WorldWideScience

Sample records for broccoli coq5 methyltransferase

  1. Evaluation of genotypic variation of broccoli (Brassica oleracea var. italic) in response to selenium treatment.

    Science.gov (United States)

    Ramos, Silvio J; Yuan, Youxi; Faquin, Valdemar; Guilherme, Luiz Roberto G; Li, Li

    2011-04-27

    Broccoli (Brassica oleracea var. italic) fortified with selenium (Se) has been promoted as a functional food. Here, we evaluated 38 broccoli accessions for their capacity to accumulate Se and for their responses to selenate treatment in terms of nutritional qualities and sulfur gene expresion. We found that the total Se content varied with over 2-fold difference among the leaf tissues of broccoli accessions when the plants were treated with 20 μM Na(2)SeO(4). Approximately half of total Se accumulated in leaves was Se-methylselenocysteine and selenomethionine. Transcriptional regulation of adenosine 5'-phosphosulfate sulfurylase and selenocysteine Se-methyltransferase gene expression might contribute to the different levels of Se accumulation in broccoli. Total glucosinolate contents were not affected by the concentration of selenate application for the majority of broccoli accessions. Essential micronutrients (i.e., Fe, Zn, Cu, and Mn) remained unchanged among half of the germplasm. Moreover, the total antioxidant capacity was greatly stimulated by selenate in over half of the accessions. The diverse genotypic variation in Se, glucosinolate, and antioxidant contents among accessions provides the opportunity to breed broccoli cultivars that simultaneously accumulate Se and other health benefit compounds.

  2. Treatment of CoQ(10 deficient fibroblasts with ubiquinone, CoQ analogs, and vitamin C: time- and compound-dependent effects.

    Directory of Open Access Journals (Sweden)

    Luis C López

    2010-07-01

    Full Text Available Coenzyme Q(10 (CoQ(10 and its analogs are used therapeutically by virtue of their functions as electron carriers, antioxidant compounds, or both. However, published studies suggest that different ubiquinone analogs may produce divergent effects on oxidative phosphorylation and oxidative stress.To test these concepts, we have evaluated the effects of CoQ(10, coenzyme Q(2 (CoQ(2, idebenone, and vitamin C on bioenergetics and oxidative stress in human skin fibroblasts with primary CoQ(10 deficiency. A final concentration of 5 microM of each compound was chosen to approximate the plasma concentration of CoQ(10 of patients treated with oral ubiquinone. CoQ(10 supplementation for one week but not for 24 hours doubled ATP levels and ATP/ADP ratio in CoQ(10 deficient fibroblasts therein normalizing the bioenergetics status of the cells. Other compounds did not affect cellular bioenergetics. In COQ2 mutant fibroblasts, increased superoxide anion production and oxidative stress-induced cell death were normalized by all supplements.THESE RESULTS INDICATE THAT: 1 pharmacokinetics of CoQ(10 in reaching the mitochondrial respiratory chain is delayed; 2 short-tail ubiquinone analogs cannot replace CoQ(10 in the mitochondrial respiratory chain under conditions of CoQ(10 deficiency; and 3 oxidative stress and cell death can be counteracted by administration of lipophilic or hydrophilic antioxidants. The results of our in vitro experiments suggest that primary CoQ(10 deficiencies should be treated with CoQ(10 supplementation but not with short-tail ubiquinone analogs, such as idebenone or CoQ(2. Complementary administration of antioxidants with high bioavailability should be considered if oxidative stress is present.

  3. Novel recessive mutations in COQ4 cause severe infantile cardiomyopathy and encephalopathy associated with CoQ10 deficiency

    Directory of Open Access Journals (Sweden)

    Neal Sondheimer

    2017-09-01

    Full Text Available Coenzyme Q10 (CoQ10 or ubiquinone is one of the two electron carriers in the mitochondrial respiratory chain which has an essential role in the process of oxidative phosphorylation. Defects in CoQ10 synthesis are usually associated with the impaired function of CoQ10–dependent complexes I, II and III. The recessively transmitted CoQ10 deficiency has been associated with a number of phenotypically and genetically heterogeneous groups of disorders manifesting at variable age of onset. The infantile, multisystemic presentation is usually caused by mutations in genes directly involved in CoQ10 biosynthesis. To date, mutations in COQ1 (PDSS1 and PDSS2, COQ2, COQ4, COQ6, COQ7, COQ8A/ADCK3, COQ8B/ADCK4, and COQ9 genes have been identified in patients with primary form of CoQ10 deficiency. Here we report novel mutations in the COQ4 gene, which were identified in an infant with profound mitochondrial disease presenting with perinatal seizures, hypertrophic cardiomyopathy and severe muscle CoQ10 deficiency.

  4. Novel recessive mutations in COQ4 cause severe infantile cardiomyopathy and encephalopathy associated with CoQ10 deficiency.

    Science.gov (United States)

    Sondheimer, Neal; Hewson, Stacy; Cameron, Jessie M; Somers, Gino R; Broadbent, Jane Dunning; Ziosi, Marcello; Quinzii, Catarina Maria; Naini, Ali B

    2017-09-01

    Coenzyme Q 10 (CoQ 10 ) or ubiquinone is one of the two electron carriers in the mitochondrial respiratory chain which has an essential role in the process of oxidative phosphorylation. Defects in CoQ 10 synthesis are usually associated with the impaired function of CoQ 10 -dependent complexes I, II and III. The recessively transmitted CoQ 10 deficiency has been associated with a number of phenotypically and genetically heterogeneous groups of disorders manifesting at variable age of onset. The infantile, multisystemic presentation is usually caused by mutations in genes directly involved in CoQ 10 biosynthesis. To date, mutations in COQ1 ( PDSS1 and PDSS2 ), COQ2 , COQ4 , COQ6 , COQ7 , COQ8A / ADCK3 , COQ8B/ADCK4 , and COQ9 genes have been identified in patients with primary form of CoQ 10 deficiency. Here we report novel mutations in the COQ4 gene, which were identified in an infant with profound mitochondrial disease presenting with perinatal seizures, hypertrophic cardiomyopathy and severe muscle CoQ 10 deficiency.

  5. Mutations in COQ8B (ADCK4) found in patients with steroid‐resistant nephrotic syndrome alter COQ8B function

    Science.gov (United States)

    Vazquez Fonseca, Luis; Doimo, Mara; Calderan, Cristina; Desbats, Maria Andrea; Acosta, Manuel J.; Cerqua, Cristina; Cassina, Matteo; Ashraf, Shazia; Hildebrandt, Friedhelm; Sartori, Geppo; Navas, Placido; Trevisson, Eva

    2017-01-01

    Abstract Mutations in COQ8B cause steroid‐resistant nephrotic syndrome with variable neurological involvement. In yeast, COQ8 encodes a protein required for coenzyme Q (CoQ) biosynthesis, whose precise role is not clear. Humans harbor two paralog genes: COQ8A and COQ8B (previously termed ADCK3 and ADCK4). We have found that COQ8B is a mitochondrial matrix protein peripherally associated with the inner membrane. COQ8B can complement a ΔCOQ8 yeast strain when its mitochondrial targeting sequence (MTS) is replaced by a yeast MTS. This model was employed to validate COQ8B mutations, and to establish genotype–phenotype correlations. All mutations affected respiratory growth, but there was no correlation between mutation type and the severity of the phenotype. In fact, contrary to the case of COQ2, where residual CoQ biosynthesis correlates with clinical severity, patients harboring hypomorphic COQ8B alleles did not display a different phenotype compared with those with null mutations. These data also suggest that the system is redundant, and that other proteins (probably COQ8A) may partially compensate for the absence of COQ8B. Finally, a COQ8B polymorphism, present in 50% of the European population (NM_024876.3:c.521A > G, p.His174Arg), affects stability of the protein and could represent a risk factor for secondary CoQ deficiencies or for other complex traits. PMID:29194833

  6. Mutations in COQ8B (ADCK4) found in patients with steroid-resistant nephrotic syndrome alter COQ8B function

    OpenAIRE

    Fonseca, Luis Vazquez; Doimo, Mara; Calderan, Cristina; Desbats, Maria Andrea; Acosta, Manuel J.; Cerqua, Cristina; Cassina, Matteo; Ashraf, Shazia; Hildebrandt, Friedhelm; Sartori, Geppo; Navas, Placido; Trevisson, Eva; Salviati, Leonardo

    2018-01-01

    Abstract Mutations in COQ8B cause steroid‐resistant nephrotic syndrome with variable neurological involvement. In yeast, COQ8 encodes a protein required for coenzyme Q (CoQ) biosynthesis, whose precise role is not clear. Humans harbor two paralog genes: COQ8A and COQ8B (previously termed ADCK3 and ADCK4). We have found that COQ8B is a mitochondrial matrix protein peripherally associated with the inner membrane. COQ8B can complement a ΔCOQ8 yeast strain when its mitochondrial targeting sequenc...

  7. Mutations in COQ8B (ADCK4) found in patients with steroid-resistant nephrotic syndrome alter COQ8B function.

    Science.gov (United States)

    Vazquez Fonseca, Luis; Doimo, Mara; Calderan, Cristina; Desbats, Maria Andrea; Acosta, Manuel J; Cerqua, Cristina; Cassina, Matteo; Ashraf, Shazia; Hildebrandt, Friedhelm; Sartori, Geppo; Navas, Placido; Trevisson, Eva; Salviati, Leonardo

    2018-03-01

    Mutations in COQ8B cause steroid-resistant nephrotic syndrome with variable neurological involvement. In yeast, COQ8 encodes a protein required for coenzyme Q (CoQ) biosynthesis, whose precise role is not clear. Humans harbor two paralog genes: COQ8A and COQ8B (previously termed ADCK3 and ADCK4). We have found that COQ8B is a mitochondrial matrix protein peripherally associated with the inner membrane. COQ8B can complement a ΔCOQ8 yeast strain when its mitochondrial targeting sequence (MTS) is replaced by a yeast MTS. This model was employed to validate COQ8B mutations, and to establish genotype-phenotype correlations. All mutations affected respiratory growth, but there was no correlation between mutation type and the severity of the phenotype. In fact, contrary to the case of COQ2, where residual CoQ biosynthesis correlates with clinical severity, patients harboring hypomorphic COQ8B alleles did not display a different phenotype compared with those with null mutations. These data also suggest that the system is redundant, and that other proteins (probably COQ8A) may partially compensate for the absence of COQ8B. Finally, a COQ8B polymorphism, present in 50% of the European population (NM_024876.3:c.521A > G, p.His174Arg), affects stability of the protein and could represent a risk factor for secondary CoQ deficiencies or for other complex traits. © 2017 The Authors. Human Mutation published by Wiley Periodicals, Inc.

  8. Human COQ9 Rescues a coq9 Yeast Mutant by Enhancing Coenzyme Q Biosynthesis from 4-Hydroxybenzoic Acid and Stabilizing the CoQ-Synthome

    Directory of Open Access Journals (Sweden)

    Cuiwen H. He

    2017-07-01

    Full Text Available Coq9 is required for the stability of a mitochondrial multi-subunit complex, termed the CoQ-synthome, and the deamination step of Q intermediates that derive from para-aminobenzoic acid (pABA in yeast. In human, mutations in the COQ9 gene cause neonatal-onset primary Q10 deficiency. In this study, we determined whether expression of human COQ9 could complement yeast coq9 point or null mutants. We found that expression of human COQ9 rescues the growth of the temperature-sensitive yeast mutant, coq9-ts19, on a non-fermentable carbon source and increases the content of Q6, by enhancing Q biosynthesis from 4-hydroxybenzoic acid (4HB. To study the mechanism for the rescue by human COQ9, we determined the steady-state levels of yeast Coq polypeptides in the mitochondria of the temperature-sensitive yeast coq9 mutant expressing human COQ9. We show that the expression of human COQ9 significantly increased steady-state levels of yeast Coq4, Coq6, Coq7, and Coq9 at permissive temperature. Human COQ9 polypeptide levels persisted at non-permissive temperature. A small amount of the human COQ9 co-purified with tagged Coq6, Coq6-CNAP, indicating that human COQ9 interacts with the yeast Q-biosynthetic complex. These findings suggest that human COQ9 rescues the yeast coq9 temperature-sensitive mutant by stabilizing the CoQ-synthome and increasing Q biosynthesis from 4HB. This finding provides a powerful approach to studying the function of human COQ9 using yeast as a model.

  9. Effects of inhibiting CoQ10 biosynthesis with 4-nitrobenzoate in human fibroblasts.

    Directory of Open Access Journals (Sweden)

    Catarina M Quinzii

    Full Text Available Coenzyme Q(10 (CoQ(10 is a potent lipophilic antioxidant in cell membranes and a carrier of electrons in the mitochondrial respiratory chain. We previously characterized the effects of varying severities of CoQ(10 deficiency on ROS production and mitochondrial bioenergetics in cells harboring genetic defects of CoQ(10 biosynthesis. We observed a unimodal distribution of ROS production with CoQ(10 deficiency: cells with <20% of CoQ(10 and 50-70% of CoQ(10 did not generate excess ROS while cells with 30-45% of CoQ(10 showed increased ROS production and lipid peroxidation. Because our previous studies were limited to a small number of mutant cell lines with heterogeneous molecular defects, here, we treated 5 control and 2 mildly CoQ(10 deficient fibroblasts with varying doses of 4-nitrobenzoate (4-NB, an analog of 4-hydroxybenzoate (4-HB and inhibitor of 4-para-hydroxybenzoate:polyprenyl transferase (COQ2 to induce a range of CoQ(10 deficiencies. Our results support the concept that the degree of CoQ(10 deficiency in cells dictates the extent of ATP synthesis defects and ROS production and that 40-50% residual CoQ(10 produces maximal oxidative stress and cell death.

  10. Novel recessive mutations in COQ4 cause severe infantile cardiomyopathy and encephalopathy associated with CoQ10 deficiency

    OpenAIRE

    Sondheimer, Neal; Hewson, Stacy; Cameron, Jessie M.; Somers, Gino R.; Broadbent, Jane Dunning; Ziosi, Marcello; Quinzii, Catarina Maria; Naini, Ali B.

    2017-01-01

    Coenzyme Q10 (CoQ10) or ubiquinone is one of the two electron carriers in the mitochondrial respiratory chain which has an essential role in the process of oxidative phosphorylation. Defects in CoQ10 synthesis are usually associated with the impaired function of CoQ10–dependent complexes I, II and III. The recessively transmitted CoQ10 deficiency has been associated with a number of phenotypically and genetically heterogeneous groups of disorders manifesting at variable age of onset. The infa...

  11. Over-expression of COQ10 in Saccharomyces cerevisiae inhibits mitochondrial respiration

    International Nuclear Information System (INIS)

    Zampol, Mariana A.; Busso, Cleverson; Gomes, Fernando; Ferreira-Junior, Jose Ribamar; Tzagoloff, Alexander; Barros, Mario H.

    2010-01-01

    Research highlights: → COQ10 deletion elicits a defect in mitochondrial respiration correctable by addition of coenzyme Q 2 , a synthetic diffusible ubiquinone. → The significance that purified Coq10p contains bound Q 6 was examined by testing over-expression of Coq10p on respiration. → Inhibition of CoQ function due to Coq10p excess strength our hypothesis of Coq10p function in CoQ delivery. → Respiratory deficiency caused by more Coq10p was specific and restored by Q 2 in mitochondria or by Coq8p in cells. → Coq8p over-production on other coq mutants revealed a surprisingly higher stability of other Coq proteins. -- Abstract: COQ10 deletion in Saccharomyces cerevisiae elicits a defect in mitochondrial respiration correctable by addition of coenzyme Q 2 . Rescue of respiration by Q 2 is a characteristic of mutants blocked in coenzyme Q 6 synthesis. Unlike Q 6 deficient mutants, mitochondria of the coq10 null mutant have wild-type concentrations of Q 6 . The physiological significance of earlier observations that purified Coq10p contains bound Q 6 was examined in the present study by testing the in vivo effect of over-expression of Coq10p on respiration. Mitochondria with elevated levels of Coq10p display reduced respiration in the bc1 span of the electron transport chain, which can be restored with exogenous Q 2 . This suggests that in vivo binding of Q 6 by excess Coq10p reduces the pool of this redox carrier available for its normal function in providing electrons to the bc1 complex. This is confirmed by observing that extra Coq8p relieves the inhibitory effect of excess Coq10p. Coq8p is a putative kinase, and a high-copy suppressor of the coq10 null mutant. As shown here, when over-produced in coq mutants, Coq8p counteracts turnover of Coq3p and Coq4p subunits of the Q-biosynthetic complex. This can account for the observed rescue by COQ8 of the respiratory defect in strains over-producing Coq10p.

  12. Over-expression of COQ10 in Saccharomyces cerevisiae inhibits mitochondrial respiration

    Energy Technology Data Exchange (ETDEWEB)

    Zampol, Mariana A.; Busso, Cleverson; Gomes, Fernando [Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo (Brazil); Ferreira-Junior, Jose Ribamar [Escola de Artes, Ciencias e Humanidades, Universidade de Sao Paulo, Sao Paulo (Brazil); Tzagoloff, Alexander [Department of Biological Sciences, Columbia University, NY (United States); Barros, Mario H., E-mail: mariohb@usp.br [Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo (Brazil)

    2010-11-05

    Research highlights: {yields} COQ10 deletion elicits a defect in mitochondrial respiration correctable by addition of coenzyme Q{sub 2}, a synthetic diffusible ubiquinone. {yields} The significance that purified Coq10p contains bound Q{sub 6} was examined by testing over-expression of Coq10p on respiration. {yields} Inhibition of CoQ function due to Coq10p excess strength our hypothesis of Coq10p function in CoQ delivery. {yields} Respiratory deficiency caused by more Coq10p was specific and restored by Q{sub 2} in mitochondria or by Coq8p in cells. {yields} Coq8p over-production on other coq mutants revealed a surprisingly higher stability of other Coq proteins. -- Abstract: COQ10 deletion in Saccharomyces cerevisiae elicits a defect in mitochondrial respiration correctable by addition of coenzyme Q{sub 2}. Rescue of respiration by Q{sub 2} is a characteristic of mutants blocked in coenzyme Q{sub 6} synthesis. Unlike Q{sub 6} deficient mutants, mitochondria of the coq10 null mutant have wild-type concentrations of Q{sub 6}. The physiological significance of earlier observations that purified Coq10p contains bound Q{sub 6} was examined in the present study by testing the in vivo effect of over-expression of Coq10p on respiration. Mitochondria with elevated levels of Coq10p display reduced respiration in the bc1 span of the electron transport chain, which can be restored with exogenous Q{sub 2}. This suggests that in vivo binding of Q{sub 6} by excess Coq10p reduces the pool of this redox carrier available for its normal function in providing electrons to the bc1 complex. This is confirmed by observing that extra Coq8p relieves the inhibitory effect of excess Coq10p. Coq8p is a putative kinase, and a high-copy suppressor of the coq10 null mutant. As shown here, when over-produced in coq mutants, Coq8p counteracts turnover of Coq3p and Coq4p subunits of the Q-biosynthetic complex. This can account for the observed rescue by COQ8 of the respiratory defect in strains

  13. Importing HOL Light into Coq

    OpenAIRE

    Keller , Chantal; Werner , Benjamin

    2010-01-01

    International audience; We present a new scheme to translate mathematical developments from HOL Light to Coq, where they can be re-used and re-checked. By relying on a carefully chosen embedding of Higher-Order Logic into Type Theory, we try to avoid some pitfalls of inter-operation between proof systems. In particular, our translation keeps the mathematical statements intelligible. This translation has been implemented and allows the importation of the HOL Light basic library into Coq.

  14. Association Analysis of COQ2 Variant in Dementia and Essential Tremor

    Directory of Open Access Journals (Sweden)

    Yin Xia Chao

    2015-01-01

    Full Text Available Objective. COQ2 mutations have been reported in Japanese multiple system atrophy (MSA patients. We examined the role of COQ2 in patients with dementia and essential tremor (ET, two common neurodegenerative conditions. Materials & Methods. A total of 2064 subjects, including 560 patients with dementia, 466 patients with ET, and 1038 healthy controls, were included. Genotyping for the COQ2 V393A (T>C was carried out. Odds ratio (OR adjusted by age and gender, together with 95% confidence interval (CI, was reported by means of logistic regression. Results. The frequency of the polymorphic variant V393A heterozygous (T/C was 2.7% in dementia, 1.1% in ET, and 2.5% in controls (OR = 0.70, 95% confidence interval is 0.29–1.72 for dementia, and OR = 0.47, 95% confidence interval is 0.17–1.31, p=0.1217 for ET. There was no significant association between V393A variant with dementia and ET. Conclusion. There was no significant association between V393A variant with dementia and ET. COQ2 gene is unlikely to play a significant role in patients with dementia or ET in our population.

  15. Lightly Cooked Broccoli Is as Effective as Raw Broccoli in Mitigating Dextran Sulfate Sodium-Induced Colitis in Mice

    Directory of Open Access Journals (Sweden)

    Yanling Wang

    2018-06-01

    Full Text Available Dietary broccoli is anti-inflammatory. Past studies have typically investigated raw broccoli, even though most consumers prefer cooked broccoli, where the plant myrosinase is inactivated by heat, resulting in failure of formation of the anti-inflammatory bioactive compound sulforaphane (SF. This study compareed efficacy of lightly cooked broccoli (CB containing greatly diminished myrosinase activity, with raw broccoli (RB, in mitigating colitis in dextran sulfate sodium (DSS-treated mice. Male C57BL/6 mice were fed for two weeks on a 10% RB, 10% CB or control diet, all based on the AIN-93M diet. Half (n = 9 of each group received drinking water, half received 2.5% DSS in water for one week, starting from Day 7 of the diet. Even with far less plant myrosinase activity, CB was essentially as effective as RB in lessening damage by DSS, evidenced by decreased disease activity index, attenuated colon length shrinkage, less endotoxin (lipopolysaccharide leakage into blood, and less severe colon lesions as assessed by histopathology. mRNA expression of pro-inflammatory cytokines indicated that broccoli anti-inflammatory action may be through inhibition of the IL-6 trans-signaling pathway, as evidenced by reversal of the DSS-increased expression of IL-6, CCR2 and vascular cell adhesion molecule 1 (VCAM-1.

  16. Characterization of a Plasmodium falciparum Orthologue of the Yeast Ubiquinone-Binding Protein, Coq10p.

    Directory of Open Access Journals (Sweden)

    Bethany J Jenkins

    Full Text Available Coenzyme Q (CoQ, ubiquinone is a central electron carrier in mitochondrial respiration. CoQ is synthesized through multiple steps involving a number of different enzymes. The prevailing view that the CoQ used in respiration exists as a free pool that diffuses throughout the mitochondrial inner membrane bilayer has recently been challenged. In the yeast Saccharomyces cerevisiae, deletion of the gene encoding Coq10p results in respiration deficiency without inhibiting the synthesis of CoQ, suggesting that the Coq10 protein is critical for the delivery of CoQ to the site(s of respiration. The precise mechanism by which this is achieved remains unknown at present. We have identified a Plasmodium orthologue of Coq10 (PfCoq10, which is predominantly expressed in trophozoite-stage parasites, and localizes to the parasite mitochondrion. Expression of PfCoq10 in the S. cerevisiae coq10 deletion strain restored the capability of the yeast to grow on respiratory substrates, suggesting a remarkable functional conservation of this protein over a vast evolutionary distance, and despite a relatively low level of amino acid sequence identity. As the antimalarial drug atovaquone acts as a competitive inhibitor of CoQ, we assessed whether over-expression of PfCoq10 altered the atovaquone sensitivity in parasites and in yeast mitochondria, but found no alteration of its activity.

  17. Functional characterization of human COQ4, a gene required for Coenzyme Q10 biosynthesis

    International Nuclear Information System (INIS)

    Casarin, Alberto; Jimenez-Ortega, Jose Carlos; Trevisson, Eva; Pertegato, Vanessa; Doimo, Mara; Ferrero-Gomez, Maria Lara; Abbadi, Sara; Artuch, Rafael; Quinzii, Catarina; Hirano, Michio; Basso, Giuseppe; Ocana, Carlos Santos; Navas, Placido; Salviati, Leonardo

    2008-01-01

    Defects in genes involved in coenzyme Q (CoQ) biosynthesis cause primary CoQ deficiency, a severe multisystem disorders presenting as progressive encephalomyopathy and nephropathy. The COQ4 gene encodes an essential factor for biosynthesis in Saccharomyces cerevisiae. We have identified and cloned its human ortholog, COQ4, which is located on chromosome 9q34.13, and is transcribed into a 795 base-pair open reading frame, encoding a 265 amino acid (aa) protein (Isoform 1) with a predicted N-terminal mitochondrial targeting sequence. It shares 39% identity and 55% similarity with the yeast protein. Coq4 protein has no known enzymatic function, but may be a core component of multisubunit complex required for CoQ biosynthesis. The human transcript is detected in Northern blots as a ∼1.4 kb single band and is expressed ubiquitously, but at high levels in liver, lung, and pancreas. Transcription initiates at multiple sites, located 333-23 nucleotides upstream of the ATG. A second group of transcripts originating inside intron 1 of the gene encodes a 241 aa protein, which lacks the mitochondrial targeting sequence (isoform 2). Expression of GFP-fusion proteins in HeLa cells confirmed that only isoform 1 is targeted to mitochondria. The functional significance of the second isoform is unknown. Human COQ4 isoform 1, expressed from a multicopy plasmid, efficiently restores both growth in glycerol, and CoQ content in COQ4 null yeast strains. Human COQ4 is an interesting candidate gene for patients with isolated CoQ 10 deficiency

  18. Propositional Calculus in Coq

    OpenAIRE

    van Doorn, Floris

    2015-01-01

    I formalize important theorems about classical propositional logic in the proof assistant Coq. The main theorems I prove are (1) the soundness and completeness of natural deduction calculus, (2) the equivalence between natural deduction calculus, Hilbert systems and sequent calculus and (3) cut elimination for sequent calculus.

  19. Diet rich in high glucoraphanin broccoli reduces plasma LDL cholesterol: Evidence from randomised controlled trials.

    Science.gov (United States)

    Armah, Charlotte N; Derdemezis, Christos; Traka, Maria H; Dainty, Jack R; Doleman, Joanne F; Saha, Shikha; Leung, Wing; Potter, John F; Lovegrove, Julie A; Mithen, Richard F

    2015-05-01

    Cruciferous-rich diets have been associated with reduction in plasma LDL-cholesterol (LDL-C), which may be due to the action of isothiocyanates derived from glucosinolates that accumulate in these vegetables. This study tests the hypothesis that a diet rich in high glucoraphanin (HG) broccoli will reduce plasma LDL-C. One hundred and thirty volunteers were recruited to two independent double-blind, randomly allocated parallel dietary intervention studies, and were assigned to consume either 400 g standard broccoli or 400 g HG broccoli per week for 12 weeks. Plasma lipids were quantified before and after the intervention. In study 1 (37 volunteers), the HG broccoli diet reduced plasma LDL-C by 7.1% (95% CI: -1.8%, -12.3%, p = 0.011), whereas standard broccoli reduced LDL-C by 1.8% (95% CI +3.9%, -7.5%, ns). In study 2 (93 volunteers), the HG broccoli diet resulted in a reduction of 5.1% (95% CI: -2.1%, -8.1%, p = 0.001), whereas standard broccoli reduced LDL-C by 2.5% (95% CI: +0.8%, -5.7%, ns). When data from the two studies were combined the reduction in LDL-C by the HG broccoli was significantly greater than standard broccoli (p = 0.031). Evidence from two independent human studies indicates that consumption of high glucoraphanin broccoli significantly reduces plasma LDL-C. © 2015 The Authors. Molecular Nutrition & Food Research published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Nonadverse effects on allergenicity of isopentenyltransferase-transformed broccoli.

    Science.gov (United States)

    Liao, E C; Chen, J T; Chao, M L; Yu, S C; Chang, C Y; Chu, W S; Tsai, J J

    2013-01-01

    Genetically modified organisms (GMOs) provide modern agriculture with improvements in efficiency and the benefits of enhanced food production; however, the potential impact of GMOs on human health has not yet been clarified. To investigate the allergenicity of isopentenyltransferase (ipt)-transformed broccoli compared with non-GM broccoli. Sera from allergic individuals were used to identify the allergenicity of GM and non-GM broccoli. Immunoglobulin (Ig) binding of different lines of GM and non-GM broccoli was identified using immunoblotting, enzyme-linked immunosorbent assay, and the histamin release assay. Positive reactions to broccoli (Brassica Oleracea) were observed in 7.02% of individuals. Specific IgE to broccoli and total IgE fro allergic individuals were well correlated. The different tests performed showed no significant differences in the allergenicity of conventionally raised and GM broccoli, indicating the absence of unexpected effects on allergenicity in ipt-transformed plants. Using Western blot analysis we detected heterogeneous IgE-reactive allergenic components in broccoli-allergic sera, but no significant differences between GM an non-GM broccoli were observed in serum from the same patients. Our study demonstrates that there are no differences between GM (ipt-transformed) broccoli and non-GM broccoli, as determined by specific IgE in sera from broccoli-allergic patients. This indicates that there were no unexpected effects on allergenicity in this GM broccoli.

  1. Genetic regulation of glucoraphanin accumulation in Beneforté broccoli.

    Science.gov (United States)

    Traka, Maria H; Saha, Shikha; Huseby, Stine; Kopriva, Stanislav; Walley, Peter G; Barker, Guy C; Moore, Jonathan; Mero, Gene; van den Bosch, Frans; Constant, Howard; Kelly, Leo; Schepers, Hans; Boddupalli, Sekhar; Mithen, Richard F

    2013-06-01

    · Diets rich in broccoli (Brassica oleracea var italica) have been associated with maintenance of cardiovascular health and reduction in risk of cancer. These health benefits have been attributed to glucoraphanin that specifically accumulates in broccoli. The development of broccoli with enhanced concentrations of glucoraphanin may deliver greater health benefits. · Three high-glucoraphanin F1 broccoli hybrids were developed in independent programmes through genome introgression from the wild species Brassica villosa. Glucoraphanin and other metabolites were quantified in experimental field trials. Global SNP analyses quantified the differential extent of B. villosa introgression · The high-glucoraphanin broccoli hybrids contained 2.5-3 times the glucoraphanin content of standard hybrids due to enhanced sulphate assimilation and modifications in sulphur partitioning between sulphur-containing metabolites. All of the high-glucoraphanin hybrids possessed an introgressed B. villosa segment which contained a B. villosa Myb28 allele. Myb28 expression was increased in all of the high-glucoraphanin hybrids. Two high-glucoraphanin hybrids have been commercialised as Beneforté broccoli. · The study illustrates the translation of research on glucosinolate genetics from Arabidopsis to broccoli, the use of wild Brassica species to develop cultivars with potential consumer benefits, and the development of cultivars with contrasting concentrations of glucoraphanin for use in blinded human intervention studies. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  2. Conserved Lipid and Small-Molecule Modulation of COQ8 Reveals Regulation of the Ancient Kinase-like UbiB Family.

    Science.gov (United States)

    Reidenbach, Andrew G; Kemmerer, Zachary A; Aydin, Deniz; Jochem, Adam; McDevitt, Molly T; Hutchins, Paul D; Stark, Jaime L; Stefely, Jonathan A; Reddy, Thiru; Hebert, Alex S; Wilkerson, Emily M; Johnson, Isabel E; Bingman, Craig A; Markley, John L; Coon, Joshua J; Dal Peraro, Matteo; Pagliarini, David J

    2018-02-15

    Human COQ8A (ADCK3) and Saccharomyces cerevisiae Coq8p (collectively COQ8) are UbiB family proteins essential for mitochondrial coenzyme Q (CoQ) biosynthesis. However, the biochemical activity of COQ8 and its direct role in CoQ production remain unclear, in part due to lack of known endogenous regulators of COQ8 function and of effective small molecules for probing its activity in vivo. Here, we demonstrate that COQ8 possesses evolutionarily conserved ATPase activity that is activated by binding to membranes containing cardiolipin and by phenolic compounds that resemble CoQ pathway intermediates. We further create an analog-sensitive version of Coq8p and reveal that acute chemical inhibition of its endogenous activity in yeast is sufficient to cause respiratory deficiency concomitant with CoQ depletion. Collectively, this work defines lipid and small-molecule modulators of an ancient family of atypical kinase-like proteins and establishes a chemical genetic system for further exploring the mechanistic role of COQ8 in CoQ biosynthesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Genetic regulation of glucoraphanin accumulation in Beneforté® broccoli

    Science.gov (United States)

    Traka, Maria H; Saha, Shikha; Huseby, Stine; Kopriva, Stanislav; Walley, Peter G; Barker, Guy C; Moore, Jonathan; Mero, Gene; den Bosch, Frans; Constant, Howard; Kelly, Leo; Schepers, Hans; Boddupalli, Sekhar; Mithen, Richard F

    2013-01-01

    Diets rich in broccoli (Brassica oleracea var italica) have been associated with maintenance of cardiovascular health and reduction in risk of cancer. These health benefits have been attributed to glucoraphanin that specifically accumulates in broccoli. The development of broccoli with enhanced concentrations of glucoraphanin may deliver greater health benefits. Three high-glucoraphanin F1 broccoli hybrids were developed in independent programmes through genome introgression from the wild species Brassica villosa. Glucoraphanin and other metabolites were quantified in experimental field trials. Global SNP analyses quantified the differential extent of B. villosa introgression The high-glucoraphanin broccoli hybrids contained 2.5–3 times the glucoraphanin content of standard hybrids due to enhanced sulphate assimilation and modifications in sulphur partitioning between sulphur-containing metabolites. All of the high-glucoraphanin hybrids possessed an introgressed B. villosa segment which contained a B. villosa Myb28 allele. Myb28 expression was increased in all of the high-glucoraphanin hybrids. Two high-glucoraphanin hybrids have been commercialised as Beneforté® broccoli. The study illustrates the translation of research on glucosinolate genetics from Arabidopsis to broccoli, the use of wild Brassica species to develop cultivars with potential consumer benefits, and the development of cultivars with contrasting concentrations of glucoraphanin for use in blinded human intervention studies. PMID:23560984

  4. Effect of NaCl treatments on glucosinolate metabolism in broccoli sprouts*

    Science.gov (United States)

    Guo, Rong-fang; Yuan, Gao-feng; Wang, Qiao-mei

    2013-01-01

    To understand the regulation mechanism of NaCl on glucosinolate metabolism in broccoli sprouts, the germination rate, fresh weight, contents of glucosinolates and sulforaphane, as well as myrosinase activity of broccoli sprouts germinated under 0, 20, 40, 60, 80, and 100 mmol/L of NaCl were investigated in our experiment. The results showed that glucoerucin, glucobrassicin, and 4-hydroxy glucobrassicin in 7-d-old broccoli sprouts were significantly enhanced and the activity of myrosinase was inhibited by 100 mmol/L of NaCl. However, the total glucosinolate content in 7-d-old broccoli sprouts was markedly decreased although the fresh weight was significantly increased after treatment with NaCl at relatively low concentrations (20, 40, and 60 mmol/L). NaCl treatment at the concentration of 60 mmol/L for 5 d maintained higher biomass and comparatively higher content of glucosinolates in sprouts of broccoli with decreased myrosinase activity. A relatively high level of NaCl treatment (100 mmol/L) significantly increased the content of sulforaphane in 7-d-old broccoli sprouts compared with the control. These results indicate that broccoli sprouts grown under a suitable concentration of NaCl could be desirable for human nutrition. PMID:23365011

  5. Self-reported adherence and biomarker levels of CoQ10 and alpha-tocopherol

    Directory of Open Access Journals (Sweden)

    Vitolins MZ

    2018-04-01

    Full Text Available Mara Z Vitolins,1 L Douglas Case,1 Stephen R Rapp,2 Mark O Lively,3 Edward G Shaw,4 Michelle J Naughton,5 Jeffrey Giguere,6 Glenn J Lesser7 1Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA; 2Department of Psychiatry and Behavioral Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA; 3Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA; 4Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA; 5Department of Internal Medicine, The Ohio State University, Columbus, OH, USA; 6Greenville Community Oncology Research Program of the Carolinas, Greenville, SC, USA; 7Department of Internal Medicine-Hematology and Oncology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA Purpose: Women with breast cancer were randomized to receive coenzyme Q10 (CoQ10 plus Vitamin E or placebo in a clinical trial. The objective of this evaluation is to examine the association between participant self-reported adherence to the study supplements and changes in plasma biomarker levels.Patients and methods: Correlation coefficients quantified the association between changes in alpha-tocopherol and CoQ10 levels and the association between self-reported adherence and changes in biomarkers. Participants were categorized by self-reported adherence; Kruskal–Wallis tests compared changes in alpha-tocopherol and CoQ10 levels between self-reported adherence groups.Results: Women (N=155 provided baseline and post-treatment biomarkers; 147 completed at least one diary. While changes in alpha-tocopherol and CoQ10 levels were moderately correlated, correlations ranged from 0.40 to 0.48, association between self-reported adherence and plasma alpha-tocopherol or CoQ10 levels was weak; correlations ranged from 0.10 to 0.29 at weeks 8, 16, and 24. Some participants with high self-reported adherence actually

  6. Comparative Phytonutrient Analysis of Broccoli By-Products: The Potentials for Broccoli By-Product Utilization.

    Science.gov (United States)

    Liu, Mengpei; Zhang, Lihua; Ser, Suk Lan; Cumming, Jonathan R; Ku, Kang-Mo

    2018-04-13

    The phytonutrient concentrations of broccoli ( Brassica oleracea var. italica) florets, stems, and leaves were compared to evaluate the value of stem and leaf by-products as a source of valuable nutrients. Primary metabolites, including amino acids, organic acids, and sugars, as well as glucosinolates, carotenoids, chlorophylls, vitamins E and K, essential mineral elements, total phenolic content, antioxidant activity, and expression of glucosinolate biosynthesis and hydrolysis genes were quantified from the different broccoli tissues. Broccoli florets had higher concentrations of amino acids, glucoraphanin, and neoglucobrassicin compared to other tissues, whereas leaves were higher in carotenoids, chlorophylls, vitamins E and K, total phenolic content, and antioxidant activity. Leaves were also good sources of calcium and manganese compared to other tissues. Stems had the lowest nitrile formation from glucosinolate. Each tissue exhibited specific core gene expression profiles supporting glucosinolate metabolism, with different gene homologs expressed in florets, stems, and leaves, which suggests that tissue-specific pathways function to support primary and secondary metabolic pathways in broccoli. This comprehensive nutrient and bioactive compound profile represents a useful resource for the evaluation of broccoli by-product utilization in the human diet, and as feedstocks for bioactive compounds for industry.

  7. Comparative Phytonutrient Analysis of Broccoli By-Products: The Potentials for Broccoli By-Product Utilization

    Directory of Open Access Journals (Sweden)

    Mengpei Liu

    2018-04-01

    Full Text Available The phytonutrient concentrations of broccoli (Brassica oleracea var. italica florets, stems, and leaves were compared to evaluate the value of stem and leaf by-products as a source of valuable nutrients. Primary metabolites, including amino acids, organic acids, and sugars, as well as glucosinolates, carotenoids, chlorophylls, vitamins E and K, essential mineral elements, total phenolic content, antioxidant activity, and expression of glucosinolate biosynthesis and hydrolysis genes were quantified from the different broccoli tissues. Broccoli florets had higher concentrations of amino acids, glucoraphanin, and neoglucobrassicin compared to other tissues, whereas leaves were higher in carotenoids, chlorophylls, vitamins E and K, total phenolic content, and antioxidant activity. Leaves were also good sources of calcium and manganese compared to other tissues. Stems had the lowest nitrile formation from glucosinolate. Each tissue exhibited specific core gene expression profiles supporting glucosinolate metabolism, with different gene homologs expressed in florets, stems, and leaves, which suggests that tissue-specific pathways function to support primary and secondary metabolic pathways in broccoli. This comprehensive nutrient and bioactive compound profile represents a useful resource for the evaluation of broccoli by-product utilization in the human diet, and as feedstocks for bioactive compounds for industry.

  8. Coqoon - An IDE for Interactive Proof Development in Coq

    DEFF Research Database (Denmark)

    Faithfull, Alexander; Bengtson, Jesper; Tassi, Enrico

    2016-01-01

    User interfaces for interactive proof assistants have always lagged behind those for mainstream programming languages. Whereas integrated development environments—IDEs—have support for features like project management, version control, dependency analysis and incremental project compilation, “IDE...... these projects using the Eclipse common build system. Coqoon takes advantage of the latest features of Coq, including asynchronous and parallel processing of proofs, and—when used together with a third-party OCaml extension for Eclipse—can even be used to work on large developments containing Coq plugins....

  9. Coenzyme Q Biosynthesis: Evidence for a Substrate Access Channel in the FAD-Dependent Monooxygenase Coq6.

    Directory of Open Access Journals (Sweden)

    Alexandre Ismail

    2016-01-01

    Full Text Available Coq6 is an enzyme involved in the biosynthesis of coenzyme Q, a polyisoprenylated benzoquinone lipid essential to the function of the mitochondrial respiratory chain. In the yeast Saccharomyces cerevisiae, this putative flavin-dependent monooxygenase is proposed to hydroxylate the benzene ring of coenzyme Q (ubiquinone precursor at position C5. We show here through biochemical studies that Coq6 is a flavoprotein using FAD as a cofactor. Homology models of the Coq6-FAD complex are constructed and studied through molecular dynamics and substrate docking calculations of 3-hexaprenyl-4-hydroxyphenol (4-HP6, a bulky hydrophobic model substrate. We identify a putative access channel for Coq6 in a wild type model and propose in silico mutations positioned at its entrance capable of partially (G248R and L382E single mutations or completely (a G248R-L382E double-mutation blocking access to the channel for the substrate. Further in vivo assays support the computational predictions, thus explaining the decreased activities or inactivation of the mutated enzymes. This work provides the first detailed structural information of an important and highly conserved enzyme of ubiquinone biosynthesis.

  10. Studies on N5-methyltetrahydrofolate-homocystein methyltransferase in normal and leukemia leukocytes.

    Science.gov (United States)

    Peytremann, R; Thorndike, J; Beck, W S

    1975-11-01

    A cobalamin-dependent N5-methyltetra-hydrofolate-homocysteine methyltransferase (methyl-transferase) was demonstrated in unfractioned extracts of human normal and leukemia leukocytes. Activity was substantially reduced in the absence of an added cobalamin derivative. Presumably, this residual activity reflects the endogeneous level of holoenzyme. Enzyme activity was notably higher in lymphoid cells than in myeloid cells. Thus, mean specific activities (+/-SD) were: chronic lymphocytic leukemia lymphocytes, 2.15+/-1.16; normal lymphocytes, 0.91+/-0.59; normal mature granulocytes, 0.15+/-0.10; chronic myelocytic leukemia granulocytes, barely detectable activity. Properties of leukocytes enzymes resembled those of methyltransferases previously studied in bacteria and other animal cells. Granulocytes and chronic myelocytic leukemia cells contain a factor or factors that inhibits Escherichia coli enzyme. The data suggest that the prominence of this cobalamin-dependent enzyme in lymphocytes and other mononuclear cell types may be related to their potential for cell division.

  11. Energy efficient drying strategies to retain nutritional components in broccoli broccoli (Brassica oleracea var. italica)

    NARCIS (Netherlands)

    Jin, X.; Sman, van der R.G.M.; Straten, van G.; Boom, R.M.; Boxtel, van A.J.B.

    2014-01-01

    This work concerns the combined optimization of the retention of bioactive components and energy efficiency during drying of broccoli. Kinetics for the degradation of glucosinolates, vitamin C and drying of broccoli are used to calculate optimal drying trajectories for the control variables air flow

  12. CoQ10 and L-carnitine for statin myalgia?

    Science.gov (United States)

    DiNicolantonio, James J

    2012-10-01

    Statins are a standard of care in many clinical settings such as acute myocardial infarction and for patients having or at risk of cardiovascular (CV) disease. This is based on a plethora of data showing reductions in CV events and mortality. The CV benefit of statins can be partly explained by their ability to inhibit of HMG-CoA reductase, which subsequently lowers cholesterol and decreases the formation of mevalonate. However, the inhibition of the mevalonate pathway decreases the formation of coenzyme Q10 (CoQ10) within the body. It has been a long-standing theory that statin-associated muscle pain (myalgia) is caused, or at least partly contributed by, a reduction in CoQ10 levels in muscle mitochondria. One of the main side effects of statins is myalgia, which causes the patient to either stop their statin or significantly reduce the dose of their statin. The question of whether CoQ10 can help treat statin myopathy is a common one encountered by clinicians in current day practice.

  13. Dielectric properties of tantalum powder with broccoli-like morphology

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Masahiko [Department of Energy Science and Technology, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501 (Japan); Suzuki, Ryosuke O [Department of Energy Science and Technology, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)

    2005-04-19

    Metallic tantalum powder with broccoli-like morphology, consisting of spherical fine particles and of long rods or thin plates, was prepared in a hundred gram scale by calcium reduction of Ta{sub 2}O{sub 5} in molten CaCl{sub 2}. The properties as electrolytic capacitor were evaluated in comparison with commercial powder obtained by Na reduction and with powder consisting of only fine particles obtained by Ca reduction. The capacitance was larger than that of conventional powder with the same surface area, because the broccoli-like powder showed a strong resistance against shrinkage during high temperature annealing due to the framework of branches. The powder with new broccoli-like morphology can circumvent the conventional treatments for grain size control and gas removal.

  14. Dielectric properties of tantalum powder with broccoli-like morphology

    International Nuclear Information System (INIS)

    Baba, Masahiko; Suzuki, Ryosuke O.

    2005-01-01

    Metallic tantalum powder with broccoli-like morphology, consisting of spherical fine particles and of long rods or thin plates, was prepared in a hundred gram scale by calcium reduction of Ta 2 O 5 in molten CaCl 2 . The properties as electrolytic capacitor were evaluated in comparison with commercial powder obtained by Na reduction and with powder consisting of only fine particles obtained by Ca reduction. The capacitance was larger than that of conventional powder with the same surface area, because the broccoli-like powder showed a strong resistance against shrinkage during high temperature annealing due to the framework of branches. The powder with new broccoli-like morphology can circumvent the conventional treatments for grain size control and gas removal

  15. Maximizing plant density affects broccoli yield and quality

    Science.gov (United States)

    Increased demand for fresh market bunch broccoli (Brassica oleracea L. var. italica) has led to increased production along the United States east coast. Maximizing broccoli yields is a primary concern for quickly expanding southeastern commercial markets. This broccoli plant density study was carr...

  16. Antioxidant activity of fermented broccoli and spinach by Kombucha culture

    Science.gov (United States)

    Artanti, Nina; Susilowati, Agustine; Aspiyanto, Lotulung, Puspa Dewi Narrij; Maryati, Yati

    2017-11-01

    Broccoli (Brassica oleracea L.) and spinach (Amaranthus spp.) are vegetables that known to have many benefit for health. Previous studies on the fermentation of those vegetables using kombucha cultured showed increase in bioactive components such as total polyphenol content. The current studies was performed to evaluate the antioxidant activity of fermented spinach and broccoli before (feed) and after treatment with filtration (retentate and permeate). Filtration was conducted using Stirred Ultrafiltration Cell (SUFC) with UF membrane 100,000 MWCO mode at fixed condition (stirred rotation 300 rpm, room temperature, pressure 40 psia). Antioxidant evaluation was conducted using 2,2-diphenyl-1-picril hydrazyl (DPPH) free radical scavenging activity assay. The results showed that all samples from fermented broccoli showed antioxidant activity (feed 15.82% inhibition and retentate 15.29% inhibition), with the best antioxidant activity was obtained from permeate (75.98% inhibition). Whereas from fermented spinach only permeate showed antioxidant activity (21.84% inhibition) and it significantly lower than broccoli permeate. The mass spectrum of LCMS analysis on broccoli samples showed the present of several mass spectrum with (M+H) range from 148.1 to 442.5 in feed, retentate and permeate. In those samples (M+H) 360.4 always has the highest relative intensity. These results suggest that fermented broccoli has potential for development as functional drink for the source of antioxidant and the permeate obtained from filtration treatment significantly increased the antioxidant activity.

  17. Validated HPLC method for the quantitative determination of CoQ(10) in dog plasma and its application to a pharmacokinetic study.

    Science.gov (United States)

    Yuan, Bo; Liu, Chunling; Xu, Pingwei; Lin, Lin; Pan, Cheng; Wang, Linglan; Xu, Haiyan

    2011-09-01

    Coenzyme Q(10) (CoQ(10) ) is a naturally occurring compound located in all membranes throughout the cell. A rapid and sensitive HPLC method was developed to determine the concentration of CoQ(10) in dog plasma using a surrogate matrix. Chromatographic separation was carried out on a Diamonsil C(18) column with the UV detector set at 275 nm. Methanol-2-propanol (40:60, v/v) was used as a mobile phase delivered at a flow rate of 1.0 mL/min. Calibrators were prepared using blank plasma-K(2) HPO(4) buffer (50 mm, pH 8.0)-saline (1:3:6, v/v/v) as surrogate matrix. It was shown that the surrogate matrix had similar properties to dog plasma for CoQ(10) in extraction, freeze-thaw and stability. The assay was linear over the concentration range of 0.10-100 µg/mL. The intra- and inter-day precisions were within 13.3% in terms of relative standard deviation (RSD%) and the accuracy was within ±7.5% in terms of relative error. This simple and reproducible HPLC method with less plasma volume (0.4 mL) and adequate sensitivity was successfully applied to pharmacokinetic studies of CoQ(10) in dogs and an investigation of the effect of CoQ(10) formulation on CoQ(10) baseline levels. Copyright © 2010 John Wiley & Sons, Ltd.

  18. DEVELOPMENT OF TECHNOLOGY AND REGULATORY DOCUMENTATION ON PROCESSED BROCCOLI PRODUCT

    Directory of Open Access Journals (Sweden)

    T. I. Kryachko

    2017-01-01

    Full Text Available The aim of the present investigation was development of an efficient technology for obtaining powders from fresh broccoli; determination of the possibility of using domestic production of broccoli as an import-substituting product; development of regulatory documentation for broccoli powders for the food industry. The research was carried out jointly with the representatives of the Federal Scientific cen-ter of vegetable production on an experimental basis in 2016. The domestic Tonus variety of broccoli (Federal Scientific center of vegetable production and the Maraton F1 hybrid (France, differing in appearance, vegetative period, biochemical and physical characteristics were chosen. Technology of broccoli powder production from domestic and imported products was developed using two methods of drying convection and lyophilization. The gentle drying conditions of broccoli freeze drying compared to convective drying technology provided higher content of both vitamin C and polyphenols in the final powder. Comparative studies of organoleptic and physico-chemical properties of powders obtained from domestic and imported broccoli demonstrated close quality parameters, indicating the possibility of effective domestic broccoli utilization and import substitution. For the first time in the Russian Federation, the "Organization Standard" was developed for regulation of the quality parameters of broccoli powders intended for use in the food industry.

  19. Glucosinolate biosynthesis in hairy root cultures of broccoli (Brassica oleracea var. italica).

    Science.gov (United States)

    Kim, Sun-Ju; Park, Woo Tae; Uddin, Md Romij; Kim, Yeon Bok; Nam, Sang-Yong; Jho, Kwang Hyun; Park, Sang Un

    2013-02-01

    Here we present previously unreported glucosinolate production by hairy root cultures of broccoli (B. oleracea var. italica). Growth media greatly influenced the growth and glucosinolate content of hairy root cultures of broccoli. Seven glucosinolates, glucoraphanin, gluconapin, glucoerucin, glucobrassicin, 4-methoxyglucobrassicin, gluconasturtiin, and neoglucobrassicin, were identified by analysis of the broccoli hairy root cultures. Both half and full strength B5 and SH media enabled the highest accumulation of glucosinolates. In most cases, the levels of glucosinolates were higher in SH and BS media. Among the 7 glucosinolates, the accumulation of neoglucobrassicin was very high, irrespective of growth medium. The neoglucobrassicin content was 7.4-fold higher in SH medium than 1/2 MS, in which its level was the lowest. The 1/2 B5 medium supported the production of the highest amounts of glucobrassicin and 4-methoxyglucobrassicin, the levels for which were 36.2- and 7.9- fold higher, respectively, than their lowest content in 1/2 MS medium. The 1/2 SH medium enabled the highest accumulation of glucoraphanin and gluconapin in the broccoli hairy root cultures, whose levels were 1.8- and 4.6-fold higher, respectively, than their lowest content in 1/2 MS medium. Our results suggest that hairy root cultures of broccoli could be a valuable alternative approach for the production of glucosinolate compounds.

  20. Evaluation of Co-Q10 anti-gingivitis effect on plaque induced gingivitis: A randomized controlled clinical trial

    Directory of Open Access Journals (Sweden)

    Anirban Chatterjee

    2012-01-01

    Full Text Available Background: Deficiency of Co-Q10 has been found to be responsible for periodontal destruction; therefore, this study was undertaken to evaluate the anti-gingivitis effect of Co-Q10 on plaque induced gingivitis. Materials and Methods: Thirty subjects with plaque induced gingivitis were enrolled in a split mouth randomized controlled trial. For each subject, scaling was randomly performed for any two quadrants, followed by the topical application of Co-Q10 randomly in a previously scaled and as an unscaled quadrant for a period of 28 days. Four treatment options were planned: option A: scaling only; option B: Co-Q10 along with scaling; option C: Co-Q10. Results: Marked reduction in gingival, bleeding, and plaque scores were recorded at the sites where C0-Q10 was applied. Mean±S.D of aforementioned periodontal parameters at 28th day showed significant reduction for option A, B, and C when compared with baseline. Conclusion: Promising results were obtained after the solitary application of Co-Q10 as well as when it was used as an adjunct to scaling and root planing for treatment of plaque induced gingivitis.

  1. Sets in Coq, Coq in Sets

    Directory of Open Access Journals (Sweden)

    Bruno Barras

    2010-01-01

    Full Text Available This work is about formalizing models of various type theories of the Calculus of Constructions family. Here we focus on set theoretical models. The long-term goal is to build a formal set theoretical model of the Calculus of Inductive Constructions, so we can be sure that Coq is consistent with the language used by most mathematicians.One aspect of this work is to axiomatize several set theories: ZF possibly with inaccessible cardinals, and HF, the theory of hereditarily finite sets. On top of these theories we have developped a piece of the usual set theoretical construction of functions, ordinals and fixpoint theory. We then proved sound several models of the Calculus of Constructions, its extension with an infinite hierarchy of universes, and its extension with the inductive type of natural numbers where recursion follows the type-based termination approach.The other aspect is to try and discharge (most of these assumptions. The goal here is rather to compare the theoretical strengths of all these formalisms. As already noticed by Werner, the replacement axiom of ZF in its general form seems to require a type-theoretical axiom of choice (TTAC.

  2. Protein arginine methyltransferase 5 (PRMT5) is a novel coactivator of constitutive androstane receptor (CAR)

    International Nuclear Information System (INIS)

    Kanno, Yuichiro; Inajima, Jun; Kato, Sayaka; Matsumoto, Maika; Tokumoto, Chikako; Kure, Yuki; Inouye, Yoshio

    2015-01-01

    The constitutive androstane receptor (CAR) plays a key role in the expression of xenobiotic/steroid and drug metabolizing enzymes and their transporters. In this study, we demonstrated that protein arginine methyltransferase 5 (PRMT5) is a novel CAR-interacting protein. Furthermore, the PRMT-dependent induction of a CAR reporter gene, which was independent of methyltransferase activity, was enhanced in the presence of steroid receptor coactivator 1 (SRC1), peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) or DEAD box DNA/RNA helicase DP97. Using tetracycline inducible-hCAR system in HepG2 cells, we showed that knockdown of PRMT5 with small interfering RNA suppressed tetracycline -induced mRNA expression of CYP2B6 but not of CYP2C9 or CYP3A4. PRMT5 enhanced phenobarbital-mediated transactivation of a phenobarbital-responsive enhancer module (PBREM)-driven reporter gene in co-operation with PGC-1α in rat primary hepatocytes. Based on these findings, we suggest PRMT5 to be a gene (or promoter)-selective coactivator of CAR by mediating the formation of complexes between hCAR and appropriate coactivators. - Highlights: • Nuclear receptor CAR interact with PRMT5. • PRMT5 enhances transcriptional activity of CAR. • PRMT5 synergistically enhances transactivity of CAR by the co-expression of SRC-1, DP97 or PGC1α. • PRMT5 is a gene-selective co-activator for hCAR

  3. Protein arginine methyltransferase 5 (PRMT5) is a novel coactivator of constitutive androstane receptor (CAR)

    Energy Technology Data Exchange (ETDEWEB)

    Kanno, Yuichiro, E-mail: ykanno@phar.toho-u.ac.jp; Inajima, Jun; Kato, Sayaka; Matsumoto, Maika; Tokumoto, Chikako; Kure, Yuki; Inouye, Yoshio

    2015-03-27

    The constitutive androstane receptor (CAR) plays a key role in the expression of xenobiotic/steroid and drug metabolizing enzymes and their transporters. In this study, we demonstrated that protein arginine methyltransferase 5 (PRMT5) is a novel CAR-interacting protein. Furthermore, the PRMT-dependent induction of a CAR reporter gene, which was independent of methyltransferase activity, was enhanced in the presence of steroid receptor coactivator 1 (SRC1), peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) or DEAD box DNA/RNA helicase DP97. Using tetracycline inducible-hCAR system in HepG2 cells, we showed that knockdown of PRMT5 with small interfering RNA suppressed tetracycline -induced mRNA expression of CYP2B6 but not of CYP2C9 or CYP3A4. PRMT5 enhanced phenobarbital-mediated transactivation of a phenobarbital-responsive enhancer module (PBREM)-driven reporter gene in co-operation with PGC-1α in rat primary hepatocytes. Based on these findings, we suggest PRMT5 to be a gene (or promoter)-selective coactivator of CAR by mediating the formation of complexes between hCAR and appropriate coactivators. - Highlights: • Nuclear receptor CAR interact with PRMT5. • PRMT5 enhances transcriptional activity of CAR. • PRMT5 synergistically enhances transactivity of CAR by the co-expression of SRC-1, DP97 or PGC1α. • PRMT5 is a gene-selective co-activator for hCAR.

  4. Formalization of Quantum Protocols using Coq

    Directory of Open Access Journals (Sweden)

    Jaap Boender

    2015-11-01

    Full Text Available Quantum Information Processing, which is an exciting area of research at the intersection of physics and computer science, has great potential for influencing the future development of information processing systems. The building of practical, general purpose Quantum Computers may be some years into the future. However, Quantum Communication and Quantum Cryptography are well developed. Commercial Quantum Key Distribution systems are easily available and several QKD networks have been built in various parts of the world. The security of the protocols used in these implementations rely on information-theoretic proofs, which may or may not reflect actual system behaviour. Moreover, testing of implementations cannot guarantee the absence of bugs and errors. This paper presents a novel framework for modelling and verifying quantum protocols and their implementations using the proof assistant Coq. We provide a Coq library for quantum bits (qubits, quantum gates, and quantum measurement. As a step towards verifying practical quantum communication and security protocols such as Quantum Key Distribution, we support multiple qubits, communication and entanglement. We illustrate these concepts by modelling the Quantum Teleportation Protocol, which communicates the state of an unknown quantum bit using only a classical channel.

  5. Verifying object-oriented programs with higher-order separation logic in Coq

    DEFF Research Database (Denmark)

    Bengtson, Jesper; Jensen, Jonas Braband; Sieczkowski, Filip

    2011-01-01

    We present a shallow Coq embedding of a higher-order separation logic with nested triples for an object-oriented programming language. Moreover, we develop novel specification and proof patterns for reasoning in higher-order separation logic with nested triples about programs that use interfaces...... and interface inheritance. In particular, we show how to use the higher-order features of the Coq formalisation to specify and reason modularly about programs that (1) depend on some unknown code satisfying a specification or that (2) return objects conforming to a certain specification. All of our results have...

  6. Additive enhancement of wound healing in diabetic mice by low level light and topical CoQ10

    Science.gov (United States)

    Mao, Zhigang; Wu, Jeffrey H.; Dong, Tingting; Wu, Mei X.

    2016-02-01

    Diabetes, a highly prevalent disease that affects 9.3% of Americans, often leads to severe complications and slow wound healing. Preclinical studies have suggested that low level light therapy (LLLT) can accelerate wound healing in diabetic subjects, but significant improvements must be made to overcome the absence of persuasive evidence for its clinical use. We demonstrate here that LLLT can be combined with topical Coenzyme Q10 (CoQ10) to heal wounds in diabetic mice significantly faster than LLLT alone, CoQ10 alone, or controls. LLLT followed by topical CoQ10 enhanced wound healing by 68~103% in diabetic mice in the first week and more than 24% in the second week compared with untreated controls. All wounds were fully healed in two weeks following the dual treatment, in contrast to only 50% wounds or a fewer being fully healed for single or sham treatment. The accelerated healing was corroborated by at least 50% higher hydroxyproline levels, and tripling cell proliferation rates in LLLT and CoQ10 treated wounds over controls. The beneficial effects on wound healing were probably attributed to additive enhancement of ATP production by LLLT and CoQ10 treatment. The combination of LLLT and topical CoQ10 is safe and convenient, and merits further clinical study.

  7. Additive enhancement of wound healing in diabetic mice by low level light and topical CoQ10.

    Science.gov (United States)

    Mao, Zhigang; Wu, Jeffrey H; Dong, Tingting; Wu, Mei X

    2016-02-02

    Diabetes, a highly prevalent disease that affects 9.3% of Americans, often leads to severe complications and slow wound healing. Preclinical studies have suggested that low level light therapy (LLLT) can accelerate wound healing in diabetic subjects, but significant improvements must be made to overcome the absence of persuasive evidence for its clinical use. We demonstrate here that LLLT can be combined with topical Coenzyme Q10 (CoQ10) to heal wounds in diabetic mice significantly faster than LLLT alone, CoQ10 alone, or controls. LLLT followed by topical CoQ10 enhanced wound healing by 68~103% in diabetic mice in the first week and more than 24% in the second week compared with untreated controls. All wounds were fully healed in two weeks following the dual treatment, in contrast to only 50% wounds or a fewer being fully healed for single or sham treatment. The accelerated healing was corroborated by at least 50% higher hydroxyproline levels, and tripling cell proliferation rates in LLLT and CoQ10 treated wounds over controls. The beneficial effects on wound healing were probably attributed to additive enhancement of ATP production by LLLT and CoQ10 treatment. The combination of LLLT and topical CoQ10 is safe and convenient, and merits further clinical study.

  8. Reproductive fitness of outcrossed hybrids between transgenic broccoli (brassica oleracea) carrying the ipt transgene and conventional varieties of kale, broccoli and cauliflower

    International Nuclear Information System (INIS)

    Ting, P.; Tu, Y.; Lin, C.; Chang, H.; Chen, L.; Litfu, A

    2014-01-01

    Pollens are potential carriers for genetically modified crops to transfer genetic materials horizontally to other plants. For phanerogams, pollen viability and cross-compatibility are critical factors for successful outcross hybridization. To evaluate this possibility, this project investigated pollen viability and pod setting rate by comparing broccoli (Brassica oleracea L. var. italica Planck) and broccoli transformed with the isopentenyl transferase (ipt) gene. Both served as pollen donors and four other varieties as pollen receptors to determine outcross rates. For pollen viability, F1 progeny was higher (p?0.05) for the cross of transgenic ipt broccoli with Li Syue significantly by FDA (fluorescein diacetate) assay. Higher successful hybrids were observed for transgenic ipt broccoli with Fu Yue, Li Syue and Green King. As pollen properties, number and grain diameter were significantly larger (p?0.05) in hybrid combinations of transgenic ipt broccoli with Li Syue and Green King significantly (p?0.05). The pod setting rates were higher while transgenic ipt broccoli served as donor plant. These results analyzing pollen properties between transgenic crops with possible outcross candidates would serve as one of those critical strategies for evaluating environmental biosafety issues for transgenic crops. (author)

  9. CoQ10 Deficiency May Indicate Mitochondrial Dysfunction in Cr(VI Toxicity

    Directory of Open Access Journals (Sweden)

    Xiali Zhong

    2017-04-01

    Full Text Available To investigate the toxic mechanism of hexavalent chromium Cr(VI and search for an antidote for Cr(VI-induced cytotoxicity, a study of mitochondrial dysfunction induced by Cr(VI and cell survival by recovering mitochondrial function was performed. In the present study, we found that the gene expression of electron transfer flavoprotein dehydrogenase (ETFDH was strongly downregulated by Cr(VI exposure. The levels of coenzyme 10 (CoQ10 and mitochondrial biogenesis presented by mitochondrial mass and mitochondrial DNA copy number were also significantly reduced after Cr(VI exposure. The subsequent, Cr(VI-induced mitochondrial damage and apoptosis were characterized by reactive oxygen species (ROS accumulation, caspase-3 and caspase-9 activation, decreased superoxide dismutase (SOD and ATP production, increased methane dicarboxylic aldehyde (MDA content, mitochondrial membrane depolarization and mitochondrial permeability transition pore (MPTP opening, increased Ca2+ levels, Cyt c release, decreased Bcl-2 expression, and significantly elevated Bax expression. The Cr(VI-induced deleterious changes were attenuated by pretreatment with CoQ10 in L-02 hepatocytes. These data suggest that Cr(VI induces CoQ10 deficiency in L-02 hepatocytes, indicating that this deficiency may be a biomarker of mitochondrial dysfunction in Cr(VI poisoning and that exogenous administration of CoQ10 may restore mitochondrial function and protect the liver from Cr(VI exposure.

  10. Phenological and phytochemical changes correlate with differential interactions of Verticillium dahliae with broccoli and cauliflower.

    Science.gov (United States)

    Njoroge, S M C; Vallad, G E; Park, S-Y; Kang, S; Koike, S T; Bolda, M; Burman, P; Polonik, W; Subbarao, K V

    2011-05-01

    Cauliflower (Brassica oleracea var. botrytis subvar. cauliflora) is susceptible to wilt caused by Verticillium dahliae but broccoli (B. oleracea var. italica subvar. cyamosa) is not. Infection of broccoli and cauliflower by a green fluorescent protein-expressing isolate of V. dahliae was examined using epifluorescence and confocal laser-scanning microscopy to follow infection and colonization in relation to plant phenology. Plant glucosinolate, phenolic, and lignin contents were also assayed at 0, 4, 14, and 28 days postinoculation. V. dahliae consistently infected and colonized the vascular tissues of all cauliflower plants regardless of age at inoculation, with the pathogen ultimately appearing in the developing seed; however, colonization decreased with plant age. In broccoli, V. dahliae infected and colonized root and stem xylem tissues of plants inoculated at 1, 2, or 3 weeks postemergence. However, V. dahliae colonized only the root xylem and the epidermal and cortical tissues of broccoli plants inoculated at 4, 5, and 6 weeks postemergence. The frequency of reisolation of V. dahliae from the stems (4 to 22%) and roots (10 to 40%) of mature broccoli plants was lower than for cauliflower stems (25 to 64%) and roots (31 to 71%). The mean level of aliphatic glucosinolates in broccoli roots was 6.18 times higher than in the shoots and did not vary with age, whereas it was 3.65 times higher in cauliflower shoots than in the roots and there was a proportional increase with age. Indole glucosinolate content was identical in both cauliflower and broccoli, and both indole and aromatic glucosinolates did not vary with plant age in either crop. Qualitative differences in characterized glucosinolates were observed between broccoli and cauliflower but no differences were observed between inoculated and noninoculated plants for either broccoli or cauliflower. However, the phenolic and lignin contents were significantly higher in broccoli following inoculation than in

  11. Examining intentions to use CoQ10 amongst breast cancer patients.

    Science.gov (United States)

    Hill, Gina Jarman; Shriver, Brent J; Arnett, Dennis B

    2006-01-01

    To determine factors that influence breast cancer patients' intentions to supplement with CoQ10. A survey based upon the expanded rational expectations intentions model was completed by breast cancer outpatients (N=160). A significantly positive relationship existed between referent other (the influence specific people have in terms of an individual's behavior) and subjective norm (subject's perception of how people view a behavior). Beliefs, referent other, attitude, and subjective norm did have a significant effect on intention to use CoQ10. Health practitioners may address supplementation with breast cancer patients with a better understanding of what factors impact supplement use.

  12. An Introduction to Programming and Proving with Dependent Types in Coq

    Directory of Open Access Journals (Sweden)

    Adam Chlipala

    2010-01-01

    Full Text Available Computer proof assistants vary along many dimensions. Among the mature implementations, the Coq system is distinguished by two key features. First, we have support for programming with dependent types in the tradition of type theory, based on dependent function types and inductive type families. Second, we have a domain-specific language for coding correct-by-construction proof automation. Though the Coq user community has grown quite large, neither of the aspects I highlight is widely used. In this tutorial, I aim to provide a pragmatic introduction to both, showing how they can bring significant improvements in productivity.

  13. HPLC Separation of Sulforaphane Enantiomers in Broccoli and Its Sprouts by Transformation into Diastereoisomers Using Derivatization with (S)-Leucine.

    Science.gov (United States)

    Okada, Makiko; Yamamoto, Atsushi; Aizawa, Sen-Ichi; Taga, Atsushi; Terashima, Hiroyuki; Kodama, Shuji

    2017-01-11

    Racemic sulforaphane, which was derivatized with (S)-leucine (l-leucine), was resolved by reversed phase HPLC with UV detection. The optimum mobile phase conditions were found to be 10 mM citric acid (pH 2.8) containing 22% methanol at 35 °C using detection at 254 nm. Sulforaphane enantiomers in florets and stems of five brands of broccoli and leaves and stems of three brands of broccoli sprouts were analyzed by the proposed HPLC method. Both sulforaphane enantiomers were detected in all of the samples. The S/R ratios of sulforaphane in broccoli samples were 1.5-2.6/97.4-98.5% for florets and 5.0-12.1/87.9-95.0% for stems. The S/R ratios in broccoli sprout samples were higher than those in broccoli samples and were found to be 8.3-19.7/80.3-91.7% for leaves and 37.0-41.8/58.2-63.0% for stems. (S)-Sulforaphane detected in the broccoli and its sprout samples was positively identified by separately using an HPLC with a chiral column (Chiralpak AD-RH) and mass spectrometry.

  14. Effects of ca treatments and temperature on broccoli colour development

    NARCIS (Netherlands)

    Schouten, R.E.; Zhang, X.; Tijskens, L.M.M.; Kooten, van O.

    2010-01-01

    Broccoli combines high contents of vitamins, fibres and glucosinolates with a low calorie count and is sometimes referred to as the ‘crown jewel of nutrition’. Colour is one of the most important quality attributes of broccoli, and yellowing due to senescence of broccoli florets is the main external

  15. Effect of industrial freezing on the stability of chemopreventive compounds in broccoli.

    Science.gov (United States)

    Alanís-Garza, Pedro A; Becerra-Moreno, Alejandro; Mora-Nieves, José Luis; Mora-Mora, Juan Pablo; Jacobo-Velázquez, Daniel A

    2015-05-01

    Broccoli (Brassica oleracea L. var. Italica) is largely consumed all over the world and has a high economic importance. Likewise, broccoli contains high levels of glucosinolates, carotenoids and total phenols, which are related with the prevention of chronic diseases. The present project's objective was to evaluate the effect of industrial freezing on the stability of bioactive molecules in seven commercial broccoli cultivars (Tlaloc®, Endurance®, Florapack®, Domador®, Steel®, Iron Man® and Avenger®). In general, industrial freezing increased the extractability of total glucosinolates, whereas total phenols remained constant in most broccoli cultivars. Likewise, broccoli subjected to industrial freezing showed higher levels of total carotenoids (∼60-300% higher) as compared with fresh broccoli. Results suggest that bioactive compounds in frozen broccoli would be more bioavailable than in raw.

  16. Dietary Broccoli Alters Rat Cecal Microbiota to Improve Glucoraphanin Hydrolysis to Bioactive Isothiocyanates

    Directory of Open Access Journals (Sweden)

    Xiaoji Liu

    2017-03-01

    Full Text Available Broccoli consumption brings many health benefits, including reducing the risk of cancer and inflammatory diseases. The objectives of this study were to identify global alterations in the cecal microbiota composition using 16S rRNA sequencing analysis and glucoraphanin (GRP hydrolysis to isothiocyanates ex vivo by the cecal microbiota, following different broccoli diets. Rats were randomized to consume AIN93G (control or different broccoli diets; AIN93G plus cooked broccoli, a GRP-rich powder, raw broccoli, or myrosinase-treated cooked broccoli. Feeding raw or cooked broccoli for four days or longer both changed the cecal microbiota composition and caused a greater production of isothiocyanates ex vivo. A more than two-fold increase in NAD(PH: quinone oxidoreductase 1 activity of the host colon mucosa after feeding cooked broccoli for seven days confirmed the positive health benefits. Further studies revealed that dietary GRP was specifically responsible for the increased microbial GRP hydrolysis ex vivo, whereas changes in the cecal microbial communities were attributed to other broccoli components. Interestingly, a three-day withdrawal from a raw broccoli diet reversed the increased microbial GRP hydrolysis ex vivo. Findings suggest that enhanced conversion of GRP to bioactive isothiocyanates by the cecal microbiota requires four or more days of broccoli consumption and is reversible.

  17. Dietary Broccoli Alters Rat Cecal Microbiota to Improve Glucoraphanin Hydrolysis to Bioactive Isothiocyanates.

    Science.gov (United States)

    Liu, Xiaoji; Wang, Yanling; Hoeflinger, Jennifer L; Neme, Bárbara P; Jeffery, Elizabeth H; Miller, Michael J

    2017-03-10

    Broccoli consumption brings many health benefits, including reducing the risk of cancer and inflammatory diseases. The objectives of this study were to identify global alterations in the cecal microbiota composition using 16S rRNA sequencing analysis and glucoraphanin (GRP) hydrolysis to isothiocyanates ex vivo by the cecal microbiota, following different broccoli diets. Rats were randomized to consume AIN93G (control) or different broccoli diets; AIN93G plus cooked broccoli, a GRP-rich powder, raw broccoli, or myrosinase-treated cooked broccoli. Feeding raw or cooked broccoli for four days or longer both changed the cecal microbiota composition and caused a greater production of isothiocyanates ex vivo. A more than two-fold increase in NAD(P)H: quinone oxidoreductase 1 activity of the host colon mucosa after feeding cooked broccoli for seven days confirmed the positive health benefits. Further studies revealed that dietary GRP was specifically responsible for the increased microbial GRP hydrolysis ex vivo, whereas changes in the cecal microbial communities were attributed to other broccoli components. Interestingly, a three-day withdrawal from a raw broccoli diet reversed the increased microbial GRP hydrolysis ex vivo. Findings suggest that enhanced conversion of GRP to bioactive isothiocyanates by the cecal microbiota requires four or more days of broccoli consumption and is reversible.

  18. 2′-O Methylation of Internal Adenosine by Flavivirus NS5 Methyltransferase

    Science.gov (United States)

    Dong, Hongping; Chang, David C.; Hua, Maggie Ho Chia; Lim, Siew Pheng; Chionh, Yok Hian; Hia, Fabian; Lee, Yie Hou; Kukkaro, Petra; Lok, Shee-Mei; Dedon, Peter C.; Shi, Pei-Yong

    2012-01-01

    RNA modification plays an important role in modulating host-pathogen interaction. Flavivirus NS5 protein encodes N-7 and 2′-O methyltransferase activities that are required for the formation of 5′ type I cap (m7GpppAm) of viral RNA genome. Here we reported, for the first time, that flavivirus NS5 has a novel internal RNA methylation activity. Recombinant NS5 proteins of West Nile virus and Dengue virus (serotype 4; DENV-4) specifically methylates polyA, but not polyG, polyC, or polyU, indicating that the methylation occurs at adenosine residue. RNAs with internal adenosines substituted with 2′-O-methyladenosines are not active substrates for internal methylation, whereas RNAs with adenosines substituted with N6-methyladenosines can be efficiently methylated, suggesting that the internal methylation occurs at the 2′-OH position of adenosine. Mass spectroscopic analysis further demonstrated that the internal methylation product is 2′-O-methyladenosine. Importantly, genomic RNA purified from DENV virion contains 2′-O-methyladenosine. The 2′-O methylation of internal adenosine does not require specific RNA sequence since recombinant methyltransferase of DENV-4 can efficiently methylate RNAs spanning different regions of viral genome, host ribosomal RNAs, and polyA. Structure-based mutagenesis results indicate that K61-D146-K181-E217 tetrad of DENV-4 methyltransferase forms the active site of internal methylation activity; in addition, distinct residues within the methyl donor (S-adenosyl-L-methionine) pocket, GTP pocket, and RNA-binding site are critical for the internal methylation activity. Functional analysis using flavivirus replicon and genome-length RNAs showed that internal methylation attenuated viral RNA translation and replication. Polymerase assay revealed that internal 2′-O-methyladenosine reduces the efficiency of RNA elongation. Collectively, our results demonstrate that flavivirus NS5 performs 2′-O methylation of internal adenosine of

  19. CoQ10 plasmatic levels in breast-fed infants compared to formula-fed infants.

    Science.gov (United States)

    Compagnoni, G; Giuffrè, B; Lista, G; Mosca, F; Marini, A

    2004-01-01

    Coenzyme Q10 has been recognized as an important antioxidant factor besides its main role in bioenergetic metabolism. CoQ10 tissue levels depend both on exogenous dietetic intake and on endogenous biosynthesis, as this compound can be partly synthesized in human cells. Q10 plasma levels reflect the tissue content of the coenzyme and can be used to evaluate the presence of this compound in the human organism. Aim of the study was to measure CoQ10 plasmatic levels in a newborn breast-fed population and to compare them to CoQ10 levels in a newborn formula-fed population in order to verify whether changes in CoQ10 plasmatic contents could be related to a different dietetic intakes. We measured CoQ10 plasmatic levels in 25 healthy term neonates with different dietetic intakes: 15 breast-fed and 10 bottle-fed with a common infant formula. These infants were evaluated prospectively during the first month of life. The analyses were performed on the mothers' blood samples and cord blood samples at the time of delivery, then on infants at 4 and 28 days of age. Our results showed markedly reduced Q10 levels in cord blood samples compared to maternal Q10 plasmatic levels at the time of delivery, suggesting placental impermeability towards this molecule or increased fetal utilization during labor and delivery. At 4 days of age Q10 levels had increased in both groups of neonates, but significantly more in breast-fed infants compared to formula-fed babies (p <0.05). At 4 weeks of age no significant changes occurred in breast-fed infants, while values increased significantly in formula-fed infants (p <0.05). The content of Q10 in breast milk samples was lower than in infant formula. The results of this study show that CoQ10 plasmatic levels are at least partly influenced by the exogenous dietetic supply.

  20. Purification and characterization of broccoli (Brassica oleracea var. italica) myrosinase (β-thioglucosidase glucohydrolase).

    Science.gov (United States)

    Mahn, Andrea; Angulo, Alejandro; Cabañas, Fernanda

    2014-12-03

    Myrosinase (β-thioglucosidase glucohydrolase, EC 3.2.1.147) from broccoli (Brassica oleracea var. italica) was purified by ammonium sulfate precipitation followed by concanavalin A affinity chromatography, with an intermediate dialysis step, resulting in 88% recovery and 1318-fold purification. These are the highest values reported for the purification of any myrosinase. The subunits of broccoli myrosinase have a molecular mass of 50-55 kDa. The native molecular mass of myrosinase was 157 kDa, and accordingly, it is composed of three subunits. The maximum activity was observed at 40 °C and at pH below 5.0. Kinetic assays demonstrated that broccoli myrosinase is subjected to substrate (sinigrin) inhibition. The Michaelis-Menten model, considering substrate inhibition, gave Vmax equal to 0.246 μmol min(-1), Km equal to 0.086 mM, and K(I) equal to 0.368 mM. This is the first study about purification and characterization of broccoli myrosinase.

  1. Dietary broccoli protects against fatty liver development but not against progression of liver cancer in mice pretreated with diethylnitrosamine

    Science.gov (United States)

    Chen, Yung-Ju; Myracle, Angela D.; Wallig, Matthew A.; Jeffery, Elizabeth H.

    2016-01-01

    Western-style high fat, high sugar diets are associated with non-alcoholic fatty liver disease (NAFLD) and increased liver cancer risk. Sulforaphane from broccoli may protect against these. Previously we initiated broccoli feeding to mice prior to exposure to the hepatocarcinogen diethylnitrosamine (DEN), and saw protection against NAFLD and liver cancer. Here we administered DEN to unweaned mice, initiating broccoli feeding two weeks later, to determine if broccoli protects against cancer progression. Specifically, male 15-day-old C57BL/6J mice were given DEN and placed on a Western or Western+10%Broccoli diet from the age of 4 weeks through 7 months. Dietary broccoli decreased hepatic triacylglycerols, NAFLD, liver damage and tumour necrosis factor by month 5 without changing body weight or relative liver weight, but did not slow carcinogenesis, seen in 100% of mice. We conclude that broccoli, a good source of sulforaphane, slows progression of hepatic lipidosis, but not tumourigenesis in this robust model. PMID:27672403

  2. YebU is a m5C methyltransferase specific for 16 S rRNA nucleotide 1407

    DEFF Research Database (Denmark)

    Andersen, Niels Møller; Douthwaite, Stephen

    2006-01-01

    generally require specific enzymes, and only one m5C rRNA methyltransferase, RsmB (formerly Fmu) that methylates nucleotide C967, has previously been identified. BLAST searches of the E.coli genome revealed a single gene, yebU, with sufficient similarity to rsmB to encode a putative m5C RNA...... methyltransferase. This suggested that the yebU gene product modifies C1407 and/or C1962. Here, we analysed the E.coli rRNAs by matrix assisted laser desorption/ionization mass spectrometry and show that inactivation of the yebU gene leads to loss of methylation at C1407 in 16 S rRNA, but does not interfere...

  3. Enrichment of Probiotic Yogurt with Broccoli Sprout Extract and its Effect on Helicobacter pylori

    Directory of Open Access Journals (Sweden)

    Ali Reza Sadeghi

    2017-01-01

    Full Text Available Background and Objective: Antibiotic consumption is the main way to cure infection induced by Helicobacter pylori. On the other hand, antibiotics have side effects on human body. So, finding an efficient way to replace antibiotic consumption seems necessary. The aim of this study was to investigate the effect of broccoli sprout extract on the viability of probiotic bacteria and yogurt’s physicochemical properties, and examine the synergistic effect of this extract with probiotics on Helicobacter pylori growth inhibition.Material and Methods: Four levels of broccoli sprout extract (22.5, 45, 90 and 180 mg ml-1 were prepared and their effect on probiotic yogurt samples was examined. Moreover, their anti- Helicobacter pylori effect was determined.Results and Conclusion: The research results revealed that Broccoli sprout extract did not have any inhibitory effect on Bifidobacterium lactis and Lactobacillus acidophilus. The variations in acidity of the samples were not significant during storage. A positive correlation was observed between broccoli sprout extract concentration and syneresis. The findings showed the synergistic effect of broccoli sprout extract and probiotics on Helicobacter pylori growth inhibition. Therefore, using broccoli sprout extract and probiotic bacteria, we can produce a yogurt that is effective on the growth inhibition of Helicobacter pylori.Conflict of interest: The authors declare that there is no conflict of interest.

  4. The effect of CoQ10 and vitamin E on serum total sialic acid, lipid ...

    African Journals Online (AJOL)

    Administrator

    2011-06-13

    Jun 13, 2011 ... This study was designed to evaluate the effect of CoQ10 and vitamin E on serum total sialic acid (TSA), lipid bound sialic acid (LSA) and some elements in rat administered doxorubicin (DXR). Cu levels were increased in the group treated with DXR + vitamin E in comparison with DXR (p<0.05) and CoQ10 ...

  5. The effect of CoQ 10 and vitamin E on serum total sialic acid, lipid ...

    African Journals Online (AJOL)

    This study was designed to evaluate the effect of CoQ10 and vitamin E on serum total sialic acid (TSA), lipid bound sialic acid (LSA) and some elements in rat administered doxorubicin (DXR). Cu levels were increased in the group treated with DXR + vitamin E in comparison with DXR (p<0.05) and CoQ10 groups (p ...

  6. Machine vision for a selective broccoli harvesting robot

    NARCIS (Netherlands)

    Blok, Pieter M.; Barth, Ruud; Berg, Van Den Wim

    2016-01-01

    The selective hand-harvest of fresh market broccoli is labor-intensive and comprises about 35% of the total production costs. This research was conducted to determine whether machine vision can be used to detect broccoli heads, as a first step in the development of a fully autonomous selective

  7. Analysis and Antioxidant Activity of Extracts from Broccoli (Brassica oleracea L.) Sprouts.

    Science.gov (United States)

    Jang, Hae Won; Moon, Joon-Kwan; Shibamoto, Takayuki

    2015-02-04

    Samples prepared from fresh broccoli (Brassica oleracea L.) sprouts by water distillation or freeze-drying were examined for antioxidant activity using three assays. All samples exhibited dose-dependent antioxidant activity. The antioxidant activity ranged from 74.48 ± 0.46% (less volatile sample) to 93.2 ± 0.2% (dichloromethane extract sample) at the level of 500 μg/mL. Both dichloromethane extract samples from a water distillate of broccoli sprouts and freeze-dried broccoli sprouts showed potent antioxidant activity, which was comparable to that of BHT. Among the 43 compounds positively identified by gas chromatography-mass spectrometry, 5-methylthiopentylnitrile (31.64 μg/g) was found in the greatest concentration, followed by 4-methylthiobutylisothiocyanate (14.55 μg/g), 4-methylthiobutylnitrile (10.63 μg/g), 3-methylthiopropylisothiocyanate (3.00 μg/g), and 4-methylpentylisothiocyanate (2.48 μg/g). These isothiocyanates are known to possess antioxidant properties. Possible phenolic antioxidants found are 4-(1-methylpropyl)phenol (0.012 μg/g), 4-methylphenol (0.159 μg/g), and 2-methoxy-4-vinylphenol (0.009 μg/g). The present study demonstrates that broccoli sprouts are a good source of natural antioxidants.

  8. Genome-wide identification and comparative analysis of cytosine-5 DNA methyltransferases and demethylase families in wild and cultivated peanut

    Directory of Open Access Journals (Sweden)

    Pengfei eWang

    2016-02-01

    Full Text Available AbstractDNA methylation plays important roles in genome protection, regulation of gene expression and was associated with plants development. Plant DNA methylation pattern was mediated by cytosine-5 DNA methyltransferases and demethylase. Although the genomes of AA and BB wild peanuts have been fully sequence, these two gene families have not been studied. In this study we report the identification and analysis of putative cytosine-5 DNA methyltransferases (C5-MTases and demethylase in AA and BB wild peanuts. Cytosine-5 DNA methyltransferases in AA and BB wild peanuts could be classified in known MET, CMT and DRM2 groups based on their domain organization. This result was supported by the gene and protein structural characteristics and phylogenetic analysis. We found that some wild peanut DRM2 numbers didn’t contain UBA domain which was different from other plants such as Arabidopsis, maize, soybean. Five DNA demethylase were found in AA genome and five in BB genome. The selective pressure analysis showed that wild peanut C5-MTases gene mainly underwent purifying selection but many positive selection sites can be detected. Conversely, DNA demethylase genes mainly underwent positive selection during evolution. Additionally, the expression dynamic of cytosine-5 DNA methyltransferases and demethylase genes in different cultivated peanut tissues were analyzed. Expression result showed that cold, heat or drought stress could influence the expression level of C5-MTases and DNA demethylase genes in cultivated peanut. These results are useful for better understanding the complexity of these two gene families, and will facilitate epigenetic studies in peanut.

  9. Agronomy of strip intercropping broccoli with alyssum for biological control of aphids

    Science.gov (United States)

    Organic broccoli growers in California typically control aphids by intercropping broccoli with strips of alyssum (Lobularia maritima (L.) Desv.) which attracts hoverflies (Diptera: Syrphidae) that are important predators of aphids. A three year study with transplanted organic broccoli in Salinas, ...

  10. An Assay of Bax and Bcl2 Expression in Mice Hippocampus Following Ischemia-Reperfusion Treatment with CoQ10

    Directory of Open Access Journals (Sweden)

    Jalal Hassanshahi

    2013-10-01

    Full Text Available Introduction: Preliminary studies confirmed reduction of cell death following treatment with antioxidants. According to this finding we investigated the relationship between consumption of CoQ10 and expression of bax and bcl2 in hippocampus ischemia that this expression related to cell programmed death.Material and Methods: We studied the protective role of CoQ10 against ischemia-reperfusion. Experimental design includes four groups: intact (N=7, ischemic control (N=7, sham control (N=7 and treatment groups with CoQ10 (N=7. The mice (treatment group treated with CoQ10 as Pre-Treatment for a week. Then, ischemia induced by common carotid artery ligation and following the reduction in inflammation (a week the treatment group post-treated with CoQ10 for a week. Nissl staining applied to counting necrotic cells of hippocampus and the western blotting performed to measurement the bax and bcl2 expression. Tunnel kit was used to quantify apoptotic cell death while to short term memory scale, we apply Y-maze.Results: Cell death was significantly lower when mice treated with CoQ10. Bax expression was significantly high in ischemic group but in treatment group was less and reversely the bcl2 expression in ischemic group was lower than treatment and vehicle groups. The memory test results were consistent with cell death results. Conclusion: Ischemia for 15 minutes induced cell death in hippocampus with more potent effect on CA1. CoQ10 intake significantly reduced cell death and decreased memory loss. with prevent of expression of bax and increase in expression of bcl2.

  11. CoQ10 supplementation: a new treatment modality in steroid ...

    African Journals Online (AJOL)

    Cetin Dincel

    2014-08-09

    Aug 9, 2014 ... ABSTRACT. Background: Steroid-resistant nephrotic syndrome (SRNS) is a common ..... DiGiovanni et al. on patients with the same clinical triad ..... Valente ML, Bertini E, Emma F.COQ2. Nephropathy: A .... 2010;16:183–188.

  12. Glucoraphanin and other glucosinolates in heads of broccoli cultivars

    Science.gov (United States)

    Broccoli (Brassica oleracea L. var. italica) emerged as an increasingly popular vegetable of North American consumers during the second half of the 20th Century, with per captita consumption increasing nearly eight fold during this period. Likewise, production and consumption of broccoli has also i...

  13. Enhancement of broccoli indole glucosinolates by methyl jasmonate treatment and effects on prostate carcinogenesis.

    Science.gov (United States)

    Liu, Ann G; Juvik, John A; Jeffery, Elizabeth H; Berman-Booty, Lisa D; Clinton, Steven K; Erdman, John W

    2014-11-01

    Broccoli is rich in bioactive components, such as sulforaphane and indole-3-carbinol, which may impact cancer risk. The glucosinolate profile of broccoli can be manipulated through treatment with the plant stress hormone methyl jasmonate (MeJA). Our objective was to produce broccoli with enhanced levels of indole glucosinolates and determine its impact on prostate carcinogenesis. Brassica oleracea var. Green Magic was treated with a 250 μM MeJA solution 4 days prior to harvest. MeJA-treated broccoli had significantly increased levels of glucobrassicin, neoglucobrassicin, and gluconasturtiin (P broccoli powder, or 10% MeJA broccoli powder. Diets were fed throughout the study until termination at 20 weeks of age. Hepatic CYP1A was induced with MeJA broccoli powder feeding, indicating biological activity of the indole glucosinolates. Following ∼ 15 weeks on diets, neither of the broccoli treatments significantly altered genitourinary tract weight, pathologic score, or metastasis incidence, indicating that broccoli powder at 10% of the diet was ineffective at reducing prostate carcinogenesis in the TRAMP model. Whereas broccoli powder feeding had no effect in this model of prostate cancer, our work demonstrates the feasibility of employing plant stress hormones exogenously to stimulate changes in phytochemical profiles, an approach that may be useful for optimizing bioactive component patterns in foods for chronic-disease-prevention studies.

  14. Production and postharvest quality maintenance of single unit and bunching broccoli in Virginia

    OpenAIRE

    Jett, Lewis W.

    1990-01-01

    Broccoli (Brassica oleracea L. var. italica) has become an increasingly popular vegetable with American consumers. Much of the attractiveness of fresh broccoli is derived from this vegetable's high nutrition and excellent organoleptic properties. In a consumer response survey, Virginia Master Gardeners indicated a preference for broccoli that has less stalk and more florets by weight. The objectives of this research were to produce single unit broccoli, and to examine vac...

  15. Broccoli yield in response to top-dressing fertilization with green manure and biofertilizer

    Directory of Open Access Journals (Sweden)

    Gilberto Bernardo de Freitas

    2011-10-01

    Full Text Available The objective of this work was to evaluate the productive performance of broccoli under different top-dressing organic fertilizations. The experiment was conducted under protected cultivation, in a completely randomized design with four replications, with two plants per experimental unit. Broccoli seedlings were produced in a commercial substrate in styrofoam trays. The seedlings were transplanted to plastic pots containing 10.0 L of substrate made up of subsoil and organic compost at the ratio of 3:1 (v/v, respectively, which is equivalent to about 20.0 t ha-1 of organic compost at planting. After seedling establishment, the top-dressing fertilization treatments were applied: gliricidia biomass associated or not with liquid biofertilizer of cattle manure to the soil and bokashi. Two control treatments were established: one with mineral fertilization recommended for the crop and the other without top-dressing fertilization. The broccoli production was evaluated (commercial standard. Plants that received mineral fertilizer were more productive, however, they were not significantly different (p>0.05, by Dunnet test, from the plants fertilized with 2.5 t ha-1 gliricidiabiomass (dry mass associated with liquid biofertilizer (2.0 L m-2 applied to soil. Top-dressing fertilizations with only gliricidia, at 2.5 and 5.0 t ha-1 of biomass (dry mass, resulted in no significant increase in production of broccoli inflorescence. The use of bokashi in addition to gliricidia biomass and liquid biofertilizer reduced the efficiency of the fertilization compared with plants that received only gliricidia and liquid biofertilizer.

  16. Identification and characterization of the cytosine-5 DNA methyltransferase gene family in Salvia miltiorrhiza

    OpenAIRE

    Jiang Li; Caili Li; Shanfa Lu

    2018-01-01

    Cytosine DNA methylation is highly conserved epigenetic modification involved in a wide range of biological processes in eukaryotes. It was established and maintained by cytosine-5 DNA methyltransferases (C5-MTases) in plants. Through genome-wide identification, eight putative SmC5-MTase genes were identified from the genome of Salvia miltiorrhiza, a well-known traditional Chinese medicine material and an emerging model medicinal plant. Based on conserved domains and phylogenetic analysis, ei...

  17. Significance of Ubiad1 for Epidermal Keratinocytes Involves More Than CoQ10 Synthesis: Implications for Skin Aging

    Directory of Open Access Journals (Sweden)

    Florian Labarrade

    2018-01-01

    Full Text Available The significance of Coenzyme Q10 (CoQ10 as an anti-oxidant barrier of the skin, as well as a key component in anti-aging strategies for skin care products, has been firmly established. Biosynthesis of CoQ10 in the mitochondria is well known, but there is only limited information on the non-mitochondrial synthesis of CoQ10 in the skin. Recent findings in zebrafish identified that a tumor suppressor, Ubiad1, is also a key enzyme in the non-mitochondrial synthesis of CoQ10. The purpose of this study was to investigate expression of Ubiad1 in human skin, and its implication in the skin’s cutaneous response to oxidative stress. We observed Ubiad1 localization in the epidermis, particularly a subcellular localization in the Golgi apparatus. Ubiad1 modulation by a pentapeptide was associated with an observed reduction in ROS/RNS stresses (−44%/−19% respectively, lipid peroxidation (−25% and preservation of membrane fluidity under stress conditions. Electron microscopy of keratinocytes revealed a significant degree of stimulation of the Golgi complex, as well as significantly improved mitochondrial morphology. Given the importance of CoQ10 in mitigating the visible signs of skin aging, our findings identify Ubiad1 as an essential component of the defensive barriers of the epidermis.

  18. Aggregates, broccoli and cauliflower

    Science.gov (United States)

    Grey, Francois; Kjems, Jørgen K.

    1989-09-01

    Naturally grown structures with fractal characters like broccoli and cauliflower are discussed and compared with DLA-type aggregates. It is suggested that the branching density can be used to characterize the growth process and an experimental method to determine this parameter is proposed.

  19. Protein Arginine Methyltransferase 5 Inhibition Upregulates Foxp3+ Regulatory T Cells Frequency and Function during the Ulcerative Colitis

    Directory of Open Access Journals (Sweden)

    Yingxia Zheng

    2017-05-01

    Full Text Available Ulcerative colitis (UC pathogenesis is related to imbalance of immune responses, and the equilibrium between inflammatory T cells and Foxp3+ regulatory T cells (Tregs plays an important role in the intestinal homeostasis. Protein arginine methyltransferases (PRMTs regulate chromatin remodeling and gene expression. Here, we investigated whether inhibition of PRMTs affects colitis pathogenesis in mice and inflammatory bowel disease patients and further explored the underlying mechanisms. In this study, we found that protein arginine N-methyltransferase inhibitor 1 (AMI-1 treatments increased Tregs frequency, function, and reduced colitis incidence. Adoptive transfer of AMI-1-treated Tregs could reduce the colitis incidence. Colitis was associated with increased local PRMT5 expression, which was inhibited by AMI-1 treatment. Additionally, PRMT5 knockdown T cells produced a better response to TGFβ and promoted Tregs differentiation through decreased DNA methyltransferase 1 (DNMT1 expression. PRMT5 also enhanced H3K27me3 and DNMT1 binding to Foxp3 promoter, which restricted Tregs differentiation. Furthermore, PRMT5 knockdown led to decreased Foxp3 promoter methylation during Tregs induction. PRMT5 expression had a negative relationship with Tregs in UC patients, knockdown of PRMT5 expression increased Tregs frequency and decreased TNFα, IL-6, and IL-13 levels. Our study outlines a novel regulation of PRMT5 on Tregs development and function. Strategies to decrease PRMT5 expression might have therapeutic potential to control UC.

  20. Effects of Hot Water Immersion on Storage Quality of Fresh Broccoli Heads

    Directory of Open Access Journals (Sweden)

    Huaqiang Dong

    2004-01-01

    Full Text Available Freshly harvested broccoli heads were immersed for 0, 1, 4 or 8 min into hot water at 45 °C, and then were hydrocooled rapidly for 10 min at 10 °C. Following these treatments, the broccoli were air-dried for 30 min, then packed in commercial polymeric film bags, and, finally, stored for 16 days at –1, 1, and 12 °C. The samples treated with hot water maintained high contents of chlorophyll concentrations, their yellowing rate was delayed, and fungal infection and chilling or freezing injury were inhibited markedly. Compared to non-heat-treated broccoli, a lower level of peroxidase activity with a relatively higher chlorophyll concentration was observed when broccoli were treated with hot water. Among these heat treatments, immersion in hot water for 4 min at 45 °C was the most effective for maintaining the quality of harvested broccoli heads.

  1. Consumption of selenium-enriched broccoli increases cytokine production in human peripheral blood mononuclear cells stimulated ex vivo, a preliminary human intervention study.

    Science.gov (United States)

    Bentley-Hewitt, Kerry L; Chen, Ronan K-Y; Lill, Ross E; Hedderley, Duncan I; Herath, Thanuja D; Matich, Adam J; McKenzie, Marian J

    2014-12-01

    Selenium (Se) is a micronutrient essential for human health, including immune function. Previous research indicates that Se supplementation may cause a shift from T helper (Th)1- to Th2-type immune responses. We aim to test the potential health promoting effects of Se-enriched broccoli. In a human trial, 18 participants consumed control broccoli daily for 3 days. After a 3-day wash-out period, the participants were provided with Se-enriched broccoli containing 200 μg of Se per serving for 3 days. Plasma and peripheral blood mononuclear cell (PBMC) samples were collected at the start and end of each broccoli feeding period for analysis of total Se and measurement of cytokine production from PBMC stimulated with antigens ex vivo. Plasma Se content remained consistent throughout the control broccoli feeding period and the baseline of the Se-enriched broccoli period (1.22 μmol/L) and then significantly increased following 3 days of Se-enriched broccoli feeding. Interleukin (IL-2, IL-4, IL-5, IL-13, and IL-22) production from PBMC significantly increased after 3 days of Se-enriched broccoli feeding compared with baseline. This study indicates that consumption of Se-enriched broccoli may increase immune responses toward a range of immune challenges. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Broccoli/weed/soil discrimination by optical reflectance using neural networks

    Science.gov (United States)

    Hahn, Federico

    1995-04-01

    Broccoli is grown extensively in Scotland, and has become one of the main vegetables cropped, due to its high yields and profits. Broccoli, weed and soil samples from 6 different farms were collected and their spectra obtained and analyzed using discriminant analysis. High crop/weed/soil discrimination success rates were encountered in each farm, but the selected wavelengths varied in each farm due to differences in broccoli variety, weed species incidence and soil type. In order to use only three wavelengths, neural networks were introduced and high crop/weed/soil discrimination accuracies for each farm were achieved.

  3. Xylem-to-phloem transfer of boron in broccoli and lupin during early reproductive growth

    Energy Technology Data Exchange (ETDEWEB)

    Shelp, B J; Kitheka, A M; Cauwenberghe, O.R. Van [Univ. of Guelph, Dept. of Horticultural Science, Guelph, ON (Canada); Vanderpool, R A [Grand Forks Human Nutrition Research Center, Agricultural Research service, Grand Forks, ND (United States); Spiers, G A [Univ. of Guelph, Dept. of Land Resource Science, Guelph, ON (Canada)

    1998-12-01

    The aim of this study was to test the hypothesis that newly-acquired boron (B) undergoes rapid xylem-to-phloem transfer in plants with restricted mobility. Analysis of the element accumulation and water usage by shoots of intact broccoli (Brassica oleracea var. italica Plenck cv. Commander) and lupin (Lupinus albus L. cv. Ultra) plants provided with a non-deficient supply of B, revealed that the concentration of various mineral elements (K, P, Mg, Ca, B, Fe, Zn, Mo, Cu, Mn) in xylem sap of intact plants ranged from 0.3 {mu}M to 3.5 mM, with B being present at 2.9-3.5 {mu}M. For each element assayed, the concentration was higher in phloem exudate (1.6 {mu}M to 91 mM) than in xylem sap; B was present at about 0.4 mM. Intact broccoli and lupin plants or detached transpiring broccoli shoots were supplied simultaneously with enriched {sup 10}B, strontium (a xylem marker) and rubidium (a xylem/phloem marker) during early reproductive growth. The contents of these three compounds were determined in foliage and florets or fruits as a function of time (i.e. up to 12 h and 4 days for broccoli and lupin plants, respectively), and the content in florets or fruits was expressed as a percent of the total recovered. In general, the percent recovery of both {sup 10}B and rubidium in florets or fruits was similar and markedly greater than that for strontium, even at the earliest harvest times (within 2 h for broccoli and 1 day for lupin). The data indicate that in plants with restricted B mobility, B is supplied to sink tissues in the phloem, and the extent of B xylem-to-phloem transfer is closely determined by current uptake. (au) 35 refs.

  4. Xylem-to-phloem transfer of boron in broccoli and lupin during early reproductive growth

    International Nuclear Information System (INIS)

    Shelp, B.J.; Kitheka, A.M.; Cauwenberghe, O.R. Van; Vanderpool, R.A.; Spiers, G.A.

    1998-01-01

    The aim of this study was to test the hypothesis that newly-acquired boron (B) undergoes rapid xylem-to-phloem transfer in plants with restricted mobility. Analysis of the element accumulation and water usage by shoots of intact broccoli (Brassica oleracea var. italica Plenck cv. Commander) and lupin (Lupinus albus L. cv. Ultra) plants provided with a non-deficient supply of B, revealed that the concentration of various mineral elements (K, P, Mg, Ca, B, Fe, Zn, Mo, Cu, Mn) in xylem sap of intact plants ranged from 0.3 μM to 3.5 mM, with B being present at 2.9-3.5 μM. For each element assayed, the concentration was higher in phloem exudate (1.6 μM to 91 mM) than in xylem sap; B was present at about 0.4 mM. Intact broccoli and lupin plants or detached transpiring broccoli shoots were supplied simultaneously with enriched 10 B, strontium (a xylem marker) and rubidium (a xylem/phloem marker) during early reproductive growth. The contents of these three compounds were determined in foliage and florets or fruits as a function of time (i.e. up to 12 h and 4 days for broccoli and lupin plants, respectively), and the content in florets or fruits was expressed as a percent of the total recovered. In general, the percent recovery of both 10 B and rubidium in florets or fruits was similar and markedly greater than that for strontium, even at the earliest harvest times (within 2 h for broccoli and 1 day for lupin). The data indicate that in plants with restricted B mobility, B is supplied to sink tissues in the phloem, and the extent of B xylem-to-phloem transfer is closely determined by current uptake. (au)

  5. DNA damage and repair activity after broccoli intake in young healthy smokers

    DEFF Research Database (Denmark)

    Riso, Patrizia; Martini, Daniela; Møller, Peter

    2010-01-01

    compounds, including smokers. The aim of the study was to evaluate the effect of broccoli intake on biomarkers of DNA damage and repair. Twenty-seven young healthy smokers consumed a portion of steamed broccoli (250 g/day) or a control diet for 10 days each within a crossover design with a washout period...... mRNA expression levels of repair and defence enzymes: 8-oxoguanine DNA glycosylase (OGG1), nucleoside diphosphate linked moiety X-type motif 1 (NUDT1) and heme oxygenase 1 (HO-1). After broccoli consumption, the level of oxidised DNA lesions decreased by 41% (95% confidence interval: 10%, 72......%) and the resistance to H(2)O(2)-induced DNA strand breaks increased by 23% (95% CI: 13%, 34%). Following broccoli intake, a higher protection was observed in subjects with glutathione S-transferase (GST) M1-null genotype. The expression level and activity of repair enzymes was unaltered. In conclusion, broccoli...

  6. Dietary Chemoprevention of PhIP Induced Carcinogenesis in Male Fischer 344 Rats with Tomato and Broccoli

    Science.gov (United States)

    Canene-Adams, Kirstie; Sfanos, Karen S.; Liang, Chung-Tiang; Yegnasubramanian, Srinivasan; Nelson, William G.; Brayton, Cory; De Marzo, Angelo M.

    2013-01-01

    The heterocyclic amine, 2-amino-1-methyl-6-phenylimidazo[4,5-B]pyridine (PhIP), found in meats cooked at high temperatures, has been implicated in epidemiological and rodent studies for causing breast, prostate, and colorectal cancers. A previous animal study using a xenograft model has shown that whole tomato and broccoli, when eaten in combination, exhibit a marked effect on tumor reduction compared to when eaten alone. Our aim was to determine if PhIP-induced carcinogenesis can be prevented by dietary consumption of whole tomato + broccoli powders. Male Fischer 344 rats (n = 45) were randomized into the following treatment groups: control (AIN93G diet), PhIP (200 ppm in AIN93G diet for the first 20 weeks of the study), or tomato + broccoli + PhIP (mixed in AIN93G diet at 10% each and fed with PhIP for 20 weeks, and then without PhIP for 32 weeks). Study animals were monitored for 52 weeks and were euthanized as necessary based on a set of criteria for health status and tumor burden. Although there appeared to be some hepatic and intestinal toxicity due to the combination of PhIP and tomato + broccoli, these rodents had improved survival and reduced incidence and/or severity of PhIP-induced neoplastic lesions compared to the PhIP-alone treated group. Rats eating tomato + broccoli exhibited a marked decrease in the number and size of cribiform prostatic intraepitheilial neoplasia/carcinoma in situ (cribiform PIN/CIS) lesions and in the incidence of invasive intestinal adenocarcinomas and skin carcinomas. Although the apparent toxic effects of combined PhIP and tomato + broccoli need additional study, the results of this study support the hypothesis that a diet rich in tomato and broccoli can reduce or prevent dietary carcinogen-induced cancers. PMID:24312188

  7. Optimization of pulsed electric field pre-treatments to enhance health-promoting glucosinolates in broccoli flowers and stalk.

    Science.gov (United States)

    Aguiló-Aguayo, Ingrid; Suarez, Manuel; Plaza, Lucia; Hossain, Mohammad B; Brunton, Nigel; Lyng, James G; Rai, Dilip K

    2015-07-01

    The effect of pulsed electric field (PEF) treatment variables (electric field strength and treatment time) on the glucosinolate content of broccoli flowers and stalks was evaluated. Samples were subjected to electric field strengths from 1 to 4 kV cm(-1) and treatment times from 50 to 1000 µs at 5 Hz. Data fitted significantly (P broccoli flowers (ranging from 187.1 to 212.5%) and stalks (ranging from 110.6 to 203.0%) respectively. The predicted values from the developed quadratic polynomial equation were in close agreement with the actual experimental values, with low average mean deviations (E%) ranging from 0.59 to 8.80%. The use of PEF processing at moderate conditions could be a suitable method to stimulate production of broccoli with high health-promoting glucosinolate content. © 2014 Society of Chemical Industry.

  8. Determination of Sodium, Potassium, Magnesium, and Calcium Minerals Level in Fresh and Boiled Broccoli and Cauliflower by Atomic Absorption Spectrometry

    Science.gov (United States)

    Nerdy

    2018-01-01

    Vegetables from the cabbage family vegetables consumed by many people, which is known healthful, by eaten raw, boiled, or cooked (stir fry or soup). Vegetables like broccoli and cauliflower contain vitamins, minerals, and fiber. This study aims to determine the decrease percentage of sodium, potassium, magnesium, and calcium minerals level caused by boiled broccoli and cauliflower by atomic absorption spectrometry. Boiled broccoli and cauliflower prepared by given boiled treatment in boiling water for 3 minutes. Fresh and boiled broccoli and cauliflower carried out dry destruction, followed by quantitative analysis of sodium, potassium, magnesium, and calcium minerals respectively at a wavelength of 589.0 nm; 766.5 nm; 285.2 nm; and 422.7 nm, using atomic absorption spectrometry methods. After the determination of the sodium, potassium, magnesium, and calcium minerals level followed by validation of analytical methods with accuracy, precision, linearity, range, limit of detection (LOD), and limit of quantitation (LOQ) parameters. Research results show a decrease in the sodium, potassium, magnesium, and calcium minerals level in boiled broccoli and cauliflower compared with fresh broccoli and cauliflower. Validation of analytical methods gives results that spectrometry methods used for determining sodium, potassium, magnesium, and calcium minerals level are valid. It concluded that the boiled gives the effect of decreasing the minerals level significantly in broccoli and cauliflower.

  9. Potential of cultivar and crop management to affect phytochemical content in winter-grown sprouting broccoli (Brassica oleracea L. var. italica).

    Science.gov (United States)

    Reilly, Kim; Valverde, Juan; Finn, Leo; Rai, Dilip K; Brunton, Nigel; Sorensen, Jens C; Sorensen, Hilmer; Gaffney, Michael

    2014-01-30

    Variety and crop management strategies affect the content of bioactive compounds (phenolics, flavonoids and glucosinolates) in green broccoli (calabrese) types, which are cultivated during summer and autumn in temperate European climates. Sprouting broccoli types are morphologically distinct and are grown over the winter season and harvested until early spring. Thus they show considerable potential for development as an import substitution crop for growers and consumers during the 'hungry gap' of early spring. The present study investigated the effect of variety and management practices on phytochemical content in a range of sprouting broccoli varieties. Yields were significantly higher in white sprouting broccoli varieties. Levels of phenolics and flavonoids were in the range 81.64-297.65 and 16.95-104.80 mg 100 g⁻¹ fresh weight, respectively, depending on year and cultivar, and were highest in variety 'TZ 5052' in both years. In-row spacing did not affect flavonoid content. Phenolic and flavonoid content generally increased with increasing floret maturity and levels were high in edible portions of the crop. Crop wastes (leaf and flower) contained 145.9-239.3 and 21.5-116.6 mg 100 g⁻¹ fresh weight total phenolics and flavonoids, respectively, depending on cultivar, tissue and year. Climatic factors had a significant effect on phenolic and flavonoid content. Levels of total and some individual glucosinolates were higher in sprouting broccoli than in the green broccoli variety 'Ironman'. Levels of total phenolics, flavonoids and glucosinolates are higher in sprouting than green broccoli types. Sprouting broccoli represents an excellent source of dietary bioactive compounds. © 2013 Society of Chemical Industry.

  10. Investigation of functional properties and color changes of corn extrudates enriched with broccoli or olive paste.

    Science.gov (United States)

    Bisharat, Ghassan I; Katsavou, Ioanna D; Panagiotou, Nikolaos M; Krokida, Magdalini K; Maroulis, Zacharias B

    2015-12-01

    Following the tendency of replacing common food snacks with healthier food products, extruded snacks with corn flour and broccoli (4-10%) or olive paste (4-8%) were investigated in this study. The effect of material characteristics, including feed moisture content (14-19%), and broccoli or olive paste concentration, and extrusion conditions, including screw speed (150-250 r/min), and extrusion temperature (140-180 ℃), on the functional properties (water absorption index, water solubility index, and oil absorption index), as well as color change (ΔE) of the extruded snacks was studied. Regression analysis showed that screw speed did not significantly influence (p > 0.05) the properties. After mathematical modelling it was found that broccoli and olive paste concentration, as well as temperature increment, caused a decrease in water absorption index (minimum of 5.6 and 6.4 g/g sample, respectively) and an increase in water solubility index (maximum of 18.7 and 10.9 g/100 g sample, respectively), while feed moisture presented opposite tendency. Higher extrusion temperature led to an increment of oil absorption index (approximately to 1.2 and 1 mL/g sample) and decrement of color changes. Finally, feed moisture and broccoli concentration lowered oil absorption index and color of corn/broccoli extrudates, while olive paste concentration caused their increment. © The Author(s) 2014.

  11. Methyl transfer in glucosinolate biosynthesis mediated by indole glucosinolate O-Methyltransferase 5

    DEFF Research Database (Denmark)

    Pfalz, Marina; Mukhaimar, Maisara; Perreau, François

    2016-01-01

    in position 1 (1-IG modification) or 4 (4-IG modification). Products of the 4-IG modification pathway mediate plant-enemy interactions and are particularly important for Arabidopsis innate immunity. While CYP81Fs encoding cytochrome P450 monooxygenases and IGMTs encoding indole glucosinolate O...... with moderate similarity to previously characterized IGMTs, encodes the methyltransferase that is responsible for the conversion of 1OHI3M to 1MOI3M. Disruption of IGMT5 function increases resistance against the root-knot nematode Meloidogyne javanica and suggests a potential role for the 1-IG modification...

  12. Coqoon - An IDE for Interactive Proof Development in Coq

    OpenAIRE

    Faithfull, Alexander; Bengtson, Jesper; Tassi, Enrico

    2016-01-01

    User interfaces for interactive proof assistants have always lagged behind those for mainstream programming languages. Whereas integrated development environments—IDEs—have support for features like project management, version control, dependency analysis and incremental project compilation, “IDE”s for proof assistants typically only operate on files in isolation, relying on external tools to integrate those files into larger projects. In this paper we present Coqoon, an IDE for Coq developme...

  13. Exergetic performance analyses of drying of broccoli florets in a tray drier

    International Nuclear Information System (INIS)

    Zafer Erbay

    2009-01-01

    At present, the drying process is one of the major procedures of food preservation and an important unit operation in a wide variety of food industries. Recently, drying of vegetables is of a particular interest because it is added to various ready-to-eat meals in order to improve their nutritional quality due to health benefit compounds present in vegetables (vitamins, phytochemicals, dietary fibers). Broccoli has been described as a vegetable with a high nutritional value due to its important content of vitamins, antioxidants and anti-carcinogenic compounds. Broccoli dehydration has not been investigated to a great extent and a few data are available in the open literature. In this study, broccoli florets were dried in a tray drier at a temperature range of 50-70 deg C with an air velocity range of 0.5-1.5 m/s. The performance of the process and system was evaluated using the exergy analysis method. Based on the experimental data, effects of the drying air temperature and the velocity on the performance of the drying process were discussed. It was obtained that the exergy evaporation rate and the exergetic efficiency of the process were obtained to vary between 0.0006-0.0029 kW and 0.27-1.16%, respectively. They increased as the drying air temperature increased, while the exergetic efficiency decreased with the rise in the drying air velocity. (author)

  14. Heat Transfer during Blanching and Hydrocooling of Broccoli Florets.

    Science.gov (United States)

    Iribe-Salazar, Rosalina; Caro-Corrales, José; Hernández-Calderón, Óscar; Zazueta-Niebla, Jorge; Gutiérrez-Dorado, Roberto; Carrazco-Escalante, Marco; Vázquez-López, Yessica

    2015-12-01

    The objective of this work was to simulate heat transfer during blanching (90 °C) and hydrocooling (5 °C) of broccoli florets (Brassica oleracea L. Italica) and to evaluate the impact of these processes on the physicochemical and nutrimental quality properties. Thermophysical properties (thermal conductivity [line heat source], specific heat capacity [differential scanning calorimetry], and bulk density [volume displacement]) of stem and inflorescence were measured as a function of temperature (5, 10, 20, 40, 60, and 80 °C). The activation energy and the frequency factor (Arrhenius model) of these thermophysical properties were calculated. A 3-dimensional finite element model was developed to predict the temperature history at different points inside the product. Comparison of the theoretical and experimental temperature histories was carried out. Quality parameters (firmness, total color difference, and vitamin C content) and peroxidase activity were measured. The satisfactory validation of the finite element model allows the prediction of temperature histories and profiles under different process conditions, which could lead to an eventual optimization aimed to minimize the nutritional and sensorial losses in broccoli florets. © 2015 Institute of Food Technologists®

  15. Formation of broccoli-like morphology of tantalum powder

    International Nuclear Information System (INIS)

    Suzuki, Ryosuke O.; Baba, Masahiko; Ono, Youhei; Yamamoto, Kosuke

    2005-01-01

    'Broccoli'-like morphology of Ta powder was found when Ca reduces Ta 2 O 5 in the molten CaCl 2 . It consisted of fine particles and branches, and it was different from the conventional spherical particles. The formation of this morphology depended on the stacking methods of the starting materials. Eight types of filling methods proved that the branch was formed when the CaO-enriched region was locally produced near the oxide

  16. Dietary Broccoli Lessens Development of Fatty Liver and Liver Cancer in Mice Given Diethylnitrosamine and Fed a Western or Control Diet.

    Science.gov (United States)

    Chen, Yung-Ju; Wallig, Matthew A; Jeffery, Elizabeth H

    2016-03-01

    The high-fat and high-sugar Westernized diet that is popular worldwide is associated with increased body fat accumulation, which has been related to the development of nonalcoholic fatty liver disease (NAFLD). Without treatment, NAFLD may progress to hepatocellular carcinoma (HCC), a cancer with a high mortality rate. The consumption of broccoli in the United States has greatly increased in the last 2 decades. Epidemiologic studies show that incorporating brassica vegetables into the daily diet lowers the risk of several cancers, although, to our knowledge, this is the first study to evaluate HCC prevention through dietary broccoli. We aimed to determine the impact of dietary broccoli on hepatic lipid metabolism and the progression of NAFLD to HCC. Our hypothesis was that broccoli decreases both hepatic lipidosis and the development of HCC in a mouse model of Western diet-enhanced liver cancer. Adult 5-wk-old male B6C3F1 mice received a control diet (AIN-93M) or a Western diet (high in lard and sucrose, 19% and 31%, wt:wt, respectively), with or without freeze-dried broccoli (10%, wt:wt). Starting the following week, mice were treated once per week with diethylnitrosamine (DEN; 45 mg/kg body weight intraperitoneally at ages 6, 7, 8, 10, 11, and 12 wk). Hepatic gene expression, lipidosis, and tumor outcomes were analyzed 6 mo later, when mice were 9 mo old. Mice receiving broccoli exhibited lower hepatic triglycerides (P broccoli feeding (P = 0.006), whereas microsomal triglyceride transfer protein was upregulated (P = 0.045), supporting the finding that dietary broccoli decreased hepatic triglycerides. Long-term consumption of whole broccoli countered both NAFLD development enhanced by a Western diet and hepatic tumorigenesis induced by DEN in male B6C3F1 mice. © 2016 American Society for Nutrition.

  17. Antioxidant and antiproliferative activities in different maturation stages of broccoli (Brassica oleracea Italica) biofortified with selenium.

    Science.gov (United States)

    Bachiega, Patricia; Salgado, Jocelem Mastrodi; de Carvalho, João Ernesto; Ruiz, Ana Lúcia T G; Schwarz, Kélin; Tezotto, Tiago; Morzelle, Maressa Caldeira

    2016-01-01

    In this work, three different broccoli maturity stages subjected to biofortification with selenium were evaluated for antioxidant and antiproliferative activities. Antioxidant trials have shown that the maturation stages biofortified with selenium had significantly higher amounts of phenolic compounds and antioxidant activity, especially seedlings. Although non-polar extracts of all samples show antiproliferative activity, the extract of broccoli seedlings biofortified with selenium stood out, presenting cytocidal activity for a glioma line (U251, GI50 28.5 mg L(-1)). Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Formation of broccoli-like morphology of tantalum powder

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Ryosuke O [Department of Energy Science and Technology, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501 (Japan); Baba, Masahiko [Department of Energy Science and Technology, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501 (Japan); Ono, Youhei [Department of Energy Science and Technology, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501 (Japan); Yamamoto, Kosuke [Department of Energy Science and Technology, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)

    2005-03-08

    'Broccoli'-like morphology of Ta powder was found when Ca reduces Ta{sub 2}O{sub 5} in the molten CaCl{sub 2}. It consisted of fine particles and branches, and it was different from the conventional spherical particles. The formation of this morphology depended on the stacking methods of the starting materials. Eight types of filling methods proved that the branch was formed when the CaO-enriched region was locally produced near the oxide.

  19. Molecular rational for riboflavin and CoQ10

    DEFF Research Database (Denmark)

    Cornelius, Nanna

    2013-01-01

    A new PhD project from Health, Aarhus University, shows that there is a molecular rationale for riboflavin and CoQ10 treatment in patients with Riboflavin Responsive Multiple acyl-CoA dehydrogenation deficiency. The project was carried out by Nanna Cornelius, a molecular biologist who defended her......-QO) protein. High dosis Riboflavin treatment nearly normalizes the clinical and biochemical symptoms of these patients. Until now, no studies have investigated the molecular effect of riboflavin in the patients. However, in her recently completed PhD project, Nanna Cornelius shows that riboflavin has...

  20. Formalized Linear Algebra over Elementary Divisor Rings in Coq

    OpenAIRE

    Cano , Guillaume; Cohen , Cyril; Dénès , Maxime; Mörtberg , Anders; Siles , Vincent

    2016-01-01

    International audience; This paper presents a Coq formalization of linear algebra over elementary divisor rings, that is, rings where every matrix is equivalent to a matrix in Smith normal form. The main results are the formalization that these rings support essential operations of linear algebra, the classification theorem of finitely pre-sented modules over such rings and the uniqueness of the Smith normal form up to multiplication by units. We present formally verified algorithms comput-in...

  1. Dietary Broccoli Lessens Development of Fatty Liver and Liver Cancer in Mice Given Diethylnitrosamine and Fed a Western or Control Diet123

    Science.gov (United States)

    Chen, Yung-Ju; Wallig, Matthew A; Jeffery, Elizabeth H

    2016-01-01

    Background: The high-fat and high-sugar Westernized diet that is popular worldwide is associated with increased body fat accumulation, which has been related to the development of nonalcoholic fatty liver disease (NAFLD). Without treatment, NAFLD may progress to hepatocellular carcinoma (HCC), a cancer with a high mortality rate. The consumption of broccoli in the United States has greatly increased in the last 2 decades. Epidemiologic studies show that incorporating brassica vegetables into the daily diet lowers the risk of several cancers, although, to our knowledge, this is the first study to evaluate HCC prevention through dietary broccoli. Objective: We aimed to determine the impact of dietary broccoli on hepatic lipid metabolism and the progression of NAFLD to HCC. Our hypothesis was that broccoli decreases both hepatic lipidosis and the development of HCC in a mouse model of Western diet–enhanced liver cancer. Methods: Adult 5-wk-old male B6C3F1 mice received a control diet (AIN-93M) or a Western diet (high in lard and sucrose, 19% and 31%, wt:wt, respectively), with or without freeze-dried broccoli (10%, wt:wt). Starting the following week, mice were treated once per week with diethylnitrosamine (DEN; 45 mg/kg body weight intraperitoneally at ages 6, 7, 8, 10, 11, and 12 wk). Hepatic gene expression, lipidosis, and tumor outcomes were analyzed 6 mo later, when mice were 9 mo old. Results: Mice receiving broccoli exhibited lower hepatic triglycerides (P broccoli feeding (P = 0.006), whereas microsomal triglyceride transfer protein was upregulated (P = 0.045), supporting the finding that dietary broccoli decreased hepatic triglycerides. Conclusion: Long-term consumption of whole broccoli countered both NAFLD development enhanced by a Western diet and hepatic tumorigenesis induced by DEN in male B6C3F1 mice. PMID:26865652

  2. Growth and yield of broccoli fertilized with doses of velvet bean in greenhouse

    Directory of Open Access Journals (Sweden)

    Ellen Rúbia Diniz

    2015-06-01

    Full Text Available The dose effects of green manure in vegetable crops production are still poorly understood. There are few scientific studies indicate that increasing the dose may influence plants characteristics. The objectives were to evaluate the effect of doses of velvet bean green manure on growth and yield, the partitioning of dry matter and nitrogen (N in plants of broccoli, as well as determine the apparent recovery and physiological efficiency of use N. We established four treatments plus a control. The treatments consisted of four levels of green manure: 0, 3, 6, 9 t ha-1 on a dry matter basis, with the addition of 12 t ha-1 of compost. Doses of green manure applied influenced the growth and yield of broccoli. The distribution of dry matter between plant parts of broccoli is not influenced by the doses of green manure. Doses of green manure influenced the amount of N accumulated in the inflorescence and whole plant of broccoli. The apparent recovery of N from green manure and efficiency of N use by plants of broccoli are positively associated with the applied doses.

  3. NPK, protein content and yield of broccoli as affected by gamma rays seeds irradiation and phosphorus fertilizer rates

    International Nuclear Information System (INIS)

    El-Desoki, S.A.; Abdallah, A.A.G.; Awad, S.M.; Aboel-Kheir, O.H.

    2005-01-01

    Two field experiments were carried out during 1999/2000 and 2000/2001 winter growing seasons at the experimental farm of Nuclear Research Center, Atomic Energy Authority, Inshas, Egypt. The experiments were conducted to study the effect of pre sowing-seeds irradiation with different doses of gamma rays (0, 2, 3 and 4 Gy) and different phosphorus fertilizer application rates, 0, 30, 60 and 90 k P 2 O 5 /fed) on NPK content of leaves and spear, and protein content in spears at maturity, spear diameter, main spear fresh and dry weight per plant, total spear fresh weight per plant and total spear yield. In general, exposing broccoli seeds to different gamma ray doses up to 4 Gy prior to sowing increased the above mentioned parameters with different magnitudes comparing with the non-irradiated control plants. The highest percentage of increase was obtained by exposing broccoli seeds to 3 Gy. There were non-significant differences between 3 and 4 Gy treatments during the two growing seasons. With respect to the effect of phosphorus fertilizer application rates on the studied parameters, increasing phosphorus application rates up to 90 kg P 2 O 5 /fed increased the above mentioned parameters. The highest percentage of increase was obtained by applying 90 kg P 2 O 5 /fed. The interaction, gamma ray and P level showed phosphorus there were significant differences in main spear fresh and dry weight per plant, total spear yield and spear diameter in first season. The highest value was obtained by 3 Gy and 90 kg P 2 O 5 /fed. Also there were significant effects on NPK content in broccoli leaves at 90 days after transplanting (DAT) except P in second season and nonsignificant values of broccoli spear at harvest except N, K in first season. The highest protein content of broccoli spears at harvest was obtained with 2 Gy and 30 kg P 25 /fed

  4. NPK, protein content and yield of broccoli as affected by gamma rays seeds irradiation and phosphorus fertilizer rates

    Energy Technology Data Exchange (ETDEWEB)

    El-Desoki, S A [Botany Department, Faculty of Agriculture, Moshtohor, Zagazig University (Egypt); Abdallah, A A.G.; Awad, S M; Aboel-Kheir, O H [Plant Research Department, Nuclear Research Center, Cairo (Egypt)

    2005-07-01

    Two field experiments were carried out during 1999/2000 and 2000/2001 winter growing seasons at the experimental farm of Nuclear Research Center, Atomic Energy Authority, Inshas, Egypt. The experiments were conducted to study the effect of pre sowing-seeds irradiation with different doses of gamma rays (0, 2, 3 and 4 Gy) and different phosphorus fertilizer application rates, 0, 30, 60 and 90 k P{sub 2}O{sub 5} /fed) on NPK content of leaves and spear, and protein content in spears at maturity, spear diameter, main spear fresh and dry weight per plant, total spear fresh weight per plant and total spear yield. In general, exposing broccoli seeds to different gamma ray doses up to 4 Gy prior to sowing increased the above mentioned parameters with different magnitudes comparing with the non-irradiated control plants. The highest percentage of increase was obtained by exposing broccoli seeds to 3 Gy. There were non-significant differences between 3 and 4 Gy treatments during the two growing seasons. With respect to the effect of phosphorus fertilizer application rates on the studied parameters, increasing phosphorus application rates up to 90 kg P{sub 2}O{sub 5}/fed increased the above mentioned parameters. The highest percentage of increase was obtained by applying 90 kg P{sub 2}O{sub 5}/fed. The interaction, gamma ray and P level showed phosphorus there were significant differences in main spear fresh and dry weight per plant, total spear yield and spear diameter in first season. The highest value was obtained by 3 Gy and 90 kg P{sub 2}O{sub 5}/fed. Also there were significant effects on NPK content in broccoli leaves at 90 days after transplanting (DAT) except P in second season and nonsignificant values of broccoli spear at harvest except N, K in first season. The highest protein content of broccoli spears at harvest was obtained with 2 Gy and 30 kg P{sub 25}/fed.

  5. Catalytic mechanism and inhibition of tRNA (Uracil-5-)methyltransferase: evidence for covalent catalysis

    International Nuclear Information System (INIS)

    Santi, D.V.; Hardy, L.W.

    1987-01-01

    tRNA (Ura-5-) methyltransferase catalyzes the transfer of a methyl group from S-adenosylmethionine (AdoMet) to the 5-carbon of a specific Urd residue in tRNA. This results in stoichiometric release of tritium from [5- 3 H] Urd-labeled substrate tRNA isolated from methyltransferase-deficient Escherichia coli. The enzyme also catalyzes an AdoMet-independent exchange reaction between [5- 3 H]-Urd-labeled substrate tRNA and protons of water at a rate that is about 1% that of the normal methylation reaction, but with identical stoichiometry. S-Adenosylhomocysteine inhibits the rate of the exchange reaction by 2-3-fold, whereas an analog having the sulfur of AdoMet replaced by nitrogen accelerates the exchange reaction 9-fold. In the presence (but not absence) of AdoMet, 5-fluorouracil-substituted tRNA (FUra-tRNA) leads to the first-order inactivation of the enzyme. This is accompanied by the formation of a stable covalent complex containing the enzyme, FUra-tRNA, and the methyl group AdoMet. A mechanism for catalysis is proposed that explains both the 5-H exchange reaction and the inhibition by FUra-tRNA: the enzyme forms a covalent Michael adduct with substrate or inhibitor tRNA by attack of a nucleophilic group of the enzyme at carbon 6 of the pyrimidine residue to be modified. As a result, an anion equivalent is generated at carbon 5 that is sufficiently reactive to be methylated by AdoMet. Preliminary experiments and precedents suggest that the nucleophilic catalyst of the enzyme is a thiol group of cysteine. The potent irreversible inhibition by FUra-tRNA suggest that a mechanism for the RNA effects of FUra may also involve irreversible inhibition of RNA-modifying enzymes

  6. The effect of chewing on oral glucoraphanin hydrolysis in raw and steamed broccoli

    NARCIS (Netherlands)

    Sarvan, Irmela; Klauw, van der Michelle; Oliviero, Teresa; Dekker, Matthijs; Verkerk, Ruud

    2018-01-01

    Chewing disrupts broccoli cells, and myrosinase can effectively hydrolyze the glucosinolate glucoraphanin into the biological active sulforaphane. The influence of chewing time and steaming time on glucoraphanin hydrolysis as well as sulforaphane and sulforaphane nitrile formation in broccoli was

  7. Encoding Featherweight Java with Assignment and Immutability using The Coq Proof Assistant

    DEFF Research Database (Denmark)

    Mackay, Julian; Mehnert, Hannes; Potanin, Alex

    2012-01-01

    We develop a mechanized proof of Featherweight Java with Assignment and Immutability in the Coq proof assistant. This is a step towards more machine-checked proofs of a non-trivial type system. We used object immutability close to that of IGJ [9] . We describe the challenges of the mech- anisation...

  8. Dietary broccoli sprouts protect against myocardial oxidative damage and cell death during ischemia-reperfusion.

    Science.gov (United States)

    Akhlaghi, Masoumeh; Bandy, Brian

    2010-09-01

    Cruciferous vegetables are known for antioxidant and anti-carcinogenic effects. In the current study we asked whether dietary broccoli sprouts can protect the heart from ischemia-reperfusion. Rats were fed either control diet (sham and control groups) or a diet mixed with 2% dried broccoli sprouts for 10 days. After 10 days the isolated hearts were subjected to ischemia for 20 min and reperfusion for 2 h, and evaluated for cell death, oxidative damage, and Nrf2-regulated phase 2 enzyme activities. Broccoli sprouts feeding inhibited markers of necrosis (lactate dehydrogenase release) and apoptosis (caspase-3 activity) by 78-86%, and decreased indices of oxidative stress (thiobarbituric acid reactive substances and aconitase inactivation) by 82-116%. While broccoli sprouts increased total glutathione and activities of the phase 2 enzymes glutamate cysteine ligase and quinone reductase in liver, they did not affect these in ischemic-reperfused heart. While the mechanism is not clear, the results show that a relatively short dietary treatment with broccoli sprouts can strongly protect the heart against oxidative stress and cell death caused by ischemia-reperfusion.

  9. Generation, genome edition and characterization of iPSC lines from a patient with coenzyme Q10 deficiency harboring a heterozygous mutation in COQ4 gene

    Directory of Open Access Journals (Sweden)

    Damià Romero-Moya

    2017-10-01

    Full Text Available We report the generation, CRISPR/Cas9-edition and characterization of induced pluripotent stem cell (iPSC lines from a patient with coenzyme Q10 deficiency harboring the heterozygous mutation c.483G > C in the COQ4 gene. iPSCs were generated using non-integrative Sendai Viruses containing the reprogramming factors OCT4, SOX2, KLF4 and C-MYC. The iPSC lines carried the c.483G > C COQ4 mutation, silenced the OKSM expression and were mycoplasma-free. They were bona fide pluripotent cells as characterized by morphology, immunophenotype/gene expression for pluripotent-associated markers/genes, NANOG and OCT4 promoter demethylation, karyotype and teratoma formation. The COQ4 mutation was CRISPR/Cas9 edited resulting in isogenic, diploid and off-target free COQ4-corrected iPSCs.

  10. Influences of Cry1Ac broccoli on larval survival and oviposition of diamondback moth.

    Science.gov (United States)

    Yi, Dengxia; Cui, Shusong; Yang, Limei; Fang, Zhiyuan; Liu, Yumei; Zhuang, Mu; Zhang, Yangyong

    2015-01-01

    Larval survival and oviposition behavior of three genotypes of diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae), (homozygous Cry1Ac-susceptibile, Cry1Ac-resistant, and their F1 hybrids), on transgenic Bacillus thuringiensis (Bt) broccoli expressing different levels of Cry1Ac protein were evaluated in laboratory. These Bt broccoli lines were designated as relative low, medium, and high, respectively, according to the Cry1Ac content. Untransformed brocccoli plants were used as control. Larval survival of diamondback moth on non-Bt leaves was not significantly different among the three genotypes. The Cry1Ac-resistant larvae could survive on the low level of Bt broccoli plants, while Cry1Ac-susceptible and F1 larvae could not survive on them. The three genotypes of P. xylostella larvae could not survive on medium and high levels of Bt broccoli. In oviposition choice tests, there was no significant difference in the number of eggs laid by the three P. xylostella genotypes among different Bt broccoli plants. The development of Cry1Ac-susceptible and Cry1Ac-resistant P. xylostella on intact Bt plants was also tested in greenhouse. All susceptible P. xylostella larvae died on all Bt plants, while resistant larvae could survive on broccoli, which expresses low Cry1Ac protein under greenhouse conditions. The results of the greenhouse trials were similar to that of laboratory tests. This study indicated that high dose of Bt toxins in broccoli cultivars or germplasm lines is required for effective resistance management. © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.

  11. Potential of different mechanical and thermal treatments to control off-flavour generation in broccoli puree.

    Science.gov (United States)

    Koutidou, Maria; Grauwet, Tara; Van Loey, Ann; Acharya, Parag

    2017-02-15

    The aim of this study was scientifically investigate the impact of the sequence of different thermo-mechanical treatments on the volatile profile of differently processed broccoli puree, and to investigate if any relationship persists between detected off-flavour changes and microstructural changes as a function of selected process conditions. Comparison of the headspace GC-MS fingerprinting of the differently processed broccoli purees revealed that an adequate combination of processing steps allows to reduce the level of off-flavour volatiles. Moreover, applying mechanical processing before or after the thermal processing at 90°C determines the pattern of broccoli tissue disruption, resulting into different microstructures and various enzymatic reactions inducing volatile generation. These results may aid the identification of optimal process conditions generating a reduced level of off-flavour in processed broccoli. In this way, broccoli can be incorporated as a food ingredient into mixed food products with limited implications on sensorial consumer acceptance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Intrinsic resistance to aminoglycosides in Enterococcus faecium is conferred by the 16S rRNA m5C1404-specific methyltransferase EfmM

    DEFF Research Database (Denmark)

    Galimand, Marc; Schmitt, Emmanuelle; Panvert, Michel

    2011-01-01

    methyltransferase, as well as by the previously characterized aac(6')-Ii that encodes a 6'-N-aminoglycoside acetyltransferase. Inactivation of efmM in E. faecium increases susceptibility to the aminoglycosides kanamycin and tobramycin, and, conversely, expression of a recombinant version of efmM in Escherichia coli...... confers resistance to these drugs. The EfmM protein shows significant sequence similarity to E. coli RsmF (previously called YebU), which is a 5-methylcytidine (m(5)C) methyltransferase modifying 16S rRNA nucleotide C1407. The target for EfmM is shown by mass spectrometry to be a neighboring 16S r...

  13. Ontwikkeling en validatie van computer vision technologie ten behoeve van een broccoli oogstrobot

    NARCIS (Netherlands)

    Blok, Pieter M.; Tielen, Antonius P.M.

    2018-01-01

    De selectieve en handmatige oogst van broccoli is arbeidsintensief en omvat ongeveer 35% van de totale productiekosten. Dit onderzoek is uitgevoerd om te bepalen of computer vision kan worden gebruikt om broccoli kronen te detecteren, als eerste stap in de ontwikkeling van een autonome selectieve

  14. Structural Chemistry of Human RNA Methyltransferases.

    Science.gov (United States)

    Schapira, Matthieu

    2016-03-18

    RNA methyltransferases (RNMTs) play important roles in RNA stability, splicing, and epigenetic mechanisms. They constitute a promising target class that is underexplored by the medicinal chemistry community. Information of relevance to drug design can be extracted from the rich structural coverage of human RNMTs. In this work, the structural chemistry of this protein family is analyzed in depth. Unlike most methyltransferases, RNMTs generally feature a substrate-binding site that is largely open on the cofactor-binding pocket, favoring the design of bisubstrate inhibitors. Substrate purine or pyrimidines are often sandwiched between hydrophobic walls that can accommodate planar ring systems. When the substrate base is laying on a shallow surface, a 5' flanking base is sometimes anchored in a druggable cavity. The cofactor-binding site is structurally more diverse than in protein methyltransferases and more druggable in SPOUT than in Rossman-fold enzymes. Finally, conformational plasticity observed both at the substrate and cofactor binding sites may be a challenge for structure-based drug design. The landscape drawn here may inform ongoing efforts toward the discovery of the first human RNMT inhibitors.

  15. Remote sensing of water and nitrogen stress in broccoli

    Science.gov (United States)

    Elsheikha, Diael-Deen Mohamed

    Remote sensing is being used in agriculture for crop management. Ground based remote sensing data acquisition system was used for collection of high spatial and temporal resolution data for irrigated broccoli crop. The system was composed of a small cart that ran back and forth on a rail system that was mounted on a linear move irrigation system. The cart was equipped with a sensor that had 4 discrete wavelengths; 550 nm, 660 nm, 720 nm, and 810 nm, and an infrared thermometer, all had 10 nm bandwidth. A global positioning system was used to indicate the cart position. The study consisted of two parts; the first was to evaluate remotely sensed reflectance and indices in broccoli during the growing season, and determine whether remotely sensed indices or standard deviation of indices can distinguish between nitrogen and water stress in broccoli, and the second part of the study was to evaluate remotely sensed indices and standard deviation of remotely sensed indices in broccoli during daily changes in solar zenith angle. Results indicated that nitrogen was detected using Ratio Vegetation index, RVI, Normalized Difference Vegetation Index, NDVI, Canopy Chlorophyll Concentration Index, CCCI, and also using the reflectance in the Near-Infrared, NIR, bands. The Red reflectance band capability of showing stress was not as clear as the previous indices and bands reflectance. The Canopy Chlorophyll Concentration Index, CCCI, was the most successful index. The Crop Water Stress Index was able to detect water stress but it was highly affected by the solar zenith angle change along the day.

  16. Implementation of Bourbaki's Elements of Mathematics in Coq: Part One, Theory of Sets

    Directory of Open Access Journals (Sweden)

    José Grimm

    2010-01-01

    Full Text Available This paper presents a formalization of the first book of the series ``Elements of Mathematics'' by Nicolas Bourbaki, using the Coq proof assistant.It discusses formalization of mathematics, and explains in which sense a computer proof of a statement corresponds to a proof in the Bourbaki sense, given that the Coq quantifiers are not defined in terms of Hilbert's epsilon function. The list of axioms and axiom schemes of Bourbaki is compared to the more usual Zermelo-Fraenkel theory, and to those proposed by Carlos Simpson, which form the basis of the Gaia software. Some basic constructions (union, intersection, product, function, equivalence and order relation are described, as well as some properties; this corresponds to Sections 1 to 6 of Chapter II, and the first two sections of Chapter III. A commented proof of Zermelo's theorem is also given. The code (including almost all exercises is available on the Web, underhttp://www-sop.inria.fr/apics/gaia.

  17. High amounts of broccoli in pasta-like products: nutritional evaluation and sensory acceptability

    NARCIS (Netherlands)

    Silva, E.; Gerritsen, L.; Dekker, M.; Linden, van der E.; Scholten, E.

    2013-01-01

    Pasta and noodles were enriched with concentrations of broccoli powder (BP) up to 30% (v/v). To ensure the benefits from the broccoli nutrients, their leakage during cooking should be prevented. Such leakage is determined by the microstructure. In a previous study we have shown that the

  18. Goal Translation for a Hammer for Coq (Extended Abstract

    Directory of Open Access Journals (Sweden)

    Łukasz Czajka

    2016-06-01

    Full Text Available Hammers are tools that provide general purpose automation for formal proof assistants. Despite the gaining popularity of the more advanced versions of type theory, there are no hammers for such systems. We present an extension of the various hammer components to type theory: (i a translation of a significant part of the Coq logic into the format of automated proof systems; (ii a proof reconstruction mechanism based on a Ben-Yelles-type algorithm combined with limited rewriting, congruence closure and a first-order generalization of the left rules of Dyckhoff's system LJT.

  19. Quantitative trait loci mapping of heat tolerance in a doubled haploid population of broccoli using genotyping-by-sequencing

    Science.gov (United States)

    Broccoli is a cool weather vegetable crop with a vernalization requirement to initiate and maintain floral development. Breeding for heat tolerance in broccoli has the potential to both expand viable production areas and extend the growing season. A doubled haploid (DH) population of broccoli (Bras...

  20. The potential to intensify sulforaphane formation in cooked broccoli (Brassica oleracea var. italica) using mustard seeds (Sinapis alba).

    Science.gov (United States)

    Ghawi, Sameer Khalil; Methven, Lisa; Niranjan, Keshavan

    2013-06-01

    Sulforaphane, a naturally occurring cancer chemopreventive, is the hydrolysis product of glucoraphanin, the main glucosinolate in broccoli. The hydrolysis requires myrosinase isoenzyme to be present in sufficient activity; however, processing leads to its denaturation and hence reduced hydrolysis. In this study, the effect of adding mustard seeds, which contain a more resilient isoform of myrosinase, to processed broccoli was investigated with a view to intensify the formation of sulforaphane. Thermal inactivation of myrosinase from both broccoli and mustard seeds was studied. Thermal degradation of broccoli glucoraphanin was investigated in addition to the effects of thermal processing on the formation of sulforaphane and sulforaphane nitrile. Limited thermal degradation of glucoraphanin (less than 12%) was observed when broccoli was placed in vacuum sealed bag (sous vide) and cooked in a water bath at 100°C for 8 and 12 min. Boiling broccoli in water prevented the formation of any significant levels of sulforaphane due to inactivated myrosinase. However, addition of powdered mustard seeds to the heat processed broccoli significantly increased the formation of sulforaphane. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  1. Selective small-chemical inhibitors of protein arginine methyltransferase 5 with anti-lung cancer activity.

    Directory of Open Access Journals (Sweden)

    Gui-Mei Kong

    Full Text Available Protein arginine methyltransferase 5 (PRMT5 plays critical roles in a wide variety of biological processes, including tumorigenesis. By screening a library of small chemical compounds, we identified eight compounds that selectively inhibit the PRMT5 enzymatic activity, with IC50 values ranging from 0.1 to 6 μM. Molecular docking simulation and site-directed mutagenesis indicated that identified compounds target the substrate-binding site in PRMT5. Treatment of lung cancer cells with identified inhibitors led to inhibition of the symmetrical arginine methylation of SmD3 and histones and the cellular proliferation. Oral administration of the inhibitor demonstrated antitumor activity in a lung tumor xenograft model. Thus, identified PRMT5-specific small-molecule inhibitors would help elucidate the biological roles of PRMT5 and serve as lead compounds for future drug development.

  2. Comparison of the effect of raw and blanched-frozen broccoli on DNA damage in colonocytes.

    Science.gov (United States)

    Lynn, Anthony; Fuller, Zoë; Collins, Andrew R; Ratcliffe, Brian

    2015-07-01

    Consumption of cruciferous vegetables may protect against colorectal cancer. Cruciferous vegetables are rich in a number of bioactive constituents including polyphenols, vitamins and glucosinolates. Before consumption, cruciferous vegetables often undergo some form of processing that reduces their content of bioactive constituents and may determine whether they exert protective effects. The aim of this study was to compare the ability of raw and blanched-frozen broccoli to protect colonocytes against DNA damage, improve antioxidant status and induce xenobiotic metabolizing enzymes (XME). Fifteen Landrace × Large White male pigs were divided into five age-matched and weight-matched sets (79 days, SD 3, and 34·7 kg, SD 3·9, respectively). Each set consisted of siblings to minimize genetic variation. Within each set, pigs received a cereal-based diet, unsupplemented (control) or supplemented with 600 g day(-1) of raw or blanched-frozen broccoli for 12 days. The consumption of raw broccoli caused a significant 27% increase in DNA damage in colonocytes (p = 0·03) relative to the control diet, whereas blanched-frozen broccoli had no significant effect. Both broccoli diets had no significant effect on plasma antioxidant status or hepatic and colonic XME. This study is the first to report that the consumption of raw broccoli can damage DNA in porcine colonocytes. Copyright © 2015 John Wiley & Sons, Ltd.

  3. Molecular and Functional Characterization of Broccoli EMBRYONIC FLOWER 2 Genes

    Science.gov (United States)

    Chen, Long-Fang O.; Lin, Chun-Hung; Lai, Ying-Mi; Huang, Jia-Yuan; Sung, Zinmay Renee

    2012-01-01

    Polycomb group (PcG) proteins regulate major developmental processes in Arabidopsis. EMBRYONIC FLOWER 2 (EMF2), the VEFS domain-containing PcG gene, regulates diverse genetic pathways and is required for vegetative development and plant survival. Despite widespread EMF2-like sequences in plants, little is known about their function other than in Arabidopsis and rice. To study the role of EMF2 in broccoli (Brassica oleracea var. italica cv. Elegance) development, we identified two broccoli EMF2 (BoEMF2) genes with sequence homology to and a similar gene expression pattern to that in Arabidopsis (AtEMF2). Reducing their expression in broccoli resulted in aberrant phenotypes and gene expression patterns. BoEMF2 regulates genes involved in diverse developmental and stress programs similar to AtEMF2 in Arabidopsis. However, BoEMF2 differs from AtEMF2 in the regulation of flower organ identity, cell proliferation and elongation, and death-related genes, which may explain the distinct phenotypes. The expression of BoEMF2.1 in the Arabidopsis emf2 mutant (Rescued emf2) partially rescued the mutant phenotype and restored the gene expression pattern to that of the wild type. Many EMF2-mediated molecular and developmental functions are conserved in broccoli and Arabidopsis. Furthermore, the restored gene expression pattern in Rescued emf2 provides insights into the molecular basis of PcG-mediated growth and development. PMID:22537758

  4. Chloroplast overexpression of rice caffeic acid O-methyltransferase increases melatonin production in chloroplasts via the 5-methoxytryptamine pathway in transgenic rice plants.

    Science.gov (United States)

    Choi, Geun-Hee; Lee, Hyoung Yool; Back, Kyoungwhan

    2017-08-01

    Recent analyses of the enzymatic features of various melatonin biosynthetic genes from bacteria, animals, and plants have led to the hypothesis that melatonin could be synthesized via the 5-methoxytryptamine (5-MT) pathway. 5-MT is known to be synthesized in vitro from serotonin by the enzymatic action of O-methyltransferases, including N-acetylserotonin methyltransferase (ASMT) and caffeic acid O-methyltransferase (COMT), leading to melatonin synthesis by the subsequent enzymatic reaction with serotonin N-acetyltransferase (SNAT). Here, we show that 5-MT was produced and served as a precursor for melatonin synthesis in plants. When rice seedlings were challenged with senescence treatment, 5-MT levels and melatonin production were increased in transgenic rice seedlings overexpressing the rice COMT in chloroplasts, while no such increases were observed in wild-type or transgenic seedlings overexpressing the rice COMT in the cytosol, suggesting a 5-MT transport limitation from the cytosol to chloroplasts. In contrast, cadmium treatment led to results different from those in senescence. The enhanced melatonin production was not observed in the chloroplast COMT lines relative over the cytosol COMT lines although 5-MT levels were equally induced in all genotypes upon cadmium treatment. The transgenic seedlings with enhanced melatonin in their chloroplasts exhibited improved seedling growth vs the wild type under continuous light conditions. This is the first report describing enhanced melatonin production in chloroplasts via the 5-MT pathway with the ectopic overexpression of COMT in chloroplasts in plants. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Implementation of Bourbaki's Elements of Mathematics in Coq: Part Two, From Natural Numbers to Real Numbers

    Directory of Open Access Journals (Sweden)

    José Grimm

    2016-12-01

    Full Text Available This paper describes  a formalization of the first book of the series ``Elements  of Mathematics'' by Nicolas Bourbaki, using the Coq proof assistant. In a first paper published in this journal, we presented the axioms and basic constructions (corresponding to a part of the first two chapters of book I, theory of sets. We discuss here the set of integers (third chapter of  book I, theory of set, the sets Z and Q (first chapter of book II, Algebra and the set of real numbers (Chapter 4 of  book III, General topology. We start with a comparison of the Bourbaki  approach, the Coq standard library, and the Ssreflect library, then present our implementation.

  6. Characterization of a Vitis vinifera cv. Cabernet Sauvignon 3',5'-O-methyltransferase showing strong preference for anthocyanins and glycosylated flavonols.

    Science.gov (United States)

    Lücker, Joost; Martens, Stefan; Lund, Steven T

    2010-09-01

    At ripening initiation in red grapevine (Vitis vinifera) berries, the exocarp turns color from green to red and then to purple due to the accumulation and extent of methylation of anthocyanins. The accumulation of transcripts encoding an O-methyltransferase was recently shown to be closely correlated with the onset of ripening and the degree of blue/purple pigmentation in grapevine berries; however, the biochemical function of this gene has remained uncharacterized. In this study, an O-methyltransferase cDNA that showed a distinct expression pattern when compared to closely related sequences was expressed in Escherichia coli and enzyme assays were carried out with a broad array of anthocyanin and other flavonoid substrates. We demonstrate that this enzyme carries out 3',5'-O-methylation of anthocyanins and flavonol compounds in vitro, which are known to be present in grape berries, with a preference for glycosylated substrates. The highest relative specific activity for the enzyme was found with delphinidin 3-O-glucoside as substrate. The enzyme is not able to methylate flavan type skeletons with chiral centers, such as either catechins or dihydroquercetin. The enzyme showed negligible specific activity for caffeoyl-CoA, compared to flavonol and anthocyanin substrates. Phylogenetic analysis of the O-methyltransferase suggests that it may be a member of a distinct subclass of Type 2 bivalent metal-dependent S-adenosyl-methionine O-methyltransferases. (c) 2010. Published by Elsevier Ltd. All rights reserved.

  7. Storage in high-barrier pouches increases the sulforaphane concentration in broccoli florets.

    Directory of Open Access Journals (Sweden)

    Yoshio Makino

    Full Text Available Sulforaphane is a phytochemical that is usually found in cruciferous vegetables and is known to have a depressive effect on gastric cancer. Preliminary investigations showed that the sulforaphane concentration in broccoli (Brassica oleracea var. italica florets increased under anoxia. Therefore, in the present study, we examined the effect of different atmospheric conditions on the sulforaphane concentration in broccoli and also tested whether there are concurrent effects on the concentration of ethanol, which is an unfavorable byproduct of fermentation. The sulforaphane concentration in broccoli florets was significantly elevated by 1.9- to 2.8-fold after 2 d of storage under hypoxia at ca. 0% O2 and ca. 24% CO2 at 20°C, whereas no such increase was observed following storage under normoxia at ca. 0% O2 without CO2 at 20°C. Furthermore, after 2 d, the sulforaphane concentration under hypoxia was 1.6- to 2.3-fold higher than that under normoxia. These results suggest that storage under hypoxia with high CO2 levels can elevate the sulforaphane concentration in broccoli florets. However, the elevated sulforaphane concentration could not be maintained beyond 2 d. There was no significant difference in the concentration of ethanol between florets that were stored under hypoxia with/without CO2 or normoxia at 2 d. However, the ethanol concentrations inside the pouches significantly increased between 2 d and 7 d. These findings indicate that the quality of broccoli florets can be improved through storage under hypoxia with high CO2 levels at 20°C for 2 d.

  8. Storage in high-barrier pouches increases the sulforaphane concentration in broccoli florets.

    Science.gov (United States)

    Makino, Yoshio; Nishimura, Yuto; Oshita, Seiichi; Mizosoe, Takaharu; Akihiro, Takashi

    2018-01-01

    Sulforaphane is a phytochemical that is usually found in cruciferous vegetables and is known to have a depressive effect on gastric cancer. Preliminary investigations showed that the sulforaphane concentration in broccoli (Brassica oleracea var. italica) florets increased under anoxia. Therefore, in the present study, we examined the effect of different atmospheric conditions on the sulforaphane concentration in broccoli and also tested whether there are concurrent effects on the concentration of ethanol, which is an unfavorable byproduct of fermentation. The sulforaphane concentration in broccoli florets was significantly elevated by 1.9- to 2.8-fold after 2 d of storage under hypoxia at ca. 0% O2 and ca. 24% CO2 at 20°C, whereas no such increase was observed following storage under normoxia at ca. 0% O2 without CO2 at 20°C. Furthermore, after 2 d, the sulforaphane concentration under hypoxia was 1.6- to 2.3-fold higher than that under normoxia. These results suggest that storage under hypoxia with high CO2 levels can elevate the sulforaphane concentration in broccoli florets. However, the elevated sulforaphane concentration could not be maintained beyond 2 d. There was no significant difference in the concentration of ethanol between florets that were stored under hypoxia with/without CO2 or normoxia at 2 d. However, the ethanol concentrations inside the pouches significantly increased between 2 d and 7 d. These findings indicate that the quality of broccoli florets can be improved through storage under hypoxia with high CO2 levels at 20°C for 2 d.

  9. Storage related changes of cell wall based dietary fiber components of broccoli (Brassica oleracea var. italica) stems.

    Science.gov (United States)

    Schäfer, Judith; Stanojlovic, Luisa; Trierweiler, Bernhard; Bunzel, Mirko

    2017-03-01

    Storage related changes in the cell wall composition potentially affect the texture of plant-based foods and the physiological effects of cell wall based dietary fiber components. Therefore, a detailed characterization of cell wall polysaccharides and lignins from broccoli stems was performed. Freshly harvested broccoli and broccoli stored at 20°C and 1°C for different periods of time were analyzed. Effects on dietary fiber contents, polysaccharide composition, and on lignin contents/composition were much more pronounced during storage at 20°C than at 1°C. During storage, insoluble dietary fiber contents of broccoli stems increased up to 13%. Storage related polysaccharide modifications include an increase of the portions of cellulose, xylans, and homogalacturonans and a decrease of the neutral pectic side-chains arabinans and galactans. Broccoli stem lignins are generally rich in guaiacyl units. Lignins from freshly harvested broccoli stems contain slightly larger amounts of p-hydroxyphenyl units than syringyl units. Syringyl units are predominantly incorporated into the lignin polymers during storage, resulting in increased acetyl bromide soluble lignin contents. NMR-based analysis of the interunit linkage types of broccoli stem lignins revealed comparably large portions of resinol structures for a guaiacyl rich lignin. Incorporation of syringyl units into the polymers over storage predominantly occurs through β-O-4-linkages. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Separation and Purification of Sulforaphane from Broccoli by Solid Phase Extraction

    Directory of Open Access Journals (Sweden)

    Kyung Ho Row

    2011-03-01

    Full Text Available A simple solid-phase extraction (SPE method for the determination of sulforaphane in broccoli has been developed. The optimal conditions were found to be use of a silica SPE cartridge, and ethyl acetate and dichloromethane as washing and eluting solvents, respectively, which could eliminate interferences originating from the broccoli matrix. The extracts were sufficiently clean to be directly injected into high-performance liquid chromatography (HPLC for further chromatographic analysis. Good linearity was obtained from 0.05 to 200 μg/mL (r = 0.998 for sulforaphane with the relative standard deviations less than 3.6%. The mean recoveries of sulforaphane from broccoli were more than 90.8% and the detection limit (S/N = 3:1 was 0.02 μg/mL. The SPE method provides a higher yield of sulforaphane from crude extracts compared to conventional liquid-liquid extraction.

  11. Dietary broccoli mildly improves neuroinflammation in aged mice but does not reduce lipopolysaccharide-induced sickness behavior.

    Science.gov (United States)

    Townsend, Brigitte E; Chen, Yung-Ju; Jeffery, Elizabeth H; Johnson, Rodney W

    2014-11-01

    Aging is associated with oxidative stress and heightened inflammatory response to infection. Dietary interventions to reduce these changes are therefore desirable. Broccoli contains glucoraphanin, which is converted to sulforaphane (SFN) by plant myrosinase during cooking preparation or digestion. Sulforaphane increases antioxidant enzymes including NAD(P)H quinone oxidoreductase and heme oxygenase I and inhibits inflammatory cytokines. We hypothesized that dietary broccoli would support an antioxidant response in brain and periphery of aged mice and inhibit lipopolysaccharide (LPS)-induced inflammation and sickness. Young adult and aged mice were fed control or 10% broccoli diet for 28 days before an intraperitoneal LPS injection. Social interactions were assessed 2, 4, 8, and 24 hours after LPS, and mRNA was quantified in liver and brain at 24 hours. Dietary broccoli did not ameliorate LPS-induced decrease in social interactions in young or aged mice. Interleukin-1β (IL-1β) expression was unaffected by broccoli consumption but was induced by LPS in brain and liver of adult and aged mice. In addition, IL-1β was elevated in brain of aged mice without LPS. Broccoli consumption decreased age-elevated cytochrome b-245 β, an oxidative stress marker, and reduced glial activation markers in aged mice. Collectively, these data suggest that 10% broccoli diet provides a modest reduction in age-related oxidative stress and glial reactivity, but is insufficient to inhibit LPS-induced inflammation. Thus, it is likely that SFN would need to be provided in supplement form to control the inflammatory response to LPS. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Role of coenzyme Q10 (CoQ10) in cardiac disease, hypertension and Meniere-like syndrome.

    Science.gov (United States)

    Kumar, Adarsh; Kaur, Harharpreet; Devi, Pushpa; Mohan, Varun

    2009-12-01

    Coenzyme Q10 (ubiquinone) is a mitochondrial coenzyme which is essential for the production of ATP. Being at the core of cellular energy processes it assumes importance in cells with high energy requirements like the cardiac cells which are extremely sensitive to CoQ10 deficiency produced by cardiac diseases. CoQ10 has thus a potential role for prevention and treatment of heart ailments by improving cellular bioenergetics. In addition it has an antioxidant, a free radical scavenging and a vasodilator effect which may be helpful in these conditions. It inhibits LDL oxidation and thus the progression of atherosclerosis. It decreases proinflammatory cytokines and decreases blood viscosity which is helpful in patients of heart failure and coronary artery disease. It also improves ischemia and reperfusion injury of coronary revascularisation. Significant improvement has been observed in clinical and hemodynamic parameters and in exercise tolerance in patients given adjunctive CoQ10 in doses from 60 to 200 mg daily in the various trials conducted in patients of heart failure, hypertension, ischemic heart disease and other cardiac illnesses. Recently it has been found to be an independent predictor of mortality in congestive heart failure. It has also been found to be helpful in vertigo and Meniere-like syndrome by improving the immune system. Further research is going on to establish firmly its role in the therapy of cardiovascular diseases.

  13. Impact of thermal processing on sulforaphane yield from broccoli ( Brassica oleracea L. ssp. italica).

    Science.gov (United States)

    Wang, Grace C; Farnham, Mark; Jeffery, Elizabeth H

    2012-07-11

    In broccoli, sulforaphane forms when the glucosinolate glucoraphanin is hydrolyzed by the endogenous plant thiohydrolase myrosinase. A myrosinase cofactor directs hydrolysis away from the formation of bioactive sulforaphane and toward an inactive product, sulforaphane nitrile. The cofactor is more heat sensitive than myrosinase, presenting an opportunity to preferentially direct hydrolysis toward sulforaphane formation through regulation of thermal processing. Four broccoli cultivars were microwave heated, boiled, or steamed for various lengths of time. Production of nitrile during hydrolysis of unheated broccoli varied among cultivars from 91 to 52% of hydrolysis products (Pinnacle > Marathon > Patriot > Brigadier). Boiling and microwave heating caused an initial loss of nitrile, with a concomitant increase in sulforaphane, followed by loss of sulforaphane, all within 1 min. In contrast, steaming enhanced sulforaphane yield between 1.0 and 3.0 min in all but Brigadier. These data are proof of concept that steaming for 1.0-3.0 min provides less nitrile and more sulforaphane yield from a broccoli meal.

  14. Bioavailability and kinetics of sulforaphane in humans after consumption of cooked versus raw broccoli

    NARCIS (Netherlands)

    Vermeulen, M.; Klöpping-Ketelaars, I.W.A.A.; Berg, R. van den; Vaes, W.H.J.

    2008-01-01

    The aim of this study was to determine the bioavailability and kinetics of the supposed anticarcinogen sulforaphane, the hydrolysis product of glucoraphanin, from raw and cooked broccoli. Eight men consumed 200 g of crushed broccoli, raw or cooked, with a warm meal in a randomized, free-living, open

  15. Use of a quality trait index to increase the reliability of phenotypic evaluations in broccoli

    Science.gov (United States)

    Selection of superior broccoli hybrids involves multiple considerations, including optimization of head quality traits. Quality assessment of broccoli heads is often confounded by relatively subjective human preferences for optimal appearance of heads. To assist the selection process, we assessed fi...

  16. Mutations in cauliflower and sprout broccoli grown from seeds flown in space

    Science.gov (United States)

    Wu, Hong; Huang, Congli; Zhang, Keping; Sun, Yeqing

    2010-11-01

    Cauliflower and sprout broccoli are widely planted vegetables particularly in Fujian Province, China. To study the mutation in these two types of vegetables induced from spaceflight, we flew the seeds on the 20th Chinese recoverable satellite which orbited the Earth for 18 days. After returning to the Earth, the cauliflower seeds were planted for two generations and the sprout broccoli seeds for one generation at the Xiamen Agriculture Research Institute. Of the 12 cauliflowers planted for the first generation, two showed significant phenotypical changes in both the size of the plant and the weight of the flower head. In addition, most of the space flown plants were found to be resistant to the black rot attack in the field. Cauliflowers planted for the second generation from the seeds in one of the two plants that displayed phenotypical changes in the first generation showed similar mutations. For the first generation of sprout broccoli, the rate of emergence from the flown seeds was lower than that of the control by 30%. No significant changes in the phenotype between the sprout broccolis planted from the flown seeds and the control were observed except one of the mutated sprout broccolis showed a change in the appearance in the lesser bud of the chief flower head. Results of the study demonstrated that DNA damages in some of the genes may have occurred in the seeds flown in space, and some of the changes in the genes may have inherited from the first to the second generation. The improved resistance to the black rot attack and increased size of the flower head are apparently beneficial.

  17. Cloning of genes related to aliphatic glucosinolate metabolism and the mechanism of sulforaphane accumulation in broccoli sprouts under jasmonic acid treatment.

    Science.gov (United States)

    Guo, Liping; Yang, Runqiang; Gu, Zhenxin

    2016-10-01

    Cytochrome P450 79F1 (CYP79F1), cytochrome P450 83A1 (CYP83A1), UDP-glucosyltransferase 74B1 (UGT74B1), sulfotransferase 18 (ST5b) and flavin-containing monooxygenase GS-OX1 (FMOGS - OX1 ) are important enzymes in aliphatic glucosinolate biosynthesis. In this study, their full-length cDNA in broccoli was firstly cloned, then the mechanism of sulforaphane accumulation under jasmonic acid (JA) treatment was investigated. The full-length cDNA of CYP79F1, CYP83A1, UGT74B1, ST5b and FMOGS - OX1 comprised 1980, 1652, 1592, 1378 and 1623 bp respectively. The increase in aliphatic glucosinolate accumulation in broccoli sprouts treated with JA was associated with elevated expression of genes in the aliphatic glucosinolate biosynthetic pathway. Application of 100 µmol L(-1) JA increased myrosinase (MYR) activity but did not affect epithiospecifier protein (ESP) activity in broccoli sprouts, which was supported by the expression of MYR and ESP. Sulforaphane formation in 7-day-old sprouts treated with 100 µmol L(-1) JA was 3.36 and 1.30 times that in the control and 300 µmol L(-1) JA treatment respectively. JA enhanced the accumulation of aliphatic glucosinolates in broccoli sprouts via up-regulation of related gene expression. Broccoli sprouts treated with 100 µmol L(-1) JA showed higher sulforphane formation than those treated with 300 µmol L(-1) JA owing to the higher glucoraphanin content and myrosinase activity under 100 µmol L(-1) JA treatment. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  18. Consumer acceptability and sensory profile of cooked broccoli with mustard seeds added to improve chemoprotective properties.

    Science.gov (United States)

    Ghawi, Sameer Khalil; Shen, Yuchi; Niranjan, Keshavan; Methven, Lisa

    2014-09-01

    Broccoli, a rich source of glucosinolates, is a commonly consumed vegetable of the Brassica family. Hydrolysis products of glucosinolates, isothiocyanates, have been associated with health benefits and contribute to the flavor of Brassica. However, boiling broccoli causes the myrosinase enzyme needed for hydrolysis to denature. In order to ensure hydrolysis, broccoli must either be mildly cooked or active sources of myrosinase, such as mustard seed powder, can be added postcooking. In this study, samples of broccoli were prepared in 6 different ways; standard boiling, standard boiling followed by the addition of mustard seeds, sous vide cooking at low temperature (70 °C) and sous vide cooking at higher temperature (100 °C) and sous vide cooking at higher temperature followed by the addition of mustard seeds at 2 different concentrations. The majority of consumers disliked the mildly cooked broccoli samples (70 °C, 12 min, sous vide) which had a hard and stringy texture. The highest mean consumer liking was for standard boiled samples (100 °C, 7 min). Addition of 1% mustard seed powder developed sensory attributes, such as pungency, burning sensation, mustard odor, and flavor. One cluster of consumers (32%) found mustard seeds to be a good complement to cooked broccoli; however, the majority disliked the mustard-derived sensory attributes. Where the mustard seeds were partially processed, doubling the addition to 2% led to only the same level of mustard and pungent flavors as 1% unprocessed seeds, and mean consumer liking remained unaltered. This suggests that optimization of the addition level of partially processed mustard seeds may be a route to enhance bioactivity of cooked broccoli without compromising consumer acceptability. © 2014 Institute of Food Technologists®

  19. Thermal stability of L-ascorbic acid and ascorbic acid oxidase in broccoli (Brassica oleracea var. italica).

    Science.gov (United States)

    Munyaka, Ann Wambui; Makule, Edna Edward; Oey, Indrawati; Van Loey, Ann; Hendrickx, Marc

    2010-05-01

    The thermal stability of vitamin C (including l-ascorbic acid [l-AA] and dehydroascorbic acid [DHAA]) in crushed broccoli was evaluated in the temperature range of 30 to 90 degrees C whereas that of ascorbic acid oxidase (AAO) was evaluated in the temperature range of 20 to 95 degrees C. Thermal treatments (for 15 min) of crushed broccoli at 30 to 60 degrees C resulted in conversion of l-AA to DHAA whereas treatments at 70 to 90 degrees C retained vitamin C as l-AA. These observations indicated that enzymes (for example, AAO) could play a major role in the initial phase (that is, oxidation of l-AA to DHAA) of vitamin C degradation in broccoli. Consequently, a study to evaluate the temperature-time conditions that could result in AAO inactivation in broccoli was carried out. In this study, higher AAO activity was observed in broccoli florets than stalks. During thermal treatments for 10 min, AAO in broccoli florets and stalks was stable until around 50 degrees C. A 10-min thermal treatment at 80 degrees C almost completely inactivated AAO in broccoli. AAO inactivation followed 1st order kinetics in the temperature range of 55 to 65 degrees C. Based on this study, a thermal treatment above 70 degrees C is recommended for crushed vegetable products to prevent oxidation of l-AA to DHAA, the onset of vitamin C degradation. The results reported in this study are applicable for both domestic and industrial processing of vegetables into products such as juices, soups, and purees. In this report, we have demonstrated that processing crushed broccoli in a temperature range of 30 to 60 degrees C could result in the conversion of l-ascorbic acid to dehydroascorbic (DHAA), a very important reaction in regard to vitamin C degradation because DHAA could be easily converted to other compounds that do not have the biological activity of vitamin C.

  20. Antioxidant capacity of broccoli sprouts subjected to gastrointestinal digestion.

    Science.gov (United States)

    Rychlik, Joanna; Olejnik, Anna; Olkowicz, Mariola; Kowalska, Katarzyna; Juzwa, Wojciech; Myszka, Kamila; Dembczyński, Radosław; Moyer, Mary Pat; Grajek, Włodzimierz

    2015-07-01

    Broccoli is a common vegetable recognized as a rich source of antioxidants. To date, research on the antioxidant properties of broccoli, predominantly conducted on extracts, has not considered the lesions of composition and this activity after gastrointestinal digestion. Here the stability of antioxidants during gastrointestinal digestion was evaluated in conjunction with the protective effects of broccoli sprouts (BS) against oxidative stress in human colon cells. The obtained data suggest that, among the biocompounds identified in BS, glucosinolates were mainly degraded under gastrointestinal digestion, while phenolics, particularly hydroxycinnamic acid derivatives, were the most resistant constituents. The antioxidant capacity of BS extract subjected to gastrointestinal digestion was similar to or higher than that determined for non-digested BS. Gastrointestinal digested BS extract exhibited reactive oxygen species (ROS)-inhibitory capacity in NCM460 human colon cells, with 1 mg mL(-1) showing an ROS clearance of 76.59%. A 57.33% reduction in oxidative DNA damage in NCM460 cells due to treatment with digested BS extract was observed. The results lend support to the possible application of BS as a rich source of antioxidants to improve the defensive system against oxidative stress in the human colon mucosa. © 2014 Society of Chemical Industry.

  1. Identification and characterization of microRNAs related to salt stress in broccoli, using high-throughput sequencing and bioinformatics analysis.

    Science.gov (United States)

    Tian, Yunhong; Tian, Yunming; Luo, Xiaojun; Zhou, Tao; Huang, Zuoping; Liu, Ying; Qiu, Yihan; Hou, Bing; Sun, Dan; Deng, Hongyu; Qian, Shen; Yao, Kaitai

    2014-09-03

    MicroRNAs (miRNAs) are a new class of endogenous regulators of a broad range of physiological processes, which act by regulating gene expression post-transcriptionally. The brassica vegetable, broccoli (Brassica oleracea var. italica), is very popular with a wide range of consumers, but environmental stresses such as salinity are a problem worldwide in restricting its growth and yield. Little is known about the role of miRNAs in the response of broccoli to salt stress. In this study, broccoli subjected to salt stress and broccoli grown under control conditions were analyzed by high-throughput sequencing. Differential miRNA expression was confirmed by real-time reverse transcription polymerase chain reaction (RT-PCR). The prediction of miRNA targets was undertaken using the Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthology (KO) database and Gene Ontology (GO)-enrichment analyses. Two libraries of small (or short) RNAs (sRNAs) were constructed and sequenced by high-throughput Solexa sequencing. A total of 24,511,963 and 21,034,728 clean reads, representing 9,861,236 (40.23%) and 8,574,665 (40.76%) unique reads, were obtained for control and salt-stressed broccoli, respectively. Furthermore, 42 putative known and 39 putative candidate miRNAs that were differentially expressed between control and salt-stressed broccoli were revealed by their read counts and confirmed by the use of stem-loop real-time RT-PCR. Amongst these, the putative conserved miRNAs, miR393 and miR855, and two putative candidate miRNAs, miR3 and miR34, were the most strongly down-regulated when broccoli was salt-stressed, whereas the putative conserved miRNA, miR396a, and the putative candidate miRNA, miR37, were the most up-regulated. Finally, analysis of the predicted gene targets of miRNAs using the GO and KO databases indicated that a range of metabolic and other cellular functions known to be associated with salt stress were up-regulated in broccoli treated with salt. A comprehensive

  2. The genome-wide identification and transcriptional levels of DNA methyltransferases and demethylases in globe artichoke.

    Science.gov (United States)

    Gianoglio, Silvia; Moglia, Andrea; Acquadro, Alberto; Comino, Cinzia; Portis, Ezio

    2017-01-01

    Changes to the cytosine methylation status of DNA, driven by the activity of C5 methyltransferases (C5-MTases) and demethylases, exert an important influence over development, transposon movement, gene expression and imprinting. Three groups of C5-MTase enzymes have been identified in plants, namely MET (methyltransferase 1), CMT (chromomethyltransferases) and DRM (domains rearranged methyltransferases). Here the repertoire of genes encoding C5-MTase and demethylase by the globe artichoke (Cynara cardunculus var. scolymus) is described, based on sequence homology, a phylogenetic analysis and a characterization of their functional domains. A total of ten genes encoding C5-MTase (one MET, five CMTs and four DRMs) and five demethylases was identified. An analysis of their predicted product's protein structure suggested an extensive level of conservation has been retained by the C5-MTases. Transcriptional profiling based on quantitative real time PCR revealed a number of differences between the genes encoding maintenance and de novo methyltransferases, sometimes in a tissue- or development-dependent manner, which implied a degree of functional specialization.

  3. The genome-wide identification and transcriptional levels of DNA methyltransferases and demethylases in globe artichoke.

    Directory of Open Access Journals (Sweden)

    Silvia Gianoglio

    Full Text Available Changes to the cytosine methylation status of DNA, driven by the activity of C5 methyltransferases (C5-MTases and demethylases, exert an important influence over development, transposon movement, gene expression and imprinting. Three groups of C5-MTase enzymes have been identified in plants, namely MET (methyltransferase 1, CMT (chromomethyltransferases and DRM (domains rearranged methyltransferases. Here the repertoire of genes encoding C5-MTase and demethylase by the globe artichoke (Cynara cardunculus var. scolymus is described, based on sequence homology, a phylogenetic analysis and a characterization of their functional domains. A total of ten genes encoding C5-MTase (one MET, five CMTs and four DRMs and five demethylases was identified. An analysis of their predicted product's protein structure suggested an extensive level of conservation has been retained by the C5-MTases. Transcriptional profiling based on quantitative real time PCR revealed a number of differences between the genes encoding maintenance and de novo methyltransferases, sometimes in a tissue- or development-dependent manner, which implied a degree of functional specialization.

  4. Evaluation of different cooking conditions on broccoli (Brassica oleracea var. italica) to improve the nutritional value and consumer acceptance.

    Science.gov (United States)

    Bongoni, Radhika; Verkerk, Ruud; Steenbekkers, Bea; Dekker, Matthijs; Stieger, Markus

    2014-09-01

    The objective of this study was to gain insights into the effect of the cooking method on the liking as well as the retention of glucosinolates in broccoli. With this knowledge it can be concluded whether the health aspects of broccoli be improved by the cooking method without deteriorating sensory perception. For this, broccoli was cooked by methods commonly applied by consumers: boiling with a cold (water) start; boiling with a hot (water) start; and steaming. Firmness, greenness and amount of total glucosinolates in cooked broccoli were instrumentally determined. Sensory evaluation by untrained consumers (n = 99) for liking and sensory attributes intensity rating were performed on broccoli cooked by steaming and boiling-cold start at three time points, which resulted in 'high', 'medium', 'low' firm broccoli samples. At the end of cooking, steaming showed an increase in the amount of total glucosinolates (+17%). Boiling-hot start (-41%) and boiling-cold start (-50%) showed a decrease in amount of total glucosinolates. Sensory evaluation did not show statistically significant differences between steaming and boiling-cold start in liking at 'high' and 'medium' firmness; and in the attribute intensity ratings (except for juiciness at 'medium' firmness, and flavour at 'medium' and 'low' firmness). This study demonstrates that medium firm broccoli showed optimum liking and that steaming compared to boiled-cold start showed higher amount of glucosinolates. It is concluded that the health aspects of broccoli can be improved without reducing the sensory aspects by optimising the cooking method.

  5. Increasing plant density in eastern United States broccoli production systems to maximize marketable head yields

    Science.gov (United States)

    Increased demand for fresh market broccoli (Brassica oleracea L. var. italica) has led to increased production along the eastern seaboard of the United States. Maximizing broccoli yields is a primary concern for quickly expanding eastern commercial markets. Thus, a plant density study was carried ...

  6. Stingless bees damage broccoli inflorescences when collecting fibers for nest building

    Directory of Open Access Journals (Sweden)

    Adriano Jorge Nunes dos Santos

    2012-01-01

    Full Text Available The stingless bee Trigona spinipes (Fabricius, 1793 (Hymenoptera: Apidae is an important pollinator for various crops, but constitutes an occasional pest of other plant species since it causes injury to leaves, stems, flowers and fruits while collecting nest materials. The aim of the present study was to determine the damage caused by T. spinipes to a broccoli (Brassica oleracea L. var. italica, Brassicaceae growing on an organic farm. A significant number of plants (72.5 % presented damaged inflorescences, while 39% of all of the inflorescences suffered some degree of injury. The activities of T. spinipes caused scarifications on the stems of the inflorescences, and these typically evolved to epidermal cicatrices up to 10 mm wide. In some cases, the lesions were sufficiently deep to cause partial destruction of the vascular tissues, and this lead to thinner (< 5 mm diameter floral stems that may collapse. To the best of our knowledge, this is the first report concerning the attack of broccoli plants by T. spinipes. The results obtained should serve to highlight the possibility that stingless bees could be responsible for direct and/or indirect damage to vegetable crops, and to stimulate the development of control strategies for these incidental pests.

  7. Proteomics and transcriptomics of broccoli subjected to exogenously supplied and transgenic senescence-induced cytokinin for amelioration of postharvest yellowing.

    Science.gov (United States)

    Liu, Mao-Sen; Li, Hui-Chun; Lai, Ying-Mi; Lo, Hsiao-Feng; Chen, Long-Fang O

    2013-11-20

    Previously, we investigated transgenic broccoli harboring senescence-associated-gene (SAG) promoter-triggered isopentenyltransferase (ipt), which encodes the key enzyme for cytokinin (CK) synthesis and mimics the action of exogenous supplied CK in delaying postharvest senescence of broccoli. Here, we used proteomics and transcriptomics to compare the mechanisms of ipt-transgenic and N(6)-benzylaminopurine (BA) CK treatment of broccoli during postharvest storage. The 2 treatments conferred common and distinct mechanisms. BA treatment decreased the quantity of proteins involved in energy and carbohydrate metabolism and amino acid metabolism, and ipt-transgenic treatment increased that of stress-related proteins and molecular chaperones and slightly affected levels of carbohydrate metabolism proteins. Both treatments regulated genes involved in CK signaling, sugar transport, energy and carbohydrate metabolism, amino acid metabolism and lipid metabolism, although ipt-transgenic treatment to a lesser extent. BA treatment induced genes encoding molecular chaperones, whereas ipt-transgenic treatment induced stress-related genes for cellular protection during storage. Both BA and ipt-transgenic treatments acted antagonistically on ethylene functions. We propose a long-term acclimation of metabolism and protection systems with ipt-transgenic treatment of broccoli and short-term modulation of metabolism and establishment of a protection system with both BA and ipt-transgenic treatments in delaying senescence of broccoli florets. Transgenic broccoli harboring senescence-associated-gene (SAG) promoter-triggered isopentenyltransferase (ipt), which encodes the key enzyme for cytokinin (CK) synthesis and N(6)-benzylaminopurine (BA) CK treated broccoli both showed retardation of postharvest senescence during storage. The mechanisms underlying the two treatments were compared. The combination of proteomic and transcriptomic evidences revealed that the 2 treatments conferred common

  8. Antioxidative and antitumor properties of in vitro-cultivated broccoli (Brassica oleracea var. italica).

    Science.gov (United States)

    Cakar, Jasmina; Parić, Adisa; Maksimović, Milka; Bajrović, Kasim

    2012-02-01

    Broccoli [Brassica oleracea L. var. italica Plenck. (Brassicaceae)] contains substantial quantities of bioactive compounds, which are good free radical scavengers and thus might have strong antitumor properties. Enhancing production of plant secondary metabolites could be obtained with phytohormones that have significant effects on the metabolism of secondary metabolites. In that manner, in vitro culture presents good model for manipulation with plant tissues in order to affect secondary metabolite production and thus enhance bioactive properties of plants. Estimation of the antioxidative and antitumor properties of broccoli cultivated in different in vitro conditions. In vitro germinated and cultivated broccoli seedlings, as well as spontaneously developed calli, were subjected to Soxhlet extraction. Antioxidative activity of the herbal extracts was determined using 1,1-diphenyl-2-picrylhydrazyl (DPPH(•)) radical method. Antitumor properties of the extracts were determined using crown-gall tumor inhibition (potato disc) assay. Three, 10, 20, and 30 days old broccoli seedlings, cultivated in vitro on three different Murashige-Skoog media, two types of callus, and seedlings from sterile filter paper were used for extraction. In total, 15 aqueous extracts were tested for antioxidative and antitumor potential. Three day-old seedlings showed the highest antioxidative activity. Eleven out of 15 aqueous extracts demonstrated above 50% of crown-gall tumor inhibition in comparison with the control. Tumor inhibition was in association with types and concentrations of phytohormones presented in growing media. It is demonstrated that phytohormones in plant-growing media could affect the bioactive properties of broccoli either through increasing or decreasing their antioxidative and antitumor potential.

  9. Structural analysis of an innate immunostimulant from broccoli, Brassica oleracea var. italica.

    Science.gov (United States)

    Urai, Makoto; Kataoka, Keiko; Nishida, Satoshi; Sekimizu, Kazuhisa

    2017-11-22

    Vegetables are eaten as part of a healthy diet throughout the world, and some are also applied topically as a traditional medicine. We evaluated the innate immunostimulating activities of hot water extracts of various vegetables using the silkworm muscle contraction assay system, and found that broccoli, Brassica oleracea var. italica, contains a strong innate immunostimulant. We purified the innate immunostimulant from broccoli, and characterized the chemical structure by chemical analyses and NMR spectroscopy. The innate immunostimulant comprised galacturonic acid, galactose, glucose, arabinose, and rhamnose, and had a pectic-like polysaccharide structure. To determine the structural motif involved in the innate immunostimulating activity, we modified the structure by chemical and enzymatic treatment, and found that the activity was attenuated by pectinase digestion. These findings suggest that a pectic-like polysaccharide purified from broccoli has innate immune-stimulating activity, for which the polygalacturonic acid structure is necessary.

  10. Compositional and proteomic analyses of genetically modified broccoli (Brassica oleracea var. italica) harboring an agrobacterial gene.

    Science.gov (United States)

    Liu, Mao-Sen; Ko, Miau-Hwa; Li, Hui-Chun; Tsai, Shwu-Jene; Lai, Ying-Mi; Chang, You-Ming; Wu, Min-Tze; Chen, Long-Fang O

    2014-08-28

    Previously, we showed improved shelf life for agrobacterial isopentenyltransferase (ipt) transgenic broccoli (Brassica oleracea var. italica), with yield comparable to commercial varieties, because of the protection mechanism offered by molecular chaperones and stress-related proteins. Here, we used proximate analysis to examine macronutrients, chemical and mineral constituents as well as anti-nutrient and protein changes of ipt-transgenic broccoli and corresponding controls. We also preliminarily assessed safety in mice. Most aspects were comparable between ipt-transgenic broccoli and controls, except for a significant increase in carbohydrate level and a decrease in magnesium content in ipt-transgenic lines 101, 102 and 103, as compared with non-transgenic controls. In addition, the anti-nutrient glucosinolate content was increased and crude fat content decreased in inbred control 104 and transgenic lines as compared with the parental control, "Green King". Gel-based proteomics detected more than 50 protein spots specifically found in ipt-transgenic broccoli at harvest and after cooking; one-third of these proteins showed homology to potential allergens that also play an important role in plant defense against stresses and senescence. Mice fed levels of ipt-transgenic broccoli mimicking the 120 g/day of broccoli eaten by a 60-kg human adult showed normal growth and immune function. In conclusion, the compositional and proteomic changes attributed to the transgenic ipt gene did not affect the growth and immune response of mice under the feeding regimes examined.

  11. Enseñando métodos formales con Coq

    Directory of Open Access Journals (Sweden)

    Luna, Carlos Daniel

    2006-01-01

    Full Text Available En este trabajo presentamos una propuesta para apoyar la enseñanza de métodos formales en una currícula de grado, y postgrado, usando el asistente de pruebas Coq y conceptos del área de Teoría de Tipos. Proponemos un taller de especificación, construcción y verificación de sistemas en los paradigmas de programación funcional e imperativo, que también abarca el análisis de sistemas críticos: sistemas reactivos y de tiempo real. Describimos algunas experiencias en el desarrollo del taller y planteamos cambios y extensiones.

  12. MTAP deletion confers enhanced dependency on the PRMT5 arginine methyltransferase in cancer cells | Office of Cancer Genomics

    Science.gov (United States)

    The discovery of cancer dependencies has the potential to inform therapeutic strategies and to identify putative drug targets. Integrating data from comprehensive genomic profiling of cancer cell lines and from functional characterization of cancer cell dependencies, we discovered that loss of the enzyme methylthioadenosine phosphorylase (MTAP) confers a selective dependence on protein arginine methyltransferase 5 (PRMT5) and its binding partner WDR77. MTAP is frequently lost due to its proximity to the commonly deleted tumor suppressor gene, CDKN2A.

  13. QTL-seq for rapid identification of candidate genes for flowering time in broccoli × cabbage.

    Science.gov (United States)

    Shu, Jinshuai; Liu, Yumei; Zhang, Lili; Li, Zhansheng; Fang, Zhiyuan; Yang, Limei; Zhuang, Mu; Zhang, Yangyong; Lv, Honghao

    2018-04-01

    A major QTL controlling early flowering in broccoli × cabbage was identified by marker analysis and next-generation sequencing, corresponding to GRF6 gene conditioning flowering time in Arabidopsis. Flowering is an important agronomic trait for hybrid production in broccoli and cabbage, but the genetic mechanism underlying this process is unknown. In this study, segregation analysis with BC 1 P1, BC 1 P2, F 2 , and F 2:3 populations derived from a cross between two inbred lines "195" (late-flowering) and "93219" (early flowering) suggested that flowering time is a quantitative trait. Next, employing a next-generation sequencing-based whole-genome QTL-seq strategy, we identified a major genomic region harboring a robust flowering time QTL using an F 2 mapping population, designated Ef2.1 on cabbage chromosome 2 for early flowering. Ef2.1 was further validated by indel (insertion or deletion) marker-based classical QTL mapping, explaining 51.5% (LOD = 37.67) and 54.0% (LOD = 40.5) of the phenotypic variation in F 2 and F 2:3 populations, respectively. Combined QTL-seq and classical QTL analysis narrowed down Ef1.1 to a 228-kb genomic region containing 29 genes. A cabbage gene, Bol024659, was identified in this region, which is a homolog of GRF6, a major gene regulating flowering in Arabidopsis, and was designated BolGRF6. qRT-PCR study of the expression level of BolGRF6 revealed significantly higher expression in the early flowering genotypes. Taken together, our results provide support for BolGRF6 as a possible candidate gene for early flowering in the broccoli line 93219. The identified candidate genomic regions and genes may be useful for molecular breeding to improve broccoli and cabbage flowering times.

  14. No de novo sulforaphane biosynthesis in broccoli seedlings

    NARCIS (Netherlands)

    Gorissen, Antonie; Kraut, Nicolai U.; de Visser, Ries; de Vries, Marcel; Roelofsen, Han; Vonk, Roel J.

    2011-01-01

    The isothiocyanate sulforaphane, present in significant amounts in broccoli (Brassica oleracea L.) seedlings in the form of its precursor glucoraphanin, has been identified as an inducer of quinine reductase, a phase-II detoxification enzyme known for its anticarcinogenic properties. Its

  15. RNA-seq analysis of transcriptome and glucosinolate metabolism in seeds and sprouts of broccoli (Brassica oleracea var. italic).

    Science.gov (United States)

    Gao, Jinjun; Yu, Xinxin; Ma, Fengming; Li, Jing

    2014-01-01

    Broccoli (Brassica oleracea var. italica), a member of Cruciferae, is an important vegetable containing high concentration of various nutritive and functional molecules especially the anticarcinogenic glucosinolates. The sprouts of broccoli contain 10-100 times higher level of glucoraphanin, the main contributor of the anticarcinogenesis, than the edible florets. Despite the broccoli sprouts' functional importance, currently available genetic and genomic tools for their studies are very limited, which greatly restricts the development of this functionally important vegetable. A total of ∼85 million 251 bp reads were obtained. After de novo assembly and searching the assembled transcripts against the Arabidopsis thaliana and NCBI nr databases, 19,441 top-hit transcripts were clustered as unigenes with an average length of 2,133 bp. These unigenes were classified according to their putative functional categories. Cluster analysis of total unigenes with similar expression patterns and differentially expressed unigenes among different tissues, as well as transcription factor analysis were performed. We identified 25 putative glucosinolate metabolism genes sharing 62.04-89.72% nucleotide sequence identity with the Arabidopsis orthologs. This established a broccoli glucosinolate metabolic pathway with high colinearity to Arabidopsis. Many of the biosynthetic and degradation genes showed higher expression after germination than in seeds; especially the expression of the myrosinase TGG2 was 20-130 times higher. These results along with the previous reports about these genes' studies in Arabidopsis and the glucosinolate concentration in broccoli sprouts indicate the breakdown products of glucosinolates may play important roles in the stage of broccoli seed germination and sprout development. Our study provides the largest genetic resource of broccoli to date. These data will pave the way for further studies and genetic engineering of broccoli sprouts and will also provide

  16. High frequency organogenesis in hypocotyl, cotyledon, leaf and petiole explants of broccoli (Brassica oleracea L. var. italica), an important vegetable crop.

    Science.gov (United States)

    Kumar, Pankaj; Srivastava, D K

    2015-04-01

    Broccoli (Brassica oleracea L. var. italica) is an important, nutritionally rich vegetable crop, but severely affected by environmental stresses, pests and diseases which cause massive yield and quality losses. Genetic manipulation is becoming an important method for broccoli improvement. In the present study, a reproducible and highly efficient protocol for obtaining organogenesis from hypocotyl, cotyledon, leaf and petiole explants of broccoli (Brassica oleracea L. var. italica cv. Solan green head) has been developed. Hypocotyl and cotyledon explants were used from 10 to 12 days old aseptically grown seedlings whereas leaf and petiole explants were excised from 18 to 20 days old green house grown seedlings and surface sterilized. These explants were cultured on shoot induction medium containing different concentration and combination of BAP and NAA. High efficiency shoot regeneration has been achieved in hypocotyl (83.33 %), cotyledon (90.11 %), leaf (62.96 %) and petiole (91.10 %) explants on MS medium supplemented with 3.5 mg/l BAP + 0.019 mg/l NAA 2.5 mg/l BAP + 0.5 mg/l NAA, 4.0 mg/l BAP + 0.5 mg/l NAA and 4.5 mg/l BAP + 0.019 mg/l NAA respectively. Petiole explants showed maximum shoot regeneration response as compared to other explants. MS medium supplemented with 0.10 mg/l NAA was found best for root regeneration (100 %) from in vitro developed shoots. The regenerated complete plantlets were transferred to the pots containing cocopeat and successfully acclimatized. This optimized regeneration protocol can be efficiently used for genetic transformation in broccoli. This is the first comparative report on multiple shoot induction using four different types of explants viz. hypocotyl, cotyledon, leaf and petiole.

  17. BROCCOLI: Software for Fast fMRI Analysis on Many-Core CPUs and GPUs

    Directory of Open Access Journals (Sweden)

    Anders eEklund

    2014-03-01

    Full Text Available Analysis of functional magnetic resonance imaging (fMRI data is becoming ever more computationally demanding as temporal and spatial resolutions improve, and large, publicly available data sets proliferate. Moreover, methodological improvements in the neuroimaging pipeline, such as non-linear spatial normalization, non-parametric permutation tests and Bayesian Markov Chain Monte Carlo approaches, can dramatically increase the computational burden. Despite these challenges, there do not yet exist any fMRI software packages which leverage inexpensive and powerful graphics processing units (GPUs to perform these analyses. Here, we therefore present BROCCOLI, a free software package written in OpenCL (Open Computing Language that can be used for parallel analysis of fMRI data on a large variety of hardware configurations. BROCCOLI has, for example, been tested with an Intel CPU, an Nvidia GPU and an AMD GPU. These tests show that parallel processing of fMRI data can lead to significantly faster analysis pipelines. This speedup can be achieved on relatively standard hardware, but further, dramatic speed improvements require only a modest investment in GPU hardware. BROCCOLI (running on a GPU can perform non-linear spatial normalization to a 1 mm3 brain template in 4-6 seconds, and run a second level permutation test with 10,000 permutations in about a minute. These non-parametric tests are generally more robust than their parametric counterparts, and can also enable more sophisticated analyses by estimating complicated null distributions. Additionally, BROCCOLI includes support for Bayesian first-level fMRI analysis using a Gibbs sampler. The new software is freely available under GNU GPL3 and can be downloaded from github (https://github.com/wanderine/BROCCOLI/.

  18. The histone H3 lysine 9 methyltransferase DIM-5 modifies chromatin at frequency and represses light-activated gene expression.

    Science.gov (United States)

    Ruesch, Catherine E; Ramakrishnan, Mukund; Park, Jinhee; Li, Na; Chong, Hin S; Zaman, Riasat; Joska, Tammy M; Belden, William J

    2014-11-25

    The transcriptional program controlling the circadian rhythm requires coordinated regulation of chromatin. Characterization of the chromodomain helicase DNA-binding enzyme CHD1 revealed DNA methylation in the promoter of the central clock gene frequency (frq) in Neurospora crassa. In this report, we show that the DNA methylation at frq is not only dependent on the DNA methyltransferase DIM-2 but also on the H3K9 methyltransferase DIM-5 and HP1. Histone H3 lysine 9 trimethylation (H3K9me3) occurs at frq and is most prominent 30 min after light-activated expression. Strains lacking dim-5 have an increase in light-induced transcription, and more White Collar-2 is found associated with the frq promoter. Consistent with the notion that DNA methylation assists in establishing the proper circadian phase, loss of H3K9 methylation results in a phase advance suggesting it delays the onset of frq expression. The dim-5 deletion strain displays an increase in circadian-regulated conidia formation on race tubes and there is a synthetic genetic interaction between dim-5 and ras-1(bd). These results indicate DIM-5 has a regulatory role in muting circadian output. Overall, the data support a model where facultative heterochromatic at frq serves to establish the appropriate phase, mute the light response, and repress circadian output. Copyright © 2015 Ruesch et al.

  19. Detection of the Diversity of Cytoplasmic Male Sterility Sources in Broccoli (Brassica Oleracea var. Italica) Using Mitochondrial Markers.

    Science.gov (United States)

    Shu, Jinshuai; Liu, Yumei; Li, Zhansheng; Zhang, Lili; Fang, Zhiyuan; Yang, Limei; Zhuang, Mu; Zhang, Yangyong; Lv, Honghao

    2016-01-01

    Broccoli (Brassica oleracea var. italica) is an important commercial vegetable crop. As part of an efficient pollination system, cytoplasmic male sterility (CMS) has been widely used for broccoli hybrid production. Identifying the original sources of CMS in broccoli accessions has become an important part of broccoli breeding. In this study, the diversity of the CMS sources of 39 broccoli accessions, including 19 CMS lines and 20 hybrids, were analyzed using mitochondrial markers. All CMS accessions contained the ogu orf138-related DNA fragment and the key genes of nap CMS, pol CMS, and tour CMS were not detected. The 39 CMS accessions were divided into five groups using six orf138-related and two simple sequence repeat markers. We observed that ogu CMS R3 constituted 79.49% of the CMS sources. CMS6 and CMS26 were differentiated from the other accessions using a specific primer. CMS32 was distinguished from the other accessions based on a 78-nucleotide deletion at the same locus as the orf138-related sequence. When the coefficient was about 0.90, five CMS accessions (13CMS6, 13CMS23, 13CMS24, 13CMS37, and 13CMS39) exhibiting abnormal floral organs with poor seed setting were grouped together. The polymerase chain reaction amplification profiles for these five accessions differed from those of the other accessions. We identified eight useful molecular markers that can be used to detect CMS types during broccoli breeding. Our data also provide important information relevant to future studies on the possible origins and molecular mechanisms of CMS in broccoli.

  20. Designing cyclopentapeptide inhibitor as potential antiviral drug for dengue virus ns5 methyltransferase.

    Science.gov (United States)

    Idrus, Syarifuddin; Tambunan, Usman Sumo Friend; Zubaidi, Ahmad Ardilla

    2012-01-01

    NS5 methyltransferase (Mtase) has a crucial role in the replication of dengue virus. There are two active sites on NS5 Mtase i.e., SAM and RNA-cap binding sites. Inhibition of the NS5 Mtase activity is expected to prevent the propagation of dengue virus. This study was conducted to design cyclic peptide ligands as enzyme inhibitors of dengue virus NS5 Mtase through computational approach. Cyclopentapeptides were designed as ligand of SAM binding site as much as 1635 and 736 cyclopentpeptides were designed as ligand of RNA-cap binding site. Interaction between ligand and NS5 Mtase has been conducted on the Docking simulation. The result shows that cyclopentapeptide CTWYC was the best peptide candidate on SAM binding site, with estimated free binding energy -30.72 kca/mol. Cyclopentapeptide CYEFC was the best peptide on RNA-cap binding site with estimated free binding energy -22.89 kcal/mol. Both peptides did not have tendency toward toxicity properties. So it is expected that both CTWYC and CYEFC ligands could be used as a potential antiviral drug candidates, which can inhibit the SAM and RNA-cap binding sites of dengue virus NS5 Mtase.

  1. Controlling rheology and structure of sweet potato starch noodles with high broccoli powder content by hydrocolloids

    NARCIS (Netherlands)

    Silva, E.; Birkenhake, M.; Scholten, E.; Sagis, L.M.C.; Linden, van der E.

    2013-01-01

    Incorporating high volume fractions of broccoli powder in starch noodle dough has a major effect on its shear modulus, as a result of significant swelling of the broccoli particles. Several hydrocolloids with distinct water binding capacity (locust bean gum (LBG), guar gum, konjac glucomannan (KG),

  2. DNA (Cytosine-C5) Methyltransferase Inhibition by Oligodeoxyribonucleotides Containing 2-(1H)-Pyrimidinone (Zebularine Aglycon) at the Enzymatic Target Site

    OpenAIRE

    van Bemmel, Dana M.; Brank, Adam S.; Eritja, Ramon; Marquez, Victor E.; Christman, Judith K.

    2009-01-01

    Aberrant cytosine methylation in promoter regions leads to gene silencing associated with cancer progression. A number of DNA methyltransferase inhibitors are known to reactivate silenced genes; including 5-azacytidine and 2-(1H)-pyrimidinone riboside (zebularine). Zebularine is a more stable, less cytotoxic inhibitor compared to 5-azacytidine. To determine the mechanistic basis for this difference, we carried out a detailed comparisons of the interaction between purified DNA methyltransferas...

  3. QTL-seq analysis of heat tolerance in broccoli

    Science.gov (United States)

    Broccoli (Brassica oleracea var. italica) production, worth approximately a billion dollars annually in the United States alone, is restricted in terms of location and season, due to the sensitivity of commercial cultivars to high temperatures. Heat stress during heading causes yield and quality los...

  4. A research approach for quality based design of healthy foods: Dried broccoli as a case study

    NARCIS (Netherlands)

    Oliviero, T.; Verkerk, R.; Dekker, M.

    2013-01-01

    An approach for process design based on optimization of product quality attributes is presented. Adsorption drying of broccoli with retention of its health benefits is taken as an example to illustrate the approach. Related to its content of glucosinolates, broccoli has a high potential to reduce

  5. Ozone effects on yield quality of spring oilseed rape and broccoli

    Science.gov (United States)

    Vandermeiren, Karine; De Bock, Maarten; Horemans, Nele; Guisez, Yves; Ceulemans, Reinhart; De Temmerman, Ludwig

    2012-02-01

    The impact of elevated tropospheric ozone (O 3) on the quality of spring oilseed rape ( Brassica napus cv Ability) and broccoli ( Brassica oleracea L. cv Italic cv Monaco) was assessed during a three year Open - Top Chamber (OTC) experiment. Current ambient O 3 levels were compared to an increase of 20 and 40 ppb during 8 h per day over the entire growing season. The qualitative responses were expressed as a function of the accumulated hourly O 3 concentrations over a threshold of 40 ppb (AOT40) and the phytotoxic O 3 dose above a threshold of 6 nmol s -1 m -2 projected leaf area (POD 6). Our results provide clear evidence that O 3 has an influence on the qualitative attributes of the harvested products of these Brassica species. The responses were comparable whether they were expressed as a function of the accumulated O 3 concentrations or of the modelled O 3 uptake. The protein concentration of oilseed rape seeds and broccoli heads was significantly increased in response to O 3. There was also a shift in the fatty acid composition of the vegetable oil derived from seeds of oilseed rape. Oleic acid (18:1) declined significantly ( p broccoli an important shift occurred from indolic to aliphatic GSLs although the total GSL concentration was not changed. The increase in the aliphatic/indolic GSL ratio ( p broccoli were not influenced by O 3; glutathione (GSH) was slightly increased in response to a higher O 3 uptake ( p < 0.05). The consequences of these changes with regard to food and feed quality and human health are discussed.

  6. Regional hybrid broccoli trials provide a means to further breeding efforts of this increasingly important vegetable crop

    Science.gov (United States)

    A Coordinated Agricultural Project (CAP) entitled “Establishing an Eastern Broccoli Industry” is funded under the Specialty Crop Research Initiative (SCRI), and a primary component of the project is a system of regional hybrid broccoli trials conducted along the eastern seaboard. Hybrids currently ...

  7. Ozone dose-response relationships for spring oilseed rape and broccoli

    Science.gov (United States)

    De Bock, Maarten; Op de Beeck, Maarten; De Temmerman, Ludwig; Guisez, Yves; Ceulemans, Reinhart; Vandermeiren, Karine

    2011-03-01

    Tropospheric ozone is an important air pollutant with known detrimental effects for several crops. Ozone effects on seed yield, oil percentage, oil yield and 1000 seed weight were examined for spring oilseed rape ( Brassica napus cv. Ability). For broccoli ( Brassica oleracea L. cv. Italica cv. Monaco) the effects on fresh marketable weight and total dry weight were studied. Current ozone levels were compared with an increase of 20 and 40 ppb during 8 h per day, over the entire growing season. Oilseed rape seed yield was negatively correlated with ozone dose indices calculated from emergence until harvest. This resulted in an R2 of 0.24 and 0.26 ( p broccoli the applied ozone doses had no effect on yield.

  8. Validation of the Analytical Method for the Determination of Flavonoids in Broccoli

    Directory of Open Access Journals (Sweden)

    Tuszyńska Magdalena

    2014-09-01

    Full Text Available A simple, accurate and selective HPLC method was developed and validated for determination of quercetin and kaempferol, which are the main flavonols in broccoli. The separation was achieved on a reversed-phase C18 column using a mobile phase composed of methanol/water (60/40 and phosphoric acid 0.2% at a flow rate of 1.0 ml min-1. The detection was carried out on a DAD detector at 370 nm. This method was validated according to the requirements for new methods, which include selectivity, linearity, precision, accuracy, limit of detection and limit of quantitation. The current method demonstrates good linearity, with R2 > 0.99. The recovery is within 98.07-102.15% and 97.92-101.83% for quercetin and kaempferol, respectively. The method is selective, in that quercetin and kaempferol are well separated from other compounds of broccoli with good resolution. The low limit of detection and limit of quantitation of quercetin and kaempferol enable the detection and quantitation of these flavonoids in broccoli at low con–centrations.

  9. The effects of UV radiation during the vegetative period on antioxidant compounds and postharvest quality of broccoli (Brassica oleracea L.).

    Science.gov (United States)

    Topcu, Yasin; Dogan, Adem; Kasimoglu, Zehra; Sahin-Nadeem, Hilal; Polat, Ersin; Erkan, Mustafa

    2015-08-01

    In this study, the effects of supplementary UV radiation during the vegetative period on antioxidant compounds, antioxidant activity and postharvest quality of broccoli heads during long term storage was studied. The broccolis were grown under three different doses of supplementary UV radiation (2.2, 8.8 and 16.4 kJ/m(2)/day) in a soilless system in a glasshouse. Harvested broccoli heads were stored at 0 °C in modified atmosphere packaging for 60 days. The supplementary UV radiation (280-315 nm) during the vegetative period significantly decreased total carotenoid, the chlorophyll a and chlorophyll b content but increased the ascorbic acid, total phenolic and flavonoid contents of broccolis. All supplementary UV treatments slightly reduced the antioxidant activity of the broccolis, however, no remarkable change was observed between 2.2 and 8.8 kJ/m(2) radiation levels. The sinigrin and glucotropaeolin contents of the broccolis were substantially increased by UV treatments. The prolonged storage period resulted in decreased ascorbic acid, total phenolic and flavonoid contents, as well as antioxidant activity. Discoloration of the heads, due to decreased chlorophyll and carotenoid contents, was also observed with prolonged storage duration. Glucosinolates levels showed an increasing tendency till the 45th day of storage, and then their levels started to decline. The weight loss of broccoli heads during storage progressively increased with storage time in all treatments. Total soluble solids, solids content and titratable acidity decreased continuously during storage. Titratable acidity was not affected by UV radiation doses during the storage time whereas soluble solids and solids content (dry matter) were significantly affected by UV doses. Supplementary UV radiation increased the lightness (L*) and chroma (C*) values of the broccoli heads. Pre-harvest UV radiation during vegetative period seems to be a promising tool for increasing the beneficial health components

  10. Roles of DNA methyltransferases in Arabidopsis development ...

    African Journals Online (AJOL)

    Mutations that cause severe loss of DNA methylation often leads to abnormal development. In the present review, we summarized recent findings of the three major DNA methyltransferases mutants playing vital role in development of Arabidopsis thaliana. Keywords: DNA methylation, epigenetics, methyltransferase, mutant ...

  11. Continued selenium biofortification of carrots and broccoli grown in soils once amended with Se-enriched S. pinnata

    Directory of Open Access Journals (Sweden)

    Gary S. Bañuelos

    2016-08-01

    Full Text Available Selenium (Se biofortification has been practiced in Se-deficient regions throughout the world primarily by adding inorganic sources of Se to the soil. Considering the use of adding organic sources of Se could be useful as an alternative Se amendment for the production of Se-biofortified food crops. In this multi-year micro-plot study, we investigate growing carrots and broccoli in soils that had been previously amended with Se-enriched Stanleya pinnata Pursh (Britton three and four years prior to planting one and two, respectively. Results showed that total and extractable Se concentrations in soils (0-30 cm were 1.65 mg kg-1 and 88 µg L-1, and 0.92 mg kg-1 and 48.6 µg L-1 at the beginning of the growing season for planting one and two, respectively. After each respective growing season, total Se concentrations in the broccoli florets and carrots ranged from 6.99 to 7.83 mg kg-1 and 3.15 to 6.25 mg kg-1 in planting one and two, respectively. In broccoli and carrot plant tissues, SeMet (selenomethionine was the predominant selenoamino acid identified in Se aqueous extracts. In postharvest soils from planting one, phospholipid analyses (PLFA showed that amending the soil with S. pinnata exerted no effect on the microbial biomass, AMF (arbuscular mycorrhizal fungi, actinomycetes and Gram-positive and bacterial PLFA at both 0-5 and 0-30 cm, respectively, three years later. Successfully producing Se-enriched broccoli and carrots three and four years later after amending soil with Se-enriched S. pinnata clearly demonstrates its potential source as an organic Se enriched fertilizer for Se-deficient regions.

  12. Chemopreventive glucosinolate accumulation in various broccoli and collard tissues: Microfluidic-based targeted transcriptomics for by-product valorization.

    Science.gov (United States)

    Lee, Young-Sang; Ku, Kang-Mo; Becker, Talon M; Juvik, John A

    2017-01-01

    Floret, leaf, and root tissues were harvested from broccoli and collard cultivars and extracted to determine their glucosinolate and hydrolysis product profiles using high performance liquid chromatography and gas chromotography. Quinone reductase inducing bioactivity, an estimate of anti-cancer chemopreventive potential, of the extracts was measured using a hepa1c1c7 murine cell line. Extracts from root tissues were significantly different from other tissues and contained high levels of gluconasturtiin and glucoerucin. Targeted gene expression analysis on glucosinolate biosynthesis revealed that broccoli root tissue has elevated gene expression of AOP2 and low expression of FMOGS-OX homologs, essentially the opposite of what was observed in broccoli florets, which accumulated high levels of glucoraphanin. Broccoli floret tissue has significantly higher nitrile formation (%) and epithionitrile specifier protein gene expression than other tissues. This study provides basic information of the glucosinolate metabolome and transcriptome for various tissues of Brassica oleracea that maybe utilized as potential byproducts for the nutraceutical market.

  13. Effect of matrix and particle type on rheological, textural and structural properties of broccoli pasta and noodles

    NARCIS (Netherlands)

    Silva, E.; Sagis, L.M.C.; Linden, van der E.; Scholten, E.

    2013-01-01

    Durum wheat semolina (DWS) pasta and sweet potato starch (SPS) noodles were incorporated with dif ferent volume fractions and types of broccoli powder (up to 20% v/v). The incorporation of high volume fractions of broccoli powder produced in-house in SPS noodles increases the modulus of the dough

  14. UVA, UVB Light, and Methyl Jasmonate, Alone or Combined, Redirect the Biosynthesis of Glucosinolates, Phenolics, Carotenoids, and Chlorophylls in Broccoli Sprouts

    Science.gov (United States)

    Moreira-Rodríguez, Melissa; Benavides, Jorge

    2017-01-01

    Broccoli sprouts contain health-promoting phytochemicals that can be enhanced by applying ultraviolet light (UV) or phytohormones. The separate and combined effects of methyl jasmonate (MJ), UVA, or UVB lights on glucosinolate, phenolic, carotenoid, and chlorophyll profiles were assessed in broccoli sprouts. Seven-day-old broccoli sprouts were exposed to UVA (9.47 W/m2) or UVB (7.16 W/m2) radiation for 120 min alone or in combination with a 25 µM MJ solution, also applied to sprouts without UV supplementation. UVA + MJ and UVB + MJ treatments increased the total glucosinolate content by ~154% and ~148%, respectively. MJ induced the biosynthesis of indole glucosinolates, especially neoglucobrassicin (~538%), showing a synergistic effect with UVA stress. UVB increased the content of aliphatic and indole glucosinolates, such as glucoraphanin (~78%) and 4-methoxy-glucobrassicin (~177%). UVA increased several phenolics such as gallic acid (~57%) and a kaempferol glucoside (~25.4%). MJ treatment decreased most phenolic levels but greatly induced accumulation of 5-sinapoylquinic acid (~239%). MJ treatments also reduced carotenoid and chlorophyll content, while UVA increased lutein (~23%), chlorophyll b (~31%), neoxanthin (~34%), and chlorophyll a (~67%). Results indicated that UV- and/or MJ-treated broccoli sprouts redirect the carbon flux to the biosynthesis of specific glucosinolates, phenolics, carotenoids, and chlorophylls depending on the type of stress applied. PMID:29113068

  15. UVA, UVB Light, and Methyl Jasmonate, Alone or Combined, Redirect the Biosynthesis of Glucosinolates, Phenolics, Carotenoids, and Chlorophylls in Broccoli Sprouts.

    Science.gov (United States)

    Moreira-Rodríguez, Melissa; Nair, Vimal; Benavides, Jorge; Cisneros-Zevallos, Luis; Jacobo-Velázquez, Daniel A

    2017-11-04

    Broccoli sprouts contain health-promoting phytochemicals that can be enhanced by applying ultraviolet light (UV) or phytohormones. The separate and combined effects of methyl jasmonate (MJ), UVA, or UVB lights on glucosinolate, phenolic, carotenoid, and chlorophyll profiles were assessed in broccoli sprouts. Seven-day-old broccoli sprouts were exposed to UVA (9.47 W/m²) or UVB (7.16 W/m²) radiation for 120 min alone or in combination with a 25 µM MJ solution, also applied to sprouts without UV supplementation. UVA + MJ and UVB + MJ treatments increased the total glucosinolate content by ~154% and ~148%, respectively. MJ induced the biosynthesis of indole glucosinolates, especially neoglucobrassicin (~538%), showing a synergistic effect with UVA stress. UVB increased the content of aliphatic and indole glucosinolates, such as glucoraphanin (~78%) and 4-methoxy-glucobrassicin (~177%). UVA increased several phenolics such as gallic acid (~57%) and a kaempferol glucoside (~25.4%). MJ treatment decreased most phenolic levels but greatly induced accumulation of 5-sinapoylquinic acid (~239%). MJ treatments also reduced carotenoid and chlorophyll content, while UVA increased lutein (~23%), chlorophyll b (~31%), neoxanthin (~34%), and chlorophyll a (~67%). Results indicated that UV- and/or MJ-treated broccoli sprouts redirect the carbon flux to the biosynthesis of specific glucosinolates, phenolics, carotenoids, and chlorophylls depending on the type of stress applied.

  16. Using weighted trait indices to select the best performing broccoli hybrids in multi-site and multi-year trials

    Science.gov (United States)

    Understanding and implementing evaluation data from vegetable trials conducted across multiple years and environments by multiple raters presents numerous challenges. In order to select new broccoli hybrids suitable for eastern production, the SCRI East Coast Broccoli Project has conducted over 32 p...

  17. Ingestion of broccoli sprouts does not improve endothelial function in humans with hypertension

    DEFF Research Database (Denmark)

    Christiansen, Buris; Bellostas Muguerza, Natalia; Petersen, Atheline Major

    2010-01-01

    be the case in humans suffering from essential hypertension. METHODS: 40 hypertensive individuals without diabetes and with normal levels of cholesterol were examined. The participants were randomized either to ingest 10 g dried broccoli sprouts, a natural donor of glucosinolates with high in vitro...... groups. Diastolic blood pressure stayed essentially unchanged in both groups, while the systolic blood pressure showed a small non significant decrease (9 mm Hg) in the interventional group from a value of 153 mm Hg at start. CONCLUSION: Daily ingestion of 10 g dried broccoli sprouts does not improve...

  18. UVA, UVB Light Doses and Harvesting Time Differentially Tailor Glucosinolate and Phenolic Profiles in Broccoli Sprouts.

    Science.gov (United States)

    Moreira-Rodríguez, Melissa; Nair, Vimal; Benavides, Jorge; Cisneros-Zevallos, Luis; Jacobo-Velázquez, Daniel A

    2017-06-26

    Broccoli sprouts contain health-promoting glucosinolate and phenolic compounds that can be enhanced by applying ultraviolet light (UV). Here, the effect of UVA or UVB radiation on glucosinolate and phenolic profiles was assessed in broccoli sprouts. Sprouts were exposed for 120 min to low intensity and high intensity UVA (UVA L , UVA H ) or UVB (UVB L , UVB H ) with UV intensity values of 3.16, 4.05, 2.28 and 3.34 W/m², respectively. Harvest occurred 2 or 24 h post-treatment; and methanol/water or ethanol/water (70%, v / v ) extracts were prepared. Seven glucosinolates and 22 phenolics were identified. Ethanol extracts showed higher levels of certain glucosinolates such as glucoraphanin, whereas methanol extracts showed slight higher levels of phenolics. The highest glucosinolate accumulation occurred 24 h after UVB H treatment, increasing 4-methoxy-glucobrassicin, glucobrassicin and glucoraphanin by ~170, 78 and 73%, respectively. Furthermore, UVA L radiation and harvest 2 h afterwards accumulated gallic acid hexoside I (~14%), 4- O -caffeoylquinic acid (~42%), gallic acid derivative (~48%) and 1-sinapoyl-2,2-diferulolyl-gentiobiose (~61%). Increases in sinapoyl malate (~12%), gallotannic acid (~48%) and 5-sinapoyl-quinic acid (~121%) were observed with UVB H Results indicate that UV-irradiated broccoli sprouts could be exploited as a functional food for fresh consumption or as a source of bioactive phytochemicals with potential industrial applications.

  19. UVA, UVB Light Doses and Harvesting Time Differentially Tailor Glucosinolate and Phenolic Profiles in Broccoli Sprouts

    Directory of Open Access Journals (Sweden)

    Melissa Moreira-Rodríguez

    2017-06-01

    Full Text Available Broccoli sprouts contain health-promoting glucosinolate and phenolic compounds that can be enhanced by applying ultraviolet light (UV. Here, the effect of UVA or UVB radiation on glucosinolate and phenolic profiles was assessed in broccoli sprouts. Sprouts were exposed for 120 min to low intensity and high intensity UVA (UVAL, UVAH or UVB (UVBL, UVBH with UV intensity values of 3.16, 4.05, 2.28 and 3.34 W/m2, respectively. Harvest occurred 2 or 24 h post-treatment; and methanol/water or ethanol/water (70%, v/v extracts were prepared. Seven glucosinolates and 22 phenolics were identified. Ethanol extracts showed higher levels of certain glucosinolates such as glucoraphanin, whereas methanol extracts showed slight higher levels of phenolics. The highest glucosinolate accumulation occurred 24 h after UVBH treatment, increasing 4-methoxy-glucobrassicin, glucobrassicin and glucoraphanin by ~170, 78 and 73%, respectively. Furthermore, UVAL radiation and harvest 2 h afterwards accumulated gallic acid hexoside I (~14%, 4-O-caffeoylquinic acid (~42%, gallic acid derivative (~48% and 1-sinapoyl-2,2-diferulolyl-gentiobiose (~61%. Increases in sinapoyl malate (~12%, gallotannic acid (~48% and 5-sinapoyl-quinic acid (~121% were observed with UVBH Results indicate that UV-irradiated broccoli sprouts could be exploited as a functional food for fresh consumption or as a source of bioactive phytochemicals with potential industrial applications.

  20. Plant regeneration of Brassica oleracea subsp. italica (Broccoli) CV ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-03

    Jun 3, 2009 ... Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul. Ehsan, Malaysia. Accepted 20 March, 2009. Hypocotyls and shoot tips were used as explants in in vitro plant regeneration of broccoli (Brassica oleracea subsp.italica) cv. Green Marvel.

  1. Vitamin C, Phenolic Compounds and Antioxidant Capacity of Broccoli Florets Grown under Different Nitrogen Treatments Combined with Selenium

    Directory of Open Access Journals (Sweden)

    Peñas Elena

    2018-06-01

    Full Text Available Broccoli consumption is rising worldwide and fertilization is a tool to increase its production. However, little is known about the effect of mineral supplementation to the soil on the bioactive compounds. Therefore, the aim of this investigation was to analyze the content of vitamin C, total phenolic compounds and the antioxidant capacity of broccoli florets cultivated under different nitrogen (N conditions in combination with selenium (IV and VI. Greenhouse experiments were conducted in broccoli grown in commercial soil treated with different N sources [(NH42SO4, NaNO3, NH4NO3 or CO(NH22 at 160 kg N/ha]. In addition, selenium (Se salts [Na2SeO3 (Se IV or Na2SeO4 (Se VI at 10 and 20 kg Se/ha] were applied. There were no evidences of the influence of N treatment on vitamin C content whilst Se (IV or VI uptake led to a significant reduction of this vitamin in broccoli florets, irrespective of the N source. In contrast, total phenolics content and antioxidant capacity underwent a significant increment under N application. However, their combination with Se salts modified total phenolic content and antioxidant capacities in broccoli florets depending on N source and Se doses. Among all the experimental trials, application of NH4NO3 combined with 10 g Se (IV/ha was the elective treatment strategy to produce broccoli florets with higher content of phenolic compounds and antioxidant capacity and, therefore, enhanced functionality.

  2. Utility of the broccoli sign in the distinction of prolapsed uterine tumor from cervical tumor

    Energy Technology Data Exchange (ETDEWEB)

    Jha, Priyanka; Chang, Stephanie T. [Department of Radiology, University of California San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143-0628 (United States); Rabban, Joseph T. [Department of Anatomic Pathology, University of California San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143-0628 (United States); Chen, Lee-may [Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143-0628 (United States); Yeh, Benjamin M. [Department of Radiology, University of California San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143-0628 (United States); Coakley, Fergus V., E-mail: Fergus.Coakley@radiology.ucsf.edu [Department of Radiology, University of California San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143-0628 (United States)

    2012-08-15

    Objective: To describe the utility, histopathological basis, and clinical correlates of the broccoli sign. Methods: The committee on human research approved this HIPAA compliant study and waived written informed consent. Based on the records of the senior author and our multidisciplinary Gynecologic Oncology Tumor Board, we retrospectively identified thirteen women (mean age of 48.8 years; range, 34-74) with a cervical mass seen at MR imaging (n = 13) or CT (n = 5) that demonstrated the previously reported broccoli sign (i.e., a soft tissue stalk connecting the cervical mass to the uterine cavity) on one or other modality. All available clinical, imaging, and histopathological records were reviewed, with particular emphasis on initially suspected diagnosis, final proven diagnosis, and outcome. Results: Cervical cancer was the initial clinically suspected diagnosis in 6 of 13 patients. Surgical resection demonstrated prolapsed uterine tumor in all patients, consisting of endometrioid adenocarcinoma (n = 7), carcinosarcoma (n = 2), adenosarcoma (n = 1), and leiomyoma (n = 3). Excluding the three patients with leiomyomas, currently, 7 patients with malignant tumors are disease free after a mean interval of 15 months (range, 3-45) and 3 patients have been lost to follow-up. Conclusion: A stalk connecting an apparent cervical mass seen at CT or MR imaging to the endometrial cavity ('broccoli sign') favors the diagnosis of a prolapsed uterine tumor; these prolapsed uterine tumors can often be malignant but appear to have a good prognosis.

  3. Utility of the broccoli sign in the distinction of prolapsed uterine tumor from cervical tumor

    International Nuclear Information System (INIS)

    Jha, Priyanka; Chang, Stephanie T.; Rabban, Joseph T.; Chen, Lee-may; Yeh, Benjamin M.; Coakley, Fergus V.

    2012-01-01

    Objective: To describe the utility, histopathological basis, and clinical correlates of the broccoli sign. Methods: The committee on human research approved this HIPAA compliant study and waived written informed consent. Based on the records of the senior author and our multidisciplinary Gynecologic Oncology Tumor Board, we retrospectively identified thirteen women (mean age of 48.8 years; range, 34–74) with a cervical mass seen at MR imaging (n = 13) or CT (n = 5) that demonstrated the previously reported broccoli sign (i.e., a soft tissue stalk connecting the cervical mass to the uterine cavity) on one or other modality. All available clinical, imaging, and histopathological records were reviewed, with particular emphasis on initially suspected diagnosis, final proven diagnosis, and outcome. Results: Cervical cancer was the initial clinically suspected diagnosis in 6 of 13 patients. Surgical resection demonstrated prolapsed uterine tumor in all patients, consisting of endometrioid adenocarcinoma (n = 7), carcinosarcoma (n = 2), adenosarcoma (n = 1), and leiomyoma (n = 3). Excluding the three patients with leiomyomas, currently, 7 patients with malignant tumors are disease free after a mean interval of 15 months (range, 3–45) and 3 patients have been lost to follow-up. Conclusion: A stalk connecting an apparent cervical mass seen at CT or MR imaging to the endometrial cavity (“broccoli sign”) favors the diagnosis of a prolapsed uterine tumor; these prolapsed uterine tumors can often be malignant but appear to have a good prognosis.

  4. Proteomic analysis of broccoli (Brassica oleracea) under high temperature and waterlogging stresses.

    Science.gov (United States)

    Lin, Hsin-Hung; Lin, Kuan-Hung; Chen, Su-Ching; Shen, Yu-Hsing; Lo, Hsiao-Feng

    2015-12-01

    The production of broccoli (Brassica oleracea) is largely reduced by waterlogging and high temperature stresses. Heat-tolerant and heat-susceptible broccoli cultivars TSS-AVRDC-2 and B-75, respectively, were used for physiological and proteomic analyses. The objective of this study was to identify TSS-AVRDC-2 and B-75 proteins differentially regulated at different time periods in response to waterlogging at 40 °C for three days. TSS-AVRDC-2 exhibited significantly higher chlorophyll content, lower stomatal conductance, and better H 2 O 2 scavenging under stress in comparison to B-75. Two-dimensional liquid phase fractionation analyses revealed that Rubisco proteins in both varieties were regulated under stressing treatments, and that TSS-AVRDC-2 had higher levels of both Rubisco large and small subunit transcripts than B-75 when subjected to high temperature and/or waterlogging. This report utilizes physiological and proteomic approaches to discover changes in the protein expression profiles of broccoli in response to heat and waterlogging stresses. Higher levels of Rubisco proteins in TSS-AVRDC-2 could lead to increased carbon fixation efficiency to provide sufficient energy to enable stress tolerance under waterlogging at 40 °C.

  5. Influence of Interval Between Postharvest Lettuce Residue Management and Subsequent Seeding of Broccoli on Cabbage Maggot (Diptera: Anthomyiidae) Infestation on Broccoli.

    Science.gov (United States)

    Joseph, Shimat V; Godfrey, Larry D; Bettiga, Christopher

    2017-10-01

    Larval stages of cabbage maggot, Delia radicum (L.) (Diptera: Anthomyiidae), attack the roots of Brassica crops and cause severe economic damage. In the Salinas Valley of California, Brassica crops are often planted after successive lettuce (Lactuca sativa L.) crops. The interval between postharvest soil incorporation of lettuce residue and the subsequent Brassica crop can be as short as 7 d, which could influence D. radicum infestation on broccoli (Brassica oleracea var. italica Plenck). In 2014 and 2015, the effect of intervals between crops (IBC) on D. radicum infestation was evaluated. The treatments were 7, 20, 33, and 48 d IBC, and NL (no lettuce), 7, 21, 36, and 49 d IBC in 2014 and 2015, respectively. Insect counts and feeding damage on broccoli was assessed during 3-6 wk after planting. Adult Delia fly captures were significantly greater at 7 d than 36-49 d IBC in both years. In both years, D. radicum eggs collected were significantly greater at 7 d than at 33 d or 36 d IBC plots. Larvae collected were significantly greater at 7 d IBC than all other treatments in 2014, but not in 2015. Similarly, severity of feeding injury was significantly greater in 7 d than 33 d or 48 d IBC in 2014, but not in 2015. In 2015, broccoli with no prior lettuce had significantly lower Delia flies and D. radicum egg densities than 7 d or 21 d IBC. The implication of these results as a cultural control tactic for D. radicum infestation is discussed. © The Author 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. An overview of health-promoting compounds of broccoli (Brassica oleracea var. italica) and the effect of processing.

    Science.gov (United States)

    Mahn, Andrea; Reyes, Alejandro

    2012-12-01

    Broccoli offers many heath-promoting properties owing to its content of antioxidant and anticarcinogenic compounds. The concentration and bioavailability of polyphenols, glucosinolates, sulforaphane and selenium depend on plant biochemistry, cultivation strategy and type of processing. In this article, the main biochemical properties of broccoli are reviewed regarding their health-promoting effects. Additionally, the way these properties are affected by processing is discussed. Steaming and drying result in an apparent increment of sulforaphane content as well as antioxidant activity, most likely due to an increase of the extractability of antioxidants and sulforaphane. Freezing and boiling diminish polyphenols concentration, mainly due to volatilization and leaching into the cooking water. In view of these results, the optimization of broccoli processing in order to maximize the content of bioactive compounds should be possible. The effect of processing on selenium compounds has been poorly studied so far, and therefore this topic should be investigated in the future. Finally, the effect of operating conditions in different drying processes on the content of bioactive compounds in broccoli should be investigated in a greater depth.

  7. Effect of water content and temperature on inactivation kinetics of myrosinase in broccoli (Brassica oleracea var. italica).

    Science.gov (United States)

    Oliviero, T; Verkerk, R; Van Boekel, M A J S; Dekker, M

    2014-11-15

    Broccoli belongs to the Brassicaceae plant family consisting of widely eaten vegetables containing high concentrations of glucosinolates. Enzymatic hydrolysis of glucosinolates by endogenous myrosinase (MYR) can form isothiocyanates with health-promoting activities. The effect of water content (WC) and temperature on MYR inactivation in broccoli was investigated. Broccoli was freeze dried obtaining batches with WC between 10% and 90% (aw from 0.10 to 0.96). These samples were incubated for various times at different temperatures (40-70°C) and MYR activity was measured. The initial MYR inactivation rates were estimated by the first-order reaction kinetic model. MYR inactivation rate constants were lower in the driest samples (10% WC) at all studied temperatures. Samples with 67% and 90% WC showed initial inactivation rate constants all in the same order of magnitude. Samples with 31% WC showed intermediate initial inactivation rate constants. These results are useful to optimise the conditions of drying processes to produce dried broccoli with optimal MYR retention for human health. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Changes in SeMSC, glucosinolates and sulforaphane levels, and in proteome profile in broccoli (Brassica oleracea var. Italica) fertilized with sodium selenate.

    Science.gov (United States)

    Sepúlveda, Ignacio; Barrientos, Herna; Mahn, Andrea; Moenne, Alejandra

    2013-05-07

    The aim of this work was to analyze the effect of sodium selenate fortification on the content of selenomethyl selenocysteine (SeMSC), total glucosinolates and sulforaphane, as well as the changes in protein profile of the inflorescences of broccoli (Brassica oleracea var. Italica). Two experimental groups were considered: plants treated with 100 μmol/L sodium selenate (final concentration in the pot) and control plants treated with water. Fortification began 2 weeks after transplantation and was repeated once a week during 10 weeks. Broccoli florets were harvested when they reached appropriate size. SeMSC content in broccoli florets increased significantly with sodium selenate fortification; but total glucosinolates and sulforaphane content as well as myrosinase activity were not affected. The protein profile of broccoli florets changed due to fortification with sodium selenate. Some proteins involved in general stress-responses were up-regulated, whereas down-regulated proteins were identified as proteins involved in protection against pathogens. This is the first attempt to evaluate the physiological effect of fortification with sodium selenate on broccoli at protein level. The results of this work will contribute to better understanding the metabolic processes related with selenium uptake and accumulation in broccoli.

  9. Changes in SeMSC, Glucosinolates and Sulforaphane Levels, and in Proteome Profile in Broccoli (Brassica oleracea var. Italica Fertilized with Sodium Selenate

    Directory of Open Access Journals (Sweden)

    Alejandra Moenne

    2013-05-01

    Full Text Available The aim of this work was to analyze the effect of sodium selenate fortification on the content of selenomethyl selenocysteine (SeMSC, total glucosinolates and sulforaphane, as well as the changes in protein profile of the inflorescences of broccoli (Brassica oleracea var. Italica. Two experimental groups were considered: plants treated with 100 mmol/L sodium selenate (final concentration in the pot and control plants treated with water. Fortification began 2 weeks after transplantation and was repeated once a week during 10 weeks. Broccoli florets were harvested when they reached appropriate size. SeMSC content in broccoli florets increased significantly with sodium selenate fortification; but total glucosinolates and sulforaphane content as well as myrosinase activity were not affected. The protein profile of broccoli florets changed due to fortification with sodium selenate. Some proteins involved in general stress-responses were up-regulated, whereas down-regulated proteins were identified as proteins involved in protection against pathogens. This is the first attempt to evaluate the physiological effect of fortification with sodium selenate on broccoli at protein level. The results of this work will contribute to better understanding the metabolic processes related with selenium uptake and accumulation in broccoli.

  10. Comparative miRNAs analysis of Two contrasting broccoli inbred lines with divergent head-forming capacity under temperature stress.

    Science.gov (United States)

    Chen, Chi-Chien; Fu, Shih-Feng; Norikazu, Monma; Yang, Yau-Wen; Liu, Yu-Ju; Ikeo, Kazuho; Gojobori, Takashi; Huang, Hao-Jen

    2015-12-01

    MicroRNAs (miRNAs) play a vital role in growth, development, and stress response at the post-transcriptional level. Broccoli (Brassica oleracea L. var italic) is an important vegetable crop, and the yield and quality of broccoli are decreased by heat stress. The broccoli inbred lines that are capable of producing head at high temperature in summer are unique varieties in Taiwan. However, knowledge of miRNAomes during the broccoli head formation under heat stress is limited. In this study, molecular characterization of two nearly isogenic lines with contrasting head-forming capacity was investigated. Head-forming capacity was better for heat-tolerant (HT) than heat-sensitive (HS) broccoli under heat stress. By deep sequencing and computational analysis, 20 known miRNAs showed significant differential expression between HT and HS genotypes. According to the criteria for annotation of new miRNAs, 24 novel miRNA sequences with differential expression between the two genotypes were identified. To gain insight into functional significance, 213 unique potential targets of these 44 differentially expressed miRNAs were predicted. These targets were implicated in shoot apical development, phase change, response to temperature stimulus, hormone and energy metabolism. The head-forming capacity of the unique HT line was related to autonomous regulation of Bo-FT genes and less expression level of heat shock protein genes as compared to HS. For the genotypic comparison, a set of miRNAs and their targets had consistent expression patterns in various HT genotypes. This large-scale characterization of broccoli miRNAs and their potential targets is to unravel the regulatory roles of miRNAs underlying heat-tolerant head-forming capacity.

  11. Identification of a Novel Protein Arginine Methyltransferase 5 Inhibitor in Non-small Cell Lung Cancer by Structure-Based Virtual Screening

    Directory of Open Access Journals (Sweden)

    Qianqian Wang

    2018-03-01

    Full Text Available Protein arginine methyltransferase 5 (PRMT5 is able to regulate gene transcription by catalyzing the symmetrical dimethylation of arginine residue of histone, which plays a key role in tumorigenesis. Many efforts have been taken in discovering small-molecular inhibitors against PRMT5, but very few were reported and most of them were SAM-competitive. EPZ015666 is a recently reported PRMT5 inhibitor with a new binding site, which is different from S-adenosylmethionine (SAM-binding pocket. This new binding site provides a new clue for the design and discovery of potent and specific PRMT5 inhibitors. In this study, the structure-based virtual screening targeting this site was firstly performed to identify potential PRMT5 inhibitors. Then, the bioactivity of the candidate compound was studied. MTT results showed that compound T1551 decreased cell viability of A549 and H460 non-small cell lung cancer cell lines. By inhibiting the methyltransferase activity of PRMT5, T1551 reduced the global level of H4R3 symmetric dimethylation (H4R3me2s. T1551 also downregulated the expression of oncogene FGFR3 and eIF4E, and disturbed the activation of related PI3K/AKT/mTOR and ERK signaling in A549 cell. Finally, we investigated the conformational spaces and identified collective motions important for description of T1551/PRMT5 complex by using molecular dynamics simulation and normal mode analysis methods. This study provides a novel non-SAM-competitive hit compound for developing small molecules targeting PRMT5 in non-small cell lung cancer.

  12. Understanding the degradation of ascorbic acid and glutathione in relation to the levels of oxidative stress biomarkers in broccoli (Brassica oleracea L. italica cv. Bellstar) during storage and mechanical processing.

    Science.gov (United States)

    Raseetha, Siva; Leong, Sze Ying; Burritt, David John; Oey, Indrawati

    2013-06-01

    The purpose of this research was to understand the degradation of ascorbic acid and glutathione content in broccoli florets (Brassica oleracea L. italica cv. Bellstar) during prolonged storage and subsequent mechanical processing. The initial content of total ascorbic acid and glutathione in broccoli florets averaged at 5.18 ± 0.23 and 0.70 ± 0.03 μmol/g fresh weight, respectively. Results showed that the content of ascorbic acid and glutathione in broccoli degraded during storage at 23°C, for at least 4.5-fold after 6 days of storage. On each day of storage, broccoli florets were mechanically processed, but the content of total ascorbic acid and glutathione was not significantly affected. When the mechanically processed broccoli florets were further incubated for up to 6h, the amount of ascorbic acid was greatly reduced as compared to glutathione. To obtain an in-depth understanding on the degradation of ascorbic acid and glutathione, the activity of enzymes involved in plant antioxidative system via ascorbate-glutathione cycle, as a response towards oxidative stress that took place during storage was determined in this study. The content of total ascorbic acid and glutathione in broccoli florets before and after mechanical processing were found to decrease concurrently with the activity of ascorbic acid peroxidase and glutathione reductase over the experimental storage duration. Meanwhile, the effect of oxidative stress on the content of ascorbic acid and glutathione was apparent during the 6h of incubation after mechanical processing. This phenomenon was demonstrated by the level of oxidative stress biomarkers examined, in which the formation of lipid peroxides, protein carbonyls and DNA oxidised products was positively associated with the degradation of total ascorbic acid and glutathione. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Antimicrobial activity of broccoli (Brassica oleracea var. italica) cultivar Avenger against pathogenic bacteria, phytopathogenic filamentous fungi and yeast.

    Science.gov (United States)

    Pacheco-Cano, R D; Salcedo-Hernández, R; López-Meza, J E; Bideshi, D K; Barboza-Corona, J E

    2018-01-01

    The objective of this study was to show whether the edible part of broccoli has antibacterial and antifungal activity against micro-organism of importance in human health and vegetable spoilage, and to test if this effect was partially due to antimicrobial peptides (AMPs). Crude extracts were obtained from florets and stems of broccoli cultivar Avenger and the inhibitory effect was demonstrated against pathogenic bacteria (Bacillus cereus, Staphylococcus xylosus, Staphylococcus aureus, Shigella flexneri, Shigella sonnei, Proteus vulgaris), phytopathogenic fungi (Colletotrichum gloeosporioides, Asperigillus niger) and yeasts (Candida albicans and Rhodotorula sp.). It was shown that samples treated with proteolytic enzymes had a reduction of approximately 60% in antibacterial activity against Staph. xylosus, suggesting that proteinaceous compounds might play a role in the inhibitory effect. Antimicrobial components in crude extracts were thermoresistant and the highest activity was observed under acidic conditions. It was shown that antifungal activity of broccoli's crude extracts might not be attributed to chitinases. Organic broccoli cultivar Avenger has antimicrobial activity against pathogenic bacteria, yeast and phytophatogenic fungi. Data suggest that this effect is partially due to AMPs. Broccoli's crude extracts have activity not only against pathogenic bacteria but also against phytophatogenic fungi of importance in agriculture. We suggest for first time that the inhibitory effect is probably due to AMPs. © 2017 The Society for Applied Microbiology.

  14. Small Molecule Inhibitors That Selectively Block Dengue Virus Methyltransferase*

    Science.gov (United States)

    Lim, Siew Pheng; Sonntag, Louis Sebastian; Noble, Christian; Nilar, Shahul H.; Ng, Ru Hui; Zou, Gang; Monaghan, Paul; Chung, Ka Yan; Dong, Hongping; Liu, Boping; Bodenreider, Christophe; Lee, Gladys; Ding, Mei; Chan, Wai Ling; Wang, Gang; Jian, Yap Li; Chao, Alexander Theodore; Lescar, Julien; Yin, Zheng; Vedananda, T. R.; Keller, Thomas H.; Shi, Pei-Yong

    2011-01-01

    Crystal structure analysis of Flavivirus methyltransferases uncovered a flavivirus-conserved cavity located next to the binding site for its cofactor, S-adenosyl-methionine (SAM). Chemical derivatization of S-adenosyl-homocysteine (SAH), the product inhibitor of the methylation reaction, with substituents that extend into the identified cavity, generated inhibitors that showed improved and selective activity against dengue virus methyltransferase (MTase), but not related human enzymes. Crystal structure of dengue virus MTase with a bound SAH derivative revealed that its N6-substituent bound in this cavity and induced conformation changes in residues lining the pocket. These findings demonstrate that one of the major hurdles for the development of methyltransferase-based therapeutics, namely selectivity for disease-related methyltransferases, can be overcome. PMID:21147775

  15. Effect of corona discharge plasma jet on surface-borne microorganisms and sprouting of broccoli seeds.

    Science.gov (United States)

    Kim, Je-Wook; Puligundla, Pradeep; Mok, Chulkyoon

    2017-01-01

    Different pathogenic microorganisms have been reported to cause sprouts-associated outbreaks. In order to sterilise and enhance the germination of seeds, non-thermal plasma has been increasingly investigated in the field of agricultural science as an alternative to the traditional pre-sowing seed treatments. This work aimed to evaluate the effect of corona discharge plasma jet (CDPJ) on disinfection of the natural bio-contaminants of broccoli seed and also studied the plasma effect on sprout seed germination rate and physico-chemical properties of sprouts. Aerobic bacteria, moulds and yeasts, B. cereus, E. coli, Salmonella spp. were detected on the broccoli seed surface. After 0-3 min treatment using CDPJ, the detected microorganisms were reduced in the range of 1.2-2.3 log units. Inactivation patterns were better explained using pseudo-first-order kinetics. The plasma treatment of seeds up to 2 min exhibited a positive effect on germination rate, seedling growth. The physico-chemical and sensory characteristics of sprouts were unaffected due to the CDPJ treatment of their respective seeds. Corona discharge plasma jet can potentially be used for microbial decontamination of broccoli seeds. In addition, the plasma treatment of broccoli sprout seeds has enabled a significant enhancement in their germination rate and seedling growth without compromising physico-chemical and sensory characteristics of their corresponding sprouts. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  16. A SAM-dependent methyltransferase cotranscribed with arsenate reductase alters resistance to peptidyl transferase center-binding antibiotics in Azospirillum brasilense Sp7.

    Science.gov (United States)

    Singh, Sudhir; Singh, Chhaya; Tripathi, Anil Kumar

    2014-05-01

    The genome of Azospirillum brasilense harbors a gene encoding S-adenosylmethionine-dependent methyltransferase, which is located downstream of an arsenate reductase gene. Both genes are cotranscribed and translationally coupled. When they were cloned and expressed individually in an arsenate-sensitive strain of Escherichia coli, arsenate reductase conferred tolerance to arsenate; however, methyltransferase failed to do so. Sequence analysis revealed that methyltransferase was more closely related to a PrmB-type N5-glutamine methyltransferase than to the arsenate detoxifying methyltransferase ArsM. Insertional inactivation of prmB gene in A. brasilense resulted in an increased sensitivity to chloramphenicol and resistance to tiamulin and clindamycin, which are known to bind at the peptidyl transferase center (PTC) in the ribosome. These observations suggested that the inability of prmB:km mutant to methylate L3 protein might alter hydrophobicity in the antibiotic-binding pocket of the PTC, which might affect the binding of chloramphenicol, clindamycin, and tiamulin differentially. This is the first report showing the role of PrmB-type N5-glutamine methyltransferases in conferring resistance to tiamulin and clindamycin in any bacterium.

  17. THE INFLUENCE OF NUTRITION ON THE MAIN PRODUCTION OF BROCCOLI

    Directory of Open Access Journals (Sweden)

    Mădălina Doltu

    2013-07-01

    Full Text Available The research was realized in the unheated greenhouse of Horting Institute Bucharest, in 2012 year. It have aimed the influence of one phase of fertilization with ammonium nitrate (NH4NO3 on inflorescences of broccoli, at a hybrid F1 - Ironman. The fertilizer was used before the formation of main inflorescences, in different doses (100 kg/ha, 150 kg/ha, without fertilizer. Harvesting was done in 4 stages. A phase of fertilization with ammonium nitrate has influenced the main production of broccoli: the variant with fertilization 150 kg/ha has obtained the highest percentage of inflorescences formed, the average weight/inflorescence largest and superior production compared with other variants. Were obtained direct linear correlations between the doses of ammonium nitrate (NH4NO3 and the production aspects followed (percentage of main inflorescences harvested, average weight/inflorescence, total production, significances of the correlations very high.

  18. Biotechnological advancement in genetic improvement of broccoli (Brassica oleracea L. var. italica), an important vegetable crop.

    Science.gov (United States)

    Kumar, Pankaj; Srivastava, Dinesh Kumar

    2016-07-01

    With the advent of molecular biotechnology, plant genetic engineering techniques have opened an avenue for the genetic improvement of important vegetable crops. Vegetable crop productivity and quality are seriously affected by various biotic and abiotic stresses which destabilize rural economies in many countries. Moreover, absence of proper post-harvest storage and processing facilities leads to qualitative and quantitative losses. In the past four decades, conventional breeding has significantly contributed to the improvement of vegetable yields, quality, post-harvest life, and resistance to biotic and abiotic stresses. However, there are many constraints in conventional breeding, which can only be overcome by advancements made in modern biology. Broccoli (Brassica oleracea L. var. italica) is an important vegetable crop, of the family Brassicaceae; however, various biotic and abiotic stresses cause enormous crop yield losses during the commercial cultivation of broccoli. Thus, genetic engineering can be used as a tool to add specific characteristics to existing cultivars. However, a pre-requisite for transferring genes into plants is the availability of efficient regeneration and transformation techniques. Recent advances in plant genetic engineering provide an opportunity to improve broccoli in many aspects. The goal of this review is to summarize genetic transformation studies on broccoli to draw the attention of researchers and scientists for its further genetic advancement.

  19. The Effect of Differentiated Nutrition on the Content of Antioxidants in Broccoli

    Directory of Open Access Journals (Sweden)

    Anton Uher

    2014-01-01

    Full Text Available The aim of this work is to determine the impact of differentiated nutrition, using different rates of nitrogen and sulphur, on the level of antioxidants, particularly vitamin E1 (α-tocopherol, vitamin C and β-carotene in the broccoli rosette. The experimental broccoli variety was Tiburon F1. It is a strong medium-late variety with a vegetation period of 82 days. In the 3-year field trial we observed the effects of different rates of nitrogen and sulphur on the amount of antioxidant compounds in broccoli. The experiment consisted of four fertilisation treatments: 1 unfertilised control, 2 fertilised with 200 kg N.ha−1, 3 also fertilized with 200 kg N.ha−1 and supplemented with 50 kg S.ha−1, 4 200 kg.ha−1 and 60 kg S.ha−1 was applied. To determine the amount of β-carotene and vitamin E1, the slightly modified method of Olives Barb et al. (2006 was used. The vitamin C content was determined by titration. Nitrogen nutrition has a significant impact not only on the amount of harvested broccoli, but also on the content of β-carotene, vitamin C and vitamin E1. The average content of β-carotene for the entire experimental period ranged from 24.84 mg.kg−1 to 30.13 mg.kg−1 of fresh mass. The content of β-carotene in broccoli rosettes increased as per the following order of treatments: control > N:S (200:50 kg.ha−1 > N:S (200:60 kg.ha−1 > N (kg.ha−1. The β-carotene content increased significantly only in treatment 2 (30.13 mg.kg−1 as compared to all the other treatments. The level of vitamin C revealed the significant effect of fertilisation in all the treatments (567.9–614.2 mg.kg−1 in contrast to the control variant (528.4 mg.kg−1. What is more, in treatment 4 the content of vitamin C increased significantly in contrast to fertilised treatments 2 and 3. The average content of vitamin E1 ranged from 4.33 mg.kg−1 to 4.88 mg.kg−1 of fresh mass. There were no significant differences among the untreated control

  20. Quantitative trait loci mapping of heat tolerance in broccoli (Brassica oleracea var. italica) using genotyping-by-sequencing.

    Science.gov (United States)

    Branham, Sandra E; Stansell, Zachary J; Couillard, David M; Farnham, Mark W

    2017-03-01

    Five quantitative trait loci and one epistatic interaction were associated with heat tolerance in a doubled haploid population of broccoli evaluated in three summer field trials. Predicted rising global temperatures due to climate change have generated a demand for crops that are resistant to yield and quality losses from heat stress. Broccoli (Brassica oleracea var. italica) is a cool weather crop with high temperatures during production decreasing both head quality and yield. Breeding for heat tolerance in broccoli has potential to both expand viable production areas and extend the growing season but breeding efficiency is constrained by limited genetic information. A doubled haploid (DH) broccoli population segregating for heat tolerance was evaluated for head quality in three summer fields in Charleston, SC, USA. Multiple quantitative trait loci (QTL) mapping of 1,423 single nucleotide polymorphisms developed through genotyping-by-sequencing identified five QTL and one positive epistatic interaction that explained 62.1% of variation in heat tolerance. The QTL identified here can be used to develop markers for marker-assisted selection and to increase our understanding of the molecular mechanisms underlying plant response to heat stress.

  1. Effect of visible light treatments on postharvest senescence of broccoli (Brassica oleracea L.).

    Science.gov (United States)

    Büchert, Agustin M; Gómez Lobato, Maria E; Villarreal, Natalia M; Civello, Pedro M; Martínez, Gustavo A

    2011-01-30

    Broccoli (Brassica oleracea L.) is a rapidly perishable vegetable crop. Several postharvest treatments have been applied in order to delay de-greening. Since light has been shown to have an effect on pigment accumulation during development and darkness is known to induce senescence, the effect of continuous and periodic exposure to low-intensity white light at 22 °C on postharvest senescence of broccoli heads was assayed. Exposure to a constant dose of 12 micromol m(-2) s(-1) was selected as the most suitable treatment and was employed for subsequent experiments. During the course of the treatments, hue and L* values as well as chlorophyll content and visual observation of florets indicated an evident delay in yellowing in treated samples compared with controls. No statistically significant differences in total protein content were found, but soluble protein content was higher in treated samples. Total and reducing sugar as well as starch levels decreased during postharvest senescence, with lower values in control samples. The results of this study indicate that storage under continuous low-intensity light is an efficient and low-cost treatment that delays postharvest senescence while maintaining the quality of harvested broccoli florets. 2010 Society of Chemical Industry.

  2. A diet rich in high-glucoraphanin broccoli interacts with genotype to reduce discordance in plasma metabolite profiles by modulating mitochondrial function123

    Science.gov (United States)

    Armah, Charlotte N; Traka, Maria H; Dainty, Jack R; Defernez, Marianne; Janssens, Astrid; Leung, Wing; Doleman, Joanne F; Potter, John F

    2013-01-01

    Background: Observational and experimental studies suggest that diets rich in cruciferous vegetables and glucosinolates may reduce the risk of cancer and cardiovascular disease (CVD). Objective: We tested the hypothesis that a 12-wk dietary intervention with high-glucoraphanin (HG) broccoli would modify biomarkers of CVD risk and plasma metabolite profiles to a greater extent than interventions with standard broccoli or peas. Design: Subjects were randomly assigned to consume 400 g standard broccoli, 400 g HG broccoli, or 400 g peas each week for 12 wk, with no other dietary restrictions. Biomarkers of CVD risk and 347 plasma metabolites were quantified before and after the intervention. Results: No significant differences in the effects of the diets on biomarkers of CVD risk were found. Multivariate analyses of plasma metabolites identified 2 discrete phenotypic responses to diet in individuals within the HG broccoli arm, differentiated by single nucleotide polymorphisms associated with the PAPOLG gene. Univariate analysis showed effects of sex (P broccoli arm, the consequence of the intervention was to reduce variation in lipid and amino acid metabolites, tricarboxylic acid (TCA) cycle intermediates, and acylcarnitines between the 2 PAPOLG genotypes. Conclusions: The metabolic changes observed with the HG broccoli diet are consistent with a rebalancing of anaplerotic and cataplerotic reactions and enhanced integration of fatty acid β-oxidation with TCA cycle activity. These modifications may contribute to the reduction in cancer risk associated with diets that are rich in cruciferous vegetables. This trial was registered at clinicaltrials.gov as NCT01114399. PMID:23964055

  3. Assessing the anticancer compounds Se-methylselenocysteine and glucosinolates in Se-biofortified broccoli (brassica oleracea L. var. italica) sprouts and florets

    Science.gov (United States)

    Broccoli (Brassica oleracea L. var. italica) is a rich source of chemopreventive compounds. Here, we evaluated and compared the effect of selenium (Se) treatment on the accumulation of anticancer compound Se-methylselenocysteine (SeMSCys) and glucosinolates in broccoli sprouts and florets. Total Se ...

  4. Using genotyping-by-sequencing to develop broccoli markers for construction of a high-density linkage map and to identify quantitative trait loci associated with heat tolerance

    Science.gov (United States)

    Heat stress reduces the yield and quality of broccoli heads imposing seasonal and geographic limits to broccoli production. For the most part, the risk of producing broccoli with head defects (uneven beads, bracts in heads, etc.) induced by high temperatures has restricted commercial production in t...

  5. Feasibility for improving phytonutrient content in vegetable crops using conventional breeding strategies: case study with carotenoids and tocopherols in sweet corn and broccoli.

    Science.gov (United States)

    Ibrahim, Khalid E; Juvik, John A

    2009-06-10

    Among vegetables, sweet corn ( Zea mays L.) and broccoli ( Brassica oleracea L. ssp. italica) are important sources of dietary carotenoids and tocopherols. Because medical evidence suggests that carotenoid and tocopherol health-promoting activity acts in a dose-dependent manner, conventional breeding to develop elite sweet corn and broccoli germplasm with enhanced levels of these phytochemicals will potentially promote health among the consuming public. This investigation includes the quantitative analysis of carotenoid and tocopherol contents of 41 corn and 24 broccoli genotypes grown in multiple environments (years and seasons in one location) to partition the variation into genetic, environment, and genotype by environment interaction (GxE) components and measure the phenotypic stability of genotypes for these phytochemicals. The primary carotenoids and tocopherols in corn were lutein and gamma-tocopherol (65 and 73% of total carotenoid and tocopherol, respectively), whereas beta-carotene and alpha-tocopherol were dominant in broccoli (65 and 79% of total carotenoid and tocopherol, respectively). Partitioning of the variance indicated that genetic differences among the genotypes averaged for the primary compounds in corn (lutein, zeaxanthin, and alpha- and gamma-tocopherol) and broccoli (beta-carotene, lutein, and alpha- and gamma-tocopherol) accounted for the largest proportion of the variation (67 and 55% of total phenotypic variation averaged across the phytochemicals in sweet corn and broccoli, respectively). Stability analysis identified several corn (IL451b sh2 and IL2027-8 sh2) and broccoli ('Pirate' and 'Baccus') genotypes with relatively high mean concentrations for the various carotenoids and tocopherols that were comparatively stable across seasons and years. The results of this investigation suggest that sweet corn and broccoli germplasm with enhanced concentrations of carotenoids and tocopherols can be developed using conventional breeding protocols.

  6. The Broccoli Syndrome: Higher Education's Pubdown Of The Minority Student

    Science.gov (United States)

    Tate, Penfield; Delworth, Ursula

    1973-01-01

    The assumption underlying the broccoli syndrome is that minority group students are not familiar with a whole range of Anglo goodies''. This article points out how, as the minority student is enlightened time and again to such facts'', he perceives inherent racism in his enlightener.'' (JC)

  7. Concentrating biomass of fermented broccoli (Brassica oleracea) and spinach (Amaranthus sp.) by ultrafiltration for source of organic acids and natural antioxidant

    Science.gov (United States)

    Aspiyanto, Susilowati, Agustine; Lotulung, Puspa D.; Maryati, Yati

    2017-11-01

    Organic acids and polyphenol from fermentation of green vegetables by Kombucha culture are novelty functional food to achieve prebiotic and natural antioxidant. Ultrafiltration (UF) mode was performed to concentrate biomass of fermented broccoli (Brassica oleracea L.) and spinach (Amaranthus spp.) at stirrer rotation speed of 200, 300 and 400 rpm, room temperature and trans membrane pressure 40 psia for 30 minutes. Based on total organic acids, experiment activity showed that the best treatment on biomass of fermented broccoli and spinach were reached at stirrer rotation speed of 400 rpm and 300 rpm, respectively. In this condition, fermented broccoli and spinach concentrates gave total acids 0.83 % and 0.81 %, total polyphenol 0.06 % and 0.11 %, reducing sugar 63.95 mg/mL and 20.54 mg/mL, total sugars 2.43 ug/mL and 2.28 ug/mL, total solids 6.42 % and 7.17 %, respectively. Compared with feed, the optimum condition on fermented spinach and broccoli concentrates increased total acids 13.33 % and 10 %, however decreased total polyphenol 34.1 % and 41 %. Identification on monomer from fermented spinach and broccoli at optimum condition on lactic acid were dominated by monomers with molecular weights (MWs) 252.19 and 252.36 Dalton (Da.), and monomer of polyphenol dominated by monomer with MWs 193.17 and 193.22 Da. and relative intensity 100 %. Fermented broccoli has potency as prebiotic, meanwhile fermented spinach has potency as anti oxidant.

  8. Modulation of Epstein–Barr Virus Nuclear Antigen 2-dependent transcription by protein arginine methyltransferase 5

    International Nuclear Information System (INIS)

    Liu, Cheng-Der; Cheng, Chi-Ping; Fang, Jia-Shih; Chen, Ling-Chih; Zhao, Bo; Kieff, Elliott; Peng, Chih-Wen

    2013-01-01

    Highlights: ► Catalytic active PRMT5 substantially binds to the EBNA2 RG domain. ► PRMT5 augments the EBNA2-dependent transcription. ► PRMT5 triggers the symmetric dimethylation of the EBNA2 RG domain. ► PRMT5 enhances the promoter occupancy of EBNA2 on its target promoters. -- Abstract: Epstein–Barr Virus Nuclear Antigen (EBNA) 2 features an Arginine–Glycine repeat (RG) domain at amino acid positions 335–360, which is a known target for protein arginine methyltransferaser 5 (PRMT5). In this study, we performed protein affinity pull-down assays to demonstrate that endogenous PRMT5 derived from lymphoblastoid cells specifically associated with the protein bait GST-E2 RG. Transfection of a plasmid expressing PRMT5 induced a 2.5- to 3-fold increase in EBNA2-dependent transcription of both the LMP1 promoter in AKATA cells, which contain the EBV genome endogenously, and a Cp-Luc reporter plasmid in BJAB cells, which are EBV negative. Furthermore, we showed that there was a 2-fold enrichment of EBNA2 occupancy in target promoters in the presence of exogenous PRMT5. Taken together, we show that PRMT5 triggers the symmetric dimethylation of EBNA2 RG domain to coordinate with EBNA2-mediated transcription. This modulation suggests that PRMT5 may play a role in latent EBV infection

  9. Modulation of Epstein–Barr Virus Nuclear Antigen 2-dependent transcription by protein arginine methyltransferase 5

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Cheng-Der; Cheng, Chi-Ping; Fang, Jia-Shih; Chen, Ling-Chih [Department of Life Sciences, Tzu-Chi University, 701 Chung-Yang Rd. Sec 3, Hualien 97004, Taiwan (China); Zhao, Bo; Kieff, Elliott [Department of Medicine and Microbiology and Molecular Genetics, Channing Laboratory, Brigham and Women’s Hospital and Harvard Medical School, 181 Longwood Ave., Boston 02115, MA (United States); Peng, Chih-Wen, E-mail: pengcw@mail.tcu.edu.tw [Department of Life Sciences, Tzu-Chi University, 701 Chung-Yang Rd. Sec 3, Hualien 97004, Taiwan (China)

    2013-01-18

    Highlights: ► Catalytic active PRMT5 substantially binds to the EBNA2 RG domain. ► PRMT5 augments the EBNA2-dependent transcription. ► PRMT5 triggers the symmetric dimethylation of the EBNA2 RG domain. ► PRMT5 enhances the promoter occupancy of EBNA2 on its target promoters. -- Abstract: Epstein–Barr Virus Nuclear Antigen (EBNA) 2 features an Arginine–Glycine repeat (RG) domain at amino acid positions 335–360, which is a known target for protein arginine methyltransferaser 5 (PRMT5). In this study, we performed protein affinity pull-down assays to demonstrate that endogenous PRMT5 derived from lymphoblastoid cells specifically associated with the protein bait GST-E2 RG. Transfection of a plasmid expressing PRMT5 induced a 2.5- to 3-fold increase in EBNA2-dependent transcription of both the LMP1 promoter in AKATA cells, which contain the EBV genome endogenously, and a Cp-Luc reporter plasmid in BJAB cells, which are EBV negative. Furthermore, we showed that there was a 2-fold enrichment of EBNA2 occupancy in target promoters in the presence of exogenous PRMT5. Taken together, we show that PRMT5 triggers the symmetric dimethylation of EBNA2 RG domain to coordinate with EBNA2-mediated transcription. This modulation suggests that PRMT5 may play a role in latent EBV infection.

  10. Broccoli-like porous carbon nitride from ZIF-8 and melamine for high performance supercapacitors

    Science.gov (United States)

    Cai, Chenglong; Zou, Yongjin; Xiang, Cuili; Chu, Hailiang; Qiu, Shujun; Sui, Qingli; Xu, Fen; Sun, Lixian; Shah, Afzal

    2018-05-01

    Broccoli-like porous carbon nitride is synthesized by simple one-step carbonization of a composite comprising a Zn-based zeolitic imidazolate framework (ZIF-8) and melamine. The introduction of melamine into the ZIF-8 framework not only increases the N content of the composite and the surface area of the carbonization product, but also induces the formation of a flower-like structure. The carbon obtained from the ZIF-8/melamine composite by the proposed carbonization process at a temperature of 800 °C (ZM-C-800) is found to have a unique three-dimensional broccoli-like shape, a nanoscale size, and an extremely high doping N content (28.3 at.%). These properties substantially improve the electrochemical performance of ZM-C-800, as represented by a high specific capacitance of 359.1 F g-1 at a current density of 1 A g-1, much higher than that of ZIF-8. Furthermore, a symmetric supercapacitor fabricated with two ZM-C-800 electrodes exhibits a power density of 498.5 W kg-1 for an energy density of 11.4 Wh kg-1. This indicates the strong potential of ZM-C-800 for use in the fabrication of energy storage devices.

  11. [Gene cloning and bioinformatics analysis of SABATH methyltransferase in Lonicera japonica var. chinensis].

    Science.gov (United States)

    Yu, Xiao-Dan; Jiang, Chao; Huang, Lu-Qi; Qin, Shuang-Shuang; Zeng, Xiang-Mei; Chen, Ping; Yuan, Yuan

    2013-08-01

    To clone SABATH methyltransferase (rLjSABATHMT) gene in Lonicera japonica var. chinensis, and compare the gene expression and intron sequence of SABATH methyltransferase orthologous in L. japonica with L. japonica var. chinensis. It provide a basis for gene regulate the formation of L. japonica floral scents. The cDNA and genome sequences of LjSABATHMT from L. japonica var. chinensis were cloned according to the gene fragments in cDNA library. The LjSABATHMT protein was characterized by bioinformatics analysis. SABATH family phylogenetic tree were built by MEGA 5.0. The transcripted level of SABATHMT orthologous were analyzed in different organs and different flower periods of L. japonica and L. japonica var. chinensis using RT-PCR analysis. Intron sequences of SABATHMT orthologous were also analyzied. The cDNA of LjSABATHMT was 1 251 bp, had a complete coding frame with 365 amino acids. The protein had the conservative SABATHMT domain, and phylogenetic tree showed that it may be a salicylic acid/benzoic acid methyltransferase. Higher expression of SABATH methyltransferase orthologous was found in flower. The intron sequence of L. japonica and L. japonica var. chinensis had rich polymorphism, and two SNP are unique genotype of L. japonica var. chinensis. The motif elements in two orthologous genes were significant differences. The intron difference of SABATH methyltransferase orthologous could be inducing to difference of gene expression between L. japonica and L. japonica var. chinensis. These results will provide important base on regulating active compounds of L. japonica.

  12. The response of broccoli (Brassica oleracea convar. italica) varieties on foliar application of selenium: uptake, translocation, and speciation.

    Science.gov (United States)

    Šindelářová, Kristýna; Száková, Jiřina; Tremlová, Jana; Mestek, Oto; Praus, Lukáš; Kaňa, Antonín; Najmanová, Jana; Tlustoš, Pavel

    2015-01-01

    A model small-scale field experiment was set up to investigate selenium (Se) uptake by four different varieties of broccoli plants, as well as the effect of Se foliar application on the uptake of essential elements for plants calcium (Ca), copper (Cu), iron (Fe), potassium (K), magnesium (Mg), manganese (Mn), phosphorus (P), sulfur (S), and zinc (Zn). Foliar application of sodium selenate (Na2SeO4) was carried out at two rates (25 and 50 g Se/ha), and an untreated control variant was included. Analyses of individual parts of broccoli were performed, whereby it was found that Se in the plant accumulates mainly in the flower heads and slightly less in the leaves, stems, and roots, regardless of the Se rate and broccoli variety. In most cases, there was a statistically significant increase of Se content in all parts of the plant, while there was no confirmed systematic influence of the addition of Se on the changing intake of other monitored elements. Selenization of broccoli leads to an effective increase in the Se content at a rate of 25 g/ha, whereas the higher rate did not result in a substantial increase of Se content compared to the lower rate in all varieties. Therefore, the rate of 25 g/ha can be recommended as effective to produce broccoli with an increased Se content suitable for consumption. Moreover, Se application resulted in an adequate increase of the main organic compounds of Se, such as selenocystine (SeCys2), selenomethionine (SeMet), and Se-methylselenocysteine (Se-MeSeCys).

  13. Broccoli Microgreens: A Mineral-Rich Crop That Can Diversify Food Systems.

    Science.gov (United States)

    Weber, Carolyn F

    2017-01-01

    Current malnourishment statistics are high and are exacerbated by contemporary agricultural practices that damage the very environments on which the production of nutritious food depends. As the World's population grows at an unprecedented rate, food systems must be revised to provide adequate nutrition while minimizing environmental impacts. One specific nutritional problem that needs attention is mineral (e.g., Fe and Zn) malnutrition, which impacts over two-thirds of the World's people living in countries of every economic status. Microgreens, the edible cotyledons of many vegetables, herbs, and flowers, is a newly emerging crop that may be a dense source of nutrition and has the potential to be produced in just about any locale. This study examined the mineral concentration of broccoli microgreens produced using compost-based and hydroponic growing methods that are easily implemented in one's own home. The nutritional value of the resulting microgreens was quantitatively compared to published nutritional data for the mature vegetable. Nutritional data were also considered in the context of the resource demands (i.e., water, fertilizer, and energy) of producing microgreens in order to gain insights into the potential for local microgreen production to diversify food systems, particularly for urban areas, while minimizing the overall environmental impacts of broccoli farming. Regardless of how they were grown, microgreens had larger quantities of Mg, Mn, Cu, and Zn than the vegetable. However, compost-grown (C) microgreens had higher P, K, Mg, Mn, Zn, Fe, Ca, Na, and Cu concentrations than the vegetable. For eight nutritionally important minerals (P, K, Ca, Mg, Mn, Fe, Zn, and Na), the average C microgreen:vegetable nutrient ratio was 1.73. Extrapolation from experimental data presented here indicates that broccoli microgreens would require 158-236 times less water than it does to grow a nutritionally equivalent amount of mature vegetable in the fields of

  14. Sulforaphane Bioavailability from Glucoraphanin-Rich Broccoli: Control by Active Endogenous Myrosinase

    Science.gov (United States)

    Fahey, Jed W.; Holtzclaw, W. David; Wehage, Scott L.; Wade, Kristina L.; Stephenson, Katherine K.; Talalay, Paul

    2015-01-01

    Glucoraphanin from broccoli and its sprouts and seeds is a water soluble and relatively inert precursor of sulforaphane, the reactive isothiocyanate that potently inhibits neoplastic cellular processes and prevents a number of disease states. Sulforaphane is difficult to deliver in an enriched and stable form for purposes of direct human consumption. We have focused upon evaluating the bioavailability of sulforaphane, either by direct administration of glucoraphanin (a glucosinolate, or β-thioglucoside-N-hydroxysulfate), or by co-administering glucoraphanin and the enzyme myrosinase to catalyze its conversion to sulforaphane at economic, reproducible and sustainable yields. We show that following administration of glucoraphanin in a commercially prepared dietary supplement to a small number of human volunteers, the volunteers had equivalent output of sulforaphane metabolites in their urine to that which they produced when given an equimolar dose of glucoraphanin in a simple boiled and lyophilized extract of broccoli sprouts. Furthermore, when either broccoli sprouts or seeds are administered directly to subjects without prior extraction and consequent inactivation of endogenous myrosinase, regardless of the delivery matrix or dose, the sulforaphane in those preparations is 3- to 4-fold more bioavailable than sulforaphane from glucoraphanin delivered without active plant myrosinase. These data expand upon earlier reports of inter- and intra-individual variability, when glucoraphanin was delivered in either teas, juices, or gelatin capsules, and they confirm that a variety of delivery matrices may be equally suitable for glucoraphanin supplementation (e.g. fruit juices, water, or various types of capsules and tablets). PMID:26524341

  15. Chemical Probes of Histone Lysine Methyltransferases

    Science.gov (United States)

    2015-01-01

    Growing evidence suggests that histone methyltransferases (HMTs, also known as protein methyltransferases (PMTs)) play an important role in diverse biological processes and human diseases by regulating gene expression and the chromatin state. Therefore, HMTs have been increasingly recognized by the biomedical community as a class of potential therapeutic targets. High quality chemical probes of HMTs, as tools for deciphering their physiological functions and roles in human diseases and testing therapeutic hypotheses, are critical for advancing this promising field. In this review, we focus on the discovery, characterization, and biological applications of chemical probes for HMTs. PMID:25423077

  16. Modification of -Adenosyl--Homocysteine as Inhibitor of Nonstructural Protein 5 Methyltransferase Dengue Virus Through Molecular Docking and Molecular Dynamics Simulation

    Directory of Open Access Journals (Sweden)

    Usman Sumo Friend Tambunan

    2017-04-01

    Full Text Available Dengue fever is still a major threat worldwide, approximately threatening two-fifths of the world’s population in tropical and subtropical countries. Nonstructural protein 5 (NS5 methyltransferase enzyme plays a vital role in the process of messenger RNA capping of dengue by transferring methyl groups from S -adenosyl- l -methionine to N7 atom of the guanine bases of RNA and the RNA ribose group of 2′OH, resulting in S -adenosyl- l -homocysteine (SAH. The modification of SAH compound was screened using molecular docking and molecular dynamics simulation, along with computational ADME-Tox (absorption, distribution, metabolism, excretion, and toxicity test. The 2 simulations were performed using Molecular Operating Environment (MOE 2008.10 software, whereas the ADME-Tox test was performed using various software. The modification of SAH compound was done using several functional groups that possess different polarities and properties, resulting in 3460 ligands to be docked. After conducting docking simulation, we earned 3 best ligands (SAH-M331, SAH-M2696, and SAH-M1356 based on ΔG binding and molecular interactions, which show better results than the standard ligands. Moreover, the results of molecular dynamics simulation show that the best ligands are still able to maintain the active site residue interaction with the binding site until the end of the simulation. After a series of molecular docking and molecular dynamics simulation were performed, we concluded that SAH-M1356 ligand is the most potential SAH-based compound to inhibit NS5 methyltransferase enzyme for treating dengue fever.

  17. Folatos em brócolis convencional e orgânico e perdas no processo de cocção em água Folates in conventional and organic broccoli and losses during cooking

    Directory of Open Access Journals (Sweden)

    Juliana Azevedo Lima-Pallone

    2008-01-01

    Full Text Available Broccoli is a vegetable consumed in many countries and a possible source of folates, which are water-soluble vitamins active during DNA synthesis. The folates found in the samples analyzed were 5-methyltetrahydrofolate and 5-formyltetrahydrofolate. The vitamin content varied between 413.7 and 742.2 µg/100 g for 5-methyltetrahydrofolate and from 4.8 to 12.8 µg/100 g for 5-formyltetrahydrofolate. In organic broccoli the amount of 5-methyltetrahydrofolate was significantly higher than in the same vegetable cultivated by traditional methods, for the commercial samples analyzed. The losses of these folates after cooking in water were of approximately 68%, most of it (53% found in the cooking water.

  18. A versatile non-radioactive assay for DNA methyltransferase activity and DNA binding

    Science.gov (United States)

    Frauer, Carina; Leonhardt, Heinrich

    2009-01-01

    We present a simple, non-radioactive assay for DNA methyltransferase activity and DNA binding. As most proteins are studied as GFP fusions in living cells, we used a GFP binding nanobody coupled to agarose beads (GFP nanotrap) for rapid one-step purification. Immobilized GFP fusion proteins were subsequently incubated with different fluorescently labeled DNA substrates. The absolute amounts and molar ratios of GFP fusion proteins and bound DNA substrates were determined by fluorescence spectroscopy. In addition to specific DNA binding of GFP fusion proteins, the enzymatic activity of DNA methyltransferases can also be determined by using suicide DNA substrates. These substrates contain the mechanism-based inhibitor 5-aza-dC and lead to irreversible covalent complex formation. We obtained covalent complexes with mammalian DNA methyltransferase 1 (Dnmt1), which were resistant to competition with non-labeled canonical DNA substrates, allowing differentiation between methyltransferase activity and DNA binding. By comparison, the Dnmt1C1229W catalytic site mutant showed DNA-binding activity, but no irreversible covalent complex formation. With this assay, we could also confirm the preference of Dnmt1 for hemimethylated CpG sequences. The rapid optical read-out in a multi-well format and the possibility to test several different substrates in direct competition allow rapid characterization of sequence-specific binding and enzymatic activity. PMID:19129216

  19. Degradation kinetics of peroxidase enzyme, phenolic content, and physical and sensorial characteristics in broccoli (Brassica oleracea L. ssp. Italica) during blanching.

    Science.gov (United States)

    Gonçalves, Elsa M; Pinheiro, Joaquina; Alegria, Carla; Abreu, Marta; Brandão, Teresa R S; Silva, Cristina L M

    2009-06-24

    The effects of water blanching treatment on peroxidase inactivation, total phenolic content, color parameters [-a*/b* and hue (h degrees*)], texture (maximum shear force), and sensory attributes (color and texture, evaluated by a trained panel) of broccoli (Brassica oleracea L. ssp. Italica) were studied at five temperatures (70, 75, 80, 85, and 90 degrees C). Experimental results showed that all studied broccoli quality parameters suffered significative changes due to blanching treatments. The vegetal total phenolic content showed a marked decline. Degradation on objective color and texture measurements and alterations in sensorial attributes were detected. Correlations between sensory and instrumental measurements have been found. Under the conditions 70 degrees C and 6.5 min or 90 degrees C and 0.4 min, 90% of the initial peroxidase activity was reduced. At these conditions, no significant alterations were detected by panelists, and a small amount of phenolic content was lost (ca. 16 and 10%, respectively). The peroxidase inactivation and phenolic content degradation were found to follow first-order reaction models. The zero-order reaction model showed a good fit to the broccoli color (-a*/b* and h degrees*), texture, and sensory parameters changes. The temperature effect was well-described by the Arrhenius law.

  20. Biotechnological applications in in vitro plant regeneration studies of broccoli (Brassica oleracea L. var. italica), an important vegetable crop.

    Science.gov (United States)

    Kumar, Pankaj; Srivastava, Dinesh Kumar

    2016-04-01

    Biotechnology holds promise for genetic improvement of important vegetable crops. Broccoli (Brassica oleracea L. var. italica) is an important vegetable crop of the family Brassicaceae. However, various biotic and abiotic stresses cause enormous crop yield losses during commercial cultivation of broccoli. Establishment of a reliable, reproducible and efficient in vitro plant regeneration system with cell and tissue culture is a vital prerequisite for biotechnological application of crop improvement programme. An in vitro plant regeneration technique refers to culturing, cell division, cell multiplication, de-differentiation and differentiation of cells, protoplasts, tissues and organs on defined liquid/solid medium under aseptic and controlled environment. Recent progress in the field of plant tissue culture has made this area one of the most dynamic and promising in experimental biology. There are many published reports on in vitro plant regeneration studies in broccoli including direct organogenesis, indirect organogenesis and somatic embryogenesis. This review summarizes those plant regeneration studies in broccoli that could be helpful in drawing the attention of the researchers and scientists to work on it to produce healthy, biotic and abiotic stress resistant plant material and to carry out genetic transformation studies for the production of transgenic plants.

  1. Temperature and light conditions at different latitudes affect sensory quality of broccoli florets (Brassica oleracea L. var. italica).

    Science.gov (United States)

    Johansen, Tor J; Mølmann, Jørgen Ab; Bengtsson, Gunnar B; Schreiner, Monica; Velasco, Pablo; Hykkerud, Anne L; Cartea, Elena; Lea, Per; Skaret, Josefine; Seljåsen, Randi

    2017-08-01

    Broccoli (Brassica oleracea L. var. italica) is a popular vegetable grown at a wide range of latitudes. Plants were grown in 2009-2011 in pots with standardized soil, irrigation and nutrient supply under natural temperature and light conditions at four locations (42-70° N). A descriptive sensory analysis of broccoli florets was performed by a trained panel to examine any differences along the latitudinal gradient for 30 attributes within appearance, odour, taste/flavour and texture. Average results over three summer seasons in Germany, southern Norway and northern Norway showed that the northernmost location with low temperatures and long days had highest scores for bud coarseness and uniform colour, while broccoli from the German location, with high temperatures and shorter days, had highest intensity of colour hue, whiteness, bitter taste, cabbage flavour, stale flavour and watery flavour. Results from two autumn seasons at the fourth location (42° N, Spain), with low temperatures and short days, tended toward results from the two northernmost locations, with an exception for most texture attributes. Results clearly demonstrate that temperature and light conditions related to latitude and season affect the sensory quality of broccoli florets. Results may be used in marketing special quality regional or seasonal products. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  2. Moisture Distribution in Broccoli: Measurements by MRI Hot Air Drying Experiments

    NARCIS (Netherlands)

    Jin, X.; Sman, van der R.G.M.; Gerkema, E.; Vergeldt, F.J.; As, van H.; Boxtel, van A.J.B.

    2011-01-01

    ABSTRACT The internal moisture distribution that arise in food products during drying, is a key factor for the retention of quality attributes. To reveal the course of moisture content in a product, internal moisture profiles in broccoli florets are measured by MRI imaging during drying experiments

  3. Moisture distribution in broccoli: measurements by MRI hot air drying experiments

    NARCIS (Netherlands)

    Jin, X.; Sman, van der R.G.M.; Gerkema, E.; Vergeldt, F.J.; As, van H.; Boxtel, van A.J.B.

    2011-01-01

    The internal moisture distribution that arise in food products during drying, is a key factor for the retention of quality attributes. To reveal the course of moisture content in a product, internal moisture profiles in broccoli florets are measured by MRI imaging during drying experiments with

  4. Colorless chlorophyll catabolites in senescent florets of broccoli (Brassica oleracea var. italica).

    Science.gov (United States)

    Roiser, Matthias H; Müller, Thomas; Kräutler, Bernhard

    2015-02-11

    Typical postharvest storage of broccoli (Brassica oleracea var. italica) causes degreening of this common vegetable with visible loss of chlorophyll (Chl). As shown here, colorless Chl-catabolites are generated. In fresh extracts of degreening florets of broccoli, three colorless tetrapyrrolic Chl-catabolites accumulated and were detected by high performance liquid chromatography (HPLC): two "nonfluorescent" Chl-catabolites (NCCs), provisionally named Bo-NCC-1 and Bo-NCC-2, and a colorless 1,19-dioxobilin-type "nonfluorescent" Chl-catabolite (DNCC), named Bo-DNCC. Analysis by nuclear magnetic resonance spectroscopy and mass spectrometry of these three linear tetrapyrroles revealed their structures. In combination with a comparison of their HPL-chromatographic properties, this allowed their identification with three known catabolites from two other brassicacea, namely two NCCs from oil seed rape (Brassica napus) and a DNCC from degreened leaves of Arabidopsis thaliana.

  5. Untargeted Metabolomics Reveals Predominant Alterations in Lipid Metabolism Following Light Exposure in Broccoli Sprouts

    Directory of Open Access Journals (Sweden)

    Mariateresa Maldini

    2015-06-01

    Full Text Available The consumption of vegetables belonging to the family Brassicaceae (e.g., broccoli and cauliflower is linked to a reduced incidence of cancer and cardiovascular diseases. The molecular composition of such plants is strongly affected by growing conditions. Here we developed an unbiased metabolomics approach to investigate the effect of light and dark exposure on the metabolome of broccoli sprouts and we applied such an approach to provide a bird’s-eye view of the overall metabolic response after light exposure. Broccoli seeds were germinated and grown hydroponically for five days in total darkness or with a light/dark photoperiod (16 h light/8 h dark cycle. We used an ultra-performance liquid-chromatography system coupled to an ion-mobility, time-of-flight mass spectrometer to profile the large array of metabolites present in the sprouts. Differences at the metabolite level between groups were analyzed using multivariate statistical analyses, including principal component analysis and correlation analysis. Altered metabolites were identified by searching publicly available and in-house databases. Metabolite pathway analyses were used to support the identification of subtle but significant changes among groups of related metabolites that may have gone unnoticed with conventional approaches. Besides the chlorophyll pathway, light exposure activated the biosynthesis and metabolism of sterol lipids, prenol lipids, and polyunsaturated lipids, which are essential for the photosynthetic machinery. Our results also revealed that light exposure increased the levels of polyketides, including flavonoids, and oxylipins, which play essential roles in the plant’s developmental processes and defense mechanism against herbivores. This study highlights the significant contribution of light exposure to the ultimate metabolic phenotype, which might affect the cellular physiology and nutritional value of broccoli sprouts. Furthermore, this study highlights the

  6. Genetic analysis of glucosinolate variability in broccoli florets using genome-anchored single nucleotide polymorphisms.

    Science.gov (United States)

    Brown, Allan F; Yousef, Gad G; Reid, Robert W; Chebrolu, Kranthi K; Thomas, Aswathy; Krueger, Christopher; Jeffery, Elizabeth; Jackson, Eric; Juvik, John A

    2015-07-01

    The identification of genetic factors influencing the accumulation of individual glucosinolates in broccoli florets provides novel insight into the regulation of glucosinolate levels in Brassica vegetables and will accelerate the development of vegetables with glucosinolate profiles tailored to promote human health. Quantitative trait loci analysis of glucosinolate (GSL) variability was conducted with a B. oleracea (broccoli) mapping population, saturated with single nucleotide polymorphism markers from a high-density array designed for rapeseed (Brassica napus). In 4 years of analysis, 14 QTLs were associated with the accumulation of aliphatic, indolic, or aromatic GSLs in floret tissue. The accumulation of 3-carbon aliphatic GSLs (2-propenyl and 3-methylsulfinylpropyl) was primarily associated with a single QTL on C05, but common regulation of 4-carbon aliphatic GSLs was not observed. A single locus on C09, associated with up to 40 % of the phenotypic variability of 2-hydroxy-3-butenyl GSL over multiple years, was not associated with the variability of precursor compounds. Similarly, QTLs on C02, C04, and C09 were associated with 4-methylsulfinylbutyl GSL concentration over multiple years but were not significantly associated with downstream compounds. Genome-specific SNP markers were used to identify candidate genes that co-localized to marker intervals and previously sequenced Brassica oleracea BAC clones containing known GSL genes (GSL-ALK, GSL-PRO, and GSL-ELONG) were aligned to the genomic sequence, providing support that at least three of our 14 QTLs likely correspond to previously identified GSL loci. The results demonstrate that previously identified loci do not fully explain GSL variation in broccoli. The identification of additional genetic factors influencing the accumulation of GSL in broccoli florets provides novel insight into the regulation of GSL levels in Brassicaceae and will accelerate development of vegetables with modified or enhanced GSL

  7. CoQ10 Augments Rosuvastatin Neuroprotective Effect in a Model of Global Ischemia via Inhibition of NF-κB/JNK3/Bax and Activation of Akt/FOXO3A/Bim Cues

    Directory of Open Access Journals (Sweden)

    Sarah A. Abd El-Aal

    2017-10-01

    Full Text Available Statins were reported to lower the Coenzyme Q10 (CoQ10 content upon their inhibition of HMG-CoA reductase enzyme and both are known to possess neuroprotective potentials; therefore, the aim is to assess the possible use of CoQ10 as an adds-on therapy to rosuvastatin to improve its effect using global I/R model. Rats were allocated into sham, I/R, rosuvastatin (10 mg/kg, CoQ10 (10 mg/kg and their combination. Drugs were administered orally for 7 days before I/R. Pretreatment with rosuvastatin and/or CoQ10 inhibited the hippocampal content of malondialdehyde, nitric oxide, and boosted glutathione and superoxide dismutase. They also opposed the upregulation of gp91phox, and p47phox subunits of NADPH oxidase. Meanwhile, both agents reduced content/expression of TNF-α, iNOS, NF-κBp65, ICAM-1, and MPO. Besides, all regimens abated cytochrome c, caspase-3 and Bax, but increased Bcl-2 in favor of cell survival. On the molecular level, they increased p-Akt and its downstream target p-FOXO3A, with the inhibition of the nuclear content of FOXO3A to downregulate the expression of Bim, a pro-apoptotic gene. Additionally, both treatments downregulate the JNK3/c-Jun signaling pathway. The effect of the combination regimen overrides that of either treatment alone. These effects were reflected on the alleviation of the hippocampal damage in CA1 region inflicted by I/R. Together, these findings accentuate the neuroprotective potentials of both treatments against global I/R by virtue of their rigorous multi-pronged actions, including suppression of hippocampal oxidative stress, inflammation, and apoptosis with the involvement of the Akt/FOXO3A/Bim and JNK3/c-Jun/Bax signaling pathways. The study also nominates CoQ10 as an adds-on therapy with statins.

  8. Variation in bioactive content in broccoli (Brassica oleracea var. italica) grown under conventional and organic production systems.

    Science.gov (United States)

    Valverde, Juan; Reilly, Kim; Villacreces, Salvador; Gaffney, Michael; Grant, James; Brunton, Nigel

    2015-04-01

    Broccoli and other cruciferous vegetables contain a number of bioactive compounds, in particular glucosinolates and polyphenols, which are proposed to confer health benefits to the consumer. Demand for organic crops is at least partly based on a perception that organic crops may contain higher levels of bioactive compounds; however, insufficient research has been carried out to either support or refute such claims. In this study we examined the effect of conventional, organic, and mixed cultivation practices on the content of total phenolics, total flavonoids, and total and individual glucosinolates in two varieties of broccoli grown over 2 years in a split-plot factorial systems comparison trial. Levels of total phenolics and total flavonoids showed a significant year-on-year variation but were not significantly different between organic and conventional production systems. In contrast, levels of the indolyl glucosinolates glucobrassicin and neoglucobrassicin were significantly higher (P broccoli florets; however, other investigated compounds were unaffected by production practices. © 2014 Society of Chemical Industry.

  9. Role of type II protein arginine methyltransferase 5 in the regulation of Circadian Per1 gene.

    Directory of Open Access Journals (Sweden)

    Jungtae Na

    Full Text Available Circadian clocks are the endogenous oscillators that regulate rhythmic physiological and behavioral changes to correspond to daily light-dark cycles. Molecular dissections have revealed that transcriptional feedback loops of the circadian clock genes drive the molecular oscillation, in which PER/CRY complexes inhibit the transcriptional activity of the CLOCK/BMAL1 heterodimer to constitute a negative feedback loop. In this study, we identified the type II protein arginine methyltransferase 5 (PRMT5 as an interacting molecule of CRY1. Although the Prmt5 gene was constitutively expressed, increased interaction of PRMT5 with CRY1 was observed when the Per1 gene was repressed both in synchronized mouse liver and NIH3T3 cells. Moreover, rhythmic recruitment of PRMT5 and CRY1 to the Per1 gene promoter was found to be associated with an increased level of histone H4R3 dimethylation and Per1 gene repression. Consistently, decreased histone H4R3 dimethylation and altered rhythmic Per1 gene expression were observed in Prmt5-depleted cells. Taken together, these findings provide an insight into the link between histone arginine methylation by PRMT5 and transcriptional regulation of the circadian Per1 gene.

  10. Distinction between the Cfr Methyltransferase Conferring Antibiotic Resistance and the Housekeeping RlmN Methyltransferase

    DEFF Research Database (Denmark)

    Atkinson, Gemma C; Hansen, Lykke H; Tenson, Tanel

    2013-01-01

    The cfr gene encodes the Cfr methyltransferase that primarily methylates C-8 in A2503 of 23S rRNA in the peptidyl transferase region of bacterial ribosomes. The methylation provides resistance to six classes of antibiotics of clinical and veterinary importance. The rlmN gene encodes the Rlm......N methyltransferase that methylates C-2 in A2503 in 23S rRNA and A37 in tRNA, but RlmN does not significantly influence antibiotic resistance. The enzymes are homologous and use the same mechanism involving radical S-adenosyl methionine to methylate RNA via an intermediate involving a methylated cysteine....... The differentiation between the two classes is supported by previous and new experimental evidence from antibiotic resistance, primer extensions, and mass spectrometry. Finally, evolutionary aspects of the distribution of Cfr- and RlmN-like enzymes are discussed....

  11. Bioavailability of Isothiocyanates From Broccoli Sprouts in Protein, Lipid, and Fiber Gels

    NARCIS (Netherlands)

    Oliviero, Teresa; Lamers, Simone; Capuano, Edoardo; Dekker, Matthijs; Verkerk, Ruud

    2018-01-01

    Scope: Optimization of bioavailability of dietary bioactive health-beneficial compounds is as important as increasing their concentration in foods. The aim of this study is to explore the change in bioavailability of isothiocyanates (ITCs) in broccoli sprouts incorporated in protein, fiber, and

  12. Assessment of the anticancer compounds Se-methylselenocysteine and glucosinolates in Se-biofortified broccoli (Brassica oleracea L. var. italica) sprouts and florets.

    Science.gov (United States)

    Ávila, Fabricio William; Faquin, Valdemar; Yang, Yong; Ramos, Silvio Junio; Guilherme, Luiz Roberto G; Thannhauser, Theodore W; Li, Li

    2013-07-03

    Broccoli (Brassica oleracea L. var. italica) is a rich source of chemopreventive compounds. Here, we evaluated and compared the effect of selenium (Se) treatment on the accumulation of anticancer compounds Se-methylselenocysteine (SeMSCys) and glucosinolates in broccoli sprouts and florets. Total Se and SeMSCys content in sprouts increased concomitantly with increasing Se doses. Selenate was superior to selenite in inducing total Se accumulation, but selenite is equally effective as selenate in promoting SeMSCys synthesis in sprouts. Increasing sulfur doses reduced total Se and SeMSCys content in sprouts treated with selenate, but not in those with selenite. Examination of five broccoli cultivars reveals that sprouts generally have better fractional ability than florets to convert inorganic Se into SeMSCys. Distinctive glucosinolate profiles between sprouts and florets were observed, and sprouts contained approximately 6-fold more glucoraphanin than florets. In contrast to florets, glucosinolate content was not affected by Se treatment in sprouts. Thus, Se-enriched broccoli sprouts are excellent for simultaneous accumulation of chemopreventive compounds SeMSCys and glucoraphanin.

  13. Growth and yield responses of broccoli cultivars to different rates of nitrogen at western Chitwan, Nepal

    DEFF Research Database (Denmark)

    Giri, Raj Kumar; Sharma, Moha Datta; Shakya, Santa Man

    2013-01-01

    A field experiment was conducted with the objective to determine the optimum rate of nitrogen (N) fertilizer for effective growth and yield of two varieties of broccoli in southern plain of Nepal. The experiment was laid out with two-factorial completely random block design (RCBD) comprising two...... varieties of broccoli (Calabrese and Green Sprouting) and five N rates (0, 50, 100, 150 and 200 kg ha-1) with three replication in each treatment combinations. The effects of variety and N rate on total curd yield were significant but the interaction effect was non-significant. Green Sprouting produced 11...

  14. Effect of nonwoven jute agrotextile mulch on soil health and productivity of broccoli (Brassica oleracea L.) in lateritic soil.

    Science.gov (United States)

    Manna, Koushik; Kundu, Manik Chandra; Saha, Biplab; Ghosh, Goutam Kumar

    2018-01-16

    A field experiment was conducted in winter season of 2015-2016 in the dry lateritic soil of Eastern India to study the effect of different thicknesses of nonwoven jute agrotextile mulches (NJATM) along with other mulches on soil health, growth and productivity of broccoli (Brassica oleracea L.). The experiment was conducted in randomized block design with six treatments viz., T 1 (control, i.e. no mulching), T 2 (300 gsm NJATM), T 3 (350 gsm NJATM), T 4 (400 gsm NJATM), T 5 (rice straw) and T 6 (black polythene mulch), each of which was replicated four times. The highest average curd weight (355.25 g) and yield (8.53 t ha -1 ) of broccoli were recorded in T 3 treatment. The lowest density of broad leaved weed, sedges and grasses were recorded in T 6 treatment which was statistically at par with T 4 . All the treatments composing of NJATM increased the population of all the soil microbes except bacteria in the root rhizosphere of broccoli from their initial population. On average, the highest population of fungi (54.0 × 10 3  cfu per g) and actinomycetes (134.75 × 10 3  cfu per g) was recorded with T 3 and T 4 treatments respectively in the post-harvest soil. The soil moisture was conserved in all treatments compared to control showing highest moisture content in T 4 treatment. Organic carbon and available N, P and K contents of soil were increased in all mulch treated plots compared to control, and their initial value and their highest value were recorded in T 3 . The NJATM of 350 gsm thickness was very effective compared to other mulches in increasing the growth and productivity of broccoli by suppressing weeds, increasing moisture, microbial population and nutrient content of the lateritic soil.

  15. Increased susceptibility to chemotherapeutic alkylating agents of mice deficient in DNA repair methyltransferase.

    Science.gov (United States)

    Shiraishi, A; Sakumi, K; Sekiguchi, M

    2000-10-01

    O(6)-methylguanine-DNA methyltransferase plays vital roles in preventing induction of mutations and cancer as well as cell death related to alkylating agents. Mice defective in the MGMT: gene, encoding the methyltransferase, were used to evaluate cell death-inducing and tumorigenic activities of therapeutic agents which have alkylation potential. MGMT(-/-) mice were considerably more sensitive to dacarbazine, a monofunctional triazene, than were wild-type mice, in terms of survival. When dacarbazine was administered i.p. to 6-week-old mice and survival at 30 days was enumerated, LD(50) values of MGMT(-/-) and MGMT(+/+) mice were 20 and 450 mg/kg body wt, respectively. Increased sensitivity of MGMT(-/-) mice to 1-(4-amino-2-methyl-5-pyrimidinyl)methyl-3-(2-chloroethyl)-3-nitrosou rea (ACNU), a bifunctional nitrosourea, was also noted. On the other hand, there was no difference in survival of MGMT(+/+) and MGMT(-/-) mice exposed to cyclophosphamide, a bifunctional nitrogen mustard. It appears that dacarbazine and ACNU produce O(6)-alkylguanine as a major toxic lesion, while cyclophosphamide yields other types of modifications in DNA which are not subjected to the action of the methyltransferase. MGMT(-/-) mice seem to be less refractory to the tumor-inducing effect of dacarbazine than are MGMT(+/+) mice. Thus, the level of O(6)-methylguanine-DNA methyltransferase activity is an important factor when determining susceptibility to drugs with the potential for alkylation.

  16. A single methyltransferase YefA (RlmCD) catalyses both m5U747 and m5U1939 modifications in Bacillus subtilis 23S rRNA

    DEFF Research Database (Denmark)

    Desmolaize, Benoit; Fabret, Céline; Brégeon, Damien

    2011-01-01

    Escherichia coli possesses three paralogues. These comprise the methyltransferases TrmA that targets U54 in tRNAs, RlmC that modifies U747 in 23S rRNA and RlmD that is specific for U1939 in 23S rRNA. The tRNAs and rRNAs of the Gram-positive bacterium Bacillus subtilis have the same three m(5)U modifications....... However, as previously shown, the m(5)U54 modification in B. subtilis tRNAs is catalysed in a fundamentally different manner by the folate-dependent enzyme TrmFO, which is unrelated to the E. coli TrmA. Here, we show that methylation of U747 and U1939 in B. subtilis rRNA is catalysed by a single enzyme...

  17. Broccoli sprouts: An exceptionally rich source of inducers of enzymes that protect against chemical carcinogens

    Science.gov (United States)

    Fahey, Jed W.; Zhang, Yuesheng; Talalay, Paul

    1997-01-01

    Induction of phase 2 detoxication enzymes [e.g., glutathione transferases, epoxide hydrolase, NAD(P)H: quinone reductase, and glucuronosyltransferases] is a powerful strategy for achieving protection against carcinogenesis, mutagenesis, and other forms of toxicity of electrophiles and reactive forms of oxygen. Since consumption of large quantities of fruit and vegetables is associated with a striking reduction in the risk of developing a variety of malignancies, it is of interest that a number of edible plants contain substantial quantities of compounds that regulate mammalian enzymes of xenobiotic metabolism. Thus, edible plants belonging to the family Cruciferae and genus Brassica (e.g., broccoli and cauliflower) contain substantial quantities of isothiocyanates (mostly in the form of their glucosinolate precursors) some of which (e.g., sulforaphane or 4-methylsulfinylbutyl isothiocyanate) are very potent inducers of phase 2 enzymes. Unexpectedly, 3-day-old sprouts of cultivars of certain crucifers including broccoli and cauliflower contain 10–100 times higher levels of glucoraphanin (the glucosinolate of sulforaphane) than do the corresponding mature plants. Glucosinolates and isothiocyanates can be efficiently extracted from plants, without hydrolysis of glucosinolates by myrosinase, by homogenization in a mixture of equal volumes of dimethyl sulfoxide, dimethylformamide, and acetonitrile at −50°C. Extracts of 3-day-old broccoli sprouts (containing either glucoraphanin or sulforaphane as the principal enzyme inducer) were highly effective in reducing the incidence, multiplicity, and rate of development of mammary tumors in dimethylbenz(a)anthracene-treated rats. Notably, sprouts of many broccoli cultivars contain negligible quantities of indole glucosinolates, which predominate in the mature vegetable and may give rise to degradation products (e.g., indole-3-carbinol) that can enhance tumorigenesis. Hence, small quantities of crucifer sprouts may protect

  18. Glucosinolates from pak choi and broccoli induce enzymes and inhibit inflammation and colon cancer differently.

    Science.gov (United States)

    Lippmann, Doris; Lehmann, Carsten; Florian, Simone; Barknowitz, Gitte; Haack, Michael; Mewis, Inga; Wiesner, Melanie; Schreiner, Monika; Glatt, Hansruedi; Brigelius-Flohé, Regina; Kipp, Anna P

    2014-06-01

    High consumption of Brassica vegetables is considered to prevent especially colon carcinogenesis. The content and pattern of glucosinolates (GSLs) can highly vary among different Brassica vegetables and may, thus, affect the outcome of Brassica intervention studies. Therefore, we aimed to feed mice with diets containing plant materials of the Brassica vegetables broccoli and pak choi. Further enrichment of the diets by adding GSL extracts allowed us to analyze the impact of different amounts (GSL-poor versus GSL-rich) and different patterns (broccoli versus pak choi) of GSLs on inflammation and tumor development in a model of inflammation-triggered colon carcinogenesis (AOM/DSS model). Serum albumin adducts were analyzed to confirm the up-take and bioactivation of GSLs after feeding the Brassica diets for four weeks. In agreement with their high glucoraphanin content, broccoli diets induced the formation of sulforaphane-lysine adducts. Levels of 1-methoxyindolyl-3-methyl-histidine adducts derived from neoglucobrassicin were the highest in the GSL-rich pak choi group. In the colon, the GSL-rich broccoli and the GSL-rich pak choi diet up-regulated the expression of different sets of typical Nrf2 target genes like Nqo1, Gstm1, Srxn1, and GPx2. GSL-rich pak choi induced the AhR target gene Cyp1a1 but did not affect Ugt1a1 expression. Both colitis and tumor number were drastically reduced after feeding the GSL-rich pak choi diet while the other three diets had no effect. GSLs can act anti-inflammatory and anti-carcinogenic but both effects depend on the specific amount and pattern of GSLs within a vegetable. Thus, a high Brassica consumption cannot be generally considered to be cancer-preventive.

  19. Characterization of industrial broccoli discards (Brassica oleracea var. italica) for their glucosinolate, polyphenol and flavonoid contents using UPLC MS/MS and spectrophotometric methods.

    Science.gov (United States)

    Thomas, Minty; Badr, Ashraf; Desjardins, Yves; Gosselin, Andre; Angers, Paul

    2018-04-15

    The agrifood industry produces tons of waste and substandard products that are discarded at great expense. Valorization of industrial residues curbs issues related to food security and environmental problems. Broccoli (Brassica oleracea var. italica) is associated with varied beneficial health effects, but its production yields greater than 25% rejects. We aimed to characterize and quantify industrial broccoli by-products for their glucosinolate and polyphenol contents as a first step towards industrial bio-refining. Broccoli segments and rejected lots of 10 seed cultivars were analyzed using UPLC MS/MS. Variability in the contents of bioactive molecules was observed within and between the cultivars. Broccoli by-products were rich in glucosinolates (0.2-2% dry weight sample), predominantly glucoraphanin (32-64% of the total glucosinolates), whereas the polyphenolic content was less than 0.02% dry weight sample. Valorization of industrial residues facilitates the production of high value functional food ingredients along with socio-economic sustainability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. LETTUCE AND BROCCOLI RESPONSE AND SOIL PROPERTIES RESULTING FROM TANNERY WASTE APPLICATIONS

    Science.gov (United States)

    Broccoli (Brassica oleracea L. var. italica) and lettuce (Lactuca sativa L.) were grown on Willamette sil (Pachic Ultic Argixerolls) amended 1 and 2 yr earlier with chrome tannery wastes at rates up to 192 Mg ha to determine nutrient and trace element availability. Soils were sam...

  1. Protein arginine methyltransferase 5 regulates multiple signaling pathways to promote lung cancer cell proliferation

    International Nuclear Information System (INIS)

    Sheng, Xiumei; Wang, Zhengxin

    2016-01-01

    Protein arginine methyltransferase 5 (PRMT5) catalyzes the formation of symmetrical dimethylation of arginine residues in proteins. WD repeat domain 77 (WDR77), also known as p44, MEP50, or WD45, forms a stoichiometric complex with PRMT5. The PRMT5/p44 complex is required for cellular proliferation of lung and prostate epithelial cells during earlier stages of development and is re-activated during prostate and lung tumorigenesis. The molecular mechanisms by which PRMT5 and p44 promote cellular proliferation are unknown. Expression of PRMT5 and p44 in lung and prostate cancer cells was silenced and their target genes were identified. The regulation of target genes was validated in various cancer cells during lung development and tumorigenesis. Altered expression of target genes was achieved by ectopic cDNA expression and shRNA-mediated silencing. PRMT5 and p44 regulate expression of a specific set of genes encoding growth and anti-growth factors, including receptor tyrosine kinases and antiproliferative proteins. Genes whose expression was suppressed by PRMT5 and p44 encoded anti-growth factors and inhibited cell growth when ectopically expressed. In contrast, genes whose expression was enhanced by PRMT5 and p44 encoded growth factors and increased cell growth when expressed. Altered expression of target genes is associated with re-activation of PRMT5 and p44 during lung tumorigenesis. Our data provide the molecular basis by which PRMT5 and p44 regulate cell growth and lay a foundation for further investigation of their role in lung tumor initiation. The online version of this article (doi:10.1186/s12885-016-2632-3) contains supplementary material, which is available to authorized users

  2. Ultrasound assisted immersion freezing of broccoli (Brassica oleracea L. var. botrytis L.).

    Science.gov (United States)

    Xin, Ying; Zhang, Min; Adhikari, Benu

    2014-09-01

    The aim of this study was to research the ultrasound-assisted freezing (UAF) of broccoli. CaCl2 solution was used as freezing medium. The comparative advantage of using UAF over normal freezing on the freezing time, cell-wall bound calcium to total calcium ratio, textural properties, color, drip loss and L-ascorbic acid contents was evaluated. The application of UAF at selected acoustic intensity with a range of 0.250-0.412 W/cm(2) decreased the freezing time and the loss of cell-wall bound calcium content. Compared to normal freezing, the values of textural properties, color, L-ascorbic acid content were better preserved and the drip loss was significantly minimized by the application of UAF. However, when outside that range of acoustic intensity, the quality of the ultrasound-assisted frozen broccoli was inferior compared to that of the normally frozen samples. Selected the appropriate acoustic intensity was very important for the application of UAF. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Targeting MLL1 H3K4 methyltransferase activity in mixed-lineage leukemia.

    Science.gov (United States)

    Cao, Fang; Townsend, Elizabeth C; Karatas, Hacer; Xu, Jing; Li, Li; Lee, Shirley; Liu, Liu; Chen, Yong; Ouillette, Peter; Zhu, Jidong; Hess, Jay L; Atadja, Peter; Lei, Ming; Qin, Zhaohui S; Malek, Sami; Wang, Shaomeng; Dou, Yali

    2014-01-23

    Here we report a comprehensive characterization of our recently developed inhibitor MM-401 that targets the MLL1 H3K4 methyltransferase activity. MM-401 is able to specifically inhibit MLL1 activity by blocking MLL1-WDR5 interaction and thus the complex assembly. This targeting strategy does not affect other mixed-lineage leukemia (MLL) family histone methyltransferases (HMTs), revealing a unique regulatory feature for the MLL1 complex. Using MM-401 and its enantiomer control MM-NC-401, we show that inhibiting MLL1 methyltransferase activity specifically blocks proliferation of MLL cells by inducing cell-cycle arrest, apoptosis, and myeloid differentiation without general toxicity to normal bone marrow cells or non-MLL cells. More importantly, transcriptome analyses show that MM-401 induces changes in gene expression similar to those of MLL1 deletion, supporting a predominant role of MLL1 activity in regulating MLL1-dependent leukemia transcription program. We envision broad applications for MM-401 in basic and translational research. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Small Molecule Inhibitors That Selectively Block Dengue Virus Methyltransferase*

    OpenAIRE

    Lim, Siew Pheng; Sonntag, Louis Sebastian; Noble, Christian; Nilar, Shahul H.; Ng, Ru Hui; Zou, Gang; Monaghan, Paul; Chung, Ka Yan; Dong, Hongping; Liu, Boping; Bodenreider, Christophe; Lee, Gladys; Ding, Mei; Chan, Wai Ling; Wang, Gang

    2010-01-01

    Crystal structure analysis of Flavivirus methyltransferases uncovered a flavivirus-conserved cavity located next to the binding site for its cofactor, S-adenosyl-methionine (SAM). Chemical derivatization of S-adenosyl-homocysteine (SAH), the product inhibitor of the methylation reaction, with substituents that extend into the identified cavity, generated inhibitors that showed improved and selective activity against dengue virus methyltransferase (MTase), but not related human enzymes. Crysta...

  5. Sudex cover crops can kill and stunt subsequent tomato, 
lettuce and broccoli transplants through allelopathy

    OpenAIRE

    Summers, Charles G.; Mitchell, Jeffrey P.; Prather, Timothy S.; Stapleton, James J.

    2009-01-01

    Grass cover crops can be harvested for biomass or used as a surface mulch to reduce erosion, improve soil structure, suppress weeds and conserve moisture. There is concern, however, that such plantings may affect subsequent crops. We studied the effects of sudex, a sorghum hybrid used as a cover crop, on subsequent crops of tomato, broccoli and lettuce started from transplants. Within 3 to 5 days of being transplanted into recently killed sudex, all three crops showed symptoms of phytotoxicit...

  6. BROCCOLI Spears Yield Affected By GAMMA Rays Irradiated Seeds And Foliar Application Of Some Growth Regulators

    International Nuclear Information System (INIS)

    ABDALLAH, A.A.; ABO EL-KHEIR, O.H.

    2010-01-01

    Two field experiments were carried out during 2004/2005 and 2005/2006 winter growing seasons at the experimental farm of Nuclear Research Centre, Atomic Energy Authority, Inshas, Egypt.The experiments were conducted to study the effect of pre-sowing broccoli seeds (cv. F1 175) irradiated with different doses of gamma rays (2, 3 and 4 Gy). The plants were sprayed with GA3 at rate of 50 ml/liter/fed and 20 ml/liter/fed for NAA. Main spear fresh and dry weight per plant, total spears fresh and dry weight per plant, total spears yield, ascorbic acid, TSS, carbohydrates, total chlorophyll, NPK and total protein content of spears were evaluated. The results showed that broccoli seeds irradiated with gamma rays up to 4 Gy pre-sowing increased the abovementioned parameters with different magnitudes comparing with the non-irradiated control plants except spears N, P and protein contents showed decrease in their values comparing with un-treated plants.It could be concluded that the foliar application of GA3 and NAA on broccoli spears increased all the abovementioned parameters, except spears N, P and protein contents showed decrease in their values.

  7. Influence of thermal processing on hydrolysis and stability of folate poly-gamma-glutamates in broccoli (Brassica oleracea var. italica), carrot (Daucus carota) and tomato (Lycopersicon esculentum).

    Science.gov (United States)

    Munyaka, Ann Wambui; Verlinde, Philippe; Mukisa, Ivan Muzira; Oey, Indrawati; Van Loey, Ann; Hendrickx, Marc

    2010-04-14

    The folate poly-gamma-glutamate profile, their concentrations, and hydrolysis by endogenous gamma-glutamyl hydrolase (GGH) were evaluated in broccoli, carrot and tomato. Further studies on the effect of time and temperature on folate poly-gamma-glutamate hydrolysis and stability were carried out in broccoli since this vegetable showed the highest long-chain and total folate poly-gamma-glutamate concentration. The evolution of l-ascorbic acid, total phenols and Trolox equivalent antioxidant capacity (TEAC) values was evaluated in parallel. Upon thermal inactivation of GGH prior to crushing, it was observed that broccoli, carrot and tomato contained poly-gamma-glutamates with one to seven glutamate residues but differed in the predominant poly-gamma-glutamates. Crushing of raw broccoli, carrot and tomato resulted in significant poly-gamma-glutamate profile changes in broccoli and carrot (indicating GGH-catalyzed hydrolysis) but not in tomato. In this study, the actual crushing of raw broccoli matrix had a greater effect on folate poly-gamma-glutamate hydrolysis than incubation conditions (0-30 min at 25-55 degrees C). During treatments at 25-140 degrees C, folate retention was higher at 80 and 100 degrees C than at the other temperatures. A similar trend in thermal stability was observed for folates, vitamin C, total phenols and TEAC value, an indication that conditions that result in endogenous antioxidants degradation might also result in folate degradation.

  8. Structural characterization of the mitomycin 7-O-methyltransferase

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Shanteri; Chang, Aram; Goff, Randal D.; Bingman, Craig A.; Grüschow, Sabine; Sherman, David H.; Phillips, Jr., George N.; Thorson, Jon S. (Michigan); (UW)

    2014-10-02

    Mitomycins are quinone-containing antibiotics, widely used as antitumor drugs in chemotherapy. Mitomycin-7-O-methyltransferase (MmcR), a key tailoring enzyme involved in the biosynthesis of mitomycin in Streptomyces lavendulae, catalyzes the 7-O-methylation of both C9{beta}- and C9{alpha}-configured 7-hydroxymitomycins. We have determined the crystal structures of the MmcR-S-adenosylhomocysteine (SAH) binary complex and MmcR-SAH-mitomycin A (MMA) ternary complex at resolutions of 1.9 and 2.3 {angstrom}, respectively. The study revealed MmcR to adopt a common S-adenosyl-L-methionine-dependent O-methyltransferase fold and the presence of a structurally conserved active site general acid-base pair is consistent with a proton-assisted methyltransfer common to most methyltransferases. Given the importance of C7 alkylation to modulate mitomycin redox potential, this study may also present a template toward the future engineering of catalysts to generate uniquely bioactive mitomycins.

  9. Mugwort-Mustard Allergy Syndrome due to Broccoli Consumption

    Directory of Open Access Journals (Sweden)

    Yuri Sugita

    2016-01-01

    Full Text Available Pollen-food allergy syndrome (PFAS is a relatively rare form of food allergy which develops in individuals who are sensitized to pollen. Tree pollens, especially birch pollen, frequently induce PFAS; however, the incidence of PFAS due to grass or weed pollens such as ragweed or mugwort is relatively rare. Mugwort-mustard allergy syndrome (MMAS is an example of a PFAS in which individuals sensitized to mugwort may develop an allergy to mustard and experience severe reactions. We herein describe a case of MMAS due to broccoli consumption.

  10. Structures of a putative RNA 5-methyluridine methyltransferase, Thermus thermophilus TTHA1280, and its complex with S-adenosyl-l-homocysteine

    International Nuclear Information System (INIS)

    Pioszak, Augen A.; Murayama, Kazutaka; Nakagawa, Noriko; Ebihara, Akio; Kuramitsu, Seiki; Shirouzu, Mikako; Yokoyama, Shigeyuki

    2005-01-01

    Three structures of a putative RNA 5-methyluridine methyltransferase from T. thermophilus, including its complex with S-adenosyl-l-homocysteine, are presented. The structures reveal the mode of cofactor binding, architecture of the putative active site, and the presence of a deep cleft adjacent to the active site that may bind RNA. The Thermus thermophilus hypothetical protein TTHA1280 belongs to a family of predicted S-adenosyl-l-methionine (AdoMet) dependent RNA methyltransferases (MTases) present in many bacterial and archaeal species. Inspection of amino-acid sequence motifs common to class I Rossmann-fold-like MTases suggested a specific role as an RNA 5-methyluridine MTase. Selenomethionine (SeMet) labelled and native versions of the protein were expressed, purified and crystallized. Two crystal forms of the SeMet-labelled apoprotein were obtained: SeMet-ApoI and SeMet-ApoII. Cocrystallization of the native protein with S-adenosyl-l-homocysteine (AdoHcy) yielded a third crystal form, Native-AdoHcy. The SeMet-ApoI structure was solved by the multiple anomalous dispersion method and refined at 2.55 Å resolution. The SeMet-ApoII and Native-AdoHcy structures were solved by molecular replacement and refined at 1.80 and 2.60 Å, respectively. TTHA1280 formed a homodimer in the crystals and in solution. Each subunit folds into a three-domain structure composed of a small N-terminal PUA domain, a central α/β-domain and a C-terminal Rossmann-fold-like MTase domain. The three domains form an overall clamp-like shape, with the putative active site facing a deep cleft. The architecture of the active site is consistent with specific recognition of uridine and catalysis of methyl transfer to the 5-carbon position. The cleft is suitable in size and charge distribution for binding single-stranded RNA.

  11. Modification of S-Adenosyl-l-Homocysteine as Inhibitor of Nonstructural Protein 5 Methyltransferase Dengue Virus Through Molecular Docking and Molecular Dynamics Simulation.

    Science.gov (United States)

    Tambunan, Usman Sumo Friend; Nasution, Mochammad Arfin Fardiansyah; Azhima, Fauziah; Parikesit, Arli Aditya; Toepak, Erwin Prasetya; Idrus, Syarifuddin; Kerami, Djati

    2017-01-01

    Dengue fever is still a major threat worldwide, approximately threatening two-fifths of the world's population in tropical and subtropical countries. Nonstructural protein 5 (NS5) methyltransferase enzyme plays a vital role in the process of messenger RNA capping of dengue by transferring methyl groups from S -adenosyl-l-methionine to N7 atom of the guanine bases of RNA and the RNA ribose group of 2'OH, resulting in S -adenosyl-l-homocysteine (SAH). The modification of SAH compound was screened using molecular docking and molecular dynamics simulation, along with computational ADME-Tox (absorption, distribution, metabolism, excretion, and toxicity) test. The 2 simulations were performed using Molecular Operating Environment (MOE) 2008.10 software, whereas the ADME-Tox test was performed using various software. The modification of SAH compound was done using several functional groups that possess different polarities and properties, resulting in 3460 ligands to be docked. After conducting docking simulation, we earned 3 best ligands (SAH-M331, SAH-M2696, and SAH-M1356) based on ΔG binding and molecular interactions, which show better results than the standard ligands. Moreover, the results of molecular dynamics simulation show that the best ligands are still able to maintain the active site residue interaction with the binding site until the end of the simulation. After a series of molecular docking and molecular dynamics simulation were performed, we concluded that SAH-M1356 ligand is the most potential SAH-based compound to inhibit NS5 methyltransferase enzyme for treating dengue fever.

  12. Atmospheric carbon dioxide changes photochemical activity, soluble sugars and volatile levels in broccoli (Brassica oleracea var. italica).

    Science.gov (United States)

    Krumbein, Angelika; Kläring, Hans-Peter; Schonhof, Ilona; Schreiner, Monika

    2010-03-24

    Atmospheric carbon dioxide (CO(2)) concentration is an environmental factor currently undergoing dramatic changes. The objective of the present study was to determine the effect of doubling the ambient CO(2) concentration on plant photochemistry as measured by photochemical quenching coefficient (qP), soluble sugars and volatiles in broccoli. Elevated CO(2) concentration increased qP values in leaves by up to 100% and 89% in heads, while glucose and sucrose in leaves increased by about 60%. Furthermore, in broccoli heads elevated CO(2) concentration induced approximately a 2-fold increase in concentrations of three fatty acid-derived C(7) aldehydes ((E)-2-heptenal, (E,Z)-2,4-heptadienal, (E,E)-2,4-heptadienal), two fatty acid-derived C(5) alcohols (1-penten-3-ol, (Z)-2-pentenol), and two amino acid-derived nitriles (phenyl propanenitrile, 3-methyl butanenitrile). In contrast, concentrations of the sulfur-containing compound 2-ethylthiophene and C(6) alcohol (E)-2-hexenol decreased. Finally, elevated CO(2) concentration increased soluble sugar concentrations due to enhanced photochemical activity in leaves and heads, which may account for the increased synthesis of volatiles.

  13. Effects of application timing of saline irrigation water on broccoli production and quality

    Science.gov (United States)

    Irrigation with moderately saline water is a necessity in many semi-arid areas of the Mediterranean Basin, and requires adequate irrigation management strategies. Broccoli (Brassica oleracea var. italica), a crop moderately tolerant to salinity stress, was used to evaluate the effects of the applica...

  14. Crystal structures of the methyltransferase and helicase from the ZIKA 1947 MR766 Uganda strain

    Energy Technology Data Exchange (ETDEWEB)

    Bukrejewska, Malgorzata; Derewenda, Urszula; Radwanska, Malwina; Engel, Daniel A.; Derewenda, Zygmunt S.

    2017-08-15

    Two nonstructural proteins encoded byZika virusstrain MR766 RNA, a methyltransferase and a helicase, were crystallized and their structures were solved and refined at 2.10 and 2.01 Å resolution, respectively. The NS5 methyltransferase contains a boundS-adenosyl-L-methionine (SAM) co-substrate. The NS3 helicase is in the apo form. Comparison with published crystal structures of the helicase in the apo, nucleotide-bound and single-stranded RNA (ssRNA)-bound states suggests that binding of ssRNA to the helicase may occur through conformational selection rather than induced fit.

  15. Broccoli (Brassica oleracea var. italica head initiation under field conditions

    Directory of Open Access Journals (Sweden)

    Alina Kałużewicz

    2012-12-01

    Full Text Available A two–year study on the influence of temperature on broccoli head initiation was carried out at the ''Marcelin'' experimental station of the Poznań University of Life Sciences. In each year of the study, plants were planted in the field at four dates. The evaluation of the developmental phase of the broccoli shoot apex was based on the analysis of microscope slides. The date of head initiation was assumed as the day on which the first of the examined apices were found to be at the early generative phase. The plant characteristics (number of leaves, leaf area and stem diameter on the date of initiation were also determined. Variation in length of the period from planting to head initiation was found both between dates of planting and between experimental years. The shortest period from planting to initiation was when the plants were planted in April and June (17-18 days in the first year and the longest one for planting in April in the first year of the study (29 days. The length of the period from planting to head initiation depended on mean daily air temperature. The higher the temperature was, the shorter was the period.

  16. Chromosome Doubling of Microspore-Derived Plants from Cabbage (Brassica oleracea var. capitata L.) and Broccoli (Brassica oleracea var. italica L.).

    Science.gov (United States)

    Yuan, Suxia; Su, Yanbin; Liu, Yumei; Li, Zhansheng; Fang, Zhiyuan; Yang, Limei; Zhuang, Mu; Zhang, Yangyong; Lv, Honghao; Sun, Peitian

    2015-01-01

    Chromosome doubling of microspore-derived plants is an important factor in the practical application of microspore culture technology because breeding programs require a large number of genetically stable, homozygous doubled haploid plants with a high level of fertility. In the present paper, 29 populations of microspore-derived plantlets from cabbage (Brassica oleracea var. capitata) and broccoli (Brassica oleracea var. italica) were used to study the ploidy level and spontaneous chromosome doubling of these populations, the artificial chromosome doubling induced by colchicine, and the influence of tissue culture duration on the chromosomal ploidy of the microspore-derived regenerants. Spontaneous chromosome doubling occurred randomly and was genotype dependent. In the plant populations derived from microspores, there were haploids, diploids, and even a low frequency of polyploids and mixed-ploidy plantlets. The total spontaneous doubling in the 14 cabbage populations ranged from 0 to 76.9%, compared with 52.2 to 100% in the 15 broccoli populations. To improve the rate of chromosome doubling, an efficient and reliable artificial chromosome doubling protocol (i.e., the immersion of haploid plantlet roots in a colchicine solution) was developed for cabbage and broccoli microspore-derived haploids. The optimal chromosome doubling of the haploids was obtained with a solution of 0.2% colchicine for 9-12 h or 0.4% colchicine for 3-9 h for cabbage and 0.05% colchicine for 6-12 h for broccoli. This protocol produced chromosome doubling in over 50% of the haploid genotypes for most of the populations derived from cabbage and broccoli. Notably, after 1 or more years in tissue culture, the chromosomes of the haploids were doubled, and most of the haploids turned into doubled haploid or mixed-ploidy plants. This is the first report indicating that tissue culture duration can change the chromosomal ploidy of microspore-derived regenerants.

  17. Effects of broccoli extract on biodistribution and labeling blood components with 99mTc-GH

    International Nuclear Information System (INIS)

    Cekic, Betul; Muftuler, Fazilet Zumrut Biber; Kilcar, Ayfer Yurt; Ichedef, Cigdem; Unak, Perihan

    2011-01-01

    Purpose: people consume vegetables without the knowledge of the side effects of the biological and chemical contents and interactions between radiopharmaceuticals and herbal extract. To this end, current study is focused on the effects of broccoli extract on biodistribution of radiolabeled glucoheptonate ( 99m Tc-GH) and radiolabeling of blood components. Methods: GH was labeled with 99m Tc. Quality control studies were done utilizing TLC method. Biodistribution studies were performed on male rats which were treated via gavage with either broccoli extract or SF as control group for 15 days. Blood samples were withdrawn from rats' heart. Radiolabeling of blood constituents performed incubating with GH, SnCl 2 and 99m Tc. Results: radiochemical yield of 99m Tc-GH is 98.46±1.48 % (n=8). Biodistribution studies have shown that according to the control, the treated group with broccoli has approximately 10 times less uptake in kidney. The percentage of the radioactivity ratios of the blood components is found to be same in both groups. Conclusions: although there is no considerable effect on the radiolabeling of blood components, there is an outstanding change on the biodistribution studies especially on kidneys. The knowledge of this change on kidney uptake may contribute to reduce the risk of misdiagnosis and/or repetition of the examinations in Nuclear Medicine. (author)

  18. Plants as biofactories: Postharvest Stress-Induced Accumulation of Phenolic Compounds and Glucosinolates in Broccoli Subjected to Wounding Stress and Exogenous Phytohormones

    Directory of Open Access Journals (Sweden)

    Daniel eVillarreal-García

    2016-02-01

    Full Text Available Broccoli contains high levels of bioactive molecules and is considered a functional food. In this study, postharvest treatments to enhance the concentration of glucosinolates and phenolic compounds were evaluated. Broccoli whole heads were wounded to obtain florets and wounded florets (florets cut into four even pieces and stored for 24 h at 20 ºC with or without exogenous ethylene (ET, 1000 ppm or methyl jasmonate (MeJA, 250 ppm. Whole heads were used as a control for wounding treatments. Regarding glucosinolate accumulation, ET selectively induced the 4-hydroxylation of glucobrassicin in whole heads, resulting in ~223% higher 4-hydroxyglucobrassicin than time 0 h samples. Additionally, glucoraphanin was increased by ~53% in whole heads treated with ET, while neoglucobrassicin was greatly accumulated in wounded florets treated with ET or MeJA, showing increases of ~193% and ~286%, respectively. On the other hand, although only whole heads stored without phytohormones showed higher concentrations of phenolic compounds, which was reflected in ~33%, ~30%, and 46% higher levels of 1,2,2-trisinapoylgentiobose, 1,2-diferulolylgentiobiose, and 1,2-disinapoyl-2-ferulolylgentiobiose, respectively; broccoli florets stored under air control conditions showed enhanced concentrations of 3-O-caffeoylquinic acid, 1,2-disinapoylgentiobiose, and 1,2-disinapoyl-2-ferulolylgentiobiose (~22%, ~185%, and ~65% more, respectively. However, exogenous ET and MeJA impeded individual phenolics accumulation. Results allowed the elucidation of simple and effective postharvest treatment to enhance the content of individual glucosinolates and phenolic compounds in broccoli. The stressed-broccoli tissue could be subjected to downstream processing in order to extract and purify bioactive molecules with applications in the dietary supplements, agrochemical and cosmetics markets.

  19. Arsenic (+3 oxidation state) methyltransferase and the inorganic arsenic methylation phenotype

    International Nuclear Information System (INIS)

    Li Jiaxin; Waters, Stephen B.; Drobna, Zuzana; Devesa, Vicenta; Styblo, Miroslav; Thomas, David J.

    2005-01-01

    Inorganic arsenic is enzymatically methylated; hence, its ingestion results in exposure to the parent compound and various methylated arsenicals. Both experimental and epidemiological evidences suggest that some of the adverse health effects associated with chronic exposure to inorganic arsenic may be mediated by these methylated metabolites. If i As methylation is an activation process, then the phenotype for inorganic arsenic methylation may determine risk associated with exposure to this metalloid. We examined inorganic arsenic methylation phenotypes and arsenic (+3 oxidation state) methyltransferase genotypes in four species: three that methylate inorganic arsenic (human (Homo sapiens), rat (Rattus norwegicus), and mouse (Mus musculus)) and one that does not methylate inorganic arsenic (chimpanzee, Pan troglodytes). The predicted protein products from arsenic (+3 oxidation state) methyltransferase are similar in size for rat (369 amino acid residues), mouse (376 residues), and human (375 residues). By comparison, a 275-nucleotide deletion beginning at nucleotide 612 in the chimpanzee gene sequence causes a frameshift that leads to a nonsense mutation for a premature stop codon after amino acid 205. The null phenotype for inorganic arsenic methylation in the chimpanzee is likely due to the deletion in the gene for arsenic (+3 oxidation state) methyltransferase that yields an inactive truncated protein. This lineage-specific loss of function caused by the deletion event must have occurred in the Pan lineage after Homo-Pan divergence about 5 million years ago

  20. Antineoplastic activity of the DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine in anaplastic large cell lymphoma

    Science.gov (United States)

    Hassler, Melanie R.; Klisaroska, Aleksandra; Kollmann, Karoline; Steiner, Irene; Bilban, Martin; Schiefer, Ana-Iris; Sexl, Veronika; Egger, Gerda

    2012-01-01

    DNA methylation is an epigenetic mechanism establishing long-term gene silencing during development and cell commitment, which is maintained in subsequent cell generations. Aberrant DNA methylation is found at gene promoters in most cancers and can lead to silencing of tumor suppressor genes. The DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine (5-aza-CdR) is able to reactivate genes silenced by DNA methylation and has been shown to be a very potent epigenetic drug in several hematological malignancies. In this report, we demonstrate that 5-aza-CdR exhibits high antineoplastic activity against anaplastic large cell lymphoma (ALCL), a rare CD30 positive non-Hodgkin lymphoma of T-cell origin. Low dose treatment of ALCL cell lines and xenografted tumors causes apoptosis and cell cycle arrest in vitro and in vivo. This is also reflected in genome-wide expression analyses, where genes related to apoptosis and cell death are amongst the most affected targets of 5-aza-CdR. Furthermore, we observed demethylation and re-expression of p16INK4A after drug administration and senescence associated β-galactosidase activity. Thus, our data provide evidence that 5-aza-CdR is highly efficient against ALCL and warrants further clinical evaluation for future therapeutic use. PMID:22687603

  1. Small RNA Sequencing Reveals Differential miRNA Expression in the Early Development of Broccoli (Brassica oleracea var. italica) Pollen.

    Science.gov (United States)

    Li, Hui; Wang, Yu; Wu, Mei; Li, Lihong; Jin, Chuan; Zhang, Qingli; Chen, Chengbin; Song, Wenqin; Wang, Chunguo

    2017-01-01

    Pollen development is an important and complex biological process in the sexual reproduction of flowering plants. Although the cytological characteristics of pollen development are well defined, the regulation of its early stages remains largely unknown. In the present study, miRNAs were explored in the early development of broccoli ( Brassica oleracea var. italica ) pollen. A total of 333 known miRNAs that originated from 235 miRNA families were detected. Fifty-five novel miRNA candidates were identified. Sixty of the 333 known miRNAs and 49 of the 55 predicted novel miRNAs exhibited significantly differential expression profiling in the three distinct developmental stages of broccoli pollen. Among these differentially expressed miRNAs, miRNAs that would be involved in the developmental phase transition from uninucleate microspores to binucleate pollen grains or from binucleate to trinucleate pollen grains were identified. miRNAs that showed significantly enriched expression in a specific early stage of broccoli pollen development were also observed. In addition, 552 targets for 127 known miRNAs and 69 targets for 40 predicted novel miRNAs were bioinformatically identified. Functional annotation and GO (Gene Ontology) analysis indicated that the putative miRNA targets showed significant enrichment in GO terms that were related to plant organ formation and morphogenesis. Some of enriched GO terms were detected for the targets directly involved in plant male reproduction development. These findings provided new insights into the functions of miRNA-mediated regulatory networks in broccoli pollen development.

  2. Laser synthesized super-hydrophobic conducting carbon with broccoli-type morphology as a counter-electrode for dye sensitized solar cells

    Science.gov (United States)

    Gokhale, Rohan; Agarkar, Shruti; Debgupta, Joyashish; Shinde, Deodatta; Lefez, Benoit; Banerjee, Abhik; Jog, Jyoti; More, Mahendra; Hannoyer, Beatrice; Ogale, Satishchandra

    2012-10-01

    A laser photochemical process is introduced to realize superhydrophobic conducting carbon coatings with broccoli-type hierarchical morphology for use as a metal-free counter electrode in a dye sensitized solar cell. The process involves pulsed excimer laser irradiation of a thin layer of liquid haloaromatic organic solvent o-dichlorobenzene (DCB). The coating reflects a carbon nanoparticle-self assembled and process-controlled morphology that yields solar to electric power conversion efficiency of 5.1% as opposed to 6.2% obtained with the conventional Pt-based electrode.A laser photochemical process is introduced to realize superhydrophobic conducting carbon coatings with broccoli-type hierarchical morphology for use as a metal-free counter electrode in a dye sensitized solar cell. The process involves pulsed excimer laser irradiation of a thin layer of liquid haloaromatic organic solvent o-dichlorobenzene (DCB). The coating reflects a carbon nanoparticle-self assembled and process-controlled morphology that yields solar to electric power conversion efficiency of 5.1% as opposed to 6.2% obtained with the conventional Pt-based electrode. Electronic supplementary information (ESI) available: Materials and equipment details, solar cell fabrication protocol, electrolyte spreading time measurement details, XPS spectra, electronic study, film adhesion test detailed analysis and field emission results. See DOI: 10.1039/c2nr32082g

  3. High resolution mass spectrometry studies of sulforaphane and indole-3-carbinol in broccoli.

    Science.gov (United States)

    Kokotou, Maroula G; Revelou, Panagiota-Kyriaki; Pappas, Christos; Constantinou-Kokotou, Violetta

    2017-12-15

    Broccoli is a rich source of bioactive compounds. Among them, sulforaphane and indole-3-carbinol have attracted a lot of attention, since their consumption is associated with reduced risk of cancer. In this work, the development of an efficient and direct method for the simultaneous determination of sulforaphane and indole-3-carbinol in broccoli using UPLC-HRMS/MS is described. The correlation coefficient, and limits of detection (LOD) and quantification (LOQ) were 0.993, 0.77mg/L and 2.35mg/L for sulforaphane and 0.997, 0.42mg/L, 1.29mg/L for indole-3-carbinol, respectively. The content of sulforaphane and indole-3-carbinol varied between 72±9-304±2mg and 77±1-117±3mg per 100g of fresh florets, respectively. Taking into consideration the differences in cultivar, geography, season and environmental factors, the results agreed with values published in the literature using other techniques. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Assessment of the Extent of Implementation of Quality Management System (QMS and Cost of Quality (COQ Concepts – A Case from a Developing Country

    Directory of Open Access Journals (Sweden)

    Sheheryar Qureshi

    2017-06-01

    Full Text Available In developed countries, the application of the quality management system (QMS is widely proven. However, in developing countries, like Pakistan, industries are not mature enough to understand and implement the system. The aim of this study is to examine the perception of quality, implementation of QMS and cost of quality (COQ program in value-added garment sector, which is one of the major subsectors of textile industry in Pakistan. The methodology of the study is a questionnaire survey. The findings suggest that the majority of the respondent firms have well implemented quality management (QM practices. Trend of results also depicts that most of the organizations wish to acquire ISO certification, which shows that the industrial processes are customer-centered thus striving to fulfil customer requirements. It can also be concluded that most of the organizations lack the COQ concept, its understanding and appropriate implementation.

  5. Histone H3 lysine 9 methyltransferase FvDim5 regulates fungal development, pathogenicity and osmotic stress responses in Fusarium verticillioides.

    Science.gov (United States)

    Gu, Qin; Ji, Tiantian; Sun, Xiao; Huang, Hai; Zhang, Hao; Lu, Xi; Wu, Liming; Huo, Rong; Wu, Huijun; Gao, Xuewen

    2017-10-16

    Histone methylation plays important biological roles in eukaryotic cells. Methylation of lysine 9 at histone H3 (H3K9me) is critical for regulating chromatin structure and gene transcription. Dim5 is a lysine histone methyltransferase (KHMTase) enzyme, which is responsible for the methylation of H3K9 in eukaryotes. In the current study, we identified a single ortholog of Neurospora crassa Dim5 in Fusarium verticillioides. In this study, we report that FvDim5 regulates the trimethylation of H3K9 (H3K9me3). The FvDIM5 deletion mutant (ΔFvDim5) showed significant defects in conidiation, perithecium production and fungal virulence. Unexpectedly, we found that deletion of FvDIM5 resulted in increased tolerance to osmotic stresses and upregulated FvHog1 phosphorylation. These results indicate the importance of FvDim5 for the regulation of fungal development, pathogenicity and osmotic stress responses in F. verticillioides. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Koeling van bloemkool en broccoli op de veiling "De Tuinbouw" te Grootebroek

    NARCIS (Netherlands)

    Damen, P.M.M.; Hendriks, A.G.M.

    1980-01-01

    In een proef op de veiling "De Tuinbouw" in Grootebroek is zowel bloemkool als broccoli opgeslagen gedurende respectievelijk een en drie dagen bij 2 graden C en 95% r.v. Na koeling zijn de kolen geplaatst in een donkere ruimte met een temperatuur van 18 graden C en een r.v. van 90%. Beoordeeld is op

  7. Drosophila arginine methyltransferase 1 (DART1) is an ecdysone receptor co-repressor

    International Nuclear Information System (INIS)

    Kimura, Shuhei; Sawatsubashi, Shun; Ito, Saya; Kouzmenko, Alexander; Suzuki, Eriko; Zhao, Yue; Yamagata, Kaoru; Tanabe, Masahiko; Ueda, Takashi; Fujiyama, Sari; Murata, Takuya; Matsukawa, Hiroyuki; Takeyama, Ken-ichi; Yaegashi, Nobuo

    2008-01-01

    Histone arginine methylation is an epigenetic marker that regulates gene expression by defining the chromatin state. Arginine methyltransferases, therefore, serve as transcriptional co-regulators. However, unlike other transcriptional co-regulators, the physiological roles of arginine methyltransferases are poorly understood. Drosophila arginine methyltransferase 1 (DART1), the mammalian PRMT1 homologue, methylates the arginine residue of histone H4 (H4R3me2). Disruption of DART1 in Drosophila by imprecise P-element excision resulted in low viability during metamorphosis in the pupal stages. In the pupal stage, an ecdysone hormone signal is critical for developmental progression. DART1 interacted with the nuclear ecdysone receptor (EcR) in a ligand-dependent manner, and co-repressed EcR in intact flies. These findings suggest that DART1, a histone arginine methyltransferase, is a co-repressor of EcR that is indispensable for normal pupal development in the intact fly

  8. Aberrant DNA methylation in 5'regions of DNA methyltransferase genes in aborted bovine clones

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    High rate of abortion and developmental abnormalities is thought to be closely associated with inefficient epigenetic reprogramming of the transplanted nuclei during bovine cloning.It is known that one of the important mechanisms for epigenetic reprogramming is DNA methylation.DNA methylation is established and maintained by DNA methyltransferases(DNMTs),therefore,it is postulated that the inefficient epigenetic reprogramming of transplanted nuclei may be due to abnormal expression of DNMTs.Since DNA methylation can strongly inhibit gene expression,aberrant DNA methylation of DNMT genes may disturb gene expression.But presently,it is not clear whether the methylation abnormality of DNMT genes is related to developmental failure of somatic cell nuclear transfer embryos.In our study,we analyzed methylation patterns of the 5' regions of four DNMT genes including Dnmt3a,Dnmt3b,Dnmtl and Dnmt2 in four aborted bovine clones.Using bisulfite sequencing method,we found that 3 out of 4 aborted bovine clones(AF1,AF2 and AF3)showed either hypermethylation or hypomethylation in the 5' regions of Dnmt3a and Dnmt3b.indicating that Dnmt3a and Dnmt3b genes are not properly reprogrammed.However,the individual AF4 exhibited similar methylation level and pattern to age-matched in vitro fertilized (IVF)fetuses.Besides,we found that tle 5'regions of Dnmtl and Dnmt2 were nearly completely unmethylated in all normal adults.IVF fetuses,sperm and aborted clones.Together,our results suggest that the aberrant methylation of Dnmt3a and Dnmt3b 5' regions is probably associated with the high abortion of bovine clones.

  9. Plants as Biofactories: Postharvest Stress-Induced Accumulation of Phenolic Compounds and Glucosinolates in Broccoli Subjected to Wounding Stress and Exogenous Phytohormones

    Science.gov (United States)

    Villarreal-García, Daniel; Nair, Vimal; Cisneros-Zevallos, Luis; Jacobo-Velázquez, Daniel A.

    2016-01-01

    Broccoli contains high levels of bioactive molecules and is considered a functional food. In this study, postharvest treatments to enhance the concentration of glucosinolates and phenolic compounds were evaluated. Broccoli whole heads were wounded to obtain florets and wounded florets (florets cut into four even pieces) and stored for 24 h at 20 °C with or without exogenous ethylene (ET, 1000 ppm) or methyl jasmonate (MeJA, 250 ppm). Whole heads were used as a control for wounding treatments. Regarding glucosinolate accumulation, ET selectively induced the 4-hydroxylation of glucobrassicin in whole heads, resulting in ∼223% higher 4-hydroxyglucobrassicin than time 0 h samples. Additionally, glucoraphanin was increased by ∼53% in whole heads treated with ET, while neoglucobrassicin was greatly accumulated in wounded florets treated with ET or MeJA, showing increases of ∼193 and ∼286%, respectively. On the other hand, although only whole heads stored without phytohormones showed higher concentrations of phenolic compounds, which was reflected in ∼33, ∼30, and ∼46% higher levels of 1,2,2-trisinapoylgentiobose, 1,2-diferulolylgentiobiose, and 1,2-disinapoyl-2-ferulolylgentiobiose, respectively; broccoli florets stored under air control conditions showed enhanced concentrations of 3-O-caffeoylquinic acid, 1,2-disinapoylgentiobiose, and 1,2-disinapoyl-2-ferulolylgentiobiose (∼22, ∼185, and ∼65% more, respectively). Furthermore, exogenous ET and MeJA impeded individual phenolics accumulation. Results allowed the elucidation of simple and effective postharvest treatment to enhance the content of individual glucosinolates and phenolic compounds in broccoli. The stressed-broccoli tissue could be subjected to downstream processing in order to extract and purify bioactive molecules with applications in the dietary supplements, agrochemical and cosmetics markets. PMID:26904036

  10. Effect of Different Culture Media on Broccoli (Brassica oleracea var. italica Yield Components and Mineral Elements Concentration in Soilless Culture

    Directory of Open Access Journals (Sweden)

    Kamran Ghasemi

    2018-03-01

    Full Text Available Introduction: Broccoli is one of the valuable vegetables among brassicas which has received great attention throughout the world and is cultivated both in soil and soilless culture. Currently, we face restriction in high quality of the soils and water resources as two essential inputs in agriculture. Like other parts of the world, Iran is losing hundred hectares of its arable and fertile land annually due to salinity, alkalinity and waterlogging. One of the important strategies to overcome these adverse conditions is soilless culture systems. Among the different methods of soilless culture, substrate culture is more common and cheaper than others. Different kinds of organic and inorganic substances are used in soilless culture system, but the optimum mixture of growing medium is still a challenging issue. Physical and chemical characteristics of growing media can potentially affect the yield and product quality in direct and indirect ways. A good medium for soilless culture should have easy drainage, appropriate aeration, high water holding capacity and low price, as well as no weed seeds and pathogens. Therefore, this research was aimed to evaluate different prevalent growing media in broccoli soilless culture system. Materials and Methods: This experiment was conducted as an outdoor soilless culture system in outdoor hydroponic site in Sari Agricultural Sciences and Natural Recourses University (SANRU. To begin with, broccoli seeds were sown in transplanting tray, and after five weeks, the developed transplants were cultivated in growing bags in a soilless system. In this work, different mixtures of culture media were evaluated for yield component and mineral elements of broccoli. Ten kinds of different media comprising of cocopeat, perlite, sand, sawdust, sand+sawdust, sand+vermicompost, cocopeat+perlite, cocopeat+LECA, cocopeat+ pumice, and cocopeat+perlite+ vermicompost were compared in completely randomized design with tree replications

  11. Thermally induced degradation of sulfur-containing aliphatic glucosinolates in broccoli sprouts (Brassica oleracea var. italica) and model systems.

    Science.gov (United States)

    Hanschen, Franziska S; Platz, Stefanie; Mewis, Inga; Schreiner, Monika; Rohn, Sascha; Kroh, Lothar W

    2012-03-07

    Processing reduces the glucosinolate (GSL) content of plant food, among other aspects due to thermally induced degradation. Since there is little information about the thermal stability of GSL and formation of corresponding breakdown products, the thermally induced degradation of sulfur-containing aliphatic GSL was studied in broccoli sprouts and with isolated GSL in dry medium at different temperatures as well as in aqueous medium at different pH values. Desulfo-GSL have been analyzed with HPLC-DAD, while breakdown products were estimated using GC-FID. Whereas in the broccoli sprouts structural differences of the GSL with regard to thermal stability exist, the various isolated sulfur-containing aliphatic GSL degraded nearly equally and were in general more stable. In broccoli sprouts, methylsulfanylalkyl GSL were more susceptible to degradation at high temperatures, whereas methylsulfinylalkyl GSL were revealed to be more affected in aqueous medium under alkaline conditions. Besides small amounts of isothiocyanates, the main thermally induced breakdown products of sulfur-containing aliphatic GSL were nitriles. Although they were most rapidly formed at comparatively high temperatures under dry heat conditions, their highest concentrations were found after cooking in acidic medium, conditions being typical for domestic processing.

  12. Broccoli and watercress suppress matrix metalloproteinase-9 activity and invasiveness of human MDA-MB-231 breast cancer cells

    International Nuclear Information System (INIS)

    Rose, Peter; Huang, Qing; Ong, Choon Nam; Whiteman, Matt

    2005-01-01

    A high dietary intake of cruciferous vegetables has been associated with a reduction in numerous human pathologies particularly cancer. In the current study, we examined the inhibitory effects of broccoli (Brassica oleracea var. italica) and watercress (Rorripa nasturtium aquaticum) extracts on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced cancer cell invasion and matrix metalloproteinase-9 activity using human MDA-MB-231 breast cancer cells. Aberrant overexpression of matrix metalloproteinases, including metalloproteinase-9, is associated with increased invasive potential in cancer cell lines. Our results demonstrate that extracts of broccoli and Rorripa suppressed TPA-induced MMP-9 activity and invasiveness in a concentration dependant manner as determined by zymographic analysis. Furthermore, fractionation of individual extracts followed by liquid chromatography mass spectroscopy analysis (LC-MS) revealed that the inhibitory effects of each vegetable were associated with the presence of 4-methysulfinylbutyl (sulforaphane) and 7-methylsulphinylheptyl isothiocyanates. Taken together, our data indicate that isothiocyanates derived form broccoli and Rorripa inhibit metalloproteinase 9 activities and also suppress the invasive potential of human MDA-MB-231 breast cancer cells in vitro. The inhibitory effects observed in the current study may contribute to the suppression of carcinogenesis by diets high in cruciferous vegetables

  13. Improved radioenzymatic assay for plasma norepinephrine using purified phenylethanolamine n-methyltransferase

    International Nuclear Information System (INIS)

    Bowsher, R.R.; Henry, D.P.

    1986-01-01

    Radioenzymatic assays have been developed for catecholamines using either catechol O-methyltransferase (COMT) or phenylethanolamine N-methyltransferase (PNMT). Assays using PNMT are specific for norepinephrine (NE) and require minimal manipulative effort but until now have been less sensitive than the more complex procedures using COMT. The authors report an improved purification scheme for bovine PNMT which has permitted development of an NE assay with dramatically improved sensitivity (0.5 pg), specificity and reproducibility (C.V. < 5%). PNMT was purified by sequential pH 5.0 treatment and dialysis and by column chromatographic procedures using DEAE-Sephacel, Sepharcryl S-200 and Phenyl-Boronate Agarose. Recovery of PNMT through the purification scheme was 50%, while blank recovery was <.001%. NE can be directly quantified in 25 ul of human plasma and an 80 tube assay can be completed within 4 h. The capillary to venous plasma NE gradient was examined in 8 normotensive male subjects. Capillary plasma (NE (211.2 +/- 61.3 pg/ml)) was lower than venous plasma NE (366.6 +/- 92.5 pg/ml) in all subjects (p < 0.005). This difference suggests that capillary (NE) may be a unique indicator of sympathetic nervous system activity in vivo. In conclusion, purification of PNMT has facilitated development of an improved radioenzymatic for NE with significantly improved sensitivity

  14. Effects of broccoli extract on biodistribution and labeling blood components with {sup 99m}Tc-GH

    Energy Technology Data Exchange (ETDEWEB)

    Cekic, Betul; Muftuler, Fazilet Zumrut Biber; Kilcar, Ayfer Yurt; Ichedef, Cigdem; Unak, Perihan [Ege University, Izmir (Turkey). Inst. of Nuclear Sciences. Dept. of Nuclear Applications

    2011-09-15

    Purpose: people consume vegetables without the knowledge of the side effects of the biological and chemical contents and interactions between radiopharmaceuticals and herbal extract. To this end, current study is focused on the effects of broccoli extract on biodistribution of radiolabeled glucoheptonate ({sup 99m}Tc-GH) and radiolabeling of blood components. Methods: GH was labeled with {sup 99m}Tc. Quality control studies were done utilizing TLC method. Biodistribution studies were performed on male rats which were treated via gavage with either broccoli extract or SF as control group for 15 days. Blood samples were withdrawn from rats' heart. Radiolabeling of blood constituents performed incubating with GH, SnCl{sub 2} and {sup 99m} Tc. Results: radiochemical yield of {sup 99m}Tc-GH is 98.46{+-}1.48 % (n=8). Biodistribution studies have shown that according to the control, the treated group with broccoli has approximately 10 times less uptake in kidney. The percentage of the radioactivity ratios of the blood components is found to be same in both groups. Conclusions: although there is no considerable effect on the radiolabeling of blood components, there is an outstanding change on the biodistribution studies especially on kidneys. The knowledge of this change on kidney uptake may contribute to reduce the risk of misdiagnosis and/or repetition of the examinations in Nuclear Medicine. (author)

  15. A Picrinine N-Methyltransferase Belongs to a New Family of γ-Tocopherol-Like Methyltransferases Found in Medicinal Plants That Make Biologically Active Monoterpenoid Indole Alkaloids1[OPEN

    Science.gov (United States)

    Levac, Dylan; Cázares, Paulo; Yu, Fang

    2016-01-01

    Members of the Apocynaceae plant family produce a large number of monoterpenoid indole alkaloids (MIAs) with different substitution patterns that are responsible for their various biological activities. A novel N-methyltransferase involved in the vindoline pathway in Catharanthus roseus showing distinct similarity to γ-tocopherol C-methyltransferases was used in a bioinformatic screen of transcriptomes from Vinca minor, Rauvolfia serpentina, and C. roseus to identify 10 γ-tocopherol-like N-methyltransferases from a large annotated transcriptome database of different MIA-producing plant species (www.phytometasyn.ca). The biochemical function of two members of this group cloned from V. minor (VmPiNMT) and R. serpentina (RsPiNMT) have been characterized by screening their biochemical activities against potential MIA substrates harvested from the leaf surfaces of MIA-accumulating plants. The approach was validated by identifying the MIA picrinine from leaf surfaces of Amsonia hubrichtii as a substrate of VmPiNMT and RsPiNMT. Recombinant proteins were shown to have high substrate specificity and affinity for picrinine, converting it to N-methylpicrinine (ervincine). Developmental studies with V. minor and R. serpentina showed that RsPiNMT and VmPiNMT gene expression and biochemical activities were highest in younger leaf tissues. The assembly of at least 150 known N-methylated MIAs within members of the Apocynaceae family may have occurred as a result of the evolution of the γ-tocopherol-like N-methyltransferase family from γ-tocopherol methyltransferases. PMID:26848097

  16. Dysregulated DNA Methyltransferase 3A Upregulates IGFBP5 to Suppress Trophoblast Cell Migration and Invasion in Preeclampsia.

    Science.gov (United States)

    Jia, Yuanhui; Li, Ting; Huang, Xiaojie; Xu, Xianghong; Zhou, Xinyao; Jia, Linyan; Zhu, Jingping; Xie, Dandan; Wang, Kai; Zhou, Qian; Jin, Liping; Zhang, Jiqin; Duan, Tao

    2017-02-01

    Preeclampsia is a unique multiple system disorder during human pregnancy, which affects ≈5% to 8% of pregnancies. Its risks and complications have become the major causes of maternal and fetal morbidity and mortality. Although abnormal placentation to which DNA methylation dysregulation is always linked is speculated to be one of the reasons causing preeclampsia, the underlying mechanisms still remain elusive to date. Here we revealed that aberrant DNA methyltransferase 3A (DNMT3A) plays a critical role in preeclampsia. Our results show that the expression and localization of DNMT3A are dysregulated in preeclamptic placenta. Moreover, knockdown of DNMT3A obviously inhibits trophoblast cell migration and invasion. Mechanistically, IGFBP5 (insulin-like growth factor-binding protein 5), known as a suppressor, is upregulated by decreased DNMT3A because of promoter hypomethylation. Importantly, IGFBP5 downregulation can rescue the defects caused by DNMT3A knockdown, thereby, consolidating the significance of IGFBP5 in the downstream of DNMT3A in trophoblast. Furthermore, we detected low promoter methylation and high protein expression of IGFBP5 in the clinical samples of preeclamptic placenta. Collectively, our study suggests that dysregulation of DNMT3A and IGFBP5 is relevant to preeclampsia. Thus, we propose that DNMT3A and IGFBP5 can serve as potential markers and targets for the clinical diagnosis and therapy of preeclampsia. © 2017 American Heart Association, Inc.

  17. Monolignol 4-O-methyltransferases and uses thereof

    Science.gov (United States)

    Liu, Chang-Jun; Bhuiya, Mohammad-Wadud; Zhang, Kewei

    2014-11-18

    Modified (iso)eugenol 4-O-methyltransferase enzymes having novel capacity for methylation of monolignols and reduction of lignin polymerization in plant cell wall are disclosed. Sequences encoding the modified enzymes are disclosed.

  18. Involvement of methyltransferases enzymes during the energy

    African Journals Online (AJOL)

    Mgina

    INVOLVEMENT OF METHYLTRANSFERASES ENZYMES DURING THE. ENERGY METABOLISM OF ..... cell extract still exhibited relatively high methanogenesis with methanol (Fig ... product CH3-CoM into methane (see Fig. 1). The HS-CoM ...

  19. Ribosomal protein methyltransferases in the yeast Saccharomyces cerevisiae: Roles in ribosome biogenesis and translation.

    Science.gov (United States)

    Al-Hadid, Qais; White, Jonelle; Clarke, Steven

    2016-02-12

    A significant percentage of the methyltransferasome in Saccharomyces cerevisiae and higher eukaryotes is devoted to methylation of the translational machinery. Methylation of the RNA components of the translational machinery has been studied extensively and is important for structure stability, ribosome biogenesis, and translational fidelity. However, the functional effects of ribosomal protein methylation by their cognate methyltransferases are still largely unknown. Previous work has shown that the ribosomal protein Rpl3 methyltransferase, histidine protein methyltransferase 1 (Hpm1), is important for ribosome biogenesis and translation elongation fidelity. In this study, yeast strains deficient in each of the ten ribosomal protein methyltransferases in S. cerevisiae were examined for potential defects in ribosome biogenesis and translation. Like Hpm1-deficient cells, loss of four of the nine other ribosomal protein methyltransferases resulted in defects in ribosomal subunit synthesis. All of the mutant strains exhibited resistance to the ribosome inhibitors anisomycin and/or cycloheximide in plate assays, but not in liquid culture. Translational fidelity assays measuring stop codon readthrough, amino acid misincorporation, and programmed -1 ribosomal frameshifting, revealed that eight of the ten enzymes are important for translation elongation fidelity and the remaining two are necessary for translation termination efficiency. Altogether, these results demonstrate that ribosomal protein methyltransferases in S. cerevisiae play important roles in ribosome biogenesis and translation. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Methyl Jasmonate and 1-Methylcyclopropene Treatment Effects on Quinone Reductase Inducing Activity and Post-Harvest Quality of Broccoli

    Science.gov (United States)

    Ku, Kang Mo; Choi, Jeong Hee; Kim, Hyoung Seok; Kushad, Mosbah M.; Jeffery, Elizabeth H.; Juvik, John A.

    2013-01-01

    Effect of pre-harvest methyl jasmonate (MeJA) and post-harvest 1-methylcyclopropene (1-MCP) treatments on broccoli floret glucosinolate (GS) concentrations and quinone reductase (QR, an in vitro anti-cancer biomarker) inducing activity were evaluated two days prior to harvest, at harvest and at 10, 20, and 30 days of post-harvest storage at 4 °C. MeJA treatments four days prior to harvest of broccoli heads was observed to significantly increase floret ethylene biosynthesis resulting in chlorophyll catabolism during post-harvest storage and reduced product quality. Post-harvest treatment with 1-methylcyclopropene (1-MCP), which competitively binds to protein ethylene receptors, maintained post-harvest floret chlorophyll concentrations and product visual quality in both control and MeJA-treated broccoli. Transcript abundance of BoPPH, a gene which is responsible for the synthesis of pheophytinase, the primary enzyme associated with chlorophyll catabolism in broccoli, was reduced by 1-MCP treatment and showed a significant, negative correlation with floret chlorophyll concentrations. The GS, glucobrassicin, neoglucobrassicin, and gluconasturtiin were significantly increased by MeJA treatments. The products of some of the GS from endogenous myrosinase hydrolysis [sulforaphane (SF), neoascorbigen (NeoASG), N-methoxyindole-3-carbinol (NI3C), and phenethyl isothiocyanate (PEITC)] were also quantified and found to be significantly correlated with QR. Sulforaphane, the isothiocyanate hydrolysis product of the GS glucoraphanin, was found to be the most potent QR induction agent. Increased sulforaphane formation from the hydrolysis of glucoraphanin was associated with up-regulated gene expression of myrosinase (BoMyo) and the myrosinase enzyme co-factor gene, epithiospecifier modifier1 (BoESM1). This study demonstrates the combined treatment of MeJA and 1-MCP increased QR activity without post-harvest quality loss. PMID:24146962

  1. Broccoli glucosinolate degradation is reduced performing thermal treatment in binary systems with other food ingredients

    NARCIS (Netherlands)

    Giambanelli, E.; Verkerk, R.; Fogliano, V.; Capuano, E.; Antuono, D' L.F.; Oliviero, T.

    2015-01-01

    Glucosinolate (GL) stability has been widely studied in different Brassica species. However, the matrix effect determined by the presence of other ingredients occurred in many broccoli-based traditional recipes may affect GL thermal degradation. In this study, the matrix effect on GL thermal

  2. Metabolomic assessment reveals a stimulatory effect of calcium treatment on glucosinolates contents in broccoli microgreen

    Science.gov (United States)

    Preharvest calcium application has been shown to increase broccoli microgreen yield and extend shelf life. Here we investigated the effect of calcium application on its metabolome using ultra high-performance liquid chromatography (UHPLC) tandem with mass spectrometry (HRMS). The data collected were...

  3. Investigation on the influence of pre-treatments on drying behaviour of broccoli by MRI experiments

    NARCIS (Netherlands)

    Jin, X.; Sman, van der R.G.M.; Gerkema, E.; Vergeldt, F.J.; As, van H.; Straten, van G.; Boom, R.M.; Boxtel, van A.J.B.

    2011-01-01

    Abstract: Magnetic Resonance Imaging (MRI) allows the monitoring of internal moisture content of food products during drying non-destructively. In an experimental set-up with continuous and controlled hot air supply, the internal moisture distribution of broccoli with different pre-treatments are

  4. DEVELOPMENT OF EST-SSR MARKERS TO ASSESS GENETIC DIVERSITY OF BROCCOLI AND ITS RELATED SPECIES

    Directory of Open Access Journals (Sweden)

    Nur Kholilatul Izzah

    2017-01-01

    Full Text Available Development of Expressed Sequence Tag-Simple Sequence Repeat (EST-SSR markers derived from public database is known to be more efficient, faster and low cost. The objective of this study was to generate a new set of EST-SSR markers for broccoli and its related species and their usefulness for assessing their genetic diversity. A total of 202 Brassica oleracea ESTs were retrieved from NCBI and then assembled into 172 unigenes by means of CAP3 program. Identification of SSRs was carried out using web-based tool, RepeatMasker software. Afterwards, EST-SSR markers were developed using Primer3 program. Among the identified SSRs, trinucleotide repeats were the most common repeat types, which accounted for about 50%. A total of eight primer pairs were successfully designed and yielded amplification products. Among them, five markers were polymorphic and displayed a total of 30 alleles with an average number of six alleles per locus. The polymorphic markers were subsequently used for analyzing genetic diversity of 36 B. oleracea cultivars including 22 broccoli, five cauliflower and nine kohlrabi cultivars based on genetic similarity matrix as implemented in NTSYS program. At similarity coefficient of 61%, a UPGMA clustering dendrogram effectively separated 36 genotypes into three main groups, where 30 out of 36 genotypes were clearly discriminated. The result obtained in the present study would help breeders in selecting parental lines for crossing. Moreover, the novel EST-SSR markers developed in the study could be a valuable tool for differentiating cultivars of broccoli and related species.

  5. Methyltransferase Erm(37) Slips on rRNA to Confer Atypical Resistance in Mycobacterium tuberculosis

    Czech Academy of Sciences Publication Activity Database

    Madsen, Ch. T.; Jakobsen, L.; Buriánková, Karolína; Doucet-Populaire, F.; Perdonet, J. L.; Douthwaite, S.

    2005-01-01

    Roč. 280, č. 47 (2005), s. 38942-38947 ISSN 0021-9258 R&D Projects: GA ČR GA310/03/0292 Institutional research plan: CEZ:AV0Z50200510 Keywords : methyltransferase erm * mycobacterium tuberculosis * rRNA Subject RIV: EE - Microbiology, Virology Impact factor: 5.854, year: 2005

  6. Plasma membrane aquaporins mediates vesicle stability in broccoli.

    Directory of Open Access Journals (Sweden)

    Maria Del Carmen Martínez-Ballesta

    Full Text Available The use of in vitro membrane vesicles is attractive because of possible applications in therapies. Here we aimed to compare the stability and functionality of plasma membrane vesicles extracted from control and salt-treated broccoli. The impact of the amount of aquaporins was related to plasma membrane osmotic water permeability and the stability of protein secondary structure. Here, we describe for first time an increase in plant aquaporins acetylation under high salinity. Higher osmotic water permeability in NaCl vesicles has been related to higher acetylation, upregulation of aquaporins, and a more stable environment to thermal denaturation. Based on our findings, we propose that aquaporins play an important role in vesicle stability.

  7. The O-methyltransferase PMT2 mediates methylation of pinosylvin in Scots pine.

    Science.gov (United States)

    Paasela, Tanja; Lim, Kean-Jin; Pietiäinen, Milla; Teeri, Teemu H

    2017-06-01

    Heartwood extractives are important determinants of the natural durability of pine heartwood. The most important phenolic compounds affecting durability are the stilbenes pinosylvin and its monomethylether, which in addition have important functions as phytoalexins in active defense. A substantial portion of the synthesized pinosylvin is 3-methoxylated but the O-methyltransferase responsible for this modification has not been correctly identified. We studied the expression of the stilbene pathway during heartwood development as well as in response to wounding of xylem and UV-C treatment of needles. We isolated and enzymatically characterized a novel O-methyltransferase, PMT2. The methylated product was verified as pinosylvin monomethylether using ultra performance liquid chromatography-tandem mass spectrometry and high performance liquid chromatography analyses. The PMT2 enzyme was highly specific for stilbenes as substrate, in contrast to caffeoyl-CoA O-methyltransferase (CCoAOMT) and PMT1 that were multifunctional. Expression profile and multifunctional activity of CCoAOMT suggest that it might have additional roles outside lignin biosynthesis. PMT1 is not involved in the stilbene pathway and its biological function remains an open question. We isolated a new specific O-methyltransferase responsible for 3-methoxylation of pinosylvin. Expression of PMT2 closely follows stilbene biosynthesis during developmental and stress induction. We propose that PMT2 is responsible for pinosylvin methylation in Scots pine (Pinus sylvestris), instead of the previously characterized methyltransferase, PMT1. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  8. Establishing an eastern broccoli industry: where are we and where do we need to go?

    Science.gov (United States)

    A Coordinated Agricultural Project (CAP) entitled “Establishing an Eastern Broccoli Industry” has been underway since the fall of 2010 and funded under the USDA Specialty Crop Research Initiative (SCRI), which was established as part of the 2008 Farm Bill. This project has brought together research...

  9. Flavivirus methyltransferase as target for virus treatment

    Czech Academy of Sciences Publication Activity Database

    Krafčíková, Petra; Chalupská, Dominika; Hercík, Kamil; Nencka, Radim; Bouřa, Evžen

    2017-01-01

    Roč. 284, Suppl 1 (2017), s. 216-217 ISSN 1742-464X. [FEBS Congress /42./ From Molecules to Cells and Back. 10.09.2017-14.09.2017, Jerusalem] Institutional support: RVO:61388963 Keywords : flavivirus methyltransferase * antivirals Subject RIV: CE - Biochemistry

  10. The activity of myrosinase from broccoli (Brassica oleracea L. cv. Italica): influence of intrinsic and extrinsic factors.

    Science.gov (United States)

    Ludikhuyze, L; Rodrigo, L; Hendrickx, M

    2000-03-01

    The potential of some intrinsic (MgCl2, ascorbic acid, pH) and extrinsic (temperature, pressure) factors for controlling/altering activity of myrosinase from broccoli was investigated in this paper. A combination of MgCl2 and ascorbic acid was found to enhance enzyme activity. Concentrations resulting in optimal activity were determined as 0.1 g/liter and 2 g/liter, respectively. Both in the absence and presence of this enzyme activator, the optimal pH was situated between 6.5 and 7, corresponding to the natural pH of fresh broccoli juice. At atmospheric pressure, the enzyme was optimally active at a temperature about 30 degrees C. Application of low pressure (50 to 100 MPa) slightly enhanced the activity while at higher pressure (300 MPa), the activity was largely reduced. Future work should focus on the extension of this work to real food products in order to take cellular disruption into account. In intact vegetable tissues, the enzyme myrosinase is present in compartments separated from its substrate, the glucosinolates. Hence, enzymatic hydrolysis can merely occur after cellular disruption. In this respect, processes such as cutting, cooking, freezing, or pressurizing of the vegetables will have a large effect on the glucosinolate hydrolysis by myrosinase. This work could then be the basis for controlling glucosinolate hydrolysis in food preparation and processing.

  11. Protein arginine methyltransferase 5 is an essential component of the hypoxia-inducible factor 1 signaling pathway

    International Nuclear Information System (INIS)

    Lim, Ji-Hong; Choi, Yong-Joon; Cho, Chung-Hyun; Park, Jong-Wan

    2012-01-01

    Highlights: ► HIF-1α is expressed PRMT5-dependently in hypoxic cancer cells. ► The HIF-1 regulation of hypoxia-induced genes is attenuated in PRMT5-knocked-down cells. ► The de novo synthesis of HIF-1α depends on PRMT5. ► PRMT5 is involved in the HIF-1α translation initiated by 5′ UTR of HIF-1α mRNA. -- Abstract: Protein arginine methyltransferase 5 (PRMT5) is an enzyme that transfers one or two methyl groups to the arginine residues of histones or non-histone proteins, and that plays critical roles in cellular processes as diverse as receptor signaling and gene expression. Furthermore, PRMT5 is highly expressed in tumors, where it may be associated with tumor growth. Although much research has been conducted on PRMT5, little is known regarding its role in adaption to hypoxia. As hypoxia-inducible factor 1 (HIF-1) is a key player in hypoxic response, we examined the possible involvement of PRMT5 in the HIF-1 signaling pathway. Of the siRNAs targeting PRMT1–8, only PRMT5 siRNA attenuated the hypoxic induction of HIF-1α in A549 cells, and this result was reproducible in all three cancer cell lines examined. PRMT5 knock-down also repressed the promoter activities and the transcript levels of HIF-1-governed genes. Mechanistically, de novo synthesis of HIF-1α protein was reduced in PRMT5-knocked-down A549 cells, and this was rescued by PRMT5 restoration. In contrast, HIF-1α transcription, RNA processing, and protein stability were unaffected by PRMT5 knock-down. Furthermore, PRMT5 was found to be essential for the HIF-1α translation initiated by the 5′ UTR of HIF-1α mRNA. Given our results and previous reports, we believe that PRMT5 probably promotes tumor growth by stimulating cell proliferation and by participating in the construction of a tumor-favorable microenvironment via HIF-1 activation.

  12. Genotoxicity studies of organically grown broccoli (Brassica oleracea var. italica) and its interactions with urethane, methyl methanesulfonate and 4-nitroquinoline-1-oxide genotoxicity in the wing spot test of Drosophila melanogaster.

    Science.gov (United States)

    Heres-Pulido, María Eugenia; Dueñas-García, Irma; Castañeda-Partida, Laura; Santos-Cruz, Luis Felipe; Vega-Contreras, Viridiana; Rebollar-Vega, Rosa; Gómez-Luna, Juan Carlos; Durán-Díaz, Angel

    2010-01-01

    Broccoli (Brassica oleracea var. italica) has been defined as a cancer preventive food. Nevertheless, broccoli contains potentially genotoxic compounds as well. We performed the wing spot test of Drosophila melanogaster in treatments with organically grown broccoli (OGB) and co-treatments with the promutagen urethane (URE), the direct alkylating agent methyl methanesulfonate (MMS) and the carcinogen 4-nitroquinoline-1-oxide (4-NQO) in the standard (ST) and high bioactivation (HB) crosses with inducible and high levels of cytochrome P450s (CYPs), respectively. Larvae of both crosses were chronically fed with OGB or fresh market broccoli (FMB) as a non-organically grown control, added with solvents or mutagens solutions. In both crosses, the OGB added with Tween-ethanol yielded the expected reduction in the genotoxicity spontaneous rate. OGB co-treatments did not affect the URE effect, MMS showed synergy and 4-NQO damage was modulated in both crosses. In contrast, FMB controls produced damage increase; co-treatments modulated URE genotoxicity, diminished MMS damage, and did not change the 4-NQO damage. The high dietary consumption of both types of broccoli and its protective effects in D. melanogaster are discussed. Copyright 2009 Elsevier Ltd. All rights reserved.

  13. CORRELATION LINKS BETWEEN SOME ECONOMICALLY VALUABLE SIGNS IN BROCCOLI

    Directory of Open Access Journals (Sweden)

    E. A. Zablotskaya

    2018-01-01

    Full Text Available The study of the correlation relationship between the signs, the informativeness of the indicators makes it possible to conduct a preliminary assessment of the plants and more objectively to identify forms with high economically valuable characteristics. Their integrated assessment will identify the best source material for further selection. In literary sources, information on the correlation in broccoli between yields and its elements are not the same. The purpose of our study was to analyze the contingency of various traits and to identify significant correlation links between quantitative traits in broccoli hybrids (42 samples. They were obtained using doubled haploid lines (DH-line of early maturity at 2 planting dates (spring and summer. Studies were conducted in the Odintsovo district of the Moscow region in field experience in 2015, 2016. Significant influence on growth and development was provided by the developing weather conditions during the growing period. The fluctuation of humidification and temperature conditions differed significantly during the years of study and the time of planting, which is an important circumstance for analyzing the data obtained. Based on the results of the research, it was concluded that the value of the correlation coefficient and the strength of the correlation relationship between the characteristics (mass, diameter, head height, plant height, vegetation period are different and depend on the set of test specimens and growing conditions. A significant stable manifestation of positive correlation was revealed during all the years of research and the time of planting between the diameter and mass of the head (r = 0.45-0.96. The variability of the correlation of other economically valuable traits is marked. 

  14. Protein arginine methyltransferase 5 promotes lung cancer metastasis via the epigenetic regulation of miR-99 family/FGFR3 signaling.

    Science.gov (United States)

    Jing, Pengyu; Zhao, Nan; Ye, Mingxiang; Zhang, Yong; Zhang, Zhipei; Sun, Jianyong; Wang, Zhengxin; Zhang, Jian; Gu, Zhongping

    2018-07-28

    Protein arginine methyltransferase 5 (PRMT5) functions as a tumor initiator to regulate several cancer progressions, such as proliferation and apoptosis, by catalyzing the symmetrical dimethylation (me2s) of arginine residues within targeted molecules. However, the exact role of PRMT5-mediated metastasis in lung cancer is not fully understood. Here, we illustrated its potential effects in lung cancer metastasis in vivo and vitro. PRMT5 was frequently overexpressed in lung tumors, and its expression was positively related to tumor stages, lymphatic metastasis and poor outcome. In this model, PRMT5 repressed the transcription of the miR-99 family by symmetrical dimethylation of histone H4R3, which increased FGFR3 expression and in turn activated Erk1/2 and Akt, leading to cell growth and metastasis in lung cancer. Furthermore, loss of PRMT5 exerted anti-metastasis effects on lung cancer progression by blocking histone-modification of miR-99 family. Overall, this study provides new insights into the PRMT5/miR-99 family/FGFR3 axis in regulating lung cancer progression and identifies PRMT5 as a promising prognostic biomarker and therapeutic target. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  15. The effect of nitrogen and the method of application on yield and quality of broccoli

    NARCIS (Netherlands)

    Everaarts, A.P.; Willigen, de P.

    1999-01-01

    The effects of the rate and the method of N application on yield and quality of broccoli cv. Emperor were studied during 3 seasons at Andijk and Lelystad, Netherlands. Different amounts of N fertilizer were applied broadcast or band placed at planting. Band placement of fertilizer increased the

  16. Using regional broccoli trial data to select experimental hybrids for input into advanced yield trials

    Science.gov (United States)

    A large amount of phenotypic trait data are being generated in regional trials that are implemented as part of the Specialty Crop Research Initiative (SCRI) project entitled “Establishing an Eastern Broccoli Industry”. These data are used to identify the best entries in the trials for inclusion in ...

  17. Detecting 16S rRNA Methyltransferases in Enterobacteriaceae by Use of Arbekacin.

    Science.gov (United States)

    McGann, Patrick; Chahine, Sarah; Okafor, Darius; Ong, Ana C; Maybank, Rosslyn; Kwak, Yoon I; Wilson, Kerry; Zapor, Michael; Lesho, Emil; Hinkle, Mary

    2016-01-01

    16S rRNA methyltransferases confer resistance to most aminoglycosides, but discriminating their activity from that of aminoglycoside-modifying enzymes (AMEs) is challenging using phenotypic methods. We demonstrate that arbekacin, an aminoglycoside refractory to most AMEs, can rapidly detect 16S methyltransferase activity in Enterobacteriaceae with high specificity using the standard disk susceptibility test. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  18. Floral Benzenoid Carboxyl Methyltransferases: From in Vitro to in Planta Function

    Energy Technology Data Exchange (ETDEWEB)

    Effmert,U.; Saschenbrecker, S.; Ross, J.; Negre, F.; Fraser, C.; Noel, J.; Dudareva, N.; Piechulla, B.

    2005-01-01

    Benzenoid carboxyl methyltransferases synthesize methyl esters (e.g., methyl benzoate and methyl salicylate), which are constituents of aromas and scents of many plant species and play important roles in plant communication with the surrounding environment. Within the past five years, eleven such carboxyl methyltransferases were isolated and most of them were comprehensively investigated at the biochemical, molecular and structural level. Two types of enzymes can be distinguished according to their substrate preferences: the SAMT-type enzymes isolated from Clarkia breweri, Stephanotis floribunda, Antirrhinum majus, Hoya carnosa, and Petunia hybrida, which have a higher catalytic efficiency and preference for salicylic acid, while BAMT-type enzymes from A. majus, Arabidopsis thaliana, Arabidopsis lyrata, and Nicotiana suaveolens prefer benzoic acid. The elucidation of C. breweri SAMT's three-dimensional structure allowed a detailed modelling of the active sites of the carboxyl methyltransferases and revealed that the SAM binding pocket is highly conserved among these enzymes while the methyl acceptor binding site exhibits some variability, allowing a classification into SAMT-type and BAMT-type enzymes. The analysis of expression patterns coupled with biochemical characterization showed that these carboxyl methyltransferases are involved either in floral scent biosynthesis or in plant defense responses. While the latter can be induced by biotic or abiotic stress, the genes responsible for floral scent synthesis exhibit developmental and rhythmic expression pattern. The nature of the product and efficiency of its formation in plants depend on the availability of substrates, the catalytic efficiency of the enzyme toward benzoic acid and/or salicylic acid, and the transcriptional, translational, and post-translational regulation at the enzyme level. The biochemical properties of benzenoid carboxyl methyltransferases suggest that the genes involved in plant defenses

  19. Bioavailability of Isothiocyanates From Broccoli Sprouts in Protein, Lipid, and Fiber Gels

    OpenAIRE

    Oliviero, Teresa; Lamers, Simone; Capuano, Edoardo; Dekker, Matthijs; Verkerk, Ruud

    2018-01-01

    Scope: Optimization of bioavailability of dietary bioactive health-beneficial compounds is as important as increasing their concentration in foods. The aim of this study is to explore the change in bioavailability of isothiocyanates (ITCs) in broccoli sprouts incorporated in protein, fiber, and lipid gels. Methods and results: Five participants took part in a cross-over study and collected timed urine samples up to 24 h after consumption of proteins, dietary fibers, and lipid gels containing ...

  20. Mutations in Cytosine-5 tRNA Methyltransferases Impact Mobile Element Expression and Genome Stability at Specific DNA Repeats

    Directory of Open Access Journals (Sweden)

    Bianca Genenncher

    2018-02-01

    Full Text Available The maintenance of eukaryotic genome stability is ensured by the interplay of transcriptional as well as post-transcriptional mechanisms that control recombination of repeat regions and the expression and mobility of transposable elements. We report here that mutations in two (cytosine-5 RNA methyltransferases, Dnmt2 and NSun2, impact the accumulation of mobile element-derived sequences and DNA repeat integrity in Drosophila. Loss of Dnmt2 function caused moderate effects under standard conditions, while heat shock exacerbated these effects. In contrast, NSun2 function affected mobile element expression and genome integrity in a heat shock-independent fashion. Reduced tRNA stability in both RCMT mutants indicated that tRNA-dependent processes affected mobile element expression and DNA repeat stability. Importantly, further experiments indicated that complex formation with RNA could also contribute to the impact of RCMT function on gene expression control. These results thus uncover a link between tRNA modification enzymes, the expression of repeat DNA, and genomic integrity.

  1. Effects of pre- and postharvest calcium treatments on shelf life and postharvest quality of broccoli microgreens

    Science.gov (United States)

    Microgreens’ extremely short shelf life limits their commercial usage. The objective of this study is to compare the effect of pre- and post- harvest treatments using different forms of calcium on the postharvest quality and shelf-life of broccoli microgreens. Preharvest spray with calcium lactate, ...

  2. Histone methyltransferases in cancer

    DEFF Research Database (Denmark)

    Albert, Mareike; Helin, Kristian

    2009-01-01

    Cancer is perceived as a heterogeneous group of diseases that is characterized by aberrant patterns of gene expression. In the last decade, an increasing amount of data has pointed to a key role for epigenetic alterations in human cancer. In this review, we focus on a subclass of epigenetic...... regulators, namely histone methyltransferases (HMTs). Several HMTs have been linked to different types of cancer; however, in most cases we only have limited knowledge regarding the molecular mechanisms by which the HMTs contribute to disease development. We summarize the current knowledge regarding some...

  3. Molecular cloning and functional expression of a stress-induced multifunctional O-methyltransferase with pinosylvin methyltransferase activity from Scots pine (Pinus sylvestris L.).

    Science.gov (United States)

    Chiron, H; Drouet, A; Claudot, A C; Eckerskorn, C; Trost, M; Heller, W; Ernst, D; Sandermann, H

    2000-12-01

    Formation of pinosylvin (PS) and pinosylvin 3-O-monomethyl ether (PSM), as well as the activities of stilbene synthase (STS) and S-adenosyl-1-methionine (SAM):pinosylvin O-methyltransferase (PMT), were induced strongly in needles of Scots pine seedlings upon ozone treatment, as well as in cell suspension cultures of Scots pine upon fungal elicitation. A SAM-dependent PMT protein was purified and partially characterised. A cDNA encoding PMT was isolated from an ozone-induced Scots pine cDNA library. Southern blot analysis of the genomic DNA suggested the presence of a gene family. The deduced protein sequence showed the typical highly conserved regions of O-methyltransferases (OMTs), and average identities of 20-56% to known OMTs. PMT expressed in Escherichia coli corresponded to that of purified PMT (40 kDa) from pine cell cultures. The recombinant enzyme catalysed the methylation of PS, caffeic acid, caffeoyl-CoA and quercetin. Several other substances, such as astringenin, resveratrol, 5-OH-ferulic acid, catechol and luteolin, were also methylated. Recombinant PMT thus had a relatively broad substrate specificity. Treatment of 7-year old Scots pine trees with ozone markedly increased the PMT mRNA level. Our results show that PMT represents a new SAM-dependent OMT for the methylation of stress-induced pinosylvin in Scots pine needles.

  4. Discovery of novel dengue virus NS5 methyltransferase non-nucleoside inhibitors by fragment-based drug design.

    Science.gov (United States)

    Benmansour, Fatiha; Trist, Iuni; Coutard, Bruno; Decroly, Etienne; Querat, Gilles; Brancale, Andrea; Barral, Karine

    2017-01-05

    With the aim to help drug discovery against dengue virus (DENV), a fragment-based drug design approach was applied to identify ligands targeting a main component of DENV replication complex: the NS5 AdoMet-dependent mRNA methyltransferase (MTase) domain, playing an essential role in the RNA capping process. Herein, we describe the identification of new inhibitors developed using fragment-based, structure-guided linking and optimization techniques. Thermal-shift assay followed by a fragment-based X-ray crystallographic screening lead to the identification of three fragment hits binding DENV MTase. We considered linking two of them, which bind to proximal sites of the AdoMet binding pocket, in order to improve their potency. X-ray crystallographic structures and computational docking were used to guide the fragment linking, ultimately leading to novel series of non-nucleoside inhibitors of flavivirus MTase, respectively N-phenyl-[(phenylcarbamoyl)amino]benzene-1-sulfonamide and phenyl [(phenylcarbamoyl)amino]benzene-1-sulfonate derivatives, that show a 10-100-fold stronger inhibition of 2'-O-MTase activity compared to the initial fragments. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. Methylated nucleosides in tRNA and tRNA methyltransferases

    Directory of Open Access Journals (Sweden)

    Hiroyuki eHori

    2014-05-01

    Full Text Available To date, more than 90 modified nucleosides have been found in tRNA and the biosynthetic pathways of the majority of tRNA modifications include a methylation step(s. Recent studies of the biosynthetic pathways have demonstrated that the availability of methyl group donors for the methylation in tRNA is important for correct and efficient protein synthesis. In this review, I focus on the methylated nucleosides and tRNA methyltransferases. The primary functions of tRNA methylations are linked to the different steps of protein synthesis, such as the stabilization of tRNA structure, reinforcement of the codon–anticodon interaction, regulation of wobble base pairing, and prevention of frameshift errors. However, beyond these basic functions, recent studies have demonstrated that tRNA methylations are also involved in the RNA quality control system and regulation of tRNA localization in the cell. In a thermophilic eubacterium, tRNA modifications and the modification enzymes form a network that responses to temperature changes. Furthermore, several modifications are involved in genetic diseases, infections, and the immune response. Moreover, structural, biochemical, and bioinformatics studies of tRNA methyltransferases have been clarifying the details of tRNA methyltransferases and have enabled these enzymes to be classified. In the final section, the evolution of modification enzymes is discussed.

  6. Evaluation of the Free Volume Theory to Predict Moisture Transport and Quality Changes During Broccoli Drying

    NARCIS (Netherlands)

    Jin, X.; Sman, van der R.G.M.; Boxtel, van A.J.B.

    2011-01-01

    Moisture diffusion in porous broccoli florets and stalks is modeled using the free volume and Maxwell-Eucken theories. These theories are based on the mobility of water and concern the variation of the effective diffusion coefficient for a wide range of temperature and moisture content during

  7. Resposta de brócolis, couve-flor e repolho à adubação com boro em solo arenoso Response of boron fertilization on broccoli, cauliflower and cabbage planted in sandy soil

    Directory of Open Access Journals (Sweden)

    Luiz Carlos Pizetta

    2005-03-01

    Full Text Available Foram avaliados em condições de campo, em solo arenoso, com baixo teor de boro, os efeitos da adubação com cinco doses de boro (0; 2; 4; 6 e 8 kg ha-1 de B na forma de bórax na produção de brócolis, couve-flor e repolho. O experimento obedeceu a um esquema fatorial com delineamento experimental de blocos ao acaso com três repetições. As adubações orgânica e química, inclusive o bórax, foram feitas no sulco antes do transplantio das mudas e a colheita foi feita entre 63 e 93 dias após o transplantio. A produtividade de brócolis variou de 16,9 a 20,5 t ha-1; a de couve-flor de 21,6 a 29,6 t ha-1 e a de repolho de 40,5 a 46,4 t ha-1. O aumento observado na produtividade de brócolis e de repolho foi linear e o efeito das doses de boro na produtividade de couve-flor foi quadrático, sendo necessários 5,1 kg ha-1 de B para atingir a produtividade máxima de 30 t ha-1. Brócolis e repolho mostraram-se menos sensíveis do que a couve-flor tanto à deficiência quanto ao excesso de boro. No caso da couve-flor, com a aplicação de 2 kg ha-1 ou de 6 kg ha-1 de B houve significativa perda de qualidade do produto.The effects of boron fertilization on yield of broccoli, cauliflower and cabbage were evaluated through a field experiment carried out on a sandy soil low in available boron. Five boron levels (0; 2; 4; 6; and 8 kg ha-1 B as borax were applied in broccoli, cauliflower and cabbage using a factorial scheme and a randomized block design with three replicates. Organic manure and chemical fertilizers, including borax, were applied in the planting furrow before seedlings transplant and plants were harvested 63 to 93 days after planting date. The yield intervals obtained with broccoli, cauliflower and cabbage varied according to the following intervals: 16.9 to 20.5 t ha-1, 21.6 to 29.6 t ha-1 and 40.5 to 46.3 t ha-1, respectively. The increase in production observed in broccoli and cabbage yield was linear with boron levels and the

  8. Antimicrobial potential of cauliflower, broccoli, and okara byproducts against foodborne bacteria.

    Science.gov (United States)

    Sanz-Puig, Maria; Pina-Pérez, Maria C; Criado, Maria Nieves; Rodrigo, Dolores; Martínez-López, Antonio

    2015-01-01

    The antimicrobial potential of cauliflower, broccoli, and okara byproducts was assessed against Gram-positive and Gram-negative bacteria. Salmonella enterica serovar Typhimurium, Escherichia coli O157:H7, Bacillus cereus, and Listeria monocytogenes serovar 4b growth behavior was assessed under exposure to 5% vegetable byproducts added to the reference medium, buffered peptone water (0.1% [wt/vol]), at 37°C. Although the byproducts were not effective against L. monocytogenes, they were bactericidal against Salmonella Typhimurium, E. coli O157:H7, and B. cereus. The most promising results were achieved with the cauliflower-Salmonella Typhimurium combination, because the bacterial population was reduced by 3.11 log10 cycles after 10 h of incubation at 37°C as a result of 5% cauliflower addition. Further studies were carried out for this combination, at different cauliflower concentrations (0, 0.5, 1, 5, 10, and 15%) and at temperatures in the range of 5-37°C. The greatest inactivation level (6.11 log10 cycles) was achieved at refrigeration temperature (5°C) using 15% cauliflower addition. Both temperature and cauliflower concentration significantly (p≤0.05) influenced the Salmonella Typhimurium inactivation level. The kinetic parameters were adjusted to mathematical models. The modified Gompertz mathematical model provided an accurate fit (root-mean-square error (RMSE) [0.00009-0.21] and adjusted-R(2) [0.81-0.99]) to experimental Salmonella Typhimurium survival curves describing inactivation kinetics of the pathogen to the antimicrobial effect of cauliflower byproduct.

  9. Association between TPMT*3C and decreased thiopurine S-methyltransferase activity in patients with neuromyelitis optica spectrum disorders in China.

    Science.gov (United States)

    Gong, Xiaoqing; Mei, Shenghui; Li, Xindi; Li, Xingang; Zhou, Heng; Liu, Yonghong; Zhou, Anna; Yang, Li; Zhao, Zhigang; Zhang, Xinghu

    2018-06-01

    Thiopurines are effective drugs in treating neuromyelitis optica spectrum disorders and other diseases. Thiopurines' toxicity is mainly imputed to thiopurine S-methyltransferase activity. In Chinese population, the most common and important variation of thiopurine S-methyltransferase is TPMT*3C (rs1142345). This study aims to reveal the association between thiopurine S-methyltransferase activity and genetic polymorphisms of thiopurine S-methyltransferase in patients with neuromyelitis optica spectrum disorders in China. A liquid chromatography tandem mass/mass method was used to evaluate the thiopurine S-methyltransferase activity by using 6-mercapthioprine as the substrate in human erythrocyte haemolysate via 1 h incubation at 37 °C to form its methylated product 6-methylmercaptopurine. The amount of 6-methylmercaptopurine was adjusted by haematocrit and normalized to 8 × 10 8 erythrocytes. The selected polymorphisms of thiopurine S-methyltransferase were identified using MassARRAY system (Sequenom) and multiple SNaPshot technique. In 69 patients with neuromyelitis optica spectrum disorders, thiopurine S-methyltransferase activity was 80.29-154.53 (127.51 ± 16.83) pmol/h/8 × 10 8 erythrocytes. TPMT*3C (rs1142345) was associated with lower thiopurine S-methyltransferase activity (BETA = -25.37, P = 0.011). Other selected variants were not associated with thiopurine S-methyltransferase activity. TPMT*3C affects TPMT activity in Chinese patients with neuromyelitis optica spectrum disorders. Further studies are warranted to confirm the results. TPRs = thiopurines; NMOSD = neuromyelitis optica spectrum disorders; TPMT = thiopurine S-methyltransferase; LC-MS/MS = liquid chromatography tandem mass/mass; 6-MMP = 6-methylmercaptopurine; IS = internal standard; SNP = single nucleotide polymorphism; MAF = minor allele frequency; HWE = Hardy-Weinberg equilibrium; BETA = regression coefficients; UTR-3 = untranslated region 3.

  10. Evaluation of the free volume theory to predict moisture transport and quality changes during broccoli drying

    NARCIS (Netherlands)

    Jin, X.; Sman, van der R.G.M.; Boxtel, van A.J.B.

    2010-01-01

    Abstract: Moisture diffusion in porous broccoli florets and stalks is modeled by using the free volume and Maxwell-Eucken theories. These theories are based on the mobility of water and show the variation of the effective diffusion coefficient for a wide range of temperatures and moisture content of

  11. Impact of different drying trajectories on degradation of nutritional compounds in broccoli (Brassica oleracea var. italica)

    NARCIS (Netherlands)

    Jin, X.; Oliviero, T.; Sman, van der R.G.M.; Verkerk, R.; Dekker, M.; Boxtel, van A.J.B.

    2014-01-01

    This work concerns the degradation of the nutritional compounds glucoraphanin (GR) and vitamin C (Vc), and the inactivation of the enzyme myrosinase (MYR) in broccoli (Brassica oleracea var. italica) during drying with air temperatures in the range of 30e60 C. Dynamic optimization is applied to find

  12. Evolution of the Phosphatidylcholine Biosynthesis Pathways in Green Algae: Combinatorial Diversity of Methyltransferases.

    Science.gov (United States)

    Hirashima, Takashi; Toyoshima, Masakazu; Moriyama, Takashi; Sato, Naoki

    2018-01-01

    Phosphatidylcholine (PC) is one of the most common phospholipids in eukaryotes, although some green algae such as Chlamydomonas reinhardtii are known to lack PC. Recently, we detected PC in four species in the genus Chlamydomonas: C. applanata NIES-2202, C. asymmetrica NIES-2207, C. debaryana NIES-2212, and C. sphaeroides NIES-2242. To reveal the PC biosynthesis pathways in green algae and the evolutionary scenario involved in their diversity, we analyzed the PC biosynthesis genes in these four algae using draft genome sequences. Homology searches suggested that PC in these species is synthesized by phosphoethanolamine-N-methyltransferase (PEAMT) and/or phosphatidylethanolamine-N-methyltransferase (PEMT), both of which are absent in C. reinhardtii. Recombinant PEAMTs from these algae showed methyltransferase activity for phosphoethanolamine but not for monomethyl phosphoethanolamine in vitro, in contrast to land plant PEAMT, which catalyzes the three methylations from phosphoethanolamine to phosphocholine. This suggested an involvement of other methyltransferases in PC biosynthesis. Here, we characterized the putative phospholipid-N-methyltransferase (PLMT) genes of these species by genetic and phylogenetic analysis. Complementation assays using a PC biosynthesis-deficient yeast suggested that the PLMTs of these algae can synthesize PC from phosphatidylethanolamine. These results indicated that the PC biosynthesis pathways in green algae differ from those of land plants, although the enzymes involved are homologous. Phylogenetic analysis suggested that the PEAMTs and PLMTs in these algae were inherited from the common ancestor of green algae. The absence of PC biosynthesis in many Chlamydomonas species is likely a result of parallel losses of PEAMT and PLMT in this genus.

  13. Protein arginine methyltransferase 5 is an essential component of the hypoxia-inducible factor 1 signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Ji-Hong; Choi, Yong-Joon; Cho, Chung-Hyun [Department of Pharmacology, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 110-799 (Korea, Republic of); Park, Jong-Wan, E-mail: parkjw@snu.ac.kr [Department of Pharmacology, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 110-799 (Korea, Republic of)

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer HIF-1{alpha} is expressed PRMT5-dependently in hypoxic cancer cells. Black-Right-Pointing-Pointer The HIF-1 regulation of hypoxia-induced genes is attenuated in PRMT5-knocked-down cells. Black-Right-Pointing-Pointer The de novo synthesis of HIF-1{alpha} depends on PRMT5. Black-Right-Pointing-Pointer PRMT5 is involved in the HIF-1{alpha} translation initiated by 5 Prime UTR of HIF-1{alpha} mRNA. -- Abstract: Protein arginine methyltransferase 5 (PRMT5) is an enzyme that transfers one or two methyl groups to the arginine residues of histones or non-histone proteins, and that plays critical roles in cellular processes as diverse as receptor signaling and gene expression. Furthermore, PRMT5 is highly expressed in tumors, where it may be associated with tumor growth. Although much research has been conducted on PRMT5, little is known regarding its role in adaption to hypoxia. As hypoxia-inducible factor 1 (HIF-1) is a key player in hypoxic response, we examined the possible involvement of PRMT5 in the HIF-1 signaling pathway. Of the siRNAs targeting PRMT1-8, only PRMT5 siRNA attenuated the hypoxic induction of HIF-1{alpha} in A549 cells, and this result was reproducible in all three cancer cell lines examined. PRMT5 knock-down also repressed the promoter activities and the transcript levels of HIF-1-governed genes. Mechanistically, de novo synthesis of HIF-1{alpha} protein was reduced in PRMT5-knocked-down A549 cells, and this was rescued by PRMT5 restoration. In contrast, HIF-1{alpha} transcription, RNA processing, and protein stability were unaffected by PRMT5 knock-down. Furthermore, PRMT5 was found to be essential for the HIF-1{alpha} translation initiated by the 5 Prime UTR of HIF-1{alpha} mRNA. Given our results and previous reports, we believe that PRMT5 probably promotes tumor growth by stimulating cell proliferation and by participating in the construction of a tumor-favorable microenvironment via HIF-1 activation.

  14. Functional characterization of a rice de novo DNA methyltransferase, OsDRM2, expressed in Escherichia coli and yeast

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Jinsong, E-mail: pangjs542@nenu.edu.cn [Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin 130024 (China); Dong, Mingyue; Li, Ning; Zhao, Yanli [Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin 130024 (China); Liu, Bao, E-mail: baoliu@nenu.edu.cn [Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin 130024 (China)

    2013-03-01

    Highlights: ► A rice de novo DNA methyltransferase OsDRM2 was cloned. ► In vitro methylation activity of OsDRM2 was characterized with Escherichia coli. ► Assays of OsDRM2 in vivo methylation were done with Saccharomyces cerevisiae. ► OsDRM2 methylation activity is not preferential to any type of cytosine context. ► The activity of OsDRM2 is independent of RdDM pathway. - Abstract: DNA methylation of cytosine nucleotides is an important epigenetic modification that occurs in most eukaryotic organisms and is established and maintained by various DNA methyltransferases together with their co-factors. There are two major categories of DNA methyltransferases: de novo and maintenance. Here, we report the isolation and functional characterization of a de novo methyltransferase, named OsDRM2, from rice (Oryza sativa L.). The full-length coding region of OsDRM2 was cloned and transformed into Escherichia coli and Saccharomyces cerevisiae. Both of these organisms expressed the OsDRM2 protein, which exhibited stochastic de novo methylation activity in vitro at CG, CHG, and CHH di- and tri-nucleotide patterns. Two lines of evidence demonstrated the de novo activity of OsDRM2: (1) a 5′-CCGG-3′ containing DNA fragment that had been pre-treated with OsDRM2 protein expressed in E. coli was protected from digestion by the CG-methylation-sensitive isoschizomer HpaII; (2) methylation-sensitive amplified polymorphism (MSAP) analysis of S. cerevisiae genomic DNA from transformants that had been introduced with OsDRM2 revealed CG and CHG methylation levels of 3.92–9.12%, and 2.88–6.93%, respectively, whereas the mock control S. cerevisiae DNA did not exhibit cytosine methylation. These results were further supported by bisulfite sequencing of the 18S rRNA and EAF5 genes of the transformed S. cerevisiae, which exhibited different DNA methylation patterns, which were observed in the genomic DNA. Our findings establish that OsDRM2 is an active de novo DNA

  15. Functional characterization of a rice de novo DNA methyltransferase, OsDRM2, expressed in Escherichia coli and yeast

    International Nuclear Information System (INIS)

    Pang, Jinsong; Dong, Mingyue; Li, Ning; Zhao, Yanli; Liu, Bao

    2013-01-01

    Highlights: ► A rice de novo DNA methyltransferase OsDRM2 was cloned. ► In vitro methylation activity of OsDRM2 was characterized with Escherichia coli. ► Assays of OsDRM2 in vivo methylation were done with Saccharomyces cerevisiae. ► OsDRM2 methylation activity is not preferential to any type of cytosine context. ► The activity of OsDRM2 is independent of RdDM pathway. - Abstract: DNA methylation of cytosine nucleotides is an important epigenetic modification that occurs in most eukaryotic organisms and is established and maintained by various DNA methyltransferases together with their co-factors. There are two major categories of DNA methyltransferases: de novo and maintenance. Here, we report the isolation and functional characterization of a de novo methyltransferase, named OsDRM2, from rice (Oryza sativa L.). The full-length coding region of OsDRM2 was cloned and transformed into Escherichia coli and Saccharomyces cerevisiae. Both of these organisms expressed the OsDRM2 protein, which exhibited stochastic de novo methylation activity in vitro at CG, CHG, and CHH di- and tri-nucleotide patterns. Two lines of evidence demonstrated the de novo activity of OsDRM2: (1) a 5′-CCGG-3′ containing DNA fragment that had been pre-treated with OsDRM2 protein expressed in E. coli was protected from digestion by the CG-methylation-sensitive isoschizomer HpaII; (2) methylation-sensitive amplified polymorphism (MSAP) analysis of S. cerevisiae genomic DNA from transformants that had been introduced with OsDRM2 revealed CG and CHG methylation levels of 3.92–9.12%, and 2.88–6.93%, respectively, whereas the mock control S. cerevisiae DNA did not exhibit cytosine methylation. These results were further supported by bisulfite sequencing of the 18S rRNA and EAF5 genes of the transformed S. cerevisiae, which exhibited different DNA methylation patterns, which were observed in the genomic DNA. Our findings establish that OsDRM2 is an active de novo DNA

  16. Agronomic performance of new open pollinated experimental lines of broccoli (Brassica oleracea L. var. italica evaluated under organic farming.

    Directory of Open Access Journals (Sweden)

    Samira Sahamishirazi

    Full Text Available In order to develop new open pollinating cultivars of broccoli for organic farming, two experiments were conducted during fall 2015 and spring 2016. This study was aimed at comparing the agronomic performance of eleven new open pollinating breeding lines of broccoli to introduce new lines and to test their seasonal suitability for organic farming. Field experiments were carried out at the organic research station Kleinhohenheim of the University of Hohenheim (Stuttgart-Germany. Different agronomic traits total biomass fresh weight, head fresh weight, head diameter, hollow-stem, fresh weight harvest index and marketable yield were assessed together with commercial control cultivars. The data from both experiments were analyzed using a two-stage mixed model approach. In our study, genotype, growing season and their interaction had significant effects on most traits. Plants belonging to the fall growing season had bigger sizes in comparison to spring with significantly (p< 0.0001 higher biomass fresh weight. Some experimental lines had significant lower head fresh weight in spring in comparison to the fall season. The high temperature during the harvest period for the spring season affected the yield negatively through decreasing the firmness of broccoli heads. The low average minimum temperatures during the spring growing season lead to low biomass fresh weight but high fresh weight harvest index. Testing the seasonal suitability of all open pollinating lines showed that the considered fall season was better for broccoli production. However, the change in yield between the fall and the spring growing season was not significant for "Line 701" and "CHE-MIC". Considering the expression of different agronomic traits, "CHE-GRE-G", "Calinaro" and "CAN-SPB" performed the best in the fall growing season, and "CHE-GRE-G", "CHE-GRE-A", "CHE-BAL-A" and "CHE-MIC" and "Line 701" were best in the spring growing season, specifically due to the highest marketable

  17. Variation in Broccoli Cultivar Phytochemical Content under Organic and Conventional Management Systems: Implications in Breeding for Nutrition

    NARCIS (Netherlands)

    Renaud, E.N.C.; Lammerts Van Bueren, E.; Myers, J.R.; Caldas Paulo, M.J.; Eeuwijk, van F.A.; Zhu, N.; Juvik, J.A.

    2014-01-01

    Organic agriculture requires cultivars that can adapt to organic crop management systems without the use of synthetic pesticides as well as genotypes with improved nutritional value. The aim of this study encompassing 16 experiments was to compare 23 broccoli cultivars for the content of

  18. Selenium biofortification of broccoli and carrots grown in soil amended with Se-enriched hyperaccumulator Stanleya pinnata

    Science.gov (United States)

    Amending soils with Se-hyperaccumulator plant derived sources of selenium (Se) may be useful for increasing Se content in food crops in Se-deficient regions of the world. In this study, we evaluated total Se and the different chemical species of Se in broccoli and carrots grown in soils amended with...

  19. Vegetative and reproductive plasticity of broccoli at three levels of incident photosynthetically active radiation

    International Nuclear Information System (INIS)

    Francescangeli, N.; Martí, H.R.; Sangiacomo, M.A.

    2007-01-01

    To study the effects of shading on the growth, development, dry matter partitioning, and plant architecture of broccoli, ‘Legacy’ hybrid plants were grown in pots in a greenhouse under black shading meshes to generate different levels of photosynthetically active radiation (PAR). The average incident PAR was 23 mol PPF m –2 d –1 under control conditions, 15.2 under a 35% mesh, and 6.7 under a 70% mesh. The air temperature was within the range 15-22°C. As shading increased so did the duration of the growth cycle and the leaf area (LA). Shading did not affect the number of leaves, although the upper ones were more erect. The stem length and the accumulated intercepted PAR (IPAR) were negatively related. Inflorescence diameter and commercial fresh weight decreased only with the 70% mesh. Shading did not affect stem dry weight (DW) but altered dry matter allocation in the root and spear. The DW of the leaves maintained an average 45.7% of the total DW despite the greater LA developed under shade. The net assimilation rate diminished with the reduction of IPAR, and the LA increased; the plant relative growth rate was therefore practically constant. With increased shading, the leaves and the stem became the dominant photosynthate sinks. The commercial fresh weight achieved with 15.2 mol photosynthetic photon flux (PPF) m –2 d –1 was equivalent to that obtained with 23 mol PPF m –2 d –1 , but the cycle was extended for 4.5 days. With 6.7 mol PPF m –2 d –1 , yield diminished because of the lower DW produced in a cycle extended by 15 days, and because more dry matter was allocated to the stem than to the spear. Based on these results, broccoli could be considered a shade-tolerant plant. (author) [es

  20. Effectiveness of edible coatings combined with mild heat shocks on microbial spoilage and sensory quality of fresh cut broccoli (Brassica oleracea L.).

    Science.gov (United States)

    Moreira, María del R; Ponce, Alejandra; Ansorena, R; Roura, Sara I

    2011-08-01

    The use of edible coatings and mild heat shocks is proposed as postharvest treatments to prevent microbial deterioration of refrigerated broccoli. Minimally processed broccoli was coated with either chitosan or carboxymethyl-cellulose (CMC) combined or not with a previous application of a mild heat shock. The evolution of microbial populations (mesophilic, psycrotrophic, Enterobacteriaceae, molds and yeast, and lactic acid bacteria) was studied during 20 d of storage and fitted to Gompertz and logistic models. Results revealed that, at the end of the storage, chitosan coating significantly reduced all microbiological population counts, except lactic acid bacteria; while higher reduction was observed with chitosan coating combined with a heat shock treatment. A significant delay at the beginning of the exponential phase was observed for all the bacterial populations analyzed. On the other hand, CMC coating, with and without a previous thermal treatment, did not exert any antibacterial effect. Excellent agreement was found between experimental microbial counts and predicted values obtained from Gompertz and logistic models. Kinetic modeling was found to be valuable for prediction of microbiological shelf life of broccoli during storage. Results showed that the application of chitosan coating effectively maintained microbiological quality and extended shelf life of minimally processed broccoli. According to these results, the use of the edible chitosan coating alone or in combination with a heat mild shock appear to be a viable alternative for controlling microbiological growth and sensory attributes in minimally processed broccoli. The continuous consumer interest in high quality and food safety, combined with environmental concern has induced to the development and study of edible coatings that avoid the use of synthetic materials. The edible coatings, formed from generally recognized as safe materials, have the potential to reduce weight loss, respiration rate, and

  1. Functional characterization of KanP, a methyltransferase from the kanamycin biosynthetic gene cluster of Streptomyces kanamyceticus.

    Science.gov (United States)

    Nepal, Keshav Kumar; Yoo, Jin Cheol; Sohng, Jae Kyung

    2010-09-20

    KanP, a putative methyltransferase, is located in the kanamycin biosynthetic gene cluster of Streptomyces kanamyceticus ATCC12853. Amino acid sequence analysis of KanP revealed the presence of S-adenosyl-L-methionine binding motifs, which are present in other O-methyltransferases. The kanP gene was expressed in Escherichia coli BL21 (DE3) to generate the E. coli KANP recombinant strain. The conversion of external quercetin to methylated quercetin in the culture extract of E. coli KANP proved the function of kanP as S-adenosyl-L-methionine-dependent methyltransferase. This is the first report concerning the identification of an O-methyltransferase gene from the kanamycin gene cluster. The resistant activity assay and RT-PCR analysis demonstrated the leeway for obtaining methylated kanamycin derivatives from the wild-type strain of kanamycin producer. 2009 Elsevier GmbH. All rights reserved.

  2. Variation in broccoli cultivar phytochemical content under organic and conventional management systems: implications in breeding for nutrition.

    Science.gov (United States)

    Renaud, Erica N C; Lammerts van Bueren, Edith T; Myers, James R; Paulo, Maria João; van Eeuwijk, Fred A; Zhu, Ning; Juvik, John A

    2014-01-01

    Organic agriculture requires cultivars that can adapt to organic crop management systems without the use of synthetic pesticides as well as genotypes with improved nutritional value. The aim of this study encompassing 16 experiments was to compare 23 broccoli cultivars for the content of phytochemicals associated with health promotion grown under organic and conventional management in spring and fall plantings in two broccoli growing regions in the US (Oregon and Maine). The phytochemicals quantified included: glucosinolates (glucoraphanin, glucobrassicin, neoglucobrassin), tocopherols (δ-, γ-, α-tocopherol) and carotenoids (lutein, zeaxanthin, β-carotene). For glucoraphanin (17.5%) and lutein (13%), genotype was the major source of total variation; for glucobrassicin, region (36%) and the interaction of location and season (27.5%); and for neoglucobrassicin, both genotype (36.8%) and its interactions (34.4%) with season were important. For δ- and γ-tocopherols, season played the largest role in the total variation followed by location and genotype; for total carotenoids, genotype (8.41-13.03%) was the largest source of variation and its interactions with location and season. Overall, phytochemicals were not significantly influenced by management system. We observed that the cultivars with the highest concentrations of glucoraphanin had the lowest for glucobrassicin and neoglucobrassicin. The genotypes with high concentrations of glucobrassicin and neoglucobrassicin were the same cultivars and were early maturing F1 hybrids. Cultivars highest in tocopherols and carotenoids were open pollinated or early maturing F1 hybrids. We identified distinct locations and seasons where phytochemical performance was higher for each compound. Correlations among horticulture traits and phytochemicals demonstrated that glucoraphanin was negatively correlated with the carotenoids and the carotenoids were correlated with one another. Little or no association between

  3. Assessing competence of broccoli consumption on inflammatory and antioxidant pathways in restraint-induced models: estimation in rat hippocampus and prefrontal cortex.

    Science.gov (United States)

    Khalaj, Leila; Nejad, Sara Chavoshi; Mohammadi, Marzieh; Sarraf Zadeh, Sadaf; Pour, Marieh Hossein; Ashabi, Ghorbangol; Khodagholi, Fariba; Ahmadiani, Abolhassan

    2013-01-01

    A growing body of evidence advocated the protective and therapeutic potential of natural compounds and phytochemicals used in diets against pathological conditions. Herein, the outcome of dietary whole broccoli consumption prior to restraint stress has been investigated in the hippocampus and prefrontal cortex of male rats, two important regions involved in the processing of responses to stressful events. Interestingly, a region-specific effect was detected regarding some of antioxidant defense system factors: nuclear factor erythroid-derived 2-related factor 2 (Nrf-2) antioxidant pathway, mitochondrial prosurvival proteins involved in mitochondrial biogenesis, and apoptotic cell death proteins. Dietary broccoli supplementation modulated the restraint-induced changes towards a consistent overall protection in the hippocampus. In the prefrontal cortex, however, despite activation of most of the protective factors, presumably as an attempt to save the system against the stress insult, some detrimental outcomes such as induced malate dehydrogenase (MDA) level and cleaved form of caspase-3 were detectable. Such diversity may be attributed in one hand to the different basic levels and/or availability of defensive mechanisms within the two studied cerebral regions, and on the other hand to the probable dose-dependent and hormetic effects of whole broccoli. More experiments are essential to demonstrate these assumptions.

  4. Assessing Competence of Broccoli Consumption on Inflammatory and Antioxidant Pathways in Restraint-Induced Models: Estimation in Rat Hippocampus and Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Leila Khalaj

    2013-01-01

    Full Text Available A growing body of evidence advocated the protective and therapeutic potential of natural compounds and phytochemicals used in diets against pathological conditions. Herein, the outcome of dietary whole broccoli consumption prior to restraint stress has been investigated in the hippocampus and prefrontal cortex of male rats, two important regions involved in the processing of responses to stressful events. Interestingly, a region-specific effect was detected regarding some of antioxidant defense system factors: nuclear factor erythroid-derived 2-related factor 2 (Nrf-2 antioxidant pathway, mitochondrial prosurvival proteins involved in mitochondrial biogenesis, and apoptotic cell death proteins. Dietary broccoli supplementation modulated the restraint-induced changes towards a consistent overall protection in the hippocampus. In the prefrontal cortex, however, despite activation of most of the protective factors, presumably as an attempt to save the system against the stress insult, some detrimental outcomes such as induced malate dehydrogenase (MDA level and cleaved form of caspase-3 were detectable. Such diversity may be attributed in one hand to the different basic levels and/or availability of defensive mechanisms within the two studied cerebral regions, and on the other hand to the probable dose-dependent and hormetic effects of whole broccoli. More experiments are essential to demonstrate these assumptions.

  5. Protective Effect of Coenzyme Q10 on Methamphetamine-Induced Apoptosis in Adult Male Rats

    Directory of Open Access Journals (Sweden)

    Fatemeh Gholipour

    2017-06-01

    Full Text Available Background: The negative consequence of methamphetamine abuse is due to neuropathologic changes in the brain, which reduces dopaminergic neurons and result in damage to different brain areas. Neurotoxicity induced by methamphetamine increases the oxidative stress and associated with neuronal apoptosis. The role of the antioxidant coenzyme Q10 probably produces its neuroprotective effects. Therefore, the purpose of the present study was to examine the protective effect of coenzyme Q10 on methamphetamine-induced apoptosis in adult male rats.Materials and Methods: Fifty Wistar eight-week adult rats randomly divided into 5 groups: Healthy control, methamphetamine injection (Meth, methamphetamine injection and CoQ10 5mg/kg treatment (Meth+Post CoQ10 5mg/kg, methamphetamine injection and CoQ10 10mg/kg treatment (Meth+Post CoQ10 10mg/kg, methamphetamine injection and CoQ10 20mg/kg treatment (Meth+Post CoQ10 20mg/kg. Methamphetamine with a purity of 96% with a dosage of 20 mg/kg was injected Intraperitoneal. Coenzyme Q10 for three treatment groups was injected intraperitoneally for 14 days in a dosage of 5, 10 and 20 mg/kg/day. The protein expressions of Baxand Bcl2 were evaluated by western blotting technique.Results: Bax protein expression was significantly lower in Meth+Post CoQ10 5mg/kg (p=0.010 and so Meth+Post CoQ10 10mg/kg (p=0.004 comparing to Meth group. In addition, Bcl2 protein expression was significantly higher in Meth+Post CoQ10 5mg/kg comparing to Meth group (p=0.018. However, there were no significant differences between control and CoQ10 treatment groups. Bax/Bcl2 ratio was significantly lower in Meth+Post CoQ10 5mg/kg (p=0.005, Meth+Post CoQ10 10mg/kg (p=0.008 and Meth+Post CoQ10 20mg/kg (p=0.044 comparing to Meth group.Conclusion: We suggest that CoQ10 reduces the methamphetamine-induced apoptosis in the striatum of the rats through the reduction of apoptotic factors and increase of anti-apoptotic pathways.

  6. Identification of the yeast gene encoding the tRNA m1G methyltransferase responsible for modification at position 9.

    Science.gov (United States)

    Jackman, Jane E; Montange, Rebecca K; Malik, Harmit S; Phizicky, Eric M

    2003-05-01

    Methylation of tRNA at the N-1 position of guanosine to form m(1)G occurs widely in nature. It occurs at position 37 in tRNAs from all three kingdoms, and the methyltransferase that catalyzes this reaction is known from previous work of others to be critically important for cell growth in Escherichia coli and the yeast Saccharomyces cerevisiae. m(1)G is also widely found at position 9 in eukaryotic tRNAs, but the corresponding methyltransferase was unknown. We have used a biochemical genomics approach with a collection of purified yeast GST-ORF fusion proteins to show that m(1)G(9) formation of yeast tRNA(Gly) is associated with ORF YOL093w, named TRM10. Extracts lacking Trm10p have undetectable levels of m(1)G(9) methyltransferase activity but retain normal m(1)G(37) methyltransferase activity. Yeast Trm10p purified from E. coli quantitatively modifies the G(9) position of tRNA(Gly) in an S-adenosylmethionine-dependent fashion. Trm10p is responsible in vivo for most if not all m(1)G(9) modification of tRNAs, based on two results: tRNA(Gly) purified from a trm10-Delta/trm10-Delta strain is lacking detectable m(1)G; and a primer extension block occurring at m(1)G(9) is removed in trm10-Delta/trm10-Delta-derived tRNAs for all 9 m(1)G(9)-containing species that were testable by this method. There is no obvious growth defect of trm10-Delta/trm10-Delta strains. Trm10p bears no detectable resemblance to the yeast m(1)G(37) methyltransferase, Trm5p, or its orthologs. Trm10p homologs are found widely in eukaryotes and many archaea, with multiple homologs in several metazoans, including at least three in humans.

  7. Geographic distribution of methyltransferases of Helicobacter pylori: evidence of human host population isolation and migration

    Directory of Open Access Journals (Sweden)

    Vítor Jorge MB

    2009-09-01

    Full Text Available Abstract Background Helicobacter pylori colonizes the human stomach and is associated with gastritis, peptic ulcer, and gastric cancer. This ubiquitous association between H. pylori and humans is thought to be present since the origin of modern humans. The H. pylori genome encodes for an exceptional number of restriction and modifications (R-M systems. To evaluate if R-M systems are an adequate tool to determine the geographic distribution of H. pylori strains, we typed 221 strains from Africa, America, Asia, and Europe, and evaluated the expression of different 29 methyltransferases. Results Independence tests and logistic regression models revealed that ten R-M systems correlate with geographical localization. The distribution pattern of these methyltransferases may have been originated by co-divergence of regional H. pylori after its human host migrated out of Africa. The expression of specific methyltransferases in the H. pylori population may also reflect the genetic and cultural background of its human host. Methyltransferases common to all strains, M. HhaI and M. NaeI, are likely conserved in H. pylori, and may have been present in the bacteria genome since the human diaspora out of Africa. Conclusion This study indicates that some methyltransferases are useful geomarkers, which allow discrimination of bacterial populations, and that can be added to our tools to investigate human migrations.

  8. The Impact of Broccoli II & Tomato II on European patents in conventional breeding, GMO’s and Synthetic Biology:

    DEFF Research Database (Denmark)

    Minssen, Timo; Nordberg, Ana

    2015-01-01

    . The EBA has also clarified that this applies irrespective of if such claims are formulated in a product-by-process format or as a per se product . Moreover, the combined effect of Broccoli & Tomato I & II opens new opportunities for patenting GMOs - provided that all other patent criteria are also met...... if confronted with similar issues in the context of national implementations of the Biotech Directive, which have taken a very different view than the EBA. Moreover, the fierce European opposition against genetically modified organisms (GMOs) and Synthetic Biology remains a major challenge to the industry...... and Nordberg, A., The Impact of Broccoli II & Tomatoes II on European Patents in Conventional Breeding, GMO's and Synthetic Biology: The Grand Finale of a Juicy Patents Tale? (May 19, 2015). Univ. of Copenhagen Dept. of Economics Discussion. Available at SSRN: http://ssrn.com/abstract=2607865 or http...

  9. Thirteen new patients with guanidinoacetate methyltransferase deficiency and functional characterization of nineteen novel missense variants in the GAMT gene

    DEFF Research Database (Denmark)

    Mercimek-Mahmutoglu, Saadet; Ndika, Joseph; Kanhai, Warsha

    2014-01-01

    Guanidinoacetate methyltransferase deficiency (GAMT-D) is an autosomal recessively inherited disorder of creatine biosynthesis. Creatine deficiency on cranial proton magnetic resonance spectroscopy, and elevated guanidinoacetate levels in body fluids are the biomarkers of GAMT-D. In 74 patients 5...

  10. Organelle Simple Sequence Repeat Markers Help to Distinguish Carpelloid Stamen and Normal Cytoplasmic Male Sterile Sources in Broccoli

    Science.gov (United States)

    Shu, Jinshuai; Liu, Yumei; Li, Zhansheng; Zhang, Lili; Fang, Zhiyuan; Yang, Limei; Zhuang, Mu; Zhang, Yangyong; Lv, Honghao

    2015-01-01

    We previously discovered carpelloid stamens when breeding cytoplasmic male sterile lines in broccoli (Brassica oleracea var. italica). In this study, hybrids and multiple backcrosses were produced from different cytoplasmic male sterile carpelloid stamen sources and maintainer lines. Carpelloid stamens caused dysplasia of the flower structure and led to hooked or coiled siliques with poor seed setting, which were inherited in a maternal fashion. Using four distinct carpelloid stamens and twelve distinct normal stamens from cytoplasmic male sterile sources and one maintainer, we used 21 mitochondrial simple sequence repeat (mtSSR) primers and 32 chloroplast SSR primers to identify a mitochondrial marker, mtSSR2, that can differentiate between the cytoplasm of carpelloid and normal stamens. Thereafter, mtSSR2 was used to identify another 34 broccoli accessions, with an accuracy rate of 100%. Analysis of the polymorphic sequences revealed that the mtSSR2 open reading frame of carpelloid stamen sterile sources had a deletion of 51 bases (encoding 18 amino acids) compared with normal stamen materials. The open reading frame is located in the coding region of orf125 and orf108 of the mitochondrial genomes in Brassica crops and had the highest similarity with Raphanus sativus and Brassica carinata. The current study has not only identified a useful molecular marker to detect the cytoplasm of carpelloid stamens during broccoli breeding, but it also provides evidence that the mitochondrial genome is maternally inherited and provides a basis for studying the effect of the cytoplasm on flower organ development in plants. PMID:26407159

  11. Health-promoting compounds of broccoli (Brassica oleracea L. var. italica) plants as affected by nitrogen fertilisation in projected future climatic change environments.

    Science.gov (United States)

    Zaghdoud, Chokri; Carvajal, Micaela; Moreno, Diego A; Ferchichi, Ali; Del Carmen Martínez-Ballesta, María

    2016-01-30

    The complex interactions between CO2 increase and salinity were investigated in relation to decreased N supply, in order to determine the nutritional quality of broccoli (Brassica oleracea L. var. italica) plants under these conditions. Three different decreased N fertilisation regimes (NO3(-)/NH4(+) ratios of 100:0, 50:50 and 0:100 respectively) were combined with ambient (380 ppm) and elevated (800 ppm) [CO2 ] under non-saline (0 mmol L(-1) NaCl) and saline (80 mmol L(-1) NaCl) conditions. Nutrients (minerals, soluble protein and total amino acids) and natural antioxidants (glucosinolates, phenolic acids, flavonoids and vitamin C) were determined. In NH4(+) -fed broccoli plants, a marked growth reduction was shown and a redistribution of amino acids to cope with NH4(+) toxicity resulted in higher levels of indolic glucosinolate and total phenolic compounds. However, the positive effect of the higher [CO2] - ameliorating adverse effects of salinity--was only observed when N was supplied as NO3(-). Under reduced N fertilisation, the total glucosinolates were increased by a decreased NO3(-)/NH4 (+) ratio and elevated [CO2] but were unaffected by salinity. Under future climatic challenges, such as increased salinity and elevated [CO2], a clear genotypic dependence of S metabolism was observed in broccoli plants. In addition, an influence of the form in which N was supplied on plant nutritional quality was observed; a combined NO3(-)/NH4(+) (50:50) supply allowed broccoli plants not only to deal with NH4(+) toxicity but also to modify their glucosinolate content and profile. Thus, for different modes of N fertilisation, the interaction with climatic factors must be considered in the search for an optimal balance between yield and nutritional quality. © 2015 Society of Chemical Industry.

  12. Nicotinamide -Methyltransferase in Health and Cancer

    Directory of Open Access Journals (Sweden)

    David B Ramsden

    2017-06-01

    Full Text Available Over the past decade, the roles of nicotinamide N -methyltransferase and its product 1-methyl nicotinamide have emerged from playing merely minor roles in phase 2 xenobiotic metabolism as actors in some of the most important scenes of human life. In this review, the structures of the gene, messenger RNA, and protein are discussed, together with the role of the enzyme in many of the common cancers that afflict people today.

  13. Comparative analysis of minor bioactive constituents (CoQ10, tocopherols and phenolic compounds) in Arbequina extra virgin olive oils from Brazil and Spain

    OpenAIRE

    Borges, Thays H.; López, Luis Carlos; Pereira, J.A.; Cabrera-Vique, Carmen; Seiquer, Isabel

    2017-01-01

    There is currently an emerging production of olive oil in Brazil but it is still poorly characterized. In this study, we performed a comparative analysis of minor bioactive constituents (CoQ 10 tocopherols and phenolic compounds) in extra virgin olive oil from different regions of Brazil and Spain, of Arbequina cultivar. Significant variations (P < 0.05) in the concentration of the compounds analyzed were observed among oils from the different growing areas, not only between Spanish and Bra...

  14. A Rapid and Efficient Assay for the Characterization of Substrates and Inhibitors of Nicotinamide N-Methyltransferase

    NARCIS (Netherlands)

    van Haren, Matthijs J; Sastre Torano, Javier; Sartini, Davide; Emanuelli, Monica; Parsons, Richard B; Martin, Nathaniel I

    2016-01-01

    Nicotinamide N-methyltransferase (NNMT) is one of the most abundant small molecule methyltransferases in the human body and is primarily responsible for the N-methylation of the nicotinamide (vitamin B3). Employing the cofactor S-adenosyl-l-methionine, NNMT transfers a methyl group to the pyridine

  15. Molecular Basis for the Regulation of the H3K4 Methyltransferase Activity of PRDM9

    Directory of Open Access Journals (Sweden)

    Hong Wu

    2013-10-01

    Full Text Available PRDM9, a histone lysine methyltransferase, is a key determinant of the localization of meiotic recombination hot spots in humans and mice and the only vertebrate protein known to be involved in hybrid sterility. Here, we report the crystal structure of the PRDM9 methyltransferase domain in complex with a histone H3 peptide dimethylated on lysine 4 (H3K4me2 and S-adenosylhomocysteine (AdoHcy, which provides insights into the methyltransferase activity of PRDM proteins. We show that the genuine substrate of PRDM9 is histone H3 lysine 4 (H3K4 and that the enzyme possesses mono-, di-, and trimethylation activities. We also determined the crystal structure of PRDM9 in its autoinhibited state, which revealed a rearrangement of the substrate and cofactor binding sites by a concerted action of the pre-SET and post-SET domains, providing important insights into the regulatory mechanisms of histone lysine methyltransferase activity.

  16. An engineered split M.HhaI-zinc finger fusion lacks the intended methyltransferase specificity

    International Nuclear Information System (INIS)

    Meister, Glenna E.; Chandrasegaran, Srinivasan; Ostermeier, Marc

    2008-01-01

    The ability to site-specifically methylate DNA in vivo would have wide applicability to the study of basic biomedical problems as well as enable studies on the potential of site-specific DNA methylation as a therapeutic strategy for the treatment of diseases. Natural DNA methyltransferases lack the specificity required for these applications. Nomura and Barbas [W. Nomura, C.F. Barbas 3rd, In vivo site-specific DNA methylation with a designed sequence-enabled DNA methylase, J. Am. Chem. Soc. 129 (2007) 8676-8677] have reported that an engineered DNA methyltransferase comprised of fragments of M.HhaI methyltransferase and zinc finger proteins has very high specificity for the chosen target site. Our analysis of this engineered enzyme shows that the fusion protein methylates target and non-target sites with similar efficiency

  17. Coenzyme Q10 quantification in muscle, fibroblasts and cerebrospinal fluid by liquid chromatography/tandem mass spectrometry using a novel deuterated internal standard.

    Science.gov (United States)

    Duberley, Kate E C; Hargreaves, Iain P; Chaiwatanasirikul, Korn-Anong; Heales, Simon J R; Land, John M; Rahman, Shamima; Mills, Kevin; Eaton, Simon

    2013-05-15

    Neurological dysfunction is common in primary coenzyme Q10 (2,3-dimethoxy, 5-methyl, 6-polyisoprene parabenzoquinone; CoQ10 ; ubiquinone) deficiencies, the most readily treatable subgroup of mitochondrial disorders. Therapeutic benefit from CoQ10 supplementation has also been noted in other neurodegenerative diseases. CoQ10 can be measured by high-performance liquid chromatography (HPLC) in plasma, muscle or leucocytes; however, there is no reliable method to quantify CoQ10 in cerebrospinal fluid (CSF). Additionally, many methods use CoQ9 , an endogenous ubiquinone in humans, as an internal standard. Deuterated CoQ10 (d6 -CoQ10 ) was synthesised by a novel, simple, method. Total CoQ10 was measured by liquid chromatography/tandem mass spectrometry (LC/MS/MS) using d6 -CoQ10 as internal standard and 5 mM methylamine as an ion-pairing reagent. Chromatography was performed using a Hypsersil GOLD C4 column (150 × 3 mm, 3 µm). CoQ10 levels were linear over a concentration range of 0-200 nM (R(2) = 0.9995). The lower limit of detection was 2 nM. The inter-assay coefficient of variation (CV) was 3.6% (10 nM) and 4.3% (20 nM), and intra-assay CV 3.4% (10 nM) and 3.6% (20 nM). Reference ranges were established for CoQ10 in CSF (5.7-8.7 nM; n = 17), fibroblasts (57.0-121.6 pmol/mg; n = 50) and muscle (187.3-430.1 pmol/mg; n = 15). Use of d6 -CoQ10 internal standard has enabled the development of a sensitive LC/MS/MS method to accurately determine total CoQ10 levels. Clinical applications of CSF CoQ10 determination include identification of patients with cerebral CoQ10 deficiency, and monitoring CSF CoQ10 levels following supplementation. Copyright © 2013 John Wiley & Sons, Ltd.

  18. Structure of the human gene encoding the protein repair L-isoaspartyl (D-aspartyl) O-methyltransferase.

    Science.gov (United States)

    DeVry, C G; Tsai, W; Clarke, S

    1996-11-15

    The protein L-isoaspartyl/D-aspartyl O-methyltransferase (EC 2.1.1.77) catalyzes the first step in the repair of proteins damaged in the aging process by isomerization or racemization reactions at aspartyl and asparaginyl residues. A single gene has been localized to human chromosome 6 and multiple transcripts arising through alternative splicing have been identified. Restriction enzyme mapping, subcloning, and DNA sequence analysis of three overlapping clones from a human genomic library in bacteriophage P1 indicate that the gene spans approximately 60 kb and is composed of 8 exons interrupted by 7 introns. Analysis of intron/exon splice junctions reveals that all of the donor and acceptor splice sites are in agreement with the mammalian consensus splicing sequence. Determination of transcription initiation sites by primer extension analysis of poly(A)+ mRNA from human brain identifies multiple start sites, with a major site 159 nucleotides upstream from the ATG start codon. Sequence analysis of the 5'-untranslated region demonstrates several potential cis-acting DNA elements including SP1, ETF, AP1, AP2, ARE, XRE, CREB, MED-1, and half-palindromic ERE motifs. The promoter of this methyltransferase gene lacks an identifiable TATA box but is characterized by a CpG island which begins approximately 723 nucleotides upstream of the major transcriptional start site and extends through exon 1 and into the first intron. These features are characteristic of housekeeping genes and are consistent with the wide tissue distribution observed for this methyltransferase activity.

  19. Two novel bioactive glucosinolates from Broccoli (Brassica oleracea L. var. italica) florets.

    Science.gov (United States)

    Survay, Nazneen Shaik; Kumar, Brajesh; Jang, Mi; Yoon, Do-Young; Jung, Yi-Sook; Yang, Deok-Chun; Park, Se Won

    2012-09-01

    Two novel glucosinolates along with one known glucosinolate were isolated from Broccoli (Brassica oleracea L. var. italica) florets. Their structures were established mainly by 1D ((1)H and (13)C NMR), 2D NMR ((1)H-(1)H COSY, DEPT 135°, HSQC and HMBC), and Tandem MS-MS spectrometric data as 2-mercaptomethyl sulfinyl glucosinolate [(Z)-4-(methylsulfinyl)-N-(sulfooxy)-2-((2'S,3'R,4'S,5'S,6'R)-3',4',5'-trihydroxy-6'(hydroxylmethyl)-2'-mercapto tetrahydro-2H-pyran-2-yl) butane amide] 1, (Z)-1-((2S,5S)-5-hydroxytetra-hydro-2H-pyran-2-ylthio)-2-(1H-indol-3-yl) ethylidene amino sulfate 2 and a known cinnamoyl [6'-O-trans-(4″-hydroxy cinnamoyl)4-(methylsulphinyl)butyl glucosinolate] 3. Compound 1 exhibited scavenging activity against DPPH with an inhibitory concentration IC(50) of 20 mM, whereas compound 3 was a weak antioxidant when compared to the standard quercetin (5 mM) as a positive control. Both the compounds showed a significant and similar antimicrobial activity against Staphylococcus aureus with an IC(50) of <625 μg/mL when compared to antibiotic duricef. Against Salmonella typhimurium the IC(50) of 1 and 3 was determined as <625 μg/mL and <1250 μg/mL, respectively, when compared to ampicillin (IC(50) ≤ 39 μg/mL) as a positive control. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Sulforaphane formation and bioaccessibility are more affected by steaming time than meal composition during in vitro digestion of broccoli

    NARCIS (Netherlands)

    Sarvan-Kruse, Irmela; Kramer, E.; Bouwmeester, Hans; Dekker, Matthijs; Verkerk, R.

    2017-01-01

    Broccoli is a rich source of the glucosinolate glucoraphanin (GR). After hydrolysis of GR by the endogenous enzyme myrosinase, sulforaphane (SF) or sulforaphane nitrile (SFN) are produced, depending on environmental conditions. How the conversion of GR and bioaccessibility of released breakdown

  1. Identification of Aquifex aeolicus tRNA (m2(2G26) methyltransferase gene.

    Science.gov (United States)

    Takeda, Hiroshi; Hori, Hiroyuki; Endo, Yaeta

    2002-01-01

    The modifications of N2,N2-dimethylguanine (m2(2)G) are found in tRNAs and rRNAs from eukarya and archaea. In tRNAs, modification at position G26 is generated by tRNA (m2(2)G26) methyltransferase, which is encoded by the corresponding gene, trm1. This enzyme catalyzes the methyl-transfer from S-adenosyl-L-methionine to the semi-conserved residue, G26, via the intermediate modified base, m2G26. Recent genome sequencing project has been reported that the putative trm1 is encoded in the genome of Aquifex aeolicus, a hyper-thermophilic eubacterium as only one exception among eubacteria. In order to confirm whether this bacterial trm1 gene product is a real tRNA (m2(2)G26) methyltransferase or not, we expressed this protein by wheat germ in vitro cell-free translation system. Our biochemical analysis clearly showed that this gene product possessed tRNA (m2(2)G26) methyltransferase activity.

  2. Effects of the 3D-clinorotation on endogenous substances of broccoli sprout (Brassica oleracea var. italica) and its food safety

    Science.gov (United States)

    Hiraishi, K.; Tomita-Yokotani, K.; Wakabayashi, K.; Hashimoto, H.; Miyagawa, T.; Yamashita, M.

    Habitation in outer space is one of our challenges in this century We are studying on space agriculture to provide foods for space living people However careful assessment should be made on the effects of exotic environment on the endogenous production of biologically active substances and food safety of plants cultivated in space Broccoli sprout Brassica oleracea var italica is known to produce sulforaphane 4-methylsulfinybutyl isothiocyanate which is effective to function as an antioxidant and enhance immunity Because of such substance it is recognized to be good food materials Broccoli sprouts were then cultivated for 3 days under the 3D-clinorotation The amount of sulforaphane produced by this treatment showed no significant difference compared to the ground control Secondly we examined population of microorganisms adhered on the surface of sprout cultivated under the 3D-clinorotation Number of the microorganisms colony formed was statistically higher than the control Mold species was identified to penicillium sp based on the microscopic observation Poor construction of plant cell wall elements cellulose lignin etc is well known effects of microgravity Defense function of the broccoli plant cells might be weakened against microorganism We also speculate other possible causes for the high rate of contamination such as photosynthetic activity of the plant or microclimate air flow heat transport and humidity around the seedling affected by pseudo-microgravity or the 3D-clinorotation Those factors may relate to the difference in proliferation

  3. Effects of combined treatments of irradiation and antimicrobial coatings on reduction of food pathogens in broccoli florets

    Energy Technology Data Exchange (ETDEWEB)

    Takala, P.N.; Salmieri, S.; Vu, K.D. [INRS-Institut Armand-Frappier, Research Laboratories in Sciences Applied to Food, Canadian Irradiation Centre, 531, Blvd des Prairies, Laval, QC, H7V 1B7 (Canada); Lacroix, M., E-mail: Monique.Lacroix@iaf.inrs.ca [INRS-Institut Armand-Frappier, Research Laboratories in Sciences Applied to Food, Canadian Irradiation Centre, 531, Blvd des Prairies, Laval, QC, H7V 1B7 (Canada)

    2011-12-15

    The effect of combined treatment of antimicrobial coatings and {gamma}-radiation on reduction of food pathogens such as Listeria monocytogenes, Escherichia coli, and Salmonella Typhimurium was evaluated in broccoli florets. Broccoli florets were inoculated with pathogenic bacteria at 10{sup 6} CFU/g. Inoculated florets were then coated with methylcellulose-based coating containing various mixtures of antimicrobial agents: organic acids (OAs) plus lactic acid bacteria metabolites (LABs), OA plus citrus extract (CE), OA plus CE plus spice mixture (SM), and OA plus rosemary extract (RE). Coated florets were irradiated with various doses (0-3.3 kGy), and microbial analyses were used to calculate the D{sub 10} value and radiosensitive relative. The coating containing OA plus CE was the most effective formulation for increasing the sensitization of Escherichia coli by 2.4 times as compared to the control without the antimicrobial coating. For Salmonella Typhimurium, coating containing OA plus LAB was the most effective formulation, increasing radiosensitivity by 2.4 times as well. All antimicrobial coatings had almost the same effect of increasing the sensitivity of Listeria monocytogenes (from 1.31 to 1.45 times) to {gamma}-irradiation. - Highlights: > Demonstrate scientifically the synergistic effect of the combined treatment of gamma-irradiation and natural antimicrobial coating in reduction of food pathogens in broccoli. > The coating containing organic acids plus citrus extract was the most efficient formulation for increasing the sensitization of E. coli by 2.40 times as compared to the control. > The coating containing organic acids plus lactic acid bacteria metabolites was the most effective formulation causing the sensitization of S. Typhimurium to {gamma}-irradiation by 2.4 times. > Potential in application of developed formulations to protect food products against food pathogens.

  4. Effects of combined treatments of irradiation and antimicrobial coatings on reduction of food pathogens in broccoli florets

    International Nuclear Information System (INIS)

    Takala, P.N.; Salmieri, S.; Vu, K.D.; Lacroix, M.

    2011-01-01

    The effect of combined treatment of antimicrobial coatings and γ-radiation on reduction of food pathogens such as Listeria monocytogenes, Escherichia coli, and Salmonella Typhimurium was evaluated in broccoli florets. Broccoli florets were inoculated with pathogenic bacteria at 10 6 CFU/g. Inoculated florets were then coated with methylcellulose-based coating containing various mixtures of antimicrobial agents: organic acids (OAs) plus lactic acid bacteria metabolites (LABs), OA plus citrus extract (CE), OA plus CE plus spice mixture (SM), and OA plus rosemary extract (RE). Coated florets were irradiated with various doses (0-3.3 kGy), and microbial analyses were used to calculate the D 10 value and radiosensitive relative. The coating containing OA plus CE was the most effective formulation for increasing the sensitization of Escherichia coli by 2.4 times as compared to the control without the antimicrobial coating. For Salmonella Typhimurium, coating containing OA plus LAB was the most effective formulation, increasing radiosensitivity by 2.4 times as well. All antimicrobial coatings had almost the same effect of increasing the sensitivity of Listeria monocytogenes (from 1.31 to 1.45 times) to γ-irradiation. - Highlights: → Demonstrate scientifically the synergistic effect of the combined treatment of gamma-irradiation and natural antimicrobial coating in reduction of food pathogens in broccoli. → The coating containing organic acids plus citrus extract was the most efficient formulation for increasing the sensitization of E. coli by 2.40 times as compared to the control. → The coating containing organic acids plus lactic acid bacteria metabolites was the most effective formulation causing the sensitization of S. Typhimurium to γ-irradiation by 2.4 times. → Potential in application of developed formulations to protect food products against food pathogens.

  5. Salinity’s influence on boron toxicity in broccoli: II. Impacts on boron uptake, uptake mechanisms and tissue ion relations.

    Science.gov (United States)

    Limited research has been conducted on the interactive effects of salinity and boron stresses on plants despite their common occurrence in natural systems. The purpose of this research was to determine and quantify the interactive effects of salinity, salt composition and boron on broccoli (Brassica...

  6. Biosynthesis of estragole and methyl-eugenol in sweet basil (Ocimum basilicum L). Developmental and chemotypic association of allylphenol O-methyltransferase activities.

    Science.gov (United States)

    Lewinsohn, E; Ziv-Raz, I; Dudai, N; Tadmor, Y; Lastochkin, E; Larkov, O; Chaimovitsh, D; Ravid, U; Putievsky, E; Pichersky, E; Shoham, Y

    2000-12-07

    Sweet basil (Ocimum basilicum L., Lamiaceae) is a common herb, used for culinary and medicinal purposes. The essential oils of different sweet basil chemotypes contain various proportions of the allyl phenol derivatives estragole (methyl chavicol), eugenol, and methyl eugenol, as well as the monoterpene alcohol linalool. To monitor the developmental regulation of estragole biosynthesis in sweet basil, an enzymatic assay for S-adenosyl-L-methionine (SAM):chavicol O-methyltransferase activity was developed. Young leaves display high levels of chavicol O-methyltransferase activity, but the activity was negligible in older leaves, indicating that the O-methylation of chavicol primarily occurs early during leaf development. The O-methyltransferase activities detected in different sweet basil genotypes differed in their substrate specificities towards the methyl acceptor substrate. In the high-estragole-containing chemotype R3, the O-methyltransferase activity was highly specific for chavicol, while eugenol was virtually not O-methylated. In contrast, chemotype 147/97, that contains equal levels of estragole and methyl eugenol, displayed O-methyltransferase activities that accepted both chavicol and eugenol as substrates, generating estragole and methyl eugenol, respectively. Chemotype SW that contains high levels of eugenol, but lacks both estragole and methyl eugenol, had apparently no allylphenol dependent O-methyltransferase activities. These results indicate the presence of at least two types of allylphenol-specific O-methyltransferase activities in sweet basil chemotypes, one highly specific for chavicol; and a different one that can accept eugenol as a substrate. The relative availability and substrate specificities of these O-methyltransferase activities biochemically rationalizes the variation in the composition of the essential oils of these chemotypes.

  7. Crystal structure of MboIIA methyltransferase

    OpenAIRE

    Osipiuk, Jerzy; Walsh, Martin A.; Joachimiak, Andrzej

    2003-01-01

    DNA methyltransferases (MTases) are sequence-specific enzymes which transfer a methyl group from S-adenosyl-l-methionine (AdoMet) to the amino group of either cytosine or adenine within a recognized DNA sequence. Methylation of a base in a specific DNA sequence protects DNA from nucleolytic cleavage by restriction enzymes recognizing the same DNA sequence. We have determined at 1.74 Å resolution the crystal structure of a β-class DNA MTase MboIIA (M·MboIIA) from the bacterium Moraxella bovis,...

  8. Home food preparation techniques impacted the availability of natural antioxidants and bioactivities in kale and broccoli.

    Science.gov (United States)

    Yu, Lu; Gao, Boyan; Li, Yanfang; Wang, Thomas T Y; Luo, Yinghua; Wang, Jing; Yu, Liangli Lucy

    2018-01-24

    This study evaluated the effects of grinding and chopping with/without microwaving on the health-beneficial components, and antioxidant, anti-inflammation and anti-proliferation capacities of commercial kale and broccoli samples. The availability of indole-3-carbinol (I3C) was evaluated using high-performance liquid chromatography. The total phenolic contents, the scavenging activities against DPPH, oxygen, hydroxyl and ABTS cation radicals, and cell-based antioxidant activities were determined for the antioxidant capacities. The results indicated that chopping released the least nutraceutical components and antioxidant compounds. Microwaving had no effect on the I3C release from kale, but resulted in an elevated (more than 2-fold) release of I3C from broccoli. In addition, the choice of a blender affected the availability of the anti-proliferative compounds from the vegetables, while it had no effect on the availability of their anti-inflammatory compounds. In summary, different food preparation methods could strongly impact the availability of bioactive factors in the selected vegetables. These findings suggest that choosing an appropriate food processing method for each vegetable might be critical to obtain desirable health-beneficial effects.

  9. QTL mapping for quinone reductase activity in broccoli with Hepa1c1c7 cell lines

    Science.gov (United States)

    Floret tissue from 125 F2:3 broccoli families derived from the cross 'VI-158 x Brocolette Neri E. Cespuglio (BNC)' was harvested in 2009. Tissue was freeze-dried and stored in the dark at -80 until use. Distilled water was added to floret tissue (50 mg/mL) and auto-hydrolyzed for 24 hours in room te...

  10. Determination of catechol O-methyltransferase activity in relation to melanin metabolism using high-performance liquid chromatography with fluorimetric detection

    NARCIS (Netherlands)

    Smit, N. P.; Pavel, S.; Kammeyer, A.; Westerhof, W.

    1990-01-01

    A new sensitive method for the determination of catechol O-methyltransferase activity has been developed. The method is based on the O-methylation of the indolic intermediates of melanin metabolism. The substrate, 5,6-dihydroxyindole-2-carboxylic acid, is converted by the enzyme to two O-methylated

  11. Preliminary X-ray analysis of twinned crystals of sarcosine dimethylglycine methyltransferase from Halorhodospira halochoris

    International Nuclear Information System (INIS)

    Kallio, Juha Pekka; Jänis, Janne; Nyyssölä, Antti; Hakulinen, Nina; Rouvinen, Juha

    2009-01-01

    The crystallization and preliminary X-ray diffraction analysis of sarcosine dimethylglycine methyltransferase from H. halochoris is reported. Sarcosine dimethylglycine methyltransferase (EC 2.1.1.157) is an enzyme from the extremely halophilic anaerobic bacterium Halorhodospira halochoris. This enzyme catalyzes the twofold methylation of sarcosine to betaine, with S-adenosylmethionine (AdoMet) as the methyl-group donor. This study presents the crystallization and preliminary X-ray analysis of recombinant sarcosine dimethylglycine methyltransferase produced in Escherichia coli. Mass spectroscopy was used to determine the purity and homogeneity of the enzyme material. Two different crystal forms, which initially appeared to be hexagonal and tetragonal, were obtained. However, on analyzing the diffraction data it was discovered that both crystal forms were pseudo-merohedrally twinned. The true crystal systems were monoclinic and orthorhombic. The monoclinic crystal diffracted to a maximum of 2.15 Å resolution and the orthorhombic crystal diffracted to 1.8 Å resolution

  12. Crystallization and preliminary X-ray crystallographic characterization of TrmFO, a folate-dependent tRNA methyltransferase from Thermotoga maritima

    International Nuclear Information System (INIS)

    Cicmil, Nenad

    2008-01-01

    T. maritima TrmFO was overexpressed, purified and crystallized. A diffraction data set was collected to a resolution of 2.6 Å. TrmFO, previously classified as GID, is a methyltransferase that catalyzes the formation of 5-methyluridine or ribothymidine (T) at position 54 in tRNA in some Gram-positive bacteria. To date, TrmFO is the only characterized tRNA methyltransferase that does not use S-adenosylmethionine as the methyl-group donor. Instead, the donor of the methyl group is N 5 ,N 10 -methylenetetrahydrofolate. The crystallization and preliminary X-ray crystallographic studies of TrmFO are reported here. The recombinant protein, cloned from Thermotoga maritima genomic DNA, was overproduced in Esherichia coli and crystallized in 25%(v/v) PEG 4000, 100 mM NaCl and sodium citrate buffer pH 5.0 at 291 K using the hanging-drop vapor-diffusion method. The plate-shaped crystals diffracted to 2.6 Å and belong to the orthorhombic space group P2 1 2 1 2 1 , with unit-cell parameters a = 79.94, b = 92.46, c = 127.20 Å

  13. Glucosinolates in broccoli sprouts (Brassica oleracea var. italica) as conditioned by sulphate supply during germination.

    Science.gov (United States)

    Pérez-Balibrea, Santiago; Moreno, Diego A; García-Viguera, Cristina

    2010-10-01

    Sulphur (S) fertilization is essential for primary and secondary metabolism in cruciferous foods. Deficient, suboptimal, or excessive S affects the growth and biosynthesis of secondary metabolites in adult plants. Nevertheless, there is little information regarding the influence of S fertilization on sprouts and seedlings. An experiment was set up to evaluate the effect of S fertilization, supplied as K(2)SO(4) at 0, 15, 30, and 60 mg/L, on the glucosinolate content of broccoli sprouts during the germination course of 3, 6, 9, and 12 d after sowing. Glucosinolate concentration was strongly influenced by germination, causing a rapid increase during the first 3 d after sowing, and decreasing afterwards. The S supply increased aliphatic and total glucosinolate content at the end of the monitored sprouting period. S-treated sprouts, with S(15), S(30), and S(60) at 9 and 12 d after sowing presented enhanced glucosinolate content. Overall, both germination time and S fertilization were key factors in maximizing the bioactive health-promoting phytochemicals of broccoli. Practical Application: Germination with sulphate is a simple and inexpensive way to obtain sprouts that contain much higher levels of glucosinolates (health promoting compounds), than the corresponding florets from the same seeds.

  14. 5-aza-2′-deoxycytidine impairs mouse spermatogenesis at multiple stages through different usage of DNA methyltransferases

    International Nuclear Information System (INIS)

    Song, Ning; Endo, Daisuke; Song, Bin; Shibata, Yasuaki; Koji, Takehiko

    2016-01-01

    Mammalian spermatogenesis is a progressive process comprising spermatogonial proliferation, spermatocytic meiosis, and later spermiogenesis, which is considered to be under the regulation of epigenetic parameters. To gain insights into the significance of DNA methylation in early spermatogenesis, 5-azadC was used as a molecular biological tool to mimic the level of DNA methylation in vivo. Since the drug is incorporated into DNA during the S-phase, spermatogonia and spermatocytes would be affected primarily in mouse spermatogenesis. Adult male ICR mice were intraperitoneally injected with 5-azadC at a dose of 0.25 mg/kg/day for 10 consecutive days, allowing us to examine its maximum effect on the kinetics of spermatogonia and spermatocytes. In this short-term protocol, 5-azadC induced significant histological abnormalities, such as a marked increase in apoptosis of spermatogonia and spermatocytes, followed by severe loss of spermatids, while after termination of 5-azadC treatment, normal histology was restored in the testis within 35 days. Quantification of the methylation level of CCGG sites as well as whole DNA showed spermatogonial hypomethylation, which correlated with increased apoptosis of spermatogonia. Interestingly, the hypomethylated cells were simultaneously positive for tri-methylated histone H3 at K4. On the other hand, no changes in methylation level were found in spermatocytes, but PCNA staining clearly showed disordered accumulation of S-phase spermatocytes, which increased their apoptosis in stage XII. In addition, different immunohistochemical staining pattern was found for DNA methyltransferases (DNMTs); DNMT1was expressed in the majority of all germ cells, but DNMT3a and b were only expressed in spermatogonia. Our results indicate that 5-azadC caused DNA hypomethylation in spermatogonia, but induced prolongation of S-phase in spermatocytes, resulting in the induction of apoptosis in both cases. Thus, 5-azadC affects spermatogenesis at more than

  15. Methyltransferase That Modifies Guanine 966 of the 16 S rRNA: FUNCTIONAL IDENTIFICATION AND TERTIARY STRUCTURE*

    Science.gov (United States)

    Lesnyak, Dmitry V.; Osipiuk, Jerzy; Skarina, Tatiana; Sergiev, Petr V.; Bogdanov, Alexey A.; Edwards, Aled; Savchenko, Alexei; Joachimiak, Andrzej; Dontsova, Olga A.

    2010-01-01

    N2-Methylguanine 966 is located in the loop of Escherichia coli 16 S rRNA helix 31, forming a part of the P-site tRNA-binding pocket. We found yhhF to be a gene encoding for m2G966 specific 16 S rRNA methyltransferase. Disruption of the yhhF gene by kanamycin resistance marker leads to a loss of modification at G966. The modification could be rescued by expression of recombinant protein from the plasmid carrying the yhhF gene. Moreover, purified m2G966 methyltransferase, in the presence of S-adenosylomethionine (AdoMet), is able to methylate 30 S ribosomal subunits that were purified from yhhF knock-out strain in vitro. The methylation is specific for G966 base of the 16 S rRNA. The m2G966 methyltransferase was crystallized, and its structure has been determined and refined to 2.05 Å. The structure closely resembles RsmC rRNA methyltransferase, specific for m2G1207 of the 16 S rRNA. Structural comparisons and analysis of the enzyme active site suggest modes for binding AdoMet and rRNA to m2G966 methyltransferase. Based on the experimental data and current nomenclature the protein expressed from the yhhF gene was renamed to RsmD. A model for interaction of RsmD with ribosome has been proposed. PMID:17189261

  16. Methyltransferase that modifies guanine 966 of the 16 S rRNA: functional identification and tertiary structure.

    Science.gov (United States)

    Lesnyak, Dmitry V; Osipiuk, Jerzy; Skarina, Tatiana; Sergiev, Petr V; Bogdanov, Alexey A; Edwards, Aled; Savchenko, Alexei; Joachimiak, Andrzej; Dontsova, Olga A

    2007-02-23

    N(2)-Methylguanine 966 is located in the loop of Escherichia coli 16 S rRNA helix 31, forming a part of the P-site tRNA-binding pocket. We found yhhF to be a gene encoding for m(2)G966 specific 16 S rRNA methyltransferase. Disruption of the yhhF gene by kanamycin resistance marker leads to a loss of modification at G966. The modification could be rescued by expression of recombinant protein from the plasmid carrying the yhhF gene. Moreover, purified m(2)G966 methyltransferase, in the presence of S-adenosylomethionine (AdoMet), is able to methylate 30 S ribosomal subunits that were purified from yhhF knock-out strain in vitro. The methylation is specific for G966 base of the 16 S rRNA. The m(2)G966 methyltransferase was crystallized, and its structure has been determined and refined to 2.05A(.) The structure closely resembles RsmC rRNA methyltransferase, specific for m(2)G1207 of the 16 S rRNA. Structural comparisons and analysis of the enzyme active site suggest modes for binding AdoMet and rRNA to m(2)G966 methyltransferase. Based on the experimental data and current nomenclature the protein expressed from the yhhF gene was renamed to RsmD. A model for interaction of RsmD with ribosome has been proposed.

  17. A glutamate/aspartate switch controls product specificity in a protein arginine methyltransferase

    Energy Technology Data Exchange (ETDEWEB)

    Debler, Erik W.; Jain, Kanishk; Warmack, Rebeccah A.; Feng, You; Clarke, Steven G.; Blobel, Günter; Stavropoulos, Pete

    2016-02-08

    Trypanosoma brucei PRMT7 (TbPRMT7) is a protein arginine methyltransferase (PRMT) that strictly monomethylates various substrates, thus classifying it as a type III PRMT. However, the molecular basis of its unique product specificity has remained elusive. Here, we present the structure of TbPRMT7 in complex with its cofactor product S-adenosyl-L-homocysteine (AdoHcy) at 2.8 Å resolution and identify a glutamate residue critical for its monomethylation behavior. TbPRMT7 comprises the conserved methyltransferase and β-barrel domains, an N-terminal extension, and a dimerization arm. The active site at the interface of the N-terminal extension, methyltransferase, and β-barrel domains is stabilized by the dimerization arm of the neighboring protomer, providing a structural basis for dimerization as a prerequisite for catalytic activity. Mutagenesis of active-site residues highlights the importance of Glu181, the second of the two invariant glutamate residues of the double E loop that coordinate the target arginine in substrate peptides/proteins and that increase its nucleophilicity. Strikingly, mutation of Glu181 to aspartate converts TbPRMT7 into a type I PRMT, producing asymmetric dimethylarginine (ADMA). Isothermal titration calorimetry (ITC) using a histone H4 peptide showed that the Glu181Asp mutant has markedly increased affinity for monomethylated peptide with respect to the WT, suggesting that the enlarged active site can favorably accommodate monomethylated peptide and provide sufficient space for ADMA formation. In conclusion, these findings yield valuable insights into the product specificity and the catalytic mechanism of protein arginine methyltransferases and have important implications for the rational (re)design of PRMTs.

  18. Rapid estimation of glucosinolate thermal degradation rate constants in leaves of Chinese kale and broccoli (Brassica oleracea) in two seasons.

    Science.gov (United States)

    Hennig, Kristin; Verkerk, Ruud; Bonnema, Guusje; Dekker, Matthijs

    2012-08-15

    Kinetic modeling was used as a tool to quantitatively estimate glucosinolate thermal degradation rate constants. Literature shows that thermal degradation rates differ in different vegetables. Well-characterized plant material, leaves of broccoli and Chinese kale plants grown in two seasons, was used in the study. It was shown that a first-order reaction is appropriate to model glucosinolate degradation independent from the season. No difference in degradation rate constants of structurally identical glucosinolates was found between broccoli and Chinese kale leaves when grown in the same season. However, glucosinolate degradation rate constants were highly affected by the season (20-80% increase in spring compared to autumn). These results suggest that differences in glucosinolate degradation rate constants can be due to variation in environmental as well as genetic factors. Furthermore, a methodology to estimate rate constants rapidly is provided to enable the analysis of high sample numbers for future studies.

  19. Crystal structure of MboIIA methyltransferase.

    Science.gov (United States)

    Osipiuk, Jerzy; Walsh, Martin A; Joachimiak, Andrzej

    2003-09-15

    DNA methyltransferases (MTases) are sequence-specific enzymes which transfer a methyl group from S-adenosyl-L-methionine (AdoMet) to the amino group of either cytosine or adenine within a recognized DNA sequence. Methylation of a base in a specific DNA sequence protects DNA from nucleolytic cleavage by restriction enzymes recognizing the same DNA sequence. We have determined at 1.74 A resolution the crystal structure of a beta-class DNA MTase MboIIA (M.MboIIA) from the bacterium Moraxella bovis, the smallest DNA MTase determined to date. M.MboIIA methylates the 3' adenine of the pentanucleotide sequence 5'-GAAGA-3'. The protein crystallizes with two molecules in the asymmetric unit which we propose to resemble the dimer when M.MboIIA is not bound to DNA. The overall structure of the enzyme closely resembles that of M.RsrI. However, the cofactor-binding pocket in M.MboIIA forms a closed structure which is in contrast to the open-form structures of other known MTases.

  20. Arabidopsis DNA methyltransferase AtDNMT2 associates with histone deacetylase AtHD2s activity

    International Nuclear Information System (INIS)

    Song, Yuan; Wu, Keqiang; Dhaubhadel, Sangeeta; An, Lizhe; Tian, Lining

    2010-01-01

    DNA methyltransferase2 (DNMT2) is always deemed to be enigmatic, because it contains highly conserved DNA methyltransferase motifs but lacks the DNA methylation catalytic capability. Here we show that Arabidopsis DNA methyltransferase2 (AtDNMT2) is localized in nucleus and associates with histone deacetylation. Bimolecular fluorescence complementation and pull-down assays show AtDNMT2 interacts with type-2 histone deacetylases (AtHD2s), a unique type of histone deacetylase family in plants. Through analyzing the expression of AtDNMT2: ss-glucuronidase (GUS) fusion protein, we demonstrate that AtDNMT2 has the ability to repress gene expression at transcription level. Meanwhile, the expression of AtDNMT2 gene is altered in athd2c mutant plants. We propose that AtDNMT2 possibly involves in the activity of histone deacetylation and plant epigenetic regulatory network.

  1. Arabidopsis DNA methyltransferase AtDNMT2 associates with histone deacetylase AtHD2s activity

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yuan [Key Laboratory of Arid and Grassland Agroecology, Ministry of Education, School of Life Science, Lanzhou University, Lanzhou 730000 (China); Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, Canada N5V4T3 (Canada); Wu, Keqiang [Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan (China); Dhaubhadel, Sangeeta [Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, Canada N5V4T3 (Canada); An, Lizhe, E-mail: lizhean@lzu.edu.cn [Key Laboratory of Arid and Grassland Agroecology, Ministry of Education, School of Life Science, Lanzhou University, Lanzhou 730000 (China); Tian, Lining, E-mail: tianl@agr.gc.ca [Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, Canada N5V4T3 (Canada)

    2010-05-28

    DNA methyltransferase2 (DNMT2) is always deemed to be enigmatic, because it contains highly conserved DNA methyltransferase motifs but lacks the DNA methylation catalytic capability. Here we show that Arabidopsis DNA methyltransferase2 (AtDNMT2) is localized in nucleus and associates with histone deacetylation. Bimolecular fluorescence complementation and pull-down assays show AtDNMT2 interacts with type-2 histone deacetylases (AtHD2s), a unique type of histone deacetylase family in plants. Through analyzing the expression of AtDNMT2: ss-glucuronidase (GUS) fusion protein, we demonstrate that AtDNMT2 has the ability to repress gene expression at transcription level. Meanwhile, the expression of AtDNMT2 gene is altered in athd2c mutant plants. We propose that AtDNMT2 possibly involves in the activity of histone deacetylation and plant epigenetic regulatory network.

  2. Variation in Broccoli Cultivar Phytochemical Content under Organic and Conventional Management Systems: Implications in Breeding for Nutrition

    Science.gov (United States)

    Renaud, Erica N. C.; Lammerts van Bueren, Edith T.; Myers, James R.; Paulo, Maria João; van Eeuwijk, Fred A.; Zhu, Ning; Juvik, John A.

    2014-01-01

    Organic agriculture requires cultivars that can adapt to organic crop management systems without the use of synthetic pesticides as well as genotypes with improved nutritional value. The aim of this study encompassing 16 experiments was to compare 23 broccoli cultivars for the content of phytochemicals associated with health promotion grown under organic and conventional management in spring and fall plantings in two broccoli growing regions in the US (Oregon and Maine). The phytochemicals quantified included: glucosinolates (glucoraphanin, glucobrassicin, neoglucobrassin), tocopherols (δ-, γ-, α-tocopherol) and carotenoids (lutein, zeaxanthin, β-carotene). For glucoraphanin (17.5%) and lutein (13%), genotype was the major source of total variation; for glucobrassicin, region (36%) and the interaction of location and season (27.5%); and for neoglucobrassicin, both genotype (36.8%) and its interactions (34.4%) with season were important. For δ- and γ- tocopherols, season played the largest role in the total variation followed by location and genotype; for total carotenoids, genotype (8.41–13.03%) was the largest source of variation and its interactions with location and season. Overall, phytochemicals were not significantly influenced by management system. We observed that the cultivars with the highest concentrations of glucoraphanin had the lowest for glucobrassicin and neoglucobrassicin. The genotypes with high concentrations of glucobrassicin and neoglucobrassicin were the same cultivars and were early maturing F1 hybrids. Cultivars highest in tocopherols and carotenoids were open pollinated or early maturing F1 hybrids. We identified distinct locations and seasons where phytochemical performance was higher for each compound. Correlations among horticulture traits and phytochemicals demonstrated that glucoraphanin was negatively correlated with the carotenoids and the carotenoids were correlated with one another. Little or no association between

  3. Agronomic performance of new open pollinated experimental lines of broccoli (Brassica oleracea L. var. italica) evaluated under organic farming.

    Science.gov (United States)

    Sahamishirazi, Samira; Moehring, Jens; Zikeli, Sabine; Fleck, Michael; Claupein, Wilhelm; Graeff-Hoenninger, Simone

    2018-01-01

    In order to develop new open pollinating cultivars of broccoli for organic farming, two experiments were conducted during fall 2015 and spring 2016. This study was aimed at comparing the agronomic performance of eleven new open pollinating breeding lines of broccoli to introduce new lines and to test their seasonal suitability for organic farming. Field experiments were carried out at the organic research station Kleinhohenheim of the University of Hohenheim (Stuttgart-Germany). Different agronomic traits total biomass fresh weight, head fresh weight, head diameter, hollow-stem, fresh weight harvest index and marketable yield were assessed together with commercial control cultivars. The data from both experiments were analyzed using a two-stage mixed model approach. In our study, genotype, growing season and their interaction had significant effects on most traits. Plants belonging to the fall growing season had bigger sizes in comparison to spring with significantly (pbroccoli heads. The low average minimum temperatures during the spring growing season lead to low biomass fresh weight but high fresh weight harvest index. Testing the seasonal suitability of all open pollinating lines showed that the considered fall season was better for broccoli production. However, the change in yield between the fall and the spring growing season was not significant for "Line 701" and "CHE-MIC". Considering the expression of different agronomic traits, "CHE-GRE-G", "Calinaro" and "CAN-SPB" performed the best in the fall growing season, and "CHE-GRE-G", "CHE-GRE-A", "CHE-BAL-A" and "CHE-MIC" and "Line 701" were best in the spring growing season, specifically due to the highest marketable yield and proportion of marketable heads.

  4. Effect of cooking on the concentration of bioactive compounds in broccoli (Brassica oleracea var. Avenger) and cauliflower (Brassica oleracea var. Alphina F1) grown in an organic system.

    Science.gov (United States)

    Dos Reis, Luzia Caroline Ramos; de Oliveira, Viviani Ruffo; Hagen, Martine Elisabeth Kienzle; Jablonski, André; Flôres, Simone Hickmann; de Oliveira Rios, Alessandro

    2015-04-01

    Brassica vegetables have been shown to have antioxidant capacities due to the presence of carotenoids, flavonoids and vitamins. This study evaluates the influence of different processing conditions (boiling, steaming, microwaving and sous vide) on the stability of flavonoids, carotenoids and vitamin A in broccoli and cauliflower inflorescences grown in an organic system. Results indicated that sous vide processing resulted in greater antioxidant capacity and that all processes contributed in some way to an increased content of antioxidant compounds in both cauliflower and broccoli. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Re-translocation of boron in broccoli and lupin during early reproductive growth

    Energy Technology Data Exchange (ETDEWEB)

    Marentes, E; Shelp, B J [Univ. of Guelph, Dept. of Horticultural Science, Guelph, ON (Canada); Vanderpool, R A [USDA, Human Nutrition Research Center, Agricultural Research Service, ND (United States); [Spiers, G.A. Univ. of Guelph, Dept. of Land Resource Science, Guelph, ON (Canada)

    1997-06-01

    The objective of the present study was to determine if boron (B) re-translocation depends on plant-B status and external-B supply. The stable {sup 10}B isotope was supplied to the root system of broccoli (Brassica oleracea var. italica Plenck cv. Commander) and lupin (Lupinus albus L. cv. Ultra) plants to provide a quantitative picture of B distribution during early reproductive development. Regardless of the B regime (i.e. continuous supply with luxury, sufficient or deficient B; transfer at influorescence emergence from either a luxury- or sufficient-B supply to a deficient one) and whether {sup 10}B was acquired before or during influorescence development, a significant proportion of the B recovered in broccoli florest and lupin fruit was {sup 10}B enriched. B acquired during inflorescence development was an important source of B for reproductive structures, but the relative importance of B acquired before and after inflorescence emergence appeared to be species dependent. The occurrence of B re-translocation was not dependent upon the induction of B deficiency. The concentrations of B in phloem exsudates (0.38 to 0.03 mM) were 4- to 23-fold those in xylem sap, and more similar to the concentrations in the reproductive structures (0.86 to 0.07 mM) than those in source leaves (2.4 to 0.19 mM). The decreasing acropetal gradient of tissue-B concentrations with luxury-B supply declined dramatically or was reversed in plants grown with sufficient or deficient B. The data are consistent with B being a phloem-mobile element, and suggest that newly acquired B is particularly important during the early reproductive growth of plants. (au) 36 refs.

  6. Re-translocation of boron in broccoli and lupin during early reproductive growth

    International Nuclear Information System (INIS)

    Marentes, E.; Shelp, B.J.; Vanderpool, R.A.

    1997-01-01

    The objective of the present study was to determine if boron (B) re-translocation depends on plant-B status and external-B supply. The stable 10 B isotope was supplied to the root system of broccoli (Brassica oleracea var. italica Plenck cv. Commander) and lupin (Lupinus albus L. cv. Ultra) plants to provide a quantitative picture of B distribution during early reproductive development. Regardless of the B regime (i.e. continuous supply with luxury, sufficient or deficient B; transfer at influorescence emergence from either a luxury- or sufficient-B supply to a deficient one) and whether 10 B was acquired before or during influorescence development, a significant proportion of the B recovered in broccoli florest and lupin fruit was 10 B enriched. B acquired during inflorescence development was an important source of B for reproductive structures, but the relative importance of B acquired before and after inflorescence emergence appeared to be species dependent. The occurrence of B re-translocation was not dependent upon the induction of B deficiency. The concentrations of B in phloem exsudates (0.38 to 0.03 mM) were 4- to 23-fold those in xylem sap, and more similar to the concentrations in the reproductive structures (0.86 to 0.07 mM) than those in source leaves (2.4 to 0.19 mM). The decreasing acropetal gradient of tissue-B concentrations with luxury-B supply declined dramatically or was reversed in plants grown with sufficient or deficient B. The data are consistent with B being a phloem-mobile element, and suggest that newly acquired B is particularly important during the early reproductive growth of plants. (au) 36 refs

  7. Structural insights into mechanisms of the small RNA methyltransferase HEN1

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ying; Ji, Lijuan; Huang, Qichen; Vassylyev, Dmitry G.; Chen, Xuemei; Ma, Jin-Biao; (UAB); (UCR)

    2010-02-22

    RNA silencing is a conserved regulatory mechanism in fungi, plants and animals that regulates gene expression and defence against viruses and transgenes. Small silencing RNAs of {approx}20-30 nucleotides and their associated effector proteins, the Argonaute family proteins, are the central components in RNA silencing. A subset of small RNAs, such as microRNAs and small interfering RNAs (siRNAs) in plants, Piwi-interacting RNAs in animals and siRNAs in Drosophila, requires an additional crucial step for their maturation; that is, 2'-O-methylation on the 3' terminal nucleotide. A conserved S-adenosyl-L-methionine-dependent RNA methyltransferase, HUA ENHANCER 1 (HEN1), and its homologues are responsible for this specific modification. Here we report the 3.1 {angstrom} crystal structure of full-length HEN1 from Arabidopsis in complex with a 22-nucleotide small RNA duplex and cofactor product S-adenosyl-L-homocysteine. Highly cooperative recognition of the small RNA substrate by multiple RNA binding domains and the methyltransferase domain in HEN1 measures the length of the RNA duplex and determines the substrate specificity. Metal ion coordination by both 2' and 3' hydroxyls on the 3'-terminal nucleotide and four invariant residues in the active site of the methyltransferase domain suggests a novel Mg{sup 2+}-dependent 2'-O-methylation mechanism.

  8. Protein arginine methyltransferase 5 functions as an epigenetic activator of the androgen receptor to promote prostate cancer cell growth.

    Science.gov (United States)

    Deng, X; Shao, G; Zhang, H-T; Li, C; Zhang, D; Cheng, L; Elzey, B D; Pili, R; Ratliff, T L; Huang, J; Hu, C-D

    2017-03-02

    Protein arginine methyltransferase 5 (PRMT5) is an emerging epigenetic enzyme that mainly represses transcription of target genes via symmetric dimethylation of arginine residues on histones H4R3, H3R8 and H2AR3. Accumulating evidence suggests that PRMT5 may function as an oncogene to drive cancer cell growth by epigenetic inactivation of several tumor suppressors. Here, we provide evidence that PRMT5 promotes prostate cancer cell growth by epigenetically activating transcription of the androgen receptor (AR) in prostate cancer cells. Knockdown of PRMT5 or inhibition of PRMT5 by a specific inhibitor reduces the expression of AR and suppresses the growth of multiple AR-positive, but not AR-negative, prostate cancer cells. Significantly, knockdown of PRMT5 in AR-positive LNCaP cells completely suppresses the growth of xenograft tumors in mice. Molecular analysis reveals that PRMT5 binds to the proximal promoter region of the AR gene and contributes mainly to the enriched symmetric dimethylation of H4R3 in the same region. Mechanistically, PRMT5 is recruited to the AR promoter by its interaction with Sp1, the major transcription factor responsible for AR transcription, and forms a complex with Brg1, an ATP-dependent chromatin remodeler, on the proximal promoter region of the AR gene. Furthermore, PRMT5 expression in prostate cancer tissues is significantly higher than that in benign prostatic hyperplasia tissues, and PRMT5 expression correlates positively with AR expression at both the protein and mRNA levels. Taken together, our results identify PRMT5 as a novel epigenetic activator of AR in prostate cancer. Given that inhibiting AR transcriptional activity or androgen synthesis remains the major mechanism of action for most existing anti-androgen agents, our findings also raise an interesting possibility that targeting PRMT5 may represent a novel approach for prostate cancer treatment by eliminating AR expression.

  9. Rauvolfia serpentina N-methyltransferases involved in ajmaline and Nβ -methylajmaline biosynthesis belong to a gene family derived from γ-tocopherol C-methyltransferase.

    Science.gov (United States)

    Cázares-Flores, Paulo; Levac, Dylan; De Luca, Vincenzo

    2016-08-01

    Ajmaline biosynthesis in Rauvolfia serpentina has been one of the most studied monoterpenoid indole alkaloid (MIA) pathways within the plant family Apocynaceae. Detailed molecular and biochemical information on most of the steps involved in the pathway has been generated over the last 30 years. Here we report the identification, molecular cloning and functional expression in Escherichia coli of two R. serpentinacDNAs that are part of a recently discovered γ-tocopherol-like N-methyltransferase (γ-TLMT) family and are involved in indole and side-chain N-methylation of ajmaline. Recombinant proteins showed remarkable substrate specificity for molecules with an ajmalan-type backbone and strict regiospecific N-methylation. Furthermore, N-methyltransferase gene transcripts and enzyme activity were enriched in R. serpentina roots which correlated with accumulation of ajmaline alkaloid. This study elucidates the final step in the ajmaline biosynthetic pathway and describes the enzyme responsible for the formation of Nβ -methylajmaline, an unusual charged MIA found in R. serpentina. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  10. Optimisation of the Method for the Quantitative Determination of Sulforaphane in Broccoli

    International Nuclear Information System (INIS)

    Yi Yi Myint; Antal Bognar; Tauscher, B.

    2002-02-01

    Consumption of vegetables, especially crucifers, reduces the risk of developing cancer. Sulforaphane [l-isothiocyanato-4- (methylsulfinyl)-butane], a compound with the ability to inhibit carcinogenesis, is one of the degradation products of glucosinolates in cruciferous vegetables. Among available extraction methods, autolysis at room temperature is the most effective for Sulforaphane extraction (relatively higher purity and better yield). The research work undertaken at Federal Research Centre for Nutrition, Institute of Biology and Chemistry, Karlsruhe, Germany was isolation of Sulforaphane based on cruciferous vegetables like Broccoli (Brassica oleracea L. Cv. italica) employing autolysis - the yield being higher. The extracted Sulforaphane compound's purity and yield were accordingly examined with gas chromatography. (author)

  11. Optimisation of the Method for the Quantitative Determination of Sulforaphane in Broccoli

    Energy Technology Data Exchange (ETDEWEB)

    Myint, Yi Yi; Bognar, Antal; Tauscher, B

    2002-02-15

    Consumption of vegetables, especially crucifers, reduces the risk of developing cancer. Sulforaphane [l-isothiocyanato-4- (methylsulfinyl)-butane], a compound with the ability to inhibit carcinogenesis, is one of the degradation products of glucosinolates in cruciferous vegetables. Among available extraction methods, autolysis at room temperature is the most effective for Sulforaphane extraction (relatively higher purity and better yield). The research work undertaken at Federal Research Centre for Nutrition, Institute of Biology and Chemistry, Karlsruhe, Germany was isolation of Sulforaphane based on cruciferous vegetables like Broccoli (Brassica oleracea L. Cv. italica) employing autolysis - the yield being higher. The extracted Sulforaphane compound's purity and yield were accordingly examined with gas chromatography. (author)

  12. Effects of combined treatments of irradiation and antimicrobial coatings on reduction of food pathogens in broccoli florets

    Science.gov (United States)

    Takala, P. N.; Salmieri, S.; Vu, K. D.; Lacroix, M.

    2011-12-01

    The effect of combined treatment of antimicrobial coatings and γ-radiation on reduction of food pathogens such as Listeria monocytogenes, Escherichia coli, and Salmonella Typhimurium was evaluated in broccoli florets. Broccoli florets were inoculated with pathogenic bacteria at 10 6 CFU/g. Inoculated florets were then coated with methylcellulose-based coating containing various mixtures of antimicrobial agents: organic acids (OAs) plus lactic acid bacteria metabolites (LABs), OA plus citrus extract (CE), OA plus CE plus spice mixture (SM), and OA plus rosemary extract (RE). Coated florets were irradiated with various doses (0-3.3 kGy), and microbial analyses were used to calculate the D10 value and radiosensitive relative. The coating containing OA plus CE was the most effective formulation for increasing the sensitization of Escherichia coli by 2.4 times as compared to the control without the antimicrobial coating. For Salmonella Typhimurium, coating containing OA plus LAB was the most effective formulation, increasing radiosensitivity by 2.4 times as well. All antimicrobial coatings had almost the same effect of increasing the sensitivity of Listeria monocytogenes (from 1.31 to 1.45 times) to γ-irradiation.

  13. Influence of day length and temperature on the content of health-related compounds in broccoli (Brassica oleracea L. var. italica).

    Science.gov (United States)

    Steindal, Anne Linn Hykkerud; Mølmann, Jørgen; Bengtsson, Gunnar B; Johansen, Tor J

    2013-11-13

    Vegetables grown at different latitudes are exposed to various temperatures and day lengths, which can affect the content of health- and sensory-related compounds in broccoli florets. A 2 × 2 factorial experiment was conducted under controlled growth conditions, with contrasting temperatures (15/9 and 21/15 °C) and day lengths (12 and 24 h), to investigate the effect on glucosinolates, vitamin C, flavonols, and soluble sugars. Aliphatic glucosinolates, quercetin, and kaempferol were at their highest levels at high temperatures combined with a 12 h day. Levels of total glucosinolates, d-glucose, and d-fructose were elevated by high temperatures. Conversely, the content of vitamin C was highest with a 12 h day length combined with 15/9 °C. Our results indicate that temperature and day length influence the contents of health-related compounds in broccoli florets in a complex way, suggesting no general superiority of any of the contrasting growth conditions.

  14. Plant isoflavone and isoflavanone O-methyltransferase genes

    Science.gov (United States)

    Broeckling, Bettina E.; Liu, Chang-Jun; Dixon, Richard A.

    2014-08-19

    The invention provides enzymes that encode O-methyltransferases (OMTs) from Medicago truncatula that allow modification to plant (iso)flavonoid biosynthetic pathways. In certain aspects of the invention, the genes encoding these enzymes are provided. The invention therefore allows the modification of plants for isoflavonoid content. Transgenic plants comprising such enzymes are also provided, as well as methods for improving disease resistance in plants. Methods for producing food and nutraceuticals, and the resulting compositions, are also provided.

  15. O6-Methylguanine DNA Methyltransferase Status Does Not Predict Response or Resistance to Alkylating Agents in Well-Differentiated Pancreatic Neuroendocrine Tumors.

    Science.gov (United States)

    Raj, Nitya; Klimstra, David S; Horvat, Natally; Zhang, Liying; Chou, Joanne F; Capanu, Marinela; Basturk, Olca; Do, Richard Kinh Gian; Allen, Peter J; Reidy-Lagunes, Diane

    2017-07-01

    Alkylating agents have activity in well-differentiated pancreatic neuroendocrine tumors (WD panNETs). In glioblastoma multiforme, decreased activity of O-methylguanine DNA methyltransferase (MGMT) predicts response; in panNETs, MGMT relevance is unknown. We identified patients with WD panNETs treated with alkylating agents, determined best overall response by Response Evaluation Criteria In Solid Tumors (RECIST) 1.1, and performed MGMT activity testing. Fifty-six patients were identified; 26 (46%) of the 56 patients experienced partial response, 24 (43%) of 56 experienced stable disease, and 6 (11%) of 56 experienced progression of disease. O-methylguanine DNA methyltransferase status was available for 36 tumors. For tumors with partial response, 10 (67%) of 15 were MGMT deficient, and 5 (33%) of 15 were MGMT intact. For tumors with stable disease, 7 (47%) of 15 were MGMT deficient, and 8 (53%) of 15 were MGMT intact. For tumors with progression of disease, 3 (50%) of 6 were MGMT deficient, and 3 (50%) of 6 were MGMT intact. We observed response and resistance to alkylating agents in MGMT-deficient and MGMT-intact tumors. O-methylguanine DNA methyltransferase status should not guide alkylating agent therapy in WD panNETs.

  16. Egg-specific expression of protein with DNA methyltransferase activity in the biocarcinogenic liver fluke Clonorchis sinensis.

    Science.gov (United States)

    Kim, Seon-Hee; Cho, Hye-Jeong; Sohn, Woon-Mok; Ahn, Chun-Seob; Kong, Yoon; Yang, Hyun-Jong; Bae, Young-An

    2015-08-01

    Despite recent reports regarding the biology of cytosine methylation in Schistosoma mansoni, the impact of the regulatory machinery remains unclear in diverse platyhelminthes. This ambiguity is reinforced by discoveries of DNA methyltransferase 2 (DNMT2)-only organisms and the substrate specificity of DNMT2 preferential to RNA molecules. Here, we characterized a novel DNA methyltransferase, named CsDNMT2, in a liver fluke Clonorchis sinensis. The protein exhibited structural properties conserved in other members of the DNMT2 family. The native and recombinant CsDNMT2 exhibited considerable enzymatic activity on DNA. The spatiotemporal expression of CsDNMT2 mirrored that of 5-methylcytosine (5 mC), both of which were elevated in the C. sinensis eggs. However, CsDNMT2 and 5 mC were marginally detected in other histological regions of C. sinensis adults including ovaries and seminal receptacle. The methylation site seemed not related to genomic loci occupied by progenies of an active long-terminal-repeat retrotransposon. Taken together, our data strongly suggest that C. sinensis has preserved the functional DNA methylation machinery and that DNMT2 acts as a genuine alternative to DNMT1/DNMT3 to methylate DNA in the DNMT2-only organism. The epigenetic regulation would target functional genes primarily involved in the formation and/or maturation of eggs, rather than retrotransposons.

  17. A novel multifunctional O-methyltransferase implicated in a dual methylation pathway associated with lignin biosynthesis in loblolly pine.

    Science.gov (United States)

    Li, L; Popko, J L; Zhang, X H; Osakabe, K; Tsai, C J; Joshi, C P; Chiang, V L

    1997-05-13

    S-adenosyl-L-methionine (SAM)-dependent O-methyltransferases (OMTs) catalyze the methylation of hydroxycinnamic acid derivatives for the synthesis of methylated plant polyphenolics, including lignin. The distinction in the extent of methylation of lignins in angiosperms and gymnosperms, mediated by substrate-specific OMTs, represents one of the fundamental differences in lignin biosynthesis between these two classes of plants. In angiosperms, two types of structurally and functionally distinct lignin pathway OMTs, caffeic acid 3-O-methyltransferases (CAOMTs) and caffeoyl CoA 3-O-methyltransferases (CCoAOMTs), have been reported and extensively studied. However, little is known about lignin pathway OMTs in gymnosperms. We report here the first cloning of a loblolly pine (Pinus taeda) xylem cDNA encoding a multifunctional enzyme, SAM:hydroxycinnamic Acids/hydroxycinnamoyl CoA Esters OMT (AEOMT). The deduced protein sequence of AEOMT is partially similar to, but clearly distinguishable from, that of CAOMTs and does not exhibit any significant similarity with CCoAOMT protein sequences. However, functionally, yeast-expressed AEOMT enzyme catalyzed the methylation of CAOMT substrates, caffeic and 5-hydroxyferulic acids, as well as CCoAOMT substrates, caffeoyl CoA and 5-hydroxyferuloyl CoA esters, with similar specific activities and was completely inactive with substrates associated with flavonoid synthesis. The lignin-related substrates were also efficiently methylated in crude extracts of loblolly pine secondary xylem. Our results support the notion that, in the context of amino acid sequence and biochemical function, AEOMT represents a novel SAM-dependent OMT, with both CAOMT and CCoAOMT activities and thus the potential to mediate a dual methylation pathway in lignin biosynthesis in loblolly pine xylem.

  18. A novel multifunctional O-methyltransferase implicated in a dual methylation pathway associated with lignin biosynthesis in loblolly pine

    Science.gov (United States)

    Li, Laigeng; Popko, Jacqueline L.; Zhang, Xing-Hai; Osakabe, Keishi; Tsai, Chung-Jui; Joshi, Chandrashekhar P.; Chiang, Vincent L.

    1997-01-01

    S-adenosyl-l-methionine (SAM)-dependent O-methyltransferases (OMTs) catalyze the methylation of hydroxycinnamic acid derivatives for the synthesis of methylated plant polyphenolics, including lignin. The distinction in the extent of methylation of lignins in angiosperms and gymnosperms, mediated by substrate-specific OMTs, represents one of the fundamental differences in lignin biosynthesis between these two classes of plants. In angiosperms, two types of structurally and functionally distinct lignin pathway OMTs, caffeic acid 3-O-methyltransferases (CAOMTs) and caffeoyl CoA 3-O-methyltransferases (CCoAOMTs), have been reported and extensively studied. However, little is known about lignin pathway OMTs in gymnosperms. We report here the first cloning of a loblolly pine (Pinus taeda) xylem cDNA encoding a multifunctional enzyme, SAM:hydroxycinnamic Acids/hydroxycinnamoyl CoA Esters OMT (AEOMT). The deduced protein sequence of AEOMT is partially similar to, but clearly distinguishable from, that of CAOMTs and does not exhibit any significant similarity with CCoAOMT protein sequences. However, functionally, yeast-expressed AEOMT enzyme catalyzed the methylation of CAOMT substrates, caffeic and 5-hydroxyferulic acids, as well as CCoAOMT substrates, caffeoyl CoA and 5-hydroxyferuloyl CoA esters, with similar specific activities and was completely inactive with substrates associated with flavonoid synthesis. The lignin-related substrates were also efficiently methylated in crude extracts of loblolly pine secondary xylem. Our results support the notion that, in the context of amino acid sequence and biochemical function, AEOMT represents a novel SAM-dependent OMT, with both CAOMT and CCoAOMT activities and thus the potential to mediate a dual methylation pathway in lignin biosynthesis in loblolly pine xylem. PMID:9144260

  19. UV-B Irradiation Changes Specifically the Secondary Metabolite Profile in Broccoli Sprouts: Induced Signaling Overlaps with Defense Response to Biotic Stressors

    Science.gov (United States)

    Mewis, Inga; Schreiner, Monika; Nguyen, Chau Nhi; Krumbein, Angelika; Ulrichs, Christian; Lohse, Marc; Zrenner, Rita

    2012-01-01

    Only a few environmental factors have such a pronounced effect on plant growth and development as ultraviolet light (UV). Concerns have arisen due to increased UV-B radiation reaching the Earth’s surface as a result of stratospheric ozone depletion. Ecologically relevant low to moderate UV-B doses (0.3–1 kJ m–2 d–1) were applied to sprouts of the important vegetable crop Brassica oleracea var. italica (broccoli), and eco-physiological responses such as accumulation of non-volatile secondary metabolites were related to transcriptional responses with Agilent One-Color Gene Expression Microarray analysis using the 2×204 k format Brassica microarray. UV-B radiation effects have usually been linked to increases in phenolic compounds. As expected, the flavonoids kaempferol and quercetin accumulated in broccoli sprouts (the aerial part of the seedlings) 24 h after UV-B treatment. A new finding is the specific UV-B-mediated induction of glucosinolates (GS), especially of 4-methylsulfinylbutyl GS and 4-methoxy-indol-3-ylmethyl GS, while carotenoids and Chl levels remained unaffected. Accumulation of defensive GS metabolites was accompanied by increased expression of genes associated with salicylate and jasmonic acid signaling defense pathways and up-regulation of genes responsive to fungal and bacterial pathogens. Concomitantly, plant pre-exposure to moderate UV-B doses had negative effects on the performance of the caterpillar Pieris brassicae (L.) and on the population growth of the aphid Myzus persicae (Sulzer). Moreover, insect-specific induction of GS in broccoli sprouts was affected by UV-B pre-treatment. PMID:22773681

  20. Crystallization and preliminary X-ray crystallographic characterization of TrmFO, a folate-dependent tRNA methyltransferase from Thermotoga maritima

    Energy Technology Data Exchange (ETDEWEB)

    Cicmil, Nenad, E-mail: cicmil@uiuc.edu [Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States)

    2008-03-01

    T. maritima TrmFO was overexpressed, purified and crystallized. A diffraction data set was collected to a resolution of 2.6 Å. TrmFO, previously classified as GID, is a methyltransferase that catalyzes the formation of 5-methyluridine or ribothymidine (T) at position 54 in tRNA in some Gram-positive bacteria. To date, TrmFO is the only characterized tRNA methyltransferase that does not use S-adenosylmethionine as the methyl-group donor. Instead, the donor of the methyl group is N{sup 5},N{sup 10}-methylenetetrahydrofolate. The crystallization and preliminary X-ray crystallographic studies of TrmFO are reported here. The recombinant protein, cloned from Thermotoga maritima genomic DNA, was overproduced in Esherichia coli and crystallized in 25%(v/v) PEG 4000, 100 mM NaCl and sodium citrate buffer pH 5.0 at 291 K using the hanging-drop vapor-diffusion method. The plate-shaped crystals diffracted to 2.6 Å and belong to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 79.94, b = 92.46, c = 127.20 Å.

  1. Recruitment of DNA methyltransferase I to DNA repair sites

    Science.gov (United States)

    Mortusewicz, Oliver; Schermelleh, Lothar; Walter, Joachim; Cardoso, M. Cristina; Leonhardt, Heinrich

    2005-01-01

    In mammalian cells, the replication of genetic and epigenetic information is directly coupled; however, little is known about the maintenance of epigenetic information in DNA repair. Using a laser microirradiation system to introduce DNA lesions at defined subnuclear sites, we tested whether the major DNA methyltransferase (Dnmt1) or one of the two de novo methyltransferases (Dnmt3a, Dnmt3b) are recruited to sites of DNA repair in vivo. Time lapse microscopy of microirradiated mammalian cells expressing GFP-tagged Dnmt1, Dnmt3a, or Dnmt3b1 together with red fluorescent protein-tagged proliferating cell nuclear antigen (PCNA) revealed that Dnmt1 and PCNA accumulate at DNA damage sites as early as 1 min after irradiation in S and non-S phase cells, whereas recruitment of Dnmt3a and Dnmt3b was not observed. Deletion analysis showed that Dnmt1 recruitment was mediated by the PCNA-binding domain. These data point to a direct role of Dnmt1 in the restoration of epigenetic information during DNA repair. PMID:15956212

  2. Genomic survey, gene expression analysis and structural modeling suggest diverse roles of DNA methyltransferases in legumes.

    Directory of Open Access Journals (Sweden)

    Rohini Garg

    Full Text Available DNA methylation plays a crucial role in development through inheritable gene silencing. Plants possess three types of DNA methyltransferases (MTases, namely Methyltransferase (MET, Chromomethylase (CMT and Domains Rearranged Methyltransferase (DRM, which maintain methylation at CG, CHG and CHH sites. DNA MTases have not been studied in legumes so far. Here, we report the identification and analysis of putative DNA MTases in five legumes, including chickpea, soybean, pigeonpea, Medicago and Lotus. MTases in legumes could be classified in known MET, CMT, DRM and DNA nucleotide methyltransferases (DNMT2 subfamilies based on their domain organization. First three MTases represent DNA MTases, whereas DNMT2 represents a transfer RNA (tRNA MTase. Structural comparison of all the MTases in plants with known MTases in mammalian and plant systems have been reported to assign structural features in context of biological functions of these proteins. The structure analysis clearly specified regions crucial for protein-protein interactions and regions important for nucleosome binding in various domains of CMT and MET proteins. In addition, structural model of DRM suggested that circular permutation of motifs does not have any effect on overall structure of DNA methyltransferase domain. These results provide valuable insights into role of various domains in molecular recognition and should facilitate mechanistic understanding of their function in mediating specific methylation patterns. Further, the comprehensive gene expression analyses of MTases in legumes provided evidence of their role in various developmental processes throughout the plant life cycle and response to various abiotic stresses. Overall, our study will be very helpful in establishing the specific functions of DNA MTases in legumes.

  3. Activity of aphids associated with lettuce and broccoli in Spain and their efficiency as vectors of Lettuce mosaic virus.

    Science.gov (United States)

    Nebreda, M; Moreno, A; Pérez, N; Palacios, I; Seco-Fernández, V; Fereres, A

    2004-03-01

    This research sought to identify the aphid virus vector species associated with lettuce and broccoli crops in Spain, and to determine their population dynamics and ability to transmit Lettuce mosaic virus (LMV). Green tile traps and Moericke yellow water-pan traps were used to monitor aphid flights during the spring and autumn growing seasons of 2001. Aphid species feeding on lettuce were counted weekly. The transmission efficiencies of LMV were determined for the aphid species caught most frequently. The Moericke traps generally caught more aphid species than the tile trap, but the latter was the most suitable to estimate flight activity of species involved in virus spread. Spring aphid catches indicated that the main aphid species landing on lettuce in the regions of Madrid and Murcia was Hyperomyzus lactucae, but Brachycaudus helichrysi was also abundant in both regions. In broccoli in the Navarra region, the most abundant species in spring were Aphis fabae, B. helichrysi and H. lactucae. In autumn-sown crops, the main species landing on lettuce in the Madrid region were Hyadaphis coriandri and Aphis spiraecola. In Murcia, A. spiraecola and Myzus persicae were the most abundant, while in Navarra, Therioaphis trifolii, and various Aphis spp. were the most numerous landing on broccoli. The main aphid species colonising lettuce was Nasonovia ribisnigri, but other less abundant colonising species were Aulacorthum solani and Macrosiphum euphorbiae. The most efficient vectors of LMV were M. persicae, Aphis gossypii and M. euphorbiae, while A. fabae and H. lactucae transmitted with low efficiency, and Rhopalosiphum padi and N. ribisnigri did not transmit. Occurrence of LMV epidemics in central Spain in relation to aphid flights and the role of weeds as virus reservoirs is discussed.

  4. The effect of the rate and method of nitrogen application on nitrogen uptake and utilization by broccoli (Brassica oleracea var. italica)

    NARCIS (Netherlands)

    Everaarts, A.P.; Willigen, de P.

    1999-01-01

    The effect of the rate and method of nitrogen application on nitrogen uptake and utilization by broccoli (Brassica oleracea var. italica) was studied in four field experiments. The methods of application were broadcast application vs band placement and split application. Maximum uptake of nitrogen

  5. A fluorescence resonance energy transfer-based method for histone methyltransferases

    DEFF Research Database (Denmark)

    Devkota, Kanchan; Lohse, Brian; Nyby Jakobsen, Camilla

    2015-01-01

    A simple dye–quencher fluorescence resonance energy transfer (FRET)-based assay for methyltransferases was developed and used to determine kinetic parameters and inhibitory activity at EHMT1 and EHMT2. Peptides mimicking the truncated histone H3 tail were functionalized in each end with a dye...

  6. Metabolism of S-adenosylmethionine in rat hepatocytes: transfer of methyl group from S-adenosylmethionine by methyltransferase reactions

    International Nuclear Information System (INIS)

    Tsukada, K.; Abe, T.; Kuwahata, T.; Mitsui, K.

    1985-01-01

    Treatment of rats with a methionine diet leads not only to a marked increase of S-adenosylmethionine synthetase in liver, but also to the increase of glycine, guanidoacetate and betaine-homocysteine methyltransferases. The activity of tRNA methyltransferase decreased with the increased amounts of methionine in the diets. However, the activities of phospholipids and S-adenosylmethionine-homocysteine methyltransferases did not show any significant change. When hepatocarcinogenesis induced by 2-fluorenylacetamide progresses, the activities of glycine and guanidoacetate methyltransferases in rat liver decreased, and could not be detected in tumorous areas 8 months after treatment. The levels of S-adenosylmethionine in the liver also decreased to levels of one-fifth of control animals at 8 months. The uptake and metabolism of [methyl- 3 H]-methionine and -S-adenosylmethionine have been investigated by in vivo and isolated hepatocytes. The uptake of methionine and transfer of methyl group to phospholipid in the cells by methionine were remarkably higher than those by S-adenosylmethionine. These results indicate that phospholipids in hepatocytes accept methyl group from S-adenosylmethionine immediately, when it is synthesized from methionine, before mixing its pool in the cells. 39 references, 1 figure, 2 tables

  7. Neuronal DNA Methyltransferases: Epigenetic Mediators between Synaptic Activity and Gene Expression?

    Science.gov (United States)

    Bayraktar, Gonca; Kreutz, Michael R

    2018-04-01

    DNMT3A and 3B are the main de novo DNA methyltransferases (DNMTs) in the brain that introduce new methylation marks to non-methylated DNA in postmitotic neurons. DNA methylation is a key epigenetic mark that is known to regulate important cellular processes in neuronal development and brain plasticity. Accumulating evidence disclosed rapid and dynamic changes in DNA methylation of plasticity-relevant genes that are important for learning and memory formation. To understand how DNMTs contribute to brain function and how they are regulated by neuronal activity is a prerequisite for a deeper appreciation of activity-dependent gene expression in health and disease. This review discusses the functional role of de novo methyltransferases and in particular DNMT3A1 in the adult brain with special emphasis on synaptic plasticity, memory formation, and brain disorders.

  8. Super-resolution optical DNA Mapping via DNA methyltransferase-directed click chemistry

    DEFF Research Database (Denmark)

    Vranken, Charlotte; Deen, Jochem; Dirix, Lieve

    2014-01-01

    We demonstrate an approach to optical DNA mapping, which enables near single-molecule characterization of whole bacteriophage genomes. Our approach uses a DNA methyltransferase enzyme to target labelling to specific sites and copper-catalysed azide-alkyne cycloaddition to couple a fluorophore...... to the DNA. We achieve a labelling efficiency of ∼70% with an average labelling density approaching one site every 500 bp. Such labelling density bridges the gap between the output of a typical DNA sequencing experiment and the long-range information derived from traditional optical DNA mapping. We lay...... the foundations for a wider-scale adoption of DNA mapping by screening 11 methyltransferases for their ability to direct sequence-specific DNA transalkylation; the first step of the DNA labelling process and by optimizing reaction conditions for fluorophore coupling via a click reaction. Three of 11 enzymes...

  9. Crystallization and preliminary crystallographic analysis of nosiheptide-resistance methyltransferase from Streptomyces actuosus in complex with SAM

    International Nuclear Information System (INIS)

    Yang, Huirong; Wang, Ping; Dong, Zhenghong; Li, Xueyuan; Gong, Rui; Yang, Ying; Li, Ze; Xu, Youwei; Xu, Yanhui

    2010-01-01

    The expression, purification and crystallization of nosiheptide-resistance methyltransferase (NSR) from Streptomyces actuosus is described. Nosiheptide-resistance methyltransferase (NSR) methylates 23S rRNA at the nucleotide adenosine 1067 in Escherichia coli and thus contributes to resistance against nosiheptide, a sulfur-containing peptide antibiotic. Here, the expression, purification and crystallization of NSR from Streptomyces actuosus are reported. Diffracting crystals were grown by the hanging-drop vapour-diffusion method in reservoir solution consisting of 0.35 M ammonium chloride, 24%(w/v) PEG 3350, 0.1 M MES pH 5.7 at 293 K. Native data have been collected from the apo enzyme and a SAM complex, as well as apo SeMet SAD data. The diffraction patterns of the apo form of NSR, of NSR complexed with SAM and of SeMet-labelled NSR crystals extended to 1.90, 1.95 and 2.25 Å resolution, respectively, using synchrotron radiation. All crystals belonged to space group P2 1 , with approximate unit-cell parameters a = 64.6, b = 69.6, c = 64.9 Å, β = 117.8°

  10. Isolation of DNA methyltransferase from plants

    International Nuclear Information System (INIS)

    Ehrlich, K.; Malbroue, C.

    1987-01-01

    DNA methyltransferases (DMT) were isolated from nuclei of cauliflower, soybean, and pea by extraction with 0.35 M NaCl. Assays were performed on hemimethylated Micrococcus luteus DNA or on M. luteus DNA to test for maintenance or de novo methylase activity, respectively. Fully methylated DNA was used as a substrate to determine background levels of methylation. Based on these tests, yields of maintenance DMT activity in the crude extract from pea hypocotyl, soybean hypocotyl, and cauliflower inflorescence were 2.8, 0.9, and 1.6 units per g wet tissue (one unit equals 1 pmol of methyl from [ 3 H]AdoMet incorporated into acid precipitable material per h at 30 0 ). Two peaks of DMT activity were detected in the soybean nuclear extract following phosphocellulose chromatography. One eluted at 0.4 M and the other at 0.8 M KCl. With both fractions maintenance activity was approximately 2 times that of the de novo activity. Using gel filtration the DMT eluted at 220,000 Daltons. The optimal pH for activity was between 6.5 and 7.0, and the optimal temperature was 30 0

  11. Active packaging for fresh-cut broccoli using 1-methylcyclopropene in biodegradable sachet/ Embalagem ativa para brócolis minimamente processado utilizando 1-metilciclopropeno em sachê biodegradável

    Directory of Open Access Journals (Sweden)

    Marta de Toledo Benassi

    2006-07-01

    Full Text Available Fresh-cut broccoli florets were packed in polypropylene pots containing a sachet with 1- methylcyclopropene (1-MCP and sealed with biodegradable starch-based film. Broccoli was stored for 8 days at 12oC and after this time the color and the texture of the product were similar of the fresh broccoli, with no off-flavor development or decay. Active packaging with 1-MCP in a sachet was efficient to extent shelf life of broccoli florets retarding yellowing and vitamin C losses. It is an alternative of 1-MCP treatment for fresh-cut products and besides, the sachet can absorbs condensed water reducing spoilage and off-odor development.Brócolis minimamente processados foram embalados em bandejas de polipropileno com sachê contendo 1-metilciclopropeno (1-MCP e selado com filme biodegradável de amido. Os brócolis foram armazenados por 8 dias a 12oC e após este tempo a cor e a textura mantiveram-se similares às do produto fresco, sem desenvolvimento de odor não característico ou podridão. A embalagem ativa contendo 1-MCP na forma de sachê foi eficiente no aumento da vida de prateleira de brócolis, retardando o amarelecimento e a perda de vitamina C. Esta é uma alternativa para o tratamento com 1-MCP para produtos minimamente processados e além disso, o sachê pode absorver a água condensada, reduzindo a deterioração e o desenvolvimento de odor não característico.

  12. Determination of free and conjugated catecholamines and L-3,4-dihydroxyphenylalanine in plasma and urine: evidence for a catechol-O-methyltransferase inhibitor in uraemia

    International Nuclear Information System (INIS)

    Demassieux, S.; Corneille, L.; Lachance, S.; Carriere, S.

    1981-01-01

    A sensitive, accurate and reproducible method has been developed for the determination of free and conjugated catecholamines and L-3,4-dihydroxyphenylalanine in plasma and urine. The assay involves the enzymatic conversion of these compounds to their radio-labelled O-methylated derivatives using catechol-O-methyltransferase and S-adenosyl-L-[methyl- 3 H]methionine. Recoveries of 75 +- 5% for dopamine, 70 +- 5% for adrenaline and 65 +- 5% for noradrenaline were obtained. The sensitivities were 0.5 pg for adrenaline and noradrenaline and 5-7 pg for dopamine and dihydroxyphenylalanine. Measurements of conjugated catecholamines were performed after mild acid hydrolysis for 20 min at 95 0 C. During this procedure no degradation of the catecholamines was observed. This assay led to the discovery of a dialyzable factor in the plasma of chronic uraemic patients which inhibits catechol-O-methyltransferase activity in vitro. The mean 22% inhibition observed for unhydrolyzed plasma increased to 42% after hydrolysis. The identity of this inhibitor which exists as an inactive conjugated form, probably a sulphate ester, and its implication in physiopathological disorders remain to be established. (Auth.)

  13. Differential Responses of Two Broccoli (Brassica oleracea L. var Italica Cultivars to Salinity and Nutritional Quality Improvement

    Directory of Open Access Journals (Sweden)

    Chokri Zaghdoud

    2012-01-01

    Full Text Available The comparative responses of two broccoli cultivars (Brassica oleracea var. Italica, cv. Parthenon and cv. Naxos to a 15 d exposure to different NaCl levels were investigated. Salinity led to increased concentrations of Na+ and Cl− ions in both cultivars, a disruption of the endogenous minerals levels in the shoots and roots—that varied with the cultivar and salt concentration—and decreases in the osmotic potential (Ψπ, root hydraulic conductance (L0, and stomatal conductance (Gs. The reduced biomass of Naxos at moderate NaCl indicates greater sensitivity to salinity, compared with Parthenon. Parthenon accumulated more soluble sugars, for osmotic adjustment, whereas Naxos accumulated proline, which gave the two cultivars differing nutritional characteristics. The total glucosinolates (GSLs content was not affected by salinity in Parthenon while it decreased significantly in Naxos as a consequence of the decrease in the indole GSL. However, Naxos accumulated more aliphatic GSLs under salt stress than Parthenon, which confers on this cultivar a greater nutritional value when cultivated under salinity.These results suggest that, at distinct salinity levels, each broccoli cultivar adopts a specific strategy, indicating the crucial role of the genetic background on the organoleptic and nutritional properties that each cultivar acquires.

  14. Differential responses of two broccoli (Brassica oleracea L. var Italica) cultivars to salinity and nutritional quality improvement.

    Science.gov (United States)

    Zaghdoud, Chokri; Alcaraz-López, Carlos; Mota-Cadenas, César; Martínez-Ballesta, María del Carmen; Moreno, Diego A; Ferchichi, Ali; Carvajal, Micaela

    2012-01-01

    The comparative responses of two broccoli cultivars (Brassica oleracea var. Italica, cv. Parthenon and cv. Naxos) to a 15 d exposure to different NaCl levels were investigated. Salinity led to increased concentrations of Na(+) and Cl(-) ions in both cultivars, a disruption of the endogenous minerals levels in the shoots and roots-that varied with the cultivar and salt concentration-and decreases in the osmotic potential (Ψ(π)), root hydraulic conductance (L(0)), and stomatal conductance (G(s)). The reduced biomass of Naxos at moderate NaCl indicates greater sensitivity to salinity, compared with Parthenon. Parthenon accumulated more soluble sugars, for osmotic adjustment, whereas Naxos accumulated proline, which gave the two cultivars differing nutritional characteristics. The total glucosinolates (GSLs) content was not affected by salinity in Parthenon while it decreased significantly in Naxos as a consequence of the decrease in the indole GSL. However, Naxos accumulated more aliphatic GSLs under salt stress than Parthenon, which confers on this cultivar a greater nutritional value when cultivated under salinity.These results suggest that, at distinct salinity levels, each broccoli cultivar adopts a specific strategy, indicating the crucial role of the genetic background on the organoleptic and nutritional properties that each cultivar acquires.

  15. Domain V of 23S rRNA contains all the structural elements necessary for recognition by the ErmE methyltransferase

    DEFF Research Database (Denmark)

    Vester, B; Douthwaite, S

    1994-01-01

    investigated what structural elements in 23S rRNA are required for specific recognition by the ErmE methyltransferase. The ermE gene was cloned into R1 plasmid derivatives, providing a means of inducible expression in Escherichia coli. Expression of the methyltransferase in vivo confers resistance......, and the enzyme efficiently modifies 23S rRNA in vitro. Removal of most of the 23S rRNA structure, so that only domain V (nucleotides 2000 to 2624) remains, does not affect the efficiency of modification by the methyltransferase. In addition, modification still occurs after the rRNA tertiary structure has been...

  16. A mouse speciation gene encodes a meiotic histone H3 methyltransferase

    Czech Academy of Sciences Publication Activity Database

    Mihola, Ondřej; Trachtulec, Zdeněk; Vlček, Čestmír; Schimenti, J.C.; Forejt, Jiří

    2009-01-01

    Roč. 323, č. 5912 (2009), s. 373-375 ISSN 0036-8075 Institutional research plan: CEZ:AV0Z50520514 Keywords : hybrid sterility * histone H3K4 methyltransferase * Prdm9 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 29.747, year: 2009

  17. Human METTL12 is a mitochondrial methyltransferase that modifies citrate synthase.

    Science.gov (United States)

    Rhein, Virginie F; Carroll, Joe; Ding, Shujing; Fearnley, Ian M; Walker, John E

    2017-06-01

    The protein methylome in mammalian mitochondria has been little studied until recently. Here, we describe that lysine-368 of human citrate synthase is methylated and that the modifying enzyme, localized in the mitochondrial matrix, is methyltransferase-like protein 12 (METTL12), a member of the family of 7β-strand methyltransferases. Lysine-368 is near the active site of citrate synthase, but removal of methylation has no effect on its activity. In mitochondria, it is possible that some or all of the enzymes of the citric acid cycle, including citrate synthase, are organized in metabolons to facilitate the channelling of substrates between participating enzymes. Thus, possible roles for the methylation of Lys-368 are in controlling substrate channelling itself, or in influencing protein-protein interactions in the metabolon. © 2017 The Authors FEBS Letters published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

  18. Enhancer of zeste homologue 2 plays an important role in neuroblastoma cell survival independent of its histone methyltransferase activity.

    Science.gov (United States)

    Bate-Eya, Laurel T; Gierman, Hinco J; Ebus, Marli E; Koster, Jan; Caron, Huib N; Versteeg, Rogier; Dolman, M Emmy M; Molenaar, Jan J

    2017-04-01

    Neuroblastoma is predominantly characterised by chromosomal rearrangements. Next to V-Myc Avian Myelocytomatosis Viral Oncogene Neuroblastoma Derived Homolog (MYCN) amplification, chromosome 7 and 17q gains are frequently observed. We identified a neuroblastoma patient with a regional 7q36 gain, encompassing the enhancer of zeste homologue 2 (EZH2) gene. EZH2 is the histone methyltransferase of lysine 27 of histone H3 (H3K27me3) that forms the catalytic subunit of the polycomb repressive complex 2. H3K27me3 is commonly associated with the silencing of genes involved in cellular processes such as cell cycle regulation, cellular differentiation and cancer. High EZH2 expression correlated with poor prognosis and overall survival independent of MYCN amplification status. Unexpectedly, treatment of 3 EZH2-high expressing neuroblastoma cell lines (IMR32, CHP134 and NMB), with EZH2-specific inhibitors (GSK126 and EPZ6438) resulted in only a slight G1 arrest, despite maximum histone methyltransferase activity inhibition. Furthermore, colony formation in cell lines treated with the inhibitors was reduced only at concentrations much higher than necessary for complete inhibition of EZH2 histone methyltransferase activity. Knockdown of the complete protein with three independent shRNAs resulted in a strong apoptotic response and decreased cyclin D1 levels. This apoptotic response could be rescued by overexpressing EZH2ΔSET, a truncated form of wild-type EZH2 lacking the SET transactivation domain necessary for histone methyltransferase activity. Our findings suggest that high EZH2 expression, at least in neuroblastoma, has a survival function independent of its methyltransferase activity. This important finding highlights the need for studies on EZH2 beyond its methyltransferase function and the requirement for compounds that will target EZH2 as a complete protein. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Antiamnesic Effect of Broccoli (Brassica oleracea var. italica) Leaves on Amyloid Beta (Aβ)1-42-Induced Learning and Memory Impairment.

    Science.gov (United States)

    Park, Seon Kyeong; Ha, Jeong Su; Kim, Jong Min; Kang, Jin Yong; Lee, Du Sang; Guo, Tian Jiao; Lee, Uk; Kim, Dae-Ok; Heo, Ho Jin

    2016-05-04

    To examine the antiamnesic effects of broccoli (Brassica oleracea var. italica) leaves, we performed in vitro and in vivo tests on amyloid beta (Aβ)-induced neurotoxicity. The chloroform fraction from broccoli leaves (CBL) showed a remarkable neuronal cell-protective effect and an inhibition against acetylcholinesterase (AChE). The ameliorating effect of CBL on Aβ1-42-induced learning and memory impairment was evaluated by Y-maze, passive avoidance, and Morris water maze tests. The results indicated improving cognitive function in the CBL group. After the behavioral tests, antioxidant effects were detected by superoxide dismutase (SOD), oxidized glutathione (GSH)/total GSH, and malondialdehyde (MDA) assays, and inhibition against AChE was also presented in the brain. Finally, oxo-dihydroxy-octadecenoic acid (oxo-DHODE) and trihydroxy-octadecenoic acid (THODE) as main compounds were identified by quadrupole time-of-flight ultraperformance liquid chromatography (Q-TOF UPLC-MS) analysis. Therefore, our studies suggest that CBL could be used as a natural resource for ameliorating Aβ1-42-induced learning and memory impairment.

  20. Identification and expression pattern analysis of BoMYB51 involved in indolic glucosinolate biosynthesis from broccoli (Brassica oleracea var. italica).

    Science.gov (United States)

    Yu, Qingyue; Hao, Guodong; Zhou, Jianxin; Wang, Jingying; Evivie, Ejiroghene Ruona; Li, Jing

    2018-06-22

    Glucosinolates are a class of amino acid-derived specialized metabolites characteristic of the Brassicales order. Trp derived indolic glucosinolates are essential for the effective plant defense responses to a wide range of pathogens and herbivores. In Arabidopsis, MYB51 is the key transcription factor positively regulates indolic glucosinolate production by activating certain biosynthetic genes. In this study, we report the isolation and identification of a MYB51 from broccoli designated as BoMYB51. Overexpression of BoMYB51 in Arabidopsis increased indolic glucosinolate production by upregulating biosynthetic genes and resulted in enhanced flagellin22 (Flg22) induced callose deposition. The spatial expression pattern and responsive expression of BoMYB51 to several hormones and stress treatments were investigated by expressing the β-glucuronidase (GUS) reporter gene driven by BoMYB51 promotor in Arabidopsis and quantitative real-time PCR analysis in broccoli. Our study provides information on molecular characteristics of BoMYB51 and possible physiological process BoMYB51 may involve. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Characterization and Identification of Gamma-Irradiated Kimchi Cabbage and Broccoli by Electron Spin Resonance Spectroscopy using Different Sample Pre-treatments

    International Nuclear Information System (INIS)

    Kwak, J.Y.; Ahn, J.J.; Kashif Akram; Kim, G.R.; Kwon, J.H.

    2012-01-01

    Electron spin resonance (ESR) spectroscopy of gamma-irradiated fresh broccoli and kimchi cabbage was conducted to identify their irradiation history. Different pretreatments, such as freeze-drying (FD), oven-drying (OD), alcoholic-drying (ALD), and water-washing and alcoholic-drying (WAD) were used to lower the moisture contents of the samples prior to ESR analysis. The non-irradiated samples exhibited a single central signal (g 0 = 2.0007) with clear effect of Mn 2+ , especially in kimchi cabbage. Upon irradiation, there was an increase in the intensity of the central signal, and two side peaks, mutually spaced at 6 mT, were also observed. These side peaks with g 1 (left) = 2.023 and g 2 (right) = 1.985 were attributed to radiation-induced cellulose radicals. Leaf and stem in broccoli, and root and stem in kimchi cabbage provided good ESR signal responses upon irradiation. The signal noise was reduced in case of ALD and WAD pretreatments, particularly due to Mn 2+ signals. The ALD treatment was found most feasible to detect the improved ESR spectra in the irradiated samples. (author)

  2. The purification, crystallization and preliminary structural characterization of PhzM, a phenazine-modifying methyltransferase from Pseudomonas aeruginosa

    International Nuclear Information System (INIS)

    Gohain, Neelakshi; Thomashow, Linda S.; Mavrodi, Dmitri V.; Blankenfeldt, Wulf

    2006-01-01

    PhzM, an S-adenosylmethionine-dependent methyltransferase enzyme that catalyzes a reaction involved in the biosynthesis of pyocyanin in P. aeruginosa, was cloned, overexpressed and crystallized. Data collection from native and selenomethionine-labelled crystals is reported. Pyocyanin, phenazine-1-carboxylic acid and more than 70 related compounds collectively known as phenazines are produced by various species of Pseudomonas, including the fluorescent pseudomonad P. aeruginosa, a Gram-negative opportunistic pathogen in humans and animals. P. aeruginosa synthesizes a characteristic blue water-soluble compound called pyocyanin (1-hydroxy-5-methyl-phenazine). Two enzymes designated PhzM and PhzS are involved in the terminal steps of its synthesis and very little is known about these enzymes. In this study, PhzM, a dimeric S-adenosylmethionine-dependent methyltransferase, was purified and crystallized from PEG 3350/sodium cacodylate/sodium citrate pH 6.5. The crystals belong to space group P1, with unit-cell parameters a = 46.1, b = 61.8, c = 69.6 Å, α = 96.3, β = 106.6, γ = 106.9°. They contain one dimer in the asymmetric unit and diffract to a resolution of 1.8 Å. Anomalous data to 2.3 Å resolution have been collected from seleno-l-methionine-labelled PhzM

  3. Preliminary characterization of (nucleoside-2′-O-)-methyltransferase crystals from Meaban and Yokose flaviviruses

    International Nuclear Information System (INIS)

    Mastrangelo, Eloise; Bollati, Michela; Milani, Mario; Lamballeire, Xavier de; Brisbare, Nadege; Dalle, Karen; Lantez, Violaine; Egloff, Marie-Pierre; Coutard, Bruno; Canard, Bruno; Gould, Ernest; Forrester, Naomi; Bolognesi, Martino

    2006-01-01

    Two methyltransferases from flaviviruses (Meaban and Yokose viruses) have been overexpressed and crystallized. Diffraction data and characterization of the two crystal forms are presented, together with a preliminary molecular-replacement solution for both enzymes. Viral methyltranferases (MTase) are involved in the third step of the mRNA-capping process, transferring a methyl group from S-adenosyl-l-methionine (SAM) to the capped mRNA. MTases are classified into two groups: (guanine-N7)-methyltransferases (N7MTases), which add a methyl group onto the N7 atom of guanine, and (nucleoside-2′-O-)-methyltransferases (2′OMTases), which add a methyl group to a ribose hydroxyl. The MTases of two flaviviruses, Meaban and Yokose viruses, have been overexpressed, purified and crystallized in complex with SAM. Characterization of the crystals together with details of preliminary X-ray diffraction data collection (at 2.8 and 2.7 Å resolution, respectively) are reported here. The sequence homology relative to Dengue virus 2′OMTase and the structural conservation of specific residues in the putative active sites suggest that both enzymes belong to the 2′OMTase subgroup

  4. Preliminary characterization of (nucleoside-2′-O-)-methyltransferase crystals from Meaban and Yokose flaviviruses

    Energy Technology Data Exchange (ETDEWEB)

    Mastrangelo, Eloise; Bollati, Michela; Milani, Mario [Department of Biomolecular Sciences and Biotechnology, CNR-INFM, University of Milano, Via Celoria 26, 20133 Milano (Italy); Lamballeire, Xavier de; Brisbare, Nadege [Unité des Virus Emergents, Faculté de Médecine, 27 Boulevard Jean Moulin, 13005 Marseille (France); Dalle, Karen; Lantez, Violaine; Egloff, Marie-Pierre; Coutard, Bruno; Canard, Bruno [Laboratoire Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS ESIL, Case 932, 163 Avenue de Luminy, 13288 Marseille CEDEX 9 (France); Gould, Ernest; Forrester, Naomi [CEH Oxford, Mansfield Road, Oxford OX1 3SR (United Kingdom); Bolognesi, Martino, E-mail: martino.bolognesi@unimi.it [Department of Biomolecular Sciences and Biotechnology, CNR-INFM, University of Milano, Via Celoria 26, 20133 Milano (Italy)

    2006-08-01

    Two methyltransferases from flaviviruses (Meaban and Yokose viruses) have been overexpressed and crystallized. Diffraction data and characterization of the two crystal forms are presented, together with a preliminary molecular-replacement solution for both enzymes. Viral methyltranferases (MTase) are involved in the third step of the mRNA-capping process, transferring a methyl group from S-adenosyl-l-methionine (SAM) to the capped mRNA. MTases are classified into two groups: (guanine-N7)-methyltransferases (N7MTases), which add a methyl group onto the N7 atom of guanine, and (nucleoside-2′-O-)-methyltransferases (2′OMTases), which add a methyl group to a ribose hydroxyl. The MTases of two flaviviruses, Meaban and Yokose viruses, have been overexpressed, purified and crystallized in complex with SAM. Characterization of the crystals together with details of preliminary X-ray diffraction data collection (at 2.8 and 2.7 Å resolution, respectively) are reported here. The sequence homology relative to Dengue virus 2′OMTase and the structural conservation of specific residues in the putative active sites suggest that both enzymes belong to the 2′OMTase subgroup.

  5. Crystallization and preliminary crystallographic analysis of tRNA (m7G46) methyltransferase from Escherichia coli

    International Nuclear Information System (INIS)

    Liu, Qi; Gao, Yang; Yang, Weili; Zhou, Huihao; Gao, Yongxiang; Zhang, Xiao; Teng, Maikun; Niu, Liwen

    2008-01-01

    tRNA (m 7 G46) methyltransferase from E. coli was overexpressed, purified and crystallized. Diffraction data were collected to 2.04 Å resolution. Transfer RNA (tRNA) (m 7 G46) methyltransferase (TrmB) belongs to the Rossmann-fold methyltransferase (RFM) family and uses S-adenosyl-l-methionine (SAM) as the methyl-group donor to catalyze the formation of N 7 -methylguanosine (m 7 G) at position 46 in the variable loop of tRNAs. After attempts to crystallize full-length Escherichia coli TrmB (EcTrmB) failed, a truncated protein lacking the first 32 residues of the N-terminus but with an additional His 6 tag at the C-terminus was crystallized by the hanging-drop vapour-diffusion method using polyethylene glycol 3350 (PEG 3350) as precipitant at 283 K. An X-ray diffraction data set was collected using a single flash-cooled crystal that belonged to space group P2 1

  6. Effects of Organic and Waste-Derived Fertilizers on Yield, Nitrogen and Glucosinolate Contents, and Sensory Quality of Broccoli (Brassica oleracea L. var. italica).

    Science.gov (United States)

    Øvsthus, Ingunn; Breland, Tor Arvid; Hagen, Sidsel Fiskaa; Brandt, Kirsten; Wold, Anne-Berit; Bengtsson, Gunnar B; Seljåsen, Randi

    2015-12-23

    Organic vegetable production attempts to pursue multiple goals concerning influence on environment, production resources, and human health. In areas with limited availability of animal manure, there is a need for considering various off-farm nutrient resources for such production. Different organic and waste-derived fertilizer materials were used for broccoli production at two latitudes (58° and 67°) in Norway during two years. The fertilizer materials were applied at two rates of total N (80 and 170 kg ha(-1)) and compared with mineral fertilizer (170 kg ha(-1)) and no fertilizer. Broccoli yield was strongly influenced by fertilizer materials (algae meal fertilizer). Yield, but not glucosinolate content, was linearly correlated with estimated potentially plant-available N. However, extruded shrimp shell and mineral NPK fertilizer gave higher glucosinolate contents than sheep manure and no fertilizer. Sensory attributes were less affected by fertilizer material and plant-available N.

  7. Improved synthesis methods of standards used for quantitative determination of total isothiocyanates from broccoli in human urine

    DEFF Research Database (Denmark)

    Kristensen, Mette; Krogholm, Kirstine Suszkiewicz; Frederiksen, Hanne

    2007-01-01

    A well-known method for quantification of isothiocyanates (ITCs) and their metabolites is the condensation reaction with 1,2-benzenedithiole to produce 1,3-benzodithiole-2-thione, which can be quantified by high-performance liquid chromatography. Standards of an ITC metabolite and 1,3-benzodithio...... excretion of ITCs from 10 healthy subjects who consumed 350 g broccoli. The excretion was investigated throughout 48 h showing a cumulative urinary ITC excretion of 49.1 +/- 25.2% of the dose....

  8. Change in the color of heat-treated, vacuum-packed broccoli stems and florets during storage: effects of process conditions and modeling by an artificial neural network.

    Science.gov (United States)

    Pero, Milad; Askari, Gholamreza; Skåra, Torstein; Skipnes, Dagbjørn; Kiani, Hossein

    2018-02-08

    Vacuum-packed broccoli stems and florets were subjected to heat treatment (60-99 °C) for various time intervals. The activity of peroxidase was measured after processing. Thermally processed samples were then stored at 4 °C for 35 days, and the color of the samples was measured every 7 days. Effects of parameters (heating temperature and duration, storage time) on the color of broccoli were modeled and simulated by an artificial neural network (ANN). Simulations confirmed that stems were predicted to be more prone to changes than florets. More color loss was observed with longer processing or storage combinations. The simulations also confirmed that higher temperatures during heat processing could retard color changes during storage. For stems treated at 80 °C for short durations, color loss was more predominant than both 65 and 99 °C, probably due to the incomplete inactivation of enzymes besides more tissue damage, with increased enzyme access to the substrate. The greenness of both stems and florets during storage can be better preserved at higher temperatures (99 °C) and short times. The simulation results revealed that the ANN method could be used as an effective tool for predicting and analyzing the color values of heat-treated broccoli. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  9. Evaluation of consumer acceptance of west coast versus east coast-produced broccoli through sensory analysis of quality rating factors and nutritionally important metabolites

    Science.gov (United States)

    Production trials and germplasm evaluation of broccoli (Brassica oleracea var. italica) developed for eastern U.S. production conditions have identified lines and cultivars that are better adapted to more stressful, variable East Coast environments. As a part of this work sponsored by the USDA SCIR...

  10. Noncompetitive inhibition of indolethylamine-N-methyltransferase by N,N-dimethyltryptamine and N,N-dimethylaminopropyltryptamine.

    Science.gov (United States)

    Chu, Uyen B; Vorperian, Sevahn K; Satyshur, Kenneth; Eickstaedt, Kelsey; Cozzi, Nicholas V; Mavlyutov, Timur; Hajipour, Abdol R; Ruoho, Arnold E

    2014-05-13

    Indolethylamine-N-methyltransferase (INMT) is a Class 1 transmethylation enzyme known for its production of N,N-dimethyltryptamine (DMT), a hallucinogen with affinity for various serotonergic, adrenergic, histaminergic, dopaminergic, and sigma-1 receptors. DMT is produced via the action of INMT on the endogenous substrates tryptamine and S-adenosyl-l-methionine (SAM). The biological, biochemical, and selective small molecule regulation of INMT enzyme activity remain largely unknown. Kinetic mechanisms for inhibition of rabbit lung INMT (rabINMT) by the product, DMT, and by a new novel tryptamine derivative were determined. After Michaelis-Menten and Lineweaver-Burk analyses had been applied to study inhibition, DMT was found to be a mixed competitive and noncompetitive inhibitor when measured against tryptamine. The novel tryptamine derivative, N-[2-(1H-indol-3-yl)ethyl]-N',N'-dimethylpropane-1,3-diamine (propyl dimethyl amino tryptamine or PDAT), was shown to inhibit rabINMT by a pure noncompetitive mechanism when measured against tryptamine with a Ki of 84 μM. No inhibition by PDAT was observed at 2 mM when it was tested against structurally similar Class 1 methyltransferases, such as human phenylethanolamine-N-methyltransferase (hPNMT) and human nicotinamide-N-methyltransferase (hNNMT), indicating selectivity for INMT. The demonstration of noncompetitive mechanisms for INMT inhibition implies the presence of an inhibitory allosteric site. In silico analyses using the computer modeling software Autodock and the rabINMT sequence threaded onto the human INMT (hINMT) structure (Protein Data Bank entry 2A14 ) identified an N-terminal helix-loop-helix non-active site binding region of the enzyme. The energies for binding of DMT and PDAT to this region of rabINMT, as determined by Autodock, were -6.34 and -7.58 kcal/mol, respectively. Assessment of the allosteric control of INMT may illuminate new biochemical pathway(s) underlying the biology of INMT.

  11. Novel solid self-emulsifying drug delivery system of coenzyme Q₁₀ with improved photochemical and pharmacokinetic behaviors.

    Science.gov (United States)

    Onoue, Satomi; Uchida, Atushi; Kuriyama, Kazuki; Nakamura, Tatsuya; Seto, Yoshiki; Kato, Masashi; Hatanaka, Junya; Tanaka, Toshiyuki; Miyoshi, Hiroyuki; Yamada, Shizuo

    2012-08-15

    The present study was undertaken to develop a solid self-emulsifying drug delivery system of coenzyme Q(10) (CoQ(10)/s-SEDDS) with high photostability and oral bioavailability. The CoQ(10)/s-SEDDS was prepared by spray-drying an emulsion preconcentrate containing CoQ(10), medium-chain triglyceride, sucrose ester of fatty acid, and hydroxypropyl cellulose, and its physicochemical, photochemical, and pharmacokinetic properties were evaluated. The CoQ(10)/s-SEDDS powder with a diameter of ca. 15 μm was obtained by spray-drying, in which the CoQ(10) was mostly amorphized. The CoQ(10)/s-SEDDS exhibited immediate self-emulsification when introduced to aqueous media under gentle agitation, forming uniform fine droplets with a mean diameter of ca. 280 nm. There was marked generation of reactive oxygen species, in particular superoxide, from CoQ(10) exposed to simulated sunlight (250W/m(2)), suggesting potent photoreactivity. Nano-emulsified solution of CoQ(10) under light exposure underwent photodegradation with 22-fold higher degradation kinetics than crystalline CoQ(10), although the CoQ(10)/s-SEDDS was less photoreactive. After the oral administration of CoQ(10)/s-SEDDS (100 mg-CoQ(10)/kg) in rats, enhanced exposure of CoQ(10) was observed with increases in both C(max) and AUC of ca. 5-fold in comparison with those of orally administered crystalline CoQ(10). From the improved physicochemical and pharmacokinetic data, the s-SEDDS approach upon spray-drying might be a suitable dosage option for enhancing nutraceutical and pharmaceutical values of CoQ(10). Copyright © 2012 Elsevier B.V. All rights reserved.

  12. The histone methyltransferase SET8 is required for S-phase progression

    DEFF Research Database (Denmark)

    Jørgensen, Stine; Elvers, Ingegerd; Trelle, Morten Beck

    2008-01-01

    Chromatin structure and function is influenced by histone posttranslational modifications. SET8 (also known as PR-Set7 and SETD8) is a histone methyltransferase that monomethylates histonfe H4-K20. However, a function for SET8 in mammalian cell proliferation has not been determined. We show...

  13. Clinical Pharmacogenetics Implementation Consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing

    DEFF Research Database (Denmark)

    Relling, M V; Gardner, E E; Sandborn, W J

    2011-01-01

    Thiopurine methyltransferase (TPMT) activity exhibits monogenic co-dominant inheritance, with ethnic differences in the frequency of occurrence of variant alleles. With conventional thiopurine doses, homozygous TPMT-deficient patients (~1 in 178 to 1 in 3,736 individuals with two nonfunctional TP...

  14. Selenium-Induced Toxicity Is Counteracted by Sulfur in Broccoli (Brassica oleracea L. var. italica).

    Science.gov (United States)

    Tian, Ming; Hui, Maixia; Thannhauser, Theodore W; Pan, Siyi; Li, Li

    2017-01-01

    Selenium (Se) is an essential micronutrient for humans. Increasing Se content in food crops offers an effective approach to enhance the consumption of Se in human diets. A thoroughly understanding of the effects of Se on plant growth is important for Se biofortification in food crops. Given that Se is an analog of sulfur (S) and can be toxic to plants, its effect on plant growth is expected to be greatly affected by S nutrition. However, this remains to be further understood. Here, we evaluated the influence of Se treatments on broccoli ( Brassica oleracea L. var. italica ) growth when S was withheld from the growth nutrient solution. We found that Se was highly toxic to plants when S nutrition was poor. In contrast to Se treatments with adequate S nutrition that slightly reduced broccoli growth, the same concentration of Se treatments without S supplementation dramatically reduced plant sizes. Higher Se toxicity was observed with selenate than selenite under low S nutrition. We examined the bases underlying the toxicity. We discovered that the high Se toxicity in low S nutrition was specifically associated with an increased ratio of Se in proteins verse total Se level, enhanced generation of reactive oxygen species, elevated lipid peroxidation causing increased cell membrane damage, and reduced antioxidant enzyme activities. Se toxicity could be counteracted with increased supplementation of S, which is likely through decreasing non-specific integration of Se into proteins and altering the redox system. The present study provides information for better understanding of Se toxicity and shows that adequate S nutrition is important to prevent Se toxicity during biofortification of crops by Se fertilization.

  15. Selenium-Induced Toxicity Is Counteracted by Sulfur in Broccoli (Brassica oleracea L. var. italica

    Directory of Open Access Journals (Sweden)

    Ming Tian

    2017-08-01

    Full Text Available Selenium (Se is an essential micronutrient for humans. Increasing Se content in food crops offers an effective approach to enhance the consumption of Se in human diets. A thoroughly understanding of the effects of Se on plant growth is important for Se biofortification in food crops. Given that Se is an analog of sulfur (S and can be toxic to plants, its effect on plant growth is expected to be greatly affected by S nutrition. However, this remains to be further understood. Here, we evaluated the influence of Se treatments on broccoli (Brassica oleracea L. var. italica growth when S was withheld from the growth nutrient solution. We found that Se was highly toxic to plants when S nutrition was poor. In contrast to Se treatments with adequate S nutrition that slightly reduced broccoli growth, the same concentration of Se treatments without S supplementation dramatically reduced plant sizes. Higher Se toxicity was observed with selenate than selenite under low S nutrition. We examined the bases underlying the toxicity. We discovered that the high Se toxicity in low S nutrition was specifically associated with an increased ratio of Se in proteins verse total Se level, enhanced generation of reactive oxygen species, elevated lipid peroxidation causing increased cell membrane damage, and reduced antioxidant enzyme activities. Se toxicity could be counteracted with increased supplementation of S, which is likely through decreasing non-specific integration of Se into proteins and altering the redox system. The present study provides information for better understanding of Se toxicity and shows that adequate S nutrition is important to prevent Se toxicity during biofortification of crops by Se fertilization.

  16. O6-methylguanine-DNA methyltransferase in wild-type and ada mutants of Escherichia coli

    International Nuclear Information System (INIS)

    Mitra, S.; Pal, B.C.; Foote, R.S.

    1982-01-01

    O 6 -Methylguanine-DNA methyltransferase is induced in Escherichia coli during growth in low levels of N-methyl-N'-nitro-N-nitrosoguanidine. We have developed a sensitive assay for quantitating low levels of this activity with a synthetic DNA substrate containing 3 H-labeled O 6 -methylguanine as the only modified base. Although both wild-type and adaptation-deficient (ada) mutants of E. coli contained low but comparable numbers (from 13 to 60) of the enzyme molecules per cell, adaptation treatment caused a significant increase of the enzyme in the wild type but not in the ada mutants, suggesting that the ada mutation is in a regulatory locus and not in the structural gene for the methyltransferase

  17. Gold nanoparticles synthesized by Brassica oleracea (Broccoli) acting as antimicrobial agents against human pathogenic bacteria and fungi

    Science.gov (United States)

    Piruthiviraj, Prakash; Margret, Anita; Krishnamurthy, Poornima Priyadharsani

    2016-04-01

    Production of antimicrobial agents through the synthesis of gold nanoparticles using green technology has been extensively made consistent by various researchers; yet, this study uses the flower bud's aqueous extracts of Brassica oleracea (Broccoli) as a reducing agent for chloroauric acid (1 mM). After 30 min of incubation, synthesis of gold nanoparticles (AuNps) was observed by a change in extract color from pale yellow to purple color. Synthesis of AuNps was confirmed in UV-visible spectroscopy at the range of approximately 560 nm. The SEM analysis showed the average nanoparticles size of 12-22 nm. The antimicrobial activity of AuNps was analyzed by subjecting it to human pathogenic bacteria (Gram-positive Staphylococcus aureus and Gram-negative Klebsiella pneumonia) and fungi (Aspergillus flavus, Aspergillus niger and Candida albicans) using disc diffusion method. The broccoli-synthesized AuNps showed the efficient antibacterial and antifungal activity of above-mentioned microbes. It was confirmed that AuNps have the best antimicrobial agent compared to the standard antibiotics (Gentamicin and Fluconazole). When the concentrations of AuNps were increased (10, 25, and 50 µg/ml), the sensitivity zone also increased for all the tested microbes. The synthesized AuNps are capable of rendering high antimicrobial efficacy and, hence, have a great potential in the preparation of drugs used against major bacterial and fungal diseases in humans.

  18. Involvement of histone methyltransferase GLP in HIV-1 latency through catalysis of H3K9 dimethylation

    International Nuclear Information System (INIS)

    Ding, Donglin; Qu, Xiying; Li, Lin; Zhou, Xin; Liu, Sijie; Lin, Shiguan; Wang, Pengfei; Liu, Shaohui; Kong, Chuijin; Wang, Xiaohui; Liu, Lin; Zhu, Huanzhang

    2013-01-01

    Understanding the mechanism of HIV-1 latency is crucial to eradication of the viral reservoir in HIV-1-infected individuals. However, the role of histone methyltransferase (HMT) G9a-like protein (GLP) in HIV-1 latency is still unclear. In the present work, we established four clonal cell lines containing HIV-1 vector. We found that the integration sites of most clonal cell lines favored active gene regions. However, we also observed hypomethylation of CpG of HIV 5′LTR in all four clonal cell lines. Additionally, 5′-deoxy-5′-methylthioadenosine (MTA), a broad-spectrum histone methyltransferase inhibitor, was used to examine the role of histone methylation in HIV-1 latency. MTA was found to decrease the level of H3K9 dimethylation, causing reactivation of latent HIV-1 in C11 cells. GLP knockdown by small interfering RNA clearly induced HIV-1 LTR expression. Results suggest that GLP may play a significant role in the maintenance of HIV-1 latency by catalyzing dimethylation of H3K9. - Highlights: ► We have established an in vitro model of HIV-1 latency. ► The integration sites of most clonal cell lines favor in active gene regions. ► Hypomethylation occurs in CpG islands of HIV 5′LTR in all four clonal cell lines. ► MTA can reactivate latent HIV-1 by decreasing the level of H3K9 me2 in C11 cells. ► HMT GLP may play a significant role in the maintenance of HIV-1 latency

  19. Broccoli (Brassica oleracea) Reduces Oxidative Damage to Pancreatic Tissue and Combats Hyperglycaemia in Diabetic Rats.

    Science.gov (United States)

    Suresh, Sithara; Waly, Mostafa Ibrahim; Rahman, Mohammad Shafiur; Guizani, Nejib; Al-Kindi, Mohamed Abdullah Badar; Al-Issaei, Halima Khalfan Ahmed; Al-Maskari, Sultan Nasser Mohd; Al-Ruqaishi, Bader Rashid Said; Al-Salami, Ahmed

    2017-12-01

    Oxidative stress plays a pivotal role in the development of diabetes and hyperglycaemia. The protective effects of natural extracts against diabetes are mainly dependent on their antioxidant and hypoglycaemic properties. Broccoli ( Brassica oleracea ) exerts beneficial health effects in several diseases including diabetes; however, the mechanism has not been elucidated yet. The present study was carried out to evaluate the potential hypoglycaemic and antioxidant properties of aqueous broccoli extracts (BEs) in diabetic rats. Streptozotocin (STZ) drug was used as a diabetogenic agent in a single intraperitoneal injection dose of 50 mg/kg body weight. The blood glucose level for each rat was measured twice a week. After 8 weeks, all animals were fasted overnight and sacrificed; pancreatic tissues were homogenized and used for measuring oxidative DNA damage, biochemical assessment of glutathione (GSH), and total antioxidant capacity (TAC) as well as histopathological examination for pancreatic tissues was examined. Diabetic rats showed significantly higher levels of DNA damage, GSH depletion, and impaired TAC levels in comparison to non-diabetics ( P <0.05). The treatment of diabetic rats with BE significantly reduced DNA damage and conserved GSH and TAC values ( P <0.01). BE attenuated pancreatic histopathological changes in diabetic rats. The results of this study indicated that BE reduced the STZ mediated hyperglycaemia and the STZ-induced oxidative injury to pancreas tissue. The used in vivo model confirmed the efficacy of BE as an anti-diabetic herbal medicine and provided insights into the capacity of BE to be used for phytoremediation purposes for human type 2 diabetes.

  20. Conversion of nicotinic acid to trigonelline is catalyzed by N-methyltransferase belonged to motif B′ methyltransferase family in Coffea arabica

    International Nuclear Information System (INIS)

    Mizuno, Kouichi; Matsuzaki, Masahiro; Kanazawa, Shiho; Tokiwano, Tetsuo; Yoshizawa, Yuko; Kato, Misako

    2014-01-01

    Graphical abstract: Trigonelline synthase catalyzes the conversion of nicotinic acid to trigonelline. We isolated and characterized trigonelline synthase gene(s) from Coffea arabica. - Highlights: • Trigonelline is a major compound in coffee been same as caffeine is. • We isolated and characterized trigonelline synthase gene. • Coffee trigonelline synthases are highly homologous with coffee caffeine synthases. • This study contributes the fully understanding of pyridine alkaloid metabolism. - Abstract: Trigonelline (N-methylnicotinate), a member of the pyridine alkaloids, accumulates in coffee beans along with caffeine. The biosynthetic pathway of trigonelline is not fully elucidated. While it is quite likely that the production of trigonelline from nicotinate is catalyzed by N-methyltransferase, as is caffeine synthase (CS), the enzyme(s) and gene(s) involved in N-methylation have not yet been characterized. It should be noted that, similar to caffeine, trigonelline accumulation is initiated during the development of coffee fruits. Interestingly, the expression profiles for two genes homologous to caffeine synthases were similar to the accumulation profile of trigonelline. We presumed that these two CS-homologous genes encoded trigonelline synthases. These genes were then expressed in Escherichiacoli, and the resulting recombinant enzymes that were obtained were characterized. Consequently, using the N-methyltransferase assay with S-adenosyl[methyl- 14 C]methionine, it was confirmed that these recombinant enzymes catalyzed the conversion of nicotinate to trigonelline, coffee trigonelline synthases (termed CTgS1 and CTgS2) were highly identical (over 95% identity) to each other. The sequence homology between the CTgSs and coffee CCS1 was 82%. The pH-dependent activity curve of CTgS1 and CTgS2 revealed optimum activity at pH 7.5. Nicotinate was the specific methyl acceptor for CTgSs, and no activity was detected with any other nicotinate derivatives, or with

  1. Conversion of nicotinic acid to trigonelline is catalyzed by N-methyltransferase belonged to motif B′ methyltransferase family in Coffea arabica

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, Kouichi, E-mail: koumno@akita-pu.ac.jp [Faculty of Bioresource Sciences, Akita Prefectural University, Akita City, Akita 010-0195 (Japan); Matsuzaki, Masahiro [Faculty of Bioresource Sciences, Akita Prefectural University, Akita City, Akita 010-0195 (Japan); Kanazawa, Shiho [Graduate School of Humanities and Sciences, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo 112-8610 (Japan); Tokiwano, Tetsuo; Yoshizawa, Yuko [Faculty of Bioresource Sciences, Akita Prefectural University, Akita City, Akita 010-0195 (Japan); Kato, Misako [Graduate School of Humanities and Sciences, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo 112-8610 (Japan)

    2014-10-03

    Graphical abstract: Trigonelline synthase catalyzes the conversion of nicotinic acid to trigonelline. We isolated and characterized trigonelline synthase gene(s) from Coffea arabica. - Highlights: • Trigonelline is a major compound in coffee been same as caffeine is. • We isolated and characterized trigonelline synthase gene. • Coffee trigonelline synthases are highly homologous with coffee caffeine synthases. • This study contributes the fully understanding of pyridine alkaloid metabolism. - Abstract: Trigonelline (N-methylnicotinate), a member of the pyridine alkaloids, accumulates in coffee beans along with caffeine. The biosynthetic pathway of trigonelline is not fully elucidated. While it is quite likely that the production of trigonelline from nicotinate is catalyzed by N-methyltransferase, as is caffeine synthase (CS), the enzyme(s) and gene(s) involved in N-methylation have not yet been characterized. It should be noted that, similar to caffeine, trigonelline accumulation is initiated during the development of coffee fruits. Interestingly, the expression profiles for two genes homologous to caffeine synthases were similar to the accumulation profile of trigonelline. We presumed that these two CS-homologous genes encoded trigonelline synthases. These genes were then expressed in Escherichiacoli, and the resulting recombinant enzymes that were obtained were characterized. Consequently, using the N-methyltransferase assay with S-adenosyl[methyl-{sup 14}C]methionine, it was confirmed that these recombinant enzymes catalyzed the conversion of nicotinate to trigonelline, coffee trigonelline synthases (termed CTgS1 and CTgS2) were highly identical (over 95% identity) to each other. The sequence homology between the CTgSs and coffee CCS1 was 82%. The pH-dependent activity curve of CTgS1 and CTgS2 revealed optimum activity at pH 7.5. Nicotinate was the specific methyl acceptor for CTgSs, and no activity was detected with any other nicotinate derivatives, or

  2. Crystallization and preliminary crystallographic analysis of tRNA (m{sup 7}G46) methyltransferase from Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qi; Gao, Yang; Yang, Weili; Zhou, Huihao; Gao, Yongxiang; Zhang, Xiao; Teng, Maikun, E-mail: mkteng@ustc.edu.cn; Niu, Liwen, E-mail: mkteng@ustc.edu.cn [Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230027 (China); Key Laboratory of Structural Biology, Chinese Academy of Sciences, 96 Jinzhai Road, Hefei, Anhui 230027 (China)

    2008-08-01

    tRNA (m{sup 7}G46) methyltransferase from E. coli was overexpressed, purified and crystallized. Diffraction data were collected to 2.04 Å resolution. Transfer RNA (tRNA) (m{sup 7}G46) methyltransferase (TrmB) belongs to the Rossmann-fold methyltransferase (RFM) family and uses S-adenosyl-l-methionine (SAM) as the methyl-group donor to catalyze the formation of N{sup 7}-methylguanosine (m{sup 7}G) at position 46 in the variable loop of tRNAs. After attempts to crystallize full-length Escherichia coli TrmB (EcTrmB) failed, a truncated protein lacking the first 32 residues of the N-terminus but with an additional His{sub 6} tag at the C-terminus was crystallized by the hanging-drop vapour-diffusion method using polyethylene glycol 3350 (PEG 3350) as precipitant at 283 K. An X-ray diffraction data set was collected using a single flash-cooled crystal that belonged to space group P2{sub 1}.

  3. A Reverse Genetics Approach for the Design of Methyltransferase-Defective Live Attenuated Avian Metapneumovirus Vaccines.

    Science.gov (United States)

    Zhang, Yu; Sun, Jing; Wei, Yongwei; Li, Jianrong

    2016-01-01

    Avian metapneumovirus (aMPV), also known as avian pneumovirus or turkey rhinotracheitis virus, is the causative agent of turkey rhinotracheitis and is associated with swollen head syndrome in chickens. aMPV belongs to the family Paramyxoviridae which includes many important human pathogens such as human respiratory syncytial virus (RSV), human metapneumovirus (hMPV), and human parainfluenza virus type 3 (PIV3). The family also includes highly lethal emerging pathogens such as Nipah virus and Hendra virus, as well as agriculturally important viruses such as Newcastle disease virus (NDV). For many of these viruses, there is no effective vaccine. Here, we describe a reverse genetics approach to develop live attenuated aMPV vaccines by inhibiting the viral mRNA cap methyltransferase. The viral mRNA cap methyltransferase is an excellent target for the attenuation of paramyxoviruses because it plays essential roles in mRNA stability, efficient viral protein translation and innate immunity. We have described in detail the materials and methods used to generate recombinant aMPVs that lack viral mRNA cap methyltransferase activity. We have also provided methods to evaluate the genetic stability, pathogenesis, and immunogenicity of live aMPV vaccine candidates in turkeys.

  4. Pathogen detection, testing, and control in fresh broccoli sprouts

    Directory of Open Access Journals (Sweden)

    Fahey Jed W

    2006-04-01

    Full Text Available Abstract Background The recent increased interest in consuming green vegetable sprouts has been tempered by the fact that fresh sprouts can in some cases be vehicles for food-borne illnesses. They must be grown according to proper conditions of sanitation and handled as a food product rather than as an agricultural commodity. When sprouts are grown in accordance with the criteria proposed from within the sprout industry, developed by regulatory agencies, and adhered to by many sprouters, green sprouts can be produced with very low risk. Contamination may occur when these guidelines are not followed. Methods A one year program of microbial hold-and-release testing, conducted in concert with strict seed and facility cleaning procedures by 13 U.S. broccoli sprout growers was evaluated. Microbial contamination tests were performed on 6839 drums of sprouts, equivalent to about 5 million consumer packages of fresh green sprouts. Results Only 24 (0.75% of the 3191 sprout samples gave an initial positive test for Escherichia coli O157:H7 or Salmonella spp., and when re-tested, 3 drums again tested positive. Composite testing (e.g., pooling up to 7 drums for pathogen testing was equally sensitive to single drum testing. Conclusion By using a "test-and-re-test" protocol, growers were able to minimize crop destruction. By pooling drums for testing, they were also able to reduce testing costs which now represent a substantial portion of the costs associated with sprout growing. The test-and-hold scheme described herein allowed those few batches of contaminated sprouts to be found prior to packaging and shipping. These events were isolated, and only safe sprouts entered the food supply.

  5. Effect of time of day for harvest and postharvest treatments on the sugar metabolism of broccoli (Brassica oleracea var. italica

    Directory of Open Access Journals (Sweden)

    Joaquin Hasperue

    2014-02-01

    Full Text Available     Loss of sugars contributes to accelerate postharvest senescence of broccoli. Several treatments have been developed to delay senescence, but in many cases their effects on sugar metabolism were not analyzed. We studied the effect of harvest at different times of day (08:00, 13:00 and 18:00 h and of several postharvest treatments as heat treatment (HT, modified atmosphere (MA and 1-methylcylcopropene (1-MCP on sugar levels and activities of enzymes related to sucrose and starch degradation. Harvesting at the end of day delayed the loss of chlorophylls and caused the lowest decrement in sugars, although no differences in invertase, sucrose synthase and β-amylase activities were detected among samples. Treatments of MA and 1-MCP caused a lower loss of glucose and fructose, while HT caused a lower decrement of sucrose. Treated samples maintained higher levels of chlorophylls. The treatments reduced the activity of invertase and sucrose synthase and induced higher levels of β-amylase activity. Harvesting at the end of day and performing simultaneously a MA treatment could be a good combination to maintain the green color of the inflorescence and sugar levels during postharvest of broccoli.

  6. Proliferation and glucosinolates accumulation of broccoli adventitious roots in liquid medium

    Science.gov (United States)

    Nhut, Nguyen Minh; Tien, Le Thi Thuy

    2017-09-01

    Cotyledons from 7-day-old in vitro broccoli seedling were used as explant source in adventitious root induction on MS medium supplemented with 30 g/l sucrose, 1.6 mg/l IBA and 7 g/l agar. Adventitious roots from cotyledons were transferred to liquid medium containing the same components as rooting medium for two weeks, then subcultured to MS medium with diferent sugar, macrominerals and casein hydrolysate concentrations. The best adventitious root growth was observed in half-strength MS medium supplemented with 40 g/l sucrose, 600 mg/l casein hydrolysate and 1.6 mg/l IBA (growth index of 4.00 in about 14 culture days with inoculum density of 1.0 g fresh weight / 30 ml of culture medium). The culturing process can be stopped on the 28th day for root biomass and on the 35th day for glucosinolates.

  7. Expression of DNA methyltransferases is influenced by growth hormone in the long-living Ames dwarf mouse in vivo and in vitro.

    Science.gov (United States)

    Armstrong, Vanessa L; Rakoczy, Sharlene; Rojanathammanee, Lalida; Brown-Borg, Holly M

    2014-08-01

    Methyltransferase expression and DNA methylation are linked to aging and age-related disease. We utilized 3-, 12-, and 24-month-old Ames dwarf and their wild-type siblings to examine the genotype and age-related differences in the expression of methyltransferase enzymes related to DNA methylation in the liver, glycine-N-methyltransferase and DNA methyltransferase (DNMT). We found that DNMT proteins and transcripts are differentially expressed in dwarf mice compared with wild-type siblings that can be attributed to age and/or genotype. However, DNMT1 protein expression is drastically reduced compared with wild-type controls at every age. DNMT3a protein levels coincide with differences observed in DNMT activity. Growth hormone appears to modulate expression of DNMT1 and 3a in dwarf liver tissue and primary hepatocytes. Therefore, growth hormone may contribute to age-related processes, DNA methylation, and, ultimately, longevity. © The Author 2013. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Time-dependent inactivation of human phenylethanolamine N-methyltransferase by 7-isothiocyanatotetrahydroisoquinoline

    Science.gov (United States)

    Wu, Qian; Caine, Joanne M.; Thomson, Stuart A.; Slavica, Meri; Grunewald, Gary L.

    2009-01-01

    Inhibitors of phenylethanolamine N-methyltransferase [PNMT, the enzyme that catalyzes the final step in the biosynthesis of epinephrine (Epi)] may be of use in determining the role of Epi in the central nervous system. Here we describe the synthesis and characterization of 7-SCN tetrahydroisoquinoline as an affinity label for human PNMT. PMID:19171483

  9. MiR-29c regulates the expression of miR-34c and miR-449a by targeting DNA methyltransferase 3a and 3b in nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Niu, Man; Gao, Dan; Wen, Qiuyuan; Wei, Pingpin; Pan, Suming; Shuai, Cijun; Ma, Huiling; Xiang, Juanjuan; Li, Zheng; Fan, Songqing; Li, Guiyuan; Peng, Shuping

    2016-01-01

    Nasopharyngeal carcinoma (NPC) is prevalent in South East Asia and Southern China particularly, despite the reported 5-year survival ratio is relative higher than other deadly cancers such as liver, renal, pancreas cancer, the lethality is characterized by high metastatic potential in the early stage and high recurrence rate after radiation treatment. MicroRNA-29c was found to be down-regulated in the serum as well as in the tissue of nasopharyngeal carcinoma tissue. In this study, we found accidentally that the transfection of pre-miR-29c or miR-29c mimics significantly increases the expression level of miR-34c and miR-449a but doesn’t affect that of miR-222 using real-time quantitative PCR in nasopharyngeal carcinoma cell lines. To explore the molecular mechanism of the regulatory role, the cells are treated with 5-Aza-2-deoxycytidine (5-Aza-CdR) treatment and the level of miR-34c and miR-449a but not miR-222 accumulated by the treatment. DNA methyltransferase 3a, 3b were down-regulated by the 5-Aza-CdR treatment with western blot and real-time quantitative PCR. We found that pre-miR-29c or miR-29c mimics significantly increases the expression level of miR-34c and miR-449a. We further found DNA methyltransferase 3a and 3b are the target gene of miR-29c. Restoration of miR-29c in NPC cells down-regulated DNA methyltransferase 3a, 3b, but not DNA methyltransferase T1. The regulation of miR-29c/DNMTs/miR-34c/449a is an important molecular axis of NPC development and targeting DNMTs or restoring of miR-29c might be a promising therapy strategy for the prevention of NPC

  10. Characterization of biomasses, concentrates, and permeates of dried powder of Kombucha fermentation of spinach (Amaranthus sp.) and broccoli (Brassica oleracea) with membrane microfiltration and freeze drying techniques for natural sources of folic acid

    Science.gov (United States)

    Nugraha, Tutun; Susilowati, Agustine; Aspiyanto, Lotulung, Puspa Dewi; Maryati, Yati

    2017-11-01

    Fermentation of spinach (Amaranthus sp) and Broccoli (Brassica oleracea) using Kombucha Culture has been shown to produce biomass that has the potential to become natural sources of folic acid. To produce the materials, following the fermentation, the biomass was filtered using membrane microfiltration (0.15 µm) at a pressure of 40 psia, at room temperature, yielding the concentrate and the permeate fractions. Following this step, freeze drying process was done on the biomass feeds, as well as on the concentrate and permeate fractions. For the freeze drying stage, the samples were frozen, and the condenser was kept at -50°C for 40 hours, while the pressure in the chamber was set at 200 Pa. Freeze drying results showed that the final products, have differences in compositions, as well as differences in the dominat monomers of folates. After water content was driven out, freeze drying increased the concentrations of folic acid in the dried products, and was found to be the highest in the concentrate fractions. Freeze drying has been shown to be capable of protecting the folates from heat and oxidative damages that typicaly occur with other types of drying. The final freeze dried concentrates of fermentation of spinach and broccoli were found to contain folic acid at 2531.88 µg/mL and 1626.94 µg/mL, total solids at 87.23% and 88.65 %, total sugar at 22.66 µg/mL and 25.13 µg/mL, total reducing sugar at 34.46 mg/mL and 15.22 mg/mL, as well as disolved protein concentrations at 0.93 mg/mL and 1.45 mg/mL. Liquid Chromatography Mass Spectometry (LC-MS) identification of the folates in the freeze dried concentrates of fermented spinach and broccoli was done using folic acid and glutamic acid standard solutions as the reference materials. The results showed the presence of folic acid and showed that the dominant monomers of molecules of folates with molecular weights of 441.44 Da. and 441.54 Da. for spinach and broccoli respectively. Moreover, the monomers of glutamic

  11. Molecular phylogenetics and comparative modeling of HEN1, a methyltransferase involved in plant microRNA biogenesis

    Directory of Open Access Journals (Sweden)

    Obarska Agnieszka

    2006-01-01

    Full Text Available Abstract Background Recently, HEN1 protein from Arabidopsis thaliana was discovered as an essential enzyme in plant microRNA (miRNA biogenesis. HEN1 transfers a methyl group from S-adenosylmethionine to the 2'-OH or 3'-OH group of the last nucleotide of miRNA/miRNA* duplexes produced by the nuclease Dicer. Previously it was found that HEN1 possesses a Rossmann-fold methyltransferase (RFM domain and a long N-terminal extension including a putative double-stranded RNA-binding motif (DSRM. However, little is known about the details of the structure and the mechanism of action of this enzyme, and about its phylogenetic origin. Results Extensive database searches were carried out to identify orthologs and close paralogs of HEN1. Based on the multiple sequence alignment a phylogenetic tree of the HEN1 family was constructed. The fold-recognition approach was used to identify related methyltransferases with experimentally solved structures and to guide the homology modeling of the HEN1 catalytic domain. Additionally, we identified a La-like predicted RNA binding domain located C-terminally to the DSRM domain and a domain with a peptide prolyl cis/trans isomerase (PPIase fold, but without the conserved PPIase active site, located N-terminally to the catalytic domain. Conclusion The bioinformatics analysis revealed that the catalytic domain of HEN1 is not closely related to any known RNA:2'-OH methyltransferases (e.g. to the RrmJ/fibrillarin superfamily, but rather to small-molecule methyltransferases. The structural model was used as a platform to identify the putative active site and substrate-binding residues of HEN and to propose its mechanism of action.

  12. Insights into the structure, function and evolution of the radical-SAM 23S rRNA methyltransferase Cfr that confers antibiotic resistance in bacteria

    DEFF Research Database (Denmark)

    Karminska, K. H.; Purta, E.; Hansen, L .H.

    2010-01-01

    The Cfr methyltransferase confers combined resistance to five classes of antibiotics that bind to the peptidyl tranferase center of bacterial ribosomes by catalyzing methylation of the C-8 position of 23S rRNA nucleotide A2503. The same nucleotide is targeted by the housekeeping methyltransferase...

  13. Crystal structure of arginine methyltransferase 6 from Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Chongyuan Wang

    Full Text Available Arginine methylation plays vital roles in the cellular functions of the protozoan Trypanosoma brucei. The T. brucei arginine methyltransferase 6 (TbPRMT6 is a type I arginine methyltransferase homologous to human PRMT6. In this study, we report the crystal structures of apo-TbPRMT6 and its complex with the reaction product S-adenosyl-homocysteine (SAH. The structure of apo-TbPRMT6 displays several features that are different from those of type I PRMTs that were structurally characterized previously, including four stretches of insertion, the absence of strand β15, and a distinct dimerization arm. The comparison of the apo-TbPRMT6 and SAH-TbPRMT6 structures revealed the fine rearrangements in the active site upon SAH binding. The isothermal titration calorimetry results demonstrated that SAH binding greatly increases the affinity of TbPRMT6 to a substrate peptide derived from bovine histone H4. The western blotting and mass spectrometry results revealed that TbPRMT6 methylates bovine histone H4 tail at arginine 3 but cannot methylate several T. brucei histone tails. In summary, our results highlight the structural differences between TbPRMT6 and other type I PRMTs and reveal that the active site rearrangement upon SAH binding is important for the substrate binding of TbPRMT6.

  14. MicroRNA-29a Alleviates Bile Duct Ligation Exacerbation of Hepatic Fibrosis in Mice through Epigenetic Control of Methyltransferases

    Directory of Open Access Journals (Sweden)

    Ya-Ling Yang

    2017-01-01

    Full Text Available MicroRNA-29 (miR-29 is found to modulate hepatic stellate cells’ (HSCs activation and, thereby, reduces liver fibrosis pathogenesis. Histone methyltransferase regulation of epigenetic reactions reportedly participates in hepatic fibrosis. This study is undertaken to investigate the miR-29a regulation of the methyltransferase signaling and epigenetic program in hepatic fibrosis progression. miR-29a transgenic mice (miR-29aTg mice and wild-type littermates were subjected to bile duct-ligation (BDL to develop cholestatic liver fibrosis. Primary HSCs were transfected with a miR-29a mimic and antisense inhibitor. Profibrogenic gene expression, histone methyltransferases and global genetic methylation were probed with real-time quantitative RT-PCR, immunohistochemical stain, Western blot and ELISA. Hepatic tissue in miR-29aTg mice displayed weak fibrotic matrix as evidenced by Sirius Red staining concomitant with low fibrotic matrix collagen 1α1 expression within affected tissues compared to the wild-type mice. miR-29a overexpression reduced the BDL exaggeration of methyltransferases, DNMT1, DNMT3b and SET domain containing 1A (SET1A expression. It also elevated phosphatase and tensin homolog deleted on chromosome 10 (PTEN signaling within liver tissue. In vitro, miR-29a mimic transfection lowered collagen 1α1, DNMT1, DNMT3b and SET1A expression in HSCs. Gain of miR-29a signaling resulted in DNA hypomethylation and high PTEN expression. This study shines a new light on miR-29a inhibition of methyltransferase, a protective effect to maintain the DNA hypomethylation state that decreases fibrogenic activities in HSC. These robust analyses also highlight the miR-29a regulation of epigenetic actions to ameliorate excessive fibrosis during cholestatic liver fibrosis development.

  15. Friend of Prmt1, a novel chromatin target of protein arginine methyltransferases

    NARCIS (Netherlands)

    T.B. van Dijk (Thamar); N. Gillemans (Nynke); C. Stein (Claudia); P. Fanis (Pavlos); J.A.A. Demmers (Jeroen); M.P.C. van de Corput (Mariëtte); J. Essers (Jeroen); F.G. Grosveld (Frank); U.M. Bauer (Uta-Maria); J.N.J. Philipsen (Sjaak)

    2010-01-01

    textabstractWe describe the isolation and characterization of Friend of Prmt1 (Fop), a novel chromatin target of protein arginine methyltransferases. Human Fop is encoded by C1orf77, a gene of previously unknown function. We show that Fop is tightly associated with chromatin, and that it is modified

  16. Transcriptome and Metabolome Analyses of Glucosinolates in Two Broccoli Cultivars Following Jasmonate Treatment for the Induction of Glucosinolate Defense to Trichoplusia ni (Hübner).

    Science.gov (United States)

    Ku, Kang-Mo; Becker, Talon M; Juvik, John A

    2016-07-15

    Lepidopteran larvae growth is influenced by host plant glucosinolate (GS) concentrations, which are, in turn, influenced by the phytohormone jasmonate (JA). In order to elucidate insect resistance biomarkers to lepidopteran pests, transcriptome and metabolome analyses following JA treatments were conducted with two broccoli cultivars, Green Magic and VI-158, which have differentially induced indole GSs, neoglucobrassicin and glucobrassicin, respectively. To test these two inducible GSs on growth of cabbage looper (Trichoplusia ni), eight neonate cabbage looper larvae were placed onto each of three plants per JA treatments (0, 100, 200, 400 µM) three days after treatment. After five days of feeding, weight of larvae and their survival rate was found to decrease with increasing JA concentrations in both broccoli cultivars. JA-inducible GSs were measured by high performance liquid chromatography. Neoglucobrassicin in Green Magic and glucobrassicin in VI-158 leaves were increased in a dose-dependent manner. One or both of these glucosinolates and/or their hydrolysis products showed significant inverse correlations with larval weight and survival (five days after treatment) while being positively correlated with the number of days to pupation. This implies that these two JA-inducible glucosinolates can influence the growth and survival of cabbage looper larvae. Transcriptome profiling supported the observed changes in glucosinolate and their hydrolysis product concentrations following JA treatments. Several genes related to GS metabolism differentiate the two broccoli cultivars in their pattern of transcriptional response to JA treatments. Indicative of the corresponding change in indole GS concentrations, transcripts of the transcription factor MYB122, core structure biosynthesis genes (CYP79B2, UGT74B1, SUR1, SOT16, SOT17, and SOT18), an indole glucosinolate side chain modification gene (IGMT1), and several glucosinolate hydrolysis genes (TGG1, TGG2, and ESM1) were

  17. Sulforaphane-rich broccoli sprout extract improves hepatic abnormalities in male subjects

    Science.gov (United States)

    Kikuchi, Masahiro; Ushida, Yusuke; Shiozawa, Hirokazu; Umeda, Rumiko; Tsuruya, Kota; Aoki, Yudai; Suganuma, Hiroyuki; Nishizaki, Yasuhiro

    2015-01-01

    AIM: To evaluate effects of dietary supplementation of sulforaphane (SF)-rich broccoli sprout (BS) extract on hepatic abnormalities in Japanese male participants. METHODS: In a randomized, placebo-controlled, double blind trial, male participants with fatty liver received either BS capsules containing glucoraphanin [GR; a precursor of SF (n = 24)] or placebo (n = 28) for 2 mo. Liver function markers, serum levels of aspartate and alanine aminotransferases (AST and ALT, respectively) and γ-glutamyl transpeptidase (γ-GTP) and an oxidative stress marker, urinary levels of 8-hydroxydeoxyguanosine (8-OHdG), were measured and compared in participants before and after the trial period. In an animal model, chronic liver failure was induced in Sprague-Dawley rats by successive intraperitoneal injection with N-nitrosodimethylamine (NDMA) for 4 wk. Concomitantly, rats received AIN-76 diets supplemented with or without BS extract. Thereafter, rats were sacrificed, and their sera and livers were collected to measure serum liver function markers and hepatic levels of thiobarbituric acid reactive substances (TBARS) levels and hepatic glutathione S-transferase (GST) activity, a prototypical phase 2 antioxidant enzyme. RESULTS: Dietary supplementation with BS extract containing SF precursor GR for 2 mo significantly decreased serum levels of liver function markers, ALT [median (interquartile range), before: 54.0 (34.5-79.0) vs after supplementation: 48.5 (33.3-65.3) IU/L, P NDMA-induced chronic liver failure in rats, which was attributable to the suppression of the increase in TBARS through induction of hepatic phase 2 antioxidant enzymes including hepatic GST (86.6 ± 95.2 vs 107.8 ± 7.7 IU/g, P < 0.01). CONCLUSION: Dietary supplementation with BS extract containing the SF precursor GR is likely to be highly effective in improving liver function through reduction of oxidative stress. PMID:26604653

  18. Interactions within the mammalian DNA methyltransferase family

    Directory of Open Access Journals (Sweden)

    Ehrenhofer-Murray Ann E

    2003-05-01

    Full Text Available Abstract Background In mammals, epigenetic information is established and maintained via the postreplicative methylation of cytosine residues by the DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b. Dnmt1 is required for maintenance methylation whereas Dnmt3a and Dnmt3b are responsible for de novo methylation. Contrary to Dnmt3a or Dnmt3b, the isolated C-terminal region of Dnmt1 is catalytically inactive, despite the presence of the sequence motifs typical of active DNA methyltransferases. Deletion analysis has revealed that a large part of the N-terminal domain is required for enzymatic activity. Results The role played by the N-terminal domain in this regulation has been investigated using the yeast two-hybrid system. We show here the presence of an intra-molecular interaction in Dnmt1 but not in Dnmt3a or Dnmt3b. This interaction was confirmed by immunoprecipitation and was localized by deletion mapping. Furthermore, a systematic analysis of interactions among the Dnmt family members has revealed that DNMT3L interacts with the C-terminal domain of Dnmt3a and Dnmt3b. Conclusions The lack of methylating ability of the isolated C-terminal domain of Dnmt1 could be explained in part by a physical interaction between N- and C-terminal domains that apparently is required for activation of the catalytic domain. Our deletion analysis suggests that the tertiary structure of Dnmt1 is important in this process rather than a particular sequence motif. Furthermore, the interaction between DNMT3L and the C-terminal domains of Dnmt3a and Dnmt3b suggests a mechanism whereby the enzymatically inactive DNMT3L brings about the methylation of its substrate by recruiting an active methylase.

  19. Interactions within the mammalian DNA methyltransferase family

    Science.gov (United States)

    Margot, Jean B; Ehrenhofer-Murray, Ann E; Leonhardt, Heinrich

    2003-01-01

    Background In mammals, epigenetic information is established and maintained via the postreplicative methylation of cytosine residues by the DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b. Dnmt1 is required for maintenance methylation whereas Dnmt3a and Dnmt3b are responsible for de novo methylation. Contrary to Dnmt3a or Dnmt3b, the isolated C-terminal region of Dnmt1 is catalytically inactive, despite the presence of the sequence motifs typical of active DNA methyltransferases. Deletion analysis has revealed that a large part of the N-terminal domain is required for enzymatic activity. Results The role played by the N-terminal domain in this regulation has been investigated using the yeast two-hybrid system. We show here the presence of an intra-molecular interaction in Dnmt1 but not in Dnmt3a or Dnmt3b. This interaction was confirmed by immunoprecipitation and was localized by deletion mapping. Furthermore, a systematic analysis of interactions among the Dnmt family members has revealed that DNMT3L interacts with the C-terminal domain of Dnmt3a and Dnmt3b. Conclusions The lack of methylating ability of the isolated C-terminal domain of Dnmt1 could be explained in part by a physical interaction between N- and C-terminal domains that apparently is required for activation of the catalytic domain. Our deletion analysis suggests that the tertiary structure of Dnmt1 is important in this process rather than a particular sequence motif. Furthermore, the interaction between DNMT3L and the C-terminal domains of Dnmt3a and Dnmt3b suggests a mechanism whereby the enzymatically inactive DNMT3L brings about the methylation of its substrate by recruiting an active methylase. PMID:12777184

  20. Expression, purification, crystallization and preliminary crystallographic study of isolated modules of the mouse coactivator-associated arginine methyltransferase 1

    Energy Technology Data Exchange (ETDEWEB)

    Troffer-Charlier, Nathalie; Cura, Vincent; Hassenboehler, Pierre; Moras, Dino; Cavarelli, Jean, E-mail: cava@igbmc.u-strasbg.fr [IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Département de Biologie et Génomique Structurales, 1 Rue Laurent Fries, Illkirch, F-67404 (France); INSERM, U596, Illkirch, F-67400 (France); CNRS, UMR7104, Illkirch, F-67400 (France); Université Louis Pasteur, Faculté des Sciences de la Vie, Strasbourg, F-67000 (France)

    2007-04-01

    Isolated modules of mouse coactivator-associated arginine methyltransferase 1 encompassing the protein arginine N-methyltransferase catalytic domain have been overexpressed, purified and crystallized. X-ray diffraction data have been collected and have enabled determination of the structures by multiple isomorphous replacement using anomalous scattering. Coactivator-associated arginine methyltransferase 1 (CARM1) plays a crucial role in gene expression as a coactivator of several nuclear hormone receptors and also of non-nuclear receptor systems. Its recruitment by the transcriptional machinery induces protein methylation, leading to chromatin remodelling and gene activation. CARM1{sub 28–507} and two structural states of CARM1{sub 140–480} were expressed, purified and crystallized. Crystals of CARM1{sub 28–507} belong to space group P6{sub 2}22, with unit-cell parameters a = b = 136.0, c = 125.3 Å; they diffract to beyond 2.5 Å resolution using synchrotron radiation and contain one monomer in the asymmetric unit. The structure of CARM1{sub 28–507} was solved by multiple isomorphous replacement and anomalous scattering methods. Crystals of apo CARM1{sub 140–480} belong to space group I222, with unit-cell parameters a = 74.6, b = 99.0, c = 207.4 Å; they diffract to beyond 2.7 Å resolution and contain two monomers in the asymmetric unit. Crystals of CARM1{sub 140–480} in complex with S-adenosyl-l-homocysteine belong to space P2{sub 1}2{sub 1}2, with unit-cell parameters a = 74.6, b = 98.65, c = 206.08 Å; they diffract to beyond 2.6 Å resolution and contain four monomers in the asymmetric unit. The structures of apo and holo CARM1{sub 140–480} were solved by molecular-replacement techniques from the structure of CARM1{sub 28–507}.

  1. Epigenetic changes of Arabidopsis genome associated with altered DNA methyltransferase and demethylase expressions after gamma irradiation

    International Nuclear Information System (INIS)

    Kim, Ji Eun; Cho, Eun Ju; Kim, Ji Hong; Chung, Byung Yeoup; Kim, Jin Hong

    2012-01-01

    DNA methylation at carbon 5 of cytosines is a hall mark of epigenetic inactivation and heterochromatin in both plants and mammals. In Arabidopsis, DNA methylation has two roles that protect the genome from selfish DNA elements and regulate gene expression. Plant genome has three types of DNA methyltransferase, METHYLTRANSFERASE 1 (MET1), DOMAINREARRANGED METHYLASE (DRM) and CHROMOMETHYLASE 3 (CMT3) that are capable of methylating CG, CHG (where H is A, T, or C) and CHH sites, respectively. MET1 is a maintenance DNA methyltransferase that controls CG methylation. Two members of the DRM family, DRM1 and DRM2, are responsible for de novo methylation of CG, CHG, and CHH sites but show a preference for CHH sites. Finally, CMT3 principally carries out CHG methylation and is involved in both de novo methylation and maintenance. Alternatively, active DNA demethylation may occur through the glycosylase activity by removing the methylcytosines from DNA. It may have essential roles in preventing transcriptional silencing of transgenes and endogenous genes and in activating the expression of imprinted genes. DNA demetylation in Arabidopsis is mediated by the DEMETER (DME) family of bifunctional DNA glycosylase. Three targets of DME are MEA (MEDEA), FWA (FLOWERING WAGENINGEN), and FIS2 (FERTILIZATION INDEPENDENT SEED 2). The DME family contains DEMETER-LIKE 2 (DML2), DML3, and REPRESSOR OF SILENING 1 (ROS1). DNA demetylation by ROS1, DML2, and DML3 protect the hypermethylation of specific genome loci. ROS1 is necessary to suppress the promoter methylation and the silencing of endogenous genes. In contrast, the function of DML2 and DML3 has not been reported. Several recent studies have suggested that epigenetic alterations such as change in DNA methylation and histone modification should be caused in plant genomes upon exposure to ionizing radiation. However, there is a lack of data exploring the underlying mechanisms. Therefore, the present study aims to characterize and

  2. Epigenetic changes of Arabidopsis genome associated with altered DNA methyltransferase and demethylase expressions after gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Eun; Cho, Eun Ju; Kim, Ji Hong; Chung, Byung Yeoup; Kim, Jin Hong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    DNA methylation at carbon 5 of cytosines is a hall mark of epigenetic inactivation and heterochromatin in both plants and mammals. In Arabidopsis, DNA methylation has two roles that protect the genome from selfish DNA elements and regulate gene expression. Plant genome has three types of DNA methyltransferase, METHYLTRANSFERASE 1 (MET1), DOMAINREARRANGED METHYLASE (DRM) and CHROMOMETHYLASE 3 (CMT3) that are capable of methylating CG, CHG (where H is A, T, or C) and CHH sites, respectively. MET1 is a maintenance DNA methyltransferase that controls CG methylation. Two members of the DRM family, DRM1 and DRM2, are responsible for de novo methylation of CG, CHG, and CHH sites but show a preference for CHH sites. Finally, CMT3 principally carries out CHG methylation and is involved in both de novo methylation and maintenance. Alternatively, active DNA demethylation may occur through the glycosylase activity by removing the methylcytosines from DNA. It may have essential roles in preventing transcriptional silencing of transgenes and endogenous genes and in activating the expression of imprinted genes. DNA demetylation in Arabidopsis is mediated by the DEMETER (DME) family of bifunctional DNA glycosylase. Three targets of DME are MEA (MEDEA), FWA (FLOWERING WAGENINGEN), and FIS2 (FERTILIZATION INDEPENDENT SEED 2). The DME family contains DEMETER-LIKE 2 (DML2), DML3, and REPRESSOR OF SILENING 1 (ROS1). DNA demetylation by ROS1, DML2, and DML3 protect the hypermethylation of specific genome loci. ROS1 is necessary to suppress the promoter methylation and the silencing of endogenous genes. In contrast, the function of DML2 and DML3 has not been reported. Several recent studies have suggested that epigenetic alterations such as change in DNA methylation and histone modification should be caused in plant genomes upon exposure to ionizing radiation. However, there is a lack of data exploring the underlying mechanisms. Therefore, the present study aims to characterize and

  3. Novel Lipid-Free Nanoformulation for Improving Oral Bioavailability of Coenzyme Q10

    Directory of Open Access Journals (Sweden)

    Huafeng Zhou

    2014-01-01

    Full Text Available To improve the bioavailability of orally administered lipophilic coenzyme Q10 (CoQ10, we formulated a novel lipid-free nano-CoQ10 system stabilized by various surfactants. Nano-CoQ10s, composed of 2.5% (w/w CoQ10, 1.67% (w/w surfactant, and 41.67% (w/w glycerol, were prepared by hot high-pressure homogenization. The resulting formulations were characterized by particle size, zeta potential, differential scanning calorimetry, and cryogenic transmission electron microscopy. We found that the mean particle size of all nano-CoQ10s ranged from 66.3±1.5 nm to 92.7±1.5 nm and the zeta potential ranged from -12.8±1.4 mV to -41.6±1.4 mV. The CoQ10 in nano-CoQ10s likely existed in a supercooled state, and nano-CoQ10s stored in a brown sealed bottle were stable for 180 days at 25°C. The bioavailability of CoQ10 was evaluated following oral administration of CoQ10 formulations in Sprague-Dawley rats. Compared to the values observed following administration of CoQ10-Suspension, nano-CoQ10 modified with various surfactants significantly increased the maximum plasma concentration and the area under the plasma concentration-time curve. Thus, the lipid-free system of a nano-CoQ10 stabilized with a surfactant may be an effective vehicle for improving oral bioavailability of CoQ10.

  4. A NOVEL S-ADENOSYL-L-METHIONINE: ARSENIC (III) METHYLTRANSFERASE FROM RAT LIVER CYTOSOL

    Science.gov (United States)

    A Novel S-Adenosyl-L-methionine: Arsenic(III) Methyltransferase from Rat Liver CytosolShan Lin, Qing Shi, F. Brent Nix, Miroslav Styblo, Melinda A. Beck, Karen M. Herbin-Davis, Larry L. Hall, Josef B. Simeonsson, and David J. Thomas S-adenosyl-L-methionine (AdoMet): ar...

  5. Catechol-O-methyltransferase gene methylation and substance use in adolescents : the TRAILS study

    NARCIS (Netherlands)

    van der Knaap, L. J.; Schaefer, J. M.; Franken, I. H. A.; Verhulst, F. C.; van Oort, F. V. A.; Riese, H.

    Substance use often starts in adolescence and poses a major problem for society and individual health. The dopamine system plays a role in substance use, and catechol-O-methyltransferase (COMT) is an important enzyme that degrades dopamine. The Val(108/158)Met polymorphism modulates COMT activity

  6. Catechol-O-methyltransferase gene methylation and substance use in adolescents: The TRAILS study

    NARCIS (Netherlands)

    L.J. van der Knaap (Lisette); J.M. Schäfer (Johanna); I.H.A. Franken (Ingmar); F.C. Verhulst (Frank); F.V.A. van Oort (Floor); H. Riese (Harriëtte)

    2014-01-01

    textabstractSubstance use often starts in adolescence and poses a major problem for society and individual health. The dopamine system plays a role in substance use, and catechol-O-methyltransferase (COMT) is an important enzyme that degrades dopamine. The Val108/158Met polymorphism

  7. The methyltransferase NSD3 has chromatin-binding motifs, PHD5-C5HCH, that are distinct from other NSD (nuclear receptor SET domain) family members in their histone H3 recognition.

    Science.gov (United States)

    He, Chao; Li, Fudong; Zhang, Jiahai; Wu, Jihui; Shi, Yunyu

    2013-02-15

    The NSD (nuclear receptor SET domain-containing) family members, consisting of NSD1, NSD2 (MMSET/WHSC1), and NSD3 (WHSC1L1), are SET domain-containing methyltransferases and aberrant expression of each member has been implicated in multiple diseases. They have specific mono- and dimethylase activities for H3K36, whereas play nonredundant roles during development. Aside from the well characterized catalytic SET domain, NSD proteins have multiple potential chromatin-binding motifs that are clinically relevant, including the fifth plant homeodomain (PHD5) and the adjacent Cys-His-rich domain (C5HCH) located at the C terminus. Herein, we report the crystal structures of the PHD5-C5HCH module of NSD3, in the free state and in complex with H3(1-7) (H3 residues 1-7), H3(1-15) (H3 residues 1-15), and H3(1-15)K9me3 (H3 residues 1-15 with trimethylation on K9) peptides. These structures reveal that the PHD5 and C5HCH domains fold into a novel integrated PHD-PHD-like structural module with H3 peptide bound only on the surface of PHD5 and provide the molecular basis for the recognition of unmodified H3K4 and trimethylated H3K9 by NSD3 PHD5. Structural studies and binding assays show that differences exist in histone binding specificity of the PHD5 domain between three members of the NSD family. For NSD2, the PHD5-C5HCH:H3 N terminus interaction is largely conserved, although with a stronger preference for unmethylated H3K9 (H3K9me0) than trimethylated H3K9 (H3K9me3), and NSD1 PHD5-C5HCH does not bind to H3 peptides. Our results shed light on how NSD proteins that mediate H3K36 methylation are localized to specific genomic sites and provide implications for the mechanism of functional diversity of NSD proteins.

  8. The phenotypic and molecular assessment of the non-conserved Arabidopsis MICRORNA163/S-ADENOSYL-METHYLTRANSFERASE regulatory module during biotic stress.

    Science.gov (United States)

    Litholdo, Celso Gaspar; Eamens, Andrew Leigh; Waterhouse, Peter Michael

    2018-04-01

    In plants, microRNAs (miRNAs) have evolved in parallel to the protein-coding genes that they target for expression regulation, and miRNA-directed gene expression regulation is central to almost every cellular process. MicroRNA, miR163, is unique to the Arabidopsis genus and is processed into a 24-nucleotide (nt) mature small regulatory RNA (sRNA) from a single precursor transcript transcribed from a single locus, the MIR163 gene. The MIR163 locus is a result of a recent inverted duplication event of one of the five closely related S-ADENOSYL-METHYLTRANSFERASE genes that the mature miR163 sRNA targets for expression regulation. Currently, however, little is known about the role of the miR163/S-ADENOSYL-METHYLTRANSFERASE regulatory module in response to biotic stress. Here, we document the expression domains of MIR163 and the S-ADENOSYL-METHYLTRANSFERASE target genes following fusion of their putative promoter sequences to the β-glucuronidase (GUS) reporter gene and subsequent in planta expression. Further, we report on our phenotypic and molecular assessment of Arabidopsis thaliana plants with altered miR163 accumulation, namely the mir163-1 and mir163-2 insertion knockout mutants and the miR163 overexpression line, the MIR163-OE plant. Finally, we reveal miR163 accumulation and S-ADENOSYL-METHYLTRANSFERASE target gene expression post treatment with the defence elicitors, salicylic acid and jasmonic acid, and following Fusarium oxysporum infection, wounding, and herbivory attack. Together, the work presented here provides a comprehensive new biological insight into the role played by the Arabidopsis genus-specific miR163/S-ADENOSYL-METHYLTRANSFERASE regulatory module in normal A. thaliana development and during the exposure of A. thaliana plants to biotic stress.

  9. 2-D zymographic analysis of Broccoli (Brassica oleracea L. var. Italica) florets proteases: follow up of cysteine protease isotypes in the course of post-harvest senescence.

    Science.gov (United States)

    Rossano, Rocco; Larocca, Marilena; Riccio, Paolo

    2011-09-01

    Zymographic analysis of Broccoli florets (Brassica oleracea L. var. Italica) revealed the presence of acidic metallo-proteases, serine proteases and cysteine proteases. Under conditions which were denaturing for the other proteases, the study was restricted to cysteine proteases. 2-D zymography, a technique that combines IEF and zymography was used to show the presence of 11 different cysteine protease spots with molecular mass of 44 and 47-48kDa and pIs ranging between 4.1 and 4.7. pI differences could be ascribed to different degrees of phosphorylation that partly disappeared in the presence of alkaline phosphatase. Post-harvest senescence of Broccoli florets was characterized by decrease in protein and chlorophyll contents and increase of protease activity. In particular, as determined by 2-D zymography, the presence of cysteine protease clearly increased during senescence, a finding that may represent a useful tool for the control of the aging process. Copyright © 2011 Elsevier GmbH. All rights reserved.

  10. Structure and possible mechanism of the CcbJ methyltransferase from Streptomyces caelestis

    Czech Academy of Sciences Publication Activity Database

    Bauer, J.; Ondrovičová, G.; Najmanová, Lucie; Pevala, V.; Kameník, Zdeněk; Koštan, J.; Janata, Jiří; Kutejová, Eva

    2014-01-01

    Roč. 70, APR 2014 (2014), s. 943-957 ISSN 0907-4449 R&D Projects: GA MŠk(CZ) EE2.3.30.0003; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61388971 Keywords : CATECHOL-O-METHYLTRANSFERASE * SN2-LIKE TRANSITION-STATE * CRYSTAL-STRUCTURES Subject RIV: CE - Biochemistry Impact factor: 7.232, year: 2013

  11. Catecholamine-o-methyltransferase polymorphisms are associated with postoperative pain intensity.

    LENUS (Irish Health Repository)

    Lee, Peter J

    2011-02-01

    single nucleotide polymorphisms (SNPs) in the genes for catecholamine-O-methyltransferase (COMT), μ-opioid receptor and GTP cyclohydrolase (GCH1) have been linked to acute and chronic pain states. COMT polymorphisms are associated with experimental pain sensitivity and a chronic pain state. No such association has been identified perioperatively. We carried out a prospective observational clinical trial to examine associations between these parameters and the development of postoperative pain in patients undergoing third molar (M3) extraction.

  12. Impact of Oral Ubiquinol on Blood Oxidative Stress and Exercise Performance

    Directory of Open Access Journals (Sweden)

    Richard J. Bloomer

    2012-01-01

    Full Text Available Coenzyme Q10 (CoQ10 plays an important role in bioenergetic processes and has antioxidant activity. Fifteen exercise-trained individuals (10 men and 5 women; 30–65 years received reduced CoQ10 (Kaneka QH ubiquinol; 300 mg per day or a placebo for four weeks in a random order, double blind, cross-over design (3 week washout. After each four-week period, a graded exercise treadmill test and a repeated cycle sprint test were performed (separated by 48 hours. Blood samples were collected before and immediately following both exercise tests and analyzed for lactate, malondialdehyde, and hydrogen peroxide. Resting blood samples were analyzed for CoQ10 (ubiquinone and ubiquinol profile before and after each treatment period. Treatment with CoQ10 resulted in a significant increase in total blood CoQ10 (138%; P=0.02 and reduced blood CoQ10 (168%; P=0.02, but did not improve exercise performance (with the exception of selected individuals or impact oxidative stress. The relationship between the percentage change in total blood CoQ10 and the cycle sprint total work (R2=0.6009 was noted to be moderate to strong. We conclude that treatment with CoQ10 in healthy, exercise-trained subjects increases total and reduced blood CoQ10, but this increase does not translate into improved exercise performance or decreased oxidative stress.

  13. Improvement of Coenzyme Q10 Production: Mutagenesis Induced by High Hydrostatic Pressure Treatment and Optimization of Fermentation Conditions

    Directory of Open Access Journals (Sweden)

    Yahong Yuan

    2012-01-01

    Full Text Available Coenzyme Q10 (CoQ10, ubiquinone, a potent antioxidative dietary supplement, was produced by submerged fermentation using Agrobacterium tumefaciens instead of chemical synthesis or solvent extraction. Agrobacterium tumefaciens 1.2554 was subjected to mutagenesis using a series of treatments including high hydrostatic pressure (HHP treatment, UV irradiation, and diethyl sulfate (DES treatment to obtain mutant strains showing higher CoQ10 production than wild-type strains. A mutant strain PK38 with four genetic markers was isolated: the specific CoQ10 content of the mutant strain increased by 52.83% compared with the original strain. Effects of carbon and nitrogen sources on CoQ10 production with PK38 were studied. Sucrose at concentration of 30 g/l was tested as the best carbon source, and yeast extract at concentration of 30 g/l supplemented with 10 g/l of ammonium sulfate was identified to be the most favorable for CoQ10 production using PK38. Fed-batch culture strategy was then used for increasing production of CoQ10 in 5-l fermentor. Using the exponential feeding fed-batch culture of sucrose, cell growth and CoQ10 formation were significantly improved. With this strategy, the final cell biomass, CoQ10 production, and specific CoQ10 production increased by 126.11, 173.12, and 22.76%, respectively, compared to those of batch culture.

  14. The effect of n-3 fatty acids and coenzyme Q10 supplementation on neutrophil leukotrienes, mediators of inflammation resolution and myeloperoxidase in chronic kidney disease.

    Science.gov (United States)

    Barden, Anne E; Shinde, Sujata; Burke, Valerie; Puddey, Ian B; Beilin, Lawrence J; Irish, Ashley B; Watts, Gerald F; Mori, Trevor A

    2018-03-22

    Neutrophils release leukotriene (LT)B 4 and myeloperoxidase (MPO) that may be important mediators of chronic inflammation in chronic kidney disease (CKD). The n-3 fatty acids (n-3 FA) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have the potential to attenuate inflammation through production of LTB 5 and the Specialized Proresolving Lipid Mediators (SPM) that promote the resolution of inflammation. In animal models, coenzyme Q10 (CoQ) also attenuates inflammation by reducing MPO and LTB 4 . This study evaluated the independent and combined effects of n-3 FA and CoQ supplementation on neutrophil leukotrienes, the pro-inflammatory eicosanoid 5-hydroxyeicosatetraenoic acid (5-HETE), SPM, and plasma MPO, in patients with CKD. In a double-blind, placebo-controlled intervention of factorial design, 85 patients with CKD were randomized to either n-3 FA (4 g), CoQ (200 mg), both supplements, or control (4 g olive oil), daily for 8 weeks. Plasma MPO and calcium ionophore-stimulated neutrophil release of LTs, 5-HETE and SPM were measured at baseline and after 8 weeks. Seventy four patients completed the intervention. n-3 FA, but not CoQ, significantly increased neutrophil LTB 5 (P n-3 FA or CoQ. Plasma MPO was significantly reduced with n-3 FA alone (P = 0.013) but not when given in combination with CoQ. n-3 FA supplementation in patients with CKD leads to increased neutrophil release of LTB 5 and several SPM, as well as a reduction in plasma MPO that may have important implications for limiting chronic inflammation. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Water balance and N-metabolism in broccoli (Brassica oleracea L. var. Italica) plants depending on nitrogen source under salt stress and elevated CO2.

    Science.gov (United States)

    Zaghdoud, Chokri; Carvajal, Micaela; Ferchichi, Ali; Del Carmen Martínez-Ballesta, María

    2016-11-15

    Elevated [CO2] and salinity in the soils are considered part of the effects of future environmental conditions in arid and semi-arid areas. While it is known that soil salinization decreases plant growth, an increased atmospheric [CO2] may ameliorate the negative effects of salt stress. However, there is a lack of information about the form in which inorganic nitrogen source may influence plant performance under both conditions. Single factor responses and the interactive effects of two [CO2] (380 and 800ppm), three different NO3(-)/NH4(+) ratios in the nutrient solution (100/0, 50/50 and 0/100, with a total N concentration of 3.5mM) and two NaCl concentrations (0 and 80mM) on growth, leaf gas exchange parameters in relation to root hydraulic conductance and N-assimilating enzymes of broccoli (Brassica oleracea L. var. Italica) plants were determined. The results showed that a reduced NO3(-) or co-provision of NO3(-) and NH4(+) could be an optimal source of inorganic N for broccoli plants. In addition, elevated [CO2] ameliorated the effect of salt exposure on the plant growth through an enhanced rate of photosynthesis, even at low N-concentration. However, NO3(-) or NO3(-)/NH4(+) co-provision display differential plant response to salt stress regarding water balance, which was associated to N metabolism. The results may contribute to our understanding of N-fertilization modes under increasing atmospheric [CO2] to cope with salt stress, where variations in N nutrition significantly influenced plant response. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. The effects of coenzyme Q10 treatment on maternally inherited diabetes mellitus and deafness, and mitochondrial DNA 3243 (A to G) mutation.

    Science.gov (United States)

    Suzuki, S; Hinokio, Y; Ohtomo, M; Hirai, M; Hirai, A; Chiba, M; Kasuga, S; Satoh, Y; Akai, H; Toyota, T

    1998-05-01

    The characteristic clinical features of diabetes mellitus with mitochondrial DNA (mtDNA) 3243(A-G) mutation are progressive insulin secretory defect, neurosensory deafness and maternal inheritance, referred to as maternally inherited diabetes mellitus and deafness (MIDD). A treatment for MIDD to improve insulin secretory defects and reduce deafness has not been established. The effects of coenzyme Q10 (CoQ10) treatment on insulin secretory response, hearing capacity and clinical symptoms of MIDD were investigated. 28 MIDD patients (CoQ10-DM), 7 mutant subjects with impaired glucose tolerance (IGT), and 15 mutant subjects with normal glucose tolerance (NGT) were treated daily with oral administration of 150 mg of CoQ10 for 3 years. Insulin secretory response, blood lactate after exercise, hearing capacity and other laboratory examinations were investigated every year. In the same way we evaluated 16 MIDD patients (control-DM), 5 mutant IGT and 5 mutant NGT subjects in yearly examinations. The insulin secretory response assessed by glucagon-induced C-peptide secretion and 24 h urinary C-peptide excretion after 3 years in the CoQ10-DM group was significantly higher than that in the control-DM group. CoQ10 therapy prevented progressive hearing loss and improved blood lactate after exercise in the MIDD patients. CoQ10 treatment did not affect the diabetic complications or other clinical symptoms of MIDD patients. CoQ10 treatment did not affect the insulin secretory capacity of the mutant IGT and NGT subjects. There were no side effects during therapy. This is the first report demonstrating the therapeutic usefulness of CoQ10 on MIDD.

  17. Interaction of Coenzyme Q10 with Liposomes and its Impact on Suppression of Selenite – Induced Experimental Cataract

    Directory of Open Access Journals (Sweden)

    Medhat Wahba Shafaa

    2018-03-01

    Full Text Available Purpose: To stress the influence of Coenzyme Q10 (CoQ10 on the structural properties of liposomes as model membranes and to investigate the possible role of CoQ10 or CoQ10 doped in liposomes when topically instilled as eye drops, in preventing cataract. Methods: The molecular interaction between liposomes and Coenzyme Q10 was examined using differential scanning calorimetry (DSC and Fourier transform infrared spectroscopy (FTIR. Rat pups were randomly divided into six groups comprising 15 pups. Group (1, control group. Group (2, untreated model of cataract, received a single subcutaneous injection of sodium selenite. Instillation of pure CoQ10 (Group 3, CoQ10 encapsulated into neutral (Group 4, positive (Group 5 and negative (Group 6 Dipalmitoyl phosphatidylcholine (DPPC liposomes on the opacification of lenses in rat pups after sodium selenite injection was topically received. Results: The incorporated CoQ10 is probably associated with lipid bilayers where it interacts to a large extent and perturbs them. This results in strong broadening and shift to lower temperature (94°C of the major characteristic endothermic peak of pure DPPC at 105°C. FTIR showed that the incorporation of CoQ10 into DPPC induces a conformational change in the polar region of DPPC. Ophthalmological and Biochemical studies revealed that CoQ10 alone followed by negatively charged liposomes doped with CoQ10 are more effective in reducing the progress of cataract as well as improving the lens soluble proteins levels and total antioxidant capacity. Conclusion: The interactions of CoQ10 with membrane systems may contribute to a better understanding of CoQ10 physiological properties and the development of therapeutically advanced systems.

  18. Global developmental delay in guanidionacetate methyltransferase deficiency : differences in formal testing and clinical observation

    NARCIS (Netherlands)

    Verbruggen, Krijn T.; Knijff, Wilma A.; Soorani-Lunsing, Roelineke J.; Sijens, Paul E.; Verhoeven, Nanda M.; Salomons, Gajja S.; Goorhuis-Brouwer, Siena M.; van Spronsen, Francjan J.

    Guanidinoacetate N-methyltransferase (GAMT) deficiency is a defect in the biosynthesis of creatine (Cr). So far, reports have not focused on the description of developmental abilities in this disorder. Here, we present the result of formal testing of developmental abilities in a GAMT-deficient

  19. Anticancer and Antioxidant Activity of Bread Enriched with Broccoli Sprouts

    Science.gov (United States)

    Gawlik-Dziki, Urszula; Świeca, Michał; Dziki, Dariusz; Sęczyk, Łukasz; Złotek, Urszula; Różyło, Renata; Kaszuba, Kinga; Ryszawy, Damian; Czyż, Jarosław

    2014-01-01

    This study is focused on antioxidant and anticancer capacity of bread enriched with broccoli sprouts (BS) in the light of their potential bioaccessibility and bioavailability. Generally, bread supplementation elevated antioxidant potential of product (both nonenzymatic and enzymatic antioxidant capacities); however, the increase was not correlated with the percent of BS. A replacement up to 2% of BS gives satisfactory overall consumers acceptability and desirable elevation of antioxidant potential. High activity was especially found for extracts obtained after simulated digestion, which allows assuming their protective effect for upper gastrointestinal tract; thus, the anticancer activity against human stomach cancer cells (AGS) was evaluated. A prominent cytostatic response paralleled by the inhibition of AGS motility in the presence of potentially mastication-extractable phytochemicals indicates that phenolic compounds of BS retain their biological activity in bread. Importantly, the efficient phenolics concentration was about 12 μM for buffer extract, 13 μM for extracts after digestion in vitro, and 7 μM for extract after absorption in vitro. Our data confirm chemopreventive potential of bread enriched with BS and indicate that BS comprise valuable food supplement for stomach cancer chemoprevention. PMID:25050366

  20. Anticancer and Antioxidant Activity of Bread Enriched with Broccoli Sprouts

    Directory of Open Access Journals (Sweden)

    Urszula Gawlik-Dziki

    2014-01-01

    Full Text Available This study is focused on antioxidant and anticancer capacity of bread enriched with broccoli sprouts (BS in the light of their potential bioaccessibility and bioavailability. Generally, bread supplementation elevated antioxidant potential of product (both nonenzymatic and enzymatic antioxidant capacities; however, the increase was not correlated with the percent of BS. A replacement up to 2% of BS gives satisfactory overall consumers acceptability and desirable elevation of antioxidant potential. High activity was especially found for extracts obtained after simulated digestion, which allows assuming their protective effect for upper gastrointestinal tract; thus, the anticancer activity against human stomach cancer cells (AGS was evaluated. A prominent cytostatic response paralleled by the inhibition of AGS motility in the presence of potentially mastication-extractable phytochemicals indicates that phenolic compounds of BS retain their biological activity in bread. Importantly, the efficient phenolics concentration was about 12 μM for buffer extract, 13 μM for extracts after digestion in vitro, and 7 μM for extract after absorption in vitro. Our data confirm chemopreventive potential of bread enriched with BS and indicate that BS comprise valuable food supplement for stomach cancer chemoprevention.

  1. Mutations in Mll2, an H3K4 Methyltransferase, Result in Insulin Resistance and Impaired Glucose Tolerance in Mice

    Science.gov (United States)

    Schröter, David; Matthews, Helen C.; Bogani, Debora; Moir, Lee; Long, Anna; Church, Christopher; Hugill, Alison; Anstee, Quentin M.; Goldin, Rob; Thursz, Mark; Hollfelder, Florian; Cox, Roger D.

    2013-01-01

    We employed a random mutagenesis approach to identify novel monogenic determinants of type 2 diabetes. Here we show that haplo-insufficiency of the histone methyltransferase myeloid-lineage leukemia (Mll2/Wbp7) gene causes type 2 diabetes in the mouse. We have shown that mice heterozygous for two separate mutations in the SET domain of Mll2 or heterozygous Mll2 knockout mice were hyperglycaemic, hyperinsulinaemic and developed non-alcoholic fatty liver disease. Consistent with previous Mll2 knockout studies, mice homozygous for either ENU mutation (or compound heterozygotes) died during embryonic development at 9.5–14.5 days post coitum. Heterozygous deletion of Mll2 induced in the adult mouse results in a normal phenotype suggesting that changes in chromatin methylation during development result in the adult phenotype. Mll2 has been shown to regulate a small subset of genes, a number of which Neurod1, Enpp1, Slc27a2, and Plcxd1 are downregulated in adult mutant mice. Our results demonstrate that histone H3K4 methyltransferase Mll2 is a component of the genetic regulation necessary for glucose homeostasis, resulting in a specific disease pattern linking chromatin modification with causes and progression of type 2 diabetes, providing a basis for its further understanding at the molecular level. PMID:23826075

  2. Mutations in Mll2, an H3K4 methyltransferase, result in insulin resistance and impaired glucose tolerance in mice.

    Directory of Open Access Journals (Sweden)

    Michelle Goldsworthy

    Full Text Available We employed a random mutagenesis approach to identify novel monogenic determinants of type 2 diabetes. Here we show that haplo-insufficiency of the histone methyltransferase myeloid-lineage leukemia (Mll2/Wbp7 gene causes type 2 diabetes in the mouse. We have shown that mice heterozygous for two separate mutations in the SET domain of Mll2 or heterozygous Mll2 knockout mice were hyperglycaemic, hyperinsulinaemic and developed non-alcoholic fatty liver disease. Consistent with previous Mll2 knockout studies, mice homozygous for either ENU mutation (or compound heterozygotes died during embryonic development at 9.5-14.5 days post coitum. Heterozygous deletion of Mll2 induced in the adult mouse results in a normal phenotype suggesting that changes in chromatin methylation during development result in the adult phenotype. Mll2 has been shown to regulate a small subset of genes, a number of which Neurod1, Enpp1, Slc27a2, and Plcxd1 are downregulated in adult mutant mice. Our results demonstrate that histone H3K4 methyltransferase Mll2 is a component of the genetic regulation necessary for glucose homeostasis, resulting in a specific disease pattern linking chromatin modification with causes and progression of type 2 diabetes, providing a basis for its further understanding at the molecular level.

  3. Identification of a highly conserved domain in the EcoRII methyltransferase which can be photolabeled with S-adenosyl-L-[methyl-3H]methionine. Evidence for UV-induced transmethylation of cysteine 186

    International Nuclear Information System (INIS)

    Som, S.; Friedman, S.

    1991-01-01

    DNA methyltransferases can be photolabeled with S-adenosyl-L-methionine (AdoMet). Specific incorporation of radioactivity has been demonstrated after photolabeling with either [methyl-3H]AdoMet or [35S]AdoMet. The labeling is believed to occur at the AdoMet binding site. With the purpose of localizing the site responsible for [methyl-3H]AdoMet photolabeling, we cleaved the labeled EcoRII methyltransferase by chemical and enzymatic reactions and isolated the radiolabeled peptides by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and high pressure liquid chromatography. The labeled peptides were identified by amino-terminal sequencing. A common region was localized which accounted for 65-70% of the total label. This region includes a highly conserved core sequence present in all DNA (cytosine 5)-methyltransferases. One such fragment was digested further with chymotrypsin, and amino acid analysis of the resulting 3H-labeled peptide was consistent with the sequence Ala-Gly-Phe-Pro-(Cys)-Gln-Pro-Phe-Ser-Leu. However, the cysteine residue was not recovered as carboxymethylcysteine. The Pro-Cys bond was found to be protected from cleavage at cysteine residues after cyanylation. These results suggest that the cysteine residue is modified by the labeling reaction. The chymotryptic fragment was hydrolyzed enzymatically to single amino acids, and the labeled amino acid was identified as S-methylcysteine by thin layer chromatography. These results indicate that the cysteine residue is located at or close to the AdoMet binding site of EcoRII methyltransferase

  4. Consumer behaviour towards vegetables: a study on domestic processing of broccoli and carrots by Dutch households.

    Science.gov (United States)

    Bongoni, R; Verkerk, R; Dekker, M; Steenbekkers, L P A

    2015-06-01

    Preferences for sensory properties (e.g. taste and texture) are assumed to control cooking behaviour with respect to vegetables. Conditions such as the cooking method, amount of water used and the time-temperature profile determine the nutritional quality (e.g. vitamins and phytochemicals) of cooked vegetables. Information on domestic processing and any underlying motives can be used to inform consumers about cooking vegetables that are equally liked and are nutrient-rich. Two online self-reporting questionnaires were used to identify domestic processing conditions of broccoli and carrots by Dutch households. Questions on various aspects of domestic processing and consumer motives were included. Descriptive data analysis and hierarchical cluster analysis were performed for both vegetables, separately, to group consumers with similar motives and behaviour towards vegetables. Approximately 70% of consumers boiled vegetables, 8-9% steamed vegetables, 10-15% stir fried raw vegetables and 8-10% stir fried boiled vegetables. Mainly texture was used as a way to decide the 'doneness' of the vegetables. For both vegetables, three clusters of consumers were identified: texture-orientated, health-orientated, or taste-orientated. The texture-orientated consumers are identified as the most prevalent (56-59%) group in the present study. Statistically significant associations are found between domestic processing conditions and clusters, whereas no such association are found between demographic details and clusters. A wide variation in domestic processing of broccoli and carrots is found in the present study. Mainly sensory properties (i.e. texture and taste) determined the domestic processing conditions. The findings of the present study can be used to optimise cooking to yield vegetables that meet consumer's specific sensory preference and are higher in nutrients, and as well as to communicate with target consumer groups. © 2014 The British Dietetic Association Ltd.

  5. Crystal Structure of the Thermus thermophilus 16 S rRNA Methyltransferase RsmC in Complex with Cofactor and Substrate Guanosine

    Energy Technology Data Exchange (ETDEWEB)

    Demirci, H.; Gregory, S; Dahlberg, A; Jogl, G

    2008-01-01

    Post-transcriptional modification is a ubiquitous feature of ribosomal RNA in all kingdoms of life. Modified nucleotides are generally clustered in functionally important regions of the ribosome, but the functional contribution to protein synthesis is not well understood. Here we describe high resolution crystal structures for the N{sup 2}-guanine methyltransferase RsmC that modifies residue G1207 in 16 S rRNA near the decoding site of the 30 S ribosomal subunit. RsmC is a class I S-adenosyl-l-methionine-dependent methyltransferase composed of two methyltransferase domains. However, only one S-adenosyl-l-methionine molecule and one substrate molecule, guanosine, bind in the ternary complex. The N-terminal domain does not bind any cofactor. Two structures with bound S-adenosyl-l-methionine and S-adenosyl-l-homocysteine confirm that the cofactor binding mode is highly similar to other class I methyltransferases. Secondary structure elements of the N-terminal domain contribute to cofactor-binding interactions and restrict access to the cofactor-binding site. The orientation of guanosine in the active site reveals that G1207 has to disengage from its Watson-Crick base pairing interaction with C1051 in the 16 S rRNA and flip out into the active site prior to its modification. Inspection of the 30 S crystal structure indicates that access to G1207 by RsmC is incompatible with the native subunit structure, consistent with previous suggestions that this enzyme recognizes a subunit assembly intermediate.

  6. Human catechol-O-methyltransferase: Cloning and expression of the membrane-associated form

    International Nuclear Information System (INIS)

    Bertocci, B.; Miggiano, V.; Da Prada, M.; Dembic, Z.; Lahm, H.W.; Malherbe, P.

    1991-01-01

    A cDNA clone for human catechol-O-methyltransferase was isolated from a human hepatoma cell line (Hep G2) cDNA library by hybridization screening with a porcine cDNA probe. The cDNA clone was sequenced and found to have an insert of 1226 nucleotides. The deduced primary structure of hCOMT is composed of 271 amino acid residues with the predicted molecular mass of 30 kDa. At its N terminus it has a hydrophobic segment of 21 amino acid residues that may be responsible for insertion of hCOMT into the endoplasmic reticulum membrane. The primary structure of hCOMT exhibits high homology to the porcine partial cDNA sequence (93%). The deduced amino acid sequence contains two tryptic peptide sequences (T-22, T-33) found in porcine liver catechol-O-methyltransferase (CEMT). The coding region of hCOMT cDNA was placed under the control of the cytomegalovirus promoter to transfect human kidney 293 cells. The recombinant hCOMT was shown by immunoblot analysis to be mainly associated with the membrane fraction. RNA blot analysis revealed one COMT mRNA transcript of 1.4 kilobases in Hep G2 poly(A) + RNA

  7. An Iterative O-Methyltransferase Catalyzes 1,11-Dimethylation of Aspergillus fumigatus Fumaric Acid Amides.

    Science.gov (United States)

    Kalb, Daniel; Heinekamp, Thorsten; Schieferdecker, Sebastian; Nett, Markus; Brakhage, Axel A; Hoffmeister, Dirk

    2016-10-04

    S-adenosyl-l-methionine (SAM)-dependent methyltransfer is a common biosynthetic strategy to modify natural products. We investigated the previously uncharacterized Aspergillus fumigatus methyltransferase FtpM, which is encoded next to the bimodular fumaric acid amide synthetase FtpA. Structure elucidation of two new A. fumigatus natural products, the 1,11-dimethyl esters of fumaryl-l-tyrosine and fumaryl-l-phenylalanine, together with ftpM gene disruption suggested that FtpM catalyzes iterative methylation. Final evidence that a single enzyme repeatedly acts on fumaric acid amides came from an in vitro biochemical investigation with recombinantly produced FtpM. Size-exclusion chromatography indicated that this methyltransferase is active as a dimer. As ftpA and ftpM homologues are found clustered in other fungi, we expect our work will help to identify and annotate natural product biosynthesis genes in various species. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Characterization of novel methyltransferases METTL22 and FAM86A.1

    OpenAIRE

    Ali, Qamar

    2012-01-01

    Proteins are subjected to various post-translational modifications (PTMs) that affect their activity, interaction and localization. Methylation is one such PTM that is well known to play a regulatory role in heterochromatin and euchromatin formation through methyl marks on histone tails, and it has recently been shown that regulation through methylation is also applicable to non-histone proteins. A recent characterization of protein methyltransferase (MTase) METTL21D led to the discovery of a...

  9. The Histone Methyltransferase Activity of MLL1 Is Dispensable for Hematopoiesis and Leukemogenesis

    Directory of Open Access Journals (Sweden)

    Bibhu P. Mishra

    2014-05-01

    Full Text Available Despite correlations between histone methyltransferase (HMT activity and gene regulation, direct evidence that HMT activity is responsible for gene activation is sparse. We address the role of the HMT activity for MLL1, a histone H3 lysine 4 (H3K4 methyltransferase critical for maintaining hematopoietic stem cells (HSCs. Here, we show that the SET domain, and thus HMT activity of MLL1, is dispensable for maintaining HSCs and supporting leukemogenesis driven by the MLL-AF9 fusion oncoprotein. Upon Mll1 deletion, histone H4 lysine 16 (H4K16 acetylation is selectively depleted at MLL1 target genes in conjunction with reduced transcription. Surprisingly, inhibition of SIRT1 is sufficient to prevent the loss of H4K16 acetylation and the reduction in MLL1 target gene expression. Thus, recruited MOF activity, and not the intrinsic HMT activity of MLL1, is central for the maintenance of HSC target genes. In addition, this work reveals a role for SIRT1 in opposing MLL1 function.

  10. The orphan nuclear receptor GCNF recruits DNA methyltransferase for Oct-3/4 silencing

    International Nuclear Information System (INIS)

    Sato, Noriko; Kondo, Mitsumasa; Arai, Ken-ichi

    2006-01-01

    Somatic DNA methylation patterns are determined in part by the de novo methylation that occurs after early embryonic demethylation. Oct-3/4, a pluripotency gene, is unmethylated in the blastocyst, but undergoes de novo methylation and silencing during gastrulation. Here we show that the transcriptional repressor GCNF recruits DNA methyltransferase to the Oct-3/4 promoter and facilitates its methylation. Although acetylation of histone H3 at lysine 9 (K9) and/or 14 (K14) and methylation of H3 at lysine 4 (K4) decrease during this period, as do Oct-3/4 transcript levels, H3K9 and H3K27 methylation levels remain constant, indicating that DNA methylation does not require repressive histone modifications. We found that GCNF interacts directly with Dnmt3 molecule(s) and verified that this interaction induces the methylation of the Oct-3/4 promoter. Our finding suggests a model in which differentiation-induced GCNF recruits de novo DNA methyltransferase and facilitates the silencing of a pluripotency gene

  11. 2′-deoxy-5,6-dihydro-5-azacytidine—a less toxic alternative of 2′-deoxy-5-azacytidine: A comparative study of hypomethylating potential

    OpenAIRE

    Matoušová, Marika; Votruba, Ivan; Otmar, Miroslav; Tloušťová, Eva; Günterová, Jana; Mertlíková-Kaiserová, Helena

    2011-01-01

    Restoration of transcriptionally silenced genes by means of methyltransferases inhibitors plays a crucial role in the current therapy of myelodysplastic syndromes and certain types of leukemias. A comparative study of hypomethylating activities of a series of 5-azacytidine nucleosides: 5-azacytidine (AC), 2′-deoxy-5-azacytidine (DAC) and its α-anomer (α-DAC), 5,6-dihydro-5-azacytidine (DHAC), 2′-deoxy-5,6-dihydro-5-azacytidine (DHDAC, KP-1212) and its α-anomer (α-DHDAC), and of a 2-pyrimidone...

  12. Overexpression of a soybean salicylic acid methyltransferase gene confers resistance to soybean cyst nematode

    Science.gov (United States)

    Salicylic acid plays a critical role in activating plant defence responses after pathogen attack. Salicylic acid methyltransferase (SAMT) modulates the level of salicylic acid by converting salicylic acid to methyl salicylate. Here, we report that a SAMT gene from soybean (GmSAMT1) plays a role in s...

  13. AarF Domain Containing Kinase 3 (ADCK3 Mutant Cells Display Signs of Oxidative Stress, Defects in Mitochondrial Homeostasis and Lysosomal Accumulation.

    Directory of Open Access Journals (Sweden)

    Jason K Cullen

    Full Text Available Autosomal recessive ataxias are a clinically diverse group of syndromes that in some cases are caused by mutations in genes with roles in the DNA damage response, transcriptional regulation or mitochondrial function. One of these ataxias, known as Autosomal Recessive Cerebellar Ataxia Type-2 (ARCA-2, also known as SCAR9/COQ10D4; OMIM: #612016, arises due to mutations in the ADCK3 gene. The product of this gene (ADCK3 is an atypical kinase that is thought to play a regulatory role in coenzyme Q10 (CoQ10 biosynthesis. Although much work has been performed on the S. cerevisiae orthologue of ADCK3, the cellular and biochemical role of its mammalian counterpart, and why mutations in this gene lead to human disease is poorly understood. Here, we demonstrate that ADCK3 localises to mitochondrial cristae and is targeted to this organelle via the presence of an N-terminal localisation signal. Consistent with a role in CoQ10 biosynthesis, ADCK3 deficiency decreased cellular CoQ10 content. In addition, endogenous ADCK3 was found to associate in vitro with recombinant Coq3, Coq5, Coq7 and Coq9, components of the CoQ10 biosynthetic machinery. Furthermore, cell lines derived from ARCA-2 patients display signs of oxidative stress, defects in mitochondrial homeostasis and increases in lysosomal content. Together, these data shed light on the possible molecular role of ADCK3 and provide insight into the cellular pathways affected in ARCA-2 patients.

  14. Cold-Induced Ascites in Broilers: Effects of Vitamin C and Coenzyme Q10

    Directory of Open Access Journals (Sweden)

    MH Nemati

    Full Text Available ABSTRACT We hypothesized that the supplementation of vitamin C (Vit. C and coenzyme Q10 (CoQ10 alone or in combination could reduce the negative effects of cold stress in broilers. Four hundred male chicks were exposed for 24 h to cold stress (15 ºC starting from 15d of age, while a positive control group (PC, 100 birds was kept under normal temperature condition. The experimental groups under cold stress (four treatments in 5 replicates of 20 birds were: negative control (NC, basal diet, Vit. C (basal diet + 300 mg/kg Vit. C, CoQ10 (basal diet + 40 mg/kg CoQ10 and Vit. C plus CoQ10 (basal diet + Vit. C+ CoQ10at above mentioned doses. Vit. C or CoQ10 supplementation were restored (p<0.01 performance and lowered (p<0.01 ascites mortality. Blood hematocrit and hemoglobin concentration were decreased (p<0.01 to the level comparable to PC by Vit. C supplementation. Lower plasma concentrations of thyroxin (T4 and higher triiodothyronine (T3 were observed in NC birds (p<0.01 and were not affected by Vit. C or CoQ10. In conclusion, supplementation of Vit. C or CoQ10 in diet of broilers under cold stress conditions resulted improved performance parameters (body weight and feed conversion ratio and ascites related traits (low red blood cell count, hematocrit, T3, and heart weights and high T4. No additional benefit was observed by combination of Vit. C and CoQ10.

  15. YgdE is the 2'-O-ribose methyltransferase RlmM specific for nucleotide C2498 in bacterial 23S rRNA

    DEFF Research Database (Denmark)

    Purta, Elzbieta; O'Connor, Michelle; Bujnicki, Janusz M

    2009-01-01

    The rRNAs of Escherichia coli contain four 2'-O-methylated nucleotides. Similar to other bacterial species and in contrast with Archaea and Eukaryota, the E. coli rRNA modifications are catalysed by specific methyltransferases that find their nucleotide targets without being guided by small...... complementary RNAs. We show here that the ygdE gene encodes the methyltransferase that catalyses 2'-O-methylation at nucleotide C2498 in the peptidyl transferase loop of E. coli 23S rRNA. Analyses of rRNAs using MALDI mass spectrometry showed that inactivation of the ygdE gene leads to loss of methylation...... at nucleotide C2498. The loss of ygdE function causes a slight reduction in bacterial fitness. Methylation at C2498 was restored by complementing the knock-out strain with a recombinant copy of ygdE. The recombinant YgdE methyltransferase modifies C2498 in naked 23S rRNA, but not in assembled 50S subunits...

  16. Vigor de sementes de brócolos submetidas a coberturas biodegradáveis e micronutrientes Vigor of broccoli seeds submitted to biodegradable coatings and micronutrients

    Directory of Open Access Journals (Sweden)

    Juliana A. Batista

    2005-07-01

    Full Text Available O desenvolvimento e a aplicação de filmes ou coberturas biodegradáveis na horticultura são técnicas praticadas há vários anos, que visam promover melhoria na qualidade do produto. no presente trabalho desenvolveu-se e caracterizou-se biofilmes de pectina, gelatina e ácidos graxos e verificou-se sua eficiência como cobertura para sementes de brócolos (Brassica oleracea L. var. italica. Os filmes foram caracterizados quanto à solubilidade em água. A contagem e a observação de plantas de brócolos, a partir da germinação de sementes cobertas e não cobertas foi realizada em média a cada três dias, aos 27 dias fêz-se a quantificação da matéria fresca e seca. Os filmes de pectina e ácido esteárico foram 100% solúveis em água, enquanto os elaborados com pectina e gelatina (1/1 foram apenas 18%. A aplicação das coberturas filmogênicas nas sementes de brócolos não afetou a emergência das plantas, demonstrando assim sua potencialidade para uso comercial. Os fertilizantes molibdato de sódio (0,2 mg L-1 e ácido bórico (1mg L-1, aplicados juntamente com os biofilmes, também não afetaram a emergência e o desenvolvimento das plantas.The development and application of biodegradable coatings and films have been used for many years in order to improve quality of the coated or packed product. The development and characterization of pectin and pectin/gelatin-based biofilms with fatty acids was evaluated and verified their efficiency as coatings to broccoli seeds (Brassica oleracea L. var. italica. The solubility in water of the films was determined. The counting and visual observations of the germinated broccoli seeds were done each three days and fresh and dried weight of the plants were determined at the end of the experiment. Pectin-based films with stearic acid were 100% soluble in water and composite films of pectin and gelatin were 18%. The application of the biodegradable coatings on broccoli seeds had no effect on the

  17. Molecular Evolution of the Substrate Specificity of Chloroplastic Aldolases/Rubisco Lysine Methyltransferases in Plants.

    Science.gov (United States)

    Ma, Sheng; Martin-Laffon, Jacqueline; Mininno, Morgane; Gigarel, Océane; Brugière, Sabine; Bastien, Olivier; Tardif, Marianne; Ravanel, Stéphane; Alban, Claude

    2016-04-04

    Rubisco and fructose-1,6-bisphosphate aldolases (FBAs) are involved in CO2 fixation in chloroplasts. Both enzymes are trimethylated at a specific lysine residue by the chloroplastic protein methyltransferase LSMT. Genes coding LSMT are present in all plant genomes but the methylation status of the substrates varies in a species-specific manner. For example, chloroplastic FBAs are naturally trimethylated in both Pisum sativum and Arabidopsis thaliana, whereas the Rubisco large subunit is trimethylated only in the former species. The in vivo methylation status of aldolases and Rubisco matches the catalytic properties of AtLSMT and PsLSMT, which are able to trimethylate FBAs or FBAs and Rubisco, respectively. Here, we created chimera and site-directed mutants of monofunctional AtLSMT and bifunctional PsLSMT to identify the molecular determinants responsible for substrate specificity. Our results indicate that the His-Ala/Pro-Trp triad located in the central part of LSMT enzymes is the key motif to confer the capacity to trimethylate Rubisco. Two of the critical residues are located on a surface loop outside the methyltransferase catalytic site. We observed a strict correlation between the presence of the triad motif and the in vivo methylation status of Rubisco. The distribution of the motif into a phylogenetic tree further suggests that the ancestral function of LSMT was FBA trimethylation. In a recent event during higher plant evolution, this function evolved in ancestors of Fabaceae, Cucurbitaceae, and Rosaceae to include Rubisco as an additional substrate to the archetypal enzyme. Our study provides insight into mechanisms by which SET-domain protein methyltransferases evolve new substrate specificity. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  18. Therapeutic effect of co-enzyme Q10 on idiopathic dilated cardiomyopathy: assessment by iodine-123 labelled 15-(p-iodophenyl)-3(R,S)-methylpentadecanoic acid myocardial single-photon emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong-ih [Department of Internal Medicine, Nishiyodo Hospital, Nishiyodo (Japan); Sawada, Yoshihiro [Department of Internal Medicine, Nishiyodo Hospital, Nishiyodo (Japan); Fujiwara, Go [Department of Radiology, Nishiyodo Hospital, Nishiyodo (Japan); Chiba, Hiroshi [Department of Internal Medicine, Mimihara General Hospital, Mimihara (Japan); Nishimura, Tsunehiko [Division of Tracer Kinetics, Biomedical Research Center, Osaka University Medical School, Osaka (Japan)

    1997-06-10

    It has been reported that myocardial mitochondrial function can be improved by the administration of co-enzyme Q10 (CoQ10). Recently, iodine-123 labelled 15-(p-iodophenyl)-3-(R,S)-methylpentadecanoic acid (BMIPP) was developed for metabolic imaging using single-photon emission tomography (SPET). This study was conducted to determine whether the therapeutic effects of CoQ10 on idiopathic dilated cardiomyopathy can be evaluated by BMIPP myocardial SPET. Fifteen patients, comprising 14 men and one woman (mean age: 64{+-}12 years), were examined. CoQ10 was administered at 30 mg/day for a period of 35.7{+-}12.4 days. BMIPP myocardial SPET was carried out before and after CoQ10 treatment. The count ratio of the heart (H) to the upper mediastinum (M) (H/M ratio) was calculated using a region of interest method with anterior planar imaging. Representative short-axis tomograms were divided into 27 segments (three slices x nine segments). Each segmental score was analysed semiquantitatively using a four-point scoring system (normal=0, mild low uptake=1, severe low uptake=2, defect=3). The H/M ratio showed a significant improvement, from 2.39{+-}0.39 to 2.54{+-}0.47, after treatment (P<0.05). The BMIPP total defect score after CoQ10 treatment was significantly decreased to 10.1{+-}4.3, compared to 13.9{+-}4.5 without CoQ10 treatment (P<0.001). However, the percent fractional shortening measured using echocardiography was not significantly different before and after CoQ treatment (19.2{+-}8.1 vs 19.7{+-}7.1). BMIPP myocardial SPET was confirmed to be sensitive in evaluating the therapeutic effects of CoQ10 in patients with idiopathic dilated cardiomyopathy. This method is unique, since the therapeutic effects can be estimated from the perspective of metabolic SPET imaging. (orig.). With 5 figs., 1 tab.

  19. Facile synthesis of nano cauliflower and nano broccoli like hierarchical superhydrophobic composite coating using PVDF/carbon soot particles via gelation technique.

    Science.gov (United States)

    Sahoo, Bichitra Nanda; Balasubramanian, Kandasubramanian

    2014-12-15

    We have elucidated a cost effective fabrication technique to produce superhydrophobic polyvinylidene fluoride (PVDF/DMF/candle soot particle and PVDF/DMF/camphor soot particle composite) porous materials. The water repellent dry composite was formed by the interaction of non-solvent (methanol) into PVDF/carbon soot particles suspension in N,N-dimethylformamide (DMF). It is seen that longer quenching time effectively changes the surface morphology of dry composites. The nano broccoli like hierarchical microstructure with micro or nano scaled roughen surface was obtained for PVDF/DMF/camphor soot particle, which reveals water contact angle of 172° with roll off angle of 2°. However, composite coating of PVDF/DMF/candle soot particle shows nano cauliflower like hierarchical, which illustrates water contact angle of 169° with roll off angle of 3°. To elucidate the enhancement of water repellent property of PVDF composites, we further divulge the evolution mechanism of nano cauliflower and nano broccoli structure. In order to evaluate the water contact angle of PVDF composites, surface diffusion of water inside the pores is investigated. Furthermore, the addition of small amount of carbon soot particles in composite not only provides the crystallization of PVDF, but also leads to dramatical amendment of surface morphology which increases the surface texture and roughness for superhydrophobicity. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. The Set1/COMPASS histone H3 methyltransferase helps regulate mitosis with the CDK1 and NIMA mitotic kinases in Aspergillus nidulans.

    Science.gov (United States)

    Govindaraghavan, Meera; Anglin, Sarah Lea; Osmani, Aysha H; Osmani, Stephen A

    2014-08-01

    Mitosis is promoted and regulated by reversible protein phosphorylation catalyzed by the essential NIMA and CDK1 kinases in the model filamentous fungus Aspergillus nidulans. Protein methylation mediated by the Set1/COMPASS methyltransferase complex has also been shown to regulate mitosis in budding yeast with the Aurora mitotic kinase. We uncover a genetic interaction between An-swd1, which encodes a subunit of the Set1 protein methyltransferase complex, with NIMA as partial inactivation of nimA is poorly tolerated in the absence of swd1. This genetic interaction is additionally seen without the Set1 methyltransferase catalytic subunit. Importantly partial inactivation of NIMT, a mitotic activator of the CDK1 kinase, also causes lethality in the absence of Set1 function, revealing a functional relationship between the Set1 complex and two pivotal mitotic kinases. The main target for Set1-mediated methylation is histone H3K4. Mutational analysis of histone H3 revealed that modifying the H3K4 target residue of Set1 methyltransferase activity phenocopied the lethality seen when either NIMA or CDK1 are partially functional. We probed the mechanistic basis of these genetic interactions and find that the Set1 complex performs functions with CDK1 for initiating mitosis and with NIMA during progression through mitosis. The studies uncover a joint requirement for the Set1 methyltransferase complex with the CDK1 and NIMA kinases for successful mitosis. The findings extend the roles of the Set1 complex to include the initiation of mitosis with CDK1 and mitotic progression with NIMA in addition to its previously identified interactions with Aurora and type 1 phosphatase in budding yeast. Copyright © 2014 by the Genetics Society of America.

  1. Chromosomal replication incompatibility in Dam methyltransferase deficient Escherichia coli cells

    DEFF Research Database (Denmark)

    Freiesleben, Ulrik Von

    1996-01-01

    Dam methyltransferase deficient Escherichia coli cells containing minichromosomes were constructed. Free plasmid DNA could not be detected in these cells and the minichromosomes were found to be integrated in multiple copies in the origin of replication (oriC) region of the host chromosome....... The absence of the initiation cascade in Dam- cells is proposed to account for this observation of apparent incompatibility between plasmid and chromosomal copies of oriC. Studies using oriC-pBR322 chimeric plasmids and their deletion derivatives indicated that the incompatibility determinant is an intact...

  2. CLONING, EXPRESSION, AND CHARACTERIZATION OF RAT S-ADENOSYL-L-METHIONINE: ARSENIC (III) METHYLTRANSFERASE (CYT19)

    Science.gov (United States)

    CLONING, EXPRESSION, AND CHARACTERIZATION OF RAT S-ADENOSYL-L-METHIONINE: ARSENIC(III) METHYLTRANSFERASE (cyt19)Stephen B. Waters1 , Felicia Walton1 , Miroslav Styblo1 , Karen Herbin-Davis2, and David J. Thomas2 1 School of Medicine, University of North Carolina at Chape...

  3. Magnetic immunoassay using CdSe/ZnS quantum dots as fluorescent probes to detect the level of DNA methyltransferase 1 in human serum sample

    Directory of Open Access Journals (Sweden)

    Yu F

    2018-01-01

    Full Text Available Fei Yu,1,* Ya-min Xiong,1,* Song-cheng Yu,1 Lei-liang He,1 Shan-shan Niu,1 Yu-ming Wu,1 Jie Liu,1 Ling-bo Qu,2 Li-e Liu,1 Yong-jun Wu1 1College of Public Health, 2College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan, People’s Republic of China *These authors contributed equally to this work Background: DNA methyltransferase 1 (DNMT1, a dominant enzyme responsible for the transfer of a methyl group from the universal methyl donor to the 5-position of cytosine residues in DNA, is essential for mammalian development and closely related to cancer and a variety of age-related chronic diseases. DNMT1 has become a useful biomarker in early disease diagnosis and a potential therapeutic target in cancer therapy and drug development. However, till now, most of the studies on DNA methyltransferase (MTase detection have focused on the prokaryote MTase and its activity.Methods: A magnetic fluorescence-linked immunosorbent assay (FLISA using CdSe/ZnS quantum dots as fluorescent probes was proposed for the rapid and sensitive detection of the DNMT1 level in this study. Key factors that affect the precision and accuracy of the determination of DNMT1 were optimized.Results: Under the optimal conditions, the limit of detection was 0.1 ng/mL, the linear range was 0.1–1,500 ng/mL, the recovery was 91.67%–106.50%, and the relative standard deviations of intra- and inter-assays were respectively 5.45%–11.29% and 7.03%–11.25%. The cross-reactivity rates with DNA methyltransferases 3a and 3b were only 4.0% and 9.4%, respectively. Furthermore, FLISA was successfully used to detect the levels of DNMT1 in human serum samples, and compared with commercial enzyme-linked immunosorbent assay (ELISA kits. The results revealed that there was a good correlation between FLISA and commercial ELISA kits (correlation coefficient r=0.866, p=0.001. The linear scope of FLISA was broader than ELISA, and the measurement time was much shorter

  4. Kinetic analysis of Yersinia pestis DNA adenine methyltransferase activity using a hemimethylated molecular break light oligonucleotide.

    Directory of Open Access Journals (Sweden)

    Robert J Wood

    Full Text Available BACKGROUND: DNA adenine methylation plays an important role in several critical bacterial processes including mismatch repair, the timing of DNA replication and the transcriptional control of gene expression. The dependence of bacterial virulence on DNA adenine methyltransferase (Dam has led to the proposal that selective Dam inhibitors might function as broad spectrum antibiotics. METHODOLOGY/PRINCIPAL FINDINGS: Herein we report the expression and purification of Yersinia pestis Dam and the development of a continuous fluorescence based assay for DNA adenine methyltransferase activity that is suitable for determining the kinetic parameters of the enzyme and for high throughput screening against potential Dam inhibitors. The assay utilised a hemimethylated break light oligonucleotide substrate containing a GATC methylation site. When this substrate was fully methylated by Dam, it became a substrate for the restriction enzyme DpnI, resulting in separation of fluorophore (fluorescein and quencher (dabcyl and therefore an increase in fluorescence. The assays were monitored in real time using a fluorescence microplate reader in 96 well format and were used for the kinetic characterisation of Yersinia pestis Dam, its substrates and the known Dam inhibitor, S-adenosylhomocysteine. The assay has been validated for high throughput screening, giving a Z-factor of 0.71+/-0.07 indicating that it is a sensitive assay for the identification of inhibitors. CONCLUSIONS/SIGNIFICANCE: The assay is therefore suitable for high throughput screening for inhibitors of DNA adenine methyltransferases and the kinetic characterisation of the inhibition.

  5. Caulobacter crescentus Cell Cycle-Regulated DNA Methyltransferase Uses a Novel Mechanism for Substrate Recognition.

    Science.gov (United States)

    Woodcock, Clayton B; Yakubov, Aziz B; Reich, Norbert O

    2017-08-01

    Caulobacter crescentus relies on DNA methylation by the cell cycle-regulated methyltransferase (CcrM) in addition to key transcription factors to control the cell cycle and direct cellular differentiation. CcrM is shown here to efficiently methylate its cognate recognition site 5'-GANTC-3' in single-stranded and hemimethylated double-stranded DNA. We report the K m , k cat , k methylation , and K d for single-stranded and hemimethylated substrates, revealing discrimination of 10 7 -fold for noncognate sequences. The enzyme also shows a similar discrimination against single-stranded RNA. Two independent assays clearly show that CcrM is highly processive with single-stranded and hemimethylated DNA. Collectively, the data provide evidence that CcrM and other DNA-modifying enzymes may use a new mechanism to recognize DNA in a key epigenetic process.

  6. DNA (cytosine-5-methyltransferase 3B (DNMT 3B polymorphism and risk of Down syndrome offspring

    Directory of Open Access Journals (Sweden)

    Cláudia Melo de Moura

    2018-01-01

    Full Text Available Down syndrome (DS is the most common form of human genetic mental retardation. Several polymorphisms in genes coding folic acid cycle enzymes have been associated to the risk of bearing a DS child; however, the results are controversial. S-adenosyl-l-methionine (SAM is an important intermediate of folic acid pathway and acts as methyl donor and substrate for DNA (cytosine-5-methyltransferase 3B (DNMT3B – EC 2.1.1.37 de novo methylation processes during embryogenesis. Recent studies suggest that a functional polymorphism of DNMT 3B in maternal genotype may be associated with a decreased risk of having a DS child. We herein investigate the association of this polymorphism with the occurrence of DS in a Brazilian population. We have genotyped 111 mothers of DS infants (MDS and 212 control mothers (CM through PCR-RFLP. The observed genotypic frequencies were CC = 0.22; CT = 0.49 and TT = 0.29 in CM, and CC = 0.30; CT = 0.52 and TT = 0.18 in MDS. Allelic frequencies were C = 0.47 and T = 0.53 in CM and C = 0.56 and T = 0.44 in MDS. No deviation of HWE was observed, and both DNMT 3B rs2424913 genotype (χ2 = 4.53; DF = 1; P = 0.03 and allelic (χ2 = 4.90; DF = 1; P = 0.03 frequencies show significant differences between MDS and CM. The presence of the mutant DNMT 3B T allele decreases 30% the risk of bearing a DS child (OR = 0.69; 95% CI: 0.50–0.96; P = 0.03, and the risk is diminished up to 45% in association with the homozygous genotype (OR = 0.54; 95% CI: 0.31–0.96; P = 0.04. Our results suggest that women harboring the single nucleotide polymorphism DNMT 3B rs2424913 have a decreased risk of a DS pregnancy, and further studies are necessary to confirm this protective effect.

  7. Functional conservation of coenzyme Q biosynthetic genes among yeasts, plants, and humans.

    Directory of Open Access Journals (Sweden)

    Kazuhiro Hayashi

    Full Text Available Coenzyme Q (CoQ is an essential factor for aerobic growth and oxidative phosphorylation in the electron transport system. The biosynthetic pathway for CoQ has been proposed mainly from biochemical and genetic analyses of Escherichia coli and Saccharomyces cerevisiae; however, the biosynthetic pathway in higher eukaryotes has been explored in only a limited number of studies. We previously reported the roles of several genes involved in CoQ synthesis in the fission yeast Schizosaccharomyces pombe. Here, we expand these findings by identifying ten genes (dps1, dlp1, ppt1, and coq3-9 that are required for CoQ synthesis. CoQ10-deficient S. pombe coq deletion strains were generated and characterized. All mutant fission yeast strains were sensitive to oxidative stress, produced a large amount of sulfide, required an antioxidant to grow on minimal medium, and did not survive at the stationary phase. To compare the biosynthetic pathway of CoQ in fission yeast with that in higher eukaryotes, the ability of CoQ biosynthetic genes from humans and plants (Arabidopsis thaliana to functionally complement the S. pombe coq deletion strains was determined. With the exception of COQ9, expression of all other human and plant COQ genes recovered CoQ10 production by the fission yeast coq deletion strains, although the addition of a mitochondrial targeting sequence was required for human COQ3 and COQ7, as well as A. thaliana COQ6. In summary, this study describes the functional conservation of CoQ biosynthetic genes between yeasts, humans, and plants.

  8. Tyrosine 87 is vital for the activity of human protein arginine methyltransferase 3 (PRMT3)

    Czech Academy of Sciences Publication Activity Database

    Handrková, H.; Petrák, J.; Halada, Petr; Pospíšilová, D.; Čmejla, R.

    2011-01-01

    Roč. 1814, č. 2 (2011), s. 277-282 ISSN 1570-9639 R&D Projects: GA MŠk LC07017 Institutional research plan: CEZ:AV0Z50200510 Keywords : DIAMOND-BLACKFAN ANEMIA * SUBSTRATE -SPECIFICITY * N-METHYLTRANSFERASE Subject RIV: CE - Biochemistry Impact factor: 3.635, year: 2011

  9. Fusion of GFP to the M.EcoKI DNA methyltransferase produces a new probe of Type I DNA restriction and modification enzymes

    International Nuclear Information System (INIS)

    Chen, Kai; Roberts, Gareth A.; Stephanou, Augoustinos S.; Cooper, Laurie P.; White, John H.; Dryden, David T.F.

    2010-01-01

    Research highlights: → Successful fusion of GFP to M.EcoKI DNA methyltransferase. → GFP located at C-terminal of sequence specificity subunit does not later enzyme activity. → FRET confirms structural model of M.EcoKI bound to DNA. -- Abstract: We describe the fusion of enhanced green fluorescent protein to the C-terminus of the HsdS DNA sequence-specificity subunit of the Type I DNA modification methyltransferase M.EcoKI. The fusion expresses well in vivo and assembles with the two HsdM modification subunits. The fusion protein functions as a sequence-specific DNA methyltransferase protecting DNA against digestion by the EcoKI restriction endonuclease. The purified enzyme shows Foerster resonance energy transfer to fluorescently-labelled DNA duplexes containing the target sequence and to fluorescently-labelled ocr protein, a DNA mimic that binds to the M.EcoKI enzyme. Distances determined from the energy transfer experiments corroborate the structural model of M.EcoKI.

  10. Hepatoprotective effect of taurine and coenzyme Q10 and their ...

    African Journals Online (AJOL)

    CoQ10) for mitigation of acrylamide- induced oxidative damage. . Method: Acrylamide (AA), TA and CoQ10 were administered orally to rats for 2 and 4 weeks. Sixty albino rats of either sex weighing 200 ± 5 were randomly divided into five groups; ...

  11. Loss of the histone methyltransferase EZH2 induces resistance to multiple drugs in acute myeloid leukemia

    DEFF Research Database (Denmark)

    Göllner, Stefanie; Oellerich, Thomas; Agrawal-Singh, Shuchi

    2017-01-01

    In acute myeloid leukemia (AML), therapy resistance frequently occurs, leading to high mortality among patients. However, the mechanisms that render leukemic cells drug resistant remain largely undefined. Here, we identified loss of the histone methyltransferase EZH2 and subsequent reduction...

  12. DNA methyltransferase mediates dose-dependent stimulation of neural stem cell proliferation by folate.

    Science.gov (United States)

    Li, Wen; Yu, Min; Luo, Suhui; Liu, Huan; Gao, Yuxia; Wilson, John X; Huang, Guowei

    2013-07-01

    The proliferative response of neural stem cells (NSCs) to folate may play a critical role in the development, function and repair of the central nervous system. It is important to determine the dose-dependent effects of folate in NSC cultures that are potential sources of transplantable cells for therapies for neurodegenerative diseases. To determine the optimal concentration and mechanism of action of folate for stimulation of NSC proliferation in vitro, NSCs were exposed to folic acid or 5-methyltetrahydrofolate (5-MTHF) (0-200 μmol/L) for 24, 48 or 72 h. Immunocytochemistry and methyl thiazolyl tetrazolium assay showed that the optimal concentration of folic acid for NSC proliferation was 20-40 μmol/L. Stimulation of NSC proliferation by folic acid was associated with DNA methyltransferase (DNMT) activation and was attenuated by the DNMT inhibitor zebularine, which implies that folate dose-dependently stimulates NSC proliferation through a DNMT-dependent mechanism. Based on these new findings and previously published evidence, we have identified a mechanism by which folate stimulates NSC growth. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Development of fluorescent methods for DNA methyltransferase assay

    Science.gov (United States)

    Li, Yueying; Zou, Xiaoran; Ma, Fei; Tang, Bo; Zhang, Chun-yang

    2017-03-01

    DNA methylation modified by DNA methyltransferase (MTase) plays an important role in regulating gene transcription, cell growth and proliferation. The aberrant DNA MTase activity may lead to a variety of human diseases including cancers. Therefore, accurate and sensitive detection of DNA MTase activity is crucial to biomedical research, clinical diagnostics and therapy. However, conventional DNA MTase assays often suffer from labor-intensive operations and time-consuming procedures. Alternatively, fluorescent methods have significant advantages of simplicity and high sensitivity, and have been widely applied for DNA MTase assay. In this review, we summarize the recent advances in the development of fluorescent methods for DNA MTase assay. These emerging methods include amplification-free and the amplification-assisted assays. Moreover, we discuss the challenges and future directions of this area.

  14. A randomized clinical trial of high-dosage coenzyme Q10 in early Parkinson disease: no evidence of benefit.

    Science.gov (United States)

    Beal, M Flint; Oakes, David; Shoulson, Ira; Henchcliffe, Claire; Galpern, Wendy R; Haas, Richard; Juncos, Jorge L; Nutt, John G; Voss, Tiffini Smith; Ravina, Bernard; Shults, Clifford M; Helles, Karen; Snively, Victoria; Lew, Mark F; Griebner, Brian; Watts, Arthur; Gao, Shan; Pourcher, Emmanuelle; Bond, Louisette; Kompoliti, Katie; Agarwal, Pinky; Sia, Cherissa; Jog, Mandar; Cole, Linda; Sultana, Munira; Kurlan, Roger; Richard, Irene; Deeley, Cheryl; Waters, Cheryl H; Figueroa, Angel; Arkun, Ani; Brodsky, Matthew; Ondo, William G; Hunter, Christine B; Jimenez-Shahed, Joohi; Palao, Alicia; Miyasaki, Janis M; So, Julie; Tetrud, James; Reys, Liza; Smith, Katharine; Singer, Carlos; Blenke, Anita; Russell, David S; Cotto, Candace; Friedman, Joseph H; Lannon, Margaret; Zhang, Lin; Drasby, Edward; Kumar, Rajeev; Subramanian, Thyagarajan; Ford, Donna Stuppy; Grimes, David A; Cote, Diane; Conway, Jennifer; Siderowf, Andrew D; Evatt, Marian Leslie; Sommerfeld, Barbara; Lieberman, Abraham N; Okun, Michael S; Rodriguez, Ramon L; Merritt, Stacy; Swartz, Camille Louise; Martin, W R Wayne; King, Pamela; Stover, Natividad; Guthrie, Stephanie; Watts, Ray L; Ahmed, Anwar; Fernandez, Hubert H; Winters, Adrienna; Mari, Zoltan; Dawson, Ted M; Dunlop, Becky; Feigin, Andrew S; Shannon, Barbara; Nirenberg, Melissa Jill; Ogg, Mattson; Ellias, Samuel A; Thomas, Cathi-Ann; Frei, Karen; Bodis-Wollner, Ivan; Glazman, Sofya; Mayer, Thomas; Hauser, Robert A; Pahwa, Rajesh; Langhammer, April; Ranawaya, Ranjit; Derwent, Lorelei; Sethi, Kapil D; Farrow, Buff; Prakash, Rajan; Litvan, Irene; Robinson, Annette; Sahay, Alok; Gartner, Maureen; Hinson, Vanessa K; Markind, Samuel; Pelikan, Melisa; Perlmutter, Joel S; Hartlein, Johanna; Molho, Eric; Evans, Sharon; Adler, Charles H; Duffy, Amy; Lind, Marlene; Elmer, Lawrence; Davis, Kathy; Spears, Julia; Wilson, Stephanie; Leehey, Maureen A; Hermanowicz, Neal; Niswonger, Shari; Shill, Holly A; Obradov, Sanja; Rajput, Alex; Cowper, Marilyn; Lessig, Stephanie; Song, David; Fontaine, Deborah; Zadikoff, Cindy; Williams, Karen; Blindauer, Karen A; Bergholte, Jo; Propsom, Clara Schindler; Stacy, Mark A; Field, Joanne; Mihaila, Dragos; Chilton, Mark; Uc, Ergun Y; Sieren, Jeri; Simon, David K; Kraics, Lauren; Silver, Althea; Boyd, James T; Hamill, Robert W; Ingvoldstad, Christopher; Young, Jennifer; Thomas, Karen; Kostyk, Sandra K; Wojcieszek, Joanne; Pfeiffer, Ronald F; Panisset, Michel; Beland, Monica; Reich, Stephen G; Cines, Michelle; Zappala, Nancy; Rivest, Jean; Zweig, Richard; Lumina, L Pepper; Hilliard, Colette Lynn; Grill, Stephen; Kellermann, Marye; Tuite, Paul; Rolandelli, Susan; Kang, Un Jung; Young, Joan; Rao, Jayaraman; Cook, Maureen M; Severt, Lawrence; Boyar, Karyn

    2014-05-01

    Coenzyme Q10 (CoQ10), an antioxidant that supports mitochondrial function, has been shown in preclinical Parkinson disease (PD) models to reduce the loss of dopamine neurons, and was safe and well tolerated in early-phase human studies. A previous phase II study suggested possible clinical benefit. To examine whether CoQ10 could slow disease progression in early PD. A phase III randomized, placebo-controlled, double-blind clinical trial at 67 North American sites consisting of participants 30 years of age or older who received a diagnosis of PD within 5 years and who had the following inclusion criteria: the presence of a rest tremor, bradykinesia, and rigidity; a modified Hoehn and Yahr stage of 2.5 or less; and no anticipated need for dopaminergic therapy within 3 months. Exclusion criteria included the use of any PD medication within 60 days, the use of any symptomatic PD medication for more than 90 days, atypical or drug-induced parkinsonism, a Unified Parkinson's Disease Rating Scale (UPDRS) rest tremor score of 3 or greater for any limb, a Mini-Mental State Examination score of 25 or less, a history of stroke, the use of certain supplements, and substantial recent exposure to CoQ10. Of 696 participants screened, 78 were found to be ineligible, and 18 declined participation. The remaining 600 participants were randomly assigned to receive placebo, 1200 mg/d of CoQ10, or 2400 mg/d of CoQ10; all participants received 1200 IU/d of vitamin E. Participants were observed for 16 months or until a disability requiring dopaminergic treatment. The prospectively defined primary outcome measure was the change in total UPDRS score (Parts I-III) from baseline to final visit. The study was powered to detect a 3-point difference between an active treatment and placebo. The baseline characteristics of the participants were well balanced, the mean age was 62.5 years, 66% of participants were male, and the mean baseline total UPDRS score was 22.7. A total of 267 participants

  15. Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity

    DEFF Research Database (Denmark)

    Pasini, Diego; Bracken, Adrian P; Jensen, Michael R

    2004-01-01

    SUZ12 is a recently identified Polycomb group (PcG) protein, which together with EZH2 and EED forms different Polycomb repressive complexes (PRC2/3). These complexes contain histone H3 lysine (K) 27/9 and histone H1 K26 methyltransferase activity specified by the EZH2 SET domain. Here we show...

  16. Inhibition of DNA methyltransferase induces G2 cell cycle arrest and apoptosis in human colorectal cancer cells via inhibition of JAK2/STAT3/STAT5 signalling.

    Science.gov (United States)

    Xiong, Hua; Chen, Zhao-Fei; Liang, Qin-Chuan; Du, Wan; Chen, Hui-Min; Su, Wen-Yu; Chen, Guo-Qiang; Han, Ze-Guang; Fang, Jing-Yuan

    2009-09-01

    DNA methyltransferase inhibitors (MTIs) have recently emerged as promising chemotherapeutic or preventive agents for cancer, despite their poorly characterized mechanisms of action. The present study shows that DNA methylation is integral to the regulation of SH2-containing protein tyrosine phosphatase 1 (SHP1) expression, but not for regulation of suppressors of cytokine signalling (SOCS)1 or SOCS3 in colorectal cancer (CRC) cells. SHP1 expression correlates with down-regulation of Janus kinase/signal transducers and activators of transcription (JAK2/STAT3/STAT5) signalling, which is mediated in part by tyrosine dephosphorylation events and modulation of the proteasome pathway. Up-regulation of SHP1 expression was achieved using a DNA MTI, 5-aza-2'-deoxycytidine (5-aza-dc), which also generated significant down-regulation of JAK2/STAT3/STAT5 signalling. We demonstrate that 5-aza-dc suppresses growth of CRC cells, and induces G2 cell cycle arrest and apoptosis through regulation of downstream targets of JAK2/STAT3/STAT5 signalling including Bcl-2, p16(ink4a), p21(waf1/cip1) and p27(kip1). Although 5-aza-dc did not significantly inhibit cell invasion, 5-aza-dc did down-regulate expression of focal adhesion kinase and vascular endothelial growth factor in CRC cells. Our results demonstrate that 5-aza-dc can induce SHP1 expression and inhibit JAK2/STAT3/STAT5 signalling. This study represents the first evidence towards establishing a mechanistic link between inhibition of JAK2/STAT3/STAT5 signalling and the anticancer action of 5-aza-dc in CRC cells that may lead to the use of MTIs as a therapeutic intervention for human colorectal cancer.

  17. Crystallization and preliminary X-ray crystallographic studies of O-methyltransferase from Anabaena PCC 7120

    International Nuclear Information System (INIS)

    Li, Guoming; Tang, Zhenting; Meng, Geng; Dai, Kesheng; Zhao, Jindong; Zheng, Xiaofeng

    2009-01-01

    The O-methyltransferase (OMT) from the Anabaena PCC 7120 has been overexpressed in a soluble form in E. coli, purified and crystallized. The crystals belonged to space group C222 1 and diffracted to 2.4 Å resolution. O-Methyltransferase (OMT) is a ubiquitous enzyme that exists in bacteria, plants and humans and catalyzes a methyl-transfer reaction using S-adenosyl-l-methionine as a methyl donor and a wide range of phenolics as acceptors. To investigate the structure and function of OMTs, omt from Anabaena PCC 7120 was cloned into expression vector pET21a and expressed in a soluble form in Escherichia coli strain BL21 (DE3). The recombinant OMT protein was purified to homogeneity using a two-step strategy. Crystals of OMT that diffracted to a resolution of 2.4 Å were obtained using the hanging-drop vapour-diffusion method. The crystals belonged to space group C222 1 , with unit-cell parameters a = 131.620, b = 227.994, c = 150.777 Å, α = β = γ = 90°. There are eight molecules per asymmetric unit

  18. Structure and Mechanism of the Rebeccamycin Sugar 4'-O-Methyltransferase RebM

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Shanteri; McCoy, Jason G.; Zhang, Changsheng; Bingman, Craig A.; Phillips, Jr., George N.; Thorson, Jon S. (UW)

    2008-12-12

    The 2.65-{angstrom} crystal structure of the rebeccamycin 4'-O-methyltransferase RebM in complex with S-adenosyl-l-homocysteine revealed RebM to adopt a typical S-adenosylmethionine-binding fold of small molecule O-methyltransferases (O-MTases) and display a weak dimerization domain unique to MTases. Using this structure as a basis, the RebM substrate binding model implicated a predominance of nonspecific hydrophobic interactions consistent with the reported ability of RebM to methylate a wide range of indolocarbazole surrogates. This model also illuminated the three putative RebM catalytic residues (His{sup 140/141} and Asp{sup 166}) subsequently found to be highly conserved among sequence-related natural product O-MTases from GC-rich bacteria. Interrogation of these residues via site-directed mutagenesis in RebM demonstrated His{sup 140} and Asp{sup 166} to be most important for catalysis. This study reveals RebM to be a member of the general acid/base-dependent O-MTases and, as the first crystal structure for a sugar O-MTase, may also present a template toward the future engineering of natural product MTases for combinatorial applications.

  19. Structural insights into methyltransferase KsgA function in 30S ribosomal subunit biogenesis.

    Science.gov (United States)

    Boehringer, Daniel; O'Farrell, Heather C; Rife, Jason P; Ban, Nenad

    2012-03-23

    The assembly of the ribosomal subunits is facilitated by ribosome biogenesis factors. The universally conserved methyltransferase KsgA modifies two adjacent adenosine residues in the 3'-terminal helix 45 of the 16 S ribosomal RNA (rRNA). KsgA recognizes its substrate adenosine residues only in the context of a near mature 30S subunit and is required for the efficient processing of the rRNA termini during ribosome biogenesis. Here, we present the cryo-EM structure of KsgA bound to a nonmethylated 30S ribosomal subunit. The structure reveals that KsgA binds to the 30S platform with the catalytic N-terminal domain interacting with substrate adenosine residues in helix 45 and the C-terminal domain making extensive contacts to helix 27 and helix 24. KsgA excludes the penultimate rRNA helix 44 from adopting its position in the mature 30S subunit, blocking the formation of the decoding site and subunit joining. We suggest that the activation of methyltransferase activity and subsequent dissociation of KsgA control conformational changes in helix 44 required for final rRNA processing and translation initiation.

  20. Structural Insights into Methyltransferase KsgA Function in 30S Ribosomal Subunit Biogenesis*

    Science.gov (United States)

    Boehringer, Daniel; O'Farrell, Heather C.; Rife, Jason P.; Ban, Nenad

    2012-01-01

    The assembly of the ribosomal subunits is facilitated by ribosome biogenesis factors. The universally conserved methyltransferase KsgA modifies two adjacent adenosine residues in the 3′-terminal helix 45 of the 16 S ribosomal RNA (rRNA). KsgA recognizes its substrate adenosine residues only in the context of a near mature 30S subunit and is required for the efficient processing of the rRNA termini during ribosome biogenesis. Here, we present the cryo-EM structure of KsgA bound to a nonmethylated 30S ribosomal subunit. The structure reveals that KsgA binds to the 30S platform with the catalytic N-terminal domain interacting with substrate adenosine residues in helix 45 and the C-terminal domain making extensive contacts to helix 27 and helix 24. KsgA excludes the penultimate rRNA helix 44 from adopting its position in the mature 30S subunit, blocking the formation of the decoding site and subunit joining. We suggest that the activation of methyltransferase activity and subsequent dissociation of KsgA control conformational changes in helix 44 required for final rRNA processing and translation initiation. PMID:22308031