisenberg antiferromagnetic model under a longitudinal magnetic field. As is already known, these methods, denoted by MFRG and EFRG, are based on the comparison of two clusters of different sizes, each of them trying to mimic certain Bravais lattice. Our attention has been on the obtantion of the critical frontier in the plane of temperature versus magnetic field, for the simple cubic ...

  16. Scattering of obliquely incident standing wave by a rotating transversely isotropic cylinder

    CSIR Research Space (South Africa)

    Shatalov, MY

    2006-05-01

    Full Text Available stream_source_info Shatalov2_2006.pdf.txt stream_content_type text/plain stream_size 15905 Content-Encoding UTF-8 stream_name Shatalov2_2006.pdf.txt Content-Type text/plain; charset=UTF-8 1 CSIR Material Science..., Tshwane University of Technology, South Africa. 2 CSIR Material Science and Manufacturing Abstract It is known that vibrating patterns of an isotropic cylinder, subjected to inertial rotation over the symmetry axis, precess in the direction...

  17. National intelligence estimates and the Failed State Index.

    Science.gov (United States)

    Voracek, Martin

    2013-10-01

    Across 177 countries around the world, the Failed State Index, a measure of state vulnerability, was reliably negatively associated with the estimates of national intelligence. Psychometric analysis of the Failed State Index, compounded of 12 social, economic, and political indicators, suggested factorial unidimensionality of this index. The observed correspondence of higher national intelligence figures to lower state vulnerability might arise through these two macro-level variables possibly being proxies of even more pervasive historical and societal background variables that affect both.

  18. Estimativa da radiação global incidente em superfícies inclinadas por modelos isotrópicos e índice de claridade Estimation of the incident global radiation on tilted surfaces using isotropic models and clearness index

    Directory of Open Access Journals (Sweden)

    Adilson Pacheco de Souza

    2010-04-01

    Full Text Available O objetivo deste trabalho foi avaliar o desempenho de modelos isotrópicos de estimativa do total de radiação incidente em superfícies inclinadas e propor estimativas com base nas correlações entre os índices de claridade horizontais e inclinados, em diferentes condições de cobertura de céu, em Botucatu, SP. Foram avaliadas superfícies com inclinação de 12,85º, 22,85º e 32,85º, pelos modelos isotrópicos propostos por Liu & Jordan, Revfeim, Jimenez & Castro, Koronakis, a teoria Circunsolar, e a correlação entre os índices de claridade horizontais e inclinados, para diferentes condições de cobertura de céu. O banco de dados de radiação global utilizado corresponde ao período de 1998 a 2007, com intervalos de 4/1998 a 8/2001 para a inclinação de 22,85º, de 9/2001 a 2/2003 para 12,85º e de 1/2004 a 12/2007 para 32,85º. O desempenho dos modelos foi avaliado pelos indicadores estatísticos erro absoluto médio, raiz quadrada do quadrado médio do erro e índice "d" de Wilmott. Os modelos de Liu & Jordan, Koronakis e de Revfeim apresentaram os melhores desempenhos em dias nublados, em todas as inclinações. As coberturas de céu parcialmente difuso e parcialmente aberto, nos maiores ângulos de inclinação, apresentaram as maiores dispersões entre valores estimados e medidos, independentemente do modelo. As equações estatísticas apresentaram bons resultados em aplicações com agrupamentos de dados mensais.The objective of this work was to evaluate the performance of isotropic models estimative of the global radiation on tilted surfaces and to propose estimations based on correlation between the clearness index for horizontal and tilted surfaces, for different sky conditions, in Botucatu, SP, Brazil. The isotropic model proposed by Liu & Jordan, Revfeim, Jimenez & Castro, Koronakis, the Circunsolar theory and the correlation between the clearness index for horizontal and tilted surfaces, for different sky conditions

  19. X-ray and Moessbauer investigations of isotropic barium ferrites

    International Nuclear Information System (INIS)

    Kirichok, P.P.; Pashchenko, V.A.; Dem'yaniv, T.O.; Ryabova, G.N.; Lisovskij, A.M.

    1984-01-01

    Using the methods of X-ray and γ-resonance spectroscopy the crystal chemical and magnetic structure of isotropic barium hexaferrites is studied. compacting pressure the lattice parameter c of ferrite of the BaOx5.7Fe 2 O 3 is decreased and the diffraction line width on its X-ray p attern is increased. Due to increasing the isoststical compacting pressure quadrupole splitting of the γ-resonance absorption spectrum of 57 Fe nuclei in tetrahedral positions 4f 1 and in positions 2a decreases. The sintering temperature growth leads to increasing the lattice parameter c and diffraction line widths and decreasing the effeutive field values and isomeric s hifts on 57 Fe nuclei. Isostatical compacting pressure does not affect the electron configuration of iron ions

  20. Grated waveguide-based optical cavities as compact sensors for sub-nanometre cantilever deflections, and small refractive-index changes

    NARCIS (Netherlands)

    Kauppinen, L.J.; Hoekstra, Hugo; Dijkstra, Mindert; de Ridder, R.M.; Krijnen, Gijsbertus J.M.; MacCraith, B; McDonagh, C.

    2008-01-01

    The paper reports on theoretical and experimental results of integrated optical (IO) cavities defined by grated waveguides in $Si_3N_4$ and Si, for the accurate detection of cantilever deflection and bulk index changes.