WorldWideScience

Sample records for bubble model compared

  1. Comparative study of wall-force models for the simulation of bubbly flows

    Energy Technology Data Exchange (ETDEWEB)

    Rzehak, Roland, E-mail: r.rzehak@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Fluid Dynamics, POB 510119, D-01314 Dresden (Germany); Krepper, Eckhard, E-mail: E.Krepper@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Fluid Dynamics, POB 510119, D-01314 Dresden (Germany); Lifante, Conxita, E-mail: Conxita.Lifante@ansys.com [ANSYS Germany GmbH, Staudenfeldweg 12, 83624 Otterfing (Germany)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Comparison of common models for the wall force with an experimental database. Black-Right-Pointing-Pointer Identification of suitable closure for bubbly flow. Black-Right-Pointing-Pointer Enables prediction of location and height of wall peak in void fraction profiles. - Abstract: Accurate numerical prediction of void-fraction profiles in bubbly multiphase-flow relies on suitable closure models for the momentum exchange between liquid and gas phases. We here consider forces acting on the bubbles in the vicinity of a wall. A number of different models for this so-called wall-force have been proposed in the literature and are implemented in widely used CFD-codes. Simulations using a selection of these models are compared with a set of experimental data on bubbly air-water flow in round pipes of different diameter. Based on the results, recommendations on suitable closures are given.

  2. Modeling of the evolution of bubble size distribution of gas-liquid flow inside a large vertical pipe. Influence of bubble coalescence and breakup models

    International Nuclear Information System (INIS)

    Liao, Yixiang; Lucas, Dirk

    2011-01-01

    The range of gas-liquid flow applications in today's technology is immensely wide. Important examples can be found in chemical reactors, boiling and condensation equipments as well as nuclear reactors. In gas-liquid flows, the bubble size distribution plays an important role in the phase structure and interfacial exchange behaviors. It is therefore necessary to take into account the dynamic change of the bubble size distribution to get good predictions in CFD. An efficient 1D Multi-Bubble-Size-Class Test Solver was introduced in Lucas et al. (2001) for the simulation of the development of the flow structure along a vertical pipe. The model considers a large number of bubble classes. It solves the radial profiles of liquid and gas velocities, bubble-size class resolved gas fraction profiles as well as turbulence parameters on basis of the bubble size distribution present at the given axial position. The evolution of the flow along the height is assumed to be solely caused by the progress of bubble coalescence and break-up resulting in a bubble size distribution changing in the axial direction. In this model, the bubble coalescence and breakup models are very important for reasonable predictions of the bubble size distribution. Many bubble coalescence and breakup models have been proposed in the literature. However, some obvious discrepancies exist in the models; for example, the daughter bubble size distributions are greatly different from different bubble breakup models, as reviewed in our previous publication (Liao and Lucas, 2009a; 2010). Therefore, it is necessary to compare and evaluate typical bubble coalescence and breakup models that have been commonly used in the literature. Thus, this work is aimed to make a comparison of several typical bubble coalescence and breakup models and to discuss in detail the ability of the Test Solver to predict the evolution of bubble size distribution. (orig.)

  3. Modeling of bubble break-up in stirred tanks

    Directory of Open Access Journals (Sweden)

    Živković Goran

    2004-01-01

    Full Text Available The Lagrangian code LAG3D for dispersed phase flow modeling was implemented with the introduction of bubble break-up model. The research was restricted on bubbles with diameter less than 2 mm, i.e. bubbles which could be treated as spheres. The model was developed according to the approach of Martinez-Bazan model. It was rearranged and adjusted for the use in the particular problem of flow in stirred tanks. Developed model is stochastic one, based on the assumption that shear in the flow induces the break of the bubble. As a dominant parameter a dissipation of the turbulent kinetic energy was used. Computations were performed for two different types of the stirrer: Rushton turbine, and Pitch blade turbine. The geometry of the tank was kept constant (four blades. Two different types of liquids with very big difference in viscosity were used, i.e. silicon oil and dimethylsulfoxide, in order to enable computation of the flow in turbulent regime as well. As a parameter of the flow, the number of rotations of the stirrer was varying. As a result of the computation the fields of velocity of both phases were got, as well as the fields of bubble concentration bubble mean diameter and bubble Sauter diameter. To estimate the influence of the break-up model on the processes in the stirred tank a computations with and without this model were performed and compared. A considerable differences were found not only in the field of bubble diameter, but also in the field of bubble concentration. That confirmed a necessity of the introduction of such model. A comparison with the experiments performed with phase Doppler anemometry technique showed very good agreement in velocity and concentration profiles of the gas phase. The results for the average bubble diameter are qualitatively the same, but in almost all computations about 20% smaller bubble diameter was got than in the measurements.

  4. Two-fluid model LES of a bubble column

    International Nuclear Information System (INIS)

    Brahma N Reddy Vanga; Martin A Lopez de Bertodano; Eckhard Krepper; Alexandr Zaruba; Horst-Michael Prasser

    2005-01-01

    The hydrodynamics of a rectangular bubble column operating in the dispersed bubbly regime has been numerically investigated using a two-fluid model Large Eddy Simulation (LES). Experimental data were obtained to validate the model. LES computational fluid dynamic calculations of the transient flow for the bubble column were performed to account for the turbulence in the liquid phase. The computational mesh is of the same scale as the bubble size. The sub grid-scale Reynolds stresses were calculated with the Smagorinsky model. Furthermore, the effect of the bubbles on the turbulence in the continuous phase was modeled using Sato's eddy viscosity model for bubble-induced turbulence. Mean quantities were computed by averaging over a time period that was longer than the dynamic time scales of the turbulence, in particular the void fraction and the average velocity of the bubbles. A systematic analysis of the effect of the interfacial momentum transfer terms on these quantities has been conducted. The bubble column was locally aerated using a sparger located in the center of the bottom plate. The experimental studies involve wire-mesh tomography measurements for void fraction and bubble size distributions and digital image processing of high speed camera images for estimation of bubble velocities, size distributions and flow patterns. Experiments were performed for various aspect ratios (height of water column to width ratio) and superficial gas velocities. It was found that the non-drag bubble forces play a very prominent role in the predicting the correct flow pattern and void fraction distributions. In the calculations, the lift force and the wall force were considered. A 'wall peak' in the time averaged void fraction distribution has been experimentally observed and this cannot be predicted without including these non-drag forces in the numerical calculations. In this paper, experimental data are compared with the results of the numerical simulations. (authors)

  5. A three field two fluid CFD model for the bubbly-cap bubble regime

    International Nuclear Information System (INIS)

    Martin Lopez de Bertodano; Xiaodong Sun; Mamoru Ishii; Asim Ulke

    2005-01-01

    Full text of publication follows: The lateral phase distribution of a two phase duct flow in the cap bubble regime is analyzed with a three dimensional three field two-fluid CFD model based on the turbulent k-ε model for bubbly flows developed by Lopez de Bertodano et. al. [2]. The turbulent diffusion of the bubbles is the dominant phase distribution mechanism. A new analytic result is presented to support the development of the model for the bubble induced turbulent diffusion force. New experimental data obtained with a state-of-the-art four sensor miniature conductivity probe are used to validate the two-fluid model. The focus of this work is modeling the transport of the dispersed phase. Previous work (e.g., Lopez de Bertodano et. al.) was focused on the interfacial forces of drag, lift and virtual mass. However, the dispersion of the bubbles by the turbulent eddies of the continuous phase must be considered too. The rigorous formulation of a model for the turbulent dispersion of the bubbles results in a turbulent diffusion force which is obtained from a probability distribution function average (i.e., Boltzmann averaging) of the dispersed phase momentum equation. This force was recently applied to a turbulent bubbly jet with small bubbles (i.e., 1 mm diameter) without adjusting any coefficient. However, the application of this force to industrial conditions (i.e., larger bubbles) requires specific two-phase flow experimental data to calibrate the model due to the uncertainties of the flow around large bubbles. In particular the void distribution and the interfacial area concentration are measured in a mixture of big and small bubbles. The state-of-the-art miniaturized four-sensor conductivity probe developed by Kim et al. [3] is used to obtain the interfacial area concentration in complex two-phase flow situations. This probe can discriminate between small and large bubbles so it offers an opportunity to perform further developments of the multidimensional two

  6. A grid-independent EMMS/bubbling drag model for bubbling and turbulent fluidization

    DEFF Research Database (Denmark)

    Luo, Hao; Lu, Bona; Zhang, Jingyuan

    2017-01-01

    The EMMS/bubbling drag model takes the effects of meso-scale structures (i.e. bubbles) into modeling of drag coefficient and thus improves coarse-grid simulation of bubbling and turbulent fluidized beds. However, its dependence on grid size has not been fully investigated. In this article, we adopt...... a two-step scheme to extend the EMMS/bubbling model to the sub-grid level. Thus the heterogeneity index, HD, which accounts for the hydrodynamic disparity between homogeneous and heterogeneous fluidization, can be correlated as a function of both local voidage and slip velocity. Simulations over...... a periodic domain show the new drag model is less sensitive to grid size because of the additional dependence on local slip velocity. When applying the new drag model to simulations of realistic bubbling and turbulent fluidized beds, we find grid-independent results are easier to obtain for high...

  7. Argonne Bubble Experiment Thermal Model Development III

    Energy Technology Data Exchange (ETDEWEB)

    Buechler, Cynthia Eileen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-01-11

    This report describes the continuation of the work reported in “Argonne Bubble Experiment Thermal Model Development” and “Argonne Bubble Experiment Thermal Model Development II”. The experiment was performed at Argonne National Laboratory (ANL) in 2014. A rastered 35 MeV electron beam deposited power in a solution of uranyl sulfate, generating heat and radiolytic gas bubbles. Irradiations were performed at beam power levels between 6 and 15 kW. Solution temperatures were measured by thermocouples, and gas bubble behavior was recorded. The previous report2 described the Monte-Carlo N-Particle (MCNP) calculations and Computational Fluid Dynamics (CFD) analysis performed on the as-built solution vessel geometry. The CFD simulations in the current analysis were performed using Ansys Fluent, Ver. 17.2. The same power profiles determined from MCNP calculations in earlier work were used for the 12 and 15 kW simulations. The primary goal of the current work is to calculate the temperature profiles for the 12 and 15 kW cases using reasonable estimates for the gas generation rate, based on images of the bubbles recorded during the irradiations. Temperature profiles resulting from the CFD calculations are compared to experimental measurements.

  8. Modeling of mass transfer and chemical reactions in a bubble column reactor using a discrete bubble model

    NARCIS (Netherlands)

    Darmana, D.; Deen, N.G.; Kuipers, J.A.M.

    2004-01-01

    A 3D discrete bubble model is adopted to investigate complex behavior involving hydrodynamics, mass transfer and chemical reactions in a gas-liquid bubble column reactor. In this model a continuum description is adopted for the liquid phase and additionally each individual bubble is tracked in a

  9. Modeling of bubble dynamics in relation to medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Amendt, P.A.; London, R.A. [Lawrence Livermore National Lab., CA (United States); Strauss, M. [California Univ., Davis, CA (United States)]|[Israel Atomic Energy Commission, Beersheba (Israel). Nuclear Research Center-Negev] [and others

    1997-03-12

    In various pulsed-laser medical applications, strong stress transients can be generated in advance of vapor bubble formation. To better understand the evolution of stress transients and subsequent formation of vapor bubbles, two-dimensional simulations are presented in channel or cylindrical geometry with the LATIS (LAser TISsue) computer code. Differences with one-dimensional modeling are explored, and simulated experimental conditions for vapor bubble generation are presented and compared with data. 22 refs., 8 figs.

  10. Modeling of bubble dynamics in relation to medical applications

    International Nuclear Information System (INIS)

    Amendt, P.A.; London, R.A.; Strauss, M.; Israel Atomic Energy Commission, Beersheba

    1997-01-01

    In various pulsed-laser medical applications, strong stress transients can be generated in advance of vapor bubble formation. To better understand the evolution of stress transients and subsequent formation of vapor bubbles, two-dimensional simulations are presented in channel or cylindrical geometry with the LATIS (LAser TISsue) computer code. Differences with one-dimensional modeling are explored, and simulated experimental conditions for vapor bubble generation are presented and compared with data. 22 refs., 8 figs

  11. A comparison of single knock-on and complete bubble destruction models of the fission induced re-solution of gas atoms from bubbles

    International Nuclear Information System (INIS)

    Wood, M.H.

    1978-03-01

    In previous theoretical studies of the behaviour of the fission gases in nuclear fuel, the Nelson single knock-on model of the fission induced re-solution of gas atoms from fission gas bubbles has been employed. In the present investigation, predictions from this model are compared with those from a complete bubble destruction model of the re-solution process. The main conclusions of the study are that the complete bubble destruction model predicts more gas release after a particular irradiation time than the single knock-on model, for the same choice of the model parameters, and that parameter sets chosen to give the same gas release predict significantly different bubble size distribution functions. (author)

  12. Detailed modeling of hydrodynamics mass transfer and chemical reactions in a bubble column using a discrete bubble model

    NARCIS (Netherlands)

    Darmana, D.; Deen, N.G.; Kuipers, J.A.M.

    2005-01-01

    A 3D discrete bubble model is adopted to investigate complex behavior involving hydrodynamics, mass transfer and chemical reactions in a gas–liquid bubble column reactor. In this model a continuum description is adopted for the liquid phase and additionally each individual bubble is tracked in a

  13. Detailed modeling of hydrodynamics mass transfer and chemical reactions in a bubble column using a discrete bubble model

    NARCIS (Netherlands)

    Darmana, D.; Deen, N.G.; Kuipers, J.A.M.

    2005-01-01

    A 3D discrete bubble model is adopted to investigate complex behavior involving hydrodynamics, mass transfer and chemical reactions in a gas¿liquid bubble column reactor. In this model a continuum description is adopted for the liquid phase and additionally each individual bubble is tracked in a

  14. Modelling of boiling bubbly flows using a polydisperse approach

    International Nuclear Information System (INIS)

    Zaepffel, D.

    2011-01-01

    The objective of this work was to improve the modelling of boiling bubbly flows.We focused on the modelling of the polydisperse aspect of a bubble population, i.e. the fact that bubbles have different sizes and different velocities. The multi-size aspect of a bubble population can originate from various mechanisms. For the bubbly flows we are interested in, bubble coalescence, bubble break-up, phase change kinematics and/or gas compressibility inside the bubbles can be mentioned. Since, bubble velocity depends on bubble size, the bubble size spectrum also leads to a bubble velocity spectrum. An averaged model especially dedicated to dispersed flows is introduced in this thesis. Closure of averaged interphase transfer terms are written in a polydisperse framework, i.e. using a distribution function of the bubble sizes and velocities. A quadratic law and a cubic law are here proposed for the modelling of the size distribution function, whose evolution in space and time is then obtained with the use of the moment method. Our averaged model has been implemented in the NEPTUNE-CFD computation code in order to simulate the DEBORA experiment. The ability of our model to deal with sub-cooled boiling flows has therefore been evaluated. (author) [fr

  15. Argonne Bubble Experiment Thermal Model Development II

    Energy Technology Data Exchange (ETDEWEB)

    Buechler, Cynthia Eileen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-01

    This report describes the continuation of the work reported in “Argonne Bubble Experiment Thermal Model Development”. The experiment was performed at Argonne National Laboratory (ANL) in 2014. A rastered 35 MeV electron beam deposited power in a solution of uranyl sulfate, generating heat and radiolytic gas bubbles. Irradiations were performed at three beam power levels, 6, 12 and 15 kW. Solution temperatures were measured by thermocouples, and gas bubble behavior was observed. This report will describe the Computational Fluid Dynamics (CFD) model that was developed to calculate the temperatures and gas volume fractions in the solution vessel during the irradiations. The previous report described an initial analysis performed on a geometry that had not been updated to reflect the as-built solution vessel. Here, the as-built geometry is used. Monte-Carlo N-Particle (MCNP) calculations were performed on the updated geometry, and these results were used to define the power deposition profile for the CFD analyses, which were performed using Fluent, Ver. 16.2. CFD analyses were performed for the 12 and 15 kW irradiations, and further improvements to the model were incorporated, including the consideration of power deposition in nearby vessel components, gas mixture composition, and bubble size distribution. The temperature results of the CFD calculations are compared to experimental measurements.

  16. Well-posed Euler model of shock-induced two-phase flow in bubbly liquid

    Science.gov (United States)

    Tukhvatullina, R. R.; Frolov, S. M.

    2018-03-01

    A well-posed mathematical model of non-isothermal two-phase two-velocity flow of bubbly liquid is proposed. The model is based on the two-phase Euler equations with the introduction of an additional pressure at the gas bubble surface, which ensures the well-posedness of the Cauchy problem for a system of governing equations with homogeneous initial conditions, and the Rayleigh-Plesset equation for radial pulsations of gas bubbles. The applicability conditions of the model are formulated. The model is validated by comparing one-dimensional calculations of shock wave propagation in liquids with gas bubbles with a gas volume fraction of 0.005-0.3 with experimental data. The model is shown to provide satisfactory results for the shock propagation velocity, pressure profiles, and the shock-induced motion of the bubbly liquid column.

  17. Application of coalescence and breakup models in a discrete bubble model for bubble columns

    NARCIS (Netherlands)

    van den Hengel, E.I.V.; Deen, N.G.; Kuipers, J.A.M.

    2005-01-01

    In this work, a discrete bubble model (DBM) is used to investigate the hydrodynamics, coalescence, and breakup occurring in a bubble column. The DBM, originally developed by Delnoij et al. (Chem. Eng. Sci. 1997, 52, 1429-1458; Chem. Eng. Sci. 1999, 54, 2217-2226),1,2 was extended to incorporate

  18. Using a dynamic point-source percolation model to simulate bubble growth

    International Nuclear Information System (INIS)

    Zimmerman, Jonathan A.; Zeigler, David A.; Cowgill, Donald F.

    2004-01-01

    Accurate modeling of nucleation, growth and clustering of helium bubbles within metal tritide alloys is of high scientific and technological importance. Of interest is the ability to predict both the distribution of these bubbles and the manner in which these bubbles interact at a critical concentration of helium-to-metal atoms to produce an accelerated release of helium gas. One technique that has been used in the past to model these materials, and again revisited in this research, is percolation theory. Previous efforts have used classical percolation theory to qualitatively and quantitatively model the behavior of interstitial helium atoms in a metal tritide lattice; however, higher fidelity models are needed to predict the distribution of helium bubbles and include features that capture the underlying physical mechanisms present in these materials. In this work, we enhance classical percolation theory by developing the dynamic point-source percolation model. This model alters the traditionally binary character of site occupation probabilities by enabling them to vary depending on proximity to existing occupied sites, i.e. nucleated bubbles. This revised model produces characteristics for one and two dimensional systems that are extremely comparable with measurements from three dimensional physical samples. Future directions for continued development of the dynamic model are also outlined

  19. A model established of a 'Embryo' bubble growing-up some visible bubble in bubble chamber and its primary theory calculation

    International Nuclear Information System (INIS)

    Ye Zipiao; Sheng Xiangdong

    2006-01-01

    A model of a 'embryo' bubble growing up a visible bubble in the bubble chamber is established. Through primary theory calculation it is shown that the 'embryo' bubble is not only absorbing quantity of heat, but also some molecules get into the 'embryo' bubble from its environment. It is explained reasonably that the radius of bubbles in bubble camber is different for the same energies of neutrons and proton. The track of neutron in bubble camber is long and thin, and the track of proton in bubble camber is wide and short. It is explained reasonably that the bubble radius of the incident particles with more charges which there are the same energies will be wider than that of the incident particles with less charges in the track. It is also explained reasonably that there are a little different radius of the bubbles of a track at the some region. It can be predicted theoretically that there should be big bubbles to burst when incident particles enter the bubble chamber at first. The sensitivity and the detective efficiency of bubble camber can be enhanced by choosing appropriate work matter. (authors)

  20. Development of bubble-induced turbulence model for advanced two-fluid model

    International Nuclear Information System (INIS)

    Hosoi, Hideaki; Yoshida, Hiroyuki

    2011-01-01

    diameter pipes. As a result, the analysis results of void fraction distribution were improved by using the suggested model. However, the analytical velocity distribution was flat compared with the experiments. As the main cause of this, we thought that turbulent viscosity in two-phase flow was overestimated in these analyses. To express the velocity distribution, we improved the two-phase k-ε turbulent model in this study. Especially, turbulent dissipation rate transport equation was introduced in order to consider the influence of bubble-induced turbulence. These models were incorporated to the advanced two-fluid model code ACE-3D, and numerical simulations for air-water two-phase flow experiment in 200 mm-, 60 mm- and 38 mm-diameter vertical pipe were performed. From these results, the qualitative phenomena could be expressed and the dependency of the suggested model was confirmed. (author)

  1. Numerical modeling of bubble dynamics in magmas

    Science.gov (United States)

    Huber, Christian; Su, Yanqing; Parmigiani, Andrea

    2014-05-01

    Understanding the complex non-linear physics that governs volcanic eruptions is contingent on our ability to characterize the dynamics of bubbles and its effect on the ascending magma. The exsolution and migration of bubbles has also a great impact on the heat and mass transport in and out of magma bodies stored at shallow depths in the crust. Multiphase systems like magmas are by definition heterogeneous at small scales. Although mixture theory or homogenization methods are convenient to represent multiphase systems as a homogeneous equivalent media, these approaches do not inform us on possible feedbacks at the pore-scale and can be significantly misleading. In this presentation, we discuss the development and application of bubble-scale multiphase flow modeling to address the following questions : How do bubbles impact heat and mass transport in magma chambers ? How efficient are chemical exchanges between the melt and bubbles during magma decompression? What is the role of hydrodynamic interactions on the deformation of bubbles while the magma is sheared? Addressing these questions requires powerful numerical methods that accurately model the balance between viscous, capillary and pressure stresses. We discuss how these bubble-scale models can provide important constraints on the dynamics of magmas stored at shallow depth or ascending to the surface during an eruption.

  2. New JLS-Factor Model versus the Standard JLS Model: A Case Study on Chinese Stock Bubbles

    Directory of Open Access Journals (Sweden)

    Zongyi Hu

    2017-01-01

    Full Text Available In this paper, we extend the Johansen-Ledoit-Sornette (JLS model by introducing fundamental economic factors in China (including the interest rate and deposit reserve rate and the historical volatilities of targeted and US equity indices into the original model, which is a flexible tool to detect bubbles and predict regime changes in financial markets. We then derive a general method to incorporate these selected factors in addition to the log-periodic power law signature of herding and compare the prediction accuracy of the critical time between the original and the new JLS models (termed the JLS-factor model by applying these two models to fit two well-known Chinese stock indices in three bubble periods. The results show that the JLS-factor model with Chinese characteristics successfully depicts the evolutions of bubbles and “antibubbles” and constructs efficient end-of-bubble signals for all bubbles in Chinese stock markets. In addition, the results of standard statistical tests demonstrate the excellent explanatory power of these additive factors and confirm that the new JLS model provides useful improvements over the standard JLS model.

  3. Modeling the dynamics of single-bubble sonoluminescence

    International Nuclear Information System (INIS)

    Vignoli, Lucas L; De Barros, Ana L F; Thomé, Roberto C A; Nogueira, A L M A; Paschoal, Ricardo C; Rodrigues, Hilário

    2013-01-01

    Sonoluminescence (SL) is the phenomenon in which acoustic energy is (partially) transformed into light. It may occur by means of one bubble or many bubbles of gas inside a liquid medium, giving rise to the terms single-bubble and multi-bubble sonoluminescence (SBSL and MBSL). In recent years some models have been proposed to explain this phenomenon, but there is still no complete theory for the light-emission mechanism (especially in the case of SBSL). In this paper, we do not address this more complicated specific issue, but only present a simple model describing the dynamical behavior of the sonoluminescent bubble in the SBSL case. Using simple numerical techniques within the Matlab software package, we discuss solutions that consider various possibilities for some of the parameters involved: liquid compressibility, surface tension, viscosity and type of gas. The model may be used for an introductory study of SL on undergraduate or graduate physics courses, and as a clarifying example of a physical system exhibiting large nonlinearity. (paper)

  4. Modeling bubble dynamics and radical kinetics in ultrasound induced microalgal cell disruption.

    Science.gov (United States)

    Wang, Meng; Yuan, Wenqiao

    2016-01-01

    Microalgal cell disruption induced by acoustic cavitation was simulated through solving the bubble dynamics in an acoustical field and their radial kinetics (chemical kinetics of radical species) occurring in the bubble during its oscillation, as well as calculating the bubble wall pressure at the collapse point. Modeling results indicated that increasing ultrasonic intensity led to a substantial increase in the number of bubbles formed during acoustic cavitation, however, the pressure generated when the bubbles collapsed decreased. Therefore, cumulative collapse pressure (CCP) of bubbles was used to quantify acoustic disruption of a freshwater alga, Scenedesmus dimorphus, and a marine alga, Nannochloropsis oculata and compare with experimental results. The strong correlations between CCP and the intracellular lipid fluorescence density, chlorophyll-a fluorescence density, and cell particle/debris concentration were found, which suggests that the developed models could accurately predict acoustic cell disruption, and can be utilized in the scale up and optimization of the process. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Modeling quiescent phase transport of air bubbles induced by breaking waves

    Science.gov (United States)

    Shi, Fengyan; Kirby, James T.; Ma, Gangfeng

    Simultaneous modeling of both the acoustic phase and quiescent phase of breaking wave-induced air bubbles involves a large range of length scales from microns to meters and time scales from milliseconds to seconds, and thus is computational unaffordable in a surfzone-scale computational domain. In this study, we use an air bubble entrainment formula in a two-fluid model to predict air bubble evolution in the quiescent phase in a breaking wave event. The breaking wave-induced air bubble entrainment is formulated by connecting the shear production at the air-water interface and the bubble number intensity with a certain bubble size spectra observed in laboratory experiments. A two-fluid model is developed based on the partial differential equations of the gas-liquid mixture phase and the continuum bubble phase, which has multiple size bubble groups representing a polydisperse bubble population. An enhanced 2-DV VOF (Volume of Fluid) model with a k - ɛ turbulence closure is used to model the mixture phase. The bubble phase is governed by the advection-diffusion equations of the gas molar concentration and bubble intensity for groups of bubbles with different sizes. The model is used to simulate air bubble plumes measured in laboratory experiments. Numerical results indicate that, with an appropriate parameter in the air entrainment formula, the model is able to predict the main features of bubbly flows as evidenced by reasonable agreement with measured void fraction. Bubbles larger than an intermediate radius of O(1 mm) make a major contribution to void fraction in the near-crest region. Smaller bubbles tend to penetrate deeper and stay longer in the water column, resulting in significant contribution to the cross-sectional area of the bubble cloud. An underprediction of void fraction is found at the beginning of wave breaking when large air pockets take place. The core region of high void fraction predicted by the model is dislocated due to use of the shear

  6. A siphon well model for hydraulic performance optimization and bubble elimination

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Hui, E-mail: fuhui_iwhr@126.com; Ji, Ping; Xia, Qingfu; Guo, Xinlei

    2017-01-15

    Highlights: • A new method was proposed to improve the hydraulic performance and bubble elimination. • The diversion pier and diversion grid were used to stabilize the flow pattern. • Double multi-hole orifices were arranged after the weir. • The new method has a simpler construction and greater bubble elimination. - Abstract: In coastal nuclear power plants, bubble entrainment at the hydraulic jump in the siphon well causes foam pollution and salt fog erosion near the outfall of the siphon well. Thus, bubble elimination in siphon wells has been a topic of considerable interest. This study presents a new hydraulic performance optimization and bubble elimination method based on model experiments. Compared to previous methods, the new method has a simple structure, is effective in eliminating bubbles and is well adapted to different tide levels. The method mainly uses a diversion pier, diversion grid and multi-hole orifices to improve the hydraulic performance, thus reducing bubble entrainment at the hydraulic jump and shortening the bubble movement length in the siphon well. This study provides a valuable reference for the future siphon well design of coastal power plants.

  7. A siphon well model for hydraulic performance optimization and bubble elimination

    International Nuclear Information System (INIS)

    Fu, Hui; Ji, Ping; Xia, Qingfu; Guo, Xinlei

    2017-01-01

    Highlights: • A new method was proposed to improve the hydraulic performance and bubble elimination. • The diversion pier and diversion grid were used to stabilize the flow pattern. • Double multi-hole orifices were arranged after the weir. • The new method has a simpler construction and greater bubble elimination. - Abstract: In coastal nuclear power plants, bubble entrainment at the hydraulic jump in the siphon well causes foam pollution and salt fog erosion near the outfall of the siphon well. Thus, bubble elimination in siphon wells has been a topic of considerable interest. This study presents a new hydraulic performance optimization and bubble elimination method based on model experiments. Compared to previous methods, the new method has a simple structure, is effective in eliminating bubbles and is well adapted to different tide levels. The method mainly uses a diversion pier, diversion grid and multi-hole orifices to improve the hydraulic performance, thus reducing bubble entrainment at the hydraulic jump and shortening the bubble movement length in the siphon well. This study provides a valuable reference for the future siphon well design of coastal power plants.

  8. Studies on modelling of bubble driven flows in chemical reactors

    Energy Technology Data Exchange (ETDEWEB)

    Grevskott, Sverre

    1997-12-31

    Multiphase reactors are widely used in the process industry, especially in the petrochemical industry. They very often are characterized by very good thermal control and high heat transfer coefficients against heating and cooling surfaces. This thesis first reviews recent advances in bubble column modelling, focusing on the fundamental flow equations, drag forces, transversal forces and added mass forces. The mathematical equations for the bubble column reactor are developed, using an Eulerian description for the continuous and dispersed phase in tensor notation. Conservation equations for mass, momentum, energy and chemical species are given, and the k-{epsilon} and Rice-Geary models for turbulence are described. The different algebraic solvers used in the model are described, as are relaxation procedures. Simulation results are presented and compared with experimental values. Attention is focused on the modelling of void fractions and gas velocities in the column. The energy conservation equation has been included in the bubble column model in order to model temperature distributions in a heated reactor. The conservation equation of chemical species has been included to simulate absorption of CO{sub 2}. Simulated axial and radial mass fraction profiles for CO{sub 2} in the gas phase are compared with measured values. Simulations of the dynamic behaviour of the column are also presented. 189 refs., 124 figs., 1 tab.

  9. Fission-gas bubble modeling for LMFBR accidents

    International Nuclear Information System (INIS)

    Ostensen, R.W.

    1977-01-01

    The behavior of fission-gas bubbles in unrestructured oxide fuel can have a dominant effect on the course of a core disruptive accident in an LMFBR. The paper describes a simplified model of bubble behavior and presents results of that model in analyzing the relevant physical assumptions and predicting gas behavior in molten fuel

  10. A Bubble-Based Drag Model at the Local-Grid Level for Eulerian Simulation of Bubbling Fluidized Beds

    Directory of Open Access Journals (Sweden)

    Kun Hong

    2016-01-01

    Full Text Available A bubble-based drag model at the local-grid level is proposed to simulate gas-solid flows in bubbling fluidized beds of Geldart A particles. In this model, five balance equations are derived from the mass and the momentum conservation. This set of equations along with necessary correlations for bubble diameter and voidage of emulsion phase is solved to obtain seven local structural parameters (uge, upe, εe, δb, ub, db, and ab which describe heterogeneous flows of bubbling fluidized beds. The modified drag coefficient obtained from the above-mentioned structural parameters is then incorporated into the two-fluid model to simulate the hydrodynamics of Geldart A particles in a lab-scale bubbling fluidized bed. The comparison between experimental and simulation results for the axial and radial solids concentration profiles is promising.

  11. Modeling high-energy gamma-rays from the Fermi Bubbles

    Energy Technology Data Exchange (ETDEWEB)

    Splettstoesser, Megan

    2015-09-17

    In 2010, the Fermi Bubbles were discovered at the galactic center of the Milky Way. These giant gamma-ray structures, extending 55° in galactic latitude and 20°-30° in galactic longitude, were not predicted. We wish to develop a model for the gamma-ray emission of the Fermi Bubbles. To do so, we assume that second order Fermi acceleration requires charged particles and irregular magnetic fields- both of which are present in the disk of the Milky Way galaxy. By solving the steady-state case of the transport equation, I compute the proton spectrum due to second order Fermi acceleration. I compare the analytical solutions of the proton spectrum to a numerical solution. I find that the numerical solution to the transport equation converges to the analytical solution in all cases. The gamma-ray spectrum due to proton-proton interaction is compared to Fermi Bubble data (from Ackermann et al. 2014), and I find that second order Fermi acceleration is a good fit for the gamma-ray spectrum of the Fermi Bubbles at low energies with an injection source term of S = 1.5 x 10⁻¹⁰ GeV⁻¹cm⁻³yr⁻¹. I find that a non-steady-state solution to the gamma-ray spectrum with an injection source term of S = 2 x 10⁻¹⁰ GeV⁻¹cm⁻³yr⁻¹ matches the bubble data at high energies.

  12. Bubbles

    DEFF Research Database (Denmark)

    Dholakia, Nikhilesh; Turcan, Romeo V.

    2013-01-01

    A goal of our ongoing research stream is to develop a multidisciplinary metatheory of bubbles. In this viewpoint paper we put forward a typology of bubbles by comparing four types of assets – entertainment, commodities, financial securities (stocks), and housing properties – where bubbles could...... and do form occasionally. Cutting across and comparing such varied asset types provides some rich insights into the nature of bubbles – and offers an inductive way to arrive at the typology of bubbles....

  13. A physiological model of the interaction between tissue bubbles and the formation of blood-borne bubbles under decompression

    International Nuclear Information System (INIS)

    Chappell, M A; Payne, S J

    2006-01-01

    Under decompression, bubbles can form in the human body, and these can be found both within the body tissues and the bloodstream. Mathematical models for the growth of both types of bubbles have previously been presented, but they have not been coupled together. This work thus explores the interaction between the growth of tissue and blood-borne bubbles under decompression, specifically looking at the extent to which they compete for the common resource of inert gas held in solution in the tissues. The influence of tissue bubbles is found to be significant for densities as low as 10 ml -1 for tissues which are poorly perfused. However, the effects of formation of bubbles in the blood are not found until the density of bubble production sites reaches 10 6 ml -1 . From comparison of the model predictions with experimental evidence for bubbles produced in animals and man under decompression, it is concluded that the density of tissue bubbles is likely to have a significant effect on the number of bubbles produced in the blood. However, the density of nucleation sites in the blood is unlikely to be sufficiently high in humans for the formation of bubbles in the blood to have a significant impact on the growth of the bubbles in the tissue

  14. Experimental investigation and mechanistic modelling of dilute bubbly bulk boiling

    International Nuclear Information System (INIS)

    Kutnjak, Josip

    2013-01-01

    During evaporation the geometric shape of the vapour is not described using thermodynamics. In bubbly flows the bubble shape is considered spheric with small diameters and changing into various shapes upon growth. The heat and mass transfer happens at the interfacial area. The forces acting on the bubbles depend on the bubble diameter and shape. In this work the prediction of the bubble diameter and/or bubble number density in bulk boiling was considered outside the vicinity of the heat input area. Thus the boiling effects that happened inside the nearly saturated bulk were under investigation. This situation is relevant for nuclear safety analysis concerning a stagnant coolant in the spent fuel pool. In this research project a new experimental set-up to investigate was built. The experimental set-up consists of an instrumented, partly transparent, high and slender boiling container for visual observation. The direct visual observation of the boiling phenomena is necessary for the identification of basic mechanisms, which should be incorporated in the simulation model. The boiling process has been recorded by means of video images and subsequently was evaluated by digital image processing methods, and by that data concerning the characteristics of the boiling process were generated for the model development and validation. Mechanistic modelling is based on the derivation of relevant mechanisms concluded from observation, which is in line with physical knowledge. In this context two mechanisms were identified; the growth/-shrink mechanism (GSM) of the vapour bubbles and sudden increases of the bubble number density. The GSM was implemented into the CFD-Code ANSYS-CFX using the CFX Expression Language (CEL) by calculation of the internal bubble pressure using the Young-Laplace-Equation. This way a hysteresis is realised as smaller bubbles have an increased internal pressure. The sudden increases of the bubble number density are explainable by liquid super

  15. Experimental investigation and mechanistic modelling of dilute bubbly bulk boiling

    Energy Technology Data Exchange (ETDEWEB)

    Kutnjak, Josip

    2013-06-27

    During evaporation the geometric shape of the vapour is not described using thermodynamics. In bubbly flows the bubble shape is considered spheric with small diameters and changing into various shapes upon growth. The heat and mass transfer happens at the interfacial area. The forces acting on the bubbles depend on the bubble diameter and shape. In this work the prediction of the bubble diameter and/or bubble number density in bulk boiling was considered outside the vicinity of the heat input area. Thus the boiling effects that happened inside the nearly saturated bulk were under investigation. This situation is relevant for nuclear safety analysis concerning a stagnant coolant in the spent fuel pool. In this research project a new experimental set-up to investigate was built. The experimental set-up consists of an instrumented, partly transparent, high and slender boiling container for visual observation. The direct visual observation of the boiling phenomena is necessary for the identification of basic mechanisms, which should be incorporated in the simulation model. The boiling process has been recorded by means of video images and subsequently was evaluated by digital image processing methods, and by that data concerning the characteristics of the boiling process were generated for the model development and validation. Mechanistic modelling is based on the derivation of relevant mechanisms concluded from observation, which is in line with physical knowledge. In this context two mechanisms were identified; the growth/-shrink mechanism (GSM) of the vapour bubbles and sudden increases of the bubble number density. The GSM was implemented into the CFD-Code ANSYS-CFX using the CFX Expression Language (CEL) by calculation of the internal bubble pressure using the Young-Laplace-Equation. This way a hysteresis is realised as smaller bubbles have an increased internal pressure. The sudden increases of the bubble number density are explainable by liquid super

  16. Influence of drag closures and inlet conditions on bubble dynamics and flow behavior inside a bubble column

    Directory of Open Access Journals (Sweden)

    Amjad Asad

    2017-01-01

    Full Text Available In this paper, the hydrodynamics of a bubble column is investigated numerically using the discrete bubble model, which tracks the dispersed bubbles individually in a liquid column. The discrete bubble model is combined with the volume of fluid approach to account for a proper free surface boundary condition at the liquid–gas interface. This improves describing the backflow region, which takes place close to the wall region. The numerical simulation is conducted by means of the open source computational fluid dynamics library OpenFOAM®. In order to validate the numerical model, experimental results of a bubble column are used. The numerical prediction shows an overall good agreement compared to the experimental data. The effect of injection conditions and the influence of the drag closures on bubble dynamics are investigated in the current paper. Here, the significant effect of injection boundary conditions on bubble dynamics and flow velocity in the studied cavity is revealed. Moreover, the impact of the choice of the drag closure on the liquid velocity field and on bubble behavior is indicated by comparing three drag closures derived from former studies.

  17. Modeling of radial gas fraction profiles for bubble flow in vertical pipes

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, D.; Krepper, E.; Prasser, H.-M. [Forschungszentrum Rossendorf e.V., Institute of Safety Research, Dresden (Germany)

    2001-07-01

    The paper presents a method for the prediction of radial gas fraction profiles from a given bubble size distribution. The method is based on the assumption of the equilibrium of the forces acting on a bubble perpendicularly to the flow direction. Assuming a large number of bubble size classes radial distributions are calculated separately for all bubble classes. The sum of these distributions is the radial profile of the gas fraction. The results of the model are compared with experimental data for a number of gas and liquid volume flow rates. The experiments were performed at a vertical test loop (inner diameter 50 mm) in FZ-Rossendorf using a wire mesh sensor. The sensor enables the determination of void distributions in the cross section of the loop. A special evaluation procedure supplies bubble size distributions as well as local distributions of bubbles within a predefined interval of bubble sizes. There is a good agreement between experimental and calculated data. In particular the change from wall peaking to core peaking is well predicted. (authors)

  18. Modeling of radial gas fraction profiles for bubble flow in vertical pipes

    International Nuclear Information System (INIS)

    Lucas, D.; Krepper, E.; Prasser, H.-M.

    2001-01-01

    The paper presents a method for the prediction of radial gas fraction profiles from a given bubble size distribution. The method is based on the assumption of the equilibrium of the forces acting on a bubble perpendicularly to the flow direction. Assuming a large number of bubble size classes radial distributions are calculated separately for all bubble classes. The sum of these distributions is the radial profile of the gas fraction. The results of the model are compared with experimental data for a number of gas and liquid volume flow rates. The experiments were performed at a vertical test loop (inner diameter 50 mm) in FZ-Rossendorf using a wire mesh sensor. The sensor enables the determination of void distributions in the cross section of the loop. A special evaluation procedure supplies bubble size distributions as well as local distributions of bubbles within a predefined interval of bubble sizes. There is a good agreement between experimental and calculated data. In particular the change from wall peaking to core peaking is well predicted. (authors)

  19. On the One-Dimensional Modeling of Vertical Upward Bubbly Flow

    Directory of Open Access Journals (Sweden)

    C. Peña-Monferrer

    2018-01-01

    Full Text Available The one-dimensional two-fluid model approach has been traditionally used in thermal-hydraulics codes for the analysis of transients and accidents in water–cooled nuclear power plants. This paper investigates the performance of RELAP5/MOD3 predicting vertical upward bubbly flow at low velocity conditions. For bubbly flow and vertical pipes, this code applies the drift-velocity approach, showing important discrepancies with the experiments compared. Then, we use a classical formulation of the drag coefficient approach to evaluate the performance of both approaches. This is based on the critical Weber criteria and includes several assumptions for the calculation of the interfacial area and bubble size that are evaluated in this work. A more accurate drag coefficient approach is proposed and implemented in RELAP5/MOD3. Instead of using the Weber criteria, the bubble size distribution is directly considered. This allows the calculation of the interfacial area directly from the definition of Sauter mean diameter of a distribution. The results show that only the proposed approach was able to predict all the flow characteristics, in particular the bubble size and interfacial area concentration. Finally, the computational results are analyzed and validated with cross-section area average measurements of void fraction, dispersed phase velocity, bubble size, and interfacial area concentration.

  20. Numerical simulation of the dynamic flow behaviour in a bubble column: comparison of the bubble-induced turbulence models in K-epsilon model

    NARCIS (Netherlands)

    Zhang, D.; Deen, N.G.; Kuipers, J.A.M.

    2005-01-01

    Numerical simulations of the gas-liquid bubbly flow in a bubble column were conducted with the commercial CFD package CFX-4.4 to investigate the performance of three models (Pfleger and Becker, 2001; Sato and Sekoguchi, 1975; Troshko and Hassan, 2001) to account for the bubble-induced turbulence in

  1. Modelling of the Bubble Size Distribution in an Aerated Stirred Tank: Theoretical and Numerical Comparison of Different Breakup Models

    Directory of Open Access Journals (Sweden)

    Kálal Zbyněk

    2014-09-01

    Full Text Available The main topic of this study is the mathematical modelling of bubble size distributions in an aerated stirred tank using the population balance method. The air-water system consisted of a fully baffled vessel with a diameter of 0.29 m, which was equipped with a six-bladed Rushton turbine. The secondary phase was introduced through a ring sparger situated under the impeller. Calculations were performed with the CFD software CFX 14.5. The turbulent quantities were predicted using the standard k-ε turbulence model. Coalescence and breakup of bubbles were modelled using the MUSIG method with 24 bubble size groups. For the bubble size distribution modelling, the breakup model by Luo and Svendsen (1996 typically has been used in the past. However, this breakup model was thoroughly reviewed and its practical applicability was questioned. Therefore, three different breakup models by Martínez-Bazán et al. (1999a, b, Lehr et al. (2002 and Alopaeus et al. (2002 were implemented in the CFD solver and applied to the system. The resulting Sauter mean diameters and local bubble size distributions were compared with experimental data.

  2. CFD modelling of polydispersed bubbly two-phase flow around an obstacle

    International Nuclear Information System (INIS)

    Krepper, Eckhard; Beyer, Matthias; Frank, Thomas; Lucas, Dirk; Prasser, Horst-Michael

    2009-01-01

    A population balance model (the Inhomogeneous MUSIG model) has recently been developed in close cooperation between ANSYS-CFX and Forschungszentrum Dresden-Rossendorf and implemented into the CFD-Code CFX [Krepper, E., Lucas, D., Prasser, H.-M, 2005. On the modelling of bubbly flow in vertical pipes. Nucl. Eng. Des. 235, 597-611; Frank, T., Zwart, P.J., Shi, J.-M., Krepper, E., Rohde, U., 2005. Inhomogeneous MUSIG Model-a population balance approach for polydispersed bubbly flows, International Conference 'Nuclear Energy for New Europe 2005', Bled, Slovenia, September 5-8, 2005; Krepper, E., Beyer, M., Frank, Th., Lucas, D., Prasser, H.-M., 2007. Application of a population balance approach for polydispersed bubbly flows, 6th Int. Conf. on Multiphase Flow Leipzig 2007, (paper 378)]. The current paper presents a brief description of the model principles. The capabilities of this model are discussed via the example of a bubbly flow around a half-moon shaped obstacle arranged in a 200 mm pipe. In applying the Inhomogeneous MUSIG approach, a deeper understanding of the flow structures is possible and the model allows effects of polydispersion to be investigated. For the complex flow around the obstacle, the general structure of the flow was well reproduced in the simulations. This test case demonstrates the complicated interplay between size dependent bubble migration and the effects of bubble coalescence and breakup on real flows. The closure models that characterize the bubble forces responsible for the simulation of bubble migration show agreement with the experimental observations. However, clear deviations occur for bubble coalescence and fragmentation. The models applied here, which describe bubble fragmentation and coalescence could be proved as a weakness in the validity of numerous CFD analyses of vertical upward two-phase pipe flow. Further work on this topic is under way.

  3. An equation of motion for bubble growth

    International Nuclear Information System (INIS)

    Lesage, F.J.; Cotton, J.S.; Robinson, A.J.

    2009-01-01

    A mathematical model is developed which describes asymmetric bubble growth, either during boiling or bubble injection from submerged orifices. The model is developed using the integral form of the continuity and momentum equations, resulting in a general expression for the acceleration of the bubble's centre of gravity. The proposed model highlights the need to include acceleration due to an asymmetric gain or loss of mass in order to accurately predict bubble motion. Some scenarios are posed by which the growth of bubbles, particularly idealized bubbles that remain a section of a sphere, must include the fact that bubble growth can be asymmetric. In particular, for approximately hemispherical bubble growth the sum of the forces acting on the bubble is negligible compared with the asymmetric term. Further, for bubble injection from a submerged needle this component in the equation of motion is very significant during the initial rapid growth phase as the bubble issues from the nozzle changing from a near hemisphere to truncated sphere geometry. (author)

  4. Modeling of bubble coalescence and disintegration in confined upward two-phase flow

    International Nuclear Information System (INIS)

    Sun Xiaodong; Kim, Seungjin; Ishii, Mamoru; Beus, Stephen G.

    2004-01-01

    This paper presents the modeling of bubble interaction mechanisms in the two-group interfacial area transport equation (IATE) for confined gas-liquid two-phase flow. The transport equation is applicable to bubbly, cap-turbulent, and churn-turbulent flow regimes. In the two-group IATE, bubbles are categorized into two groups: spherical/distorted bubbles as Group 1 and cap/slug/churn-turbulent bubbles as Group 2. Thus, two sets of equations are used to describe the generation and destruction rates of bubble number density, void fraction, and interfacial area concentration for the two groups of bubbles due to bubble expansion and compression, coalescence and disintegration, and phase change. Five major bubble interaction mechanisms are identified for the gas-liquid two-phase flow of interest, and are analytically modeled as the source/sink terms for the transport equation in the confined flow. These models include both intra-group and inter-group bubble interactions

  5. Influences of non-uniform pressure field outside bubbles on the propagation of acoustic waves in dilute bubbly liquids.

    Science.gov (United States)

    Zhang, Yuning; Du, Xiaoze

    2015-09-01

    Predictions of the propagation of the acoustic waves in bubbly liquids is of great importance for bubble dynamics and related applications (e.g. sonochemistry, sonochemical reactor design, biomedical engineering). In the present paper, an approach for modeling the propagation of the acoustic waves in dilute bubbly liquids is proposed through considering the non-uniform pressure field outside the bubbles. This approach is validated through comparing with available experimental data in the literature. Comparing with the previous models, our approach mainly improves the predictions of the attenuation of acoustic waves in the regions with large kR0 (k is the wave number and R0 is the equilibrium bubble radius). Stability of the oscillating bubbles under acoustic excitation are also quantitatively discussed based on the analytical solution. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Modeling of isothermal bubbly flow with interfacial area transport equation and bubble number density approach

    Energy Technology Data Exchange (ETDEWEB)

    Sari, Salih [Hacettepe University, Department of Nuclear Engineering, Beytepe, 06800 Ankara (Turkey); Erguen, Sule [Hacettepe University, Department of Nuclear Engineering, Beytepe, 06800 Ankara (Turkey); Barik, Muhammet; Kocar, Cemil; Soekmen, Cemal Niyazi [Hacettepe University, Department of Nuclear Engineering, Beytepe, 06800 Ankara (Turkey)

    2009-03-15

    In this study, isothermal turbulent bubbly flow is mechanistically modeled. For the modeling, Fluent version 6.3.26 is used as the computational fluid dynamics solver. First, the mechanistic models that simulate the interphase momentum transfer between the gas (bubbles) and liquid (continuous) phases are investigated, and proper models for the known flow conditions are selected. Second, an interfacial area transport equation (IATE) solution is added to Fluent's solution scheme in order to model the interphase momentum transfer mechanisms. In addition to solving IATE, bubble number density (BND) approach is also added to Fluent and this approach is also used in the simulations. Different source/sink models derived for the IATE and BND models are also investigated. The simulations of experiments based on the available data in literature are performed by using IATE and BND models in two and three-dimensions. The results show that the simulations performed by using IATE and BND models agree with each other and with the experimental data. The simulations performed in three-dimensions give better agreement with the experimental data.

  7. Modeling of isothermal bubbly flow with interfacial area transport equation and bubble number density approach

    International Nuclear Information System (INIS)

    Sari, Salih; Erguen, Sule; Barik, Muhammet; Kocar, Cemil; Soekmen, Cemal Niyazi

    2009-01-01

    In this study, isothermal turbulent bubbly flow is mechanistically modeled. For the modeling, Fluent version 6.3.26 is used as the computational fluid dynamics solver. First, the mechanistic models that simulate the interphase momentum transfer between the gas (bubbles) and liquid (continuous) phases are investigated, and proper models for the known flow conditions are selected. Second, an interfacial area transport equation (IATE) solution is added to Fluent's solution scheme in order to model the interphase momentum transfer mechanisms. In addition to solving IATE, bubble number density (BND) approach is also added to Fluent and this approach is also used in the simulations. Different source/sink models derived for the IATE and BND models are also investigated. The simulations of experiments based on the available data in literature are performed by using IATE and BND models in two and three-dimensions. The results show that the simulations performed by using IATE and BND models agree with each other and with the experimental data. The simulations performed in three-dimensions give better agreement with the experimental data

  8. Development of Bubble Lift-off Diameter Model for Subcooled Boiling Flows

    International Nuclear Information System (INIS)

    Hoang, Nhan Hien; Chu, Incheol; Song Chulhwa; Euh, Dongjin

    2014-01-01

    A lot of models and correlations for predicting the bubble departure/lift-off diameter are available in the literature. Most of them were developed based on a hydrodynamic principle, which balances forces acting on a bubble at the departure/lift-off point. One difficulty of these models is lack of essential information, such as bubble front velocity, liquid velocity, or relative velocity, to estimate the active force elements. Hence, the lift-off bubble diameter predicted by these hydrodynamic-controlled models may be suffered a large uncertainty. In contract to the hydrodynamic approach, there are few models developed based on the heat transfer aspect. By balancing the heat conducted through a microlayer underneath a bubble with the heat taken away by condensation at the upper part of the bubble, Unal derived a heat-controlled model of the bubble lift-off diameter. This model did not consider the role of superheat liquid layer surrounding the bubble as well as the effect of liquid properties on the heat transfer process. Beside these two approaches, several empirical correlations have been proposed based on dimensionless analyses for measured experimental databases. The application of these correlations to different experiments conditions is, of course, questionable because of the lack of physical bases. Regarding the heat transfer accompanied by a vapor bubble, four involved heat transfer regions surrounding this bubble can be defined as in Fig. 1. These are dry region, microlayer, superheated liquid layer (SpLL) and subcooled liquid layer (SbLL). The existing of the microlayer is confirmed by experiments, and it is considered to be very effective in the heat transfer. Sernas and Hoper defined five types of the microlayer and indicated that the microlayer acting as a very thick liquid layer gives a best prediction for the bubble growth. However, beside the microlayer, the SpLL might play an important role in the heat transfer if its effective heat transfer area

  9. Effect of bubble interface parameters on predicted of bubble departure diameter in a narrow channel

    International Nuclear Information System (INIS)

    Xu Jianjun; Xie Tianzhou; Zhou Wenbin; Chen Bingde; Huang Yanping

    2014-01-01

    The predicted model on the bubble departure diameter in a narrow channel is built by analysis of forces acting on the bubble, and effects of bubble interface parameters such as the bubble inclination angle, upstream contact angle, downstream contact angle and bubble contact diameter on predicted bubble departure diameters in a narrow channel are analysed by comparing with the visual experimental data. Based on the above results, the bubble interface parameters as the input parameters used to obtain the bubble departure diameter in a narrow channel are assured, and the bubble departure diameters in a narrow channel are predicted by solving the force equation. The predicted bubble departure diameters are verified by the 58 bubble departure diameters obtained from the vertical and inclined visual experiment, and the predicted results agree with the experimental results. The different forces acting on the bubble are obtained and the effect of thermal parameters in this experiment on bubble departure diameters is analysed. (authors)

  10. Corner-transport-upwind lattice Boltzmann model for bubble cavitation

    Science.gov (United States)

    Sofonea, V.; Biciuşcǎ, T.; Busuioc, S.; Ambruş, Victor E.; Gonnella, G.; Lamura, A.

    2018-02-01

    Aiming to study the bubble cavitation problem in quiescent and sheared liquids, a third-order isothermal lattice Boltzmann model that describes a two-dimensional (2D) fluid obeying the van der Waals equation of state, is introduced. The evolution equations for the distribution functions in this off-lattice model with 16 velocities are solved using the corner-transport-upwind (CTU) numerical scheme on large square lattices (up to 6144 ×6144 nodes). The numerical viscosity and the regularization of the model are discussed for first- and second-order CTU schemes finding that the latter choice allows to obtain a very accurate phase diagram of a nonideal fluid. In a quiescent liquid, the present model allows us to recover the solution of the 2D Rayleigh-Plesset equation for a growing vapor bubble. In a sheared liquid, we investigated the evolution of the total bubble area, the bubble deformation, and the bubble tilt angle, for various values of the shear rate. A linear relation between the dimensionless deformation coefficient D and the capillary number Ca is found at small Ca but with a different factor than in equilibrium liquids. A nonlinear regime is observed for Ca≳0.2 .

  11. Inhomogeneous MUSIG Model - a population balance approach for polydispersed bubbly flows

    International Nuclear Information System (INIS)

    Frank, T.; Zwart, P.J.; Shi, J.; Krepper, E.; Lucas, D.; Rohde, U.

    2005-01-01

    Many flow regimes in Nuclear Reactor Safety (NRS) Research are characterized by multiphase flows, with one phase being a continuous liquid and the other phase consisting of gas or vapour of the liquid phase. In the range of low to intermediate volume fraction of the gaseous phase the multiphase flow under consideration is a bubbly or slug flow, where the disperse phase is characterized by an evolving bubble size distribution due to bubble breakup and coalescence processes. The paper presents a generalized inhomogeneous Multiple Size Group (MUSIG) Model. Within this model the disperse gaseous phase is divided into N inhomogeneous velocity groups (phases) and each of these groups is subdivided into M bubble size classes. Bubble breakup and coalescence processes between all bubble size classes are taken into account by appropriate models. The derived inhomogeneous MUSIG model has been validated against experimental data from the TOPFLOW test facility at the Research Center Rossendorf (FZR). Comparisons of gas volume fraction and velocity profiles with TOPFLOW-074 test case data are provided, showing the applicability and accuracy of the model for polydispersed bubbly flow in large diameter vertical pipe flow. (author)

  12. An equation of motion for bubble growth

    Energy Technology Data Exchange (ETDEWEB)

    Lesage, F.J. [College d' Enseignement General et Professionnel de L' Outaouais, Gatineau, Quebec (Canada). Dept. of Mathematics; Cotton, J.S. [McMaster University, Hamilton, ON (Canada). Dept. of Mechanical Engineering; Robinson, A.J. [Trinity College Dublin (Ireland). Dept. of Mechanical and Manufacturing Engineering

    2009-07-01

    A mathematical model is developed which describes asymmetric bubble growth, either during boiling or bubble injection from submerged orifices. The model is developed using the integral form of the continuity and momentum equations, resulting in a general expression for the acceleration of the bubble's centre of gravity. The proposed model highlights the need to include acceleration due to an asymmetric gain or loss of mass in order to accurately predict bubble motion. Some scenarios are posed by which the growth of bubbles, particularly idealized bubbles that remain a section of a sphere, must include the fact that bubble growth can be asymmetric. In particular, for approximately hemispherical bubble growth the sum of the forces acting on the bubble is negligible compared with the asymmetric term. Further, for bubble injection from a submerged needle this component in the equation of motion is very significant during the initial rapid growth phase as the bubble issues from the nozzle changing from a near hemisphere to truncated sphere geometry. (author)

  13. Dynamics of micro-bubble sonication inside a phantom vessel

    KAUST Repository

    Qamar, Adnan; Samtaney, Ravi; Bull, Joseph L.

    2013-01-01

    A model for sonicated micro-bubble oscillations inside a phantom vessel is proposed. The model is not a variant of conventional Rayleigh-Plesset equation and is obtained from reduced Navier-Stokes equations. The model relates the micro-bubble oscillation dynamics with geometric and acoustic parameters in a consistent manner. It predicts micro-bubble oscillation dynamics as well as micro-bubble fragmentation when compared to the experimental data. For large micro-bubble radius to vessel diameter ratios, predictions are damped, suggesting breakdown of inherent modeling assumptions for these cases. Micro-bubble response with acoustic parameters is consistent with experiments and provides physical insight to the micro-bubble oscillation dynamics.

  14. Dynamics of micro-bubble sonication inside a phantom vessel

    KAUST Repository

    Qamar, Adnan

    2013-01-10

    A model for sonicated micro-bubble oscillations inside a phantom vessel is proposed. The model is not a variant of conventional Rayleigh-Plesset equation and is obtained from reduced Navier-Stokes equations. The model relates the micro-bubble oscillation dynamics with geometric and acoustic parameters in a consistent manner. It predicts micro-bubble oscillation dynamics as well as micro-bubble fragmentation when compared to the experimental data. For large micro-bubble radius to vessel diameter ratios, predictions are damped, suggesting breakdown of inherent modeling assumptions for these cases. Micro-bubble response with acoustic parameters is consistent with experiments and provides physical insight to the micro-bubble oscillation dynamics.

  15. Modelling of Spherical Gas Bubble Oscillations and Sonoluminescence

    Science.gov (United States)

    Prosperetti, A.; Hao, Y.

    1999-01-01

    The discovery of single-bubble sonoluminescence has led to a renewed interest in the forced radial oscillations of gas bubbles. Many of the more recent studies devoted to this topic have used several simplifications in the modelling, and in particular in accounting for liquid compressibility and thermal processes in the bubble. In this paper the significance of these simplifications is explored by contrasting the results of Lohse and co-workers with those of a more detailed model. It is found that, even though there may be little apparent difference between the radius-versus time behaviour of the bubble as predicted by the two models, quantities such as the spherical stability boundary and the threshold for rectified diffusion are affected in a quantitatively significant way. These effects are a manifestation of the subtle dependence upon dissipative processes of the phase of radial motion with respect to the driving sound field. The parameter space region, where according to the theory of Lohse and co-workers, sonoluminescence should be observable, is recalculated with the new model and is found to be enlarged with respect to the earlier estimate. The dependence of this parameter region on sound frequency is also illustrated.

  16. Three-dimensional one-way bubble tracking method for the prediction of developing bubble-slug flows in a vertical pipe. 1st report, models and demonstration

    International Nuclear Information System (INIS)

    Tamai, Hidesada; Tomiyama, Akio

    2004-01-01

    A three-dimensional one-way bubble tracking method is one of the most promising numerical methods for the prediction of a developing bubble flow in a vertical pipe, provided that several constitutive models are prepared. In this study, a bubble shape, an equation of bubble motion, a liquid velocity profile, a pressure field, turbulent fluctuation and bubble coalescence are modeled based on available knowledge on bubble dynamics. Bubble shapes are classified into four types in terms of bubble equivalent diameter. A wake velocity model is introduced to simulate approaching process among bubbles due to wake entrainment. Bubble coalescence is treated as a stochastic phenomenon with the aid of coalescence probabilities that depend on the sizes of two interacting bubbles. The proposed method can predict time-spatial evolution of flow pattern in a developing bubble-slug flow. (author)

  17. Bubble dynamics and bubble-induced turbulence of a single-bubble chain

    Science.gov (United States)

    Lee, Joohyoung; Park, Hyungmin

    2016-11-01

    In the present study, the bubble dynamics and liquid-phase turbulence induced by a chain of bubbles injected from a single nozzle have been experimentally investigated. Using a high-speed two-phase particle image velociemtry, measurements on the bubbles and liquid-phase velocity field are conducted in a transparent tank filled with water, while varying the bubble release frequency from 0.1 to 35 Hz. The tested bubble size ranges between 2.0-3.2 mm, and the corresponding bubble Reynolds number is 590-1100, indicating that it belongs to the regime of path instability. As the release frequency increases, it is found that the global shape of bubble dispersion can be classified into two regimes: from asymmetric (regular) to axisymmetric (irregular). In particular, at higher frequency, the wake vortices of leading bubbles cause an irregular behaviour of the following bubble. For the liquid phase, it is found that a specific trend on the bubble-induced turbulence appears in a strong relation to the above bubble dynamics. Considering this, we try to provide a theoretical model to estimate the liquid-phase turbulence induced by a chain of bubbles. Supported by a Grant funded by Samsung Electronics, Korea.

  18. Bubbles in inkjet printheads: analytical and numerical models

    NARCIS (Netherlands)

    Jeurissen, R.J.M.

    2009-01-01

    The phenomenon of nozzle failure of an inkjet printhead due to entrainment of air bubbles was studies using analytical and numerical models. The studied inkjet printheads consist of many channels in which an acoustic field is generated to eject a droplet. When an air bubble is entrained, it disrupts

  19. Bubbles in inkjet printheads : analytical and numerical models

    NARCIS (Netherlands)

    Jeurissen, R.J.M.

    2009-01-01

    The phenomenon of nozzle failure of an inkjet printhead due to entrainment of air bubbles was studies using analytical and numerical models. The studied inkjet printheads consist of many channels in which an acoustic field is generated to eject a droplet. When an air bubble is entrained, it disrupts

  20. Period adding cascades: experiment and modeling in air bubbling.

    Science.gov (United States)

    Pereira, Felipe Augusto Cardoso; Colli, Eduardo; Sartorelli, José Carlos

    2012-03-01

    Period adding cascades have been observed experimentally/numerically in the dynamics of neurons and pancreatic cells, lasers, electric circuits, chemical reactions, oceanic internal waves, and also in air bubbling. We show that the period adding cascades appearing in bubbling from a nozzle submerged in a viscous liquid can be reproduced by a simple model, based on some hydrodynamical principles, dealing with the time evolution of two variables, bubble position and pressure of the air chamber, through a system of differential equations with a rule of detachment based on force balance. The model further reduces to an iterating one-dimensional map giving the pressures at the detachments, where time between bubbles come out as an observable of the dynamics. The model has not only good agreement with experimental data, but is also able to predict the influence of the main parameters involved, like the length of the hose connecting the air supplier with the needle, the needle radius and the needle length.

  1. Development and validation of models for bubble coalescence and breakup

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Yiaxiang

    2013-10-08

    A generalized model for bubble coalescence and breakup has been developed, which is based on a comprehensive survey of existing theories and models. One important feature of the model is that all important mechanisms leading to bubble coalescence and breakup in a turbulent gas-liquid flow are considered. The new model is tested extensively in a 1D Test Solver and a 3D CFD code ANSYS CFX for the case of vertical gas-liquid pipe flow under adiabatic conditions, respectively. Two kinds of extensions of the standard multi-fluid model, i.e. the discrete population model and the inhomogeneous MUSIG (multiple-size group) model, are available in the two solvers, respectively. These extensions with suitable closure models such as those for coalescence and breakup are able to predict the evolution of bubble size distribution in dispersed flows and to overcome the mono-dispersed flow limitation of the standard multi-fluid model. For the validation of the model the high quality database of the TOPFLOW L12 experiments for air-water flow in a vertical pipe was employed. A wide range of test points, which cover the bubbly flow, turbulent-churn flow as well as the transition regime, is involved in the simulations. The comparison between the simulated results such as bubble size distribution, gas velocity and volume fraction and the measured ones indicates a generally good agreement for all selected test points. As the superficial gas velocity increases, bubble size distribution evolves via coalescence dominant regimes first, then breakup-dominant regimes and finally turns into a bimodal distribution. The tendency of the evolution is well reproduced by the model. However, the tendency is almost always overestimated, i.e. too much coalescence in the coalescence dominant case while too much breakup in breakup dominant ones. The reason of this problem is discussed by studying the contribution of each coalescence and breakup mechanism at different test points. The redistribution of the

  2. Development and validation of models for bubble coalescence and breakup

    International Nuclear Information System (INIS)

    Liao, Yiaxiang

    2013-01-01

    A generalized model for bubble coalescence and breakup has been developed, which is based on a comprehensive survey of existing theories and models. One important feature of the model is that all important mechanisms leading to bubble coalescence and breakup in a turbulent gas-liquid flow are considered. The new model is tested extensively in a 1D Test Solver and a 3D CFD code ANSYS CFX for the case of vertical gas-liquid pipe flow under adiabatic conditions, respectively. Two kinds of extensions of the standard multi-fluid model, i.e. the discrete population model and the inhomogeneous MUSIG (multiple-size group) model, are available in the two solvers, respectively. These extensions with suitable closure models such as those for coalescence and breakup are able to predict the evolution of bubble size distribution in dispersed flows and to overcome the mono-dispersed flow limitation of the standard multi-fluid model. For the validation of the model the high quality database of the TOPFLOW L12 experiments for air-water flow in a vertical pipe was employed. A wide range of test points, which cover the bubbly flow, turbulent-churn flow as well as the transition regime, is involved in the simulations. The comparison between the simulated results such as bubble size distribution, gas velocity and volume fraction and the measured ones indicates a generally good agreement for all selected test points. As the superficial gas velocity increases, bubble size distribution evolves via coalescence dominant regimes first, then breakup-dominant regimes and finally turns into a bimodal distribution. The tendency of the evolution is well reproduced by the model. However, the tendency is almost always overestimated, i.e. too much coalescence in the coalescence dominant case while too much breakup in breakup dominant ones. The reason of this problem is discussed by studying the contribution of each coalescence and breakup mechanism at different test points. The redistribution of the

  3. Modeling of helium bubble nucleation and growth in neutron irradiated boron doped RAFM steels

    International Nuclear Information System (INIS)

    Dethloff, Christian; Gaganidze, Ermile; Svetukhin, Vyacheslav V.; Aktaa, Jarir

    2012-01-01

    Reduced activation ferritic/martensitic (RAFM) steels are promising candidates for structural materials in future fusion technology. In addition to other irradiation defects, the transmuted helium is believed to strongly influence material hardening and embrittlement behavior. A phenomenological model based on kinetic rate equations is developed to describe homogeneous nucleation and growth of helium bubbles in neutron irradiated RAFM steels. The model is adapted to different 10 B doped EUROFER97 based heats, which already had been studied in past irradiation experiments. Simulations yield bubble size distributions, whereby effects of helium generation rate, surface energy, helium sinks and helium density are investigated. Peak bubble diameters under different conditions are compared to preliminary microstructural results on irradiated specimens. Helium induced hardening was calculated by applying the Dispersed Barrier Hardening model to simulated cluster size distributions. Quantitative microstructural investigations of unirradiated and irradiated specimens will be used to support and verify the model.

  4. Modeling of helium bubble nucleation and growth in neutron irradiated boron doped RAFM steels

    Energy Technology Data Exchange (ETDEWEB)

    Dethloff, Christian, E-mail: christian.dethloff@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Gaganidze, Ermile [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Svetukhin, Vyacheslav V. [Ulyanovsk State University, Leo Tolstoy Str. 42, 432970 Ulyanovsk (Russian Federation); Aktaa, Jarir [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2012-07-15

    Reduced activation ferritic/martensitic (RAFM) steels are promising candidates for structural materials in future fusion technology. In addition to other irradiation defects, the transmuted helium is believed to strongly influence material hardening and embrittlement behavior. A phenomenological model based on kinetic rate equations is developed to describe homogeneous nucleation and growth of helium bubbles in neutron irradiated RAFM steels. The model is adapted to different {sup 10}B doped EUROFER97 based heats, which already had been studied in past irradiation experiments. Simulations yield bubble size distributions, whereby effects of helium generation rate, surface energy, helium sinks and helium density are investigated. Peak bubble diameters under different conditions are compared to preliminary microstructural results on irradiated specimens. Helium induced hardening was calculated by applying the Dispersed Barrier Hardening model to simulated cluster size distributions. Quantitative microstructural investigations of unirradiated and irradiated specimens will be used to support and verify the model.

  5. Hydrodynamic models for slurry bubble column reactors

    Energy Technology Data Exchange (ETDEWEB)

    Gidaspow, D. [IIT Center, Chicago, IL (United States)

    1995-12-31

    The objective of this investigation is to convert a {open_quotes}learning gas-solid-liquid{close_quotes} fluidization model into a predictive design model. This model is capable of predicting local gas, liquid and solids hold-ups and the basic flow regimes: the uniform bubbling, the industrially practical churn-turbulent (bubble coalescence) and the slugging regimes. Current reactor models incorrectly assume that the gas and the particle hold-ups (volume fractions) are uniform in the reactor. They must be given in terms of empirical correlations determined under conditions that radically differ from reactor operation. In the proposed hydrodynamic approach these hold-ups are computed from separate phase momentum balances. Furthermore, the kinetic theory approach computes the high slurry viscosities from collisions of the catalyst particles. Thus particle rheology is not an input into the model.

  6. Influence of Bubble-Bubble interactions on the macroscale circulation patterns in a bubbling gas-solid fluidized bed

    NARCIS (Netherlands)

    Laverman, J.A.; van Sint Annaland, M.; Kuipers, J.A.M.

    2007-01-01

    The macro-scale circulation patterns in the emulsion phase of a gas-solid fluidized bed in the bubbling regime have been studied with a 3D Discrete Bubble Model. It has been shown that bubble-bubble interactions strongly influence the extent of the solids circulation and the bubble size

  7. Development of the bubble rise model in RELAP-UK

    International Nuclear Information System (INIS)

    Holmes, J.A.

    1977-11-01

    Several improvements have been made to the 'bubble rise calculation' in the code RELAP-UK, which models the separation of the steam and water phases within specified volumes of the coolant circuit. The bubble rise velocity and the bubble density gradient parameter are no longer necessarily user-defined constants, as the code can calculate their values at each time step according to the local fluid conditions. In particular, the calculation of the bubble rise velocity is consistent with the RELAP-UK drift flux correlation. It is now possible to represent a vertical column by a stack of vertically-adjacent bubble-rise volumes. Any mixture level existing within the column can freely pass between the volumes in the stack. The facilities are demonstrated in this paper by a simple computational example. (author)

  8. A heat transfer model for evaporating micro-channel coalescing bubble flow

    International Nuclear Information System (INIS)

    Consolini, L.; Thome, J.R.

    2009-01-01

    The current study presents a one-dimensional model of confined coalescing bubble flow for the prediction of micro-channel convective boiling heat transfer. Coalescing bubble flow has recently been identified as one of the characteristic flow patterns to be found in micro-scale systems, occurring at intermediate vapor qualities between the isolated bubble and the fully annular regimes. As two or more bubbles bond under the action of inertia and surface tension, the passage frequency of the bubble liquid slug pair declines, with a redistribution of liquid among the remaining flow structures. Assuming heat transfer to occur only by conduction through the thin evaporating liquid film surrounding individual bubbles, the present model includes a simplified description of the dynamics of the thin film evaporation process that takes into account the added mass transfer by breakup of the bridging liquid slugs. The new model has been confronted against experimental data taken within the coalescing bubble flow mode that have been identified by a diabatic micro-scale flow pattern map. The comparisons for three different fluids (R-134a, R-236fa and R-245fa) gave encouraging results with 83% of the database predicted within a ± 30% error band. (author)

  9. Modeling on bubbly to churn flow pattern transition in narrow rectangular channel

    International Nuclear Information System (INIS)

    Wang Yanlin; Chen Bingde; Huang Yanping; Wang Junfeng

    2012-01-01

    A theoretical model based on some reasonable concepts was developed to predict the bubbly flow to churn flow pattern transition in vertical narrow rectangular channel under flow boiling condition. The maximum size of ideal bubble in narrow rectangular channel was calculated based on previous literature. The thermal hydraulics boundary condition of bubbly to churn flow pattern transition was exported from Helmholtz and maximum size of ideal bubble. The theoretical model was validated by existent experimental data. (authors)

  10. Evidence of speculative bubbles on the BOVESPA: an application of the Kalman filter

    Directory of Open Access Journals (Sweden)

    Thiago Bergmann de Queiroz

    2011-06-01

    Full Text Available The existence of bubbles in asset prices is a matter of great importance to governments and investors due to possible serious effects they may have on economies. In the case of shares, the presence of a price bubble can be seen by comparing prices and dividends in the long run. This study aimed to assess the occurrence of price bubbles in the Brazilian stock market, by comparing the IBOVESPA as price index and an index of dividends, built based on the methodology of IBOVESPA. The bubble was considered a unobserved state vector in a state-space model and was estimated using the Kalman filter. The results were compared with the standard present value model and intrinsic bubbles model (Froot e Obstfeld, 1991. Although the model establishes the presence of bubbles, the intrinsic bubbles model (Froot e Obstfeld, 1991 showed similar results with greater accuracy.

  11. A reduced-order, single-bubble cavitation model with applications to therapeutic ultrasound.

    Science.gov (United States)

    Kreider, Wayne; Crum, Lawrence A; Bailey, Michael R; Sapozhnikov, Oleg A

    2011-11-01

    Cavitation often occurs in therapeutic applications of medical ultrasound such as shock-wave lithotripsy (SWL) and high-intensity focused ultrasound (HIFU). Because cavitation bubbles can affect an intended treatment, it is important to understand the dynamics of bubbles in this context. The relevant context includes very high acoustic pressures and frequencies as well as elevated temperatures. Relative to much of the prior research on cavitation and bubble dynamics, such conditions are unique. To address the relevant physics, a reduced-order model of a single, spherical bubble is proposed that incorporates phase change at the liquid-gas interface as well as heat and mass transport in both phases. Based on the energy lost during the inertial collapse and rebound of a millimeter-sized bubble, experimental observations were used to tune and test model predictions. In addition, benchmarks from the published literature were used to assess various aspects of model performance. Benchmark comparisons demonstrate that the model captures the basic physics of phase change and diffusive transport, while it is quantitatively sensitive to specific model assumptions and implementation details. Given its performance and numerical stability, the model can be used to explore bubble behaviors across a broad parameter space relevant to therapeutic ultrasound.

  12. GISAXS modelling of helium-induced nano-bubble formation in tungsten and comparison with TEM

    International Nuclear Information System (INIS)

    Thompson, Matt; Sakamoto, Ryuichi; Bernard, Elodie; Kirby, Nigel; Kluth, Patrick; Riley, Daniel; Corr, Cormac

    2016-01-01

    Grazing-incidence small angle x-ray scattering (GISAXS) is a powerful non-destructive technique for the measurement of nano-bubble formation in tungsten under helium plasma exposure. Here, we present a comparative study between transmission electron microscopy (TEM) and GISAXS measurements of nano-bubble formation in tungsten exposed to helium plasma in the Large Helical Device (LHD) fusion experiment. Both techniques are in excellent agreement, suggesting that nano-bubbles range from spheroidal to ellipsoidal, displaying exponential diameter distributions with mean diameters μ=0.68 ± 0.04 nm and μ=0.6 ± 0.1 nm measured by TEM and GISAXS respectively. Depth distributions were also computed, with calculated exponential depth distributions with mean depths of 8.4 ± 0.5 nm and 9.1 ± 0.4 nm for TEM and GISAXS. In GISAXS modelling, spheroidal particles were fitted with an aspect ratio ε=0.7 ± 0.1. The GISAXS model used is described in detail. - Highlights: • GISAXS and TEM were used to measure nano-bubble formation in W exposed to He plasma in the large helical device. • Nano-bubbles had an exponential diameter distributions with averages 0.6 ± 0.1 nm and 0.68 ± 0.04 nm measured by GISAXS and TEM. • Nano-bubbles had an exponential depth distributions with average depths of 9.1 ± 0.4 nm and 8.4 ± 0.5 nm for GISAXS and TEM. • The GISAXS model used to analyse diffraction patterns is explained in detail.

  13. GISAXS modelling of helium-induced nano-bubble formation in tungsten and comparison with TEM

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Matt, E-mail: matt.a.thompson@anu.edu.au [Research School of Physics and Engineering, Australian National University, Mills Road, Acton, ACT 2601 (Australia); Sakamoto, Ryuichi [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Bernard, Elodie [Aix-Marseille University, Marseille 13288 (France); Kirby, Nigel [SAXS/WAXS Beamline, Australian Synchrotron, 800 Blackburn Rd, Clayton, VIC, 3168 (Australia); Kluth, Patrick [Research School of Physics and Engineering, Australian National University, Mills Road, Acton, ACT 2601 (Australia); Riley, Daniel [Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW, 2232 (Australia); Corr, Cormac [Research School of Physics and Engineering, Australian National University, Mills Road, Acton, ACT 2601 (Australia)

    2016-05-15

    Grazing-incidence small angle x-ray scattering (GISAXS) is a powerful non-destructive technique for the measurement of nano-bubble formation in tungsten under helium plasma exposure. Here, we present a comparative study between transmission electron microscopy (TEM) and GISAXS measurements of nano-bubble formation in tungsten exposed to helium plasma in the Large Helical Device (LHD) fusion experiment. Both techniques are in excellent agreement, suggesting that nano-bubbles range from spheroidal to ellipsoidal, displaying exponential diameter distributions with mean diameters μ=0.68 ± 0.04 nm and μ=0.6 ± 0.1 nm measured by TEM and GISAXS respectively. Depth distributions were also computed, with calculated exponential depth distributions with mean depths of 8.4 ± 0.5 nm and 9.1 ± 0.4 nm for TEM and GISAXS. In GISAXS modelling, spheroidal particles were fitted with an aspect ratio ε=0.7 ± 0.1. The GISAXS model used is described in detail. - Highlights: • GISAXS and TEM were used to measure nano-bubble formation in W exposed to He plasma in the large helical device. • Nano-bubbles had an exponential diameter distributions with averages 0.6 ± 0.1 nm and 0.68 ± 0.04 nm measured by GISAXS and TEM. • Nano-bubbles had an exponential depth distributions with average depths of 9.1 ± 0.4 nm and 8.4 ± 0.5 nm for GISAXS and TEM. • The GISAXS model used to analyse diffraction patterns is explained in detail.

  14. Modelling and critical analysis of bubbly flows of dilute nanofluids in a vertical tube

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiangdong; Yuan, Yang [School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, PO Box 71, Bundoora, VIC 3083 (Australia); Tu, Jiyuan, E-mail: jiyuan.tu@rmit.edu.au [School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, PO Box 71, Bundoora, VIC 3083 (Australia); Key Laboratory of Ministry of Education for Advanced Reactor Engineering and Safety, Institute of Nuclear and New Energy Technology, Tsinghua University, PO Box 1021, Beijing 100086 (China)

    2016-04-15

    Highlights: • The classic two-fluid model needs improvement for nanofluid bubbly flows. • The nanoparticle self-assembly changes the interfacial behaviours of bubbles. • Key job is to reformulate the interfacial transfer terms. - Abstract: The bubbly flows of air–nanofluid and air–water in a vertical tube were numerically simulated using the two-fluid model. Comparison of the numerical results against the experimental data of Park and Chang (2011) demonstrated that the classic two-fluid model, although agreed well with the air–water data, was not applicable to the air–nanofluid bubbly flow. It was suggested that in a bubbly flow system, the existence of interfaces allows the spontaneous formation of a thin layer of nanoparticle assembly at the interfaces, which significantly changes the interfacial behaviours of the air bubbles and the roles of the interfacial forces. As the conservation equations of the classic two-fluid model are still applicable to nanofluids, the mechanisms underlying the modified interfacial behaviours need to be carefully taken into account when modelling air–nanofluid bubbly flows. Thus, one of the key tasks when modelling bubbly flows of air–nanofluid using the two-fluid model is to reformulate the interfacial transfer terms according to the interfacial behaviour modifications induced by nanoparticles.

  15. Analysis of flashing and swelling phenomena in tanks of nuclear power plants; the importance of bubble growth dynamics and bubble transport models with size tracking

    Energy Technology Data Exchange (ETDEWEB)

    Cerezo A, E [University of Caribe, Department of Basics Sciences and Engineering, Lote 1, Manzana 1, Region 78, esq. Fracc. Tabachines, 77500 Cancun, Quintana Roo (Mexico); Munoz C, J L [Department of Chemical and Nuclear Engineering, Polytechnic University of Valencia, Camino de Vera 14, 46022 Valencia (Spain)

    2004-07-01

    This paper presents a non-equilibrium model to describe flashing phenomena in tanks and cooling pools. The present model is based on Watanabe's work that we have extended by developing a realistic model for the growth of bubbles. We have made the corresponding venting model, continuity equation, gas and liquid phase energy conservation equations for the model. This model takes into account both drag and virtual mass force. The dynamics of bubble growth plays an important role in two-phase phenomena such as flashing. In our model the growth rate is assumed to be limited by the heat conduction in the liquid. The results of the analytic model were compared with the experimental data of Watanabe [1]. The results have shown that the present model evaluates fairly accurately the pressure evolution, the void fraction and the swelling level of a tank.

  16. Analysis of flashing and swelling phenomena in tanks of nuclear power plants; the importance of bubble growth dynamics and bubble transport models with size tracking

    Energy Technology Data Exchange (ETDEWEB)

    Cerezo A, E. [University of Caribe, Department of Basics Sciences and Engineering, Lote 1, Manzana 1, Region 78, esq. Fracc. Tabachines, 77500 Cancun, Quintana Roo (Mexico)]. E-mail: ecerezo@unicaribe.edu.mx; Munoz C, J.L. [Department of Chemical and Nuclear Engineering, Polytechnic University of Valencia, Camino de Vera 14, 46022 Valencia (Spain)

    2004-07-01

    This paper presents a non-equilibrium model to describe flashing phenomena in tanks and cooling pools. The present model is based on Watanabe's work that we have extended by developing a realistic model for the growth of bubbles. We have made the corresponding venting model, continuity equation, gas and liquid phase energy conservation equations for the model. This model takes into account both drag and virtual mass force. The dynamics of bubble growth plays an important role in two-phase phenomena such as flashing. In our model the growth rate is assumed to be limited by the heat conduction in the liquid. The results of the analytic model were compared with the experimental data of Watanabe [1]. The results have shown that the present model evaluates fairly accurately the pressure evolution, the void fraction and the swelling level of a tank.

  17. HCDA bubble experiment, (2)

    International Nuclear Information System (INIS)

    Sakata, Kaoru; Mashiko, Hiroyuki; Oka, Yoshiaki; An, Shigehiro; Isozaki, Tadashi.

    1981-06-01

    An experiment simulating the behavior of the very large steam bubbles generated at the time of an accident of core collapse was carried out with a warm water tank, and the applicability of the theory of very small bubble disappearance known at present was examined. The bubbles generated in HCDA (hypothetical core disruptive accident) are expected to be very large, containing sodium, fuel, FP gas and so on, and play important role in the mechanism of emitting radioactive substances in the safety analysis of LMFBRs. In this experiment, the degree of subcool of the warm water pool, the initial radii of steam bubbles and the blowoff pressure of steam were taken as the parameters. The radius of the steam bubbles generated in the experiment was about 6.5 cm, and the state of disappearance was different above and below the degree of unsaturation of 10 deg C. Comparing the disappearance curve obtained by the experiment with the theory of disappearance of small bubbles, the experimental values were between inertia-controlled disappearance and heat transfer-controlled disappearance, and this result was able to be explained generally with the model taking the pressure change within steam bubbles into account. The rise of bubbles was also observed. (Kako, I.)

  18. Hydrodynamics of Bubble Columns: Turbulence and Population Balance Model

    Directory of Open Access Journals (Sweden)

    Camila Braga Vieira

    2018-03-01

    Full Text Available This paper presents an in-depth numerical analysis on the hydrodynamics of a bubble column. As in previous works on the subject, the focus here is on three important parameters characterizing the flow: interfacial forces, turbulence and inlet superficial Gas Velocity (UG. The bubble size distribution is taken into account by the use of the Quadrature Method of Moments (QMOM model in a two-phase Euler-Euler approach using the open-source Computational Fluid Dynamics (CFD code OpenFOAM (Open Field Operation and Manipulation. The interfacial forces accounted for in all the simulations presented here are drag, lift and virtual mass. For the turbulence analysis in the water phase, three versions of the Reynolds Averaged Navier-Stokes (RANS k-ε turbulence model are examined: namely, the standard, modified and mixture variants. The lift force proves to be of major importance for a trustworthy prediction of the gas volume fraction profiles for all the (superficial gas velocities tested. Concerning the turbulence, the mixture k-ε model is seen to provide higher values of the turbulent kinetic energy dissipation rate in comparison to the other models, and this clearly affects the prediction of the gas volume fraction in the bulk region, and the bubble-size distribution. In general, the modified k-ε model proves to be a good compromise between modeling simplicity and accuracy in the study of bubble columns of the kind undertaken here.

  19. Bubble column fermenter modeling: a comparison for pressure effects

    Energy Technology Data Exchange (ETDEWEB)

    Shioya, S; Dang, N D.P.; Dunn, I J

    1978-01-01

    Two models which describe the oxygen transfer, oxygen uptake, and axial mixing in a bubble column fermenter are described. Model I includes no pressure effects and can be solved analytically. Model II incorporates the influence of hydrostatic pressure on oxygen solubility and gas expansion and must be solved numerically. The liquid phase oxygen concentration profiles from both models are compared to ascertain for what parametric conditions and for what maximum column height Model I is valid. Results show that for many situations Model I can approximate the oxygen profiles in a 10 m column within 20%. As the transfer and uptake rates increase, the deviation of Model I can reach 80% for a 10 m column. 7 figures.

  20. Development of Bubble Driven Flow CFD Model Applied for Aluminium Smelting Cells

    Directory of Open Access Journals (Sweden)

    Y.Q. Feng

    2010-09-01

    Full Text Available This paper presents the development of a computational fluid dynamics (CFD model for the study of bubble driven bath flow in aluminium reduction cells. For validation purposes, the model development was conducted using a full scale air -water model of part of an aluminium reduction cell as a test-bed. The bubble induced turbulence has been modelled by either modifying bubble induced turbulence viscosity directly or by modifying bubble induced turbulence kinetic energy in a standard k- ε turbulence model. The relative performance of the two modelling approaches has been examined through comparison with experimental data taken under similar conditions using Particle Image Velocimetry (PIV. Detailed comparison has been conducted by point-wise comparison of liquid velocities to quantify the level of agreement between CFD simulation and PIV measurement. Both models can capture the key flow patterns determined by PIV measurement, while the modified turbulence kinetic energy model gives better agreement with flow patterns in the gap between anode and cathode.

  1. Modeling of turbulent bubbly flows; Modelisation des ecoulements turbulents a bulles

    Energy Technology Data Exchange (ETDEWEB)

    Bellakhal, Ghazi

    2005-03-15

    The two-phase flows involve interfacial interactions which modify significantly the structure of the mean and fluctuating flow fields. The design of the two-fluid models adapted to industrial flows requires the taking into account of the effect of these interactions in the closure relations adopted. The work developed in this thesis concerns the development of first order two-fluid models deduced by reduction of second order closures. The adopted reasoning, based on the principle of decomposition of the Reynolds stress tensor into two statistically independent contributions turbulent and pseudo-turbulent parts, allows to preserve the physical contents of the second order relations closure. Analysis of the turbulence structure in two basic flows: homogeneous bubbly flows uniform and with a constant shear allows to deduce a formulation of the two-phase turbulent viscosity involving the characteristic scales of bubbly turbulence, as well as an analytical description of modification of the homogeneous turbulence structure induced by the bubbles presence. The Eulerian two-fluid model was then generalized with the case of the inhomogeneous flows with low void fractions. The numerical results obtained by the application of this model integrated in the computer code MELODIF in the case of free sheared turbulent bubbly flow of wake showed a satisfactory agreement with the experimental data and made it possible to analyze the modification of the characteristic scales of such flow by the interfacial interactions. The two-fluid first order model is generalized finally with the case of high void fractions bubbly flows where the hydrodynamic interactions between the bubbles are not negligible any more. (author)

  2. Modeling and Measurements of Multiphase Flow and Bubble Entrapment in Steel Continuous Casting

    Science.gov (United States)

    Jin, Kai; Thomas, Brian G.; Ruan, Xiaoming

    2016-02-01

    In steel continuous casting, argon gas is usually injected to prevent clogging, but the bubbles also affect the flow pattern, and may become entrapped to form defects in the final product. To investigate this behavior, plant measurements were conducted, and a computational model was applied to simulate turbulent flow of the molten steel and the transport and capture of argon gas bubbles into the solidifying shell in a continuous slab caster. First, the flow field was solved with an Eulerian k- ɛ model of the steel, which was two-way coupled with a Lagrangian model of the large bubbles using a discrete random walk method to simulate their turbulent dispersion. The flow predicted on the top surface agreed well with nailboard measurements and indicated strong cross flow caused by biased flow of Ar gas due to the slide-gate orientation. Then, the trajectories and capture of over two million bubbles (25 μm to 5 mm diameter range) were simulated using two different capture criteria (simple and advanced). Results with the advanced capture criterion agreed well with measurements of the number, locations, and sizes of captured bubbles, especially for larger bubbles. The relative capture fraction of 0.3 pct was close to the measured 0.4 pct for 1 mm bubbles and occurred mainly near the top surface. About 85 pct of smaller bubbles were captured, mostly deeper down in the caster. Due to the biased flow, more bubbles were captured on the inner radius, especially near the nozzle. On the outer radius, more bubbles were captured near to narrow face. The model presented here is an efficient tool to study the capture of bubbles and inclusion particles in solidification processes.

  3. Two-Dimensional Physical and CFD Modelling of Large Gas Bubble Behaviour in Bath Smelting Furnaces

    Directory of Open Access Journals (Sweden)

    Yuhua Pan

    2010-09-01

    Full Text Available The behaviour of large gas bubbles in a liquid bath and the mechanisms of splash generation due to gas bubble rupture in high-intensity bath smelting furnaces were investigated by means of physical and mathematical (CFD modelling techniques. In the physical modelling work, a two-dimensional Perspex model of the pilot plant furnace at CSIRO Process Science and Engineering was established in the laboratory. An aqueous glycerol solution was used to simulate liquid slag. Air was injected via a submerged lance into the liquid bath and the bubble behaviour and the resultant splashing phenomena were observed and recorded with a high-speed video camera. In the mathematical modelling work, a two-dimensional CFD model was developed to simulate the free surface flows due to motion and deformation of large gas bubbles in the liquid bath and rupture of the bubbles at the bath free surface. It was concluded from these modelling investigations that the splashes generated in high-intensity bath smelting furnaces are mainly caused by the rupture of fast rising large gas bubbles. The acceleration of the bubbles into the preceding bubbles and the rupture of the coalescent bubbles at the bath surface contribute significantly to splash generation.

  4. Numerical modeling of bubble dynamics in viscoelastic media with relaxation

    Science.gov (United States)

    Warnez, M. T.; Johnsen, E.

    2015-06-01

    Cavitation occurs in a variety of non-Newtonian fluids and viscoelastic materials. The large-amplitude volumetric oscillations of cavitation bubbles give rise to high temperatures and pressures at collapse, as well as induce large and rapid deformation of the surroundings. In this work, we develop a comprehensive numerical framework for spherical bubble dynamics in isotropic media obeying a wide range of viscoelastic constitutive relationships. Our numerical approach solves the compressible Keller-Miksis equation with full thermal effects (inside and outside the bubble) when coupled to a highly generalized constitutive relationship (which allows Newtonian, Kelvin-Voigt, Zener, linear Maxwell, upper-convected Maxwell, Jeffreys, Oldroyd-B, Giesekus, and Phan-Thien-Tanner models). For the latter two models, partial differential equations (PDEs) must be solved in the surrounding medium; for the remaining models, we show that the PDEs can be reduced to ordinary differential equations. To solve the general constitutive PDEs, we present a Chebyshev spectral collocation method, which is robust even for violent collapse. Combining this numerical approach with theoretical analysis, we simulate bubble dynamics in various viscoelastic media to determine the impact of relaxation time, a constitutive parameter, on the associated physics. Relaxation time is found to increase bubble growth and permit rebounds driven purely by residual stresses in the surroundings. Different regimes of oscillations occur depending on the relaxation time.

  5. Development and validation of bubble breakup and coalescence constitutive models for the one-group interfacial area transport equation

    International Nuclear Information System (INIS)

    Pellacani, Filippo

    2012-01-01

    A local mechanistic model for bubble coalescence and breakup for the one-group interfacial area transport equation has been developed, in agreement and within the limits of the current understanding, based on an exhaustive survey of the theory and of the state of the art models for bubble dynamics simulation. The new model has been tested using the commercial 3D CFD code ANSYS CFX. Upward adiabatic turbulent air-water bubbly flow has been simulated and the results have been compared with the data obtained in the experimental facility PUMA. The range of the experimental data available spans between 0.5 to 2 m/s liquid velocity and 5 to 15 % volume fraction. For the implementation of the models, both the monodispersed and the interfacial area transport equation approaches have been used. The first one to perform a detailed analysis of the forces and models to reproduce the dynamic of the dispersed phase adequately and to be used in the next phases of the work. Also two different bubble induced turbulence models have been tested to consider the effect of the presence of the gas phase on the turbulence of the liquid phase. The interfacial area transport equation has been successfully implemented into the CFD code and the state of the art breakup and coalescence models have been used for simulation. The limitations of the actual theory have been shown and a new bubble interactions model has been developed. The simulations showed that a considerable improvement is achieved if compared to the state of the art closure models. Limits in the implementation derive from the actual understanding and formulation of the bubbly dynamics. A strong dependency on the interfacial non-drag force models and coefficients have been shown. More experimental and theory work needs to be done in this field to increase the prediction capability of the simulation tools regarding the distribution of the phases along the pipe radius.

  6. Cluster Dynamics Modeling with Bubble Nucleation, Growth and Coalescence

    Energy Technology Data Exchange (ETDEWEB)

    de Almeida, Valmor F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Blondel, Sophie [Univ. of Tennessee, Knoxville, TN (United States); Bernholdt, David E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wirth, Brian D. [Univ. of Tennessee, Knoxville, TN (United States)

    2017-06-01

    The topic of this communication pertains to defect formation in irradiated solids such as plasma-facing tungsten submitted to helium implantation in fusion reactor com- ponents, and nuclear fuel (metal and oxides) submitted to volatile ssion product generation in nuclear reactors. The purpose of this progress report is to describe ef- forts towards addressing the prediction of long-time evolution of defects via continuum cluster dynamics simulation. The di culties are twofold. First, realistic, long-time dynamics in reactor conditions leads to a non-dilute di usion regime which is not accommodated by the prevailing dilute, stressless cluster dynamics theory. Second, long-time dynamics calls for a large set of species (ideally an in nite set) to capture all possible emerging defects, and this represents a computational bottleneck. Extensions beyond the dilute limit is a signi cant undertaking since no model has been advanced to extend cluster dynamics to non-dilute, deformable conditions. Here our proposed approach to model the non-dilute limit is to monitor the appearance of a spatially localized void volume fraction in the solid matrix with a bell shape pro le and insert an explicit geometrical bubble onto the support of the bell function. The newly cre- ated internal moving boundary provides the means to account for the interfacial ux of mobile species into the bubble, and the growth of bubbles allows for coalescence phenomena which captures highly non-dilute interactions. We present a preliminary interfacial kinematic model with associated interfacial di usion transport to follow the evolution of the bubble in any number of spatial dimensions and any number of bubbles, which can be further extended to include a deformation theory. Finally we comment on a computational front-tracking method to be used in conjunction with conventional cluster dynamics simulations in the non-dilute model proposed.

  7. Impact of bubble wakes on a developing bubble flow in a vertical pipe

    International Nuclear Information System (INIS)

    Tomiyama, A.; Makino, Y.; Miyoshi, K.; Tamai, H.; Serizawa, A.; Zun, I.

    1998-01-01

    Three-dimensional two-way bubble tracking simulation of single large air bubbles rising through a stagnant water filled in a vertical pipe was conducted to investigate the structures of bubble wakes. Spatial distributions of time-averaged liquid velocity field, turbulent intensity and Reynolds stress caused by bubble wakes were deduced from the calculated local instantaneous liquid velocities. It was confirmed that wake structures are completely different from the ones estimated by a conventional wake model. Then, we developed a simple wake model based on the predicted time-averaged wake velocity fields, and implemented it into a 3D one-way bubble tracking method to examine the impact of bubble wake structures on time-spatial evolution of a developing air-water bubble flow in a vertical pipe. As a results, we confirmed that the developed wake model can give better prediction for flow pattern evolution than a conventional wake model

  8. GISAXS modelling of helium-induced nano-bubble formation in tungsten and comparison with TEM

    Science.gov (United States)

    Thompson, Matt; Sakamoto, Ryuichi; Bernard, Elodie; Kirby, Nigel; Kluth, Patrick; Riley, Daniel; Corr, Cormac

    2016-05-01

    Grazing-incidence small angle x-ray scattering (GISAXS) is a powerful non-destructive technique for the measurement of nano-bubble formation in tungsten under helium plasma exposure. Here, we present a comparative study between transmission electron microscopy (TEM) and GISAXS measurements of nano-bubble formation in tungsten exposed to helium plasma in the Large Helical Device (LHD) fusion experiment. Both techniques are in excellent agreement, suggesting that nano-bubbles range from spheroidal to ellipsoidal, displaying exponential diameter distributions with mean diameters μ=0.68 ± 0.04 nm and μ=0.6 ± 0.1 nm measured by TEM and GISAXS respectively. Depth distributions were also computed, with calculated exponential depth distributions with mean depths of 8.4 ± 0.5 nm and 9.1 ± 0.4 nm for TEM and GISAXS. In GISAXS modelling, spheroidal particles were fitted with an aspect ratio ε=0.7 ± 0.1. The GISAXS model used is described in detail.

  9. Computational Fluid Dynamics Modeling of Bubbling in a Viscous Fluid for Validation of Waste Glass Melter Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Abboud, Alexander William [Idaho National Laboratory; Guillen, Donna Post [Idaho National Laboratory

    2016-01-01

    At the Hanford site, radioactive waste stored in underground tanks is slated for vitrification for final disposal. A comprehensive knowledge of the glass batch melting process will be useful in optimizing the process, which could potentially reduce the cost and duration of this multi-billion dollar cleanup effort. We are developing a high-fidelity heat transfer model of a Joule-heated ceramic lined melter to improve the understanding of the complex, inter-related processes occurring with the melter. The glass conversion rates in the cold cap layer are dependent on promoting efficient heat transfer. In practice, heat transfer is augmented by inserting air bubblers into the molten glass. However, the computational simulations must be validated to provide confidence in the solutions. As part of a larger validation procedure, it is beneficial to split the physics of the melter into smaller systems to validate individually. The substitution of molten glass for a simulant liquid with similar density and viscosity at room temperature provides a way to study mixing through bubbling as an isolated effect without considering the heat transfer dynamics. The simulation results are compared to experimental data obtained by the Vitreous State Laboratory at the Catholic University of America using bubblers placed within a large acrylic tank that is similar in scale to a pilot glass waste melter. Comparisons are made for surface area of the rising air bubbles between experiments and CFD simulations for a variety of air flow rates and bubble injection depths. Also, computed bubble rise velocity is compared to a well-accepted expression for bubble terminal velocity.

  10. Turbulence-induced bubble collision force modeling and validation in adiabatic two-phase flow using CFD

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Subash L., E-mail: sharma55@purdue.edu [School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907-1290 (United States); Hibiki, Takashi; Ishii, Mamoru [School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907-1290 (United States); Brooks, Caleb S. [Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois, Urbana, IL 61801 (United States); Schlegel, Joshua P. [Nuclear Engineering Program, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Liu, Yang [Nuclear Engineering Program, Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); Buchanan, John R. [Bechtel Marine Propulsion Corporation, Bettis Laboratory, West Mifflin, PA 15122 (United States)

    2017-02-15

    Highlights: • Void distribution in narrow rectangular channel with various non-uniform inlet conditions. • Modeling of void diffusion due to bubble collision force. • Validation of new modeling in adiabatic air–water two-phase flow in a narrow channel. - Abstract: The prediction capability of the two-fluid model for gas–liquid dispersed two-phase flow depends on the accuracy of the closure relations for the interfacial forces. In previous studies of two-phase flow Computational Fluid Dynamics (CFD), interfacial force models for a single isolated bubble has been extended to disperse two-phase flow assuming the effect in a swarm of bubbles is similar. Limited studies have been performed investigating the effect of the bubble concentration on the lateral phase distribution. Bubbles, while moving through the liquid phase, may undergo turbulence-driven random collision with neighboring bubbles without significant coalescence. The rate of these collisions depends upon the bubble approach velocity and bubble spacing. The bubble collision frequency is expected to be higher in locations with higher bubble concentrations, i.e., volume fraction. This turbulence-driven random collision causes the diffusion of the bubbles from high concentration to low concentration. Based on experimental observations, a phenomenological model has been developed for a “turbulence-induced bubble collision force” for use in the two-fluid model. For testing the validity of the model, two-phase flow data measured at Purdue University are utilized. The geometry is a 10 mm × 200 mm cross section channel. Experimentally, non-uniform inlet boundary conditions are applied with different sparger combinations to vary the volume fraction distribution across the wider dimension. Examining uniform and non-uniform inlet data allows for the influence of the volume fraction to be studied as a separate effect. The turbulence-induced bubble collision force has been implemented in ANSYS CFX. The

  11. Detailed modelling of hydrodynamics, mass transfer and chemical reactions in a bubble column using a discrete bubble model: Chemisorption of CO2 into NaOH solution, numerical and experimental study

    NARCIS (Netherlands)

    Darmana, D.; Henket, R.L.B.; Deen, N.G.; Kuipers, J.A.M.

    2007-01-01

    This paper describes simulations that were performed with an Euler–Lagrange model that takes into account mass transfer and chemical reaction reported by Darmana et al. (2005. Detailed modelling of hydrodynamics, mass transfer and chemical reactions in a bubble column using a discrete bubble model.

  12. A description of stress driven bubble growth of helium implanted tungsten

    International Nuclear Information System (INIS)

    Sharafat, Shahram; Takahashi, Akiyuki; Nagasawa, Koji; Ghoniem, Nasr

    2009-01-01

    Low energy (<100 keV) helium implantation of tungsten has been shown to result in the formation of unusual surface morphologies over a large temperature range (700-2100 deg. C). Simulation of these macroscopic phenomena requires a multiscale approach to modeling helium transport in both space and time. We present here a multiscale helium transport model by coupling spatially-resolved kinetic rate theory (KRT) with kinetic Monte Carlo (KMC) simulation to model helium bubble nucleation and growth. The KRT-based HEROS Code establishes defect concentrations as well as stable helium bubble nuclei as a function of implantation parameters and position from the implanted surface and the KMC-based Mc-HEROS Code models the growth of helium bubbles due to migration and coalescence. Temperature- and stress-gradients can act as driving forces, resulting in biased bubble migration. The Mc-HEROS Code was modified to simulate the impact of stress gradients on bubble migration and coalescence. In this work, we report on bubble growth and gas release of helium implanted tungsten W/O stress gradients. First, surface pore densities and size distributions are compared with available experimental results for stress-free helium implantation conditions. Next, the impact of stress gradients on helium bubble evolution is simulated. The influence of stress fields on bubble and surface pore evolution are compared with stress-free simulations. It is shown that near surface stress gradients accelerate helium bubbles towards the free surface, but do not increasing average bubble diameters significantly.

  13. Models and observations of foam coverage and bubble content in the surf zone

    Science.gov (United States)

    Kirby, J. T.; Shi, F.; Holman, R. A.

    2010-12-01

    Optical and acoustical observations and communications are hampered in the nearshore by the presence of bubbles and foam generated by breaking waves. Bubble clouds in the water column provide a highly variable (both spatially and temporally) obstacle to direct acoustic and optical paths. Persistent foam riding on the water surface creates a primary occlusion of optical penetration into the water column. In an effort to better understand and predict the level of bubble and foam content in the surfzone, we have been pursuing the development of a detailed phase resolved model of fluid and gaseous components of the water column, using a Navier-Stokes/VOF formulation extended to include a multiphase description of polydisperse bubble populations. This sort of modeling provides a detailed description of large scale turbulent structures and associated bubble transport mechanisms under breaking wave crests. The modeling technique is too computationally intensive, however, to provide a wider-scale description of large surfzone regions. In order to approach the larger scale problem, we are developing a model for spatial and temporal distribution of foam and bubbles within the framework of a Boussinesq model. The basic numerical framework for the code is described by Shi et al (2010, this conference). Bubble effects are incorporated both in the mass and momentum balances for weakly dispersive, fully nonlinear waves, with spatial and temporal bubble distributions parameterized based on the VOF modeling and measurements and tied to the computed rate of dissipation of energy during breaking. A model of a foam layer on the water surface is specified using a shallow water formulation. Foam mass conservation includes source and sink terms representing outgassing of the water column, direct foam generation due to surface agitation, and erosion due to bubble bursting. The foam layer motion in the plane of the water surface arises due to a balance of drag forces due to wind and water

  14. Pseudopotential multi-relaxation-time lattice Boltzmann model for cavitation bubble collapse with high density ratio

    International Nuclear Information System (INIS)

    Shan Ming-Lei; Zhu Chang-Ping; Yao Cheng; Yin Cheng; Jiang Xiao-Yan

    2016-01-01

    The dynamics of the cavitation bubble collapse is a fundamental issue for the bubble collapse application and prevention. In the present work, the modified forcing scheme for the pseudopotential multi-relaxation-time lattice Boltzmann model developed by Li Q et al. [Li Q, Luo K H and Li X J 2013 Phys. Rev. E 87 053301] is adopted to develop a cavitation bubble collapse model. In the respects of coexistence curves and Laplace law verification, the improved pseudopotential multi-relaxation-time lattice Boltzmann model is investigated. It is found that the thermodynamic consistency and surface tension are independent of kinematic viscosity. By homogeneous and heterogeneous cavitation simulation, the ability of the present model to describe the cavitation bubble development as well as the cavitation inception is verified. The bubble collapse between two parallel walls is simulated. The dynamic process of a collapsing bubble is consistent with the results from experiments and simulations by other numerical methods. It is demonstrated that the present pseudopotential multi-relaxation-time lattice Boltzmann model is applicable and efficient, and the lattice Boltzmann method is an alternative tool for collapsing bubble modeling. (paper)

  15. Numerical model for the breakdown of a molecular F{sub 2} bubble in molten FLiBe

    Energy Technology Data Exchange (ETDEWEB)

    Seto, K., E-mail: kelvin.seto@uoit.ca [Univ. of Ontario Inst. of Tech., Oshawa, ON (Canada)

    2014-07-01

    A novel one-dimensional numerical model of the breakdown for a fluorine bubble due to break-up and chemical reactions with dissolved UF{sub 4} and PuF{sub 4} in the molten salt reactor (MSR) volatilization process was developed. The results show that an initial bubble diameter of 4.0 cm would be required in order for it to reach the top of the volatilization reactor. Chemical reactions were found to be the primary cause of bubble breakdown. Physical characteristics (density and surface tension) were found to have a negligible effect on the breakdown process, as determined by a sensitivity analysis comparing molten Li to FLiBe. (author)

  16. Measurement and modeling on hydrodynamic forces and deformation of an air bubble approaching a solid sphere in liquids.

    Science.gov (United States)

    Shahalami, Mansoureh; Wang, Louxiang; Wu, Chu; Masliyah, Jacob H; Xu, Zhenghe; Chan, Derek Y C

    2015-03-01

    The interaction between bubbles and solid surfaces is central to a broad range of industrial and biological processes. Various experimental techniques have been developed to measure the interactions of bubbles approaching solids in a liquid. A main challenge is to accurately and reliably control the relative motion over a wide range of hydrodynamic conditions and at the same time to determine the interaction forces, bubble-solid separation and bubble deformation. Existing experimental methods are able to focus only on one of the aspects of this problem, mostly for bubbles and particles with characteristic dimensions either below 100 μm or above 1 cm. As a result, either the interfacial deformations are measured directly with the forces being inferred from a model, or the forces are measured directly with the deformations to be deduced from the theory. The recently developed integrated thin film drainage apparatus (ITFDA) filled the gap of intermediate bubble/particle size ranges that are commonly encountered in mineral and oil recovery applications. Equipped with side-view digital cameras along with a bimorph cantilever as force sensor and speaker diaphragm as the driver for bubble to approach a solid sphere, the ITFDA has the capacity to measure simultaneously and independently the forces and interfacial deformations as a bubble approaches a solid sphere in a liquid. Coupled with the thin liquid film drainage modeling, the ITFDA measurement allows the critical role of surface tension, fluid viscosity and bubble approach speed in determining bubble deformation (profile) and hydrodynamic forces to be elucidated. Here we compare the available methods of studying bubble-solid interactions and demonstrate unique features and advantages of the ITFDA for measuring both forces and bubble deformations in systems of Reynolds numbers as high as 10. The consistency and accuracy of such measurement are tested against the well established Stokes-Reynolds-Young-Laplace model

  17. Nonlinear Bubble Dynamics And The Effects On Propagation Through Near-Surface Bubble Layers

    Science.gov (United States)

    Leighton, Timothy G.

    2004-11-01

    Nonlinear bubble dynamics are often viewed as the unfortunate consequence of having to use high acoustic pressure amplitudes when the void fraction in the near-surface oceanic bubble layer is great enough to cause severe attenuation (e.g. >50 dB/m). This is seen as unfortunate since existing models for acoustic propagation in bubbly liquids are based on linear bubble dynamics. However, the development of nonlinear models does more than just allow quantification of the errors associated with the use of linear models. It also offers the possibility of propagation modeling and acoustic inversions which appropriately incorporate the bubble nonlinearity. Furthermore, it allows exploration and quantification of possible nonlinear effects which may be exploited. As a result, high acoustic pressure amplitudes may be desirable even in low void fractions, because they offer opportunities to gain information about the bubble cloud from the nonlinearities, and options to exploit the nonlinearities to enhance communication and sonar in bubbly waters. This paper presents a method for calculating the nonlinear acoustic cross-sections, scatter, attenuations and sound speeds from bubble clouds which may be inhomogeneous. The method allows prediction of the time dependency of these quantities, both because the cloud may vary and because the incident acoustic pulse may have finite and arbitrary time history. The method can be readily adapted for bubbles in other environments (e.g. clouds of interacting bubbles, sediments, structures, in vivo, reverberant conditions etc.). The possible exploitation of bubble acoustics by marine mammals, and for sonar enhancement, is explored.

  18. Numerical modelling of inert gas bubble rising in liquid metal pool

    International Nuclear Information System (INIS)

    Pradeep, Arjun; Sharma, Anil Kumar; Ponraju, D.; Nashine, B K.

    2016-01-01

    Two-phase flow finds several applications in safe operation of Sodium-cooled Fast Reactor (SFR). Numerical modelling of bubble rise dynamics in liquid metal pool of SFR is essential for the evaluation of residence time and shape changes, which are of utmost importance for simulating associated heat and mass transfer processes involved in reactor safety. A numerical model has been developed based on OpenFOAM for the evaluation of two-dimensional inert gas bubble rise dynamics in stagnant liquid metal pool. The governing model equations are discretized and solved using the Volume of Fluid based solver available in OpenFOAM with appropriate initial and boundary conditions. The model has been validated with available numerical benchmark results for laminar transient two-phase flow. The model has been used to evaluate velocity and rise trajectory of argon gas bubble with different diameters through a pool of liquid sodium. (author)

  19. Model and experimental vizualisation of a bubble interacting with an inclined wall

    Science.gov (United States)

    Podvin, Berengere; Khoja, Suleman; Attinger, Daniel; Moraga, Francisco

    2006-11-01

    We describe the motion of an air bubble rising through water as it interacts with a wall of variable inclination. The bubble diameter varies about O(1) mm. We use lubrication theory to determine the modification of the bubble interface and compute the hydrodynamic force exerted by the wall. The present work is an extension of Moraga et al's model [Computers and Fluids 2006], which was devised for a horizontal wall. The predictions of the model are checked against experimental visualizations. The influence of the Weber number, Reynolds number and wall inclination is examined

  20. Modified big-bubble technique compared to manual dissection deep anterior lamellar keratoplasty in the treatment of keratoconus.

    Science.gov (United States)

    Knutsson, Karl Anders; Rama, Paolo; Paganoni, Giorgio

    2015-08-01

    To evaluate the clinical findings and results of manual dissection deep anterior lamellar keratoplasty (DALK) compared to a modified big-bubble DALK technique in eyes affected by keratoconus. Sixty eyes of 60 patients with keratoconus were treated with one of the two surgical techniques manual DALK (n = 30); big-bubble DALK (n = 30). The main outcomes measured were visual acuity, corneal topographic parameters, thickness of residual stroma and endothelial cell density (ECD). Patients were examined postoperatively at 1 month, 6 months, 1 year and 1 month after suture removal. Final best spectacle-corrected visual acuity (BSCVA) measured 1 month after suture removal was 0.11 ± 0.08 LogMAR in the big-bubble group compared to 0.13 ± 0.08 in the manual DALK group (p = 0.227). In patients treated with the big-bubble technique without complications (Descemet's membrane completely bared), the stromal residue was not measureable. Mean stromal residual thickness in the manual DALK group was 30.50 ± 27.60 μm. Data analysis of the manual DALK group demonstrated a significant correlation between BSCVA and residual stromal thickness; lower residual stromal thickness correlated with better BSCVA values (Spearman ρ = 0.509, p = 0.018). Postoperative ECD was similar in both groups at all intervals, with no statistically significant differences. In both groups, ECD loss was only significant during the 1- to 6-month interval (p = 0.001 and p big-bubble DALK and manual DALK groups, respectively). Manual DALK provides comparable results to big-bubble DALK. Big-bubble DALK permits faster visual recovery and is a surgical technique, which can be easily converted to manual DALK in cases of unsuccessful 'big-bubble' formation. © 2015 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  1. Development and validation of models for bubble coalescence and breakup. Final report

    International Nuclear Information System (INIS)

    Liao, Y.; Lucas, D.

    2013-02-01

    A new generalized model for bubble coalescence and breakup has been developed. It is based on physical considerations and takes into account various mechanisms that can lead to bubble coalescence and breakup. First, in a detailed literature review, the available models were compiled and analyzed. It turned out that many of them show a contradictory behaviour. None of these models allows the prediction of the evolution of bubble size distributions along a pipe flow for a wide range of combinations of flow rates of the gas and the liquid phase. The new model has been extensively studied in a simplified Test-Solver. Although this does not cover all details of a developing flow along the pipe, it allows - in contrast to a CFD code - to conduct a large number of variational calculations to investigate the influence of individual sizes and models. Coalescence and breakup cannot be considered separately from other phenomena and models that reflect these phenomena. There are close interactions with the turbulence of the liquid phase and the momentum exchange between phases. Since the dissipation rate of turbulent kinetic energy is a direct input parameter for the new model, the turbulence modelling has been studied very carefully. To validate the model, a special experimental series for air-water flows was used, conducted at the TOPFLOW facility in an 8-meter long DN200 pipe. The data are characterized by high quality and were produced within the TOPFLOW-II project. The test series aims to provide a basis for the work presented here. Predicting the evolution of the bubble size distribution along the pipe could be improved significantly in comparison to the previous standard models for bubble coalescence and breakup implemented in CFX. However some quantitative discrepancies remain. The full model equations as well as an implementation as ''User-FORTRAN'' in CFX are available and can be used for further work on the simulation of poly-disperse bubbly flows.

  2. Acoustic emission events from sodium vapour bubble collapsing: a stochastic model

    Energy Technology Data Exchange (ETDEWEB)

    Colombino, A; Dentico, G; Pacilio, N; Papalia, B; Taglienti, S; Tosi, V; Vigo, A [Comitato Nazionale per l' Energia Nucleare, Casaccia (Italy). Centro di Studi Nucleari; Galli, C [Rome Univ. (Italy). Ist. di Matematica

    1981-01-01

    The forward Kolomogorov equation method has been applied to a zero-dimensional model which describes the time distribution of acoustic emissions from sodium vapour bubble collapsing. Processes taken into account as components for outlining the upstated phenomenon are: energy generation, energy dissipation, bubble creation, acoustic emission and energy release from bubble collapsing. Processes involve affect or are induced by a population of particles (bubbles, acoustic pulses) and pseudoparticles (energetic units). A formulation is obtained for the expected values of some stochastic indicators, i.e., factorial moments and cumulants, autocorrelation functions, waiting time distribution between contiguous events, of the time series consisting of acoustic emission pulses as detected by a suitable sensor. Preliminary, but promising, validation of the model and a sound prelude to effective boiling regime diagnosing is obtained by processing data from the out-of-pile CFNa loop in Grenoble, France. Data are collected from a piezoelectric accelerometer located nearby the circuit.

  3. Development of two-group interfacial area transport equation for confined flow-1. Modeling of bubble interactions

    International Nuclear Information System (INIS)

    Sun, Xiaodong; Kim, Seungjin; Ishii, Mamoru; Beus, Stephen G.

    2003-01-01

    This paper presents the modeling of bubble interaction mechanisms in the two-group interfacial area transport equation (IATE) for confined gas-liquid two-phase flow. The transport equation is applicable to bubbly, cap-turbulent, and churn-turbulent flow regimes. In the two-group IATE, bubbles are categorized into two groups: spherical/distorted bubbles as Group 1 and cap/slug/churn-turbulent bubbles as Group 2. Thus, two sets of equations are used to describe the generation and destruction rates of bubble number density, void fraction, and interfacial area concentration for the two groups of bubbles due to bubble expansion and compression, coalescence and disintegration, and phase change. Five major bubble interaction mechanisms are identified for the gas-liquid two-phase flow of interest, and are analytically modeled as the source/sink terms for the transport equations based on certain assumptions for the confined flow. These models include both intra-group (within a certain group) and inter-group (between two groups) bubble interactions. The comparisons of the prediction by the one-dimensional two-group IATE with experimental data are presented in the second paper of this series. (author)

  4. Bubbles, shocks and elementary technical trading strategies

    Science.gov (United States)

    Fry, John

    2014-01-01

    In this paper we provide a unifying framework for a set of seemingly disparate models for bubbles, shocks and elementary technical trading strategies in financial markets. Markets operate by balancing intrinsic levels of risk and return. This seemingly simple observation is commonly over-looked by academics and practitioners alike. Our model shares its origins in statistical physics with others. However, under our approach, changes in market regime can be explicitly shown to represent a phase transition from random to deterministic behaviour in prices. This structure leads to an improved physical and econometric model. We develop models for bubbles, shocks and elementary technical trading strategies. The list of empirical applications is both interesting and topical and includes real-estate bubbles and the on-going Eurozone crisis. We close by comparing the results of our model with purely qualitative findings from the finance literature.

  5. One-group interfacial area transport in vertical air-water bubbly flow

    International Nuclear Information System (INIS)

    Wu, Q.; Kim, S.; Ishii, M.; Beus, S.G.

    1997-01-01

    In the two-fluid model for two-phase flows, interfacial area concentration is one of the most important closure relations that should be obtained from careful mechanistic modeling. The objective of this study is to develop a one-group interfacial area transport equation together with the modeling of the source and sink terms due to bubble breakage and coalescence. For bubble coalescence, two mechanisms are considered to be dominant in vertical two-phase bubbly flow. These are the random collisions between bubbles due to turbulence in the flow field, and the wake entrainment process due to the relative motion of the bubbles in the wake region of a seeding bubble. For bubble breakup, the impact of turbulent eddies is considered. These phenomena are modeled individually, resulting in a one-group interfacial area concentration transport equation with certain parameters to be determined from experimental data. Compared to the measured axial distribution of the interfacial area concentration under various flow conditions, these parameters are obtained for the reduced one-group, one-dimensional transport equation. The results indicate that the proposed models for bubble breakup and coalescence are appropriate

  6. Simple improvements to classical bubble nucleation models.

    Science.gov (United States)

    Tanaka, Kyoko K; Tanaka, Hidekazu; Angélil, Raymond; Diemand, Jürg

    2015-08-01

    We revisit classical nucleation theory (CNT) for the homogeneous bubble nucleation rate and improve the classical formula using a correct prefactor in the nucleation rate. Most of the previous theoretical studies have used the constant prefactor determined by the bubble growth due to the evaporation process from the bubble surface. However, the growth of bubbles is also regulated by the thermal conduction, the viscosity, and the inertia of liquid motion. These effects can decrease the prefactor significantly, especially when the liquid pressure is much smaller than the equilibrium one. The deviation in the nucleation rate between the improved formula and the CNT can be as large as several orders of magnitude. Our improved, accurate prefactor and recent advances in molecular dynamics simulations and laboratory experiments for argon bubble nucleation enable us to precisely constrain the free energy barrier for bubble nucleation. Assuming the correction to the CNT free energy is of the functional form suggested by Tolman, the precise evaluations of the free energy barriers suggest the Tolman length is ≃0.3σ independently of the temperature for argon bubble nucleation, where σ is the unit length of the Lennard-Jones potential. With this Tolman correction and our prefactor one gets accurate bubble nucleation rate predictions in the parameter range probed by current experiments and molecular dynamics simulations.

  7. Formation mechanism of gas bubble superlattice in UMo metal fuels: Phase-field modeling investigation

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Shenyang, E-mail: shenyang.hu@pnnl.gov; Burkes, Douglas E.; Lavender, Curt A.; Senor, David J.; Setyawan, Wahyu; Xu, Zhijie

    2016-10-15

    Nano-gas bubble superlattices are often observed in irradiated UMo nuclear fuels. However, the formation mechanism of gas bubble superlattices is not well understood. A number of physical processes may affect the gas bubble nucleation and growth; hence, the morphology of gas bubble microstructures including size and spatial distributions. In this work, a phase-field model integrating a first-passage Monte Carlo method to investigate the formation mechanism of gas bubble superlattices was developed. Six physical processes are taken into account in the model: 1) heterogeneous generation of gas atoms, vacancies, and interstitials informed from atomistic simulations; 2) one-dimensional (1-D) migration of interstitials; 3) irradiation-induced dissolution of gas atoms; 4) recombination between vacancies and interstitials; 5) elastic interaction; and 6) heterogeneous nucleation of gas bubbles. We found that the elastic interaction doesn’t cause the gas bubble alignment, and fast 1-D migration of interstitials along 〈110〉 directions in the body-centered cubic U matrix causes the gas bubble alignment along 〈110〉 directions. It implies that 1-D interstitial migration along [110] direction should be the primary mechanism of a fcc gas bubble superlattice which is observed in bcc UMo alloys. Simulations also show that fission rates, saturated gas concentration, and elastic interaction all affect the morphology of gas bubble microstructures.

  8. Enhanced Generic Phase-field Model of Irradiation Materials: Fission Gas Bubble Growth Kinetics in Polycrystalline UO2

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yulan; Hu, Shenyang Y.; Montgomery, Robert O.; Gao, Fei; Sun, Xin

    2012-05-30

    Experiments show that inter-granular and intra-granular gas bubbles have different growth kinetics which results in heterogeneous gas bubble microstructures in irradiated nuclear fuels. A science-based model predicting the heterogeneous microstructure evolution kinetics is desired, which enables one to study the effect of thermodynamic and kinetic properties of the system on gas bubble microstructure evolution kinetics and morphology, improve the understanding of the formation mechanisms of heterogeneous gas bubble microstructure, and provide the microstructure to macroscale approaches to study their impact on thermo-mechanical properties such as thermo-conductivity, gas release, volume swelling, and cracking. In our previous report 'Mesoscale Benchmark Demonstration, Problem 1: Mesoscale Simulations of Intra-granular Fission Gas Bubbles in UO2 under Post-irradiation Thermal Annealing', we developed a phase-field model to simulate the intra-granular gas bubble evolution in a single crystal during post-irradiation thermal annealing. In this work, we enhanced the model by incorporating thermodynamic and kinetic properties at grain boundaries, which can be obtained from atomistic simulations, to simulate fission gas bubble growth kinetics in polycrystalline UO2 fuels. The model takes into account of gas atom and vacancy diffusion, vacancy trapping and emission at defects, gas atom absorption and resolution at gas bubbles, internal pressure in gas bubbles, elastic interaction between defects and gas bubbles, and the difference of thermodynamic and kinetic properties in matrix and grain boundaries. We applied the model to simulate gas atom segregation at grain boundaries and the effect of interfacial energy and gas mobility on gas bubble morphology and growth kinetics in a bi-crystal UO2 during post-irradiation thermal annealing. The preliminary results demonstrate that the model can produce the equilibrium thermodynamic properties and the morphology of gas

  9. Metabolic modeling of synthesis gas fermentation in bubble column reactors.

    Science.gov (United States)

    Chen, Jin; Gomez, Jose A; Höffner, Kai; Barton, Paul I; Henson, Michael A

    2015-01-01

    A promising route to renewable liquid fuels and chemicals is the fermentation of synthesis gas (syngas) streams to synthesize desired products such as ethanol and 2,3-butanediol. While commercial development of syngas fermentation technology is underway, an unmet need is the development of integrated metabolic and transport models for industrially relevant syngas bubble column reactors. We developed and evaluated a spatiotemporal metabolic model for bubble column reactors with the syngas fermenting bacterium Clostridium ljungdahlii as the microbial catalyst. Our modeling approach involved combining a genome-scale reconstruction of C. ljungdahlii metabolism with multiphase transport equations that govern convective and dispersive processes within the spatially varying column. The reactor model was spatially discretized to yield a large set of ordinary differential equations (ODEs) in time with embedded linear programs (LPs) and solved using the MATLAB based code DFBAlab. Simulations were performed to analyze the effects of important process and cellular parameters on key measures of reactor performance including ethanol titer, ethanol-to-acetate ratio, and CO and H2 conversions. Our computational study demonstrated that mathematical modeling provides a complementary tool to experimentation for understanding, predicting, and optimizing syngas fermentation reactors. These model predictions could guide future cellular and process engineering efforts aimed at alleviating bottlenecks to biochemical production in syngas bubble column reactors.

  10. Study of Bubble Size, Void Fraction, and Mass Transport in a Bubble Column under High Amplitude Vibration

    Directory of Open Access Journals (Sweden)

    Shahrouz Mohagheghian

    2018-04-01

    Full Text Available Vertical vibration is known to cause bubble breakup, clustering and retardation in gas-liquid systems. In a bubble column, vibration increases the mass transfer ratio by increasing the residence time and phase interfacial area through introducing kinetic buoyancy force (Bjerknes effect and bubble breakup. Previous studies have explored the effect of vibration frequency (f, but minimal effort has focused on the effect of amplitude (A on mass transfer intensification. Thus, the current work experimentally examines bubble size, void fraction, and mass transfer in a bubble column under relatively high amplitude vibration (1.5 mm < A <9.5 mm over a frequency range of 7.5–22.5 Hz. Results of the present work were compared with past studies. The maximum stable bubble size under vibration was scaled using Hinze theory for breakage. Results of this work indicate that vibration frequency exhibits local maxima in both mass transfer and void fraction. Moreover, an optimum amplitude that is independent of vibration frequency was found for mass transfer enhancements. Finally, this work suggests physics-based models to predict void fraction and mass transfer in a vibrating bubble column.

  11. Gas transport into a cavitation bubble during the explosion

    International Nuclear Information System (INIS)

    Oldenziel, D.M.

    1976-01-01

    When considering cavitation bubbles exploding from small stream nuclei the surface tension plays an important role, and mostly negative pressures exist in the surroundings of such a bubble. During the short explosion time, the gas and vapor pressure in the bubble plays no important role in the dynamic process. The high radial velocity of the bubble wall introduces a steep gradient in the concentration of dissolved air near it, which results in some enforced gas transport into the bubble. During the bubble implosion it is necessary to take into account the amount of gas in the bubble, as it certainly plays an important role in exploring the cavitation erosion. In this survey the solution of a mathematical model for the gas diffusion process is compared with some experimental results

  12. Bubble Size Distribution in a Vibrating Bubble Column

    Science.gov (United States)

    Mohagheghian, Shahrouz; Wilson, Trevor; Valenzuela, Bret; Hinds, Tyler; Moseni, Kevin; Elbing, Brian

    2016-11-01

    While vibrating bubble columns have increased the mass transfer between phases, a universal scaling law remains elusive. Attempts to predict mass transfer rates in large industrial scale applications by extrapolating laboratory scale models have failed. In a stationary bubble column, mass transfer is a function of phase interfacial area (PIA), while PIA is determined based on the bubble size distribution (BSD). On the other hand, BSD is influenced by the injection characteristics and liquid phase dynamics and properties. Vibration modifies the BSD by impacting the gas and gas-liquid dynamics. This work uses a vibrating cylindrical bubble column to investigate the effect of gas injection and vibration characteristics on the BSD. The bubble column has a 10 cm diameter and was filled with water to a depth of 90 cm above the tip of the orifice tube injector. BSD was measured using high-speed imaging to determine the projected area of individual bubbles, which the nominal bubble diameter was then calculated assuming spherical bubbles. The BSD dependence on the distance from the injector, injector design (1.6 and 0.8 mm ID), air flow rates (0.5 to 5 lit/min), and vibration conditions (stationary and vibration conditions varying amplitude and frequency) will be presented. In addition to mean data, higher order statistics will also be provided.

  13. Modeling Space-Time Dependent Helium Bubble Evolution in Tungsten Armor under IFE Conditions

    International Nuclear Information System (INIS)

    Qiyang Hu; Shahram Sharafat; Nasr Ghoniem

    2006-01-01

    The High Average Power Laser (HAPL) program is a coordinated effort to develop Laser Inertial Fusion Energy. The implosion of the D-T target produces a spectrum of neutrons, X-rays, and charged particles, which arrive at the first wall (FW) at different times within about 2.5 μs at a frequency of 5 to 10 Hz. Helium is one of several high-energy charged particle constituents impinging on the candidate tungsten armored low activation ferritic steel First Wall. The spread of the implanted debris and burn helium energies results in a unique space-time dependent implantation profile that spans about 10 μm in tungsten. Co-implantation of X-rays and other ions results in spatially dependent damage profiles and rapid space-time dependent temperature spikes and gradients. The rate of helium transport and helium bubble formation will vary significantly throughout the implanted region. Furthermore, helium will also be transported via the migration of helium bubbles and non-equilibrium helium-vacancy clusters. The HEROS code was developed at UCLA to model the spatial and time-dependent helium bubble nucleation, growth, coalescence, and migration under transient damage rates and transient temperature gradients. The HEROS code is based on kinetic rate theory, which includes clustering of helium and vacancies, helium mobility, helium-vacancy cluster stability, cavity nucleation and growth and other microstructural features such as interstitial loop evolution, grain boundaries, and precipitates. The HEROS code is based on space-time discretization of reaction-diffusion type equations to account for migration of mobile species between neighboring bins as single atoms, clusters, or bubbles. HAPL chamber FW implantation conditions are used to model helium bubble evolution in the implanted tungsten. Helium recycling rate predictions are compared with experimental results of helium ion implantation experiments. (author)

  14. TIME-DEPENDENT STOCHASTIC ACCELERATION MODEL FOR FERMI BUBBLES

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Kento; Asano, Katsuaki; Terasawa, Toshio, E-mail: kentos@icrr.u-tokyo.ac.jp, E-mail: asanok@icrr.u-tokyo.ac.jp, E-mail: terasawa@icrr.u-tokyo.ac.jp [Institute for Cosmic Ray Research, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8582 (Japan)

    2015-12-01

    We study stochastic acceleration models for the Fermi bubbles. Turbulence is excited just behind the shock front via Kelvin–Helmholtz, Rayleigh–Taylor, or Richtmyer–Meshkov instabilities, and plasma particles are continuously accelerated by the interaction with the turbulence. The turbulence gradually decays as it goes away from the shock fronts. Adopting a phenomenological model for the stochastic acceleration, we explicitly solve the temporal evolution of the particle energy distribution in the turbulence. Our results show that the spatial distribution of high-energy particles is different from those for a steady solution. We also show that the contribution of electrons that escaped from the acceleration regions significantly softens the photon spectrum. The photon spectrum and surface brightness profile are reproduced by our models. If the escape efficiency is very high, the radio flux from the escaped low-energy electrons can be comparable to that of the WMAP haze. We also demonstrate hadronic models with the stochastic acceleration, but they are unlikely in the viewpoint of the energy budget.

  15. Volume Oscillations Delivered to a Lung Model Using 4 Different Bubble CPAP Systems.

    Science.gov (United States)

    Poli, Jonathan A; Richardson, C Peter; DiBlasi, Robert M

    2015-03-01

    High-frequency pressure oscillations created by gas bubbling through an underwater seal during bubble CPAP may enhance ventilation and aid in lung recruitment in premature infants. We hypothesized that there are no differences in the magnitude of oscillations in lung volume (ΔV) in a preterm neonatal lung model when different bubble CPAP systems are used. An anatomically realistic replica of an infant nasal airway model was attached to a Silastic test lung sealed within a calibrated plethysmograph. Nasal prongs were affixed to the simulated neonate and supported using bubble CPAP systems set at 6 cm H2O. ΔV was calculated using pressure measurements obtained from the plethysmograph. The Fisher & Paykel Healthcare bubble CPAP system provided greater ΔV than any of the other devices at all of the respective bias flows (P CPAP systems. The magnitude of ΔV increased at bias flows of > 4 L/min in the Fisher & Paykel Healthcare, Airways Development, and homemade systems, but appeared to decrease as bias flow increased with the Babi.Plus system. The major finding of this study is that bubble CPAP can provide measureable ventilation effects in an infant lung model. We speculate that the differences noted in ΔV between the different devices are a combination of the circuit/nasal prong configuration, bubbler configuration, and frequency of oscillations. Additional testing is needed in spontaneously breathing infants to determine whether a physiologic benefit exists when using the different bubble CPAP systems. Copyright © 2015 by Daedalus Enterprises.

  16. Formation and evolution of bubbly screens in confined oscillating bubbly liquids

    Science.gov (United States)

    Shklyaev, Sergey; Straube, Arthur V.

    2010-01-01

    We consider the dynamics of dilute monodisperse bubbly liquid confined by two plane solid walls and subject to small-amplitude high-frequency oscillations normal to the walls. The initial state corresponds to the uniform distribution of bubbles and motionless liquid. The period of external driving is assumed much smaller than typical relaxation times for a single bubble but larger than the period of volume eigenoscillations. The time-averaged description accounting for the two-way coupling between the liquid and the bubbles is applied. We show that the model predicts accumulation of bubbles in thin sheets parallel to the walls. These singular structures, which are formally characterized by infinitely thin width and infinitely high concentration, are referred to as bubbly screens. The formation of a bubbly screen is described analytically in terms of a self-similar solution, which is in agreement with numerical simulations. We study the evolution of bubbly screens and detect a one-dimensional stationary state, which is shown to be unconditionally unstable.

  17. Stratification of bubbly horizontal flows: modeling and experimental validation

    International Nuclear Information System (INIS)

    Bottin, M.

    2010-01-01

    Hot films and optical probes enabled the acquisition of measurements in bubbly flows at 5, 20 and 40 diameters from the inlet of the vein on the METERO facility which test section is a horizontal circular pipe of 100 mm inner diameter. The distribution of the different phases, the existence of coalescence and sedimentation mechanisms, the influence of the liquid and gas flow rates, the radial and axial evolutions are analyzed thanks to fast camera videos and numerous and varied experimental results (void fraction, bubbles sizes, interfacial area, mean and fluctuating velocities and turbulent kinetic energy of the liquid phase). Some models, based on the idea that the flow reaches an equilibrium state sufficiently far from the inlet of the pipe, were developed to simulate mean interfacial area and turbulent kinetic energy transports in bubbly flows. (author)

  18. How are soap bubbles blown? Fluid dynamics of soap bubble blowing

    Science.gov (United States)

    Davidson, John; Lambert, Lori; Sherman, Erica; Wei, Timothy; Ryu, Sangjin

    2013-11-01

    Soap bubbles are a common interfacial fluid dynamics phenomenon having a long history of delighting not only children and artists but also scientists. In contrast to the dynamics of liquid droplets in gas and gas bubbles in liquid, the dynamics of soap bubbles has not been well documented. This is possibly because studying soap bubbles is more challenging due to there existing two gas-liquid interfaces. Having the thin-film interface seems to alter the characteristics of the bubble/drop creation process since the interface has limiting factors such as thickness. Thus, the main objective of this study is to determine how the thin-film interface differentiates soap bubbles from gas bubbles and liquid drops. To investigate the creation process of soap bubbles, we constructed an experimental model consisting of air jet flow and a soap film, which consistently replicates the conditions that a human produces when blowing soap bubbles, and examined the interaction between the jet and the soap film using the high-speed videography and the particle image velocimetry.

  19. Sinking bubbles in stout beers

    Science.gov (United States)

    Lee, W. T.; Kaar, S.; O'Brien, S. B. G.

    2018-04-01

    A surprising phenomenon witnessed by many is the sinking bubbles seen in a settling pint of stout beer. Bubbles are less dense than the surrounding fluid so how does this happen? Previous work has shown that the explanation lies in a circulation of fluid promoted by the tilted sides of the glass. However, this work has relied heavily on computational fluid dynamics (CFD) simulations. Here, we show that the phenomenon of sinking bubbles can be predicted using a simple analytic model. To make the model analytically tractable, we work in the limit of small bubbles and consider a simplified geometry. The model confirms both the existence of sinking bubbles and the previously proposed mechanism.

  20. Investigation of the condensing vapor bubble behavior through CFD simulation

    International Nuclear Information System (INIS)

    Sablania, Sidharth; Verma, Akash; Goyal, P.; Dutta, Anu; Singh, R.K.

    2013-09-01

    In nuclear systems the sub-cooled boiling flow is an important problem due to the behavior of condensing vapor bubble which has a large effect on the heat transfer characteristics as well as pressure drops and flow instability. The sub-cooled boiling flows become very complex and dynamic phenomena by the vapor bubble-water interaction. This happens due to the boiling/condensation, break-up, and coalescence of the bubble and needs to be addressed for characterizing the above mentioned flow parameters. There have been many researches to analyze the behavior of bubble experimentally and analytically. However, it is very difficult to get complete information about the behavior of bubble because of ever changing interface between vapor and water phase due to bubble condensation/evaporation Therefore, it is necessary to carry out a CFD simulation for better understanding the complex phenomenon of the bubble behavior. The present work focuses on the simulation of condensing bubble in subcooled boiling flow using (Volume of Fluid) VOF method in the CFD code CFD-ACE+. In order to simulate the heat and mass transfer through the bubble interface, CFD modeling for the bubble condensation was developed by modeling the source terms in the governing equations of VOF model using the User-Defined Function (UDF) in CFD-ACE+ code. The effect of condensation on bubble behavior was analyzed by comparing the behavior of condensing bubble with that of adiabatic bubble. It was observed that the behavior of condensing bubble was different from that of non condensing bubble in respect of bubble shape, diameter, velocity etc. The results obtained from the present simulation in terms of various parameters such as bubble velocity, interfacial area and bubble volume agreed well with the reported experimental results verified with FLUENT code in available literature. Hence, this CFD-ACE+ simulation of single bubble condensation will be a useful computational fluid dynamics tool for analyzing the

  1. Bubble levitation and translation under single-bubble sonoluminescence conditions.

    Science.gov (United States)

    Matula, Thomas J

    2003-08-01

    Bubble levitation in an acoustic standing wave is re-examined for conditions relevant to single-bubble sonoluminescence. Unlike a previous examination [Matula et al., J. Acoust. Soc. Am. 102, 1522-1527 (1997)], the stable parameter space [Pa,R0] is accounted for in this realization. Forces such as the added mass force and drag are included, and the results are compared with a simple force balance that equates the Bjerknes force to the buoyancy force. Under normal sonoluminescence conditions, the comparison is quite favorable. A more complete accounting of the forces shows that a stably levitated bubble does undergo periodic translational motion. The asymmetries associated with translational motion are hypothesized to generate instabilities in the spherical shape of the bubble. A reduction in gravity results in reduced translational motion. It is hypothesized that such conditions may lead to increased light output from sonoluminescing bubbles.

  2. Spherical Solutions of an Underwater Explosion Bubble

    Directory of Open Access Journals (Sweden)

    Andrew B. Wardlaw

    1998-01-01

    Full Text Available The evolution of the 1D explosion bubble flow field out to the first bubble minimum is examined in detail using four different models. The most detailed is based on the Euler equations and accounts for the internal bubble fluid motion, while the simplest links a potential water solution to a stationary, Isentropic bubble model. Comparison of the different models with experimental data provides insight into the influence of compressibility and internal bubble dynamics on the behavior of the explosion bubble.

  3. CFD modelling and validation of upward bubbly flow in an adiabatic vertical pipe using the quadrature method of moments

    International Nuclear Information System (INIS)

    Peña-Monferrer, C.; Passalacqua, A.; Chiva, S.; Muñoz-Cobo, J.L.

    2016-01-01

    Highlights: • A population balance equation solved with QMOM approximation is implemented in OpenFOAM. • Available models for interfacial forces and bubble induced turbulence are analyzed. • A vertical pipe flow is simulated for different bubbly flow conditions. • Two-phase flow characteristics in vertical pipes are properly predicted. - Abstract: An Eulerian–Eulerian approach was investigated to model adiabatic bubbly flow with CFD techniques. In the framework of the OpenFOAM"® software, a two-fluid model solver was modified to include a population balance equation, solved with the quadrature method of moments approximation to predict upward bubbly flow in vertical pipes considering the polydisperse nature of two-phase flow. Some progress have been made recently solving population balance equations in OpenFOAM"® and this research aims to extend its application to the case of vertical pipes under different conditions of liquid and gas velocities. In order to test the solver for nuclear applications, interfacial forces and bubble induced turbulence models were included to provide to this solver the capability to correctly predict the behavior of the continuous and disperse phases. Two-phase flow experiments with different superficial velocities of gas and liquid are used to validate the model and its implementation. Radial profiles of void fraction, gas and liquid velocities, Sauter mean diameter and turbulence intensity are compared to the computational results. These results are in satisfactory agreement with the experiments, showing the capability of the solver to predict two-phase flow characteristics.

  4. Prediction of bubble detachment diameter in flow boiling based on force analysis

    International Nuclear Information System (INIS)

    Chen Deqi; Pan Liangming; Ren Song

    2012-01-01

    Highlights: ► All the forces acting on the growing bubbles are taken into account in the model. ► The bubble contact diameter has significant effect on bubble detachment. ► Bubble growth force and surface tension are more significant in narrow channel. ► A good agreement between the predicted and the measured results is achieved. - Abstract: Bubble detachment diameter is one of the key parameters in the study of bubble dynamics and boiling heat transfer, and it is hard to be measured in a boiling system. In order to predict the bubble detachment diameter, a theoretical model is proposed based on forces analysis in this paper. All the forces acting on a bubble are taken into account to establish a model for different flow boiling configurations, including narrow and conventional channels, upward, downward and horizontal flows. A correlation of bubble contact circle diameter is adopted in this study, and it is found that the bubble contact circle diameter has significant effect on bubble detachment. A new correlation taking the bubble contact circle diameter into account for the evaluation of bubble growth force is proposed in this study, and it is found that the bubble growth force and surface tension force are more significant in narrow channel when comparing with that in conventional channel. A visual experiment was carried out in order to verify present model; and the experimental data from published literature are used also. A good agreement between predicted and measured results is achieved.

  5. Force acting on a spherical bubble rising through a quiescent liquid

    International Nuclear Information System (INIS)

    Takagi, Shu; Matsumoto, Yoichiro

    1996-01-01

    The direct numerical simulation is performed on the spherical bubble unsteadily rising through a quiescent liquid. The method is based on a finite-volume solution of the equations on an orthogonal curvilinear coordinate system. The calculations are performed for a bubble rising through a clean liquid and contaminated one. Following the former experimental results, the tangential stress free condition is given for a clean bubble, and no-slip condition for contaminated one. The numerical results are compared with those of the model equation of the translational motion of the bubble, which is often used in numerical models of a bubbly flow. The steady drag, added mass and history terms are checked up by the comparison. It is revealed that the history force effect is negligible for a bubble rising through the clean liquid beyond Re=O(50). From the numerical point of view, the fact that the history force is negligible is quite important, because it reduces the calculation time and memory for a bubbly flow model. For a contaminated bubble, history force effect is not negligible even though the Reynolds number is high enough. It is found that the expression of the history force by Basset kernel gives an over-estimation of the history force for the bubble rising at moderate Reynolds number. This error becomes larger with increasing Reynolds number and it reduces the accuracy to calculate the bubble motion by the model equation. (author)

  6. Electron self-injection in the donut bubble wakefield

    Science.gov (United States)

    Firouzjaei, Ali Shekari; Shokri, Babak

    2018-05-01

    We investigate electron self-injection in a donut bubble wakefield driven by a Laguerre-Gauss laser pulse. The present work discusses the electron capture by modeling the analytical donut bubble field. We discuss the self-injection of the electrons from plasma for various initial conditions and then compare the results. We show that the donut bubble can trap plasma electrons forming a hollow beam. We present the phase spaces and longitudinal momentum evolution for the trapped electrons in the bubble and discuss their characteristic behaviors and stability. It will be shown that the electrons self-injected in the front are ideal for applications in which a good stability and low energy spread are essential.

  7. Dynamic simulation of dispersed gas-liquid two-phase flow using a discrete bubble model.

    NARCIS (Netherlands)

    Delnoij, E.; Lammers, F.A.; Kuipers, J.A.M.; van Swaaij, Willibrordus Petrus Maria

    1997-01-01

    In this paper a detailed hydrodynamic model for gas-liquid two-phase flow will be presented. The model is based on a mixed Eulerian-Lagrangian approach and describes the time-dependent two-dimensional motion of small, spherical gas bubbles in a bubble column operating in the homogeneous regime. The

  8. Modelling of Lyman-alpha emitting galaxies and ionized bubbles at the epoch of reionization

    Science.gov (United States)

    Yajima, Hidenobu; Sugimura, Kazuyuki; Hasegawa, Kenji

    2018-04-01

    Understanding {Ly{α }} emitting galaxies (LAEs) can be a key to reveal cosmic reionization and galaxy formation in the early Universe. Based on halo merger trees and {Ly{α }} radiation transfer calculations, we model redshift evolution of LAEs and their observational properties at z ≥ 6. We consider ionized bubbles associated with individual LAEs and IGM transmission of {Ly{α }} photons. We find that {Ly{α }} luminosity tightly correlates with halo mass and stellar mass, while the relation with star formation rate has a large dispersion. Comparing our models with the observed luminosity function by Konno et al., we suggest that LAEs at z ˜ 7 have galactic wind of V_out ≳ 100 km s^{-1} and HI column density of N_HI ≳ 10^{20} cm^{-2}. Number density of bright LAEs rapidly decreases as redshift increases, due to both lower star formation rate and smaller HII bubbles. Our model predicts future wide deep surveys with next generation telescopes, such as JWST, E-ELT and TMT, can detect LAEs at z ˜ 10 with a number density of n_LAE ˜ a few × 10^{-6} Mpc^{-3} for the flux sensitivity of 10^{-18} erg cm^{-2} s^{-1}. When giant HII bubbles are formed by clustering LAEs, the number density of observable LAEs can increase by a factor of few. By combining these surveys with future 21-cm observations, it could be possible to detect both LAEs with L_{Lyα }≳ 10^{42} erg s^{-1} and their associated giant HII bubbles with the size ≳ 250 kpc at z ˜ 10.

  9. A three-dimensional meso-scale modeling for helium bubble growth in metals

    International Nuclear Information System (INIS)

    Suzudo, T.; Kaburaki, H.; Wakai, E.

    2007-01-01

    A three-dimensional meso-scale computer model using a Monte-Carlo simulation method has been proposed to simulate the helium bubble growth in metals. The primary merit of this model is that it enables the visual comparison between the microstructure observed by the TEM imaging and those by calculations. The modeling is so simple that one can control easily the calculation by tuning parameters. The simulation results are confirmed by the ideal gas law and the capillary relation. helium bubble growth, meso-scale modeling, Monte-Carlo simulation, the ideal gas law and the capillary relation. (authors)

  10. Hydrodynamics of circulating and bubbling fluidized beds

    International Nuclear Information System (INIS)

    Gidaspow, D.P.; Tsuo, Y.P.; Ding, J.

    1991-01-01

    This paper reports that a review of modeling of the hydrodynamics of fluidization of bubbling beds showed that inviscid two-fluid models were able to predict a great deal of the behavior of bubbling beds because the dominant mechanism of energy dissipation is the drag between the particles and the fluid. The formation, the growth and the bursting of bubbles were predicted. Predicted wall-to-bed heat transfer coefficients and velocity profiles of jets agreed with measurements. Time average porosity distributions agreed with measurements done using gamma-ray densitometers without the use of any adjustable parameters. However, inviscid models could not correctly predict rates of erosion around tubes immersed into fluidized beds. To correctly model such behavior, granular stresses involving solids viscosity were added into the computer model. This viscosity arises due to random collision of particles. Several models fro this viscosity were investigated and the results compared to measurements of solids distributions in two-dimensional beds and to particle velocities reported in the literature. While in the case of bubbling beds the solids viscosity plays the role of a correction, modeling of a circulating fluidized bed (CFB) without a viscosity is not possible. Recent experimental data obtained at IIT and at IGT show that in CFB the solids viscous dissipation is responsible for as much as half of the pressure drop. From such measurement, solids viscosities were computed. These were used in the two fluid hydrodynamic model, to predict radial solids distributions and solids velocities which matched the experimental distributions. Most important, the model predicted cluster formation and transient internal circulation which is responsible for the favorable characteristics of CFBs, such as good wall-to-bed heat transfer. Video tape movies of computations compared favorably with high speed movies of the experiments

  11. Bubble Dynamics and Shock Waves

    CERN Document Server

    2013-01-01

    This volume of the Shock Wave Science and Technology Reference Library is concerned with the interplay between bubble dynamics and shock waves. It is divided into four parts containing twelve chapters written by eminent scientists. Topics discussed include shock wave emission by laser generated bubbles (W Lauterborn, A Vogel), pulsating bubbles near boundaries (DM Leppinen, QX Wang, JR Blake), interaction of shock waves with bubble clouds (CD Ohl, SW Ohl), shock propagation in polydispersed bubbly liquids by model equations (K Ando, T Colonius, CE Brennen. T Yano, T Kanagawa,  M Watanabe, S Fujikawa) and by DNS (G Tryggvason, S Dabiri), shocks in cavitating flows (NA Adams, SJ Schmidt, CF Delale, GH Schnerr, S Pasinlioglu) together with applications involving encapsulated bubble dynamics in imaging (AA Doinikov, A Novell, JM Escoffre, A Bouakaz),  shock wave lithotripsy (P Zhong), sterilization of ships’ ballast water (A Abe, H Mimura) and bubbly flow model of volcano eruptions ((VK Kedrinskii, K Takayama...

  12. Fluid dynamics of bubbly flows

    International Nuclear Information System (INIS)

    Ziegenhein, Thomas

    2016-01-01

    Bubbly flows can be found in many applications in chemical, biological and power engineering. Reliable simulation tools of such flows that allow the design of new processes and optimization of existing one are therefore highly desirable. CFD-simulations applying the multi-fluid approach are very promising to provide such a design tool for complete facilities. In the multi-fluid approach, however, closure models have to be formulated to model the interaction between the continuous and dispersed phase. Due to the complex nature of bubbly flows, different phenomena have to be taken into account and for every phenomenon different closure models exist. Therefore, reliable predictions of unknown bubbly flows are not yet possible with the multi-fluid approach. A strategy to overcome this problem is to define a baseline model in which the closure models including the model constants are fixed so that the limitations of the modeling can be evaluated by validating it on different experiments. Afterwards, the shortcomings are identified so that the baseline model can be stepwise improved without losing the validity for the already validated cases. This development of a baseline model is done in the present work by validating the baseline model developed at the Helmholtz-Zentrum Dresden-Rossendorf mainly basing on experimental data for bubbly pipe flows to bubble columns, bubble plumes and air-lift reactors that are relevant in chemical and biological engineering applications. In the present work, a large variety of such setups is used for validation. The buoyancy driven bubbly flows showed thereby a transient behavior on the scale of the facility. Since such large scales are characterized by the geometry of the facility, turbulence models cannot describe them. Therefore, the transient simulation of bubbly flows with two equation models based on the unsteady Reynolds-averaged Navier-Stokes equations is investigated. In combination with the before mentioned baseline model these

  13. Fluid dynamics of bubbly flows

    Energy Technology Data Exchange (ETDEWEB)

    Ziegenhein, Thomas

    2016-07-08

    Bubbly flows can be found in many applications in chemical, biological and power engineering. Reliable simulation tools of such flows that allow the design of new processes and optimization of existing one are therefore highly desirable. CFD-simulations applying the multi-fluid approach are very promising to provide such a design tool for complete facilities. In the multi-fluid approach, however, closure models have to be formulated to model the interaction between the continuous and dispersed phase. Due to the complex nature of bubbly flows, different phenomena have to be taken into account and for every phenomenon different closure models exist. Therefore, reliable predictions of unknown bubbly flows are not yet possible with the multi-fluid approach. A strategy to overcome this problem is to define a baseline model in which the closure models including the model constants are fixed so that the limitations of the modeling can be evaluated by validating it on different experiments. Afterwards, the shortcomings are identified so that the baseline model can be stepwise improved without losing the validity for the already validated cases. This development of a baseline model is done in the present work by validating the baseline model developed at the Helmholtz-Zentrum Dresden-Rossendorf mainly basing on experimental data for bubbly pipe flows to bubble columns, bubble plumes and air-lift reactors that are relevant in chemical and biological engineering applications. In the present work, a large variety of such setups is used for validation. The buoyancy driven bubbly flows showed thereby a transient behavior on the scale of the facility. Since such large scales are characterized by the geometry of the facility, turbulence models cannot describe them. Therefore, the transient simulation of bubbly flows with two equation models based on the unsteady Reynolds-averaged Navier-Stokes equations is investigated. In combination with the before mentioned baseline model these

  14. Bubble transport in bifurcations

    Science.gov (United States)

    Bull, Joseph; Qamar, Adnan

    2017-11-01

    Motivated by a developmental gas embolotherapy technique for cancer treatment, we examine the transport of bubbles entrained in liquid. In gas embolotherapy, infarction of tumors is induced by selectively formed vascular gas bubbles that originate from acoustic vaporization of vascular droplets. In the case of non-functionalized droplets with the objective of vessel occlusion, the bubbles are transported by flow through vessel bifurcations, where they may split prior to eventually reach vessels small enough that they become lodged. This splitting behavior affects the distribution of bubbles and the efficacy of flow occlusion and the treatment. In these studies, we investigated bubble transport in bifurcations using computational and theoretical modeling. The model reproduces the variety of experimentally observed splitting behaviors. Splitting homogeneity and maximum shear stress along the vessel walls is predicted over a variety of physical parameters. Maximum shear stresses were found to decrease with increasing Reynolds number. The initial bubble length was found to affect the splitting behavior in the presence of gravitational asymmetry. This work was supported by NIH Grant R01EB006476.

  15. Measurement system of bubbly flow using Ultrasonic Velocity Profile Monitor and Video Data Processing Unit. 3. Comparison of flow characteristics between bubbly cocurrent and countercurrent flows

    International Nuclear Information System (INIS)

    Zhou, Shirong; Suzuki, Yumiko; Aritomi, Masanori; Matsuzaki, Mitsuo; Takeda, Yasushi; Mori, Michitsugu

    1998-01-01

    The authors have developed a new measurement system which consisted of an Ultrasonic Velocity Profile Monitor (UVP) and a Video Data Processing Unit (VDP) in order to clarify the two-dimensional flow characteristics in bubbly flows and to offer a data base to validate numerical codes for two-dimensional two-phase flow. In the present paper, the proposed measurement system is applied to fully developed bubbly cocurrent flows in a vertical rectangular channel. At first, both bubble and water velocity profiles and void fraction profiles in the channel were investigated statistically. In addition, the two-phase multiplier profile of turbulence intensity, which was defined as a ratio of the standard deviation of velocity fluctuation in a bubbly flow to that in a water single phase flow, were examined. Next, these flow characteristics were compared with those in bubbly countercurrent flows reported in our previous paper. Finally, concerning the drift flux model, the distribution parameter and drift velocity were obtained directly from both bubble and water velocity profiles and void fraction profiles, and their results were compared with those in bubbly countercurrent flows. (author)

  16. Optimization of the bubble radius in a moving single bubble sonoluminescence

    International Nuclear Information System (INIS)

    Mirheydari, Mona; Sadighi-Bonabi, Rasoul; Rezaee, Nastaran; Ebrahimi, Homa

    2011-01-01

    A complete study of the hydrodynamic force on a moving single bubble sonoluminescence in N-methylformamide is presented in this work. All forces exerted, trajectory, interior temperature and gas pressure are discussed. The maximum values of the calculated components of the hydrodynamic force for three different radii at the same driving pressure were compared, while the optimum bubble radius was determined. The maximum value of the buoyancy force appears at the start of bubble collapse, earlier than the other forces whose maximum values appear at the moment of bubble collapse. We verified that for radii larger than the optimum radius, the temperature peak value decreases.

  17. CFD modelling and validation of upward bubbly flow in an adiabatic vertical pipe using the quadrature method of moments

    Energy Technology Data Exchange (ETDEWEB)

    Peña-Monferrer, C., E-mail: cmonfer@upv.es [Institute for Energy Engineering, Universitat Politècnica de València, 46022 València (Spain); Passalacqua, A., E-mail: albertop@iastate.edu [Department of Mechanical Engineering, Iowa State University, Ames, IA 50011 (United States); Chiva, S., E-mail: schiva@emc.uji.es [Department of Mechanical Engineering and Construction, Universitat Jaume I, 12080 Castelló de la Plana (Spain); Muñoz-Cobo, J.L., E-mail: jlcobos@iqn.upv.es [Institute for Energy Engineering, Universitat Politècnica de València, 46022 València (Spain)

    2016-05-15

    Highlights: • A population balance equation solved with QMOM approximation is implemented in OpenFOAM. • Available models for interfacial forces and bubble induced turbulence are analyzed. • A vertical pipe flow is simulated for different bubbly flow conditions. • Two-phase flow characteristics in vertical pipes are properly predicted. - Abstract: An Eulerian–Eulerian approach was investigated to model adiabatic bubbly flow with CFD techniques. In the framework of the OpenFOAM{sup ®} software, a two-fluid model solver was modified to include a population balance equation, solved with the quadrature method of moments approximation to predict upward bubbly flow in vertical pipes considering the polydisperse nature of two-phase flow. Some progress have been made recently solving population balance equations in OpenFOAM{sup ®} and this research aims to extend its application to the case of vertical pipes under different conditions of liquid and gas velocities. In order to test the solver for nuclear applications, interfacial forces and bubble induced turbulence models were included to provide to this solver the capability to correctly predict the behavior of the continuous and disperse phases. Two-phase flow experiments with different superficial velocities of gas and liquid are used to validate the model and its implementation. Radial profiles of void fraction, gas and liquid velocities, Sauter mean diameter and turbulence intensity are compared to the computational results. These results are in satisfactory agreement with the experiments, showing the capability of the solver to predict two-phase flow characteristics.

  18. Experimental Investigation of Large-Scale Bubbly Plumes

    International Nuclear Information System (INIS)

    Zboray, R.; Simiano, M.; De Cachard, F.

    2004-01-01

    Carefully planned and instrumented experiments under well-defined boundary conditions have been carried out on large-scale, isothermal, bubbly plumes. The data obtained is meant to validate newly developed, high-resolution numerical tools for 3D transient, two-phase flow modelling. Several measurement techniques have been utilised to collect data from the experiments: particle image velocimetry, optical probes, electromagnetic probes, and visualisation. Bubble and liquid velocity fields, void-fraction distributions, bubble size and interfacial-area-concentration distributions have all been measured in the plume region, as well as recirculation velocities in the surrounding pool. The results obtained from the different measurement techniques have been compared. In general, the two-phase flow data obtained from the different techniques are found to be consistent, and of high enough quality for validating numerical simulation tools for 3D bubbly flows. (author)

  19. Experimental Investigation of Large-Scale Bubbly Plumes

    Energy Technology Data Exchange (ETDEWEB)

    Zboray, R.; Simiano, M.; De Cachard, F

    2004-03-01

    Carefully planned and instrumented experiments under well-defined boundary conditions have been carried out on large-scale, isothermal, bubbly plumes. The data obtained is meant to validate newly developed, high-resolution numerical tools for 3D transient, two-phase flow modelling. Several measurement techniques have been utilised to collect data from the experiments: particle image velocimetry, optical probes, electromagnetic probes, and visualisation. Bubble and liquid velocity fields, void-fraction distributions, bubble size and interfacial-area-concentration distributions have all been measured in the plume region, as well as recirculation velocities in the surrounding pool. The results obtained from the different measurement techniques have been compared. In general, the two-phase flow data obtained from the different techniques are found to be consistent, and of high enough quality for validating numerical simulation tools for 3D bubbly flows. (author)

  20. Modelling chemical reactions in dc plasma inside oxygen bubbles in water

    International Nuclear Information System (INIS)

    Takeuchi, N; Ishii, Y; Yasuoka, K

    2012-01-01

    Plasmas generated inside oxygen bubbles in water have been developed for water purification. Zero-dimensional numerical simulations were used to investigate the chemical reactions in plasmas driven by dc voltage. The numerical and experimental results of the concentrations of hydrogen peroxide and ozone in the solution were compared with a discharge current between 1 and 7 mA. Upon increasing the water vapour concentration inside bubbles, we saw from the numerical results that the concentration of hydrogen peroxide increased with discharge current, whereas the concentration of ozone decreased. This finding agreed with the experimental results. With an increase in the discharge current, the heat flux from the plasma to the solution increased, and a large amount of water was probably vaporized into the bubbles.

  1. Modelling chemical reactions in dc plasma inside oxygen bubbles in water

    Science.gov (United States)

    Takeuchi, N.; Ishii, Y.; Yasuoka, K.

    2012-02-01

    Plasmas generated inside oxygen bubbles in water have been developed for water purification. Zero-dimensional numerical simulations were used to investigate the chemical reactions in plasmas driven by dc voltage. The numerical and experimental results of the concentrations of hydrogen peroxide and ozone in the solution were compared with a discharge current between 1 and 7 mA. Upon increasing the water vapour concentration inside bubbles, we saw from the numerical results that the concentration of hydrogen peroxide increased with discharge current, whereas the concentration of ozone decreased. This finding agreed with the experimental results. With an increase in the discharge current, the heat flux from the plasma to the solution increased, and a large amount of water was probably vaporized into the bubbles.

  2. Bubbling in vibrated granular films.

    Science.gov (United States)

    Zamankhan, Piroz

    2011-02-01

    With the help of experiments, computer simulations, and a theoretical investigation, a general model is developed of the flow dynamics of dense granular media immersed in air in an intermediate regime where both collisional and frictional interactions may affect the flow behavior. The model is tested using the example of a system in which bubbles and solid structures are produced in granular films shaken vertically. Both experiments and large-scale, three-dimensional simulations of this system are performed. The experimental results are compared with the results of the simulation to verify the validity of the model. The data indicate evidence of formation of bubbles when peak acceleration relative to gravity exceeds a critical value Γ(b). The air-grain interfaces of bubblelike structures are found to exhibit fractal structure with dimension D=1.7±0.05.

  3. PROGRESS TOWARDS MODELING OF FISCHER TROPSCH SYNTHESIS IN A SLURRY BUBBLE COLUMN REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    Donna Post Guillen; Tami Grimmett; Anastasia M. Gandrik; Steven P. Antal

    2010-11-01

    The Hybrid Energy Systems Testing (HYTEST) Laboratory is being established at the Idaho National Laboratory to develop and test hybrid energy systems with the principal objective to safeguard U.S. Energy Security by reducing dependence on foreign petroleum. A central component of the HYTEST is the slurry bubble column reactor (SBCR) in which the gas-to-liquid reactions will be performed to synthesize transportation fuels using the Fischer Tropsch (FT) process. SBCRs are cylindrical vessels in which gaseous reactants (for example, synthesis gas or syngas) is sparged into a slurry of liquid reaction products and finely dispersed catalyst particles. The catalyst particles are suspended in the slurry by the rising gas bubbles and serve to promote the chemical reaction that converts syngas to a spectrum of longer chain hydrocarbon products, which can be upgraded to gasoline, diesel or jet fuel. These SBCRs operate in the churn-turbulent flow regime which is characterized by complex hydrodynamics, coupled with reacting flow chemistry and heat transfer, that effect reactor performance. The purpose of this work is to develop a computational multiphase fluid dynamic (CMFD) model to aid in understanding the physico-chemical processes occurring in the SBCR. Our team is developing a robust methodology to couple reaction kinetics and mass transfer into a four-field model (consisting of the bulk liquid, small bubbles, large bubbles and solid catalyst particles) that includes twelve species: (1) CO reactant, (2) H2 reactant, (3) hydrocarbon product, and (4) H2O product in small bubbles, large bubbles, and the bulk fluid. Properties of the hydrocarbon product were specified by vapor liquid equilibrium calculations. The absorption and kinetic models, specifically changes in species concentrations, have been incorporated into the mass continuity equation. The reaction rate is determined based on the macrokinetic model for a cobalt catalyst developed by Yates and Satterfield [1]. The

  4. Modeling on bubbly to churn flow pattern transition for vertical upward flows in narrow rectangular channel

    International Nuclear Information System (INIS)

    Wang Yanlin; Chen Bingde; Huang Yanping; Wang Junfeng

    2011-01-01

    A theoretical model was developed to predict the bubbly to churn flow pattern transition for vertical upward flows in narrow rectangular channel. The model was developed based on the imbalance theory of Helmholtz and some reasonable assumptions. The maximum ideal bubble in narrow rectangular channel and the thermal hydraulics boundary condition leading to bubbly flow to churn flow pattern transition was calculated. The model was validated by experimental data from previous researches. Comparison between predicted result and experimental result shows a reasonable good agreement. (author)

  5. Leverage bubble

    Science.gov (United States)

    Yan, Wanfeng; Woodard, Ryan; Sornette, Didier

    2012-01-01

    Leverage is strongly related to liquidity in a market and lack of liquidity is considered a cause and/or consequence of the recent financial crisis. A repurchase agreement is a financial instrument where a security is sold simultaneously with an agreement to buy it back at a later date. Repurchase agreement (repo) market size is a very important element in calculating the overall leverage in a financial market. Therefore, studying the behavior of repo market size can help to understand a process that can contribute to the birth of a financial crisis. We hypothesize that herding behavior among large investors led to massive over-leveraging through the use of repos, resulting in a bubble (built up over the previous years) and subsequent crash in this market in early 2008. We use the Johansen-Ledoit-Sornette (JLS) model of rational expectation bubbles and behavioral finance to study the dynamics of the repo market that led to the crash. The JLS model qualifies a bubble by the presence of characteristic patterns in the price dynamics, called log-periodic power law (LPPL) behavior. We show that there was significant LPPL behavior in the market before that crash and that the predicted range of times predicted by the model for the end of the bubble is consistent with the observations.

  6. Reflection and Transmission of Acoustic Waves through the Layer of Multifractional Bubbly Liquid

    Directory of Open Access Journals (Sweden)

    Gubaidullin Damir Anvarovich

    2018-01-01

    Full Text Available The mathematical model that determines reflection and transmission of acoustic wave through a medium containing multifractioanl bubbly liquid is presented. For the water-water with bubbles-water model the wave reflection and transmission coefficients are calculated. The influence of the bubble layer thickness on the investigated coefficients is shown. The theory compared with the experiment. It is shown that the theoretical results describe and explain well the available experimental data. It is revealed that the special dispersion and dissipative properties of the layer of bubbly liquid can significantly influence on the reflection and transmission of acoustic waves in multilayer medium

  7. Improvement of ore recovery efficiency in a flotation column cell using ultra-sonic enhanced bubbles

    Science.gov (United States)

    Filippov, L. O.; Royer, J. J.; Filippova, I. V.

    2017-07-01

    The ore process flotation technique is enhanced by using external ultra-sonic waves. Compared to the classical flotation method, the application of ultrasounds to flotation fluids generates micro-bubbles by hydrodynamic cavitation. Flotation performances increase was modelled as a result of increased probabilities of the particle-bubble attachment and reduced detachment probability under sonication. A simplified analytical Navier-Stokes model is used to predict the effect of ultrasonic waves on bubble behavior. If the theory is verified by experimentation, it predicts that the ultrasonic waves would create cavitation micro-bubbles, smaller than the flotation bubble added by the gas sparger. This effect leads to increasing the number of small bubbles in the liquid which promote particle-bubble attachment through coalescence between bubbles and micro-bubbles. The decrease in the radius of the flotation bubbles under external vibration forces has an additional effect by enhancing the bubble-particle collision. Preliminary results performed on a potash ore seem to confirm the theory.

  8. Heat transfer modelling of two-phase bubbles swarm condensing in three - phase direct - contact condenser

    Directory of Open Access Journals (Sweden)

    Mahood Hameed B.

    2016-01-01

    Full Text Available An analytical model for the convective heat transfer coefficient and the two-phase bubble size of a three-phase direct contact heat exchanger was developed. Until the present, there has only been a theoretical model available that deals with a single two-phase bubble and a bubble train condensation in an immiscible liquid. However, to understand the actual heat transfer process within the three-phase direct contact condenser, characteristic models are required. A quasi - steady energy equation in a spherical coordinate system with a potential flow assumption and a cell model configuration has been simplified and solved analytically. The convective heat transfer in terms of Nu number has been derived, and it was found to be a function to Pe number and a system void fraction. In addition, the two-phase bubble size relates to the system void fraction and has been developed by solving a simple energy balance equation and using the derived convective heat transfer coefficient expression. Furthermore, the model correlates well with previous experimental data and theoretical results.

  9. Magnetic-bubble devices

    International Nuclear Information System (INIS)

    Fairholme, R.J.

    1978-01-01

    Magnetic bubbles were first described only ten years ago when research workers were discussing orthoferrites containing μm diameter bubbles. However, problems of material fabrication limit crystals to a few mm across which severely curtailed device development. Since then materials have changed and rare-earth-iron garnet films can be grown up 3 inches in diameter with bubble diameters down to sizes below 1 μm. The first commercial products have device capacities in the range 64 000 to 100 000 bits with bubble diameters between 4 and 6 μm. Chip capacities of 1 Mbit are presently under development in the laboratory, as are new techniques to use submicrometre bubbles. The operation and fabrication of a bubble device is described using the serial loop devices currently being manufactured at Plessey as models. Chip organization is one important variable which directly affects the access time. A range of access times and capacities is available which offers a wide range of market opportunities, ranging from consumer products to fixed head disc replacements. some of the application areas are described. (author)

  10. Generating Soap Bubbles by Blowing on Soap Films

    Science.gov (United States)

    Salkin, Louis; Schmit, Alexandre; Panizza, Pascal; Courbin, Laurent

    2016-02-01

    Making soap bubbles by blowing air on a soap film is an enjoyable activity, yet a poorly understood phenomenon. Working either with circular bubble wands or long-lived vertical soap films having an adjustable steady state thickness, we investigate the formation of such bubbles when a gas is blown through a nozzle onto a film. We vary film size, nozzle radius, space between the film and nozzle, and gas density, and we measure the gas velocity threshold above which bubbles are formed. The response is sensitive to containment, i.e., the ratio between film and jet sizes, and dissipation in the turbulent gas jet, which is a function of the distance from the film to the nozzle. We rationalize the observed four different regimes by comparing the dynamic pressure exerted by the jet on the film and the Laplace pressure needed to create the curved surface of a bubble. This simple model allows us to account for the interplay between hydrodynamic, physicochemical, and geometrical factors.

  11. Shapes of an Air Taylor Bubble in Stagnant Liquids Influenced by Different Surface Tensions

    Science.gov (United States)

    Lertnuwat, B.

    2018-02-01

    The aim of this work is to propose an empirical model for predicting shapes of a Taylor bubble, which is a part of slug flows, under different values of the surface tension in stagnant liquids by employing numerical simulations. The k - Ɛ turbulence model was used in the framework of finite volume method for simulating flow fields in a unit of slug flow and also the pressure distribution on a Taylor bubble surface. Assuming that an air pressure distribution inside the Taylor bubble must be uniform, a grid search method was exploited to find an appropriate shape of a Taylor bubble for six values of surface tension. It was found that the shape of a Taylor bubble would be blunter if the surface tension was increased. This was because the surface tension affected the Froude number, controlling the flow around a Taylor bubble. The simulation results were also compared with the Taylor bubble shape, created by the Dumitrescu-and-Taylor model and former studies in order to ensure that they were consistent. Finally, the empirical model was presented from the simulation results.

  12. Visualization of airflow growing soap bubbles

    Science.gov (United States)

    Al Rahbi, Hamood; Bock, Matthew; Ryu, Sangjin

    2016-11-01

    Visualizing airflow inside growing soap bubbles can answer questions regarding the fluid dynamics of soap bubble blowing, which is a model system for flows with a gas-liquid-gas interface. Also, understanding the soap bubble blowing process is practical because it can contribute to controlling industrial processes similar to soap bubble blowing. In this study, we visualized airflow which grows soap bubbles using the smoke wire technique to understand how airflow blows soap bubbles. The soap bubble blower setup was built to mimic the human blowing process of soap bubbles, which consists of a blower, a nozzle and a bubble ring. The smoke wire was placed between the nozzle and the bubble ring, and smoke-visualized airflow was captured using a high speed camera. Our visualization shows how air jet flows into the growing soap bubble on the ring and how the airflow interacts with the soap film of growing bubble.

  13. Numerical modelling of isothermal gas-liquid two-phase bubbly flow in vertical pipes

    International Nuclear Information System (INIS)

    Yamoah, S.

    2014-07-01

    In order to qualify CFD codes for accurate numerical predictions of transient evolution of flow regimes in a vertical gas-liquid two-phase flow, suitable closure models are needed. The current study focuses on detailed numerical investigation of the interfacial driving force models and assessment of two population balance model approaches viz. the MUltiple-Size-Group (MUSIG) and one-group Interfacial Area Transport Equation (lATE) using the two-fluid modelling approach. Numerical predictions of five primitive variables: gas volume fraction, interfacial area concentration, Sauter mean bubble diameter, gas velocity and liquid velocity; have been validated against experimental data of Monros et al., (2013). Three specific objectives have been completed in this study. Firstly, under the assumption of mono-disperse bubbles, a consistent set of interfacial force models have been investigated. The effect of drag, lift, wall lubrication and turbulent dispersion forces has been assessed. New parameters have been introduced in the wall lubrication force models of Antal et al., (1991) and Frank et al., (2004, 2008) as well as implementing additional drag coefficient models using CFX Expression Language (CEl). The Tomiyama, (1998) lift coefficient model has been modified in this study. In general, the predictions from the sets of interfacial force models yielded satisfactory agreement with the experimental data. A set of Grace drag coefficient model, Tomiyama lift coefficient model, Antal wall force model, and Favre averaged turbulent dispersion force were found to provide the best agreement with the experimental data. Secondly, a model validation study to assess the performance of existing coalescence and breakup models of the MUSIG model in simulating bubbly flow in vertical configuration has been conducted. The breakup model of Luo and Svendsen, (1996) and coalescence model of Prince and Blanch, (1990) have been implemented. Detailed analysis has been performed for the wall

  14. Discrete bubble modeling for a micro-structured bubble column

    NARCIS (Netherlands)

    Jain, D.; Lau, Y.M.; Kuipers, J.A.M.; Deen, N.G.

    2013-01-01

    Gas–liquid flows with solid catalyst particles are encountered in many applications in the chemical, petrochemical, pharmaceutical industries, etc. Most commonly, two reactor types are applied for large scale in the industry. They are slurry bubble column and trickle bed reactors. Both of these

  15. Layered storage of biogenic methane-enriched gas bubbles in peat: A lumped capacitance model controlled by soil structure

    Science.gov (United States)

    Chen, X.; Comas, X.; Binley, A. M.; Slater, L. D.

    2017-12-01

    Methane can accumulate in the gaseous phase in peats, and enter the atmosphere as gas bubbles with a mass flux higher than that via diffusion and plant-mediated pathways. A complete understanding of the mechanisms regulating bubble storage in peats remains incomplete. We developed a layered model to quantify the storage of gas bubbles over a peat column based on a general lumped capacitance model. This conceptual model was applied to explain the effects of peat structure on bubble storage at different depths observed in a laboratory experiment. A peat monolith was collected from the Everglades, a subtropical wetland located in Florida (USA), and kept submerged in a cuboid chamber over 102 days until gas bubble saturation was achieved. Time-lapse ground-penetrating radar (GPR) was used to estimate changes in gas content of each layer and the corresponding average dimensions of stored gas bubbles. The results highlight a hotspot layer of bubble accumulation at depths between 5 and 10 cm below the monolith surface. Bubbles in this shallow hotspot layer were larger relative to those in deeper layers, whilst the degree of decomposition of the upper layers was generally smaller than that of the lower layers based on von Post humification tests. X-ray Computer tomography (CT) was applied to resin-impregnated peat sections from different depths and the results showed that a higher porosity promotes bubbles storage. The stored gas bubbles were released by changing water levels and the air CH4 concentrations above the peat monolith were measured using a flow-through chamber system to confirm the high CH4 concentration in the stored bubbles. Our findings suggest that bubble capacitance is related to the difference in size between gas bubbles and peat pores. This work has implications for better understanding how changes in water table elevation associated with climate change and sea level rise (particularly for freshwater wetlands near coastal areas like the Everglades) may

  16. A derivation of the stable cavitation threshold accounting for bubble-bubble interactions.

    Science.gov (United States)

    Guédra, Matthieu; Cornu, Corentin; Inserra, Claude

    2017-09-01

    The subharmonic emission of sound coming from the nonlinear response of a bubble population is the most used indicator for stable cavitation. When driven at twice their resonance frequency, bubbles can exhibit subharmonic spherical oscillations if the acoustic pressure amplitude exceeds a threshold value. Although various theoretical derivations exist for the subharmonic emission by free or coated bubbles, they all rest on the single bubble model. In this paper, we propose an analytical expression of the subharmonic threshold for interacting bubbles in a homogeneous, monodisperse cloud. This theory predicts a shift of the subharmonic resonance frequency and a decrease of the corresponding pressure threshold due to the interactions. For a given sonication frequency, these results show that an optimal value of the interaction strength (i.e. the number density of bubbles) can be found for which the subharmonic threshold is minimum, which is consistent with recently published experiments conducted on ultrasound contrast agents. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Gas fluxing of aluminum: a bubble probe for optimization of bubbles/bubble distribution and minimization of splashing/droplet formation

    International Nuclear Information System (INIS)

    James W. Evans; Auitumn Fjeld

    2006-01-01

    Aluminum is one of our most important materials and finds major use in transportation (e.g. aircraft) and packaging (e.g. beverage cans). According to International Aluminium Institute statistics (www.world-aluminium.org) 23.46 million metric tons of aluminum were produced last year in the electrolytic cells used to make this metal, continuing an increase seen over the previous four years and sustained for the first half of this year. 23% of this ?primary? production was in North America. A smaller, yet important, source of the nation?s aluminum is ''secondary production'', that is the recycling of aluminum products such as beverage cans. The Aluminum Association reports that 51.4 billion beverage cans were recycled in the U.S. last year (compared to 98.9 billion new cans shipped). Whether from primary or secondary production, it is typically necessary to treat the aluminum to remove small quantities of impurities or unwanted alloying agents before the metal can be further processed and sold. In the case of primary aluminum it is the removal of trace impurities such as sodium that is needed; in the case of recycled aluminum it is the removal of alloy constituents, such as magnesium which is, after aluminum, the principal metal used in beverage cans. The procedure commonly used is known as ''gas fluxing'' and entails bubbling a reactive mixture of chlorine and argon through the molten metal. The intent is that the chlorine react with the impurities to form compounds that can easily separate from the aluminum. Unfortunately a fraction of the chlorine forms volatile aluminum chloride that leaves the fluxing unit. This represents a loss of aluminum product; furthermore the aluminum chloride can react with atmospheric moisture to form hydrogen chloride gas with impact on workers and the environment. Some of these emissions are controlled by bag houses but some escape. For example EPA's Toxic Release Inventory for 1997 has stack emissions of chlorides and chlorine

  18. A description of bubble growth and gas release of helium implanted tungsten

    International Nuclear Information System (INIS)

    Sharafat, S.; Hu, Q.; Ghoniem, N.; Tkahashi, A.

    2007-01-01

    Full text of publication follows: Bubble growth and gas release during annealing of helium implanted tungsten is described using a Kinetic Monte Carlo approach. The implanted spatial profiles of stable bubble nuclei are first determined using the Kinetic Rate Theory based helium evolution code, HEROS. The effects of implantation energy, temperature, and bias forces, such as temperature- and stress gradients on bubble migration and coalescence are investigated to explain experimental gas release measurements. This comprehensive helium bubble evolution and release model, demonstrates the impact of near surface (< 1 um) versus deep helium implantation on bubble evolution. Near surface implanted helium bubbles readily attain large equilibrium sizes, while matrix bubbles remain small with high helium pressures. Using the computer simulation, the various stages of helium bubble nucleation, growth, coalescence, and migration are demonstrated and compared with available experimental results. (authors)

  19. On the modeling of bubble evolution and transport using coupled level-set/CFD method

    International Nuclear Information System (INIS)

    Bartlomiej Wierzbicki; Steven P Antal; Michael Z Podowski

    2005-01-01

    Full text of publication follows: The ability to predict the shape of the gas/liquid/solid interfaces is important for various multiphase flow and heat transfer applications. Specific issues of interest to nuclear reactor thermal-hydraulics, include the evolution of the shape of bubbles attached to solid surfaces during nucleation, bubble surface interactions in complex geometries, etc. Additional problems, making the overall task even more complicated, are associated with the effect of material properties that may be significantly altered by the addition of minute amounts of impurities, such as surfactants or nano-particles. The present paper is concerned with the development of an innovative approach to model time-dependent shape of gas/liquid interfaces in the presence of solid walls. The proposed approach combines a modified level-set method with an advanced CFD code, NPHASE. The coupled numerical solver can be used to simulate the evolution of gas/liquid interfaces in two-phase flows for a variety of geometries and flow conditions, from individual bubbles to free surfaces (stratified flows). The issues discussed in the full paper will include: a description of the novel aspects of the proposed level-set concept based method, an overview of the NPHASE code modeling framework and a description of the coupling method between these two elements of the overall model. A particular attention will be give to the consistency and completeness of model formulation for the interfacial phenomena near the liquid/gas/solid triple line, and to the impact of the proposed numerical approach on the accuracy and consistency of predictions. The accuracy will be measured in terms of both the calculated shape of the interfaces and the gas and liquid velocity fields around the interfaces and in the entire computational domain. The results of model testing and validation will also be shown in the full paper. The situations analyzed will include: bubbles of different sizes and varying

  20. Light Scattering by Ice Crystals Containing Air Bubbles

    Science.gov (United States)

    Zhang, J.; Panetta, R. L.; Yang, P.; Bi, L.

    2014-12-01

    The radiative effects of ice clouds are often difficult to estimate accurately, but are very important for interpretation of observations and for climate modeling. Our understanding of these effects is primarily based on scattering calculations, but due to the variability in ice habit it is computationally difficult to determine the required scattering and absorption properties, and the difficulties are only compounded by the need to include consideration of air and carbon inclusions of the sort frequently observed in collected samples. Much of the previous work on effects of inclusions in ice particles on scattering properties has been conducted with variants of geometric optics methods. We report on simulations of scattering by ice crystals with enclosed air bubbles using the pseudo-spectral time domain method (PSTD) and improved geometric optics method (IGOM). A Bouncing Ball Model (BBM) is proposed as a parametrization of air bubbles, and the results are compared with Monte Carlo radiative transfer calculations. Consistent with earlier studies, we find that air inclusions lead to a smoothing of variations in the phase function, weakening of halos, and a reduction of backscattering. We extend these studies by examining the effects of the particular arrangement of a fixed number of bubbles, as well as the effects of splitting a given number of bubbles into a greater number of smaller bubbles with the same total volume fraction. The result shows that the phase function will not change much for stochastic distributed air bubbles. It also shows that local maxima of phase functions are smoothed out for backward directions, when we break bubbles into small ones, single big bubble scatter favors more forward scattering than multi small internal scatters.

  1. A vapour bubble collapse model to describe the fragmentation of low-melting materials

    International Nuclear Information System (INIS)

    Benz, R.; Schober, P.

    1977-11-01

    By means of a model, the fragmentation of a hot melt of metal in consequence of collapsing vapour-bubbles is investigated. In particular the paper deals with the development of the physical model-ideas for calculation of the temperature of contact that adjusts between the temperature of the melt and the coolant, of the waiting-time until bubble-nucleation occurs and of the maximal obtainable vapour-bubble-radius in dependence of the coolant-temperature. After that follows the description of the computing-program belonging to this model and of the results of an extensive parameter-study. The study examined the influence of the temperature of melt and coolant, the melted mass, the nucleation-site-density, the average maximum bubble-radius, the duration of film-breakdown and the coefficient of heat-transition. The calculation of the process of fragmentation turns out to be according to expectation, whereas the duration of this process seems to be somewhat too long. The dependence of the surface-enlargement on the subcooling of the water-bath and the initial temperature of the melt is not yet reproduced satisfactorily by the model. The reasons for this are the temperature-increase of the water-bath as well as the fact that the coupling of heat-flux-density and nucleation-site-density are not taken into consideration. Further improvement of the model is necessary and may improve the results in the sense of the experimental observations. (orig.) [de

  2. A bench top experimental model of bubble transport in multiple arteriole bifurcations

    International Nuclear Information System (INIS)

    Eshpuniyani, Brijesh; Fowlkes, J. Brian; Bull, Joseph L.

    2005-01-01

    Motivated by a novel gas embolotherapy technique, a bench top vascular bifurcation model is used to investigate the splitting of long bubbles in a series of liquid-filled bifurcations. The developmental gas embolotherapy technique aims to treat cancer by infarcting tumors with gas emboli that are formed by selective acoustic vaporization of ∼6 μm, intravascular, perfluorcarbon droplets. The resulting gas bubbles are large enough to extend through several vessel bifurcations. The current bench top experiments examine the effects of gravity and flow on bubble transport through multiple bifurcations. The effect of gravity is varied by changing the roll angle of the bifurcating network about its parent tube. Splitting at each bifurcation is nearly even when the roll angle is zero. It is demonstrated that bubbles can either stick at one of the second bifurcations or in the second generation daughter tubes, even though the flow rate in the parent tube is constant. The findings of this work indicate that both gravity and flow are important in determining the bubble transport, and suggest that a treatment strategy that includes multiple doses may be effective in delivering emboli to vessels not occluded by the initial dose

  3. Theory calculation of combination of 'embryo' bubble growing-up visible bubble in bubble chamber

    International Nuclear Information System (INIS)

    Ye Zipiao; Sheng Xiangdong; Dai Changjiang

    2004-01-01

    By aid of island combination theory of 'embryo' bubble, it is resolved well the question which 'embryo' bubble grows up a visible bubble in the bubble chamber. Through theory calculation it is shown that radius of the big' embryo' bubble combinated not only relates with work matter such as surface tension coefficient, saturation vapour pressure and boiling point of liquid, but also does absorbing quantity of heat and the numbers of 'embryo' bubbles combination. It is explained reasonably that the radius of bubbles in bubble chamber is different for the same energies of neutrons and proton. The track of neutron in bubble chamber is long and thin, and the track of proton in bubble chamber is wide and short. It is also explained reasonably that the bubble radius of the incident particles with more charges which there are the same energies will be wider than that of the incident particles with less charges in the track. (author)

  4. Measurement system of bubbly flow using ultrasonic velocity profile monitor and video data processing unit. 2. Flow characteristics of bubbly countercurrent flow

    International Nuclear Information System (INIS)

    Aritomi, Masanori; Zhou, Shirong; Nakajima, Makoto; Takeda, Yasushi; Mori, Michitsugu.

    1997-01-01

    The authors have developed a measurement system which is composed of an ultrasonic velocity profile monitor and a video data processing unit in order to clarify its multi-dimensional flow characteristics in bubbly flows and to offer a data base to validate numerical codes for multi-dimensional two-phase flow. In this paper, the measurement system was applied for bubbly countercurrent flows in a vertical rectangular channel. At first, both bubble and water velocity profiles and void fraction profiles in the channel were investigated statistically. Next, turbulence intensity in a continuous liquid phase was defined as a standard deviation of velocity fluctuation, and the two-phase multiplier profile of turbulence intensity in the channel was clarified as a ratio of the standard deviation of flow fluctuation in a bubbly countercurrent flow to that in a water single phase flow. Finally, the distribution parameter and drift velocity used in the drift flux model for bubbly countercurrent flows were calculated from the obtained velocity profiles of both phases and void fraction profile, and were compared with the correlation proposed for bubbly countercurrent flows. (author)

  5. Characterization of intergranular fission gas bubbles in U-Mo fuel

    International Nuclear Information System (INIS)

    Kim, Y. S.; Hofman, G.; Rest, J.; Shevlyakov, G. V.

    2008-01-01

    first bubble appearance is the grain boundary. Analysis using a simple diffusion model showed that, although the difference in the Mo-content between the grain boundary and grain interior region decreased with burnup, a complete convergence in the Mo-content was not reached at the end of the test for all RERTR tests. A total of 13 plates from RERTR-1, 2, 3 and 5 tests with different as-fabrication conditions and irradiation conditions were included for gas bubble analyses. Among them, two plates contained powders γ-annealed at ∼800 C for ∼100 hours. Most of the plates were fabricated with as-atomized powders except for two as-machined powder plates. The Mo contents were 6, 7 and 10wt%. The irradiation temperature was in the range 70-190 C and the fission rate was in the range 2.4 x 10 14 - 7 x 10 14 f/cm 3 -s. Bubble size for both of the γ-annealed powder plates is smaller than the as-atomized powder plates. The bubble size for the as-atomized powder plates increases as a function of burnup and the bubble growth rate shows signs of slowing at burnups higher than ∼40 at% U-235 (LEU). The bubble-size distribution for all plates is a quasi-normal, with the average bubble size ranging 0.14-0.18 (micro)m. Although there are considerable errors, after an initial incubation period the average bubble size increases with fission density and shows saturation at high fission density. Bubble population (density) per unit grain boundary length was measured. The γ-annealed powder plates have a higher bubble density per unit grain boundary length than the as-atomized powder plates. The measured bubble number densities per unit grain boundary length for as-atomized powder plates are approximately constant with respect to burnup. Bubble density per unit cross section area was calculated using the density per unit grain boundary length data. The grains were modeled as tetrakaidecahedrons. Direct measurements for some plates were also performed and compared with the calculated

  6. Interaction forces model on a bubble growing for nuclear best estimate computer codes

    International Nuclear Information System (INIS)

    Espinosa-Paredes, Gilberto; Nunez-Carrera, Alejandro; Martinez-Mendez, Elizabeth J.

    2005-01-01

    This paper presents a mathematical model that takes into account the bubble radius variation that take place in a boiling water nuclear reactor during transients with changes in the pressure vessel, changes in the inlet core mass flow rate, density-wave phenomena or flow regime instability. The model with expansion effects was developed considering the interaction force between a dilute dispersion of gas bubbles and a continuous liquid phase. The closure relationships were formulated as an associated problem with the spatial deviation around averaging variables as a function of known variables. In order to solve the closure problem, a geometric model given by an eccentric unit cell was applied as an approach of heterogeneous structure of the two-phase flow. The closure relationship includes additional terms that represent combined effects between translation and pulsation due to displacement and size variation of the bubbles, respectively. This result can be implanted straightforward in best estimate thermo-hydraulics models. An example, the implementation of the closure relationships into TRAC best estimate computer code is presented

  7. Experimental investigations and modelling on the transition from bubble to slug flow in vertical pipes

    International Nuclear Information System (INIS)

    Lucas, D.; Krepper, E.; Prasser, H.M.

    2003-01-01

    To qualify CFD codes for two-phase flows, they have to be equipped with constitutive laws describing the interaction between the gaseous and the liquid phases. In the case of bubble flow this particularly concerns the forces acting on the bubbles and bubble coalescence and break-up. To obtain detailed experimental data, an electrode wire-mesh sensor was used, which enables the measurement of the phase distribution with a very high resolution in space and in time. Air-water flow at ambient conditions in a vertical pipe (51.2 mm inner diameter) is investigated to have well defined boundary conditions. Local bubble size distributions are calculated from the data. The measurements were done in different distances from the gas injection device. As a result the development of bubble size distributions as well as the development of the radial gas fraction profiles can be studied. It was found, that the bubble size distribution as well as local effects determine the transition from bubble flow to slug flow. The data are used for the development of a model, which predicts the development of the bubble size distribution and the transition from bubble flow to slug flow in case of stationary flow in a vertical pipe. (orig.)

  8. Interfacial bubbles formed by plunging thin liquid films in a pool

    Science.gov (United States)

    Salkin, Louis; Schmit, Alexandre; David, Richard; Delvert, Alexandre; Gicquel, Eric; Panizza, Pascal; Courbin, Laurent

    2017-06-01

    We show that the immersion of a horizontally suspended thin film of liquid in a pool of the same fluid creates an interfacial bubble, that is, a bubble at the liquid-air interface. Varying the fluid properties, the film's size, and its immersion velocity, our experiments unveil two formation regimes characterized by either a visco-capillary or an inertio-capillary mechanism that controls the size of a produced bubble. To rationalize these results, we compare the pressure exerted by the air flow under a plunging film with the Laplace pressure needed to generate film dimpling, which subsequently yields air entrapment and the production of a bubble. This physical model explains the power-law variations of the bubble size with the governing dimensionless number for each regime.

  9. Bubbles in Titan’s Seas: Nucleation, Growth, and RADAR Signature

    Science.gov (United States)

    Cordier, Daniel; Liger-Belair, Gérard

    2018-05-01

    In the polar regions of Titan, the main satellite of Saturn, hydrocarbon seas have been discovered by the Cassini–Huygens mission. RADAR observations have revealed surprising and transient bright areas over the Ligeia Mare surface. As suggested by recent research, bubbles could explain these strange features. However, the nucleation and growth of such bubbles, together with their RADAR reflectivity, have never been investigated. All of these aspects are critical to an actual observation. We have thus applied the classical nucleation theory to our context, and we developed a specific radiative transfer model that is appropriate for bubble streams in cryogenic liquids. According to our results, the sea bed appears to be the most plausible place for the generation of bubbles, leading to a signal comparable to observations. This conclusion is supported by thermodynamic arguments and by RADAR properties of a bubbly column. The latter are also valid in the case of bubble plumes, due to gas leaking from the sea floor.

  10. New mechanism for bubble nucleation: Classical transitions

    International Nuclear Information System (INIS)

    Easther, Richard; Giblin, John T. Jr; Hui Lam; Lim, Eugene A.

    2009-01-01

    Given a scalar field with metastable minima, bubbles nucleate quantum mechanically. When bubbles collide, energy stored in the bubble walls is converted into kinetic energy of the field. This kinetic energy can facilitate the classical nucleation of new bubbles in minima that lie below those of the 'parent' bubbles. This process is efficient and classical, and changes the dynamics and statistics of bubble formation in models with multiple vacua, relative to that derived from quantum tunneling.

  11. A Generalized turbulent dispersion model for bubbly flow numerical simulation in NEPTUNE-CFD

    Energy Technology Data Exchange (ETDEWEB)

    Laviéville, Jérôme, E-mail: Jerome-marcel.lavieville@edf.fr; Mérigoux, Nicolas, E-mail: nicolas.merigoux@edf.fr; Guingo, Mathieu, E-mail: mathieu.guingo@edf.fr; Baudry, Cyril, E-mail: Cyril.baudry@edf.fr; Mimouni, Stéphane, E-mail: stephane.mimouni@edf.fr

    2017-02-15

    The NEPTUNE-CFD code, based upon an Eulerian multi-fluid model, is developed within the framework of the NEPTUNE project, financially supported by EDF (Electricité de France), CEA (Commissariat à l’Energie Atomique et aux Energies Alternatives), IRSN (Institut de Radioprotection et de Sûreté Nucléaire) and AREVA-NP. NEPTUNE-CFD is mainly focused on Nuclear Safety applications involving two-phase water-steam flows, like two-phase Pressurized Shock (PTS) and Departure from Nucleate Boiling (DNB). Many of these applications involve bubbly flows, particularly, for application to flows in PWR fuel assemblies, including studies related to DNB. Considering a very usual model for interfacial forces acting on bubbles, including drag, virtual mass and lift forces, the turbulent dispersion force is often added to moderate the lift effect in orthogonal directions to the main flow and get the right dispersion shape. This paper presents a formal derivation of this force, considering on the one hand, the fluctuating part of drag and virtual mass, and on the other hand, Turbulent Pressure derivation obtained by comparison between Lagrangian and Eulerian description of bubbles motion. An extension of the Tchen’s theory is used to express the turbulent kinetic energy of bubbles and the two-fluid turbulent covariance tensor in terms of liquid turbulent velocities and time scale. The model obtained by this way, called Generalized Turbulent Dispersion Model (GTD), does not require any user parameter. The model is validated against Liu & Bankoff air-water experiment, Arizona State University (ASU) experiment, DEBORA experiment and Texas A&M University (TAMU) boiling flow experiments.

  12. Numerical simulation of bubbles motion in lifting pipe of bubble pump for lithium bromide absorption chillers

    International Nuclear Information System (INIS)

    Gao, Hongtao; Liu, Bingbing; Yan, Yuying

    2017-01-01

    A bubble pump is proposed to replace the traditional mechanical solution pump in lithium bromide absorption chillers, for its advantageous feature that can be driven by industrial waste heat or solar energy or other low-grade energy. In two-stage bubble pump driven lithium bromide absorption refrigeration system, flow patterns in lifting pipe have significant effects on the performance of bubble pump. In this paper, the single bubble motion and the double bubbles coalescence in vertical ascending pipe are simulated by an improved free energy model of lattice Boltzmann method, in which the two-phase liquid to gas density ratio is 2778. The details of bubbles coalescence process are studied. Density and velocity of bubbles have been obtained. The computational results show that the initial radius of each bubble has a great influence on the coalescence time. The larger the initial bubble radius, the shorter the coalescence time. The pipe diameter has a little effect on the two bubbles coalescence time while it has a significant effect on the bubble velocity. As the pipe diameter increases, the bubble velocity increases. The obtained results are helpful for studying the transition mechanisms of two-phase flow patterns and useful for improving the bubble pump performance by controlling the flow patterns in lifting pipe.

  13. Numerical Modeling of the Photothermal Processing for Bubble Forming around Nanowire in a Liquid

    Directory of Open Access Journals (Sweden)

    Anis Chaari

    2014-01-01

    Full Text Available An accurate computation of the temperature is an important factor in determining the shape of a bubble around a nanowire immersed in a liquid. The study of the physical phenomenon consists in solving a photothermic coupled problem between light and nanowire. The numerical multiphysic model is used to study the variations of the temperature and the shape of the created bubble by illumination of the nanowire. The optimization process, including an adaptive remeshing scheme, is used to solve the problem through a finite element method. The study of the shape evolution of the bubble is made taking into account the physical and geometrical parameters of the nanowire. The relation between the sizes and shapes of the bubble and nanowire is deduced.

  14. Numerical Modeling of the Photothermal Processing for Bubble Forming around Nanowire in a Liquid

    Science.gov (United States)

    Chaari, Anis; Giraud-Moreau, Laurence

    2014-01-01

    An accurate computation of the temperature is an important factor in determining the shape of a bubble around a nanowire immersed in a liquid. The study of the physical phenomenon consists in solving a photothermic coupled problem between light and nanowire. The numerical multiphysic model is used to study the variations of the temperature and the shape of the created bubble by illumination of the nanowire. The optimization process, including an adaptive remeshing scheme, is used to solve the problem through a finite element method. The study of the shape evolution of the bubble is made taking into account the physical and geometrical parameters of the nanowire. The relation between the sizes and shapes of the bubble and nanowire is deduced. PMID:24795538

  15. Some Econometric Results for the Blanchard-Watson Bubble Model

    DEFF Research Database (Denmark)

    Johansen, Soren; Lange, Theis

    The purpose of the present paper is to analyse a simple bubble model suggested by Blanchard and Watson. The model is defined by y(t) =s(t)¿y(t-1)+e(t), t=1,…,n, where s(t) is an i.i.d. binary variable with p=P(s(t)=1), independent of e(t) i.i.d. with mean zero and finite variance. We take ¿>1 so...

  16. Vertical Rise Velocity of Equatorial Plasma Bubbles Estimated from Equatorial Atmosphere Radar Observations and High-Resolution Bubble Model Simulations

    Science.gov (United States)

    Yokoyama, T.; Ajith, K. K.; Yamamoto, M.; Niranjan, K.

    2017-12-01

    Equatorial plasma bubble (EPB) is a well-known phenomenon in the equatorial ionospheric F region. As it causes severe scintillation in the amplitude and phase of radio signals, it is important to understand and forecast the occurrence of EPBs from a space weather point of view. The development of EPBs is presently believed as an evolution of the generalized Rayleigh-Taylor instability. We have already developed a 3D high-resolution bubble (HIRB) model with a grid spacing of as small as 1 km and presented nonlinear growth of EPBs which shows very turbulent internal structures such as bifurcation and pinching. As EPBs have field-aligned structures, the latitude range that is affected by EPBs depends on the apex altitude of EPBs over the dip equator. However, it was not easy to observe the apex altitude and vertical rise velocity of EPBs. Equatorial Atmosphere Radar (EAR) in Indonesia is capable of steering radar beams quickly so that the growth phase of EPBs can be captured clearly. The vertical rise velocities of the EPBs observed around the midnight hours are significantly smaller compared to those observed in postsunset hours. Further, the vertical growth of the EPBs around midnight hours ceases at relatively lower altitudes, whereas the majority of EPBs at postsunset hours found to have grown beyond the maximum detectable altitude of the EAR. The HIRB model with varying background conditions are employed to investigate the possible factors that control the vertical rise velocity and maximum attainable altitudes of EPBs. The estimated rise velocities from EAR observations at both postsunset and midnight hours are, in general, consistent with the nonlinear evolution of EPBs from the HIRB model.

  17. Bubble generation in a twisted and bent DNA-like model

    DEFF Research Database (Denmark)

    Larsen, Peter Ulrik Vingaard; Christiansen, Peter Leth; Bang, Ole

    2004-01-01

    The DNA molecule is modeled by a parabola embedded chain with long-range interactions between twisted base pair dipoles. A mechanism for bubble generation is presented and investigated in two different configurations. Using random normally distributed initial conditions to simulate thermal...

  18. Simulation of hydrogen bubble growth in tungsten by a hybrid model

    International Nuclear Information System (INIS)

    Sang, Chaofeng; Sun, Jizhong; Bonnin, Xavier; Wang, L.; Wang, Dezhen

    2015-01-01

    A two dimensional hybrid code (HIIPC-MC) joining rate-theory and Monte Carlo (MC) methods is developed in this work. We evaluate the cascade-coalescence mechanism contribution to the bubble growth by MC. First, effects of the starting radius and solute deuterium concentration on the bubble growth are studied; then the impacts of the wall temperature and implantation ion flux on the bubble growth are assessed. The simulation indicates that the migration-coalescence of the bubbles and the high pressure inside the bubbles are the main driving forces for the bubble growth, and that neglect of the migration and coalescence would lead to an underestimation of the bubble growth or blistering

  19. A comparative study of turbulence models for dissolved air flotation flow analysis

    International Nuclear Information System (INIS)

    Park, Min A; Lee, Kyun Ho; Chung, Jae Dong; Seo, Seung Ho

    2015-01-01

    The dissolved air flotation (DAF) system is a water treatment process that removes contaminants by attaching micro bubbles to them, causing them to float to the water surface. In the present study, two-phase flow of air-water mixture is simulated to investigate changes in the internal flow analysis of DAF systems caused by using different turbulence models. Internal micro bubble distribution, velocity, and computation time are compared between several turbulence models for a given DAF geometry and condition. As a result, it is observed that the standard κ-ε model, which has been frequently used in previous research, predicts somewhat different behavior than other turbulence models

  20. Electron acceleration in the bubble regime

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, Oliver

    2014-02-03

    The bubble regime of laser-wakefield acceleration has been studied over the recent years as an important alternative to classical accelerators. Several models and theories have been published, in particular a theory which provides scaling laws for acceleration parameters such as energy gain and acceleration length. This thesis deals with numerical simulations within the bubble regime, their comparison to these scaling laws and data obtained from experiments, as well as some specific phenomenona. With a comparison of the scaling laws with numerical results a parameter scan was able to show a large parameter space in which simulation and theory agree. An investigation of the limits of this parameter space revealed boundaries to other regimes, especially at very high (a{sub 0} > 100) and very low laser amplitudes (a{sub 0} < 4). Comparing simulation data with data from experiments concerning laser pulse development and electron energies, it was found that experimental results can be adequately reproduced using the Virtual-Laser-Plasma-Laboratory code. In collaboration with the Institut fuer Optik und Quantenelektronik at the Friedrich-Schiller University Jena synchrotron radiation emitted from the inside of the bubble was investigated. A simulation of the movement of the electrons inside the bubble together with time dependent histograms of the emitted radiation helped to prove that the majority of radiation created during a bubble acceleration originates from the inside of the bubble. This radiation can be used to diagnose the amplitude of oscillation of the trapped electrons. During a further study it was proven that the polarisation of synchrotron radiation from a bubble contains information about the exact oscillation direction. This oscillation was successfully controlled by using either a laser pulse with a tilted pulse front or an asymmetric laser pulse. First results of ongoing studies concerning injecting electrons into an existing bubble and a scheme called

  1. Direct numerical simulation of bubble dynamics in subcooled and near-saturated convective nucleate boiling

    International Nuclear Information System (INIS)

    Lal, Sreeyuth; Sato, Yohei; Niceno, Bojan

    2015-01-01

    Highlights: • We simulate convective nucleate pool boiling with a novel phase-change model. • We simulate four cases at different sub-cooling and wall superheat levels. • We investigate the flow structures around the growing bubble and analyze the accompanying physics. • We accurately simulate bubble shape elongation and enhanced wall cooling due to the sliding and slanting motions of bubbles. • Bubble cycle durations show good agreement with experimental observations. - Abstract: With the long-term objective of Critical Heat Flux (CHF) prediction, bubble dynamics in convective nucleate boiling flows has been studied using a Direct Numerical Simulation (DNS). A sharp-interface phase change model which was originally developed for pool boiling flows is extended to convective boiling flows. For physical scales smaller than the smallest flow scales (smaller than the grid size), a micro-scale model was used. After a grid dependency study and a parametric study for the contact angle, four cases of simulation were carried out with different wall superheat and degree of subcooling. The flow structures around the growing bubble were investigated together with the accompanying physics. The relation between the heat flux evolution and the bubble growth was studied, along with investigations of bubble diameter and bubble base diameter evolutions across the four cases. As a validation, the evolutions of bubble diameter and bubble base diameter were compared to experimental observations. The bubble departure period and the bubble shapes show good agreement between the experiment and the simulation, although the Reynolds number of the simulation cases is relatively low

  2. Bubbles generated from wind-steepened breaking waves: 1. Bubble plume bubbles

    NARCIS (Netherlands)

    Leifer, I.; Leeuw, G. de

    2006-01-01

    Measurements of bubble plumes from paddle-amplified, wind stress breaking waves were made in a large wind-wave channel during the LUMINY experiment in fresh (but not clean) water. Bubble plumes exhibited considerable variability with respect to dynamics, bubble size distribution, and physical

  3. Testing for rational bubbles in a co-explosive vector autoregression

    DEFF Research Database (Denmark)

    Engsted, Tom; Nielsen, Bent

    , are derived both for a model without bubbles and for a model with a rational bubble. In both cases we show how the restrictions can be tested through standard chi-squared inference. The analysis for the no-bubble case is done within the traditional Johansen model for I(1) variables, while the bubble model...

  4. IMPLEMENTATION OF SERIAL AND PARALLEL BUBBLE SORT ON FPGA

    Directory of Open Access Journals (Sweden)

    Dwi Marhaendro Jati Purnomo

    2016-06-01

    Full Text Available Sorting is common process in computational world. Its utilization are on many fields from research to industry. There are many sorting algorithm in nowadays. One of the simplest yet powerful is bubble sort. In this study, bubble sort is implemented on FPGA. The implementation was taken on serial and parallel approach. Serial and parallel bubble sort then compared by means of its memory, execution time, and utility which comprises slices and LUTs. The experiments show that serial bubble sort required smaller memory as well as utility compared to parallel bubble sort. Meanwhile, parallel bubble sort performed faster than serial bubble sort

  5. Optimal Portfolio Selection in Ex Ante Stock Price Bubble and Furthermore Bubble Burst Scenario from Dhaka Stock Exchange with Relevance to Sharpe’s Single Index Model

    Directory of Open Access Journals (Sweden)

    Javed Bin Kamal

    2012-09-01

    Full Text Available The paper aims at constructing an optimal portfolio by applying Sharpe’s single index model of capital asset pricing in different scenarios, one is ex ante stock price bubble scenario and stock price bubble and bubble burst is second scenario. Here we considered beginning of year 2010 as rise of stock price bubble in Dhaka Stock Exchange. Hence period from 2005 -2009 is considered as ex ante stock price bubble period. Using DSI (All share price index in Dhaka Stock Exchange as market index and considering daily indices for the March 2005 to December 2009 period, the proposed method formulates a unique cut off point (cut off rate of return and selects stocks having excess of their expected return over risk-free rate of return surpassing this cut-off point. Here, risk free rate considered to be 8.5% per annum (Treasury bill rate in 2009. Percentage of an investment in each of the selected stocks is then decided on the basis of respective weights assigned to each stock depending on respective ‘β’ value, stock movement variance representing unsystematic risk, return on stock and risk free return vis-à-vis the cut off rate of return. Interestingly, most of the stocks selected turned out to be bank stocks. Again we went for single index model applied to same stocks those made to the optimum portfolio in ex ante stock price bubble scenario considering data for the period of January 2010 to June 2012. We found that all stocks failed to make the pass Single Index Model criteria i.e. excess return over beta must be higher than the risk free rate. Here for the period of 2010 to 2012, the risk free rate considered to be 11.5 % per annum (Treasury bill rate during 2012.

  6. Universe out of a breathing bubble

    International Nuclear Information System (INIS)

    Guendelman, Eduardo I.; Sakai, Nobuyuki

    2008-01-01

    We consider the model of a false-vacuum bubble with a thin wall where the surface energy density is composed of two different components, 'domain-wall' type and 'dust' type, with opposite signs. We find stably oscillating solutions, which we call 'breathing bubbles'. By decay to a lower mass state, such a breathing bubble could become either (i) a child universe or ii) a bubble that 'eats up' the original universe, depending on the sign of the surface energy of the domain-wall component. We also discuss the effect of the finite-thickness corrections to the thin-wall approximation and possible origins of the energy contents of our model

  7. Modeling Cryptosporidium spp. Oocyst Inactivation in Bubble-Diffuser Ozone Contactors

    Science.gov (United States)

    1998-07-01

    requirements for Giardia lamblia (G. lamblia) and viruses under the Surface Water Treatment Rule (SWTR). Minimum CT requirements include relatively...parvum and C. muris ) oocysts in ozone bubble-diffuser contactors. The model is calibrated with semi-batch kinetic data, verified with pilot-scale

  8. Flow visualization using bubbles

    International Nuclear Information System (INIS)

    Henry, J.P.

    1974-01-01

    Soap bubbles were used for visualizing flows. The tests effected allowed some characteristics of flows around models in blow tunnels to be precised at mean velocities V 0 5 . The velocity of a bubble is measured by chronophotography, the bulk envelope of the trajectories is also registered [fr

  9. Anti-Bubbles

    Science.gov (United States)

    Tufaile, Alberto; Sartorelli, José Carlos

    2003-08-01

    An anti-bubble is a striking kind of bubble in liquid that seemingly does not comply the buoyancy, and after few minutes it disappears suddenly inside the liquid. Different from a simple air bubble that rises directly to the liquid surface, an anti-bubble wanders around in the fluid due to its slightly lesser density than the surrounding liquid. In spite of this odd behavior, an anti-bubble can be understood as the opposite of a conventional soap bubble in air, which is a shell of liquid surrounding air, and an anti-bubble is a shell of air surrounding a drop of the liquid inside the liquid. Two-phase flow has been a subject of interest due to its relevance to process equipment for contacting gases and liquids applied in industry. A chain of bubbles rising in a liquid formed from a nozzle is a two-phase flow, and there are certain conditions in which spherical air shells, called anti-bubbles, are produced. The purpose of this work is mainly to note the existence of anti-bubbling regime as a sequel of a bubbling system. We initially have presented the experimental apparatus. After this we have described the evolution of the bubbling regimes, and emulated the effect of bubbling coalescence with simple maps. Then is shown the inverted dripping as a consequence of the bubble coalescence, and finally the conditions for anti-bubble formation.

  10. Bubble properties of heterogeneous bubbly flow in a square bubble column

    NARCIS (Netherlands)

    Bai, Wei; Deen, Niels G.; Kuipers, J.A.M.

    2010-01-01

    The present work focuses on the measurements of bubble properties in heterogeneous bubbly flows in a square bubble column. A four-point optical fibre probe was used for this purpose. The accuracy and intrusive effect of the optical probe was investigated first. The results show that the optical

  11. Analysis of intergranular fission-gas bubble-size distributions in irradiated uranium-molybdenum alloy fuel

    Energy Technology Data Exchange (ETDEWEB)

    Rest, J. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States)], E-mail: jrest@anl.gov; Hofman, G.L.; Kim, Yeon Soo [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States)

    2009-04-15

    An analytical model for the nucleation and growth of intra and intergranular fission-gas bubbles is used to characterize fission-gas bubble development in low-enriched U-Mo alloy fuel irradiated in the advanced test reactor in Idaho as part of the Reduced Enrichment for Research and Test Reactor (RERTR) program. Fuel burnup was limited to less than {approx}7.8 at.% U in order to capture the fuel-swelling stage prior to irradiation-induced recrystallization. The model couples the calculation of the time evolution of the average intergranular bubble radius and number density to the calculation of the intergranular bubble-size distribution based on differential growth rate and sputtering coalescence processes. Recent results on TEM analysis of intragranular bubbles in U-Mo were used to set the irradiation-induced diffusivity and re-solution rate in the bubble-swelling model. Using these values, good agreement was obtained for intergranular bubble distribution compared against measured post-irradiation examination (PIE) data using grain-boundary diffusion enhancement factors of 15-125, depending on the Mo concentration. This range of enhancement factors is consistent with values obtained in the literature.

  12. Analysis of intergranular fission-gas bubble-size distributions in irradiated uranium-molybdenum alloy fuel

    Science.gov (United States)

    Rest, J.; Hofman, G. L.; Kim, Yeon Soo

    2009-04-01

    An analytical model for the nucleation and growth of intra and intergranular fission-gas bubbles is used to characterize fission-gas bubble development in low-enriched U-Mo alloy fuel irradiated in the advanced test reactor in Idaho as part of the Reduced Enrichment for Research and Test Reactor (RERTR) program. Fuel burnup was limited to less than ˜7.8 at.% U in order to capture the fuel-swelling stage prior to irradiation-induced recrystallization. The model couples the calculation of the time evolution of the average intergranular bubble radius and number density to the calculation of the intergranular bubble-size distribution based on differential growth rate and sputtering coalescence processes. Recent results on TEM analysis of intragranular bubbles in U-Mo were used to set the irradiation-induced diffusivity and re-solution rate in the bubble-swelling model. Using these values, good agreement was obtained for intergranular bubble distribution compared against measured post-irradiation examination (PIE) data using grain-boundary diffusion enhancement factors of 15-125, depending on the Mo concentration. This range of enhancement factors is consistent with values obtained in the literature.

  13. Interfacial area concentration in gas–liquid bubbly to churn flow regimes in large diameter pipes

    International Nuclear Information System (INIS)

    Shen, Xiuzhong; Hibiki, Takashi

    2015-01-01

    Highlights: • A systematic method to predict interfacial area concentration (IAC) is presented. • A correlation for group 1 bubble void fraction is proposed. • Correlations of IAC and bubble diameter are developed for group 1 bubbles. • Correlations of IAC and bubble diameter are developed for group 2 bubbles. • The newly-developed two-group IAC model compares well with collected databases. - Abstract: This study performed a survey on existing correlations for interfacial area concentration (IAC) prediction and collected an IAC experimental database of two-phase flows taken under various flow conditions in large diameter pipes. Although some of these existing correlations were developed by partly using the IAC databases taken in the low-void-fraction two-phase flows in large diameter pipes, no correlation can satisfactorily predict the IAC in the two-phase flows changing from bubbly, cap bubbly to churn flow in the collected database of large diameter pipes. So this study presented a systematic way to predict the IAC for the bubbly-to-churn flows in large diameter pipes by categorizing bubbles into two groups (group 1: spherical or distorted bubble, group 2: cap bubble). A correlation was developed to predict the group 1 void fraction by using the void fraction for all bubble. The group 1 bubble IAC and bubble diameter were modeled by using the key parameters such as group 1 void fraction and bubble Reynolds number based on the analysis of Hibiki and Ishii (2001, 2002) using one-dimensional bubble number density and interfacial area transport equations. The correlations of IAC and bubble diameter for group 2 cap bubbles were developed by taking into account the characteristics of the representative bubbles among the group 2 bubbles and the comparison between a newly-derived drift velocity correlation for large diameter pipes and the existing drift velocity correlation of Kataoka and Ishii (1987) for large diameter pipes. The predictions from the newly

  14. Modeling of Multisize Bubbly Flow and Application to the Simulation of Boiling Flows with the Neptune_CFD Code

    Directory of Open Access Journals (Sweden)

    Christophe Morel

    2009-01-01

    Full Text Available This paper describes the modeling of boiling multisize bubbly flows and its application to the simulation of the DEBORA experiment. We follow the method proposed originally by Kamp, assuming a given mathematical expression for the bubble diameter pdf. The original model is completed by the addition of some new terms for vapor compressibility and phase change. The liquid-to-interface heat transfer term, which essentially determines the bubbles condensation rate in the DEBORA experiment, is also modeled with care. First numerical results realized with the Neptune_CFD code are presented and discussed.

  15. Computational analysis of ozonation in bubble columns

    International Nuclear Information System (INIS)

    Quinones-Bolanos, E.; Zhou, H.; Otten, L.

    2002-01-01

    This paper presents a new computational ozonation model based on the principle of computational fluid dynamics along with the kinetics of ozone decay and microbial inactivation to predict the performance of ozone disinfection in fine bubble columns. The model can be represented using a mixture two-phase flow model to simulate the hydrodynamics of the water flow and using two transport equations to track the concentration profiles of ozone and microorganisms along the height of the column, respectively. The applicability of this model was then demonstrated by comparing the simulated ozone concentrations with experimental measurements obtained from a pilot scale fine bubble column. One distinct advantage of this approach is that it does not require the prerequisite assumptions such as plug flow condition, perfect mixing, tanks-in-series, uniform radial or longitudinal dispersion in predicting the performance of disinfection contactors without carrying out expensive and tedious tracer studies. (author)

  16. Hydrodynamic interaction on large-Reynolds-number aligned bubbles: Drag effects

    International Nuclear Information System (INIS)

    Ramirez-Munoz, J.; Salinas-Rodriguez, E.; Soria, A.; Gama-Goicochea, A.

    2011-01-01

    Graphical abstract: Display Omitted Highlights: → The hydrodynamic interaction of a pair aligned equal-sized bubbles is analyzed. → The leading bubble wake decreases the drag on the trailing bubble. → A new semi-analytical model for the trailing bubble's drag is presented. → The equilibrium distance between bubbles is predicted. - Abstract: The hydrodynamic interaction of two equal-sized spherical gas bubbles rising along a vertical line with a Reynolds number (Re) between 50 and 200 is analyzed. An approach to estimate the trailing bubble drag based on the search of a proper reference fluid velocity is proposed. Our main result is a new, simple semi-analytical model for the trailing bubble drag. Additionally, the equilibrium separation distance between bubbles is predicted. The proposed models agree quantitatively up to small distances between bubbles, with reported data for 50 ≤ Re ≤ 200. The relative average error for the trailing bubble drag, Er, is found to be in the range 1.1 ≤ Er ≤ 1.7, i.e., it is of the same order of the analytical predictions in the literature.

  17. Hydrodynamic interaction on large-Reynolds-number aligned bubbles: Drag effects

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez-Munoz, J., E-mail: jrm@correo.azc.uam.mx [Departamento de Energia, Universidad Autonoma Metropolitana-Azcapotzalco, Av. San Pablo 180, Col. Reynosa Tamaulipas, 02200 Mexico D.F. (Mexico); Centro de Investigacion en Polimeros, Marcos Achar Lobaton No. 2, Tepexpan, 55885 Acolman, Edo. de Mexico (Mexico); Salinas-Rodriguez, E.; Soria, A. [Departamento de IPH, Universidad Autonoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, 09340 Mexico D.F. (Mexico); Gama-Goicochea, A. [Centro de Investigacion en Polimeros, Marcos Achar Lobaton No. 2, Tepexpan, 55885 Acolman, Edo. de Mexico (Mexico)

    2011-07-15

    Graphical abstract: Display Omitted Highlights: > The hydrodynamic interaction of a pair aligned equal-sized bubbles is analyzed. > The leading bubble wake decreases the drag on the trailing bubble. > A new semi-analytical model for the trailing bubble's drag is presented. > The equilibrium distance between bubbles is predicted. - Abstract: The hydrodynamic interaction of two equal-sized spherical gas bubbles rising along a vertical line with a Reynolds number (Re) between 50 and 200 is analyzed. An approach to estimate the trailing bubble drag based on the search of a proper reference fluid velocity is proposed. Our main result is a new, simple semi-analytical model for the trailing bubble drag. Additionally, the equilibrium separation distance between bubbles is predicted. The proposed models agree quantitatively up to small distances between bubbles, with reported data for 50 {<=} Re {<=} 200. The relative average error for the trailing bubble drag, Er, is found to be in the range 1.1 {<=} Er {<=} 1.7, i.e., it is of the same order of the analytical predictions in the literature.

  18. Magnetic-field-aligned characteristics of plasma bubbles in the nighttime equatorial ionosphere

    International Nuclear Information System (INIS)

    Tsunoda, R.T.

    1980-01-01

    Measurements of both incoherent-scatter (IS) and backscatter from field-aligned irregularities (FAI) were made in 1978 with ALTAIR, a fully-steerable high-power radar, to investigate the magnetic-field-aligned characteristics of equatorial plasma bubbles. By operating the radar in a latitude-scan IS mode it was possible to map the location and percentage depletion of plasma bubbles as a function of altitude. By showing that backscatter from FAI is spatially collocated with the upper wall of plasma bubbles it was possible to use the spatial displacement of a field aligned backscatter region to estimate the upward bubble velocity. Besides showing that plasma bubbles are indeed aligned along magnetic field lines, this data set is used to show that a plasma bubble with a percentage depletion of as much as 90% does not have as large an upward velocity as predicted by two-dimensional models. Instead, the inferred bubble velocity is shown to be in better agreement with the bubble velocity predicted by theoretical models using flux-integrated values of electron density and Pedersen conductivity. The need to use flux-tube-integrated values when comparing theory and observation is further stressed by the presence of a non-uniform latitudinal distribution of electron density (i.e. the equatorial anomaly) that was found in the latitude-scan data. (author)

  19. Effect of supercritical water shell on cavitation bubble dynamics

    International Nuclear Information System (INIS)

    Shao Wei-Hang; Chen Wei-Zhong

    2015-01-01

    Based on reported experimental data, a new model for single cavitation bubble dynamics is proposed considering a supercritical water (SCW) shell surrounding the bubble. Theoretical investigations show that the SCW shell apparently slows down the oscillation of the bubble and cools the gas temperature inside the collapsing bubble. Furthermore, the model is simplified to a Rayleigh–Plesset-like equation for a thin SCW shell. The dependence of the bubble dynamics on the thickness and density of the SCW shell is studied. The results show the bubble dynamics depends on the thickness but is insensitive to the density of the SCW shell. The thicker the SCW shell is, the smaller are the wall velocity and the gas temperature in the bubble. In the authors’ opinion, the SCW shell works as a buffering agent. In collapsing, it is compressed to absorb a good deal of the work transformed into the bubble internal energy during bubble collapse so that it weakens the bubble oscillations. (paper)

  20. Fluid Mechanics of Taylor Bubbles and Slug Flows in Vertical Channels

    International Nuclear Information System (INIS)

    Anglart, Henryk; Podowski, Michael Z.

    2002-01-01

    Fluid mechanics of Taylor bubbles and slug flows is investigated in vertical, circular channels using detailed, three-dimensional computational fluid dynamics simulations. The Volume of Fluid model with the interface-sharpening algorithm, implemented in the commercial CFX4 code, is used to predict the shape and velocity of Taylor bubbles moving along a vertical channel. Several cases are investigated, including both a single Taylor bubble and a train of bubbles rising in water. It is shown that the potential flow solution underpredicts the water film thickness around Taylor bubbles. Furthermore, the computer simulations that are performed reveal the importance of properly modeling the three-dimensional nature of phenomena governing the motion of Taylor bubbles. Based on the present results, a new formula for the evaluation of bubble shape is derived. Both the shape of Taylor bubbles and the bubble rise velocity predicted by the proposed model agree well with experimental observations. Furthermore, the present model shows good promise in predicting the coalescence of Taylor bubbles

  1. A MODEL OF MIRA'S COMETARY HEAD/TAIL ENTERING THE LOCAL BUBBLE

    International Nuclear Information System (INIS)

    Esquivel, A.; Raga, A. C.; RodrIguez-Gonzalez, A.; Lopez-Camara, D.; Velazquez, P. F.; Canto, J.; De Colle, F.

    2010-01-01

    We model the cometary structure around Mira as the interaction of an asymptotic giant branch stellar wind from Mira A with a streaming environment. Our simulations introduce the following new element: we assume that after 200 kyr of evolution in a dense environment, Mira entered the Local Bubble (low-density coronal gas). As Mira enters the bubble, the head of the comet expands quite rapidly, while the tail remains well collimated for a >100 kyr timescale. The result is a broad-head/narrow-tail structure that resembles the observed morphology of Mira's comet. The simulations were carried out with our new adaptive grid code WALICXE, which is described in detail.

  2. Critical comparison of hydrodynamic models for gas-solid fluidized beds - Part II: freely bubbling gas-solid fluidized beds

    NARCIS (Netherlands)

    Patil, D.J.; van Sint Annaland, M.; Kuipers, J.A.M.

    2005-01-01

    Correct prediction of spontaneous bubble formation in freely bubbling gas¿solid fluidized beds using Eulerian models, strongly depends on the description of the internal momentum transfer in the particulate phase. In this part, the comparison of the simple classical model, describing the solid phase

  3. Numerical analysis for simulation of condensing vapor bubble using CFD-ACE+

    International Nuclear Information System (INIS)

    Goyal, P.; Dutta, Anu; Singh, R.K.

    2014-01-01

    The motion of bubbles is very complex. They may be subject to break-up or coalescence and may appear to move with a spiraling, zigzagging or rocking behavior. Recently, many studies have been carried out to numerically simulate the rising bubble in various conditions by using VOF approach. However, all the above studies were limited to adiabatic bubble where heat and mass transfer between the phases were not considered. In the present work, an attempt was made to capture the behaviour of condensing bubble flowing in a channel, by using commercial CFD code CFD-ACE+ through VOF model. A User-Defined Function was developed to simulate interfacial heat and mass transfer during condensation. The effect of condensation on bubble behavior was analyzed by comparing the behavior of condensing bubble with that of adiabatic bubble. For validation of CFD-ACE UDF of bubble condensation, a comparison was made with the literature quoted experimental data and it agreed well. Through this work an emphasis was put on VOF module along with the development of an UDF for bubble condensation in CFD-ACE+ code. This theoretical study is motivated by the future CFD application and the intent to investigate the capabilities of the CFD-ACE+ package. (author)

  4. Effects of additional inertia force on bubble breakup

    International Nuclear Information System (INIS)

    Pan Liangming; Zhang Wenzhi; Chen Deqi; Xu Jianhui; Xu Jianjun; Huang Yanping

    2011-01-01

    Through VOF two-phase flow model, the single bubble deformation and breakup in a vertical narrow channel is numerically investigated in the study based on the force balance at the process of bubble breakup. The effect of surface tension force, the additional inertia force and bubble initial shape on bubble breakup are analyzed according to the velocity variation at the break-up point and the minimum necking size when the bubble is breaking up. It is found that the surface tension force, the additional inertia force and the bubble initial shape have significant effects on the bubble breakup through the fluid injection toward to the bubble, which finally induces the onset of bubble breakup. (authors)

  5. Solitons and bubbles in models with Chern-Simons term

    International Nuclear Information System (INIS)

    Masperi, L.

    1992-07-01

    It is shown that a gauge theory for complex scalar field with up to sextic self-interactions and a Chern-Simons term in 2 + 1 dimensions has solitons which may become bubbles of the stable broken-symmetry phase in a medium of the symmetric one producing the first-order phase transition. In the non-relativistic limit scale invariance prevents the determination of an optimal bubble size. Possible extensions to 3 + 1 dimensions of bubbles of string type are indicated. (author). 8 refs

  6. Possible improvements in the bubble model description of positronium pick-off annihilation in liquids

    International Nuclear Information System (INIS)

    Beling, C.D.; Smith, F.A.

    1980-01-01

    The universal applicability of the bubble model is examined and attention is drawn to a number of situations in which it is inadequate. Some possible areas of improvements are considered. The effects of van der Waals forces on the bubble radius are estimated to be insignificant, but the problem of the potential well depth and shape is more intractable. We find that when a linear combination of finite potential components is used, the Ps pressure can become independent of well depth when the infinite component becomes large, as may be the case in certain liquids. We have developed the idea of Tao on the description of the wavefunction overlap occurring in a thin skin in the inside of the bubble surface. By considering the contribution from the protrusion of hydrogen atoms from a hard core bubble surface, we calculate that the pick-off rate can be significantly altered. (orig.)

  7. Meniscus Dynamics in Bubble Formation. Part II: Model

    Czech Academy of Sciences Publication Activity Database

    Růžička, Marek; Bunganič, Radovan; Drahoš, Jiří

    2009-01-01

    Roč. 87, č. 10 (2009), s. 1357-1365 ISSN 0263-8762 R&D Projects: GA ČR GA104/07/1110; GA AV ČR(CZ) IAA200720801 Institutional research plan: CEZ:AV0Z40720504 Keywords : bubble formation * periodic bubbling * meniscus oscillations Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.223, year: 2009

  8. Numerical Study on Mass Transfer of a Vapor Bubble Rising in Very High Viscous Fluid

    Directory of Open Access Journals (Sweden)

    T. Kunugi

    2014-09-01

    Full Text Available This study focused on a bubble rising behavior in a molten glass because it is important to improve the efficiency of removal of bubbles from the molten glass. On the other hand, it is expected that some gas species which exists in a bubble are transferred into the molten glass through the bubble interface, i.e., the mass transfer, subsequently, it may cause a bubble contraction in the molten glass. In this paper, in order to understand the bubble rising behavior with its contraction caused by the mass transfer through the bubble interface in the very high viscous fluid such as the molten glass, a bubble contraction model has been developed. The direct numerical simulations based on the MARS (Multi-interface Advection and Reconstruction Solver coupled with the mass transfer equation and the bubble contraction model regarding the mass transfer from the rising bubble in very high viscous fluid have been performed. Here, the working fluids were water vapor as the gas species and the molten glass as the very high viscous fluid. Also, the jump conditions at the bubble interface for the mass transfer were examined. Furthermore, the influence of the bubble contraction for the bubble rising compared to that in the water as a normal viscous fluid was investigated. From the result of the numerical simulations, it was found that the bubble rising behavior was strongly affected not only by the viscosity of the working fluid but also by the bubble contraction due to the mass transfer through the bubble interface.

  9. Effect of Slotted Anode on Gas Bubble Behaviors in Aluminum Reduction Cell

    Science.gov (United States)

    Sun, Meijia; Li, Baokuan; Li, Linmin; Wang, Qiang; Peng, Jianping; Wang, Yaowu; Cheung, Sherman C. P.

    2017-12-01

    In the aluminum reduction cells, gas bubbles are generated at the bottom of the anode which eventually reduces the effective current contact area and the system efficiency. To encourage the removal of gas bubbles, slotted anode has been proposed and increasingly adopted by some industrial aluminum reduction cells. Nonetheless, the exact gas bubble removal mechanisms are yet to be fully understood. A three-dimensional (3D) transient, multiphase flow mathematical model coupled with magnetohydrodynamics has been developed to investigate the effect of slotted anode on the gas bubble movement. The Eulerian volume of fluid approach is applied to track the electrolyte (bath)-molten aluminum (metal) interface. Meanwhile, the Lagrangian discrete particle model is employed to handle the dynamics of gas bubbles with considerations of the buoyancy force, drag force, virtual mass force, and pressure gradient force. The gas bubble coalescence process is also taken into account based on the O'Rourke's algorithm. The two-way coupling between discrete bubbles and fluids is achieved by the inter-phase momentum exchange. Numerical predictions are validated against the anode current variation in an industrial test. Comparing the results using slotted anode with the traditional one, the time-averaged gas bubble removal rate increases from 36 to 63 pct; confirming that the slotted anode provides more escaping ways and shortens the trajectories for gas bubbles. Furthermore, the slotted anode also reduces gas bubble's residence time and the probability of coalescence. Moreover, the bubble layer thickness in aluminum cell with slotted anode is reduced about 3.5 mm (17.4 pct), so the resistance can be cut down for the sake of energy saving and the metal surface fluctuation amplitude is significantly reduced for the stable operation due to the slighter perturbation with smaller bubbles.

  10. Dynamics of diffusive bubble growth and pressure recovery in a bubbly rhyolitic melt embedded in an elastic solid

    Science.gov (United States)

    Chouet, Bernard A.; Dawson, Phillip B.; Nakano, Masaru

    2006-01-01

    We present a model of gas exsolution and bubble expansion in a melt supersaturated in response to a sudden pressure drop. In our model, the melt contains a suspension of gas bubbles of identical sizes and is encased in a penny-shaped crack embedded in an elastic solid. The suspension is modeled as a three-dimensional lattice of spherical cells with slight overlap, where each elementary cell consists of a gas bubble surrounded by a shell of volatile-rich melt. The melt is then subjected to a step drop in pressure, which induces gas exsolution and bubble expansion, resulting in the compression of the melt and volumetric expansion of the crack. The dynamics of diffusion-driven bubble growth and volumetric crack expansion span 9 decades in time. The model demonstrates that the speed of the crack response depends strongly on volatile diffusivity in the melt and bubble number density and is markedly sensitive to the ratio of crack thickness to crack radius and initial bubble radius but is relatively insensitive to melt viscosity. The net drop in gas concentration in the melt after pressure recovery represents only a small fraction of the initial concentration prior to the drop, suggesting the melt may undergo numerous pressure transients before becoming significantly depleted of gases. The magnitude of pressure and volume recovery in the crack depends sensitively on the size of the input-pressure transient, becoming relatively larger for smaller-size transients in a melt containing bubbles with initial radii less than 10-5 m. Amplification of the input transient may be large enough to disrupt the crack wall and induce brittle failure in the rock matrix surrounding the crack. Our results provide additional basis for the interpretation of volume changes in the magma conduit under Popocatépetl Volcano during Vulcanian degassing bursts in its eruptive activity in April–May 2000.

  11. Experimental study of bubbly flow using image processing techniques

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Yucheng, E-mail: ycfu@vt.edu; Liu, Yang, E-mail: liu130@vt.edu

    2016-12-15

    This paper presents an experimental study of bubbly flows at relatively high void fractions using an advanced image processing method. Bubble overlapping is a common problem in such flows and the past studies often treat the overlapping bubbles as a whole, which introduces considerable measurement uncertainties. In this study, a hybrid method combining intersection point detection and watershed segmentation is used to separate the overlapping bubbles. In order to reconstruct bubbles from separated segments, a systematic procedure is developed which can preserve more features captured in the raw image compared to the simple ellipse fitting method. The distributions of void fraction, interfacial area concentration, number density and velocity are obtained from the extracted bubble information. High-speed images of air-water bubbly flows are acquired and processed for eight test runs conducted in a 30 mm × 10 mm rectangular channel. The developed image processing scheme can effectively separate overlapping bubbles and the results compare well with the measurements by the gas flow meter and double-sensor conductivity probe. The development of flows in transverse and mainstream directions are analyzed and compared with the prediction made by the one-dimensional interfacial area transport equation (IATE) and the bubble number density transport equation.

  12. Modeling of reaction kinetics in bubbling fluidized bed biomass gasification reactor

    Energy Technology Data Exchange (ETDEWEB)

    Thapa, R.K.; Halvorsen, B.M. [Telemark University College, Kjolnes ring 56, P.O. Box 203, 3901 Porsgrunn (Norway); Pfeifer, C. [University of Natural Resources and Life Sciences, Vienna (Austria)

    2013-07-01

    Bubbling fluidized beds are widely used as biomass gasification reactors as at the biomass gasification plant in Gussing, Austria. The reactor in the plant is a dual circulating bubbling fluidized bed gasification reactor. The plant produces 2MW electricity and 4.5MW heat from the gasification of biomass. Wood chips as biomass and olivine particles as hot bed materials are fluidized with high temperature steam in the reactor. As a result, biomass undergoes endothermic chemical reaction to produce a mixture of combustible gases in addition to some carbon-dioxide (CO2). The combustible gases are mainly hydrogen (H2), carbon monoxide (CO) and methane (CH4). The gas is used to produce electricity and heat via utilization in a gas engine. Alternatively, the gas is further processed for gaseous or liquid fuels, but still on the process of development level. Composition and quality of the gas determine the efficiency of the reactor. A computational model has been developed for the study of reaction kinetics in the gasification rector. The simulation is performed using commercial software Barracuda virtual reactor, VR15. Eulerian-Lagrangian approach in coupling of gas-solid flow has been implemented. Fluid phase is treated with an Eulerian formulation. Discrete phase is treated with a Lagrangian formulation. Particle-particle and particle-wall interactions and inter-phase heat and mass transfer have been taken into account. Series of simulations have been performed to study model prediction of the gas composition. The composition is compared with data from the gasifier at the CHP plant in Güssing, Austria. The model prediction of the composition of gases has good agreements with the result of the operating plant.

  13. Rational Asset Pricing Bubbles Revisited

    OpenAIRE

    Jan Werner

    2012-01-01

    Price bubble arises when the price of an asset exceeds the asset's fundamental value, that is, the present value of future dividend payments. The important result of Santos and Woodford (1997) says that price bubbles cannot exist in equilibrium in the standard dynamic asset pricing model with rational agents as long as assets are in strictly positive supply and the present value of total future resources is finite. This paper explores the possibility of asset price bubbles when either one of ...

  14. Electroweak bubble wall speed limit

    Energy Technology Data Exchange (ETDEWEB)

    Bödeker, Dietrich [Fakultät für Physik, Universität Bielefeld, 33501 Bielefeld (Germany); Moore, Guy D., E-mail: bodeker@physik.uni-bielefeld.de, E-mail: guymoore@ikp.physik.tu-darmstadt.de [Institut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstraße 2, 64289 Darmstadt (Germany)

    2017-05-01

    In extensions of the Standard Model with extra scalars, the electroweak phase transition can be very strong, and the bubble walls can be highly relativistic. We revisit our previous argument that electroweak bubble walls can 'run away,' that is, achieve extreme ultrarelativistic velocities γ ∼ 10{sup 14}. We show that, when particles cross the bubble wall, they can emit transition radiation. Wall-frame soft processes, though suppressed by a power of the coupling α, have a significance enhanced by the γ-factor of the wall, limiting wall velocities to γ ∼ 1/α. Though the bubble walls can move at almost the speed of light, they carry an infinitesimal share of the plasma's energy.

  15. The effects of baffles and gas superficial velocity on a bubble fluidized bed reactor's applications

    International Nuclear Information System (INIS)

    Ghorbanpour, A.; Ghannadi Maragheh, M.; Mallah, M. H.

    2008-01-01

    Baffles are used for decreasing bubbles diameter in order to increase the conversion rate along the bubbling fluidized bed reactors. The appearance of this phenomenon is due to bursting of the bubbles during the pass of bubbles from baffles. In this work, a computerized modeling and simulation have been performed in order to obtain a fundamental knowledge of the influence of the baffles on the bubble diameter and the specific mass transfer area. The height of the bed is 5 meters and its diameter is 0.3 meter. Baffles are located at 1 and 2 meters from the bottom of the bed. A two phase model together with a comprehensive fluid dynamical description of bubbling fluidized is presented. The effects of baffles and gas superficial velocity on the operating behavior of fluidized bed reactors are considered. The results are compared to the previously reported documents, and the experiments which have been carried out. MATLAB software is used in this simulation

  16. Evolutionary thinking in microeconomic models: prestige bias and market bubbles.

    Directory of Open Access Journals (Sweden)

    Adrian Viliami Bell

    Full Text Available Evolutionary models broadly support a number of social learning strategies likely important in economic behavior. Using a simple model of price dynamics, I show how prestige bias, or copying of famed (and likely successful individuals, influences price equilibria and investor disposition in a way that exacerbates or creates market bubbles. I discuss how integrating the social learning and demographic forces important in cultural evolution with economic models provides a fruitful line of inquiry into real-world behavior.

  17. Freezing Bubbles

    Science.gov (United States)

    Kingett, Christian; Ahmadi, Farzad; Nath, Saurabh; Boreyko, Jonathan

    2017-11-01

    The two-stage freezing process of a liquid droplet on a substrate is well known; however, how bubbles freeze has not yet been studied. We first deposited bubbles on a silicon substrate that was chilled at temperatures ranging from -10 °C to -40 °C, while the air was at room temperature. We observed that the freeze front moved very slowly up the bubble, and in some cases, even came to a complete halt at a critical height. This slow freezing front propagation can be explained by the low thermal conductivity of the thin soap film, and can be observed more clearly when the bubble size or the surface temperature is increased. This delayed freezing allows the frozen portion of the bubble to cool the air within the bubble while the top part is still liquid, which induces a vapor pressure mismatch that either collapses the top or causes the top to pop. In cases where the freeze front reaches the top of the bubble, a portion of the top may melt and slowly refreeze; this can happen more than just once for a single bubble. We also investigated freezing bubbles inside of a freezer where the air was held at -20 °C. In this case, the bubbles freeze quickly and the ice grows radially from nucleation sites instead of perpendicular to the surface, which provides a clear contrast with the conduction limited room temperature bubbles.

  18. Expansion of a vapor bubble and aerosols transfer

    International Nuclear Information System (INIS)

    Breton, J.P.; Lapicore, A.; Porrachia, A.; Natta, M.; Amblard, M.; Berthoud, G.

    1979-08-01

    Experimental results on the expansion and collapse of two phase vapor bubble, and on the aerosols transport outside the tank are presented. Two facilities using small source of hot water (2 cm 3 ) or bigger ones (1000 cm 3 ) were used and are described. Two models are developped to analyze the results on the bubble. They show the heat and mass transfer from the bubble to the surroundings and the following reduction in the mechanical energy delivered by the bubble, and the decrease in this reduction due to noncondensables and to scale effect. The models developed or the aerosol transfer show that most particles are likely transported from the bubble to the cover gas

  19. Integral bubble and jet models with pressure forces

    Science.gov (United States)

    Vulfson, A. N.; Nikolaev, P. V.

    2017-07-01

    Modifications of integral bubble and jet models including the pressure force are proposed. Exact solutions are found for the modified model of a stationary convective jet from a point source of buoyancy and momentum. The exact solutions are compared against analytical solutions of the integral models for a stationary jet that are based on the approximation of the vertical boundary layer. It is found that the modified integral models of convective jets retain the power-law dependences on the altitude for the vertical velocity and buoyancy obtained in classical models. For a buoyant jet in a neutrally stratified atmosphere, the inclusion of the pressure force increases the amplitude of buoyancy and decreases the amplitude of vertical velocity. The total amplitude change is about 10%. It is shown that in this model there is a dynamic invariant expressing the law of a uniform distribution of the potential and kinetic energy along the jet axis. For a spontaneous jet rising in an unstably stratified atmosphere, the inclusion of the pressure force retains the amplitude of buoyancy and increases the amplitude of vertical velocity by about 15%. It is shown that in the model of a spontaneous jet there is a dynamic invariant expressing the law of a uniform distribution of the available potential and kinetic energy along the jet axis. The results are of interest for the problems of anthropogenic pollution diffusion in the air and water environments and the formulation of models for statistical and stochastic ensembles of thermals in a mass-flux parameterization of turbulent moments.

  20. Study of the Dynamics of a Condensing Bubble Using Lattice Boltzmann Method

    Directory of Open Access Journals (Sweden)

    Shahnawaz Ahmed

    2015-06-01

    Full Text Available Mesoscopic lattice Boltzmann method (LBM is used to discretize the governing equations for a steam bubble inside a tube filled with water. The bubbles are kept at higher temperature compared to its boiling point while the liquid is kept subcooled. Heat transfer is allowed to take place between the two phases by virtue of which the bubble will condense. Three separate probability distribution functions are used in LBM to handle continuity, momentum and energy equations separately. The interface is considered to be diffused within a narrow zone and it has been modeled using convective Cahn-Hillard equation. Combined diffused interface-LBM framework is adapted accordingly to handle complex interface separating two phases having high density ratio. Developed model is validated with respect to established correlations for instantaneous equivalent radius of a spherical condensing bubble. Numerical snapshots of the simulation depict that the bubble volume decreases faster for higher degree of superheat. The degrees of superheat are varied over a wide range to note its effect on bubble shape and size. Effect of initial volume of the bubble on the condensation rate is also studied. It has been observed that for a fixed degree of superheat, the condensation rate is not exactly proportional to its volume. Due to the variation in interfacial configuration for different sized bubbles, condensation rate changes drastically. Influence of gravity on the rate of condensation is also studied using the developed methodology.

  1. Science Bubbles

    DEFF Research Database (Denmark)

    Hendricks, Vincent Fella; Pedersen, David Budtz

    2013-01-01

    Much like the trade and trait sof bubbles in financial markets,similar bubbles appear on the science market. When economic bubbles burst, the drop in prices causes the crash of unsustainable investments leading to an investor confidence crisis possibly followed by a financial panic. But when...... bubbles appear in science, truth and reliability are the first victims. This paper explores how fashions in research funding and research management may turn science into something like a bubble economy....

  2. Calculation of vapour bubble growth on the lower generatrix of horizontal tubes

    International Nuclear Information System (INIS)

    Chajka, V.D.

    1987-01-01

    The known models of vapour bubble growth are compared with experimental data. Cinematographic study of vapour formation during water boiling was carried out with elements of horizontal tubes of copper 10, 16, 24, 34 and 70 mm in diameter under the pressure of 100 kPa and specific thermal loadings of 20 and 40 kW/m 2 . According to the experimental data the main volume of vapour phase is occupied by vapour bubbles from the lower part of the horizontal tube. Five stages of vapour bubble growth on the lower generatrix of the horizontal tube: nucleation, growth to the point of breaking off from nucleate centre, the breaking off from the nucleate centre, the tube surface flowing around during floating up, the breaking off from the tube surface, were singled out. The shape of vapour volume varied during the whole period of the bubble growth and it was mainly determined by the horizontal tube diameter. The change of vapour bubble radius in time is the function of the horizontal tube diameter. Comparison of the experimental data with the known models of vapour bubble growth has shown, that every stage of vapour bubble growth on the lower generatrix of the tube is determined by the complex of thermal and hydrodynamic conditions, the effect of which depends on the horizontal tube diameter

  3. Modelling of bubble-mediated gas transfer: Fundamental principles and a laboratory test

    NARCIS (Netherlands)

    Woolf, D.K.; Leifer, I.S.; Nightingale, P.D.; Rhee, T.S.; Bowyer, P.; Caulliez, G.; Leeuw, G. de; Larsen, S.E.; Liddicoat, M.; Baker, J.; Andreae, M.O.

    2007-01-01

    The air-water exchange of gases can be substantially enhanced by wave breaking and specifically by bubble-mediated transfer. A feature of bubble-mediated transfer is the additional pressure on bubbles resulting from the hydrostatic forces on a submerged bubble and from surface tension and curvature.

  4. A mechanical analysis of metallic tritide aging by helium bubble growth

    Energy Technology Data Exchange (ETDEWEB)

    Montheillet, F. [Ecole Nationale Superieure des Mines (SMS), CNRS UMR 5146 (PECM), 158 cours Fauriel, 42023 Saint-Etienne Cedex 2 (France)], E-mail: montheil@emse.fr; Delaplanche, D.; Fabre, A.; Munier, E.; Thiebaut, S. [Commissariat a l' Energie Atomique de Valduc, 21120 Is-sur-Tille (France)

    2008-10-25

    A simple mechanical model is proposed for the aging of a metallic tritide. The material is assumed to be elastic-power law viscoplastic. Part of the helium atoms generated by tritium decay form spherical bubbles that weaken the elastic moduli of the overall material. By contrast, others can be stored in solid solution in the matrix and are likely to increase the moduli. Two variants of the model are compared, assuming either instantaneous or finite rate diffusion of helium. They predict globally similar evolutions of the gas pressure inside the bubbles, the geometrical parameters (bubble radius, overall swelling), as well as the matrix and overall elastic moduli. The results are in good agreement with atomistic calculations of the pressure evolution. Furthermore, recent experimental measurements of the Young modulus changes during aging are better reproduced when He diffusion rate is finite, thus supporting the second variant of the model.

  5. A mechanical analysis of metallic tritide aging by helium bubble growth

    International Nuclear Information System (INIS)

    Montheillet, F.; Delaplanche, D.; Fabre, A.; Munier, E.; Thiebaut, S.

    2008-01-01

    A simple mechanical model is proposed for the aging of a metallic tritide. The material is assumed to be elastic-power law viscoplastic. Part of the helium atoms generated by tritium decay form spherical bubbles that weaken the elastic moduli of the overall material. By contrast, others can be stored in solid solution in the matrix and are likely to increase the moduli. Two variants of the model are compared, assuming either instantaneous or finite rate diffusion of helium. They predict globally similar evolutions of the gas pressure inside the bubbles, the geometrical parameters (bubble radius, overall swelling), as well as the matrix and overall elastic moduli. The results are in good agreement with atomistic calculations of the pressure evolution. Furthermore, recent experimental measurements of the Young modulus changes during aging are better reproduced when He diffusion rate is finite, thus supporting the second variant of the model

  6. Temporal and spatial expansion of a multidimensional model for electron acceleration in the bubble regime

    CERN Document Server

    Thomas, Johannes

    2014-01-01

    An extended analytical model for particle dynamics in fields of a highly-nonlinear plasma wake field (the bubble or blow out regime) is derived. A recently proposed piecewise model (Kostyukov et al., New J. Phys., {\\bf 12}, 045009 (2010)) is generalized to include a time dependent bubble radius and full field solution in the acceleration direction. Incorporation of the cavity dynamics in the model is required to simulate the particle trapping properly. On the other hand, it is shown that the previously reported piecewise model does not reproduce the formation of a mono energetic peak in the particle spectrum. The mono energetic electron beams are recovered only when the full longitudinal field gradient is included in the model.

  7. Local measurements in turbulent bubbly flows

    International Nuclear Information System (INIS)

    Suzanne, C.; Ellingsen, K.; Risso, F.; Roig, V.

    1998-01-01

    Local measurements methods in bubbly flows are discussed. Concerning liquid velocity measurement, problems linked to HFA and LDA are first analysed. Then simultaneously recorded velocity signals obtained by both anemometers are compared. New signal processing are developed for the two techniques. Bubble sizes and velocities measurements methods using intrusive double optical sensor probe are presented. Plane bubbly mixing layer has been investigated. Local measurements using the described methods are presented as examples. (author)

  8. Direct numerical simulation of circular-cap bubbles in low viscous liquids using counter diffusion lattice Boltzmann method

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Seungyeob, E-mail: syryu@kaeri.re.kr [Korea Atomic Energy Research Institute (KAERI), 1045 Daeduk-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Kim, Youngin; Yoon, Juhyeon [Korea Atomic Energy Research Institute (KAERI), 1045 Daeduk-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Ko, Sungho, E-mail: sunghoko@cnu.ac.kr [Department of Mechanical Design Engineering, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon 305-764 (Korea, Republic of)

    2014-01-15

    Highlights: • We directly simulate circular-cap bubbles in low viscous liquids. • The counter diffusion multiphase lattice Boltzmann method is proposed. • The present method is validated through benchmark tests and experimental results. • The high-Reynolds-number bubbles can be simulated without any turbulence models. • The present method is feasible for the direct simulation of bubbly flows. -- Abstract: The counter diffusion lattice Boltzmann method (LBM) is used to directly simulate rising circular-cap bubbles in low viscous liquids. A counter diffusion model for single phase flows has been extended to multiphase flows, and the implicit formulation is converted into an explicit one for easy calculation. Bubbles at high Reynolds numbers ranging from O(10{sup 2}) to O(10{sup 4}) are simulated successfully without any turbulence models, which cannot be done for the existing LBM versions. The characteristics of the circular-cap bubbles are studied for a wide range of Morton numbers and compared with the previous literature. Calculated results agree with the theoretical and experimental data. Consequently, the wake phenomena of circular-cap bubbles and bubble induced turbulence are presented.

  9. Neutrino Interactions in a Hybrid Emulsion - Bubble Chamber Detector

    Energy Technology Data Exchange (ETDEWEB)

    Rosenbladt, Robert Ludwig [Univ. of Washington, Seattle, WA (United States)

    1981-05-01

    target consisting of 22 - 1 liter stacks of cryogenically sensitive nuclear emulsion has been exposed inside the 15 Foot Bubble Chamber to the Fermilab wide-band neutrino beam. A hybrid system of emulsion plus bubble chamber was used to find and analyze neutrino interactions with nuclei in the emulsion target. The average multiplicity of charged minimum ionization tracks of the 45 events was found to be 6.8 ± 0.5. The normalized multiplicity with respect to neutrino - proton interactions at the same average hadronic center of mass energy was found to be 1.3 ± 0.2. When compared to neutrino - proton interactions, the rapidity distribution shows a clear signal for intranuclear cascading in the target fragmentation region. Measured rapidity and multiplicity distributions are compared with predictions of the Growth of Longitudinal Distances Model of Nikolaev and the Coherent Tube Model.

  10. Formation of soap bubbles by gas jet

    OpenAIRE

    Zhou, M. L.; Li, M.; Chen, Z. Y.; Han, J. F.; Liu, D.

    2017-01-01

    Soap bubbles can be easily generated by varies methods, while their formation process is complicated and still worth study. A model about the bubble formation process was proposed in Phys. Rev. Lett. 116, 077801 recently, and it was reported that the bubbles were formed when the gas blowing velocity was above one threshold. However, after repeating these experiments, we found the bubbles could be generated in two velocities ranges which corresponded to laminar and turbulent gas jet respective...

  11. Comparative analysis of top-lit bubble column and gas-lift bioreactors for microalgae-sourced biodiesel production

    International Nuclear Information System (INIS)

    Seyed Hosseini, Nekoo; Shang, Helen; Ross, Gregory M.; Scott, John Ashley

    2016-01-01

    Highlights: • Top-lit gas-lift and bubble columns were studied as deep algal cultivation tank. • A theoretical energy requirement analysis and a hydrodynamic model were developed. • Areal productivities of both bioreactors were notably higher than traditional raceways. • A gas-lift reactor sparged with 6% carbon dioxide achieved the highest lipid production. • Hydrodynamic and light stresses increased the lipid content suitable for biodiesel. - Abstract: The development of top-lit one-meter deep bioreactors operated as either a gas-lift or bubble column system using air and carbon dioxide enriched air was studied. The goal was high productivity cultivation of algae with elevated lipid levels suitable for conversion into biodiesel. A theoretical energy requirement analysis and a hydrodynamic model were developed to predict liquid circulation velocities in the gas-lift bioreactor, which agreed well with experimental measurements. The influence of operational parameters such as design of bioreactor, gas flow rates and carbon dioxide concentration on the growth and lipid volumetric production of Scenedesmus dimorphus was evaluated using factorial design. While biomass productivity was 12% higher in the bubble column bioreactor (68.2 g_d_w m"−"2 day"−"1), maximum lipid volumetric production (0.19 g_L_i_p_i_d L"−"1) was found in a gas-lift bioreactor sparged with 6% carbon dioxide due to hydrodynamic and light stresses.

  12. Real-Time Measurements and Modelling on Dynamic Behaviour of SonoVue Bubbles Based on Light Scattering Technology

    International Nuclear Information System (INIS)

    Juan, Tu; Rongjue, Wei; Guan, J. F.; Matula, T. J.; Crum, L. A.

    2008-01-01

    The dynamic behaviour of SonoVue microbubbles, a new generation ultrasound contrast agent, is investigated in real time with light scattering method. Highly diluted SonoVue microbubbles are injected into a diluted gel made of xanthan gum and water. The responses of individual SonoVue bubbles to driven ultrasound pulses are measured. Both linear and nonlinear bubble oscillations are observed and the results suggest that SonoVue microbubbles can generate strong nonlinear responses. By fitting the experimental data of individual bubble responses with Sarkar's model, the shell coating parameter of the bubbles and dilatational viscosity is estimated to be 7.0 nm·s·Pa

  13. Predictions of bubbly flows in vertical pipes using two-fluid models in CFDS-FLOW3D code

    International Nuclear Information System (INIS)

    Banas, A.O.; Carver, M.B.; Unrau, D.

    1995-01-01

    This paper reports the results of a preliminary study exploring the performance of two sets of two-fluid closure relationships applied to the simulation of turbulent air-water bubbly upflows through vertical pipes. Predictions obtained with the default CFDS-FLOW3D model for dispersed flows were compared with the predictions of a new model (based on the work of Lee), and with the experimental data of Liu. The new model, implemented in the CFDS-FLOW3D code, included additional source terms in the open-quotes standardclose quotes κ-ε transport equations for the liquid phase, as well as modified model coefficients and wall functions. All simulations were carried out in a 2-D axisymmetric format, collapsing the general multifluid framework of CFDS-FLOW3D to the two-fluid (air-water) case. The newly implemented model consistently improved predictions of radial-velocity profiles of both phases, but failed to accurately reproduce the experimental phase-distribution data. This shortcoming was traced to the neglect of anisotropic effects in the modelling of liquid-phase turbulence. In this sense, the present investigation should be considered as the first step toward the ultimate goal of developing a theoretically sound and universal CFD-type two-fluid model for bubbly flows in channels

  14. Predictions of bubbly flows in vertical pipes using two-fluid models in CFDS-FLOW3D code

    Energy Technology Data Exchange (ETDEWEB)

    Banas, A.O.; Carver, M.B. [Chalk River Laboratories (Canada); Unrau, D. [Univ. of Toronto (Canada)

    1995-09-01

    This paper reports the results of a preliminary study exploring the performance of two sets of two-fluid closure relationships applied to the simulation of turbulent air-water bubbly upflows through vertical pipes. Predictions obtained with the default CFDS-FLOW3D model for dispersed flows were compared with the predictions of a new model (based on the work of Lee), and with the experimental data of Liu. The new model, implemented in the CFDS-FLOW3D code, included additional source terms in the {open_quotes}standard{close_quotes} {kappa}-{epsilon} transport equations for the liquid phase, as well as modified model coefficients and wall functions. All simulations were carried out in a 2-D axisymmetric format, collapsing the general multifluid framework of CFDS-FLOW3D to the two-fluid (air-water) case. The newly implemented model consistently improved predictions of radial-velocity profiles of both phases, but failed to accurately reproduce the experimental phase-distribution data. This shortcoming was traced to the neglect of anisotropic effects in the modelling of liquid-phase turbulence. In this sense, the present investigation should be considered as the first step toward the ultimate goal of developing a theoretically sound and universal CFD-type two-fluid model for bubbly flows in channels.

  15. A study on bubble detachment and the impact of heated surface structure in subcooled nucleate boiling flows

    International Nuclear Information System (INIS)

    Wu Wen; Chen Peipei; Jones, Barclay G.; Newell, Ty A.

    2008-01-01

    This study examines the bubble detachment phenomena under subcooled nucleate boiling conditions, in order to obtain a better understanding of the bubble dynamics on horizontal flat heat exchangers. Refrigerant R134a is chosen as a simulant fluid due to its merits of having smaller surface tension, reduced latent heat, and lower boiling temperature than water. Experiments are run with varying experimental parameters, e.g. pressure, inlet subcooled level, flow rate, etc. Digital images are obtained at frame rates up to 4000 frames/s, showing the characteristics of bubble movements. Bubble departure and bubble lift-off, which are described as bubbles detaching from the original nucleation sites and bubbles detaching from the horizontal heated surface respectively, are both considered and measured. Results are compared against the model proposed by Klausner et al. for the prediction of bubble detachment sizes. While good overall agreement is shown, it is suggested that finite rather than zero bubble contact area should be assumed, which improves the model prediction at the pressure range of 300-500 kPa while playing no significant role at a lower pressure of 150 kPa where the model was originally benchmarked. The impact of heated surface structure is studied whose results provide support to the above assumption

  16. Prediction of adiabatic bubbly flows in TRACE using the interfacial area transport equation

    International Nuclear Information System (INIS)

    Talley, J.; Worosz, T.; Kim, S.; Mahaffy, J.; Bajorek, S.; Tien, K.

    2011-01-01

    The conventional thermal-hydraulic reactor system analysis codes utilize a two-field, two-fluid formulation to model two-phase flows. To close this model, static flow regime transition criteria and algebraic relations are utilized to estimate the interfacial area concentration (a i ). To better reflect the continuous evolution of two-phase flow, an experimental version of TRACE is being developed which implements the interfacial area transport equation (IATE) to replace the flow regime based approach. Dynamic estimation of a i is provided through the use of mechanistic models for bubble coalescence and disintegration. To account for the differences in bubble interactions and drag forces, two-group bubble transport is sought. As such, Group 1 accounts for the transport of spherical and distorted bubbles, while Group 2 accounts for the cap, slug, and churn-turbulent bubbles. Based on this categorization, a two-group IATE applicable to the range of dispersed two-phase flows has been previously developed. Recently, a one-group, one-dimensional, adiabatic IATE has been implemented into the TRACE code with mechanistic models accounting for: (1) bubble breakup due to turbulent impact of an eddy on a bubble, (2) bubble coalescence due to random collision driven by turbulent eddies, and (3) bubble coalescence due to the acceleration of a bubble in the wake region of a preceding bubble. To demonstrate the enhancement of the code's capability using the IATE, experimental data for a i , void fraction, and bubble velocity measured by a multi-sensor conductivity probe are compared to both the IATE and flow regime based predictions. In total, 50 air-water vertical co-current upward and downward bubbly flow conditions in pipes with diameters ranging from 2.54 to 20.32 cm are evaluated. It is found that TRACE, using the conventional flow regime relation, always underestimates a i . Moreover, the axial trend of the a i prediction is always quasi-linear because a i in the

  17. Pulsed electrical discharge in gas bubbles in water

    Science.gov (United States)

    Gershman, Sophia

    compared to the traditional corona or dielectric barrier discharges. These conditions make the experimental evidence presented in this work valuable for the advancement of modeling and the theoretical understanding of the discharge in bubbles in water.

  18. Characteristics of bubble plumes, bubble-plume bubbles and waves from wind-steepened wave breaking

    NARCIS (Netherlands)

    Leifer, I.; Caulliez, G.; Leeuw, G. de

    2007-01-01

    Observations of breaking waves, associated bubble plumes and bubble-plume size distributions were used to explore the coupled evolution of wave-breaking, wave properties and bubble-plume characteristics. Experiments were made in a large, freshwater, wind-wave channel with mechanical wind-steepened

  19. Single DNA denaturation and bubble dynamics

    International Nuclear Information System (INIS)

    Metzler, Ralf; Ambjoernsson, Tobias; Hanke, Andreas; Fogedby, Hans C

    2009-01-01

    While the Watson-Crick double-strand is the thermodynamically stable state of DNA in a wide range of temperature and salt conditions, even at physiological conditions local denaturation bubbles may open up spontaneously due to thermal activation. By raising the ambient temperature, titration, or by external forces in single molecule setups bubbles proliferate until full denaturation of the DNA occurs. Based on the Poland-Scheraga model we investigate both the equilibrium transition of DNA denaturation and the dynamics of the denaturation bubbles with respect to recent single DNA chain experiments for situations below, at, and above the denaturation transition. We also propose a new single molecule setup based on DNA constructs with two bubble zones to measure the bubble coalescence and extract the physical parameters relevant to DNA breathing. Finally we consider the interplay between denaturation bubbles and selectively single-stranded DNA binding proteins.

  20. Effects of Gas Dynamics on Rapidly Collapsing Bubbles

    OpenAIRE

    Bauman, Spenser; Fomitchev-Zamilov, Max

    2013-01-01

    The dynamics of rapidly collapsing bubbles are of great interest due to the high degree of energy focusing that occurs withing the bubble. Molecular dynamics provides a way to model the interior of the bubble and couple the gas dynamics with the equations governing the bubble wall. While much theoretical work has been done to understand how a bubble will respond to an external force, the internal dynamics of the gas system are usually simplified greatly in such treatments. This paper shows ho...

  1. A Nonlinear Super-Exponential Rational Model of Speculative Financial Bubbles

    Science.gov (United States)

    Sornette, D.; Andersen, J. V.

    Keeping a basic tenet of economic theory, rational expectations, we model the nonlinear positive feedback between agents in the stock market as an interplay between nonlinearity and multiplicative noise. The derived hyperbolic stochastic finite-time singularity formula transforms a Gaussian white noise into a rich time series possessing all the stylized facts of empirical prices, as well as accelerated speculative bubbles preceding crashes. We use the formula to invert the two years of price history prior to the recent crash on the Nasdaq (April 2000) and prior to the crash in the Hong Kong market associated with the Asian crisis in early 1994. These complex price dynamics are captured using only one exponent controlling the explosion, the variance and mean of the underlying random walk. This offers a new and powerful detection tool of speculative bubbles and herding behavior.

  2. Dynamic morphology of gas hydrate on a methane bubble in water: Observations and new insights for hydrate film models

    Science.gov (United States)

    Warzinski, Robert P.; Lynn, Ronald; Haljasmaa, Igor; Leifer, Ira; Shaffer, Frank; Anderson, Brian J.; Levine, Jonathan S.

    2014-10-01

    Predicting the fate of subsea hydrocarbon gases escaping into seawater is complicated by potential formation of hydrate on rising bubbles that can enhance their survival in the water column, allowing gas to reach shallower depths and the atmosphere. The precise nature and influence of hydrate coatings on bubble hydrodynamics and dissolution is largely unknown. Here we present high-definition, experimental observations of complex surficial mechanisms governing methane bubble hydrate formation and dissociation during transit of a simulated oceanic water column that reveal a temporal progression of deep-sea controlling mechanisms. Synergistic feedbacks between bubble hydrodynamics, hydrate morphology, and coverage characteristics were discovered. Morphological changes on the bubble surface appear analogous to macroscale, sea ice processes, presenting new mechanistic insights. An inverse linear relationship between hydrate coverage and bubble dissolution rate is indicated. Understanding and incorporating these phenomena into bubble and bubble plume models will be necessary to accurately predict global greenhouse gas budgets for warming ocean scenarios and hydrocarbon transport from anthropogenic or natural deep-sea eruptions.

  3. Pinch-off Scaling Law of Soap Bubbles

    Science.gov (United States)

    Davidson, John; Ryu, Sangjin

    2014-11-01

    Three common interfacial phenomena that occur daily are liquid drops in gas, gas bubbles in liquid and thin-film bubbles. One aspect that has been studied for these phenomena is the formation or pinch-off of the drop/bubble from the liquid/gas threads. In contrast to the formation of liquid drops in gas and gas bubbles in liquid, thin-film bubble pinch-off has not been well documented. Having thin-film interfaces may alter the pinch-off process due to the limiting factor of the film thickness. We observed the pinch-off of one common thin-film bubble, soap bubbles, in order to characterize its pinch-off behavior. We achieved this by constructing an experimental model replicating the process of a human producing soap bubbles. Using high-speed videography and image processing, we determined that the minimal neck radius scaled with the time left till pinch-off, and that the scaling law exponent was 2/3, similar to that of liquid drops in gas.

  4. On the mobility of fission-gas bubbles

    International Nuclear Information System (INIS)

    Nichols, F.A.; Ronchi, C.

    1986-01-01

    The importance of bubble migration in fuel swelling and fission-product release remains a controversial topic in spite of a great deal of research. For steady state analyses some authors ignore bubble motion totally, whereas others use mobilities (based on out-of-pile measurements) which are far below the theoretical diffusion-control predictions. Under transient conditions some continue to use zero or low bubble mobilities, whereas others invoke higher mobilities. Experimental information on mobility of bubbles under irradiation conditions is very limited, but supports the theoretical values for bubble sizes above 1 μm. The authors discuss here some interesting new results which may provide direct evidence for in-pile mobilities comparable with surface-diffusion control predictions for much smaller bubbles (<20nm), where out-of-pile studies indicate greatly reduced mobilities. A brief summary is presented of information available for bubble mobilities, both in- and out-of-pile

  5. DEVELOPMENT OF A COMPUTATIONAL MULTIPHASE FLOW MODEL FOR FISCHER TROPSCH SYNTHESIS IN A SLURRY BUBBLE COLUMN REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    Donna Post Guillen; Tami Grimmett; Anastasia M. Gribik; Steven P. Antal

    2011-12-01

    The Hybrid Energy Systems Testing (HYTEST) Laboratory at the Idaho National Laboratory was established to develop and test hybrid energy systems with the principal objective of reducing dependence on imported fossil fuels. A central component of the HYTEST is the slurry bubble column reactor (SBCR) in which the gas-to-liquid reactions are performed to synthesize transportation fuels using the Fischer Tropsch (FT) process. These SBCRs operate in the churn-turbulent flow regime, which is characterized by complex hydrodynamics, coupled with reacting flow chemistry and heat transfer. Our team is developing a research tool to aid in understanding the physicochemical processes occurring in the SBCR. A robust methodology to couple reaction kinetics and mass transfer into a four-field model (consisting of the bulk liquid, small bubbles, large bubbles and solid catalyst particles) consisting of thirteen species, which are CO reactant, H2 reactant, hydrocarbon product, and H2O product in small bubbles, large bubbles, and the bulk fluid plus catalyst is outlined. Mechanistic submodels for interfacial momentum transfer in the churn-turbulent flow regime are incorporated, along with bubble breakup/coalescence and two-phase turbulence submodels. The absorption and kinetic models, specifically changes in species concentrations, have been incorporated into the mass continuity equation. The reaction rate is based on the macrokinetic model for a cobalt catalyst developed by Yates and Satterfield. The model includes heat generation produced by the exothermic chemical reaction, as well as heat removal from a constant temperature heat exchanger. A property method approach is employed to incorporate vapor-liquid equilibrium (VLE) in a robust manner. Physical and thermodynamic properties as functions of changes in both pressure and temperature are obtained from VLE calculations performed external to the CMFD solver. The novelty of this approach is in its simplicity, as well as its

  6. Bubbles in the self-accelerating universe

    International Nuclear Information System (INIS)

    Izumi, Keisuke; Tanaka, Takahiro; Koyama, Kazuya; Pujolas, Oriol

    2007-01-01

    We revisit the issue of the stability in the Dvali-Gabadadze-Porrati model by considering the nucleation of bubbles of the conventional branch within the self-accelerating branch. We construct an instanton describing this process in the thin wall approximation. On one side of the bubble wall, the bulk consists of the exterior of the brane, while on the other side it is the interior. The solution requires the presence of a 2-brane (the bubble wall) which induces the transition. However, we show that this instanton cannot be realized as the thin wall limit of any smooth solution. Once the bubble thickness is resolved, the equations of motion do not allow O(4) symmetric solutions joining the two branches. We conclude that the thin wall instanton is unphysical, and that one cannot have processes connecting the two branches, unless negative tension bubble walls are introduced. This also suggests that the self-accelerating branch does not decay into the conventional branch nucleating bubbles. We comment on other kinds of bubbles that could interpolate between the two branches

  7. Interfacial area concentration in gas–liquid bubbly to churn-turbulent flow regime

    International Nuclear Information System (INIS)

    Ozar, B.; Dixit, A.; Chen, S.W.; Hibiki, T.; Ishii, M.

    2012-01-01

    Highlights: ► A systematic approach to predict the interfacial area concentration is presented. ► Two group approach for categorizing bubbles is used. ► Prediction of Group-1 bubble size and void fraction are key elements of this work. ► The proposed approach compares well with selected databases. - Abstract: There are very few established correlations to predict the interfacial area concentration beyond the bubbly flow regime in cap-slug and churn-turbulent flow regimes. Present study shows a systematic approach to estimate the interfacial area concentration in bubbly, cap-slug and churn-turbulent flow regimes. Ishii and Mishima’s (1980) formulation and the two group approach for categorizing bubbles (Group-1: spherical or distorted bubble, Group-2: cap bubble) are used to estimate the interfacial area concentration. The key parameters in this framework are the estimation of Group-1 bubble size and the amount of void in the liquid slug, which is a function of Group-1 void fraction. Hibiki and Ishii’s (2002) correlation is utilized to predict the size of the Group-1 bubbles. A correlation is developed to estimate the Group-1 void fraction. The developed model for the estimation of interfacial area concentration is compared with the three existing datasets. These are data for air–water flow taken in annular geometry and round tube and also for air–NaOH solution taken in round tube. The estimation accuracies for these data sets are ±36.4%, ±26.5% and ±37.4%, respectively. These datasets cover a wide range of flow regimes and different physical properties.

  8. Interfacial structures of confined air-water two-phase bubbly flow

    International Nuclear Information System (INIS)

    Kim, S.; Ishii, M.; Wu, Q.; McCreary, D.; Beus, S.G.

    2000-01-01

    The interfacial structure of the two-phase flows is of great importance in view of theoretical modeling and practical applications. In the present study, the focus is made on obtaining detailed local two-phase parameters in the air-water bubbly flow in a rectangular vertical duct using the double-sensor conductivity probe. The characteristic wall-peak is observed in the profiles of the interracial area concentration and the void fraction. The development of the interfacial area concentration along the axial direction of the flow is studied in view of the interfacial area transport and bubble interactions. The experimental data is compared with the drift flux model with C 0 = 1.35

  9. 3D unified CFD to modeling of bubbles phenomena

    International Nuclear Information System (INIS)

    Vladimir V Chudanov; Anna E Aksenova; Valerii A Pervichko

    2005-01-01

    Full text of publication follows: During of the last ten years the developed numerical methods and algorithms for solving of heat and mass transfer problems in compressible/incompressible fluids were successfully tested at simulation of interaction of two immiscible liquids. Now these computing tools are extended on a case of two-phase flows, such as a liquids-gas system as follows: outside of bubbles the non-stationary incompressible Navier-Stokes equations in the primitive variables coupled with the heat transfer equation are used; inside of bubble a compressible medium model with low Mach limit is applied. To observe of an interface of liquid-gas system we use the modified level set method and three-dimensional advective schemes of TVD-type with small scheme diffusion with use of sub-grid simulation. These schemes with small diffusion were already applied by us under using of sub-grid simulation for interface transfer in case of two non-mixing liquids. For bubble phenomena a numerical technique based on the developed algorithms with a small scheme diffusion, for which the discrete approximations are constructed using the finite-volume methods and fully staggered grids is adapted. Testing of the developed approach is carried out on the set of test problems and a good agreement is obtained between numerical predictions and experimental data. The numerical technique was successfully utilized for numerical support of 3D experiment financed by Nuclear Energy Agency at the Organization economic cooperation and development within the framework of MASKA Project, where computational fluid dynamics of two non-mixing fluids such as corium and steel was investigated. In this paper there is application of developed approach for simulation of bubble flows, in particular, for study of coalescence of two drops. The developed technique has a high degree of efficiency and allows on a personal computer (3 GHz and 2 Gbytes RAM) to carry out CFD calculations on a grid with 10 7

  10. Hydrodynamics in a swarm of rising bubbles

    International Nuclear Information System (INIS)

    Riboux, G.

    2007-04-01

    In many applications, bubbles are used to agitate a liquid in order to enhance mixing and transfer. This work is devoted to the study of the hydrodynamics in a stable bubble column. Experimentally, we have determined the properties of the velocity fluctuations inside and behind a homogeneous swarm of rising bubbles for different bubble sizes and gas volume fractions α: self-similarity in α 0,4 , spectrum in k -3 and integral length scale controlled by buoyancy. Numerically, we have reproduced these properties by means of large-scale simulations, the bubbles being modeled by volume-forces. This confirms that the dynamics is controlled by wake interactions. (author)

  11. Reconstruction of elongated bubbles fusing the information from multiple optical probes through a Bayesian inference technique

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Shubhankar; Das, Prasanta Kr., E-mail: pkd@mech.iitkgp.ernet.in [Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India); Roy Chaudhuri, Partha [Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India)

    2016-07-15

    In this communication, a novel optical technique has been proposed for the reconstruction of the shape of a Taylor bubble using measurements from multiple arrays of optical sensors. The deviation of an optical beam passing through the bubble depends on the contour of bubble surface. A theoretical model of the deviation of a beam during the traverse of a Taylor bubble through it has been developed. Using this model and the time history of the deviation captured by the sensor array, the bubble shape has been reconstructed. The reconstruction has been performed using an inverse algorithm based on Bayesian inference technique and Markov chain Monte Carlo sampling algorithm. The reconstructed nose shape has been compared with the true shape, extracted through image processing of high speed images. Finally, an error analysis has been performed to pinpoint the sources of the errors.

  12. Study of CO2 bubble dynamics in seawater from QICS field Experiment

    Science.gov (United States)

    Chen, B.; Dewar, M.; Sellami, N.; Stahl, H.; Blackford, J.

    2013-12-01

    One of the concerns of employing CCS at engineering scale is the risk of leakage of storage CO2 on the environment and especially on the marine life. QICS, a scientific research project was launched with an aim to study the effects of a potential leak from a CCS system on the UK marine environment [1]. The project involves the injection of CO2 from a shore-based lab into shallow marine sediments. One of the main objectives of the project is to generate experimental data to be compared with the developed physical models. The results of the models are vital for the biogeochemical and ecological models in order to predict the impact of a CO2 leak in a variety of situations. For the evaluation of the fate of the CO2 bubbles into the surrounding seawater, the physical model requires two key parameters to be used as input which are: (i) a correlation of the drag coefficient as function of the CO2 bubble Reynolds number and (ii) the CO2 bubble size distribution. By precisely measuring the CO2 bubble size and rising speed, these two parameters can be established. For this purpose, the dynamical characteristics of the rising CO2 bubbles in Scottish seawater were investigated experimentally within the QICS project. Observations of the CO2 bubbles plume rising freely in the in seawater column were captured by video survey using a ruler positioned at the leakage pockmark as dimension reference. This observation made it possible, for the first time, to discuss the dynamics of the CO2 bubbles released in seawater. [1] QICS, QICS: Quantifying and Monitoring Potential Ecosystem Impacts of Geological Carbon Storage. (Accessed 15.07.13), http://www.bgs.ac.uk/qics/home.html

  13. Computational Fluid Dynamic Simulation of Single Bubble Growth under High-Pressure Pool Boiling Conditions

    Directory of Open Access Journals (Sweden)

    Janani Murallidharan

    2016-08-01

    Full Text Available Component-scale modeling of boiling is predominantly based on the Eulerian–Eulerian two-fluid approach. Within this framework, wall boiling is accounted for via the Rensselaer Polytechnic Institute (RPI model and, within this model, the bubble is characterized using three main parameters: departure diameter (D, nucleation site density (N, and departure frequency (f. Typically, the magnitudes of these three parameters are obtained from empirical correlations. However, in recent years, efforts have been directed toward mechanistic modeling of the boiling process. Of the three parameters mentioned above, the departure diameter (D is least affected by the intrinsic uncertainties of the nucleate boiling process. This feature, along with its prominence within the RPI boiling model, has made it the primary candidate for mechanistic modeling ventures. Mechanistic modeling of D is mostly carried out through solving of force balance equations on the bubble. Forces incorporated in these equations are formulated as functions of the radius of the bubble and have been developed for, and applied to, low-pressure conditions only. Conversely, for high-pressure conditions, no mechanistic information is available regarding the growth rates of bubbles and the forces acting on them. In this study, we use direct numerical simulation coupled with an interface tracking method to simulate bubble growth under high (up to 45 bar pressure, to obtain the kind of mechanistic information required for an RPI-type approach. In this study, we compare the resulting bubble growth rate curves with predictions made with existing experimental data.

  14. Bernoulli Suction Effect on Soap Bubble Blowing?

    Science.gov (United States)

    Davidson, John; Ryu, Sangjin

    2015-11-01

    As a model system for thin-film bubble with two gas-liquid interfaces, we experimentally investigated the pinch-off of soap bubble blowing. Using the lab-built bubble blower and high-speed videography, we have found that the scaling law exponent of soap bubble pinch-off is 2/3, which is similar to that of soap film bridge. Because air flowed through the decreasing neck of soap film tube, we studied possible Bernoulli suction effect on soap bubble pinch-off by evaluating the Reynolds number of airflow. Image processing was utilized to calculate approximate volume of growing soap film tube and the volume flow rate of the airflow, and the Reynolds number was estimated to be 800-3200. This result suggests that soap bubbling may involve the Bernoulli suction effect.

  15. DEVELOPMENT OF A COMPUTATIONAL MULTIPHASE FLOW MODEL FOR FISCHER TROPSCH SYNTHESIS IN A SLURRY BUBBLE COLUMN REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    Donna Post Guillen; Tami Grimmett; Anastasia M. Gribik; Steven P. Antal

    2010-09-01

    The Hybrid Energy Systems Testing (HYTEST) Laboratory is being established at the Idaho National Laboratory to develop and test hybrid energy systems with the principal objective to safeguard U.S. Energy Security by reducing dependence on foreign petroleum. A central component of the HYTEST is the slurry bubble column reactor (SBCR) in which the gas-to-liquid reactions will be performed to synthesize transportation fuels using the Fischer Tropsch (FT) process. SBCRs are cylindrical vessels in which gaseous reactants (for example, synthesis gas or syngas) is sparged into a slurry of liquid reaction products and finely dispersed catalyst particles. The catalyst particles are suspended in the slurry by the rising gas bubbles and serve to promote the chemical reaction that converts syngas to a spectrum of longer chain hydrocarbon products, which can be upgraded to gasoline, diesel or jet fuel. These SBCRs operate in the churn-turbulent flow regime which is characterized by complex hydrodynamics, coupled with reacting flow chemistry and heat transfer, that effect reactor performance. The purpose of this work is to develop a computational multiphase fluid dynamic (CMFD) model to aid in understanding the physico-chemical processes occurring in the SBCR. Our team is developing a robust methodology to couple reaction kinetics and mass transfer into a four-field model (consisting of the bulk liquid, small bubbles, large bubbles and solid catalyst particles) that includes twelve species: (1) CO reactant, (2) H2 reactant, (3) hydrocarbon product, and (4) H2O product in small bubbles, large bubbles, and the bulk fluid. Properties of the hydrocarbon product were specified by vapor liquid equilibrium calculations. The absorption and kinetic models, specifically changes in species concentrations, have been incorporated into the mass continuity equation. The reaction rate is determined based on the macrokinetic model for a cobalt catalyst developed by Yates and Satterfield [1]. The

  16. Vapor-Gas Bubble Evolution and Growth in Extremely Viscous Fluids Under Vacuum

    Science.gov (United States)

    Kizito, John; Balasubramaniam, R.; Nahra, Henry; Agui, Juan; Truong, Duc

    2008-01-01

    Formation of vapor and gas bubbles and voids is normal and expected in flow processes involving extremely viscous fluids in normal gravity. Practical examples of extremely viscous fluids are epoxy-like filler materials before the epoxy fluids cure to their permanent form to create a mechanical bond between two substrates. When these fluids flow with a free liquid interface exposed to vacuum, rapid bubble expansion process may ensue. Bubble expansion might compromise the mechanical bond strength. The potential sources for the origin of the gases might be incomplete out-gassing process prior to filler application; regasification due to seal leakage in the filler applicator; and/or volatiles evolved from cure reaction products formed in the hardening process. We embarked on a study that involved conducting laboratory experiments with imaging diagnostics in order to deduce the seriousness of bubbling caused by entrained air and volatile fluids under space vacuum and low gravity environment. We used clear fluids with the similar physical properties as the epoxy-like filler material to mimic the dynamics of bubbles. Another aspect of the present study was to determine the likelihood of bubbling resulting from dissolved gases nucleating from solution. These experimental studies of the bubble expansion are compared with predictions using a modified Rayleigh- Plesset equation, which models the bubble expansion.

  17. The Behavior of Micro Bubbles and Bubble Cluster in Ultrasound Field

    Science.gov (United States)

    Yoshizawa, Shin; Matsumoto, Yoichiro

    2001-11-01

    Ultrasound is widely applied in the clinical field today, such as ultrasound imaging, Extracorporeal Shock Wave Lithotripsy (ESWL) and so on. It is essential to take a real understanding of the dynamics of micro bubbles and bubble cluster in these applications. Thus we numerically simulate them in ultrasound field in this paper. In the numerical simulation, we consider the thermal behavior inside the bubble and the pressure wave phenomena in the bubble cluster in detail, namely, the evaporation and condensation of liquid at the bubble wall, heat transfer through the bubble wall, diffusion of non-condensable gas inside the bubble and the compressibility of liquid. Initial cluster radius is to 0.5[mm], bubble radius is 1.7[mm], void fraction is 0.1[ambient pressure is 101.3[kPa], temperature is 293[K] and the amplitude of ultrasound is 50[kPa]. We simulate bubble cluster in ultrasound field at various frequencies and we obtain the following conclusions. 1) The maximum pressure inside bubble cluster reaches 5[MPa] and this is much higher than that of a bubble. 2) Bubble cluster behaves like a rigid body acoustically when the frequency of ultrasound is much higher than its natural frequency.

  18. Bubble nuclei in relativistic mean field theory

    International Nuclear Information System (INIS)

    Shukla, A.; Aberg, S.; Patra, S.K.

    2011-01-01

    Bubble nuclei are characterized by a depletion of their central density, i.e. the formation of the proton or neutron void and subsequently forming proton or neutron bubble nuclei. Possibility of the formation of bubble nuclei has been explored through different nuclear models and in different mass regions. Advancements in experimental nuclear physics has led our experimental access to many new shapes and structures, which were inaccessible hitherto. In the present paper, the possibility of observing nuclear bubble in oxygen isotopes, particularly for 22 O has been studied

  19. Fama on Bubbles

    DEFF Research Database (Denmark)

    Engsted, Tom

    2016-01-01

    While Eugene Fama has repeatedly expressed his discontent with the notion of an “irrational bubble,” he has never publicly expressed his opinion on “rational bubbles.” On empirical grounds Fama rejects bubbles by referring to the lack of reliable evidence that price declines are predictable....... However, this argument cannot be used to rule out rational bubbles because such bubbles do not necessarily imply return predictability, and return predictability of the kind documented by Fama does not rule out rational bubbles. On data samples that include the 1990s, there is evidence of an explosive...... component in stock market valuation ratios, consistent with a rational bubble....

  20. Single DNA denaturation and bubble dynamics

    DEFF Research Database (Denmark)

    Metzler, Ralf; Ambjörnsson, Tobias; Hanke, Andreas

    2009-01-01

    While the Watson-Crick double-strand is the thermodynamically stable state of DNA in a wide range of temperature and salt conditions, even at physiological conditions local denaturation bubbles may open up spontaneously due to thermal activation. By raising the ambient temperature, titration......, or by external forces in single molecule setups bubbles proliferate until full denaturation of the DNA occurs. Based on the Poland-Scheraga model we investigate both the equilibrium transition of DNA denaturation and the dynamics of the denaturation bubbles with respect to recent single DNA chain experiments...... for situations below, at, and above the denaturation transition. We also propose a new single molecule setup based on DNA constructs with two bubble zones to measure the bubble coalescence and extract the physical parameters relevant to DNA breathing. Finally we consider the interplay between denaturation...

  1. Numerical simulation of high Reynolds number bubble motion

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, J.B. [Clarkson Univ., Potsdam, NY (United States)

    1995-12-31

    This paper presents the results of numerical simulations of bubble motion. All the results are for single bubbles in unbounded fluids. The liquid phase is quiescent except for the motion created by the bubble, which is axisymmetric. The main focus of the paper is on bubbles that are of order 1 mm in diameter in water. Of particular interest is the effect of surfactant molecules on bubble motion. Results for the {open_quotes}insoluble surfactant{close_quotes} model will be presented. These results extend research by other investigators to finite Reynolds numbers. The results indicate that, by assuming complete coverage of the bubble surface, one obtains good agreement with experimental observations of bubble motion in tap water. The effect of surfactant concentration on the separation angle is discussed.

  2. Interaction of a bubble and a bubble cluster in an ultrasonic field

    International Nuclear Information System (INIS)

    Wang Cheng-Hui; Cheng Jian-Chun

    2013-01-01

    Using an appropriate approximation, we have formulated the interacting equation of multi-bubble motion for a system of a single bubble and a spherical bubble cluster. The behavior of the bubbles is observed in coupled and uncoupled states. The oscillation of bubbles inside the cluster is in a coupled state. The numerical simulation demonstrates that the secondary Bjerknes force can be influenced by the number density, initial radius, distance, driving frequency, and amplitude of ultrasound. However, if a bubble approaches a bubble cluster of the same initial radii, coupled oscillation would be induced and a repulsive force is evoked, which may be the reason why the bubble cluster can exist steadily. With the increment of the number density of the bubble cluster, a secondary Bjerknes force acting on the bubbles inside the cluster decreases due to the strong suppression of the coupled bubbles. It is shown that there may be an optimal number density for a bubble cluster which can generate an optimal cavitation effect in liquid for a stable driving ultrasound. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  3. Structure and kinematics of bubble flow

    International Nuclear Information System (INIS)

    Lackme, C.

    1967-01-01

    This report deals with the components and use of resistivity probes in bubble flow. With a single probe, we have studied the longitudinal and radial structure of the flow. The very complicated evolution of the radial structure is shown by the measurement of the mean bubble flux at several points in the tube. A double probe associated with a device the principle of which is given in this report, permits the measure of the local velocity of bubbles. Unlike the mean bubble flux profile, the change in the velocity profile along the tube is not significant. We have achieved the synthesis of these two pieces of information, mean local bubble flux and local velocity, by computing the mean weighed velocity in the tube. This weighed velocity compares remarkably with the velocity computed from the volumetric gas flow rate and the mean void fraction. (author) [fr

  4. Theoretical aspects of appearing of bubbles in economy

    Directory of Open Access Journals (Sweden)

    Pronoza Pavlo V.

    2014-01-01

    Full Text Available The article considers theoretical aspects of appearing of bubbles in economy. It analyses vies of scientists regarding the essence of this phenomenon and, with the help of content analysis, specifies the essence of the bubble notion in economy. It considers main stages of appearance of such bubbles. It offers classification of their types. It analyses pre-requisites of appearance of bubbles in economy and their features. It considers main existing approaches to detection and modelling appearance of bubbles. It proves that bubbles negatively influence economy of the countries, that is why, the problem of their detection and prevention is one of the central problems in the process of development of policy of state regulation of economy.

  5. Mechanics of Bubbles in Sludges and Slurries Modeling Studies of Particulate Materials

    International Nuclear Information System (INIS)

    Gauglitz, Phillip A.; Terrones, Guillermo; Muller, Susan J.; Denn, Morton M.; Rossen, William R.

    2002-01-01

    The Hanford Site has 177 underground waste storage tanks that are known to retain and release bubbles composed of flammable gases. Characterizing and understanding the behavior of these bubbles is important for the safety issues associated with the flammable gases for both ongoing waste storage and future waste-retrieval operations. The retained bubbles are known to respond to small barometric pressure changes, though in a complex manner with unusual hysteresis occurring in some tanks in the relationship between bubble volume and pressure, or V-P hysteresis. With careful analysis, information on the volume of retained gas and the interactions of the waste and the bubbles can be determined

  6. Numerical analysis of the bubble detachment diameter in nucleate boiling

    International Nuclear Information System (INIS)

    Lamas, M I; Sáiz Jabardo, J M; Arce, A; Fariñas, P

    2012-01-01

    The present paper presents a tri-dimensional CFD (Computational Fluid Dynamics) model to investigate the fluid flow around bubbles attached to heated walls. Transient solutions of the governing field equations in a domain containing the bubbles and the surrounding liquid have been obtained. The nucleation, growing and detachment processes have been analyzed. Concerning the software, the open source OpenFOAM has been used. Special attention has been given to the bubble detachment diameter. Two mechanisms have been considered as physically related to the detachment: surface tension and buoyancy. As expected, it has been verified that the bubble detachment diameter depends on the contact angle, operating pressure and properties of the fluid. Several fluids have been considered (water, R134a, ammonia and R123), as well as several operating pressures (between 0.1 and 10 bar) and contact angles (between 10 and 80°). It has been concluded that the detachment diameter depends strongly on the contact angle and fluid properties and slightly on the pressure. A correlation for the bubble detachment diameter has been developed based on the obtained numerical results. Data from this expression compare reasonably well with those from other correlations from the literature.

  7. Interfacial structures of confined air-water two-phase bubbly flow

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.; Ishii, M.; Wu, Q.; McCreary, D.; Beus, S.G.

    2000-08-01

    The interfacial structure of the two-phase flows is of great importance in view of theoretical modeling and practical applications. In the present study, the focus is made on obtaining detailed local two-phase parameters in the air-water bubbly flow in a rectangular vertical duct using the double-sensor conductivity probe. The characteristic wall-peak is observed in the profiles of the interracial area concentration and the void fraction. The development of the interfacial area concentration along the axial direction of the flow is studied in view of the interfacial area transport and bubble interactions. The experimental data is compared with the drift flux model with C{sub 0} = 1.35.

  8. A bubble detection system for propellant filling pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Wen; Zong, Guanghua; Bi, Shusheng [Robotics Institute, Beihang University, 100191 Beijing (China)

    2014-06-15

    This paper proposes a bubble detection system based on the ultrasound transmission method, mainly for probing high-speed bubbles in the satellite propellant filling pipeline. First, three common ultrasonic detection methods are compared and the ultrasound transmission method is used in this paper. Then, the ultrasound beam in a vertical pipe is investigated, suggesting that the width of the beam used for detection is usually smaller than the internal diameter of the pipe, which means that when bubbles move close to the pipe wall, they may escape from being detected. A special device is designed to solve this problem. It can generate the spiral flow to force all the bubbles to ascend along the central line of the pipe. In the end, experiments are implemented to evaluate the performance of this system. Bubbles of five different sizes are generated and detected. Experiment results show that the sizes and quantity of bubbles can be estimated by this system. Also, the bubbles of different radii can be distinguished from each other. The numerical relationship between the ultrasound attenuation and the bubble radius is acquired and it can be utilized for estimating the unknown bubble size and measuring the total bubble volume.

  9. Computational approach for a pair of bubble coalescence process

    International Nuclear Information System (INIS)

    Nurul Hasan; Zalinawati binti Zakaria

    2011-01-01

    The coalescence of bubbles has great value in mineral recovery and oil industry. In this paper, two co-axial bubbles rising in a cylinder is modelled to study the coalescence of bubbles for four computational experimental test cases. The Reynolds' (Re) number is chosen in between 8.50 and 10, Bond number, Bo ∼4.25-50, Morton number, M 0.0125-14.7. The viscosity ratio (μ r ) and density ratio (ρ r ) of liquid to bubble are kept constant (100 and 850 respectively). It was found that the Bo number has significant effect on the coalescence process for constant Re, μ r and ρ r . The bubble-bubble distance over time was validated against published experimental data. The results show that VOF approach can be used to model these phenomena accurately. The surface tension was changed to alter the Bo and density of the fluids to alter the Re and M, keeping the μ r and ρ r the same. It was found that for lower Bo, the bubble coalesce is slower and the pocket at the lower part of the leading bubble is less concave (towards downward) which is supported by the experimental data.

  10. Rational speculative bubbles: A critical view

    Directory of Open Access Journals (Sweden)

    Radonjić Ognjen

    2007-01-01

    Full Text Available According to the theory of rational bubbles, the bubble is present whenever asset prices progressively diverge from their fundamental value, which occurs because agents expect that asset prices will continue to grow exponentially (self-fulfilling prophecies far in the future and consistently, which promises the realization of ever larger capital gains. In our opinion, the basic shortcoming of this theory refers to the assumption that all market agents are perfectly informed and rational and, accordingly, form homogeneous expectations. The model does not explain decision-making processes or expectation formation, nor does it detect potential psychological and institutional factors that might significantly influence decision making processes and market participants’ reactions to news. Since assumptions of the model critically determine its validity, we conclude that comprehensiveness of the rational bubble model is, to put it mildly, limited.

  11. Bubble systems

    CERN Document Server

    Avdeev, Alexander A

    2016-01-01

    This monograph presents a systematic analysis of bubble system mathematics, using the mechanics of two-phase systems in non-equilibrium as the scope of analysis. The author introduces the thermodynamic foundations of bubble systems, ranging from the fundamental starting points to current research challenges. This book addresses a range of topics, including description methods of multi-phase systems, boundary and initial conditions as well as coupling requirements at the phase boundary. Moreover, it presents a detailed study of the basic problems of bubble dynamics in a liquid mass: growth (dynamically and thermally controlled), collapse, bubble pulsations, bubble rise and breakup. Special emphasis is placed on bubble dynamics in turbulent flows. The analysis results are used to write integral equations governing the rate of vapor generation (condensation) in non-equilibrium flows, thus creating a basis for solving a number of practical problems. This book is the first to present a comprehensive theory of boil...

  12. THREE-DIMENSIONAL MAGNETOHYDRODYNAMIC SIMULATIONS OF BUOYANT BUBBLES IN GALAXY CLUSTERS

    International Nuclear Information System (INIS)

    O'Neill, S. M.; De Young, D. S.; Jones, T. W.

    2009-01-01

    We report results of three-dimensional magnetohydrodynamic simulations of the dynamics of buoyant bubbles in magnetized galaxy cluster media. The simulations are three-dimensional extensions of two-dimensional calculations reported by Jones and De Young. Initially, spherical bubbles and briefly inflated spherical bubbles all with radii a few times smaller than the intracluster medium (ICM) scale height were followed as they rose through several ICM scale heights. Such bubbles quickly evolve into a toroidal form that, in the absence of magnetic influences, is stable against fragmentation in our simulations. This ring formation results from (commonly used) initial conditions that cause ICM material below the bubbles to drive upwards through the bubble, creating a vortex ring; that is, hydrostatic bubbles develop into 'smoke rings', if they are initially not very much smaller or very much larger than the ICM scale height. Even modest ICM magnetic fields with β = P gas /P mag ∼ 3 can influence the dynamics of the bubbles, provided the fields are not tangled on scales comparable to or smaller than the size of the bubbles. Quasi-uniform, horizontal fields with initial β ∼ 10 2 bifurcated our bubbles before they rose more than about a scale height of the ICM, and substantially weaker fields produced clear distortions. These behaviors resulted from stretching and amplification of ICM fields trapped in irregularities along the top surface of the young bubbles. On the other hand, tangled magnetic fields with similar, modest strengths are generally less easily amplified by the bubble motions and are thus less influential in bubble evolution. Inclusion of a comparably strong, tangled magnetic field inside the initial bubbles had little effect on our bubble evolution, since those fields were quickly diminished through expansion of the bubble and reconnection of the initial field.

  13. Dynamics of gas bubble growth in oil-refrigerant mixtures under isothermal decompression

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Joao Paulo; Barbosa Junior, Jader R.; Prata, Alvaro T. [Federal University of Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. of Mechanical Engineering], Emails: jpdias@polo.ufsc.br, jrb@polo.ufsc.br, prata@polo.ufsc.br

    2010-07-01

    This paper proposes a numerical model to predict the growth of gaseous refrigerant bubbles in oil-refrigerant mixtures with high contents of oil subjected to isothermal decompression. The model considers an Elementary Cell (EC) in which a spherical bubble is surrounded by a concentric and spherical liquid layer containing a limited amount of dissolved liquid refrigerant. The pressure reduction in the EC generates a concentration gradient at the bubble interface and the refrigerant is transported to the bubble by molecular diffusion. After a sufficiently long period of time, the concentration gradient in the liquid layer and the bubble internal pressure reach equilibrium and the bubble stops growing, having attained its stable radius. The equations of momentum and chemical species conservation for the liquid layer, and the mass balance at the bubble interface are solved via a coupled finite difference procedure to determine the bubble internal pressure, the refrigerant radial concentration distribution and the bubble growth rate. Numerical results obtained for a mixture of ISO VG10 ester oil and refrigerant HFC-134a showed that bubble growth dynamics depends on model parameters like the initial bubble radius, initial refrigerant concentration in the liquid layer, decompression rate and EC temperature. Despite its simplicity, the model showed to be a potential tool to predict bubble growth and foaming which may result from important phenomena occurring inside refrigeration compressors such as lubrication of sliding parts and refrigerant degassing from the oil stored in oil sump during compressor start-up. (author)

  14. Formation of soap bubbles by gas jet

    Science.gov (United States)

    Zhou, Maolei; Li, Min; Chen, Zhiyuan; Han, Jifeng; Liu, Dong

    2017-12-01

    Soap bubbles can be easily generated by various methods, while their formation process is complicated and still worth studying. A model about the bubble formation process was proposed in the study by Salkin et al. [Phys. Rev. Lett. 116, 077801 (2016)] recently, and it was reported that the bubbles were formed when the gas blowing velocity was above one threshold. However, after a detailed study of these experiments, we found that the bubbles could be generated in two velocity ranges which corresponded to the laminar and turbulent gas jet, respectively, and the predicted threshold was only effective for turbulent gas flow. The study revealed that the bubble formation was greatly influenced by the aerodynamics of the gas jet blowing to the film, and these results will help to further understand the formation mechanism of the soap bubble as well as the interaction between the gas jet and the thin liquid film.

  15. The relation between pre-eruptive bubble size distribution, ash particle morphology, and their internal density: Implications to volcanic ash transport and dispersion models

    Science.gov (United States)

    Proussevitch, Alexander

    2014-05-01

    Parameterization of volcanic ash transport and dispersion (VATD) models strongly depends on particle morphology and their internal properties. Shape of ash particles affects terminal fall velocities (TFV) and, mostly, dispersion. Internal density combined with particle size has a very strong impact on TFV and ultimately on the rate of ash cloud thinning and particle sedimentation on the ground. Unlike other parameters, internal particle density cannot be measured directly because of the micron scale sizes of fine ash particles, but we demonstrate that it varies greatly depending on the particle size. Small simple type ash particles (fragments of bubble walls, 5-20 micron size) do not contain whole large magmatic bubbles inside and their internal density is almost the same as that of volcanic glass matrix. On the other side, the larger compound type ash particles (>40 microns for silicic fine ashes) always contain some bubbles or the whole spectra of bubble size distribution (BSD), i.e. bubbles of all sizes, bringing their internal density down as compared to simple ash. So, density of the larger ash particles is a function of the void fraction inside them (magmatic bubbles) which, in turn, is controlled by BSD. Volcanic ash is a product of the fragmentation of magmatic foam formed by pre-eruptive bubble population and characterized by BSD. The latter can now be measured from bubble imprints on ash particle surfaces using stereo-scanning electron microscopy (SSEM) and BubbleMaker software developed at UNH, or using traditional high-resolution X-Ray tomography. In this work we present the mathematical and statistical formulation for this problem connecting internal ash density with particle size and BSD, and demonstrate how the TFV of the ash population is affected by variation of particle density.

  16. Regimes of Micro-bubble Formation Using Gas Injection into Ladle Shroud

    Science.gov (United States)

    Chang, Sheng; Cao, Xiangkun; Zou, Zongshu

    2018-06-01

    Gas injection into a ladle shroud is a practical approach to produce micro-bubbles in tundishes, to promote inclusion removal from liquid steel. A semi-empirical model was established to characterize the bubble formation considering the effect of shearing action combined with the non-fully bubble break-up by turbulence. The model shows a good accuracy in predicting the size of bubbles formed in complex flow within the ladle shroud.

  17. Administration of Oxygen Ultra-Fine Bubbles Improves Nerve Dysfunction in a Rat Sciatic Nerve Crush Injury Model

    Directory of Open Access Journals (Sweden)

    Hozo Matsuoka

    2018-05-01

    Full Text Available Ultra-fine bubbles (<200 nm in diameter have several unique properties and have been tested in various medical fields. The purpose of this study was to investigate the effects of oxygen ultra-fine bubbles (OUBs on a sciatic nerve crush injury (SNC model rats. Rats were intraperitoneally injected with 1.5 mL saline, OUBs diluted in saline, or nitrogen ultra-fine bubbles (NUBs diluted in saline three times per week for 4 weeks in four groups: (1 control, (sham operation + saline; (2 SNC, (crush + saline; (3 SNC+OUB, (crush + OUB-saline; (4 SNC+NUB, (crush + NUB-saline. The effects of the OUBs on dorsal root ganglion (DRG neurons and Schwann cells (SCs were examined by serial dilution of OUB medium in vitro. Sciatic functional index, paw withdrawal thresholds, nerve conduction velocity, and myelinated axons were significantly decreased in the SNC group compared to the control group; these parameters were significantly improved in the SNC+OUB group, although NUB treatment did not affect these parameters. In vitro, OUBs significantly promoted neurite outgrowth in DRG neurons by activating AKT signaling and SC proliferation by activating ERK1/2 and JNK/c-JUN signaling. OUBs may improve nerve dysfunction in SNC rats by promoting neurite outgrowth in DRG neurons and SC proliferation.

  18. Nonlinear Dynamics of a Bubble Contrast Agent Oscillating near an Elastic Wall

    Science.gov (United States)

    Garashchuk, Ivan R.; Sinelshchikov, Dmitry I.; Kudryashov, Nikolay A.

    2018-05-01

    Contrast agent microbubbles, which are encapsulated gas bubbles, are widely used to enhance ultrasound imaging. There are also several new promising applications of the contrast agents such as targeted drug delivery and noninvasive therapy. Here we study three models of the microbubble dynamics: a nonencapsulated bubble oscillating close to an elastic wall, a simple coated bubble and a coated bubble near an elastic wall.We demonstrate that complex dynamics can occur in these models. We are particularly interested in the multistability phenomenon of bubble dynamics. We show that coexisting attractors appear in all of these models, but for higher acoustic pressures for the models of an encapsulated bubble.We demonstrate how several tools can be used to localize the coexisting attractors. We provide some considerations why the multistability can be undesirable for applications.

  19. Average properties of bidisperse bubbly flows

    Science.gov (United States)

    Serrano-García, J. C.; Mendez-Díaz, S.; Zenit, R.

    2018-03-01

    Experiments were performed in a vertical channel to study the properties of a bubbly flow composed of two distinct bubble size species. Bubbles were produced using a capillary bank with tubes with two distinct inner diameters; the flow through each capillary size was controlled such that the amount of large or small bubbles could be controlled. Using water and water-glycerin mixtures, a wide range of Reynolds and Weber number ranges were investigated. The gas volume fraction ranged between 0.5% and 6%. The measurements of the mean bubble velocity of each species and the liquid velocity variance were obtained and contrasted with the monodisperse flows with equivalent gas volume fractions. We found that the bidispersity can induce a reduction of the mean bubble velocity of the large species; for the small size species, the bubble velocity can be increased, decreased, or remain unaffected depending of the flow conditions. The liquid velocity variance of the bidisperse flows is, in general, bound by the values of the small and large monodisperse values; interestingly, in some cases, the liquid velocity fluctuations can be larger than either monodisperse case. A simple model for the liquid agitation for bidisperse flows is proposed, with good agreement with the experimental measurements.

  20. A discrete trinomial model for the birth and death of stock financial bubbles

    Science.gov (United States)

    Di Persio, Luca; Guida, Francesco

    2017-11-01

    The present work proposes a novel way to model the dynamic of financial bubbles. In particular we exploit the so called trinomial tree technique, which is mainly inspired by the typical market order book (MOB) structure. According to the typical MOB rules, we exploit a bottom-up approach to derive the relevant generator process for the financial quantities characterizing the market we are considering. Our proposal pays attention in considering the real world changes in probability levels characterizing the bid-ask preferences, focusing the attention on the market movements. In particular, we show that financial bubbles are originated by these movements which also act amplify their growth.

  1. Correction of bubble size distributions from transmission electron microscopy observations

    International Nuclear Information System (INIS)

    Kirkegaard, P.; Eldrup, M.; Horsewell, A.; Skov Pedersen, J.

    1996-01-01

    Observations by transmission electron microscopy of a high density of gas bubbles in a metal matrix yield a distorted size distribution due to bubble overlap and bubble escape from the surface. A model is described that reconstructs 3-dimensional bubble size distributions from 2-dimensional projections on taking these effects into account. Mathematically, the reconstruction is an ill-posed inverse problem, which is solved by regularization technique. Extensive Monte Carlo simulations support the validity of our model. (au) 1 tab., 32 ills., 32 refs

  2. Sticky bubbles

    NARCIS (Netherlands)

    Antoniuk, O.; Bos, van der A.; Driessen, T.W.; Es, van B.; Jeurissen, R.J.M.; Michler, D.; Reinten, H.; Schenker, M.; Snoeijer, J.H.; Srivastava, S.; Toschi, F.; Wijshoff, H.M.A.

    2011-01-01

    We discuss the physical forces that are required to remove an air bubble immersed in a liquid from a corner. This is relevant for inkjet printing technology, as the presence of air bubbles in the channels of a printhead perturbs the jetting of droplets. A simple strategy to remove the bubble is to

  3. Dynamics of the liquid film around elongated bubbles rising in vertical capillaries

    Science.gov (United States)

    Magnini, Mirco; Khodaparast, Sepideh; Matar, Omar K.; Stone, Howard A.; Thome, John R.

    2017-11-01

    We performed a theoretical, numerical and experimental study on elongated bubbles rising in vertical tubes in co-current liquid flows. The flow conditions were characterized by capillary, Reynolds and Bond numbers within the range of Ca = 0.005 - 0.1 , Re = 1 - 2000 and Bo = 0 - 20 . Direct numerical simulations of the two-phase flows are run with a self-improved version of OpenFOAM, implementing a coupled Level Set and Volume of Fluid method. A theoretical model based on an extension of the traditional Bretherton theory, accounting for inertia and the gravity force, is developed to obtain predictions of the profiles of the front and rear menisci of the bubble, liquid film thickness and bubble velocity. Different from the traditional theory for bubbles rising in a stagnant liquid, the gravity force impacts the flow already when Bo < 4 . Gravity effects speed up the bubble compared to the Bo = 0 case, making the liquid film thicker and reducing the amplitude of the undulation on the surface of the bubble near its tail. Gravity effects are more apparent in the visco-capillary regime, i.e. when the Reynolds number is below 1.

  4. COMPUTATIONAL AND EXPERIMENTAL MODELING OF THREE-PHASE SLURRY-BUBBLE COLUMN REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    Isaac K. Gamwo; Dimitri Gidaspow

    1999-09-01

    Considerable progress has been achieved in understanding three-phase reactors from the point of view of kinetic theory. In a paper in press for publication in Chemical Engineering Science (Wu and Gidaspow, 1999) we have obtained a complete numerical solution of bubble column reactors. In view of the complexity of the simulation a better understanding of the processes using simplified analytical solutions is required. Such analytical solutions are presented in the attached paper, Large Scale Oscillations or Gravity Waves in Risers and Bubbling Beds. This paper presents analytical solutions for bubbling frequencies and standing wave flow patterns. The flow patterns in operating slurry bubble column reactors are not optimum. They involve upflow in the center and downflow at the walls. It may be possible to control flow patterns by proper redistribution of heat exchangers in slurry bubble column reactors. We also believe that the catalyst size in operating slurry bubble column reactors is not optimum. To obtain an optimum size we are following up on the observation of George Cody of Exxon who reported a maximum granular temperature (random particle kinetic energy) for a particle size of 90 microns. The attached paper, Turbulence of Particles in a CFB and Slurry Bubble Columns Using Kinetic Theory, supports George Cody's observations. However, our explanation for the existence of the maximum in granular temperature differs from that proposed by George Cody. Further computer simulations and experiments involving measurements of granular temperature are needed to obtain a sound theoretical explanation for the possible existence of an optimum catalyst size.

  5. Bubble number saturation curve and asymptotics of hypobaric and hyperbaric exposures.

    Science.gov (United States)

    Wienke, B R

    1991-12-01

    Within bubble number limits of the varying permeability and reduced gradient bubble models, it is shown that a linear form of the saturation curve for hyperbaric exposures and a nearly constant decompression ratio for hypobaric exposures are simultaneously recovered from the phase volume constraint. Both limits are maintained within a single bubble number saturation curve. A bubble term, varying exponentially with inverse pressure, provides closure. Two constants describe the saturation curve, both linked to seed numbers. Limits of other decompression models are also discussed and contrasted for completeness. It is suggested that the bubble number saturation curve thus provides a consistent link between hypobaric and hyperbaric data, a link not established by earlier decompression models.

  6. The slender bubble model for very slow degassing in porous media and cold production

    Energy Technology Data Exchange (ETDEWEB)

    Chraibi, M. [Total, Paris (France); Zaleski, S. [Society of Petroleum Engineers, London (United Kingdom)]|[Paris Univ., Paris (France); Franco, F. [Society of Petroleum Engineers, London (United Kingdom)]|[Total, Paris (France)

    2008-10-15

    Cold oil production leads to degassing of the light species and the formation of a bubbly phase. This is often referred to as the foamy oil effect and is particularly observed with heavy oils, combining high viscosity and asphaltenes. The presence and behaviour of a foamy-oil effect is critical to the cold production process. However, because a wide range of different petrophysical parameters and experimental factors interact in a complex manner, this process is not a well-understood production mechanism. This study focused on improving the understanding of the solution gas drive mechanism in primary heavy oil recovery. A Darcy-scale model was developed that took into account the basic physical phenomena of bubble nucleation, bubble growth by solute diffusion and expansion, and bubble mobilization. The relative permeability of the gas phase was replaced by an expression for the gas mobility with new physical effects related to capillarity, viscosity, gravity, and bubble geometry. The purpose was to fit the productions with a limited number of parameters, having physical meaning, independently from the depletion rate. The paper also presented several simplifications of the basic Darcy-scale equations, that enabled the production prediction in a much simpler manner than through full simulations. The full set of Darcy-scale equations were solved using a numerical solution. The formation of strong gradients of the gas phase saturation were shown to depend on gravity and viscosity. 12 refs., 4 figs.

  7. Holography in small bubble chambers

    International Nuclear Information System (INIS)

    Lecoq, P.

    1984-01-01

    This chapter reports on an experiment to determine the total charm cross section at different incident momenta using the small, heavy liquid bubble chamber HOBC. Holography in liquid hydrogen is also tested using the holographic lexan bubble chamber HOLEBC with the aim of preparing a future holographic experiment in hydrogen. The high intensity tests show that more than 100 incident tracks per hologram do not cause a dramatic effect on the picture quality. Hydrogen is more favorable than freon as the bubble growth is much slower in hydrogen. An advantage of holography is to have the maximum resolution in the full volume of the bubble chamber, which allows a gain in sensitivity by a factor of 10 compared to classical optics as 100 tracks per hologram look reasonable. Holograms are not more difficult to analyze than classical optics high-resolution pictures. The results show that holography is a very powerful technique which can be used in very high resolution particle physics experiments

  8. Interaction of equal-size bubbles in shear flow.

    Science.gov (United States)

    Prakash, Jai; Lavrenteva, Olga M; Byk, Leonid; Nir, Avinoam

    2013-04-01

    The inertia-induced forces on two identical spherical bubbles in a simple shear flow at small but finite Reynolds number, for the case when the bubbles are within each other's inner viscous region, are calculated making use of the reciprocal theorem. This interaction force is further employed to model the dynamics of air bubbles injected to a viscous fluid sheared in a Couette device at the first shear flow instability where the bubbles are trapped inside the stable Taylor vortex. It was shown that, during a long time scale, the inertial interaction between the bubbles in the primary shear flow drives them away from each other and, as a result, equal-size bubbles eventually assume an ordered string with equal separation distances between all neighbors. We report on experiments showing the dynamic evolution of various numbers of bubbles. The results of the theory are in good agreement with the experimental observations.

  9. Eternal inflation, bubble collisions, and the persistence of memory

    International Nuclear Information System (INIS)

    Garriga, Jaume; Guth, Alan H.; Vilenkin, Alexander

    2007-01-01

    A 'bubble universe' nucleating in an eternally inflating false vacuum will experience, in the course of its expansion, collisions with an infinite number of other bubbles. In an idealized model, we calculate the rate of collisions around an observer inside a given reference bubble. We show that the collision rate violates both the homogeneity and the isotropy of the bubble universe. Each bubble has a center which can be related to 'the beginning of inflation' in the parent false vacuum, and any observer not at the center will see an anisotropic bubble collision rate that peaks in the outward direction. Surprisingly, this memory of the onset of inflation persists no matter how much time elapses before the nucleation of the reference bubble

  10. Numerical simulation of superheated vapor bubble rising in stagnant liquid

    Science.gov (United States)

    Samkhaniani, N.; Ansari, M. R.

    2017-09-01

    In present study, the rising of superheated vapor bubble in saturated liquid is simulated using volume of fluid method in OpenFOAM cfd package. The surface tension between vapor-liquid phases is considered using continuous surface force method. In order to reduce spurious current near interface, Lafaurie smoothing filter is applied to improve curvature calculation. Phase change is considered using Tanasawa mass transfer model. The variation of saturation temperature in vapor bubble with local pressure is considered with simplified Clausius-Clapeyron relation. The couple velocity-pressure equation is solved using PISO algorithm. The numerical model is validated with: (1) isothermal bubble rising and (2) one-dimensional horizontal film condensation. Then, the shape and life time history of single superheated vapor bubble are investigated. The present numerical study shows vapor bubble in saturated liquid undergoes boiling and condensation. It indicates bubble life time is nearly linear proportional with bubble size and superheat temperature.

  11. Laser-Generated Shocks and Bubbles as Laboratory-Scale Models of Underwater Explosions

    Directory of Open Access Journals (Sweden)

    Theodore G. Jones

    2003-01-01

    Full Text Available Underwater shocks and bubbles were generated using a high energy pulsed laser system. The advantages of this experimental approach are: (1 precisely controlled and measured experimental conditions; (2 improved diagnostics, including extensive imaging capabilities; (3 unique experiments, including a simultaneously detonated line charge; and (4 the ability to provide validation quality data for hydrodynamic simulation codes. Bubble sensitivity to variation of several experimental parameters was examined. Numerical simulations were performed corresponding to the experimental shots, showing that empirical bubble theory, experimental bubble data, and simulations were all in good agreement.

  12. The interaction between multiple bubbles and the free surface

    International Nuclear Information System (INIS)

    Zhang Aman; Yao Xiongliang

    2008-01-01

    The flow is assumed to be potential, and a boundary integral method is used to solve the Laplace equation for the velocity potential to investigate the shape and the position of the bubble. A 3D code to study the bubble dynamics is developed, and the calculation results agree well with the experimental data. Numerical analyses are carried out for the interaction between multiple bubbles near the free surface including in-phase and out-of-phase bubbles. The calculation result shows that the bubble period increases with the decrease of the distance between bubble centres because of the depression effect between multiple bubbles. The depression has no relationship with the free surface and it is more apparent for out-of-phase bubbles. There are great differences in dynamic behaviour between the in-phase bubbles and the out-of-phase bubbles due to the depression effect. Furthermore, the interaction among eight bubbles is simulated with a three-dimensional model, and the evolving process and the relevant physical phenomena are presented. These phenomena can give a reference to the future work on the power of bubbles induced by multiple charges exploding simultaneously or continuously

  13. A model to estimate volume change due to radiolytic gas bubbles and thermal expansion in solution reactors

    International Nuclear Information System (INIS)

    Souto, F.J.; Heger, A.S.

    2001-01-01

    To investigate the effects of radiolytic gas bubbles and thermal expansion on the steady-state operation of solution reactors at the power level required for the production of medical isotopes, a calculational model has been developed. To validate this model, including its principal hypotheses, specific experiments at the Los Alamos National Laboratory SHEBA uranyl fluoride solution reactor were conducted. The following sections describe radiolytic gas generation in solution reactors, the equations to estimate the fuel solution volume change due to radiolytic gas bubbles and thermal expansion, the experiments conducted at SHEBA, and the comparison of experimental results and model calculations. (author)

  14. Gas transfer in a bubbly wake flow

    Science.gov (United States)

    Karn, A.; Gulliver, J. S.; Monson, G. M.; Ellis, C.; Arndt, R. E. A.; Hong, J.

    2016-05-01

    The present work reports simultaneous bubble size and gas transfer measurements in a bubbly wake flow of a hydrofoil, designed to be similar to a hydroturbine blade. Bubble size was measured by a shadow imaging technique and found to have a Sauter mean diameter of 0.9 mm for a reference case. A lower gas flow rate, greater liquid velocities, and a larger angle of attack all resulted in an increased number of small size bubbles and a reduced weighted mean bubble size. Bubble-water gas transfer is measured by the disturbed equilibrium technique. The gas transfer model of Azbel (1981) is utilized to characterize the liquid film coefficient for gas transfer, with one scaling coefficient to reflect the fact that characteristic turbulent velocity is replaced by cross-sectional mean velocity. The coefficient was found to stay constant at a particular hydrofoil configuration while it varied within a narrow range of 0.52-0.60 for different gas/water flow conditions.

  15. Characterization of Bubble Size Distributions within a Bubble Column

    OpenAIRE

    Shahrouz Mohagheghian; Brian R. Elbing

    2018-01-01

    The current study experimentally examines bubble size distribution (BSD) within a bubble column and the associated characteristic length scales. Air was injected into a column of water via a single injection tube. The column diameter (63–102 mm), injection tube diameter (0.8–1.6 mm) and superficial gas velocity (1.4–55 mm/s) were varied. Large samples (up to 54,000 bubbles) of bubble sizes measured via 2D imaging were used to produce probability density functions (PDFs). The PDFs were used to...

  16. Bubble departure diameter in narrow rectangular channel under rolling condition

    Energy Technology Data Exchange (ETDEWEB)

    Xie, T.; Chen, B.; Yan, X.; Xu, J.; Huang, Y.; Xiao, Z. [Nuclear Power Inst. of China, Chengdu, Sichuan (China)

    2014-07-01

    Forced convective subcooled boiling flow experiments were conducted in a vertical upward narrow rectangular channel under rolling motion. A high-speed digital video camera was used to capture the dynamics of the bubble nucleation process. Bubble departure diameters were obtained from the images. A bubble departure model based on force balance analysis was proposed to predict the bubble departure size under rolling condition by considering the additional centrifugal, tangential and Coriolis force. The proposed model agreed well with the experimental data within the averaged relative deviation of 5%. (author)

  17. Size distribution of air bubbles entering the brain during cardiac surgery.

    Directory of Open Access Journals (Sweden)

    Emma M L Chung

    Full Text Available Thousands of air bubbles enter the cerebral circulation during cardiac surgery, but whether high numbers of bubbles explain post-operative cognitive decline is currently controversial. This study estimates the size distribution of air bubbles and volume of air entering the cerebral arteries intra-operatively based on analysis of transcranial Doppler ultrasound data.Transcranial Doppler ultrasound recordings from ten patients undergoing heart surgery were analysed for the presence of embolic signals. The backscattered intensity of each embolic signal was modelled based on ultrasound scattering theory to provide an estimate of bubble diameter. The impact of showers of bubbles on cerebral blood-flow was then investigated using patient-specific Monte-Carlo simulations to model the accumulation and clearance of bubbles within a model vasculature.Analysis of Doppler ultrasound recordings revealed a minimum of 371 and maximum of 6476 bubbles entering the middle cerebral artery territories during surgery. This was estimated to correspond to a total volume of air ranging between 0.003 and 0.12 mL. Based on analysis of a total of 18667 embolic signals, the median diameter of bubbles entering the cerebral arteries was 33 μm (IQR: 18 to 69 μm. Although bubble diameters ranged from ~5 μm to 3.5 mm, the majority (85% were less than 100 μm. Numerous small bubbles detected during cardiopulmonary bypass were estimated by Monte-Carlo simulation to be benign. However, during weaning from bypass, showers containing large macro-bubbles were observed, which were estimated to transiently affect up to 2.2% of arterioles.Detailed analysis of Doppler ultrasound data can be used to provide an estimate of bubble diameter, total volume of air, and the likely impact of embolic showers on cerebral blood flow. Although bubbles are alarmingly numerous during surgery, our simulations suggest that the majority of bubbles are too small to be harmful.

  18. Rational equity bubbles

    OpenAIRE

    Zhou, Ge

    2012-01-01

    This paper discusses the existence of a bubble in the pricing of an asset that pays positive dividends. I show that rational bubbles can exist in a growing economy. The existence of bubbles depends on the relative magnitudes of risk aversion to consumption and to wealth. Furthermore, I examine how an exogenous shock in technology might trigger bubbles.

  19. Bubble Dynamics in Laser Lithotripsy

    International Nuclear Information System (INIS)

    Mohammadzadeh, Milad; Mercado, Julian Martinez; Ohl, Claus-Dieter

    2015-01-01

    Laser lithotripsy is a medical procedure for fragmentation of urinary stones with a fiber guided laser pulse of several hundred microseconds long. Using high-speed photography, we present an in-vitro study of bubble dynamics and stone motion induced by Ho:YAG laser lithotripsy. The experiments reveal that detectable stone motion starts only after the bubble collapse, which we relate with the collapse-induced liquid flow. Additionally, we model the bubble formation and dynamics using a set of 2D Rayleigh-Plesset equations with the measured laser pulse profile as an input. The aim is to reduce stone motion through modification of the temporal laser pulse profile, which affects the collapse scenario and consequently the remnant liquid motion. (paper)

  20. Size distributions of micro-bubbles generated by a pressurized dissolution method

    Science.gov (United States)

    Taya, C.; Maeda, Y.; Hosokawa, S.; Tomiyama, A.; Ito, Y.

    2012-03-01

    Size of micro-bubbles is widely distributed in the range of one to several hundreds micrometers and depends on generation methods, flow conditions and elapsed times after the bubble generation. Although a size distribution of micro-bubbles should be taken into account to improve accuracy in numerical simulations of flows with micro-bubbles, a variety of the size distribution makes it difficult to introduce the size distribution in the simulations. On the other hand, several models such as the Rosin-Rammler equation and the Nukiyama-Tanazawa equation have been proposed to represent the size distribution of particles or droplets. Applicability of these models to the size distribution of micro-bubbles has not been examined yet. In this study, we therefore measure size distribution of micro-bubbles generated by a pressurized dissolution method by using a phase Doppler anemometry (PDA), and investigate the applicability of the available models to the size distributions of micro-bubbles. Experimental apparatus consists of a pressurized tank in which air is dissolved in liquid under high pressure condition, a decompression nozzle in which micro-bubbles are generated due to pressure reduction, a rectangular duct and an upper tank. Experiments are conducted for several liquid volumetric fluxes in the decompression nozzle. Measurements are carried out at the downstream region of the decompression nozzle and in the upper tank. The experimental results indicate that (1) the Nukiyama-Tanasawa equation well represents the size distribution of micro-bubbles generated by the pressurized dissolution method, whereas the Rosin-Rammler equation fails in the representation, (2) the bubble size distribution of micro-bubbles can be evaluated by using the Nukiyama-Tanasawa equation without individual bubble diameters, when mean bubble diameter and skewness of the bubble distribution are given, and (3) an evaluation method of visibility based on the bubble size distribution and bubble

  1. Scaling electron acceleration in the bubble regime for upcoming lasers

    International Nuclear Information System (INIS)

    Jansen, O.; Tueckmantel, T.; Pukhov, A.

    2014-01-01

    Electron acceleration in the laser-plasma bubble appeared to be the most successful regime of laser wake field acceleration in the last decade. The laser technology became mature enough to generate short and relativistically intense pulses required to reach the bubble regime naturally delivering quasi-monoenergetic bunches of relativistic electrons. The upcoming laser technology projects are promising short pulses with many times more energy than the existing ones. The natural question is how will the bubble regime scale with the available laser energy. We present here a parametric study of laser-plasma acceleration in the bubble regime using full three dimensional particle-in-cell simulations and compare numerical results with the analytical scalings from the relativistic laser-plasma similarity theory. Our simulations and the theory match almost perfectly for spot sizes above R = 2λ and laser amplitudes above a 0 = 4. We also studied the emission of synchrotron radiation by the accelerated electrons. Both classical and a QED model were applied. We found borders, at which theory and simulations stopped matching. With small spot radii (R < 2λ) we almost never observed the formation of a bubble structure or any form of mono-energetic acceleration. Low laser amplitudes lead to higher energies than predicted by the theory

  2. Bubble growth in a narrow horizontal space

    International Nuclear Information System (INIS)

    Stutz, Benoit; Goulet, Remi; Passos, Julio Cesar

    2009-01-01

    The purpose of this work is to develop an axis-symmetric two-phase flow model describing the growth of a single bubble squeezed between a horizontal heated upward-facing disc and an insulating surface placed parallel to the heated surface. Heat transfers at the liquid-vapour interfaces are predicted by the kinetic limit of vaporisation. The depths of the liquid films deposed on the surfaces (heated surface and confinement space) are determined using the Moriyama and Inoue correlation (1996). Transient heat transfers within the heated wall are taken into account. The model is applied to pentane bubble growth. The influence of the gap size, the initial temperature of the system, the thermal effusivity of the heated wall and the kinetic limit of vaporisation are studied. The results show that the expansion of the bubbles strongly depends on the gap size and can be affected by the effusivity of the material. Mechanical inertia effects are mainly dominant at the beginning of the bubble expansion. Pressure drop induced by viscous effects have to be taken into account for high capillary numbers. Heat transfers at the meniscus are negligible except at the early stages of the bubble growth. (author)

  3. Bubble growth in a narrow horizontal space

    Energy Technology Data Exchange (ETDEWEB)

    Stutz, Benoit; Goulet, Remi [CETHIL, UMR5008, CNRS, INSA-Lyon, Universite Lyon1 (France); Passos, Julio Cesar [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica. LABSOLAR

    2009-07-01

    The purpose of this work is to develop an axis-symmetric two-phase flow model describing the growth of a single bubble squeezed between a horizontal heated upward-facing disc and an insulating surface placed parallel to the heated surface. Heat transfers at the liquid-vapour interfaces are predicted by the kinetic limit of vaporisation. The depths of the liquid films deposed on the surfaces (heated surface and confinement space) are determined using the Moriyama and Inoue correlation (1996). Transient heat transfers within the heated wall are taken into account. The model is applied to pentane bubble growth. The influence of the gap size, the initial temperature of the system, the thermal effusivity of the heated wall and the kinetic limit of vaporisation are studied. The results show that the expansion of the bubbles strongly depends on the gap size and can be affected by the effusivity of the material. Mechanical inertia effects are mainly dominant at the beginning of the bubble expansion. Pressure drop induced by viscous effects have to be taken into account for high capillary numbers. Heat transfers at the meniscus are negligible except at the early stages of the bubble growth. (author)

  4. FEASTING BLACK HOLE BLOWS BUBBLES

    Science.gov (United States)

    2002-01-01

    A monstrous black hole's rude table manners include blowing huge bubbles of hot gas into space. At least, that's the gustatory practice followed by the supermassive black hole residing in the hub of the nearby galaxy NGC 4438. Known as a peculiar galaxy because of its unusual shape, NGC 4438 is in the Virgo Cluster, 50 million light-years from Earth. These NASA Hubble Space Telescope images of the galaxy's central region clearly show one of the bubbles rising from a dark band of dust. The other bubble, emanating from below the dust band, is barely visible, appearing as dim red blobs in the close-up picture of the galaxy's hub (the colorful picture at right). The background image represents a wider view of the galaxy, with the central region defined by the white box. These extremely hot bubbles are caused by the black hole's voracious eating habits. The eating machine is engorging itself with a banquet of material swirling around it in an accretion disk (the white region below the bright bubble). Some of this material is spewed from the disk in opposite directions. Acting like high-powered garden hoses, these twin jets of matter sweep out material in their paths. The jets eventually slam into a wall of dense, slow-moving gas, which is traveling at less than 223,000 mph (360,000 kph). The collision produces the glowing material. The bubbles will continue to expand and will eventually dissipate. Compared with the life of the galaxy, this bubble-blowing phase is a short-lived event. The bubble is much brighter on one side of the galaxy's center because the jet smashed into a denser amount of gas. The brighter bubble is 800 light-years tall and 800 light-years across. The observations are being presented June 5 at the American Astronomical Society meeting in Rochester, N.Y. Both pictures were taken March 24, 1999 with the Wide Field and Planetary Camera 2. False colors were used to enhance the details of the bubbles. The red regions in the picture denote the hot gas

  5. Interfacial structures in downward two-phase bubbly flow

    International Nuclear Information System (INIS)

    Paranjape, S.S.; Kim, S.; Ishii, M.; Kelly, J.

    2003-01-01

    Downward two-phase flow was studied considering its significance in view of Light Water Reactor Accidents (LWR) such as Loss of Heat Sink (LOHS) by feed water loss or secondary pipe break. The flow studied, was an adiabatic, air-water, co-current, vertically downward two-phase flow. The experimental test sections had internal hydraulic diameters of 25.4 mm and 50.8 mm. Flow regime map was obtained using the characteristic signals obtained from an impedance void meter, employing neural network based identification methodology to minimize the subjective judgment in determining the flow regimes. A four sensor conductivity probe was used to measure the local two phase flow parameters, which characterize the interfacial structures. The local time averaged two-phase flow parameters measured were: void fraction (α), interfacial area concentration (a i ), bubble velocity (v g ), and Sauter mean diameter (D Sm ). The flow conditions were from the bubbly flow regime. The local profiles of these parameters as well as their axial development revealed the nature of the interfacial structures and the bubble interaction mechanisms occurring in the flow. Furthermore, this study provided a good database for the development of the interfacial area transport equation, which dynamically models the changes in the interfacial area along the flow field. An interfacial area transport equation was developed for downward flow based on that developed for the upward flow, with certain modifications in the bubble interaction terms. The area averaged values of the interfacial area concentration were compared with those predicted by the interfacial area transport model. (author)

  6. Chaotic bubbling and nonstagnant foams.

    Science.gov (United States)

    Tufaile, Alberto; Sartorelli, José Carlos; Jeandet, Philippe; Liger-Belair, Gerard

    2007-06-01

    We present an experimental investigation of the agglomeration of bubbles obtained from a nozzle working in different bubbling regimes. This experiment consists of a continuous production of bubbles from a nozzle at the bottom of a liquid column, and these bubbles create a two-dimensional (2D) foam (or a bubble raft) at the top of this column. The bubbles can assemble in various dynamically stable arrangement, forming different kinds of foams in a liquid mixture of water and glycerol, with the effect that the bubble formation regimes influence the foam obtained from this agglomeration of bubbles. The average number of bubbles in the foam is related to the bubble formation frequency and the bubble mean lifetime. The periodic bubbling can generate regular or irregular foam, while a chaotic bubbling only generates irregular foam.

  7. Hidden Attractors in a Model of a Bubble Contrast Agent Oscillating Near an Elastic Wall

    Science.gov (United States)

    Garashchuk, Ivan; Sinelshchikov, Dmitry; Kudryashov, Nikolay

    2018-02-01

    A model describing the dynamics of a spherical gas bubble in a compressible viscous liquid is studied. The bubble is oscillating close to an elastic wall of finite thickness under the influence of an external pressure field which simulates a contrast agent oscillating close to a blood vessel wall. Here we investigate numerically the coexistence of chaotic and periodic attractors in this model. One of the tools applied for seeking coexisting attractors is the perpetual points method. This method can be helpful for localizing coexisting attractors, occurring in various physically realistic ranges of variation of the control parameters. We provide some examples of coexisting attractors to demonstrate the importance of the multistability problem for the applications.

  8. Comparative study of He bubble formation in nanostructured reduced activation steel and its coarsen-grained counterpart

    Science.gov (United States)

    Liu, W. B.; Zhang, J. H.; Ji, Y. Z.; Xia, L. D.; Liu, H. P.; Yun, D.; He, C. H.; Zhang, C.; Yang, Z. G.

    2018-03-01

    High temperature (550 °C) He ions irradiation was performed on nanostructured (NS) and coarsen-grained (CG) reduced activation steel to investigate the effects of GBs/interfaces on the formation of bubbles during irradiation. Experimental results showed that He bubbles were preferentially trapped at dislocations and/or grain boundaries (GBs) for both of the samples. Void denuded zones (VDZs) were observed in the CG samples, while VDZs near GBs were unobvious in NS sample. However, both the average bubble size and the bubble density in peak damage region of the CG sample were significantly larger than that observed in the NS sample, which indicated that GBs play an important role during the irradiation, and the NS steel had better irradiation resistance than its CG counterpart.

  9. Implementation of Serial and Parallel Bubble Sort on Fpga

    OpenAIRE

    Purnomo, Dwi Marhaendro Jati; Arinaldi, Ahmad; Priyantini, Dwi Teguh; Wibisono, Ari; Febrian, Andreas

    2016-01-01

    Sorting is common process in computational world. Its utilization are on many fields from research to industry. There are many sorting algorithm in nowadays. One of the simplest yet powerful is bubble sort. In this study, bubble sort is implemented on FPGA. The implementation was taken on serial and parallel approach. Serial and parallel bubble sort then compared by means of its memory, execution time, and utility which comprises slices and LUTs. The experiments show that serial bubble sort r...

  10. Revised numerical model for F{sub 2} bubble breakdown in molten flibe and its economics in the fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Seto, K., E-mail: kelvin.seto@uoit.ca [University of Ontario Institute of Technology, Oshawa, ON (Canada)

    2015-07-01

    A one-dimensional numerical model of the breakdown for a fluorine bubble due to break-up and chemical reactions with dissolved UF{sub 4} and PuF{sub 4} in the molten salt reactor (MSR) volatilization process was revised. The updated model utilized a more realistic, 1.0 cm F{sub 2} bubble to study the breakdown process in the idealized MSR fuel purification vessel. Although more accurate reaction interface and F{sub 2} reactivity values were used, chemical reactions were still found to be the primary cause of bubble breakdown. The importance of efficiency in F{sub 2} usage in the purification process on the economic and safety point of view was discussed. (author)

  11. Generation of a bubble universe using a negative energy bath

    International Nuclear Information System (INIS)

    Hwang, Dong-il; Yeom, Dong-han

    2011-01-01

    This paper suggests a model for a bubble universe using buildable false vacuum bubbles. We study the causal structures of collapsing false vacuum bubbles using double-null simulations. False vacuum bubbles violate the null energy condition and emit negative energy along the outgoing direction through semi-classical effects. If there are a few collapsing false vacuum bubbles and they emit negative energy to a certain region, then the region can be approximated by a negative energy bath, which means that the region is homogeneously filled by negative energy. If a false vacuum bubble is generated in the negative energy bath and the tension of the bubble effectively becomes negative in the bath, then the bubble can expand and form an inflating bubble universe. This scenario uses a set of assumptions different from those in previous studies because it does not require tunneling to unbuildable bubbles.

  12. Bubble fusion: Preliminary estimates

    International Nuclear Information System (INIS)

    Krakowski, R.A.

    1995-01-01

    The collapse of a gas-filled bubble in disequilibrium (i.e., internal pressure much-lt external pressure) can occur with a significant focusing of energy onto the entrapped gas in the form of pressure-volume work and/or acoustical shocks; the resulting heating can be sufficient to cause ionization and the emission of atomic radiations. The suggestion that extreme conditions necessary for thermonuclear fusion to occur may be possible has been examined parametrically in terms of the ratio of initial bubble pressure relative to that required for equilibrium. In this sense, the disequilibrium bubble is viewed as a three-dimensional ''sling shot'' that is ''loaded'' to an extent allowed by the maximum level of disequilibrium that can stably be achieved. Values of this disequilibrium ratio in the range 10 -5 --10 -6 are predicted by an idealized bubble-dynamics model as necessary to achieve conditions where nuclear fusion of deuterium-tritium might be observed. Harmonic and aharmonic pressurizations/decompressions are examined as means to achieve the required levels of disequilibrium required to create fusion conditions. A number of phenomena not included in the analysis reported herein could enhance or reduce the small levels of nuclear fusions predicted

  13. Large Eddy Simulations of Electromagnetic Braking Effects on Argon Bubble Transport and Capture in a Steel Continuous Casting Mold

    Science.gov (United States)

    Jin, Kai; Vanka, Surya P.; Thomas, Brian G.

    2018-06-01

    In continuous casting of steel, argon gas is often injected to prevent clogging of the nozzle, but the bubbles affect the flow pattern, and may become entrapped to form defects in the final product. Further, an electromagnetic field is frequently applied to induce a braking effect on the flow field and modify the inclusion transport. In this study, a previously validated GPU-based in-house code CUFLOW is used to investigate the effect of electromagnetic braking on turbulent flow, bubble transport, and capture. Well-resolved large eddy simulations are combined with two-way coupled Lagrangian computations of the bubbles. The drag coefficient on the bubbles is modified to account for the effects of the magnetic field. The distribution of the argon bubbles, capture, and escape rates, are presented and compared with and without the magnetic field. The bubble capture patterns are also compared with results of a previous RANS model as well as with plant measurements.

  14. Numerical simulation of single bubble boiling behavior

    Directory of Open Access Journals (Sweden)

    Junjie Liu

    2017-06-01

    Full Text Available The phenomena of a single bubble boiling process are studied with numerical modeling. The mass, momentum, energy and level set equations are solved using COMSOL multi-physics software. The bubble boiling dynamics, the transient pressure field, velocity field and temperature field in time are analyzed, and reasonable results are obtained. The numeral model is validated by the empirical equation of Fritz and could be used for various applications.

  15. Doppler method leak detection for LMFBR steam generators. Pt. 1. Experimental results of bubble detection using small models

    International Nuclear Information System (INIS)

    Kumagai, Hiromichi

    1999-01-01

    To prevent the expansion of the tube damage and to maintain structural integrity in the steam generators (SGs) of fast breeder reactors (FBRs), it is necessary to detect precisely and immediately the leakage of water from heat transfer tubes. Therefore, an active acoustic method was developed. Previous studies have revealed that in practical steam generators the active acoustic method can detect bubbles of 10 l/s within 10 seconds. To prevent the expansion of damage to neighboring tubes, it is necessary to detect smaller leakages of water from the heat transfer tubes. The Doppler method is designed to detect small leakages and to find the source of the leak before damage spreads to neighboring tubes. To evaluate the relationship between the detection sensitivity of the Doppler method and the bubble volume and bubble size, the structural shapes and bubble flow conditions were investigated experimentally, using a small structural model. The results show that the Doppler method can detect the bubbles under bubble flow conditions, and it is sensitive enough to detect small leakages within a short time. The doppler method thus has strong potential for the detection of water leakage in SGs. (author)

  16. A new model for coal gasification on pressurized bubbling fluidized bed gasifiers

    International Nuclear Information System (INIS)

    Sánchez, Cristian; Arenas, Erika; Chejne, Farid; Londoño, Carlos A.; Cisneros, Sebastian; Quintana, Juan C.

    2016-01-01

    Highlights: • A new model was proposed for the simulation of fluidized bed reactors. • The model was validated against experimental data found in the literature. • The model was compared and found to be superior to other models reported in the literature. • Effects of pressure, temperature, steam/coal and air/coal ratios over gas composition were studied. - Abstract: Many industries have taken interest in the use of coal gasification for the production of chemicals and fuels. This gasification can be carried out inside a fluidized bed reactor. This non-ideal reactor is difficult to predict due to the complex physical phenomena and the different chemical changes that the feedstock undergoes. The lack of a good model to simulate the reactor’s behavior produces less efficient processes and plant designs. Various approaches to the proper simulation of such reactor have been proposed. In this paper, a new model is developed for the simulation of a pressurized bubbling fluidized bed (PBFB) gasifier that rigorously models the physical phenomena and the chemical changes of the feedstock inside the reactor. In the model, the reactor is divided into three sections; devolatilization, volatile reactions and combustion-gasification. The simulation is validated against experimental data reported in the literature and compared with other models proposed by different authors; once the model is validated, the dependence of the syngas composition on operational pressure, temperature, steam/coal and air/coal ratios are studied. The results of this article show how this model satisfactorily predicts the performance of PBFB gasifiers.

  17. Geomagnetically conjugate observation of plasma bubbles and thermospheric neutral winds at low latitudes

    Science.gov (United States)

    Fukushima, D.; Shiokawa, K.; Otsuka, Y.; Nishioka, M.; Kubota, M.; Tsugawa, T.; Nagatsuma, T.; Komonjinda, S.; Yatini, C. Y.

    2015-03-01

    This is the first paper that reports simultaneous observations of zonal drift of plasma bubbles and the thermospheric neutral winds at geomagnetically conjugate points in both hemispheres. The plasma bubbles were observed in the 630 nm nighttime airglow images taken by using highly sensitive all-sky airglow imagers at Kototabang, Indonesia (geomagnetic latitude (MLAT): 10.0°S), and Chiang Mai, Thailand (MLAT: 8.9°N), which are nearly geomagnetically conjugate stations, for 7 h from 13 to 20 UT (from 20 to 03 LT) on 5 April 2011. The bubbles continuously propagated eastward with velocities of 100-125 m/s. The 630 nm images at Chiang Mai and those mapped to the conjugate point of Kototabang fit very well, which indicates that the observed plasma bubbles were geomagnetically connected. The eastward thermospheric neutral winds measured by two Fabry-Perot interferometers were 70-130 m/s at Kototabang and 50-90 m/s at Chiang Mai. We compared the observed plasma bubble drift velocity with the velocity calculated from the observed neutral winds and the model conductivity, to investigate the F region dynamo contribution to the bubble drift velocity. The estimated drift velocities were 60-90% of the observed velocities of the plasma bubbles, suggesting that most of the plasma bubble velocity can be explained by the F region dynamo effect.

  18. Dye visualization near a three-dimensional stagnation point: application to the vortex breakdown bubble

    DEFF Research Database (Denmark)

    Brøns, Morten; Thompson, M. C.; Hourigan, K.

    2009-01-01

    flows are typically visualized. Predictions based on the model are made for the steady vortex breakdown bubble in a torsionally driven cylinder and compared with computational fluid dynamics predictions and experimental observations. Previous experimental observations using tracer visualization...... techniques have suggested that even for low-Reynolds-number flows, the steady vortex breakdown bubble in a torsionally driven cylinder is not axisymmetric and has an inflow/outflow asymmetry at its tail. Recent numerical and theoretical studies show that the asymmetry of the vortex breakdown bubble......, and consequently its open nature, can be explained by the very small imperfections that are present in any experimental rig. Distinct from this, here it is shown that even for a perfectly axisymmetric flow and breakdown bubble, the combined effect of dye diffusion and the inevitable small errors in the dye...

  19. Can airborne ultrasound monitor bubble size in chocolate?

    International Nuclear Information System (INIS)

    Watson, N; Hazlehurst, T; Povey, M; Vieira, J; Sundara, R; Sandoz, J-P

    2014-01-01

    Aerated chocolate products consist of solid chocolate with the inclusion of bubbles and are a popular consumer product in many countries. The volume fraction and size distribution of the bubbles has an effect on their sensory properties and manufacturing cost. For these reasons it is important to have an online real time process monitoring system capable of measuring their bubble size distribution. As these products are eaten by consumers it is desirable that the monitoring system is non contact to avoid food contaminations. In this work we assess the feasibility of using an airborne ultrasound system to monitor the bubble size distribution in aerated chocolate bars. The experimental results from the airborne acoustic experiments were compared with theoretical results for known bubble size distributions using COMSOL Multiphysics. This combined experimental and theoretical approach is used to develop a greater understanding of how ultrasound propagates through aerated chocolate and to assess the feasibility of using airborne ultrasound to monitor bubble size distribution in these systems. The results indicated that a smaller bubble size distribution would result in an increase in attenuation through the product

  20. Can airborne ultrasound monitor bubble size in chocolate?

    Science.gov (United States)

    Watson, N.; Hazlehurst, T.; Povey, M.; Vieira, J.; Sundara, R.; Sandoz, J.-P.

    2014-04-01

    Aerated chocolate products consist of solid chocolate with the inclusion of bubbles and are a popular consumer product in many countries. The volume fraction and size distribution of the bubbles has an effect on their sensory properties and manufacturing cost. For these reasons it is important to have an online real time process monitoring system capable of measuring their bubble size distribution. As these products are eaten by consumers it is desirable that the monitoring system is non contact to avoid food contaminations. In this work we assess the feasibility of using an airborne ultrasound system to monitor the bubble size distribution in aerated chocolate bars. The experimental results from the airborne acoustic experiments were compared with theoretical results for known bubble size distributions using COMSOL Multiphysics. This combined experimental and theoretical approach is used to develop a greater understanding of how ultrasound propagates through aerated chocolate and to assess the feasibility of using airborne ultrasound to monitor bubble size distribution in these systems. The results indicated that a smaller bubble size distribution would result in an increase in attenuation through the product.

  1. Cavitation bubble nucleation induced by shock-bubble interaction in a gelatin gel

    Science.gov (United States)

    Oguri, Ryota; Ando, Keita

    2018-05-01

    An optical visualization technique is developed to study cavitation bubble nucleation that results from interaction between a laser-induced shock and a preexisting gas bubble in a 10 wt. % gelatin gel; images of the nucleated cavitation bubbles are captured and the cavitation inception pressure is determined based on Euler flow simulation. A spherical gas cavity is generated by focusing an infrared laser pulse into a gas-supersaturated gel and the size of the laser-generated bubble in mechanical equilibrium is tuned via mass transfer of the dissolved gas into the bubble. A spherical shock is then generated, through rapid expansion of plasma induced by the laser focusing, in the vicinity of the gas bubble. The shock-bubble interaction is recorded by a CCD camera with flash illumination of a nanosecond green laser pulse. The observation captures cavitation inception in the gel under tension that results from acoustic impedance mismatching at the bubble interface interacting with the shock. We measure the probability of cavitation inception from a series of the repeated experiments, by varying the bubble radius and the standoff distance. The threshold pressure is defined at the cavitation inception probability equal to one half and is calculated, through comparisons to Euler flow simulation, at -24.4 MPa. This threshold value is similar to that from shock-bubble interaction experiments using water, meaning that viscoelasticity of the 10 wt. % gelatin gel has a limited impact on bubble nucleation dynamics.

  2. Interfacial area transport of bubbly flow in a small diameter pipe

    International Nuclear Information System (INIS)

    Hibiki, Takashi; Takamasa, Tomoji; Ishii, Mamoru

    2001-01-01

    In relation to the development of the interfacial area transport equation, this study focused on modeling of the interfacial area transport mechanism of vertical adiabatic air-water bubbly flows in a relatively small diameter pipe where the bubble size-to-pipe diameter ratio was relatively high and the radial motion of bubbles was restricted by the presence of the pipe wall. The sink term of the interfacial area concentration was modeled by considering wake entrainment as a possible bubble coalescence mechanism, whereas the source term was neglected by assuming negligibly small bubble breakup for low liquid velocity conditions based on visual observation. One-dimensional interfacial area transport equation with the derived sink term was evaluated by using five datasets of vertical adiabatic air-water bubbly flows measured in a 9.0 mm-diameter pipe (superficial gas velocity: 0.013-0.052 m/s, superficial liquid velocity: 0.58-1.0 m/s). The modeled interfacial area transport equation could reproduce the proper trend of the axial interfacial area transport and predict the measured interfacial area concentrations within an average relative deviation of ±11.1%. It was recognized that the present model would be promising for predicting the interfacial area transport of the examined bubbly flows. (author)

  3. A comparative study of the lattice Boltzmann and volume of fluid method for the rising bubble flows

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Seung Yeob; Park, Cheon Tae; Choi, Suhn [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    Recently, the lattice Boltzmann method (LBM) has gained much attention for its ability to simulate fluid flows, and for its potential advantages over a conventional CFD method. The key advantages of LBM are, (1) suitability for parallel computations, (2) absence of the need to solve the time-consuming Poisson equation for a pressure, and (3) an ease with the way multiphase flows, complex geometries and interfacial dynamics may be treated. Nevertheless, the LBM is considered as a mere alternative CFD tools, not a promising approach. The motion of the bubbles in a liquid has been the focus of both academic and practical interest. The central problem is the relationship between the rise velocity, bubble shape due to the interface deformation and flow field. The buoyancy effect due to density difference in the two phase flows is characterized with Eotvos and Morton numbers. In this study, a single bubble rising under a buoyancy is simulated with LBM and VOF based on conventional CFD method. The two simulation results are compared with the previous experiments. The main objective of the present work is to establish the lattice Boltzmann method as a viable tool for the simulation of multiphase or multi-component flows

  4. A comparative study of the lattice Boltzmann and volume of fluid method for the rising bubble flows

    International Nuclear Information System (INIS)

    Ryu, Seung Yeob; Park, Cheon Tae; Choi, Suhn

    2010-01-01

    Recently, the lattice Boltzmann method (LBM) has gained much attention for its ability to simulate fluid flows, and for its potential advantages over a conventional CFD method. The key advantages of LBM are, (1) suitability for parallel computations, (2) absence of the need to solve the time-consuming Poisson equation for a pressure, and (3) an ease with the way multiphase flows, complex geometries and interfacial dynamics may be treated. Nevertheless, the LBM is considered as a mere alternative CFD tools, not a promising approach. The motion of the bubbles in a liquid has been the focus of both academic and practical interest. The central problem is the relationship between the rise velocity, bubble shape due to the interface deformation and flow field. The buoyancy effect due to density difference in the two phase flows is characterized with Eotvos and Morton numbers. In this study, a single bubble rising under a buoyancy is simulated with LBM and VOF based on conventional CFD method. The two simulation results are compared with the previous experiments. The main objective of the present work is to establish the lattice Boltzmann method as a viable tool for the simulation of multiphase or multi-component flows

  5. Two types of nonlinear wave equations for diffractive beams in bubbly liquids with nonuniform bubble number density.

    Science.gov (United States)

    Kanagawa, Tetsuya

    2015-05-01

    This paper theoretically treats the weakly nonlinear propagation of diffracted sound beams in nonuniform bubbly liquids. The spatial distribution of the number density of the bubbles, initially in a quiescent state, is assumed to be a slowly varying function of the spatial coordinates; the amplitude of variation is assumed to be small compared to the mean number density. A previous derivation method of nonlinear wave equations for plane progressive waves in uniform bubbly liquids [Kanagawa, Yano, Watanabe, and Fujikawa (2010). J. Fluid Sci. Technol. 5(3), 351-369] is extended to handle quasi-plane beams in weakly nonuniform bubbly liquids. The diffraction effect is incorporated by adding a relation that scales the circular sound source diameter to the wavelength into the original set of scaling relations composed of nondimensional physical parameters. A set of basic equations for bubbly flows is composed of the averaged equations of mass and momentum, the Keller equation for bubble wall, and supplementary equations. As a result, two types of evolution equations, a nonlinear Schrödinger equation including dissipation, diffraction, and nonuniform effects for high-frequency short-wavelength case, and a Khokhlov-Zabolotskaya-Kuznetsov equation including dispersion and nonuniform effects for low-frequency long-wavelength case, are derived from the basic set.

  6. A numerical investigation of electrohydrodynamic (EHD) effects on bubble deformation under pseudo-nucleate boiling conditions

    International Nuclear Information System (INIS)

    Zu, Y.Q.; Yan, Y.Y.

    2009-01-01

    In this article, the electrohydrodynamic (EHD) effects on nucleate boiling are studied by developing a numerical modelling of EHD effect on bubble deformation in pseudo-nucleate boiling conditions. The volume of fluid (VOF) method is employed to track the interface between the gas-liquid two phases; the user-defined code is written and added to the commercial software FLUENT to solve the electric field and the corresponding electric body force. On this basis, the model is applied to study the EHD effects on heat transfer and fluid flows. An initial air bubble surrounded by liquid CCl 4 and attached to a horizontal superheated wall under the action of electric field is studied. The results of the EHD effect on bubble shape evolution are compared with those of available experiments showing good agreement. The mechanism of EHD enhancement of heat transfer and the EHD induced phenomena including bubble elongation and detachment are analyzed in detail.

  7. Approaching behavior of a pair of spherical bubbles in quiescent liquids

    Science.gov (United States)

    Sanada, Toshiyuki; Kusuno, Hiroaki

    2015-11-01

    Some unique motions related bubble-bubble interaction, such as equilibrium distance, wake induced lift force, have been proposed by theoretical analysis or numerical simulations. These motions are different from the solid spheres like DKT model (Drafting, Kissing and Tumbling). However, there is a lack of the experimental verification. In this study, we experimentally investigated the motion of a pair of bubbles initially positioned in-line configuration in ultrapure water or an aqueous surfactant solution. The bubble motion were observed by two high speed video cameras. The bubbles Reynolds number was ranged from 50 to 300 and bubbles hold the spherical shape in this range. In ultrapure water, initially the trailing bubble deviated from the vertical line on the leading bubble owing to the wake of the leading bubble. And then, the slight difference of the bubble radius changed the relative motion. When the trailing bubble slightly larger than the leading bubble, the trailing bubble approached to the leading bubble due to it's buoyancy difference. The bubbles attracted and collided only when the bubbles rising approximately side by side configuration. In addition, we will also discuss the motion of bubbles rising in an aqueous surfactant solution.

  8. Numerical study of the bubbly flow regime in micro-channel flow boiling

    Science.gov (United States)

    Bhuvankar, Pramod; Dabiri, Sadegh

    2017-11-01

    Two-phase flow accompanied by boiling in micro-channel heat sinks is an effective means for heat removal from computer chips. We present a numerical study of flow boiling in micro-channels with conjugate heat transfer with a focus on the bubbly flow regime. The bubbles are assumed to nucleate at a pre-determined location and frequency. The Navier Stokes equations are solved using a single fluid formulation with the Front tracking method. Phase change is implemented using the deficit in heat flux across the bubble interface. The analytical solution for bubble growth in a superheated liquid is used as a benchmark to validate the mentioned numerical method. Water and FC-72 are studied as the operating fluids in a micro-channel made of Copper with a focus on hotspot mitigation. The micro-channel of cross-section 231 μm × 1000 μm , is used to study the effects of vertical up-flow, vertical down-flow and horizontal flow of the mentioned fluids on the heat transfer coefficients. A simple film model accounting for mass and energy conservation is applied wherever the bubble approaches closer than a cell width to the wall. The results of the simulation are compared with existing experimental data for bubble growth rates and heat transfer coefficients.

  9. THE MILKY WAY PROJECT: LEVERAGING CITIZEN SCIENCE AND MACHINE LEARNING TO DETECT INTERSTELLAR BUBBLES

    International Nuclear Information System (INIS)

    Beaumont, Christopher N.; Williams, Jonathan P.; Goodman, Alyssa A.; Kendrew, Sarah; Simpson, Robert

    2014-01-01

    We present Brut, an algorithm to identify bubbles in infrared images of the Galactic midplane. Brut is based on the Random Forest algorithm, and uses bubbles identified by >35,000 citizen scientists from the Milky Way Project to discover the identifying characteristics of bubbles in images from the Spitzer Space Telescope. We demonstrate that Brut's ability to identify bubbles is comparable to expert astronomers. We use Brut to re-assess the bubbles in the Milky Way Project catalog, and find that 10%-30% of the objects in this catalog are non-bubble interlopers. Relative to these interlopers, high-reliability bubbles are more confined to the mid-plane, and display a stronger excess of young stellar objects along and within bubble rims. Furthermore, Brut is able to discover bubbles missed by previous searches—particularly bubbles near bright sources which have low contrast relative to their surroundings. Brut demonstrates the synergies that exist between citizen scientists, professional scientists, and machine learning techniques. In cases where ''untrained' citizens can identify patterns that machines cannot detect without training, machine learning algorithms like Brut can use the output of citizen science projects as input training sets, offering tremendous opportunities to speed the pace of scientific discovery. A hybrid model of machine learning combined with crowdsourced training data from citizen scientists can not only classify large quantities of data, but also address the weakness of each approach if deployed alone

  10. THE MILKY WAY PROJECT: LEVERAGING CITIZEN SCIENCE AND MACHINE LEARNING TO DETECT INTERSTELLAR BUBBLES

    Energy Technology Data Exchange (ETDEWEB)

    Beaumont, Christopher N.; Williams, Jonathan P. [Institute for Astronomy, University of Hawai' i, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Goodman, Alyssa A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Kendrew, Sarah; Simpson, Robert, E-mail: beaumont@ifa.hawaii.edu [Department of Astrophysics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom)

    2014-09-01

    We present Brut, an algorithm to identify bubbles in infrared images of the Galactic midplane. Brut is based on the Random Forest algorithm, and uses bubbles identified by >35,000 citizen scientists from the Milky Way Project to discover the identifying characteristics of bubbles in images from the Spitzer Space Telescope. We demonstrate that Brut's ability to identify bubbles is comparable to expert astronomers. We use Brut to re-assess the bubbles in the Milky Way Project catalog, and find that 10%-30% of the objects in this catalog are non-bubble interlopers. Relative to these interlopers, high-reliability bubbles are more confined to the mid-plane, and display a stronger excess of young stellar objects along and within bubble rims. Furthermore, Brut is able to discover bubbles missed by previous searches—particularly bubbles near bright sources which have low contrast relative to their surroundings. Brut demonstrates the synergies that exist between citizen scientists, professional scientists, and machine learning techniques. In cases where ''untrained' citizens can identify patterns that machines cannot detect without training, machine learning algorithms like Brut can use the output of citizen science projects as input training sets, offering tremendous opportunities to speed the pace of scientific discovery. A hybrid model of machine learning combined with crowdsourced training data from citizen scientists can not only classify large quantities of data, but also address the weakness of each approach if deployed alone.

  11. Study of non-spherical bubble oscillations near a surface in a weak acoustic standing wave field.

    Science.gov (United States)

    Xi, Xiaoyu; Cegla, Frederic; Mettin, Robert; Holsteyns, Frank; Lippert, Alexander

    2014-04-01

    The interaction of acoustically driven bubbles with a wall is important in many applications of ultrasound and cavitation, as the close boundary can severely alter the bubble dynamics. In this paper, the non-spherical surface oscillations of bubbles near a surface in a weak acoustic standing wave field are investigated experimentally and numerically. The translation, the volume, and surface mode oscillations of bubbles near a flat glass surface were observed by a high speed camera in a standing wave cell at 46.8 kHz. The model approach is based on a modified Keller-Miksis equation coupled to surface mode amplitude equations in the first order, and to the translation equations. Modifications are introduced due to the adjacent wall. It was found that a bubble's oscillation mode can change in the presence of the wall, as compared to the bubble in the bulk liquid. In particular, the wall shifts the instability pressure thresholds to smaller driving frequencies for fixed bubble equilibrium radii, or to smaller equilibrium radii for fixed excitation frequency. This can destabilize otherwise spherical bubbles, or stabilize bubbles undergoing surface oscillations in the bulk. The bubble dynamics observed in experiment demonstrated the same trend as the theoretical results.

  12. Bubbling away

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1993-10-15

    Bubble chambers may have almost vanished from the front line of physics research, but the vivid memory of their intricate and sometimes beautiful patterns of particle tracks lives on, and has greatly influenced the computer graphics of track reconstruction in today's big experiments. 'Seeing' an interaction makes it more understandable. Bubble chambers, with their big collaborations of physicists from many widely scattered research institutes, started another ball rolling. The groups formed are even now only surpassed in size by the big collaborations working on today's major detectors at colliding beam machines. From 14-16 July, about 130 physicists gathered at CERN to commemorate the 40th anniversary of the invention of the bubble chamber by Donald Glaser. The meeting, organized by Derek C. Colley from Birmingham, gave a comprehensive overview of bubble chamber contributions to physics, their challenging technology, and the usefulness of bubble chamber photographs in education, both for physics and the public at large. After opening remarks by CERN Director Carlo Rubbia, Donald Glaser began with a brief review of the work which led to his invention - there was much more to it than idly watching beer bubbles rise up the wall of the glass - before turning to his present line of research, biophysics, also very visually oriented.

  13. Cap Bubble Drift Velocity in a Confined Test Section

    International Nuclear Information System (INIS)

    Xiaodong Sun; Seungjin Kim; Mamoru Ishii; Lincoln, Frank W.; Beus, Stephen G.

    2002-01-01

    In the two-group interfacial area transport equation, bubbles are categorized into two groups, i.e., spherical/distorted bubbles as group 1 and cap/slug/churn-turbulent bubbles as group 2. The bubble rise velocities for both groups of bubbles may be estimated by the drift flux model by applying different distribution parameters and drift velocities for both groups. However, the drift velocity for group 2 bubbles is not always applicable (when the wall effect becomes important) as in the current test loop of interest where the flow channel is confined by two parallel flat walls, with a dimension of 200-mm in width and 10-mm in gap. The previous experiments indicated that no stable slug flow existed in this test section, which was designed to permit visualization of the flow patterns and bubble characteristics without the distortion associated with curved surfaces. In fact, distorted cap bubbly and churn-turbulent flow was observed. Therefore, it is essential to developed a correlation for cap bubble drift velocity in this confined flow channel. Since the rise velocity of a cap bubble depends on its size, a high-speed movie camera is used to capture images of cap bubbles to obtain the bubble size information. Meanwhile, the rise velocity of cap and elongated bubbles (called cap bubbles hereafter) is investigated by examining the captured images frame by frame. As a result, the conventional correlation of drift velocity for slug bubbles is modified and acceptable agreements between the measurements and correlation estimation are achieved

  14. Small-bubble transport and splitting dynamics in a symmetric bifurcation

    KAUST Repository

    Qamar, Adnan

    2017-06-28

    Simulations of small bubbles traveling through symmetric bifurcations are conducted to garner information pertinent to gas embolotherapy, a potential cancer treatment. Gas embolotherapy procedures use intra-arterial bubbles to occlude tumor blood supply. As bubbles pass through bifurcations in the blood stream nonhomogeneous splitting and undesirable bioeffects may occur. To aid development of gas embolotherapy techniques, a volume of fluid method is used to model the splitting process of gas bubbles passing through artery and arteriole bifurcations. The model reproduces the variety of splitting behaviors observed experimentally, including the bubble reversal phenomenon. Splitting homogeneity and maximum shear stress along the vessel walls is predicted over a variety of physical parameters. Small bubbles, having initial length less than twice the vessel diameter, were found unlikely to split in the presence of gravitational asymmetry. Maximum shear stresses were found to decrease exponentially with increasing Reynolds number. Vortex-induced shearing near the bifurcation is identified as a possible mechanism for endothelial cell damage.

  15. Small-bubble transport and splitting dynamics in a symmetric bifurcation.

    Science.gov (United States)

    Qamar, Adnan; Warnez, Matthew; Valassis, Doug T; Guetzko, Megan E; Bull, Joseph L

    2017-08-01

    Simulations of small bubbles traveling through symmetric bifurcations are conducted to garner information pertinent to gas embolotherapy, a potential cancer treatment. Gas embolotherapy procedures use intra-arterial bubbles to occlude tumor blood supply. As bubbles pass through bifurcations in the blood stream nonhomogeneous splitting and undesirable bioeffects may occur. To aid development of gas embolotherapy techniques, a volume of fluid method is used to model the splitting process of gas bubbles passing through artery and arteriole bifurcations. The model reproduces the variety of splitting behaviors observed experimentally, including the bubble reversal phenomenon. Splitting homogeneity and maximum shear stress along the vessel walls is predicted over a variety of physical parameters. Small bubbles, having initial length less than twice the vessel diameter, were found unlikely to split in the presence of gravitational asymmetry. Maximum shear stresses were found to decrease exponentially with increasing Reynolds number. Vortex-induced shearing near the bifurcation is identified as a possible mechanism for endothelial cell damage.

  16. Small-bubble transport and splitting dynamics in a symmetric bifurcation

    KAUST Repository

    Qamar, Adnan; Warnez, Matthew; Valassis, Doug T.; Guetzko, Megan E.; Bull, Joseph L.

    2017-01-01

    Simulations of small bubbles traveling through symmetric bifurcations are conducted to garner information pertinent to gas embolotherapy, a potential cancer treatment. Gas embolotherapy procedures use intra-arterial bubbles to occlude tumor blood supply. As bubbles pass through bifurcations in the blood stream nonhomogeneous splitting and undesirable bioeffects may occur. To aid development of gas embolotherapy techniques, a volume of fluid method is used to model the splitting process of gas bubbles passing through artery and arteriole bifurcations. The model reproduces the variety of splitting behaviors observed experimentally, including the bubble reversal phenomenon. Splitting homogeneity and maximum shear stress along the vessel walls is predicted over a variety of physical parameters. Small bubbles, having initial length less than twice the vessel diameter, were found unlikely to split in the presence of gravitational asymmetry. Maximum shear stresses were found to decrease exponentially with increasing Reynolds number. Vortex-induced shearing near the bifurcation is identified as a possible mechanism for endothelial cell damage.

  17. Mechanisms of stability of armored bubbles: FY 1995 progress report

    International Nuclear Information System (INIS)

    Rossen, W.R.; Das, S.K.

    1996-04-01

    Experimental and theoretical studies of stabilization of liquid films between bubbles were undertaken as part of an effort to model gas release in waste tanks at the Hanford nuclear reservation. Synthetic Hanford waste created here showed solids accumulation at bubble surfaces and some stabilization of bubbles in a froth upon sparging with nitrogen. Dilational interfacial rheological measurements indicate increasing hydrophobicity with increasing EDTA concentration in the wastes. There is greater dilational elasticity of the interface with solid particles present on the interface. Theoretical modeling of a 2D liquid film between bubbles containing one row of solid particles suggests that in 3D such a film would be unstable unless the solids all touch. This hints at a possible mechanism for bubble stabilization, if it can be argued that slowly evolving interfaces, as bubbles grow toward each other in the sludge, have solids closely packed, but that rapid expansion of gas during a rollover event forces the films to expand without additional solids

  18. The dynamics of a non-equilibrium bubble near bio-materials

    International Nuclear Information System (INIS)

    Ohl, S W; Klaseboer, E; Khoo, B C

    2009-01-01

    In many medical treatments oscillating (non-equilibrium) bubbles appear. They can be the result of high-intensity-focused ultrasound, laser treatments or shock wave lithotripsy for example. The physics of such oscillating bubbles is often not very well understood. This is especially so if the bubbles are oscillating near (soft) bio-materials. It is well known that bubbles oscillating near (hard) materials have a tendency to form a high speed jet directed towards the material during the collapse phase of the bubble. It is equally well studied that bubbles near a free interface (air) tend to collapse with a jet directed away from this interface. If the interface is neither 'free' nor 'hard', such as often occurs in bio-materials, the resulting flow physics can be very complex. Yet, in many bio-applications, it is crucial to know in which direction the jet will go (if there is a jet at all). Some applications require a jet towards the tissue, for example to destroy it. For other applications, damage due to impacting jets is to be prevented at all cost. This paper tries to address some of the physics involved in these treatments by using a numerical method, the boundary element method (BEM), to study the dynamics of such bubbles near several bio-materials. In the present work, the behaviour of a bubble placed in a water-like medium near various bio-materials (modelled as elastic fluids) is investigated. It is found that its behaviour depends on the material properties (Young's modulus, Poisson ratio and density) of the bio-material. For soft bio-materials (fat, skin, brain and muscle), the bubble tends to split into smaller bubbles. In certain cases, the resulting bubbles develop opposing jets. For hard bio-materials (cornea, cartilage and bone), the bubble collapses towards the interface with high speed jets (between 100 and about 250 m s -1 ). A summary graph is provided identifying the combined effects of the dimensionless elasticity (κ) and density ratio (α) of

  19. Experimental observation of exploding electron bubbles

    International Nuclear Information System (INIS)

    Classen, J.; Su, C.K.; Hall, S.C.; Pettersen, M.S.; Maris, H.J.

    1996-01-01

    Since free electrons form small voids in liquid helium they are expected to be preferred sites for nucleating macroscopic bubbles when the liquid is exposed to sufficiently large negative pressures. We have performed a series of cavitation experiments using focussed ultrasound where free electrons were introduced into the liquid by a radioactive source. The electron bubbles are found to explode at negative pressures significantly lower than those required for homogeneous nucleation. We present measurements of the thresholds for cavitation at electrons in the temperature range 1 - 4.5 K. Reasonable agreement with a simple model for the stability limit of the electron bubble is obtained. (author)

  20. Can we use volatility to diagnose financial bubbles? lessons from 40historical bubbles

    Directory of Open Access Journals (Sweden)

    Didier Sornette

    2018-03-01

    Full Text Available We inspect the price volatility before, during, and after financial asset bubbles in orderto uncover possible commonalities and check empirically whether volatility might be used as anindicator or an early warning signal of an unsustainable price increase and the associated crash. Someresearchers and finance practitioners believe that historical and/or implied volatility increase beforea crash, but we do not see this as a consistent behavior. We examine forty well-known bubbles and,using creative graphical representations to capture robustly the transient dynamics of the volatility, findthat the dynamics of the volatility would not have been a useful predictor of the subsequent crashes.In approximately two-third of the studied bubbles, the crash follows a period of lower volatility,reminiscent of the idiom of a “lull before the storm”. This paradoxical behavior, from the lensesof traditional asset pricing models, further questions the general relationship between risk and return.

  1. Dynamics of bubble formation in highly viscous liquids.

    Science.gov (United States)

    Pancholi, Ketan; Stride, Eleanor; Edirisinghe, Mohan

    2008-04-15

    There has recently been considerable interest in the development of devices for the preparation of monodisperse microbubble suspensions for use as ultrasound contrast agents and drug delivery vehicles. These applications require not only a high degree of bubble uniformity but also a maximum bubble size of 8 mum, and this provides a strong motivation for developing an improved understanding of the process of bubble formation in a given device. The aim of this work was to investigate bubble formation in a T-junction device and determine the influence of the different processing parameters upon bubble size, in particular, liquid viscosity. Images of air bubble formation in a specially designed T-junction were recorded using a high-speed camera for different ratios of liquid to gas flow rate (Ql/Qg) and different liquid viscosities (microl). It was found that theoretical predictions of the flow profile in the focal region based on analysis of axisymmetric Stokes flow were accurate to within 6% when compared with the experimental data, indicating that this provided a suitable means of describing the bubble formation process. Both the theoretical and experimental results showed that Ql/Qg and mul had a significant influence upon bubble formation and eventual size, with higher flow rates and higher viscosities producing smaller bubbles. There were, however, found to be limiting values of Ql/Qg and mul beyond which no further reduction in bubble size was achieved.

  2. Bubble shape in horizontal and near horizontal intermittent flow

    International Nuclear Information System (INIS)

    Gu, Hanyang; Guo, Liejin

    2015-01-01

    Highlights: • The bubble shapes in intermittent flows are presented experimentally. • The nose-tail inversion phenomenon appears at a low Froude number in downward pipe. • Transition from plug to slug flow occurs when the bubble tail changes from staircase pattern to hydraulic jump. - Abstract: This paper presents an experimental study of the shape of isolated bubbles in horizontal and near horizontal intermittent flows. It is found that the shapes of the nose and body of bubble depend on the Froude number defined by gas/liquid mixture velocity in a pipe, whereas the shape of the back of bubble region depends on both the Froude number and bubble length. The photographic studies show that the transition from plug to slug flow occurs when the back of the bubble changes from staircase pattern to hydraulic jump with the increase of the Froude number and bubble length. The effect of pipe inclination on characteristics of bubble is significant: The bubble is inversely located in a downwardly inclined pipe when the Froude number is low, and the transition from plug flow to slug flow in an upward inclined pipe is more ready to occur compared with that in a downwardly inclined pipe

  3. Tritium extraction from Pb-17Li by bubble columns

    International Nuclear Information System (INIS)

    Malara, C.

    1995-01-01

    Tritium extraction from the Pb-17Li liquid breeder of a fusion reactor can be efficiently carried out by bubble columns. To this aim, a mathematical model describing the complex fluid-dynamics of a bubble extractor is here presented. The model equations are made dimensionless and, together with the proper boundary conditions, numerically solved by the orthogonal collocation technique. Moreover, in order to better understand the role played by the different parameters in determining the performance of a bubble column, a closed solution of the model is obtained by introducing suitable hypotheses. A parametric analysis of the extraction efficiency of a bubble column as a function of the process parameters is carried out and, on this basis, the design of a tritium extraction system from the Pb-17Li breeder of a DEMO-type fusion reactor is proposed. 17 refs., 3 figs., 2 tabs

  4. Bubble Collision in Curved Spacetime

    International Nuclear Information System (INIS)

    Hwang, Dong-il; Lee, Bum-Hoon; Lee, Wonwoo; Yeom, Dong-han

    2014-01-01

    We study vacuum bubble collisions in curved spacetime, in which vacuum bubbles were nucleated in the initial metastable vacuum state by quantum tunneling. The bubbles materialize randomly at different times and then start to grow. It is known that the percolation by true vacuum bubbles is not possible due to the exponential expansion of the space among the bubbles. In this paper, we consider two bubbles of the same size with a preferred axis and assume that two bubbles form very near each other to collide. The two bubbles have the same field value. When the bubbles collide, the collided region oscillates back-and-forth and then the collided region eventually decays and disappears. We discuss radiation and gravitational wave resulting from the collision of two bubbles

  5. Interfacial Bubble Deformations

    Science.gov (United States)

    Seymour, Brian; Shabane, Parvis; Cypull, Olivia; Cheng, Shengfeng; Feitosa, Klebert

    Soap bubbles floating at an air-water experience deformations as a result of surface tension and hydrostatic forces. In this experiment, we investigate the nature of such deformations by taking cross-sectional images of bubbles of different volumes. The results show that as their volume increases, bubbles transition from spherical to hemispherical shape. The deformation of the interface also changes with bubble volume with the capillary rise converging to the capillary length as volume increases. The profile of the top and bottom of the bubble and the capillary rise are completely determined by the volume and pressure differences. James Madison University Department of Physics and Astronomy, 4VA Consortium, Research Corporation for Advancement of Science.

  6. Characterization of Bubble Size Distributions within a Bubble Column

    Directory of Open Access Journals (Sweden)

    Shahrouz Mohagheghian

    2018-02-01

    Full Text Available The current study experimentally examines bubble size distribution (BSD within a bubble column and the associated characteristic length scales. Air was injected into a column of water via a single injection tube. The column diameter (63–102 mm, injection tube diameter (0.8–1.6 mm and superficial gas velocity (1.4–55 mm/s were varied. Large samples (up to 54,000 bubbles of bubble sizes measured via 2D imaging were used to produce probability density functions (PDFs. The PDFs were used to identify an alternative length scale termed the most frequent bubble size (dmf and defined as the peak in the PDF. This length scale as well as the traditional Sauter mean diameter were used to assess the sensitivity of the BSD to gas injection rate, injector tube diameter, injection tube angle and column diameter. The dmf was relatively insensitive to most variation, which indicates these bubbles are produced by the turbulent wakes. In addition, the current work examines higher order statistics (standard deviation, skewness and kurtosis and notes that there is evidence in support of using these statistics to quantify the influence of specific parameters on the flow-field as well as a potential indicator of regime transitions.

  7. Problems on holographic imaging technique and adapt lasers for bubble chambers

    International Nuclear Information System (INIS)

    Bjelkhagen, H.

    1982-01-01

    Different types of holographic recording technique for bubble chambers are presented and compared. The influence of turbulence on resolution is discussed as well as the demand on laser equipment. Experiments on a test model of HOLEBC using a pulsed ruby laser are also presented. (orig.)

  8. Fama on bubbles

    DEFF Research Database (Denmark)

    Engsted, Tom

    Eugene Fama has repeatedly expressed his discontent with the notion of an irrational bubble. However, he has never publicly expressed his opinion on rational bubbles. This is peculiar since such bubbles build naturally from the rational efficient markets paradigm that Fama strongly adheres to...

  9. A numerical simulation of the water vapor bubble rising in ferrofluid by volume of fluid model in the presence of a magnetic field

    Science.gov (United States)

    Shafiei Dizaji, A.; Mohammadpourfard, M.; Aminfar, H.

    2018-03-01

    Multiphase flow is one of the most complicated problems, considering the multiplicity of the related parameters, especially the external factors influences. Thus, despite the recent developments more investigations are still required. The effect of a uniform magnetic field on the hydrodynamics behavior of a two-phase flow with different magnetic permeability is presented in this article. A single water vapor bubble which is rising inside a channel filled with ferrofluid has been simulated numerically. To capture the phases interface, the Volume of Fluid (VOF) model, and to solve the governing equations, the finite volume method has been employed. Contrary to the prior anticipations, while the consisting fluids of the flow are dielectric, uniform magnetic field causes a force acting normal to the interface toward to the inside of the bubble. With respect to the applied magnetic field direction, the bubble deformation due to the magnetic force increases the bubble rising velocity. Moreover, the higher values of applied magnetic field strength and magnetic permeability ratio resulted in the further increase of the bubble rising velocity. Also it is indicated that the flow mixing and the heat transfer rate is increased by a bubble injection and applying a magnetic field. The obtained results have been concluded that the presented phenomenon with applying a magnetic field can be used to control the related characteristics of the multiphase flows. Compared to the previous studies, implementing the applicable cases using the common and actual materials and a significant reduction of the CPU time are the most remarkable advantages of the current study.

  10. Boiling crisis as inhibition of bubble detachment by the vapor recoil force

    International Nuclear Information System (INIS)

    Nikolayev, V.S.; Beysens, D.; Garrabos, Y.

    2004-01-01

    Boiling crisis is a transition between nucleate and film boiling. In this communication we present a physical model of the boiling crisis based on the vapor recoil effect. Our numerical simulations of the thermally controlled bubble growth at high heat fluxes show how the bubble begins to spread over the heater thus forming a germ for the vapor film. The vapor recoil force not only causes the vapor spreading, it also creates a strong adhesion to the heater that prevents the bubble departure, thus favoring the further bubble spreading. Near the liquid-gas critical point, the bubble growth is very slow and allows the kinetics of the bubble spreading to be observed. Since the surface tension is very small in this regime, only microgravity conditions can preserve a convex bubble shape. Under such conditions, we observed an increase of the apparent contact angle and spreading of the dry spot under the bubble, thus confirming our model of the boiling crisis. (authors)

  11. Phase distribution phenomena in upward cocurrent bubbly flows. A critical review of the experimental and theoretical works

    International Nuclear Information System (INIS)

    Grossetete, C.

    1992-09-01

    The most important and challenging problems in two-phase bubbly flow today are related to the physical understanding and the modeling of multidimensional phenomena such as the distribution of phases in space. We present here a critical review of the available experimental and theoretical studies in gas-liquid adiabatic and non-reactive upward bubbly flows which have been carried out to define and improve the physical models needed to close the three-dimensional two-fluid model equations. It appears that: so far, the axial development of two-phase upward bubbly flows has not been handled thoroughly. Little is known about the way the pressure gradient as well as the gas-liquid mixing conditions affect the distribution of phases, the problems related to the closing of the two-fluid model equations are far from being solved. The physical models proposed seem often to be too much complex considering how little we know about the mechanisms involved, there are still very few multidimensional numerical models whose results have been compared with experimental data on bubbly flows. The boundary conditions introduced in the codes as well as the sensitivity of the results to the parameters of the codes are never precisely stated. To bridge some of those gaps, we propose to perform an experimental and numerical study of the axial development of two-phase air-water upward bubbly flows in vertical pipes

  12. Effervescence in champagne and sparkling wines: From bubble bursting to droplet evaporation

    Science.gov (United States)

    Séon, T.; Liger-Belair, G.

    2017-01-01

    When a bubble reaches an air-liquid interface, it ruptures, projecting a multitude of tiny droplets in the air. Across the oceans, an estimated 1018 to 1020 bubbles burst every second, and form the so called sea spray, a major player in earth's climate system. At a smaller scale, in a glass of champagne about a million bubbles nucleate on the wall, rise towards the surface and burst, giving birth to a particular aerosol that holds a concentrate of wine aromas. Based on the model experiment of a single bubble bursting in simple liquids, we depict each step of this effervescence, from bubble bursting to drop evaporation. In particular, we propose simple scaling laws for the jet velocity and the top drop size. We unravel experimentally the intricate roles of bubble shape, capillary waves, gravity, and liquid properties in the jet dynamics and the drop detachment. We demonstrate how damping action of viscosity produces faster and smaller droplets and more generally how liquid properties enable to control the bubble bursting aerosol characteristics. In this context, the particular case of Champagne wine aerosol is studied in details and the key features of this aerosol are identified. We demonstrate that compared to a still wine, champagne fizz drastically enhances the transfer of liquid into the atmosphere. Conditions on bubble radius and wine viscosity that optimize aerosol evaporation are provided. These results pave the way towards the fine tuning of aerosol characteristics and flavor release during sparkling wine tasting, a major issue of the sparkling wine industry.

  13. Gas Bubble Migration and Trapping in Porous Media: Pore-Scale Simulation

    Science.gov (United States)

    Mahabadi, Nariman; Zheng, Xianglei; Yun, Tae Sup; van Paassen, Leon; Jang, Jaewon

    2018-02-01

    Gas bubbles can be naturally generated or intentionally introduced in sediments. Gas bubble migration and trapping affect the rate of gas emission into the atmosphere or modify the sediment properties such as hydraulic and mechanical properties. In this study, the migration and trapping of gas bubbles are simulated using the pore-network model extracted from the 3D X-ray image of in situ sediment. Two types of bubble size distribution (mono-sized and distributed-sized cases) are used in the simulation. The spatial and statistical bubble size distribution, residual gas saturation, and hydraulic conductivity reduction due to the bubble trapping are investigated. The results show that the bubble size distribution becomes wider during the gas bubble migration due to bubble coalescence for both mono-sized and distributed-sized cases. And the trapped bubble fraction and the residual gas saturation increase as the bubble size increases. The hydraulic conductivity is reduced as a result of the gas bubble trapping. The reduction in hydraulic conductivity is apparently observed as bubble size and the number of nucleation points increase.

  14. Cosmic bubble and domain wall instabilities III: the role of oscillons in three-dimensional bubble collisions

    Energy Technology Data Exchange (ETDEWEB)

    Bond, J. Richard; Braden, Jonathan [CITA, University of Toronto, 60 St. George Street, Toronto, ON, M5S 3H8 (Canada); Mersini-Houghton, Laura, E-mail: bond@cita.utoronto.ca, E-mail: j.braden@ucl.ac.uk, E-mail: mersini@physics.unc.edu [Department of Physics and Astronomy, University of North Carolina-Chapel Hill, NC 27599-3255 (United States)

    2015-09-01

    We study collisions between pairs of bubbles nucleated in an ambient false vacuum. For the first time, we include the effects of small initial (quantum) fluctuations around the instanton profiles describing the most likely initial bubble profile. Past studies of this problem neglect these fluctuations and work under the assumption that the collisions posess an exact SO(2,1) symmetry. We use three-dimensional lattice simulations to demonstrate that for double-well potentials, small initial perturbations to this symmetry can be amplified as the system evolves. Initially the amplification is well-described by linear perturbation theory around the SO(2,1) background, but the onset of strong nonlinearities amongst the fluctuations quickly leads to a drastic breaking of the original SO(2,1) symmetry and the production of oscillons in the collision region. We explore several single-field models, and we find it is hard to both realize inflation inside of a bubble and produce oscillons in a collision. Finally, we extend our results to a simple two-field model. The additional freedom allowed by the second field allows us to construct viable inflationary models that allow oscillon production in collisions. The breaking of the SO(2,1) symmetry allows for a new class of observational signatures from bubble collisions that do not posess azimuthal symmetry, including the production of gravitational waves which cannot be supported by an SO(2,1) spacetime.

  15. Development and validation of models for bubble coalescence and breakup. Final report; Entwicklung und Validierung von Modellen fuer Blasenkoaleszenz und -zerfall. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Y.; Lucas, D.

    2013-02-15

    A new generalized model for bubble coalescence and breakup has been developed. It is based on physical considerations and takes into account various mechanisms that can lead to bubble coalescence and breakup. First, in a detailed literature review, the available models were compiled and analyzed. It turned out that many of them show a contradictory behaviour. None of these models allows the prediction of the evolution of bubble size distributions along a pipe flow for a wide range of combinations of flow rates of the gas and the liquid phase. The new model has been extensively studied in a simplified Test-Solver. Although this does not cover all details of a developing flow along the pipe, it allows - in contrast to a CFD code - to conduct a large number of variational calculations to investigate the influence of individual sizes and models. Coalescence and breakup cannot be considered separately from other phenomena and models that reflect these phenomena. There are close interactions with the turbulence of the liquid phase and the momentum exchange between phases. Since the dissipation rate of turbulent kinetic energy is a direct input parameter for the new model, the turbulence modelling has been studied very carefully. To validate the model, a special experimental series for air-water flows was used, conducted at the TOPFLOW facility in an 8-meter long DN200 pipe. The data are characterized by high quality and were produced within the TOPFLOW-II project. The test series aims to provide a basis for the work presented here. Predicting the evolution of the bubble size distribution along the pipe could be improved significantly in comparison to the previous standard models for bubble coalescence and breakup implemented in CFX. However some quantitative discrepancies remain. The full model equations as well as an implementation as ''User-FORTRAN'' in CFX are available and can be used for further work on the simulation of poly-disperse bubbly

  16. Development and implementation of a model of permeation of tritium in the presence of bubbles of helium to tritigenic wraps of liquid metal wraps

    International Nuclear Information System (INIS)

    Batet, L.; Mas de les Valls, E.; Sedano, L. A.

    2013-01-01

    In the channels of liquid metal (ML) regenerating sheaths of a fusion reactor, the possibility of bubbles of helium is not remote. Bubbles adhering to the wall of the ML channels would affect heat transfer and the permeation of tritium. Detailed analysis has been conducted (fine mesh), using OpenFOAM, from the environment of a bubble attached to the wall and has developed a model for permeation of tritium through a partially covered with bubbles of helium surface of contact Ml-solid. The model developed has implemented as wall function in OpenFOAM, has validated and has been applied to a case study, using a relatively thick mesh. The developed model substantially reduces the need for computing on the detailed calculation power.

  17. Bubbling away

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Bubble chambers may have almost vanished from the front line of physics research, but the vivid memory of their intricate and sometimes beautiful patterns of particle tracks lives on, and has greatly influenced the computer graphics of track reconstruction in today's big experiments. 'Seeing' an interaction makes it more understandable. Bubble chambers, with their big collaborations of physicists from many widely scattered research institutes, started another ball rolling. The groups formed are even now only surpassed in size by the big collaborations working on today's major detectors at colliding beam machines. From 14-16 July, about 130 physicists gathered at CERN to commemorate the 40th anniversary of the invention of the bubble chamber by Donald Glaser. The meeting, organized by Derek C. Colley from Birmingham, gave a comprehensive overview of bubble chamber contributions to physics, their challenging technology, and the usefulness of bubble chamber photographs in education, both for physics and the public at large. After opening remarks by CERN Director Carlo Rubbia, Donald Glaser began with a brief review of the work which led to his invention - there was much more to it than idly watching beer bubbles rise up the wall of the glass - before turning to his present line of research, biophysics, also very visually oriented

  18. Numerical simulation of bubble behavior in subcooled flow boiling under velocity and temperature gradient

    International Nuclear Information System (INIS)

    Bahreini, Mohammad; Ramiar, Abas; Ranjbar, Ali Akbar

    2015-01-01

    Highlights: • Condensing bubble is numerically investigated using VOF model in OpenFOAM package. • Bubble mass reduces as it goes through condensation and achieves higher velocities. • At a certain time the slope of changing bubble diameter with time, varies suddenly. • Larger bubbles experience more lateral migration to higher velocity regions. • Bubbles migrate back to a lower velocity region for higher liquid subcooling rates. - Abstract: In this paper, numerical simulation of the bubble condensation in the subcooled boiling flow is performed. The interface between two-phase is tracked via the volume of fluid (VOF) method with continuous surface force (CSF) model, implemented in the open source OpenFOAM CFD package. In order to simulate the condensing bubble with the OpenFOAM code, the original energy equation and mass transfer model for phase change have been modified and a new solver is developed. The Newtonian flow is solved using the finite volume scheme based on the pressure implicit with splitting of operators (PISO) algorithm. Comparison of the simulation results with previous experimental data revealed that the model predicted well the behavior of the actual condensing bubble. The bubble lifetime is almost proportional to bubble initial size and is prolonged by increasing the system pressure. In addition, the initial bubble size, subcooling of liquid and velocity gradient play an important role in the bubble deformation behavior. Velocity gradient makes the bubble move to the higher velocity region and the subcooling rate makes it to move back to the lower velocity region.

  19. Numerical simulation of bubble behavior in subcooled flow boiling under velocity and temperature gradient

    Energy Technology Data Exchange (ETDEWEB)

    Bahreini, Mohammad, E-mail: m.bahreini1990@gmail.com; Ramiar, Abas, E-mail: aramiar@nit.ac.ir; Ranjbar, Ali Akbar, E-mail: ranjbar@nit.ac.ir

    2015-11-15

    Highlights: • Condensing bubble is numerically investigated using VOF model in OpenFOAM package. • Bubble mass reduces as it goes through condensation and achieves higher velocities. • At a certain time the slope of changing bubble diameter with time, varies suddenly. • Larger bubbles experience more lateral migration to higher velocity regions. • Bubbles migrate back to a lower velocity region for higher liquid subcooling rates. - Abstract: In this paper, numerical simulation of the bubble condensation in the subcooled boiling flow is performed. The interface between two-phase is tracked via the volume of fluid (VOF) method with continuous surface force (CSF) model, implemented in the open source OpenFOAM CFD package. In order to simulate the condensing bubble with the OpenFOAM code, the original energy equation and mass transfer model for phase change have been modified and a new solver is developed. The Newtonian flow is solved using the finite volume scheme based on the pressure implicit with splitting of operators (PISO) algorithm. Comparison of the simulation results with previous experimental data revealed that the model predicted well the behavior of the actual condensing bubble. The bubble lifetime is almost proportional to bubble initial size and is prolonged by increasing the system pressure. In addition, the initial bubble size, subcooling of liquid and velocity gradient play an important role in the bubble deformation behavior. Velocity gradient makes the bubble move to the higher velocity region and the subcooling rate makes it to move back to the lower velocity region.

  20. Motion of liquid plugs between vapor bubbles in capillary tubes: a comparison between fluids

    Science.gov (United States)

    Bertossi, Rémi; Ayel, Vincent; Mehta, Balkrishna; Romestant, Cyril; Bertin, Yves; Khandekar, Sameer

    2017-11-01

    Pulsating heat pipes (PHP) are now well-known devices in which liquid/vapor slug flow oscillates in a capillary tube wound between hot and cold sources. In this context, this paper focuses on the motion of the liquid plug, trapped between vapor bubbles, moving in capillary tubes, to try to better understand the thermo-physical phenomena involved in such devices. This study is divided into three parts. In the first part, an experimental study presents the evolution of the vapor pressure during the evaporation process of a liquid thin film deposited from a liquid plug flowing in a heated capillary tube: it is found that the behavior of the generated and removed vapor can be very different, according to the thermophysical properties of the fluids. In the second part, a transient model allows to compare, in terms of pressure and duration, the motion of a constant-length liquid plug trapped between two bubbles subjected to a constant difference of vapor pressure: the results highlight that the performances of the four fluids are also very different. Finally, a third model that can be considered as an improvement of the second one, is also presented: here, the liquid slug is surrounded by two vapor bubbles, one subjected to evaporation, the pressure in both bubbles is now a result of the calculation. This model still allows comparing the behaviors of the fluid. Even if our models are quite far from a complete model of a real PHP, results do indicate towards the applicability of different fluids as suitable working fluids for PHPs, particularly in terms of the flow instabilities which they generate.

  1. Bubble point pressures of the selected model system for CatLiq® bio-oil process

    DEFF Research Database (Denmark)

    Toor, Saqib Sohail; Rosendahl, Lasse; Baig, Muhammad Noman

    2010-01-01

    . In this work, the bubble point pressures of a selected model mixture (CO2 + H2O + Ethanol + Acetic acid + Octanoic acid) were measured to investigate the phase boundaries of the CatLiq® process. The bubble points were measured in the JEFRI-DBR high pressure PVT phase behavior system. The experimental results......The CatLiq® process is a second generation catalytic liquefaction process for the production of bio-oil from WDGS (Wet Distillers Grains with Solubles) at subcritical conditions (280-350 oC and 225-250 bar) in the presence of a homogeneous alkaline and a heterogeneous Zirconia catalyst...

  2. Detecting stellar-wind bubbles through infrared arcs in H II regions

    Science.gov (United States)

    Mackey, Jonathan; Haworth, Thomas J.; Gvaramadze, Vasilii V.; Mohamed, Shazrene; Langer, Norbert; Harries, Tim J.

    2016-02-01

    Mid-infrared arcs of dust emission are often seen near ionizing stars within H II regions. A possible explanations for these arcs is that they could show the outer edges of asymmetric stellar wind bubbles. We use two-dimensional, radiation-hydrodynamics simulations of wind bubbles within H II regions around individual stars to predict the infrared emission properties of the dust within the H II region. We assume that dust and gas are dynamically well-coupled and that dust properties (composition, size distribution) are the same in the H II region as outside it, and that the wind bubble contains no dust. We post-process the simulations to make synthetic intensity maps at infrared wavebands using the torus code. We find that the outer edge of a wind bubble emits brightly at 24 μm through starlight absorbed by dust grains and re-radiated thermally in the infrared. This produces a bright arc of emission for slowly moving stars that have asymmetric wind bubbles, even for cases where there is no bow shock or any corresponding feature in tracers of gas emission. The 24 μm intensity decreases exponentially from the arc with increasing distance from the star because the dust temperature decreases with distance. The size distribution and composition of the dust grains has quantitative but not qualitative effects on our results. Despite the simplifications of our model, we find good qualitative agreement with observations of the H II region RCW 120, and can provide physical explanations for any quantitative differences. Our model produces an infrared arc with the same shape and size as the arc around CD -38°11636 in RCW 120, and with comparable brightness. This suggests that infrared arcs around O stars in H II regions may be revealing the extent of stellar wind bubbles, although we have not excluded other explanations.

  3. Interactions between bubble formation and heating surface in nucleate boiling

    International Nuclear Information System (INIS)

    Luke, Andrea

    2009-01-01

    The heat transfer and bubble formation is investigated in pool boiling of propane. Size distributions of active nucleation sites on single horizontal copper and steel tubes with different diameter and surface finishes have been calculated from heat transfer measurements over wide ranges of heat flux and selected pressure. The model assumptions of Luke and Gorenflo for the heat transfer near growing and departing bubbles, which were applied in the calculations, have been slightly modified and the calculated results have been compared to experimental investigations by high speed video techniques. The calculated number of active sites shows a good coincidence for the tube with smaller diameter, while the results for the tube with larger diameter describe the same relative increase of the active sites. The comparison of the cumulative size distribution of the active and potential nucleation sites demonstrates the same slope of the curve and that the critical radius of a stable bubble nuclei is smaller than the average cavity size. (author)

  4. Interactions between bubble formation and heating surface in nucleate boiling

    Energy Technology Data Exchange (ETDEWEB)

    Luke, Andrea [Leibniz University, Hannover (Denmark). Inst. of Thermodynamics], e-mail: ift@ift.uni-hannover.de

    2009-07-01

    The heat transfer and bubble formation is investigated in pool boiling of propane. Size distributions of active nucleation sites on single horizontal copper and steel tubes with different diameter and surface finishes have been calculated from heat transfer measurements over wide ranges of heat flux and selected pressure. The model assumptions of Luke and Gorenflo for the heat transfer near growing and departing bubbles, which were applied in the calculations, have been slightly modified and the calculated results have been compared to experimental investigations by high speed video techniques. The calculated number of active sites shows a good coincidence for the tube with smaller diameter, while the results for the tube with larger diameter describe the same relative increase of the active sites. The comparison of the cumulative size distribution of the active and potential nucleation sites demonstrates the same slope of the curve and that the critical radius of a stable bubble nuclei is smaller than the average cavity size. (author)

  5. Cavitation in confined water: ultra-fast bubble dynamics

    Science.gov (United States)

    Vincent, Olivier; Marmottant, Philippe

    2012-02-01

    In the hydraulic vessels of trees, water can be found at negative pressure. This metastable state, corresponding to mechanical tension, is achieved by evaporation through a porous medium. It can be relaxed by cavitation, i.e. the sudden nucleation of vapor bubbles. Harmful for the tree due to the subsequent emboli of sap vessels, cavitation is on the contrary used by ferns to eject spores very swiftly. We will focus here on the dynamics of the cavitation bubble, which is of primary importance to explain the previously cited natural phenomena. We use the recently developed method of artificial tress, using transparent hydrogels as the porous medium. Our experiments, on water confined in micrometric hydrogel cavities, show an extremely fast dynamics: bubbles are nucleated at the microsecond timescale. For cavities larger than 100 microns, the bubble ``rings'' with damped oscillations at MHz frequencies, whereas for smaller cavities the oscillations become overdamped. This rich dynamics can be accounted for by a model we developed, leading to a modified Rayleigh-Plesset equation. Interestingly, this model predicts the impossibility to nucleate bubbles above a critical confinement that depends on liquid negative pressure and corresponds to approximately 100 nm for 20 MPa tensions.

  6. Use of a bubble tiltmeter as a horizontal seismometer

    Science.gov (United States)

    Miller, W. F.; Geller, R. J.; Stein, S.

    1978-01-01

    A bubble tiltmeter has been used as a horizontal seismometer. With the appropriate filters, the bubble system has good response for displacement over the passband of conventional seismometers (from about 10 Hz to 200 s), and for tilt from about 1 Hz to DC. The accuracy of the response is confirmed by comparing the filtered bubble output to conventional seismic instruments. The agreement between the filtered bubble records and broad band and short period conventional records is extremely good in every case. The small size, broad-band response, and lack of moving parts make the bubble ideal as an instrument for remote environments. In particular, the instrument seems ideal for the ocean bottom, land and marine boreholes and planetary missions.

  7. Experimental investigation of shock wave - bubble interaction

    Energy Technology Data Exchange (ETDEWEB)

    Alizadeh, Mohsen

    2010-04-09

    expanded beam of a Q-switched laser pulse at wavelength of λ=532 nm and with pulse duration of ∼4 ns is focused at the center of a water tank using an aberration minimized lens design. Single cavitation bubbles are initiated via optical breakdown at this location which coincides with the position of which the shock wave is focused. The energy of the shock wave source has been altered in 8 steps. The pressure pulse amplitude of the impinging shock wave measured at the distance of about 1.8 mm above the focus location range from 24.4 MPa to 108.1 MPa. The lithotripter shock wave impact time is varied in three steps which provides the possibility of investigation of the bubble dynamics in both cases of collapsing and expanding cavities at the moment of the shock wave impingement. After the shock wave impact, the bubble spherical symmetry is broken and a liquid jet develops in the original direction of the shock propagation. The speed of the jet is increasing with the shock wave energy. Due to the energy transfer from the shock wave to the bubble, the forced cavity implosion is more violent in comparison to free oscillation. The pressure pulse amplitude released from the forced bubble collapse is amplified and the collapse time is reduced. These effects are discussed in chapter 5. Generally, when the bubble is collapsing at the time of the shock impact, the forced cavity collapse is more violent with a resultant of more pressure enhancement compared to the expanding bubbles at the moment of the shock arrival. The maximum pressure enhancement and reduction of bubble collapse time occur when the time interval between the moments of the shock impact and bubble collapse approaches the pulse duration of the compression part of the shock wave profile (i.e. ∼1 μs). For each specific shock wave arrival time, increasing the shock intensity leads to the fact that the bubble collapse takes place earlier relative to the moment of the shock impact and having more collapse pressure

  8. Multifocal laser surgery: cutting enhancement by hydrodynamic interactions between cavitation bubbles.

    Science.gov (United States)

    Toytman, I; Silbergleit, A; Simanovski, D; Palanker, D

    2010-10-01

    Transparent biological tissues can be precisely dissected with ultrafast lasers using optical breakdown in the tight focal zone. Typically, tissues are cut by sequential application of pulses, each of which produces a single cavitation bubble. We investigate the hydrodynamic interactions between simultaneous cavitation bubbles originating from multiple laser foci. Simultaneous expansion and collapse of cavitation bubbles can enhance the cutting efficiency, by increasing the resulting deformations in tissue, and the associated rupture zone. An analytical model of the flow induced by the bubbles is presented and experimentally verified. The threshold strain of the material rupture is measured in a model tissue. Using the computational model and the experimental value of the threshold strain one can compute the shape of the rupture zone in tissue resulting from application of multiple bubbles. With the threshold strain of 0.7 two simultaneous bubbles produce a continuous cut when applied at the distance 1.35 times greater than that required in sequential approach. Simultaneous focusing of the laser in multiple spots along the line of intended cut can extend this ratio to 1.7. Counterpropagating jets forming during collapse of two bubbles in materials with low viscosity can further extend the cutting zone-up to approximately a factor of 1.5.

  9. A dry-spot model for the prediction of critical heat flux in water boiling in bubbly flow regime

    International Nuclear Information System (INIS)

    Ha, Sang Jun; No, Hee Cheon

    1997-01-01

    This paper presents a prediction of critical heat flux (CHF) in bubbly flow regime using dry-spot model proposed recently by authors for pool and flow boiling CHF and existing correlations for forced convective heat transfer coefficient, active site density and bubble departure diameter in nucleate boiling region. Without any empirical constants always present in earlier models, comparisons of the model predictions with experimental data for upward flow of water in vertical, uniformly-heated round tubes are performed and show a good agreement. The parametric trends of CHF have been explored with respect to variation in pressure, tube diameter and length, mass flux and inlet subcooling

  10. THE FERMI BUBBLES AS A SCALED-UP VERSION OF SUPERNOVA REMNANTS

    International Nuclear Information System (INIS)

    Fujita, Yutaka; Ohira, Yutaka; Yamazaki, Ryo

    2013-01-01

    In this study, we treat Fermi bubbles as a scaled-up version of supernova remnants (SNRs). The bubbles are created through activities of the super-massive black hole (SMBH) or starbursts at the Galactic center (GC). Cosmic-rays (CRs) are accelerated at the forward shocks of the bubbles like SNRs, which means that we cannot decide whether the bubbles were created by the SMBH or starbursts from the radiation from the CRs. We follow the evolution of CR distribution by solving a diffusion-advection equation, considering the reduction of the diffusion coefficient by CR streaming. In this model, gamma rays are created through hadronic interaction between CR protons and the gas in the Galactic halo. In the GeV band, we can well reproduce the observed flat distribution of gamma-ray surface brightness because some amount of gas is left behind the shock. The edge of the bubbles is fairly sharp owing to the high gas density behind the shock and the reduction of the diffusion coefficient there. The latter also contributes the hard gamma-ray spectrum of the bubbles. We find that the CR acceleration at the shock began when the bubbles were small, and the time scale of the energy injection at the GC was much smaller than the age of the bubbles. We predict that if CRs are accelerated to the TeV regime, the apparent bubble size should be larger in the TeV band, which could be used to discriminate our hadronic model from other leptonic models. We also present neutrino fluxes

  11. Lifetime of Bubble Rafts: Cooperativity and Avalanches

    Science.gov (United States)

    Ritacco, Hernán; Kiefer, Flavien; Langevin, Dominique

    2007-06-01

    We have studied the collapse of pseudo-bi-dimensional foams. These foams are made of uniformly sized soap bubbles packed in an hexagonal lattice sitting at the top of a liquid surface. The collapse process follows the sequence: (1) rupture of a first bubble, driven by thermal fluctuations and (2) a cascade of bursting bubbles. We present a simple numerical model which captures the main characteristics of the dynamics of foam collapse. We show that in a certain range of viscosities of the foaming solutions, the size distribution of the avalanches follows power laws as in self-organized criticality processes.

  12. Simulation of bubble motion under gravity by lattice Boltzmann method

    International Nuclear Information System (INIS)

    Takada, Naoki; Misawa, Masaki; Tomiyama, Akio; Hosokawa, Shigeo

    2001-01-01

    We describe the numerical simulation results of bubble motion under gravity by the lattice Boltzmann method (LBM), which assumes that a fluid consists of mesoscopic fluid particles repeating collision and translation and a multiphase interface is reproduced in a self-organizing way by repulsive interaction between different kinds of particles. The purposes in this study are to examine the applicability of LBM to the numerical analysis of bubble motions, and to develop a three-dimensional version of the binary fluid model that introduces a free energy function. We included the buoyancy terms due to the density difference in the lattice Boltzmann equations, and simulated single-and two-bubble motions, setting flow conditions according to the Eoetvoes and Morton numbers. The two-dimensional results by LBM agree with those by the Volume of Fluid method based on the Navier-Stokes equations. The three-dimensional model possesses the surface tension satisfying the Laplace's law, and reproduces the motion of single bubble and the two-bubble interaction of their approach and coalescence in circular tube. There results prove that the buoyancy terms and the 3D model proposed here are suitable, and that LBM is useful for the numerical analysis of bubble motion under gravity. (author)

  13. Dynamics and morphology of chiral magnetic bubbles in perpendicularly magnetized ultra-thin films

    Science.gov (United States)

    Sarma, Bhaskarjyoti; Garcia-Sanchez, Felipe; Nasseri, S. Ali; Casiraghi, Arianna; Durin, Gianfranco

    2018-06-01

    We study bubble domain wall dynamics using micromagnetic simulations in perpendicularly magnetized ultra-thin films with disorder and Dzyaloshinskii-Moriya interaction. Disorder is incorporated into the material as grains with randomly distributed sizes and varying exchange constant at the edges. As expected, magnetic bubbles expand asymmetrically along the axis of the in-plane field under the simultaneous application of out-of-plane and in-plane fields. Remarkably, the shape of the bubble has a ripple-like part which causes a kink-like (steep decrease) feature in the velocity versus in-plane field curve. We show that these ripples originate due to the nucleation and interaction of vertical Bloch lines. Furthermore, we show that the Dzyaloshinskii-Moriya interaction field is not constant but rather depends on the in-plane field. We also extend the collective coordinate model for domain wall motion to a magnetic bubble and compare it with the results of micromagnetic simulations.

  14. Analysis of bubble pressure in the rim region of high burnup PWR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Yang Hyun; Lee, Byung Ho; Sohn, Dong Seong [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-02-01

    Bubble pressure in the rim region of high burnup PWR UO{sub 2} fuel has been modeled based on measured rim width, porosity and bubble density. Using the assumption that excessive bubble pressure in the rim is inversely proportional to its radius, proportionality constant is derived as a function of average pellet burnup and bubble radius. This approach is possible because the integration of the number of Xe atoms retained in the rim bubbles, which can be calculated as a function of bubble radius, over the bubble radius gives the total number of Xe atoms in the rim bubbles. Here the total number of Xe atoms in the rim bubbles can be derived from the measured Xe depletion fraction in the matrix and the calculated rim thickness. Then the rim bubble pressure is obtained as a function of fuel burnup and bubble size from the proportionality constant. Therefore, the present model can provide some useful information that would be required to analyze the behavior of high burnup PWR UO{sub 2} fuel under both normal and transient operating conditions. 28 refs., 9 figs. (Author)

  15. Glass Bubbles Insulation for Liquid Hydrogen Storage Tanks

    Science.gov (United States)

    Sass, J. P.; SaintCyr, W. W.; Barrett, T. M.; Baumgartner, R. G.; Lott, J. W.; Fesmire, J. E.

    2009-01-01

    A full-scale field application of glass bubbles insulation has been demonstrated in a 218,000 L liquid hydrogen storage tank. This work is the evolution of extensive materials testing, laboratory scale testing, and system studies leading to the use of glass bubbles insulation as a cost efficient and high performance alternative in cryogenic storage tanks of any size. The tank utilized is part of a rocket propulsion test complex at the NASA Stennis Space Center and is a 1960's vintage spherical double wall tank with an evacuated annulus. The original perlite that was removed from the annulus was in pristine condition and showed no signs of deterioration or compaction. Test results show a significant reduction in liquid hydrogen boiloff when compared to recent baseline data prior to removal of the perlite insulation. The data also validates the previous laboratory scale testing (1000 L) and full-scale numerical modeling (3,200,000 L) of boiloff in spherical cryogenic storage tanks. The performance of the tank will continue to be monitored during operation of the tank over the coming years. KEYWORDS: Glass bubble, perlite, insulation, liquid hydrogen, storage tank.

  16. Experimental investigation of bubble plume structure instability

    Energy Technology Data Exchange (ETDEWEB)

    Marco Simiano; Robert Zboray; Francois de Cachard [Thermal-Hydraulics Laboratory, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Djamel Lakehal; George Yadigaroglu [Institute of Energy Technology, Swiss Federal Institute of Technology, ETH-Zentrum/CLT, 8092 Zurich (Switzerland)

    2005-07-01

    Full text of publication follows: The hydrodynamic properties of a 3D bubble plume in a large water pool are investigated experimentally. Bubble plumes are present in various industrial processes, including chemical plants, stirred reactors, and nuclear power plants, e.g. in BWR suppression pools. In these applications, the main issue is to predict the currents induced by the bubbles in the liquid phase, and to determine the consequent mixing. Bubble plumes, especially large and unconfined ones, present strong 3D effects and a superposition of different characteristic length scales. Thus, they represent relevant test cases for assessment and verification of 3D models in thermal-hydraulic codes. Bubble plumes are often unsteady, with fluctuations in size and shape of the bubble swarm, and global movements of the plume. In this case, local time-averaged data are not sufficient to characterize the flow. Additional information regarding changes in plume shape and position is required. The effect of scale on the 3D flow structure and stability being complex, there was a need to conduct studies in a fairly large facility, closer to industrial applications. Air bubble plumes, up to 30 cm in base diameter and 2 m in height were extensively studied in a 2 m diameter water pool. Homogeneously sized bubbles were obtained using a particular injector. The main hydrodynamic parameters. i.e., gas and liquid velocities, void fraction, bubble shape and size, plume shape and position, were determined experimentally. Photographic and image processing techniques were used to characterize the bubble shape, and double-tip optical probes to measure bubble size and void fraction. Electromagnetic probes measured the recirculation velocity in the pool. Simultaneous two-phase flow particle image velocimetry (STPFPIV) in a vertical plane containing the vessel axis provided instantaneous velocity fields for both phases and therefore the relative velocity field. Video recording using two CCD

  17. COMPUTATIONAL AND EXPERIMENTAL MODELING OF SLURRY BUBBLE COLUMN REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Paul C.K. Lam; Isaac K. Gamwo; Dimitri Gidaspow

    2002-05-01

    The objective of this study was to develop a predictive experimentally verified computational fluid dynamics (CFD) model for gas-liquid-solid flow. A three dimensional transient computer code for the coupled Navier-Stokes equations for each phase was developed and is appended in this report. The principal input into the model is the viscosity of the particulate phase which was determined from a measurement of the random kinetic energy of the 800 micron glass beads and a Brookfield viscometer. The details are presented in the attached paper titled ''CFD Simulation of Flow and Turbulence in a Slurry Bubble Column''. This phase of the work is in press in a referred journal (AIChE Journal, 2002) and was presented at the Fourth International Conference on Multiphase Flow (ICMF 2001) in New Orleans, May 27-June 1, 2001 (Paper No. 909). The computed time averaged particle velocities and concentrations agree with Particle Image Velocimetry (PIV) measurements of velocities and concentrations, obtained using a combination of gamma-ray and X-ray densitometers, in a slurry bubble column, operated in the bubbly-coalesced fluidization regime with continuous flow of water. Both the experiment and the simulation show a down-flow of particles in the center of the column and up-flow near the walls and nearly uniform particle concentration. Normal and shear Reynolds stresses were constructed from the computed instantaneous particle velocities. The PIV measurement and the simulation produced instantaneous particle velocities. The PIV measurement and the simulation produced similar nearly flat horizontal profiles of turbulent kinetic energy of particles. To better understand turbulence we studied fluidization in a liquid-solid bed. This work was also presented at the Fourth International Conference on Multiphase Flow (ICMF 2001, Paper No. 910). To understand turbulence in risers, measurements were done in the IIT riser with 530 micron glass beads using a PIV

  18. Prospects for bubble fusion

    Energy Technology Data Exchange (ETDEWEB)

    Nigmatulin, R.I. [Tyumen Institute of Mechanics of Multiphase Systems (TIMMS), Marx (Russian Federation); Lahey, R.T. Jr. [Rensselaer Polytechnic Institute, Troy, NY (United States)

    1995-09-01

    In this paper a new method for the realization of fusion energy is presented. This method is based on the superhigh compression of a gas bubble (deuterium or deuterium/thritium) in heavy water or another liquid. The superhigh compression of a gas bubble in a liquid is achieved through forced non-linear, non-periodic resonance oscillations using moderate amplitudes of forcing pressure. The key feature of this new method is a coordination of the forced liquid pressure change with the change of bubble volume. The corresponding regime of the bubble oscillation has been called {open_quotes}basketball dribbling (BD) regime{close_quotes}. The analytical solution describing this process for spherically symmetric bubble oscillations, neglecting dissipation and compressibility of the liquid, has been obtained. This solution shown no limitation on the supercompression of the bubble and the corresponding maximum temperature. The various dissipation mechanisms, including viscous, conductive and radiation heat losses have been considered. It is shown that in spite of these losses it is possible to achieve very high gas bubble temperatures. This because the time duration of the gas bubble supercompression becomes very short when increasing the intensity of compression, thus limiting the energy losses. Significantly, the calculated maximum gas temperatures have shown that nuclear fusion may be possible. First estimations of the affect of liquid compressibility have been made to determine possible limitations on gas bubble compression. The next step will be to investigate the role of interfacial instability and breaking down of the bubble, shock wave phenomena around and in the bubble and mutual diffusion of the gas and the liquid.

  19. Evolution of vacuum bubbles embedded in inhomogeneous spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Pannia, Florencia Anabella Teppa [Grupo de Astrofísica, Relatividad y Cosmología, Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque s/n B1900FWA, La Plata (Argentina); Bergliaffa, Santiago Esteban Perez, E-mail: fteppa@fcaglp.unlp.edu.ar, E-mail: sepbergliaffa@gmail.com [Departamento de Física Teórica, Instituto de Física, Universidade do Estado de Rio de Janeiro, CEP 20550-013, Rio de Janeiro, Brazil. (Brazil)

    2017-03-01

    We study the propagation of bubbles of new vacuum in a radially inhomogeneous background filled with dust or radiation, and including a cosmological constant, as a first step in the analysis of the influence of inhomogeneities in the evolution of an inflating region. We also compare the cases with dust and radiation backgrounds and show that the evolution of the bubble in radiation environments is notably different from that in the corresponding dust cases, both for homogeneous and inhomogeneous ambients, leading to appreciable differences in the evolution of the proper radius of the bubble.

  20. The spectrum and morphology of the Fermi bubbles

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, M.; Buehler, R. [Deutsches Elektronen Synchrotron DESY, D-15738 Zeuthen (Germany); Albert, A.; Blandford, R. D.; Bloom, E. D.; Bottacini, E.; Caliandro, G. A.; Cameron, R. A. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Atwood, W. B. [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Baldini, L.; Bellazzini, R. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Université Paris Diderot, Service d' Astrophysique, CEA Saclay, F-91191 Gif sur Yvette (France); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Bastieri, D.; Buson, S. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Bissaldi, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, and Università di Trieste, I-34127 Trieste (Italy); Brandt, T. J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Bregeon, J. [Laboratoire Univers et Particules de Montpellier, Université Montpellier 2, CNRS/IN2P3, Montpellier (France); Bruel, P. [Laboratoire Leprince-Ringuet, École polytechnique, CNRS/IN2P3, Palaiseau (France); Caragiulo, M., E-mail: afrancko@slac.stanford.edu, E-mail: malyshev@stanford.edu, E-mail: vahep@stanford.edu [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari (Italy); and others

    2014-09-20

    The Fermi bubbles are two large structures in the gamma-ray sky extending to 55° above and below the Galactic center. We analyze 50 months of Fermi Large Area Telescope data between 100 MeV and 500 GeV above 10° in Galactic latitude to derive the spectrum and morphology of the Fermi bubbles. We thoroughly explore the systematic uncertainties that arise when modeling the Galactic diffuse emission through two separate approaches. The gamma-ray spectrum is well described by either a log parabola or a power law with an exponential cutoff. We exclude a simple power law with more than 7σ significance. The power law with an exponential cutoff has an index of 1.9 ± 0.2 and a cutoff energy of 110 ± 50 GeV. We find that the gamma-ray luminosity of the bubbles is 4.4{sub −0.9}{sup +2.4}×10{sup 37} erg s{sup –1}. We confirm a significant enhancement of gamma-ray emission in the southeastern part of the bubbles, but we do not find significant evidence for a jet. No significant variation of the spectrum across the bubbles is detected. The width of the boundary of the bubbles is estimated to be 3.4{sub −2.6}{sup +3.7} deg. Both inverse Compton (IC) models and hadronic models including IC emission from secondary leptons fit the gamma-ray data well. In the IC scenario, synchrotron emission from the same population of electrons can also explain the WMAP and Planck microwave haze with a magnetic field between 5 and 20 μG.

  1. A Mechanistic Model of Onset of Flow Instability Due to Mergence of Bubble Layers in a Vertical Narrow Rectangular Channel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Juh Yung; Chang, Soon Heung; Jeong, Yong [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    The onset of flow instability (OFI) is the one of important boiling phenomena since it may induce the premature critical heat flux (CHF) at the lowest heat flux level due to sudden flow excursion in a single channel of multichannel configuration. Especially prediction of OFI for narrow rectangular channel is very crucial in relevant to thermal-hydraulic design and safety analysis of open pool-type research reactors (RRs) using plate-type fuels. Based on high speed video (HSV) technique, the authors observed and determined that OFI and the minimum premature CHF in a narrow rectangular channel are induced by abrupt pressure drop fluctuation due to the mergence of facing bubble boundary layers (BLs) on opposite boiling surfaces. In this study, new mechanistic OFI model for narrow rectangular channel heated on both sides has been derived, which satisfies with the real triggering phenomena. Force balance approach was used for modeling of the maximum BLT since the quantity is comparable to the bubble departure diameter. From the validation with OFI database, it was shown that the new model fairly well predicts OFI heat flux for wide range of conditions.

  2. A dynamic mathematical test of international property securities bubbles and crashes

    Science.gov (United States)

    Hui, Eddie C. M.; Zheng, Xian; Wang, Hui

    2010-04-01

    This study investigates property securities bubbles and crashes by using a dynamic mathematical methodology developed from the previous research (Watanabe et al. 2007a, b [31,32]). The improved model is used to detect the bubble and crash periods in five international countries/cities (namely, United States, United Kingdom, Japan, Hong Kong and Singapore) from Jan, 2000 to Oct, 2008. By this model definition, we are able to detect the beginning of each bubble period even before it bursts. Meanwhile, the empirical results show that most of property securities markets experienced bubble periods between 2003 and 2007, and crashes happened in Apr 2008 triggered by the Subprime Mortgage Crisis of US. In contrast, Japan suffered the shortest bubble period and no evidence has documented the existence of crash there.

  3. Bubble parameters analysis of gas-liquid two-phase sparse bubbly flow based on image method

    International Nuclear Information System (INIS)

    Zhou Yunlong; Zhou Hongjuan; Song Lianzhuang; Liu Qian

    2012-01-01

    The sparse rising bubbles of gas-liquid two-phase flow in vertical pipe were measured and studied based on image method. The bubble images were acquired by high-speed video camera systems, the characteristic parameters of bubbles were extracted by using image processing techniques. Then velocity variation of rising bubbles were drawn. Area and centroid variation of single bubble were also drawn. And then parameters and movement law of bubbles were analyzed and studied. The test results showed that parameters of bubbles had been analyzed well by using image method. (authors)

  4. Letter: Entrapment and interaction of an air bubble with an oscillating cavitation bubble

    Science.gov (United States)

    Kannan, Y. S.; Karri, Badarinath; Sahu, Kirti Chandra

    2018-04-01

    The mechanism of the formation of an air bubble due to an oscillating cavitation bubble in its vicinity is reported from an experimental study using high-speed imaging. The cavitation bubble is created close to the free surface of water using a low-voltage spark circuit comprising two copper electrodes in contact with each other. Before the bubble is created, a third copper wire is positioned in contact with the free surface of water close to the two crossing electrodes. Due to the surface tension at the triple point (wire-water-air) interface, a small dip is observed in the free surface at the point where the wire is immersed. When the cavitation bubble is created, the bubble pushes at the dip while expanding and pulls at it while collapsing. The collapse phase leads to the entrapment of an air bubble at the wire immersion point. During this phase, the air bubble undergoes a "catapult" effect, i.e., it expands to a maximum size and then collapses with a microjet at the free surface. To the best of our knowledge, this mechanism has not been reported so far. A parametric study is also conducted to understand the effects of wire orientation and bubble distance from the free surface.

  5. Modeling studies of electrolyte flow and bubble behavior in advanced Hall cells

    Science.gov (United States)

    Shekhar, R.; Evans, J. W.

    Much research was performed in recent years by corporations and university/government labs on materials for use in advanced Hall-Heroult cells. Attention has focussed on materials for use as wettable cathodes and inert anodes and much was achieved in terms of material development. Comparatively less attention was devoted to how these materials might be incorporated in new or existing cells, i.e., to how the cells should be designed and redesigned, to take full advantage of these materials. The effort, supported by the U.S. Department of Energy, to address this issue, is described. The primary objectives are cell design where electrolyte flow can be managed to promote both the removal of the anode gas bubbles and the convection of dissolved alumina in the inter-electrode region, under conditions where the anode-cathode distance is small. The principal experimental tool was a water model consisting of a large tank in which simulated anodes can be suspended in either the horizontal or vertical configurations. Gas generation was by forcing compressed air through porous graphite and the fine bubbles characteristic of inert anodes were produced by adding butanol to the water. Velocities were measured using a laser Doppler velocimeter. Velocity measurements with two different anode designs (one that is flat and the other that has grooves) are presented. The results show that the electrode configuration has a significant effect on the fluid flow pattern in the inter-electrode region. Furthermore, it is shown that rapid fluid flow is obtained when the cell is operated with a submerged anode.

  6. Partial coalescence from bubbles to drops

    KAUST Repository

    Zhang, F. H.

    2015-10-07

    The coalescence of drops is a fundamental process in the coarsening of emulsions. However, counter-intuitively, this coalescence process can produce a satellite, approximately half the size of the original drop, which is detrimental to the overall coarsening. This also occurs during the coalescence of bubbles, while the resulting satellite is much smaller, approximately 10 %. To understand this difference, we have conducted a set of coalescence experiments using xenon bubbles inside a pressure chamber, where we can continuously raise the pressure from 1 up to 85 atm and thereby vary the density ratio between the inner and outer fluid, from 0.005 up to unity. Using high-speed video imaging, we observe a continuous increase in satellite size as the inner density is varied from the bubble to emulsion-droplet conditions, with the most rapid changes occurring as the bubble density grows up to 15 % of that of the surrounding liquid. We propose a model that successfully relates the satellite size to the capillary wave mode responsible for its pinch-off and the overall deformations from the drainage. The wavelength of the primary wave changes during its travel to the apex, with the instantaneous speed adjusting to the local wavelength. By estimating the travel time of this wave mode on the bubble surface, we also show that the model is consistent with the experiments. This wavenumber is determined by both the global drainage as well as the interface shapes during the rapid coalescence in the neck connecting the two drops or bubbles. The rate of drainage is shown to scale with the density of the inner fluid. Empirically, we find that the pinch-off occurs when 60 % of the bubble fluid has drained from it. Numerical simulations using the volume-of-fluid method with dynamic adaptive grid refinement can reproduce these dynamics, as well as show the associated vortical structure and stirring of the coalescing fluid masses. Enhanced stirring is observed for cases with second

  7. Modeling of helium bubble nucleation and growth in austenitic stainless steels using an Object Kinetic Monte Carlo method

    International Nuclear Information System (INIS)

    De Backer, A.; Adjanor, G.; Domain, C.; Lescoat, M.L.; Jublot-Leclerc, S.; Fortuna, F.; Gentils, A.; Ortiz, C.J.; Souidi, A.; Becquart, C.S.

    2015-01-01

    Implantation of 10 keV helium in 316L steel thin foils was performed in JANNuS-Orsay facility and modeled using a multiscale approach. Density Functional Theory (DFT) atomistic calculations [1] were used to obtain the properties of He and He-vacancy clusters, and the Binary Collision Approximation based code MARLOWE was applied to determine the damage and He-ion depth profiles as in [2,3]. The processes involved in the homogeneous He bubble nucleation and growth were defined and implemented in the Object Kinetic Monte Carlo code LAKIMOCA [4]. In particular as the He to dpa ratio was high, self-trapping of He clusters and the trap mutation of He-vacancy clusters had to be taken into account. With this multiscale approach, the formation of bubbles was modeled up to nanometer-scale size, where bubbles can be observed by Transmission Electron Microscopy. Their densities and sizes were studied as functions of fluence (up to 5 × 10 19 He/m 2 ) at two temperatures (473 and 723 K) and for different sample thicknesses (25–250 nm). It appears that the damage is not only due to the collision cascades but is also strongly controlled by the He accumulation in pressurized bubbles. Comparison with experimental data is discussed and sensible agreement is achieved

  8. Effects of laminar separation bubbles and turbulent separation on airfoil stall

    Energy Technology Data Exchange (ETDEWEB)

    Dini, P. [Carleton College, Northfield, MN (United States); Coiro, D.P. [Universita di Napoli (Italy)

    1997-12-31

    An existing two-dimensional, interactive, stall prediction program is extended by improving its laminar separation bubble model. The program now accounts correctly for the effects of the bubble on airfoil performance characteristics when it forms at the mid-chord and on the leading edge. Furthermore, the model can now predict bubble bursting on very sharp leading edges at high angles of attack. The details of the model are discussed in depth. Comparisons of the predicted stall and post-stall pressure distributions show excellent agreement with experimental measurements for several different airfoils at different Reynolds numbers.

  9. Excitation of cavitation bubbles in low-temperature liquid nitrogen

    Science.gov (United States)

    Sasaki, Koichi; Harada, Shingo

    2017-06-01

    We excited a cavitation bubble by irradiating a Nd:YAG laser pulse onto a titanium target that was installed in liquid nitrogen at a temperature below the boiling point. To our knowledge, this is the first experiment in which a cavitation bubble has been successfully excited in liquid nitrogen. We compared the cavitation bubble in liquid nitrogen with that in water on the basis of an equation reported by Florschuetz and Chao [J. Heat Transfer 87, 209 (1965)].

  10. Numerical simulations of air–water cap-bubbly flows using two-group interfacial area transport equation

    International Nuclear Information System (INIS)

    Wang, Xia; Sun, Xiaodong

    2014-01-01

    Highlights: • Two-group interfacial area transport equation was implemented into a three-field two-fluid model in Fluent. • Numerical model was developed for cap-bubbly flows in a narrow rectangular flow channel. • Numerical simulations were performed for cap-bubbly flows with uniform void inlets and with central peaked void inlets. • Code simulations showed a significant improve over the conventional two-fluid model. - Abstract: Knowledge of cap-bubbly flows is of great interest due to its role in understanding of the flow regime transition from bubbly to slug or churn-turbulent flows. One of the key characteristics of such flows is the existence of bubbles in different sizes and shapes associated with their distinctive dynamic natures. This important feature is, however, generally not well captured by many available two-phase flow modeling approaches. In this study, a modified two-fluid model, namely a three-field, two-fluid model, is proposed. In this model, bubbles are categorized into two groups, i.e., spherical/distorted bubbles as Group-1 while cap/churn-turbulent bubbles as Group-2. A two-group interfacial area transport equation (IATE) is implemented to describe dynamic changes of interfacial structure in each bubble group, resulting from intra- and inter-group interactions and phase changes due to evaporation and condensation. Attention is also paid to appropriate constitutive relations of the interfacial transfers due to mechanical and thermal non-equilibrium between the different fields. The proposed three-field, two-fluid model is used to predict the phase distributions of adiabatic air–water flows in a confined rectangular duct. Good agreement between the simulation results from the proposed model and relevant experimental data indicates that the proposed model is promising as an improved computational tool for two-phase cap-bubbly flow simulations in rectangular flow ducts

  11. Bubble bath soap poisoning

    Science.gov (United States)

    ... medlineplus.gov/ency/article/002762.htm Bubble bath soap poisoning To use the sharing features on this page, please enable JavaScript. Bubble bath soap poisoning occurs when someone swallows bubble bath soap. ...

  12. Bursting Bubbles from Combustion of Thermoplastic Materials in Microgravity

    Science.gov (United States)

    Butler, K. B.

    1999-01-01

    break up, releasing one or more relatively large drops (on the order of a millimeter in these experiments). A better understanding of bubble development and bursting processes, the effects of bursting behavior on burning rate of the bulk material, and the circumstances under which large droplets are expelled, as well as their trajectories, sizes, and burning rates, is sought through computer modeling compared with experiment.

  13. Intensely oscillating cavitation bubble in microfluidics

    International Nuclear Information System (INIS)

    Siew-Wan, Ohl; Tandiono; Klaseboer, Evert; Dave, Ow; Choo, Andre; Claus-Dieter, Ohl

    2015-01-01

    This study reports the technical breakthrough in generating intense ultrasonic cavitation in the confinement of a microfluidics channel [1], and applications that has been developed on this platform for the past few years [2,3,4,5]. Our system consists of circular disc transducers (10-20 mm in diameter), the microfluidics channels on PDMS (polydimethylsiloxane), and a driving circuitry. The cavitation bubbles are created at the gas- water interface due to strong capillary waves which are generated when the system is driven at its natural frequency (around 100 kHz) [1]. These bubbles oscillate and collapse within the channel. The bubbles are useful for sonochemistry and the generation of sonoluminescence [2]. When we add bacteria (Escherichia coli), and yeast cells (Pichia pastoris) into the microfluidics channels, the oscillating and collapsing bubbles stretch and lyse these cells [3]. Furthermore, the system is effective (DNA of the harvested intracellular content remains largely intact), and efficient (yield reaches saturation in less than 1 second). In another application, human red blood cells are added to a microchamber. Cell stretching and rapture are observed when a laser generated cavitation bubble expands and collapses next to the cell [4]. A numerical model of a liquid pocket surrounded by a membrane with surface tension which was placed next to an oscillating bubble was developed using the Boundary Element Method. The simulation results showed that the stretching of the liquid pocket occurs only when the surface tension is within a certain range. (paper)

  14. A One-Dimensional (1-D) Three-Region Model for a Bubbling Fluidized-Bed Adsorber

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Andrew; Miller, David C.

    2012-01-01

    A general one-dimensional (1-D), three-region model for a bubbling fluidized-bed adsorber with internal heat exchangers has been developed. The model can predict the hydrodynamics of the bed and provides axial profiles for all temperatures, concentrations, and velocities. The model is computationally fast and flexible and allows for any system of adsorption and desorption reactions to be modeled, making the model applicable to any adsorption process. The model has been implemented in both gPROMS and Aspen Custom Modeler, and the behavior of the model has been verified.

  15. Bubble feature extracting based on image processing of coal flotation froth

    Energy Technology Data Exchange (ETDEWEB)

    Wang, F.; Wang, Y.; Lu, M.; Liu, W. [China University of Mining and Technology, Beijing (China). Dept of Chemical Engineering and Environment

    2001-11-01

    Using image processing the contrast ratio between the bubble on the surface of flotation froth and the image background was enhanced, and the edges of bubble were extracted. Thus a model about the relation between the statistic feature of the bubbles in the image and the cleaned coal can be established. It is feasible to extract the bubble by processing the froth image of coal flotation on the basis of analysing the shape of the bubble. By means of processing the 51 group images sampled from laboratory column, it is thought that the use of the histogram equalization of image gradation and the medium filtering can obviously improve the dynamic contrast range and the brightness of bubbles. Finally, the method of threshold value cut and the bubble edge detecting for extracting the bubble were also discussed to describe the bubble feature, such as size and shape, in the froth image and to distinguish the froth image of coal flotation. 6 refs., 3 figs.

  16. A dry-spot model for the prediction of critical heat flux in water boiling in bubbly flow regime

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Sang Jun; No, Hee Cheon [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1998-12-31

    This paper presents a prediction of critical heat flux (CHF) in bubbly flow regime using dry-spot model proposed recently by authors for pool and flow boiling CHF and existing correlations for forced convective heat transfer coefficient, active site density and bubble departure diameter in nucleate boiling region. Without any empirical constants always present in earlier models, comparisons of the model predictions with experimental data for upward flow of water in vertical, uniformly-heated round tubes are performed and show a good agreement. The parametric trends of CHF have been explored with respect to variations in pressure, tube diameter and length, mass flux and inlet subcooling. 16 refs., 6 figs., 1 tab. (Author)

  17. A dry-spot model for the prediction of critical heat flux in water boiling in bubbly flow regime

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Sang Jun; No, Hee Cheon [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1997-12-31

    This paper presents a prediction of critical heat flux (CHF) in bubbly flow regime using dry-spot model proposed recently by authors for pool and flow boiling CHF and existing correlations for forced convective heat transfer coefficient, active site density and bubble departure diameter in nucleate boiling region. Without any empirical constants always present in earlier models, comparisons of the model predictions with experimental data for upward flow of water in vertical, uniformly-heated round tubes are performed and show a good agreement. The parametric trends of CHF have been explored with respect to variations in pressure, tube diameter and length, mass flux and inlet subcooling. 16 refs., 6 figs., 1 tab. (Author)

  18. Proposals of counting method for bubble detectors and their intercomparisons

    International Nuclear Information System (INIS)

    Ramalho, Eduardo; Silva, Ademir X.; Bellido, Luis F.; Facure, Alessandro; Pereira, Mario

    2009-01-01

    The study of neutron's spectrometry and dosimetry has become significantly easier due to relatively new devices called bubble detectors. Insensitive to gamma rays and composed by superheated emulsions, they still are subjects of many researches in Radiation Physics and Nuclear Engineering. In bubble detectors, either exposed to more intense neutron fields or for a long time, when more bubbles are produced, the statistical uncertainty during the dosimetric and spectrometric processes is reduced. A proposal of this nature is set up in this work, which presents ways to perform counting processes for bubble detectors and an updated proceeding to get the irradiated detectors' images in order to make the manual counting easier. Twelve BDS detectors were irradiated by RDS111 cyclotron from IEN's (Instituto de Engenharia Nuclear) and photographed using an assembly specially designed for this experiment. Counting was proceeded manually in a first moment; simultaneously, ImagePro was used in order to perform counting automatically. The bubble counting values, either manual or automatic, were compared and the time to get them and their difficult levels as well. After the bubble counting, the detectors' standardizes responses were calculated in both cases, according to BDS's manual and they were also compared. Among the results, the counting on these devices really becomes very hard at a large number of bubbles, besides higher variations in counting of many bubbles. Because of the good agreement between manual counting and the custom program, the last one revealed a good alternative in practical and economical levels. Despite the good results, the custom program needs of more adjustments in order to achieve more accuracy on higher counting on bubble detectors for neutron measurement applications. (author)

  19. Interfacial area transport in a confined Bubbly flow

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.; Sun, X.; Ishii, M. [Purdue Univ., Lafayette, IN (United States). School of Nuclear Engineering; Lincoln, F. [Bettis Atomic Power Lab., West Mifflin, Bechtel Bettis, Inc., PA (United States)

    2001-07-01

    The interfacial area transport equation applicable to the bubbly flow is presented. The model is evaluated against the data acquired in an adiabatic air-water upward two-phase flow loop with a test section of 20 cm in width and 1 cm in gap. In general, a good agreement, within the measurement error of {+-}10%, is observed for a wide range in the bubbly flow regime. The sensitivity analysis on the individual particle interaction mechanisms demonstrates the active interactions between the bubbles and highlights the mechanisms playing the dominant role in interfacial area transport. (author)

  20. Bubble propagation in Hele-Shaw channels with centred constrictions

    Science.gov (United States)

    Franco-Gómez, Andrés; Thompson, Alice B.; Hazel, Andrew L.; Juel, Anne

    2018-04-01

    We study the propagation of finite bubbles in a Hele-Shaw channel, where a centred occlusion (termed a rail) is introduced to provide a small axially uniform depth constriction. For bubbles wide enough to span the channel, the system’s behaviour is similar to that of semi-infinite fingers and a symmetric static solution is stable. Here, we focus on smaller bubbles, in which case the symmetric static solution is unstable and the static bubble is displaced towards one of the deeper regions of the channel on either side of the rail. Using a combination of experiments and numerical simulations of a depth-averaged model, we show that a bubble propagating axially due to a small imposed flow rate can be stabilised in a steady symmetric mode centred on the rail through a subtle interaction between stabilising viscous forces and destabilising surface tension forces. However, for sufficiently large capillary numbers Ca, the ratio of viscous to surface tension forces, viscous forces in turn become destabilising thus returning the bubble to an off-centred propagation regime. With decreasing bubble size, the range of Ca for which steady centred propagation is stable decreases, and eventually vanishes through the coalescence of two supercritical pitchfork bifurcations. The depth-averaged model is found to accurately predict all the steady modes of propagation observed experimentally, and provides a comprehensive picture of the underlying steady bifurcation structure. However, for sufficiently large imposed flow rates, we find that initially centred bubbles do not converge onto a steady mode of propagation. Instead they transiently explore weakly unstable steady modes, an evolution which results in their break-up and eventual settling into a steady propagating state of changed topology.

  1. Multi-dimensional modeling of gas-liquid two-phase flows. Application to the simulation of ascending bubble flows in vertical ducts

    International Nuclear Information System (INIS)

    Morel, Ch.

    1997-01-01

    The aim of this thesis is the 3-D modeling and numerical simulation of liquid/gas (water/vapor or water/air) two-phase flows in cooling circuits of nuclear power plants during normal and accidental situations. The development of a multidimensional dual-fluid model encounters two problems: the statistical effects of turbulence and the interface mass, momentum and energy transfers. The models developed in this study were introduced in the 3-D module of the CATHARE code developed by the CEA and the results were compared to experimental results available in the literature. The first chapter describes the equations of the local dual-fluid model for the 3-D description of two-phase flows. Closing relations adapted to dispersed flows with isothermal bubbles and without phase transformation are proposed and focus on the momentum transfer at the interfaces. The theoretical study of turbulence in the liquid phase of a bubble flow is modelled in chapter 2. Chapter 3 deals with the voluminal interface area used in the interface mass, momentum and energy transfers, and chapters 4 and 5 concern the application of the developed models to concrete situations. Chapter 4 describes in details the 3-D module of the CATHARE code while chapter 5 gives a comparison of numerical results obtained using the CATHARE code with other experimental results obtained at EdF. (J.S.)

  2. Molecular dynamics simulations of bubble nucleation in dark matter detectors.

    Science.gov (United States)

    Denzel, Philipp; Diemand, Jürg; Angélil, Raymond

    2016-01-01

    Bubble chambers and droplet detectors used in dosimetry and dark matter particle search experiments use a superheated metastable liquid in which nuclear recoils trigger bubble nucleation. This process is described by the classical heat spike model of F. Seitz [Phys. Fluids (1958-1988) 1, 2 (1958)PFLDAS0031-917110.1063/1.1724333], which uses classical nucleation theory to estimate the amount and the localization of the deposited energy required for bubble formation. Here we report on direct molecular dynamics simulations of heat-spike-induced bubble formation. They allow us to test the nanoscale process described in the classical heat spike model. 40 simulations were performed, each containing about 20 million atoms, which interact by a truncated force-shifted Lennard-Jones potential. We find that the energy per length unit needed for bubble nucleation agrees quite well with theoretical predictions, but the allowed spike length and the required total energy are about twice as large as predicted. This could be explained by the rapid energy diffusion measured in the simulation: contrary to the assumption in the classical model, we observe significantly faster heat diffusion than the bubble formation time scale. Finally we examine α-particle tracks, which are much longer than those of neutrons and potential dark matter particles. Empirically, α events were recently found to result in louder acoustic signals than neutron events. This distinction is crucial for the background rejection in dark matter searches. We show that a large number of individual bubbles can form along an α track, which explains the observed larger acoustic amplitudes.

  3. Bubble nucleation in an explosive micro-bubble actuator

    International Nuclear Information System (INIS)

    Van den Broek, D M; Elwenspoek, M

    2008-01-01

    Explosive evaporation occurs when a thin layer of liquid reaches a temperature close to the critical temperature in a very short time. At these temperatures spontaneous nucleation takes place. The nucleated bubbles instantly coalesce forming a vapour film followed by rapid growth due to the pressure impulse. In this paper we take a closer look at the bubble nucleation. The moment of bubble nucleation was determined by both stroboscopic imaging and resistance thermometry. Two nucleation regimes could be distinguished. Several different heater designs were investigated under heat fluxes of hundreds of W mm −2 . A close correspondence between current density in the heater and point of nucleation was found. This results in design rules for effective heaters

  4. Linear oscillation of gas bubbles in a viscoelastic material under ultrasound irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hamaguchi, Fumiya; Ando, Keita, E-mail: kando@mech.keio.ac.jp [Department of Mechanical Engineering, Keio University, Yokohama 223-8522 (Japan)

    2015-11-15

    Acoustically forced oscillation of spherical gas bubbles in a viscoelastic material is studied through comparisons between experiments and linear theory. An experimental setup has been designed to visualize bubble dynamics in gelatin gels using a high-speed camera. A spherical gas bubble is created by focusing an infrared laser pulse into (gas-supersaturated) gelatin gels. The bubble radius (up to 150 μm) under mechanical equilibrium is controlled by gradual mass transfer of gases across the bubble interface. The linearized bubble dynamics are studied from the observation of spherical bubble oscillation driven by low-intensity, planar ultrasound driven at 28 kHz. It follows from the experiment for an isolated bubble that the frequency response in its volumetric oscillation was shifted to the high frequency side and its peak was suppressed as the gelatin concentration increases. The measurement is fitted to the linearized Rayleigh–Plesset equation coupled with the Voigt constitutive equation that models the behavior of linear viscoelastic solids; the fitting yields good agreement by tuning unknown values of the viscosity and rigidity, indicating that more complex phenomena including shear thinning, stress relaxation, and retardation do not play an important role for the small-amplitude oscillations. Moreover, the cases for bubble-bubble and bubble-wall systems are studied. The observed interaction effect on the linearized dynamics can be explained as well by a set of the Rayleigh–Plesset equations coupled through acoustic radiation among these systems. This suggests that this experimental setup can be applied to validate the model of bubble dynamics with more complex configuration such as a cloud of bubbles in viscoelastic materials.

  5. Interface tracking computations of bubble dynamics in nucleate flow boiling

    International Nuclear Information System (INIS)

    Giustini, G.

    2015-01-01

    The boiling process is of utter importance for the design and operation of water-cooled nuclear reactors. Despite continuous effort over the past decades, a fully mechanistic model of boiling in the presence of a solid surface has not yet been achieved. Uncertainties exist at fundamental level, since the microscopic phenomena governing nucleate boiling are still not understood, and as regards 'component scale' modelling, which relies heavily on empirical representations of wall boiling. Accurate models of these phenomena at sub-milli-metric scale are capable of elucidating the various processes and to produce quantitative data needed for up-scaling. Within this context, Direct Numerical Simulation (DNS) represents a powerful tool for CFD analysis of boiling flows. In this contribution, DNS coupled with an Interface Tracking method (Y. Sato, B. Niceno, Journal of Computational Physics, Volume 249, 15 September 2013, Pages 127-161) are used to analyse the hydrodynamics and heat transfer associated with heat diffusion controlled bubble growth at a solid substrate during nucleate flow boiling. The growth of successive bubbles from a single nucleation site is simulated with a computational model that includes heat conduction in the solid substrate and evaporation from the liquid film (micro-layer) present beneath the bubble. Bubble evolution is investigated and the additional (with respect to single phase convection) heat transfer mechanisms due to the ebullition cycle are quantified. The simulations show that latent heat exchange due to evaporation in the micro-layer and sensible heat exchange during the waiting time after bubble departure are the main heat transfer mechanisms. It is found that the presence of an imposed flow normal to the bubble rising path determines a complex velocity and temperature distribution near the nucleation site. This conditions can result in bubble sliding, and influence bubble shape, departure diameter and departure frequency

  6. Aspherical bubble dynamics and oscillation times

    Energy Technology Data Exchange (ETDEWEB)

    Godwin, R.P.; Chapyak, E.J. [Los Alamos National Lab., NM (United States); Noack, J.; Vogel, A. [Medizinisches Laserzentrum Luebeck (Germany)

    1999-03-01

    The cavitation bubbles common in laser medicine are rarely perfectly spherical and are often located near tissue boundaries, in vessels, etc., which introduce aspherical dynamics. Here, novel features of aspherical bubble dynamics are explored. Time-resolved experimental photographs and simulations of large aspect ratio (length:diameter {approximately}20) cylindrical bubble dynamics are presented. The experiments and calculations exhibit similar dynamics. A small high-pressure cylindrical bubble initially expands radially with hardly any axial motion. Then, after reaching its maximum volume, a cylindrical bubble collapses along its long axis with relatively little radial motion. The growth-collapse period of these very aspherical bubbles differs only sightly from twice the Rayleigh collapse time for a spherical bubble with an equivalent maximum volume. This fact justifies using the temporal interval between the acoustic signals emitted upon bubble creation and collapse to estimate the maximum bubble volume. As a result, hydrophone measurements can provide an estimate of the bubble energy even for aspherical bubbles. The prolongation of the oscillation period of bubbles near solid boundaries relative to that of isolated spherical bubbles is also discussed.

  7. Influence of Changing the Diameter of the Bubble Generator Bottle and Expiratory Limb on Bubble CPAP: An in vitro Study

    Directory of Open Access Journals (Sweden)

    Chun-Shan Wu

    2012-12-01

    Conclusion: The size and submergence depth of an expiratory limb of a CPAP circuit, the diameter of the bubble generator bottle, and the compliance of the model lung all influence the magnitude and frequency of the transmitted pressure waveform. Therefore, these factors may affect lung volume recruitment and breathing efficiency in bubble CPAP.

  8. Study of droplet entrainment from bubbling surface in a bubble column

    International Nuclear Information System (INIS)

    Ramirez de Santiago, M.

    1991-05-01

    In a bubble column droplets are ejected from the free surface by bubble bursting or splashing. Depending on their size, the droplets are partly carried away by the streaming gas or fall back to the bubbling surface by gravity force. Experiments have been carried out to determine the void fraction in the column by means of an optical probe. In the interfacial zone the bubble bursting process was captured with a high-speed video camera. Simultaneous measurements were made of size and velocity of droplets at several distances from the bubbling surface with a Phase-Doppler Anemometry. The bubble column can be divided into three regions: A lower zone with a flat profile of the local void fraction, a central zone where the flow regime is steady and an upper zone where the local void fraction grows rapidly. A two-parameter log-normal distribution function was proposed in order to describe the polydisperse distribution of droplet-size. Results were obtained concerning the entrainment, concentration, volume fraction and interfacial area of droplets. Finally, it was found that the turbulence intensity affects the droplet terminal velocity for droplets smaller than the Kolmogorov microscale [fr

  9. Universe unveiled the cosmos in my bubble bath

    CERN Document Server

    Vishveshwara, C V

    2015-01-01

    The bubbles were swirling all around me, massaging my body. As I luxuriated in this fantastic bath, I gasped realizing that those bubbles carried with them miniature galaxies bringing the entire Cosmos into my bathtub... Alfie is back. And so are George and other characters from the author’s previous book Einstein’s Enigma or Black Holes in My Bubble Bath. While the present book, Universe Unveiled - The Cosmos in My Bubble Bath, is completely independent, its storyline can be considered a sequel to the previous one. The scientific content spanning ancient world models to the most recent mysteries of cosmology is presented in an entirely nontechnical and descriptive style through the discussions between Alfie, the enlightened learner, and George, professor of astrophysics. Fantasies, based on these discussions that cover the scientific facts, are created by the magical bubble baths taken by Alfie. Universe Unveiled blends accurate science with philosophy, drama, humour, and fantasy to create an exciting co...

  10. Beer tapping: dynamics of bubbles after impact

    Science.gov (United States)

    Mantič-Lugo, V.; Cayron, A.; Brun, P.-T.; Gallaire, F.

    2015-12-01

    Beer tapping is a well known prank where a bottle of beer is impacted from the top by a solid object, usually another bottle, leading to a sudden foam overflow. A description of the shock-driven bubble dynamics leading to foaming is presented based on an experimental and numerical study evoking the following physical picture. First, the solid impact produces a sudden downwards acceleration of the bottle creating a strong depression in the liquid bulk. The existing bubbles undergo a strong expansion and a sudden contraction ending in their collapse and fragmentation into a large amount of small bubbles. Second, the bubble clouds present a large surface area to volume ratio, enhancing the CO2 diffusion from the supersaturated liquid, hence growing rapidly and depleting the CO2. The clouds of bubbles migrate upwards in the form of plumes pulling the surrounding liquid with them and eventually resulting in the foam overflow. The sudden pressure drop that triggers the bubble dynamics with a collapse and oscillations is modelled by the Rayleigh-Plesset equation. The bubble dynamics from impact to collapse occurs over a time (tb ≃ 800 μs) much larger than the acoustic time scale of the liquid bulk (tac = 2H/c ≃ 80 μs), for the experimental container of height H = 6 cm and a speed of sound around c ≃ 1500 m/s. This scale separation, together with the comparison of numerical and experimental results, suggests that the pressure drop is controlled by two parameters: the acceleration of the container and the distance from the bubble to the free surface.

  11. Single-phase and two phase bubbly flow in a T connection: theoretical and experimental study

    International Nuclear Information System (INIS)

    Hervieu, Eric

    1988-01-01

    The objective of this research thesis is to highlight the driving factors of the separation of phases of a bubbly flow in a T junction, and to develop a prediction model. In a first part, the author reports the rigorous formulation of equations averaged on the T volume. He shows that it's not possible to solve globally the problem with these equations. Then, he reports a bibliographical study on the modelling of a bubbly flow, and, based upon this study, highlights intrinsic characteristics of the flow, and explains its dynamic mechanisms. He reports the development of the theoretical model, and describes the experimental installation used to validate it. In the third part, he reports the study of the liquid-gas interaction, and presents the adopted approach: study of the behaviour of an isolated bubble within a single-phase flow. Experimentation is used to check theoretical predictions. Results are used to compute phase separation. The obtained results are again compared with experimental results to validate the global relevance of the model [fr

  12. Development of three-dimensional individual bubble-velocity measurement method by bubble tracking

    International Nuclear Information System (INIS)

    Kanai, Taizo; Furuya, Masahiro; Arai, Takahiro; Shirakawa, Kenetsu; Nishi, Yoshihisa

    2012-01-01

    A gas-liquid two-phase flow in a large diameter pipe exhibits a three-dimensional flow structure. Wire-Mesh Sensor (WMS) consists of a pair of parallel wire layers located at the cross section of a pipe. Both the parallel wires cross at 90o with a small gap and each intersection acts as an electrode. The WMS allows the measurement of the instantaneous two-dimensional void-fraction distribution over the cross-section of a pipe, based on the difference between the local instantaneous conductivity of the two-phase flow. Furthermore, the WMS can acquire a phasic-velocity on the basis of the time lag of void signals between two sets of WMS. Previously, the acquired phasic velocity was one-dimensional with time-averaged distributions. The authors propose a method to estimate the three-dimensional bubble-velocity individually WMS data. The bubble velocity is determined by the tracing method. In this tracing method, each bubble is separated from WMS signal, volume and center coordinates of the bubble is acquired. Two bubbles with near volume at two WMS are considered as the same bubble and bubble velocity is estimated from the displacement of the center coordinates of the two bubbles. The validity of this method is verified by a swirl flow. The proposed method can successfully visualize a swirl flow structure and the results of this method agree with the results of cross-correlation analysis. (author)

  13. Cavitation inception from bubble nuclei

    DEFF Research Database (Denmark)

    Mørch, Knud Aage

    2015-01-01

    , and experimental investigations of bubbles and cavitation inception have been presented. These results suggest that cavitation nuclei in equilibrium are gaseous voids in the water, stabilized by a skin which allows diffusion balance between gas inside the void and gas in solution in the surrounding liquid....... The cavitation nuclei may be free gas bubbles in the bulk of water, or interfacial gaseous voids located on the surface of particles in the water, or on bounding walls. The tensile strength of these nuclei depends not only on the water quality but also on the pressure-time history of the water. A recent model...

  14. Simulation of bubbly flow in vertical pipes by coupling Lagrangian and Eulerian models with 3D random walks models: Validation with experimental data using multi-sensor conductivity probes and Laser Doppler Anemometry

    Energy Technology Data Exchange (ETDEWEB)

    Munoz-Cobo, Jose L., E-mail: jlcobos@iqn.upv.es [Instituto de Ingenieria Energetica, Universidad Politecnica de Valencia, Valencia (Spain); Chiva, Sergio [Department of Mechanical Engineering and Construction, Universitat Jaume I, Castellon (Spain); Essa, Mohamed Ali Abd El Aziz [Instituto de Ingenieria Energetica, Universidad Politecnica de Valencia, Valencia (Spain); Mendes, Santos [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon (Mexico)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer We have simulated bubbly flow in vertical pipes by coupling a Lagrangian model to an Eulerian one, and to a 3D random walk model. Black-Right-Pointing-Pointer A set of experiments in a vertical column with isothermal co-current two phase flow have been performed and used to validate the previous model. Black-Right-Pointing-Pointer We have investigated the influence of the turbulence induced by the bubbles on the results. Black-Right-Pointing-Pointer Comparison of experimental and computed results has been performed for different boundary conditions. - Abstract: A set of two phase flow experiments for different conditions ranging from bubbly flow to cap/slug flow have been performed under isothermal concurrent upward air-water flow conditions in a vertical column of 3 m height. Special attention in these experiments was devoted to the transition from bubbly to cap/slug flow. The interfacial velocity of the bubbles and the void fraction distribution was obtained using 2 and 4 sensors conductivity probes. Numerical simulations of these experiments for bubbly flow conditions were performed by coupling a Lagrangian code with an Eulerian one. The first one tracks the 3D motion of the individual bubbles in cylindrical coordinates (r, {phi}, z) inside the fluid field under the action of the following forces: buoyancy, drag, lift, wall lubrication. Also we have incorporated a 3D stochastic differential equation model to account for the random motion of the individual bubbles in the turbulent velocity field of the carrier liquid. Also we have considered the deformations undergone by the bubbles when they touch the walls of the pipe and are compressed until they rebound. The velocity and turbulence fields of the liquid phase were computed by solving the time dependent conservation equations in its Reynolds Averaged Transport Equation form (RANS). The turbulent kinetic energy k, and the dissipation rate {epsilon} transport equations

  15. Simulation of bubbly flow in vertical pipes by coupling Lagrangian and Eulerian models with 3D random walks models: Validation with experimental data using multi-sensor conductivity probes and Laser Doppler Anemometry

    International Nuclear Information System (INIS)

    Muñoz-Cobo, José L.; Chiva, Sergio; Essa, Mohamed Ali Abd El Aziz; Mendes, Santos

    2012-01-01

    Highlights: ► We have simulated bubbly flow in vertical pipes by coupling a Lagrangian model to an Eulerian one, and to a 3D random walk model. ► A set of experiments in a vertical column with isothermal co-current two phase flow have been performed and used to validate the previous model. ► We have investigated the influence of the turbulence induced by the bubbles on the results. ► Comparison of experimental and computed results has been performed for different boundary conditions. - Abstract: A set of two phase flow experiments for different conditions ranging from bubbly flow to cap/slug flow have been performed under isothermal concurrent upward air–water flow conditions in a vertical column of 3 m height. Special attention in these experiments was devoted to the transition from bubbly to cap/slug flow. The interfacial velocity of the bubbles and the void fraction distribution was obtained using 2 and 4 sensors conductivity probes. Numerical simulations of these experiments for bubbly flow conditions were performed by coupling a Lagrangian code with an Eulerian one. The first one tracks the 3D motion of the individual bubbles in cylindrical coordinates (r, φ, z) inside the fluid field under the action of the following forces: buoyancy, drag, lift, wall lubrication. Also we have incorporated a 3D stochastic differential equation model to account for the random motion of the individual bubbles in the turbulent velocity field of the carrier liquid. Also we have considered the deformations undergone by the bubbles when they touch the walls of the pipe and are compressed until they rebound. The velocity and turbulence fields of the liquid phase were computed by solving the time dependent conservation equations in its Reynolds Averaged Transport Equation form (RANS). The turbulent kinetic energy k, and the dissipation rate ε transport equations were simultaneously solved using the k, epsilon model in a (r, z) grid by the finite volume method and the

  16. Dissolution of methane bubbles with hydrate armoring in deep ocean conditions

    Science.gov (United States)

    Kovalchuk, Margarita; Socolofsky, Scott

    2017-11-01

    The deep ocean is a storehouse of natural gas. Methane bubble moving upwards from marine sediments may become trapped in gas hydrates. It is uncertain precisely how hydrate armoring affects dissolution, or mass transfer from the bubble to the surrounding water column. The Texas A&M Oilspill Calculator was used to simulate a series of gas bubble dissolution experiments conducted in the United States Department of Energy National Energy Technology Laboratory High Pressure Water Tunnel. Several variations of the mass transfer coefficient were calculated based on gas or hydrate phase solubility and clean or dirty bubble correlations. Results suggest the mass transfer coefficient may be most closely modeled with gas phase solubility and dirty bubble correlation equations. Further investigation of hydrate bubble dissolution behavior will refine current numeric models which aid in understanding gas flux to the atmosphere and plumes such as oil spills. Research funded in part by the Texas A&M University 2017 Undergraduate Summer Research Grant and a Grant from the Methane Gas Hydrates Program of the US DOE National Energy Technology Laboratory.

  17. Bayesian Analysis of Bubbles in Asset Prices

    Directory of Open Access Journals (Sweden)

    Andras Fulop

    2017-10-01

    Full Text Available We develop a new model where the dynamic structure of the asset price, after the fundamental value is removed, is subject to two different regimes. One regime reflects the normal period where the asset price divided by the dividend is assumed to follow a mean-reverting process around a stochastic long run mean. The second regime reflects the bubble period with explosive behavior. Stochastic switches between two regimes and non-constant probabilities of exit from the bubble regime are both allowed. A Bayesian learning approach is employed to jointly estimate the latent states and the model parameters in real time. An important feature of our Bayesian method is that we are able to deal with parameter uncertainty and at the same time, to learn about the states and the parameters sequentially, allowing for real time model analysis. This feature is particularly useful for market surveillance. Analysis using simulated data reveals that our method has good power properties for detecting bubbles. Empirical analysis using price-dividend ratios of S&P500 highlights the advantages of our method.

  18. Numerical predictions of bubbly two-phase flows with OpenFOAM

    International Nuclear Information System (INIS)

    Michta, E.; Fu, K.; Anglart, H.; Angele, K.

    2011-01-01

    A new model for simulation of bubbly two-phase flows has been developed and implemented into an open-source Computational Fluid Dynamics (CFD) code OpenFOAM. The model employs the two-fluid framework with closure relationships for the interfacial momentum transfer. The bubble size is calculated based on the solution of the interfacial area concentration equations. The predictions are validated against a wide range of experimental data containing measured void fraction, the phasic velocity and the interfacial area concentration. The new model demonstrates the ability to capture the wall peaking of void fraction for small bubbles. The predicted levels of void fraction and phasic velocities are in good agreement with measured data. (author)

  19. Introduction of the bubble rise dynamic model into the ALMOD 3 code pressurizer

    International Nuclear Information System (INIS)

    Madeira, A.A.; Camargo, C.T.M.

    1985-01-01

    A new evaporation model for the ALMOD 3 code pressurizer is implemented in order to estimate more accurately the water level behaviour and its influence in the pressure transient for very fast depressurization cases. For the inclusion of the bubble rise dynamic model it was necessary to consider a two-phase mixture in the water volume. The modifications don't require additional input data and virtually had not modified the processing time. The results and processing time for the original and the new models are presented. (F.E.) [pt

  20. The oil price crash in 2014/15: Was there a (negative) financial bubble?

    International Nuclear Information System (INIS)

    Fantazzini, Dean

    2016-01-01

    This paper suggests that there was a negative bubble in oil prices in 2014/15, which decreased them beyond the level justified by economic fundamentals. This proposition is corroborated by two sets of bubble detection strategies: the first set consists of tests for financial bubbles, while the second set consists of the log-periodic power law (LPPL) model for negative financial bubbles. Despite the methodological differences between these detection methods, they provided the same outcome: the oil price experienced a statistically significant negative financial bubble in the last months of 2014 and at the beginning of 2015. These results also hold after several robustness checks which consider the effect of conditional heteroskedasticity, model set-ups with additional restrictions, longer data samples, tests with lower frequency data and with an alternative proxy variable to measure the fundamental value of oil. - Highlights: •There was a negative bubble in oil prices in 2014/15. •This bubble decreased oil prices beyond the level justified by economic fundamentals. •Several bubble detection methods confirm this evidence.

  1. Ignition modes of nanosecond discharge with bubbles in distilled water

    International Nuclear Information System (INIS)

    Hamdan, Ahmad; Cha, Min Suk

    2015-01-01

    Here, we present the microscopic physical characteristics of nanosecond discharges with an array of bubbles in distilled water. In particular, applying a single high-voltage pulse, four delayed intensified charge-coupled device cameras successfully visualized four successive images during a single discharge event. We identified three distinctive modes of ignition inside a bubble, depending on the relative location of the bubble with respect to pin-to-hollow needle electrodes when a single bubble was located in an inter-electrode gap of 1 mm: anode-driven ignition, cathode-driven ignition, and co-ignition near both electrodes. Anode- and cathode-driven ignitions evolved into either a complete propagation of the streamer or an incomplete propagation, which were limited in location by proximity to an ignition location, while co-ignitions consistently showed complete propagation. When we increased the gap to 2 mm to accommodate multiple bubbles in the gap, an ignited bubble near the cathode was able to cause the ignition of an upper adjacent bubble. Bubble–bubble interface zones can also be spots of ignition, such that we observed simultaneous co-ignitions in the zones of bubble–bubble interfaces and near electrodes with triple bubbles. We compared the experimental results of discharge propagation with different ignition modes between Ar, He, and N 2 bubbles. In addition, numerical simulations for static electric fields reasonably supported observed ignition behavior such that field intensity was locally enhanced. (paper)

  2. Dissolution of spherical cap CO2 bubbles attached to flat surfaces in air-saturated water

    Science.gov (United States)

    Peñas, Pablo; Parrales, Miguel A.; Rodriguez-Rodriguez, Javier

    2014-11-01

    Bubbles attached to flat surfaces immersed in quiescent liquid environments often display a spherical cap (SC) shape. Their dissolution is a phenomenon commonly observed experimentally. Modelling these bubbles as fully spherical may lead to an inaccurate estimate of the bubble dissolution rate. We develop a theoretical model for the diffusion-driven dissolution or growth of such multi-component SC gas bubbles under constant pressure and temperature conditions. Provided the contact angle of the bubble with the surface is large, the concentration gradients in the liquid may be approximated as spherically symmetric. The area available for mass transfer depends on the instantaneous bubble contact angle, whose dynamics is computed from the adhesion hysteresis model [Hong et al., Langmuir, vol. 27, 6890-6896 (2011)]. Numerical simulations and experimental measurements on the dissolution of SC CO2 bubbles immersed in air-saturated water support the validity of our model. We verify that contact line pinning slows down the dissolution rate, and the fact that any bubble immersed in a saturated gas-liquid solution eventually attains a final equilibrium size. Funded by the Spanish Ministry of Economy and Competitiveness through Grant DPI2011-28356-C03-0.

  3. Effect study of multi-bubbles on stress distribution of fuel particle

    International Nuclear Information System (INIS)

    Zhao Yi; Wang Xiaomin; Long Chongsheng

    2015-01-01

    The finite element model was proposed to simulate the process of the UO_2 dispersion fuel particle sustaining the internal pressure of multi-bubbles, and the stress distribution of fuel particle with intra-bubbles was calculated. The results show that when the bubbles line equidistantly along x axis, the max normal stress along y axis increases with the number of bubbles, meanwhile, the increment of the normal stress gradually decreases. There is a limit that the effect of bubble's number imposes on the max normal stress in the fuel particle. When multi-column of bubbles exist, the max normal stress along x axis in the fuel particle increases, and the max normal stress along y axis decreases with the increase of the number of bubble column. The stress concentration in the fuel particle decreases with the spacing radius ratio increasing. (authors)

  4. Modeling of helium bubble nucleation and growth in austenitic stainless steels using an Object Kinetic Monte Carlo method

    Energy Technology Data Exchange (ETDEWEB)

    De Backer, A., E-mail: andree.debacker@ccfe.ac.uk [UMET, UMR 8207, Université Lille 1, Villeneuve d’Ascq (France); CCFE, Culham Centre for Fusion Energy, Abingdon, Oxon (United Kingdom); Adjanor, G.; Domain, C.; Lescoat, M.L. [EDF R& D, MMC Centre des Renardières, Moret-sur-Loing (France); Jublot-Leclerc, S.; Fortuna, F.; Gentils, A. [CSNSM, Univ Paris-Sud, CNRS/IN2P3, Orsay (France); Ortiz, C.J. [CIEMAT, Laboratorio Nacional de Fusión por Confinamiento Magnético, Madrid (Spain); Souidi, A. [Université Dr. Tahar Moulay de Saida, Saida (Algeria); Becquart, C.S. [UMET, UMR 8207, Université Lille 1, Villeneuve d’Ascq (France)

    2015-06-01

    Implantation of 10 keV helium in 316L steel thin foils was performed in JANNuS-Orsay facility and modeled using a multiscale approach. Density Functional Theory (DFT) atomistic calculations [1] were used to obtain the properties of He and He-vacancy clusters, and the Binary Collision Approximation based code MARLOWE was applied to determine the damage and He-ion depth profiles as in [2,3]. The processes involved in the homogeneous He bubble nucleation and growth were defined and implemented in the Object Kinetic Monte Carlo code LAKIMOCA [4]. In particular as the He to dpa ratio was high, self-trapping of He clusters and the trap mutation of He-vacancy clusters had to be taken into account. With this multiscale approach, the formation of bubbles was modeled up to nanometer-scale size, where bubbles can be observed by Transmission Electron Microscopy. Their densities and sizes were studied as functions of fluence (up to 5 × 10{sup 19} He/m{sup 2}) at two temperatures (473 and 723 K) and for different sample thicknesses (25–250 nm). It appears that the damage is not only due to the collision cascades but is also strongly controlled by the He accumulation in pressurized bubbles. Comparison with experimental data is discussed and sensible agreement is achieved.

  5. Dynamics of bubble-bubble interaction in sheared low-viscosity magma imaged by X-ray computed micro-tomography

    Science.gov (United States)

    Helo, C.; Flaws, A.; Hess, K.-U.; Franz, A.; Clague, D. A.; Dingwell, D. B.

    2012-04-01

    X-ray computed tomography of vesicles in basaltic pyroclastic glass fragments has been used to investigate the syn-eruptive shear environment and resulting bubble-bubble interaction during mild pyroclastic eruptions in a mid-ocean ridge environment. We have imaged vesicles present in two different types of pyroclastic fragments produced by mildly explosive activity on Axial Seamount, limu o Pele, that is, thin glass films often described as bubble walls, and tube scoria fragments. Rapid quenching of the glass has prevented extensive bubble relaxation preserving the syn-eruptive geometry of the bubbles in these fragments. Isolated, ellipsoid-shaped vesicles in low-vesicular limu o Pele indicate deformation in a simple shear environment. Under these shear conditions higher vesiculated parts of the erupting magma show strong bubble-bubble interactions partially leading to coalscence and formation of tubular vesicles. These tubular vesicles can reach significant lengths, exceeding the dimensions of the small glass fragments (2 mm). Their unreformed radius can be more then one order of magnitude larger than that of the isolated vesicles in the limu o Pele fragments. We can distinguish two principle modes of interaction based on the relative orientation of the bubbles. Interaction along the sidewalls of two bubbles, and tip-to-tip interaction. At interdistances of less than a few tens of micrometre, interaction of the sidewalls results in deformation of the bubbles to more irregular shapes, with depressions caused by close, small bubbles or in some cases bubbles being partially mantled around tubular bubbles. This often leads to a more close packing of bubbles. At distances of less than a few microns, the melt films between the bubbles destabilize leading to coalescence. This mechanism appears to involve a bulging of the larger bubble into the smaller, followed by melt film rapture and coalescence. The complete digestion of one bubble by the other is the slow rate

  6. Gas distribution effects on waste properties: Viscosities of bubbly slurries

    International Nuclear Information System (INIS)

    Gauglitz, P.A.; Shah, R.R.; Davis, R.L.

    1994-09-01

    The retention and episodic release of flammable gases are critical safety concerns for double-shell tanks that contain waste slurries. The rheological behavior of the waste, particularly of the settled sludge, is critical to characterizing the tendency of the waste to retain gas bubbles. The presence of gas bubbles is expected to affect the rheology of the sludge, but essentially no literature data are available to assess the effect of bubbles. Accordingly, the objectives of this study are to develop models for the effect of gas bubbles on the viscosity of a particulate slurry, develop an experimental method (capillary rheometer), collect data on the viscosity of a bubbly slurry, and develop a theoretical basis for interpreting the experimental data from the capillary rheometer

  7. Fermi Bubble: Giant Gamma-Ray Bubbles in the Milky Way

    Science.gov (United States)

    Su, Meng

    Data from the Fermi-LAT reveal two gigantic gamma-ray emitting bubble structures (known as the Fermibubbles), extending˜50° above and below the Galactic center symmetric about the Galactic plane, with a width of˜40∘ in longitude. The gamma-ray emission associated with these bubbles has a significantly harder spectrum ({dN}/{dE} ˜ {E}^{-2}) than the inverse Compton emission from known cosmic ray electrons in the Galactic disk, or the gamma-rays produced by decay of pions from proton-ISM collisions. The bubbles are spatially correlated with the hard-spectrum microwave excess known as the WMAPhaze; the edges of the bubbles also line up with features in the ROSATsoft X-ray maps at 1.5-2keV. The Fermibubble is most likely created by some large episode of energy injection in the Galactic center, such as past accretion events onto the central massive black hole, or a nuclear starburst in the last˜10Myr. Study of the origin and evolution of the bubbles also has the potential to improve our understanding of recent energetic events in the inner Galaxy and the high-latitude cosmic ray population.

  8. Theoretical study on bubble formation and flow condensation in downflow channel with horizontal gas injection

    Science.gov (United States)

    Zhu, Kang; Li, Yanzhong; Wang, Jiaojiao; Ma, Yuan; Wang, Lei; Xie, Fushou

    2018-05-01

    Bubble formation and condensation in liquid pipes occur widely in industrial systems such as cryogenic propellant feeding system. In this paper, an integrated theoretical model is established to give a comprehensive description of the bubble formation, motion and condensation process. The model is validated by numerical simulations and bubble condensation experiments from references, and good agreements are achieved. The bubble departure diameter at the orifice and the flow condensation length in the liquid channel are predicted by the model, and effects of various influencing parameters on bubble behaviors are analyzed. Prediction results indicate that the orifice diameter, the gas feeding rate, and the liquid velocity are the primary influence factors on the bubble departure diameter. The interfacial heat transfer as well as the bubble departure diameter has a direct impact on the bubble flow condensation length, which increases by 2.5 times over a system pressure range of 0.1 0.4 MPa, and decreases by 85% over a liquid subcooling range of 5 30 K. This work could be beneficial to the prediction of bubble formation and flow condensation processes and the design of cryogenic transfer pipes.

  9. Bubble dynamics in a superheated liquid

    International Nuclear Information System (INIS)

    Sha, W.T.; Shah, V.L.

    1977-09-01

    The report presents an extensive literature survey on bubble dynamics. Growth of a single spherical bubble moving in a uniformly superheated liquid is considered. Equations of motion and energy are presented in the forms that take into consideration the interaction between the motion and the growth. The fourth-order Runge-Kutta method is used to obtain a simultaneous solution of equations of motion and growth rate, and the solution is compared with available experimental results. Results for liquid sodium are presented for a range of pressures and Jakob numbers

  10. Is there a Housing Bubble in Turkey?

    Directory of Open Access Journals (Sweden)

    Coskun Yener

    2017-03-01

    Full Text Available There was a notable housing price inflation in aggregate/local levels in Turkey during the last few years. Although the country’s economic fundamentals remain strong, the probability of a housing bubble is a heated debate among market participants. This timely investigation brings greater clarity to whether the Turkish housing market is in a bubble. The study uses a multi-strand approach to dissect the bubble over the period of Jan. 2010 - Dec. 2014. First, monthly/annual price-to-income and monthly price-to-rent ratios are examined for the national Turkish as well as regional Istanbul, Izmir and Ankara housing markets. Second, an extended CASE and SHILLER (2003 model is applied assessing the interdependence between housing prices and a series of explanatory variables. Lastly, the Right Tail Augmented Dickey-Fuller (Rtadf test is performed to support the overall analysis. This study finds that neither affordability ratios nor regression estimates support the existence of the bubble in Turkey.

  11. Morphological bubble evolution induced by air diffusion on submerged hydrophobic structures

    Science.gov (United States)

    Lv, Pengyu; Xiang, Yaolei; Xue, Yahui; Lin, Hao; Duan, Huiling

    2017-03-01

    Bubbles trapped in the cavities always play important roles in the underwater applications of structured hydrophobic surfaces. Air exchange between bubbles and surrounding water has a significant influence on the morphological bubble evolution, which in turn frequently affects the functionalities of the surfaces, such as superhydrophobicity and drag reduction. In this paper, air diffusion induced bubble evolution on submerged hydrophobic micropores under reduced pressures is investigated experimentally and theoretically. The morphological behaviors of collective and single bubbles are observed using confocal microscopy. Four representative evolution phases of bubbles are captured in situ. After depressurization, bubbles will not only grow and coalesce but also shrink and split although the applied pressure remains negative. A diffusion-based model is used to analyze the evolution behavior and the results are consistent with the experimental data. A criterion for bubble growth and shrinkage is also derived along with a phase diagram, revealing that the competition of effective gas partial pressures across the two sides of the diffusion layer dominates the bubble evolution process. Strategies for controlling the bubble evolution behavior are also proposed based on the phase diagram. The current work provides a further understanding of the general behavior of bubble evolution induced by air diffusion and can be employed to better designs of functional microstructured hydrophobic surfaces.

  12. Single-bubble dynamics in pool boiling of one-component fluids

    KAUST Repository

    Xu, Xinpeng; Qian, Tiezheng

    2014-01-01

    We numerically investigate the pool boiling of one-component fluids with a focus on the effects of surface wettability on the single-bubble dynamics. We employed the dynamic van der Waals theory [Phys. Rev. E 75, 036304 (2007)], a diffuse-interface model for liquid-vapor flows involving liquid-vapor transition in nonuniform temperature fields. We first perform simulations for bubbles on homogeneous surfaces. We find that an increase in either the contact angle or the surface superheating can enhance the bubble spreading over the heating surface and increase the bubble departure diameter as well and therefore facilitate the transition into film boiling. We then examine the dynamics of bubbles on patterned surfaces, which incorporate the advantages of both hydrophobic and hydrophilic surfaces. The central hydrophobic region increases the thermodynamic probability of bubble nucleation while the surrounding hydrophilic region hinders the continuous bubble spreading by pinning the contact line at the hydrophobic-hydrophilic intersection. This leads to a small bubble departure diameter and therefore prevents the transition from nucleate boiling into film boiling. With the bubble nucleation probability increased and the bubble departure facilitated, the efficiency of heat transfer on such patterned surfaces is highly enhanced, as observed experimentally [Int. J. Heat Mass Transfer 57, 733 (2013)]. In addition, the stick-slip motion of contact line on patterned surfaces is demonstrated in one-component fluids, with the effect weakened by surface superheating.

  13. Single-bubble dynamics in pool boiling of one-component fluids

    KAUST Repository

    Xu, Xinpeng

    2014-06-04

    We numerically investigate the pool boiling of one-component fluids with a focus on the effects of surface wettability on the single-bubble dynamics. We employed the dynamic van der Waals theory [Phys. Rev. E 75, 036304 (2007)], a diffuse-interface model for liquid-vapor flows involving liquid-vapor transition in nonuniform temperature fields. We first perform simulations for bubbles on homogeneous surfaces. We find that an increase in either the contact angle or the surface superheating can enhance the bubble spreading over the heating surface and increase the bubble departure diameter as well and therefore facilitate the transition into film boiling. We then examine the dynamics of bubbles on patterned surfaces, which incorporate the advantages of both hydrophobic and hydrophilic surfaces. The central hydrophobic region increases the thermodynamic probability of bubble nucleation while the surrounding hydrophilic region hinders the continuous bubble spreading by pinning the contact line at the hydrophobic-hydrophilic intersection. This leads to a small bubble departure diameter and therefore prevents the transition from nucleate boiling into film boiling. With the bubble nucleation probability increased and the bubble departure facilitated, the efficiency of heat transfer on such patterned surfaces is highly enhanced, as observed experimentally [Int. J. Heat Mass Transfer 57, 733 (2013)]. In addition, the stick-slip motion of contact line on patterned surfaces is demonstrated in one-component fluids, with the effect weakened by surface superheating.

  14. Vapour and air bubble collapse analysis in viscous compressible water

    Directory of Open Access Journals (Sweden)

    Gil Bazanini

    2001-01-01

    Full Text Available Numerical simulations of the collapse of bubbles (or cavities are shown, using the finite difference method, taking into account the compressibility of the liquid, expected to occur in the final stages of the collapse process. Results are compared with experimental and theoretical data for incompressible liquids, to see the influence of the compressibility of the water in the bubble collapse. Pressure fields values are calculated in an area of 800 x 800 mm, for the case of one bubble under the hypothesis of spherical symmetry. Results are shown as radius versus time curves for the collapse (to compare collapse times, and pressure curves in the plane, for pressure fields. Such calculations are new because of their general point of view, since the existing works do not take into account the existence of vapour in the bubble, neither show the pressure fields seen here. It is also expected to see the influence of the compressibility of the water in the collapse time, and in the pressure field, when comparing pressure values.

  15. Colliding with a crunching bubble

    Energy Technology Data Exchange (ETDEWEB)

    Freivogel, Ben; Freivogel, Ben; Horowitz, Gary T.; Shenker, Stephen

    2007-03-26

    In the context of eternal inflation we discuss the fate of Lambda = 0 bubbles when they collide with Lambda< 0 crunching bubbles. When the Lambda = 0 bubble is supersymmetric, it is not completely destroyed by collisions. If the domain wall separating the bubbles has higher tension than the BPS bound, it is expelled from the Lambda = 0 bubble and does not alter its long time behavior. If the domain wall saturates the BPS bound, then it stays inside the Lambda = 0 bubble and removes a finite fraction of future infinity. In this case, the crunch singularity is hidden behind the horizon of a stable hyperbolic black hole.

  16. Constrained Vapor Bubble Experiment

    Science.gov (United States)

    Gokhale, Shripad; Plawsky, Joel; Wayner, Peter C., Jr.; Zheng, Ling; Wang, Ying-Xi

    2002-11-01

    Microgravity experiments on the Constrained Vapor Bubble Heat Exchanger, CVB, are being developed for the International Space Station. In particular, we present results of a precursory experimental and theoretical study of the vertical Constrained Vapor Bubble in the Earth's environment. A novel non-isothermal experimental setup was designed and built to study the transport processes in an ethanol/quartz vertical CVB system. Temperature profiles were measured using an in situ PC (personal computer)-based LabView data acquisition system via thermocouples. Film thickness profiles were measured using interferometry. A theoretical model was developed to predict the curvature profile of the stable film in the evaporator. The concept of the total amount of evaporation, which can be obtained directly by integrating the experimental temperature profile, was introduced. Experimentally measured curvature profiles are in good agreement with modeling results. For microgravity conditions, an analytical expression, which reveals an inherent relation between temperature and curvature profiles, was derived.

  17. Bubbles & Squat

    DEFF Research Database (Denmark)

    Højbjerre Larsen, Signe

    , a new concept called ‘Bubbles & Squat’, where fitness training is combined with Champagne and a live DJ. One of the invitations for this event describes how “we spice up your friday training with live DJ and lots of refreshing bubbles, to make sure that you are ready for the weekend (...).” Before New...

  18. Establishment of Measurement Techniques for Sliding Bubble on a Horizontal Tube

    International Nuclear Information System (INIS)

    Kim, Yu-Na Kim; Park, Goon-Cherl; Cho, Hyoung-Kyu

    2015-01-01

    The mechanistic wall boiling model includes many parameters relevant with bubble behaviors, such as the bubble departure diameter, bubble lift-off diameter, bubble waiting time, etc. Although there have been a large number of studies investigating bubble behavior, the subjects of observation are almost bubbles on a plane or vertical tube. Since the bubble motion is highly influenced by the directions of gravitational force and the heating surfaces, it is expected that the bubble behavior on a horizontal tube is largely different from those on the other geometry. The heat exchanger of APR+ has horizontal U-tube configuration installed in a water pool, of which diameter is 50mm. The study aims to establish measurement techniques for sliding bubbles on a horizontal tube. The measurement parameters include the diameter, interface area, volume, and velocity of the bubble. Additionally, in order to analyze the force acting on the bubble, liquid velocity measurement method was proposed. This paper presents the procedure of the measurement; the phase separation technique, 3-D reconstruction technique, and velocity measurement techniques. For visualization of the sliding bubble behavior, bubble and liquid velocity measurement methods were established which use two high speed cameras and a continuous LASER for the PTV and PIV. Three steps for the bubble shape and velocity measurement (the phase separation, 3-D reconstruction, and velocity calculation), were successfully set up and verified. A PIV technique which uses two different time duration for two regions where the velocity difference is huge was proposed and tested. Using these methods, various information regarding a sliding bubble can be obtained such as bubble and liquid velocities, shape, volume, surface area etc

  19. Gas and vapor bubble growth and collapse

    International Nuclear Information System (INIS)

    Bonnin, J.; Reali, M.; Sardella, L.

    1976-01-01

    The rate of growth or collapse of a spherical bubble of gas or vapor under the effect of a nonequilibrium with the ambient liquid can be expressed in terms of generalized parameters taking into account either mass or heat diffusion. Diffusion equations have been solved either by numerical computation or under the form of a asymptotical solution, for a growing bubble only and with a constant nonequilibrium. Solutions are compared between them and with already published ones. Experimental results obtained match with a unique nonequilibrium parameter, analogous to a Jacob number. Discrepancies with asymptotical solutions can require in some cases complete numerical computation. But taking into account convection due to bubble lift will require a more sophisticated numerical computation [fr

  20. Dynamics of Magnetized Plasma Jets and Bubbles Launched into a Background Magnetized Plasma

    Science.gov (United States)

    Wallace, B.; Zhang, Y.; Fisher, D. M.; Gilmore, M.

    2016-10-01

    The propagation of dense magnetized plasma, either collimated with mainly azimuthal B-field (jet) or toroidal with closed B-field (bubble), in a background plasma occurs in a number of solar and astrophysical cases. Such cases include coronal mass ejections moving in the background solar wind and extragalactic radio lobes expanding into the extragalactic medium. Understanding the detailed MHD behavior is crucial for correctly modeling these events. In order to further the understanding of such systems, we are investigating the injection of dense magnetized jets and bubbles into a lower density background magnetized plasma using a coaxial plasma gun and a background helicon or cathode plasma. In both jet and bubble cases, the MHD dynamics are found to be very different when launched into background plasma or magnetic field, as compared to vacuum. In the jet case, it is found that the inherent kink instability is stabilized by velocity shear developed due to added magnetic tension from the background field. In the bubble case, rather than directly relaxing to a minimum energy Taylor state (spheromak) as in vacuum, there is an expansion asymmetry and the bubble becomes Rayleigh-Taylor unstable on one side. Recent results will be presented. Work supported by the Army Research Office Award No. W911NF1510480.

  1. Effect of temperature on swelling and bubble growth in metals

    International Nuclear Information System (INIS)

    Tiwari, G.P.

    1982-01-01

    The effect of temperature on the swelling of copper-boron alloys has been studied in the temperature range of 900-1040deg C. It is observed that beyond 1030deg C, swelling as well as the rate of bubble growth decrease. Similar characteristics of the bubble growth have been observed in aluminium-boron alloys also. At 590deg C, the bubble growth in aluminium-boron alloys is faster as compared to that at 640deg C. It thus appears that the swelling as well as the growth of the gas bubble are retarded at temperatures near the melting point in metals. Possible reasons for this kind of behaviour are discussed. (author)

  2. Test ventilation with smoke, bubbles, and balloons

    International Nuclear Information System (INIS)

    Pickering, P.L.; Cucchiara, A.L.; McAtee, J.L.; Gonzales, M.

    1987-01-01

    The behavior of smoke, bubbles, and helium-filled balloons was videotaped to demonstrate the mixing of air in the plutonium chemistry laboratories, a plutonium facility. The air-distribution patterns, as indicated by each method, were compared. Helium-filled balloons proved more useful than bubbles or smoke in the visualization of airflow patterns. The replay of various segments of the videotape proved useful in evaluating the different techniques and in identifying airflow trends responsible for air mixing. 6 refs

  3. Toroidal and rotating bubble nuclei and the nuclear fragmentation

    International Nuclear Information System (INIS)

    Royer, G.; Fauchard, C.; Haddad, F.; Jouault, B.

    1997-01-01

    The energy of rotating bubble and toroidal nuclei predicted to be formed in central heavy ion collisions at intermediate energies is calculated within the generalized rotating liquid drop model. Previously, a one-parameter shape sequence has been defined to describe the path leading to pumpkin-like configurations and toroidal shapes. New analytical expressions for the shape dependent functions have been obtained. The potential barriers standing in these exotic deformation paths are compared with the three-dimensional and plane-fragmentation barriers. Metastable bubble-like minima only appear at very high angular momentum and above the three dimensional fragmentation barriers. In the toroidal deformation path of the heaviest systems exists a large potential pocket localized below the plane-fragmentation barriers. This might allow the temporary survival of heavy nuclear toroids before the final clusterization induced by the surface and proximity tension

  4. Counteracting negative venous line pressures to avoid arterial air bubbles: an experimental study comparing two different types of miniaturized extracorporeal perfusion systems.

    Science.gov (United States)

    Aboud, Anas; Mederos-Dahms, Hendrikje; Liebing, Kai; Zittermann, Armin; Schubert, Harald; Murray, Edward; Renner, Andre; Gummert, Jan; Börgermann, Jochen

    2015-05-29

    Because of its low rate of clinical complications, miniaturized extracorporeal perfusion systems (MEPS) are frequently used in heart centers worldwide. However, many recent studies refer to the higher probability of gaseous microemboli formation by MEPS, caused by subzero pressure values. This is the main reason why various de-airing devices were developed for today's perfusion systems. In the present study, we investigated the potential benefits of a simple one-way-valve connected to a volume replacement reservoir (OVR) for volume and pressure compensation. In an experimental study on 26 pigs, we compared MEPS (n = 13) with MEPS plus OVR (n = 13). Except OVR, perfusion equipment was identical in both groups. Primary endpoints were pressure values in the venous line and the right atrium as well as the number and volume of air bubbles. Secondary endpoints were biochemical parameters of systemic inflammatory response, ischemia, hemodilution and hemolysis. One animal was lost in the MEPS + OVR group. In the MEPS + OVR group no pressure values below -150 mmHg in the venous line and no values under -100 mmHg in right atrium were noticed. On the contrary, nearly 20% of venous pressure values in the MEPS group were below -150 and approximately 10% of right atrial pressure values were below -100 mmHg. Compared with the MEPS group, the bubble counter device showed lower numbers of arterial air bubbles in the MEPS + OVR group (mean ± SD: 13444 ± 5709 vs. 1 ± 2, respectively; p pressures and to reduce the number and volume of arterial air bubbles. This approach may lead to a lower rate of neurological complications.

  5. CFD analysis of bubble microlayer and growth in subcooled flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Owoeye, Eyitayo James, E-mail: msgenius10@ufl.edu; Schubring, DuWanye, E-mail: dlschubring@ufl.edu

    2016-08-01

    Highlights: • A new LES-microlayer model is introduced. • Analogous to the unresolved SGS in LES, analysis of bubble microlayer was performed. • The thickness of bubble microlayer was computed at both steady and transient states. • The macroscale two-phase behavior was captured with VOF coupled with AMR. • Numerical validations were performed for both the micro- and macro-region analyses. - Abstract: A numerical study of single bubble growth in turbulent subcooled flow boiling was carried out. The macro- and micro-regions of the bubble were analyzed by introducing a LES-microlayer model. Analogous to the unresolved sub-grid scale (SGS) in LES, a microlayer analysis was performed to capture the unresolved thermal scales for the micro-region heat transfer by deriving equations for the microlayer thickness at steady and transient states. The phase change at the macro-region was based on Volume-of-Fluid (VOF) interface tracking method coupled with adaptive mesh refinement (AMR). Large Eddy Simulation (LES) was used to model the turbulence characteristics. The numerical model was validated with multiple experimental data from the open literature. This study includes parametric variations that cover the operating conditions of boiling water reactor (BWR) and pressurized water reactor (PWR). The numerical model was used to study the microlayer thickness, growth rate, dynamics, and distortion of the bubble.

  6. Regularities of growth, condensation, solution of vapour and gaseous bubbles in turbulent flows

    International Nuclear Information System (INIS)

    Avdeev, A.A.

    1988-01-01

    Corrections for interphase transfer exchange intensity and for bubbles dynamics in the forced turbulent flow as well are obtained on the basis of the surface periodical restoration model. Analysis of the effects, caused by turbulence additional generation due to bubbles floating-up within gravity field, is carried out. Formulae for calculating interphase heat and mass transfer at bubbling are suggested. Application limits for the developed model are determined. Comparison of calculation results according to the derived universal dependence with experimental data on growth rates and condensation of vapour bubble, and on solution rates of gaseous bubbles in water (Re=8x10 3 -2x10 6 ; Pr0.83-568, pressure up to 10 MPa) has revealed their good agreeme nt

  7. Acoustic characteristics of bubble bursting at the surface of a high-viscosity liquid

    International Nuclear Information System (INIS)

    Liu Xiao-Bo; Zhang Jian-Run; Li Pu

    2012-01-01

    An acoustic pressure model of bubble bursting is proposed. An experiment studying the acoustic characteristics of the bursting bubble at the surface of a high-viscosity liquid is reported. It is found that the sudden bursting of a bubble at the high-viscosity liquid surface generates N-shape wave at first, then it transforms into a jet wave. The fundamental frequency of the acoustic signal caused by the bursting bubble decreases linearly as the bubble size increases. The results of the investigation can be used to understand the acoustic characteristics of bubble bursting. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  8. Brane big bang brought on by a bulk bubble

    International Nuclear Information System (INIS)

    Gen, Uchida; Ishibashi, Akihiro; Tanaka, Takahiro

    2002-01-01

    We propose an alternative inflationary universe scenario in the context of Randall-Sundrum braneworld cosmology. In this new scenario the existence of extra dimension(s) plays an essential role. First, the brane universe is initially in the inflationary phase driven by the effective cosmological constant induced by a small mismatch between the vacuum energy in the five-dimensional bulk and the brane tension. This mismatch arises since the bulk is initially in a false vacuum. Then, false vacuum decay occurs, nucleating a true vacuum bubble with negative energy inside the bulk. The nucleated bubble expands in the bulk and consequently hits the brane, causing a hot big-bang brane universe of the Randall-Sundrum type. Here, the termination of the inflationary phase is due to the change of the bulk vacuum energy. The bubble kinetic energy heats up the universe. As a simple realization, we propose a model in which we assume an interaction between the brane and the bubble. We derive the constraints on the model parameters taking into account the following requirements: solving the flatness problem, no force which prohibits the bubble from colliding with the brane, a sufficiently high reheating temperature for the standard nucleosynthesis to work, and the recovery of Newton's law up to 1 mm. We find that a fine-tuning is needed in order to satisfy the first and the second requirements simultaneously, although the other constraints are satisfied in a wide range of the model parameters

  9. Measurement of two-dimensional bubble velocity by Using tri-fiber-optical Probe

    International Nuclear Information System (INIS)

    Yang Ruichang; Zheng Rongchuan; Zhou Fanling; Liu Ruolei

    2009-01-01

    In this study, an advanced measuring system with a tri-single-fiber-optical-probe has been developed to measure two-dimensional vapor/gas bubble velocity. The use of beam splitting devices instead of beam splitting lens simplifies the optical system, so the system becomes more compact and economic, and more easy to adjust. Corresponding to using triple-optical probe for measuring two-dimensional bubble velocity, a data processing method has been developed, including processing of bubble signals, cancelling of unrelated signals, determining of bubble velocity with cross correlation technique and so on. Using the developed two-dimensional bubble velocity measuring method, the rising velocity of air bubbles in gravitational field was measured. The measured bubble velocities were compared with the empirical correlation available. Deviation was in the range of ±30%. The bubble diameter obtained by data processing is in good accordance with that observed with a synchro-scope and a camera. This shows that the method developed here is reliable.

  10. Particle-bubble aggregate stability on static bubble generated by single nozzle on flotation process

    Science.gov (United States)

    Warjito, Harinaldi, Setyantono, Manus; Siregar, Sahala D.

    2016-06-01

    There are three sub-processes on flotation. These processes are intervening liquid film into critical thickness, rupture of liquid film forming three phase contact line, and expansion three phase contact line forming aggregate stability. Aggregate stability factor contribute to determine flotation efficiency. Aggregate stability has some important factors such as reagent and particle geometry. This research focussed on to understand effect of particle geometry to aggregate stability. Experimental setup consists of 9 x 9 x26 cm flotation column made of glass, bubble generator, particle feeding system, and high speed video camera. Bubble generator made from single nozzle with 0.3 mm diameter attached to programmable syringe pump. Particle feeding system made of pipette. Particle used in this research is taken from open pit Grasberg in Timika, Papua. Particle has sub-angular geometry and its size varies from 38 to 300 µm. Bubble-particle interaction are recorded using high speed video camera. Recordings from high speed video camera analyzed using image processing software. Experiment result shows that aggregate particle-bubble and induction time depends on particle size. Small particle (38-106 µm) has long induction time and able to rupture liquid film and also forming three phase contact line. Big particle (150-300 µm) has short induction time, so it unable to attach with bubble easily. This phenomenon is caused by apparent gravity work on particle-bubble interaction. Apparent gravity worked during particle sliding on bubble surface experience increase and reached its maximum magnitude at bubble equator. After particle passed bubble equator, apparent gravity force experience decrease. In conclusion particle size from 38-300 µm can form stable aggregate if particle attached with bubble in certain condition.

  11. Rotating bubble and toroidal nuclei and fragmentation

    International Nuclear Information System (INIS)

    Royer, G.; Haddad, F.; Jouault, B.

    1995-01-01

    The energy of rotating bubble and toroidal nuclei predicted to be formed in central heavy-ion collisions at intermediate energies is calculated within the generalized rotating liquid drop model. The potential barriers standing in these exotic deformation paths are compared with the three dimensional and plane fragmentation barriers. In the toroidal deformation path of the heaviest systems exists a large potential pocket localised below the plane fragmentation barriers. This might allow the temporary survival of heavy nuclear toroids before the final clusterization induced by the surface and proximity tension. (author)

  12. A Study of Heat Transfer and Flow Characteristics of Rising Taylor Bubbles

    Science.gov (United States)

    Scammell, Alexander David

    2016-01-01

    Practical application of flow boiling to ground- and space-based thermal management systems hinges on the ability to predict the systems heat removal capabilities under expected operating conditions. Research in this field has shown that the heat transfer coefficient within two-phase heat exchangers can be largely dependent on the experienced flow regime. This finding has inspired an effort to develop mechanistic heat transfer models for each flow pattern which are likely to outperform traditional empirical correlations. As a contribution to the effort, this work aimed to identify the heat transfer mechanisms for the slug flow regime through analysis of individual Taylor bubbles.An experimental apparatus was developed to inject single vapor Taylor bubbles into co-currently flowing liquid HFE 7100. The heat transfer was measured as the bubble rose through a 6 mm inner diameter heated tube using an infrared thermography technique. High-speed flow visualization was obtained and the bubble film thickness measured in an adiabatic section. Experiments were conducted at various liquid mass fluxes (43-200 kgm2s) and gravity levels (0.01g-1.8g) to characterize the effect of bubble drift velocityon the heat transfer mechanisms. Variable gravity testing was conducted during a NASA parabolic flight campaign.Results from the experiments showed that the drift velocity strongly affects the hydrodynamics and heat transfer of single elongated bubbles. At low gravity levels, bubbles exhibited shapes characteristic of capillary flows and the heat transfer enhancement due to the bubble was dominated by conduction through the thin film. At moderate to high gravity, traditional Taylor bubbles provided small values of enhancement within the film, but large peaks in the wake heat transfer occurred due to turbulent vortices induced by the film plunging into the trailing liquid slug. Characteristics of the wake heat transfer profiles were analyzed and related to the predicted velocity field

  13. STEADY-STATE HADRONIC GAMMA-RAY EMISSION FROM 100-MYR-OLD FERMI BUBBLES

    Energy Technology Data Exchange (ETDEWEB)

    Crocker, Roland M.; Bicknell, Geoffrey V.; Sutherland, Ralph S. [Research School of Astronomy and Astrophysics, Australian National University, Canberra (Australia); Carretti, Ettore; Hill, Alex S. [CSIRO Astronomy and Space Science, Marsfield, N.S.W. (Australia)

    2014-08-20

    Fermi Bubbles are enigmatic γ-ray features of the Galactic bulge. Both putative activity (within few × Myr) connected to the Galactic center super-massive black hole and, alternatively, nuclear star formation have been claimed as the energizing source of the Bubbles. Likewise, both inverse-Compton emission by non-thermal electrons (''leptonic'' models) and collisions between non-thermal protons and gas (''hadronic'' models) have been advanced as the process supplying the Bubbles' γ-ray emission. An issue for any steady state hadronic model is that the very low density of the Bubbles' plasma seems to require that they accumulate protons over a multi-gigayear timescale, much longer than other natural timescales occurring in the problem. Here we present a mechanism wherein the timescale for generating the Bubbles' γ-ray emission via hadronic processes is ∼few × 10{sup 8} yr. Our model invokes the collapse of the Bubbles' thermally unstable plasma, leading to an accumulation of cosmic rays and magnetic field into localized, warm (∼10{sup 4} K), and likely filamentary condensations of higher-density gas. Under the condition that these filaments are supported by non-thermal pressure, the hadronic emission from the Bubbles is L {sub γ} ≅ 2 × 10{sup 37} erg s{sup –1} M-dot {sub in}/(0.1 M{sub ⊙} yr{sup –1} ) T{sub FB}{sup 2}/(3.5×10{sup 7} K){sup 2} M {sub fil}/M {sub pls}, equal to their observed luminosity (normalizing to the star-formation-driven mass flux into the Bubbles and their measured plasma temperature and adopting the further result that the mass in the filaments, M {sub fil} is approximately equal to the that of the Bubbles' plasma, M {sub pls})

  14. Bubble Coalescence: Effect of Bubble Approach Velocity and Liquid Viscosity

    Czech Academy of Sciences Publication Activity Database

    Orvalho, Sandra; Růžička, Marek; Olivieri, G.; Marzocchella, A.

    2015-01-01

    Roč. 134, SEP 29 (2015), s. 205-216 ISSN 0009-2509 R&D Projects: GA MŠk(CZ) LD13018 Institutional support: RVO:67985858 Keywords : bubble coalescence * bubble approach velocity * liquid viscosity Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.750, year: 2015

  15. Bubble propagation on a rail: a concept for sorting bubbles by size

    Science.gov (United States)

    Franco-Gómez, Andrés; Thompson, Alice B.; Hazel, Andrew L.; Juel, Anne

    We demonstrate experimentally that the introduction of a rail, a small height constriction, within the cross-section of a rectangular channel could be used as a robust passive sorting device in two-phase fluid flows. Single air bubbles carried within silicone oil are generally transported on one side of the rail. However, for flow rates marginally larger than a critical value, a narrow band of bubble sizes can propagate (stably) over the rail, while bubbles of other sizes segregate to the side of the rail. The width of this band of bubble sizes increases with flow rate and the size of the most stable bubble can be tuned by varying the rail width. We present a complementary theoretical analysis based on a depth-averaged theory, which is in qualitative agreement with the experiments. The theoretical study reveals that the mechanism relies on a non-trivial interaction between capillary and viscous forces that is fully dynamic, rather than being a simple modification of capillary static solutions.

  16. Bubbles of nothing and supersymmetric compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Blanco-Pillado, Jose J. [IKERBASQUE, Basque Foundation for Science, 48011, Bilbao (Spain); Department of Theoretical Physics, University of the Basque Country UPV/EHU,48080 Bilbao (Spain); Shlaer, Benjamin [Department of Physics, University of Auckland,Private Bag 92019, Auckland (New Zealand); Institute of Cosmology, Department of Physics and Astronomy,Tufts University, Medford, MA 02155 (United States); Sousa, Kepa [Department of Theoretical Physics, University of the Basque Country UPV/EHU,48080 Bilbao (Spain); Instituto de Fisica Teorica UAM-CSIC, Universidad Autonoma de Madrid,Cantoblanco, 28049 Madrid (Spain); Urrestilla, Jon [Department of Theoretical Physics, University of the Basque Country UPV/EHU,48080 Bilbao (Spain)

    2016-10-03

    We investigate the non-perturbative stability of supersymmetric compactifications with respect to decay via a bubble of nothing. We show examples where this kind of instability is not prohibited by the spin structure, i.e., periodicity of fermions about the extra dimension. However, such “topologically unobstructed” cases do exhibit an extra-dimensional analog of the well-known Coleman-De Luccia suppression mechanism, which prohibits the decay of supersymmetric vacua. We demonstrate this explicitly in a four dimensional Abelian-Higgs toy model coupled to supergravity. The compactification of this model to M{sub 3}×S{sub 1} presents the possibility of vacua with different windings for the scalar field. Away from the supersymmetric limit, these states decay by the formation of a bubble of nothing, dressed with an Abelian-Higgs vortex. We show how, as one approaches the supersymmetric limit, the circumference of the topologically unobstructed bubble becomes infinite, thereby preventing the realization of this decay. This demonstrates the dynamical origin of the decay suppression, as opposed to the more familiar argument based on the spin structure. We conjecture that this is a generic mechanism that enforces stability of any topologically unobstructed supersymmetric compactification.

  17. Simulation of the ultrasound-induced growth and collapse of a near-wall bubble

    Science.gov (United States)

    Boyd, Bradley; Becker, Sid

    2017-11-01

    In this study, we consider the acoustically driven growth and collapse of a cavitation bubble in a fluid medium exposed to an ultrasound field. The bubble dynamics are modelled using a compressible, inviscid, multiphase model. The numerical scheme consists of a conservative interface capturing scheme which uses the fifth-order WENO reconstruction with a maximum-principle-satisfying and positivity-preserving limiter, and the HLLC approximate Riemann flux. To model the ultrasound input, a moving boundary oscillates through a fixed grid of finite-volume cells. The growth phase of the simulation shows the rapid non-spherical growth of the near-wall bubble. Once the bubble reaches its maximum size and the collapse phase begins, the simulation shows the formation of a jet which penetrates the bubble towards the wall at the later stages of the collapse. For a bubble with an initial radius of 50 μ m and an ultrasound pressure amplitude of 200 kPa, the pressure experienced by the wall increased rapidly nearing the end of the collapse, reaching a peak pressure of 13 MPa. This model is an important development in the field as it represents the physics of acoustic cavitation in more detail than before. This work was supported by the Royal Society of New Zealand's Marsden Fund.

  18. Bubble Formation in Basalt-like Melts

    DEFF Research Database (Denmark)

    Jensen, Martin; Keding, Ralf; Yue, Yuanzheng

    2011-01-01

    and their diameter. The variation in melting temperature has little influence on the overall bubble volume. However, the size distribution of the bubbles varies with the melting temperature. When the melt is slowly cooled, the bubble volume increases, implying decreased solubility of the gaseous species. Mass...... spectroscopy analysis of gases liberated during heating of the glass reveals that small bubbles contain predominantly CH4, CO and CO2, whereas large bubbles bear N2, SO2 and H2S. The methodology utilised in this work can, besides mapping the bubbles in a glass, be applied to shed light on the sources of bubble...

  19. A unique circular path of moving single bubble sonoluminescence in water

    International Nuclear Information System (INIS)

    Sadighi-Bonabi, Rasoul; Mirheydari, Mona; Ebrahimi, Homa; Rezaee, Nastaran; Nikzad, Lida

    2011-01-01

    Based on a quasi-adiabatic model, the parameters of the bubble interior for a moving single bubble sonoluminescence (m-SBSL) in water are calculated. By using a complete form of the hydrodynamic force, a unique circular path for the m-SBSL in water is obtained. The effect of the ambient pressure variation on the bubble trajectory is also investigated. It is concluded that as the ambient pressure increases, the bubble moves along a circular path with a larger radius and all bubble parameters, such as gas pressure, interior temperature and light intensity, increase. A comparison is made between the parameters of the moving bubble in water and those in N-methylformamide. With fluid viscosity increasing, the circular path changes into an elliptic form and the light intensity increases. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  20. Liquid phase stabilization versus bubble formation at a nanoscale curved interface

    Science.gov (United States)

    Schiffbauer, Jarrod; Luo, Tengfei

    2018-03-01

    We investigate the nature of vapor bubble formation near a nanoscale-curved convex liquid-solid interface using two models: an equilibrium Gibbs model for homogenous nucleation, and a nonequilibrium dynamic van der Waals-diffuse-interface model for phase change in an initially cool liquid. Vapor bubble formation is shown to occur for sufficiently large radius of curvature and is suppressed for smaller radii. Solid-fluid interactions are accounted for and it is shown that liquid-vapor interfacial energy, and hence Laplace pressure, has limited influence over bubble formation. The dominant factor is the energetic cost of creating the solid-vapor interface from the existing solid-liquid interface, as demonstrated via both equilibrium and nonequilibrium arguments.

  1. Measuring neutron noise induced by travelling air bubbles in a research reactor

    International Nuclear Information System (INIS)

    Por, G.; Horanyi, S.

    1983-05-01

    Travelling air bubble experiments carried out in a research reactor confirm an earlier proposed model. The sink structure could be found experimentally in APSD of neutron signals and was used to determine the bubble velocity. The measurements show that neutron detectors measure the velocity of the travelling bubbles, the thermocouples that of the water flow. (author)

  2. Air bubbles and hemolysis of blood samples during transport by pneumatic tube systems.

    Science.gov (United States)

    Mullins, Garrett R; Bruns, David E

    2017-10-01

    Transport of blood samples through pneumatic tube systems (PTSs) generates air bubbles in transported blood samples and, with increasing duration of transport, the appearance of hemolysis. We investigated the role of air-bubble formation in PTS-induced hemolysis. Air was introduced into blood samples for 0, 1, 3 or 5min to form air bubbles. Hemolysis in the blood was assessed by (H)-index, lactate dehydrogenase (LD) and potassium in plasma. In an effort to prevent PTS-induced hemolysis, blood sample tubes were completely filled, to prevent air bubble formation, and compared with partially filled samples after PTS transport. We also compared hemolysis in anticoagulated vs clotted blood subjected to PTS transport. As with transport through PTSs, the duration of air bubble formation in blood by a gentle stream of air predicted the extent of hemolysis as measured by H-index (pair space in a blood sample prevented bubble formation and fully protected the blood from PTS-induced hemolysis (ptransport and was partially protected from hemolysis vs anticoagulated blood as indicated by lower LD (ptransport. Prevention of air bubble formation in blood samples during PTS transport protects samples from hemolysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. The growth of intra-granular bubbles in post-irradiation annealed UO2 fuel

    International Nuclear Information System (INIS)

    White, R.J.

    2001-01-01

    Post-irradiation examinations of low temperature irradiated UO 2 reveal large numbers of very small intra-granular bubbles, typically of around 1 nm diameter. During high temperature reactor transients these bubbles act as sinks for fission gas atoms and vacancies and can give rise to large volumetric swellings, sometimes of the order of 10%. Under irradiation conditions, the nucleation and growth of these bubbles is determined by a balance between irradiation-induced nucleation, diffusional growth and an irradiation induced re-solution mechanism. This conceptual picture is, however, incomplete because in the absence of irradiation the model predicts that the bubble population present from the pre-irradiation would act as the dominant sink for fission gas atoms resulting in large intra-granular swellings and little or no fission gas release. In practice, large fission gas releases are observed from post-irradiation annealed fuel. A recent series of experiments addressed the issue of fission gas release and swelling in post-irradiation annealed UO 2 originating from Advanced Gas Cooled Reactor (AGR) fuel which had been ramp tested in the Halden Test reactor. Specimens of fuel were subjected to transient heating at ramp rates of 0.5 deg. C/s and 20 deg. C/s to target temperatures between 1600 deg. C and 1900 deg. C. The release of fission gas was monitored during the tests. Subsequently, the fuel was subjected to post-irradiation examination involving detailed Scanning Electron Microscopy (SEM) analysis. Bubble-size distributions were obtained from seventeen specimens, which entailed the measurement of nearly 26,000 intra-granular bubbles. The analysis reveals that the bubble densities remain approximately invariant during the anneals and the bubble-size distributions exhibit long exponential tails in which the largest bubbles are present in concentrations of 10 4 or 10 5 lower than the concentrations of the average sized bubbles. Detailed modelling of the bubble

  4. Experimental study of vapor bubble dynamics

    International Nuclear Information System (INIS)

    Pasquini, Maria-Elena

    2015-01-01

    The object of this thesis is an experimental study of vapor bubble dynamics in sub-cooled nucleate boiling. The test section is locally heated by focusing a laser beam: heat fluxes from 1 e4 to 1.5 e6 W/m 2 and water temperature between 100 and 88 C have been considered. Three boiling regimes have been observed. Under saturated conditions and with low heat fluxes a developed nucleate boiling regime has been observed. Under higher sub-cooling and still with low heat fluxes an equilibrium regime has been observed in which the liquid flowrate evaporating at the bubble base is compensated by the vapor condensing flowrate at bubble top. A third regime have been observed at high heat fluxes for all water conditions: it is characterized by the formation of a large dry spot on the heated surface that keeps the nucleation site dry after bubble detachment. The condensation phase starts after bubble detachment. Bubble equivalent radius at detachment varies between 1 and 2.5 mm. Bubble properties have been measured and non-dimensional groups have been used to characterize bubble dynamics. Capillary waves have been observed on the bubble surface thanks to high-speed images acquisition. Two main phenomena have been proposed to explain capillary waves effects on bubble condensation: increasing of the phases interface area and decreasing of vapor bubble translation velocity, because of the increased drag force on the deformed bubble. (author) [fr

  5. Active acoustic leak detection for LMFBR steam generator. Pt. 5. Experiment for detection of bubbles using the SG full sector model

    International Nuclear Information System (INIS)

    Kumagai, Hiromichi

    1997-01-01

    In order to prevent the expansion of tube damages and to maintain structural safety in steam generators (SG) of fast breeder reactors (FBR), it is necessary to detect precisely and immediately the leakage of water from tubes of heat exchangers. Therefore, an active acoustic method, which detects the sound attenuation due to bubbles generated in the sodium-water reactions, it being developed. In this paper, the attenuation characteristics of sound attenuated by bubbles and influence of background noise are investigated experimentally by using an SG full sector model (diameter ratio about 1/1, height ratio about 1/7) simulating the actual SG. As an experimental result, the received sound attenuation for ten seconds was more than 10 dB from air bubble injection when injected bubble of 10 l/s (equivalence water leak rate about 10 g/s). The attenuation of sound are least affected by bubble injection position of heat exchanger tube bunch department. And the time was about 25 seconds till the sound attenuation became 10 dB in case of quantity of air bubble 1 l/s (equivalent water leak rate about 1 g/s). It is clarified that the background noise hardly influenced water leak detection performance as a result of having examined influence of background noise. (author)

  6. Numerical study of Taylor bubbles with adaptive unstructured meshes

    Science.gov (United States)

    Xie, Zhihua; Pavlidis, Dimitrios; Percival, James; Pain, Chris; Matar, Omar; Hasan, Abbas; Azzopardi, Barry

    2014-11-01

    The Taylor bubble is a single long bubble which nearly fills the entire cross section of a liquid-filled circular tube. This type of bubble flow regime often occurs in gas-liquid slug flows in many industrial applications, including oil-and-gas production, chemical and nuclear reactors, and heat exchangers. The objective of this study is to investigate the fluid dynamics of Taylor bubbles rising in a vertical pipe filled with oils of extremely high viscosity (mimicking the ``heavy oils'' found in the oil-and-gas industry). A modelling and simulation framework is presented here which can modify and adapt anisotropic unstructured meshes to better represent the underlying physics of bubble rise and reduce the computational effort without sacrificing accuracy. The numerical framework consists of a mixed control-volume and finite-element formulation, a ``volume of fluid''-type method for the interface capturing based on a compressive control volume advection method, and a force-balanced algorithm for the surface tension implementation. Numerical examples of some benchmark tests and the dynamics of Taylor bubbles are presented to show the capability of this method. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  7. Visualization of bubble behaviors in forced convective subcooled flow boiling

    International Nuclear Information System (INIS)

    Inaba, Noriaki; Matsuzaki, Mitsuo; Kikura, Hiroshige; Aritomi, Masanori; Komeno, Toshihiro

    2007-01-01

    Condensation characteristics of vapor bubble after the departure from a heated section in forced convective subcooled flow boiling were studied visually by using a high speed camera. The purpose of the present study was to measure two-phase flow parameters in subcooled flow boiling. These two-phase flow parameters are void fraction, interfacial area concentration and Sauter mean diameter, which express bubble interface behaviors. The experimental set-up was designed to measure the two-phase flow parameters necessary for developing composite equations for the two fluid models in subcooled flow boiling. In the present experiments, the mass flux, liquid subcooling and the heater were varied within 100-1000kg/m 2 s, 2-10K and 100-300kW/m 2 respectively. Under these experimental conditions, the bubble images were obtained by a high-speed camera, and analyzed paying attention to the condensation of vapor bubbles. These two-phase parameters were obtained by the experimental data, such as the bubble parameter, the bubble volume and the bubble surface. In the calculation process of the two phase flow parameters, it was confirmed that these parameters are related to the void fraction. (author)

  8. Measurement of pressure on a surface using bubble acoustic resonances

    International Nuclear Information System (INIS)

    Aldham, Ben; Manasseh, Richard; Liffman, Kurt; Šutalo, Ilija D; Illesinghe, Suhith; Ooi, Andrew

    2010-01-01

    The frequency response of gas bubbles as a function of liquid ambient pressure was measured and compared with theory. A bubble size with equivalent spherical radius of 2.29 mm was used over a frequency range of 1000–1500 Hz. The ultimate aim is to develop an acoustic sensor that can measure static pressure and is sensitive to variations as small as a few kPa. The classical bubble resonance frequency is known to vary with ambient pressure. Experiments were conducted with a driven bubble in a pressurizable tank with a signal processing system designed to extract the resonant peak. Since the background response of the containing tank is significant, particularly near tank-modal resonances, it must be carefully removed from the bubble response signal. A dual-hydrophone method was developed to allow rapid and reliable real-time measurements. The expected pressure dependence was found. In order to obtain a reasonable match with theory, the classical theory was modified by the introduction of a 'mirror bubble' to account for the influence of a nearby surface. (technical design note)

  9. Correlation between Gas Bubble Formation and Hydrogen Evolution Reaction Kinetics at Nanoelectrodes.

    Science.gov (United States)

    Chen, Qianjin; Luo, Long

    2018-04-17

    We report the correlation between H 2 gas bubble formation potential and hydrogen evolution reaction (HER) activity for Au and Pt nanodisk electrodes (NEs). Microkinetic models were formulated to obtain the HER kinetic information for individual Au and Pt NEs. We found that the rate-determining steps for the HER at Au and Pt NEs were the Volmer step and the Heyrovsky step, respectively. More interestingly, the standard rate constant ( k 0 ) of the rate-determining step was found to vary over 2 orders of magnitude for the same type of NEs. The observed variations indicate the HER activity heterogeneity at the nanoscale. Furthermore, we discovered a linear relationship between bubble formation potential ( E bubble ) and log( k 0 ) with a slope of 125 mV/decade for both Au and Pt NEs. As log ( k 0 ) increases, E bubble shifts linearly to more positive potentials, meaning NEs with higher HER activities form H 2 bubbles at less negative potentials. Our theoretical model suggests that such linear relationship is caused by the similar critical bubble formation condition for Au and Pt NEs with varied sizes. Our results have potential implications for using gas bubble formation to evaluate the HER activity distribution of nanoparticles in an ensemble.

  10. From bubble bursting to droplet evaporation in the context of champagne aerosols

    Science.gov (United States)

    Seon, Thomas; Ghabache, Elisabeth; Antkowiak, Arnaud; Liger-Belair, Gerard

    2015-11-01

    As champagne or sparkling wine is poured into a glass, a myriad of ascending bubbles collapse and therefore radiate a multitude of tiny droplets above the free surface into the form of very characteristic and refreshing aerosols. Because these aerosols have been found to hold the organoleptic ``essence'' of champagne they are believed to play a crucial role in the flavor release in comparison with that from a flat wine for example. Based on the model experiment of a single bubble bursting in idealized champagnes, the velocity, radius and maximum height of the first jet drop following bubble collapse have been characterized, with varying bubble size and liquid properties in the context of champagne aerosols. Using the experimental results and simple theoretical models for drop and surface evaporation, we show that bubble bursting aerosols drastically enhance the transfer of liquid in the atmosphere with respect to a flat liquid surface. Contrary to popular opinion, we exhibit that small bubbles are negative in terms of aroma release, and we underline bubble radii enabling to optimize the droplet height and evaporation in the whole range of champagne properties. These results pave the road to the fine tuning of champagne aroma diffusion, a major issue of the sparkling wine industry.

  11. An Eulerian-Eulerian Approach to CFD Simulation of Two-Phase Bubble Column using ANSYS CFX Code

    International Nuclear Information System (INIS)

    Mohd Amirul Syafiq Mohd Yunos; Nur Khairunnisa Abd Halim; Siti Aslina Hussain

    2016-01-01

    Bubble columns are widely used as gas-liquid contactors and reactors in chemical, biochemical and petrochemical industries. Effective mixing, high interfacial area between phases, cheap to install and lack of moving parts are the main factors bubble column is chosen for the described processes. Understanding the complexity of the fluid dynamics of gas-liquid flow in bubble column is important due to its unsteady complex processes as well as application in the chemical and bioprocess industries. The gas-liquid of two-phase fluid flow system has been carried out to investigate the hydrodynamics parameters. An Eulerian-Eulerian approach was used to model air as the dispersed phase within a continuous phase of water using the commercial software ANSYSTM CFD software (CFX 14.0). The turbulence in the gas-liquid simulation is described by using the k-e model. This process occurs under the atmospheric pressure. The configuration of model consists of 0.2 m width, 0.2 m depth and 0.5 m height of rectangular bubble column equipped with a sparger at the bottom. Two different sparger designs, Sparger A with 4 holes and 2.6 mm diameter each and Sparger B with 81 holes and 0.5 mm diameter each are tested for three different value of superficial gas velocity of 0.0125 m/s, 0.0501 m/s and 0.0627 m/s. The volume fraction of model is described the behavior of bubble which is represented by the parameters of gas holdup, contact surface area and gas superficial velocity. The simulation was verified by comparing the two different model results. Comparison of simulation results with the experimental work data has provided a successful validation of the model. Results shows the contact surface area increasing with behavior of bubble and gas holdup increases with increasing superficial gas velocity but independent of the sparger design at high superficial velocity (>0.05 m/s). The highest value obtained which is represented of water superficial velocity, gas holdup and superficial gas

  12. Single bubble sonoluminescence

    NARCIS (Netherlands)

    Brenner, Michael P.; Hilgenfeldt, Sascha; Lohse, Detlef

    2002-01-01

    Single-bubble sonoluminescence occurs when an acoustically trapped and periodically driven gas bubble collapses so strongly that the energy focusing at collapse leads to light emission. Detailed experiments have demonstrated the unique properties of this system: the spectrum of the emitted light

  13. Microwave plasmas generated in bubbles immersed in liquids for hydrocarbons reforming

    International Nuclear Information System (INIS)

    Levko, Dmitry; Sharma, Ashish; Raja, Laxminarayan L

    2016-01-01

    We present a computational modeling study of microwave plasma generated in cluster of atmospheric-pressure argon bubbles immersed in a liquid. We demonstrate that the use of microwaves allows the generation of a dense chemically active non-equilibrium plasma along the gas–liquid interface. Also, microwaves allow generation of overdense plasma in all the bubbles considered in the cluster which is possible because the collisional skin depth of the wave exceeds the bubble dimension. These features of microwave plasma generation in bubbles immersed in liquids are highly desirable for the large-scale liquid hydrocarbon reforming technologies. (letter)

  14. Dynamic of vapor bubble growth in fields of variable pressure

    International Nuclear Information System (INIS)

    Pedroso, H.K.

    1982-01-01

    A mathematical model for the description of the growth from an initial nucleus of a vapor bubble imersed in liquid, subjected to a loss of pressure is presented. The model is important for analysing LOCA (Loss of Coolant Acident) in P.W.R. type reactors. Several simplifications were made in the phenomenum governing equations. With such simplifications the heat diffusion equation became the determining factor for the bubble growth, and the problem was reduced to solve the heat diffusion equation for semi infinite solid whose surface temperature is a well known function of time (it is supposed that the surface temperature is equal to the saturation temperature of the liquid at the system pressure at a given moment). The model results in an analytical expression for the bubble radius as a function of time. Comparisons with experimental data and previous models were made, with reasonable agreement. (author) [pt

  15. Droplets, Bubbles and Ultrasound Interactions.

    Science.gov (United States)

    Shpak, Oleksandr; Verweij, Martin; de Jong, Nico; Versluis, Michel

    2016-01-01

    The interaction of droplets and bubbles with ultrasound has been studied extensively in the last 25 years. Microbubbles are broadly used in diagnostic and therapeutic medical applications, for instance, as ultrasound contrast agents. They have a similar size as red blood cells, and thus are able to circulate within blood vessels. Perfluorocarbon liquid droplets can be a potential new generation of microbubble agents as ultrasound can trigger their conversion into gas bubbles. Prior to activation, they are at least five times smaller in diameter than the resulting bubbles. Together with the violent nature of the phase-transition, the droplets can be used for local drug delivery, embolotherapy, HIFU enhancement and tumor imaging. Here we explain the basics of bubble dynamics, described by the Rayleigh-Plesset equation, bubble resonance frequency, damping and quality factor. We show the elegant calculation of the above characteristics for the case of small amplitude oscillations by linearizing the equations. The effect and importance of a bubble coating and effective surface tension are also discussed. We give the main characteristics of the power spectrum of bubble oscillations. Preceding bubble dynamics, ultrasound propagation is introduced. We explain the speed of sound, nonlinearity and attenuation terms. We examine bubble ultrasound scattering and how it depends on the wave-shape of the incident wave. Finally, we introduce droplet interaction with ultrasound. We elucidate the ultrasound-focusing concept within a droplets sphere, droplet shaking due to media compressibility and droplet phase-conversion dynamics.

  16. Methane rising from the Deep: Hydrates, Bubbles, Oil Spills, and Global Warming

    Science.gov (United States)

    Leifer, I.; Rehder, G. J.; Solomon, E. A.; Kastner, M.; Asper, V. L.; Joye, S. B.

    2011-12-01

    Elevated methane concentrations in near-surface waters and the atmosphere have been reported for seepage from depths of nearly 1 km at the Gulf of Mexico hydrate observatory (MC118), suggesting that for some methane sources, deepsea methane is not trapped and can contribute to atmospheric greenhouse gas budgets. Ebullition is key with important sensitivity to the formation of hydrate skins and oil coatings, high-pressure solubility, bubble size and bubble plume processes. Bubble ROV tracking studies showed survival to near thermocline depths. Studies with a numerical bubble propagation model demonstrated that consideration of structure I hydrate skins transported most methane only to mid-water column depths. Instead, consideration of structure II hydrates, which are stable to far shallower depths and appropriate for natural gas mixtures, allows bubbles to survive to far shallower depths. Moreover, model predictions of vertical methane and alkane profiles and bubble size evolution were in better agreement with observations after consideration of structure II hydrate properties as well as an improved implementation of plume properties, such as currents. These results demonstrate the importance of correctly incorporating bubble hydrate processes in efforts to predict the impact of deepsea seepage as well as to understand the fate of bubble-transported oil and methane from deepsea pipeline leaks and well blowouts. Application to the DWH spill demonstrated the importance of deepsea processes to the fate of spilled subsurface oil. Because several of these parameters vary temporally (bubble flux, currents, temperature), sensitivity studies indicate the importance of real-time monitoring data.

  17. Wrinkling in the deflation of elastic bubbles.

    Science.gov (United States)

    Aumaitre, Elodie; Knoche, Sebastian; Cicuta, Pietro; Vella, Dominic

    2013-03-01

    The protein hydrophobin HFBII self-assembles into very elastic films at the surface of water; these films wrinkle readily upon compression. We demonstrate and study this wrinkling instability in the context of non-planar interfaces by forming HFBII layers at the surface of bubbles whose interfaces are then compressed by deflation of the bubble. By varying the initial concentration of the hydrophobin solutions, we are able to show that buckling occurs at a critical packing fraction of protein molecules on the surface. Independent experiments show that at this packing fraction the interface has a finite positive surface tension, and not zero surface tension as is usually assumed at buckling. We attribute this non-zero wrinkling tension to the finite elasticity of these interfaces. We develop a simple geometrical model for the evolution of the wrinkle length with further deflation and show that wrinkles grow rapidly near the needle (used for deflation) towards the mid-plane of the bubble. This geometrical model yields predictions for the length of wrinkles in good agreement with experiments independently of the rheological properties of the adsorbed layer.

  18. Convective mass transfer around a dissolving bubble

    Science.gov (United States)

    Duplat, Jerome; Grandemange, Mathieu; Poulain, Cedric

    2017-11-01

    Heat or mass transfer around an evaporating drop or condensing vapor bubble is a complex issue due to the interplay between the substrate properties, diffusion- and convection-driven mass transfer, and Marangoni effects, to mention but a few. In order to disentangle these mechanisms, we focus here mainly on the convective mass transfer contribution in an isothermal mass transfer problem. For this, we study the case of a millimetric carbon dioxide bubble which is suspended under a substrate and dissolved into pure liquid water. The high solubility of CO2 in water makes the liquid denser and promotes a buoyant-driven flow at a high (solutal) Rayleigh number (Ra˜104 ). The alteration of p H allows the concentration field in the liquid to be imaged by laser fluorescence enabling us to measure both the global mass flux (bubble volume, contact angle) and local mass flux around the bubble along time. After a short period of mass diffusion, where the boundary layer thickens like the square root of time, convection starts and the CO2 is carried by a plume falling at constant velocity. The boundary layer thickness then reaches a plateau which depends on the bubble cross section. Meanwhile the plume velocity scales like (dV /d t )1 /2 with V being the volume of the bubble. As for the rate of volume loss, we recover a constant mass flux in the diffusion-driven regime followed by a decrease in the volume V like V2 /3 after convection has started. We present a model which agrees well with the bubble dynamics and discuss our results in the context of droplet evaporation, as well as high Rayleigh convection.

  19. Multiple bifurcations and periodic 'bubbling' in a delay population model

    International Nuclear Information System (INIS)

    Peng Mingshu

    2005-01-01

    In this paper, the flip bifurcation and periodic doubling bifurcations of a discrete population model without delay influence is firstly studied and the phenomenon of Feigenbaum's cascade of periodic doublings is also observed. Secondly, we explored the Neimark-Sacker bifurcation in the delay population model (two-dimension discrete dynamical systems) and the unique stable closed invariant curve which bifurcates from the nontrivial fixed point. Finally, a computer-assisted study for the delay population model is also delved into. Our computer simulation shows that the introduction of delay effect in a nonlinear difference equation derived from the logistic map leads to much richer dynamic behavior, such as stable node → stable focus → an lower-dimensional closed invariant curve (quasi-periodic solution, limit cycle) or/and stable periodic solutions → chaotic attractor by cascading bubbles (the combination of potential period doubling and reverse period-doubling) and the sudden change between two different attractors, etc

  20. Bubble dynamics equations in Newton fluid

    International Nuclear Information System (INIS)

    Xiao, J

    2008-01-01

    For the high-speed flow of Newton fluid, bubble is produced and expanded when it moves toward the surface of fluid. Bubble dynamics is a very important research field to understand the intrinsic feature of bubble production and motion. This research formulates the bubble expansion by expansion-local rotation transformation, which can be calculated by the measured velocity field. Then, the related dynamic equations are established to describe the interaction between the fluid and the bubble. The research shows that the bubble production condition can be expressed by critical vortex value and fluid pressure; and the bubble expansion rate can be obtained by solving the non-linear dynamic equation of bubble motion. The results may help the related research as it shows a special kind of fluid motion in theoretic sense. As an application example, the nanofiber radium-voltage relation and threshold voltage-surface tension relation in electrospinning process are discussed

  1. Bubble dynamics in microchannels: inertial and capillary migration forces

    Science.gov (United States)

    Rivero-Rodriguez, Javier; Scheid, Benoit

    2018-05-01

    This work focuses on the dynamics of a train of unconfined bubbles flowing in microchan- nels. We investigate the transverse position of a train of bubbles, its velocity and the associated pressure drop when flowing in a microchannel depending on the internal forces due to viscosity, inertia and capillarity. Despite the small scales of the system, inertia, referred to as inertial migration force, play a crucial role in determining the transverse equilibrium position of the bubbles. Beside inertia and viscosity, other effects may also affect the transverse migration of bubbles such as the Marangoni surface stresses and the surface deformability. We look at the influence of surfactants in the limit of infinite Marangoni effect which yields rigid bubble interface. The resulting migration force may balance external body forces if present such as buoyancy, Dean or magnetic ones. This balance not only determines the transverse position of the bubbles but, consequently, the surrounding flow structure, which can be determinant for any mass/heat transfer process involved. Finally, we look at the influence of the bubble deformation on the equilibrium position and compare it to the inertial migration force at the centred position, explaining the stable or unstable character of this position accordingly. A systematic study of the influence of the parameters - such as the bubble size, uniform body force, Reynolds and capillary numbers - has been carried out using numerical simulations based on the Finite Element Method, solving the full steady Navier-Stokes equations and its asymptotic counterpart for the limits of small Reynolds and/or capillary numbers.

  2. Bidirectional cinematography of steam-bubble growth

    Energy Technology Data Exchange (ETDEWEB)

    Deason, V.A.; Reynolds, L.D.

    1982-01-01

    Single steam bubbles were generated in superheated water in an optical cell. The growth process of the bubbles was recorded with a high-speed motion picture camera at 5000 and 10,000 frames per second. A technique was developed to simultaneously image two orthogonal views of the bubbles on each frame of film. The vertical and horizontal diameters of the bubbles were measured on a frame-by-frame basis, and the data analyzed to determine oscillatory frequencies. The analysis also attempted to determine whether the bubbles were undergoing volumetric oscillations during early growth or whether simple surface wave/rotational behavior caused the observed periodic variations in bubble dimensions. For the bubbles studied, typical oscillation frequencies for the diameters were in the range of 100 to 500 Hz.

  3. Bidirectional cinematography of steam-bubble growth

    International Nuclear Information System (INIS)

    Deason, V.A.; Reynolds, L.D.

    1982-01-01

    Single steam bubbles were generated in superheated water in an optical cell. The growth process of the bubbles was recorded with a high-speed motion picture camera at 5000 and 10,000 frames per second. A technique was developed to simultaneously image two orthogonal views of the bubbles on each frame of film. The vertical and horizontal diameters of the bubbles were measured on a frame-by-frame basis, and the data analyzed to determine oscillatory frequencies. The analysis also attempted to determine whether the bubbles were undergoing volumetric oscillations during early growth or whether simple surface wave/rotational behavior caused the observed periodic variations in bubble dimensions. For the bubbles studied, typical oscillation frequencies for the diameters were in the range of 100 to 500 Hz

  4. Evaluation of Decontamination Factor of Aerosol in Pool Scrubber according to Bubble Shape and Size

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Hyun Joung; Ha, Kwang Soon; Jang, Dong Soon [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The scrubbing pool could play an important role in the wet type FCVS because a large amount of aerosol is captured in the water pool. The pool scrubbing phenomena have been modelled and embedded in several computer codes, such as SPARC (Suppression Pool Aerosol Removal Code), BUSCA (BUbble Scrubbing Algorithm) and SUPRA (Suppression Pool Retention Analysis). These codes aim at simulating the pool scrubbing process and estimating the decontamination factors (DFs) of the radioactive aerosol and iodine gas in the water pool, which is defined as the ratio of initial mass of the specific radioactive material to final massy after passing through the water pool. The pool scrubbing models were reviewed and an aerosol scrubbing code has been prepared to calculate decontamination factor through the pool. The developed code has been verified using the experimental results and parametric studies the decontamination factor according to bubble shape and size. To evaluate the decontamination factor more accurate whole pool scrubber phenomena, the code was improved to consider the variety shape and size of bubbles. The decontamination factor were largely evaluated in ellipsoid bubble rather than in sphere bubble. The pool scrubbing models will be enhanced to apply more various model such as aerosol condensation of hygroscopic. And, it is need to experiment to measure to bubble shape and size distribution in pool to improve bubble model.

  5. Modelling studies for influence factors of gas bubble in compressed air energy storage in aquifers

    International Nuclear Information System (INIS)

    Guo, Chaobin; Zhang, Keni; Li, Cai; Wang, Xiaoyu

    2016-01-01

    CAES (Compressed air energy storage) is credited with its potential ability for large-scale energy storage. Generally, it is more convenient using deep aquifers than employing underground caverns for energy storage, because of extensive presence of aquifers. During the first stage in a typical process of CAESA (compressed air energy storage in aquifers), a large amount of compressed air is injected into the target aquifer to develop an initial space (a gas bubble) for energy storage. In this study, numerical simulations were conducted to investigate the influence of aquifer's permeability, geological structure and operation parameters on the formation of gas bubble and the sustainability for the later cycling operation. The SCT (system cycle times) was designed as a parameter to evaluate the reservoir performance and the effect of operation parameters. Simulation results for pressure and gas saturation results of basic model confirm the feasibility of compressed air energy storage in aquifers. The results of different permeability cases show that, for a certain scale of CAESA system, there is an optimum permeability range for a candidate aquifer. An aquifer within this permeability range will not only satisfy the injectivity requirement but also have the best energy efficiency. Structural impact analysis indicates that the anticline structure has the best performance to hold the bubble under the same daily cycling schedule with the same initial injected air mass. In addition, our results indicate that the SCT shows a logarithmic growth as the injected air mass increase. During the formation of gas bubble, compressed air should be injected into aquifers with moderate rate and the injection can be done in several stages with different injection rate to avoid onset pressure. - Highlights: • Impact of permeability, geological structure, operation parameters was investigated. • With certain air production rate, an optimum permeability exists for performance.

  6. Direct numerical simulation of bubbles with parallelized adaptive mesh refinement

    International Nuclear Information System (INIS)

    Talpaert, A.

    2015-01-01

    The study of two-phase Thermal-Hydraulics is a major topic for Nuclear Engineering for both security and efficiency of nuclear facilities. In addition to experiments, numerical modeling helps to knowing precisely where bubbles appear and how they behave, in the core as well as in the steam generators. This work presents the finest scale of representation of two-phase flows, Direct Numerical Simulation of bubbles. We use the 'Di-phasic Low Mach Number' equation model. It is particularly adapted to low-Mach number flows, that is to say flows which velocity is much slower than the speed of sound; this is very typical of nuclear thermal-hydraulics conditions. Because we study bubbles, we capture the front between vapor and liquid phases thanks to a downward flux limiting numerical scheme. The specific discrete analysis technique this work introduces is well-balanced parallel Adaptive Mesh Refinement (AMR). With AMR, we refined the coarse grid on a batch of patches in order to locally increase precision in areas which matter more, and capture fine changes in the front location and its topology. We show that patch-based AMR is very adapted for parallel computing. We use a variety of physical examples: forced advection, heat transfer, phase changes represented by a Stefan model, as well as the combination of all those models. We will present the results of those numerical simulations, as well as the speed up compared to equivalent non-AMR simulation and to serial computation of the same problems. This document is made up of an abstract and the slides of the presentation. (author)

  7. Study of stream flow effects on bubble motion

    International Nuclear Information System (INIS)

    Sami, S.S.

    1983-01-01

    The formation of air bubbles at constant-pressure by submerged orifices was investigated in both quiescent and moving streams inside a vertical tube. Parameters affecting the bubble rise velocity, such as bubble generating frequency and diameter, were studied and analyzed for bubbles rising in a chain and homogeneous mixture. A special technique for measuring bubble motion parameters has been developed, tested, and employed throughout the experimental investigation. The method is based on a water-air impedance variation. Results obtained in stagnant liquid show that increasing the bubble diameter serves to increase bubble rise velocity, while an opposite trend has been observed for stream liquid where the bubble diameter increase reduces the bubble rise velocity. The increase of bubble generation frequency generally increases the bubble rise velocity. Experimental data covered with bubble radial distribution showed symmetrical profiles of bubble velocity and frequency, and the radial distribution of the velocity profiles sometimes has two maxima and one minimum depending on the liquid velocity. Finally, in stagnant liquid, a normalized correlation has been developed to predict the terminal rise velocity in terms of bubble generating frequency, bubble diameter, single bubble rise velocity, and conduit dimensions. Another correlation is presented for forced bubbly flow, where the bubble rise velocity is expressed as a function of bubble generating frequency, bubble diameter, and water superficial velocity

  8. Bubbles in graphene

    DEFF Research Database (Denmark)

    Settnes, Mikkel; Power, Stephen; Lin, Jun

    2015-01-01

    Strain-induced deformations in graphene are predicted to give rise to large pseudomagnetic fields. We examine theoretically the case of gas-inflated bubbles to determine whether signatures of such fields are present in the local density of states. Sharp-edged bubbles are found to induce Friedel...

  9. Growth process of helium bubbles in aluminium

    International Nuclear Information System (INIS)

    Shiraishi, Haruki; Sakairi, Hideo; Yagi, Eiichi; Karasawa, Takashi; Hashiguti, R.R.

    1975-01-01

    The growth process of helium bubbles in α-particle bombarded pure aluminum during isothermal anneal ranging 200 to 645 0 C and 1 to 100 hr was observed by a transmission electron microscope and the possible growth mechanisms are discussed. The effects of helium concentration and cold work were investigated. The helium bubbles are detectable only at the anneal above 550 0 C in both annealed and cold worked samples. The cold work does not cause any extra coarsening trend of bubbles. The observed types of bubble distribution in the grain interior are divided into two categories, irrespective of helium concentration and cold work; (1) the fine and uniform bubble distribution, in which case the average size is limited to about 200 A or less in diameter even at the anneal just below the melting point, and (2) the coarsened and non-uniform bubble distribution ranging 500 to 4000 A in diameter. The intermediate size bubbles are scarcely found in any cases. In the above fine bubble distribution, the increase of helium concentration by a factor of two increases the density by the same factor of two, but does not change the mean size of bubbles. Corresponding to the above two characteristic bubble distributions, it is concluded that two different mechanisms are operative in this experiment; (1) the growth of bubbles by the Brownian motion, in which the growth rate of bubbles is decreased to almost zero by bubble faceting and this results in the bubble size constancy during the prolonged annealing, and (2) the growth of bubbles by the grain boundary sweep-out mechanism, by which the abrupt coarsening of bubbles is caused. The lack of existence of the intermediate size bubbles is explained in this way. (auth.)

  10. Vapor bubble growth in highly superheated liquid

    International Nuclear Information System (INIS)

    Pavlov, P.A.

    1981-01-01

    Dynamics of the bubble growth in the volume of the uniformally superheated liquid is considered. It is supposed that its growth is hampered by heat transfer. An asymptotic expression for the bubble growth rate at high superheatings when heat hold by liquid is comparable with heat of steam formation, is found by the automodel solution of the heat transfer equation. Writing the radius square in the form of a functional applicable for the calculation of steam formation at the pressure change in superheated liquid is suggested for eveluation calculations [ru

  11. Nuttier bubbles

    International Nuclear Information System (INIS)

    Astefanesei, Dumitru; Mann, Robert B.; Stelea, Cristian

    2006-01-01

    We construct new explicit solutions of general relativity from double analytic continuations of Taub-NUT spacetimes. This generalizes previous studies of 4-dimensional nutty bubbles. One 5-dimensional locally asymptotically AdS solution in particular has a special conformal boundary structure of AdS 3 x S 1 . We compute its boundary stress tensor and relate it to the properties of the dual field theory. Interestingly enough, we also find consistent 6-dimensional bubble solutions that have only one timelike direction. The existence of such spacetimes with non-trivial topology is closely related to the existence of the Taub-NUT(-AdS) solutions with more than one NUT charge. Finally, we begin an investigation of generating new solutions from Taub-NUT spacetimes and nuttier bubbles. Using the so-called Hopf duality, we provide new explicit time-dependent backgrounds in six dimensions

  12. Numerical Study on Bubble Dynamics and Two-Phase Frictional Pressure Drop of Slug Flow Regime in Adiabatic T-junction Square Microchannel

    Directory of Open Access Journals (Sweden)

    K. Kishor

    2017-10-01

    Full Text Available In this study, bubble dynamics and frictional pressure drop associated with gas liquid two-phase slug flow regime in adiabatic T-junction square microchannel has been investigated using CFD. A comprehensive study on the mechanism of bubble formation via squeezing and shearing regime is performed. The randomness and recirculation profiles observed in the squeezing regime are significantly higher as compared to the shearing regime during formation of the slug. Further, effects of increasing gas velocity on bubble length are obtained at fixed liquid velocities and simulated data displayed good agreement with available correlations in literature. The frictional pressure drop for slug flow regime from simulations are also obtained and evaluated against existing separated flow models. A regression correlation has also been developed by modifying C-parameter using separated flow model, which improves the prediction of two-phase frictional pressure drop data within slug flow region, with mean absolute error of 10 %. The influences of fluid properties such as liquid viscosity and surface tension on the two-phase frictional pressure drop are also investigated and compared with developed correlation. The higher liquid viscosity and lower surface tension value resulted in bubble formation via shearing regime.

  13. Bubble nucleation in first-order inflation and other cosmological phase transitions

    International Nuclear Information System (INIS)

    Turner, M.S.; Weinberg, E.J.; Widrow, L.M.

    1992-01-01

    We address in some detail the kinematics of bubble nucleation and percolation in first-order cosmological phase transitions, with the primary focus on first-order inflation. We study how a first-order phase transition completes, describe measures of its progress, and compute the distribution of bubble sizes. For example, we find that the typical bubble size in a successful transition is of order 1% to 100% of the Hubble radius, and depends very weakly on the energy scale of the transition. We derive very general conditions that must be satisfied by Γ/H 4 to complete the phase transition (Γ=bubble nucleation rate per unit volume; H=expansion rate; physically, Γ/H 4 corresponds to the volume fraction of space occupied by bubbles nucleated over a Hubble time). In particular, Γ/H 4 must exceed 9/4π to successfully end inflation. To avoid the deleterious effects of bubbles nucleated early during inflation on primordial nucleosynthesis and on the isotropy and spectrum of the cosmic microwave background radiation, during most of inflation Γ/H 4 must be less than order 10 -4 --10 -3 . Our constraints imply that in a successful model of first-order inflation the phase transition must complete over a period of at most a few Hubble times and all but preclude individual bubbles from providing an interesting source of density perturbation. We note, though, that it is just possible for Poisson fluctuations in the number of moderately large-size bubbles to lead to interesting isocurvature perturbations, whose spectrum is not scale invariant. Finally, we analyze in detail several recently proposed models of first-order inflation

  14. Level-set simulations of buoyancy-driven motion of single and multiple bubbles

    International Nuclear Information System (INIS)

    Balcázar, Néstor; Lehmkuhl, Oriol; Jofre, Lluís; Oliva, Assensi

    2015-01-01

    Highlights: • A conservative level-set method is validated and verified. • An extensive study of buoyancy-driven motion of single bubbles is performed. • The interactions of two spherical and ellipsoidal bubbles is studied. • The interaction of multiple bubbles is simulated in a vertical channel. - Abstract: This paper presents a numerical study of buoyancy-driven motion of single and multiple bubbles by means of the conservative level-set method. First, an extensive study of the hydrodynamics of single bubbles rising in a quiescent liquid is performed, including its shape, terminal velocity, drag coefficients and wake patterns. These results are validated against experimental and numerical data well established in the scientific literature. Then, a further study on the interaction of two spherical and ellipsoidal bubbles is performed for different orientation angles. Finally, the interaction of multiple bubbles is explored in a periodic vertical channel. The results show that the conservative level-set approach can be used for accurate modelling of bubble dynamics. Moreover, it is demonstrated that the present method is numerically stable for a wide range of Morton and Reynolds numbers.

  15. Interaction mechanism of double bubbles in hydrodynamic cavitation

    Science.gov (United States)

    Li, Fengchao; Cai, Jun; Huai, Xiulan; Liu, Bin

    2013-06-01

    Bubble-bubble interaction is an important factor in cavitation bubble dynamics. In this paper, the dynamic behaviors of double cavitation bubbles driven by varying pressure field downstream of an orifice plate in hydrodynamic cavitation reactor are examined. The bubble-bubble interaction between two bubbles with different radii is considered. We have shown the different dynamic behaviors between double cavitation bubbles and a single bubble by solving two coupling nonlinear equations using the Runge-Kutta fourth order method with adaptive step size control. The simulation results indicate that, when considering the role of the neighbor smaller bubble, the oscillation of the bigger bubble gradually exhibits a lag in comparison with the single-bubble case, and the extent of the lag becomes much more obvious as time goes by. This phenomenon is more easily observed with the increase of the initial radius of the smaller bubble. In comparison with the single-bubble case, the oscillation of the bigger bubble is enhanced by the neighbor smaller bubble. Especially, the pressure pulse of the bigger bubble rises intensely when the sizes of two bubbles approach, and a series of peak values for different initial radii are acquired when the initial radius ratio of two bubbles is in the range of 0.9˜1.0. Although the increase of the center distance between two bubbles can weaken the mutual interaction, it has no significant influence on the enhancement trend. On the one hand, the interaction between two bubbles with different radii can suppress the growth of the smaller bubble; on the other hand, it also can enhance the growth of the bigger one at the same time. The significant enhancement effect due to the interaction of multi-bubbles should be paid more attention because it can be used to reinforce the cavitation intensity for various potential applications in future.

  16. To the use of bubble detectors in personal neutron dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Spurny, F; Vlcek, B [Academy of the Sciences of Czech Republic, Prague (Czech Republic). Nuclear Physics Institute, Department of Radiation Dosimetry

    1996-12-31

    In this paper the commercially available bubble neutron detectors (bubble damage neutron detectors (BDNDs*) from Bubble Technology Industries, Chalk River; and superheated drop detectors (SDDs*) from APFEL Industries, New Haven) for lowest limit of detection of an individual neutron dosimeter were tested. They were tested with the different neutron sources. BDNDs* tested had the sensitivity about 1 bubble per 1 Sv of H*(10) of AmBe neutrons, they were evaluated by eye counting (20 to 30 bubbles per detector). Two types of reusable BDNDs* were tested: BD-100R without and with temperature compensation, both with neutron energy threshold about 100 keV. SDDs* tested had the sensitivity about 3 bubbles per 1 {mu}Sv of H*10 from AmBe neutrons, they were evaluated using APFEL Survey Meter Model 202. SDDs* with three different energy thresholds have been used: 0.1, 1 and 6 MeV. For energetical dependence of BDNDs* the general conclusions were formulated in the following way: (1) With the exception of thermal neutron source SIGMA (50% of H*(10) from thermal neutrons) and high energy reference fields there is a reasonable agreement of data measured with BDNDs* and expected values; (2) the new lots to have a little different energetic dependence. The relative responses for `soft` fields are for them systematically higher than for previous samples. The response to energies between 0.01 and 1 MeV is for these lots relatively higher. (3) The underestimation of high energy neutrons is typical for any LET-threshold type detectors.It should be kept in mind when BDNDs* are used as dosemeters in high energy neutron environment. For energetical dependence of SDDs* was concluded: (1) The energetical dependence of SDD 100 is comparable with the dependencies of BD-100R and PND, the underestimation of high energy neutrons included; (2) The use of SDD with different energy thresholds can provide interesting spectrometric information; (Abstract Truncated)

  17. Bubble formation in Zr alloys under heavy ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Pagano, L. Jr.; Motta, A.T. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Nuclear Engineering; Birtcher, R.C. [Argonne National Lab., IL (United States). Materials Science Div.

    1995-12-01

    Kr ions were used in the HVEM/Tandem facility at ANL to irradiate several Zr alloys, including Zircaloy-2 and -4, at 300-800 C to doses up to 2{times}10{sup 16}ion.cm{sup -2}. Both in-situ irradiation of thin foils as well as irradiation of bulk samples with an ion implanter were used in this study. For the thin foil irradiations, a distribution of small bubbles in the range of 30-100 {angstrom} was found at all temperatures with the exception of the Cr-rich Valloy where 130 {angstrom} bubbles were found. Irradiation of bulk samples at 700-800 C produced large faceted bubbles up to 300 {angstrom} after irradiation to 2{times}10{sup 16}ion.cm{sup -2}. Results are examined in context of existing models for bubble formation and growth in other metals.

  18. Effect of air bubble localization after transfer on embryo transfer outcomes.

    Science.gov (United States)

    Tiras, Bulent; Korucuoglu, Umit; Polat, Mehtap; Saltik, Ayse; Zeyneloglu, Hulusi Bulent; Yarali, Hakan

    2012-09-01

    Our study aimed to provide information about the effects of air bubble localization after transfer on embryo transfer outcomes. Retrospective analysis of 7489 ultrasound-guided embryo transfers. Group 1 included 6631 embryo transfers in which no movement of the air bubbles was observed after transfer. Group 2 consisted of 407 embryo transfers in which the air bubbles moved towards the uterine fundus spontaneously, a little time after transfer. Group 3 included 370 embryo transfers in which the air bubbles moved towards the uterine fundus with ejection, immediately after transfer. Group 4 consisted of 81 embryo transfers in which the air bubbles moved towards the cervical canal. The four patient groups were different from one another with respect to positive pregnancy tests. Post hoc test revealed that this difference was between group 4 and other groups. An initial finding of our study was significantly decreased positive pregnancy test rates and clinical pregnancy rates with air bubbles moving towards the cervical canal after transfer. Although air bubbles moving towards the uterine fundus with ejection were associated with higher pregnancy rates, higher miscarriage rates and similar live birth rates were observed compared to air bubbles remaining stable after transfer. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  19. Demonstration of two-phase Direct Numerical Simulation (DNS) methods potentiality to give information to averaged models: application to bubbles column

    International Nuclear Information System (INIS)

    Magdeleine, S.

    2009-11-01

    This work is a part of a long term project that aims at using two-phase Direct Numerical Simulation (DNS) in order to give information to averaged models. For now, it is limited to isothermal bubbly flows with no phase change. It could be subdivided in two parts: Firstly, theoretical developments are made in order to build an equivalent of Large Eddy Simulation (LES) for two phase flows called Interfaces and Sub-grid Scales (ISS). After the implementation of the ISS model in our code called Trio U , a set of various cases is used to validate this model. Then, special test are made in order to optimize the model for our particular bubbly flows. Thus we showed the capacity of the ISS model to produce a cheap pertinent solution. Secondly, we use the ISS model to perform simulations of bubbly flows in column. Results of these simulations are averaged to obtain quantities that appear in mass, momentum and interfacial area density balances. Thus, we processed to an a priori test of a complete one dimensional averaged model.We showed that this model predicts well the simplest flows (laminar and monodisperse). Moreover, the hypothesis of one pressure, which is often made in averaged model like CATHARE, NEPTUNE and RELAP5, is satisfied in such flows. At the opposite, without a polydisperse model, the drag is over-predicted and the uncorrelated A i flux needs a closure law. Finally, we showed that in turbulent flows, fluctuations of velocity and pressure in the liquid phase are not represented by the tested averaged model. (author)

  20. Gravitational wave generation from bubble collisions in first-order phase transitions: An analytic approach

    International Nuclear Information System (INIS)

    Caprini, Chiara; Durrer, Ruth; Servant, Geraldine

    2008-01-01

    Gravitational wave production from bubble collisions was calculated in the early 1990s using numerical simulations. In this paper, we present an alternative analytic estimate, relying on a different treatment of stochasticity. In our approach, we provide a model for the bubble velocity power spectrum, suitable for both detonations and deflagrations. From this, we derive the anisotropic stress and analytically solve the gravitational wave equation. We provide analytical formulas for the peak frequency and the shape of the spectrum which we compare with numerical estimates. In contrast to the previous analysis, we do not work in the envelope approximation. This paper focuses on a particular source of gravitational waves from phase transitions. In a companion article, we will add together the different sources of gravitational wave signals from phase transitions: bubble collisions, turbulence and magnetic fields and discuss the prospects for probing the electroweak phase transition at LISA