WorldWideScience

Sample records for bradykinin

  1. Bradykinin, ch. 26

    International Nuclear Information System (INIS)

    Talamo, R.C.; Haber, E.; Austen, K.F.

    1976-01-01

    A radioimmunoassay for bradykinin is described. Methods of obtaining and processing blood and synovial fluid and subsequent isolation of bradykinin are given. To prepare the bradykinin immunogen, bradykinin is coupled to ovalbumin, using toluene diisocyanate. In order to determine the extent of coupling , ) 714C{-2,3 pro-bradykinin is used. Tyr 8 -bradykinin is iodinated with 125 I by a modification of the Hunter-greenwood method. The iodination mixture is purified by an anion exchanger. Bound and free hormones are separated by dextran-coated charcoal. The sensitivity of the method is about 0.1 ng/ml. )

  2. Pharmacology of Bradykinin-Evoked Coughing in Guinea Pigs

    OpenAIRE

    Hewitt, Matthew M.; Adams, Gregory; Mazzone, Stuart B.; Mori, Nanako; Yu, Li; Canning, Brendan J.

    2016-01-01

    Bradykinin has been implicated as a mediator of the acute pathophysiological and inflammatory consequences of respiratory tract infections and in exacerbations of chronic diseases such as asthma. Bradykinin may also be a trigger for the coughing associated with these and other conditions. We have thus set out to evaluate the pharmacology of bradykinin-evoked coughing in guinea pigs. When inhaled, bradykinin induced paroxysmal coughing that was abolished by the bradykinin B2 receptor antagonis...

  3. Pharmacology of Bradykinin-Evoked Coughing in Guinea Pigs.

    Science.gov (United States)

    Hewitt, Matthew M; Adams, Gregory; Mazzone, Stuart B; Mori, Nanako; Yu, Li; Canning, Brendan J

    2016-06-01

    Bradykinin has been implicated as a mediator of the acute pathophysiological and inflammatory consequences of respiratory tract infections and in exacerbations of chronic diseases such as asthma. Bradykinin may also be a trigger for the coughing associated with these and other conditions. We have thus set out to evaluate the pharmacology of bradykinin-evoked coughing in guinea pigs. When inhaled, bradykinin induced paroxysmal coughing that was abolished by the bradykinin B2 receptor antagonist HOE 140. These cough responses rapidly desensitized, consistent with reports of B2 receptor desensitization. Bradykinin-evoked cough was potentiated by inhibition of both neutral endopeptidase and angiotensin-converting enzyme (with thiorphan and captopril, respectively), but was largely unaffected by muscarinic or thromboxane receptor blockade (atropine and ICI 192605), cyclooxygenase, or nitric oxide synthase inhibition (meclofenamic acid and N(G)-nitro-L-arginine). Calcium influx studies in bronchopulmonary vagal afferent neurons dissociated from vagal sensory ganglia indicated that the tachykinin-containing C-fibers arising from the jugular ganglia mediate bradykinin-evoked coughing. Also implicating the jugular C-fibers was the observation that simultaneous blockade of neurokinin2 (NK2; SR48968) and NK3 (SR142801 or SB223412) receptors nearly abolished the bradykinin-evoked cough responses. The data suggest that bradykinin induces coughing in guinea pigs by activating B2 receptors on bronchopulmonary C-fibers. We speculate that therapeutics targeting the actions of bradykinin may prove useful in the treatment of cough. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  4. Effect of bradykinin antagonists on bradykinin-induced plasma extravasation, venoconstriction, prostaglandin E2 release, nociceptor stimulation and contraction of the iris sphincter muscle in the rabbit.

    Science.gov (United States)

    Griesbacher, T.; Lembeck, F.

    1987-01-01

    1 The inhibition of the bradykinin-induced plasma extravasation by six bradykinin (Bk) antagonists was tested on rabbit skin. All of them showed inhibitory effects without an agonistic action in the does used. B4310 (Lys-Lys-3-Hyp-5,8-Thi-7-DPhe-Bk) was the most active antagonist and was therefore used in the subsequent experiments. 2 B4310 (5-500 nM) antagonized the bradykinin-induced reduction of the venous outflow from the rabbit isolated ear in dose-dependent manner without affecting the arterial vasoconstriction induced by angiotensin II. 3 The bradykinin-induced release of prostaglandin E2 (PGE2) from the perfused rabbit ear was reduced by 63% when B4310 (800 nM) was infused before, during and after the bradykinin injection. 4 Bradykinin was injected into the ear artery of anaesthetized rabbits and the reflex hypotensive response was used as indicator of the nociception. The response was antagonized by a local infusion of B4310 (50 and 500 nM). The antagonism was dose-dependent and reversible. The parallel shift of the dose-response curve to bradykinin suggests a competitive inhibition. However, B4310 did not antagonize acetylcholine-induced nociceptor stimulation. 5 B4310 inhibited bradykinin-induced stimulation of the trigeminal nerve which results in a substance P-mediated contraction of the iris sphincter muscle. A pA2 of 7.59 was calculated. B4310 did not inhibit capsaicin-induced contractions. 6 It is concluded that B4310 inhibits specifically five different actions of bradykinin which are related to its possible pathophysiological role. PMID:3479223

  5. Enhancement of bradykinin and resensitization of its B2 receptor.

    Science.gov (United States)

    Marcic, B; Deddish, P A; Jackman, H L; Erdös, E G

    1999-03-01

    We studied the enhancement of the effects of bradykinin B2 receptor agonists by agents that react with active centers of angiotensin-converting enzyme (ACE) independent of enzymatic inactivation. The potentiation and the desensitization and resensitization of B2 receptor were assessed by measuring [3H]arachidonic acid release and [Ca2+]i mobilization in Chinese hamster ovary cells transfected to express human ACE and B2 receptor, or in endothelial cells with constitutively expressed ACE and receptor. Administration of bradykinin or its ACE-resistant analogue desensitized the receptor, but it was resensitized (arachidonic acid release or [Ca2+]i mobilization) by agents such as enalaprilat (1 micromol/L). Enalaprilat was inactive in the absence of ACE expression. La3+ (100 micromol/L) inhibited the apparent resensitization, probably by blocking the entry of extracellular calcium. Enalaprilat resensitized the receptor via ACE to release arachidonic acid by bradykinin at a lower concentration (5 nmol/L) than required to mobilize [Ca2+]i (1 micromol/L). Monoclonal antibodies inhibiting the ACE N-domain active center and polyclonal antiserum potentiated bradykinin. The snake venom peptide BPP5a and metabolites of angiotensin and bradykinin (angiotensin-[1-9], angiotensin-[1-7], bradykinin-[1-8]; 1 micromol/L) enhanced arachidonic acid release by bradykinin. Angiotensin-(1-9) and -(1-7) also resensitized the receptor. Enalaprilat potentiated the bradykinin effect in cells expressing a mutant ACE with a single N-domain active site. Agents that reacted with a single active site, on the N-domain or on the C-domain, potentiated bradykinin not by blocking its inactivation but by inducing crosstalk between ACE and the receptor. Enalaprilat enhanced signaling via ACE by Galphai in lower concentration than by Galphaq-coupled receptor.

  6. Influence of bradykinin on diacylglycerol and phosphatidic acid accumulation in cultured bovine adrenal chromaffin cells.

    Science.gov (United States)

    Owen, P J; Boarder, M R

    1991-09-01

    Earlier studies have shown that bradykinin stimulated release of catecholamines from chromaffin cells by an influx of calcium through dihydropyridine-insensitive channels, and also that bradykinin stimulated (poly)phosphoinositide hydrolysis. To investigate membrane-bound second messengers in chromaffin cells, and to elucidate any role these may play in stimulus-secretion coupling, we have studied the influence of bradykinin on diacylglycerol and phosphatidic acid (PA). Using equilibrium labelling of primary cultures of chromaffin cells with [3H]arachidonic acid or [3H]glycerol, we found no influence of bradykinin (10 nM) on labelled diacylglycerol formation, either in the presence or absence of inhibitors of diacylglycerol lipase or kinase. However, when we used cells prelabelled with 32Pi for 2.5 h, we found that bradykinin produced a substantial stimulation of label found in PA, with an EC50 value of about 1 nM. This bradykinin stimulation of [32P]PA formation was only partially dependent on extracellular calcium, in contrast to the smaller response to nicotine, which was completely dependent on extracellular calcium. Short (10 min) pretreatment with tetradecanoylphorbol acetate (TPA) almost completely eliminated the bradykinin-stimulated formation of inositol phosphates, but failed to affect bradykinin stimulation of label in PA, suggesting that PA production in response to bradykinin is not downstream of phospholipase C activation. TPA alone failed to stimulate [32P]PA substantially, whereas long-term (24 or 48 h) treatment with TPA failed to attenuate the response to bradykinin. Diacylglycerol kinase inhibitors were also without effect on the bradykinin stimulation of [32P]PA. These results suggest that bradykinin stimulates PA production by a mechanism independent of the activation of protein kinase C.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Plasma bradykinin and early diabetic nephropathy lesions in type 1 diabetes mellitus.

    Directory of Open Access Journals (Sweden)

    Kevin M Wheelock

    Full Text Available To examine the association of bradykinin and related peptides with the development of diabetic nephropathy lesions in 243 participants with type 1 diabetes (T1D from the Renin-Angiotensin System Study who, at baseline, were normoalbuminuric, normotensive and had normal or increased glomerular filtration rate (GFR.Plasma concentrations of bradykinin and related peptides were measured at baseline by quantitative mass spectrometry. All participants were randomly assigned at baseline to receive placebo, enalapril or losartan during the 5 years between kidney biopsies. Kidney morphometric data were available from kidney biopsies at baseline and after 5 years. Relationships of peptides with changes in morphometric variables were assessed using multiple linear regression after adjustment for age, sex, diabetes duration, HbA1c, mean arterial pressure, treatment assignment and, for longitudinal analyses, baseline structure.Baseline median albumin excretion rate of study participants was 5.0 μg/min, and mean GFR was 128 mL/min/1.73 m2. After multivariable adjustment, higher plasma concentration of bradykinin (1-8 was associated with greater glomerular volume (partial r = 0.191, P = 0.019 and total filtration surface area (partial r = 0.211, P = 0.010, and higher bradykinin (1-7 and hyp3-bradykinin (1-7 were associated with lower cortical interstitial fractional volume (partial r = -0.189, P = 0.011; partial r = -0.164, P = 0.027 respectively. In longitudinal analyses, higher bradykinin was associated with preservation of surface density of the peripheral glomerular basement membrane (partial r = 0.162, P = 0.013, and for participants randomized to losartan, higher hyp3-bradykinin (1-8 was associated with more limited increase in cortical interstitial fractional volume (partial r = -0.291, P = 0.033.Higher plasma bradykinin and related peptide concentrations measured before clinical onset of diabetic nephropathy in persons with T1D were associated with

  8. Bradykinin-induced lung inflammation and bronchoconstriction: role in parainfluenze-3 virus-induced inflammation and airway hyperreactivity.

    Science.gov (United States)

    Broadley, Kenneth J; Blair, Alan E; Kidd, Emma J; Bugert, Joachim J; Ford, William R

    2010-12-01

    Inhaled bradykinin causes bronchoconstriction in asthmatic subjects but not nonasthmatics. To date, animal studies with inhaled bradykinin have been performed only in anesthetized guinea pigs and rats, where it causes bronchoconstriction through sensory nerve pathways. In the present study, airway function was recorded in conscious guinea pigs by whole-body plethysmography. Inhaled bradykinin (1 mM, 20 s) caused bronchoconstriction and influx of inflammatory cells to the lungs, but only when the enzymatic breakdown of bradykinin by angiotensin-converting enzyme and neutral endopeptidase was inhibited by captopril (1 mg/kg i.p.) and phosphoramidon (10 mM, 20-min inhalation), respectively. The bronchoconstriction and cell influx were antagonized by the B(2) kinin receptor antagonist 4-(S)-amino-5-(4-{4-[2,4-dichloro-3-(2,4-dimethyl-8-quinolyloxymethyl)phenylsulfonamido]-tetrahydro-2H-4-pyranylcarbonyl}piperazino)-5-oxopentyl](trimethyl)ammonium chloride hydrochloride (MEN16132) when given by inhalation (1 and 10 μM, 20 min) and are therefore mediated via B(2) kinin receptors. However, neither intraperitioneal MEN16132 nor the peptide B(2) antagonist icatibant, by inhalation, antagonized these bradykinin responses. Sensitization of guinea pigs with ovalbumin was not sufficient to induce airway hyperreactivity (AHR) to the bronchoconstriction by inhaled bradykinin. However, ovalbumin challenge of sensitized guinea pigs caused AHR to bradykinin and histamine. Infection of guinea pigs by nasal instillation of parainfluenza-3 virus produced AHR to inhaled histamine and lung influx of inflammatory cells. These responses were attenuated by the bradykinin B(2) receptor antagonist MEN16132 and H-(4-chloro)DPhe-2'(1-naphthylalanine)-(3-aminopropyl)guanidine (VA999024), an inhibitor of tissue kallikrein, the enzyme responsible for lung synthesis of bradykinin. These results suggest that bradykinin is involved in virus-induced inflammatory cell influx and AHR.

  9. Potentiation by aminopeptidase P of blood pressure response to bradykinin.

    OpenAIRE

    Kitamura, S; Carbini, L A; Carretero, O A; Simmons, W H; Scicli, A G

    1995-01-01

    We examined whether a specific aminopeptidase P (APP) inhibitor, apstatin, increases vasodepressor responses to bradykinin in anaesthetized rats, and whether it would augment blood pressure responses further after treatment with the angiotensin-converting enzyme inhibitor (ACEi), lisinopril. Apstatin doubled the maximum blood pressure response to bradykinin. The area under the curve (AUC), which incorporates both peak blood pressure changes and duration of response, was doubled in apstatin-tr...

  10. Bradykinin stimulation of nitric oxide production is not sufficient for gamma-globin induction

    Directory of Open Access Journals (Sweden)

    Čokić Vladan P.

    2014-01-01

    Full Text Available Introduction. Hydroxycarbamide, used in therapy of hemoglobinopathies, enhances nitric oxide (NO production both in primary human umbilical vein endothelial cells (HUVECs and human bone marrow endothelial cell line (TrHBMEC. Moreover, NO increases γ-globin and fetal hemoglobin levels in human erythroid progenitors. Objective. In order to find out whether simple physiologic stimulation of NO production by components of hematopoietic microenvironment can increase γ-globin gene expression, the effects of NO-inducer bradykinin were examined in endothelial cells. Methods. The study was performed in co-cultures of human erythroid progenitors, TrHBMEC and HUVECs by ozone-based chemiluminescent determination of NO and real-time quantitative RT-PCR. Results. In accordance with previous reports, the endogenous factor bradykinin increased endothelial cell production of NO in a dose- and time-dependent manner (0.1-0.6 μM up to 30 minutes. This induction of NO in HUVECs and TrHBMEC by bradykinin was blocked by competitive inhibitors of NO synthase (NOS, demonstrating NOS-dependence. It has been shown that bradykinin significantly reduced endothelial NOS (eNOS mRNA level and eNOS/Я-actin ratio in HUVEC (by twofold. In addition, bradykinin failed to increase γ-globin mRNA expression in erythroid progenitors only, as well as in co-culture studies of erythroid progenitors with TrHBMEC and HUVEC after 24 hours of treatment. Furthermore, bradykinin did not induce γ/β globin ratio in erythroid progenitors in co-cultures with HUVEC. Conclusion. Bradykinin mediated eNOS activation leads to short time and low NO production in endothelial cells, insufficient to induce γ-globin gene expression. These results emphasized the significance of elevated and extended NO production in augmentation of γ-globin gene expression. [Projekat Ministarstva nauke Republike Srbije, br. 175053

  11. Bradykinin B2 receptor-mediated phosphoinositide hydrolysis in bovine cultured tracheal smooth muscle cells.

    OpenAIRE

    Marsh, K. A.; Hill, S. J.

    1992-01-01

    1. Bovine tracheal smooth muscle cells were established in culture to study agonist-induced phosphoinositide (PI) hydrolysis in this tissue. 2. Bradykinin (0.1 nM-10 microM) evoked a concentration-dependent increase (log EC50 (M) = -9.4 +/- 0.2; n = 8) in the accumulation of total [3H]-inositol phosphates in cultured tracheal smooth muscle cells whereas the selective B1 receptor agonist des-Arg9-bradykinin (10 microM) was significantly less effective (16% of bradykinin maximal response; relat...

  12. Solute concentration affects bradykinin-mediated increases in renal prostaglandin E2

    International Nuclear Information System (INIS)

    Zenser, T.V.; Davis, E.S.; Rapp, N.S.; Davis, B.B.

    1981-01-01

    The effects of solute concentration on the bradykinin-mediated increase in inner medullary slice prostaglandin E2 (PGE2) synthesis were investigated. PG content was determined by specific RIA. Bradykinin stimulation was prevented by the addition of the following solutes to Krebs buffer: 1.0 M urea, 0.5 or 1.0 M NaCl, 0.5 or 1.0 M mannitol, 1.0 M urea plus 0.5 M NaCl, or 1.0 M mannitol plus 0.5 M NaCl. By contrast, basal PGE2 synthesis was increased by 1.0 M mannitol or by 1.0 M mannitol plus 0.5 M NaCl, but decreased by 1.0 M urea. Urea elicited a concentration-dependent, reversible inhibition of bradykinin stimulation, with 0.01 M urea being the lowest effective concentration. By contrast, basal PGE2 synthesis was only reduced at a urea concentration greater than 0.6 M. Arachidonic acid-mediated increases in both PGE2 and PGF2 alpha synthesis were not prevented by 1.0 M urea. The latter suggests that neither PG endoperoxide synthetase nor PG endoperoxide E isomerase are inhibited by urea. The data indicate that different hypertonic solutions have different effects on basal PG production, but all inhibit bradykinin stimulation

  13. Bradykinin or acetylcholine as vasodilators to test endothelial venous function in healthy subjects

    Directory of Open Access Journals (Sweden)

    Eneida R. Rabelo

    2008-01-01

    Full Text Available INTRODUCTION: The evaluation of endothelial function has been performed in the arterial bed, but recently evaluation within the venous system has also been explored. Endothelial function studies employ different drugs that act as endothelium-dependent vasodilatory response inductors. OBJECTIVES: The aim of this study is to compare the endothelium-dependent venous vasodilator response mediated by either acetylcholine or bradykinin in healthy volunteers. METHODS AND RESULTS: Changes in vein diameter after phenylephrine-induced venoconstriction were measured to compare venodilation induced by acetylcholine or bradykinin (linear variable differential transformer dorsal hand vein technique. We studied 23 healthy volunteers; 31% were male, and the subject had a mean age of 33 ± 8 years and a mean body mass index of 23 ± 2 kg/m². The maximum endothelium-dependent venodilation was similar for both drugs (p = 0.13, as well as the mean responses for each dose of both drugs (r = 0.96. The maximum responses to acetylcholine and bradykinin also had good agreement. CONCLUSION: There were no differences between acetylcholine and bradykinin as venodilators in this endothelial venous function investigation.

  14. Ketamine alleviates bradykinin-induced disruption of the mouse cerebrovascular endothelial cell-constructed tight junction barrier via a calcium-mediated redistribution of occludin polymerization

    International Nuclear Information System (INIS)

    Chen, Jui-Tai; Lin, Yi-Ling; Chen, Ta-Liang; Tai, Yu-Ting; Chen, Cheng-Yu; Chen, Ruei-Ming

    2016-01-01

    Highlights: • Ketamine could suppress bradykinin-induced intracellular calcium mobilization. • Ketamine induced B1R protein and mRNA expressions but did not change B2R protein levels. • Ketamine attenuated bradykinin-induced redistribution of occludin tight junctions. • Ketamine prevented bradykinin-induced breakage of the MCEC-constructed tight junction barrier. - Abstract: Following brain injury, a sequence of mechanisms leads to disruption of the blood-brain barrier (BBB) and subsequent cerebral edema, which is thought to begin with activation of bradykinin. Our previous studies showed that ketamine, a widely used intravenous anesthetic agent, can suppress bradykinin-induced cell dysfunction. This study further aimed to evaluate the protective effects of ketamine against bradykinin-induced disruption of the mouse cerebrovascular endothelial cell (MCEC)-constructed tight junction barrier and the possible mechanisms. Exposure of MCECs to bradykinin increased intracellular calcium (Ca 2+ ) concentrations in a time-dependent manner. However, pretreatment of MCECs with ketamine time- and concentration-dependently lowered the bradykinin-induced calcium influx. As to the mechanisms, although exposure of MCECs to ketamine induced bradykinin R1 receptor protein and mRNA expression, this anesthetic did not change levels of the bradykinin R2 receptor, a major receptor that responds to bradykinin stimulation. Bradykinin increased amounts of soluble occludin in MCECs, but pretreatment with ketamine alleviated this disturbance in occludin polymerization. Consequently, exposure to bradykinin decreased the transendothelial electronic resistance in the MCEC-constructed tight junction barrier. However, pretreatment with ketamine attenuated the bradykinin-induced disruption of the tight junction barrier. Taken together, this study shows that ketamine at a therapeutic concentration can protect against bradykinin-induced breakage of the BBB via suppressing calcium

  15. Dissociation of bradykinin-induced prostaglandin formation from phosphatidylinositol turnover in Swiss 3T3 fibroblasts: evidence for G protein regulation of phospholipase A2

    International Nuclear Information System (INIS)

    Burch, R.M.; Axelrod, J.

    1987-01-01

    In Swiss 3T3 fibroblasts bradykinin stimulated inositol phosphate (InsP) formation and prostaglandin E 2 (PGE 2 ) synthesis. The EC 50 values for stimulation of PGE 2 synthesis and InsP formation by bradykinin were similar, 200 pM and 275 pM, respectively. Guanosine-5'-[γ-thio]triphosphate stimulated PGE 2 synthesis and InsP formation, and guanosine-5'-[β-thio]diphosphate inhibited both PGE 2 synthesis and InsP formation stimulated by bradykinin. Neither bradykinin-stimulated PGE 2 synthesis nor InsP formation was sensitive to pertussis toxin. Phorbol ester, dexamethasone, and cycloheximide distinguished between bradykinin-stimulated PGE 2 synthesis and InsP formation. Phorbol 12-myristate 13-acetate enhanced bradykinin-stimulated PGE 2 synthesis but inhibited bradykinin-stimulated InsP formation. Pretreatment of cells with dexamethasone for 24 hr inhibited bradykinin-stimulated PGE 2 synthesis but was without effect on bradykinin-stimulated InsP formation. Cycloheximide inhibited on bradykinin-stimulated InsP formation. When bradykinin was added to cells prelabeled with [ 3 H] choline, the phospholipase A 2 products lysophosphatidylcholine and glycerophosphocholine were generated. The data suggest that bradykinin receptors are coupled by GTP-binding proteins to both phospholipase C and phospholipase A 2 and that phospholipase A 2 is the enzyme that catalyzes release of arachidonate for prostaglandin synthesis

  16. Acetylcholine and bradykinin trigger preconditioning in the heart through a pathway that includes Akt and NOS.

    Science.gov (United States)

    Krieg, Thomas; Qin, Qining; Philipp, Sebastian; Alexeyev, Mikhail F; Cohen, Michael V; Downey, James M

    2004-12-01

    In the rabbit heart, bradykinin and ACh trigger preconditioning by a mechanism involving ATP-sensitive potassium channel-dependent production of reactive oxygen species (ROS). Recent evidence indicates that the pathway by which bradykinin causes ROS generation includes nitric oxide synthase (NOS) and protein kinase G (PKG). On the other hand, Akt was shown to be essential for ACh to generate ROS. This study determines whether these two G-coupled receptor agonists indeed have similar signaling targets, i.e., whether Akt is involved in bradykinin's pathway and whether NOS is involved in ACh's pathway. Isolated adult rabbit cardiomyocytes were incubated for 15 min in reduced MitoTracker red, which becomes fluorescent only after exposure to ROS. Bradykinin (400 nM) and ACh (250 microM) caused a 51.4 +/- 14.8% and 39.8 +/- 11.7% increase, respectively, in ROS production (P hydrochloride (L-NIO, 5 microM). L-NIO also blocked the anti-infarct effect of ACh (550 microM) in isolated rabbit hearts exposed to 30 min of regional ischemia. We conclude that both bradykinin and ACh trigger ROS generation by sequentially activating Akt and NOS.

  17. Effects of the bradykinin antagonist B4310 on smooth muscles and blood pressure in the rat, and its enzymatic degradation.

    Science.gov (United States)

    Griesbacher, T.; Lembeck, F.; Saria, A.

    1989-01-01

    1. Six competitive bradykinin (Bk) antagonists were tested for their agonistic properties on the rat uterus. Five of these peptides showed agonistic effects only at concentrations at least two orders of magnitude higher than those of bradykinin. 2. The antagonistic potency of Lys-Lys-3-Hyp-5,8-Thi-7-DPhe-Bk (B4310) in the rat uterus (pA2 = 7.24) and in the rat duodenum (pA2 = 7.31) was very similar to that determined in an earlier study for the antagonism of the bradykinin-induced stimulation of the trigeminal nerve in the rabbit iris sphincter muscle preparation (pA2 = 7.59). 3. The fall in mean arterial blood pressure induced by i.a. injections of bradykinin was greatly reduced during an i.a. infusion of B4310, but not 10 min thereafter, which indicates a rapid inactivation of B4310 in vivo. Bacitracin possibly interferes with the enzymatic cleavage of B4310 but seems to have no effect on the degradation of bradykinin. 4. An i.a. infusion of captopril greatly enhanced the potency of bradykinin in inducing a fall in arterial blood pressure, confirming the important role of angiotensin converting enzyme in the cleavage of bradykinin. However, the design of this experiment did not allow conclusions about the effect of captopril on the degradation of B4310. 5. B4310 incubated with rat lung tissue disappeared from the incubation medium within a few minutes, i.e. as fast as bradykinin, which explains its short duration of action in vivo. Captopril partially inhibited the cleavage of both bradykinin and B4310.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2655805

  18. Exogenous Bradykinin Inhibits Tissue Factor Induction and Deep Vein Thrombosis via Activating the eNOS/Phosphoinositide 3-Kinase/Akt Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Ruolan Dong

    2015-11-01

    Full Text Available Background/Aims: Bradykinin has been shown to exert a variety of protective effects against vascular injury, and to reduce the levels of several factors involved in the coagulation cascade. A key determinant of thrombin generation is tissue factor (TF. However, whether bradykinin can regulate TF expression remains to be investigated. Methods: To study the effect of bradykinin on TF expression, we used Lipopolysaccharides (LPS to induce TF expression in human umbilical vein endothelial cells and monocytes. Transcript levels were determined by RT-PCR, protein abundance by Western blotting. In the in vivo study, bradykinin and equal saline were intraperitoneally injected into mice for three days ahead of inferior cava vein ligation that we took to induce thrombus formation, after which bradykinin and saline were injected for another two days. Eventually, the mice were sacrificed and tissues were harvested for tests. Results: Exogenous bradykinin markedly inhibited TF expression in mRNA and protein level induced by LPS in a dose-dependent manner. Moreover, the NO synthase antagonist L-NAME and PI3K inhibitor LY294002 dramatically abolished the inhibitory effects of bradykinin on tissue factor expression. PI3K/Akt signaling pathway activation induced by bradykinin administration reduced the activity of GSK-3ß and MAPK, and reduced NF-κB level in the nucleus, thereby inhibiting TF expression. Consistent with this, intraperitoneal injection of C57/BL6 mice with bradykinin also inhibited the thrombus formation induced by ligation of inferior vena cava. Conclusion: Bradykinin suppressed TF protein expression in human umbilical vein endothelial cells and monocytes in vitro; in line with this, it inhibits thrombus formation induced by ligation of inferior vena cava in vivo.

  19. Bradykinin and vasopressin activate phospholipase D in rat Leydig cells by a protein kinase C-dependent mechanism

    DEFF Research Database (Denmark)

    Vinggaard, Anne Marie; Hansen, Harald S.

    1993-01-01

    of PMA and vasopressin (AVP), PMA and bradykinin, or AVP and bradykinin produced no additive phosphatidylethanol or choline response, suggesting that AVP, bradykinin and PMA stimulated phospholipase D catalysed phosphatidylcholine hydrolysis by a similar protein kinase C-dependent mechanism. Furthermore......, LH (10 ng/ml), insulin (500 nmol/l), GH (100 ng/ml), interleukin-1ß (5 U/ml) and platelet-activating factor (200 nmol/l) were found not to activate phospholipase D, whereas the Ca ionophore A23187 (10 µmol/l) stimulated phosphatidylethanol formation, suggesting that Ca might be a regulator...

  20. Inhibitory effect of fentanyl citrate on the release of endothlin-1 induced by bradykinin in melanoma cells.

    Science.gov (United States)

    Andoh, Tsugunobu; Shinohara, Akira; Kuraishi, Yasushi

    2017-02-01

    Our previous study showed that the μ-opioid receptor agonist fentanyl citrate inhibits endothelin-1-and bradykinin-mediated pain responses in mice orthotopically inoculated with melanoma cells. We also demonstrated that bradykinin induces endothelin-1 secretion in melanoma cells. However, the analgesic mechanisms of fentanyl citrate remain unclear. Thus, the present study was conducted to determine whether fentanyl citrate affects bradykinin-induced endothelin-1 secretion in B16-BL6 melanoma cells. The amount of endothelin-1 in the culture medium was measured using an enzyme immunoassay. The expression of endothelin-1, kinin B 2 receptors, and μ-opioid receptors in B16-BL/6 melanoma cells was determined using immunocytochemistry. Fentanyl citrate inhibited bradykinin-induced endothelin-1 secretion. The inhibitory effect of fentanyl citrate on the secretion of endothelin-1 was attenuated by the μ-opioid receptor antagonist naloxone methiodide. The immunoreactivities of endothelin-1, kinin B 2 receptors, and μ-opioid receptors in B16-BL6 melanoma cells were observed. These results suggest that fentanyl citrate regulates bradykinin-induced endothelin-1 secretion through μ-opioid receptors in melanoma cells. Copyright © 2016 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  1. Direct protein-protein interaction between PLCγ1 and the bradykinin B2 receptor-Importance of growth conditions

    International Nuclear Information System (INIS)

    Duchene, Johan; Chauhan, Sharmila D.; Lopez, Frederic; Pecher, Christiane; Esteve, Jean-Pierre; Girolami, Jean-Pierre; Bascands, Jean-Loup; Schanstra, Joost P.

    2005-01-01

    Recently, we have described a novel protein-protein interaction between the G-protein coupled bradykinin B2 receptor and tyrosine phosphatase SHP-2 via an immunoreceptor tyrosine-based inhibition motif (ITIM) sequence located in the C-terminal part of the B2 receptor and the Src homology (SH2) domains of SHP-2. Here we show that phospholipase C (PLC)γ1, another SH2 domain containing protein, can also interact with this ITIM sequence. Using surface plasmon resonance analysis, we observed that PLCγ1 interacted with a peptide containing the phosphorylated form of the bradykinin B2 receptor ITIM sequence. In CHO cells expressing the wild-type B2 receptor, bradykinin-induced transient recruitment and activation of PLCγ1. Interestingly, this interaction was only observed in quiescent and not in proliferating cells. Mutation of the key ITIM residue abolished this interaction with and activation of PLCγ1. Finally we also identified bradykinin-induced PLCγ1 recruitment and activation in primary culture renal mesangial cells

  2. New bradykinin analogues modified with 1-aminocyclopentane-1-carboxylic acid

    Czech Academy of Sciences Publication Activity Database

    Labudda-Dawidowska, O.; Sobolewski, D.; Sleszyňska, M.; Derdowska, I.; Slaninová, Jiřina; Wierzba, T.; Prahl, A.

    2006-01-01

    Roč. 12, Supplement (2006), s. 180 ISSN 1075-2617. [European Peptide Symposium /29./. 03.09.2006-08.09.2006, Gdansk] Institutional research plan: CEZ:AV0Z40550506 Keywords : bradykinin * Apc Subject RIV: CC - Organic Chemistry

  3. DMPD: Multifunctional effects of bradykinin on glial cells in relation to potentialanti-inflammatory effects. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17669557 Multifunctional effects of bradykinin on glial cells in relation to potent... Epub 2007 Jun 27. (.png) (.svg) (.html) (.csml) Show Multifunctional effects of bradykinin on glial cells i...n relation to potentialanti-inflammatory effects. PubmedID 17669557 Title Multifunction

  4. Metabolically stable bradykinin B2 receptor agonists enhance transvascular drug delivery into malignant brain tumors by increasing drug half-life

    Directory of Open Access Journals (Sweden)

    Glen Daniel

    2009-05-01

    Full Text Available Abstract Background The intravenous co-infusion of labradimil, a metabolically stable bradykinin B2 receptor agonist, has been shown to temporarily enhance the transvascular delivery of small chemotherapy drugs, such as carboplatin, across the blood-brain tumor barrier. It has been thought that the primary mechanism by which labradimil does so is by acting selectively on tumor microvasculature to increase the local transvascular flow rate across the blood-brain tumor barrier. This mechanism of action does not explain why, in the clinical setting, carboplatin dosing based on patient renal function over-estimates the carboplatin dose required for target carboplatin exposure. In this study we investigated the systemic actions of labradimil, as well as other bradykinin B2 receptor agonists with a range of metabolic stabilities, in context of the local actions of the respective B2 receptor agonists on the blood-brain tumor barrier of rodent malignant gliomas. Methods Using dynamic contrast-enhanced MRI, the pharmacokinetics of gadolinium-diethyltriaminepentaacetic acid (Gd-DTPA, a small MRI contrast agent, were imaged in rodents bearing orthotopic RG-2 malignant gliomas. Baseline blood and brain tumor tissue pharmacokinetics were imaged with the 1st bolus of Gd-DTPA over the first hour, and then re-imaged with a 2nd bolus of Gd-DTPA over the second hour, during which normal saline or a bradykinin B2 receptor agonist was infused intravenously for 15 minutes. Changes in mean arterial blood pressure were recorded. Imaging data was analyzed using both qualitative and quantitative methods. Results The decrease in systemic blood pressure correlated with the known metabolic stability of the bradykinin B2 receptor agonist infused. Metabolically stable bradykinin B2 agonists, methionine-lysine-bradykinin and labradimil, had differential effects on the transvascular flow rate of Gd-DTPA across the blood-brain tumor barrier. Both methionine-lysine-bradykinin

  5. Two new bradykinin-related peptides from the venom of the social wasp Protopolybia exigua (Saussure).

    Science.gov (United States)

    Mendes, Maria Anita; Palma, Mario Sergio

    2006-11-01

    Two bradykinin-related peptides (Protopolybiakinin-I and Protopolybiakinin-II) were isolated from the venom of the social wasp Protopolybia exigua by RP-HPLC, and sequenced by Edman degradation method. Peptide sequences of Protopolybiakinin-I and Protopolybiakinin-II were DKNKKPIRVGGRRPPGFTR-OH and DKNKKPIWMAGFPGFTPIR-OH, respectively. Synthetic peptides with identical sequences to the bradykinin-related peptides and their biological functions were characterized. Protopolybiakinin-I caused less potent constriction of the isolated rat ileum muscles than bradykinin (BK). In addition, it caused degranulation of mast cells which was seven times more potent than BK. This peptide causes algesic effects due to the direct activation of B(2)-receptors. Protopolybiakinin-II is not an agonist of rat ileum muscle and had no algesic effects. However, Protopolybiakinin-II was found to be 10 times more potent as a mast cell degranulator than BK. The amino acid sequence of Protopolybiakinin-I is the longest among the known wasp kinins.

  6. Cyclooxygenase inhibitors attenuate bradykinin-induced vasoconstriction in septic isolated rat lungs

    NARCIS (Netherlands)

    Fischer, L. G.; Hollmann, M. W.; Horstman, D. J.; Rich, G. F.

    2000-01-01

    Cyclooxygenase (COX) products play an important role in modulating sepsis and subsequent endothelial injury. We hypothesized that COX inhibitors may attenuate endothelial dysfunction during sepsis, as measured by receptor-mediated bradykinin (BK)-induced vasoconstriction and/or receptor-independent

  7. Activation of bradykinin B2 receptor induced the inflammatory responses of cytosolic phospholipase A2 after the early traumatic brain injury.

    Science.gov (United States)

    Chao, Honglu; Liu, Yinlong; Lin, Chao; Xu, Xiupeng; Li, Zheng; Bao, Zhongyuan; Fan, Liang; Tao, Chao; Zhao, Lin; Liu, Yan; Wang, Xiaoming; You, Yongping; Liu, Ning; Ji, Jing

    2018-06-09

    Phospholipase A 2 is a known aggravator of inflammation and deteriorates neurological outcomes after traumatic brain injury (TBI), however the exact inflammatory mechanisms remain unknown. This study investigated the role of bradykinin and its receptor, which are known initial mediators within inflammation activation, as well as the mechanisms of the cytosolic phospholipase A 2 (cPLA 2 )-related inflammatory responses after TBI. We found that cPLA 2 and bradykinin B2 receptor were upregulated after a TBI. Rats treated with the bradykinin B2 receptor inhibitor LF 16-0687 exhibited significantly less cPLA 2 expression and related inflammatory responses in the brain cortex after sustaining a controlled cortical impact (CCI) injury. Both the cPLA 2 inhibitor and the LF16-0687 improved CCI rat outcomes by decreasing neuron death and reducing brain edema. The following TBI model utilized both primary astrocytes and primary neurons in order to gain further understanding of the inflammation mechanisms of the B2 bradykinin receptor and the cPLA 2 in the central nervous system. There was a stronger reaction from the astrocytes as well as a protective effect of LF16-0687 after the stretch injury and bradykinin treatment. The protein kinase C pathway was thought to be involved in the B2 bradykinin receptor as well as the cPLA 2 -related inflammatory responses. Rottlerin, a Protein Kinase C (PKC) δ inhibitor, decreased the activity of the cPLA 2 activity post-injury, and LF16-0687 suppressed both the PKC pathway and the cPLA 2 activity within the astrocytes. These results indicated that the bradykinin B2 receptor-mediated pathway is involved in the cPLA 2 -related inflammatory response from the PKC pathway. Copyright © 2018. Published by Elsevier B.V.

  8. Duration and distribution of experimental muscular hyperalgesia in humans following combined infusions of serotonin and bradykinin

    DEFF Research Database (Denmark)

    Babenko, Victor; Svensson, Peter; Graven-Nielsen, Thomas

    2000-01-01

    -infusions interval of 3 min. Infusions of isotonic saline (NaCl, 0.9%) were given as control. Pain intensity was continuously scored on a visual analogue scale (VAS), and subjects drew the distribution of the pain areas on an anatomical map. Pressure pain thresholds (PPTs) were assessed with an electronic algometer....... In addition, PPTs were significantly decreased (Peffect of bradykinin in producing experimental muscle pain and muscle hyperalgesia to mechanical stimuli. The combination of serotonin and bradykinin can produce muscle...

  9. Angiotensin-(1-7) augments endothelium-dependent relaxations of porcine coronary arteries to bradykinin by inhibiting angiotensin-converting enzyme 1.

    Science.gov (United States)

    Raffai, Gábor; Khang, Gilson; Vanhoutte, Paul M

    2014-05-01

    Angiotensin-converting enzyme 2 (ACE2) converts angiotensin II to angiotensin-(1-7) that activates Mas receptors, inhibits ACE1, and modulates bradykinin receptor sensitivity. This in vitro study compared the direct and indirect effects of angiotensin-(1-7), the ACE1 inhibitor captopril, and diminazene aceturate (DIZE) an alleged ACE2 activator in rings of porcine coronary arteries, by measuring changes of isometric tension. Angiotensin-(1-7), captopril, and DIZE did not cause significant changes in tension before or after desensitization of bradykinin receptors in preparations contracted with U46619. Bradykinin caused concentration-dependent and endothelium-dependent relaxations that were not affected by DIZE but were potentiated to a similar extent by angiotensin-(1-7) and captopril, given alone or in combination. Bradykinin responses potentiated by angiotensin-(1-7) and captopril were not affected by the BK1 antagonist SSR240612 and remained augmented in the presence of either N-nitro-L-arginine methyl ester hydrochloride plus indomethacin or TRAM-34 plus UCL-1684. ACE2 was identified in the coronary endothelium by immunofluorescence, but its basal activity was not influenced by DIZE. These results suggest that in coronary arteries, angiotensin-(1-7) and captopril both improves NO bioavailability and enhances endothelium-dependent hyperpolarization to bradykinin solely by ACE1 inhibition. Endothelial ACE2 activity cannot be increased by DIZE to produce local adequate amounts of angiotensin-(1-7) to influence vascular tone.

  10. MRP transporters as membrane machinery in the bradykinin-inducible export of ATP.

    Science.gov (United States)

    Zhao, Yumei; Migita, Keisuke; Sun, Jing; Katsuragi, Takeshi

    2010-04-01

    Adenosine triphosphate (ATP) plays the role of an autocrine/paracrine signal molecule in a variety of cells. So far, however, the membrane machinery in the export of intracellular ATP remains poorly understood. Activation of B2-receptor with bradykinin-induced massive release of ATP from cultured taenia coli smooth muscle cells. The evoked release of ATP was unaffected by gap junction hemichannel blockers, such as 18alpha-glycyrrhetinic acid and Gap 26. Furthermore, the cystic fibrosis transmembrane regulator (CFTR) coupled Cl(-) channel blockers, CFTR(inh)172, 5-nitro-2-(3-phenylpropylamino)-benzoic acid, Gd3(+) and glibenclamide, failed to suppress the export of ATP by bradykinin. On the other, the evoked release of ATP was greatly reduced by multidrug resistance protein (MRP) transporter inhibitors, MK-571, indomethacin, and benzbromarone. From western blotting analysis, blots of MRP 1 protein only, but not MRP 2 and MRP 3 protein, appeared at 190 kD. However, the MRP 1 protein expression was not enhanced after loading with 1 muM bradykinin for 5 min. Likewise, niflumic acid and fulfenamic acid, Ca2(+)-activated Cl(-) channel blockers, largely abated the evoked release of ATP. The possibility that the MRP transporter system couples with Ca2(+)-activated Cl(-) channel activities is discussed here. These findings suggest that MRP transporters, probably MRP 1, unlike CFTR-Cl(-) channels and gap junction hemichannels, may contribute as membrane machinery to the export of ATP induced by G-protein-coupled receptor stimulation.

  11. Effect of 3-arylamino-1,2-dihydro-3H-1,4-benzodiazepine-2-ones on the bradykinin-induced smooth muscle contraction

    Directory of Open Access Journals (Sweden)

    P. A. Virych

    2017-01-01

    Full Text Available Damage to tissue, inflammation and disruption of normal functioning of organs are often accompanied by pain. In pain perceptions, the kinin-kallikrein system with bradykinin as mediator is very important. Regulatory activity of the kinin-kallikrein system permits the control of inflammation, pain, vascular tone and other functions. A new group of substances that may used for this purpose are 3-substituted 1,4-benzdiazepinones. We analyzed the effect of 3-aryl amino-1,2-dihydro-3H-1,4-benzodiazepine-2-ones derivatives on the normalized maximal rate of bradykinin-induced smooth muscle contraction of the stomach in the presence of calcium channel blockers verapamil (1 μM and gadolinium (300 μM. The levels of bradykinin and 3-arylamino-1,2-dihydro-3H-1,4-benzodiazepine-2-ones in the incubation solution were 10–6 M. Data processing on the dynamics of contraction was performed according to the method of T. Burdyha and S. Kosterin. Statistically significant changes were found for MX-1828. This compound reduced the maximal normalized rate of bradykinin-induced smooth muscle contraction in the presence of Gd3+ and verapamil by 19.3% and 32.0%, respectively. Also, MX-1828 demonstrated effects similar to those of the competitive inhibitor bradykinin B2-receptor – des-Arg9-bradykinin-acetate, which is possible evidence of its interaction with the receptor or signal transduction pathways. MX-1828 additionally reduced the maximum normalized rate of relaxation by 6.2% in the presence of Gd3+. This effect was demonstrated for MX-1906 in the presence of verapamil with additional reduction of the maximal normalized rate of relaxation, which was 26.4%. The results suggest the presence of inhibitory interaction between MX-1828 and kinin-kallikrein system receptors or signal transduction pathways. The effects which were found for MX-1906 require further studies to clarify the mechanisms of influence on bradykinin-induced smooth muscle contraction.

  12. Bradykinin receptor blockade restores the baroreflex control of renal sympathetic nerve activity in cisplatin-induced renal failure rats.

    Science.gov (United States)

    Abdulla, M H; Duff, M; Swanton, H; Johns, E J

    2016-11-01

    This study investigated the effect of renal bradykinin B1 and B2 receptor blockade on the high- and low-pressure baroreceptor reflex regulation of renal sympathetic nerve activity (RSNA) in rats with cisplatin-induced renal failure. Cisplatin (5 mg/kg) or saline was given intraperitoneally 4 days prior to study. Following chloralose/urethane anaesthesia, rats were prepared for measurement of mean arterial pressure (MAP), heart rate and RSNA and received intrarenal infusions of either Lys-[des-Arg 9 , Leu 8 ]-bradykinin (LBK), a bradykinin B1 receptor blocker, or bradyzide (BZ), a bradykinin B2 receptor blocker. RSNA baroreflex gain curves and renal sympatho-inhibitory responses to volume expansion (VE) were obtained. In the control and renal failure groups, basal MAP (89 ± 3 vs. 80 ± 8 mmHg) and RSNA (2.0 ± 0.3 vs. 1.7 ± 0.6 μV.s) were similar but HR was lower in the latter group (331 ± 8 vs. 396 ± 9 beats/min). The baroreflex gain for RSNA in the renal failure rats was 39% (P renal failure rats. Intrarenal LBK infusion in the renal failure rats normalized the VE induced renal sympatho-inhibition whereas BZ only partially restored the response. These findings suggest that pro-inflammatory bradykinin acting at different receptors within the kidney generates afferent neural signals which impact differentially within the central nervous system on high- and low-pressure regulation of RSNA. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  13. Successful treatment of hereditary angioedema with bradykinin B2-receptor antagonist icatibant.

    Science.gov (United States)

    Krause, Karoline; Metz, Martin; Zuberbier, Torsten; Maurer, Marcus; Magerl, Markus

    2010-04-01

    The bradykinin B2 receptor antagonist icatibant has recently become available for treating hereditary angioedema. Our observations demonstrate icatibant to be effective and safe for the treatment of both, abdominal and cutaneous attacks in a practice setting beyond clinical studies.

  14. Receptor stimulated formation of inositol phosphates in cultures of bovine adrenal medullary cells: the effects of bradykinin, bombesin and neurotensin.

    Science.gov (United States)

    Bunn, S J; Marley, P D; Livett, B G

    1990-04-01

    The ability of a number of drugs and neuropeptides to stimulate phosphoinositide metabolism in cultured bovine adrenal medullary cells has been assessed. Low concentrations (10 nM) of angiotensin II, bradykinin, histamine, arginine-vasopressin, and bombesin, and high (10 microM) concentrations of oxytocin, prostaglandins E1, and E2, beta-endorphin, and neurotensin stimulated significant accumulation of [3H]inositol phosphates in adrenal medullary cells preloaded with [3H)]inositol. Bradykinin stimulated a significant response at concentration as low as 10pM, with an EC50 of approximately 0.5 nM. The response was markedly inhibited by the bradykinin B2 antagonist [Thi5,8,D-Phe7] bradykinin but not the B1 antagonist [Des-Arg9,Leu8] bradykinin. Higher concentrations of bombesin and neurotensin were required to elicit a response (10 nM and 10 microM respectively). The bombesin response was sensitive to inhibition by the bombesin antagonist [D-Arg1,D-Pro2,D-Trp7,9Leu11]-substance P. In contrast, the neurotensin response was not reduced by the NT1 antagonist [D-Trp11]-neurotensin. These results indicate there are a number of agents that can stimulate phosphatidylinositide hydrolysis in the adrenal medullary cells by acting on different classes of receptors. Such a range of diverse agonists that stimulate inositol phosphate formation will facilitate further analysis of the phosphatidylinositide breakdown in chromaffin cell function.

  15. Binding modes of dihydroquinoxalinones in a homology model of bradykinin receptor 1.

    Science.gov (United States)

    Ha, Sookhee N; Hey, Pat J; Ransom, Rick W; Harrell, C Meacham; Murphy, Kathryn L; Chang, Ray; Chen, Tsing-Bau; Su, Dai-Shi; Markowitz, M Kristine; Bock, Mark G; Freidinger, Roger M; Hess, Fred J

    2005-05-27

    We report the first homology model of human bradykinin receptor B1 generated from the crystal structure of bovine rhodopsin as a template. Using an automated docking procedure, two B1 receptor antagonists of the dihydroquinoxalinone structural class were docked into the receptor model. Site-directed mutagenesis data of the amino acid residues in TM1, TM3, TM6, and TM7 were incorporated to place the compounds in the binding site of the homology model of the human B1 bradykinin receptor. The best pose in agreement with the mutation data was selected for detailed study of the receptor-antagonist interaction. To test the model, the calculated antagonist-receptor binding energy was correlated with the experimentally measured binding affinity (K(i)) for nine dihydroquinoxalinone analogs. The model was used to gain insight into the molecular mechanism for receptor function and to optimize the dihydroquinoxalinone analogs.

  16. Combination cancer chemotherapy with one compound: pluripotent bradykinin antagonists.

    Science.gov (United States)

    Stewart, John M; Gera, Lajos; Chan, Daniel C; York, Eunice J; Simkeviciene, Vitalija; Bunn, Paul A; Taraseviciene-Stewart, Laimute

    2005-08-01

    Lung and prostate cancers are major health problems worldwide. Treatments with standard chemotherapy agents are relatively ineffective. Combination chemotherapy gives better treatment than a single agent because the drugs can inhibit the cancer in different pathways, but new therapeutic agents are needed for the treatment of both tumor types. Bradykinin (BK) antagonists offer advantages of combination therapy in one compound. These promising multitargeted anti-cancer compounds selectively stimulate apoptosis in cancers and also inhibit both angiogenesis and matrix metalloprotease (MMP) action in treated lung and prostate tumors in nude mice. The highly potent, metabolism-resistant bradykinin antagonist peptide dimer, B-9870 [SUIM-(DArg-Arg-Pro-Hyp-Gly-Igl-Ser-DIgl-Oic-Arg)2] (SUIM=suberimidyl; Hyp=4-hydroxyproline; Igl=alpha-(2-indanyl)glycine; Oic=octahydroindole-2-carboxylic acid) and its non-peptide mimetic, BKM-570 [2,3,4,5,6-pentafluorocinnamoyl-(o-2,6-dichlorobenzyl)-L-tyrosine-N-(4-amino-2,2,6,6-tetramethylpiperidyl)amide] are superior to the widely used but toxic chemotherapeutic drugs cisplatin and taxotere. In certain combinations, they act synergistically with standard anti-cancer drugs. Due to its structure and biological activity, BKM-570 is an attractive lead compound for derivatization and evaluation for lung and prostate cancer drugs.

  17. New acylated bradykinin analogues: effect on rat blood pressure and rat uterus

    Czech Academy of Sciences Publication Activity Database

    Dawidowska, O.; Prahl, A.; Wierzba, T.; Nowakowski, L.; Kowalczyk, W.; Slaninová, Jiřina; Lammek, B.

    2005-01-01

    Roč. 11, - (2005), s. 436-439 ISSN 1075-2617 Grant - others:SCSR(PL) 0160/T09/2004/26; SCSR(PL) DS8000-5-0023-4 Institutional research plan: CEZ:AV0Z4055905 Keywords : bradykinin * B2 antagonists * rat blood pressure assay Subject RIV: CE - Biochemistry Impact factor: 1.803, year: 2005

  18. Ranakinestatin-PPF from the skin secretion of the Fukien gold-striped pond frog, Pelophylax plancyi fukienensis: a prototype of a novel class of bradykinin B2 receptor antagonist peptide from ranid frogs.

    Science.gov (United States)

    Ma, Jie; Luo, Yu; Ge, Lilin; Wang, Lei; Zhou, Mei; Zhang, Yingqi; Duan, Jinao; Chen, Tianbao; Shaw, Chris

    2014-01-01

    The defensive skin secretions of many amphibians are a rich source of bradykinins and bradykinin-related peptides (BRPs). Members of this peptide group are also common components of reptile and arthropod venoms due to their multiple biological functions that include induction of pain, effects on many smooth muscle types, and lowering systemic blood pressure. While most BRPs are bradykinin receptor agonists, some have curiously been found to be exquisite antagonists, such as the maximakinin gene-related peptide, kinestatin-a specific bradykinin B2-receptor antagonist from the skin of the giant fire-bellied toad, Bombina maxima. Here, we describe the identification, structural and functional characterization of a heptadecapeptide (DYTIRTRLHQGLSRKIV), named ranakinestatin-PPF, from the skin of the Chinese ranid frog, Pelophylax plancyi fukienensis, representing a prototype of a novel class of bradykinin B2-receptor specific antagonist. Using a preconstricted preparation of rat tail arterial smooth muscle, a single dose of 10(-6)M of the peptide effectively inhibited the dose-dependent relaxation effect of bradykinin between 10(-11)M and 10(-5)M and subsequently, this effect was pharmacologically-characterized using specific bradykinin B1- (desArg-HOE140) and B2-receptor (HOE140) antagonists; the data from which demonstrated that the antagonism of the novel peptide was mediated through B2-receptors. Ranakinestatin-PPF-thus represents a prototype of an amphibian skin peptide family that functions as a bradykinin B2-receptor antagonist herein demonstrated using mammalian vascular smooth muscle.

  19. Synthesis of bradykinin labelled with tritium on the phenylalanine residue in position 5

    International Nuclear Information System (INIS)

    Seproedi, J.; Teplan, I.; Medzihradszky, K.

    1976-01-01

    The polypeptide hormone bradykinine, labelled with tritium in the phenylalanine chain in position 5, has been prepared. The preparation method is described; the tritium atom is incorporated in the last step of the synthesis. The hormone can therefore be labelled immediately before use, which avoids autoradiolysis during storage

  20. Factor XII-independent activation of the bradykinin-forming cascade

    DEFF Research Database (Denmark)

    Joseph, Kusumam; Tholanikunnel, Baby G; Bygum, Anette

    2013-01-01

    and assayed for kallikrein formation. C1-INH was removed from factor XII-deficient plasma by means of immunoadsorption. RESULTS: We demonstrate that prekallikrein-HK will activate to kallikrein in phosphate-containing buffers and that the rate is further accelerated on addition of heat shock protein 90...... the prekallikrein-HK complex to prevent HK cleavage either by prekallikrein or by prekallikrein-HK autoactivation to generate kallikrein. In patients with hereditary angioedema, kallikrein and bradykinin formation can occur without invoking factor XII activation, although the kallikrein formed can rapidly activate...

  1. Ranakinestatin-PPF from the Skin Secretion of the Fukien Gold-Striped Pond Frog, Pelophylax plancyi fukienensis: A Prototype of a Novel Class of Bradykinin B2 Receptor Antagonist Peptide from Ranid Frogs

    Directory of Open Access Journals (Sweden)

    Jie Ma

    2014-01-01

    Full Text Available The defensive skin secretions of many amphibians are a rich source of bradykinins and bradykinin-related peptides (BRPs. Members of this peptide group are also common components of reptile and arthropod venoms due to their multiple biological functions that include induction of pain, effects on many smooth muscle types, and lowering systemic blood pressure. While most BRPs are bradykinin receptor agonists, some have curiously been found to be exquisite antagonists, such as the maximakinin gene-related peptide, kinestatin—a specific bradykinin B2-receptor antagonist from the skin of the giant fire-bellied toad, Bombina maxima. Here, we describe the identification, structural and functional characterization of a heptadecapeptide (DYTIRTRLHQGLSRKIV, named ranakinestatin-PPF, from the skin of the Chinese ranid frog, Pelophylax plancyi fukienensis, representing a prototype of a novel class of bradykinin B2-receptor specific antagonist. Using a preconstricted preparation of rat tail arterial smooth muscle, a single dose of 10−6 M of the peptide effectively inhibited the dose-dependent relaxation effect of bradykinin between 10−11 M and 10−5 M and subsequently, this effect was pharmacologically-characterized using specific bradykinin B1- (desArg-HOE140 and B2-receptor (HOE140 antagonists; the data from which demonstrated that the antagonism of the novel peptide was mediated through B2-receptors. Ranakinestatin—PPF—thus represents a prototype of an amphibian skin peptide family that functions as a bradykinin B2-receptor antagonist herein demonstrated using mammalian vascular smooth muscle.

  2. Peptide IC-20, encoded by skin kininogen-1 of the European yellow-bellied toad, Bombina variegata, antagonizes bradykinin-induced arterial smooth muscle relaxation

    Directory of Open Access Journals (Sweden)

    Mu Yang

    2011-01-01

    Full Text Available Objectives: The objectives were to determine if the skin secretion of the European yellow-bellied toad (Bombina variegata, in common with other related species, contains a bradykinin inhibitor peptide and to isolate and structurally characterize this peptide. Materials and Methods: Lyophilized skin secretion obtained from this toad was subjected to reverse phase HPLC fractionation with subsequent bioassay of fractions for antagonism of the bradykinin activity using an isolated rat tail artery smooth muscle preparation. Subsequently, the primary structure of the peptide was established by a combination of microsequencing, mass spectroscopy, and molecular cloning, following which a synthetic replicate was chemically synthesised for bioassay. Results: A single peptide of molecular mass 2300.92 Da was resolved in HPLC fractions of skin secretion and its primary structure determined as IYNAIWP-KH-NK-KPGLL-. Database interrogation with this sequence indicated that this peptide was encoded by skin kininogen-1 previously cloned from B. variegata. The blank cycles were occupied by cysteinyl (C residues and the peptide was located toward the C-terminus of the skin kininogen, and flanked N-terminally by a classical -KR- propeptide convertase processing site. The peptide was named IC-20 in accordance (I = N-terminal isoleucine, C = C-terminal cysteine, 20 = number of residues. Like the natural peptide, its synthetic replicate displayed an antagonism of bradykinin-induced arterial smooth muscle relaxation. Conclusion: IC-20 represents a novel bradykinin antagonizing peptide from amphibian skin secretions and is the third such peptide found to be co-encoded with bradykinins within skin kininogens.

  3. Analgesic and anti-inflammatory actions on bradykinin route of a polysulfated fraction from alga Ulva lactuca.

    Science.gov (United States)

    de Araújo, Ianna Wivianne Fernandes; Rodrigues, José Ariévilo Gurgel; Quinderé, Ana Luíza Gomes; Silva, Jane de Fátima Teixeira; Maciel, Gabrielle de Freitas; Ribeiro, Natássia Albuquerque; de Sousa Oliveira Vanderlei, Edfranck; Ribeiro, Kátia Alves; Chaves, Hellíada Vasconcelos; Pereira, Karuza Maria Alves; Bezerra, Mirna Marques; Benevides, Norma Maria Barros

    2016-11-01

    We investigated structural features of polysaccharides from Ulva lactuca and their effects on the classical models of nociception and inflammation. Crude extract was obtained by enzymatic digestion and isolated by ion exchange chromatography on DEAE-cellulose. The fraction with higher yield was used in the tests (SP-Ul). Swiss mice received SP-Ul (1, 3 or 9mg/kg; i.v.), 30min prior to injection of 0.8%-acetic acid or 1%-formalin or prior to a thermal stimulus. At same doses, SP-Ul was tested on Wistar rats on paw edema elicited by different irritants (carrageenan, dextran, bradykinin, histamine or serotonin). The results of infrared characterization indicated the presence of hydroxyl groups, sulfate, uronic acid and glycosidic linkages in all SP fractions spectrums. SP-Ul decreased significantly the antinociception in response to acetic acid or formalin (second phase), but not in the hot-plate test, suggesting that its analgesia occurs through a peripheral mechanism. SP-Ul did not reduce carrageenan-induced paw edema as supported by both histological and myeloperoxidase activity assessments. However, SP-Ul (1mg/kg; s.c.) reduced dextran-elicited edema, showing vascular anti-inflammatory effect, with bradykinin as major target because it did not reduce histamine- and serotonin-induced paw edemas. Therefore, SP-Ul acts on bradykinin pathway in its antinociceptive and anti-inflammatory responses. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. PKA and Epac cooperate to augment bradykinin-induced interleukin-8 release from human airway smooth muscle cells

    Directory of Open Access Journals (Sweden)

    Halayko Andrew J

    2009-09-01

    Full Text Available Abstract Background Airway smooth muscle contributes to the pathogenesis of pulmonary diseases by secreting inflammatory mediators such as interleukin-8 (IL-8. IL-8 production is in part regulated via activation of Gq-and Gs-coupled receptors. Here we study the role of the cyclic AMP (cAMP effectors protein kinase A (PKA and exchange proteins directly activated by cAMP (Epac1 and Epac2 in the bradykinin-induced IL-8 release from a human airway smooth muscle cell line and the underlying molecular mechanisms of this response. Methods IL-8 release was assessed via ELISA under basal condition and after stimulation with bradykinin alone or in combination with fenoterol, the Epac activators 8-pCPT-2'-O-Me-cAMP and Sp-8-pCPT-2'-O-Me-cAMPS, the PKA activator 6-Bnz-cAMP and the cGMP analog 8-pCPT-2'-O-Me-cGMP. Where indicated, cells were pre-incubated with the pharmacological inhibitors Clostridium difficile toxin B-1470 (GTPases, U0126 (extracellular signal-regulated kinases ERK1/2 and Rp-8-CPT-cAMPS (PKA. The specificity of the cyclic nucleotide analogs was confirmed by measuring phosphorylation of the PKA substrate vasodilator-stimulated phosphoprotein. GTP-loading of Rap1 and Rap2 was evaluated via pull-down technique. Expression of Rap1, Rap2, Epac1 and Epac2 was assessed via western blot. Downregulation of Epac protein expression was achieved by siRNA. Unpaired or paired two-tailed Student's t test was used. Results The β2-agonist fenoterol augmented release of IL-8 by bradykinin. The PKA activator 6-Bnz-cAMP and the Epac activator 8-pCPT-2'-O-Me-cAMP significantly increased bradykinin-induced IL-8 release. The hydrolysis-resistant Epac activator Sp-8-pCPT-2'-O-Me-cAMPS mimicked the effects of 8-pCPT-2'-O-Me-cAMP, whereas the negative control 8-pCPT-2'-O-Me-cGMP did not. Fenoterol, forskolin and 6-Bnz-cAMP induced VASP phosphorylation, which was diminished by the PKA inhibitor Rp-8-CPT-cAMPS. 6-Bnz-cAMP and 8-pCPT-2'-O-Me-cAMP induced GTP

  5. Exercise-induced increase in interstitial bradykinin and adenosine concentrations in skeletal muscle and peritendinous tissue in humans

    DEFF Research Database (Denmark)

    Langberg, H; Bjørn, C; Boushel, Robert Christopher

    2002-01-01

    been established. Microdialysis (molecular mass cut-off 5 kDa) was performed simultaneously in calf muscle and peritendinous Achilles tissue at rest and during 10 min periods of incremental (0.75 W, 2 W, 3.5 W and 4.75 W) dynamic plantar flexion exercise in 10 healthy individuals (mean age 27 years...... increased both in muscle (from 0.48 +/- 0.07 micromol l(-1) to 1.59 +/- 0.35 micromol l(-1); P increases the interstitial concentrations......Bradykinin is known to cause vasodilatation in resistance vessels and may, together with adenosine, be an important regulator of tissue blood flow during exercise. Whether tissue concentrations of bradykinin change with exercise in skeletal muscle and tendon-related connective tissue has not yet...

  6. Hereditary angioedema: a bradykinin-mediated swelling disorder.

    Science.gov (United States)

    Björkqvist, Jenny; Sala-Cunill, Anna; Renné, Thomas

    2013-03-01

    Edema is tissue swelling and is a common symptom in a variety of diseases. Edema form due to accumulation of fluids, either through reduced drainage or increased vascular permeability. There are multiple vascular signalling pathways that regulate vessel permeability. An important mediator that increases vascular leak is the peptide hormone bradykinin, which is the principal agent in the swelling disorder hereditary angioedema. The disease is autosomal dominant inherited and presents clinically with recurrent episodes of acute swelling that can be life-threatening involving the skin, the oropharyngeal, laryngeal, and gastrointestinal mucosa. Three different types of hereditary angiodema exist in patients. The review summarises current knowledge on the pathophysiology of hereditary angiodema and focuses on recent experimental and pharmacological findings that have led to a better understanding and new treatments for the disease.

  7. Novel analogues of bradykinin conformationally restricted in the C-terminal part of the molecule

    Czech Academy of Sciences Publication Activity Database

    Sleszynska, M.; Wierzba, T. H.; Malinowski, K.; Borovičková, Lenka; Maluch, I.; Sobolewski, D.; Lammek, B.; Slaninová, Jiřina; Prahl, A.

    2011-01-01

    Roč. 17, č. 5 (2011), s. 366-372 ISSN 1075-2617 Institutional research plan: CEZ:AV0Z40550506 Keywords : bradykinin analogues * B2 receptor antagonists * sterically restricted residue * in vivo rat blood pressure test * in vitro rat uterus Subject RIV: CC - Organic Chemistry Impact factor: 1.799, year: 2011

  8. Identification and functional analysis of a novel bradykinin inhibitory peptide in the venoms of New World Crotalinae pit vipers

    International Nuclear Information System (INIS)

    James Graham, Robert Leslie; Graham, Ciaren; McClean, Stephen; Chen, Tianbao; O'Rourke, Martin; Hirst, David; Theakston, David; Shaw, Chris

    2005-01-01

    A novel undecapeptide has been isolated and structurally characterized from the venoms of three species of New World pit vipers from the subfamily, Crotalinae. These include the Mexican moccasin (Agkistrodon bilineatus), the prairie rattlesnake (Crotalus viridis viridis), and the South American bushmaster (Lachesis muta). The peptide was purified from all three venoms using a combination of gel permeation chromatography and reverse-phase HPLC. Automated Edman degradation sequencing and MALDI-TOF mass spectrometry established its peptide primary structure as: Thr-Pro-Pro-Ala-Gly-Pro-Asp-Val-Gly-Pro-Arg-OH, with a non-protonated molecular mass of 1063.18 Da. A synthetic replicate of the peptide was found to be an antagonist of bradykinin action at the rat vascular B2 receptor. This is the first bradykinin inhibitory peptide isolated from snake venom. Database searching revealed the peptide to be highly structurally related (10/11 residues) with a domain residing between the bradykinin-potentiating peptide and C-type natriuretic peptide domains of a recently cloned precursor from tropical rattlesnake (Crotalus durissus terrificus) venom gland. BIP thus represents a novel biological entity from snake venom

  9. Bradykinin-activated transmembrane signals are coupled via N/sub o/ or N/sub i/ to production of inositol 1,4,5-trisphosphate, a second messenger in NG108-15 neuroblastoma-glioma hybrid cells

    International Nuclear Information System (INIS)

    Higashida, H.; Streaty, R.A.; Klee, W.; Nirenberg, M.

    1986-01-01

    The addition of bradykinin to NG108-15 cells results in a transient hyperpolarization followed by prolonged cell depolarization. Injection of inositol 1,4,5-trisphosphate or Ca 2+ into the cytoplasm of NG108-15 cells also elicits cell hyperpolarization followed by depolarization. Tetraethylammonium ions inhibit the hyperpolarizing response of cells to bradykinin or inositol 1,4,5-trisphosphate. Thus, the hyperpolarizing phase of the cell response may be due to inositol 1,4,5-trisphosphate-dependent release of stored 45 Ca-labelled Ca 2+ into the cytoplasm, which activates Ca 2+ -dependent K + channels. The depolarizing phase of the cell response to bradykinin is due largely to inhibition of M channels, thereby decreasing the rate of K + efflux from cells and, to a lesser extent, to activation of Ca 2+ -dependent ion channels and Ca 2+ channels. In contrast, injection of inositol 1,4,5-trisphosphate or Ca 2+ into the cytosol did not alter M channel activity. Incubation of NG108-15 cells with pertussis toxin inhibits bradykinin-dependent cell hyperpolarization and depolarization. Bradykinin stimulates low K/sub m/ GTPase activity and inhibits adenylate cyclase in NG108-15 membrane preparations but not in membranes prepared from cells treated with pertussis toxin. These results show that [bradykinin-receptor] complexes interact with N/sub o/ or N/sub i/ and suggest that N/sub o/ and/or N/sub i/ mediate the transduction of signals from bradykinin receptors to phospholipase C and adenylate cyclase

  10. Ranakinestatin-PPF from the Skin Secretion of the Fukien Gold-Striped Pond Frog, Pelophylax plancyi fukienensis: A Prototype of a Novel Class of Bradykinin B2 Receptor Antagonist Peptide from Ranid Frogs

    OpenAIRE

    Ma, Jie; Luo, Yu; Ge, Lilin; Wang, Lei; Zhou, Mei; Zhang, Yingqi; Duan, Jinao; Chen, Tianbao; Shaw, Chris

    2014-01-01

    The defensive skin secretions of many amphibians are a rich source of bradykinins and bradykinin-related peptides (BRPs). Members of this peptide group are also common components of reptile and arthropod venoms due to their multiple biological functions that include induction of pain, effects on many smooth muscle types, and lowering systemic blood pressure. While most BRPs are bradykinin receptor agonists, some have curiously been found to be exquisite antagonists, such as the maximakinin ge...

  11. Angiotensin and bradykinin interactions with phospholipids

    International Nuclear Information System (INIS)

    Elliott, M.E.; Goodfriend, T.L.

    1979-01-01

    Reversible interactions were demonstrated between some phospholipids and some polypeptides related to angiotensin and bradykinin. The extent of the interaction was dependent on the structures of the lipid and peptide. The naturally occurring compounds that interacted most avidly were cardiolipin and (des-Asp 1 )-angiotensins. The apparent dissociation constant of this complex in chloroform was 10 -5 M. The complex contained more than one cardiolipin molecule/molecule of peptide. Kinins interacted most strongly with lecithin. The phospholipids altered the chromatographic behaviour of radioiodinated derivatives of the polypeptides, and solubilized radioactive and unlabeled polypeptides in chloroform. In aqueous media, cardiolipin suspensions preferentially bound (des-Asp 1 )-angiotensin II, and inhibited its binding by antibody. The interactions were sensitive to pH and cations in the aqueous phase, and were reversed by some reagents added to the organic phase. These interactions have direct implications for binding reactions of peptides in vitro, and may bear upon the actions of the hormones in vivo. (Auth.)

  12. Pain, wheal and flare in human forearm skin induced by bradykinin and 5-hydroxytryptamine

    DEFF Research Database (Denmark)

    Jensen, Kai; Tuxen, C; Pedersen-Bjergaard, U

    1990-01-01

    Pain was induced in 19 healthy individuals by double-blind injections into the forearm skin of 0.05 ml of physiological saline with or without active substances added. Bradykinin (0.5 nmol), 5-hydroxytryptamine (0.5 nmol) and a mixture of the two substances in half dosage (0.25 nmol + 0.25 nmol...

  13. New bradykinin analogues acetylated on their N-terminus: Effect on rat blood pressure and rat uterus

    Czech Academy of Sciences Publication Activity Database

    Labudda-Dawidowska, O.; Sobolewski, D.; Sleszyňska, M.; Derdowska, I.; Slaninová, Jiřina; Wierzba, T.; Prahl, A.

    2006-01-01

    Roč. 12, Supplement (2006), s. 190 ISSN 1075-2617. [European Peptide Symposium /29./. 03.09.2006-08.09.2006, Gdansk] Institutional research plan: CEZ:AV0Z40550506 Keywords : bradykinin * N-terminus * rat uterus Subject RIV: CC - Organic Chemistry

  14. Differential regulation of histamine- and bradykinin-stimulated phospholipase C in adrenal chromaffin cells: evidence for involvement of different protein kinase C isoforms.

    Science.gov (United States)

    Sena, C M; Rosário, L M; Parker, P J; Patel, V; Boarder, M R

    1996-03-01

    In this report we investigate the isoforms of protein kinase C (PKC) present in cultured adrenal chromaffin cells with respect to their modulation by treatment with phorbol ester and their possible differential involvement in the regulation of responses to histamine and bradykinin. The presence of individual isoforms of PKC was investigated by using eight isoform specific antisera, as a result of which PKC-alpha, epsilon, and zeta were identified. To characterize down-regulation of these enzymes, cells were incubated for 6-48 h with 1 microM phorbol myristate acetate (PMA). PKC-epsilon down-regulated more rapidly than PKC-alpha. At 12 h, PMA pretreatment, for example, PKC-epsilon was maximally down-regulated (23 +/- 4% of controls), whereas PKC-alpha was unchanged. PKC-alpha showed partial down-regulation by 24 h of PMA pretreatment. PKC-zeta did not down-regulate at any of the times tested. Translocation from cytosol to membrane in response to PMA was also more rapid for PKC-epsilon than for PKC-alpha. The accumulation of total 3H-inositol (poly) phosphates in response to bradykinin or histamine was essentially abolished by prior treatment with 10-min PMA treatment (1 microM). However, with 12-h exposure to PMA, the bradykinin response was restored to the level seen with no prior PMA exposure. The histamine response showed no recovery by 12 h of PMA, but showed partial recovery by 24 h of PMA pretreatment. These observations showed that the restoration of the response to bradykinin corresponds to the loss of PKC-epsilon, whereas the restoration of the histamine response corresponds to the loss of PKC-alpha. This picture was confirmed with further studies on cytosolic Ca2+. The results show that chromaffin cells exhibit an unusual pattern of down-regulation of PKC isoforms on prolonged exposure to PMA, and that there is a differential effect of exposure to PMA on the histamine and bradykinin responses, suggesting that different PLC-linked receptors in chromafin

  15. Bronchoconstriction induced by citric acid inhalation in guinea pigs: role of tachykinins, bradykinin, and nitric oxide

    NARCIS (Netherlands)

    Ricciardolo, F. L.; Rado, V.; Fabbri, L. M.; Sterk, P. J.; Di Maria, G. U.; Geppetti, P.

    1999-01-01

    Gastroesophageal acid reflux into the airways can trigger asthma attacks. Indeed, citric acid inhalation causes bronchoconstriction in guinea pigs, but the mechanism of this effect has not been fully clarified. We investigated the role of tachykinins, bradykinin, and nitric oxide (NO) on the citric

  16. Icatibant, a new bradykinin-receptor antagonist, in hereditary angioedema.

    Science.gov (United States)

    Cicardi, Marco; Banerji, Aleena; Bracho, Francisco; Malbrán, Alejandro; Rosenkranz, Bernd; Riedl, Marc; Bork, Konrad; Lumry, William; Aberer, Werner; Bier, Henning; Bas, Murat; Greve, Jens; Hoffmann, Thomas K; Farkas, Henriette; Reshef, Avner; Ritchie, Bruce; Yang, William; Grabbe, Jürgen; Kivity, Shmuel; Kreuz, Wolfhart; Levy, Robyn J; Luger, Thomas; Obtulowicz, Krystyna; Schmid-Grendelmeier, Peter; Bull, Christian; Sitkauskiene, Brigita; Smith, William B; Toubi, Elias; Werner, Sonja; Anné, Suresh; Björkander, Janne; Bouillet, Laurence; Cillari, Enrico; Hurewitz, David; Jacobson, Kraig W; Katelaris, Constance H; Maurer, Marcus; Merk, Hans; Bernstein, Jonathan A; Feighery, Conleth; Floccard, Bernard; Gleich, Gerald; Hébert, Jacques; Kaatz, Martin; Keith, Paul; Kirkpatrick, Charles H; Langton, David; Martin, Ludovic; Pichler, Christiane; Resnick, David; Wombolt, Duane; Fernández Romero, Diego S; Zanichelli, Andrea; Arcoleo, Francesco; Knolle, Jochen; Kravec, Irina; Dong, Liying; Zimmermann, Jens; Rosen, Kimberly; Fan, Wing-Tze

    2010-08-05

    Hereditary angioedema is characterized by recurrent attacks of angioedema of the skin, larynx, and gastrointestinal tract. Bradykinin is the key mediator of symptoms. Icatibant is a selective bradykinin B2 receptor antagonist. In two double-blind, randomized, multicenter trials, we evaluated the effect of icatibant in patients with hereditary angioedema presenting with cutaneous or abdominal attacks. In the For Angioedema Subcutaneous Treatment (FAST) 1 trial, patients received either icatibant or placebo; in FAST-2, patients received either icatibant or oral tranexamic acid, at a dose of 3 g daily for 2 days. Icatibant was given once, subcutaneously, at a dose of 30 mg. The primary end point was the median time to clinically significant relief of symptoms. A total of 56 and 74 patients underwent randomization in the FAST-1 and FAST-2 trials, respectively. The primary end point was reached in 2.5 hours with icatibant versus 4.6 hours with placebo in the FAST-1 trial (P=0.14) and in 2.0 hours with icatibant versus 12.0 hours with tranexamic acid in the FAST-2 trial (P<0.001). In the FAST-1 study, 3 recipients of icatibant and 13 recipients of placebo needed treatment with rescue medication. The median time to first improvement of symptoms, as assessed by patients and by investigators, was significantly shorter with icatibant in both trials. No icatibant-related serious adverse events were reported. In patients with hereditary angioedema having acute attacks, we found a significant benefit of icatibant as compared with tranexamic acid in one trial and a nonsignificant benefit of icatibant as compared with placebo in the other trial with regard to the primary end point. The early use of rescue medication may have obscured the benefit of icatibant in the placebo trial. (Funded by Jerini; ClinicalTrials.gov numbers, NCT00097695 and NCT00500656.)

  17. New bradykinin analogues acylated on the N-terminus: effect on rat uterus and blood pressure

    Czech Academy of Sciences Publication Activity Database

    Labudda, O.; Wierzba, T.; Sobolewski, D.; Sleszyňska, M.; Gawiňski, L.; Plačková, Malgorzata; Slaninová, Jiřina; Prahl, A.

    2007-01-01

    Roč. 54, č. 1 (2007), s. 193-198 ISSN 0001-527X Grant - others:State Comittee for Scientific Research(PL) PB1108/T09/2005/28 Institutional research plan: CEZ:AV0Z40550506 Keywords : bradykinin * antagonists * acylation Subject RIV: CE - Biochemistry Impact factor: 1.261, year: 2007 www.actabp.pl

  18. Role of calcium-activated potassium channels with small conductance in bradykinin-induced vasodilation of porcine retinal arterioles

    DEFF Research Database (Denmark)

    Dalsgaard, Thomas; Kroigaard, Christel; Bek, Toke

    2009-01-01

    PURPOSE: Endothelial dysfunction and impaired vasodilation may be involved in the pathogenesis of retinal vascular diseases. In the present study, the mechanisms underlying bradykinin vasodilation were examined and whether calcium-activated potassium channels of small (SK(Ca)) and intermediate (IK...

  19. A liver metalloendopeptidase which degrades the circulating hypotensive peptide hormones bradykinin and atrial natriuretic peptide

    Directory of Open Access Journals (Sweden)

    Carvalho K.M.

    1999-01-01

    Full Text Available A new metalloendopeptidase was purified to apparent homogeneity from a homogenate of normal human liver using successive steps of chromatography on DEAE-cellulose, hydroxyapatite and Sephacryl S-200. The purified enzyme hydrolyzed the Pro7-Phe8 bond of bradykinin and the Ser25-Tyr26 bond of atrial natriuretic peptide. No cleavage was produced in other peptide hormones such as vasopressin, oxytocin or Met- and Leu-enkephalin. This enzyme activity was inhibited by 1 mM divalent cation chelators such as EDTA, EGTA and o-phenanthroline and was insensitive to 1 µM phosphoramidon and captopril, specific inhibitors of neutral endopeptidase (EC 3.4.24.11 and angiotensin-converting enzyme (EC 3.4.15.1, respectively. With Mr 85 kDa, the enzyme exhibits optimal activity at pH 7.5. The high affinity of this endopeptidase for bradykinin (Km = 10 µM and for atrial natriuretic peptide (Km = 5 µM suggests that it may play a physiological role in the inactivation of these circulating hypotensive peptide hormones.

  20. Isolation and characterization of a novel bradykinin potentiating peptide (BPP) from the skin secretion of Phyllomedusa hypochondrialis.

    Science.gov (United States)

    Conceição, Katia; Konno, Katsuhiro; de Melo, Robson Lopes; Antoniazzi, Marta M; Jared, Carlos; Sciani, Juliana M; Conceição, Isaltino M; Prezoto, Benedito C; de Camargo, Antônio Carlos Martins; Pimenta, Daniel C

    2007-03-01

    Bradykinin potentiating peptides (BPPs) from Bothrops jararaca venom were first described in the middle of 1960s and were the first natural inhibitors of the angiotensin-converting enzyme (ACE). BPPs present a classical motif and can be recognized by their typical pyroglutamyl (Pyr)/proline rich sequences presenting, invariably, a proline residue at the C-terminus. In the present study, we describe the isolation and biological characterization of a novel BPP isolated from the skin secretion of the Brazilian tree-frog Phyllomedusa hypochondrialis. This new BPP, named Phypo Xa presents the sequence Pyr-Phe-Arg-Pro-Ser-Tyr-Gln-Ile-Pro-Pro and is able to potentiate bradykinin activities in vivo and in vitro, as well as efficiently and competitively inhibit ACE. This is the first canonical BPP (i.e. Pyr-Aaa(n)-Gln-Ile-Pro-Pro) to be found not only in the frog skin but also in any other natural source other than the snake venoms.

  1. Chronic exposure to high glucose impairs bradykinin-stimulated nitric oxide production by interfering with the phospholipase-C-implicated signalling pathway in endothelial cells: evidence for the involvement of protein kinase C.

    Science.gov (United States)

    Tang, Y; Li, G D

    2004-12-01

    Overwhelming evidence indicates that endothelial cell dysfunction in diabetes is characterised by diminished endothelium-dependent relaxation, but the matter of the underlying molecular mechanism remains unclear. As nitric oxide (NO) production from the endothelium is the major player in endothelium-mediated vascular relaxation, we investigated the effects of high glucose on NO production, and the possible alterations of signalling pathways implicated in this scenario. NO production and intracellular Ca(2+) levels ([Ca(2+)](i)) were assessed using the fluorescent probes 4,5-diaminofluorescein diacetate and fura-2 respectively. Exposure of cultured bovine aortic endothelial cells to high glucose for 5 or 10 days significantly reduced NO production induced by bradykinin (but not by Ca(2+) ionophore) in a time- and dose-dependent manner. This was probably due to an attenuation in bradykinin-induced elevations of [Ca(2+)](i) under these conditions, since a close correlation between [Ca(2+)](i) increases and NO generation was observed in intact bovine aortic endothelial cells. Both bradykinin-promoted intracellular Ca(2+) mobilisation and extracellular Ca(2+) entry were affected. Moreover, bradykinin-induced formation of Ins(1,4,5)P(3), a phospholipase C product leading to increases in [Ca(2+)](i), was also inhibited following high glucose culture. This abnormality was not attributable to a decrease in inositol phospholipids, but possibly to a reduction in the number of bradykinin receptors. The alterations in NO production, the increases in [Ca(2+)](i), and the bradykinin receptor number due to high glucose could be largely reversed by protein kinase C inhibitors and D: -alpha-tocopherol (antioxidant). Chronic exposure to high glucose reduces NO generation in endothelial cells, probably by impairing phospholipase-C-mediated Ca(2+) signalling due to excess protein kinase C activation. This defect in NO release may contribute to the diminished endothelium

  2. Gap junctions and hydrogen peroxide are involved in endothelium-derived hyperpolarising responses to bradykinin in omental arteries and veins isolated from pregnant women.

    Science.gov (United States)

    Hammond, Stephanie; Mathewson, Alastair M; Baker, Philip N; Mayhew, Terry M; Dunn, William R

    2011-10-01

    Altered endothelial function may underlie human cardiovascular diseases, including hypertension, diabetes and pre-eclampsia. While much is known about endothelial function in small arteries, very little is known about endothelial responses in small veins isolated from humans. Therefore, we assessed endothelium-dependent responses in omental arteries and veins isolated from healthy pregnant women, focussing on endothelium-dependent hyperpolarising (EDH) mechanisms. Human omental arteries and veins were obtained from women undergoing elective caesarean sections and examined using pressure myography. In pressurised vessels, the effects of proposed inhibitors of EDH production/function were examined on responses to bradykinin. The expression of connexins Cx37, 40 and 43 was assessed using immunohistochemistry. Bradykinin caused vasodilatation in human pressurised omental arteries and veins. In both vessels, responses to bradykinin were partially blocked in the presence of the gap junction uncoupler, carbenoxolone, and reduced further with the addition of catalase, which acts to degrade H(2)O(2). The effect of catalase alone was more pronounced in venous preparations. All three connexins were expressed in both arteries and veins, with a similar distribution pattern, where Cx37 and Cx40 were located mainly in the endothelium and Cx43 located mostly in the media. These data show that, in human omental vessels, an EDH mechanism is produced in response to bradykinin that involves gap junction communication and the production of H(2)O(2). These mechanisms may be involved in the haemodynamic alterations that take place during pregnancy, and any aberration in their function could contribute to raised blood pressure in hypertensive disorders of pregnancy, such as pre-eclampsia. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Novel Bradykinin Analogues Modified in the N-Terminal Part of the Molecule with a Variety of Acyl Substituents

    Czech Academy of Sciences Publication Activity Database

    Sleszynska, M.; Wierzba, T. H.; Malinowski, K.; Tůmová, Tereza; Lammek, B.; Slaninová, Jiřina; Prahl, A.

    2012-01-01

    Roč. 18, č. 2 (2012), s. 117-124 ISSN 1573-3149 Institutional research plan: CEZ:AV0Z40550506 Keywords : bradykinin analogues * B-2 receptor antagonists * bulky acyl groups * in vivo rat blood pressure test * in vitro rat uterus test Subject RIV: CE - Biochemistry Impact factor: 1.280, year: 2012

  4. Bradykinin B2 receptor expression in the bronchial mucosa of allergic asthmatics: the role of NF-kB

    NARCIS (Netherlands)

    Ricciardolo, F. L. M.; Petecchia, L.; Sorbello, V.; Di Stefano, A.; Usai, C.; Massaglia, G. M.; Gnemmi, I.; Mognetti, B.; Hiemstra, P. S.; Sterk, P. J.; Sabatini, F.

    2016-01-01

    Bradykinin (BK) mediates acute allergic asthma and airway remodelling. Nuclear factor-kappa B (NF-kB) is potentially involved in BK B2 receptor (B2R) regulation. In this observational cross-sectional study, B2R and NF-kB expression was evaluated in bronchial biopsies from mild asthmatics (after

  5. Cardiovascular effects of intrathecally administered bradykinin in the rat: characterization of receptors with antagonists.

    OpenAIRE

    Lopes, P.; Regoli, D.; Couture, R.

    1993-01-01

    1. The effects of intrathecal (i.t.) pretreatment with selective B1 or B2 kinin receptor antagonists were studied on the cardiovascular response to i.t. injection of bradykinin (BK) in conscious freely moving rats. 2. BK (81 pmol) produced an increase in mean arterial pressure (MAP: 9-13 mmHg) and decrease in heart rate (HR: 20-30 beats min-1) that reached a maximum 2 min after injection. 3. The BK-induced cardiovascular responses were dose-dependently and reversibly reduced by four antagonis...

  6. Importance of the terminal α-amino group of bradykinin and some kynins on capillary permeability increase

    International Nuclear Information System (INIS)

    Sugavara, S.

    1979-01-01

    A simple and reliable method is described for the quantitative evaluation of vascular permeability increase induced by vasoactive drugs with Evans blue labelled with iodine-125 or 131. By using this method the importance of α-amino group of bradykinin (Bk), kallidin (Kd) and methionyl-kallidin (Met-Kd) on the biological activity were studied after reacting the kinins with pyridoxal 5'-phosphate followed by reduction with sodium borohydride. Phosphopyridoxyl-kinins were formed leaving free the guanidino groups. Aminoacid analysis of phosphopyridoxyl-kinin showed that the efficiency of the reaction was extremely good in the blockage of α-amino groups [phosphopyridoxyl-bradikinin (PP-Bk) = 98,8%, phosphopyridoxyl-kallidin (PP-Kd) = 95,2%, phosphopyridoxyl-methionyl-kallidin (PP-Met-Kd) = 98,0%. Log dose-response curves were obtained for Bk, Kd, Met-Kd, acetyl-bradykinin (Ac-Bk), PP-Bk, PP-Kd and PP-Met-Kd and the relative potencies calculated through the Lineweaver-Burk plots. The relative potencies were: PP-Bk about 16% the activity of Bk, Ac-Bk about 31% the activity of Bk, PP-Kd about 17% the activity of Kd, PP-Met-Kd about 12% the activity of Met-Kd. The results show that the terminal α-amino group of kinins is important in the mechanisms of biological activity. (Author) [pt

  7. Analysis of Human Bradykinin Receptor Gene and Endothelial Nitric Oxide Synthase Gene Polymorphisms in End-Stage Renal Disease Among Malaysians

    Directory of Open Access Journals (Sweden)

    R. Vasudevan

    2014-06-01

    Full Text Available The aim of this study was to determine the association of the c.894G>T; p.Glu298Asp polymorphism and the variable number tandem repeat (VNTR polymorphism of the endothelial nitric oxide synthase (eNOS gene and c.181C>T polymorphism of the bradykinin type 2 receptor gene (B2R in Malaysian end-stage renal disease (ESRD subjects.

  8. Identification of bradykinin: related peptides from Phyllomedusa nordestina skin secretion using electrospray ionization tandem mass spectrometry after a single-step liquid chromatography

    Directory of Open Access Journals (Sweden)

    K Conceição

    2009-01-01

    Full Text Available Amphibian skin secretions are a source of potential new drugs with medical and biotechnological applications. Rich in peptides produced by holocrine-type serous glands in the integument, these secretions play different roles, either in the regulation of physiological skin functions or in the defense against predators or microorganisms. The aim of the present work was to identify novel peptides with bradykinin-like structure and/or activity present in the skin of Phyllomedusa nordestina. In order to achieve this goal, the crude skin secretion of this frog was pre-fractionated by solid phase extraction and separated by reversed-phase chromatography. The fractions were screened for low-molecular-mass peptides and sequenced by mass spectrometry. It was possible to identify three novel bradykinin-related peptides, namely: KPLWRL-NH2 (Pnor 3, RPLSWLPK (Pnor 5 and VPPKGVSM (Pnor 7 presenting vascular activities as assessed by intravital microscopy. Pnor 3 and Pnor 7 were able to induce vasodilation. On the other hand, Pnor 5 was a potent vasoconstrictor. These effects were reproduced by their synthetic analogues.

  9. Bowman-Birk Protease Inhibitor from Vigna unguiculata Seeds Enhances the Action of Bradykinin-Related Peptides

    Directory of Open Access Journals (Sweden)

    Alice da Cunha M. Álvares

    2014-10-01

    Full Text Available The hydrolysis of bradykinin (Bk by different classes of proteases in plasma and tissues leads to a decrease in its half-life. Here, Bk actions on smooth muscle and in vivo cardiovascular assays in association with a protease inhibitor, Black eyed-pea trypsin and chymotrypsin inhibitor (BTCI and also under the effect of trypsin and chymotrypsin were evaluated. Two synthetic Bk-related peptides, Bk1 and Bk2, were used to investigate the importance of additional C-terminal amino acid residues on serine protease activity. BTCI forms complexes with Bk and analogues at pH 5.0, 7.4 and 9.0, presenting binding constants ranging from 103 to 104 M−1. Formation of BTCI-Bk complexes is probably driven by hydrophobic forces, coupled with slight conformational changes in BTCI. In vitro assays using guinea pig (Cavia porcellus ileum showed that Bk retains the ability to induce smooth muscle contraction in the presence of BTCI. Moreover, no alteration in the inhibitory activity of BTCI in complex with Bk and analogous was observed. When the BTCI and BTCI-Bk complexes were tested in vivo, a decrease of vascular resistance and consequent hypotension and potentiating renal and aortic vasodilatation induced by Bk and Bk2 infusions was observed. These results indicate that BTCI-Bk complexes may be a reliable strategy to act as a carrier and protective approach for Bk-related peptides against plasma serine proteases cleavage, leading to an increase in their half-life. These findings also indicate that BTCI could remain stable in some tissues to inhibit chymotrypsin or trypsin-like enzymes that cleave and inactivate bradykinin in situ.

  10. Effect of 3-substituted 1,4-benzodiazepin-2-ones on maximal normalized rate of bradykinin-induced smooth muscle contraction in the presence of calcium channel blockers

    Directory of Open Access Journals (Sweden)

    P. A. Virych

    2017-05-01

    Full Text Available The development of modern organic chemistry and molecular modeling technologies simplify the search for potential inhibitors of various receptor systems and biological processes. The one of the directions is the development of analgesics of broad spectrum and low toxicity. It is important to search for inhibitors of the kinin-kallikrein system that regulates many functions: inflammation, pain, carcinogenesis, vascular tone, smooth muscle contraction and other. Derivatives of 3-substituted 1,4-benzodiazepine-2-ones have a unique spatial conformation that allows one to simulate β-structures of bioactive peptides. The functional activity of compounds is determined by properties of their peripheral chemical radicals. We analyzed the effect of 3-substituted 1,4-benzodiazepin-2-ones derivatives on the normalized maximal rate of bradykinin-induced smooth muscle contraction and relaxation of the stomach in the presence of calcium channel blockers: verapamil (1 μM, gadolinium (300 μM and 2-aminoethyl diphenylborinate (0.1 μM. The levels of bradykinin and 3-arylamino-1,2-dihydro-3H-1,4-benzodiazepine-2-ones in incubation solution were 10–6 M. Data processing on dynamics of contraction was performed according to the method of Burdyha and Kosterin. Compounds MX-1775 and MX-1925 reduced maximal normalized rate (Vn of bradykinin-induced smooth muscle contraction in the presence of Gd3+ by 21.2% and 31.0% respectively. Compound MX-1925 increased Vn of relaxation by 11.6%. A similar effect is typical for MX-2011, where there is an increase by 34.6%. In the presence of verapamil this compound additionally decreased Vn contraction by 20.5%. Substances MX-1775, MX-2004 and MX-1925 restored maximal normalized rate of relaxation to original values of bradykinin-induced contraction. In the presence of 2-aminoethyldiphenylborinate MX-1775 additionally reduced Vn of contractions by 7.5%. 3-substituted 1,4-benzo­diazepine-2-ones did not change the maximal

  11. Isolation: analysis and properties of three bradykinin-potentiating peptides (BPP-II, BPP-III, and BPP-V) from Bothrops neuwiedi venom.

    Science.gov (United States)

    Ferreira, L A; Galle, A; Raida, M; Schrader, M; Lebrun, I; Habermehl, G

    1998-04-01

    In the course of systematic investigations on low-molecular-weight compounds from the venom of Crotalidae and Viperidae, we have isolated and characterized at least three bradykinin-potentiating peptides (BPP-II, BPP-III, and BPP-V) from Bothrops neuwiedi venom by gel filtration on Sephadex G-25 M, Sephadex G-10 followed by HPLC. The peptides showed bradykinin-potentiating action on isolated guinea-pig ileum, for which the BPP-V was more active than of BPP-II, and BPP-III, rat arterial blood pressure, and a relevant angiotensin-converting enzyme (ACE) competitive inhibiting activity. The kinetic studies showed a Ki of the order of 9.7 x 10(-3) microM to BPP-II, 7 x 10(-3) microM to BPP-III, and 3.3 x 10(-3) microM to BPP-V. The amino acid sequence of the BPP-III has been determined to be pGlu-Gly-Gly-Trp-Pro-Arg-Pro-Gly-Pro-Glu-Ile-Pro-Pro, and the amino acid compositions of the BPP-II and BPP-V by amino acid analysis were 2Glu-2Gly-1Arg-4Pro-1Ile and 2Glu-2Gly-1Ser-3Pro-2Val-1Ile, with molecular weight of 1372, 1046, and 1078, respectively.

  12. Effect of LF 16-0687MS, a new nonpeptide bradykinin B2 receptor antagonist, in a rat model of closed head trauma.

    Science.gov (United States)

    Pruneau, D; Chorny, I; Benkovitz, V; Artru, A; Roitblat, L; Shapira, Y

    1999-11-01

    Bradykinin is an endogenous nonapeptide which potently dilates the cerebral vasculature and markedly increases vascular permeability. These effects are mediated by B2 receptors located on the vascular endothelium. Previous experimental studies have shown that blockade of the kallikreinkinin system, which mediates the formation of bradykinin, afforded a reduction of the brain edema that developed following a cryogenic cortical lesion. In the present study, we investigated the effect of LF 16-0687MS, a novel nonpeptide B2 receptor antagonist, on cerebral edema and neurological severity score (NSS) after closed head injury to rats. LF 16-0687MS or its vehicle (NaCl 0.9%) was continuously infused at 10, 30, and 100 microg/kg/min over 23 h starting 1 h after a focal trauma to the left hemisphere was induced using a weight-drop device. The extent of edema formation was evaluated 24 h after trauma from left and right hemispheres samples by measurement of specific gravity and water content. In a separate study, a neurological severity score based on scoring of behavioural and motor functions was evaluated 1 h and over 1 week after trauma. LF 16-0687MS at 100 microg/kg/min markedly reduced the development of brain edema as indicated by a 68% increase in specific gravity (p<0.05) and a 64% decrease of water content (p<0.05) in the left hemisphere. In addition the recovery of neurological function was significantly improved by 100 microg/kg/min LF 16-0687MS from day 3 to day 7 after CHT. In a separate experiment, we also showed that LF 16-0687MS at 100 microg/kg/min given either 1 h before or 30 min after CHT did not affect mean arterial blood pressure. These results show that blockade of bradykinin B2 receptors is an effective approach to reduce cerebral edema and to improve neurological outcome after a focal contusion to the cranium.

  13. Bradykinin induced a positive chronotropic effect via stimulation of T- and L-type calcium currents in heart cells.

    Science.gov (United States)

    El-Bizri, Nesrine; Bkaily, Ghassan; Wang, Shimin; Jacques, Danielle; Regoli, Domenico; D'Orléans-Juste, Pedro; Sukarieh, Rami

    2003-03-01

    Using Fluo-3 calcium dye confocal microscopy and spontaneously contracting embryonic chick heart cells, bradykinin (10(-10) M) was found to induce positive chronotropic effects by increasing the frequency of the transient increase of cytosolic and nuclear free Ca2+. Pretreatment of the cells with either B1 or B2 receptor antagonists (R126 and R817, respectively) completely prevented bradykinin (BK) induced positive chronotropic effects on spontaneously contracting single heart cells. Using the whole-cell voltage clamp technique and ionic substitution to separate the different ionic current species, our results showed that BK (10(-6) M) had no effect on fast Na+ inward current and delayed outward potassium current. However, both L- and T-type Ca2+ currents were found to be increased by BK in a dose-dependent manner (10(-10)-10(-7) M). The effects of BK on T- and L-type Ca2+ currents were partially blocked by the B1 receptor antagonist [Leu8]des-Arg9-BK (R592) (10(-7) M) and completely reversed by the B2 receptor antagonist D-Arg[Hyp3,D-Phe7,Leu8]BK (R-588) (10(-7) M) or pretreatment with pertussis toxin (PTX). These results demonstrate that BK induced a positive chronotropic effect via stimulation of T- and L-type Ca2+ currents in heart cells mainly via stimulation of B2 receptor coupled to PTX-sensitive G-proteins. The increase of both types of Ca2+ current by BK in heart cells may explain the positive inotropic and chronotropic effects of this hormone.

  14. Effects of a novel bradykinin B1 receptor antagonist and angiotensin II receptor blockade on experimental myocardial infarction in rats.

    Directory of Open Access Journals (Sweden)

    Dongmei Wu

    Full Text Available The aim of the present study was to evaluate the cardiovascular effects of the novel bradykinin B1 receptor antagonist BI-113823 following myocardial infarction (MI and to determine whether B1 receptor blockade alters the cardiovascular effects of an angiotensin II type 1 (AT1 receptor antagonist after MI in rats.Sprague Dawley rats were subjected to permanent occlusion of the left descending coronary artery. Cardiovascular function was determined at 7 days post MI. Treatment with either B1 receptor antagonist (BI-113823 or AT1 receptor antagonist (irbesartan alone or in combination improved post-MI cardiac function as evidenced by attenuation of elevated left ventricular end diastolic pressure (LVEDP; greater first derivative of left ventricular pressure (± dp/dt max, left ventricle ejection fraction, fractional shorting, and better wall motion; as we as reductions in post-MI up-regulation of matrix metalloproteinases 2 (MMP-2 and collagen III. In addition, the cardiac up-regulation of B1 receptor and AT1 receptor mRNA were markedly reduced in animals treated with BI 113823, although bradykinin B2 receptor and angiotensin 1 converting enzyme (ACE1 mRNA expression were not significantly affected by B1 receptor blockade.The present study demonstrates that treatment with the novel B1 receptor antagonist, BI-113823 improves post-MI cardiac function and does not influence the cardiovascular effects of AT1 receptor antagonist following MI.

  15. Neutral endopeptidase up-regulation in isolated human umbilical artery: involvement in desensitization of bradykinin-induced vasoconstrictor effects.

    Science.gov (United States)

    Pelorosso, Facundo Germán; Halperin, Ana Verónica; Palma, Alejandro Martín; Nowak, Wanda; Errasti, Andrea Emilse; Rothlin, Rodolfo Pedro

    2007-02-01

    Previous reports show that bradykinin B(2) receptors mediate contractile responses induced by bradykinin (BK) in human umbilical artery (HUA). However, although it has been reported that BK-induced responses can desensitize in several inflammatory models, the effects of prolonged in vitro incubation on BK-induced vasoconstriction in HUA have not been studied. In isolated HUA rings, BK-induced responses after a 5-h in vitro incubation showed a marked desensitization compared with responses at 2 h. Inhibition of either angiotensin-converting enzyme (ACE) or neutral endopeptidase (NEP), both BK-inactivating enzymes, failed to modify responses to BK at 2 h. After 5 h, ACE inhibition produced only a slight potentiation of BK-induced responses. In contrast, BK-induced vasoconstriction at 5 h was markedly potentiated by NEP inhibition. Moreover, NEP activity, measured by hydrolysis of its synthetic substrate (Z-Ala-Ala-Leu-p-nitroanilide), showed a 2.4-fold increase in 5-h incubated versus 2-h incubated tissues, which was completely reversed by cycloheximide (CHX) treatment. Furthermore, CHX significantly potentiated BK-induced responses, suggesting that NEP-mediated kininase activity increase at 5 h depends on de novo protein synthesis. In addition, under NEP inhibition, CHX treatment failed to produce an additional potentiation of BK-induced vasoconstriction. Still, NEP up-regulation was confirmed by Western blot, showing a 2.1-fold increase in immunoreactive NEP in 5-h incubated versus 2-h incubated HUA. In summary, the present study provides strong pharmacological evidence that NEP is up-regulated and plays a key role in desensitization of BK-induced vasoconstriction after prolonged in vitro incubation in HUA. Our results provide new insights into the possible mechanisms involved in BK-induced response desensitization during sustained inflammatory conditions.

  16. The research of radioimmunoassay using double abs for bradykinin

    International Nuclear Information System (INIS)

    Cheng Jinxuan; Wang Li; Duan Jinhong; Han Fengyun; Liu Jinsheng; Wang Zhengang; Ren Minfeng

    1996-01-01

    Bradykinin (BK) is a potent vasodilative substance, and plays great physiological and pathological roles in animals and human beings. To measure the quantity of BK, the radioimmunoassay (RIA) has been devised, but the traditional RIA method has certain defects, such as presence of numerous interfering factors and errors and time consuming. Now, we produce anti-BK serum in rabbits by using BK-ovalbumin conjugate as an immunogen, and the 125 I labeled Tyr 8 -BK by using a modified chloramine-T method. High specific activity has been obtained after purification with DEAE-Sephadex A-25 column chromatography. We use the donkey anti-rabbit Ab and PEG 6000 to separate the bound from the free 125 I-tyr 8 -BK. The limitation range of standard curve is from 25 to 1600 pg, NSB is 3.1%, affinity constant (K) is 0.8 x 10 10 L/mol, and there is no significant interference with other biological BK analogues. The blood samples are treated by adding Polybrene (inhibitor) and PEG 6000 to deposit the big serum proteins in order to reduce the disturbing substances. This method has been shown to be a sensitive, specific, reliable, simple and convenient measure of the serum BK level. By this method, the serum BK quantities in men, women and rats are respectively 1584 +- 347 pg/ml, 1642 +- 302 pg/ml and 1805 +- 225 pg/ml, and recycling rate is 95%, the inter-group CV is 5.0% and outer-group CV = 9.2%

  17. A new structurally atypical bradykinin-potentiating peptide isolated from Crotalus durissus cascavella venom (South American rattlesnake).

    Science.gov (United States)

    Lopes, Denise M; Junior, Norberto E G; Costa, Paula P C; Martins, Patrícia L; Santos, Cláudia F; Carvalho, Ellaine D F; Carvalho, Maria D F; Pimenta, Daniel C; Cardi, Bruno A; Fonteles, Manassés C; Nascimento, Nilberto R F; Carvalho, Krishnamurti M

    2014-11-01

    Venom glands of some snakes synthesize bradykinin-potentiating peptides (BPP's) which increase bradykinin-induced hypotensive effect and decrease angiotensin I vasopressor effect by angiotensin-converting enzyme (ACE) inhibition. The present study shows a new BPP (BPP-Cdc) isolated from Crotalus durissus cascavella venom: Pro-Asn-Leu-Pro-Asn-Tyr-Leu-Gly-Ile-Pro-Pro. Although BPP-Cdc presents the classical sequence IPP in the C-terminus, it has a completely atypical N-terminal sequence, which shows very low homology with all other BPPs isolated to date. The pharmacological effects of BPP-Cdc were compared to BBP9a from Bothrops jararaca and captopril. BPP-Cdc (1 μM) significantly increased BK-induced contractions (BK; 1 μM) on the guinea pig ileum by 267.8% and decreased angiotensin I-induced contractions (AngI; 10 nM) by 62.4% and these effects were not significantly different from those of BPP9a (1 μM) or captopril (200 nM). Experiments with 4-week hypertensive 2K-1C rats show that the vasopressor effect of AngI (10 ng) was decreased by 50 μg BPP-Cdc (69.7%), and this result was similar to that obtained with 50 μg BPP9a (69.8%). However, the action duration of BPP-Cdc (60 min) was 2 times greater than that of BPP-9a (30 min). On the other hand, the hypotensive effect of BK (250 ng) was significantly increased by 176.6% after BPP-Cdc (50 μg) administration, value 2.5 times greater than that obtained with BPP9a administered at the same doses (71.4%). In addition, the duration of the action of BPP-Cdc (120 min) was also at least 4 times greater than that of BPP-9a (30 min). Taken together, these results suggest that BPP-Cdc presents more selective action on arterial blood system than BPP9a. Besides the inhibition of ACE, it may present other mechanisms of action yet to be elucidated. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Further Identification of the Effect of Bradykinin Potentiating Factor Isolated From Scorpion Venom on Irradiated White Rat

    International Nuclear Information System (INIS)

    Hasan, H.F.

    2011-01-01

    Scorpion venom of Androctonus amoreuxi contains a strong bradykinin potentiating factor (BPF) that augments bradykinin effect through enhancing its release and acts as an angiotensin converting enzyme inhibitor (ACEI). Both irradiation and stimulation of renin-angiotensin system (RAS) induce oxidative stress. Possible interruption of the RAS with an ACEI induced by BPF isolated from the scorpion, Androctonus amoreuxi venom or the presence of angiotensin II receptor blocker (ARB) losartan and/or γ- radiation were evaluated. The examined parameters included blood erythrocytes count (RBC), total leucocytic count (WBC), haemoglobin content (Hb) and hematocrit value (Hct) as well as, glutathione content (GSH), malondialdehyde (MDA) and advanced oxidative protein product (AOPP) of kidney homogenate besides aldosterone, sodium, potassium, chloride, calcium, urea, creatinine and uric acid levels of serum. A group of rats (70 - 80 gm each) were received i.p. injection of BPIF (1μg / g body wt) twice per week for three weeks, while the other group received i.p. injection of losartan (5μg / g body wt) twice per week for three weeks. γ-Irradiation was performed at a dose level of 4Gy. All animals were examined after an investigation period of 21 days from γ- irradiation. Either BPF or losartan was performed together with irradiation. The results pointed out that irradiation discerned a significant elevation in the level of MDA, AOPP, aldosterone, sodium, urea and creatinine, and a significant drop in the haematological values (RBCs, WBCs, Hb and Hct), GSH, calcium and uric acid. Repeated injections of BPF or losartan had a beneficial result against the deleterious effect of γ- irradiation. The present investigation clarifies comparable effects for treatment of radiation damage to the kidney through RAS by BPF as (ACEI) and losartan as (ARB). The present work adds further identification to the properties of BPF in controlling of radiation damage. Therapeutic agents from

  19. Potentiation of the actions of bradykinin by angiotensin I-converting enzyme inhibitors. The role of expressed human bradykinin B2 receptors and angiotensin I-converting enzyme in CHO cells.

    Science.gov (United States)

    Minshall, R D; Tan, F; Nakamura, F; Rabito, S F; Becker, R P; Marcic, B; Erdös, E G

    1997-11-01

    Part of the beneficial effects of angiotensin I-converting enzyme (ACE) inhibitors are due to augmenting the actions of bradykinin (BK). We studied this effect of enalaprilat on the binding of [3H]BK to Chinese hamster ovary (CHO) cells stably transfected to express the human BK B2 receptor alone (CHO-3B) or in combination with ACE (CHO-15AB). In CHO-15AB cells, enalaprilat (1 mumol/L) increased the total number of low-affinity [3H]BK binding sites on the cells at 37 degrees C, but not at 4 degrees C, from 18.4 +/- 4.3 to 40.3 +/- 11.9 fmol/10(6) cells (P potentiated the release of [3H]arachidonic acid and the liberation of inositol 1,4,5-trisphosphate (IP3) induced by BK and [Hyp3-Tyr(Me)8]BK. Moreover, enalaprilat (1 mumol/L) completely and immediately restored the response of the B2 receptor, desensitized by the agonist (1 mumol/L [Hyp3-Tyr(Me)8]BK); this effect was blocked by the antagonist, HOE 140. Finally, enalaprilat, but not the prodrug enalapril, decreased internalization of the receptor from 70 +/- 9% to 45 +/- 9% (P desensitization, and decrease internalization, thereby potentiating BK beyond blocking its hydrolysis.

  20. Excess of Aminopeptidase A in the Brain Elevates Blood Pressure via the Angiotensin II Type 1 and Bradykinin B2 Receptors without Dipsogenic Effect

    Directory of Open Access Journals (Sweden)

    Takuto Nakamura

    2017-01-01

    Full Text Available Aminopeptidase A (APA cleaves angiotensin (Ang II, kallidin, and other related peptides. In the brain, it activates the renin angiotensin system and causes hypertension. Limited data are available on the dipsogenic effect of APA and pressor effect of degraded peptides of APA such as bradykinin. Wistar-Kyoto rats received intracerebroventricular (icv APA in a conscious, unrestrained state after pretreatment with (i vehicle, (ii 80 μg of telmisartan, an Ang II type-1 (AT1 receptor blocker, (iii 800 nmol of amastatin, an aminopeptidase inhibitor, and (iv 1 nmol of HOE-140, a bradykinin B2 receptor blocker. Icv administration of 400 and 800 ng of APA increased blood pressure by 12.6 ± 3.0 and 19.0 ± 3.1 mmHg, respectively. APA did not evoke drinking behavior. Pressor response to APA was attenuated on pretreatment with telmisartan (vehicle: 22.1 ± 2.2 mmHg versus telmisartan: 10.4 ± 3.2 mmHg. Pressor response to APA was also attenuated with amastatin and HOE-140 (vehicle: 26.5 ± 1.1 mmHg, amastatin: 14.4 ± 4.2 mmHg, HOE-140: 16.4 ± 2.2 mmHg. In conclusion, APA increase in the brain evokes a pressor response via enzymatic activity without dipsogenic effect. AT1 receptors and B2 receptors in the brain may contribute to the APA-induced pressor response.

  1. Synergistic Effect of Bone Marrow Transplantation and Bradykinin Potential Factor Isolated from Venom on Thymus and Spleen of Sublethally Irradiated Guinea Pigs

    International Nuclear Information System (INIS)

    Abu-Sinna, G.; Kafafy, Y.; Nassar, A.Y.; Salman, A.

    2005-01-01

    The buthus occitanus, scorpion venom contains a strong bradykinin potentiating factor (BPF) that augments bradykinin effects through enhancing its release. Based on the cytoprotective ability of BPF, the present work investigates it as a radioprotectant. Sublethal whole-body y-irradiation at 1.5 Gy was used. Bone marrow cells suspension (BM cells) alone or in combination with BPF was utilized. Three to four weeks-aged male Guinea pigs were grouped into two major groups. The first was non-irradiated control that was divided into subgroups treated i.p. with BM cells (2.5xl06 cells), one dose of BPF (lug/g b wt), BM cells+ BPF, one week spaced two doses of BPF, BM cells+ 2 doses of BPF, one week spaced three doses of BPF or BM cells+ 3 doses of BPF. Second major group (irradiated group) at 1.5 Gy that, subdivided and treated similarly. 5 animals from each group were killed at 7, 14 and 21 days from the initiation of treatment (3 h after irradiation). The subgroups of non-irradiated animals showed an increase in spleen wt and colony formation, thymus population, and globulins content particularly in those subgroups that stayed for the later time periods (14 and 21 days) and that treated with combined BM cells+ BPF or that groups that were treated with two or three BPF doses. Irradiation caused dramatic destruction in thymus and the spleen reflected on reduction of the lower globulins content. Treatment with BM cells, BM cells+ double doses of BPF or triple doses of BPF caused complete recovery in all measured indices, the best result was observed in those of subgroups treated with BM cells+ double doses of BPF or treated with triple doses of BPF. They completely normalized the investigated parameters after 14 and 21 days respectively

  2. ESI-MS/MS Identification of a Bradykinin-Potentiating Peptide from Amazon Bothrops atrox Snake Venom Using a Hybrid Qq-oaTOF Mass Spectrometer

    Science.gov (United States)

    Coutinho-Neto, Antonio; Caldeira, Cleópatra A. S.; Souza, Gustavo H. M. F.; Zaqueo, Kayena D.; Kayano, Anderson M.; Silva, Rodrigo S.; Zuliani, Juliana P.; Soares, Andreimar M.; Stábeli, Rodrigo G.; Calderon, Leonardo A.

    2013-01-01

    A bradykinin-potentiating peptide (BPP) from Amazon Bothrops atrox venom with m/z 1384.7386 was identified and characterized by collision induced dissociation (CID) using an ESI-MS/MS spectra obtained in positive ion mode on a hybrid Qq-oaTOF mass spectrometer, Xevo G2 QTof MS (Waters, Manchester, UK). De novo peptide sequence analysis of the CID fragmentation spectra showed the amino acid sequence ZKWPRPGPEIPP, with a pyroglutamic acid and theoretical monoisotopic m/z 1384.7378, which is similar to experimental data, showing a mass accuracy of 0.6 ppm. The peptide is homologous to other BPP from Bothrops moojeni and was named as BPP-BAX12. PMID:23430539

  3. D-Arg0-Bradykinin-Arg-Arg, a Latent Vasoactive Bradykinin B2 Receptor Agonist Metabolically Activated by Carboxypeptidases

    Directory of Open Access Journals (Sweden)

    Hélène Bachelard

    2018-03-01

    Full Text Available We previously reported hypotensive and vasodilator effects from C-terminally extended bradykinin (BK sequences that behave as B2 receptor (B2R agonists activated by vascular or plasma peptidases. D-Arg0-BK-Arg-Arg (r-BK-RR is a novel prodrug peptide hypothetically activated by two catalytic cycles of Arg-carboxypeptidases (CPs to release the direct agonist D-Arg0-BK. N-terminally extending the BK sequence with D-Arg0 in the latter peptide was meant to block the second kinin inactivation pathway in importance, aminopeptidase P. The affinity of r-BK and r-BK-RR for recombinant B2R was assessed using a [3H]BK binding displacement assay. Their pharmacology was evaluated in human isolated umbilical vein, a contractile bioassay for the B2R, in a morphological assay involving the endocytosis of B2R-green fusion protein (GFP and in anesthetized rats instrumented to record hemodynamic responses to bolus intravenous injection of both peptides. r-BK exhibited an affinity equal to that of BK for the rat B2R, while r-BK-RR was 61-fold less potent. In the vein and the B2R-GFP internalization assay, r-BK was a direct agonist unaffected by the blockade of angiotensin converting enzyme (ACE with enalaprilat, or Arg-CPs with Plummer’s inhibitor. However, the in vitro effects of r-BK-RR were reduced by these inhibitors, more so by enalaprilat. In anesthetized rats, r-BK and r-BK-RR were equipotent hypotensive agents and their effects were inhibited by icatibant (a B2R antagonist. The hypotensive effects of r-BK were potentiated by enalaprilat, but not influenced by the Arg-CPs inhibitor, which is consistent with a minor role of Arg-CPs in the metabolism of r-BK. However, in rats pretreated with both enalaprilat and Plummer’s inhibitor, the hypotensive responses and the duration of the hypotensive episode to r-BK were significantly potentiated. The hypotensive responses to r-BK-RR were not affected by enalaprilat, but were reduced by pre-treatment with the Arg

  4. Enzymatic assays for the diagnosis of bradykinin-dependent angioedema.

    Directory of Open Access Journals (Sweden)

    Federica Defendi

    Full Text Available BACKGROUND: The kinins (primarily bradykinin, BK represent the mediators responsible for local increase of vascular permeability in hereditary angioedema (HAE, HAE I-II associated with alterations of the SERPING1 gene and HAE with normal C1-Inhibitor function (HAE-nC1INH. Besides C1-Inhibitor function and concentration, no biological assay of kinin metabolism is actually available to help physicians for the diagnosis of angioedema (AE. We describe enzymatic tests on the plasma for diagnosis of BK-dependent AE. METHODS: The plasma amidase assays are performed using the Pro-Phe-Arg-p-nitroanilide peptide substrate to evaluate the spontaneous amidase activity and the proenzyme activation. We analyzed data of 872 patients presenting with BK-dependent AE or BK-unrelated diseases, compared to 303 controls. Anti-high MW kininogen (HK immunoblot was achieved to confirm HK cleavage in exemplary samples. Reproducibility, repeatability, limit of blank, limit of detection, precision, linearity and receiver operating characteristics (ROC were used to calculate the diagnostic performance of the assays. RESULTS: Spontaneous amidase activity was significantly increased in all BK-dependent AE, associated with the acute phase of disease in HAE-nC1INH, but preserved in BK-unrelated disorders. The increase of the amidase activity was associated to HK proteolysis, indicating its relevance to identify kininogenase activity. The oestrogens, known for precipitating AE episodes, were found as triggers of enzymatic activity. Calculations from ROC curves gave the optimum diagnostic cut-off for women (9.3 nmol⋅min(-1⋅mL(-1, area under curve [AUC] 92.1%, sensitivity 80.0%, and specificity 90.1% and for men (6.6 nmol·min(-1⋅mL(-1, AUC 91.0%, sensitivity 87.0% and specificity 81.2%. CONCLUSION: The amidase assay represents a diagnostic tool to help physicians in the decision to distinguish between BK-related and -unrelated AE.

  5. Characterization of urinary metabolites from four synthetic bradykinin potentiating peptides (BPPs) in mice.

    Science.gov (United States)

    Silva, Carlos A; Ianzer, Danielle A; Portaro, Fernanda C V; Konno, Katsuhiro; Faria, Marcella; Fernandes, Beatriz L; Camargo, Antonio C M

    2008-09-01

    BPPs have been identified in the venom of the Bothrops jararaca snake, or deduced from precursor proteins expressed either in the venom gland or in the brain of the snake. Their potentiating activity on bradykinin (Bk) is assumed to occur through a somatic angiotensin-converting enzyme (sACE) inhibitory mechanism. We have demonstrated that synthetic BPPs show remarkable functional differences, despite their high amino acid sequence similarities. Recently, we demonstrated that BPP-10c, after i.p. administration, was found in its intact form and in the form of a unique metabolite (des-Pro(10) BPP-10c) in mouse urine. Given this finding, we selected a number of BPPs with different structure-activities - BPP-5a (BPP-7a (BPP-9a (BPP-12b (BPP metabolites in mouse urine by MALDI-TOF mass spectrometry. Biotransformation results indicated the following: BPP-7a showed a higher resistance to proteolytic cleavage; BPP-5a is metabolized in tripeptides (BPP-9a was identified in the intact form and in the form of two metabolites (BPP-12a proved to be very susceptible to hydrolysis by proteolytic enzymes. Thus, the results obtained support the hypothesis that diverse biological functions for each BPP could be mediated by different interactions with alternative targets, and not only by sACE inhibition.

  6. Outcome of Venom Bradykinin Potentiating Factor on Renin Angiotensin System in Irradiated Rats

    International Nuclear Information System (INIS)

    Ashry, O.; Farouk, H.; Moustafa, M.; Abu Sinn, G.; Abd ElBaset, A.

    2011-01-01

    Scorpion Venom contains a strong bradykinin potentiating factor (BPF) exhibiting angiotensin converting enzyme inhibition (ACEI). Irradiation and stimulation of renin-angiotensin system (RAS) induce oxidative stress. Interruption of the RAS by an ACEI or angiotensin II receptor blocker (ARB) losartan (LOS) and/or gamma-rays (4 Gy) were evaluated. Rats received 6 doses of BPF (1μg/g body wt) or of LOS (5 μg/g body wt). Treatment with BPF induced significant elevation in the level of potassium (K) and significant drop in the level of sodium (Na) and uric acid. Treatment with LOS significantly depressed the level of Na and uric acid compared to control. Irradiation discerned a significant elevation in malondialdehyde (MDA), advanced oxidative protein product (AOPP), aldosterone, Na, urea and creatinine, and a significant drop in the haematological values, glutathione (GSH), calcium (Ca) and uric acid. A significant decrease in MDA, aldosterone, urea, creatinine and uric acid compared to irradiated group was observed in irradiated treated groups. Irradiated animals treated with LOS showed a significant decrease in Na and chloride (Cl) compared to the irradiated group. Considerable amelioration of radiation-induced depression in haematopoiesis, improvement of oxidative stress and kidney function by BPF as ACEI or LOS as ARB are detected. Results add further identification to the properties of BPF

  7. Bradykinin-related compounds as new drugs for cancer and inflammation.

    Science.gov (United States)

    Stewart, John M; Gera, Lajos; Chan, Daniel C; Bunn, Paul A; York, Eunice J; Simkeviciene, Vitalija; Helfrich, Barbara

    2002-04-01

    Bradykinin (BK) (Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg) is an important growth factor for small-cell lung cancer (SCLC) and prostate cancer (PC). These cancers have cells of neuroendocrine origin and express receptors for a variety of neuropeptides. BK receptors are expressed on almost all lung cancer cell lines and on many PC cells. Our very potent BK antagonist B9430 (D-Arg-Arg-Pro-Hyp-Gly-lgl-Ser-D-Igl-Oic-Arg) (Hyp, trans-4-hydroxy-L-proline; Ig1, alpha-2-indanylglycine; Oic, octahydroindole-2-carboxylic acid) is a candidate anti-inflammatory drug but does not inhibit growth of SCLC or PC. When B9430 is dimerized by N-terminal cross-linking with a suberimide linker, the product B9870 is a potent growth inhibitor for SCLC both in vitro and in vivo in athymic nude mice. Daily i.p. injection at 5 mg x kg(-1) day(-1) beginning on day 8 after SCLC SHP-77 cell implantation gave 65% inhibition of tumor growth. B9870 stimulates apoptosis in SCLC by a novel "biased agonist" action. We have also developed new small mimetic antagonists. BKM-570 (F5C-OC2Y-Atmp) (F5C, pentafluorocinnamic acid; OC2Y, O-2,6-dichlorobenzyl tyrosine; Atmp, 4-amino-2,2,6,6-tetramethylpiperidine) is very potent for inhibition of SHP-77 growth in nude mice. When injected daily i.p. at 5 mg x kg(-1), M-570 gave 90% suppression of tumor growth. M-570 is more potent than the well-known anticancer drug cisPlatin (60% inhibition) or the recently developed SU5416 (40% inhibition) in this model. M-570 also showed activity against various other cancer cell lines in vitro (SCLC, non-SCLC, lung, prostate, colon, cervix) and inhibited growth of prostate cell line PC3 in nude mice. M-570 and related compounds evidently act in vivo through pathways other than BK receptors. These compounds have clinical potential for treatment of human lung and prostate cancers.

  8. [Study on the expression of bradykinin and its receptors B1R and B2R in the kidney immune injury in trichloroethylene-sensitized mouse].

    Science.gov (United States)

    Wang, Hui; Zhang, Jiaxiang; Li, Shulong; Zha, Wansheng; Wang, Feng; Zhu, Qixing

    2015-07-01

    To study the expression of bradykinin and its receptors B1R and B2R in the kidney immune injury in trichloroethylene-sensitized mouse and discuss the pathogenesis of Dermatitis Medicamentosa-like of TCE (ODMLT). On the first days, intradermal injection by 50% TCE and the amount of FCA mixture 100 µl for initial sensitization; on 4, 7, 10 days, painted abdominal skin by 100 µl 50% TCE for three sensitization, on 17, 19 days, painted on the back skin by 100 µl 30% TCE for initial excitation and the last challenge; 24 h before each challenge, PKSI-527+TCE group received intraperitoneal injection by inhibitor PKSI-527 (50 mg/kg); solvent control group treat without TCE and sensitization and excitation reagent the same proportion of olive oil and acetone mixture, blank control group without any treatment. Before killing the mouse, renal weight and body weight were recorded. The renals and plasma were separated at 24 h, 48 h, 72 h and 7 d after the last challenge and observed pathological of the renals. Expression of B1R and B2R in renal were examined by immunofluorescence technique. Plasma were examined by ELISA for BK. The renal pathological examination revealed the apparent damage of TCE sensitized mice which compared to solvent control group showed obvious cellular infiltration, vacuolar degeneration of renal tubular epithelial cells. The renal damage of PKSI-527+TCE-sensitized groups which compared to the corresponding point of TCE-sensitized groups showed significantly reduced. The expression of BK in 24 h, 48 h and 72 h TCE-sensitized groups were significant higher than solvent control group and related TCE non-sensitized groups (P trichloroethylene-sensitized mouse and the expression change of bradykinin and its receptors B1R and B2R which may play an important role in the process.

  9. Neurophysiological mechanisms of bradykinin-evoked mucosal chloride secretion in guinea pig small intestine.

    Science.gov (United States)

    Qu, Mei-Hua; Ji, Wan-Sheng; Zhao, Ting-Kun; Fang, Chun-Yan; Mao, Shu-Mei; Gao, Zhi-Qin

    2016-02-15

    To investigate the mechanism for bradykinin (BK) to stimulate intestinal secretomotor neurons and intestinal chloride secretion. Muscle-stripped guinea pig ileal preparations were mounted in Ussing flux chambers for the recording of short-circuit current (Isc). Basal Isc and Isc stimulated by BK when preincubated with the BK receptors antagonist and other chemicals were recorded using the Ussing chamber system. Prostaglandin E2 (PGE2) production in the intestine was determined by enzyme immunologic assay (EIA). Application of BK or B2 receptor (B2R) agonist significantly increased the baseline Isc compared to the control. B2R antagonist, tetrodotoxin and scopolamine (blockade of muscarinic receptors) significantly suppressed the increase in Isc evoked by BK. The BK-evoked Isc was suppressed by cyclooxygenase (COX)-1 or COX-2 specific inhibitor as well as nonselective COX inhibitors. Preincubation of submucosa/mucosa preparations with BK for 10 min significantly increased PGE2 production and this was abolished by the COX-1 and COX-2 inhibitors. The BK-evoked Isc was suppressed by nonselective EP receptors and EP4 receptor antagonists, but selective EP1 receptor antagonist did not have a significant effect on the BK-evoked Isc. Inhibitors of PLC, PKC, calmodulin or CaMKII failed to suppress BK-induced PGE2 production. The results suggest that BK stimulates neurogenic chloride secretion in the guinea pig ileum by activating B2R, through COX increasing PGE2 production. The post-receptor transduction cascade includes activation of PLC, PKC, CaMK, IP3 and MAPK.

  10. Cardiovascular and vasoconstrictive actions of skate bradykinin in the little skate, Leucoraja erinacea (Elasmobranchii).

    Science.gov (United States)

    Dasiewicz, Patricia J; Conlon, J Michael; Anderson, W Gary

    2011-11-01

    The vasoconstrictive and cardiovascular actions of a recently identified bradykinin (BK)-related peptide (Gly-Ile-Thr-Ser-Trp-Leu-Pro-Phe) from the little skate, Leucoraja erinacea were examined in the unanesthetised little skate. Intra-arterial administration of a skate BK (0.1-1 nmolkg(-1)) produced a hypertensive response with a rise in blood pressure reaching a maximum elevation of 28.7±4.8% over baseline (Pskate BK. Further, in vivo administration of 1 nmolkg(-1) skate BK induced a significant delayed increase in stroke volume (reaching a maximum of 54.4±14.7% above baseline) without significant effect on either cardiac output or heart rate. In vitro, skate BK constricted the 1st branchial, mesenteric (EC(50) 2.7×10(-9)M) and coeliac (EC(50) 3.1×10(-9)M) arterial preparations of the skate. In contrast, skate [Arg(9)]BK, the mammalian B(1) receptor agonist des-[Arg(9)]BK, and the mammalian B(2) receptor antagonist HOE-140 failed to induce vasoconstriction in these isolated arterial preparations. The vasoconstrictor actions of skate BK in the isolated mesenteric, coeliac and branchial arterial preparations were significantly inhibited when co-administrated with esculetin and phentolamine. Indomethacin also inhibited the vasoconstrictor actions of skate BK in the isolated branchial artery. We conclude that, as in mammals and teleost fish, multiple pathways involving at least the alpha adrenergic and leukotriene synthesis pathway are involved in mediating the vasoconstrictive actions of BK in vascular smooth muscle of the little skate. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. [[Length polymorphism of minisatellite repeat B2-VNTR of the bradykinin B2 receptor gene in healthy Russians and in patients with coronary heart disease].

    Science.gov (United States)

    Suchkova, I O; Pavlinova, L I; Larionova, E E; Alenina, N V; Solov'ev, K V; Baranova, T V; Belotserkovskaia, E V; Sasina, L K; Bader, M; Denisenko, A D; Mustafina, O E; Khusnutdinova, E K; Patkin, E L

    2014-01-01

    Bradykinin B2 receptor is involved in many processes, including the regulation of blood pressure and smooth muscle contraction, vasodilation, inflammation, edema, cell proliferation, pain. It is suggested that this receptor may be one of the factors that have cardioprotective and infarct-limiting effects. It is assumed that certain genetic variants in both coding and non-coding regions ofBDKRB2 gene may influence its expression. In the 3'-untranslated region of BDKRB2 exon 3 the minisatellite repeat B2-VNTR is located. B2-VNTR has previously been shown to affect the BDKRB2 mRNA stability. Therefore, it is important to perform the molecular genetic analysis of this minisatellite in patients with different forms of coronary heart disease in order to reveal possible associations between specific B2-VNTR alleles and certain clinical forms of coronary heart disease. In the present study, a comparative analysis of the allele and genotype frequencies of B2-VNTR was carried out in groups of healthy individuals and patients with two clinical forms of coronary heart disease (angina pectoris and myocardial infarction), ethnically Russian. The results of the B2-VNTR length polymorphism analysis indicate that this tandem repeat may be attributed to a class of low polymorphic and non-hypervariable minisatellite. In all analyzed groups we revealed three B2-VNTR alleles, consisting of 43, 38 and 33 repeat units. Alleles of 43 and 33 repeats were major in all investigated groups. No statistically significant differences were found in the B2-VNTR allele and genotype frequencies between men and women in control group, and also between healthy men and men with angina pectoris and myocardial infarction. Thus, B2-VNTR length polymorphism was not associated with these clinical forms of coronary heart disease in Russian men. However, we do not exclude the possibility of association between the B2-VNTR short alleles (38 and 33 repeats) and cardioprotective effects of bradykinin B2 receptor

  12. Bradykinin type 2 receptor -9/-9 genotype is associated with triceps brachii muscle hypertrophy following strength training in young healthy men

    Directory of Open Access Journals (Sweden)

    Popadic Gacesa Jelena Z

    2012-11-01

    Full Text Available Abstract Background Bradykinin type 2 receptor (B2BRK genotype was reported to be associated with changes in the left-ventricular mass as a response to aerobic training, as well as in the regulation of the skeletal muscle performance in both athletes and non-athletes. However, there are no reports on the effect of B2BRK 9-bp polymorphism on the response of the skeletal muscle to strength training, and our aim was to determine the relationship between the B2BRK SNP and triceps brachii functional and morphological adaptation to programmed physical activity in young adults. Methods In this 6-week pretest-posttest exercise intervention study, twenty nine healthy young men (21.5 ± 2.7 y, BMI 24.2 ± 3.5 kg/m2 were put on a 6-week exercise protocol using an isoacceleration dynamometer (5 times a week, 5 daily sets with 10 maximal elbow extensions, 1 minute rest between sets. Triceps brachii muscle volumes were assessed by using magnetic resonance imaging before and after the strength training. Bradykinin type 2 receptor 9 base pair polymorphism was determined for all participants. Results Following the elbow extensors training, an average increase in the volume of both triceps brachii was 5.4 ± 3.4% (from 929.5 ± 146.8 cm3 pre-training to 977.6 ± 140.9 cm3 after training, p9 allele compared to individuals with one or two +9 alleles (−9/-9, 8.5 ± 3.8%; vs. -9/+9 and +9/+9 combined, 4.7 ± 4.5%, p B2BRK genotype (−9/-9, 50.2 ± 19.2%; vs. -9/+9 and +9/+9 combined, 46.8 ± 20.7%, p > 0.05. Conclusions We found that muscle morphological response to targeted training – hypertrophy – is related to polymorphisms of B2BRK. However, no significant influence of different B2BRK genotypes on functional muscle properties after strength training in young healthy non athletes was found. This finding could be relevant, not only in predicting individual muscle adaptation capacity to training or sarcopenia related to aging and inactivity, but also in

  13. The BRAIN TRIAL: a randomised, placebo controlled trial of a Bradykinin B2 receptor antagonist (Anatibant in patients with traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Rätsep Indrek

    2009-12-01

    Full Text Available Abstract Background Cerebral oedema is associated with significant neurological damage in patients with traumatic brain injury. Bradykinin is an inflammatory mediator that may contribute to cerebral oedema by increasing the permeability of the blood-brain barrier. We evaluated the safety and effectiveness of the non-peptide bradykinin B2 receptor antagonist Anatibant in the treatment of patients with traumatic brain injury. During the course of the trial, funding was withdrawn by the sponsor. Methods Adults with traumatic brain injury and a Glasgow Coma Scale score of 12 or less, who had a CT scan showing an intracranial abnormality consistent with trauma, and were within eight hours of their injury were randomly allocated to low, medium or high dose Anatibant or to placebo. Outcomes were Serious Adverse Events (SAE, mortality 15 days following injury and in-hospital morbidity assessed by the Glasgow Coma Scale (GCS, the Disability Rating Scale (DRS and a modified version of the Oxford Handicap Scale (HIREOS. Results 228 patients out of a planned sample size of 400 patients were randomised. The risk of experiencing one or more SAEs was 26.4% (43/163 in the combined Anatibant treated group, compared to 19.3% (11/57 in the placebo group (relative risk = 1.37; 95% CI 0·76 to 2·46. All cause mortality in the Anatibant treated group was 19% and in the placebo group 15.8% (relative risk 1.20, 95% CI 0.61 to 2.36. The mean GCS at discharge was 12.48 in the Anatibant treated group and 13.0 in the placebo group. Mean DRS was 11.18 Anatibant versus 9.73 placebo, and mean HIREOS was 3.94 Anatibant versus 3.54 placebo. The differences between the mean levels for GCS, DRS and HIREOS in the Anatibant and placebo groups, when adjusted for baseline GCS, showed a non-significant trend for worse outcomes in all three measures. Conclusion This trial did not reach the planned sample size of 400 patients and consequently, the study power to detect an increase in

  14. The BRAIN TRIAL: a randomised, placebo controlled trial of a Bradykinin B2 receptor antagonist (Anatibant) in patients with traumatic brain injury.

    Science.gov (United States)

    Shakur, Haleema; Andrews, Peter; Asser, Toomas; Balica, Laura; Boeriu, Cristian; Quintero, Juan Diego Ciro; Dewan, Yashbir; Druwé, Patrick; Fletcher, Olivia; Frost, Chris; Hartzenberg, Bennie; Mantilla, Jorge Mejia; Murillo-Cabezas, Francisco; Pachl, Jan; Ravi, Ramalingam R; Rätsep, Indrek; Sampaio, Cristina; Singh, Manmohan; Svoboda, Petr; Roberts, Ian

    2009-12-03

    Cerebral oedema is associated with significant neurological damage in patients with traumatic brain injury. Bradykinin is an inflammatory mediator that may contribute to cerebral oedema by increasing the permeability of the blood-brain barrier. We evaluated the safety and effectiveness of the non-peptide bradykinin B2 receptor antagonist Anatibant in the treatment of patients with traumatic brain injury. During the course of the trial, funding was withdrawn by the sponsor. Adults with traumatic brain injury and a Glasgow Coma Scale score of 12 or less, who had a CT scan showing an intracranial abnormality consistent with trauma, and were within eight hours of their injury were randomly allocated to low, medium or high dose Anatibant or to placebo. Outcomes were Serious Adverse Events (SAE), mortality 15 days following injury and in-hospital morbidity assessed by the Glasgow Coma Scale (GCS), the Disability Rating Scale (DRS) and a modified version of the Oxford Handicap Scale (HIREOS). 228 patients out of a planned sample size of 400 patients were randomised. The risk of experiencing one or more SAEs was 26.4% (43/163) in the combined Anatibant treated group, compared to 19.3% (11/57) in the placebo group (relative risk = 1.37; 95% CI 0.76 to 2.46). All cause mortality in the Anatibant treated group was 19% and in the placebo group 15.8% (relative risk 1.20, 95% CI 0.61 to 2.36). The mean GCS at discharge was 12.48 in the Anatibant treated group and 13.0 in the placebo group. Mean DRS was 11.18 Anatibant versus 9.73 placebo, and mean HIREOS was 3.94 Anatibant versus 3.54 placebo. The differences between the mean levels for GCS, DRS and HIREOS in the Anatibant and placebo groups, when adjusted for baseline GCS, showed a non-significant trend for worse outcomes in all three measures. This trial did not reach the planned sample size of 400 patients and consequently, the study power to detect an increase in the risk of serious adverse events was reduced. This trial

  15. Human umbilical vein: involvement of cyclooxygenase-2 pathway in bradykinin B1 receptor-sensitized responses.

    Science.gov (United States)

    Errasti, A E; Rey-Ares, V; Daray, F M; Rogines-Velo, M P; Sardi, S P; Paz, C; Podestá, E J; Rothlin, R P

    2001-08-01

    In isolated human umbilical vein (HUV), the contractile response to des-Arg9-bradykinin (des-Arg9-BK), selective BK B1 receptor agonist, increases as a function of the incubation time. Here, we evaluated whether cyclooxygenase (COX) pathway is involved in BK B1-sensitized response obtained in 5-h incubated HUV rings. The effect of different concentrations of indomethacin, sodium salicylate, ibuprofen, meloxicam, lysine clonixinate or NS-398 administrated 30 min before concentration-response curves (CRC) was studied. All treatments produced a significant rightward shift of the CRC to des-Arg9-BK in a concentration-dependent manner, which provides pharmacological evidence that COX pathway is involved in the BK B1 responses. Moreover, in this tissue, the NS-398 pKb (5.2) observed suggests that COX-2 pathway is the most relevant. The strong correlation between published pIC50 for COX-2 and the NSAIDs' pKbs estimated further supports the hypothesis that COX-2 metabolites are involved in BK B1 receptor-mediated responses. In other rings, indomethacin (30, 100 micromol/l) or NS-398 (10, 30 micromol/l) produced a significant rightward shift of the CRC to BK, selective BK B2 agonist, and its pKbs were similar to the values to inhibit BK B1 receptor responses, suggesting that COX-2 pathway also is involved in BK B2 receptor responses. Western blot analysis shows that COX-1 and COX-2 isoenzymes are present before and after 5-h in vitro incubation and apparently COX-2 does not suffer additional induction.

  16. Inflammatory mediator bradykinin increases population of sensory neurons expressing functional T-type Ca(2+) channels.

    Science.gov (United States)

    Huang, Dongyang; Liang, Ce; Zhang, Fan; Men, Hongchao; Du, Xiaona; Gamper, Nikita; Zhang, Hailin

    2016-04-29

    T-type Ca(2+) channels are important regulators of peripheral sensory neuron excitability. Accordingly, T-type Ca(2+) currents are often increased in various pathological pain conditions, such as inflammation or nerve injury. Here we investigated effects of inflammation on functional expression of T-type Ca(2+) channels in small-diameter cultured dorsal root ganglion (DRG) neurons. We found that overnight treatment of DRG cultures with a cocktail of inflammatory mediators bradykinin (BK), adenosine triphosphate (ATP), norepinephrine (NE) and prostaglandin E2 (PGE2) strongly increased the population size of the small-diameter neurons displaying low-voltage activated (LVA, T-type) Ca(2+) currents while having no effect on the peak LVA current amplitude. When applied individually, BK and ATP also increased the population size of LVA-positive neurons while NE and PGE2 had no effect. The PLC inhibitor U-73122 and B2 receptor antagonist, Hoe-140, both abolished the increase of the population of LVA-positive DRG neurons. Inflammatory treatment did not affect CaV3.2 mRNA or protein levels in DRG cultures. Furthermore, an ubiquitination inhibitor, MG132, did not increase the population of LVA-positive neurons. Our data suggest that inflammatory mediators BK and ATP increase the abundance of LVA-positive DRG neurons in total neuronal population by stimulating the recruitment of a 'reserve pool' of CaV3.2 channels, particularly in neurons that do not display measurable LVA currents under control conditions. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Interaction between bradykinin potentiating nonapeptide (BPP9a) and {beta}-cyclodextrin: A structural and thermodynamic study

    Energy Technology Data Exchange (ETDEWEB)

    Lula, Ivana; De Sousa, Frederico B. [Departamento de Quimica, Instituto de Ciencias Exatas, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, 31270-901, Belo Horizonte, MG (Brazil); Denadai, Angelo M.L. [Centro Federal de Educacao Tecnologica de Minas Gerais, CEFET-MG, Campus VII, 35.183-006, Timoteo, MG (Brazil); Ferreira de Lima, Guilherme; Duarte, Helio Anderson [Departamento de Quimica, Instituto de Ciencias Exatas, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, 31270-901, Belo Horizonte, MG (Brazil); Mares Guia, Thiago R. dos [Departamento de Bioquimica e Imunologia, ICB, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG (Brazil); Faljoni-Alario, Adelaide [Departamento de Bioquimica, Instituto de Quimica, Universidade de Sao Paulo, 05508-900, Sao Paulo, SP (Brazil); Santoro, Marcelo M. [Departamento de Bioquimica e Imunologia, ICB, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG (Brazil); Camargo, Antonio C.M. de [Center for Applied Toxinology CAT-CEPID, Laboratorio Especial de Toxicologia Aplicada, Instituto Butantan, 05503-900, Sao Paulo, SP (Brazil); Santos, Robson A.S. dos [Departamento de Fisiologia e Biofisica, ICB, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG (Brazil); and others

    2012-02-01

    Herein, we demonstrate the physical and chemical characterizations of the supramolecular complex formed between {beta}-cyclodextrin ({beta}CD) and bradykinin potentiating nonapeptide (BPP9a), an endogenous toxin found in Bothrops jararaca. Circular dichroism results indicate a conformational change in the BPP9a secondary structure upon its complexation with {beta}CD. Nuclear magnetic resonance results, mainly from NOESY experiments, and theoretical calculations showed a favorable interaction between the tryptophan residue of BPP9a and the {beta}CD cavity. Thermodynamic inclusion parameters were investigated by isothermal titration calorimetry, demonstrating that {beta}CD/BPP9a complex formation is an exothermic process that results in a reduction in entropy. Additionally, in vitro degradation study of BPP9a against trypsin (37 Degree-Sign C, pH 7.2) showed higher stability of peptide in presence of {beta}CD. This {beta}CD/BPP9a complex, which presents new chemical properties arising from the peptide inclusion process, may be useful as an antihypertensive drug in oral pharmaceutical formulations. Highlights: Black-Right-Pointing-Pointer Cd and NMR showed evidences for the existence of more than one structure in solution. Black-Right-Pointing-Pointer Complexation with {beta}CD reduces the conformational rigidity of the peptide. Black-Right-Pointing-Pointer {beta}CD cavity recognize Trp and/or Pro segments of BPP9a. Black-Right-Pointing-Pointer Interactions involving disaggregation of BPP9a assemblies and binding with {beta}CD.

  18. Angiotensin I-converting enzyme inhibitors potentiate bradykinin's inotropic effects independently of blocking its inactivation.

    Science.gov (United States)

    Minshall, R D; Erdös, E G; Vogel, S M

    1997-08-04

    The positive inotropic effects of bradykinin (BK) and 2 analogs resistant to angiotensin I-converting enzyme (ACE) were potentiated on isolated guinea pig atrial preparations by enalaprilat. The stable BK analogs, dextran-BK and [Hyp3-Tyr(Me)8]-BK, were as active as BK. Pretreatment for 5 min with enalaprilat augmented the maximal positive inotropic effect of [Hyp3-Tyr(Me)8]-BK 2.8-fold, from 19% to 53% and that of BK from 28% to 42% over baseline; inotropic responses to dextran-BK (1 microM) were similarly increased. The activity of atrial ACE, a zinc-requiring enzyme, was completely inhibited by 8-hydroxyquinoline-5-sulfonic acid (QSA, 10 mM), which raised the maximal inotropic effect of BK to 39% above baseline. This value rose to 67% when in addition to QSA, 1 microM enalaprilat was added; enalaprilat thus, potentiated the effects of BK independently of enzyme inhibition. The positive inotropic effects to BK and its analogs decline with time in the presence of these agonists. After 10 min of exposure, the response to 1 microM [Hyp3-Tyr(Me)8]-BK decreased to about half, and after 20 min, to 0. Enalaprilat, when present in the tissue bath, prevented the decline in inotropy; even after tachyphylaxis occurred, it reversed this decrease in activity when added. The effects of 1 microM [Hyp3-Tyr(Me)8]-BK, in the absence or presence of enalaprilat, were abolished by the BK B2 receptor antagonist icatibant (0.75 microM). The results indicate that ACE inhibitors, by potentiating the BK effects and blocking BK B2-receptor desensitization, may contribute to the beneficial cardiac effects of BK independently of blocking its inactivation.

  19. Gene : CBRC-GGOR-01-1364 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available bradykinin receptor B1 [Homo sapiens] sp|P46663|BKRB1_HUMAN RecName: Full=B1 bradykinin receptor; AltName: ...Full=BK-1 receptor; Short=B1R emb|CAB45650.1| bradykinin B1 receptor [Homo sapiens] dbj|BAC06112.1| seven tr...ansmembrane helix receptor [Homo sapiens] gb|AAH34705.1| Bradykinin receptor B1 [Homo sapi...ens] gb|AAP32296.1| bradykinin receptor B1 [Homo sapiens] gb|EAW81632.1| bradykinin receptor B1 [Homo sapi...1 [synthetic construct] dbj|BAF84659.1| unnamed protein product [Homo sapiens] 1e

  20. Icatibant, an inhibitor of bradykinin receptor 2, for hereditary angioedema attacks: prospective experimental single-cohort study.

    Science.gov (United States)

    Campos, Regis Albuquerque; Valle, Solange Oliveira Rodrigues; França, Alfeu Tavares; Cordeiro, Elisabete; Serpa, Faradiba Sarquis; Mello, Yara Ferreira; Malheiros, Teresinha; Toledo, Eliana; Mansour, Elie; Fusaro, Gustavo; Grumach, Anete Sevciovic

    2014-01-01

    Hereditary angioedema (HAE) with C1 inhibitor deficiency manifests as recurrent episodes of edema involving the skin, upper respiratory tract and gastrointestinal tract. It can be lethal due to asphyxia. The aim here was to evaluate the response to therapy for these attacks using icatibant, an inhibitor of the bradykinin receptor, which was recently introduced into Brazil. Prospective experimental single-cohort study on the efficacy and safety of icatibant for HAE patients. Patients with a confirmed HAE diagnosis were enrolled according to symptoms and regardless of the time since onset of the attack. Icatibant was administered in accordance with the protocol that has been approved in Brazil. Symptom severity was assessed continuously and adverse events were monitored. 24 attacks in 20 HAE patients were treated (female/male 19:1; 19-55 years; median 29 years of age). The symptoms were: subcutaneous edema (22/24); abdominal pain (15/24) and upper airway obstruction (10/24). The time taken until onset of relief was: 5-10 minutes (5/24; 20.8%); 10-20 (5/24; 20.8%); 20-30 (8/24; 33.4%); 30-60 (5/24; 20.8%); and 2 hours (1/24; 4.3%). The time taken for complete resolution of symptoms ranged from 4.3 to 33.4 hours. Adverse effects were only reported at injection sites. Mild to moderate erythema and/or feelings of burning were reported by 15/24 patients, itching by 3 and no adverse effects in 6. HAE type I patients who received icatibant responded promptly; most achieved improved symptom severity within 30 minutes. Local adverse events occurred in 75% of the patients.

  1. Impact of angiotensin and endothelin converting enzymes and related bradykinin on renal functions in L-NAME hypertensive rats

    Science.gov (United States)

    Omar, Ali Zainal; Maulood, Ismail M.

    2017-09-01

    The renin-angiotensin system (RAS), one of the most important hormonal systems, controls the kidney functions by regulating fluid volume, and electrolyte balance. The current study included the effects of kinin-kallikrein system (KKS) and its interaction with both angiotensin converting enzyme (ACE) and endothelin converting enzyme (ECE) on some of kidney function test parameters. In the present experiment, rats were divided into six groups, the first group was infused with normal saline, the second group was L-NG-Nitroarginine methyl ester (L-NAME) treated rats, third group was bradykinin (BK), forth group was captopril (ACEi), fifth group was phosphoramidon (ECEi), sixth group was a combination of BK with phosphoramidon. L-NAME was intravenously infused for one hour to develop systematic hypertension in male rats. After one hour of infusion, the results showed that L-NAME significantly increased serum creatinine. While, it decreased glomerular filtration rate (GFR), and K+ excretion rate. Moreover, BK increased packed cell volume PCV%, serum creatinine and K+ ion concentration. While, it reduced GFR, serum Ca+2 ion concentration, K+ and Na+ excretion rates. On the other hand, captopril infusion showed its effect by reduction in GFR, serum Ca+2 ion and electrolyte excretion rates. Phosphoramidon an ECEi dramatically reduced serum Ca+2 ion, but it increased pH, GFR and Ca+2 excretion rate. The results suggested that BK and Captopril each alone severely reduces GFR value. Interestingly, inhibition of ET-1 production via phosphoramidon could markedly elevate GFR values.

  2. Bradykinin B2 receptor expression in the bronchial mucosa of allergic asthmatics: the role of NF-kB.

    Science.gov (United States)

    Ricciardolo, F L M; Petecchia, L; Sorbello, V; Di Stefano, A; Usai, C; Massaglia, G M; Gnemmi, I; Mognetti, B; Hiemstra, P S; Sterk, P J; Sabatini, F

    2016-03-01

    Bradykinin (BK) mediates acute allergic asthma and airway remodelling. Nuclear factor-kappa B (NF-kB) is potentially involved in BK B2 receptor (B2R) regulation. In this observational cross-sectional study, B2R and NF-kB expression was evaluated in bronchial biopsies from mild asthmatics (after diluent/allergen challenge) and healthy controls, examining the role of NF-kB in B2R expression in primary human fibroblasts from normal and asthmatic subjects (HNBFb and HABFb). B2R and NF-kB (total and nuclear) expression was analysed by immunohistochemistry in biopsies from 10 mild intermittent asthmatics (48 h after diluent/allergen challenge) and 10 controls undergoing bronchoscopy. B2R co-localization in 5B5(+) and αSMA(+) mesenchymal cells was studied by immunofluorescence/confocal microscopy, and B2R expression in HABFb/HNBFb incubated with interleukin (IL)-4/IL-13 with/without BK, and after NF-kB inhibitor, by Western blotting. Bronchial mucosa B2R and nuclear NF-kB expression was higher in asthmatics after diluent (B2R only) and allergen challenge than in controls (P kB (total and nuclear) increased after allergen compared with after diluent (P kB inhibitor (P kB expression. NF-kB inhibitor blocked IL-4/IL-13-induced increase in B2R expression in cultured fibroblasts, suggesting a role as potential anti-asthma drug. © 2015 John Wiley & Sons Ltd.

  3. [Tranexamic acid as first-line emergency treatment for episodes of bradykinin-mediated angioedema induced by ACE inhibitors].

    Science.gov (United States)

    Beauchêne, C; Martins-Héricher, J; Denis, D; Martin, L; Maillard, H

    2018-05-04

    Episodes of acquired bradykinin-mediated angioedema due to angiotensin-converting enzyme (ACE) inhibitors may result in fatal outcomes. There is no consensus regarding emergency pharmacological management of these episodes. Treatment options include icatibant and C1INH concentrate. Tranexamic acid is administered for moderate episodes. Its efficacy in the treatment of ACE inhibitor-induced episodes of angioedema is not established. The aim of this retrospective study is to assess the benefits of emergency tranexamic acid administration in the management of ACE inhibitor-induced episodes of angioedema. Retrospective analysis of the medical files of patients who consulted between 2010 and 2016 in two French tertiary care hospitals for a bradykinic angioedema attributed to an ACE treatment. All of them had received tranexamic acid as a first line treatment. Thirty three patients who had experienced severe episode of angioedema were included. Twenty seven patients showed significant improvement when treated with tranexamic acid alone. The six remaining patients were treated with icatibant (5/33) or C1INH concentrate (1/33), due to partial improvement after tranexamic acid therapy. None of the patients were intubated, no fatalities were recorded and no side effects were reported. Tranexamic acid is an easily accessible and affordable therapy that may provide effective treatment for ACE inhibitor-induced episodes of angioedema. It may help while waiting for a more specific treatment (icatibant and C1INH concentrate) that is at times unavailable in emergency departments. Copyright © 2018 Société Nationale Française de Médecine Interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  4. Design and synthesis of novel sulfonamide-containing bradykinin hB2 receptor antagonists. 2. Synthesis and structure-activity relationships of alpha,alpha-cycloalkylglycine sulfonamides.

    Science.gov (United States)

    Fattori, Daniela; Rossi, Cristina; Fincham, Christopher I; Caciagli, Valerio; Catrambone, Fernando; D'Andrea, Piero; Felicetti, Patrizia; Gensini, Martina; Marastoni, Elena; Nannicini, Rossano; Paris, Marielle; Terracciano, Rosa; Bressan, Alessandro; Giuliani, Sandro; Maggi, Carlo A; Meini, Stefania; Valenti, Claudio; Quartara, Laura

    2007-02-08

    Recently we reported on the design and synthesis of a novel class of selective nonpeptide bradykinin (BK) B2 receptor antagonists (J. Med. Chem. 2006, 3602-3613). This work led to the discovery of MEN 15442, an antagonist with subnanomolar affinity for the human B2 receptor (hB2R), which also displayed significant and prolonged activity in vivo (for up to 210 min) against BK-induced bronchoconstriction in the guinea-pig at a dose of 300 nmol/kg (it), while demonstrating only a slight effect on BK-induced hypotension. Here we describe the further optimization of this series of compounds aimed at maximizing the effect on bronchoconstriction and minimizing the effect on hypotension, with a view to developing topically delivered drugs for airway diseases. The work led to the discovery of MEN 16132, a compound which, after intratracheal or aerosol administration, inhibited, in a dose-dependent manner, BK-induced bronchoconstricton in the airways, while showing minimal systemic activity. This compound was selected as a preclinical candidate for the topical treatment of airway diseases involving kinin B2 receptor stimulation.

  5. Icatibant, an inhibitor of bradykinin receptor 2, for hereditary angioedema attacks: prospective experimental single-cohort study

    Directory of Open Access Journals (Sweden)

    Regis Albuquerque Campos

    Full Text Available CONTEXT AND OBJECTIVE: Hereditary angioedema (HAE with C1 inhibitor deficiency manifests as recurrent episodes of edema involving the skin, upper respiratory tract and gastrointestinal tract. It can be lethal due to asphyxia. The aim here was to evaluate the response to therapy for these attacks using icatibant, an inhibitor of the bradykinin receptor, which was recently introduced into Brazil.DESIGN AND SETTING: Prospective experimental single-cohort study on the efficacy and safety of icatibant for HAE patients.METHODS: Patients with a confirmed HAE diagnosis were enrolled according to symptoms and regardless of the time since onset of the attack. Icatibant was administered in accordance with the protocol that has been approved in Brazil. Symptom severity was assessed continuously and adverse events were monitored.RESULTS: 24 attacks in 20 HAE patients were treated (female/male 19:1; 19-55 years; median 29 years of age. The symptoms were: subcutaneous edema (22/24; abdominal pain (15/24 and upper airway obstruction (10/24. The time taken until onset of relief was: 5-10 minutes (5/24; 20.8%; 10-20 (5/24; 20.8%; 20-30 (8/24; 33.4%; 30-60 (5/24; 20.8%; and 2 hours (1/24; 4.3%. The time taken for complete resolution of symptoms ranged from 4.3 to 33.4 hours. Adverse effects were only reported at injection sites. Mild to moderate erythema and/or feelings of burning were reported by 15/24 patients, itching by 3 and no adverse effects in 6.CONCLUSION: HAE type I patients who received icatibant responded promptly; most achieved improved symptom severity within 30 minutes. Local adverse events occurred in 75% of the patients.

  6. Identification of snake bradykinin-potentiating peptides (BPPs)-simile sequences in rat brain--Potential BPP-like precursor protein?

    Science.gov (United States)

    Campeiro, Joana D'Arc; Neshich, Izabella P; Sant'Anna, Osvaldo A; Lopes, Robson; Ianzer, Danielle; Assakura, Marina T; Neshich, Goran; Hayashi, Mirian A F

    2015-08-01

    Bradykinin-potentiating peptides (BPPs) from the South American pit viper snake venom were the first natural inhibitors of the human angiotensin I-converting enzyme (ACE) described. The pioneer characterization of the BPPs precursor from the snake venom glands by our group showed for the first time the presence of the C-type natriuretic peptide (CNP) in this same viper precursor protein. The confirmation of the BPP/CNP expression in snake brain regions correlated with neuroendocrine functions stimulated us to pursue the physiological correlates of these vasoactive peptides in mammals. Notably, several snake toxins were shown to have endogenous physiological correlates in mammals. In the present work, we expressed in bacteria the BPPs domain of the snake venom gland precursor protein, and this purified recombinant protein was used to raise specific polyclonal anti-BPPs antibodies. The correspondent single protein band immune-recognized in adult rat brain cytosol was isolated by 2D-SDS/PAGE and/or HPLC, before characterization by MS fingerprint analysis, which identified this protein as superoxide dismutase (SOD, EC 1.15.1.1), a classically known enzyme with antioxidant activity and important roles in the blood pressure modulation. In silico analysis showed the exposition of the BPP-like peptide sequences on the surface of the 3D structure of rat SOD. These peptides were chemically synthesized to show the BPP-like biological activities in ex vivo and in vivo pharmacological bioassays. Taken together, our data suggest that SOD protein have the potential to be a source for putative BPP-like bioactive peptides, which once released may contribute to the blood pressure control in mammals. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. New insights into the stereochemical requirements of the bradykinin B2 receptor antagonists binding

    Science.gov (United States)

    Lupala, Cecylia S.; Gomez-Gutierrez, Patricia; Perez, Juan J.

    2016-01-01

    Bradykinin (BK) is a member of the kinin family, released in response to inflammation, trauma, burns, shock, allergy and some cardiovascular diseases, provoking vasodilatation and increased vascular permeability among other effects. Their actions are mediated through at least two G-protein coupled receptors, B1 a receptor up-regulated during inflammation episodes or tissue trauma and B2 that is constitutively expressed in a variety of cell types. The goal of the present work is to carry out a structure-activity study of BK B2 antagonism, taking into account the stereochemical features of diverse non-peptide antagonists and the way these features translate into ligand anchoring points to complementary regions of the receptor, through the analysis of the respective ligand-receptor complex. For this purpose an atomistic model of the BK B2 receptor was built by homology modeling and subsequently refined embedded in a lipid bilayer by means of a 600 ns molecular dynamics trajectory. The average structure from the last hundred nanoseconds of the molecular dynamics trajectory was energy minimized and used as model of the receptor for docking studies. For this purpose, a set of compounds with antagonistic profile, covering maximal diversity were selected from the literature. Specifically, the set of compounds include Fasitibant, FR173657, Anatibant, WIN64338, Bradyzide, CHEMBL442294, and JSM10292. Molecules were docked into the BK B2 receptor model and the corresponding complexes analyzed to understand ligand-receptor interactions. The outcome of this study is summarized in a 3D pharmacophore that explains the observed structure-activity results and provides insight into the design of novel molecules with antagonistic profile. To prove the validity of the pharmacophore hypothesized a virtual screening process was also carried out. The pharmacophore was used as query to identify new hits using diverse databases of molecules. The results of this study revealed a set of new

  8. Estrogen therapy may counterbalance eutrophic remodeling of coronary arteries and increase bradykinin relaxation in a rat model of menopausal hypertension.

    Science.gov (United States)

    Matrai, Mate; Hetthéssy, Judit R; Nadasy, Gyorgy L; Szekacs, Bela; Mericli, Metin; Acs, Nandor; Monos, Emil; Arbib, Nissim; Varbiro, Szabolcs

    2016-07-01

    Hypertension causes adverse remodeling and vasomotor alterations in coronaries. Hormones such as estrogen may help counterbalance some of these effects. The aim of this study was to analyze the effects of ovariectomy and estrogen therapy in a rat model of menopausal hypertension induced by angiotensin II (AII). We investigated diameter, tone, and mechanics of intramural coronaries taken from ovariectomized female rats (n = 11) that received chronic AII treatment to induce hypertension, and compared the results with those found in female rats that were also given estrogen therapy (n = 11). The "hypertensive control" group (n = 11) underwent an abdominal sham operation, and received AII. After 4 weeks of AII treatment, side branches of left anterior descendent coronary (approximately 200 μm in diameter) were isolated, cannulated with plastic microcannulas at both ends, and studied in vitro in a vessel chamber. The inner and outer diameter of the arteries were measured by microangiometry, and spontenuous tone, wall thickness, wall cross-sectional area, tangential stress, incremental distensibility, circumferential incremental elastic modulus, thromboxane agonist-induced tone, and bradykinin-induced dilation were calculated. In hypertension, intramural small coronaries show inward eutrophic remodeling after ovariectomy comparing with hypertensive controls. Estrogen therapy had an opposite effect on vessel diameter. Hormone therapy led to an increase in spontaneous tone, allowing for greater dilatative capacity. Estrogen may therefore be considered to counterbalance some of the adverse changes seen in the wall of intramural coronaries in the early stages of chronic hypertension.

  9. Biotechnological Fluorescent Ligands of the Bradykinin B1 Receptor: Protein Ligands for a Peptide Receptor.

    Directory of Open Access Journals (Sweden)

    Xavier Charest-Morin

    Full Text Available The bradykinin (BK B1 receptor (B1R is a peculiar G protein coupled receptor that is strongly regulated to the point of being inducible in immunopathology. Limited clinical evidence suggests that its expression in peripheral blood mononuclear cells is a biomarker of active inflammatory states. In an effort to develop a novel imaging/diagnostic tool, we report the rational design and testing of a fusion protein that is a ligand of the human B1R but not likely to label peptidases. This ligand is composed of a fluorescent protein (FP (enhanced green FP [EGFP] or mCherry prolonged at its N-terminus by a spacer peptide and a classical peptide agonist or antagonist (des-Arg9-BK, [Leu8]des-Arg9-BK, respectively. The design of the spacer-ligand joint peptide was validated by a competition assay for [3H]Lys-des-Arg9-BK binding to the human B1R applied to 4 synthetic peptides of 18 or 19 residues. The labeling of B1R-expressing cells with EGFP or mCherry fused with 7 of such peptides was performed in parallel (microscopy. Both assays indicated that the best design was FP-(Asn-Glyn-Lys-des-Arg9-BK; n = 15 was superior to n = 5, suggesting benefits from minimizing steric hindrance between the FP and the receptor. Cell labeling concerned mostly plasma membranes and was inhibited by a B1R antagonist. EGFP-(Asn-Gly15-Lys-des-Arg9-BK competed for the binding of [3H]Lys-des-Arg9-BK to human recombinant B1R, being only 10-fold less potent than the unlabeled form of Lys-des-Arg9-BK to do so. The fusion protein did not label HEK 293a cells expressing recombinant human BK B2 receptors or angiotensin converting enzyme. This study identifies a modular C-terminal sequence that can be adapted to protein cargoes, conferring high affinity for the BK B1R, with possible applications in diagnostic cytofluorometry, histology and drug delivery (e.g., in oncology.

  10. Nitric oxide inhibits the bradykinin B2 receptor-mediated adrenomedullary catecholamine release but has no effect on adrenal blood flow response in vivo.

    Science.gov (United States)

    Bouallegue, Ali; Yamaguchi, Nobuharu

    2005-06-01

    The role of nitric oxide (NO) in bradykinin (BK)-induced adrenal catecholamine secretion still remains obscure. The present study was to investigate whether an inhibition of NO synthase with N(omega)-nitro-L-arginine methyl ester (L-NAME) would modulate BK-induced adrenal catecholamine secretion (ACS) and adrenal vasodilating response (AVR) in anesthetized dogs. Plasma catecholamine concentrations were determined with an HPLC coupled with an electrochemical detector. All drugs were locally administered to the left adrenal gland via intra-arterial infusion. BK dose-dependently increased both ACS and AVR. Hoe-140, a selective B(2) antagonist, significantly blocked the BK-induced increases in both ACS and AVR. In the presence of L-NAME, the BK-induced ACS was significantly enhanced, while the simultaneous AVR remained unaffected. These results suggest that the both BK-induced ACS and AVR are primarily mediated by B(2) receptors in the canine adrenal gland. Our results also suggest that the enhanced ACS in response to BK in the presence of L-NAME may have resulted from a specific inhibition of NO formation in the adrenal gland. It is concluded that the BK-induced NO may play an inhibitory role in the B(2)-receptor-mediated mechanisms regulating ACS, while it may not be implicated in the B(2)-receptor-mediated AVR under in vivo conditions.

  11. Modulation of enhanced vascular permeability by prostaglandins through alterations in blood flow (hyperemia). [/sup 85/Sr tracer technique

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, M G; Hay, J B; Movat, H Z

    1976-11-01

    The enhanced vascular permeability induced by histamine or bradykinin in the skin of the guinea-pig and rabbit was significantly augmented by small amounts of prostaglandins of the E type. When injected alone these prostaglandins had little effect on vascular permeability. Furthermore, E type prostaglandins were found to be more potent at inducing hyperemia than either histamine or bradykinin. Prostaglandin F/sub 2/ alpha did not enhance the vascular permeability induced by histamine or bradykinin nor did it produce hyperemia in the skin. In the rat, prostaglandins alone enhanced vascular permeability but they also increased the effect of histamine, serotonin and bradykinin. Using /sup 85/Sr-microspheres to measure blood flow a correlation was found between the degree of hyperemia produced by prostaglandins and the degree to which they augmented enhanced vascular permeability due to histamine, serotonin or bradykinin. Prostaglandins therefore can directly mimic the hyperemia of the inflammatory process and can also modulate the changes in vascular permeability caused by other mediators of inflammation.

  12. A bradykinin-potentiating peptide (BPP-10c) from Bothrops jararaca induces changes in seminiferous tubules

    Science.gov (United States)

    2013-01-01

    Background The testis-specific isoform of angiotensin-converting enzyme (tACE) is exclusively expressed in germ cells during spermatogenesis. Although the exact role of tACE in male fertility is unknown, it clearly plays a critical function in spermatogenesis. The dipeptidase domain of tACE is identical to the C-terminal catalytic domain of somatic ACE (sACE). Bradykinin potentiating peptides (BPPs) from snake venoms are the first natural sACE inhibitors described and their structure–activity relationship studies were the basis for the development of antihypertensive drugs such as captopril. In recent years, it has been showed that a number of BPPs – including BPP-10c – are able to distinguish between the N- and C-active sites of sACE, what is not applicable to captopril. Considering the similarity between tACE and sACE (and since BPPs are able to distinguish between the two active sites of sACE), the effects of the BPP-10c and captopril on the structure and function of the seminiferous epithelium were characterized in the present study. BPP-10c and captopril were administered in male Swiss mice by intraperitoneal injection (4.7 μmol/kg for 15 days) and histological sections of testes were analyzed. Classification of seminiferous tubules and stage analysis were carried out for quantitative evaluation of germ cells of the seminiferous epithelium. The blood-testis barrier (BTB) permeability and distribution of claudin-1 in the seminiferous epithelium were analyzed by hypertonic fixative method and immunohistochemical analyses of testes, respectively. Results The morphology of seminiferous tubules from animals treated with BPP-10c showed an intense disruption of the epithelium, presence of atypical multinucleated cells in the lumen and degenerated germ cells in the adluminal compartment. BPP-10c led to an increase in the number of round spermatids and total support capacity of Sertoli cell in stages I, V, VII/VIII of the seminiferous epithelium cycle, without

  13. A bradykinin-potentiating peptide (BPP-10c) from Bothrops jararaca induces changes in seminiferous tubules.

    Science.gov (United States)

    Gilio, Joyce M; Portaro, Fernanda Cv; Borella, Maria I; Lameu, Claudiana; Camargo, Antonio Cm; Alberto-Silva, Carlos

    2013-11-06

    The testis-specific isoform of angiotensin-converting enzyme (tACE) is exclusively expressed in germ cells during spermatogenesis. Although the exact role of tACE in male fertility is unknown, it clearly plays a critical function in spermatogenesis. The dipeptidase domain of tACE is identical to the C-terminal catalytic domain of somatic ACE (sACE). Bradykinin potentiating peptides (BPPs) from snake venoms are the first natural sACE inhibitors described and their structure-activity relationship studies were the basis for the development of antihypertensive drugs such as captopril. In recent years, it has been showed that a number of BPPs - including BPP-10c - are able to distinguish between the N- and C-active sites of sACE, what is not applicable to captopril. Considering the similarity between tACE and sACE (and since BPPs are able to distinguish between the two active sites of sACE), the effects of the BPP-10c and captopril on the structure and function of the seminiferous epithelium were characterized in the present study. BPP-10c and captopril were administered in male Swiss mice by intraperitoneal injection (4.7 μmol/kg for 15 days) and histological sections of testes were analyzed. Classification of seminiferous tubules and stage analysis were carried out for quantitative evaluation of germ cells of the seminiferous epithelium. The blood-testis barrier (BTB) permeability and distribution of claudin-1 in the seminiferous epithelium were analyzed by hypertonic fixative method and immunohistochemical analyses of testes, respectively. The morphology of seminiferous tubules from animals treated with BPP-10c showed an intense disruption of the epithelium, presence of atypical multinucleated cells in the lumen and degenerated germ cells in the adluminal compartment. BPP-10c led to an increase in the number of round spermatids and total support capacity of Sertoli cell in stages I, V, VII/VIII of the seminiferous epithelium cycle, without affecting BTB permeability

  14. Bradykinin-potentiating PEPTIDE-10C, an argininosuccinate synthetase activator, protects against H2O2-induced oxidative stress in SH-SY5Y neuroblastoma cells.

    Science.gov (United States)

    Querobino, Samyr Machado; Ribeiro, César Augusto João; Alberto-Silva, Carlos

    2018-05-01

    Bradykinin-potentiating peptides (BPPs - 5a, 7a, 9a, 10c, 11e, and 12b) of Bothrops jararaca (Bj) were described as argininosuccinate synthase (AsS) activators, improving l-arginine availability. Agmatine and polyamines, which are l-arginine metabolism products, have neuroprotective properties. Here, we investigated the neuroprotective effects of low molecular mass fraction from Bj venom (LMMF) and two synthetic BPPs (BPP-10c, BPP-12b, BPP-10c showed higher protective capacity than BPP-12b. LMMF pretreatment was unable to prevent the reduction of cell viability caused by H 2 O 2 . The neuroprotective mechanism of BPP-10c against oxidative stress was investigated. BPP-10c reduced ROS generation and lipid peroxidation in relation to cells treated only with H 2 O 2 . BBP-10c increased AsS expression and was not neuroprotective in the presence of MDLA, a specific inhibitor of AsS. BPP-10c reduced iNOS expression and nitrate levels but decreased NF-kB expression. Furthermore, BPP-10c protected the mitochondrial membrane against oxidation. Overall, we demonstrated for the first time neuroprotective mechanisms of BPPs against oxidative stress, opening new perspectives to the study and application of these peptides for the treatment of neurodegenerative diseases. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Antagonism of bradykinin B2 receptor prevents inflammatory responses in human endothelial cells by quenching the NF-kB pathway activation.

    Directory of Open Access Journals (Sweden)

    Erika Terzuoli

    Full Text Available Bradykinin (BK induces angiogenesis by promoting vessel permeability, growth and remodeling. This study aimed to demonstrate that the B2R antagonist, fasitibant, inhibits the BK pro-angiogenic effects.We assesed the ability of fasibitant to antagonize the BK stimulation of cultured human cells (HUVEC and circulating pro-angiogenic cells (PACs, in producing cell permeability (paracellular flux, migration and pseocapillary formation. The latter parameter was studied in vitro (matrigel assay and in vivo in mice (matrigel plug and in rat model of experimental osteoarthritis (OA. We also evaluated NF-κB activation in cultured cells by measuring its nuclear translocation and its downstream effectors such as the proangiogenic ciclooxygenase-2 (COX-2, prostaglandin E-2 and vascular endothelial growth factor (VEGF.HUVEC, exposed to BK (1-10 µM, showed increased permeability, disassembly of adherens and tight-junction, increased cell migration, and pseudocapillaries formation. We observed a significant increase of vessel density in the matrigel assay in mice and in rats OA model. Importantly, B2R stimulation elicited, both in HUVEC and PACs, NF-κB activation, leading to COX-2 overexpression, enhanced prostaglandin E-2 production. and VEGF output. The BK/NF-κB axis, and the ensuing amplification of inflammatory/angiogenic responses were fully prevented by fasitibant as well as by IKK VII, an NF-κB. Inhibitor.This work illustrates the role of the endothelium in the inflammation provoked by the BK/NF-κB axis. It also demonstates that B2R blockade by the antaogonist fasibitant, abolishes both the initial stimulus and its amplification, strongly attenuating the propagation of inflammation.

  16. Bradykinin Contributes to Sympathetic and Pressor Responses Evoked by Activation of Skeletal Muscle Afferents P2X in Heart Failure

    Directory of Open Access Journals (Sweden)

    Jihong Xing

    2016-11-01

    Full Text Available Background/Aims: Published data suggest that purinergic P2X receptors of muscle afferent nerves contribute to the enhanced sympathetic nervous activity (SNA and blood pressure (BP responses during static exercise in heart failure (HF. In this study, we examined engagement of bradykinin (BK in regulating responses of SNA and BP evoked by P2X stimulation in rats with HF. We further examined cellular mechanisms responsible for BK. We hypothesized that BK potentiates P2X currents of muscle dorsal root ganglion (DRG neurons, and this effect is greater in HF due to upregulation of BK kinin B2 and P2X3 receptor. As a result, BK amplifies muscle afferents P2X-mediated SNA and BP responses. Methods: Renal SNA and BP responses were recorded in control rats and rats with HF. Western Blot analysis and patch-clamp methods were employed to examine the receptor expression and function of DRG neurons involved in the effects of BK. Results: BK injected into the arterial blood supply of the hindlimb muscles heightened the reflex SNA and BP responses induced by P2X activation with α,β-methylene ATP to a greater degree in HF rats. In addition, HF upregulated the protein expression of kinin B2 and P2X3 in DRG and the prior application of BK increased the magnitude of α,β-methylene ATP-induced currents in muscle DRG neurons from HF rats. Conclusion: BK plays a facilitating role in modulating muscle afferent P2X-engaged reflex sympathetic and pressor responses. In HF, P2X responsivness is augmented due to increases in expression of kinin B2 and P2X3 receptors and P2X current activity.

  17. Role of Mas Receptor Antagonist A799 in Renal Blood Flow Response to Ang 1-7 after Bradykinin Administration in Ovariectomized Estradiol-Treated Rats

    Directory of Open Access Journals (Sweden)

    Aghdas Dehghani

    2015-01-01

    Full Text Available Background. The accompanied role of Mas receptor (MasR, bradykinin (BK, and female sex hormone on renal blood flow (RBF response to angiotensin 1-7 is not well defined. We investigated the role of MasR antagonist (A779 and BK on RBF response to Ang 1-7 infusion in ovariectomized estradiol-treated rats. Methods. Ovariectomized Wistar rats received estradiol (OVE or vehicle (OV for two weeks. Catheterized animals were subjected to BK and A799 infusion and mean arterial pressure (MAP, RBF, and renal vascular resistance (RVR responses to Ang 1-7 (0, 100, and 300 ng kg−1 min−1 were determined. Results. Percentage change of RBF (%RBF in response to Ang1-7 infusion increased in a dose-dependent manner. In the presence of BK, when MasR was not blocked, %RBF response to Ang 1-7 in OVE group was greater than OV group significantly (P<0.05. Infusion of 300 ng kg−1 min−1 Ang 1-7 increased RBF by 6.9±1.9% in OVE group versus 0.9±1.8% in OV group. However when MasR was blocked, %RBF response to Ang 1-7 in OV group was greater than OVE group insignificantly. Conclusion. Coadministration of BK and A779 compared to BK alone increased RBF response to Ang 1-7 in vehicle treated rats. Such observation was not seen in estradiol treated rats.

  18. Measurements of urinary kinins by HPLC-radioimmunoassay

    International Nuclear Information System (INIS)

    Fejes-Toth, G.; Naray-Fejes-Toth, A.; Froelich, J.C.

    1984-01-01

    In this paper the authors describe a method for the individual determination of urinary kinins. Extraction from the urine is performed on an Amberlite CG-50 column and kinins are eluted with formic acid. The samples are further purified and kinins are separated by reversed phase HPLC. Bradykinin and lysylbradykinin are quantified by a sensitive radioimmunoassay capable of detecting 0.1 fmol of either peptide. Procedural losses are monitored by measuring the recovery of [ 3 H]bradykinin and [ 3 H]lysylbradykinin. Simple methods for labeling of bradykinin and lysylbradykinin with tritium are also presented. Recoveries of [ 3 H]bradykinin and [ 3 H]lysylbradykinin from biological material ranged between 77 and 91%. The combination of HPLC with radioimmunoassay makes it possible to determine kinin concentrations of biological samples with a higher sensitivity and greater specificity than previous methods. (Auth.)

  19. NCBI nr-aa BLAST: CBRC-PHAM-01-1757 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-PHAM-01-1757 ref|NP_001003095.1| bradykinin receptor B2 [Canis lupus familiari...s] gb|AAK21217.1|AF334948_1 B2 bradykinin receptor [Canis lupus familiaris] NP_001003095.1 0.0 80% ...

  20. Purification, structural characterization, and myotropic activity of a peptide related to des-Arg(9)-bradykinin from an elasmobranch fish, the little skate, Leucoraja erinacea.

    Science.gov (United States)

    Anderson, W Gary; Leprince, Jérôme; Conlon, J Michael

    2008-08-01

    A bradykinin (BK)-related peptide was isolated from heat-denaturated plasma from an elasmobranch fish, the little skate, Leucoraja erinacea after incubation with porcine pancreatic kallikrein. The primary structure of the peptide (H-Gly-Ile-Thr-Ser-Trp-Leu-Pro-Phe-OH; skate BK) shows limited structural similarity to the mammalian B1 receptor agonist, des-Arg(9)-BK. The myotropic activities of synthetic skate BK, and the analog skate [Arg(9)]BK, were examined in isolated skate vascular and intestinal smooth muscle preparations. Skate BK produced a concentration-dependent constriction of the mesenteric artery (EC(50)=4.37x10(-8)M; maximum response=103.4+/-10.23% of the response to 60mM KCl) but the response to skate [Arg(9)]BK was appreciably weaker (response to 10(-6)M=73.0+/-23.4% of the response to 60mM KCl). Neither the first branchial gill arch nor the ventral aorta responded to either purified peptide. Skate BK also produced a concentration-dependent constriction of intestinal smooth muscle preparations (EC(50)=2.74x10(-7)M; maximum response 31.0+/-12.2% of the response to 10(-5)M acetylcholine). Skate [Arg(9)]BK was without effect on the intestinal preparation. The data provide evidence for the existence of the kallikrein-kinin system in a phylogenetically ancient vertebrate group and the greater potency of skate BK compared with the analog skate [Arg(9)]BK suggests that the receptor mediating vascular responses resembles the mammalian B1 receptor more closely than the B2 receptor.

  1. Strong cytotoxic effect of the bradykinin antagonist BKM-570 in ovarian cancer cells--analysis of the molecular mechanisms of its antiproliferative action.

    Science.gov (United States)

    Jutras, Stephanie; Bachvarova, Magdalena; Keita, Mamadou; Bascands, Jean-Loup; Mes-Masson, Anne-Marie; Stewart, John M; Gera, Lajos; Bachvarov, Dimcho

    2010-12-01

    The standard chemotherapy for epithelial ovarian cancer (EOC) patients is currently a combination of taxane and platinum. However, most EOC patients still suffer relapses, and there is an immediate need for the development of novel and more effective therapeutic modalities against this deadly disease. Recently, the nonpeptide bradykinin (BK) antagonist 2,3,4,5,6-pentafluorocinnamoyl-(o-2,6-dichlorobenzyl)-l-tyrosine-N-(4-amino-2,2,6,6-tetramethyl-piperidyl) amide (BKM-570) was shown to cause impressive growth inhibition of lung and prostate tumors, displaying superior in vivo inhibitory effects than convential chemotherapeutic drugs. Here, we investigated BKM-570 cytotoxic effects in two EOC cell lines, derived from different EOC histopathologies: a clear cell carcinoma (TOV-21), and an endometrioid carcinoma (TOV-112). We showed that BKM-570 effectively inhibited the growth of ovarian cancer cells, as its cytotoxic effects were comparable to those of cisplatin, and were independent of the functional status of BK receptors. Moreover, BKM-570 synergized with cisplatin in inhibiting EOC cell growth. To better understand the molecular mechanisms of the antiproliferative action of this BK antagonist in EOC cells, we performed gene expression profiling in TOV-21 and TOV-112 cells following treatment with 10 μM BKM-570 for 24 h. BKM-570 displayed similar cytotoxic effects in the two cell lines analyzed, as genes with previously shown involvement in apoptosis/antiapoptosis and cell adhesion were proportionally upregulated and downregulated in both cell lines, whereas genes involved in basic cellular mechanisms, including cell growth and maintenance, metabolism, cell cycle control, inflammatory and immune response, signal transduction, protein biosynthesis, transcription regulation, and transport, were predominantly downregulated upon treatment. Our data are indicative of the therapeutic potential of BKM-570 and related compounds in EOC management. © 2010 The Authors

  2. Perinatal development influences mechanisms of bradykinin-induced relaxations in pulmonary resistance and conduit arteries differently.

    Science.gov (United States)

    Boels, P J; Deutsch, J; Gao, B; Haworth, S G

    2001-07-01

    As bradykinin (BYK) relaxes conduit (EPA) and resistance (RPA) pulmonary arteries from both perinatal and adult lungs, we investigated whether this vasodilator's relaxation-mechanisms were altered during perinatal development, differed between EPA and RPA and differed with other endothelium-dependent vasodilators, acetyicholine (ACH) and substance P (SP). Arteries from mature foetal (5 days), neonatal (approximately 5 min), newborn (60-84 h) and adult pigs (> or =6 months) were isolated, mounted for in vitro isometric force recording, activated with PGF(2alpha) (30 micromol/l) and relaxed with BYK (10 pmol/l-1 micromol/l), SP (10 pmol/l-0.1 micromol/l) or ACH (1 nmol/l-1 mmol/l). (i) BYK: L-NAME (100 micromol/l) attenuated relaxations in foetal EPA ( approximately 55%) but nearly abolished them in the adult ( approximately 80%). In RPA, L-NAME nearly abolished ( approximately 90%) relaxations in the foetus and this effect diminished progressively with age to approximately 20% in the adult. Indomethacin (IND, micromol/l) attenuated relaxations in neonatal (approximately 25%), new-born and adult EPA (both approximately 45%). Together, L-NAME and IND abolished relaxations in all EPA and in neonatal RPA but not in older RPA. SKF525a (100 micromol/l) attenuated relaxations in foetal RPA ( approximately 4%), diminishing in the adult RPA to approximately 10%. Together, SKF52Sa and L-NAME largely abolished relaxations in postnatal RPA (approximately 80%). Activation with K(+)=125 mmol/l attenuated relaxations in adult EPA (approximately 80%), foetal RPA ( approximately 45%) and neonatal RPA (approximately 75%) and abolished relaxations in RPA from older ages. (ii) ACH: L-NAME abolished relaxations in new-born EPA and RPA. In adult EPA, combined L-NAME and IND moderately attenuated relaxations. (iii) SP: Combined application of L-NAME and IND attenuated relaxations to a similar degree in new-born and adult EPA and RPA. In postnatal EPA, BYK-relaxations depend completely on

  3. Administration of angiotensin II and a bradykinin B2 receptor blocker in midpregnancy impairs gestational outcome in guinea pigs.

    Science.gov (United States)

    Valdés, Gloria; Schneider, Daniela; Corthorn, Jenny; Ortíz, Rita; Acuña, Stephanie; Padilla, Oslando

    2014-06-04

    The opposing renin-angiotensin system (RAS) and kallikrein-kinin system (KKS) are upregulated in pregnancy and localize in the utero-placental unit. To test their participation as counter-regulators, circulating angiotensin II (AII) was exogenously elevated and the bradykinin B2 receptor (B2R) was antagonized in pregnant guinea-pigs. We hypothesized that disrupting the RAS/KKS balance during the period of maximal trophoblast invasion and placental development would provoke increased blood pressure, defective trophoblast invasion and a preeclampsia-like syndrome. Pregnant guinea-pigs received subcutaneous infusions of AII (200 μg/kg/day), the B2R antagonist Bradyzide (BDZ; 62.5 microg/kg/day), or both (AII + BDZ) from gestational day 20 to 34. Non-pregnant cycling animals were included in a control group (C NP) or received AII + BDZ (AII + BDZ NP) during 14 days. Systolic blood pressure was determined during cycle in C NP, and on the last day of infusion, and 6 and 26 days thereafter in the remaining groups. Twenty six days after the infusions blood and urine were extracted, fetuses, placentas and kidneys were weighed, and trophoblast invasion of spiral arteries was defined in the utero-placental units by immunocytochemistry. Systolic blood pressure transiently rose in a subgroup of the pregnant females while receiving AII + BDZ infusion, but not in AII + BDZ NP. Plasma creatinine was higher in AII- and BDZ-treated dams, but no proteinuria or hyperuricemia were observed. Kidney weight increased in AII + BDZ-treated pregnant and non-pregnant females. Aborted and dead fetuses were increased in dams that received AII and AII + BDZ. The fetal/placental weight ratio was reduced in litters of AII + BDZ-treated mothers. All groups that received interventions during pregnancy showed reduced replacement of endothelial cells by extravillous trophoblasts in lateral and myometrial spiral arteries. The acute effects on fetal viability, and the persistently impaired renal

  4. Vasoinhibins Prevent Bradykinin-Stimulated Endothelial Cell Proliferation by Inactivating eNOS via Reduction of both Intracellular Ca2+ Levels and eNOS Phosphorylation at Ser1179

    Directory of Open Access Journals (Sweden)

    Carmen Clapp

    2011-07-01

    Full Text Available Vasoinhibins, a family of antiangiogenic peptides derived from prolactin proteolysis, inhibit the vascular effects of several proangiogenic factors, including bradykinin (BK. Here, we report that vasoinhibins block the BK-induced proliferation of bovine umbilical vein endothelial cells. This effect is mediated by the inactivation of endothelial nitric oxide synthase (eNOS, as the NO donor DETA-NONOate reverted vasoinhibin action. It is an experimentally proven fact that the elevation of intracellular Ca2+ levels ([Ca2+]i upon BK stimulation activates eNOS, and vasoinhibins blocked the BK-mediated activation of phospholipase C and the formation of inositol 1,4,5-triphosphate leading to a reduced release of Ca2+ from intracellular stores. The [Ca2+]i rise evoked by BK also involves the influx of extracellular Ca2+ via canonical transient receptor potential (TRPC channels. Vasoinhibins likely interfere with TRPC-mediated Ca2+ entry since La3+, which is an enhancer of TRPC4 and TRPC5 channel activity, prevented vasoinhibins from blocking the stimulation by BK of endothelial cell NO production and proliferation, and vasoinhibins reduced the BK-induced increase of TRPC5 mRNA expression. Finally, vasoinhibins prevented the BK-induced phosphorylation of eNOS at Ser1179, a post-translational modification that facilitates Ca2+-calmodulin activation of eNOS. Together, our data show that vasoinhibins, by lowering NO production through the inhibition of both [Ca2+]i mobilization and eNOS phosphorylation, prevent the BK-induced stimulation of endothelial cell proliferation. Thus, vasoinhibins help to regulate BK effects on angiogenesis and vascular homeostasis.

  5. Fasitibant chloride, a kinin B2 receptor antagonist, and dexamethasone interact to inhibit carrageenan-induced inflammatory arthritis in rats

    Science.gov (United States)

    Valenti, Claudio; Giuliani, Sandro; Cialdai, Cecilia; Tramontana, Manuela; Maggi, Carlo Alberto

    2012-01-01

    BACKGROUND AND PURPOSE Bradykinin, through the kinin B2 receptor, is involved in inflammatory processes related to arthropathies. B2 receptor antagonists inhibited carrageenan-induced arthritis in rats in synergy with anti-inflammatory steroids. The mechanism(s) underlying this drug interaction was investigated. EXPERIMENTAL APPROACH Drugs inhibiting inflammatory mediators released by carrageenan were injected, alone or in combination, into the knee joint of pentobarbital anaesthetized rats 30 min before intra-articular administration of carrageenan. Their effects on the carrageenan-induced inflammatory responses (joint pain, oedema and neutrophil recruitment) and release of inflammatory mediators (prostaglandins, IL-1β, IL-6 and the chemokine GRO/CINC-1), were assessed after 6 h. KEY RESULTS The combination of fasitibant chloride (MEN16132) and dexamethasone was more effective than each drug administered alone in inhibiting knee joint inflammation and release of inflammatory mediators. Fasitibant chloride, MK571, atenolol, des-Arg9-[Leu8]-bradykinin (B2 receptor, leukotriene, catecholamine and B1 receptor antagonists, respectively) and dexketoprofen (COX inhibitor), reduced joint pain and, except for the latter, also diminished joint oedema. A combination of drugs inhibiting joint pain (fasitibant chloride, des-Arg9-[Leu8]-bradykinin, dexketoprofen, MK571 and atenolol) and oedema (fasitibant chloride, des-Arg9-[Leu8]-bradykinin, MK571 and atenolol) abolished the respective inflammatory response, producing inhibition comparable with that achieved with the combination of fasitibant chloride and dexamethasone. MK571 alone was able to block neutrophil recruitment. CONCLUSIONS AND IMPLICATIONS Bradykinin-mediated inflammatory responses to intra-articular carrageenan were not controlled by steroids, which were not capable of preventing bradykinin effects either by direct activation of the B2 receptor, or through the indirect effects mediated by release of eicosanoids

  6. The cough reflex is upregulated by lisinopril microinjected into the caudal nucleus tractus solitarii of the rabbit.

    Science.gov (United States)

    Cinelli, Elenia; Bongianni, Fulvia; Pantaleo, Tito; Mutolo, Donatella

    2015-12-01

    We have previously shown that cough potentiation induced by intravenous administration of the AT1 receptor antagonist losartan is lower than that induced by the ACE inhibitor lisinopril in anesthetized and awake rabbits. Since losartan and lisinopril cross the blood-brain barrier, their central action on the cough reflex can be hypothesized. Mechanical stimulation of the tracheobronchial tree and citric acid inhalation were used to induce cough reflex responses in pentobarbital sodium-anesthetized, spontaneously breathing rabbits. Bilateral microinjections (30-50 nl) of losartan (5mM), lisinopril (1mM), bradykinin (0.05 mM), HOE-140 (0.2mM, a bradykinin B2 receptor antagonist) and CP-99,994 (1mM, an NK1 receptor antagonist) were performed into the caudal nucleus tractus solitarii, the predominant site of termination of cough-related afferents. Lisinopril, but not losartan increased the cough number. This effect was reverted by HOE-140 or CP-99,994. Cough potentiation was also induced by bradykinin. The results support for the first time a central protussive action of lisinopril mediated by an accumulation of bradykinin and substance P. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. SSR240612 [(2R)-2-[((3R)-3-(1,3-benzodioxol-5-yl)-3-[[(6-methoxy-2-naphthyl)sulfonyl]amino]propanoyl)amino]-3-(4-[[2R,6S)-2,6-dimethylpiperidinyl]methyl]phenyl)-N-isopropyl-N-methylpropanamide hydrochloride], a new nonpeptide antagonist of the bradykinin B1 receptor: biochemical and pharmacological characterization.

    Science.gov (United States)

    Gougat, Jean; Ferrari, Bernard; Sarran, Lionel; Planchenault, Claudine; Poncelet, Martine; Maruani, Jeanne; Alonso, Richard; Cudennec, Annie; Croci, Tiziano; Guagnini, Fabio; Urban-Szabo, Katalin; Martinolle, Jean-Pierre; Soubrié, Philippe; Finance, Olivier; Le Fur, Gérard

    2004-05-01

    The biochemical and pharmacological properties of a novel non-peptide antagonist of the bradykinin (BK) B(1) receptor, SSR240612 [(2R)-2-[((3R)-3-(1,3-benzodioxol-5-yl)-3-[[(6-methoxy-2-naphthyl)sulfonyl]amino]propanoyl)amino]-3-(4-[[2R,6S)-2,6-dimethylpiperidinyl]methyl]phenyl)-N-isopropyl-N-methylpropanamide hydrochloride] were evaluated. SSR240612 inhibited the binding of [(3)H]Lys(0)-des-Arg(9)-BK to the B(1) receptor in human fibroblast MRC5 and to recombinant human B(1) receptor expressed in human embryonic kidney cells with inhibition constants (K(i)) of 0.48 and 0.73 nM, respectively. The compound selectivity for B(1) versus B(2) receptors was in the range of 500- to 1000-fold. SSR240612 inhibited Lys(0)-desAr(9)-BK (10 nM)-induced inositol monophosphate formation in human fibroblast MRC5, with an IC(50) of 1.9 nM. It also antagonized des-Arg(9)-BK-induced contractions of isolated rabbit aorta and mesenteric plexus of rat ileum with a pA(2) of 8.9 and 9.4, respectively. Antagonistic properties of SSR240612 were also demonstrated in vivo. SSR240612 inhibited des-Arg(9)-BK-induced paw edema in mice (3 and 10 mg/kg p.o. and 0.3 and 1 mg/kg i.p.). Moreover, SSR240612 reduced capsaicin-induced ear edema in mice (0.3, 3 and 30 mg/kg p.o.) and tissue destruction and neutrophil accumulation in the rat intestine following splanchnic artery occlusion/reperfusion (0.3 mg/kg i.v.). The compound also inhibited thermal hyperalgesia induced by UV irradiation (1 and 3 mg/kg p.o.) and the late phase of nociceptive response to formalin in rats (10 and 30 mg/kg p.o.). Finally, SSR240612 (20 and 30 mg/kg p.o.) prevented neuropathic thermal pain induced by sciatic nerve constriction in the rat. In conclusion, SSR240612 is a new, potent, and orally active specific non-peptide bradykinin B(1) receptor antagonist.

  8. The Kallikrein-Kinin System in Bartter's Syndrome and Its Response to Prostaglandin Synthetase Inhibition

    Science.gov (United States)

    Vinci, Joseph M.; Gill, John R.; Bowden, Robert E.; Pisano, John J.; Izzo, Joseph L.; Radfar, Nazam; Taylor, Addison A.; Zusman, Randall M.; Bartter, Frederic C.; Keiser, Harry R.

    1978-01-01

    The kallikrein-kinin system was characterized in seven patients with Bartter's syndrome on constant metabolic regimens before, during, and after treatment with prostaglandin synthetase inhibitors. Patients with Bartter's syndrome had high values for plasma bradykinin, plasma renin activity (PRA), urinary kallikrein, urinary immunoreactive prostaglandin E excretion, and urinary aldosterone; urinary kinins were subnormal and plasma prekallikrein was normal. Treatment with indomethacin or ibuprofen which decreased urinary immunoreactive prostaglandin E excretion by 67%, decreased mean PRA (patients recumbent) from 17.3±5.3 (S.E.M.) ng/ml per h to 3.3±1.1 ng/ml per h, mean plasma bradykinin (patients recumbent) from 15.4±4.4 ng/ml to 3.9±0.9 ng/ml, mean urinary kallikrein excretion from 24.8±3.2 tosyl-arginine-methyl ester units (TU)/day to 12.4±2.0 TU/day, but increased mean urinary kinin excretion from 3.8±1.3 μg/day to 8.5±2.5 μg/day. Plasma prekallikrein remained unchanged at 1.4 TU/ml. Thus, with prostaglandin synthetase inhibition, values for urinary kallikrein and kinin and plasma bradykinin returned to normal pari passu with changes in PRA, in aldosterone, and in prostaglandin E. The results suggest that, in Bartter's syndrome, prostaglandins mediate the low urinary kinins and the high plasma bradykinin, and that urinary kallikrein, which is aldosterone dependent, does not control kinin excretion. The high plasma bradykinin may be a cause of the pressor hyporesponsiveness to angiotensin II which characterizes the syndrome. PMID:96139

  9. Modulation of the Plasma Kallikrein-Kinin System Proteins Performed by Heparan Sulfate Proteoglycans

    OpenAIRE

    Motta, Guacyara; Tersariol, Ivarne L. S.

    2017-01-01

    Human plasma kallikrein-kinin system proteins are related to inflammation through bradykinin. In the proximity of its target cells, high molecular weight kininogen (H-kininogen) is the substrate of plasma kallikrein, which releases bradykinin from H-kininogen. Heparan sulfate proteoglycans (HSPGs) play a critical role in either recruiting kinin precursors from the plasma, or in the assembly of kallikrein-kinin system components on the cell surface. Furthermore, HSPGs mediate the endocytosis a...

  10. Characterization of elements of the kallikrein-kinin system in rainbow trout (Salmo gairdneri)

    International Nuclear Information System (INIS)

    Lipke, D.W.

    1988-01-01

    Elements of kallikrein-kinin system (KKS) are found in anamniotic vertebrates, however, research has failed to substantiate the presence of a KKS in these animals. This research was conducted to verify the presence of elements of the KKS in rainbow trout. Trout branchial angiotensin-converting enzyme (ACE, kininase II) was similar to mammalian ACE in many physical, chemical and kinetic parameters. Angiotensin-converting enzyme-like activity (ACELA) was also demonstrated in the most primitive vertebrates. ACELA was consistently found in vertebrate respiratory tissues and was prevalent in salt and water exchanging organs. 3 H-bradykinin, perfused through the trout gill was not metabolized, as demonstrated by high voltage paper electrophoresis. However, trout gills extracted and retained approximately 40% of the 3 H-bradykinin perfused into the branchial vasculature. Gill tissue homogenates metabolized both 3 H-bradykinin and the vasoactive substance produced by incubating trout plasma with glandular kallikrein

  11. Maternal nutrient restriction during pregnancy impairs an endothelium-derived hyperpolarizing factor-like pathway in sheep fetal coronary arteries.

    Science.gov (United States)

    Shukla, Praveen; Ghatta, Srinivas; Dubey, Nidhi; Lemley, Caleb O; Johnson, Mary Lynn; Modgil, Amit; Vonnahme, Kimberly; Caton, Joel S; Reynolds, Lawrence P; Sun, Chengwen; O'Rourke, Stephen T

    2014-07-15

    The mechanisms underlying developmental programming are poorly understood but may be associated with adaptations by the fetus in response to changes in the maternal environment during pregnancy. We hypothesized that maternal nutrient restriction during pregnancy alters vasodilator responses in fetal coronary arteries. Pregnant ewes were fed a control [100% U.S. National Research Council (NRC)] or nutrient-restricted (60% NRC) diet from days 50 to 130 of gestation (term = 145 days); fetal tissues were collected at day 130. In coronary arteries isolated from control fetal lambs, relaxation to bradykinin was unaffected by nitro-l-arginine (NLA). Iberiotoxin or contraction with KCl abolished the NLA-resistant response to bradykinin. In fetal coronary arteries from nutrient-restricted ewes, relaxation to bradykinin was fully suppressed by NLA. Large-conductance, calcium-activated potassium channel (BKCa) currents did not differ in coronary smooth muscle cells from control and nutrient-restricted animals. The BKCa openers, BMS 191011 and NS1619, and 14,15-epoxyeicosatrienoic acid [a putative endothelium-derived hyperpolarizing factor (EDHF)] each caused fetal coronary artery relaxation and BKCa current activation that was unaffected by maternal nutrient restriction. Expression of BKCa-channel subunits did not differ in fetal coronary arteries from control or undernourished ewes. The results indicate that maternal undernutrition during pregnancy results in loss of the EDHF-like pathway in fetal coronary arteries in response to bradykinin, an effect that cannot be explained by a decreased number or activity of BKCa channels or by decreased sensitivity to mediators that activate BKCa channels in vascular smooth muscle cells. Under these conditions, bradykinin-induced relaxation is completely dependent on nitric oxide, which may represent an adaptive response to compensate for the absence of the EDHF-like pathway. Copyright © 2014 the American Physiological Society.

  12. A cleavable signal peptide enhances cell surface delivery and heterodimerization of Cerulean-tagged angiotensin II AT1 and bradykinin B2 receptor

    International Nuclear Information System (INIS)

    Quitterer, Ursula; Pohl, Armin; Langer, Andreas; Koller, Samuel; AbdAlla, Said

    2011-01-01

    Highlights: → A new FRET-based method detects AT1/B2 receptor heterodimerization. → First time application of AT1-Cerulean as a FRET donor. → Method relies on signal peptide-enhanced cell surface delivery of AT1-Cerulean. → A high FRET efficiency revealed efficient heterodimerization of AT1/B2R proteins. → AT1/B2R heterodimers were functionally coupled to desensitization mechanisms. -- Abstract: Heterodimerization of the angiotensin II AT1 receptor with the receptor for the vasodepressor bradykinin, B2R, is known to sensitize the AT1-stimulated response of hypertensive individuals in vivo. To analyze features of that prototypic receptor heterodimer in vitro, we established a new method that uses fluorescence resonance energy transfer (FRET) and applies for the first time AT1-Cerulean as a FRET donor. The Cerulean variant of the green fluorescent protein as donor fluorophore was fused to the C-terminus of AT1, and the enhanced yellow fluorescent protein (EYFP) as acceptor fluorophore was fused to B2R. In contrast to AT1-EGFP, the AT1-Cerulean fusion protein was retained intracellularly. To facilitate cell surface delivery of AT1-Cerulean, a cleavable signal sequence was fused to the receptor's amino terminus. The plasma membrane-localized AT1-Cerulean resembled the native AT1 receptor regarding ligand binding and receptor activation. A high FRET efficiency of 24.7% between membrane-localized AT1-Cerulean and B2R-EYFP was observed with intact, non-stimulated cells. Confocal FRET microscopy further revealed that the AT1/B2 receptor heterodimer was functionally coupled to receptor desensitization mechanisms because activation of the AT1-Cerulean/B2R-EYFP heterodimer with a single agonist triggered the co-internalization of AT1/B2R. Receptor co-internalization was sensitive to inhibition of G protein-coupled receptor kinases, GRKs, as evidenced by a GRK-specific peptide inhibitor. In agreement with efficient AT1/B2R heterodimerization, confocal FRET imaging of

  13. A cleavable signal peptide enhances cell surface delivery and heterodimerization of Cerulean-tagged angiotensin II AT1 and bradykinin B2 receptor

    Energy Technology Data Exchange (ETDEWEB)

    Quitterer, Ursula, E-mail: ursula.quitterer@pharma.ethz.ch [Molecular Pharmacology Unit, Swiss Federal Institute of Technology and University of Zurich, Zurich (Switzerland); Pohl, Armin; Langer, Andreas; Koller, Samuel; AbdAlla, Said [Molecular Pharmacology Unit, Swiss Federal Institute of Technology and University of Zurich, Zurich (Switzerland)

    2011-06-10

    Highlights: {yields} A new FRET-based method detects AT1/B2 receptor heterodimerization. {yields} First time application of AT1-Cerulean as a FRET donor. {yields} Method relies on signal peptide-enhanced cell surface delivery of AT1-Cerulean. {yields} A high FRET efficiency revealed efficient heterodimerization of AT1/B2R proteins. {yields} AT1/B2R heterodimers were functionally coupled to desensitization mechanisms. -- Abstract: Heterodimerization of the angiotensin II AT1 receptor with the receptor for the vasodepressor bradykinin, B2R, is known to sensitize the AT1-stimulated response of hypertensive individuals in vivo. To analyze features of that prototypic receptor heterodimer in vitro, we established a new method that uses fluorescence resonance energy transfer (FRET) and applies for the first time AT1-Cerulean as a FRET donor. The Cerulean variant of the green fluorescent protein as donor fluorophore was fused to the C-terminus of AT1, and the enhanced yellow fluorescent protein (EYFP) as acceptor fluorophore was fused to B2R. In contrast to AT1-EGFP, the AT1-Cerulean fusion protein was retained intracellularly. To facilitate cell surface delivery of AT1-Cerulean, a cleavable signal sequence was fused to the receptor's amino terminus. The plasma membrane-localized AT1-Cerulean resembled the native AT1 receptor regarding ligand binding and receptor activation. A high FRET efficiency of 24.7% between membrane-localized AT1-Cerulean and B2R-EYFP was observed with intact, non-stimulated cells. Confocal FRET microscopy further revealed that the AT1/B2 receptor heterodimer was functionally coupled to receptor desensitization mechanisms because activation of the AT1-Cerulean/B2R-EYFP heterodimer with a single agonist triggered the co-internalization of AT1/B2R. Receptor co-internalization was sensitive to inhibition of G protein-coupled receptor kinases, GRKs, as evidenced by a GRK-specific peptide inhibitor. In agreement with efficient AT1/B2R

  14. The Use of Plasma-Derived Complement C1-Esterase Inhibitor Concentrate (Berinert®) in the Treatment of Angiotensin Converting Enzyme-Inhibitor Related Angioedema

    DEFF Research Database (Denmark)

    Hermanrud, Thorbjørn; Duus, Nicolaj; Bygum, Anette

    2016-01-01

    Angioedema of the upper airways is a severe and potentially life-threatening condition. The incidence has been increasing in the past two decades, primarily due to pharmaceuticals influencing the generation or degradation of the vasoactive molecule bradykinin. Plasma-derived C1-esterase inhibitor...... concentrate is a well-established treatment option of hereditary and acquired complement C1-esterase inhibitor deficiency, which are also mediated by an increased level of bradykinin resulting in recurrent angioedema. We here present a case of severe angiotensin converting enzyme-inhibitor related angioedema...

  15. Measurement of the increase in the capillary permeability in skin with Evans blue labelled with iodine-125 or 131

    International Nuclear Information System (INIS)

    Sugarava, S.; Goncalves, J.M.

    1976-01-01

    The quantitative evaluation of bradykinin and histamine with Evans blue labelled with iodine -125 or 131 is described. The activity upon vascular permeability was performed in the abdominal wall of rats injecting intravenously solution of labelled Evans blue and 0,1 ml of vasoactive drugs solution intradermally. Skin discs were cut with circular punch for external counting, quantitative results being compared with control discs. By using this method, satisfactory log dose-reponse curves were obtained for bradykinin and histamine that followed the general trend of S - shaped curves [pt

  16. A role for Pyk2 and Src in linking G-protein-coupled receptors with MAP kinase activation.

    Science.gov (United States)

    Dikic, I; Tokiwa, G; Lev, S; Courtneidge, S A; Schlessinger, J

    1996-10-10

    The mechanisms by which mitogenic G-protein-coupled receptors activate the MAP kinase signalling pathway are poorly understood. Candidate protein tyrosine kinases that link G-protein-coupled receptors with MAP kinase include Src family kinases, the epidermal growth factor receptor, Lyn and Syk. Here we show that lysophosphatidic acid (LPA) and bradykinin induce tyrosine phosphorylation of Pyk2 and complex formation between Pyk2 and activated Src. Moreover, tyrosine phosphorylation of Pyk2 leads to binding of the SH2 domain of Src to tyrosine 402 of Pyk2 and activation of Src. Transient overexpression of a dominant interfering mutant of Pyk2 or the protein tyrosine kinase Csk reduces LPA- or bradykinin-induced activation of MAP kinase. LPA- or bradykinin-induced MAP kinase activation was also inhibited by overexpression of dominant interfering mutants of Grb2 and Sos. We propose that Pyk2 acts with Src to link Gi- and Gq-coupled receptors with Grb2 and Sos to activate the MAP kinase signalling pathway in PC12 cells.

  17. Novel kinin B1 receptor agonists with improved pharmacological profiles.

    Science.gov (United States)

    Côté, Jérôme; Savard, Martin; Bovenzi, Veronica; Bélanger, Simon; Morin, Josée; Neugebauer, Witold; Larouche, Annie; Dubuc, Céléna; Gobeil, Fernand

    2009-04-01

    There is some evidence to suggest that inducible kinin B1 receptors (B1R) may play beneficial and protecting roles in cardiovascular-related pathologies such as hypertension, diabetes, and ischemic organ diseases. Peptide B1R agonists bearing optimized pharmacological features (high potency, selectivity and stability toward proteolysis) hold promise as valuable therapeutic agents in the treatment of these diseases. In the present study, we used solid-phase methodology to synthesize a series of novel peptide analogues based on the sequence of Sar[dPhe(8)]desArg(9)-bradykinin, a relatively stable peptide agonist with moderate affinity for the human B1R. We evaluated the pharmacological properties of these peptides using (1) in vitro competitive binding experiments on recombinant human B1R and B2R (for index of selectivity determination) in transiently transfected human embryonic kidney 293 cells (HEK-293T cells), (2) ex vivo vasomotor assays on isolated human umbilical veins expressing endogenous human B1R, and (3) in vivo blood pressure tests using anesthetized lipopolysaccharide-immunostimulated rabbits. Key chemical modifications at the N-terminus, the positions 3 and 5 on Sar[dPhe(8)]desArg(9)-bradykinin led to potent analogues. For example, peptides 18 (SarLys[Hyp(3),Cha(5), dPhe(8)]desArg(9)-bradykinin) and 20 (SarLys[Hyp(3),Igl(5), dPhe(8)]desArg(9)-bradykinin) outperformed the parental molecule in terms of affinity, functional potency and duration of action in vitro and in vivo. These selective agonists should be valuable in future animal and human studies to investigate the potential benefits of B1R activation.

  18. Modulation of the Plasma Kallikrein-Kinin System Proteins Performed by Heparan Sulfate Proteoglycans

    Directory of Open Access Journals (Sweden)

    Guacyara Motta

    2017-07-01

    Full Text Available Human plasma kallikrein-kinin system proteins are related to inflammation through bradykinin. In the proximity of its target cells, high molecular weight kininogen (H-kininogen is the substrate of plasma kallikrein, which releases bradykinin from H-kininogen. Heparan sulfate proteoglycans (HSPGs play a critical role in either recruiting kinin precursors from the plasma, or in the assembly of kallikrein-kinin system components on the cell surface. Furthermore, HSPGs mediate the endocytosis and activation of H-kininogen and plasma prekallikrein. In the presence of HSPGs (Chinese hamster ovary cell, CHO-K1, wild type cells both heparin and heparan sulfate strongly inhibit the H-kininogen interaction with the cell membrane. H-kininogen is internalized in endosomal acidic vesicles in CHO-K1 but not in CHO-745 cells (mutant cells deficient in glycosaminoglycan biosynthesis. The endocytosis process is lipid raft-mediated and is dependent on caveolae. Both types of CHO cells do not internalize bradykinin-free H-kininogen. At pH 7.35, bradykinin is released from H-kininogen on the surface of CHO-745 cells only by serine proteases; however, in CHO-K1 cells either serine or cysteine proteases are found to be involved. The CHO-K1 cell lysate contains different kininogenases. Plasma prekallikrein endocytosis in CHO-K1 cells is independent of H-kininogen, and also prekallikrein is not internalized by CHO-745 cells. Plasma prekallikrein cleavage/activation is independent of glycosaminoglycans but plasma kallikrein formation is more specific on H-kininogen assembled on the cell surface through glycosaminoglycans. In this mini-review, the importance of HSPGs in the regulation of plasma kallikrein-kinin system proteins is shown.

  19. Management of acute attacks of hereditary angioedema: potential role of icatibant

    Directory of Open Access Journals (Sweden)

    Hilary J Longhurst

    2010-09-01

    Full Text Available Hilary J LonghurstDepartment of Immunology, Barts and The London NHS Trust, London, UKAbstract: Icatibant (Firazyr® is a novel subcutaneous treatment recently licensed in the European Union for acute hereditary angioedema. Hereditary angioedema, resulting from inherited partial C1 inhibitor deficiency, is a disabling condition characterized by intermittent episodes of bradykinin-mediated angioedema. Icatibant blocks bradykinin B2 receptors, attenutating the episode. Randomized double-blind, placebo-controlled trials of icatibant, showed significant superiority over oral tranexamic acid in 74 European patients and a trend to improvement in a similar US trial comparing icatibant with placebo in 55 patients. Outcomes for several endpoints did not reach significance in the US trial, perhaps because of low participant numbers and confounding factors: a further trial is planned. Open label studies have shown benefit in multiple treatments for attacks at all sites. Approximately 10% of patients require a second dose for re-emergent symptoms, usually 10 to 27 hours after the initial treatment. Its subcutaneous route of administration, good tolerability and novel mode of action make icatibant a promising addition to the limited repertoire of treatments for hereditary angioedema.Keywords: hereditary angioedema, bradykinin, icatibant, C1 inhibitor deficiency

  20. Functional role of peripheral opioid receptors in the regulation of cardiac spinal afferent nerve activity during myocardial ischemia

    Science.gov (United States)

    Longhurst, John C.

    2013-01-01

    Thinly myelinated Aδ-fiber and unmyelinated C-fiber cardiac sympathetic (spinal) sensory nerve fibers are activated during myocardial ischemia to transmit the sensation of angina pectoris. Although recent observations showed that myocardial ischemia increases the concentrations of opioid peptides and that the stimulation of peripheral opioid receptors inhibits chemically induced visceral and somatic nociception, the role of opioids in cardiac spinal afferent signaling during myocardial ischemia has not been studied. The present study tested the hypothesis that peripheral opioid receptors modulate cardiac spinal afferent nerve activity during myocardial ischemia by suppressing the responses of cardiac afferent nerve to ischemic mediators like bradykinin and extracellular ATP. The nerve activity of single unit cardiac afferents was recorded from the left sympathetic chain (T2–T5) in anesthetized cats. Forty-three ischemically sensitive afferent nerves (conduction velocity: 0.32–3.90 m/s) with receptive fields in the left and right ventricles were identified. The responses of these afferent nerves to repeat ischemia or ischemic mediators were further studied in the following protocols. First, epicardial administration of naloxone (8 μmol), a nonselective opioid receptor antagonist, enhanced the responses of eight cardiac afferent nerves to recurrent myocardial ischemia by 62%, whereas epicardial application of vehicle (PBS) did not alter the responses of seven other cardiac afferent nerves to ischemia. Second, naloxone applied to the epicardial surface facilitated the responses of seven cardiac afferent nerves to epicardial ATP by 76%. Third, administration of naloxone enhanced the responses of seven other afferent nerves to bradykinin by 85%. In contrast, in the absence of naloxone, cardiac afferent nerves consistently responded to repeated application of ATP (n = 7) or bradykinin (n = 7). These data suggest that peripheral opioid peptides suppress the

  1. Analgesic and anti-inflammatory effects of UP1304, a botanical composite containing standardized extracts of Curcuma longa and Morus alba.

    Science.gov (United States)

    Yimam, Mesfin; Lee, Young-Chul; Moore, Breanna; Jiao, Ping; Hong, Mei; Nam, Jeong-Bum; Kim, Mi-Ran; Hyun, Eu-Jin; Chu, Min; Brownell, Lidia; Jia, Qi

    2016-01-01

    Though the initial etiologies of arthritis are multifactorial, clinically, patients share the prime complaints of the disease, pain. Here the authors assessed the analgesic and anti-inflammatory effects of UP1304, a composite that contains a standardized blend of extracts from the rhizome of Curcuma longa and the root bark of Morus alba, on rats with carrageenan-induced paw edema. A plant library was screened for bradykinin receptor antagonists. In vivo, the anti-inflammatory and analgesic effects of the standardized composite, UP1304, were evaluated in rats with carrageenan-induced paw edema using oral dose ranges of 100-400 mg/kg. Ibuprofen, at a dose of 200 mg/kg, was used as a reference compound. In vitro, cyclooxygenase (COX) and lipoxygenase (LOX) inhibition assays were performed to evaluate the degree of inflammation. Statistically significant improvements in pain resistance and paw edema suppression were observed in animals treated with UP1304, when compared to vehicle-treated rats. Results from the highest dose of UP1304 (400 mg/kg) were similar to those achieved by ibuprofen treatment at 200 mg/kg. In vitro, UP1304 showed dose-dependent inhibition of the enzymatic activities of COX and LOX. A half-maximal inhibitory concentration of 9.6 μg/mL for bradykinin B1 inhibition was calculated for the organic extract of C. longa. Curcumin showed Ki values of 2.73 and 58 μg/mL for bradykinin receptors B1 and B2, respectively. Data presented here suggest that UP1304, analgesic and anti-inflammatory agent of botanical origin, acted as a bradykinin receptor B1 and B2 antagonist, and inhibited COX and LOX enzyme activities. This compound should be considered for the management of symptoms associated with arthritis.

  2. Enhancement of arachidonic acid signaling pathway by nicotinic acid receptor HM74A

    International Nuclear Information System (INIS)

    Tang, Yuting; Zhou, Lubing; Gunnet, Joseph W.; Wines, Pamela G.; Cryan, Ellen V.; Demarest, Keith T.

    2006-01-01

    HM74A is a G protein-coupled receptor for nicotinic acid (niacin), which has been used clinically to treat dyslipidemia for decades. The molecular mechanisms whereby niacin exerts its pleiotropic effects on lipid metabolism remain largely unknown. In addition, the most common side effect in niacin therapy is skin flushing that is caused by prostaglandin release, suggesting that the phospholipase A 2 (PLA 2 )/arachidonic acid (AA) pathway is involved. Various eicosanoids have been shown to activate peroxisome-proliferator activated receptors (PPAR) that play a diverse array of roles in lipid metabolism. To further elucidate the potential roles of HM74A in mediating the therapeutic effects and/or side effects of niacin, we sought to explore the signaling events upon HM74A activation. Here we demonstrated that HM74A synergistically enhanced UTP- and bradykinin-mediated AA release in a pertussis toxin-sensitive manner in A431 cells. Activation of HM74A also led to Ca 2+ -mobilization and enhanced bradykinin-promoted Ca 2+ -mobilization through Gi protein. While HM74A increased ERK1/2 activation by the bradykinin receptor, it had no effects on UTP-promoted ERK1/2 activation.Furthermore, UTP- and bradykinin-mediated AA release was significantly decreased in the presence of both MAPK kinase inhibitor PD 098059 and PKC inhibitor GF 109203X. However, the synergistic effects of HM74A were not dramatically affected by co-treatment with both inhibitors, indicating the cross-talk occurred at the receptor level. Finally, stimulation of A431 cells transiently transfected with PPRE-luciferase with AA significantly induced luciferase activity, mimicking the effects of PPARγ agonist rosiglitazone, suggesting that alteration of AA signaling pathway can regulate gene expression via endogenous PPARs

  3. Enhancement of arachidonic acid signaling pathway by nicotinic acid receptor HM74A

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yuting [Endocrine Therapeutics and Metabolic Disorders, Johnson and Johnson Pharmaceutical Research and Development, L.L.C., 1000 Rt. 202, Raritan, NJ 08869 (United States); Zhou, Lubing [Endocrine Therapeutics and Metabolic Disorders, Johnson and Johnson Pharmaceutical Research and Development, L.L.C., 1000 Rt. 202, Raritan, NJ 08869 (United States); Gunnet, Joseph W [Endocrine Therapeutics and Metabolic Disorders, Johnson and Johnson Pharmaceutical Research and Development, L.L.C., 1000 Rt. 202, Raritan, NJ 08869 (United States); Wines, Pamela G [Endocrine Therapeutics and Metabolic Disorders, Johnson and Johnson Pharmaceutical Research and Development, L.L.C., 1000 Rt. 202, Raritan, NJ 08869 (United States); Cryan, Ellen V [Endocrine Therapeutics and Metabolic Disorders, Johnson and Johnson Pharmaceutical Research and Development, L.L.C., 1000 Rt. 202, Raritan, NJ 08869 (United States); Demarest, Keith T [Endocrine Therapeutics and Metabolic Disorders, Johnson and Johnson Pharmaceutical Research and Development, L.L.C., 1000 Rt. 202, Raritan, NJ 08869 (United States)

    2006-06-23

    HM74A is a G protein-coupled receptor for nicotinic acid (niacin), which has been used clinically to treat dyslipidemia for decades. The molecular mechanisms whereby niacin exerts its pleiotropic effects on lipid metabolism remain largely unknown. In addition, the most common side effect in niacin therapy is skin flushing that is caused by prostaglandin release, suggesting that the phospholipase A{sub 2} (PLA{sub 2})/arachidonic acid (AA) pathway is involved. Various eicosanoids have been shown to activate peroxisome-proliferator activated receptors (PPAR) that play a diverse array of roles in lipid metabolism. To further elucidate the potential roles of HM74A in mediating the therapeutic effects and/or side effects of niacin, we sought to explore the signaling events upon HM74A activation. Here we demonstrated that HM74A synergistically enhanced UTP- and bradykinin-mediated AA release in a pertussis toxin-sensitive manner in A431 cells. Activation of HM74A also led to Ca{sup 2+}-mobilization and enhanced bradykinin-promoted Ca{sup 2+}-mobilization through Gi protein. While HM74A increased ERK1/2 activation by the bradykinin receptor, it had no effects on UTP-promoted ERK1/2 activation.Furthermore, UTP- and bradykinin-mediated AA release was significantly decreased in the presence of both MAPK kinase inhibitor PD 098059 and PKC inhibitor GF 109203X. However, the synergistic effects of HM74A were not dramatically affected by co-treatment with both inhibitors, indicating the cross-talk occurred at the receptor level. Finally, stimulation of A431 cells transiently transfected with PPRE-luciferase with AA significantly induced luciferase activity, mimicking the effects of PPAR{gamma} agonist rosiglitazone, suggesting that alteration of AA signaling pathway can regulate gene expression via endogenous PPARs.

  4. Phosphatidic acid accumulation and catecholamine release in adrenal chromaffin cells: stimulation by high potassium and by nicotine, and effect of a diacylglycerol kinase inhibitor R 59 022.

    Science.gov (United States)

    Owen, P J; Jones, J A; Boarder, M R

    1991-09-01

    Using primary cultures of bovine adrenal chromaffin cells labelled with 32Pi, we show that stimulation with bradykinin, nicotine, or a depolarising concentration of potassium stimulates the accumulation of [32P]phosphatidic acid. The effects of nicotine and potassium are smaller than the effect of bradykinin, and are dependent entirely on extracellular calcium. The diacylglycerol kinase inhibitor R 59 022 attenuates the formation of phosphatidic acid by nicotine and depolarising concentrations of potassium. This inhibitor also blocks the nicotine and potassium stimulation of noradrenaline release from chromaffin cells. Using 45Ca2+ influx studies, we show that the nicotine-evoked calcium influx is also attenuated by R 59 022. These observations contrast with those in another report in which we showed that bradykinin stimulation of either [32P]phosphatidic acid accumulation or noradrenaline release is not affected by R 59 022. It is likely that the calcium influx produced by nicotine and depolarising potassium is blocked by R 59 022 by a mechanism that is independent of its ability to block diacylglycerol kinase. The nicotine- and potassium-stimulated [32P]phosphatidic acid accumulation is a consequence of this calcium influx and presumably reflects calcium activation of either phospholipase C or phospholipase D.

  5. Relative rates of albumin equilibration in the skin interstitium and lymph during increased permeability

    International Nuclear Information System (INIS)

    Powers, M.R.; Wallace, J.R.; Bell, D.R.

    1986-01-01

    The initial equilibration of 125 I-labelled albumin between the vascular and extravascular compartments was studied in hindpaw heel skin of anesthetized rabbits. Bradykinin (0.3 μg/min) was infused into a small branch of the femoral artery. A second group of rabbits served as control. Following bradykinin, prenodal popliteal lymph flow was 4 times control flow. The lymph-to-plasma concentration ratios for total protein and albumin were, respectively, 60% and 50% larger than control. Tissue albumin concentration was twice control. After reaching a steady, elevated lymph flow, tracer albumin was infused to maintain plasma activity constant for 3 hrs. The plasma volume in tissue samples was measured using 131 I-labeled albumin injected 10 min before ending the experiment. Endogenous albumin was measured in plasma, lymph, and tissue samples using rocket electroimmunoassay. After 3 hrs of tracer infusion, lymph specific activity was 3 times greater than control. In the control group, plasma albumin equilibrated more rapidly with lymph than with tissue (p < 0.05). Following bradykinin, extravascular specific activity was 4 times control, resulting in lymph and tissue equilibrating with plasma at similar rates. Thus, increasing capillary permeability causes the extravascular albumin mass to behave as if distributed in a single compartment

  6. Alu insertion/deletion of ACE gene polymorphism might not affect ...

    African Journals Online (AJOL)

    Widodo

    2016-09-03

    Sep 3, 2016 ... a Biology Department, Faculty of Mathematics and Natural Sciences, Brawijaya ... Subjects and methods: The serum bradykinin and I/D polymorphism have been ..... Japanese hypertensive patients receiving an ACE inhibitor.

  7. Distribution of voltage-dependent and intracellular Ca2+ channels in submucosal neurons from rat distal colon.

    Science.gov (United States)

    Rehn, Matthias; Bader, Sandra; Bell, Anna; Diener, Martin

    2013-09-01

    We recently observed a bradykinin-induced increase in the cytosolic Ca2+ concentration in submucosal neurons of rat colon, an increase inhibited by blockers of voltage-dependent Ca2+ (Ca(v)) channels. As the types of Ca(v) channels used by this part of the enteric nervous system are unknown, the expression of various Ca(v) subunits has been investigated in whole-mount submucosal preparations by immunohistochemistry. Submucosal neurons, identified by a neuronal marker (microtubule-associated protein 2), are immunoreactive for Ca(v)1.2, Ca(v)1.3 and Ca(v)2.2, expression being confirmed by reverse transcription plus the polymerase chain reaction. These data agree with previous observations that the inhibition of L- and N-type Ca2+ currents strongly inhibits the response to bradykinin. However, whole-cell patch-clamp experiments have revealed that bradykinin does not enhance Ca2+ inward currents under voltage-clamp conditions. Consequently, bradykinin does not directly interact with Ca(v) channels. Instead, the kinin-induced Ca2+ influx is caused indirectly by the membrane depolarization evoked by this peptide. As intracellular Ca2+ channels on Ca(2+)-storing organelles can also contribute to Ca2+ signaling, their expression has been investigated by imaging experiments and immunohistochemistry. Inositol 1,4,5-trisphosphate (IP3) receptors (IP3R) have been functionally demonstrated in submucosal neurons loaded with the Ca(2+)-sensitive fluorescent dye, fura-2. Histamine, a typical agonist coupled to the phospholipase C pathway, induces an increase in the fura-2 signal ratio, which is suppressed by 2-aminophenylborate, a blocker of IP3 receptors. The expression of IP3R1 has been confirmed by immunohistochemistry. In contrast, ryanodine, tested over a wide concentration range, evokes no increase in the cytosolic Ca2+ concentration nor is there immunohistochemical evidence for the expression of ryanodine receptors in these neurons. Thus, rat submucosal neurons are equipped

  8. Hereditary angioedema

    Science.gov (United States)

    ... disease; HAE- Hereditary angioedema; Kallikrein inhibitor-HAE: bradykinin receptor antagonist-HAE; C1-inhibitors-HAE; Hives-HAE ... aunt, uncle, or grandparent. Dental procedures, sickness (including colds and the flu), and surgery may trigger HAE ...

  9. Renoprotective effects of angiotensin II receptor blockade in type 1 diabetic patients with diabetic nephropathy

    DEFF Research Database (Denmark)

    Andersen, S; Tarnow, L; Rossing, P

    2000-01-01

    BACKGROUND: Angiotensin I-converting enzyme (ACE) inhibitors reduce angiotensin II formation and induce bradykinin accumulation. Animal studies suggest that bradykinin may play a role for the effects of ACE inhibition on blood pressure and kidney function. Therefore, we compared the renal and hem...... inhibition is primarily caused by interference in the renin-angiotensin system. Our study suggest that losartan represents a valuable new drug in the treatment of hypertension and proteinuria in type 1 diabetic patients with diabetic nephropathy....... and hemodynamic effects of specific intervention in the renin-angiotensin system by blockade of the angiotensin II subtype-1 receptor to the effect of ACE inhibition. METHODS: A randomized, double-blind, cross-over trial was performed in 16 type 1 diabetic patients (10 men), age 42 +/- 2 years (mean +/- SEM...

  10. The renin-angiotensin system and its blockers

    Directory of Open Access Journals (Sweden)

    Igić Rajko

    2014-01-01

    Full Text Available Research on the renin-angiotensin system (RAS has contributed significantly to advances in understanding cardiovascular and renal homeostasis and to the treatment of cardiovascular diseases. This review offers a brief history of the RAS with an overview of its major components and their functions, as well as blockers of the RAS, their clinical usage and current research that targets various components of the RAS. Because angiotensin-converting enzyme (ACE metabolizes two biologically active peptides, one in the kallikrein-kinin system (KKS and one in the RAS, it is the essential connection between the two systems. ACE releases very powerful hypertensive agent, angiotensin II and also inactivates strong hypotensive peptide, bradykinin. Inhibition of ACE thus has a dual effect, resulting in decreased angiotensin II and increased bradykinin. We described the KKS as well.

  11. Crotalphine desensitizes TRPA1 ion channels to alleviate inflammatory hyperalgesia

    Czech Academy of Sciences Publication Activity Database

    Bressan, E.; Touška, Filip; Vetter, I.; Kistner, K.; Kichko, T. I.; Teixeira, N. B.; Picolo, G.; Cury, Y.; Lewis, R. J.; Fischer, M. J. M.; Zimmermann, K.; Reeh, P. W.

    2016-01-01

    Roč. 157, č. 11 (2016), s. 2504-2516 ISSN 0304-3959 Institutional support: RVO:67985823 Keywords : Crotalphine * desensitization * TRPA1 * CGRP * Ciguatoxin * Bradykinin * Zymosan Subject RIV: ED - Physiology Impact factor: 5.445, year: 2016

  12. Angioedema

    Directory of Open Access Journals (Sweden)

    Luisa María Holguín-Gómez

    2016-10-01

    Full Text Available Angioedema is defined as edema of the skin or mucosa, including the respiratory and the gastrointestinal mucosa, which is self-limiting, and in most cases is completely resolved in less than 72 hours. It occurs due to increased permeability of the mucosal and submucosal capillaries and postcapillary venules, with resulting plasma extravasation. There are different types of angioedema: histaminergic (which may be mediated by immunoglobulin E, hereditary, from acquired C1 inhibitor deficiency, from angiotensin converting enzyme inhibitor, bradykinin-mediated, and non-histaminergic idiopathic angioedema. Treatment depends on the cause of angioedema, age, and the frequency and severity of manifestations. The main measures are avoiding external triggers or causes, giving antihistamines, steroids, or adrenaline for histaminergic angioedema; replacing the deficient protein or blocking the action of bradykinin in C1 inhibitor deficiency and angioedema from angiotensin converting enzyme inhibitor.

  13. Depletion of calcium stores contributes to progesterone-induced attenuation of calcium signaling of G protein-coupled receptors

    Czech Academy of Sciences Publication Activity Database

    Gehrig-Burger, K.; Slaninová, Jiřina; Gimpl, G.

    2010-01-01

    Roč. 67, č. 16 (2010), s. 2815-2824 ISSN 1420-682X Institutional research plan: CEZ:AV0Z40550506 Keywords : non-genomic effect * oxytocin * bradykinin * progesterone Subject RIV: CC - Organic Chemistry Impact factor: 7.047, year: 2010

  14. CONVERTING ENZYME-INHIBITORS AND THE ROLE OF THE SULFHYDRYL-GROUP IN THE POTENTIATION OF EXOGENOUS AND ENDOGENOUS NITROVASODILATORS

    NARCIS (Netherlands)

    VANGILST, WH; DEGRAEFF, PA; DELEEUW, MJ; WESSELING, H

    In this study, the effect of bradykinin on coronary flow in the isolated rat heart was significantly potentiated when cysteine or the sulfhydryl-containing converting enzyme inhibitors captopril and zofenoprilat were administered simultaneously. In contrast, the effect of concomitant administration

  15. Nicotine impairs cyclooxygenase-2-dependent kinin-receptor-mediated murine airway relaxations

    International Nuclear Information System (INIS)

    Xu, Yuan; Cardell, Lars-Olaf

    2014-01-01

    Introduction: Cigarette smoke induces local inflammation and airway hyperreactivity. In asthmatics, it worsens the symptoms and increases the risk for exacerbation. The present study investigates the effects of nicotine on airway relaxations in isolated murine tracheal segments. Methods: Segments were cultured for 24 h in the presence of vehicle, nicotine (10 μM) and/or dexamethasone (1 μM). Airway relaxations were assessed in myographs after pre-contraction with carbachol (1 μM). Kinin receptors, cyclooxygenase (COX) and inflammatory mediator expressions were assessed by real-time PCR and confocal-microscopy-based immunohistochemistry. Results: The organ culture procedure markedly increased bradykinin- (selective B 2 receptor agonist) and des-Arg 9 -bradykinin- (selective B 1 receptor agonist) induced relaxations, and slightly increased relaxation induced by isoprenaline, but not that induced by PGE 2 . The kinin receptor mediated relaxations were epithelium-, COX-2- and EP2-receptor-dependent and accompanied by drastically enhanced mRNA levels of kinin receptors, as well as inflammatory mediators MCP-1 and iNOS. Increase in COX-2 and mPGES-1 was verified both at mRNA and protein levels. Nicotine selectively suppressed the organ-culture-enhanced relaxations induced by des-Arg 9 -bradykinin and bradykinin, at the same time reducing mPGES-1 mRNA and protein expressions. α7-nicotinic acetylcholine receptor inhibitors α-bungarotoxin and MG624 both blocked the nicotine effects on kinin B 2 receptors, but not those on B 1 . Dexamethasone completely abolished kinin-induced relaxations. Conclusion: It is tempting to conclude that a local inflammatory process per se could have a bronchoprotective component by increasing COX-2 mediated airway relaxations and that nicotine could impede this safety mechanism. Dexamethasone further reduced airway inflammation together with relaxations. This might contribute to the steroid resistance seen in some patients with asthma

  16. Nicotine impairs cyclooxygenase-2-dependent kinin-receptor-mediated murine airway relaxations

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yuan, E-mail: yuan.xu@ki.se; Cardell, Lars-Olaf

    2014-02-15

    Introduction: Cigarette smoke induces local inflammation and airway hyperreactivity. In asthmatics, it worsens the symptoms and increases the risk for exacerbation. The present study investigates the effects of nicotine on airway relaxations in isolated murine tracheal segments. Methods: Segments were cultured for 24 h in the presence of vehicle, nicotine (10 μM) and/or dexamethasone (1 μM). Airway relaxations were assessed in myographs after pre-contraction with carbachol (1 μM). Kinin receptors, cyclooxygenase (COX) and inflammatory mediator expressions were assessed by real-time PCR and confocal-microscopy-based immunohistochemistry. Results: The organ culture procedure markedly increased bradykinin- (selective B{sub 2} receptor agonist) and des-Arg{sup 9}-bradykinin- (selective B{sub 1} receptor agonist) induced relaxations, and slightly increased relaxation induced by isoprenaline, but not that induced by PGE{sub 2}. The kinin receptor mediated relaxations were epithelium-, COX-2- and EP2-receptor-dependent and accompanied by drastically enhanced mRNA levels of kinin receptors, as well as inflammatory mediators MCP-1 and iNOS. Increase in COX-2 and mPGES-1 was verified both at mRNA and protein levels. Nicotine selectively suppressed the organ-culture-enhanced relaxations induced by des-Arg{sup 9}-bradykinin and bradykinin, at the same time reducing mPGES-1 mRNA and protein expressions. α7-nicotinic acetylcholine receptor inhibitors α-bungarotoxin and MG624 both blocked the nicotine effects on kinin B{sub 2} receptors, but not those on B{sub 1}. Dexamethasone completely abolished kinin-induced relaxations. Conclusion: It is tempting to conclude that a local inflammatory process per se could have a bronchoprotective component by increasing COX-2 mediated airway relaxations and that nicotine could impede this safety mechanism. Dexamethasone further reduced airway inflammation together with relaxations. This might contribute to the steroid resistance seen in

  17. Treatment of HAE Attacks in the Icatibant Outcome Survey

    DEFF Research Database (Denmark)

    Hernández Fernandez de Rojas, Dolores; Ibañez, Ethel; Longhurst, Hilary

    2015-01-01

    BACKGROUND: Icatibant, a selective bradykinin B2 receptor antagonist for the treatment of acute hereditary angio-oedema (HAE) attacks in adults, can be administered by health care professionals (HCPs) or self-administered. This analysis compared characteristics and outcomes of acute HAE attacks t...

  18. Shallow surface etching of organic and inorganic compounds by electrospray droplet impact

    International Nuclear Information System (INIS)

    Hiraoka, Kenzo; Sakai, Yuji; Iijima, Yoshitoki; Asakawa, Daiki; Mori, Kunihiko

    2009-01-01

    The electrospray droplet impact (EDI) was applied to bradykinin, polyethylene terephthalate (PET), SiO 2 /Si, and indium phosphide (InP). It was found that bradykinin deposited on the stainless steel substrate was ionized/desorbed without the accumulation of radiation products. The film thickness desorbed by a single collisional event was found to be less than 10 monolayers. In the EDI mass spectra for PET, several fragment ions were observed but the XPS spectra did not change with prolonged cluster irradiation. The etching rate for SiO 2 by EDI was measured to be ∼0.2 nm/min. The surface roughness of InP etched by EDI was found to be one order of magnitude smaller than that etched by 3 keV Ar + for about the same etching depths. EDI is capable of shallow surface etching with little damage left on the etched surface.

  19. Analysis of characteristics associated with reinjection of icatibant

    DEFF Research Database (Denmark)

    Longhurst, Hilary J; Aberer, Werner; Bouillet, Laurence

    2015-01-01

    PURPOSE: Phase 3 icatibant trials showed that most hereditary angioedema (HAE) (C1 inhibitor deficiency) acute attacks were treated successfully with one injection of icatibant, a selective bradykinin B2 receptor antagonist. We conducted a post hoc analysis of icatibant reinjection for HAE type I...

  20. Ca2+-mobilizing agonists increase mitochondrial ATP production to accelerate cytosolic Ca2+ removal: aberrations in human complex I deficiency.

    NARCIS (Netherlands)

    Visch, H.J.; Koopman, W.J.H.; Zeegers, D.; Emst-de Vries, S.E. van; Kuppeveld, F.J.M. van; Heuvel, L.W. van den; Smeitink, J.A.M.; Willems, P.H.G.M.

    2006-01-01

    Previously, we reported that both the bradykinin (Bk)-induced increase in mitochondrial ATP concentration ([ATP]M) and the rate of cytosolic Ca2+ removal are significantly decreased in skin fibroblasts from a patient with an isolated complex I deficiency. Here we demonstrate that the mitochondrial

  1. Effectiveness of icatibant for treatment of hereditary angioedema attacks is not affected by body weight

    DEFF Research Database (Denmark)

    Caballero, Teresa; Zanichelli, Andrea; Aberer, Werner

    2018-01-01

    Background: Icatibant is a bradykinin B2-receptor antagonist used for the treatment of hereditary angioedema attacks resulting from C1-inhibitor deficiency. Treatment is not adjusted by body weight however the impact of body mass index (BMI) on the effectiveness of icatibant is not documented in ...

  2. Experimental selective elevation of renal medullary blood flow in hypertensive rats: evidence against short-term hypotensive effect.

    Science.gov (United States)

    Bądzyńska, B; Sadowski, J

    2012-08-01

    Renal medullary blood flow (MBF) can be selectively increased by intrarenal or systemic infusion of bradykinin (Bk) in anaesthetized normotensive rats. We reproduced this effect in a number of rat models of arterial hypertension and examined whether increased perfusion of the renal medulla can cause a short-term decrease in blood pressure (BP) that is not mediated by increased renal excretion and depletion of body fluids. In uninephrectomized Sprague-Dawley rats, BP was elevated to approx. 145 mmHg by acute i.v. infusion of noradrenaline (NA) or angiotensin II (Ang II) (groups 1, 2), 2-week exposure to high-salt diet (3), high-salt diet + chronic low-dose infusion of Ang II using osmotic minipumps (4) or chronic high-dose Ang II infusion on normal diet (5). Uninephrectomized spontaneous hypertensive rats (SHR) were also examined (6,7). To selectively increase medullary perfusion, in anaesthetized rats, bradykinin was infused during 30-75 min into the renal medullary interstitium or intravenously. Bradykinin increased outer- and inner-medullary blood flow (laser-Doppler fluxes) by 10-20% in groups (1, 2), by 30-50% in groups (3, 4, 5) and approx. 20% in SHR (6, 7). The concurrent increase in total renal blood flow (Transonic probe) was < 3%. A minor (<3%) decrease in BP was seen only in rats acutely rendered hypertensive by NA or Ang II infusions; however, the decreases in BP and increases in medullary perfusion were not correlated. Thus, there was no evidence that in hypertensive rats, substantial selective increases in medullary perfusion can cause a short-term decrease in BP. © 2012 The Authors Acta Physiologica © 2012 Scandinavian Physiological Society.

  3. Plasma-mediated vascular dysfunction in the reduced uterine perfusion pressure model of preeclampsia: a microvascular characterization.

    LENUS (Irish Health Repository)

    Walsh, Sarah K

    2012-01-31

    Preeclampsia is associated with widespread maternal vascular dysfunction, which is thought to be mediated by circulating factor(s). The aim of the study was to characterize vascular function in the reduced uterine perfusion pressure (RUPP) rat model of preeclampsia and to investigate the role of plasma factors in mediating any observed changes in vascular reactivity. Mean arterial blood pressure and vascular function were measured in RUPP and control rats. Mesenteric vessels from both virgin and pregnant rats were exposed for 1 hour or overnight to plasma from both RUPP and control rats and their vascular function assessed. RUPP rats were characterized by severe hypertension, restricted fetal growth, and reduced placental weight (P<0.001). Vasorelaxation was impaired in resistance vessels from RUPP compared with control rats (acetylcholine: R(max) 70+\\/-3 versus 92+\\/-1 [NP] and 93+\\/-3% [sham], P<0.01; bradykinin: 40+\\/-2 versus 62+\\/-2 [NP] and 59+\\/-4% [sham], P<0.001). Incubation of vessels from pregnant (but not virgin) animals with RUPP plasma overnight resulted in an attenuation of vasorelaxant responses (acetylcholine: 63+\\/-7 versus 86+\\/-2%, P<0.05; bradykinin: 35+\\/-5 versus 55+\\/-6%, P<0.001). The residual relaxant response in RUPP plasma-treated vessels was not further attenuated after treatment with N(omega)-nitro-l-arginine methyl ester (acetylcholine: 57+\\/-7 versus 63+\\/-7%, ns; bradykinin: 37+\\/-5 versus 35+\\/-5%, ns). The RUPP rat model is characterized by an impaired response to vasodilators which may be attributable to one or more circulating factors. This plasma-mediated endothelial dysfunction appears to be a pregnancy-dependent effect. Furthermore, nitric oxide-mediated vasorelaxation appears to be absent in RUPP plasma-treated vessels.

  4. Kaempferol enhances endothelium-dependent relaxation in the porcine coronary artery through activation of large-conductance Ca(2+) -activated K(+) channels.

    Science.gov (United States)

    Xu, Y C; Leung, S W S; Leung, G P H; Man, R Y K

    2015-06-01

    Kaempferol, a plant flavonoid present in normal human diet, can modulate vasomotor tone. The present study aimed to elucidate the signalling pathway through which this flavonoid enhanced relaxation of vascular smooth muscle. The effect of kaempferol on the relaxation of porcine coronary arteries to endothelium-dependent (bradykinin) and -independent (sodium nitroprusside) relaxing agents was studied in an in vitro organ chamber setup. The whole-cell patch-clamp technique was used to determine the effect of kaempferol on potassium channels in porcine coronary artery smooth muscle cells (PCASMCs). At a concentration without direct effect on vascular tone, kaempferol (3 × 10(-6) M) enhanced relaxations produced by bradykinin and sodium nitroprusside. The potentiation by kaempferol of the bradykinin-induced relaxation was not affected by N(ω)-nitro-L-arginine methyl ester, an inhibitor of NO synthase (10(-4) M) or TRAM-34 plus UCL 1684, inhibitors of intermediate- and small-conductance calcium-activated potassium channels, respectively (10(-6) M each), but was abolished by tetraethylammonium chloride, a non-selective inhibitor of calcium-activated potassium channels (10(-3) M), and iberiotoxin, a selective inhibitor of large-conductance calcium-activated potassium channel (KCa 1.1; 10(-7) M). Iberiotoxin also inhibited the potentiation by kaempferol of sodium nitroprusside-induced relaxations. Kaempferol stimulated an outward-rectifying current in PCASMCs, which was abolished by iberiotoxin. The present results suggest that, in smooth muscle cells of the porcine coronary artery, kaempferol enhanced relaxations caused by endothelium-derived and exogenous NO as well as those due to endothelium-dependent hyperpolarization. This vascular effect of kaempferol involved the activation of KCa 1.1 channels. © 2015 The British Pharmacological Society.

  5. Evaluation of long-term antinociceptive properties of stabilized hyaluronic acid preparation (NASHA) in an animal model of repetitive joint pain

    Science.gov (United States)

    2011-01-01

    Introduction Clinical trials provided controversial results on whether the injection of hyaluronan preparations into osteoarthritic joints reduces pain. Problems of clinical studies may be the substantial placebo effects of intra-articular injections, different severity and rate of progression of the disease and others. We hypothesize that the use of preclinical pain models may help to clarify whether a certain hyaluronan exerts antinociceptive effects upon intra-articular injection. In the present study we tested in the bradykinin/prostaglandin E2 (PGE2) model primarily the putative antinociceptive effect of stabilized hyaluronic acid from a non animal source (NASHA), a stabilized hyaluronic acid based gel for intra-articular treatment of OA. We established a dose-response relationship for NASHA and we compared NASHA to other hyaluronans with different formulations that are in clinical use. Methods To induce transient joint pain episodes bradykinin and PGE2 were repetitively administered intra-articularly and unilaterally into rat knee joints during short anaesthesia. After establishment of the predrug nociceptive responses, a single intra-articular injection of saline or NASHA at different concentrations was administered and pain responses to further bradykinin/PGE2 injections were monitored up to 56 days after NASHA. Furthermore, the obtained effective dose was compared to clinically defined concentrations of Hylan GF20 and sodium hyaluronate. The primary outcome measures were primary mechanical hyperalgesia at the knee joint and pain-induced weight bearing. Results On day 1 after injection, all tested hyaluronan preparations showed an antinociceptive effect >50% compared to saline. Single injections of higher doses of NASHA (50, 75 and 100 μl) were antinociceptive up to 56 days. When injection volumes in rat knee joints were adapted to clinical injection volumes in humans, the antinociceptive effects of the cross-linked NASHA and Hylan GF20 had a longer

  6. Dynamics of Ca2+i and pHi in Ehrlich ascites tumor cells after Ca2+-mobilizing agonists or exposure to hypertonic solution

    DEFF Research Database (Denmark)

    Pedersen, Stine F.; Jørgensen, Nanna K.; Hoffmann, Else Kay

    1998-01-01

    Intracellular free calcium concentration ([Ca2+]i) and intracellular pH (pHi) were monitored in Ehrlich ascites tumor cells using Fura-2 or 2',7',-bis-(2-carboxyethyl)-5,6-carboxyfluorescein (BCECF), or both probes in combination. An increase in [Ca2+]i induced by thrombin or bradykinin, agonists...

  7. Hereditary angioedema attacks resolve faster and are shorter after early icatibant treatment.

    Directory of Open Access Journals (Sweden)

    Marcus Maurer

    Full Text Available BACKGROUND: Attacks of hereditary angioedema (HAE are unpredictable and, if affecting the upper airway, can be lethal. Icatibant is used for physician- or patient self-administered symptomatic treatment of HAE attacks in adults. Its mode of action includes disruption of the bradykinin pathway via blockade of the bradykinin B(2 receptor. Early treatment is believed to shorten attack duration and prevent severe outcomes; however, evidence to support these benefits is lacking. OBJECTIVE: To examine the impact of timing of icatibant administration on the duration and resolution of HAE type I and II attacks. METHODS: The Icatibant Outcome Survey is an international, prospective, observational study for patients treated with icatibant. Data on timings and outcomes of icatibant treatment for HAE attacks were collected between July 2009-February 2012. A mixed-model of repeated measures was performed for 426 attacks in 136 HAE type I and II patients. RESULTS: Attack duration was significantly shorter in patients treated <1 hour of attack onset compared with those treated ≥ 1 hour (6.1 hours versus 16.8 hours [p<0.001]. Similar significant effects were observed for <2 hours versus ≥ 2 hours (7.2 hours versus 20.2 hours [p<0.001] and <5 hours versus ≥ 5 hours (8.0 hours versus 23.5 hours [p<0.001]. Treatment within 1 hour of attack onset also significantly reduced time to attack resolution (5.8 hours versus 8.8 hours [p<0.05]. Self-administrators were more likely to treat early and experience shorter attacks than those treated by a healthcare professional. CONCLUSION: Early blockade of the bradykinin B(2 receptor with icatibant, particularly within the first hour of attack onset, significantly reduced attack duration and time to attack resolution.

  8. Kaempferol enhances endothelium-dependent relaxation in the porcine coronary artery through activation of large-conductance a2+-activated K+ channels

    Science.gov (United States)

    Xu, Y C; Leung, S W S; Leung, G P H; Man, R Y K

    2015-01-01

    Background and Purpose Kaempferol, a plant flavonoid present in normal human diet, can modulate vasomotor tone. The present study aimed to elucidate the signalling pathway through which this flavonoid enhanced relaxation of vascular smooth muscle. Experimental Approach The effect of kaempferol on the relaxation of porcine coronary arteries to endothelium-dependent (bradykinin) and -independent (sodium nitroprusside) relaxing agents was studied in an in vitro organ chamber setup. The whole-cell patch-clamp technique was used to determine the effect of kaempferol on potassium channels in porcine coronary artery smooth muscle cells (PCASMCs). Key Results At a concentration without direct effect on vascular tone, kaempferol (3 × 10−6 M) enhanced relaxations produced by bradykinin and sodium nitroprusside. The potentiation by kaempferol of the bradykinin-induced relaxation was not affected by Nω-nitro-L-arginine methyl ester, an inhibitor of NO synthase (10−4 M) or TRAM-34 plus UCL 1684, inhibitors of intermediate- and small-conductance calcium-activated potassium channels, respectively (10−6 M each), but was abolished by tetraethylammonium chloride, a non-selective inhibitor of calcium-activated potassium channels (10−3 M), and iberiotoxin, a selective inhibitor of large-conductance calcium-activated potassium channel (KCa1.1; 10−7 M). Iberiotoxin also inhibited the potentiation by kaempferol of sodium nitroprusside-induced relaxations. Kaempferol stimulated an outward-rectifying current in PCASMCs, which was abolished by iberiotoxin. Conclusions and Implications The present results suggest that, in smooth muscle cells of the porcine coronary artery, kaempferol enhanced relaxations caused by endothelium-derived and exogenous NO as well as those due to endothelium-dependent hyperpolarization. This vascular effect of kaempferol involved the activation of KCa1.1 channels. PMID:25652142

  9. Acute exposure to high‐induction electromagnetic field affects activity of model peripheral sensory neurons

    Czech Academy of Sciences Publication Activity Database

    Průcha, J.; Krůšek, Jan; Dittert, Ivan; Sinica, Viktor; Kádková, Anna; Vlachová, Viktorie

    2018-01-01

    Roč. 22, č. 2 (2018), s. 1355-1362 ISSN 1582-4934 R&D Projects: GA MZd(CZ) NV16-28784A Institutional support: RVO:67985823 Keywords : electromagnetic field * primary sensory neuron * ion channel * bradykinin receptor * transient receptor potential channel Subject RIV: FH - Neurology OBOR OECD: Neurosciences (including psychophysiology Impact factor: 4.499, year: 2016

  10. Management of acute attacks of hereditary angioedema: potential role of icatibant.

    Science.gov (United States)

    Longhurst, Hilary J

    2010-09-07

    Icatibant (Firazyr(®)) is a novel subcutaneous treatment recently licensed in the European Union for acute hereditary angioedema. Hereditary angioedema, resulting from inherited partial C1 inhibitor deficiency, is a disabling condition characterized by intermittent episodes of bradykinin-mediated angioedema. Icatibant blocks bradykinin B2 receptors, attenutating the episode. Randomized double-blind, placebo-controlled trials of icatibant, showed significant superiority over oral tranexamic acid in 74 European patients and a trend to improvement in a similar US trial comparing icatibant with placebo in 55 patients. Outcomes for several endpoints did not reach significance in the US trial, perhaps because of low participant numbers and confounding factors: a further trial is planned. Open label studies have shown benefit in multiple treatments for attacks at all sites. Approximately 10% of patients require a second dose for re-emergent symptoms, usually 10 to 27 hours after the initial treatment. Its subcutaneous route of administration, good tolerability and novel mode of action make icatibant a promising addition to the limited repertoire of treatments for hereditary angioedema.

  11. Management of acute attacks of hereditary angioedema: potential role of icatibant

    Science.gov (United States)

    Longhurst, Hilary J

    2010-01-01

    Icatibant (Firazyr®) is a novel subcutaneous treatment recently licensed in the European Union for acute hereditary angioedema. Hereditary angioedema, resulting from inherited partial C1 inhibitor deficiency, is a disabling condition characterized by intermittent episodes of bradykinin-mediated angioedema. Icatibant blocks bradykinin B2 receptors, attenutating the episode. Randomized double-blind, placebo-controlled trials of icatibant, showed significant superiority over oral tranexamic acid in 74 European patients and a trend to improvement in a similar US trial comparing icatibant with placebo in 55 patients. Outcomes for several endpoints did not reach significance in the US trial, perhaps because of low participant numbers and confounding factors: a further trial is planned. Open label studies have shown benefit in multiple treatments for attacks at all sites. Approximately 10% of patients require a second dose for re-emergent symptoms, usually 10 to 27 hours after the initial treatment. Its subcutaneous route of administration, good tolerability and novel mode of action make icatibant a promising addition to the limited repertoire of treatments for hereditary angioedema. PMID:20859548

  12. Small GTPases are involved in sprout formation in human granulosa lutein cells.

    Science.gov (United States)

    Franz, Maximilian B; Daube, Stefanie; Keck, Christoph; Sator, Michael; Pietrowski, Detlef

    2013-04-01

    The corpus luteum (CL), develops from the ruptured follicle after gonadotropin stimulation. Based on intracellular reorganization of the cytoskeleton an human chorionic gonadotropin (hCG) dependent sprouting and migration of luteinizing granulosa cells (LGCs) and endothelial cells is observed. Rho-GTPases are shown to be key regulators of cytoskeletal restructuring. In the present study we analyzed the role of Rho-GTPases in the sprouting activity of LGCs. We used the Rho-GTPase-inhibitors Toxin A and -B and the Cdc42-activator Bradykinin in a LGC-spheroid sprouting assay to determine the effect of these modulators in LGCs. Toxin A and Toxin B reduces sprout formation in LGC spheroids. However, the reduction is less than in hCG treated cells. The usage of Bradykinin demonstrates both, a reduction of sprouts in untreated spheroids and an increase of sprouting in previous hCG treated spheroids. The presented results let us suggest that small Rho-GTPases may regulate the sprouting activity of LGCs after stimulation by hCG and that this mechanism may play a role in CL formation.

  13. Decreasing extracellular Na+ concentration triggers inositol polyphosphate production and Ca2+ mobilization

    International Nuclear Information System (INIS)

    Smith, J.B.; Dwyer, S.D.; Smith, L.

    1989-01-01

    Removing extracellular Na+ (Na+o) evoked a large increase in cytosolic free Ca2+ concentration ([Ca2+]i in human skin fibroblasts. Decreasing [Na+]o from 120 to 14 mM caused the half-maximal peak increase in [Ca2+]i. Removing Na+o strongly stimulated 45 Ca2+ efflux and decreased total cell Ca2+ by about 40%. Bradykinin caused changes in [Ca2+]i, total Ca2+, and 45 Ca2+ fluxes similar to those evoked by removing Na+o. Prior stimulation of the cells with bradykinin prevented Na+o removal from increasing [Ca2+]i and vice versa. Na+o removal rapidly increased [ 3 H]inositol polyphosphate production. Loading the cells with Na+ had no effect on the increase in 45 Ca2+ efflux produced by Na+o removal. Therefore, decreasing [Na+]o probably stimulates a receptor(s) which is sensitive to extracellular, not intracellular, Na+. Removing Na+o also mobilized intracellular Ca2+ in smooth muscle and endothelial cells cultured from human umbilical and dog coronary arteries, respectively

  14. Effects of Perfluoroisobutene on Guinea Pig Isolated Lung Preparations.

    Science.gov (United States)

    guinea pigs showed increased sensitivity to 5-hydroxytryptamine, bradykinin, isoprenaline and a thromboxane A2 analogue, but not to carbachol, histamine, prostaglandin D2, adenosine or potassium. These changes were not detected in the TS. If PFIB-induced changes in lung pharmacology contribute to oedema, antagonists of identified mediators may be useful as pretreatments/therapies to pulmonary

  15. Interactions of flavanoids with bradykinin in aqueous solution

    Science.gov (United States)

    B. Berke; F.L. Tobiason; T. Hatano; C Cheze; J. Vercauteren; Richard W. Hemingway

    1999-01-01

    Complexation with proteins is central to much of the biological and industrial significance of plant polyphenols. Definition of the interaction of these two classes of biopolymers has, therefore, been studied for decades. The most important mechanism seems to involve hydrophobic interactions and also hydrogen bonding, but to a smaller extent. Study of specific...

  16. Calcium signalling in the acinar environment of the exocrine pancreas: physiology and pathophysiology.

    Science.gov (United States)

    Gryshchenko, Oleksiy; Gerasimenko, Julia V; Peng, Shuang; Gerasimenko, Oleg V; Petersen, Ole H

    2018-02-09

    Ca 2+ signalling in different cell types in exocrine pancreatic lobules was monitored simultaneously and signalling responses to various stimuli were directly compared. Ca 2+ signals evoked by K + -induced depolarization were recorded from pancreatic nerve cells. Nerve cell stimulation evoked Ca 2+ signals in acinar but not in stellate cells. Stellate cells are not electrically excitable as they, like acinar cells, did not generate Ca 2+ signals in response to membrane depolarization. The responsiveness of the stellate cells to bradykinin was markedly reduced in experimental alcohol-related acute pancreatitis, but they became sensitive to stimulation with trypsin. Our results provide fresh evidence for an important role of stellate cells in acute pancreatitis. They seem to be a critical element in a vicious circle promoting necrotic acinar cell death. Initial trypsin release from a few dying acinar cells generates Ca 2+ signals in the stellate cells, which then in turn damage more acinar cells causing further trypsin liberation. Physiological Ca 2+ signals in pancreatic acinar cells control fluid and enzyme secretion, whereas excessive Ca 2+ signals induced by pathological agents induce destructive processes leading to acute pancreatitis. Ca 2+ signals in the peri-acinar stellate cells may also play a role in the development of acute pancreatitis. In this study, we explored Ca 2+ signalling in the different cell types in the acinar environment of the pancreatic tissue. We have, for the first time, recorded depolarization-evoked Ca 2+ signals in pancreatic nerves and shown that whereas acinar cells receive a functional cholinergic innervation, there is no evidence for functional innervation of the stellate cells. The stellate, like the acinar, cells are not electrically excitable as they do not generate Ca 2+ signals in response to membrane depolarization. The principal agent evoking Ca 2+ signals in the stellate cells is bradykinin, but in experimental alcohol

  17. Effects of organic solvent and cationic additive on capillary electrophoresis of peptides

    International Nuclear Information System (INIS)

    Surugau, L.N.; Bergstrom, Ed T.

    2008-01-01

    Capillary electrophoresis (CE) of nine peptides namely, bradykinin, bradykinin fragment 1-5, substance P, Arg 8 -vasopressin, luteinizing hormone-releasing hormone (LHRH), bombesin, leucine-enkephalin, methionine-enkephalin and oxytocin were carried out using 0.5 % and 1.0 % formic acid (FA) as the separation buffers, added with acetonitrile (ACN) and triethylamine (TEA) as an additive at low pH. The electrophoretic behaviour of these peptides was examined at different concentration of TEA (0, 10, 20, 30, 40 and 50 mM), and ACN (30, 40, 50, 60, 70 %) at their respective measured final pH. The results showed that all nine peptides were fully resolved with addition of 10 - 20 mM TEA. Peak efficiency was improved significantly by increasing TEA concentration up to 40 mM where 800 000 m -1 was obtained. Without TEA, the closely related enkephalins were co-migrating. Interestingly, by addition of as little as 5 mM TEA has sufficient to separate them almost at baseline. Increasing ACN to 40 % has shortened the analysis time by ca. 1 min. However, further increase of ACN can cause peak broadening and current instability. (author)

  18. Effects of organic solvent and cationic additive on capillary electrophoresis of peptides

    International Nuclear Information System (INIS)

    Surugau, L.N.; Bergstrom, E.T.

    2008-01-01

    Capillary electrophoresis (CE) of nine peptides namely, bradykinin, bradykinin fragment 1-5, substance P, Arg 8 -vasopressin, luteinizing hormone-releasing hormone (LHRH), bombesin, leucine-enkephalin, methionine-enkephalin and oxytocin were carried out using 0.5 % and 1.0 % formic acid (FA) as the separation buffers, added with acetonitrile (ACN) and triethylamine (TEA) as an additive at low pH. The electrophoretic behavior of these peptides was examined at different concentration of TEA (0, 10, 20, 30, 40 and 50 mM), and ACN (30, 40, 50, 60, 70 %) at their respective measured final pH. The results showed that all nine peptides were fully resolved with addition of 10-20 mM TEA. Peak efficiency was improved significantly by increasing TEA concentration up to 40 mM where 800 000 m -1 was obtained. Without TEA, the closely related enkephalins were co-migrating. Interestingly, by addition of as little as 5 mM TEA has sufficient to separate them almost at baseline. Increasing ACN to 40 % has shortened the analysis time by ca. 1 min. However, further increase of ACN can cause peak broadening and current instability. (author)

  19. Relaxing Responses to Hydrogen Peroxide and Nitric Oxide in Human Pericardial Resistance Arteries Stimulated with Endothelin-1

    DEFF Research Database (Denmark)

    Leurgans, Thomas M; Bloksgaard, Maria; Irmukhamedov, Akhmadjon

    2018-01-01

    In human pericardial resistance arteries, effects of the endothelium-dependent vasodilator bradykinin are mediated by NO during contraction induced by K(+) or the TxA2 analogue U46619 and by H2 O2 during contraction by endothelin-1 (ET-1), respectively. We tested the hypotheses that ET-1 reduces...... also acts as an endothelium-dependent vasodilator. This article is protected by copyright. All rights reserved....

  20. Dipeptidyl Peptidase IV in Angiotensin-Converting Enzyme Inhibitor–Associated Angioedema

    OpenAIRE

    Byrd, James Brian; Touzin, Karine; Sile, Saba; Gainer, James V.; Yu, Chang; Nadeau, John; Adam, Albert; Brown, Nancy J.

    2007-01-01

    Angioedema is a potentially life-threatening adverse effect of angiotensin-converting enzyme inhibitors. Bradykinin and substance P, substrates of angiotensin-converting enzyme, increase vascular permeability and cause tissue edema in animals. Studies indicate that amino-terminal degradation of these peptides, by aminopeptidase P and dipeptidyl peptidase IV, may be impaired in individuals with angiotensin-converting enzyme inhibitor–associated angioedema. This case-control study tested the hy...

  1. Molecular Basis of TRPA1 Regulation in Nociceptive Neurons. A Review

    Czech Academy of Sciences Publication Activity Database

    Kádková, Anna; Synytsya, Viktor; Krůšek, Jan; Zímová, Lucie; Vlachová, Viktorie

    2017-01-01

    Roč. 66, č. 3 (2017), s. 425-439 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GA15-15839S; GA MZd(CZ) NV16-28784A Institutional support: RVO:67985823 Keywords : transient receptor potential ankyrin 1 * bradykinin * structure- function * nociception * post-translational modifications * signaling pathways Subject RIV: FH - Neurology OBOR OECD: Neurosciences (including psychophysiology Impact factor: 1.461, year: 2016

  2. Protective effect of soybean oil- or fish oil-rich diets on allergic airway inflammation

    Directory of Open Access Journals (Sweden)

    Navarro-Xavier RA

    2016-05-01

    Full Text Available Roberta Araujo Navarro-Xavier,1 Karina Vieira de Barros,1 Iracema Senna de Andrade,1 Zaira Palomino,2 Dulce Elena Casarini,2 Vera Lucia Flor Silveira3 1Departamento de Fisiologia, 2Departamento de Medicina, 3Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil Background: The increased prevalence of asthma and allergic diseases in westernized societies has been associated with increased intake of diets rich in n-6 fatty acids (FAs and poor in n-3 FAs. This study aimed to analyze the prophylactic effects of treatment with a soybean oil-rich diet (rich in n-6 or fish oil (rich in n-3 in an allergic airway inflammation model on lung inflammation score, leukocyte migration, T-helper cell (Th-2 (interleukin [IL]-4, IL-5 and Th1 (interferon [IFN]-γ, tumor necrosis factor-α cytokines, lipoxin A4, nitric oxide, bradykinin, and corticosterone levels in bronchoalveolar lavage (BAL or lungs. Methods: Male Wistar rats fed with soybean oil- or fish oil-rich diet or standard rat chow were sensitized twice with ovalbumin–alumen and challenged twice with ovalbumin aerosol. The BAL and lungs were examined 24 hours later. Results: Both diets, rich in n-6 or n-3 FAs, impaired the allergic lung inflammation and reduced leukocyte migration, eosinophil and neutrophil percentages, and IL-4/IL-5/bradykinin levels in BAL and/or lungs, as well as increased the nitric oxide levels in BAL. The soybean oil-rich diet additionally increased the levels of lipoxin A4 and corticosterone in the lungs. Conclusion: Data presented demonstrated that the n-6 FA-rich diet had protective effect upon allergic airway inflammation and was as anti-inflammatory as the n-3 FA-rich diet, although through different mechanisms, suggesting that both diets could be considered as complementary therapy or a prophylactic alternative for allergic airway inflammation. Keywords: asthma, nitric oxide, n-6 fatty acids, n-3 fatty acids, cytokines

  3. Pharmacology of post-irradiation damage of blood capillaries

    International Nuclear Information System (INIS)

    Pospisil, J.; Pouckova, P.

    1979-01-01

    Available literature data are summed up on the effect of a number of substances on irradiation damage to blood capillaries. The substances include vitamins, bioflavonoids, serotonine, histamine, bradykinin, ACTH, adrenal hormones, vasopressin, estrogens, prostaglandins, escin 1-butanol, diisopropylfluorophosphate, phenoxybenzamine, 1,4-dihydroxybenzenesulphonic acid derivatives, and xi-aminohexanoic acid. The data include the effects of the substances administered before and after irradiation on blood capillary damage and on mortality. (Ha)

  4. Contact system activation and high thrombin generation in hyperthyroidism.

    Science.gov (United States)

    Kim, Namhee; Gu, Ja-Yoon; Yoo, Hyun Ju; Han, Se Eun; Kim, Young Il; Nam-Goong, Il Sung; Kim, Eun Sook; Kim, Hyun Kyung

    2017-05-01

    Hyperthyroidism is associated with increased thrombotic risk. As contact system activation through formation of neutrophil extracellular traps (NET) has emerged as an important trigger of thrombosis, we hypothesized that the contact system is activated along with active NET formation in hyperthyroidism and that their markers correlate with disease severity. In 61 patients with hyperthyroidism and 40 normal controls, the levels of coagulation factors (fibrinogen, and factor VII, VIII, IX, XI and XII), D-dimer, thrombin generation assay (TGA) markers, NET formation markers (histone-DNA complex, double-stranded DNA and neutrophil elastase) and contact system markers (activated factor XII (XIIa), high-molecular-weight kininogen (HMWK), prekallikrein and bradykinin) were measured. Patients with hyperthyroidism showed higher levels of fibrinogen (median (interquartile range), 315 (280-344) vs 262 (223-300), P  = 0.001), D-dimer (103.8 (64.8-151.5) vs 50.7 (37.4-76.0), P  hyperthyroidism's contribution to coagulation and contact system activation. Free T4 was significantly correlated with factors VIII and IX, D-dimer, double-stranded DNA and bradykinin. This study demonstrated that contact system activation and abundant NET formation occurred in the high thrombin generation state in hyperthyroidism and were correlated with free T4 level. © 2017 European Society of Endocrinology.

  5. Effect of maternal nutrient restriction and melatonin supplementation from mid to late gestation on vascular reactivity of maternal and fetal placental arteries.

    Science.gov (United States)

    Shukla, P; Lemley, C O; Dubey, N; Meyer, A M; O'Rourke, S T; Vonnahme, K A

    2014-07-01

    Maternal nutrient restriction and decreased scotophase concentrations of melatonin have been associated with severely compromised pregnancies. We hypothesized that melatonin supplementation in a compromised pregnancy enhances the bradykinin (BK)-induced relaxations of placental arteries thereby ensuring sufficient umbilical blood flow to the developing fetus. Pregnant ewes (n = 31) were fed an adequate (ADQ) or nutrient restricted (RES) diet supplemented with 5 mg of melatonin (MEL) or without melatonin (CON) from day 50 to 130 of gestation. On day 130 of gestation, the maternal (caruncular; CAR) and fetal (cotyledonary; COT) placental arteries were suspended in organ chambers for isometric tension recording. There were no treatment or dietary effects on CAR arteries for any vasoactive agent. However, in COT arteries, MEL ewes were more sensitive (P melatonin by nutritional level interaction (P melatonin by nutritional interaction (P = 0.04) for responsiveness to norepinephrine. The sensitivity of the COT arteries to norepinephrine in CON-RES ewes was decreased compared to CON-ADQ. Melatonin supplementation, regardless of maternal dietary intake, resulted in COT arteries having similar responsiveness to CON-RES ewes. An increase in placental vessel sensitivity to bradykinin-induced relaxation may contribute to melatonin-induced increases in umbilical artery blood flow. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Optimum Use of Acute Treatments for Hereditary Angioedema: Evidence-Based Expert Consensus

    OpenAIRE

    Hilary Longhurst

    2018-01-01

    Acute treatment of hereditary angioedema due to C1 inhibitor deficiency has become available in the last 10 years and has greatly improved patients’ quality of life. Two plasma-derived C1 inhibitors (Berinert and Cinryze), a recombinant C1 inhibitor (Ruconest/Conestat alpha), a kallikrein inhibitor (Ecallantide), and a bradykinin B2 receptor inhibitor (Icatibant) are all effective. Durably good response is maintained over repeated treatments and several years. All currently available prophyla...

  7. Expression of Membrane-Bound Human AminopeptidaseP as a Soluble Enzyme and an Investigation into Its Efficacy Towards Offering Protection Against the Toxicity of Chemical Warfare Nerve Agents

    Science.gov (United States)

    2016-09-01

    APP appears to be the cleavage of an N-terminal amino acid residue from peptides exhibiting a proline at P-1 residue such as bradykinin [11]. In...amino acid residue 658, replacing the Trp codon (TGG) immediately upstream of the hydrophobic peptide acting as the GPI-anchoring signal. A 6...hydrolase activity between human and chimeric recombinant mammalian paraoxonase-1 enzymes. Biochemistry, 2009. 48(43): p. 10416-22. 19. Aleti, V., et al

  8. Sphingosine 1-phosphate stimulates hydrogen peroxide generation through activation of phospholipase C-Ca2+ system in FRTL-5 thyroid cells: possible involvement of guanosine triphosphate-binding proteins in the lipid signaling.

    Science.gov (United States)

    Okajima, F; Tomura, H; Sho, K; Kimura, T; Sato, K; Im, D S; Akbar, M; Kondo, Y

    1997-01-01

    Exogenous sphingosine 1-phosphate (S1P) stimulated hydrogen peroxide (H2O2) generation in association with an increase in intracellular Ca2+ concentration in FRTL-5 thyroid cells. S1P also induced inositol phosphate production, reflecting activation of phospholipase C (PLC) in the cells. These three S1P-induced events were inhibited partially by pertussis toxin (PTX) and markedly by U73122, a PLC inhibitor, and were conversely potentiated by N6-(L-2-phenylisopropyl)adenosine, an A1-adenosine receptor agonist. In FRTL-5 cell membranes, S1P also activated PLC in the presence of guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S), but not in its absence. Guanosine 5'-O-(2-thiodiphosphate) inhibited the S1P-induced GTP gamma S-dependent activation of the enzyme. To characterize the signaling pathways, especially receptors and G proteins involved in the S1P-induced responses, cross-desensitization experiments were performed. Under the conditions where homologous desensitization occurred in S1P-, lysophosphatidic acid (LPA)-, and bradykinin-induced induction of Ca2+ mobilization, no detectable cross-desensitization of S1P and bradykinin was observed. This suggests that the primary action of S1P in its activation of the PLC-Ca2+ system was not the activation of G proteins common to S1P and bradykinin, but the activation of a putative S1P receptor. On the other hand, there was a significant cross-desensitization of S1P and LPA; however, a still significant response to S1P (50-80% of the response in the nontreated control cells) was observed depending on the lipid dose employed after a prior LPA challenge. S1P also inhibited cAMP accumulation in a PTX-sensitive manner. We conclude that S1P stimulates H2O2 generation through a PLC-Ca2+ system and also inhibits adenylyl cyclase in FRTL-5 thyroid cells. The S1P-induced responses may be mediated partly through a putative lipid receptor that is coupled to both PTX-sensitive and insensitive G proteins.

  9. [Studies on the relation between glucose metabolism and c-AMP formation in dental pulps in the presence of inflammatory chemical mediators in vitro].

    Science.gov (United States)

    Kiyohara, H

    1989-01-01

    The relationship between glucose metabolism and cyclic-AMP production in dental pulp in the presence of chemical mediators was investigated in vitro. It is generally accepted that oxidation of glucose-6-14C is indicative of metabolism by the glycolytic pathway whereas that of glucose-1-14C occurs by the hexose monophosphate shunt. The 14CO2 productions from both routes were compared in dental pulp from cattle and rats in the presence of each of several chemical mediators: bradykinin (1.7-3.3 micrograms/ml), prostaglandin E1 (0.3 micrograms/ml), prostaglandin E2 (0.3 micrograms/ml), histamine (33 micrograms/ml), and 5-hydroxytryptamine (33 micrograms/ml). The effects of dental filling materials on glucose oxidation, and cyclic-AMP production by chemical mediators in pulp tissues were also investigated. The results obtained were as follows: 1) Glucose oxidation in dental pulp was stimulated by chemical mediators generally by way of the Embden-Meyerhof Parnas pathway, and was further stimulated by the medium containing bradykinin. However, it was depressed in the presence of higher concentrations of chemical mediators, especially depressed in the HMS pathway. 2) The oxidation ratio of glucose-1-14C to glucose-6-14C (G1/G6) in dental pulp was 4 to 8 in the cattle and 0.6 in the rat, showing clear differences in glucose oxidation between the two animals. 3) Moreover, glucose oxidation in rat dental pulp was 60 to 80 times higher in the EMP pathway and 5 to 10 times higher in the HMS pathway than those in the cattle. 4) Dental filling materials such as silicate cement, zinc phosphate cement, calcium hydroxide, and eugenol cement severely depressed glucose-6-14C oxidation in bovine dental pulp when used at high concentrations, but not at low concentrations. 5) The chemical mediators tested in this experiment (PGE1, PGE2, histamine, 5-HT, bradykinin, and substance P) stimulated cyclic AMP production in rat dental pulp. The production was highest with PGE1 and PGE2. The

  10. Biochemical and functional correlates of an increased membrane density of caveolae in hypertrophic rat urinary bladder.

    Science.gov (United States)

    Shakirova, Yulia; Swärd, Karl; Uvelius, Bengt; Ekman, Mari

    2010-12-15

    Organ hypertrophy is often found to be associated with changes in the expression of caveolins and altered density of caveolae in the membrane. A plethora of signalling intermediaries are associated with caveolae and loss of caveolae has profound effects on contractility of the urinary bladder. We hypothesized that smooth muscle hypertrophy caused by bladder outflow obstruction (BOO) might lead to an altered caveola density with consequences for contractile regulation. Rat BOO for 6 weeks caused a 2.56-fold increase in the number of smooth muscle caveolae per μm membrane. No changes in the expression of caveolin-1 or cavin-1, normalized to β-actin were seen, but membrane area per unit muscle volume dropped to 0.346. Hypertrophy was associated with altered contraction in response to carbachol. The effect on contraction of cholesterol desorption, which disrupts lipid rafts and caveolae, was however not changed. Contraction in response to bradykinin resisted mβcd in control destrusor, but was inhibited by it after 6 weeks of obstruction. It is concluded that rat detrusor hypertrophy leads to an increased number of caveolae per unit membrane area. This change is due to a reduction of membrane area per volume muscle and it does not play a role for cholinergic activation, but promotes contraction in response to bradykinin after long-term obstruction. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Preclinical characterization of recombinant human tissue kallikrein-1 as a novel treatment for type 2 diabetes mellitus.

    Directory of Open Access Journals (Sweden)

    Tadeusz Kolodka

    Full Text Available Modulation of the kallikrein-kinin system (KKS has been shown to have beneficial effects on glucose homeostasis and several other physiological responses relevant to the progression of type 2 diabetes mellitus (T2D. The importance of bradykinin and its receptors in mediating these responses is well documented, but the role of tissue kallikrein-1, the protease that generates bradykinin in situ, is much less understood. We developed and tested DM199, recombinant human tissue kallikrein-1 protein (rhKLK-1, as a potential novel therapeutic for T2D. Hyperinsulinemic-euglycemic clamp studies suggest that DM199 increases whole body glucose disposal in non-diabetic rats. Single-dose administration of DM199 in obese db/db mice and ZDF rats, showed an acute, dose-dependent improvement in whole-body glucose utilization. Sub-acute dosing for a week in ZDF rats improved glucose utilization, with a concomitant rise in fasting insulin levels and HOMA1-%B scores. After cessation of sub-acute dosing, fasting blood glucose levels were significantly lower in ZDF rats during a drug wash-out period. Our studies show for the first time that DM199 administration results in acute anti-hyperglycemic effects in several preclinical models, and demonstrate the potential for further development of DM199 as a novel therapeutic for T2D.

  12. Elapid Snake Venom Analyses Show the Specificity of the Peptide Composition at the Level of Genera Naja and Notechis

    Directory of Open Access Journals (Sweden)

    Aisha Munawar

    2014-02-01

    Full Text Available Elapid snake venom is a highly valuable, but till now mainly unexplored, source of pharmacologically important peptides. We analyzed the peptide fractions with molecular masses up to 10 kDa of two elapid snake venoms—that of the African cobra, N. m. mossambica (genus Naja, and the Peninsula tiger snake, N. scutatus, from Kangaroo Island (genus Notechis. A combination of chromatographic methods was used to isolate the peptides, which were characterized by combining complimentary mass spectrometric techniques. Comparative analysis of the peptide compositions of two venoms showed specificity at the genus level. Three-finger (3-F cytotoxins, bradykinin-potentiating peptides (BPPs and a bradykinin inhibitor were isolated from the Naja venom. 3-F neurotoxins, Kunitz/basic pancreatic trypsin inhibitor (BPTI-type inhibitors and a natriuretic peptide were identified in the N. venom. The inhibiting activity of the peptides was confirmed in vitro with a selected array of proteases. Cytotoxin 1 (P01467 from the Naja venom might be involved in the disturbance of cellular processes by inhibiting the cell 20S-proteasome. A high degree of similarity between BPPs from elapid and viperid snake venoms was observed, suggesting that these molecules play a key role in snake venoms and also indicating that these peptides were recruited into the snake venom prior to the evolutionary divergence of the snakes.

  13. The purification and characterization of an 88-kDa Porphyromonas endodontalis 35406 protease.

    Science.gov (United States)

    Rosen, G; Shoshani, M; Naor, R; Sela, M N

    2001-12-01

    A Porphyromonas endodontalis ATCC 35406 protease was purified from Triton X-114 cell extracts by preparative SDS-PAGE followed by electroelution. The purified enzyme exhibits a molecular size of 88 kDa and was dissociated into two polypeptides of 43 and 41 kDa upon heating in the presence of sodium dodecyl sulfate with or without a reducing agent. The protease (pH optimum 7.5-8.0) degraded the extracellular matrix proteins fibrinogen and fibronectin. Collagen IV was also degraded at 37 degrees C but not at 28 degrees C. The protease also cleaved the bioactive peptide angiotensin at amino acid residue phenylalanine-8 and tyrosine-4 but failed to hydrolyze bradykinin, vasopressin and synthetic chromogenic substrates with phenylalanine or tyrosine at the P1 position. In addition, two peptidases were detected in P. endodontalis cells: a proline aminopeptidase that remained associated with the cell pellet after detergent extraction and peptidase/s that partitioned into the Triton X-114 phase after phase separation and degraded the bioactive peptides bradykinin and vasopressin. These P. endodontalis peptidases and proteases may play an important role in both the nutrition and pathogenicity of these assacharolytic microorganisms. The inactivation of bioactive peptides and degradation of extracellular matrix proteins by bacterial enzymes may contribute to the damage of host tissues accompanied with endodontic infections.

  14. Dipeptidyl peptidase-4 inhibitor induced angioedema - an overlooked and potentially lethal adverse drug reaction?

    DEFF Research Database (Denmark)

    Scott, Susanne Irene; Andersen, Michelle Fog; Aagaard, Lise

    2018-01-01

    to vasodilatation and increase in vascular permeability in the capillaries. Objective To assess the risk and pathomechanism of angioedema due to inhibition of dipeptidyl peptidase-4 inhibitors when used as monotherapy and in combination with angiotensin converting enzyme-inhibitors. Method PubMed, Embase......, the Cochrane Library, PubMed Central, Web of Science, Google Scholar and clinicaltrials.gov were searched using different combinations of keywords "angioedema", "dipeptidyl peptidase 4", "dipeptidyl peptidase 4 inhibitors", "gliptins", "bradykinin", "substance P" and "angiotensin converting enzyme...

  15. The ACE gene and human performance: 12 years on.

    Science.gov (United States)

    Puthucheary, Zudin; Skipworth, James R A; Rawal, Jai; Loosemore, Mike; Van Someren, Ken; Montgomery, Hugh E

    2011-06-01

    Some 12 years ago, a polymorphism of the angiotensin I-converting enzyme (ACE) gene became the first genetic element shown to impact substantially on human physical performance. The renin-angiotensin system (RAS) exists not just as an endocrine regulator, but also within local tissue and cells, where it serves a variety of functions. Functional genetic polymorphic variants have been identified for most components of RAS, of which the best known and studied is a polymorphism of the ACE gene. The ACE insertion/deletion (I/D) polymorphism has been associated with improvements in performance and exercise duration in a variety of populations. The I allele has been consistently demonstrated to be associated with endurance-orientated events, notably, in triathlons. Meanwhile, the D allele is associated with strength- and power-orientated performance, and has been found in significant excess among elite swimmers. Exceptions to these associations do exist, and are discussed. In theory, associations with ACE genotype may be due to functional variants in nearby loci, and/or related genetic polymorphism such as the angiotensin receptor, growth hormone and bradykinin genes. Studies of growth hormone gene variants have not shown significant associations with performance in studies involving both triathletes and military recruits. The angiotensin type-1 receptor has two functional polymorphisms that have not been shown to be associated with performance, although studies of hypoxic ascent have yielded conflicting results. ACE genotype influences bradykinin levels, and a common gene variant in the bradykinin 2 receptor exists. The high kinin activity haplotye has been associated with increased endurance performance at an Olympic level, and similar results of metabolic efficiency have been demonstrated in triathletes. Whilst the ACE genotype is associated with overall performance ability, at a single organ level, the ACE genotype and related polymorphism have significant

  16. Perspectives on the Trypanosoma cruzi–host cell receptor interactions

    Science.gov (United States)

    Villalta, Fernando; Scharfstein, Julio; Ashton, Anthony W.; Tyler, Kevin M.; Guan, Fangxia; Mukherjee, Shankar; Lima, Maria F.; Alvarez, Sandra; Weiss, Louis M.; Huang, Huan; Machado, Fabiana S.

    2009-01-01

    Chagas disease is caused by the parasite Trypanosoma cruzi. The critical initial event is the interaction of the trypomastigote form of the parasite with host receptors. This review highlights recent observations concerning these interactions. Some of the key receptors considered are those for thromboxane, bradykinin, and for the nerve growth factor TrKA. Other important receptors such as galectin-3, thrombospondin, and laminin are also discussed. Investigation into the molecular biology and cell biology of host receptors for T. cruzi may provide novel therapeutic targets. PMID:19283409

  17. Impaired vascular sensitivity to nitric oxide in the coronary microvasculature after endotoxaemia

    OpenAIRE

    Bogle, Richard G; McLean, Peter G; Ahluwalia, Amrita; Vallance, Patrick

    2000-01-01

    The effects of endotoxaemia on coronary vasodilator responses to bradykinin (BK), sodium nitroprusside (SNP) and nicardipine were investigated in the rat isolated heart perfused at constant flow ex vivo.Dose-dependent reductions in coronary perfusion pressure reaching a maximum of 56±3 and 57±5 mmHg were observed for BK and SNP respectively. The BK response was biphasic, consisting of a rapid dilator response that was insensitive to NGnitro-L-arginine methyl ester (L-NAME, 0.1 mM) and a secon...

  18. The acute impact of polyphenols from Hibiscus sabdariffa in metabolic homeostasis: an approach combining metabolomics and gene-expression analyses.

    Science.gov (United States)

    Beltrán-Debón, Raúl; Rodríguez-Gallego, Esther; Fernández-Arroyo, Salvador; Senan-Campos, Oriol; Massucci, Francesco A; Hernández-Aguilera, Anna; Sales-Pardo, Marta; Guimerà, Roger; Camps, Jordi; Menendez, Javier A; Joven, Jorge

    2015-09-01

    We explored the acute multifunctional effects of polyphenols from Hibiscus sabdariffa in humans to assess possible consequences on the host's health. The expected dynamic response was studied using a combination of transcriptomics and metabolomics to integrate specific functional pathways through network-based methods and to generate hypotheses established by acute metabolic effects and/or modifications in the expression of relevant genes. Data were obtained from healthy male volunteers after 3 hours of ingestion of an aqueous Hibiscus sabdariffa extract. The data were compared with data obtained prior to the ingestion, and the overall findings suggest that these particular polyphenols had a simultaneous role in mitochondrial function, energy homeostasis and protection of the cardiovascular system. These findings suggest beneficial actions in inflammation, endothelial dysfunction, and oxidation, which are interrelated mechanisms. Among other effects, the activation of the heme oxygenase-biliverdin reductase axis, the systemic inhibition of the renin-angiotensin system, the inhibition of the angiotensin-converting enzyme, and several actions mirroring those of the peroxisome proliferator-activated receptor agonists further support this notion. We also found concordant findings in the serum of the participants, which include a decrease in cortisol levels and a significant increase in the active vasodilator metabolite of bradykinin (des-Arg(9)-bradykinin). Therefore, our data support the view that polyphenols from Hibiscus sabdariffa play a regulatory role in metabolic health and in the maintenance of blood pressure, thus implying a multi-faceted impact in metabolic and cardiovascular diseases.

  19. AN-69 membrane reactions are pH-dependent and preventable.

    Science.gov (United States)

    Brophy, P D; Mottes, T A; Kudelka, T L; McBryde, K D; Gardner, J J; Maxvold, N J; Bunchman, T E

    2001-07-01

    We report two pediatric patients who required blood priming for continuous venovenous hemodiafiltration. Both of these patients developed a significant hypotensive episode with initiation of continuous venovenous hemodiafiltration with immediate resolution on discontinuation. The most notable common characteristics of these patients were the use of the Multi-flo 60 (AN-69) dialyzer membrane and blood priming. No similar episodes were encountered when patients were primed with saline or albumin. The AN-69 membrane is exquisitely pH sensitive. The lower the pH concentration of the blood passing by the membrane, the greater the activation of bradykinin, a known hypotensive-inducing agent, by the dialyzer. On review of blood available from our blood bank, the following parameters became apparent. The pH of standard blood available from our blood bank ranged from 6.1 to 6.4. The blood obtained from our blood bank had significant hyperkalemia, hyponatremia, and hypocalcemia. No reactions were noted when patients were primed with normal saline, which has a pH of around 5.9. We speculate that the presence of endogenous blood substances, such as bradykinin, may have induced the hypotensive episodes. We describe two techniques we developed that should allow for the increased safe and effective use of the AN-69 membranes in continuous venovenous hemodiafiltration circuits. These observations indicate the requirement for careful and close attention to detail when delivering renal replacement therapy to anyone, but especially patients weighing less than 10 kg.

  20. Endothelial CaMKII as a regulator of eNOS activity and NO-mediated vasoreactivity.

    Directory of Open Access Journals (Sweden)

    Shubha Murthy

    Full Text Available The multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMKII is a serine/threonine kinase important in transducing intracellular Ca2+ signals. While in vitro data regarding the role of CaMKII in the regulation of endothelial nitric oxide synthase (eNOS are contradictory, its role in endothelial function in vivo remains unknown. Using two novel transgenic models to express CaMKII inhibitor peptides selectively in endothelium, we examined the effect of CaMKII on eNOS activation, NO production, vasomotor tone and blood pressure. Under baseline conditions, CaMKII activation was low in the aortic wall. Consistently, systolic and diastolic blood pressure, heart rate and plasma NO levels were unaltered by endothelial CaMKII inhibition. Moreover, endothelial CaMKII inhibition had no significant effect on NO-dependent vasodilation. These results were confirmed in studies of aortic rings transduced with adenovirus expressing a CaMKII inhibitor peptide. In cultured endothelial cells, bradykinin treatment produced the anticipated rapid influx of Ca2+ and transient CaMKII and eNOS activation, whereas CaMKII inhibition blocked eNOS phosphorylation on Ser-1179 and dephosphorylation at Thr-497. Ca2+/CaM binding to eNOS and resultant NO production in vitro were decreased under CaMKII inhibition. Our results demonstrate that CaMKII plays an important role in transient bradykinin-driven eNOS activation in vitro, but does not regulate NO production, vasorelaxation or blood pressure in vivo under baseline conditions.

  1. Inhibitory Effect of the root of Polygala tenuifolia on Bradykinin and ...

    African Journals Online (AJOL)

    Results: Administration of the Polygala tenuifolia extract at 100 mg/kg dose produced significant analgesic effect on acetic acid-induced ... lipopolysaccharides-induced 6-keto-PGF1α by 28% in macrophage cultures. Conclusion: These results ..... induced impairment of rat spatial cognition in an eight-arm radial maze task.

  2. Characterization of thoracic spinal neurons with noxious convergent inputs from heart and lower airways in rats.

    Science.gov (United States)

    Qin, Chao; Foreman, Robert D; Farber, Jay P

    2007-04-13

    Respiratory symptoms experienced in some patients with cardiac diseases may be due to convergence of noxious cardiac and pulmonary inputs onto neurons of the central nervous system. For example, convergence of cardiac and respiratory inputs onto single solitary tract neurons may be in part responsible for integration of regulatory and defensive reflex control. However, it is unknown whether inputs from the lungs and heart converge onto single neurons of the spinal cord. The present aim was to characterize upper thoracic spinal neurons responding to both noxious stimuli of the heart and lungs in rats. Extracellular potentials of single thoracic (T3) spinal neurons were recorded in pentobarbital anesthetized, paralyzed, and ventilated male rats. A catheter was placed in the pericardial sac to administer bradykinin (BK, 10 microg/ml, 0.2 ml, 1 min) as a noxious cardiac stimulus. The lung irritant, ammonia, obtained as vapor over a 30% solution of NH(4)OH was injected into the inspiratory line of the ventilator (0.5-1.0 ml over 20 s). Intrapericardial bradykinin (IB) altered activity of 58/65 (89%) spinal neurons that responded to inhaled ammonia (IA). Among those cardiopulmonary convergent neurons, 81% (47/58) were excited by both IA and IB, and the remainder had complex response patterns. Bilateral cervical vagotomy revealed that vagal afferents modulated but did not eliminate responses of individual spinal neurons to IB and IA. The convergence of pulmonary and cardiac nociceptive signaling in the spinal cord may be relevant to situations where a disease process in one organ influences the behavior of the other.

  3. Hereditary angioedema.

    Science.gov (United States)

    Bracho, Francisco A

    2005-11-01

    Hereditary angioedema is an autosomal-dominant deficiency of C1 inhibitor--a serpin inhibitor of kallikrein, C1r, C1s, factor XII, and plasmin. Quantitative or qualitative deficiency of C1 inhibitor leads to the generation of vasoactive mediators, most likely bradykinin. The clinical syndrome is repeated bouts of nonpruritic, nonpitting edema of the face, larynx, extermities, and intestinal viscera. Recently, investigators, physicians, and industry have demonstrated a renewed interest in the biology and treatment of hereditary angioedema. Investigators have generated a C1INH-/- mouse model that has demonstrated the importance of the contact activation system for hereditary angioedema-related vascular permeability. An interactive database of mutations is available electronically. Investigators have continued exploration into mRNA/protein levels. The proceedings of a recent workshop have been impressive in the scope and depth. Clinicians have produced consensus documents and expert reviews. The pharmaceutical industry has initiated clinical trails with novel agents. Hereditary angioedema is often misdiagnosed and poorly treated. Diagnosis requires careful medical and family history and the measurement of functional C1 inhibitor and C4 levels. Attenuated androgens, anti-fibrinolytics, and C1 inhibitor concentrates are used for long-term and preprocedure prophylaxis, but have significant drawbacks. C1 inhibitor concentrates and fresh frozen plasma are available for acute intervention. The mainstays of supportive care are airway monitoring, pain relief, hydration, and control of nausea. New agents such as recombinant C1 inhibitor, kallikrein inhibitors, and bradykinin inhibitors may offer safer and more tolerable treatments.

  4. Involvement of skeletal renin-angiotensin system and kallikrein-kinin system in bone deteriorations of type 1 diabetic mice with estrogen deficiency.

    Science.gov (United States)

    Zhang, Yan; Wang, Liang; Liu, Jin-Xin; Wang, Xin-Luan; Shi, Qi; Wang, Yong-Jun

    This study was aimed to investigate the involvement of skeletal renin-angiotensin system (RAS) and kallikrein-kinin system (KKS) in bone deteriorations of mice in response to the combination treatment of estrogen deficiency and hyperglycemia. The female C57BL/6J mice were sham-operated or ovariectomized with vehicle or streptozotocin (STZ) treatment. Two weeks later, the biochemistries in serum and urine were determined by standard colorimetric methods or ELISA. The H&E and TRAP staining were performed at the tibial proximal metaphysis. The polymerase chain reaction and immunoblotting were applied for molecular analysis on mRNA and protein expression. The mice after treating with ovariectomy and STZ showed the decreased level of serum Ca and the increased level of serum PTH and urine Ca. The H&E staining showed trabecular bone abnormalities as demonstrated by the loss, disconnection and separation of trabecular bone network as well as the loss of chondrocytes and appearance of chondrocyte cluster at growth plate of tibia. The significant increase of matured osteoclast number was shown in group with double treatments. The combination treatment significantly up-regulated mRNA expression of AGT, ACE, renin receptor, MMP-9 and CAII, and protein expression of renin, and decreased the ratio of OPG/RANKL and the expression of bradykinin receptors in bone tissue. Ovariectomy combined with STZ induction produced more detrimental actions on bone through the activation of local bone RAS and the down-regulation of bradykinin receptors, as compared to the respective single treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. New proline-rich oligopeptides from the venom of African adders: Insights into the hypotensive effect of the venoms.

    Science.gov (United States)

    Kodama, Roberto T; Cajado-Carvalho, Daniela; Kuniyoshi, Alexandre K; Kitano, Eduardo S; Tashima, Alexandre K; Barna, Barbara F; Takakura, Ana Carolina; Serrano, Solange M T; Dias-Da-Silva, Wilmar; Tambourgi, Denise V; Portaro, Fernanda V

    2015-06-01

    The snakes from the Bitis genus are some of the most medically important venomous snakes in sub Saharan Africa, however little is known about the composition and effects of these snake venom peptides. Considering that the victims with Bitis genus snakes have exacerbate hypotension and cardiovascular disorders, we investigated here the presence of angiotensin-converting enzyme modulators on four different species of venoms. The peptide fractions from Bitis gabonica gabonica, Bitis nasicornis, Bitis gabonica rhinoceros and Bitis arietans which showed inhibitory activity on angiotensin-converting enzyme were subjected to mass spectrometry analysis. Eight proline-rich peptides were synthetized and their potencies were evaluated in vitro and in vivo. The MS analysis resulted in over 150 sequences, out of which 32 are new proline-rich oligopeptides, and eight were selected for syntheses. For some peptides, inhibition assays showed inhibitory potentials of cleavage of angiotensin I ten times greater when compared to bradykinin. In vivo tests showed that all peptides decreased mean arterial pressure, followed by tachycardia in 6 out of 8 of the tests. We describe here some new and already known proline-rich peptides, also known as bradykinin-potentiating peptides. Four synthetic peptides indicated a preferential inhibition of angiotensin-converting enzyme C-domain. In vivo studies show that the proline-rich oligopeptides are hypotensive molecules. Although proline-rich oligopeptides are known molecules, we present here 32 new sequences that are inhibitors of the angiotensin-converting enzyme and consistent with the symptoms of the victims of Bitis spp, who display severe hypotension. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Transient receptor potential A1 channel contributes to activation of the muscle reflex.

    Science.gov (United States)

    Koba, Satoshi; Hayes, Shawn G; Sinoway, Lawrence I

    2011-01-01

    This study was undertaken to elucidate the role played by transient receptor potential A1 channels (TRPA1) in activating the muscle reflex, a sympathoexcitatory drive originating in contracting muscle. First, we tested the hypothesis that stimulation of the TRPA1 located on muscle afferents reflexly increases sympathetic nerve activity. In decerebrate rats, allyl isothiocyanate, a TRPA1 agonist, was injected intra-arterially into the hindlimb muscle circulation. This led to a 33% increase in renal sympathetic nerve activity (RSNA). The effect of allyl isothiocyanate was a reflex because the response was prevented by sectioning the sciatic nerve. Second, we tested the hypothesis that blockade of TRPA1 reduces RSNA response to contraction. Thirty-second continuous static contraction of the hindlimb muscles, induced by electrical stimulation of the peripheral cut ends of L(4) and L(5) ventral roots, increased RSNA and blood pressure. The integrated RSNA during contraction was reduced by HC-030031, a TRPA1 antagonist, injected intra-arterially (163 ± 24 vs. 95 ± 21 arbitrary units, before vs. after HC-030031, P reflex. Increases in RSNA in response to injection into the muscle circulation of arachidonic acid, bradykinin, and diprotonated phosphate, which are metabolic by-products of contraction and stimulants of muscle afferents during contraction, were reduced by HC-030031. These observations suggest that the TRPA1 located on muscle afferents is part of the muscle reflex and further support the notion that arachidonic acid metabolites, bradykinin, and diprotonated phosphate are candidates for endogenous agonists of TRPA1.

  7. Substrate-derived triazolo- and azapeptides as inhibitors of cathepsins K and S.

    Science.gov (United States)

    Galibert, Matthieu; Wartenberg, Mylène; Lecaille, Fabien; Saidi, Ahlame; Mavel, Sylvie; Joulin-Giet, Alix; Korkmaz, Brice; Brömme, Dieter; Aucagne, Vincent; Delmas, Agnès F; Lalmanach, Gilles

    2018-01-20

    Cathepsin (Cat) K is a critical bone-resorbing protease and is a relevant target for the treatment of osteoporosis and bone metastasis, while CatS is an attractive target for drugs in autoimmune diseases (e.g. rheumatoid arthritis), emphysema or neuropathic pain. Despite major achievements, current pharmacological inhibitors are still lacking in safety and may have damaging side effects. A promising strategy for developing safer reversible and competitive inhibitors as new lead compounds could be to insert non-cleavable bonds at the scissile P1-P1' position of selective substrates of CatS and CatK. Accordingly, we introduced a 1,4-disubstituted 1,2,3-triazole heterocycle that mimics most of the features of a trans-amide bond, or we incorporated a semicarbazide bond (azaGly residue) by replacing the α-carbon of the glycyl residue at P1 by a nitrogen atom. AzaGly-containing peptidomimetics inhibited powerfully their respective target proteases in the nM range, while triazolopeptides were weaker inhibitors (Ki in the μM range). The selectivity of the azaGly CatS inhibitor (1b) was confirmed by using spleen lysates from wild-type vs CatS-deficient mice. Alternatively, the azaGly bradykinin-derived CatK inhibitor (2b) potently inhibited CatK (Ki = 9 nM) and impaired its kininase activity in vitro. Molecular modeling studies support that the semicarbazide bond of 2b is more favorable than the 1,2,3-triazole linkage of the bradykinin-derived pseudopeptide 2a to preserve an effective affinity towards CatK, its protease target. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. The Use of Inhibitors of Mechanosensitive Ion Channels as Local Inhibitors of Peripheral Pain

    Science.gov (United States)

    2015-01-01

    80, 061912. Wallace, G. Q. and McNally, E. M. (2009). Mechanisms of muscle degeneration, regeneration, and repair in the muscular dystrophies . Annu...single channel traces.  6  DRG MSCs sensitivity to inflammatory agents:  We have observed that  treatment  of DRG neurons with inflammatory agents affect...indentation induced  phasic currents (Fig. 6). Similar to that reported for Piezo 2 channels after Bradykinin  treatment , we see  an increase in current

  9. elPBN neurons regulate rVLM activity through elPBN-rVLM projections during activation of cardiac sympathetic afferent nerves

    Science.gov (United States)

    Longhurst, John C.; Tjen-A-Looi, Stephanie C.; Fu, Liang-Wu

    2016-01-01

    The external lateral parabrachial nucleus (elPBN) within the pons and rostral ventrolateral medulla (rVLM) contributes to central processing of excitatory cardiovascular reflexes during stimulation of cardiac sympathetic afferent nerves (CSAN). However, the importance of elPBN cardiovascular neurons in regulation of rVLM activity during CSAN activation remains unclear. We hypothesized that CSAN stimulation excites the elPBN cardiovascular neurons and, in turn, increases rVLM activity through elPBN-rVLM projections. Compared with controls, in rats subjected to microinjection of retrograde tracer into the rVLM, the numbers of elPBN neurons double-labeled with c-Fos (an immediate early gene) and the tracer were increased after CSAN stimulation (P < 0.05). The majority of these elPBN neurons contain vesicular glutamate transporter 3. In cats, epicardial bradykinin and electrical stimulation of CSAN increased the activity of elPBN cardiovascular neurons, which was attenuated (n = 6, P < 0.05) after blockade of glutamate receptors with iontophoresis of kynurenic acid (Kyn, 25 mM). In separate cats, microinjection of Kyn (1.25 nmol/50 nl) into the elPBN reduced rVLM activity evoked by both bradykinin and electrical stimulation (n = 5, P < 0.05). Excitation of the elPBN with microinjection of dl-homocysteic acid (2 nmol/50 nl) significantly increased basal and CSAN-evoked rVLM activity. However, the enhanced rVLM activity induced by dl-homocysteic acid injected into the elPBN was reversed following iontophoresis of Kyn into the rVLM (n = 7, P < 0.05). These data suggest that cardiac sympathetic afferent stimulation activates cardiovascular neurons in the elPBN and rVLM sequentially through a monosynaptic (glutamatergic) excitatory elPBN-rVLM pathway. PMID:27225950

  10. Captopril increases the intensity of monocyte infection by Trypanosoma cruzi and induces human T helper type 17 cells.

    Science.gov (United States)

    Coelho dos Santos, J S; Menezes, C A S; Villani, F N A; Magalhães, L M D; Scharfstein, J; Gollob, K J; Dutra, W O

    2010-12-01

    The anti-hypertensive drug captopril is used commonly to reduce blood pressure of patients with severe forms of Chagas disease, a cardiomyopathy caused by chronic infection with the intracellular protozoan Trypanosoma cruzi. Captopril acts by inhibiting angiotensin-converting enzyme (ACE), the vasopressor metallopeptidase that generates angiotensin II and promotes the degradation of bradykinin (BK). Recent studies in mice models of Chagas disease indicated that captopril can potentiate the T helper type 1 (Th1)-directing natural adjuvant property of BK. Equipped with kinin-releasing cysteine proteases, T. cruzi trypomastigotes were shown previously to invade non-professional phagocytic cells, such as human endothelial cells and murine cardiomyocytes, through the signalling of G protein-coupled bradykinin receptors (B(2) KR). Monocytes are also parasitized by T. cruzi and these cells are known to be important for the host immune response during infection. Here we showed that captopril increases the intensity of T. cruzi infection of human monocytes in vitro. The increased parasitism was accompanied by up-regulated expression of ACE in human monocytes. While T. cruzi infection increased the expression of interleukin (IL)-10 by monocytes significantly, compared to uninfected cells, T. cruzi infection in association with captopril down-modulated IL-10 expression by the monocytes. Surprisingly, studies with peripheral blood mononuclear cells revealed that addition of the ACE inhibitor in association with T. cruzi increased expression of IL-17 by CD4(+) T cells in a B(2) KR-dependent manner. Collectively, our results suggest that captopril might interfere with host-parasite equilibrium by enhancing infection of monocytes, decreasing the expression of the modulatory cytokine IL-10, while guiding development of the proinflammatory Th17 subset. © 2010 The Authors. Clinical and Experimental Immunology © 2010 British Society for Immunology.

  11. Renin inhibitor aliskiren exerts beneficial effect on trabecular bone by regulating skeletal renin-angiotensin system and kallikrein-kinin system in ovariectomized mice.

    Science.gov (United States)

    Zhang, Y; Wang, L; Song, Y; Zhao, X; Wong, M S; Zhang, W

    2016-03-01

    The skeletal renin-angiotensin system contributes to the development of osteoporosis. The renin inhibitor aliskiren exhibited beneficial effects on trabecular bone of osteoporotic mice, and this action might be mediated through angiotensin and bradykinin receptor pathways. This study implies the potential application of renin inhibitor in the management for postmenopausal osteoporosis. The skeletal renin-angiotensin system plays key role in the pathological process of osteoporosis. The present study is designed to elucidate the effect of renin inhibitor aliskiren on trabecular bone and its potential action mechanism in ovariectomized (OVX) mice. The OVX mice were treated with low dose (5 mg/kg) or high dose (25 mg/kg) of aliskiren or its vehicle for 8 weeks. The bone turnover markers were measured by ELISA. The structural parameters of trabecular bone at lumbar vertebra (LV) and distal femoral metaphysis were measured by micro-CT. The expression of messenger RNA (mRNA) and protein was studied by RT-PCR and immunoblotting, respectively. Aliskiren treatment reduced urinary excretion of calcium and serum level of tartrate-resistant acid phosphatase in OVX mice. The treatment with aliskiren significantly increased bone volume (BV/TV) and connectivity density (Conn.D) of trabecular bone at LV-2 and LV-5 as well as dramatically enhanced BV/TV, Conn.D, bone mineral density (BMD/BV) and decreased bone surface (BS/BV) at the distal femoral end. Aliskiren significantly down-regulated the expression of angiotensinogen, angiotensin II (Ang II), Ang II type 1 receptor, bradykinin receptor (BR)-1, and osteocytic-specific gene sclerostin as well as the osteoclast-specific genes, including carbonic anhydrase II, matrix metalloproteinase-9, and cathepsin K. This study revealed that renin inhibitor aliskiren exhibited the beneficial effects on trabecular bone of ovariectomy-induced osteoporotic mice, and the underlying mechanism for this action might be mediated through Ang II and

  12. Captopril improves tumor nanomedicine delivery by increasing tumor blood perfusion and enlarging endothelial gaps in tumor blood vessels.

    Science.gov (United States)

    Zhang, Bo; Jiang, Ting; Tuo, Yanyan; Jin, Kai; Luo, Zimiao; Shi, Wei; Mei, Heng; Hu, Yu; Pang, Zhiqing; Jiang, Xinguo

    2017-12-01

    Poor tumor perfusion and unfavorable vessel permeability compromise nanomedicine drug delivery to tumors. Captopril dilates blood vessels, reducing blood pressure clinically and bradykinin, as the downstream signaling moiety of captopril, is capable of dilating blood vessels and effectively increasing vessel permeability. The hypothesis behind this study was that captopril can dilate tumor blood vessels, improving tumor perfusion and simultaneously enlarge the endothelial gaps of tumor vessels, therefore enhancing nanomedicine drug delivery for tumor therapy. Using the U87 tumor xenograft with abundant blood vessels as the tumor model, tumor perfusion experiments were carried out using laser Doppler imaging and lectin-labeling experiments. A single treatment of captopril at a dose of 100 mg/kg significantly increased the percentage of functional vessels in tumor tissues and improved tumor blood perfusion. Scanning electron microscopy of tumor vessels also indicated that the endothelial gaps of tumor vessels were enlarged after captopril treatment. Immunofluorescence-staining of tumor slices demonstrated that captopril significantly increased bradykinin expression, possibly explaining tumor perfusion improvements and endothelial gap enlargement. Additionally, imaging in vivo, imaging ex vivo and nanoparticle distribution in tumor slices indicated that after a single treatment with captopril, the accumulation of 115-nm nanoparticles in tumors had increased 2.81-fold with a more homogeneous distribution pattern in comparison to non-captopril treated controls. Finally, pharmacodynamics experiments demonstrated that captopril combined with paclitaxel-loaded nanoparticles resulted in the greatest tumor shrinkage and the most extensive necrosis in tumor tissues among all treatment groups. Taken together, the data from the present study suggest a novel strategy for improving tumor perfusion and enlarging blood vessel permeability simultaneously in order to improve

  13. B1 but not B2 bradykinin receptor agonists promote DU145 prostate ...

    African Journals Online (AJOL)

    University of KwaZulu-Natal,. Private Bag X7, Congella 4013, Durban,. South Africa. Tel: +27 31 2604486. Fax: +27 31 2604338. Email: naidoot@ukzn.ac.za ..... ME, Leeb-Lundberg LM,Daaka Y. Requirement for di- rect cross-talk between b1 and b2 kinin receptors for the proliferation of androgen-insensitive prostate can-.

  14. A novel assay to diagnose hereditary angioedema utilizing inhibition of bradykinin-forming enzymes

    DEFF Research Database (Denmark)

    Joseph, Kusumam; Bains, Sonia; Tholanikunnel, Baby G

    2015-01-01

    . This was evident regardless whether we measured factor XIIa-C1-INH or kallikrein-C1-INH complexes, and the two assays were in close agreement. By contrast, testing the same samples utilizing the commercial method (complex ELISA, Quidel Corp.) revealed levels of C1-INH between 0 and 57% of normal (mean, 38%) and 42...

  15. BNCT of intracerebral melanoma. Enhanced survival and cure following Cereport mediated opening of the blood-brain barrier

    International Nuclear Information System (INIS)

    Barth, R.F.; Yang, W.; Bartus, R.T.; Rotaru, J.H.; Ferketich, A.K.; Moeschberger, M.L.; Nawrocky, M.M.; Coderre, J.A.

    2000-01-01

    Cereport is a bradykinin analogue that produces a transient, pharmacologically mediated opening of the blood-brain barrier (BBB). The present study was designed to determine if Cereport could enhance the delivery of BPA and the efficacy of BNCT in nude rats bearing intracerebral implants of the human MRA 27 melanoma. Animals that received intracarotid (i.c.) injection of Cereport and i.c. BPA had a mean survival time of 115 d compared to 82 d without Cereport, 42 d for i.v. BPA with Cereport and 31 d for irradiated controls. The combination of i.c. Cereport and BPA produced a 400% increase in the life span with 35% long-term survivors (>180 d). (author)

  16. Aloe vera

    Energy Technology Data Exchange (ETDEWEB)

    Klein, A.D.; Penneys, N.S.

    1988-04-01

    We review the scientific literature regarding the aloe vera plant and its products. Aloe vera is known to contain several pharmacologically active ingredients, including a carboxypeptidase that inactivates bradykinin in vitro, salicylates, and a substance(s) that inhibits thromboxane formation in vivo. Scientific studies exist that support an antibacterial and antifungal effect for substance(s) in aloe vera. Studies and case reports provide support for the use of aloe vera in the treatment of radiation ulcers and stasis ulcers in man and burn and frostbite injuries in animals. The evidence for a potential beneficial effect associated with the use of aloe vera is sufficient to warrant the design and implementation of well-controlled clinical trials. 27 references.

  17. Aloe vera

    International Nuclear Information System (INIS)

    Klein, A.D.; Penneys, N.S.

    1988-01-01

    We review the scientific literature regarding the aloe vera plant and its products. Aloe vera is known to contain several pharmacologically active ingredients, including a carboxypeptidase that inactivates bradykinin in vitro, salicylates, and a substance(s) that inhibits thromboxane formation in vivo. Scientific studies exist that support an antibacterial and antifungal effect for substance(s) in aloe vera. Studies and case reports provide support for the use of aloe vera in the treatment of radiation ulcers and stasis ulcers in man and burn and frostbite injuries in animals. The evidence for a potential beneficial effect associated with the use of aloe vera is sufficient to warrant the design and implementation of well-controlled clinical trials. 27 references

  18. Baltikinin: A New Myotropic Tryptophyllin-3 Peptide Isolated from the Skin Secretion of the Purple-Sided Leaf Frog, Phyllomedusa baltea

    Directory of Open Access Journals (Sweden)

    Daning Shi

    2016-07-01

    Full Text Available Here we report the identification of a novel tryptophyllin-3 peptide with arterial smooth muscle relaxation activity from the skin secretion of the purple-sided leaf frog, Phyllomedusa baltea. This new peptide was named baltikinin and had the following primary structure, pGluDKPFGPPPIYPV, as determined by tandem mass spectrometry (MS/MS fragmentation sequencing and from cloned skin precursor-encoding cDNA. A synthetic replicate of baltikinin was found to have a similar potency to bradykinin in relaxing arterial smooth muscle (half maximal effective concentration (EC50 is 7.2 nM. These data illustrate how amphibian skin secretions can continue to provide novel potent peptides that act through functional targets in mammalian tissues.

  19. Nimesulide inhibits protein kinase C epsilon and substance P in sensory neurons – comparison with paracetamol

    Directory of Open Access Journals (Sweden)

    Vellani V

    2011-06-01

    Full Text Available Vittorio Vellani1, Silvia Franchi2, Massimiliano Prandini1, Sarah Moretti2, Giorgia Pavesi1, Chiara Giacomoni3, Paola Sacerdote21Dipartimento di Scienze Biomediche, Università di Modena e Reggio Emilia, Modena, Italy; 2Dipartimento di Farmacologia Chemioterapia e Tossicologia Medica, Università degli Studi di Milano, Italy; 3Dipartimento di Economia e Tecnologia, Università degli Studi della Repubblica di San Marino, Montegiardino, Repubblica di San MarinoAbstract: In this paper we describe new actions of nimesulide and paracetamol in cultured peripheral neurons isolated from rat dorsal root ganglia (DRG. Both drugs were able to decrease in a dose-dependent fashion the number of cultured DRG neurons showing translocation of protein kinase C epsilon (PKCε caused by exposure to 1 µM bradykinin or 100 nM thrombin. In addition, the level of substance P (SP released by DRG neurons and the level of preprotachykinin mRNA expression were measured in basal conditions and after 70 minutes or 36 hours of stimulation with nerve growth factor (NGF or with an inflammatory soup containing bradykinin, thrombin, endothelin-1, and KCl. Nimesulide (10 µM significantly decreased the mRNA levels of the SP precursor preprotachykinin in basal and in stimulated conditions, and decreased the amount of SP released in the medium during stimulation of neurons with NGF or with the inflammatory soup. The effects of paracetamol (10 µM on such response was lower. Nimesulide completely inhibited the release of prostaglandin E2 (PGE2 from DRG neurons, either basal or induced by NGF and by inflammatory soup, while paracetamol decreased PGE2 release only partially. Our data demonstrate, for the first time, a direct effect of two drugs largely used as analgesics on DRG neurons. The present results suggest that PKCε might be a target for the effect of nimesulide and paracetamol, while inhibition of SP synthesis and release is clearly more relevant for nimesulide than for

  20. Inhalant abuse of computer cleaner manifested as angioedema.

    Science.gov (United States)

    Kurniali, Peter C; Henry, Letitia; Kurl, Rita; Meharg, Joseph V

    2012-01-01

    Inhalant abuse is the intentional inhalation of chemical vapors or volatile substance to achieve a euphoric effect. Although no statistical data are reported yet, inhalant abuse is potentially life-threatening and has resulted in a wide range of toxic effects such as central nervous system depression, seizures, aspiration, cardiac arrhythmia, asphyxiation, hypoxia, metabolic acidosis, and sudden death among others. We are reporting a 25-year-old white man who was brought to the emergency department after inhaling aerosolized computer-cleaning spray composed of difluoroethane. He was found to have marked upper and lower lip facial swelling consistent with angioedema. The patient also had a prolonged QT interval, mild inspiratory stridor, but no urticaria. In this case, we believe the difluoroethane-related angioedema represents either idiopathic or bradykinin-induced angioedema.

  1. Vasodilator interactions in skeletal muscle blood flow regulation

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Nyberg, Michael Permin; Jensen, Lasse Gliemann

    2012-01-01

    During exercise, oxygen delivery to skeletal muscle is elevated to meet the increased oxygen demand. The increase in blood flow to skeletal muscle is achieved by vasodilators formed locally in the muscle tissue, either on the intraluminal or the extraluminal side of the blood vessels. A number...... vasodilators are both stimulated by several compounds, eg. adenosine, ATP, acetylcholine, bradykinin, and are affected by mechanically induced signals, such as shear stress. NO and prostacyclin have also been shown to interact in a redundant manner where one system can take over when formation of the other...... is compromised. Although numerous studies have examined the role of single and multiple pharmacological inhibition of different vasodilator systems, and important vasodilators and interactions have been identified, a large part of the exercise hyperemic response remains unexplained. It is plausible...

  2. Efficient production of membrane-integrated and detergent-soluble G protein-coupled receptors in Escherichia coli.

    Science.gov (United States)

    Link, A James; Skretas, Georgios; Strauch, Eva-Maria; Chari, Nandini S; Georgiou, George

    2008-10-01

    G protein-coupled receptors (GPCRs) are notoriously difficult to express, particularly in microbial systems. Using GPCR fusions with the green fluorescent protein (GFP), we conducted studies to identify bacterial host effector genes that result in a general and significant enhancement in the amount of membrane-integrated human GPCRs that can be produced in Escherichia coli. We show that coexpression of the membrane-bound AAA+ protease FtsH greatly enhances the expression yield of four different class I GPCRs, irrespective of the presence of GFP. Using this new expression system, we produced 0.5 and 2 mg/L of detergent-solubilized and purified full-length central cannabinoid receptor (CB1) and bradykinin receptor 2 (BR2) in shake flask cultures, respectively, two proteins that had previously eluded expression in microbial systems.

  3. Neuropeptides in Lower Urinary Tract (LUT) Function

    Science.gov (United States)

    Arms, Lauren; Vizzard, Margaret A.

    2014-01-01

    Numerous neuropeptide/receptor systems including vasoactive intestinal polypeptide, pituitary adenylate cyclase-activating polypeptide, calcitonin gene-related peptide, substance P, neurokinin A, bradykinin, and endothelin-1 are expressed in the lower urinary tract (LUT) in both neural and non-neural (e.g., urothelium) components. LUT neuropeptide immunoreactivity is present in afferent and autonomic efferent neurons innervating the bladder and urethra and in the urothelium of the urinary bladder. Neuropeptides have tissue-specific distributions and functions in the LUT and exhibit neuroplastic changes in expression and function with LUT dysfunction following neural injury, inflammation and disease. LUT dysfunction with abnormal voiding including urinary urgency, increased voiding frequency, nocturia, urinary incontinence and pain may reflect a change in the balance of neuropeptides in bladder reflex pathways. LUT neuropeptide/receptor systems may represent potential targets for therapeutic intervention. PMID:21290237

  4. Genome-wide analysis of pain-, nerve- and neurotrophin -related gene expression in the degenerating human annulus

    Science.gov (United States)

    2012-01-01

    Background In spite of its high clinical relevance, the relationship between disc degeneration and low back pain is still not well understood. Recent studies have shown that genome-wide gene expression studies utilizing ontology searches provide an efficient and valuable methodology for identification of clinically relevant genes. Here we use this approach in analysis of pain-, nerve-, and neurotrophin-related gene expression patterns in specimens of human disc tissue. Control, non-herniated clinical, and herniated clinical specimens of human annulus tissue were studied following Institutional Review Board approval. Results Analyses were performed on more generated (Thompson grade IV and V) discs vs. less degenerated discs (grades I-III), on surgically operated discs vs. control discs, and on herniated vs. control discs. Analyses of more degenerated vs. less degenerated discs identified significant upregulation of well-recognized pain-related genes (bradykinin receptor B1, calcitonin gene-related peptide and catechol-0-methyltransferase). Nerve growth factor was significantly upregulated in surgical vs. control and in herniated vs. control discs. All three analyses also found significant changes in numerous proinflammatory cytokine- and chemokine-related genes. Nerve, neurotrophin and pain-ontology searches identified many matrix, signaling and functional genes which have known importance in the disc. Immunohistochemistry was utilized to confirm the presence of calcitonin gene-related peptide, catechol-0-methyltransferase and bradykinin receptor B1 at the protein level in the human annulus. Conclusions Findings point to the utility of microarray analyses in identification of pain-, neurotrophin and nerve-related genes in the disc, and point to the importance of future work exploring functional interactions between nerve and disc cells in vitro and in vivo. Nerve, pain and neurotrophin ontology searches identified numerous changes in proinflammatory cytokines and

  5. Development of antibody-modified chitosan nanoparticles for the targeted delivery of siRNA across the blood-brain barrier as a strategy for inhibiting HIV replication in astrocytes.

    Science.gov (United States)

    Gu, Jijin; Al-Bayati, Karam; Ho, Emmanuel A

    2017-08-01

    RNA interference (RNAi)-mediated gene silencing offers a novel treatment and prevention strategy for human immunodeficiency virus (HIV) infection. HIV was found to infect and replicate in human brain cells and can cause neuroinfections and neurological deterioration. We designed dual-antibody-modified chitosan/small interfering RNA (siRNA) nanoparticles to deliver siRNA across the blood-brain barrier (BBB) targeting HIV-infected brain astrocytes as a strategy for inhibiting HIV replication. We hypothesized that transferrin antibody and bradykinin B2 antibody could specifically bind to the transferrin receptor (TfR) and bradykinin B2 receptor (B2R), respectively, and deliver siRNA across the BBB into astrocytes as potential targeting ligands. In this study, chitosan nanoparticles (CS-NPs) were prepared by a complex coacervation method in the presence of siRNA, and antibody was chemically conjugated to the nanoparticles. The antibody-modified chitosan nanoparticles (Ab-CS-NPs) were spherical in shape, with an average particle size of 235.7 ± 10.2 nm and a zeta potential of 22.88 ± 1.78 mV. The therapeutic potential of the nanoparticles was evaluated based on their cellular uptake and gene silencing efficiency. Cellular accumulation and gene silencing efficiency of Ab-CS-NPs in astrocytes were significantly improved compared to non-modified CS-NPs and single-antibody-modified CS-NPs. These results suggest that the combination of anti-Tf antibody and anti-B2 antibody significantly increased the knockdown effect of siRNA-loaded nanoparticles. Thus, antibody-mediated dual-targeting nanoparticles are an efficient and promising delivery strategy for inhibiting HIV replication in astrocytes. Graphical abstract Graphic representation of dual-antibody-conjugated chitosan nanoparticles for the targeted delivery of siRNA across the blood-brain barrier (BBB) for inhibiting HIV replication in astrocytes. a Nanoparticle delivery to the BBB and penetration. b Tf

  6. Effects of NSAIDs and paracetamol (acetaminophen on protein kinase C epsilon translocation and on substance P synthesis and release in cultured sensory neurons

    Directory of Open Access Journals (Sweden)

    Vellani V

    2013-02-01

    Full Text Available Vittorio Vellani,1 Silvia Franchi,2 Massimiliano Prandini,1 Sarah Moretti,2 Mara Castelli,2 Chiara Giacomoni,3 Paola Sacerdote21Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; 2Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy; 3Department of Economics and Technology, University of the Republic of San Marino, Republic of San MarinoAbstract: Celecoxib, diclofenac, ibuprofen, and nimesulide are nonsteroidal anti-inflammatory drugs (NSAIDs very commonly used for the treatment of moderate to mild pain, together with paracetamol (acetaminophen, a very widely used analgesic with a lesser anti-inflammatory effect. In the study reported here, we tested the efficacy of celecoxib, diclofenac, and ibuprofen on preprotachykinin mRNA synthesis, substance P (SP release, prostaglandin E2 (PGE2 release, and protein kinase C epsilon (PKCε translocation in rat cultured sensory neurons from dorsal root ganglia (DRGs. The efficacy of these NSAIDs was compared with the efficacy of paracetamol and nimesulide in in vitro models of hyperalgesia (investigated previously. While nimesulide and paracetamol, as in previous experiments, decreased the percentage of cultured DRG neurons showing translocation of PKCε caused by 100 nM thrombin or 1 µM bradykinin in a dose-dependent manner, the other NSAIDs tested did not have a significant effect. The amount of SP released by peptidergic neurons and the expression level of preprotachykinin mRNA were assessed in basal conditions and after 70 minutes or 36 hours of stimulation with an inflammatory soup (IS containing potassium chloride, thrombin, bradykinin, and endothelin-1. The release of SP at 70 minutes was inhibited only by nimesulide, while celecoxib and diclofenac were effective at 36 hours. The mRNA basal level of the SP precursor preprotachykinin expressed in DRG neurons was reduced only by nimesulide, while the

  7. A Novel Vasoactive Proline-Rich Oligopeptide from the Skin Secretion of the Frog Brachycephalus ephippium

    DEFF Research Database (Denmark)

    Arcanjo, Daniel Dias Rufino; Vasconcelos, Andreanne Gomes; Comerma-Steffensen, Simón Gabriel

    2015-01-01

    Proline-rich oligopeptides (PROs) are a large family which comprises the bradykinin-potentiating peptides (BPPs). They inhibit the activity of the angiotensin I-converting enzyme (ACE) and have a typical pyroglutamyl (Pyr)/proline-rich structure at the N- and C-terminus, respectively. Furthermore......, PROs decrease blood pressure in animals. In the present study, the isolation and biological characterization of a novel vasoactive BPP isolated from the skin secretion of the frog Brachycephalus ephippium is described. This new PRO, termed BPP-Brachy, has the primary structure WPPPKVSP and the amidated...... form termed BPP-BrachyNH2 inhibits efficiently ACE in rat serum. In silico molecular modeling and docking studies suggest that BPP-BrachyNH2 is capable of forming a hydrogen bond network as well as multiple van der Waals interactions with the rat ACE, which blocks the access of the substrate to the C...

  8. Use of 125I-labeled human serum albumin for quantitation of microvascular permeability in rat skin: reevaluation of an old method for studies on substances with an enhancing effect on microvascular permeability

    International Nuclear Information System (INIS)

    Gerdin, B.

    1981-01-01

    A method of determining the leakage of 125I-labeled human serum albumin in the plasma into a standardized area of rat skin to study the effects of intracutaneous application of vasoactive substances on microvascular permeability, was reevaluated. The effect is expressed as a quotient (Q) between the amount of labeled albumin in the test area and that in an area injected with buffer. This calculation is simple and as reliable as more complicated expressions of activity. Within a limited dose range, linear/log dose-response curves can be obtained after application of histamine or bradykinin. Locally injected 125I-labeled human serum albumin is eliminated very slowly from rat skin and determination of the amount of radiolabeled albumin in skin after an intravenous injection therefore represents leakage from the vascular compartments. The potentialities and advantages of this method in pharmacological studies are stressed

  9. Gene expression profiling of placentas affected by pre-eclampsia

    DEFF Research Database (Denmark)

    Hoegh, Anne Mette; Borup, Rehannah; Nielsen, Finn Cilius

    2010-01-01

    Several studies point to the placenta as the primary cause of pre-eclampsia. Our objective was to identify placental genes that may contribute to the development of pre-eclampsia. RNA was purified from tissue biopsies from eleven pre-eclamptic placentas and eighteen normal controls. Messenger RNA...... expression from pooled samples was analysed by microarrays. Verification of the expression of selected genes was performed using real-time PCR. A surprisingly low number of genes (21 out of 15,000) were identified as differentially expressed. Among these were genes not previously associated with pre-eclampsia...... as bradykinin B1 receptor and a 14-3-3 protein, but also genes that have already been connected with pre-eclampsia, for example, inhibin beta A subunit and leptin. A low number of genes were repeatedly identified as differentially expressed, because they may represent the endpoint of a cascade of events...

  10. Vascular endothelium receptors and transduction mechanisms

    CERN Document Server

    Gillis, C; Ryan, Una; Proceedings of the Advanced Studies Institute on "Vascular Endothelium: Receptors and Transduction Mechanisms"

    1989-01-01

    Beyond their obvious role of a barrier between blood and tissue, vascular endothelial cells are now firmly established as active and essential participants in a host of crucial physiological and pathophysiological functions. Probably the two most important factors responsible for promoting the current knowledge of endothelial functions are 1) observations in the late sixties-early seventies that many non-ventilatory properties of the lung could be attributed to the pulmonary endothelium and 2) the establishment, in the early and mid-seventies of procedures for routine culture of vascular endothelial cells. Many of these endothelial functions require the presence of receptors on the surface of the plasma membrane. There is now evidence for the existence among others of muscarinic, a-and /3-adrenergic, purine, insulin, histamine, bradykinin, lipoprotein, thrombin, paf, fibronectin, vitronectin, interleukin and albumin receptors. For some of these ligands, there is evidence only for the existence of endothelial ...

  11. Characterization of antidiabetic and antihypertensive properties of canary seed (Phalaris canariensis L.) peptides.

    Science.gov (United States)

    Estrada-Salas, Patricia A; Montero-Morán, Gabriela M; Martínez-Cuevas, Pedro P; González, Carmen; Barba de la Rosa, Ana P

    2014-01-15

    Canary grass is used as traditional food for diabetes and hypertension treatment. The aim of this work is to characterize the biological activity of encrypted peptides released after gastrointestinal digestion of canary seed proteins. Canary peptides showed 43.5% inhibition of dipeptidyl peptidase IV (DPPIV) and 73.5% inhibition of angiotensin-converting enzyme (ACE) activity. An isolated perfused rat heart system was used to evaluate the canary seed vasoactive effect. Nitric oxide (NO), a major vasodilator agent, was evaluated in the venous effluent from isolated perfused rat heart. Canary seed peptides (1 μg/mL) were able to induce the production of NO (12.24 μM) in amounts similar to those induced by captopril (CPT) and bradykinin (BK). These results show that encrypted peptides in canary seed have inhibitory activity against DPPIV and ACE, enzymes that are targets for diabetes and hypertension treatments.

  12. The angiotensin II type 1 receptor antagonist Losartan binds and activates bradykinin B2 receptor signaling

    DEFF Research Database (Denmark)

    Bonde, Marie Mi; Olsen, Kristine Boisen; Erikstrup, Niels

    2011-01-01

    The angiotensin II type 1 receptor (AT1R) blocker (ARB) Losartan has cardioprotective effects during ischemia-reperfusion injury and inhibits reperfusion arrhythmias -effects that go beyond the benefits of lowering blood pressure. The renin-angiotensin and kallikrein-kinin systems are intricately...

  13. GRK2 Constitutively Governs Peripheral Delta Opioid Receptor Activity

    Directory of Open Access Journals (Sweden)

    Allison Doyle Brackley

    2016-09-01

    Full Text Available Opioids remain the standard for analgesic care; however, adverse effects of systemic treatments contraindicate long-term administration. While most clinical opioids target mu opioid receptors (MOR, those that target the delta class (DOR also demonstrate analgesic efficacy. Furthermore, peripherally restrictive opioids represent an attractive direction for analgesia. However, opioid receptors including DOR are analgesically incompetent in the absence of inflammation. Here, we report that G protein-coupled receptor kinase 2 (GRK2 naively associates with plasma membrane DOR in peripheral sensory neurons to inhibit analgesic agonist efficacy. This interaction prevents optimal Gβ subunit association with the receptor, thereby reducing DOR activity. Importantly, bradykinin stimulates GRK2 movement away from DOR and onto Raf kinase inhibitory protein (RKIP. protein kinase C (PKC-dependent RKIP phosphorylation induces GRK2 sequestration, restoring DOR functionality in sensory neurons. Together, these results expand the known function of GRK2, identifying a non-internalizing role to maintain peripheral DOR in an analgesically incompetent state.

  14. Structure and chromosomal localization of the human renal kallikrein gene

    International Nuclear Information System (INIS)

    Evans, B.A.; Yun, Z.X.; Close, J.A.

    1988-01-01

    Glandular kallikreins are a family of proteases encoded by a variable number of genes in different mammalian species. In all species examined, however, one particular kallikrein is functionally conserved in its capacity to release the vasoactive peptide, Lys-bradykinin, from low molecular weight kininogen. This kallikrein is found in the kidney, pancreas, and salivary gland, showing a unique pattern of tissue-specific expression relative to other members of the family. The authors have isolated a genomic clone carrying the human renal kallikrein gene and compared the nucleotide sequence of its promoter region with those of the mouse renal kallikrein gene and another mouse kallikrein gene expressed in a distinct cell type. They find four sequence elements conserved between renal kallikrein genes from the two species. They have also shown that the human gene is localized to 19q13, a position analogous to that of the kallikrein gene family on mouse chromosome 7

  15. Proteomic Characterization and Comparison of Malaysian Tropidolaemus wagleri and Cryptelytrops purpureomaculatus Venom Using Shotgun-Proteomics

    Directory of Open Access Journals (Sweden)

    Syafiq Asnawi Zainal Abidin

    2016-10-01

    Full Text Available Tropidolaemus wagleri and Cryptelytrops purpureomaculatus are venomous pit viper species commonly found in Malaysia. Tandem mass spectrometry analysis of the crude venoms has detected different proteins in T. wagleri and C. purpureomaculatus. They were classified into 13 venom protein families consisting of enzymatic and nonenzymatic proteins. Enzymatic families detected in T. wagleri and C. purpureomaculatus venom were snake venom metalloproteinase, phospholipase A2, ʟ-amino acid oxidase, serine proteases, 5′-nucleotidase, phosphodiesterase, and phospholipase B. In addition, glutaminyl cyclotransferase was detected in C. purpureomaculatus. C-type lectin-like proteins were common nonenzymatic components in both species. Waglerin was present and unique to T. wagleri—it was not in C. purpureomaculatus venom. In contrast, cysteine-rich secretory protein, bradykinin-potentiating peptide, and C-type natriuretic peptide were present in C. purpureomaculatus venom. Composition of the venom proteome of T. wagleri and C. purpureomaculatus provides useful information to guide production of effective antivenom and identification of proteins with potential therapeutic applications.

  16. Down-regulation of endothelin binding sites in rat vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Roubert, P.; Gillard, V.; Plas, P.; Chabrier, P.E.; Braquet, P.

    1990-01-01

    In cultured rat aortic smooth muscle cells, [ 125 I]endothelin (ET-1) bound to an apparent single class of high affinity recognition sites with a dissociation constant of 1.84 +/- 0.29 nmol/L and a maximum binding of 62 +/- 10.5 fmol/10(6) cells. The binding was not affected by calcium antagonists or vasoactive substances, including angiotensin II, arginine vasopressin, atrial natriuretic factor and bradykinin. Exposure of the cells to ET-1 (0.01 nmol/L to 10 nmol/L) resulted in an apparent dose-dependent reduction of the number of endothelin binding sites with no significant modification of its binding affinity. The time course of the down-regulation of ET-1 binding sites showed that this effect was present after 30 min incubation and persisted after 18 h. This indicates that down-regulation of ET-1 binding sites can modulate the activity of ET-1 and suggests a rapid internalization of ET-1 in vascular cells

  17. Responses of algesic and metabolic substances to 8h of repetitive manual work in myalgic human trapezius muscle

    DEFF Research Database (Denmark)

    Larsson, B.; Rosendal, L.; Kristiansen, J.

    2008-01-01

    The trapezius muscle often develops pain as the result of repetitive and stressful work tasks although it is unclear to what extent this pain is due to alterations in muscle concentrations of algesic/nociceptive substances. Twenty women with chronic neck- and shoulder pain (TM) whose work required...... highly repetitive work tasks and 20 pain-free female colleagues (CON) were studied during and after a full 8-hour workday. We collected microdialysates from their dominant/most painful trapezius muscle; concentrations of serotonin, glutamate, lactate, pyruvate, potassium, bradykinin, and cytokines...... muscles. TM had higher concentrations of glutamate (71+/-42 vs. 36+/-15mumoll(-1)) and pyruvate (187+/-89 vs. 125+/-63mumoll(-1)) than CON. Interstitial serotonin was higher in TM (before work: 10.6+/-10.8 vs. 2.2+/-1.2nM; after work: 9.2+/-8.3 vs. 1.5+/-2.9nM). The trapezius blood flow during the working...

  18. Anti-inflammatory and Antinociceptive Activity of Ouabain in Mice

    Directory of Open Access Journals (Sweden)

    Danielle Ingrid Bezerra de Vasconcelos

    2011-01-01

    Full Text Available Ouabain, an inhibitor of the Na+/K+-ATPase pump, was identified as an endogenous substance of human plasma. Ouabain has been studied for its ability to interfere with various regulatory mechanisms. Despite the studies portraying the ability of ouabain to modulate the immune response, little is known about the effect of this substance on the inflammatory process. The aim of this work was to study the effects triggered by ouabain on inflammation and nociceptive models. Ouabain produced a reduction in the mouse paw edema induced by carrageenan, compound 48/80 and zymosan. This anti-inflammatory potential might be related to the inhibition of prostaglandin E2, bradykinin, and mast-cell degranulation but not to histamine. Ouabain also modulated the inflammation induced by concanavalin A by inhibiting cell migration. Besides that, ouabain presented antinociceptive activity. Taken these data together, this work demonstrated, for the first time, that ouabain presented in vivo analgesic and anti-inflammatory effects.

  19. Remote Ischemic Conditioning

    Science.gov (United States)

    Heusch, Gerd; Bøtker, Hans Erik; Przyklenk, Karin; Redington, Andrew; Yellon, Derek

    2014-01-01

    In remote ischemic conditioning (RIC) brief, reversible episodes of ischemia with reperfusion in one vascular bed, tissue or organ confer a global protective phenotype and render remote tissues and organs resistant to ischemia/reperfusion injury. The peripheral stimulus can be chemical, mechanical or electrical and involves activation of peripheral sensory nerves. The signal transfer to the heart or other organs is through neuronal and humoral communications. Protection can be transferred, even across species, with plasma-derived dialysate and involves nitric oxide, stromal derived factor-1α, microRNA-144, but also other, not yet identified factors. Intracardiac signal transduction involves: adenosine, bradykinin, cytokines, and chemokines, which activate specific receptors; intracellular kinases; and mitochondrial function. RIC by repeated brief inflation/deflation of a blood pressure cuff protects against endothelial dysfunction and myocardial injury in percutaneous coronary interventions, coronary artery bypass grafting and reperfused acute myocardial infarction. RIC is safe and effective, noninvasive, easily feasible and inexpensive. PMID:25593060

  20. Angiotensin-I converting enzyme (ACE): structure, biological roles, and molecular basis for chloride ion dependence.

    Science.gov (United States)

    Masuyer, Geoffrey; Yates, Christopher J; Sturrock, Edward D; Acharya, K Ravi

    2014-10-01

    Somatic angiotensin-I converting enzyme (sACE) has an essential role in the regulation of blood pressure and electrolyte fluid homeostasis. It is a zinc protease that cleaves angiotensin-I (AngI), bradykinin, and a broad range of other signalling peptides. The enzyme activity is provided by two homologous domains (N- and C-), which display clear differences in substrate specificities and chloride activation. The presence of chloride ions in sACE and its unusual role in activity was identified early on in the characterisation of the enzyme. The molecular mechanisms of chloride activation have been investigated thoroughly through mutagenesis studies and shown to be substrate-dependent. Recent results from X-ray crystallography structural analysis have provided the basis for the intricate interactions between ACE, its substrate and chloride ions. Here we describe the role of chloride ions in human ACE and its physiological consequences. Insights into the chloride activation of the N- and C-domains could impact the design of improved domain-specific ACE inhibitors.

  1. Crystal structure of the N domain of human somatic angiotensin I-converting enzyme provides a structural basis for domain-specific inhibitor design.

    Science.gov (United States)

    Corradi, Hazel R; Schwager, Sylva L U; Nchinda, Aloysius T; Sturrock, Edward D; Acharya, K Ravi

    2006-03-31

    Human somatic angiotensin I-converting enzyme (sACE) is a key regulator of blood pressure and an important drug target for combating cardiovascular and renal disease. sACE comprises two homologous metallopeptidase domains, N and C, joined by an inter-domain linker. Both domains are capable of cleaving the two hemoregulatory peptides angiotensin I and bradykinin, but differ in their affinities for a range of other substrates and inhibitors. Previously we determined the structure of testis ACE (C domain); here we present the crystal structure of the N domain of sACE (both in the presence and absence of the antihypertensive drug lisinopril) in order to aid the understanding of how these two domains differ in specificity and function. In addition, the structure of most of the inter-domain linker allows us to propose relative domain positions for sACE that may contribute to the domain cooperativity. The structure now provides a platform for the design of "domain-specific" second-generation ACE inhibitors.

  2. Mast Cell Coupling to the Kallikrein–Kinin System Fuels Intracardiac Parasitism and Worsens Heart Pathology in Experimental Chagas Disease

    Directory of Open Access Journals (Sweden)

    Clarissa R. Nascimento

    2017-08-01

    Full Text Available During the course of Chagas disease, infectious forms of Trypanosoma cruzi are occasionally liberated from parasitized heart cells. Studies performed with tissue culture trypomastigotes (TCTs, Dm28c strain demonstrated that these parasites evoke neutrophil/CXCR2-dependent microvascular leakage by activating innate sentinel cells via toll-like receptor 2 (TLR2. Upon plasma extravasation, proteolytically derived kinins and C5a stimulate immunoprotective Th1 responses via cross-talk between bradykinin B2 receptors (B2Rs and C5aR. Awareness that TCTs invade cardiovascular cells in vitro via interdependent activation of B2R and endothelin receptors [endothelin A receptor (ETAR/endothelin B receptor (ETBR] led us to hypothesize that T. cruzi might reciprocally benefit from the formation of infection-associated edema via activation of kallikrein–kinin system (KKS. Using intravital microscopy, here we first examined the functional interplay between mast cells (MCs and the KKS by topically exposing the hamster cheek pouch (HCP tissues to dextran sulfate (DXS, a potent “contact” activator of the KKS. Surprisingly, although DXS was inert for at least 30 min, a subtle MC-driven leakage resulted in factor XII (FXII-dependent activation of the KKS, which then amplified inflammation via generation of bradykinin (BK. Guided by this mechanistic insight, we next exposed TCTs to “leaky” HCP—forged by low dose histamine application—and found that the proinflammatory phenotype of TCTs was boosted by BK generated via the MC/KKS pathway. Measurements of footpad edema in MC-deficient mice linked TCT-evoked inflammation to MC degranulation (upstream and FXII-mediated generation of BK (downstream. We then inoculated TCTs intracardiacally in mice and found a striking decrease of parasite DNA (quantitative polymerase chain reaction; 3 d.p.i. in the heart of MC-deficient mutant mice. Moreover, the intracardiac parasite load was significantly reduced in WT

  3. Subcutaneous self-injections of C1 inhibitor: an effective and safe treatment in a patient with hereditary angio-oedema.

    Science.gov (United States)

    Weller, K; Krüger, R; Maurer, M; Magerl, M

    2016-01-01

    A 25-year-old woman presented to our clinic with a history of recurrent swelling and abdominal symptoms for > 20 years. The patient's father was similarly affected. The patient was diagnosed with hereditary angio-oedema (HAE) due to C1 inhibitor deficiency. This was initially managed with systemic androgens, but the symptoms of hyperandrogenism eventually became intolerable. Treatment with icatibant (an antagonist of bradykinin B2 receptors) was partially successful. We changed the therapy to prophylactic treatment with C1 inhibitor. Although the patient became completely symptom-free under this regimen, she found the repeated intravenous injections unacceptable. Therefore, we changed the route of administration to subcutaneous injections of C1 inhibitor 1000 U in 10 mL twice weekly, using a subcutaneous infusion kit. Since that time (December 2013), she has remained completely free of symptoms under this regimen. To our knowledge, this is the first report documenting the efficacy and safety of subcutaneous injections of C1 inhibitor in a patient with HAE. © 2015 British Association of Dermatologists.

  4. elPBN neurons regulate rVLM activity through elPBN-rVLM projections during activation of cardiac sympathetic afferent nerves.

    Science.gov (United States)

    Guo, Zhi-Ling; Longhurst, John C; Tjen-A-Looi, Stephanie C; Fu, Liang-Wu

    2016-08-01

    The external lateral parabrachial nucleus (elPBN) within the pons and rostral ventrolateral medulla (rVLM) contributes to central processing of excitatory cardiovascular reflexes during stimulation of cardiac sympathetic afferent nerves (CSAN). However, the importance of elPBN cardiovascular neurons in regulation of rVLM activity during CSAN activation remains unclear. We hypothesized that CSAN stimulation excites the elPBN cardiovascular neurons and, in turn, increases rVLM activity through elPBN-rVLM projections. Compared with controls, in rats subjected to microinjection of retrograde tracer into the rVLM, the numbers of elPBN neurons double-labeled with c-Fos (an immediate early gene) and the tracer were increased after CSAN stimulation (P neurons contain vesicular glutamate transporter 3. In cats, epicardial bradykinin and electrical stimulation of CSAN increased the activity of elPBN cardiovascular neurons, which was attenuated (n = 6, P neurons in the elPBN and rVLM sequentially through a monosynaptic (glutamatergic) excitatory elPBN-rVLM pathway. Copyright © 2016 the American Physiological Society.

  5. Lactoferricin-related peptides with inhibitory effects on ACE-dependent vasoconstriction.

    Science.gov (United States)

    Centeno, José M; Burguete, María C; Castelló-Ruiz, María; Enrique, María; Vallés, Salvador; Salom, Juan B; Torregrosa, Germán; Marcos, José F; Alborch, Enrique; Manzanares, Paloma

    2006-07-26

    A selection of lactoferricin B (LfcinB)-related peptides with an angiotensin I-converting enzyme (ACE) inhibitory effect have been examined using in vitro and ex vivo functional assays. Peptides that were analyzed included a set of sequence-related antimicrobial hexapeptides previously reported and two representative LfcinB-derived peptides. In vitro assays using hippuryl-L-histidyl-L-leucine (HHL) and angiotensin I as substrates allowed us to select two hexapeptides, PACEI32 (Ac-RKWHFW-NH2) and PACEI34 (Ac-RKWLFW-NH2), and also a LfcinB-derived peptide, LfcinB17-31 (Ac-FKCRRWQWRMKKLGA-NH2). Ex vivo functional assays using rabbit carotid arterial segments showed PACEI32 (both D- and L-enantiomers) and LfcinB17-31 have inhibitory effects on ACE-dependent angiotensin I-induced contraction. None of the peptides exhibited in vitro ACE inhibitory activity using bradykinin as the substrate. In conclusion, three bioactive lactoferricin-related peptides exhibit inhibitory effects on both ACE activity and ACE-dependent vasoconstriction with potential to modulate hypertension that deserves further investigation.

  6. 3D ToF-SIMS Analysis of Peptide Incorporation into MALDI Matrix Crystals with Sub-micrometer Resolution.

    Science.gov (United States)

    Körsgen, Martin; Pelster, Andreas; Dreisewerd, Klaus; Arlinghaus, Heinrich F

    2016-02-01

    The analytical sensitivity in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is largely affected by the specific analyte-matrix interaction, in particular by the possible incorporation of the analytes into crystalline MALDI matrices. Here we used time-of-flight secondary ion mass spectrometry (ToF-SIMS) to visualize the incorporation of three peptides with different hydrophobicities, bradykinin, Substance P, and vasopressin, into two classic MALDI matrices, 2,5-dihydroxybenzoic acid (DHB) and α-cyano-4-hydroxycinnamic acid (HCCA). For depth profiling, an Ar cluster ion beam was used to gradually sputter through the matrix crystals without causing significant degradation of matrix or biomolecules. A pulsed Bi3 ion cluster beam was used to image the lateral analyte distribution in the center of the sputter crater. Using this dual beam technique, the 3D distribution of the analytes and spatial segregation effects within the matrix crystals were imaged with sub-μm resolution. The technique could in the future enable matrix-enhanced (ME)-ToF-SIMS imaging of peptides in tissue slices at ultra-high resolution. Graphical Abstract ᅟ.

  7. Cardiovascular-Active Venom Toxins: An Overview.

    Science.gov (United States)

    Rebello Horta, Carolina Campolina; Chatzaki, Maria; Rezende, Bruno Almeida; Magalhães, Bárbara de Freitas; Duarte, Clara Guerra; Felicori, Liza Figueiredo; Ribeiro Oliveira-Mendes, Bárbara Bruna; do Carmo, Anderson Oliveira; Chávez-Olórtegui, Carlos; Kalapothakis, Evanguedes

    2016-01-01

    Animal venoms are a mixture of bioactive compounds produced as weapons and used primarily to immobilize and kill preys. As a result of the high potency and specificity for various physiological targets, many toxins from animal venoms have emerged as possible drugs for the medication of diverse disorders, including cardiovascular diseases. Captopril, which inhibits the angiotensin-converting enzyme (ACE), was the first successful venom-based drug and a notable example of rational drug design. Since captopril was developed, many studies have discovered novel bradykinin-potentiating peptides (BPPs) with actions on the cardiovascular system. Natriuretic peptides (NPs) have also been found in animal venoms and used as template to design new drugs with applications in cardiovascular diseases. Among the anti-arrhythmic peptides, GsMTx-4 was discovered to be a toxin that selectively inhibits the stretch-activated cation channels (SACs), which are involved in atrial fibrillation. The present review describes the main components isolated from animal venoms that act on the cardiovascular system and presents a brief summary of venomous animals and their venom apparatuses.

  8. BPP-5a produces a potent and long-lasting NO-dependent antihypertensive effect.

    Science.gov (United States)

    Ianzer, Danielle; Xavier, Carlos Henrique; Fraga, Fabiana Costa; Lautner, Roberto Queiroga; Guerreiro, Juliano Rodrigo; Machado, Leonor Tapias; Mendes, Elizabeth Pereira; de Camargo, Andônio Carlos Martins; Santos, Robson Augusto Souza

    2011-12-01

    The bradykinin potentiating peptides (BPPs) are oligopeptides found in different animal venoms. BPPs isolated from Bothrops jararaca venom were the first natural inhibitors described for somatic angiotensin I-converting enzyme (ACE). They were used in the structural modeling for captopril development, a classical ACE inhibitor widely used to treat human hypertension. We evaluated the effect of BPP-5a on cardiovascular parameters of conscious Wistar (WTs) and spontaneously hypertensive rats (SHRs). In SHR, BPP-5a showed potent cardiovascular effects, at doses ranging from 0.47 to 710 nmol/kg. The maximal changes in mean arterial pressure (MAP) and heart rate (HR) were found at the dose of 2.37 nmol/kg (Δ MAP: -38 ± 4 mmHg, p BPP-5a upon argininosuccinate synthetase and B(1), B(2), AT(1), AT(2) or Mas receptors. Ex vivo assays showed that BPP-5a induced endothelium-dependent vasorelaxation in isolated aortic rings of SHRs and WTs. Although the BPP-5a is considered an ACE inhibitor, our results indicate that its antihypertensive effect is exerted via a unique target, a nitric-oxide-dependent mechanism.

  9. Effects of serum immunoglobulins from patients with complex regional pain syndrome (CRPS) on depolarisation-induced calcium transients in isolated dorsal root ganglion (DRG) neurons.

    Science.gov (United States)

    Reilly, Joanne M; Dharmalingam, Backialakshmi; Marsh, Stephen J; Thompson, Victoria; Goebel, Andreas; Brown, David A

    2016-03-01

    Complex regional pain syndrome (CRPS) is thought to have an auto-immune component. One such target recently proposed from the effects of auto-immune IgGs on Ca(2+) transients in cardiac myocytes and cell lines is the α1-adrenoceptor. We have tested whether such IgGs exerted comparable effects on nociceptive sensory neurons isolated from rat dorsal root ganglia. Depolarisation-induced [Ca(2+)]i transients were generated by applying 30 mM KCl for 2 min and monitored by Fura-2 fluorescence imaging. No IgGs tested (including 3 from CRPS patients) had any significant effect on these [Ca(2+)]i transients. However, IgG from one CRPS patient consistently and significantly reduced the K(+)-induced response of cells that had been pre-incubated for 24h with a mixture of inflammatory mediators (1 μM histamine, 5-hydroxytryptamine, bradykinin and PGE2). Since this pre-incubation also appeared to induce a comparable inhibitory response to the α1-agonist phenylephrine, this is compatible with the α1-adrenoceptor as a target for CRPS auto-immunity. A mechanism whereby this might enhance pain is suggested. Copyright © 2015. Published by Elsevier Inc.

  10. Pharmacological studies of lappaconitine. Analgesic activities.

    Science.gov (United States)

    Ono, M; Satoh, T

    1988-07-01

    The analgesic activity of lappaconitine, which is contained in the root of Aconitum sinomantanum Nakai, was examined after oral and subcutaneous administration to mice or rats by using methods for screening of analgesics, i.e., hot plate, tail immersion, tail pinch, tail pressure, acetic acid-induced writhing, bradykinin-induced flexor reflex of hind limb and Randall-Selitto methods. The results were compared with those for morphine, indometacin and acetylsalicylic acid (ASA). Analgesic activities of lappaconitine were greater than those of indometacin and ASA, but generally about 2 to 5 times less than those of morphine. However, in the rat tail immersion test, orally administered lappaconitine exhibited more potent analgesic activity than morphine; in this test, lappaconitine was almost equipotent when given orally and subcutaneously, whereas the potency of orally administered morphine was only one-twentieth of that of subcutaneously administered morphine. Like morphine, lappaconitine increased the pain threshold of the normal paw as well as that of the inflamed paw when tested by the Randall-Selitto method. The results show that lappaconitine has strong analgesic activity, and further suggest that the central nervous system may be involved in the action on the pain threshold.

  11. Blood borne hormones in a cross-talk between peripheral and brain mechanisms regulating blood pressure, the role of circumventricular organs.

    Science.gov (United States)

    Ufnal, Marcin; Skrzypecki, Janusz

    2014-04-01

    Accumulating evidence suggests that blood borne hormones modulate brain mechanisms regulating blood pressure. This appears to be mediated by the circumventricular organs which are located in the walls of the brain ventricular system and lack the blood-brain barrier. Recent evidence shows that neurons of the circumventricular organs express receptors for the majority of cardiovascular hormones. Intracerebroventricular infusions of hormones and their antagonists is one approach to evaluate the influence of blood borne hormones on the neural mechanisms regulating arterial blood pressure. Interestingly, there is no clear correlation between peripheral and central effects of cardiovascular hormones. For example, angiotensin II increases blood pressure acting peripherally and centrally, whereas peripherally acting pressor catecholamines decrease blood pressure when infused intracerebroventricularly. The physiological role of such dual hemodynamic responses has not yet been clarified. In the paper we review studies on hemodynamic effects of catecholamines, neuropeptide Y, angiotensin II, aldosterone, natriuretic peptides, endothelins, histamine and bradykinin in the context of their role in a cross-talk between peripheral and brain mechanisms involved in the regulation of arterial blood pressure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. The role of the renin-angiotensin-aldosterone system in heart failure

    Directory of Open Access Journals (Sweden)

    Thomas Unger

    2004-03-01

    Full Text Available Activity of the renin-angiotensin-aldosterone system (RAAS is increased in patients with heart failure, and its maladaptive mechanisms may lead to adverse effects such as cardiac remodelling and sympathetic activation. Elevated renin activity has been demonstrated in patients with dilated cardiomyopathy. (Third-generation synthetic non-peptide renin inhibitors, with more favourable properties than earlier renin inhibitors, lower ambulatory blood pressure and may have a role to play in other cardiovascular disease. Chymase, a protease inhibitor stored in mast cells that generates angiotensin II (Ang II (in addition to angiotensin-converting enzyme [ACE], has been linked to extracellular matrix remodelling in heart failure. Again, chymase inhibitors have been developed to investigate its functions in vitro and in vivo. Bradykinin is thought to contribute to the cardioprotective effect of ACE inhibition through modification of nitric oxide release, calcium handling and collagen accumulation. Ang II is believed to influence a number of molecular and structural changes in the heart, mostly mediated through the AT1-receptor. The importance of the RAAS in heart failure is shown by the survival benefit conferred by treatment with ACE inhibitors.

  13. Calcitonin causes a sustained inhibition of protein kinase C-stimulated bone resorption in contrast to the transient inhibition of parathyroid hormone-induced bone resorption

    International Nuclear Information System (INIS)

    Ransjoe, M.; Lerner, U.H.

    1990-01-01

    Calcitonin is a well known inhibitor of osteoclastic bone resortion, both in vivo and in vitro. However, it is also known that calcitonin has only a transient inhibitory effect on bone resorption. The mechanism for this so-called ''escape from inhibition'' phenomenon is not clear. In the present study, the inhibitory effect of calcitonin on phorbol ester-induced bone resorption was examined in cultured neonatal mouse calvaria. Bone resorption was assessed as the release of radioactivity from bones prelabelled in vivo with 45 Ca. Two proteon kinase C-activating phorbol esters, phorbol-12-myristate-13-acetate and phorbol-12,13-dibutyrate, both stimulated 45 Ca release in 120-h cultures at a concentration of 10 nmul/l. Calcitonin (30 nmol/l) inhibited phorbol esterstimulated bone resorption without any ''escape from inhibition''. This was in contrast to the transient inhibitory effect of calcitonin on bone resorption stimulated by parathyroid hormone (10 nmol/l), prostaglandin E 2 (2 μmol/l), and bradykinin (1 μmol/l). Our results suggest that activation of protein kinase C produces a sustained inhibitory effect of calcitonin on bone resorption. (author)

  14. Survey of the pharmacology of non-ionic X-ray contrast media

    International Nuclear Information System (INIS)

    Turnheim, K.

    1986-01-01

    The non-ionic X-ray contrast media metrizamide, iopamidol, iohexol, and iopromide do not bind calcium and are less hyperosmolar than the conventional ionic contrast media, for instance amidotrizoate (diatrizoate), iothalamte, or ioglicate. Hence the use of non-ionic contrast media is associated with less undesirable side-effects that are attributable to hypertonicity such as an increase in circulating plasma volume, decreased deformability of red blood cells, damage of vascular endothelium with consequent activation of blood coagulation, the complement system and fibrinolysis, increased release of bradykinin and histamine, cardiac arrhythimas, diuresis, vasodilation and decreased blood pressure, pain and heat sensation. Because of less dilution the quality of imaging is also better. According to the intravenous LD 50 in experimental animals the acute toxicity of non-ionic contrast media is lower than that of ionic media. With respect to contrast quality and the rate of side-effects tha various non-ionic contrast media appear to be equivalent. Despite their higher price and higher viscosity it is probable that the non-ionic contrast media will replace the classical ionic media, especially in angio- and myelography. (Author)

  15. Propitious Therapeutic Modulators to Prevent Blood-Spinal Cord Barrier Disruption in Spinal Cord Injury.

    Science.gov (United States)

    Kumar, Hemant; Ropper, Alexander E; Lee, Soo-Hong; Han, Inbo

    2017-07-01

    The blood-spinal cord barrier (BSCB) is a specialized protective barrier that regulates the movement of molecules between blood vessels and the spinal cord parenchyma. Analogous to the blood-brain barrier (BBB), the BSCB plays a crucial role in maintaining the homeostasis and internal environmental stability of the central nervous system (CNS). After spinal cord injury (SCI), BSCB disruption leads to inflammatory cell invasion such as neutrophils and macrophages, contributing to permanent neurological disability. In this review, we focus on the major proteins mediating the BSCB disruption or BSCB repair after SCI. This review is composed of three parts. Section 1. SCI and the BSCB of the review describes critical events involved in the pathophysiology of SCI and their correlation with BSCB integrity/disruption. Section 2. Major proteins involved in BSCB disruption in SCI focuses on the actions of matrix metalloproteinases (MMPs), tumor necrosis factor alpha (TNF-α), heme oxygenase-1 (HO-1), angiopoietins (Angs), bradykinin, nitric oxide (NO), and endothelins (ETs) in BSCB disruption and repair. Section 3. Therapeutic approaches discusses the major therapeutic compounds utilized to date for the prevention of BSCB disruption in animal model of SCI through modulation of several proteins.

  16. Gabapentin Inhibits Protein Kinase C Epsilon Translocation in Cultured Sensory Neurons with Additive Effects When Coapplied with Paracetamol (Acetaminophen).

    Science.gov (United States)

    Vellani, Vittorio; Giacomoni, Chiara

    2017-01-01

    Gabapentin is a well-established anticonvulsant drug which is also effective for the treatment of neuropathic pain. Although the exact mechanism leading to relief of allodynia and hyperalgesia caused by neuropathy is not known, the blocking effect of gabapentin on voltage-dependent calcium channels has been proposed to be involved. In order to further evaluate its analgesic mechanisms, we tested the efficacy of gabapentin on protein kinase C epsilon (PKC ε ) translocation in cultured peripheral neurons isolated from rat dorsal root ganglia (DRGs). We found that gabapentin significantly reduced PKC ε translocation induced by the pronociceptive peptides bradykinin and prokineticin 2, involved in both inflammatory and chronic pain. We recently showed that paracetamol (acetaminophen), a very commonly used analgesic drug, also produces inhibition of PKC ε . We tested the effect of the combined use of paracetamol and gabapentin, and we found that the inhibition of translocation adds up. Our study provides a novel mechanism of action for gabapentin in sensory neurons and suggests a mechanism of action for the combined use of paracetamol and gabapentin, which has recently been shown to be effective, with a cumulative behavior, in the control of postoperative pain in human patients.

  17. Efficient sampling over rough energy landscapes with high barriers: A combination of metadynamics with integrated tempering sampling

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Y. Isaac [Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Zhang, Jun; Che, Xing; Yang, Lijiang; Gao, Yi Qin, E-mail: gaoyq@pku.edu.cn [Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Biodynamic Optical Imaging Center, Peking University, Beijing 100871 (China)

    2016-03-07

    In order to efficiently overcome high free energy barriers embedded in a complex energy landscape and calculate overall thermodynamics properties using molecular dynamics simulations, we developed and implemented a sampling strategy by combining the metadynamics with (selective) integrated tempering sampling (ITS/SITS) method. The dominant local minima on the potential energy surface (PES) are partially exalted by accumulating history-dependent potentials as in metadynamics, and the sampling over the entire PES is further enhanced by ITS/SITS. With this hybrid method, the simulated system can be rapidly driven across the dominant barrier along selected collective coordinates. Then, ITS/SITS ensures a fast convergence of the sampling over the entire PES and an efficient calculation of the overall thermodynamic properties of the simulation system. To test the accuracy and efficiency of this method, we first benchmarked this method in the calculation of ϕ − ψ distribution of alanine dipeptide in explicit solvent. We further applied it to examine the design of template molecules for aromatic meta-C—H activation in solutions and investigate solution conformations of the nonapeptide Bradykinin involving slow cis-trans isomerizations of three proline residues.

  18. Characterization of dipeptidylcarboxypeptidase of Leishmania donovani: a molecular model for structure based design of antileishmanials

    Science.gov (United States)

    Baig, Mirza Saqib; Kumar, Ashutosh; Siddiqi, Mohammad Imran; Goyal, Neena

    2010-01-01

    Leishmania donovani dipeptidylcarboxypeptidsae (LdDCP), an angiotensin converting enzyme (ACE) related metallopeptidase has been identified and characterized as a putative drug target for antileishmanial chemotherapy. The kinetic parameters for LdDCP with substrate, Hip-His-Leu were determined as, Km, 4 mM and Vmax, 1.173 μmole/ml/min. Inhibition studies revealed that known ACE inhibitors (captopril and bradykinin potentiating peptide; BPP1) were weak inhibitors for LdDCP as compared to human testicular ACE (htACE) with Ki values of 35.8 nM and 3.9 μM, respectively. Three dimensional model of LdDCP was generated based on crystal structure of Escherichia coli DCP (EcDCP) by means of comparative modeling and assessed using PROSAII, PROCHECK and WHATIF. Captopril docking with htACE, LdDCP and EcDCP and analysis of molecular electrostatic potentials (MEP) suggested that the active site domain of three enzymes has several minor but potentially important structural differences. These differences could be exploited for designing selective inhibitor of LdDCP thereby antileishmanial compounds either by denovo drug design or virtual screening of small molecule databases.

  19. On the nature of the afferent fibers of oculomotor nerve.

    Science.gov (United States)

    Manni, E; Draicchio, F; Pettorossi, V E; Carobi, C; Grassi, S; Bortolami, R; Lucchi, M L

    1989-03-01

    The oculogyric nerves contain afferent fibers originating from the ophthalmic territory, the somata of which are located in the ipsilateral semilunar ganglion. These primary sensory neurons project to the Subnucleus Gelatinosus of the Nucleus Caudalis Trigemini, where they make presynaptic contact with the central endings of the primary trigeminal afferents running in the fifth cranial nerve. After complete section of the trigeminal root, the antidromic volleys elicited in the trunk of the third cranial nerve by stimulating SG of NCT consisted of two waves belonging to the A delta and C groups. The area of both components of the antidromic volleys decreased both after bradykinin and hystamine injection into the corresponding cutaneous region and after thermic stimulation of the ipsilateral trigeminal ophthalmic territory. The reduction of such potentials can be explained in terms of collision between the antidromic volleys and those elicited orthodromically by chemical and thermic stimulation. Also, capsaicin applied on the nerve induced an immediate increase, followed by a long lasting decrease, of orthodromic evoked response area. These findings bring further support to the nociceptive nature of the afferent fibers running into the oculomotor nerve.

  20. Gabapentin Inhibits Protein Kinase C Epsilon Translocation in Cultured Sensory Neurons with Additive Effects When Coapplied with Paracetamol (Acetaminophen

    Directory of Open Access Journals (Sweden)

    Vittorio Vellani

    2017-01-01

    Full Text Available Gabapentin is a well-established anticonvulsant drug which is also effective for the treatment of neuropathic pain. Although the exact mechanism leading to relief of allodynia and hyperalgesia caused by neuropathy is not known, the blocking effect of gabapentin on voltage-dependent calcium channels has been proposed to be involved. In order to further evaluate its analgesic mechanisms, we tested the efficacy of gabapentin on protein kinase C epsilon (PKCε translocation in cultured peripheral neurons isolated from rat dorsal root ganglia (DRGs. We found that gabapentin significantly reduced PKCε translocation induced by the pronociceptive peptides bradykinin and prokineticin 2, involved in both inflammatory and chronic pain. We recently showed that paracetamol (acetaminophen, a very commonly used analgesic drug, also produces inhibition of PKCε. We tested the effect of the combined use of paracetamol and gabapentin, and we found that the inhibition of translocation adds up. Our study provides a novel mechanism of action for gabapentin in sensory neurons and suggests a mechanism of action for the combined use of paracetamol and gabapentin, which has recently been shown to be effective, with a cumulative behavior, in the control of postoperative pain in human patients.

  1. Intra-articular therapies for osteoarthritis.

    Science.gov (United States)

    Yu, Shirley P; Hunter, David J

    2016-10-01

    Conventional medical therapies for osteoarthritis are mainly palliative in nature, aiming to control pain and symptoms. Traditional intra-articular therapies are not recommended in guidelines as first line therapy, but are potential alternatives, when conventional therapies have failed. Current and future intra-articular drug therapies for osteoarthritis are highlighted, including corticosteroids, hyaluronate, and more controversial treatments marketed commercially, namely platelet rich plasma and mesenchymal cell therapy. Intraarticular disease modifying osteoarthritis drugs are the future of osteoarthritis treatments, aiming at structural modification and altering the disease progression. Interleukin-1β inhibitor, bone morphogenic protein-7, fibroblast growth factor 18, bradykinin B2 receptor antagonist, human serum albumin, and gene therapy are discussed in this review. The evolution of drug development in osteoarthritis is limited by the ability to demonstrate effect. High quality trials are required to justify the use of existing intra-articular therapies and to advocate for newer, promising therapies. Challenges in osteoarthritis therapy research are fundamentally related to the complexity of the pathological mechanisms of osteoarthritis. Novel drugs offer hope in a disease with limited medical therapy options. Whether these future intra-articular therapies will provide clinically meaningful benefits, remains unknown.

  2. Splanchnic microcirculation-evaluation with whole-body computed tomography

    International Nuclear Information System (INIS)

    Ritman, E.L.; Pagel, D.A.; Beighley, P.E.

    1995-01-01

    A fast, volume scanning, CT method is used to explore the feasibility of quantitating functional aspects of the in-situ splanchnic microcirculation. Anesthetized pigs were scanned during and following the injection of contrast agent into the aorta. The indicator dilution curves generated by the passage of contrast medium through an imaged region of interest in the gut wall or through the liver parenchyma, were used to compute regional tissue perfusion and intravascular blood content of the tissue. Splanchnic perfusion was modulated by intra-arterial injection of Bradykinin and by the intragastric infusion of alcohol or hydrochloric acid. The results are consistent with values obtained with more invasive traditional methods for estimating these parameters under similar experimental conditions. The authors conclude that the resolution of the CT imaging method permits quantitative evaluation of changes in those splanchnic microcirculation following physiologic stimuli. The importance of bowel motion is apparent in these analyses. Indeed, the poorly periodic motion of the gut, even though it is slower than that of the heart wall, presents a greater problem than does the rapid motion of the heart wall, which is gateable because of its cycle-to-cycle reproducibility

  3. Purification and characterization of the V1 vasopressin receptor from rat liver

    International Nuclear Information System (INIS)

    Fishman, J.B.; Dickey, B.F.; Attisano, C.; Fine, R.E.

    1987-01-01

    The rat liver V1 vasopressin receptor was purified approximately 21,000-fold from rat liver microsomes. The receptor was solubilized from membranes using the zwitterionic detergent CHAPS (3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate). Since the V1 receptor loses its ability to bind ligand when solubilized, the authors devised a liposome reconstitution system to assay vasopressin binding activity during purification. The purified receptor exhibits a K/sub d/ of 6 nm, when, prior to solubilization, the membranes were exposed to 1 μm vasopressin. This resulted in the association of a pertussis-toxin insensitive guanine-nucleotide binding protein with the receptor during most of the purification procedure. The authors are further characterizing the V1-associated G-proteins. In the absence of this association, the receptor has a K/sub d/ of 30 nM. Crosslinking of 125 I-vasopressin to a partially purified preparation of receptor demonstrated that the receptor had a molecular weight of approximately 68,000 under reducing conditions, and 58,000 under non-reducing conditions. The purification procedure may prove useful in purifying a number of small peptide hormone receptors (e.g., bradykinin, angiotensin II) and perhaps their associated G-proteins as well

  4. Stimulation of phosphoinositide hydrolysis by a novel substance partially purified from rat and bovine brain

    International Nuclear Information System (INIS)

    Schoepp, D.; Wilson, T.; Elliott, C.; Wright, G.; McCumbee, W.

    1986-01-01

    This study demonstrates the partial purification of a potentially novel substance from rat and bovine brain. Whole brains were homogenized in distilled water, then heated at 100 0 C for 30 min. The water extract was dialyzed and the 3 H-inositol monophosphate ( 3 H-IP) using lithium-treated slices of rat cerebral cortex prelabelled with 3 H-myo-inositol. A major peak of activity was observed in fractions from the molecular weight range of 800-1300 daltons. Stimulation of phosphoinositide hydrolysis by this material was time-dependent and dose-related. Maximal stimulation of 3 H-IP (323% of control) required 10mg/ml of bovine material and was observed at 30 minutes. These effects could not be mimicked by a number of substances of similar molecular weight (e.g. substance P, neurotensin, angiotensin II, bradykinin). Furthermore, the effects of this material were not blocked by antagonist drugs which act at the alpha-adrenoceptor, muscarinic cholinoceptor, 5-HT2 receptor, substance P receptor, or neurotensin receptor. These results indicate that the substance isolated may be a novel neuroactive molecule which has receptors coupled to phosphoinositide hydrolysis in brain

  5. Plasma extravasation mediated by lipopolysaccharide-induction of kinin B1 receptors in rat tissues

    Directory of Open Access Journals (Sweden)

    Paulo Roberto Wille

    2001-01-01

    Full Text Available The present study was performed to: (a evaluate the effects of kinin B1 (Sar{D-Phe8}-des-Arg9-BK; 10 nmol/kg and B2 (bradykinin (BK; 10 nmol/kg receptor agonists on plasma extravasation in selected rat tissues; (b determine the contribution of a lipopolysaccharide (LPS (100 μ g/kg to the effects triggered by B1 and B2 agonists; and (c characterize the selectivity of B1 ({Leu8}desArg9-BK; 10 nmol/kg and B2 (HOE 140; 10 nmol/kg antagonists as inhibitors of this kinin-induced phenomenon. B1 and B2 agonists were shown to increase plasma extravasation in the duodenum, ileum and also in the urinary bladder of the rat. LPS pretreatment enhanced the plasma extravasation mediated only by the B1 agonist in the duodenum, ileum, trachea, main and segmentar bronchi. These effects were prevented by the B1. but not the B2 antagonist. In normal rats, the B2 antagonist inhibited the effect of B2 agonist in all the tissues analyzed. However, in LPS-treated rats, the B2 antagonist was ineffective in the urinary bladder.

  6. Relationship between Angiotensin Converting Enzyme, Apelin, and New-Onset Atrial Fibrillation after Off-Pump Coronary Artery Bypass Grafting

    Directory of Open Access Journals (Sweden)

    Shu Xu

    2017-01-01

    Full Text Available It has been shown that inflammation and oxidative stress are important factors in postoperative atrial fibrillation (POAF. Angiotensin converting enzyme (ACE and apelin have a close relationship with inflammation and oxidative stress. The effect of ACE and apelin on POAF after off-pump coronary artery bypass grafting (OPCABG remains a question. The concentrations of serum ACE, angiotensin II (Ang II, apelin, bradykinin (BK, malondialdehyde (MDA, and C reactive protein (CRP were measured in the perioperative period of OPCABG. The levels of serum ACE in the POAF group were higher than in the no POAF group both preoperatively and postoperatively. Apelin in the POAF group was lower than in the no POAF group. There was a correlation between serum ACE and apelin. Postoperatively, CRP and MDA in the POAF group were higher than in the no POAF group; however, there was no difference before the operation. Preoperative ACE and apelin were both significant and independent risk factors for POAF. In conclusion, the high ACE and low apelin preoperatively led to CRP and MDA being increased postoperatively, which was probably associated with POAF after OPCABG. Apelin may be a new predictor for POAF.

  7. Asymmetric dimethylarginine (ADMA) elevation and arginase up-regulation contribute to endothelial dysfunction related to insulin resistance in rats and morbidly obese humans.

    Science.gov (United States)

    El Assar, Mariam; Angulo, Javier; Santos-Ruiz, Marta; Ruiz de Adana, Juan Carlos; Pindado, María Luz; Sánchez-Ferrer, Alberto; Hernández, Alberto; Rodríguez-Mañas, Leocadio

    2016-06-01

    The presence of insulin resistance (IR) is determinant for endothelial dysfunction associated with obesity. Although recent studies have implicated the involvement of mitochondrial superoxide and inflammation in the defective nitric oxide (NO)-mediated responses and subsequent endothelial dysfunction in IR, other mechanisms could compromise this pathway. In the present study, we assessed the role of asymmetric dimethylarginine (ADMA) and arginase with respect to IR-induced impairment of endothelium-dependent vasodilatation in human morbid obesity and in a non-obese rat model of IR. We show that both increased ADMA and up-regulated arginase are determinant factors in the alteration of the l-arginine/NO pathway associated with IR in both models and also that acute treatment of arteries with arginase inhibitor or with l-arginine significantly alleviate endothelial dysfunction. These results help to expand our knowledge regarding the mechanisms of endothelial dysfunction that are related to obesity and IR and establish potential therapeutic targets for intervention. Insulin resistance (IR) is determinant for endothelial dysfunction in human obesity. Although we have previously reported the involvement of mitochondrial superoxide and inflammation, other mechanisms could compromise NO-mediated responses in IR. We evaluated the role of the endogenous NOS inhibitor asymmetric dimethylarginine (ADMA) and arginase with respect to IR-induced impairment of l-arginine/NO-mediated vasodilatation in human morbid obesity and in a non-obese rat model of IR. Bradykinin-induced vasodilatation was evaluated in microarteries derived from insulin-resistant morbidly obese (IR-MO) and non-insulin-resistant MO (NIR-MO) subjects. Defective endothelial vasodilatation in IR-MO was improved by l-arginine supplementation. Increased levels of ADMA were detected in serum and adipose tissue from IR-MO. Serum ADMA positively correlated with IR score and negatively with pD2 for bradykinin. Gene

  8. Efecto hemodinámico esplácnico de somatostatina y octreótido en cirróticos: Estudio con ultrasonografía Doppler Splanchnic hemodynamic effects of somatostatin and octreotide in cirrhotic patients: A Doppler ultrasonographic study

    Directory of Open Access Journals (Sweden)

    F. J. Fernández Pérez

    2008-09-01

    Full Text Available Objetivo: valoración ultrasonografica Doppler del efecto hemodinámico de la administración intravenosa de somatostatina y octreótido. Material y método: aleatorizamos a 45 cirróticos con varices esofágicas para recibir en una hora una infusión intravenosa de somatostatina (SOM, 250 µg, octreotido (OCT, 50 µg o placebo (PLA. Pretratamiento y a 15, 30, 45 y 60 minutos medimos velocidad media, índice de congestión, volumen de flujo y diámetro de la vena porta además del índice de resistencia en arteria mesentérica superior. Analizamos las concentraciones séricas de bradicinina y péptido intestinal vasoactivo (VIP en situación basal y a 30 y 60 minutos. Resultados: respecto de los valores basales tanto SOM como OCT provocaron un descenso significativo en la velocidad (-19,41 vs. -11.19% y flujo portal (-22,79 vs. -12,33%, con aumento del índice de congestión (+17,5 vs. +7,5% y del índice de resistencia arterial (+7,18 vs. +6,16% respecto de sus valores basales (p Aim: Doppler-ultrasound assessment of the splanchnic hemodynamic effects of intravenous somatostatin and octreotide administration. Material and method: forty-five cirrhotic patients with esophageal varices were randomized to receive 1-hour intravenous somatostatin (SOM, 250 µg, octreotide (OCT, 50 µg, or placebo (PLA. In baseline and at 15, 30, 45 and 60 minutes of infusion, mean velocity, congestion index, flow volume and diameter of the portal vein, as well as the superior mesenteric artery resistivity index, were measured. Plasma bradykinine and vasoactive intestinal peptide (VIP concentrations were also measured at baseline and at 30 and 60 minutes. Results: while placebo caused no changes in any of the venous and arterial parameters, SOM and OCT caused a sustained decrease in portal vein velocity (-19.41 vs. -11.19% and flow (-22.79 vs. -12.33%, and an increase in the congestion index (+17.5 vs. +7.5% and resistivity index of the superior mesenteric artery (+7

  9. Sildenafil citrate (Viagra) enhances vasodilatation in fetal growth restriction.

    Science.gov (United States)

    Wareing, Mark; Myers, Jenny E; O'Hara, Maureen; Baker, Philip N

    2005-05-01

    Fetal growth restriction (FGR) affects up to 8% of all pregnancies and has massive short-term (increased fetal morbidity and mortality) and long-term (increased incidence of cardiovascular disease in adulthood) health implications. Doppler waveform analysis of pregnancies complicated by FGR suggests compromised uteroplacental circulation and placental hypoperfusion. Our aim was to determine whether myometrial small artery function was aberrant in FGR and to assess whether sildenafil citrate could improve vasodilatation in FGR pregnancies. Small arteries dissected from myometrial biopsies obtained at cesarean section from normal pregnant women (n = 27) or women whose pregnancies were complicated by FGR (n = 12) were mounted on wire myographs. Vessels were constricted (with arginine vasopressin or U46619) and relaxed (with bradykinin) before and after incubation with a phosphodiesterase-5 inhibitor, sildenafil citrate. We demonstrated increased myometrial small artery vasoconstriction and decreased endothelium-dependent vasodilatation in vessels from women whose pregnancies were complicated by FGR. Sildenafil citrate significantly reduced vasoconstriction and significantly improved relaxation of FGR small arteries. We conclude that sildenafil citrate improves endothelial function of myometrial vessels from women whose pregnancies are complicated by intrauterine growth restriction. Sildenafil citrate may offer a potential therapeutic strategy to improve uteroplacental blood flow in FGR pregnancies.

  10. Changing the treatment of heart failure with reduced ejection fraction: clinical use of sacubitril-valsartan combination

    Science.gov (United States)

    Kaplinsky, Edgardo

    2016-01-01

    Despite significant therapeutic advances, patients with chronic heart failure (HF) remain at high risk of morbidity and mortality. Sacubitril valsartan (previously known as LCZ696) is a new oral agent approved for the treatment of symptomatic chronic heart failure in adults with reduced ejection fraction. It is described as the first in class angiotensin receptor neprilysin inhibitor (ARNI) since it incorporates the neprilysin inhibitor, sacubitril and the angiotensin II receptor antagonist, valsartan. Neprilysin is an endopeptidase that breaks down several vasoactive peptides including natriuretic peptides (NPs), bradykinin, endothelin and angiotensin II (Ang-II). Therefore, a natural consequence of its inhibition is an increase of plasmatic levels of both, NPs and Ang-II (with opposite biological actions). So, a combined inhibition of these both systems (Sacubitril / valsartan) may enhance the benefits of NPs effects in HF (natriuresis, diuresis, etc) while Ang-II receptor is inhibited (reducing vasoconstriction and aldosterone release). In a large clinical trial (PARADIGM-HF with 8442 patients), this new agent was found to significantly reduce cardiovascular and all cause mortality as well as hospitalizations due to HF (compared to enalapril). This manuscript reviews clinical evidence for sacubitril valsartan, dosing and cautions, future directions and its considered place in the therapy of HF with reduced ejection fraction. PMID:28133468

  11. Overview of hereditary angioedema caused by C1-inhibitor deficiency: assessment and clinical management.

    Science.gov (United States)

    Bork, K; Davis-Lorton, M

    2013-02-01

    Hereditary angioedema due to C1-inhibitor deficiency (HAE-C1-INH) is a rare, autosomal-dominant disease. HAE-C1-INH is characterized by recurrent attacks of marked, diffuse, nonpitting and nonpruritic skin swellings, painful abdominal attacks, and laryngeal edema. The extremities and the gastrointestinal tract are most commonly affected. Swelling of the upper respiratory mucosa poses the greatest risk because death from asphyxiation can result from laryngealedema. HAE-C1-INH attacks are variable, unpredictable, and may be induced by a variety of stimuli, including stress or physical trauma. Because the clinical presentation of HAE-C1-INH is similar to other types of angioedema, the condition may be a challenge to diagnose. Accurate identification of HAE-C1-INH is critical in order to avoid asphyxiation by laryngeal edema and to improve the burden of disease. Based on an understanding of the underlying pathophysiology of IHAE-C1-INH, drugs targeted specifically to the disease, such as C1-inhibitor therapy, bradykinin B2-receptor antagonists, and kallikrein-inhibitors, have become available for both treatment and prevention of angioedema attacks. This article reviews the clinical features, differential diagnosis, and current approaches to management of HAE-C1-INH.

  12. TRPV1, TRPA1, and TRPM8 channels in inflammation, energy redirection, and water retention: role in chronic inflammatory diseases with an evolutionary perspective.

    Science.gov (United States)

    Straub, Rainer H

    2014-09-01

    Chronic inflammatory diseases are accompanied by a systemic response of the body, necessary to redirect energy-rich fuels to the activated immune system and to induce volume expansion. The systemic response is switched on by two major pathways: (a) circulating cytokines enter the brain, and (b) signals via sensory nerve fibers are transmitted to the brain. Concerning item b, sensory nerve terminals are equipped with a multitude of receptors that sense temperature, inflammation, osmolality, and pain. Thus, they can be important to inform the brain about peripheral inflammation. Central to these sensory modalities are transient receptor potential channels (TRP channels) on sensory nerve endings. For example, TRP vanilloid 1 (TRPV1) can be activated by heat, inflammatory factors (e.g., protons, bradykinin, anandamide), hyperosmolality, pungent irritants, and others. TRP channels are multimodal switches that transmit peripheral signals to the brain, thereby inducing a systemic response. It is demonstrated how and why these TRP channels (TRPV1, TRP ankyrin type 1 (TRPA1), and TRP melastatin type 8 (TRPM8)) are important to start up a systemic response of energy expenditure, energy allocation, and water retention and how this is linked to a continuously activated immune system in chronic inflammatory diseases.

  13. Polymer therapeutics and the EPR effect.

    Science.gov (United States)

    Maeda, Hiroshi

    History of the EPR (enhanced permeability and retention) effect is discussed, which goes back to the analyses of molecular pathology in bacterial infection and edema (extravasation) formation. The first mediator we found for extravasation was bradykinin. Later on, were found nitric oxide and superoxide, then formation of peroxynitrite, that activates procollagenase. In this inflammatory setting many other vascular mediators are involved that are also common to cancer vasculature. Obviously cancer vasculature is defective architechtally, and this makes macromolecular drugs more permeable through the vascular wall. The importance of this pathophysiological event of EPR effect can be applied to macromolecular drug-delivery, or tumor selective delivery, which takes hours to achieve in the primary as well as metastatic tumors, not to mention of the inflamed tissues. The retention of the EPR means that such drugs will be retained in tumor tissues more than days to weeks. This was demonstrated initially, and most dramatically, using SMANCS, a protein-polymer conjugated-drug dissolved in lipid contrast medium (Lipiodol) by administering intraarterially. For disseminating the EPR concept globally, or in the scientific community, Professor Ruth Duncan played a key role at the early stage, as she worked extensively on polymer- therapeutics, and knew its importance.

  14. Aequorin chimeras as valuable tool in the measurement of Ca2+ concentration during cadmium injury

    International Nuclear Information System (INIS)

    Biagioli, M.; Pinton, P.; Scudiero, R.; Ragghianti, M.; Bucci, S.; Rizzuto, R.

    2005-01-01

    The ability of cadmium to disrupt calcium homeostasis has been known since a long time, but the precise cellular targets of its toxic action are still debated. A great problem in the interpretation of data has been associated with the ability of cadmium to strongly bind traditional calcium probes. Aequorin, the well-characterized calcium-sensitive photoprotein, was used as intracellular calcium indicator during cadmium injury in NIH 3T3 murine fibroblasts. NIH 3T3 cells were transfected with a cDNA construct containing aequorin fused to a truncated glutamate receptor, which directs the probe to the outer surface of intracellular membranes. At first, we tested if different cadmium concentrations were able to modify the rate of light emission by aequorin showing that cadmium concentrations 2+ /Ca 2+ interference. To directly investigate the role of Cd 2+ in Ca 2+ homeostasis, we have started to selectively measure the free Ca 2+ concentration in different cell compartments. Here, we report that cadmium reduces the transient free calcium signal after stimulation of cells with bradykinin. Further studies are in progress to clarify the role of mitochondria and endoplasmic reticulum in cadmium-induced alterations of Ca 2+ homeostasis in order to link signal transduction modifications with the onset of apoptosis induced by cadmium exposure

  15. Biochemical response and the effects of bariatric surgeries on type 2 diabetes

    Science.gov (United States)

    Allen, Roland; Hughes, Tyler; Lerd Ng, Jia; Ortiz, Roberto; Abou Ghantous, Michel; Bouhali, Othmane; Arredouani, Abdelilah

    2013-03-01

    A general method is introduced for calculating the biochemical response to pharmaceuticals, surgeries, or other medical interventions. This method is then applied in a simple model of the response to Roux-en-Y gastric bypass (RYGB) surgery in obese diabetic patients. We specifically address the amazing fact that glycemia correction is usually achieved immediately after RYGB surgery, long before there is any appreciable weight loss. Many studies indicate that this result is not due merely to caloric restriction, and it is usually attributed to an increase in glucagon-like peptide 1 (GLP-1) levels observed after the surgery. However, our model indicates that this mechanism alone is not sufficient to explain either the largest declines in glucose levels or the measured declines in the homeostatic model assessment insulin resistance (HOMA-IR). The most robust additional mechanism would be production of a factor which opens an insulin-independent pathway for glucose transport into cells, perhaps related to the well-established insulin-independent pathway associated with exercise. Potential candidates include bradykinin, a 9 amino acid peptide. If such a substance were found to exist, it would offer hope for medications which mimic the immediate beneficial effect of RYGB surgery. Supported by Qatar Biomedical Research Institute and Science Program at Texas A&M University at Qatar

  16. Anti-Inflammatory and Analgesic Activities of a Novel Biflavonoid from Shells of Camellia oleifera

    Directory of Open Access Journals (Sweden)

    Yong Ye

    2012-09-01

    Full Text Available Shells are by-products of oil production from Camellia oleifera which have not been harnessed effectively. The purpose of this research is to isolate flavonoid from shells of Camellia oleifera and evaluate its anti-inflammatory and analgesic effects. The flavonoid was identified as bimolecular kaempferol structure by UV, MS, 1H NMR and 13C NMR spectra, which is a new biflavonoid and first found in Camellia oleifera. It showed dose-dependent anti-inflammatory activity by carrageenin-induced paw oedema in rats and croton oil induced ear inflammation in mice, and analgesic activity by hot plate test and acetic acid induced writhing. The mechanism of anti-inflammation of biflavonoid is related to both bradykinin and prostaglandins synthesis inhibition. The biflavonoid showed both central and peripheral analgesic effects different from aspirin, inhibition of the synthesis or action of prostaglandins may contribute to analgesic effect of biflavonoid. The biflavonoid significantly decreased malonaldehyde (MDA and increased superoxidase dismutase (SOD and Glutathione peroxidase (GSH-Px activity in serum (p < 0.01, revealed strong free radical scavenging activity in vivo. It indicates the biflavonoid can control inflammation and pain by eliminating free radical so as to inhibit the mediators and decrease the prostaglandins. The biflavonoid can be used as a prospective medicine for inflammation and pain.

  17. Refractory Abdominal Pain in a Patient with Chronic Lymphocytic Leukemia: Be Wary of Acquired Angioedema due to C1 Esterase Inhibitor Deficiency

    Directory of Open Access Journals (Sweden)

    Abdullateef Abdulkareem

    2018-01-01

    Full Text Available Acquired angioedema due to C1 inhibitor deficiency (C1INH-AAE is a rare and potentially fatal syndrome of bradykinin-mediated angioedema characterized by episodes of angioedema without urticaria. It typically manifests with nonpitting edema of the skin and edema in the gastrointestinal (GI tract mucosa or upper airway. Edema of the upper airway and tongue may lead to life-threatening asphyxiation. C1INH-AAE is typically under-diagnosed because of its rarity and its propensity to mimic more common abdominal conditions and allergic reactions. In this article, we present the case of a 62-year-old male with a history of recently diagnosed chronic lymphocytic leukemia (CLL who presented to our hospital with recurrent abdominal pain, initially suspected to have Clostridium difficile colitis and diverticulitis. He received a final diagnosis of acquired angioedema due to C1 esterase inhibitor deficiency due to concomitant symptoms of lip swelling, cutaneous nonpitting edema of his lower extremities, and complement level deficiencies. He received acute treatment with C1 esterase replacement and icatibant and was maintained on C1 esterase infusions. He also underwent chemotherapy for his underlying CLL and did not experience further recurrence of his angioedema.

  18. Mouse DRG Cell Line with Properties of Nociceptors.

    Science.gov (United States)

    Doran, Ciara; Chetrit, Jonathan; Holley, Matthew C; Grundy, David; Nassar, Mohammed A

    2015-01-01

    In vitro cell lines from DRG neurons aid drug discovery because they can be used for early stage, high-throughput screens for drugs targeting pain pathways, with minimal dependence on animals. We have established a conditionally immortal DRG cell line from the Immortomouse. Using immunocytochemistry, RT-PCR and calcium microfluorimetry, we demonstrate that the cell line MED17.11 expresses markers of cells committed to the sensory neuron lineage. Within a few hours under differentiating conditions, MED17.11 cells extend processes and following seven days of differentiation, express markers of more mature DRG neurons, such as NaV1.7 and Piezo2. However, at least at this time-point, the nociceptive marker NaV1.8 is not expressed, but the cells respond to compounds known to excite nociceptors, including the TRPV1 agonist capsaicin, the purinergic receptor agonist ATP and the voltage gated sodium channel agonist, veratridine. Robust calcium transients are observed in the presence of the inflammatory mediators bradykinin, histamine and norepinephrine. MED17.11 cells have the potential to replace or reduce the use of primary DRG culture in sensory, pain and developmental research by providing a simple model to study acute nociception, neurite outgrowth and the developmental specification of DRG neurons.

  19. Anti-inflammatory effects of compounds alpha-humulene and (-)-trans-caryophyllene isolated from the essential oil of Cordia verbenacea.

    Science.gov (United States)

    Fernandes, Elizabeth S; Passos, Giselle F; Medeiros, Rodrigo; da Cunha, Fernanda M; Ferreira, Juliano; Campos, Maria M; Pianowski, Luiz F; Calixto, João B

    2007-08-27

    This study evaluated the anti-inflammatory properties of two sesquiterpenes isolated from Cordia verbenacea's essential oil, alpha-humulene and (-)-trans-caryophyllene. Our results revealed that oral treatment with both compounds displayed marked inhibitory effects in different inflammatory experimental models in mice and rats. alpha-humulene and (-)-trans-caryophyllene were effective in reducing platelet activating factor-, bradykinin- and ovoalbumin-induced mouse paw oedema, while only alpha-humulene was able to diminish the oedema formation caused by histamine injection. Also, both compounds had important inhibitory effects on the mouse and rat carrageenan-induced paw oedema. Systemic treatment with alpha-humulene largely prevented both tumor necrosis factor-alpha (TNFalpha) and interleukin-1beta (IL-1beta) generation in carrageenan-injected rats, whereas (-)-trans-caryophyllene diminished only TNFalpha release. Furthermore, both compounds reduced the production of prostaglandin E(2) (PGE(2)), as well as inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX-2) expression, induced by the intraplantar injection of carrageenan in rats. The anti-inflammatory effects of alpha-humulene and (-)-trans-caryophyllene were comparable to those observed in dexamethasone-treated animals, used as positive control drug. All these findings indicate that alpha-humulene and (-)-trans-caryophyllene, derived from the essential oil of C. verbenacea, might represent important tools for the management and/or treatment of inflammatory diseases.

  20. Identification of Receptor Ligands and Receptor Subtypes Using Antagonists in a Capillary Electrophoresis Single-Cell Biosensor Separation System

    Science.gov (United States)

    Fishman, Harvey A.; Orwar, Owe; Scheller, Richard H.; Zare, Richard N.

    1995-08-01

    A capillary electrophoresis system with single-cell biosensors as a detector has been used to separate and identify ligands in complex biological samples. The power of this procedure was significantly increased by introducing antagonists that inhibited the cellular response from selected ligand-receptor interactions. The single-cell biosensor was based on the ligand-receptor binding and G-protein-mediated signal transduction pathways in PC12 and NG108-15 cell lines. Receptor activation was measured as increases in cytosolic free calcium ion concentration by using fluorescence microscopy with the intracellular calcium ion indicator fluo-3 acetoxymethyl ester. Specifically, a mixture of bradykinin (BK) and acetylcholine (ACh) was fractionated and the components were identified by inhibiting the cellular response with icatibant (HOE 140), a selective antagonist to the BK B_2 receptor subtype (B_2BK), and atropine, an antagonist to muscarinic ACh receptor subtypes. Structurally related forms of BK were also identified based on inhibiting B_2BK receptors. Applications of this technique include identification of endogenous BK in a lysate of human hepatocellular carcinoma cells (Hep G2) and screening for bioactivity of BK degradation products in human blood plasma. The data demonstrate that the use of antagonists with a single-cell biosensor separation system aids identification of separated components and receptor subtypes.

  1. Focused Electrospray Deposition for Matrix-assisted Laser Desorption/Ionization Mass Spectrometry

    International Nuclear Information System (INIS)

    Jeong, Kyung Hwan; Seo, Jong Cheol; Yoon, Hye Joo; Shin, Seung Koo

    2010-01-01

    Focused electrospray (FES) deposition method is presented for matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. FES ion optics consists of two cylindrical focusing electrodes capped with a truncated conical electrode through which an electrospray emitter passes along the cylindrical axis. A spray of charged droplets is focused onto a sample well on a MALDI target plate under atmospheric pressure. The shape and size distributions of matrix crystals are visualized by scanning electron microscope and the mass spectra are obtained by time-of-flight mass spectrometry. Angiotensin II, bradykinin, and substance P are used as test samples, while α-cyano-4-hydroxycinnamic acid and dihydroxybenzoic acid are employed as matrices. FES of a sample/matrix mixture produces fine crystal grains on a 1.3 mm spot and reproducibly yields the mass spectra with little shot-to-shot and spot-to-spot variations. Although FES greatly stabilizes the signals, the space charge due to matrix ions limits the detection sensitivity of peptides. To avoid the space charge problem, we adopted a dual FES/FES mode, which separately deposits matrix and sample by FES in sequence. The dual FES/FES mode reaches the detection sensitivity of 0.88 amol, enabling ultrasensitive detection of peptides by homogeneously depositing matrix and sample under atmospheric pressure

  2. An investigation of liquid secondary ion and laser desorption mass spectroscopy for the analysis of planar chromatograms

    Energy Technology Data Exchange (ETDEWEB)

    Dunphy, J.C.

    1990-11-01

    In the work described in this dissertation, interfaces between two mass spectrometric methods, liquid secondary ion mass spectrometry (LSIMS) and laser desorption/ionization Fourier transform mass spectrometry (LD/FTMS), and thin-layer chromatography (TLC) and slab gel electrophoresis were developed for bioanalytical applications. In an investigation of direct LSIMS for TLC analysis (TLC/LSIMS), mass spectra of bile acids and bile salts were characterized directly from high-performance TLC plates. The scanning ability of the LSIMS instrument was used to generate spatial profiles of the characteristic bile acid ions in the mass spectra. A procedure for the analysis of bile salts in dog bile was developed involving an extraction step, followed by TLC separation and direct TLC/LSIMS detection and semi-quantitation. For peptides, an experiment called selected-sequence monitoring'' was developed to locate target peptides related in structure in complex mixtures developed on TLC plates. Ions characteristic of the bradykinin and enkephalin peptides were used to generate spatial profiles of members of those peptide families on TLC plates. Using a Fourier transform mass spectrometer (FTMS), a fundamental investigation was conducted into the factors affecting the quality of analytical data obtained using direct laser desorption/ionization to produce mass spectra from TLC plates.

  3. Combination inhibition of the renin-angiotensin system: is more better?

    Science.gov (United States)

    Krause, Michelle W; Fonseca, Vivian A; Shah, Sudhir V

    2011-08-01

    Angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers are considered the standard of care for treatment of cardiovascular disease and chronic kidney disease. Combination therapy with both angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers effectively inhibits the renin-angiotensin system as well as potentiates the vasodilatory effects of bradykinin. It has been advocated that this dual blockade approach theoretically should result in improved clinical outcomes in both cardiovascular disease and chronic kidney disease. Clinical trial evidence for the use of combination therapy with angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers in cardiovascular disease has provided conflicting results in hypertension, congestive heart failure, and ischemic heart disease. Clinical trial evidence to support combination therapy with angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers in chronic kidney disease has largely been based on proteinuria reduction as a surrogate marker for clinically meaningful outcomes. Recent large-scale randomized clinical trials have not been able to validate protection in halting progression in chronic kidney disease with a dual blockade approach. This review serves as an appraisal on the clinical evidence of combination angiotensin-converting enzyme inhibition and angiotensin II receptor blockade in both cardiovascular disease and chronic kidney disease.

  4. Epistatic effects of polymorphisms in genes from the renin-angiotensin, bradykinin, and fibrinolytic systems on plasma t-PA and PAI-1 levels

    NARCIS (Netherlands)

    Asselbergs, Folkert W.; Williams, Scott M.; Hebert, Patricia R.; Coffey, Christopher S.; Hillege, Hans L.; Navis, Gerjan; Vaughan, Douglas E.; van Gilst, Wiek H.; Moore, Jason H.

    Tissue plasminogen activator (t-PA) and plasminogen activator inhibitor 1 (PAI-1) directly influence thrombus formation and degradation and thereby risk for arterial thrombosis. Activation of the renin-angiotensin system has been linked to the production of PAI-1 expression via the angiotensin II

  5. Design and synthesis of novel sulfonamide-containing bradykinin hB2 receptor antagonists. 1. Synthesis and SAR of alpha,alpha-dimethylglycine sulfonamides.

    Science.gov (United States)

    Fattori, Daniela; Rossi, Cristina; Fincham, Christopher I; Berettoni, Marco; Calvani, Federico; Catrambone, Fernando; Felicetti, Patrizia; Gensini, Martina; Terracciano, Rosa; Altamura, Maria; Bressan, Alessandro; Giuliani, Sandro; Maggi, Carlo A; Meini, Stefania; Valenti, Claudio; Quartara, Laura

    2006-06-15

    We recently published the extensive in vivo pharmacological characterization of MEN 16132 (J. Pharmacol. Exp. Ther. 2005, 616-623; Eur. J. Pharmacol. 2005, 528, 7), a member of the sulfonamide-containing human B(2) receptor (hB(2)R) antagonists. Here we report, in detail, how this family of compounds was designed, synthesized, and optimized to provide a group of products with subnanomolar affinity for the hB(2)R and high in vivo potency after topical administration to the respiratory tract. The series was designed on the basis of indications from the X-ray structures of the key structural motifs A and B present in known antagonists and is characterized by the presence of an alpha,alpha-dialkyl amino acid. The first lead (17) of the series was submitted to extensive chemical work to elucidate the structural requirements to increase hB(2) receptor affinity and antagonist potency in bioassays expressing the human B(2) receptor (hB(2)R). The following structural features were selected: a 2,4-dimethylquinoline moiety and a piperazine linker acylated with a basic amino acid. The representative lead compound 68 inhibited the specific binding of [(3)H]BK to hB(2)R with a pKi of 9.4 and antagonized the BK-induced inositolphosphate (IP) accumulation in recombinant cell systems expressing the hB(2)R with a pA(2) of 9.1. Moreover, compound 68 when administered (300 nmol/kg) intratracheally in the anesthetized guinea pig, was able to significantly inhibit BK-induced bronchoconstriction for up to 120 min after its administration, while having a lower and shorter lasting effect on hypotension.

  6. Inflammatory mediators potentiate high affinity GABA(A) currents in rat dorsal root ganglion neurons.

    Science.gov (United States)

    Lee, Kwan Yeop; Gold, Michael S

    2012-06-19

    Following acute tissue injury action potentials may be initiated in afferent processes terminating in the dorsal horn of the spinal cord that are propagated back out to the periphery, a process referred to as a dorsal root reflex (DRR). The DRR is dependent on the activation of GABA(A) receptors. The prevailing hypothesis is that DRR is due to a depolarizing shift in the chloride equilibrium potential (E(Cl)) following an injury-induced activation of the Na(+)-K(+)-Cl(-)-cotransporter. Because inflammatory mediators (IM), such as prostaglandin E(2) are also released in the spinal cord following tissue injury, as well as evidence that E(Cl) is already depolarized in primary afferents, an alternative hypothesis is that an IM-induced increase in GABA(A) receptor mediated current (I(GABA)) could underlie the injury-induced increase in DRR. To test this hypothesis, we explored the impact of IM (prostaglandin E(2) (1 μM), bradykinin (10 μM), and histamine (1 μM)) on I(GABA) in dissociated rat dorsal root ganglion (DRG) neurons with standard whole cell patch clamp techniques. IM potentiated I(GABA) in a subpopulation of medium to large diameter capsaicin insensitive DRG neurons. This effect was dependent on the concentration of GABA, manifest only at low concentrations (emergence of injury-induced DRR. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  7. Sacubitril/valsartan in heart failure: latest evidence and place in therapy

    Science.gov (United States)

    Kaplinsky, Edgardo

    2016-01-01

    Despite significant therapeutic advances, patients with chronic heart failure (HF) remain at high risk for HF progression and death. Sacubitril/valsartan (previously known as LCZ696) is a first-in-class medicine that contains a neprilysin (NEP) inhibitor (sacubitril) and an angiotensin II (Ang-II) receptor blocker (valsartan). NEP is an endopeptidase that metabolizes different vasoactive peptides including natriuretic peptides, bradykinin and Ang-II. In consequence, its inhibition increases mainly the levels of both, natriuretic peptides (promoting diuresis, natriuresis and vasodilatation) and Ang-II whose effects are blocked by the angiotensin receptor blocker, valsartan (reducing vasoconstriction and aldosterone release). Results from the 8442 patient PARADIGM-HF study showed in patients with New York Heart Association (NYHA) class II–IV and reduced ejection fraction treated with LCZ696 (versus enalapril), the following benefits: reduction of the risk of death from cardiovascular causes by 20%; reduction of HF hospitalizations by 21%; reduction of the risk of all-cause mortality by 16%. Overall there was a 20% risk reduction on the primary endpoint, composite measure of cardiovascular (CV) death or time to first HF hospitalization. PARADIGM-HF was stopped early after a median follow up of 27 months. Post hoc analyses of PARADIGM-HF as well as the place in therapy of sacubitril/valsartan, including future directions, are included in the present review. PMID:27803793

  8. Paraventricular Nucleus Modulates Excitatory Cardiovascular Reflexes during Electroacupuncture

    Science.gov (United States)

    Tjen-A-Looi, Stephanie C.; Guo, Zhi-Ling; Fu, Liang-Wu; Longhurst, John C.

    2016-01-01

    The paraventricular nucleus (PVN) regulates sympathetic outflow and blood pressure. Somatic afferent stimulation activates neurons in the hypothalamic PVN. Parvocellular PVN neurons project to sympathoexcitatory cardiovascular regions of the rostral ventrolateral medulla (rVLM). Electroacupuncture (EA) stimulates the median nerve (P5-P6) to modulate sympathoexcitatory responses. We hypothesized that the PVN and its projections to the rVLM participate in the EA-modulation of sympathoexcitatory cardiovascular responses. Cats were anesthetized and ventilated. Heart rate and mean blood pressure were monitored. Application of bradykinin every 10-min on the gallbladder induced consistent pressor reflex responses. Thirty-min of bilateral EA stimulation at acupoints P5-P6 reduced the pressor responses for at least 60-min. Inhibition of the PVN with naloxone reversed the EA-inhibition. Responses of cardiovascular barosensitive rVLM neurons evoked by splanchnic nerve stimulation were reduced by EA and then restored with opioid receptor blockade in the PVN. EA at P5-P6 decreased splanchnic evoked activity of cardiovascular barosensitive PVN neurons that also project directly to the rVLM. PVN neurons labeled with retrograde tracer from rVLM were co-labeled with μ-opioid receptors and juxtaposed to endorphinergic fibers. Thus, the PVN and its projection to rVLM are important in processing acupuncture modulation of elevated blood pressure responses through a PVN opioid mechanism. PMID:27181844

  9. Procedures for Sensitive Immunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Givol, D. [Department of Chemical Immunology, Weizmann Institute of Science, Rehovot (Israel)

    1970-02-15

    Sensitive immunoassay methods should be applied to small molecules of biological importance, which are non-immunogenic by themselves, such as small peptide hormones (e.g. bradykinin), plant hormones (e.g. indoleacetic acid), nucleotides and other small molecules. Methods of binding these small molecules, as haptens, to immunogenic carriers by various cross-linking agents are described (dicyclohexylcarbodiimide, tolylene-diisocyanate and glutaraldehyde), and the considerations involved in relation to the methods of binding and the specificity of the antibodies formed are discussed. Some uses of antibody bound to bromoacetyl cellulose as an immuno adsorbent convenient for assay of immunoglobulins are described. Finally, the sensitive immunoassay method of chemically modified phage is described. This includes methods of binding small molecules (such as the dinitrophenyl group, penicillin, indoleacetic acid) or proteins (such as insulin, immunoglobulins) to phages. Methods of direct chemical conjugation, or an indirect binding via anti-phage Fab, are described. The phage inactivation method by direct plating and its modifications (such as decision technique and complex inactivation) are compared with the more simple end-point titration method. The inhibition of phage inactivation has some advantages as it does not require radioactive material, or expensive radioactive counters, and avoids the need for separation between bound and unbound antigen. Hence, if developed, it could be used as an alternative to radioimmunoassay. (author)

  10. Pharmacological properties of angiotensin II antagonists: Examining all the therapeutic implications

    Directory of Open Access Journals (Sweden)

    Thomas Unger

    2001-06-01

    Full Text Available Angiotensin II (Ang II, the effector peptide of the renin-angiotensin system (RAS, exerts a variety of actions in physiological blood pressure and body fluid regulation, and is implicated as a major pathogenic factor in the development of cardiovascular disease. Inhibition of the RAS, via treatment with the angiotensin-converting enzyme inhibitors (ACE-I, or more recently the Ang II AT1-receptor blockers (ARBs, has been used as a therapeutic approach to the treatment of hypertension and other cardiovascular dysfunction. Evidence from animal and clinical studies shows that the antihypertensive and overall organ-protective actions of the ARBs are similar to those of ACE-I. However, as the ARBs selectively block the AT1-receptor, which is responsible for the known cardiovascular actions of Ang II, leave the AT2-receptor unopposed and do not interfere with the breakdown of bradykinin, there is the potential for beneficial effects in hypertensive patients with cardiovascular diseases such as left ventricular hypertrophy. Furthermore, there may be additional benefits when the ARBs are combined with ACE-I in such patients. Animal studies contribute to the elucidation and understanding of the role of AT1- and AT2-receptors in the cardiovascular system, and may help in the design of clinical studies aimed at investigating the effects of ACE-I, ARBs, and their combination, on cardiovascular outcomes in hypertensive patients.

  11. What have we learned about the kallikrein-kinin and renin-angiotensin systems in neurological disorders?

    Institute of Scientific and Technical Information of China (English)

    Maria; da; Graa; Naffah-Mazzacoratti; Telma; Luciana; Furtado; Gouveia; Priscila; Santos; Rodrigues; Simōes; Sandra; Regina; Perosa

    2014-01-01

    The kallikrein-kinin system(KKS) is an intricate endogenous pathway involved in several physiological and pathological cascades in the brain. Due to the pathological effects of kinins in blood vessels and tissues, their formation and degradation are tightly controlled. Their components have been related to several central nervous system diseases such as stroke, Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, epilepsy and others. Bradykinin and its receptors(B1R and B2R) may have a role in the pathophysiology of certain central nervous system diseases. It has been suggested that kinin B1R is up-regulated in pathological conditions and has a neurodegenerative pattern, while kinin B2R is constitutive and can act as a neuroprotective factor in many neurological conditions. The renin angiotensin system(RAS) is an important blood pressure regulator and controls both sodium and water intake. AngⅡ is a potent vasoconstrictor molecule and angiotensin converting enzyme is the major enzyme responsible for its release. AngⅡ acts mainly on the AT1 receptor, with involvement in several systemic and neurological disorders. Brain RAS has been associated with physiological pathways, but is also associated with brain disorders. This review describes topics relating to the involvement of both systems in several forms of brain dysfunction and indicates components of the KKS and RAS that have been used as targets in several pharmacological approaches.

  12. Peripheral artery disease: potential role of ACE-inhibitor therapy

    Directory of Open Access Journals (Sweden)

    Giuseppe Coppola

    2008-12-01

    Full Text Available Giuseppe Coppola, Giuseppe Romano, Egle Corrado, Rosa Maria Grisanti, Salvatore NovoDepartment of Internal Medicine, Cardiovascular and Nephro-Urological Diseases, Chair of Cardiovascular Disease, University of Palermo, Palermo, ItalyAbstract: Subjects with peripheral arterial disease (PAD of the lower limbs are at high risk for cardiovascular and cerebrovascular events and the prevalence of coronary artery disease in such patients is elevated. Recent studies have shown that regular use of cardiovascular medications, such as therapeutic and preventive agents for PAD patients, seems to be promising in reducing long-term mortality and morbidity. The angiotensin-converting-enzyme (ACE system plays an important role in the pathogenesis and progression of atherosclerosis, and ACE-inhibitors (ACE-I seem to have vasculoprotective and antiproliferative effects as well as a direct antiatherogenic effect. ACE-I also promote the degradation of bradykinin and the release of nitric oxide, a potent vasodilator; further, thay have shown important implications for vascular oxidative stress. Other studies have suggested that ACE-I may also improve endothelial dysfunction. ACE-I are useful for reducing the risk of cardiovascular events in clinical and subclinical PAD. Particularly, one agent of the class (ie, ramipril has shown in many studies to able to significantly reduce cardiovascular morbidity and mortality in patients with PAD.Keywords: atherosclerosis, peripheral arterial disease, endothelial dysfunction, ACE-inhibitors

  13. Pharmacological properties of angiotensin II antagonists: examining all the therapeutic implications

    Directory of Open Access Journals (Sweden)

    Thomas Unger

    2001-06-01

    Full Text Available Angiotensin II (Ang II, the effector peptide of the renin-angiotensin system (RAS, exerts a variety of actions in physiological blood pressure and body fluid regulation, and is implicated as a major pathogenic factor in the development of cardiovascular disease. Inhibition of the RAS, via treatment with the angiotensin-converting enzyme inhibitors (ACE-I, or more recently the Ang II AT1-receptor blockers (ARBs, has been used as a therapeutic approach to the treatment of hypertension and other cardiovascular dysfunction. Evidence from animal and clinical studies shows that the antihypertensive and overall organ-protective actions of the ARBs are similar to those of ACE-I. However, as the ARBs selectively block the AT1-receptor, which is responsible for the known cardiovascular actions of Ang II, leave the AT2-receptor unopposed and do not interfere with the breakdown of bradykinin, there is the potential for beneficial effects in hypertensive patients with cardiovascular diseases such as left ventricular hypertrophy. Furthermore, there may be additional benefits when the ARBs are combined with ACE-I in such patients. Animal studies contribute to the elucidation and understanding of the role of AT1- and AT2-receptors in the cardiovascular system, and may help in the design of clinical studies aimed at investigating the effects of ACE-I, ARBs, and their combination, on cardiovascular outcomes in hypertensive patients.

  14. Anti-inflammatory and anti-allergic properties of the essential oil and active compounds from Cordia verbenacea.

    Science.gov (United States)

    Passos, Giselle F; Fernandes, Elizabeth S; da Cunha, Fernanda M; Ferreira, Juliano; Pianowski, Luiz F; Campos, Maria M; Calixto, João B

    2007-03-21

    The anti-inflammatory and anti-allergic effects of the essential oil of Cordia verbenacea (Boraginaceae) and some of its active compounds were evaluated. Systemic treatment with the essential oil of Cordia verbenacea (300-600mg/kg, p.o.) reduced carrageenan-induced rat paw oedema, myeloperoxidase activity and the mouse oedema elicited by carrageenan, bradykinin, substance P, histamine and platelet-activating factor. It also prevented carrageenan-evoked exudation and the neutrophil influx to the rat pleura and the neutrophil migration into carrageenan-stimulated mouse air pouches. Moreover, Cordia verbenacea oil inhibited the oedema caused by Apis mellifera venom or ovalbumin in sensitized rats and ovalbumin-evoked allergic pleurisy. The essential oil significantly decreased TNFalpha, without affecting IL-1beta production, in carrageenan-injected rat paws. Neither the PGE(2) formation after intrapleural injection of carrageenan nor the COX-1 or COX-2 activities in vitro were affected by the essential oil. Of high interest, the paw edema induced by carrageenan in mice was markedly inhibited by both sesquiterpenic compounds obtained from the essential oil: alpha-humulene and trans-caryophyllene (50mg/kg, p.o.). Collectively, the present results showed marked anti-inflammatory effects for the essential oil of Cordia verbenacea and some active compounds, probably by interfering with TNFalpha production. Cordia verbenacea essential oil or its constituents might represent new therapeutic options for the treatment of inflammatory diseases.

  15. Depletion of intracellular calcium stores facilitates the influx of extracellular calcium in platelet derived growth factor stimulated A172 glioblastoma cells.

    Science.gov (United States)

    Vereb, G; Szöllösi, J; Mátyus, L; Balázs, M; Hyun, W C; Feuerstein, B G

    1996-05-01

    Calcium signaling in non-excitable cells is the consequence of calcium release from intracellular stores, at times followed by entry of extracellular calcium through the plasma membrane. To study whether entry of calcium depends upon the level of saturation of intracellular stores, we measured calcium channel opening in the plasma membrane of single confluent A172 glioblastoma cells stimulated with platelet derived growth factor (PDGF) and/or bradykinin (BK). We monitored the entry of extracellular calcium by measuring manganese quenching of Indo-1 fluorescence. PDGF raised intracellular calcium concentration ([Ca2+]i) after a dose-dependent delay (tdel) and then opened calcium channels after a dose-independent delay (tch). At higher doses (> 3 nM), BK increased [Ca2+]i after a tdel approximately 0 s, and tch decreased inversely with both dose and peak [Ca2+]i. Experiments with thapsigargin (TG), BK, and PDGF indicated that BK and PDGF share intracellular Ca2+ pools that are sensitive to TG. When these stores were depleted by treatment with BK and intracellular BAPTA, tdel did not change, but tch fell to almost 0 s in PDGF stimulated cells, indicating that depletion of calcium stores affects calcium channel opening in the plasma membrane. Our data support the capacitative model for calcium channel opening and the steady-state model describing quantal Ca2+ release from intracellular stores.

  16. Enhanced activity of an angiotensin-(1-7) neuropeptidase in glucocorticoid-induced fetal programming.

    Science.gov (United States)

    Marshall, Allyson C; Shaltout, Hossam A; Pirro, Nancy T; Rose, James C; Diz, Debra I; Chappell, Mark C

    2014-02-01

    We previously identified angiotensin converting enzyme (ACE) and an endopeptidase activity that degraded angiotensin-(1-7) [Ang-(1-7)] to Ang-(1-5) and Ang-(1-4), respectively, in the cerebrospinal fluid (CSF) of 6-month old male sheep. The present study undertook a more comprehensive analysis of the CSF peptidase that converts Ang-(1-7) to Ang-(1-4) in control and in utero betamethasone-exposed sheep (BMX). Characterization of the Ang-(1-7) peptidase revealed that the thiol agents 4-aminophenylmercuric acetate (APMA) and p-chloromercuribenzoic acid (PCMB), as well as the metallo-chelators o-phenanthroline and EDTA essentially abolished the enzyme activity. Additional inhibitors for serine, aspartyl, and cysteine proteases, as well as selective inhibitors against the endopeptidases neprilysin, neurolysin, prolyl and thimet oligopeptidases did not attenuate enzymatic activity. Competition studies against the peptidase revealed similar IC50s for Ang-(1-7) (5μM) and Ang II (3μM), but lower values for Ala(1)-Ang-(1-7) and Ang-(2-7) of 1.8 and 2.0μM, respectively. In contrast, bradykinin exhibited a 6-fold higher IC50 (32μM) than Ang-(1-7) while neurotensin was a poor competitor. Mean arterial pressure (78±1 vs. 94±2mmHg, N=4-5, Pfetal programming. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Snake Venom As An Effective Tool Against Colorectal Cancer.

    Science.gov (United States)

    Uzair, Bushra; Atlas, Nagina; Malik, Sidra Batool; Jamil, Nazia; Salaam, Temitope Ojuolape; Rehman, Mujaddad Ur; Khan, Barkat Ali

    2018-06-13

    Cancer is considered one of the most predominant causes of morbidity and mortality all over the world and colorectal cancer is the most common fatal cancers, triggering the second cancer related death. Despite progress in understanding carcinogenesis and development in chemotherapeutics, there is an essential need to search for improved treatment. More than the half a century, cytotoxic and cytostatic agents have been examined as a potential treatment of cancer, among these agents; remarkable progresses have been reported by the use of the snake venom. Snake venoms are secreting materials of lethal snakes are store in venomous glands. Venoms are composite combinations of various protein, peptides, enzymes, toxins and non proteinaceous secretions. Snake venom possesses immense valuable mixtures of proteins and enzymes. Venoms have potential to combat with the cancerous cells and produce positive effect. Besides the toxicological effects of venoms, several proteins of snake venom e.g. disintegrins, phospholipases A2, metalloproteinases, and L-amino acid oxidases and peptides e.g. bradykinin potentiators, natriuretic, and analgesic peptides have shown potential as pharmaceutical agents, including areas of diagnosis and cancer treatment. In this review we have discussed recent remarkable research that has involved the dynamic snake venoms compounds, having anticancer bustle especially in case of colorectal cancer. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Evidence for a dihydropyridine-sensitive and conotoxin-insensitive release of noradrenaline and uptake of calcium in adrenal chromaffin cells.

    Science.gov (United States)

    Owen, P. J.; Marriott, D. B.; Boarder, M. R.

    1989-01-01

    1. It has been suggested that neuronal voltage-sensitive calcium channels (VSCC) may be divided into dihydropyridine (DHP)-sensitive (L) and DHP-insensitive (N and T), and that both the L and the N type channels are attenuated by the peptide blocker omega-conotoxin. Here the effects of omega-conotoxin on release of noradrenaline and uptake of calcium in bovine adrenal chromaffin cells were investigated. 2. Release of noradrenaline in response to 25 mM K+, 65 mM K+, 10 nM bradykinin or 10 microM prostaglandin E1 was not affected by omega-conotoxin in the range 10 nM-1 microM. 3. 45Ca2+ uptake stimulated by high K+ and prostaglandin was attenuated by 1 microM nitrendipine and enhanced by 1 microM Bay K 8644; these calcium fluxes were not modified by 20 nM omega-conotoxin. 4. With superfused rat brain striatal slices in the same medium as the above cell studies, release of dopamine in response to 25 mM K+ was attenuated by 20 nM omega-conotoxin. 5. These results show that in these neurone-like cells, release may be effected by calcium influx through DHP-sensitive but omega-conotoxin-insensitive VSCC, a result inconsistent with the suggestion that omega-conotoxin blocks both L-type and N-type neuronal calcium channels. PMID:2470457

  19. Uptake, incorporation and metabolism of (3H)triolein in the isolated perfused rabbit heart

    International Nuclear Information System (INIS)

    Weis, M.T.; Palazzo, A.J.; Williams, J.L. Jr.; Malik, K.U.

    1990-01-01

    The purpose of these experiments was to study the uptake and metabolism of exogenous triglyceride in the isolated perfused rabbit heart. When infused into the rabbit heart, [9,10-3H(N)]triolein was retained and incorporated into a lipid fraction that had the chromatographic mobility of authentic triolein. Incorporation of labeled triolein was not likely to be the result of a lipoprotein lipase-mediated lipolysis/resynthesis cycle, since: (i) The distribution of radioactivity following administration of [3H]oleic acid was markedly different from the distribution of radioactivity following the administration of [3H]triolein; (ii) heparin was administered to the rabbits at the time of sacrifice; and (iii) the hearts were perfused with a protein-free buffer for 20 min prior to the labelling period. When isoproterenol was administered to hearts labelled with [3H]triolein, there was an increased output of total radioactivity, composed of labelled free fatty acids, diacylglycerol and monoacylglycerol. In these same hearts, there was an increased output of glycerol in response to isoproterenol. However, following the administration of bradykinin or angiotensin II, neither the radioactivity nor the glycerol content of the perfusate was changed. These data suggest that [3H]triolein is selectively incorporated into the triglyceride pool of the isolated perfused rabbit heart. Furthermore, this [3H]triolein is available to hormonally-activated lipolytic enzymes

  20. The gender-specific role of polymorphisms from the fibrinolytic, renin-angiotensin, and bradykinin systems in determining plasma t-PA and PAI-I levels

    NARCIS (Netherlands)

    Asselbergs, Folkert W.; Williams, Scott M.; Hebert, Patricia R.; Coffey, Christopher S.; Hillege, Hans L.; Navis, Gerjan; Vaughan, Douglas E.; van Gilst, Wiek H.; Moore, Jason H.

    2006-01-01

    Tissue plasminogen activator (t-PA) and plasminogen activator inhibitor I (PAI-I) directly influence thrombus formation and degradation and thus risk for arterial thrombosis. We report here results from a genetic analysis of plasma t-PA and PAI-I levels in a large population-based sample from the

  1. Cellular localization of kinin B1 receptor in the spinal cord of streptozotocin-diabetic rats with a fluorescent [Nα-Bodipy]-des-Arg9-bradykinin

    Directory of Open Access Journals (Sweden)

    Gaudreau Pierrette

    2009-03-01

    Full Text Available Abstract Background The kinin B1 receptor (B1R is upregulated by pro-inflammatory cytokines, bacterial endotoxins and hyperglycaemia-induced oxidative stress. In animal models of diabetes, it contributes to pain polyneuropathy. This study aims at defining the cellular localization of B1R in thoracic spinal cord of type 1 diabetic rats by confocal microscopy with the use of a fluorescent agonist, [Nα-Bodipy]-des-Arg9-BK (BdABK and selective antibodies. Methods Diabetes was induced by streptozotocin (STZ; 65 mg/kg, i.p.. Four days post-STZ treatment, B1R expression was confirmed by quantitative real-time PCR and autoradiography. The B1R selectivity of BdABK was determined by assessing its ability to displace B1R [125I]-HPP-desArg10-Hoe140 and B2R [125I]-HPP-Hoe 140 radioligands. The in vivo activity of BdABK was also evaluated on thermal hyperalgesia. Results B1R was increased by 18-fold (mRNA and 2.7-fold (binding sites in the thoracic spinal cord of STZ-treated rats when compared to control. BdABK failed to displace the B2R radioligand but displaced the B1R radioligand (IC50 = 5.3 nM. In comparison, IC50 values of B1R selective antagonist R-715 and B1R agonist des-Arg9-BK were 4.3 nM and 19 nM, respectively. Intraperitoneal BdABK and des-Arg9-BK elicited dose-dependent thermal hyperalgesia in STZ-treated rats but not in control rats. The B1R fluorescent agonist was co-localized with immunomarkers of microglia, astrocytes and sensory C fibers in the spinal cord of STZ-treated rats. Conclusion The induction and up-regulation of B1R in glial and sensory cells of the spinal cord in STZ-diabetic rats reinforce the idea that kinin B1R is an important target for drug development in pain processes.

  2. Endothelin-1 shifts the mediator of bradykinin-induced relaxation from NO to H2 O2 in resistance arteries from patients with cardiovascular disease

    DEFF Research Database (Denmark)

    Leurgans, Thomas M; Bloksgaard, Maria; Brewer, Jonathan R

    2016-01-01

    -activated K(+) -channels, but markedly blunted by catalase during ET-1-induced contraction. This catalase-sensitive relaxation was not modified by inhibitors of NADPH oxidases or allopurinol. Exogenous H2 O2 caused significantly larger relaxation of ET-1- than K(+) - or U46619-induced contraction...... in the presence of inhibitors of other endothelium-derived relaxing factors. Catalase-sensitive staining of cellular reactive oxygen species with CellROX Deep Red was significantly increased in presence of both 1 μM BK and 2 nM ET-1 but not either peptide alone. CONCLUSIONS AND IMPLICATIONS: In patient resistance...

  3. Lactic acid bacteria: inhibition of angiotensin converting enzyme in vitro and in vivo.

    Science.gov (United States)

    Fuglsang, Anders; Rattray, Fergal P; Nilsson, Dan; Nyborg, Niels C B

    2003-01-01

    A total of 26 strains of wild-type lactic acid bacteria, mainly belonging to Lactococcus lactis and Lactobacillus helveticus, were assayed in vitro for their ability to produce a milk fermentate with inhibitory activity towards angiotensin converting enzyme (ACE). It was clear that the test strains in this study, in general, produce inhibitory substances in varying amounts. Using a spectrophotometric assay based on amino group derivatization with ortho-phthaldialdehyde as a measure of relative peptide content, it was shown that there is a significant correlation between peptide formation and ACE inhibition, indicating that peptide measurement constitutes a convenient selection method. The effect of active fermentates on in vivo ACE activity was demonstrated in normotensive rats. The pressor effect of angiotensin I (0.3 microg/kg) upon intravenous injection was significantly lower when rats were pre-fed with milks fermented using two strains of Lactobacillus helveticus. An increased response to bradykinin (10 microg/kg, intravenously injected) was observed using one of these fermented milks. It is concluded that Lactobacillus helveticus produces substances which in vivo can give rise to an inhibition of ACE. The inhibition in vivo was low compared to what can be achieved with classical ACE inhibitors. The clinical relevance of this finding is discussed. This work is the first in which an effect of fermented milk on ACE in vivo has been demonstrated, measured as decreased ability to convert angiotensin I to angiotensin II.

  4. The Mast Cell, Contact, and Coagulation System Connection in Anaphylaxis

    Directory of Open Access Journals (Sweden)

    Mar Guilarte

    2017-07-01

    Full Text Available Anaphylaxis is the most severe form of allergic reaction, resulting from the effect of mediators and chemotactic substances released by activated cells. Mast cells and basophils are considered key players in IgE-mediated human anaphylaxis. Beyond IgE-mediated activation of mast cells/basophils, further mechanisms are involved in the occurrence of anaphylaxis. New insights into the potential relevance of pathways other than mast cell and basophil degranulation have been unraveled, such as the activation of the contact and the coagulation systems. Mast cell heparin released upon activation provides negatively charged surfaces for factor XII (FXII binding and auto-activation. Activated FXII, the initiating serine protease in both the contact and the intrinsic coagulation system, activates factor XI and prekallikrein, respectively. FXII-mediated bradykinin (BK formation has been proven in the human plasma of anaphylactic patients as well as in experimental models of anaphylaxis. Moreover, the severity of anaphylaxis is correlated with the increase in plasma heparin, BK formation and the intensity of contact system activation. FXII also activates plasminogen in the fibrinolysis system. Mast cell tryptase has been shown to participate in fibrinolysis through plasmin activation and by facilitating the degradation of fibrinogen. Some usual clinical manifestations in anaphylaxis, such as angioedema or hypotension, or other less common, such as metrorrhagia, may be explained by the direct effect of the activation of the coagulation and contact system driven by mast cell mediators.

  5. PGI2 synthesis and excretion in dog kidney: evidence for renal PG compartmentalization

    International Nuclear Information System (INIS)

    Boyd, R.M.; Nasjletti, A.; Heerdt, P.M.; Baer, P.G.

    1986-01-01

    To assess the concept of compartmentalization of renal prostaglandins (PG), we compared entry of PGE2 and the PGI2 metabolite 6-keto-PGF1 alpha into the renal vascular and tubular compartments, in sodium pentobarbital-anesthetized dogs. Renal arterial 6-keto-PGF1 alpha infusion increased both renal venous and urinary 6-keto-PGF1 alpha outflow. In contrast, renal arterial infusion of arachidonic acid (AA) or bradykinin (BK) increased renal venous 6-keto-PGF1 alpha outflow but had no effect on its urinary outflow. Both urinary and renal venous PGE2 outflows increased during AA or BK infusion. Ureteral stopped-flow studies revealed no postglomerular 6-keto-PGF1 alpha entry into tubular fluid. During renal arterial infusion of [3H]PGI2 and inulin, first-pass 3H clearance was 40% of inulin clearance; 35% of urinary 3H was 6-keto-PGF1 alpha, and two other urinary metabolites were found. During renal arterial infusion of [3H]6-keto-PGF1 alpha and inulin, first-pass 3H clearance was 150% of inulin clearance; 75% of urinary 3H was 6-keto-PGF1 alpha, and only one other metabolite was found. We conclude that in the dog PGE2 synthesized in the kidney enters directly into both the renal vascular and tubular compartments, but 6-keto-PGF1 alpha of renal origin enters directly into only the renal vascular compartment

  6. Cross-organ sensitization of thoracic spinal neurons receiving noxious cardiac input in rats with gastroesophageal reflux.

    Science.gov (United States)

    Qin, Chao; Malykhina, Anna P; Thompson, Ann M; Farber, Jay P; Foreman, Robert D

    2010-06-01

    Gastroesophageal reflux (GER) frequently triggers or worsens cardiac pain or symptoms in patients with coronary heart disease. This study aimed to determine whether GER enhances the activity of upper thoracic spinal neurons receiving noxious cardiac input. Gastric fundus and pyloric ligations as well as a longitudinal myelotomy at the gastroesophageal junction induced acute GER in pentobarbital-anesthetized, paralyzed, and ventilated male Sprague-Dawley rats. Manual manipulations of the stomach and lower esophagus were used as surgical controls in another group. At 4-9 h after GER surgery, extracellular potentials of single neurons were recorded from the T3 spinal segment. Intrapericardial bradykinin (IB) (10 microg/ml, 0.2 ml, 1 min) injections were used to activate cardiac nociceptors, and esophageal distensions were used to activate esophageal afferent fibers. Significantly more spinal neurons in the GER group responded to IB compared with the control group (69.1 vs. 38%, P neurons in the superficial laminae of GER animals was significantly different from those in deeper layers (1/8 vs. 46/60, P 0.05). Excitatory responses of spinal neurons to IB in the GER group were greater than in the control group [32.4 +/- 3.5 impulses (imp)/s vs. 13.3 +/- 2.3 imp/s, P neurons responded to cardiac input and ED, which was higher than the control group (61.5%, P neurons in deeper laminae of the dorsal horn to noxious cardiac stimulus.

  7. Continuous Renal Replacement Therapy Applications on Extracorporeal Membrane Oxygenation Circuit.

    Science.gov (United States)

    Yetimakman, Ayse Filiz; Tanyildiz, Murat; Kesici, Selman; Kockuzu, Esra; Bayrakci, Benan

    2017-06-01

    Continuous venovenous hemofiltration or hemodiafiltration is used frequently in pediatric patients, but experience of continuous renal replacement therapy (CRRT) application on extracorporeal membrane oxygenation (ECMO) circuit is still limited. Among several methods used for applying CRRT on ECMO patients, we aim to share our experience on inclusion of a CRRT device in the ECMO circuit which we believe is easier and safer to apply. The data were collected on demographics, outcomes, and details of the treatment of ECMO patients who had CRRT. During the study period of 3 years, venous cannula of ECMO circuit before pump was used for CRRT access for both the filter inlet and outlet of CRRT machine to minimize the thromboembolic complications. The common indication for CRRT was fluid overload. CRRT was used in 3.68% of a total number of patients admitted and 43% of patients on ECMO. The patients have undergone renal replacement therapy for periods of time ranging between 24 h and 25 days (260 h mean). The survival rate of this group of patients with multiorgan failure was 33%. Renal recovery occurred in all of the survivors. Complications such as electrolyte imbalance, hypothermia, and bradykinin syndrome were easily managed. Adding a CRRT device on ECMO circuit is a safe and effective technique. The major advantages of this technique are easy to access, applying CRRT without extra anticoagulation process, preventing potential hemodynamic disturbances, and increased clearance of solutes and fluid overload using larger hemofilter.

  8. Hypersensitivity reactions in patients receiving hemodialysis.

    Science.gov (United States)

    Butani, Lavjay; Calogiuri, Gianfranco

    2017-06-01

    To describe hypersensitivity reactions in patients receiving maintenance hemodialysis. PubMed search of articles published during the past 30 years with an emphasis on publications in the past decade. Case reports and review articles describing hypersensitivity reactions in the context of hemodialysis. Pharmacologic agents are the most common identifiable cause of hypersensitivity reactions in patients receiving hemodialysis. These include iron, erythropoietin, and heparin, which can cause anaphylactic or pseudoallergic reactions, and topical antibiotics and anesthetics, which lead to delayed-type hypersensitivity reactions. Many hypersensitivity reactions are triggered by complement activation and increased bradykinin resulting from contact system activation, especially in the context of angiotensin-converting enzyme inhibitor use. Several alternative pharmacologic preparations and dialyzer membranes are available, such that once an etiology for the reaction is established, recurrences can be prevented without affecting the quality of care provided to patients. Although hypersensitivity reactions are uncommon in patients receiving hemodialysis, they can be life-threatening. Moreover, considering the large prevalence of the end-stage renal disease population, the implications of such reactions are enormous. Most reactions are pseudoallergic and not mediated by immunoglobulin E. The multiplicity of potential exposures and the complexity of the environment to which patients on dialysis are exposed make it challenging to identify the precise cause of these reactions. Great diligence is needed to investigate hypersensitivity reactions to avoid recurrence in this high-risk population. Copyright © 2017 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  9. Exercise capacity and cardiac hemodynamic response in female ApoE/LDLR−/− mice: a paradox of preserved V’O2max and exercise capacity despite coronary atherosclerosis

    Science.gov (United States)

    Wojewoda, M.; Tyrankiewicz, U.; Gwozdz, P.; Skorka, T.; Jablonska, M.; Orzylowska, A.; Jasinski, K.; Jasztal, A.; Przyborowski, K.; Kostogrys, R. B.; Zoladz, J. A.; Chlopicki, S.

    2016-01-01

    We assessed exercise performance, coronary blood flow and cardiac reserve of female ApoE/LDLR−/− mice with advanced atherosclerosis compared with age-matched, wild-type C57BL6/J mice. Exercise capacity was assessed as whole body maximal oxygen consumption (V’O2max), maximum running velocity (vmax) and maximum distance (DISTmax) during treadmill exercise. Cardiac systolic and diastolic function in basal conditions and in response to dobutamine (mimicking exercise-induced cardiac stress) were assessed by Magnetic Resonance Imaging (MRI) in vivo. Function of coronary circulation was assessed in isolated perfused hearts. In female ApoE/LDLR−/− mice V’O2max, vmax and DISTmax were not impaired as compared with C57BL6/J mice. Cardiac function at rest and systolic and diastolic cardiac reserve were also preserved in female ApoE/LDLR−/− mice as evidenced by preserved fractional area change and similar fall in systolic and end diastolic area after dobutamine. Moreover, endothelium-dependent responses of coronary circulation induced by bradykinin (Bk) and acetylcholine (ACh) were preserved, while endothelium-independent responses induced by NO-donors were augmented in female ApoE/LDLR−/− mice. Basal COX-2-dependent production of 6-keto-PGF1α was increased. Concluding, we suggest that robust compensatory mechanisms in coronary circulation involving PGI2- and NO-pathways may efficiently counterbalance coronary atherosclerosis-induced impairment in V’O2max and exercise capacity. PMID:27108697

  10. Laticifer proteins from Plumeria pudica inhibit the inflammatory and nociceptive responses by decreasing the action of inflammatory mediators and pro-inflammatory cytokines

    Directory of Open Access Journals (Sweden)

    Heliana B. Fernandes

    Full Text Available AbstractSome publications have described the pharmacological properties of latices proteins. Thus, in the present study proteins from Plumeria pudica Jacq., Apocynaceae, latex were evaluated for anti-inflammatory and antinociceptive activities. Obtained data showed that an intraperitoneal administration of different doses of latex was able to reduce the paw edema induced by carrageenan in a dose-dependent manner (better dose 40 mg/kg; 72.7% inhibition at 3rd and 78.7% at 4th hour and the edema induced by dextran (40 mg/kg; 51.5% inhibition at 30 min and 93.0% at 1st hour. Inhibition of edema induced by carrageenan was accompanied by a reduction of myeloperoxidase activity. Pre-treating animals with latex (40 mg/kg also inhibited the paw edema induced by histamine, serotonin, bradykinin, prostaglandin E2, compound 48/80. Additionally, the latex (40 mg/kg reduced the leukocyte peritoneal migration induced by carrageenan and this event was followed by reduction of IL-1β and TNF-α in peritoneal fluid. The latex-treatment (40 mg/kg reduced the animal abdominal constrictions induced by acetic acid and the first phase on paw licking model induced by formalin. When latex was treated with heat (at 100 °C for 30 min, anti-edematogenic and myeloperoxidase activities were significantly reduced, indicating the involvement of heat-sensitive proteins on anti-inflammatory effect. Our results evidence that latex fluids are a source of proteins with pharmacological properties.

  11. Angiotensin-converting enzyme inhibitors of Bothrops jararaca snake venom affect the structure of mice seminiferous epithelium.

    Science.gov (United States)

    Alberto-Silva, Carlos; Gilio, Joyce M; Portaro, Fernanda C V; Querobino, Samyr M; Camargo, Antonio C M

    2015-01-01

    Considering the similarity between the testis-specific isoform of angiotensin-converting enzyme and the C-terminal catalytic domain of somatic ACE as well as the structural and functional variability of its natural inhibitors, known as bradykinin-potentiating peptides (BPPs), the effects of different synthetic peptides, BPP-10c (

  12. Mechanisms of endothelial dysfunction in resistance arteries from patients with end-stage renal disease.

    Directory of Open Access Journals (Sweden)

    Leanid Luksha

    Full Text Available The study focuses on the mechanisms of endothelial dysfunction in the uremic milieu. Subcutaneous resistance arteries from 35 end-stage renal disease (ESRD patients and 28 matched controls were studied ex-vivo. Basal and receptor-dependent effects of endothelium-derived factors, expression of endothelial NO synthase (eNOS, prerequisites for myoendothelial gap junctions (MEGJ, and associations between endothelium-dependent responses and plasma levels of endothelial dysfunction markers were assessed. The contribution of endothelium-derived hyperpolarizing factor (EDHF to endothelium-dependent relaxation was impaired in uremic arteries after stimulation with bradykinin, but not acetylcholine, reflecting the agonist-specific differences. Diminished vasodilator influences of the endothelium on basal tone and enhanced plasma levels of asymmetrical dimethyl L-arginine (ADMA suggest impairment in NO-mediated regulation of uremic arteries. eNOS expression and contribution of MEGJs to EDHF type responses were unaltered. Plasma levels of ADMA were negatively associated with endothelium-dependent responses in uremic arteries. Preserved responses of smooth muscle to pinacidil and NO-donor indicate alterations within the endothelium and tolerance of vasodilator mechanisms to the uremic retention products at the level of smooth muscle. We conclude that both EDHF and NO pathways that control resistance artery tone are impaired in the uremic milieu. For the first time, we validate the alterations in EDHF type responses linked to kinin receptors in ESRD patients. The association between plasma ADMA concentrations and endothelial function in uremic resistance vasculature may have diagnostic and future therapeutic implications.

  13. High concentrations of morphine sensitize and activate mouse dorsal root ganglia via TRPV1 and TRPA1 receptors

    Directory of Open Access Journals (Sweden)

    Messlinger Karl

    2009-04-01

    Full Text Available Abstract Background Morphine and its derivatives are key drugs in pain control. Despite its well-known analgesic properties morphine at high concentrations may be proalgesic. Particularly, short-lasting painful sensations have been reported upon dermal application of morphine. To study a possible involvement of TRP receptors in the pro-nociceptive effects of morphine (0.3 – 10 mM, two models of nociception were employed using C57BL/6 mice and genetically related TRPV1 and TRPA1 knockout animals, which were crossed and generated double knockouts. Hindpaw skin flaps were used to investigate the release of calcitonin gene-related peptide indicative of nociceptive activation. Results Morphine induced release of calcitonin gene-related peptide and sensitized the release evoked by heat or the TRPA1 agonist acrolein. Morphine activated HEK293t cells transfected with TRPV1 or TRPA1. Activation of C57BL/6 mouse dorsal root ganglion neurons in culture was investigated with calcium imaging. Morphine induced a dose-dependent rise in intracellular calcium in neurons from wild-type animals. In neurons from TRPV1 and TRPA1 knockout animals activation by morphine was markedly reduced, in the TRPV1/A1 double knockout animals this morphine effect was abrogated. Naloxone induced an increase in calcium levels similar to morphine. The responses to both morphine and naloxone were sensitized by bradykinin. Conclusion Nociceptor activation and sensitization by morphine is conveyed by TRPV1 and TRPA1.

  14. Non-Dioxin-Like Polychlorinated Biphenyls Inhibit G-Protein Coupled Receptor-Mediated Ca2+ Signaling by Blocking Store-Operated Ca2+ Entry.

    Directory of Open Access Journals (Sweden)

    Se-Young Choi

    Full Text Available Polychlorinated biphenyls (PCBs are ubiquitous pollutants which accumulate in the food chain. Recently, several molecular mechanisms by which non-dioxin-like (NDL PCBs mediate neurodevelopmental and neurobehavioral toxicity have been elucidated. However, although the G-protein coupled receptor (GPCR is a significant target for neurobehavioral disturbance, our understanding of the effects of PCBs on GPCR signaling remains unclear. In this study, we investigated the effects of NDL-PCBs on GPCR-mediated Ca2+ signaling in PC12 cells. We found that ortho-substituted 2,2',6-trichlorinated biphenyl (PCB19 caused a rapid decline in the Ca2+ signaling of bradykinin, a typical Gq- and phospholipase Cβ-coupled GPCR, without any effect on its inositol 1,4,5-trisphosphate production. PCB19 reduced thapsigargin-induced sustained cytosolic Ca2+ levels, suggesting that PCB19 inhibits SOCE. The abilities of other NDL-PCBs to inhibit store-operated Ca2+ entry (SOCE were also examined and found to be of similar potencies to that of PCB19. PCB19 also showed a manner equivalent to that of known SOCE inhibitors. PCB19-mediated SOCE inhibition was confirmed by demonstrating the ability of PCB19 to inhibit the SOCE current and thapsigargin-induced Mn2+ influx. These results imply that one of the molecular mechanism by which NDL-PCBs cause neurobehavioral disturbances involves NDL-PCB-mediated inhibition of SOCE, thereby interfering with GPCR-mediated Ca2+ signaling.

  15. Is the renal kallikrein-kinin system a factor that modulates hypercalciuria?

    Directory of Open Access Journals (Sweden)

    Armando Luis Negri

    2017-01-01

    Full Text Available Renal tubular calcium reabsorption is one of the principal factors that determine serum calcium concentration and calcium excretion. Calcium excretion is regulated by the distal convoluted tubule and connecting tubule, where the epithelial calcium channel TRPV5 can be found, which limits the rate of transcellular calcium transport. The dynamic presence of the TRPV5 channel on the surface of the tubular cell is mediated by an endosomal recycling process. Different intrarenal factors are involved in calcium channel fixation in the apical membrane, including the anti-ageing hormone klotho and tissue kallikrein (TK. Both proteins are synthesised in the distal tubule and secreted in the tubular fluid. TK stimulates active calcium reabsorption through the bradykinin receptor B2 that compromises TRPV5 activation through the protein kinase C pathway. TK-deficient mice show hypercalciuria of renal origin comparable to that seen in TRPV5 knockout mice. There is a polymorphism with loss of function of the human TK gene R53H (allele H that causes a marked decrease in enzymatic activity. The presence of the allele H seems to be common at least in the Japanese population (24%. These individuals have a tendency to greater calcium and sodium excretion in urine that is more evident during furosemide infusion. Future studies should analyse if manipulating the renal kallikrein-kinin system can correct idiopathic hypercalciuria with drugs other than thiazide diuretics.

  16. Candida glabrata binds to glycosylated and lectinic receptors on the coronary endothelial luminal membrane and inhibits flow sense and cardiac responses to agonists.

    Science.gov (United States)

    Torres-Tirado, David; Knabb, Maureen; Castaño, Irene; Patrón-Soberano, Araceli; De Las Peñas, Alejandro; Rubio, Rafael

    2016-01-01

    Candida glabrata (CG) is an opportunistic fungal pathogen that initiates infection by binding to host cells via specific lectin-like adhesin proteins. We have previously shown the importance of lectin-oligosaccharide binding in cardiac responses to flow and agonists. Because of the lectinic-oligosaccharide nature of CG binding, we tested the ability of CG to alter the agonist- and flow-induced changes in cardiac function in isolated perfused guinea pig hearts. Both transmission and scanning electron microscopy showed strong attachment of CG to the coronary endothelium, even after extensive washing. CG shifted the coronary flow vs. auricular-ventricular (AV) delay relationship upward, indicating that greater flow was required to achieve the same AV delay. This effect was completely reversed with mannose, partially reversed with galactose and N-acetylgalactosamine, but hyaluronan had no effect. Western blot analysis was used to determine binding of CG to isolated coronary endothelial luminal membrane (CELM) receptors, and the results indicate that flow-sensitive CELM receptors, ANG II type I, α-adrenergic 1A receptor, endothelin-2, and VCAM-1 bind to CG. In addition, CG inhibited agonist-induced effects of bradykinin, angiotensin, and phenylephrine on AV delay, coronary perfusion pressure, and left ventricular pressure. Mannose reversed the inhibitory effects of CG on the agonist responses. These results suggest that CG directly binds to flow-sensitive CELM receptors via lectinic-oligosaccharide interactions with mannose and disrupts the lectin-oligosaccharide binding necessary for flow-induced cardiac responses. Copyright © 2016 the American Physiological Society.

  17. LCZ696 (Valsartan/Sacubitril)--A Possible New Treatment for Hypertension and Heart Failure.

    Science.gov (United States)

    Andersen, Mathilde Borring; Simonsen, Ulf; Wehland, Markus; Pietsch, Jessica; Grimm, Daniela

    2016-01-01

    The aim of this MiniReview was to introduce the newly invented dual-acting drug valsartan/sacubitril (LCZ696), which combines an angiotensin receptor blocker (valsartan) with sacubitril, a specific inhibitor of the neutral endopeptidase (NEP) that degrades vasoactive peptides, including natriuretic peptides ANP and BNP, but also glucagon, enkephalins and bradykinin, among others. The MiniReview presents the data of four available trials NCT01193101, NCT00549770, NCT00887588 and NCT01035255 and provides the current knowledge about LCZ696 effects in patients with hypertension and heart failure. Presently, patients suffering from hypertension and heart failure are treated with ACE inhibitors or angiotensin receptor antagonists often in combination with other drugs. These current medications lead to a reduction in blood pressure in hypertensive patients and a decreased mortality and morbidity in patients with heart failure with reduced ejection fraction, but not in patients with heart failure with preserved ejection fraction. LCZ696 had been tested to utilize the beneficial properties of natriuretic peptides in combination with angiotensin receptor antagonism. It induces even greater blood pressure reductions and decreased mortality and morbidity in patients with heart failure with reduced ejection fraction, while patients with heart failure with preserved ejection fraction show lowered blood pressure and decreased NT-pro-BNP levels. Although long-term studies remain to be performed, these initial data suggest that there is a potential clinical benefit of LCZ696 in the treatment of hypertension and heart failure. © 2015 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  18. Rapid screening and identification of ACE inhibitors in snake venoms using at-line nanofractionation LC-MS.

    Science.gov (United States)

    Mladic, Marija; de Waal, Tessa; Burggraaff, Lindsey; Slagboom, Julien; Somsen, Govert W; Niessen, Wilfried M A; Manjunatha Kini, R; Kool, Jeroen

    2017-10-01

    This study presents an analytical method for the screening of snake venoms for inhibitors of the angiotensin-converting enzyme (ACE) and a strategy for their rapid identification. The method is based on an at-line nanofractionation approach, which combines liquid chromatography (LC), mass spectrometry (MS), and pharmacology in one platform. After initial LC separation of a crude venom, a post-column flow split is introduced enabling parallel MS identification and high-resolution fractionation onto 384-well plates. The plates are subsequently freeze-dried and used in a fluorescence-based ACE activity assay to determine the ability of the nanofractions to inhibit ACE activity. Once the bioactive wells are identified, the parallel MS data reveals the masses corresponding to the activities found. Narrowing down of possible bioactive candidates is provided by comparison of bioactivity profiles after reversed-phase liquid chromatography (RPLC) and after hydrophilic interaction chromatography (HILIC) of a crude venom. Additional nanoLC-MS/MS analysis is performed on the content of the bioactive nanofractions to determine peptide sequences. The method described was optimized, evaluated, and successfully applied for screening of 30 snake venoms for the presence of ACE inhibitors. As a result, two new bioactive peptides were identified: pELWPRPHVPP in Crotalus viridis viridis venom with IC 50  = 1.1 μM and pEWPPWPPRPPIPP in Cerastes cerastes cerastes venom with IC 50  = 3.5 μM. The identified peptides possess a high sequence similarity to other bradykinin-potentiating peptides (BPPs), which are known ACE inhibitors found in snake venoms.

  19. Stimulation of phosphatidylcholine breakdown and diacylglycerol production by growth factors in Swiss-3T3 cells.

    Science.gov (United States)

    Price, B D; Morris, J D; Hall, A

    1989-01-01

    The effect of a number of growth factors on phosphatidylcholine (PtdCho) turnover in Swiss-3T3 cells was studied. Phorbol 12-myristate 13-acetate (PMA), bombesin, platelet-derived growth factor (PDGF) and vasopressin rapidly stimulated PtdCho hydrolysis, diacylglycerol (DAG) production, and PtdCho synthesis. Insulin and prostaglandin F2 alpha (PGF2 alpha) stimulated PtdCho synthesis, but not its breakdown, whereas epidermal growth factor (EGF) and bradykinin were without effect. Stimulation of PtdCho hydrolysis by the above ligands resulted in increased production of phosphocholine and DAG (due to phospholipase C activity) and significant amounts of choline, suggesting activation of a phospholipase D as well. CDP-choline and glycerophosphocholine levels were unchanged. Down-regulation of protein kinase C with PMA (400 nM, 40 h) abolished the stimulation of PtdCho hydrolysis and PtdCho synthesis by PMA, bombesin, PDGF and vasopressin, but not the stimulation of PtdCho synthesis by insulin and PGF2 alpha. PtdCho hydrolysis therefore occurs predominantly by activation of protein kinase C (either by PMA or PtdIns hydrolysis) leading to elevation of DAG levels derived from non-PtdIns(4,5)P2 sources. PtdCho synthesis occurs by both a protein kinase C-dependent pathway (stimulated by PMA, PDGF, bombesin and vasopressin) and a protein kinase C-independent pathway (stimulated by insulin and PGF2 alpha). DAG production from PtdCho hydrolysis is not the primary signal to activate protein kinase C, but may contribute to long-term activation of this kinase. PMID:2690829

  20. Association of ACE and FACTOR VII gene variability with the risk of coronary heart disease in north Indian population.

    Science.gov (United States)

    Sobti, R C; Maithil, Nishi; Thakur, Hitender; Sharma, Yashpaul; Talwar, K K

    2010-08-01

    The angiotensin converting enzyme (ACE) is a key factor in the production of angiotensin II and in the degradation of bradykinin. Chronic exposure to high levels of circulating and tissue ACE predispose to vascular wall thickening and atherosclerosis. Factor VII (FACTOR VII) is the first enzyme in the extrinsic pathway of the blood coagulation system and plays a key role in hemostasis; it also contributes to the occurrence of thrombotic events. In this study, we have examined the association of ACE and FACTOR VII gene in coronary heart disease patients (n = 300) and their age-matched controls (n = 300). Genotyping was done by PCR-RFLP method. No significant difference was observed in the distribution of I/D genotypes of ACE between cases and controls. In case of FACTOR VII R353Q polymorphism, there was not much difference in the distribution of alleles. AA genotype had protective effect for CHD (OR 0.56, 95% CI 0.37-0.83, P = 0.001). In case of FACTOR VII VNTR, there was difference in the distribution of alleles, H6 (73.5) and H7 (25.5) in cases, and H6 (70.5) and H7 (30.5) in controls. H6H7 and H7H7 genotypes had a protective effect for CHD with OR 0.27, 95% CI 0.18-0.41, P FACTOR VII R353Q and H6H7 and H7H7 genotypes of FACTOR VII VNTR showed protective effect for CHD.

  1. Temperature dependence of cardiac sarcoplasmic reticulum and sarcolemma in the ventricle of catfish (Clarias gariepinus

    Directory of Open Access Journals (Sweden)

    El-Sabry Abu-Amra

    2015-10-01

    The sarcolemmal Ca2+ contribution of activator Ca2+ was greater at a test temperature of 30 °C as assessed by verapamil. Whereas the SR-Ca2+ contribution was higher at 20 and 30 °C and a frequency rate of 0.2 and 0.4 Hz as assessed by caffeine and adrenaline, respectively. Bradykinin potentiating factor (BPF7 which was isolated from jelly fish (Cassiopea andromeda decreased the cardiac force developed at a frequency rate of 0.2 Hz and a temperature of 20 °C, whereas it increased the force developed at frequency rates of 0.2 and 0.4 Hz at 30 °C. These results indicate that BPF7 may act like verapamil in reducing the cardiac force through blocking the sarcolemmal Ca2+ channels at low temperature and like adrenaline in an increase of the cardiac force developed at warm temperature and the high frequency rate through stimulation of SR-Ca2+ activator. Therefore, this study indicates that the sarcolemmal Ca2+ influx and the SR-Ca2+ release contributors of activator Ca2+ for cardiac force development in the catfish heart were significantly greater at warm temperature and at the pacing frequency rates of 0.2 and 0.4 Hz as assessed by verapamil, adrenaline, caffeine and BPF7. However, the relative contribution of the sarcolemmal Ca2+ influx in the development of cardiac force in the catfish heart was greater than that of SR-Ca2+ release.

  2. Post-Effect of Air Quality Improvement on Biomarkers for Systemic Inflammation and Microparticles in Asthma Patients After the 2008 Beijing Olympic Games: a Pilot Study.

    Science.gov (United States)

    Gao, Jinming; Xu, Xiaohua; Ying, Zhekang; Jiang, Lei; Zhong, Mianhua; Wang, Aixia; Chen, Lung-Chi; Lu, Bo; Sun, Qinghua

    2017-08-01

    This study's aim was to investigate the post-effect of an air quality improvement on systemic inflammation and circulating microparticles in asthmatic patients during, and 2 months after, the Beijing Olympics 2008. We measured the levels of circulating inflammatory cytokines and microparticles in the peripheral blood from asthma patients and healthy controls during (phase 1), and 2 months after (phase 2) the Beijing 2008 Olympic Games. The concentrations of circulating cytokines (including TNFα, IL-6, IL-8, and IL-10) were still seen reduced in phase 2 when compared with those in phase 1. The number of circulating endothelial cell-derived microparticles was significantly lower during the phase 2 than that during phase 1 in asthma patients. The level of plasma lipopolysaccharide-binding protein (LBP) was significantly decreased in asthmatics in phase 2. The level of norepinephrine was significantly higher in phase 2 than that in phase 1 in plasma from both asthma patients and healthy subjects. There were no significant differences in the gene profile for the toll-like receptor (TLR) signaling from peripheral blood mononuclear cells. In vitro, microvesicles from patients with asthma impaired the relaxation to bradykinin and contraction to acetylcholine, whereas microparticles from healthy subjects did not. These data suggested that reduction in systemic pro-inflammatory responses and circulating LBP and increased level of norepinephrine in asthma patients persisted even after 2 months of the air pollution intervention. These changes were independent of the TLR signaling pathway. Circulating microparticles might be associated with airway smooth muscle dysfunction.

  3. Kininogen Cleavage Assay: Diagnostic Assistance for Kinin-Mediated Angioedema Conditions.

    Directory of Open Access Journals (Sweden)

    Rémi Baroso

    Full Text Available Angioedema without wheals (AE is a symptom characterised by localised episodes of oedema presumably caused by kinin release from kininogen cleavage. It can result from a hereditary deficiency in C1 Inhibitor (C1Inh, but it can present with normal level of C1Inh. These forms are typically difficult to diagnose although enhanced kinin production is suspected or demonstrated in some cases.We wanted to investigate bradykinin overproduction in all AE condition with normal C1Inh, excluding cases with enhanced kinin catabolism, and to propose this parameter as a disease biomarker.We retrospectively investigated high molecular weight kininogen (HK cleavage pattern, using gel electrophoresis and immunorevelation. Plasma samples were drawn using the same standardised procedure from blood donors or AE patients with normal C1Inh conditions, normal kinin catabolism, and without prophylaxis.Circulating native HK plasma concentrations were similar in the healthy men (interquartile range: 98-175μg/mL, n = 51 and in healthy women (90-176μg/mL, n = 74, while HK cleavage was lower (p14.4% HK cleavage for men; 33.0% HK cleavage for women, with >98% specificity achieved for all parameters. In plasma from patients undergoing recovery two months after oestrogen/progestin combination withdrawal (n = 13 or two weeks after AE attack (n = 2, HK cleavage was not fully restored, suggesting its use as a post-attack assay.As a diagnostic tool, HK cleavage can offer physicians supportive arguments for kinin production in suspected AE cases and improve patient follow-up in clinical trials or prophylactic management.

  4. Neuroprotection against apoptosis of SK-N-MC cells using RMP-7- and lactoferrin-grafted liposomes carrying quercetin

    Directory of Open Access Journals (Sweden)

    Kuo Y

    2017-04-01

    Full Text Available Yung-Chih Kuo, Chien-Wei Tsao Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan, Republic of China Abstract: A drug delivery system of quercetin (QU-encapsulated liposomes (LS grafted with RMP-7, a bradykinin analog, and lactoferrin (Lf was developed to permeate the blood–brain barrier (BBB and rescue degenerated neurons, acting as an Alzheimer’s disease (AD pharmacotherapy. This colloidal formulation of QU-encapsulated LS grafted with RMP-7 and Lf (RMP-7-Lf-QU-LS was used to traverse human brain microvascular endothelial cells (HBMECs regulated by human astrocytes (HAs and to treat SK-N-MC cells after an insult with cytotoxic β-amyloid (Aβ fibrils. We found that surface RMP-7 and Lf enhanced the ability of QU to cross the BBB without inducing strong toxicity and damaging the tight junction. In addition, RMP-7-Lf-QU-LS significantly reduced Aβ-induced neurotoxicity and improved the viability of SK-N-MC cells. Compared with free QU, RMP-7-Lf-QU-LS could also significantly inhibit the expression of phosphorylated c-Jun N terminal kinase, phosphorylated p38, and phosphorylated tau protein at serine 202 by SK-N-MC cells, indicating an important role of RMP-7, Lf, and LS in protecting neurons against apoptosis. RMP-7-Lf-QU-LS is a promising carrier targeting the BBB to prevent Aβ-insulted neurodegeneration and may have potential in managing AD in future clinical applications. Keywords: Alzheimer’s disease, blood–brain barrier, β-amyloid, drug targeting, neurodegeneration, pharmacotherapy

  5. Vivo-morpholinos induced transient knockdown of physical activity related proteins.

    Directory of Open Access Journals (Sweden)

    David P Ferguson

    Full Text Available Physical activity is associated with disease prevention and overall wellbeing. Additionally there has been evidence that physical activity level is a result of genetic influence. However, there has not been a reliable method to silence candidate genes in vivo to determine causal mechanisms of physical activity regulation. Vivo-morpholinos are a potential method to transiently silence specific genes. Thus, the aim of this study was to validate the use of Vivo-morpholinos in a mouse model for voluntary physical activity with several sub-objectives. We observed that Vivo-morpholinos achieved between 60-97% knockdown of Drd1-, Vmat2-, and Glut4-protein in skeletal muscle, the delivery moiety of Vivo-morpholinos (scramble did not influence physical activity and that a cocktail of multiple Vivo-morpholinos can be given in a single treatment to achieve protein knockdown of two different targeted proteins in skeletal muscle simultaneously. Knocking down Drd1, Vmat2, or Glut4 protein in skeletal muscle did not affect physical activity. Vivo-morpholinos injected intravenously alone did not significantly knockdown Vmat2-protein expression in the brain (p = 0.28. However, the use of a bradykinin analog to increase blood-brain-barrier permeability in conjunction with the Vivo-morpholinos significantly (p = 0.0001 decreased Vmat2-protein in the brain with a corresponding later over-expression of Vmat2 coincident with a significant (p = 0.0016 increase in physical activity. We conclude that Vivo-morpholinos can be a valuable tool in determining causal gene-phenotype relationships in whole animal models.

  6. Characterization of cutaneous vascular permeability induced by platelet-activating factor in guinea pigs and rats and its inhibition by a platelet-activating factor receptor antagonist

    International Nuclear Information System (INIS)

    Hwang, S.B.; Li, C.L.; Lam, M.H.; Shen, T.Y.

    1985-01-01

    Mechanisms of platelet-activating factor (PAF)-induced increases of cutaneous vascular permeability in guinea pigs and in rats were further explored. PAF so far is the most potent vasoactive mediator, being more than 1000-fold more potent than histamine and bradykinin in both species. In guinea pigs, there is a time delay of 5 to 10 minutes before PAF action, whereas, in the rat, the increased vasopermeability occurs immediately following the intradermal PAF injection. Relative vasoactive potencies of PAF and several structure-related analogues in both species correlate very well with their relative inhibition of the binding of 3 H-PAF to specific receptor sites on isolated rabbit platelet plasma membranes and their aggregatory abilities of rabbit platelets. Furthermore, the PAF-induced cutaneous vascular permeability is inhibitable by a competitive specific PAF receptor antagonist, kadsurenone, suggesting that binding of PAF to its specific receptor site is the first step to initiate its action of increased cutaneous vascular permeability. Several pure cyclooxygenase inhibitors, including indomethacin, diflunisal, and flurbiprofen, and the dual cyclooxygenase/lipoxygenase inhibitor, BW755C, but not the histamine antagonists, inhibit the PAF-induced vasopermeability in guinea pigs. The inhibition by indomethacin or BW755C can be fully reversed by coinjection intradermally with PAF and prostaglandin E1 but not leukotriene B4. Also, prostaglandin E1 but not leukotriene B4 enhances the guinea pig in vivo response to PAF in this model. However, in rats, none of the cyclooxygenase inhibitors, histamine antagonists, or BW755C inhibit the PAF effect of cutaneous phenomena

  7. Guanine nucleotide-dependent, pertussis toxin-insensitive, stimulation of inositol phosphate formation by carbachol in a membrane preparation from astrocytoma cells

    International Nuclear Information System (INIS)

    Hepler, J.R.; Harden, T.K.

    1986-01-01

    Formation of the inositol phosphates (InsP), InsP 3 , InsP 2 , and InsP 1 was increased in a concentration dependent manner (K/sub 0.5/ ∼ 5 μM) by GTPΣS in washed membranes prepared from 3 H-inositol-prelabelled 1321N1 human astrocytoma cells. Both GTPγS and GppNHp stimulated InsP formation by 2-3 fold over control; GTP and GDP were much less efficacious and GMP had no effect. Although the muscarinic cholinergic receptor agonist carbachol had no effect in the absence of guanine nucleotide, in the presence of 10 μM GTPγS, carbachol stimulated (K/sub 0.5/ ∼ 10 μ M) the formation of InsP above the level achieved with GTPγS alone. The effect of carbachol was completely blocked by atropine. The order of potency for a series of nucleotides for stimulation of InsP formation in the presence of 500 μM carbachol was GTPγS > GppNHp > GTP = GDP. Pertussis toxin, at concentrations that fully ADP-ribosylate and functionally inactivate G/sub i/, had no effect on InsP formation in the presence of GTPγS or GTPγS plus carbachol. Histamine and bradykinin also stimulated InsP formation in the presence of GTPγS in washed membranes from 1321N1 cells. These data are consistent with the idea that a guanine nucleotide regulatory protein that is not G/sub i/ is involved in receptor-mediated stimulation of InsP formation in 1321N1 human astrocytoma cells

  8. Changes in ion transport in inflammatory disease

    Directory of Open Access Journals (Sweden)

    Eisenhut Michael

    2006-03-01

    Full Text Available Abstract Ion transport is essential for maintenance of transmembranous and transcellular electric potential, fluid transport and cellular volume. Disturbance of ion transport has been associated with cellular dysfunction, intra and extracellular edema and abnormalities of epithelial surface liquid volume. There is increasing evidence that conditions characterized by an intense local or systemic inflammatory response are associated with abnormal ion transport. This abnormal ion transport has been involved in the pathogenesis of conditions like hypovolemia due to fluid losses, hyponatremia and hypokalemia in diarrhoeal diseases, electrolyte abnormalites in pyelonephritis of early infancy, septicemia induced pulmonary edema, and in hypersecretion and edema induced by inflammatory reactions of the mucosa of the upper respiratory tract. Components of membranous ion transport systems, which have been shown to undergo a change in function during an inflammatory response include the sodium potassium ATPase, the epithelial sodium channel, the Cystic Fibrosis Transmembrane Conductance Regulator and calcium activated chloride channels and the sodium potassium chloride co-transporter. Inflammatory mediators, which influence ion transport are tumor necrosis factor, gamma interferon, interleukins, transforming growth factor, leukotrienes and bradykinin. They trigger the release of specific messengers like prostaglandins, nitric oxide and histamine which alter ion transport system function through specific receptors, intracellular second messengers and protein kinases. This review summarizes data on in vivo measurements of changes in ion transport in acute inflammatory conditions and in vitro studies, which have explored the underlying mechanisms. Potential interventions directed at a correction of the observed abnormalities are discussed.

  9. The renoprotective effect of angiotensin-converting enzyme inhibitors in experimental chronic renal failure is not dependent on enhanced kinin activity.

    Science.gov (United States)

    Nabokov, A; Amann, K; Gassmann, P; Schwarz, U; Orth, S R; Ritz, E

    1998-01-01

    Angiotensin-converting enzyme (ACE) inhibitors have been shown to ameliorate the progression of glomerulosclerosis both in experimental models of uraemia and in patients with renal failure. It has not been documented, however, whether this is due to a decrease in angiotensin II generation or is a consequence of elevated local level of bradykinin. Morphometric investigation of renal tissue was performed in 5/6 nephrectomized (SNx) rats, i.e. untreated or treated with the ACE inhibitor ramipril (SNx-RAM), the B2 kinin receptor antagonist HOE 140 (SNx-HOE), or a combination of both (SNx-RAM + HOE) over 8 weeks. A further group of SNx received delayed treatment with ramipril from week 5 onward (SNx-RAMD). In addition, a sham-operated (SHAM) control group was studied. Systolic blood pressure was significantly lower in both SNx-RAM and SNx-RAM + HOE groups compared to (untreated) SNx. The glomerulosclerosis index (GSI) was substantially higher in the (untreated) SNx group (0.24 +/- 0.04) vs SHAM (0.02 +/- 0.01). A significantly higher GSI was found in the SNx-HOE group (0.45 +/- 0.08) as compared to (untreated) SNx. However, in the SNx-RAM, SNx-RAM + HOE, and SNx-RAMD groups, the GSI was lowered to a similar extent (0.1 +/- 0.02, 0.09 +/- 0.02, and 0.07 +/- 0.01 respectively). In addition, a concomitant attenuation of tubulointerstitial damage was noted in all the above groups. Increased kinin activity does not appear to play a major role in the renoprotective effect of ACE inhibitors in the remnant kidney model.

  10. Molecular and Thermodynamic Mechanisms of the Chloride-dependent Human Angiotensin-I-converting Enzyme (ACE)*

    Science.gov (United States)

    Yates, Christopher J.; Masuyer, Geoffrey; Schwager, Sylva L. U.; Akif, Mohd; Sturrock, Edward D.; Acharya, K. Ravi

    2014-01-01

    Somatic angiotensin-converting enzyme (sACE), a key regulator of blood pressure and electrolyte fluid homeostasis, cleaves the vasoactive angiotensin-I, bradykinin, and a number of other physiologically relevant peptides. sACE consists of two homologous and catalytically active N- and C-domains, which display marked differences in substrate specificities and chloride activation. A series of single substitution mutants were generated and evaluated under varying chloride concentrations using isothermal titration calorimetry. The x-ray crystal structures of the mutants provided details on the chloride-dependent interactions with ACE. Chloride binding in the chloride 1 pocket of C-domain ACE was found to affect positioning of residues from the active site. Analysis of the chloride 2 pocket R522Q and R522K mutations revealed the key interactions with the catalytic site that are stabilized via chloride coordination of Arg522. Substrate interactions in the S2 subsite were shown to affect chloride affinity in the chloride 2 pocket. The Glu403-Lys118 salt bridge in C-domain ACE was shown to stabilize the hinge-bending region and reduce chloride affinity by constraining the chloride 2 pocket. This work demonstrated that substrate composition to the C-terminal side of the scissile bond as well as interactions of larger substrates in the S2 subsite moderate chloride affinity in the chloride 2 pocket of the ACE C-domain, providing a rationale for the substrate-selective nature of chloride dependence in ACE and how this varies between the N- and C-domains. PMID:24297181

  11. Effects of Simvastatin Beyond Dyslipidemia: Exploring Its Antinociceptive Action in an Animal Model of Complex Regional Pain Syndrome-Type I

    Directory of Open Access Journals (Sweden)

    Graziela Vieira

    2017-09-01

    Full Text Available Simvastatin is a lipid-lowering agent that blocks the production of cholesterol through inhibition of 3-hydroxy-methyl-glutaryl coenzyme A (HMG-CoA reductase. In addition, recent evidence has suggested its anti-inflammatory and antinociceptive actions during inflammatory and pain disorders. Herein, we investigated the effects of simvastatin in an animal model of complex regional pain syndrome-type I, and its underlying mechanisms. Chronic post-ischemia pain (CPIP was induced by ischemia and reperfusion (IR injury of the left hind paw. Our findings showed that simvastatin inhibited mechanical hyperalgesia induced by CPIP model in single and repeated treatment schedules, respectively; however simvastatin did not alter inflammatory signs during CPIP model. The mechanisms underlying those actions are related to modulation of transient receptor potential (TRP channels, especially TRMP8. Moreover, simvastatin oral treatment was able to reduce the nociception induced by acidified saline [an acid-sensing ion channels (ASICs activator] and bradykinin (BK stimulus, but not by TRPA1, TRPV1 or prostaglandin-E2 (PGE2. Relevantly, the antinociceptive effects of simvastatin did not seem to be associated with modulation of the descending pain circuits, especially noradrenergic, serotoninergic and dopaminergic systems. These results indicate that simvastatin consistently inhibits mechanical hyperalgesia during neuropathic and inflammatory disorders, possibly by modulating the ascending pain signaling (TRPM8/ASIC/BK pathways expressed in the primary sensory neuron. Thus, simvastatin open-up new standpoint in the development of innovative analgesic drugs for treatment of persistent pain, including CRPS-I.

  12. The association between ACE inhibitors and the complex regional pain syndrome: Suggestions for a neuro-inflammatory pathogenesis of CRPS.

    Science.gov (United States)

    de Mos, M; Huygen, F J P M; Stricker, B H Ch; Dieleman, J P; Sturkenboom, M C J M

    2009-04-01

    Antihypertensive drugs interact with mediators that are also involved in complex regional pain syndrome (CRPS), such a neuropeptides, adrenergic receptors, and vascular tone modulators. Therefore, we aimed to study the association between the use of antihypertensive drugs and CRPS onset. We conducted a population-based case-control study in the Integrated Primary Care Information (IPCI) database in the Netherlands. Cases were identified from electronic records (1996-2005) and included if they were confirmed during an expert visit (using IASP criteria), or if they had been diagnosed by a medical specialist. Up to four controls per cases were selected, matched on gender, age, calendar time, and injury. Exposure to angiotensin converting enzyme (ACE) inhibitors, angiotensin II receptor antagonists, beta-blockers, calcium channel blockers, and diuretics was assessed from the automated prescription records. Data were analyzed using multivariate conditional logistic regression. A total of 186 cases were matched to 697 controls (102 confirmed during an expert visit plus 84 with a specialist diagnosis). Current use of ACE inhibitors was associated with an increased risk of CRPS (OR(adjusted): 2.7, 95% CI: 1.1-6.8). The association was stronger if ACE inhibitors were used for a longer time period (OR(adjusted): 3.0, 95% CI: 1.1-8.1) and in higher dosages (OR(adjusted): 4.3, 95% CI: 1.4-13.7). None of the other antihypertensive drug classes was significantly associated with CRPS. We conclude that ACE inhibitor use is associated with CRPS onset and hypothesize that ACE inhibitors influence the neuro-inflammatory mechanisms that underlie CRPS by their interaction with the catabolism of substance P and bradykinin.

  13. Laser desorption/ionization from nanostructured surfaces: nanowires, nanoparticle films and silicon microcolumn arrays

    International Nuclear Information System (INIS)

    Chen Yong; Luo Guanghong; Diao Jiajie; Chornoguz, Olesya; Reeves, Mark; Vertes, Akos

    2007-01-01

    Due to their optical properties and morphology, thin films formed of nanoparticles are potentially new platforms for soft laser desorption/ionization (SLDI) mass spectrometry. Thin films of gold nanoparticles (with 12±1 nm particle size) were prepared by evaporation-driven vertical colloidal deposition and used to analyze a series of directly deposited polypeptide samples. In this new SLDI method, the required laser fluence for ion detection was equal or less than what was needed for matrix-assisted laser desorption/ionization (MALDI) but the resulting spectra were free of matrix interferences. A silicon microcolumn array-based substrate (a.k.a. black silicon) was developed as a new matrix-free laser desorption ionization surface. When low-resistivity silicon wafers were processed with a 22 ps pulse length 3xω Nd:YAG laser in air, SF 6 or water environment, regularly arranged conical spikes emerged. The radii of the spike tips varied with the processing environment, ranging from approximately 500 nm in water, to ∼2 μm in SF 6 gas and to ∼5 μm in air. Peptide mass spectra directly induced by a nitrogen laser showed the formation of protonated ions of angiotensin I and II, substance P, bradykinin fragment 1-7, synthetic peptide, pro14-arg, and insulin from the processed silicon surfaces but not from the unprocessed areas. Threshold fluences for desorption/ionization were similar to those used in MALDI. Although compared to silicon nanowires the threshold laser pulse energy for ionization is significantly (∼10x) higher, the ease of production and robustness of microcolumn arrays offer complementary benefits

  14. Supradural inflammatory soup in awake and freely moving rats induces facial allodynia that is blocked by putative immune modulators.

    Science.gov (United States)

    Wieseler, Julie; Ellis, Amanda; McFadden, Andrew; Stone, Kendra; Brown, Kimberley; Cady, Sara; Bastos, Leandro F; Sprunger, David; Rezvani, Niloofar; Johnson, Kirk; Rice, Kenner C; Maier, Steven F; Watkins, Linda R

    2017-06-01

    Facial allodynia is a migraine symptom that is generally considered to represent a pivotal point in migraine progression. Treatment before development of facial allodynia tends to be more successful than treatment afterwards. As such, understanding the underlying mechanisms of facial allodynia may lead to a better understanding of the mechanisms underlying migraine. Migraine facial allodynia is modeled by applying inflammatory soup (histamine, bradykinin, serotonin, prostaglandin E2) over the dura. Whether glial and/or immune activation contributes to such pain is unknown. Here we tested if trigeminal nucleus caudalis (Sp5C) glial and/or immune cells are activated following supradural inflammatory soup, and if putative glial/immune inhibitors suppress the consequent facial allodynia. Inflammatory soup was administered via bilateral indwelling supradural catheters in freely moving rats, inducing robust and reliable facial allodynia. Gene expression for microglial/macrophage activation markers, interleukin-1β, and tumor necrosis factor-α increased following inflammatory soup along with robust expression of facial allodynia. This provided the basis for pursuing studies of the behavioral effects of 3 diverse immunomodulatory drugs on facial allodynia. Pretreatment with either of two compounds broadly used as putative glial/immune inhibitors (minocycline, ibudilast) prevented the development of facial allodynia, as did treatment after supradural inflammatory soup but prior to the expression of facial allodynia. Lastly, the toll-like receptor 4 (TLR4) antagonist (+)-naltrexone likewise blocked development of facial allodynia after supradural inflammatory soup. Taken together, these exploratory data support that activated glia and/or immune cells may drive the development of facial allodynia in response to supradural inflammatory soup in unanesthetized male rats. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Optimization of amino acid type-specific 13C and 15N labeling for the backbone assignment of membrane proteins by solution- and solid-state NMR with the UPLABEL algorithm

    International Nuclear Information System (INIS)

    Hefke, Frederik; Bagaria, Anurag; Reckel, Sina; Ullrich, Sandra Johanna; Dötsch, Volker; Glaubitz, Clemens; Güntert, Peter

    2011-01-01

    We present a computational method for finding optimal labeling patterns for the backbone assignment of membrane proteins and other large proteins that cannot be assigned by conventional strategies. Following the approach of Kainosho and Tsuji (Biochemistry 21:6273–6279 (1982)), types of amino acids are labeled with 13 C or/and 15 N such that cross peaks between 13 CO(i – 1) and 15 NH(i) result only for pairs of sequentially adjacent amino acids of which the first is labeled with 13 C and the second with 15 N. In this way, unambiguous sequence-specific assignments can be obtained for unique pairs of amino acids that occur exactly once in the sequence of the protein. To be practical, it is crucial to limit the number of differently labeled protein samples that have to be prepared while obtaining an optimal extent of labeled unique amino acid pairs. Our computer algorithm UPLABEL for optimal unique pair labeling, implemented in the program CYANA and in a standalone program, and also available through a web portal, uses combinatorial optimization to find for a given amino acid sequence labeling patterns that maximize the number of unique pair assignments with a minimal number of differently labeled protein samples. Various auxiliary conditions, including labeled amino acid availability and price, previously known partial assignments, and sequence regions of particular interest can be taken into account when determining optimal amino acid type-specific labeling patterns. The method is illustrated for the assignment of the human G-protein coupled receptor bradykinin B2 (B 2 R) and applied as a starting point for the backbone assignment of the membrane protein proteorhodopsin.

  16. Vasoinhibins regulate the inner and outer blood-retinal barrier and limit retinal oxidative stress.

    Science.gov (United States)

    Arredondo Zamarripa, David; Díaz-Lezama, Nundehui; Meléndez García, Rodrigo; Chávez Balderas, Jesús; Adán, Norma; Ledesma-Colunga, Maria G; Arnold, Edith; Clapp, Carmen; Thebault, Stéphanie

    2014-01-01

    Vasoinhibins are prolactin fragments present in the retina, where they have been shown to prevent the hypervasopermeability associated with diabetes. Enhanced bradykinin (BK) production contributes to the increased transport through the blood-retina barrier (BRB) in diabetes. Here, we studied if vasoinhibins regulate BRB permeability by targeting the vascular endothelium and retinal pigment epithelium (RPE) components of this barrier. Intravitreal injection of BK in male rats increased BRB permeability. Vasoinhibins prevented this effect, as did the B2 receptor antagonist Hoe-140. BK induced a transient decrease in mouse retinal and brain capillary endothelial monolayer resistance that was blocked by vasoinhibins. Both vasoinhibins and the nitric oxide (NO) synthase inhibitor L-NAME, but not the antioxidant N-acetyl cysteine (NAC), blocked the transient decrease in bovine umbilical vein endothelial cell (BUVEC) monolayer resistance induced by BK; this block was reversed by the NO donor DETANONOate. Vasoinhibins also prevented the BK-induced actin cytoskeleton redistribution, as did L-NAME. BK transiently decreased human RPE (ARPE-19) cell monolayer resistance, and this effect was blocked by vasoinhibins, L-NAME, and NAC. DETANONOate reverted the blocking effect of vasoinhibins. Similar to BK, the radical initiator Luperox induced a reduction in ARPE-19 cell monolayer resistance, which was prevented by vasoinhibins. These effects on RPE resistance coincided with actin cytoskeleton redistribution. Intravitreal injection of vasoinhibins reduced the levels of reactive oxygen species (ROS) in retinas of streptozotocin-induced diabetic rats, particularly in the RPE and capillary-containing layers. Thus, vasoinhibins reduce BRB permeability by targeting both its main inner and outer components through NO- and ROS-dependent pathways, offering potential treatment strategies against diabetic retinopathies.

  17. Effect of shear stress on 86Rb+ efflux and cytosolic Ca2+ of calf pulmonary artery endothelial cells (CPAEs)

    International Nuclear Information System (INIS)

    Alevriadou, B.R.; Mo, M.; Rickman, D.S.; Eskin, S.G.; McIntire, L.V.; Schilling, W.P.

    1991-01-01

    The effect of flow-induced shear stress (SS) on membrane K + permeability and cytosolic free Ca 2+ , [Ca 2+ ] i , was investigated by measuring 86 Rb + efflux and fura-2 fluorescence in CPAEs using a parallel plate flow chamber. Increasing SS from 1 to 2.4, 4.8 or 10 dyn/cm 2 produced a graded, transient increase in 86 Rb + efflux which peaked within 1 min and subsequently declined rapidly towards pre-stimulus levels. Mathematical modeling confirmed that the transient increase in 86 Rb + efflux did not reflect a washout phenomenon. Upon returning SS to 1 dyn/cm 2 , 86 Rb + efflux initially decreased, but returned slowly to basal values. In contrast, application of bradykinin (BK) at a constant SS of either 0.33 or 1 dyn/cm 2 produced a transient increase in 86 Rb + efflux that was followed by a sustained elevated phase during which time efflux gradually returned to pre-stimulus levels. To determine the mechanism by which shear stress increases K + permeability, the effect of tetrabutylammonium ion (TBA), a selective inhibitor of Ca 2+ -dependent K + channels (K Ca ), on both the BK- and SS-induced increases in 86 Rb + efflux, was examined. TBA inhibited the BK-stimulated increase in 86 Rb + efflux >90% under both stationary and flow conditions and significantly reduced SS-dependent 86 Rb + efflux 38.3%. These results suggest that increased 86 Rb + efflux from CPAEs with SS occurs, at least in part, via K Ca and suggests that SS increases cytosolic Ca 2+ . However, when measured using fura-2-loaded CPAEs, SS was without significant effect on [Ca 2+ ] i

  18. Assessment of Phenolic Compounds and Anti-Inflammatory Activity of Ethyl Acetate Phase of Anacardium occidentale L. Bark

    Directory of Open Access Journals (Sweden)

    Marina Suênia de Araújo Vilar

    2016-08-01

    Full Text Available The bark of A. occidentale L. is rich in tannins. Studies have described various biological activities of the plant, including antimicrobial, antioxidant, antiulcerogenic and antiinflammatory actions. The objective of this study was to assess the activity of the ethyl acetate phase (EtOAc of A. occidentale on acute inflammation and to identify and quantify its phenolic compounds by HPLC. The method was validated and shown to be linear, precise and accurate for catechin, epicatechin, epigallocatechin and gallic acid. Swiss albino mice (Mus musculus were treated with saline, Carrageenan (2.5%, Indomethacin (10 mg/kg, Bradykinin (6 nmol and Prostaglandine E2 (5 µg at different concentrations of EtOAc - A. occidentale (12.5; 25; 50; and 100 mg/kg/weight p.o. for the paw edema test. Challenge was performed with carrageenan (500 µg/mL i.p. for the doses 50 and 100 mg/kg of EtOAc. Levels of cytokines IL-1, TNF-α, IL-6 and IL-10 were also measured. All EtOAc - A. occidentale concentrations reduced the edema. At 50 and 100 mg/kg, an anti-inflammatory response of the EtOAc was observed. Carrageenan stimulus produced a neutrophil count of 28.6% while 50 and 100 mg/kg of the phase reduced this to 14.5% and 9.1%, respectively. The EtOAc extract reduced levels of IL-1 and TNF-α. These results suggest that the EtOAc plays a modulatory role in the inflammatory response. The chromatographic method can be used for the analysis of the phenolic compounds of the EtOAc phase.

  19. Molecular versus particulate deposition markers for blood flow measurement in the musculo-skeletal system. 131Iodo-DesMethyl-Imipramine

    International Nuclear Information System (INIS)

    Tromborg, H.B.

    1998-01-01

    The aims of the experiments were to develop and validate a porcine isolated blood perfused myocutaneous flap and tibia model with preserved venous outflow. The stability of the models was tested and washout of microspheres and IDMI was measured. IDMI and microsphere based tissue blood flow measurements were compared after central intracardiac injection into the intact animal. Three experimental series were necessary to develop and validate the models. The organs were perfused with arterial blood by a pulsatile pump and submerged into a tissue bath. All outflow from the models were collected. One experiment was necessary to validate the rectus abdominis myocutaneous flap. In three experiments an isolated tibia with preserved venous outflow was developed and validated. Normal flow rate/perfusion pressure relations were reproduced after periods of supra-normal and sub-normal perfusion pressure in the two models. A response to endothelially mediated vasodilation with bradykinin was demonstrated after nine hours of artificial perfusion in the tibia model. IDMI did not influence the local hemodynamics during infusion, whereas microspheres elicited a transitory increase in the perfusion pressure after local injection. IDMI and microsphere based blood flow measurements and recirculation were compared in the in-situ musculo-skeletal tissue corresponding to the two models after central injection of the markers. Recirculation of IDMI was greater (8(1)%) than that of microspheres (2(0)%) after 18 minutes. Microspheres tended to measure higher blood flow values than IDMI at high flow rates and vice versa at low flow values. The 131 Iodo-DesMethyl-Imipramine (IDMI) method is not generally applicable as a deposition marker for blood flow measurement in the musculo-skeletal system. (EHS)

  20. Vasoinhibins regulate the inner and outer blood-retinal barrier and limit retinal oxidative stress

    Directory of Open Access Journals (Sweden)

    David eArredondo Zamarripa

    2014-10-01

    Full Text Available Vasoinhibins are prolactin fragments present in the retina, where they have been shown to prevent the hypervasopermeability associated with diabetes. Enhanced bradykinin (BK production contributes to the increased transport through the blood-retina barrier (BRB in diabetes. Here, we studied if vasoinhibins regulate BRB permeability by targeting the vascular endothelium and retinal pigment epithelium (RPE components of this barrier. Intravitreal injection of BK in male rats increased BRB permeability. Vasoinhibins prevented this effect, as did the B2 receptor antagonist Hoe-140. BK induced a transient decrease in mouse retinal and brain capillary endothelial monolayer resistance that was blocked by vasoinhibins. Both vasoinhibins and the nitric oxide (NO synthase inhibitor L-NAME, but not the antioxidant N-acetyl cysteine (NAC, blocked the transient decrease in bovine umbilical vein endothelial cell (BUVEC monolayer resistance induced by BK; this block was reversed by the NO donor DETANONOate. Vasoinhibins also prevented the BK-induced actin cytoskeleton redistribution, as did L-NAME. BK transiently decreased human RPE (ARPE-19 cell monolayer resistance, and this effect was blocked by vasoinhibins, L-NAME, and NAC. DETANONOate reverted the blocking effect of vasoinhibins. Similar to BK, the radical initiator Luperox induced a reduction in ARPE-19 cell monolayer resistance, which was prevented by vasoinhibins. These effects on RPE resistance coincided with actin cytoskeleton redistribution. Intravitreal injection of vasoinhibins reduced the levels of reactive oxygen species (ROS in retinas of streptozotocin-induced diabetic rats, particularly in the RPE and capillary-containing layers. Thus, vasoinhibins reduce BRB permeability by targeting both its main inner and outer components through NO- and ROS-dependent pathways, offering potential treatment strategies against diabetic retinopathies.

  1. Role of prostaglandin/cAMP pathway in the diuretic and hypotensive effects of purified fraction of Maytenus ilicifolia Mart ex Reissek (Celastraceae).

    Science.gov (United States)

    Leme, Thiago dos Santos Vilhena; Prando, Thiago Bruno Lima; Gasparotto, Francielly Mourão; de Souza, Priscila; Crestani, Sandra; de Souza, Lauro Mera; Cipriani, Thales Ricardo; Lourenço, Emerson Luiz Botelho; Gasparotto, Arquimedes

    2013-10-28

    Although Maytenus ilicifolia is used in Brazilian folk medicine as a diuretic drug, no study has been conducted to this date in order to evaluate this ethnopharmacological statement. So, the aim of this study was to evaluate possible mechanisms involved in acute diuretic activity of the ethanolic supernatant of the infusion (SEI) obtained from Maytenus ilicifolia and to assess its relationship with a hypotensive activity by a bioassay-guided fractionation using normotensive Wistar rats. The preparation obtained from the infusion (SEI) and their respective fractions (Fr·H2O and Fr·EtOAc) were orally administered in a single dose to rats. The urine excretion rate, pH, density, conductivity and content of Na(+), K(+), Cl(-) and HCO3(-) were measured in the urine of saline-loaded animals. Samples of the concentration of electrolytes, urea, creatinine, aldosterone, vasopressin and angiotensin converting enzyme (ACE) activity were evaluated in collected serum. The hypotensive activity and the involvement of nitric oxide, bradykinin and prostaglandin/cAMP pathway in the hypotensive and diuretic effects were also determined. Water and Na(+) excretion rate were significantly increased by Fr·EtOAc and the arterial pressure was significantly reduced, while the urinary excretion of potassium and chloride were reduced. Pre-treatment with indomethacin or DDA (2',5'-dideoxyadenosine) significantly reduced the hypotensive and diuretic activity observed. All other parameters evaluated were not affected by any treatment. The present study reveals that Fr·EtOAc obtained from Maytenus ilicifolia may present compounds responsible for diuretic and hypotensive activities, and this effect, could involve the prostaglandin/cAMP pathway. © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. Control of somatic membrane potential in nociceptive neurons and its implications for peripheral nociceptive transmission

    Science.gov (United States)

    Du, Xiaona; Hao, Han; Gigout, Sylvain; Huang, Dongyang; Yang, Yuehui; Li, Li; Wang, Caixue; Sundt, Danielle; Jaffe, David B.; Zhang, Hailin; Gamper, Nikita

    2014-01-01

    Peripheral sensory ganglia contain somata of afferent fibres conveying somatosensory inputs to the central nervous system. Growing evidence suggests that the somatic/perisomatic region of sensory neurons can influence peripheral sensory transmission. Control of resting membrane potential (Erest) is an important mechanism regulating excitability, but surprisingly little is known about how Erest is regulated in sensory neuron somata or how changes in somatic/perisomatic Erest affect peripheral sensory transmission. We first evaluated the influence of several major ion channels on Erest in cultured small-diameter, mostly capsaicin-sensitive (presumed nociceptive) dorsal root ganglion (DRG) neurons. The strongest and most prevalent effect on Erest was achieved by modulating M channels, K2P and 4-aminopiridine-sensitive KV channels, while hyperpolarization-activated cyclic nucleotide-gated, voltage-gated Na+, and T-type Ca2+ channels to a lesser extent also contributed to Erest. Second, we investigated how varying somatic/perisomatic membrane potential, by manipulating ion channels of sensory neurons within the DRG, affected peripheral nociceptive transmission in vivo. Acute focal application of M or KATP channel enhancers or a hyperpolarization-activated cyclic nucleotide-gated channel blocker to L5 DRG in vivo significantly alleviated pain induced by hind paw injection of bradykinin. Finally, we show with computational modelling how somatic/perisomatic hyperpolarization, in concert with the low-pass filtering properties of the t-junction within the DRG, can interfere with action potential propagation. Our study deciphers a complement of ion channels that sets the somatic Erest of nociceptive neurons and provides strong evidence for a robust filtering role of the somatic and perisomatic compartments of peripheral nociceptive neuron. PMID:25168672

  3. Mass Transport: Circulatory System with Emphasis on Nonendothermic Species.

    Science.gov (United States)

    Crossley, Dane A; Burggren, Warren W; Reiber, Carl L; Altimiras, Jordi; Rodnick, Kenneth J

    2016-12-06

    Mass transport can be generally defined as movement of material matter. The circulatory system then is a biological example given its role in the movement in transporting gases, nutrients, wastes, and chemical signals. Comparative physiology has a long history of providing new insights and advancing our understanding of circulatory mass transport across a wide array of circulatory systems. Here we focus on circulatory function of nonmodel species. Invertebrates possess diverse convection systems; that at the most complex generate pressures and perform at a level comparable to vertebrates. Many invertebrates actively modulate cardiovascular function using neuronal, neurohormonal, and skeletal muscle activity. In vertebrates, our understanding of cardiac morphology, cardiomyocyte function, and contractile protein regulation by Ca2+ highlights a high degree of conservation, but differences between species exist and are coupled to variable environments and body temperatures. Key regulators of vertebrate cardiac function and systemic blood pressure include the autonomic nervous system, hormones, and ventricular filling. Further chemical factors regulating cardiovascular function include adenosine, natriuretic peptides, arginine vasotocin, endothelin 1, bradykinin, histamine, nitric oxide, and hydrogen sulfide, to name but a few. Diverse vascular morphologies and the regulation of blood flow in the coronary and cerebral circulations are also apparent in nonmammalian species. Dynamic adjustments of cardiovascular function are associated with exercise on land, flying at high altitude, prolonged dives by marine mammals, and unique morphology, such as the giraffe. Future studies should address limits of gas exchange and convective transport, the evolution of high arterial pressure across diverse taxa, and the importance of the cardiovascular system adaptations to extreme environments. © 2017 American Physiological Society. Compr Physiol 7:17-66, 2017. Copyright © 2017 John

  4. Cold-acclimation leads to differential regulation of the steelhead trout (Oncorhynchus mykiss) coronary microcirculation

    Science.gov (United States)

    Costa, Isabel A. S. F.; Hein, Travis W.

    2015-01-01

    The regulation of vascular resistance in fishes has largely been studied using isolated large conductance vessels, yet changes in tissue perfusion/vascular resistance are primarily mediated by the dilation/constriction of small arterioles. Thus we adapted mammalian isolated microvessel techniques for use in fish and examined how several agents affected the tone/resistance of isolated coronary arterioles (trout (Oncorhynchus mykiss) acclimated to 1, 5, and 10°C. At 10°C, the vessels showed a concentration-dependent dilation to adenosine (ADE; 61 ± 8%), sodium nitroprusside (SNP; 35 ± 10%), and serotonin (SER; 27 ± 2%) (all values maximum responses). A biphasic response (mild contraction then dilation) was observed in vessels exposed to increasing concentrations of epinephrine (EPI; 34 ± 9% dilation) and norepinephrine (NE; 32 ± 7% dilation), whereas the effect was less pronounced with bradykinin (BK; 12.5 ± 3.5% constriction vs. 6 ± 6% dilation). Finally, a mild constriction was observed after exposure to acetylcholine (ACh; 6.5 ± 1.4%), while endothelin (ET)-1 caused a strong dose-dependent increase in tone (79 ± 5% constriction). Acclimation temperature had varying effects on the responsiveness of vessels. The dilations induced by EPI, ADE, SER, and SNP were reduced/eliminated at 5°C and/or 1°C as compared with 10°C. In contrast, acclimation to 5 and 1°C increased the maximum constriction induced by ACh and the sensitivity of vessels to ET-1 (but not the maximum response) at 1°C was greater. Acclimation temperature had no effect on the response to NE, and responsiveness to BK was variable. PMID:25715834

  5. Receptor-mediated inhibition of adenylate cyclase and stimulation of arachidonic acid release in 3T3 fibroblasts. Selective susceptibility to islet-activating protein, pertussis toxin

    International Nuclear Information System (INIS)

    Murayama, T.; Ui, M.

    1985-01-01

    Thrombin exhibited diverse effects on mouse 3T3 fibroblasts. It (a) decreased cAMP in the cell suspension, (b) inhibited adenylate cyclase in the Lubrol-permeabilized cell suspension in a GTP-dependent manner, increased releases of (c) arachidonic acid and (d) inositol from the cell monolayer prelabeled with these labeled compounds, (e) increased 45 Ca 2+ uptake into the cell monolayer, and (f) increased 86 Rb + uptake into the cell monolayer in a ouabain-sensitive manner. Most of the effects were reproduced by bradykinin, platelet-activating factor, and angiotensin II. The receptors for these agonists are thus likely to be linked to three separate effector systems: the adenylate cyclase inhibition, the phosphoinositide breakdown leading to Ca 2+ mobilization and phospholipase A2 activation, and the Na,K-ATPase activation. Among the effects of these agonists, (a), (b), (c), and (e) were abolished, but (d) and (f) were not, by prior treatment of the cells with islet-activating protein (IAP), pertussis toxin, which ADP-ribosylates the Mr = 41,000 protein, the alpha-subunit of the inhibitory guanine nucleotide regulatory protein (Ni), thereby abolishing receptor-mediated inhibition of adenylate cyclase. The effects (a), (c), (d), and (e) of thrombin, but not (b), were mimicked by A23187, a calcium ionophore. The effects of A23187, in contrast to those of receptor agonists, were not affected by the treatment of cells with IAP. Thus, the IAP substrate, the alpha-subunit of Ni, or the protein alike, may play an additional role in signal transduction arising from the Ca 2+ -mobilizing receptors, probably mediating process(es) distal to phosphoinositide breakdown and proximal to Ca 2+ gating

  6. Mycoplasma hyopneumoniae in vitro peptidase activities: identification and cleavage of kallikrein-kinin system-like substrates.

    Science.gov (United States)

    Moitinho-Silva, Lucas; Kondo, Marcia Y; Oliveira, Lilian C G; Okamoto, Debora N; Paes, Jéssica A; Machado, Mauricio F M; Veronez, Camila L; Motta, Guacyara; Andrade, Sheila S; Juliano, Maria A; Ferreira, Henrique B; Juliano, Luiz; Gouvea, Iuri E

    2013-05-03

    Bacterial proteases are important for metabolic processes and pathogenesis in host organisms. The bacterial swine pathogen Mycoplasma hyopneumoniae has 15 putative protease-encoding genes annotated, but none of them have been functionally characterized. To identify and characterize peptidases that could be relevant for infection of swine hosts, we investigated the peptidase activity present in the pathogenic 7448 strain of M. hyopneumoniae. Combinatorial libraries of fluorescence resonance energy transfer peptides, specific inhibitors and pH profiling were used to screen and characterize endopeptidase, aminopeptidase and carboxypeptidase activities in cell lysates. One metalloendopeptidase, one serine endopeptidase, and one aminopeptidase were detected. The detected metalloendopeptidase activity, prominent at neutral and basic pH ranges, was due to a thimet oligopeptidase family member (M3 family), likely an oligoendopeptidase F (PepF), which cleaved the peptide Abz-GFSPFRQ-EDDnp at the F-S bond. A chymotrypsin-like serine endopeptidase activity, possibly a subtilisin-like serine protease, was prominent at higher pH levels, and was characterized by its preference for a Phe residue at the P1 position of the substrate. The aminopeptidase P (APP) activity showed a similar profile to that of human membrane-bound APP. Genes coding for these three peptidases were identified and their transcription was confirmed in the 7448 strain. Furthermore, M. hyopneumoniae cell lysate peptidases showed effects on kallikrein-kinin system-like substrates, such as bradykinin-derived substrates and human high molecular weight kininogen. The M. hyopneumoniae peptidase activities, here characterized for the first time, may be important for bacterial survival strategies and thus represent possible targets for drug development against M. hyopneumoniae swine infections. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Polysensory response characteristics of dorsal root ganglion neurones that may serve sensory functions during myocardial ischaemia.

    Science.gov (United States)

    Huang, M H; Horackova, M; Negoescu, R M; Wolf, S; Armour, J A

    1996-09-01

    To determine the response characteristics of dorsal root ganglion neurones that may serve sensory functions during myocardial ischaemia. Extracellular recordings were made from 54 spontaneously active and 5 normally quiescent dorsal root ganglion neurones (T2-T5) in 22 anaesthetized open-chest dogs under control conditions and during epicardial mechanical or chemical stimulation and myocardial ischaemia. The activity of 78% of spontaneously active and all quiescent neurones with left ventricular sensory fields was modified by left ventricular ischaemia. Forty-six spontaneously active neurones (85%) were polysensory with respect to mechanical and chemical stimuli. The 5 quiescent neurones responded only to chemical stimuli. Spontaneously active neurones associated with left ventricular mechanosensory endings (37 neurones) generated four different activity patterns in response to similar mechanical stimuli (high or low pressure active, high-low pressure active, high-low pressure inactive). A fifth group generated activity which was not related to chamber dynamics. Adenosine, adenosine 5'-triphosphate, substance P and bradykinin modified 72, 61, 65 and 63% of the spontaneously active neurones, respectively. Maximum local mechanical or chemical stimuli enhanced activity to similar degrees, as did ischaemia. Each ischaemia-sensitive neurone displayed unique activity patterns in response to similar mechanical or chemical stimuli. Most myocardial ischemia-sensitive dorsal root ganglion neurones associated with epicardial neurites sense mechanical and multiple chemical stimuli, a small population sensing only mechanical or chemical stimuli. Activity patterns generated by these neurones depend on their primary sensory characteristics or those of other neurones that may converge on them, as well as the type and magnitude of the stimuli that impinge upon their sensory fields, both normally and during ischaemia.

  8. A Novel Vasoactive Proline-Rich Oligopeptide from the Skin Secretion of the Frog Brachycephalus ephippium.

    Science.gov (United States)

    Arcanjo, Daniel Dias Rufino; Vasconcelos, Andreanne Gomes; Comerma-Steffensen, Simón Gabriel; Jesus, Joilson Ramos; Silva, Luciano Paulino; Pires Júnior, Osmindo Rodrigues; Costa-Neto, Claudio Miguel; Oliveira, Eduardo Brandt; Migliolo, Ludovico; Franco, Octávio Luiz; Restini, Carolina Baraldi Araújo; Paulo, Michele; Bendhack, Lusiane Maria; Bemquerer, Marcelo Porto; Oliveira, Aldeidia Pereira; Simonsen, Ulf; Leite, José Roberto de Souza de Almeida

    2015-01-01

    Proline-rich oligopeptides (PROs) are a large family which comprises the bradykinin-potentiating peptides (BPPs). They inhibit the activity of the angiotensin I-converting enzyme (ACE) and have a typical pyroglutamyl (Pyr)/proline-rich structure at the N- and C-terminus, respectively. Furthermore, PROs decrease blood pressure in animals. In the present study, the isolation and biological characterization of a novel vasoactive BPP isolated from the skin secretion of the frog Brachycephalus ephippium is described. This new PRO, termed BPP-Brachy, has the primary structure WPPPKVSP and the amidated form termed BPP-BrachyNH2 inhibits efficiently ACE in rat serum. In silico molecular modeling and docking studies suggest that BPP-BrachyNH2 is capable of forming a hydrogen bond network as well as multiple van der Waals interactions with the rat ACE, which blocks the access of the substrate to the C-domain active site. Moreover, in rat thoracic aorta BPP-BrachyNH2 induces potent endothelium-dependent vasodilatation with similar magnitude as captopril. In DAF-FM DA-loaded aortic cross sections examined by confocal microscopy, BPP-BrachyNH2 was found to increase the release of nitric oxide (NO). Moreover, BPP-BrachyNH2 was devoid of toxicity in endothelial and smooth muscle cell cultures. In conclusion, the peptide BPP-BrachyNH2 has a novel sequence being the first BPP isolated from the skin secretion of the Brachycephalidae family. This opens for exploring amphibians as a source of new biomolecules. The BPP-BrachyNH2 is devoid of cytotoxicity and elicits endothelium-dependent vasodilatation mediated by NO. These findings open for the possibility of potential application of these peptides in the treatment of endothelial dysfunction and cardiovascular diseases.

  9. A Novel Vasoactive Proline-Rich Oligopeptide from the Skin Secretion of the Frog Brachycephalus ephippium.

    Directory of Open Access Journals (Sweden)

    Daniel Dias Rufino Arcanjo

    Full Text Available Proline-rich oligopeptides (PROs are a large family which comprises the bradykinin-potentiating peptides (BPPs. They inhibit the activity of the angiotensin I-converting enzyme (ACE and have a typical pyroglutamyl (Pyr/proline-rich structure at the N- and C-terminus, respectively. Furthermore, PROs decrease blood pressure in animals. In the present study, the isolation and biological characterization of a novel vasoactive BPP isolated from the skin secretion of the frog Brachycephalus ephippium is described. This new PRO, termed BPP-Brachy, has the primary structure WPPPKVSP and the amidated form termed BPP-BrachyNH2 inhibits efficiently ACE in rat serum. In silico molecular modeling and docking studies suggest that BPP-BrachyNH2 is capable of forming a hydrogen bond network as well as multiple van der Waals interactions with the rat ACE, which blocks the access of the substrate to the C-domain active site. Moreover, in rat thoracic aorta BPP-BrachyNH2 induces potent endothelium-dependent vasodilatation with similar magnitude as captopril. In DAF-FM DA-loaded aortic cross sections examined by confocal microscopy, BPP-BrachyNH2 was found to increase the release of nitric oxide (NO. Moreover, BPP-BrachyNH2 was devoid of toxicity in endothelial and smooth muscle cell cultures. In conclusion, the peptide BPP-BrachyNH2 has a novel sequence being the first BPP isolated from the skin secretion of the Brachycephalidae family. This opens for exploring amphibians as a source of new biomolecules. The BPP-BrachyNH2 is devoid of cytotoxicity and elicits endothelium-dependent vasodilatation mediated by NO. These findings open for the possibility of potential application of these peptides in the treatment of endothelial dysfunction and cardiovascular diseases.

  10. A novel peptide from the ACEI/BPP-CNP precursor in the venom of Crotalus durissus collilineatus.

    Science.gov (United States)

    Higuchi, Shigesada; Murayama, Nobuhiro; Saguchi, Ken-ichi; Ohi, Hiroaki; Fujita, Yoshiaki; da Silva, Nelson Jorge; de Siqueira, Rodrigo José Bezerra; Lahlou, Saad; Aird, Steven D

    2006-10-01

    In crotaline venoms, angiotensin-converting enzyme inhibitors [ACEIs, also known as bradykinin potentiating peptides (BPPs)], are products of a gene coding for an ACEI/BPP-C-type natriuretic peptide (CNP) precursor. In the genes from Bothrops jararaca and Gloydius blomhoffii, ACEI/BPP sequences are repeated. Sequencing of a cDNA clone from venom glands of Crotalus durissus collilineatus showed that two ACEIs/BPPs are located together at the N-terminus, but without repeats. An additional sequence for CNP was unexpectedly found at the C-terminus. Homologous genes for the ACEI/BPP-CNP precursor suggest that most crotaline venoms contain both ACEIs/BPPs and CNP. The sequence of ACEIs/BPPs is separated from the CNP sequence by a long spacer sequence. Previously, there was no evidence that this spacer actually coded any expressed peptides. Aird and Kaiser (1986, unpublished) previously isolated and sequenced a peptide of 11 residues (TPPAGPDVGPR) from Crotalus viridis viridis venom. In the present study, analysis of the cDNA clone from C. d. collilineatus revealed a nearly identical sequence in the ACEI/BPP-CNP spacer. Fractionation of the crude venom by reverse phase HPLC (C(18)), and analysis of the fractions by mass spectrometry (MS) indicated a component of 1020.5 Da. Amino acid sequencing by MS/MS confirmed that C. d. collilineatus venom contains the peptide TPPAGPDGGPR. Its high proline content and paired proline residues are typical of venom hypotensive peptides, although it lacks the usual N-terminal pyroglutamate. It has no demonstrable hypotensive activity when injected intravenously in rats; however, its occurrence in the venoms of dissimilar species suggests that its presence is not accidental. Evidence suggests that these novel toxins probably activate anaphylatoxin C3a receptors.

  11. Expression of three isoforms of Na-K-2Cl cotransporter (NKCC2) in the kidney and regulation by dehydration.

    Science.gov (United States)

    Itoh, Kazuko; Izumi, Yuichiro; Inoue, Takeaki; Inoue, Hideki; Nakayama, Yushi; Uematsu, Takayuki; Fukuyama, Takashi; Yamazaki, Taiga; Yasuoka, Yukiko; Makino, Takeshi; Nagaba, Yasushi; Tomita, Kimio; Kobayashi, Noritada; Kawahara, Katsumasa; Mukoyama, Masashi; Nonoguchi, Hiroshi

    2014-10-24

    Sodium reabsorption via Na-K-2Cl cotransporter 2 (NKCC2) in the thick ascending limbs has a major role for medullary osmotic gradient and subsequent water reabsorption in the collecting ducts. We investigated intrarenal localization of three isoforms of NKCC2 mRNA expressions and the effects of dehydration on them in rats. To further examine the mechanisms of dehydration, the effects of hyperosmolality on NKCC2 mRNA expression in microdissected renal tubules was studied. RT-PCR and RT-competitive PCR were employed. The expressions of NKCC2a and b mRNA were observed in the cortical thick ascending limbs (CAL) and the distal convoluted tubules (DCT) but not in the medullary thick ascending limbs (MAL), whereas NKCC2f mRNA expression was seen in MAL and CAL. Two-day dehydration did not affect these mRNA expressions. In contrast, hyperosmolality increased NKCC2 mRNA expression in MAL in vitro. Bradykinin dose-dependently decreased NKCC2 mRNA expression in MAL. However, dehydration did not change NKCC2 protein expression in membrane fraction from cortex and outer medulla and in microdissected MAL. These data show that NKCC2a/b and f types are mainly present in CAL and MAL, respectively. Although NKCC2 mRNA expression was stimulated by hyperosmolality in vitro, NKCC2 mRNA and protein expressions were not stimulated by dehydration in vivo. These data suggest the presence of the inhibitory factors for NKCC2 expression in dehydration. Considering the role of NKCC2 for the countercurrent multiplier system, NKCC2f expressed in MAL might be more important than NKCC2a/b. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. SNP-by-fitness and SNP-by-BMI interactions from seven candidate genes and incident hypertension after 20 years of follow-up: the CARDIA Fitness Study.

    Science.gov (United States)

    Sarzynski, M A; Rankinen, T; Sternfeld, B; Fornage, M; Sidney, S; Bouchard, C

    2011-08-01

    The association of single nucleotide polymorphisms (SNPs) from seven candidate genes, including genotype-by-baseline fitness and genotype-by-baseline body mass index (BMI) interactions, with incident hypertension over 20 years was investigated in 2663 participants (1301 blacks, 1362 whites) of the Coronary Artery Risk Development in Young Adults Study (CARDIA). Baseline cardiorespiratory fitness was determined from duration of a modified Balke treadmill test. A total of 98 SNPs in blacks and 89 SNPs in whites from seven candidate genes were genotyped. Participants that became hypertensive (295 blacks and 146 whites) had significantly higher blood pressure and BMI (both races), and lower fitness (blacks only) at baseline than those who remained normotensive. Markers at the peroxisome proliferative activated receptor gamma coactivator 1α (PPARGC1A) and bradykinin β2 receptor (BDKRB2) genes were nominally associated with greater risk of hypertension, although one marker each at the BDKRB2 and endothelial nitric oxide synthase-3 (NOS3) genes were nominally associated with lower risk. The association of baseline fitness with risk of hypertension was nominally modified by genotype at markers within the angiotensin converting enzyme, angiotensinogen, BDKRB2 and NOS3 genes in blacks and the BDKRB2, endothelin-1 and PPARGC1A genes in whites. BDKRB2 rs4900318 showed nominal interactions with baseline fitness on the risk of hypertension in both races. The association of baseline BMI with risk of hypertension was nominally modified by GNB3 rs2301339 genotype in whites. None of the above associations were statistically significant after correcting for multiple testing. We found that SNPs in these candidate genes did not modify the association between baseline fitness or BMI and risk of hypertension in CARDIA participants.

  13. Monocyte Trafficking, Engraftment, and Delivery of Nanoparticles and an Exogenous Gene into the Acutely Inflamed Brain Tissue - Evaluations on Monocyte-Based Delivery System for the Central Nervous System.

    Directory of Open Access Journals (Sweden)

    Hsin-I Tong

    Full Text Available The ability of monocytes and monocyte-derived macrophages (MDM to travel towards chemotactic gradient, traverse tissue barriers, and accumulate precisely at diseased sites makes them attractive candidates as drug carriers and therapeutic gene delivery vehicles targeting the brain, where treatments are often hampered by the blockade of the blood brain barrier (BBB. This study was designed to fully establish an optimized cell-based delivery system using monocytes and MDM, by evaluating their homing efficiency, engraftment potential, as well as carriage and delivery ability to transport nano-scaled particles and exogenous genes into the brain, following the non-invasive intravenous (IV cell adoptive transfer in an acute neuroinflammation mouse model induced by intracranial injection of Escherichia coli lipopolysaccharides. We demonstrated that freshly isolated monocytes had superior inflamed-brain homing ability over MDM cultured in the presence of macrophage colony stimulating factor. In addition, brain trafficking of IV infused monocytes was positively correlated with the number of adoptive transferred cells, and could be further enhanced by transient disruption of the BBB with IV administration of Mannitol, Bradykinin or Serotonin right before cell infusion. A small portion of transmigrated cells was detected to differentiate into IBA-1 positive cells with microglia morphology in the brain. Finally, with the use of superparamagnetic iron oxide nanoparticles SHP30, the ability of nanoscale agent-carriage monocytes to enter the inflamed brain region was validated. In addition, lentiviral vector DHIV-101 was used to introduce green fluorescent protein (GFP gene into monocytes, and the exogenous GFP gene was detected in the brain at 48 hours following IV infusion of the transduced monocytes. All together, our study has set up the optimized conditions for the more-in-depth tests and development of monocyte-mediated delivery, and our data supported

  14. Hormonal therapy with estradiol and drospirenone improves endothelium-dependent vasodilation in the coronary bed of ovariectomized spontaneously hypertensive rats

    International Nuclear Information System (INIS)

    Borgo, M.V.; Claudio, E.R.G.; Silva, F.B.; Romero, W.G.; Gouvea, S.A.; Moysés, M.R.; Santos, R.L.; Almeida, S.A.; Podratz, P.L.; Graceli, J.B.; Abreu, G.R.

    2015-01-01

    Drospirenone (DRSP) is a progestin with anti-aldosterone properties and it reduces blood pressure in hypertensive women. However, the effects of DRSP on endothelium-dependent coronary vasodilation have not been evaluated. This study investigated the effects of combined therapy with estrogen (E2) and DRSP on endothelium-dependent vasodilation of the coronary bed of ovariectomized (OVX) spontaneously hypertensive rats. Female spontaneously hypertensive rats (n=87) at 12 weeks of age were randomly divided into sham operated (Sham), OVX, OVX treated with E2 (E2), and OVX treated with E2 and DRSP (E2+DRSP) groups. Hemodynamic parameters were directly evaluated by catheter insertion into the femoral artery. Endothelium-dependent vasodilation in response to bradykinin in the coronary arterial bed was assessed using isolated hearts according to a modified Langendorff method. Coronary protein expression of endothelial nitric oxide synthase and estrogen receptor alpha (ER-α) was assessed by Western blotting. Histological slices of coronary arteries were stained with hematoxylin and eosin, and morphometric parameters were analyzed. Oxidative stress was assessed in situ by dihydroethidium fluorescence. Ovariectomy increased systolic blood pressure, which was only prevented by E2+DRSP treatment. Estrogen deficiency caused endothelial dysfunction, which was prevented by both treatments. However, the vasodilator response in the E2+DRSP group was significantly higher at the three highest concentrations compared with the OVX group. Reduced ER-α expression in OVX rats was restored by both treatments. Morphometric parameters and oxidative stress were augmented by OVX and reduced by E2 and E2+DRSP treatments. Hormonal therapy with E2 and DRSP may be an important therapeutic option in the prevention of coronary heart disease in hypertensive post-menopausal women

  15. Effectiveness of icatibant for treatment of hereditary angioedema attacks is not affected by body weight: findings from the Icatibant Outcome Survey, a cohort observational study.

    Science.gov (United States)

    Caballero, Teresa; Zanichelli, Andrea; Aberer, Werner; Maurer, Marcus; Longhurst, Hilary J; Bouillet, Laurence; Andresen, Irmgard

    2018-01-01

    Icatibant is a bradykinin B2-receptor antagonist used for the treatment of hereditary angioedema attacks resulting from C1-inhibitor deficiency. Treatment is not adjusted by body weight however the impact of body mass index (BMI) on the effectiveness of icatibant is not documented in the literature. We examined disease characteristics and icatibant treatment effectiveness in patients stratified by BMI in the Icatibant Outcome Survey, an ongoing, international, observational study monitoring the real-world safety and effectiveness of icatibant. Attack and treatment characteristics as well as outcomes following treatment with icatibant were compared among patients with underweight, normal, overweight, and obese BMI. Data from 2697 icatibant-treated attacks in 342 patients (3.5, 44.7, 34.8, and 17.0% patients of underweight, normal, overweight, and obese BMI, respectively) were analyzed. There was no significant difference in the frequency and severity of attacks across BMI groups, although obese patients tended to have more attacks of high severity. There was no impact of BMI on the frequency of laryngeal attacks, but patients with normal BMI had fewer cutaneous attacks and more abdominal attacks. Most attacks (71.9-83.8%) were treated with a single icatibant injection without the need for rescue with plasma-derived C1-inhibitor (pdC1-INH), regardless of BMI. Patients with obese BMI used pdC1-INH as rescue treatment more often (P < 0.0001; P = 0.0232 excluding 2 outliers) and treated attacks earlier than patients with normal BMI (P = 0.007). Furthermore, time to resolution and duration of attack were shorter for patients with high BMI (P < 0.001 for overweight and P < 0.05 for obese versus normal). Overall, icatibant was comparatively effective in treating attacks in patients across all BMI groups. Trial registration NCT01034969.

  16. Optimum Use of Acute Treatments for Hereditary Angioedema: Evidence-Based Expert Consensus

    Directory of Open Access Journals (Sweden)

    Hilary Longhurst

    2018-03-01

    Full Text Available Acute treatment of hereditary angioedema due to C1 inhibitor deficiency has become available in the last 10 years and has greatly improved patients’ quality of life. Two plasma-derived C1 inhibitors (Berinert and Cinryze, a recombinant C1 inhibitor (Ruconest/Conestat alpha, a kallikrein inhibitor (Ecallantide, and a bradykinin B2 receptor inhibitor (Icatibant are all effective. Durably good response is maintained over repeated treatments and several years. All currently available prophylactic agents are associated with breakthrough attacks, therefore an acute treatment plan is essential for every patient. Experience has shown that higher doses of C1 inhibitor than previously recommended may be desirable, although only recombinant C1 inhibitor has been subject to full dose–response evaluation. Treatment of early symptoms of an attack, with any licensed therapy, results in milder symptoms, more rapid resolution and shorter duration of attack, compared with later treatment. All therapies have been shown to be well-tolerated, with low risk of serious adverse events. Plasma-derived C1 inhibitors have a reassuring safety record regarding lack of transmission of virus or other infection. Thrombosis has been reported in association with plasma-derived C1 inhibitor in some case series. Ruconest was associated with anaphylaxis in a single rabbit-allergic volunteer, but no further anaphylaxis has been reported in those not allergic to rabbits despite, in a few cases, prior IgE sensitization to rabbit or milk protein. Icatibant is associated with high incidence of local reactions but not with systemic effects. Ecallantide may cause anaphylactoid reactions and is given under supervision. For children and pregnant women, plasma-derived C1 inhibitor has the best evidence of safety and currently remains first-line treatment.

  17. Optimum Use of Acute Treatments for Hereditary Angioedema: Evidence-Based Expert Consensus.

    Science.gov (United States)

    Longhurst, Hilary

    2017-01-01

    Acute treatment of hereditary angioedema due to C1 inhibitor deficiency has become available in the last 10 years and has greatly improved patients' quality of life. Two plasma-derived C1 inhibitors (Berinert and Cinryze), a recombinant C1 inhibitor (Ruconest/Conestat alpha), a kallikrein inhibitor (Ecallantide), and a bradykinin B2 receptor inhibitor (Icatibant) are all effective. Durably good response is maintained over repeated treatments and several years. All currently available prophylactic agents are associated with breakthrough attacks, therefore an acute treatment plan is essential for every patient. Experience has shown that higher doses of C1 inhibitor than previously recommended may be desirable, although only recombinant C1 inhibitor has been subject to full dose-response evaluation. Treatment of early symptoms of an attack, with any licensed therapy, results in milder symptoms, more rapid resolution and shorter duration of attack, compared with later treatment. All therapies have been shown to be well-tolerated, with low risk of serious adverse events. Plasma-derived C1 inhibitors have a reassuring safety record regarding lack of transmission of virus or other infection. Thrombosis has been reported in association with plasma-derived C1 inhibitor in some case series. Ruconest was associated with anaphylaxis in a single rabbit-allergic volunteer, but no further anaphylaxis has been reported in those not allergic to rabbits despite, in a few cases, prior IgE sensitization to rabbit or milk protein. Icatibant is associated with high incidence of local reactions but not with systemic effects. Ecallantide may cause anaphylactoid reactions and is given under supervision. For children and pregnant women, plasma-derived C1 inhibitor has the best evidence of safety and currently remains first-line treatment.

  18. Distinctive changes in plasma membrane phosphoinositides underlie differential regulation of TRPV1 in nociceptive neurons.

    Science.gov (United States)

    Lukacs, Viktor; Yudin, Yevgen; Hammond, Gerald R; Sharma, Esseim; Fukami, Kiyoko; Rohacs, Tibor

    2013-07-10

    Transient Receptor Potential Vanilloid 1 (TRPV1) is a polymodal, Ca(2+)-permeable cation channel crucial to regulation of nociceptor responsiveness. Sensitization of TRPV1 by G-protein coupled receptor (GPCR) agonists to its endogenous activators, such as low pH and noxious heat, is a key factor in hyperalgesia during tissue injury as well as pathological pain syndromes. Conversely, chronic pharmacological activation of TRPV1 by capsaicin leads to calcium influx-induced adaptation of the channel. Paradoxically, both conditions entail activation of phospholipase C (PLC) enzymes, which hydrolyze phosphoinositides. We found that in sensory neurons PLCβ activation by bradykinin led to a moderate decrease in phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2), but no sustained change in the levels of its precursor PI(4)P. Preventing this selective decrease in PI(4,5)P2 inhibited TRPV1 sensitization, while selectively decreasing PI(4,5)P2 independently of PLC potentiated the sensitizing effect of protein kinase C (PKC) on the channel, thereby inducing increased TRPV1 responsiveness. Maximal pharmacological TRPV1 stimulation led to a robust decrease of both PI(4,5)P2 and its precursor PI(4)P in sensory neurons. Attenuating the decrease of either lipid significantly reduced desensitization, and simultaneous reduction of PI(4,5)P2 and PI(4)P independently of PLC inhibited TRPV1. We found that, on the mRNA level, the dominant highly Ca(2+)-sensitive PLC isoform in dorsal root ganglia is PLCδ4. Capsaicin-induced desensitization of TRPV1 currents was significantly reduced, whereas capsaicin-induced nerve impulses in the skin-nerve preparation increased in mice lacking this isoform. We propose a comprehensive model in which differential changes in phosphoinositide levels mediated by distinct PLC isoforms result in opposing changes in TRPV1 activity.

  19. Cardioprotection by Conditioning Mimetic Drugs.

    Science.gov (United States)

    Santillo, Elpidio; Migale, Monica; Postacchini, Demetrio; Balestrini, Fabrizio; Incalzi, Raffaele Antonelli

    2016-01-01

    At present, ischemic heart disease (IHD) is one of the main causes of morbidity and mortality world-wide. An important insight into both IHD pathophysiology and cardioprotection was achieved in 1986 when Murry et al. described for the first time the ischemic preconditioning (IP). IP can be defined as an innate phenomenon by which brief episodes of ischemia confer protection to a tissue from a subsequent more protracted ischemic insult. Suggested mechanisms explaining IP comprise the action of circulating substances (e.g. adenosine, bradykinin, nitric oxide). These mediators are released after a prolonged ischemic stress, causing activation of molecular pathways that induce favorable posttranslational changes of proteins and adaptive modifications in genetic expression. Briefly review evidences from clinical studies on drugs that exert their effects by mimicking IP, discussing their therapeutic properties and the potential clinical employment in order to obtain cardioprotection. Literature regarding IP mimicking pharmacological agents was searched in Medline and Google Scholar. Authors reviewed relevant researches in English language including both clinical studies and reviews of clinical studies published from 1986 to 2016. Several pharmacological agents reproducing IP protective actions have been evaluated in many clinical trials. Examined molecules include adenosine, nicorandil and atrial natriuretic peptide. Interestingly IP mimicking effects of drugs have been also analyzed perioperatively in the context of ischaemia-reperfusion heart injury. Moreover evidences suggest that also some anaesthetic drugs (especially volatile agents) are able to provide myocardial protection by inducing IP. Drugs capable of mimicking IP exhibit a high therapeutic potential because of their properties of eliciting an effective cardioprotective signaling. Future studies should clarify the optimal doses and timing of administration of IP mimetic agents in order to favor the advent of

  20. Physical mapping of the major early-onset familial Alzheimer`s disease locus on chromosome 14 and analysis of candidate gene sequences

    Energy Technology Data Exchange (ETDEWEB)

    Tanzi, R.E.; Romano, D.M.; Crowley, A.C. [Harvard Medical School, Charlestown, MA (United States)] [and others

    1994-09-01

    Genetic studies of kindreds displaying evidence for familial AD (FAD) have led to the localization of gene defects responsible for this disorder on chromosomes 14, 19, and 21. A minor early-onset FAD gene on chromosome 21 has been identified to enode the amyloid precursor protein (APP), and the late-onset FAD susceptibility locus on chromosome 19 has been shown to be in linkage disequilibrium with the E4 allele of the APOE gene. Meanwhile, the locus responsible for the major form of early-onset FAD on chromosome 14q24 has not yet been identified. By recombinational analysis, we have refined the minimal candidate region containing the gene defect to approximately 3 megabases in 14q24. We will describe our laboratory`s progress on attempts to finely localize this locus, as well as test known candidate genes from this region for either inclusion in the minimal candidate region or the presence of pathogenic mutations. Candidate genes that have been tested so far include cFOS, heat shock protein 70 member (HSF2A), transforming growth factor beta (TGFB3), the trifunctional protein C1-THF synthase (MTHFD), bradykinin receptor (BR), and the E2k component of a-ketoglutarate dehydrogenase. HSP2A, E2k, MTHFD, and BR do not map to the current defined minimal candidate region; however, sequence analysis must be performed to confirm exclusion of these genes as true candidates. Meanwhile, no pathogenic mutations have yet been found in cFOS or TGFB3. We have also isolated a large number of novel transcribed sequences from the minimal candidate region in the form of {open_quotes}trapped exons{close_quotes} from cosmids identified by hybridization to select YAC clones; we are currently in the process of searching for pathogenic mutations in these exons in affected individuals from FAD families.

  1. A new function for ATP: activating cardiac sympathetic afferents during myocardial ischemia.

    Science.gov (United States)

    Fu, Liang-Wu; Longhurst, John C

    2010-12-01

    Myocardial ischemia activates cardiac sympathetic afferents leading to chest pain and reflex cardiovascular responses. Brief myocardial ischemia leads to ATP release in the interstitial space. Furthermore, exogenous ATP and α,β-methylene ATP (α,β-meATP), a P2X receptor agonist, stimulate cutaneous group III and IV sensory nerve fibers. The present study tested the hypothesis that endogenous ATP excites cardiac afferents during ischemia through activation of P2 receptors. Nerve activity of single unit cardiac sympathetic afferents was recorded from the left sympathetic chain or rami communicates (T(2)-T(5)) in anesthetized cats. Single fields of 45 afferents (conduction velocities = 0.25-4.92 m/s) were identified in the left ventricle with a stimulating electrode. Five minutes of myocardial ischemia stimulated 39 of 45 cardiac afferents (8 Aδ, 37 C fibers). Epicardial application of ATP (1-4 μmol) stimulated six ischemically sensitive cardiac afferents in a dose-dependent manner. Additionally, epicardial ATP (2 μmol), ADP (2 μmol), a P2Y agonist, and α,β-meATP (0.5 μmol) significantly activated eight other ischemically sensitive afferents. Third, pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid, a P2 receptor antagonist, abolished the responses of six afferents to epicardial ATP (2 μmol) and attenuated the ischemia-related increase in activity of seven other afferents by 37%. In the absence of P2 receptor blockade, cardiac afferents responded consistently to repeated application of ATP (n = 6) and to recurrent myocardial ischemia (n = 6). Finally, six ischemia-insensitive cardiac spinal afferents did not respond to epicardial ATP (2-4 μmol), although these afferents did respond to epicardial bradykinin. Taken together, these data indicate that, during ischemia, endogenously released ATP activates ischemia-sensitive, but not ischemia-insensitive, cardiac spinal afferents through stimulation of P2 receptors likely located on the cardiac sensory

  2. Inhibition of neurotensin-stimulated mast cell secretion and carboxypeptidase A activity by the peptide inhibitor of carboxypeptidase A and neurotensin-receptor antagonist SR 48692.

    Science.gov (United States)

    Miller, L A; Cochrane, D E; Feldberg, R S; Carraway, R E

    1998-06-01

    Neurotensin (NT), a peptide found in brain and several peripheral tissues, is a potent stimulus for mast cell secretion and its actions are blocked by the specific NT receptor antagonist, SR 48692. Subsequent to stimulation, NT is rapidly degraded by mast cell carboxypeptidase A (CPA). In the experiments described here, we tested for the involvement of CPA activity in the activation of mast cell secretion by the peptide, NT. Mast cells were isolated from the peritoneal and pleural cavities of rats, purified over metrizamide gradients and incubated at 37 degrees C in Locke solution or Locke containing the appropriate inhibitors. For some experiments, media derived from mast cells stimulated by compound 48/80 were used as a source of mast cell CPA activity. Treatment of mast cells with the highly specific peptide inhibitor of CPA derived from potato (PCI) inhibited histamine release in response to NT and NT8-13 (the biologically active region of NT). This inhibition required some 20 min to develop and was only partially reversed by a 20-min wash period. PCI (10 microM) did not inhibit histamine release in response to NT1-12, bradykinin, compound 48/80, the calcium ionophore, A23187, or anti-IgE serum. PCI also inhibited mast cell CPA activity. SR 48692, a highly selective antagonist of the brain NT receptor and of NT-stimulated mast cell secretion, also inhibited mast cell CPA activity as well as bovine pancreatic CPA activity in a concentration-dependent manner. It is suggested that the mast cell binding site for NT and the active site for CPA may share similar characteristics. The results are discussed in terms of NT mechanism of action on the mast cell.

  3. Impaired vascular function after exposure to diesel exhaust generated at urban transient running conditions

    Directory of Open Access Journals (Sweden)

    Westerholm Roger

    2010-07-01

    Full Text Available Abstract Background Traffic emissions including diesel engine exhaust are associated with increased respiratory and cardiovascular morbidity and mortality. Controlled human exposure studies have demonstrated impaired vascular function after inhalation of exhaust generated by a diesel engine under idling conditions. Objectives To assess the vascular and fibrinolytic effects of exposure to diesel exhaust generated during urban-cycle running conditions that mimic ambient 'real-world' exposures. Methods In a randomised double-blind crossover study, eighteen healthy male volunteers were exposed to diesel exhaust (approximately 250 μg/m3 or filtered air for one hour during intermittent exercise. Diesel exhaust was generated during the urban part of the standardized European Transient Cycle. Six hours post-exposure, vascular vasomotor and fibrinolytic function was assessed during venous occlusion plethysmography with intra-arterial agonist infusions. Measurements and Main Results Forearm blood flow increased in a dose-dependent manner with both endothelial-dependent (acetylcholine and bradykinin and endothelial-independent (sodium nitroprusside and verapamil vasodilators. Diesel exhaust exposure attenuated the vasodilatation to acetylcholine (P Conclusion Exposure to diesel exhaust generated under transient running conditions, as a relevant model of urban air pollution, impairs vasomotor function and endogenous fibrinolysis in a similar way as exposure to diesel exhaust generated at idling. This indicates that adverse vascular effects of diesel exhaust inhalation occur over different running conditions with varying exhaust composition and concentrations as well as physicochemical particle properties. Importantly, exposure to diesel exhaust under ETC conditions was also associated with a novel finding of impaired of calcium channel-dependent vasomotor function. This implies that certain cardiovascular endpoints seem to be related to general diesel

  4. Efficacy of Substance Removal by Immunoadsorption With a Selective Plasma Separator.

    Science.gov (United States)

    Hanafusa, Norio; Yamamoto, Hiroko; Tamachi, Masaki; Torato, Toshihiro; Sakurai, Satoko; Tsuchiya, Ken; Nitta, Kosaku; Nangaku, Masaomi

    2017-06-01

    Immunoadsorption with a tryptophan-conjugated column has a limited capacity and reduces fibrinogen. We speculated that immunoadsorption with a selective plasma separator has higher efficiency in removing immunoglobulins than ordinary immunoadsorption without affecting coagulation factors. This study investigated the efficacy of immunoadsorption with a selective plasma separator in vitro. The sieving coefficients, the pool concentration, and the adsorbed amount were investigated serially with up to 5 L of processed plasma. The sieving coefficients of the selective plasma separator were 0.8, 0.5, and 0.1 for albumin, immunoglobulin G (IgG), and factor 13, respectively. The trend of concentrations for the ordinary plasma separator in the pool reached its nadir at 1.5 L and 3.5 L of plasma processed for IgG, IgG1, or IgG2, and IgG3, respectively. However, the volume was doubled for the selective plasma separator. The trends of fibrinogen and factor 13 concentrations differed significantly between two plasma separators. The trends of the absorbed amount were mirror images of the concentration in the pool. Comparison of the peak amount absorbed indicated that the amounts were almost identical between the two separators for IgG, IgG1, and IgG2. On the other hand, the peak amounts were less for albumin, fibrinogen, and IgG3 with the selective plasma separator than with the ordinary separator. Although further investigations about bradykinin are required, immunoadsorption with the selective plasma separator supports the administration of more frequent and intensive treatments to remove IgG1 or IgG2 without affecting coagulation factors. © 2017 International Society for Apheresis, Japanese Society for Apheresis, and Japanese Society for Dialysis Therapy.

  5. Hormonal therapy with estradiol and drospirenone improves endothelium-dependent vasodilation in the coronary bed of ovariectomized spontaneously hypertensive rats

    Directory of Open Access Journals (Sweden)

    M.V. Borgo

    2016-01-01

    Full Text Available Drospirenone (DRSP is a progestin with anti-aldosterone properties and it reduces blood pressure in hypertensive women. However, the effects of DRSP on endothelium-dependent coronary vasodilation have not been evaluated. This study investigated the effects of combined therapy with estrogen (E2 and DRSP on endothelium-dependent vasodilation of the coronary bed of ovariectomized (OVX spontaneously hypertensive rats. Female spontaneously hypertensive rats (n=87 at 12 weeks of age were randomly divided into sham operated (Sham, OVX, OVX treated with E2 (E2, and OVX treated with E2 and DRSP (E2+DRSP groups. Hemodynamic parameters were directly evaluated by catheter insertion into the femoral artery. Endothelium-dependent vasodilation in response to bradykinin in the coronary arterial bed was assessed using isolated hearts according to a modified Langendorff method. Coronary protein expression of endothelial nitric oxide synthase and estrogen receptor alpha (ER-α was assessed by Western blotting. Histological slices of coronary arteries were stained with hematoxylin and eosin, and morphometric parameters were analyzed. Oxidative stress was assessed in situ by dihydroethidium fluorescence. Ovariectomy increased systolic blood pressure, which was only prevented by E2+DRSP treatment. Estrogen deficiency caused endothelial dysfunction, which was prevented by both treatments. However, the vasodilator response in the E2+DRSP group was significantly higher at the three highest concentrations compared with the OVX group. Reduced ER-α expression in OVX rats was restored by both treatments. Morphometric parameters and oxidative stress were augmented by OVX and reduced by E2 and E2+DRSP treatments. Hormonal therapy with E2 and DRSP may be an important therapeutic option in the prevention of coronary heart disease in hypertensive post-menopausal women.

  6. Anti-inflammatory activity of Choisya ternata Kunth essential oil, ternanthranin, and its two synthetic analogs (methyl and propyl N-methylanthranilates.

    Directory of Open Access Journals (Sweden)

    Mariana Martins Gomes Pinheiro

    Full Text Available Choisya ternata Kunth (Rutaceae is native to North America where it is popularly known as "Mexican orange". In this study, the anti-inflammatory effects of the essential oil (EO obtained from the leaves of C. ternata, one of its minor components (ternanthranin-ISOAN and its two synthetic analogues (methyl and propyl N-methylanthranilate--MAN and PAN were evaluated. Mice pretreated with the EO (EO obtained from C. ternata leaves (3-100 mg/kg, p.o., ISOAN, MAN or PAN (1-30 mg/kg, p.o. and the reference drugs, morphine (1 mg/kg, p.o. and acetylsalicylic acid (ASA, 100 mg/kg, p.o., were evaluated in inflammation models such as formalin and subcutaneous air pouch models, with measurement of cell migration, exudate volume, protein extravasation, nitric oxide and pro-inflammatory cytokines. The EO from C. ternata significantly inhibited the time that the animals spent licking the formalin-injected paw in the second phase of the model at their higher doses (30 and 100 mg/kg, respectively. An inhibition of the inflammatory reaction induced after subcutaneous carrageenan injection into air pouch was also observed. In this model, the EO significantly reduced cell migration, exudate volume, protein extravased, and the increase in levels of inflammatory mediators (nitric oxide, TNF-α and IL-1β. ISOAN, MAN and PAN behaved in the same fashion at much smaller doses. Also, these molecules were able to show significant effects in the reduction of paw edema (at all tested doses when the phlogistic agent was carrageenan, bradykinin, 5-HT, PGE2, C48/80 or 12-O-tetradecanoylphorbol-acetate (TPA. None of the tested doses had any effect in reducing histamine-induced edema. Our results indicate that the EO from C. ternata and anthranilate derivatives demonstrates an anti-inflammatory effect.

  7. The cognition-enhancing activity of E1R, a novel positive allosteric modulator of sigma-1 receptors

    Science.gov (United States)

    Zvejniece, L; Vavers, E; Svalbe, B; Vilskersts, R; Domracheva, I; Vorona, M; Veinberg, G; Misane, I; Stonans, I; Kalvinsh, I; Dambrova, M

    2014-01-01

    Background and Purpose Here, we describe the in vitro and in vivo effects of (4R,5S)-2-(5-methyl-2-oxo-4-phenyl-pyrrolidin-1-yl)-acetamide (E1R), a novel positive allosteric modulator of sigma-1 receptors. Experimental Approach E1R was tested for sigma receptor binding activity in a [3H](+)-pentazocine assay, in bradykinin (BK)-induced intracellular Ca2+ concentration ([Ca2+]i) assays and in an electrically stimulated rat vas deferens model. E1R's effects on cognitive function were tested using passive avoidance (PA) and Y-maze tests in mice. A selective sigma-1 receptor antagonist (NE-100), was used to study the involvement of the sigma-1 receptor in the effects of E1R. The open-field test was used to detect the effects of E1R on locomotion. Key Results Pretreatment with E1R enhanced the selective sigma-1 receptor agonist PRE-084's stimulating effect during a model study employing electrically stimulated rat vasa deferentia and an assay measuring the BK-induced [Ca2+]i increase. Pretreatment with E1R facilitated PA retention in a dose-related manner. Furthermore, E1R alleviated the scopolamine-induced cognitive impairment during the PA and Y-maze tests in mice. The in vivo and in vitro effects of E1R were blocked by treatment with the selective sigma-1 receptor antagonist NE-100. E1R did not affect locomotor activity. Conclusion and Implications E1R is a novel 4,5-disubstituted derivative of piracetam that enhances cognition and demonstrates efficacy against scopolamine-induced cholinergic dysfunction in mice. These effects are attributed to its positive modulatory action on the sigma-1 receptor and this activity may be relevant when developing new drugs for treating cognitive symptoms related to neurodegenerative diseases. PMID:24490863

  8. Impact of endothelial dysfunction on left ventricular remodeling after successful primary coronary angioplasty for acute myocardial infarction. Analysis by quantitative ECG-gated SPECT

    International Nuclear Information System (INIS)

    Matsuo, Shinro; Nakae, Ichiro; Matsumoto, Tetsuya; Horie, Minoru

    2006-01-01

    We hypothesized that endothelial cell integrity in the risk area would influence left ventricular remodeling after acute myocardial infarction. Twenty patients (61±8 y.o.) with acute myocardial infarction underwent 99m Tc-tetrofosmin imaging in the sub-acute phase and three months after successful primary angioplasty due to myocardial infarction. All patients were administered angiotensin-converting enzyme inhibitor after revascularization. Cardiac scintigraphies with quantitative gated SPECT were performed at the sub-acute stage and again 3 months after revascularization to evaluate left ventricular (LV) remodeling. The left ventricular ejection fraction (EF) and end-systolic and end-diastolic volume (ESV, EDV) were determined using a quantitative gated SPECT (QGS) program. Three months after myocardial infarction, all patients underwent cardiac catheterization examination with coronary endothelial function testing. Bradykinin (BK) (0.2, 0.6, 2.0 μg/min) was administered via the left coronary artery in a stepwise manner. Coronary blood flow was evaluated by Doppler flow velocity measurement. Patients were divided into two groups by BK-response: a preserved endothelial function group (n=10) and endothelial dysfunction group (n=10). At baseline, both global function and LV systolic and diastolic volumes were similar in both groups. However, LV ejection fraction was significantly improved in the preserved-endothelial function group, compared with that in the endothelial dysfunction group (42±10% to 48±9%, versus 41±4% to 42±13%, p<0.05). LV volumes progressively increased in the endothelial dysfunction group compared to the preserved-endothelial function group (123±45 ml to 128±43 ml, versus 111±47 ml to 109±49 ml, p<0.05). In re-perfused acute myocardial infarction, endothelial function within the risk area plays an important role with left ventricular remodeling after myocardial infarction. (author)

  9. Hereditary angioedema: what the gastroenterologist needs to know

    Directory of Open Access Journals (Sweden)

    Ali MA

    2014-11-01

    Full Text Available M Aamir Ali, Marie L Borum Division of Gastroenterology and Liver Diseases, George Washington University, Washington, DC, USA Abstract: Up to 93% of patients with hereditary angioedema (HAE experience recurrent abdominal pain. Many of these patients, who often present to emergency departments, primary care physicians, general surgeons, or gastroenterologists, are misdiagnosed for years and undergo unnecessary testing and surgical procedures. Making the diagnosis of HAE can be challenging because symptoms and attack locations are often inconsistent from one episode to the next. Abdominal attacks are common and can occur without other attack locations. An early, accurate diagnosis is central to managing HAE. Unexplained abdominal pain, particularly when accompanied by swelling of the face and extremities, suggests the diagnosis of HAE. A family history and radiologic imaging demonstrating edematous bowel also support an HAE diagnosis. Once HAE is suspected, C4 and C1 esterase inhibitor (C1-INH laboratory studies are usually diagnostic. Patients with HAE may benefit from recently approved specific treatments, including plasma-derived C1-INH or recombinant C1-INH, a bradykinin B2-receptor antagonist, or a kallikrein inhibitor as first-line therapy and solvent/detergent-treated or fresh frozen plasma as second-line therapy for acute episodes. Short-term or long-term prophylaxis with nanofiltered C1-INH or attenuated androgens will prevent or reduce the frequency and severity of episodes. Gastroenterologists can play a critical role in identifying and treating patients with HAE, and should have a high index of suspicion when encountering patients with recurrent, unexplained bouts of abdominal pain. Given the high rate of abdominal attacks in HAE, it is important for gastroenterologists to appropriately diagnose and promptly recognize and treat HAE, or refer patients with HAE to an allergist. Keywords: hereditary angioedema, abdominal pain, diagnosis

  10. Integrative Metabolic Signatures for Hepatic Radiation Injury.

    Directory of Open Access Journals (Sweden)

    Irwin Jack Kurland

    Full Text Available Radiation-induced liver disease (RILD is a dose-limiting factor in curative radiation therapy (RT for liver cancers, making early detection of radiation-associated liver injury absolutely essential for medical intervention. A metabolomic approach was used to determine metabolic signatures that could serve as biomarkers for early detection of RILD in mice.Anesthetized C57BL/6 mice received 0, 10 or 50 Gy Whole Liver Irradiation (WLI and were contrasted to mice, which received 10 Gy whole body irradiation (WBI. Liver and plasma samples were collected at 24 hours after irradiation. The samples were processed using Gas Chromatography/Mass Spectrometry and Liquid Chromatography/Mass Spectrometry.Twenty four hours after WLI, 407 metabolites were detected in liver samples while 347 metabolites were detected in plasma. Plasma metabolites associated with 50 Gy WLI included several amino acids, purine and pyrimidine metabolites, microbial metabolites, and most prominently bradykinin and 3-indoxyl-sulfate. Liver metabolites associated with 50 Gy WLI included pentose phosphate, purine, and pyrimidine metabolites in liver. Plasma biomarkers in common between WLI and WBI were enriched in microbial metabolites such as 3 indoxyl sulfate, indole-3-lactic acid, phenyllactic acid, pipecolic acid, hippuric acid, and markers of DNA damage such as 2-deoxyuridine. Metabolites associated with tryptophan and indoles may reflect radiation-induced gut microbiome effects. Predominant liver biomarkers in common between WBI and WLI were amino acids, sugars, TCA metabolites (fumarate, fatty acids (lineolate, n-hexadecanoic acid and DNA damage markers (uridine.We identified a set of metabolomic markers that may prove useful as plasma biomarkers of RILD and WBI. Pathway analysis also suggested that the unique metabolic changes observed after liver irradiation was an integrative response of the intestine, liver and kidney.

  11. Venom-related transcripts from Bothrops jararaca tissues provide novel molecular insights into the production and evolution of snake venom.

    Science.gov (United States)

    Junqueira-de-Azevedo, Inácio L M; Bastos, Carolina Mancini Val; Ho, Paulo Lee; Luna, Milene Schmidt; Yamanouye, Norma; Casewell, Nicholas R

    2015-03-01

    Attempts to reconstruct the evolutionary history of snake toxins in the context of their co-option to the venom gland rarely account for nonvenom snake genes that are paralogous to toxins, and which therefore represent important connectors to ancestral genes. In order to reevaluate this process, we conducted a comparative transcriptomic survey on body tissues from a venomous snake. A nonredundant set of 33,000 unigenes (assembled transcripts of reference genes) was independently assembled from six organs of the medically important viperid snake Bothrops jararaca, providing a reference list of 82 full-length toxins from the venom gland and specific products from other tissues, such as pancreatic digestive enzymes. Unigenes were then screened for nontoxin transcripts paralogous to toxins revealing 1) low level coexpression of approximately 20% of toxin genes (e.g., bradykinin-potentiating peptide, C-type lectin, snake venom metalloproteinase, snake venom nerve growth factor) in body tissues, 2) the identity of the closest paralogs to toxin genes in eight classes of toxins, 3) the location and level of paralog expression, indicating that, in general, co-expression occurs in a higher number of tissues and at lower levels than observed for toxin genes, and 4) strong evidence of a toxin gene reverting back to selective expression in a body tissue. In addition, our differential gene expression analyses identify specific cellular processes that make the venom gland a highly specialized secretory tissue. Our results demonstrate that the evolution and production of venom in snakes is a complex process that can only be understood in the context of comparative data from other snake tissues, including the identification of genes paralogous to venom toxins. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  12. Comparison of Phylogeny, Venom Composition and Neutralization by Antivenom in Diverse Species of Bothrops Complex

    Science.gov (United States)

    Peixoto, Pedro S.; Bernardoni, Juliana L.; Oliveira, Sâmella S.; Portes-Junior, José Antonio; Mourão, Rosa Helena V.; Lima-dos-Santos, Isa; Sano-Martins, Ida S.; Chalkidis, Hipócrates M.; Valente, Richard H.; Moura-da-Silva, Ana M.

    2013-01-01

    In Latin America, Bothrops snakes account for most snake bites in humans, and the recommended treatment is administration of multispecific Bothrops antivenom (SAB – soro antibotrópico). However, Bothrops snakes are very diverse with regard to their venom composition, which raises the issue of which venoms should be used as immunizing antigens for the production of pan-specific Bothrops antivenoms. In this study, we simultaneously compared the composition and reactivity with SAB of venoms collected from six species of snakes, distributed in pairs from three distinct phylogenetic clades: Bothrops, Bothropoides and Rhinocerophis. We also evaluated the neutralization of Bothrops atrox venom, which is the species responsible for most snake bites in the Amazon region, but not included in the immunization antigen mixture used to produce SAB. Using mass spectrometric and chromatographic approaches, we observed a lack of similarity in protein composition between the venoms from closely related snakes and a high similarity between the venoms of phylogenetically more distant snakes, suggesting little connection between taxonomic position and venom composition. P-III snake venom metalloproteinases (SVMPs) are the most antigenic toxins in the venoms of snakes from the Bothrops complex, whereas class P-I SVMPs, snake venom serine proteinases and phospholipases A2 reacted with antibodies in lower levels. Low molecular size toxins, such as disintegrins and bradykinin-potentiating peptides, were poorly antigenic. Toxins from the same protein family showed antigenic cross-reactivity among venoms from different species; SAB was efficient in neutralizing the B. atrox venom major toxins. Thus, we suggest that it is possible to obtain pan-specific effective antivenoms for Bothrops envenomations through immunization with venoms from only a few species of snakes, if these venoms contain protein classes that are representative of all species to which the antivenom is targeted. PMID

  13. Snake venomics across genus Lachesis. Ontogenetic changes in the venom composition of Lachesis stenophrys and comparative proteomics of the venoms of adult Lachesis melanocephala and Lachesis acrochorda.

    Science.gov (United States)

    Madrigal, Marvin; Sanz, Libia; Flores-Díaz, Marietta; Sasa, Mahmood; Núñez, Vitelbina; Alape-Girón, Alberto; Calvete, Juan J

    2012-12-21

    We report the proteomic analysis of ontogenetic changes in venom composition of the Central American bushmaster, Lachesis stenophrys, and the characterization of the venom proteomes of two congeneric pitvipers, Lachesis melanocephala (black-headed bushmaster) and Lachesis acrochorda (Chochoan bushmaster). Along with the previous characterization of the venom proteome of Lachesis muta muta (from Bolivia), our present outcome enables a comparative overview of the composition and distribution of the toxic proteins across genus Lachesis. Comparative venomics revealed the close kinship of Central American L. stenophrys and L. melanocephala and support the elevation of L. acrochorda to species status. Major ontogenetic changes in the toxin composition of L. stenophrys venom involves quantitative changes in the concentration of vasoactive peptides and serine proteinases, which steadily decrease from birth to adulthood, and age-dependent de novo biosynthesis of Gal-lectin and snake venom metalloproteinases (SVMPs). The net result is a shift from a bradykinin-potentiating and C-type natriuretic peptide (BPP/C-NP)-rich and serine proteinase-rich venom in newborns and 2-years-old juveniles to a (PI>PIII) SVMP-rich venom in adults. Notwithstanding minor qualitative and quantitative differences, the venom arsenals of L. melanocephala and L. acrochorda are broadly similar between themselves and also closely mirror those of adult L. stenophrys and L. muta venoms. The high conservation of the overall composition of Central and South American bushmaster venoms provides the ground for rationalizing the "Lachesis syndrome", characterized by vagal syntomatology, sensorial disorders, hematologic, and cardiovascular manifestations, documented in envenomings by different species of this wide-ranging genus. This finding let us predict that monospecific Lachesic antivenoms may exhibit paraspecificity against all congeneric species. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Endothelial cell permeability during hantavirus infection involves factor XII-dependent increased activation of the kallikrein-kinin system.

    Directory of Open Access Journals (Sweden)

    Shannon L Taylor

    Full Text Available Hemorrhagic fever with renal syndrome (HFRS and hantavirus pulmonary syndrome (HPS are diseases caused by hantavirus infections and are characterized by vascular leakage due to alterations of the endothelial barrier. Hantavirus-infected endothelial cells (EC display no overt cytopathology; consequently, pathogenesis models have focused either on the influx of immune cells and release of cytokines or on increased degradation of the adherens junction protein, vascular endothelial (VE-cadherin, due to hantavirus-mediated hypersensitization of EC to vascular endothelial growth factor (VEGF. To examine endothelial leakage in a relevant in vitro system, we co-cultured endothelial and vascular smooth muscle cells (vSMC to generate capillary blood vessel-like structures. In contrast to results obtained in monolayers of cultured EC, we found that despite viral replication in both cell types as well as the presence of VEGF, infected in vitro vessels neither lost integrity nor displayed evidence of VE-cadherin degradation. Here, we present evidence for a novel mechanism of hantavirus-induced vascular leakage involving activation of the plasma kallikrein-kinin system (KKS. We show that incubation of factor XII (FXII, prekallikrein (PK, and high molecular weight kininogen (HK plasma proteins with hantavirus-infected EC results in increased cleavage of HK, higher enzymatic activities of FXIIa/kallikrein (KAL and increased liberation of bradykinin (BK. Measuring cell permeability in real-time using electric cell-substrate impedance sensing (ECIS, we identified dramatic increases in endothelial cell permeability after KKS activation and liberation of BK. Furthermore, the alterations in permeability could be prevented using inhibitors that directly block BK binding, the activity of FXIIa, or the activity of KAL. Lastly, FXII binding and autoactivation is increased on the surface of hantavirus-infected EC. These data are the first to demonstrate KKS activation

  15. Identification of genetic factors associated with susceptibility to angiotensin-converting enzyme inhibitors-induced cough.

    Science.gov (United States)

    Grilo, Antonio; Sáez-Rosas, María P; Santos-Morano, Juan; Sánchez, Elena; Moreno-Rey, Concha; Real, Luis M; Ramírez-Lorca, Reposo; Sáez, María E

    2011-01-01

    Angiotensin-converting enzyme inhibitors (ACEi) are the first selected drugs for hypertensive patients because of its protective properties against heart and kidney diseases. Persistent cough is a common adverse reaction associated with ACEi, which can bind to the treatment cessation, but its etiology remains an unresolved issue. The most accepted mechanism is that the inhibition of ACEi increases kinins levels, resulting in the activation of proinflammatory mechanisms and nitric oxide generation. However, relatively little is known about the genetic susceptibility to ACEi-induced cough in hypertensive patients. We carried out a monogenic association analysis of 39 polymorphisms and haplotypes in genes encoding key proteins related to ACEi activity with the occurrence of ACEi-induced cough. We also carried out a digenic association analysis and investigated the existence of epistatic interactions between the analyzed polymorphisms using a logistic regression procedure. Finally, we investigated the predictive value of the identified associations for ACEi-induced cough. We found that genetic polymorphisms in MME [rs2016848, P=0.002, odds ratio (OR)=1.795], BDKRB2 (rs8012552, P=0.012, OR=1.609), PTGER3 (rs11209716, P=0.002, OR=0.565), and ACE (rs4344) genes are associated with ACEi-related cough. For the latter, the effect is sex specific, having a protective effect in males (P=0.027, OR=0.560) and increasing the risk in females (P=0.031, OR=1.847). In addition, genetic interactions between peptidases involved in kinins levels (CPN1 and XPNPEP1) and proteins related to prostaglandin metabolism (PTGIS and PTGIR) strongly modify the risk of ACEi-induced cough presentation (0.102≤OR≤0.384 for protective combinations and 2.732≤OR≤7.216 for risk combinations). These results are consistent with the hypothesis that the mechanism of cough is related to the accumulation of bradykinin, substance P, and prostaglandins.

  16. Hormonal therapy with estradiol and drospirenone improves endothelium-dependent vasodilation in the coronary bed of ovariectomized spontaneously hypertensive rats

    Energy Technology Data Exchange (ETDEWEB)

    Borgo, M.V.; Claudio, E.R.G.; Silva, F.B.; Romero, W.G.; Gouvea, S.A.; Moysés, M.R.; Santos, R.L.; Almeida, S.A. [Departamento de Ciências Fisiológicas, Centro de Ciências da Saúde, Universidade Federal de Espírito Santo, Vitória, ES (Brazil); Podratz, P.L.; Graceli, J.B. [Departamento de Morfologia, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES (Brazil); Abreu, G.R. [Departamento de Ciências Fisiológicas, Centro de Ciências da Saúde, Universidade Federal de Espírito Santo, Vitória, ES (Brazil)

    2015-11-17

    Drospirenone (DRSP) is a progestin with anti-aldosterone properties and it reduces blood pressure in hypertensive women. However, the effects of DRSP on endothelium-dependent coronary vasodilation have not been evaluated. This study investigated the effects of combined therapy with estrogen (E2) and DRSP on endothelium-dependent vasodilation of the coronary bed of ovariectomized (OVX) spontaneously hypertensive rats. Female spontaneously hypertensive rats (n=87) at 12 weeks of age were randomly divided into sham operated (Sham), OVX, OVX treated with E2 (E2), and OVX treated with E2 and DRSP (E2+DRSP) groups. Hemodynamic parameters were directly evaluated by catheter insertion into the femoral artery. Endothelium-dependent vasodilation in response to bradykinin in the coronary arterial bed was assessed using isolated hearts according to a modified Langendorff method. Coronary protein expression of endothelial nitric oxide synthase and estrogen receptor alpha (ER-α) was assessed by Western blotting. Histological slices of coronary arteries were stained with hematoxylin and eosin, and morphometric parameters were analyzed. Oxidative stress was assessed in situ by dihydroethidium fluorescence. Ovariectomy increased systolic blood pressure, which was only prevented by E2+DRSP treatment. Estrogen deficiency caused endothelial dysfunction, which was prevented by both treatments. However, the vasodilator response in the E2+DRSP group was significantly higher at the three highest concentrations compared with the OVX group. Reduced ER-α expression in OVX rats was restored by both treatments. Morphometric parameters and oxidative stress were augmented by OVX and reduced by E2 and E2+DRSP treatments. Hormonal therapy with E2 and DRSP may be an important therapeutic option in the prevention of coronary heart disease in hypertensive post-menopausal women.

  17. Overexpression of cellular glutathione peroxidase rescues homocyst(e)ine-induced endothelial dysfunction

    Science.gov (United States)

    Weiss, Norbert; Zhang, Ying-Yi; Heydrick, Stanley; Bierl, Charlene; Loscalzo, Joseph

    2001-01-01

    Homocyst(e)ine (Hcy) inhibits the expression of the antioxidant enzyme cellular glutathione peroxidase (GPx-1) in vitro and in vivo, which can lead to an increase in reactive oxygen species that inactivate NO and promote endothelial dysfunction. In this study, we tested the hypothesis that overexpression of GPx-1 can restore the normal endothelial phenotype in hyperhomocyst(e)inemic states. Heterozygous cystathionine β-synthase-deficient (CBS(−/+)) mice and their wild-type littermates (CBS(+/+)) were crossbred with mice that overexpress GPx-1 [GPx-1(tg+) mice]. GPx-1 activity was 28% lower in CBS(−/+)/GPx-1(tg−) compared with CBS(+/+)/GPx-1(tg−) mice (P < 0.05), and CBS(−/+) and CBS(+/+) mice overexpressing GPx-1 had 1.5-fold higher GPx-1 activity compared with GPx-1 nontransgenic mice (P < 0.05). Mesenteric arterioles of CBS(−/+)/GPx-1(tg−) mice showed vasoconstriction to superfusion with β-methacholine and bradykinin (P < 0.001 vs. all other groups), whereas nonhyperhomocyst(e)inemic mice [CBS(+/+)/GPx-1(tg−) and CBS(+/+)/GPx-1(tg+) mice] demonstrated dose-dependent vasodilation in response to both agonists. Overexpression of GPx-1 in hyperhomocyst(e)inemic mice restored the normal endothelium-dependent vasodilator response. Bovine aortic endothelial cells (BAEC) were transiently transfected with GPx-1 and incubated with dl-homocysteine (HcyH) or l-cysteine. HcyH incubation decreased GPx-1 activity in sham-transfected BAEC (P < 0.005) but not in GPx-1-transfected cells. Nitric oxide release from BAEC was significantly decreased by HcyH but not cysteine, and GPx-1 overexpression attenuated this decrease. These findings demonstrate that overexpression of GPx-1 can compensate for the adverse effects of Hcy on endothelial function and suggest that the adverse vascular effects of Hcy are at least partly mediated by oxidative inactivation of NO. PMID:11606774

  18. Effects of Ginger and Its Constituents on Airway Smooth Muscle Relaxation and Calcium Regulation

    Science.gov (United States)

    Siviski, Matthew E.; Zhang, Yi; Xu, Carrie; Hoonjan, Bhupinder; Emala, Charles W.

    2013-01-01

    The prevalence of asthma has increased in recent years, and is characterized by airway hyperresponsiveness and inflammation. Many patients report using alternative therapies to self-treat asthma symptoms as adjuncts to short-acting and long-acting β-agonists and inhaled corticosteroids (ICS). As many as 40% of patients with asthma use herbal therapies to manage asthma symptoms, often without proven efficacy or known mechanisms of action. Therefore, investigations of both the therapeutic and possible detrimental effects of isolated components of herbal treatments on the airway are important. We hypothesized that ginger and its active components induce bronchodilation by modulating intracellular calcium ([Ca2+]i) in airway smooth muscle (ASM). In isolated human ASM, ginger caused significant and rapid relaxation. Four purified constituents of ginger were subsequently tested for ASM relaxant properties in both guinea pig and human tracheas: [6]-gingerol, [8]-gingerol, and [6]-shogaol induced rapid relaxation of precontracted ASM (100–300 μM), whereas [10]-gingerol failed to induce relaxation. In human ASM cells, exposure to [6]-gingerol, [8]-gingerol, and [6]-shogaol, but not [10]-gingerol (100 μM), blunted subsequent Ca2+ responses to bradykinin (10 μM) and S-(−)-Bay K 8644 (10 μM). In A/J mice, the nebulization of [8]-gingerol (100 μM), 15 minutes before methacholine challenge, significantly attenuated airway resistance, compared with vehicle. Taken together, these novel data show that ginger and its isolated active components, [6]-gingerol, [8]-gingerol, and [6]-shogaol, relax ASM, and [8]-gingerol attenuates airway hyperresponsiveness, in part by altering [Ca2+]i regulation. These purified compounds may provide a therapeutic option alone or in combination with accepted therapeutics, including β2-agonists, in airway diseases such as asthma. PMID:23065130

  19. Epithelial cell specific properties and genetic complementation in a delta F508 cystic fibrosis nasal polyp cell line.

    Science.gov (United States)

    Kunzelmann, K; Lei, D C; Eng, K; Escobar, L C; Koslowsky, T; Gruenert, D C

    1995-09-01

    Analysis of vectorial ion transport and protein trafficking in transformed cystic fibrosis (CF) epithelial cells has been limited because the cells tend to lose their tight junctions with multiple subcultures. To elucidate ion transport and protein trafficking in CF epithelial cells, a polar cell line with apical and basolateral compartments will facilitate analysis of the efficacy of different gene therapy strategies in a "tight epithelium" in vitro. This study investigates the genotypic and phenotypic properties of a CF nasal polyp epithelial, delta F508 homozygote, cell line that has tight junctions pre-crisis. The cells (sigma CFNPE14o-) were transformed with an origin-of-replication defective SV40 plasmid. They develop transepithelial resistance in Ussing chambers and are defective in cAMP-dependent Cl- transport as measured by efflux of radioactive Cl-, short circuit current (Isc), or whole-cell patch clamp. Stimulation of the cells by bradykinin, histamine, or ATP seems to activate both K(+)- and Ca(+2)-dependent Cl- transport. Measurement of 36Cl- efflux following stimulation with A23187 and ionomycin indicate a Ca(+2)-dependent Cl- transport. Volume regulatory capacity of the cells is indicated by cell swelling conductance. Expression of the CF transmembrane conductance regulator mRNA was indicated by RT-PCR amplification. When cells are grown at 26 degrees C for 48 h there is no indication of cAMP-dependent Cl- as has been previously indicated in heterologous expression systems. Antibodies specific for secretory cell antigens indicate the presence of antigens found in goblet, serous, and mucous cells; in goblet and serous cells; or in goblet and mucous cells; but not antigens found exclusively in mucous or serous cells.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. A monomeric variant of insulin degrading enzyme (IDE loses its regulatory properties.

    Directory of Open Access Journals (Sweden)

    Eun Suk Song

    2010-03-01

    Full Text Available Insulin degrading enzyme (IDE is a key enzyme in the metabolism of both insulin and amyloid beta peptides. IDE is unique in that it is subject to allosteric activation which is hypothesized to occur through an oligomeric structure.IDE is known to exist as an equilibrium mixture of monomers, dimers, and higher oligomers, with the dimer being the predominant form. Based on the crystal structure of IDE we deleted the putative dimer interface in the C-terminal region, which resulted in a monomeric variant. Monomeric IDE retained enzymatic activity, however instead of the allosteric behavior seen with wild type enzyme it displayed Michaelis-Menten kinetic behavior. With the substrate Abz-GGFLRKHGQ-EDDnp, monomeric IDE retained approximately 25% of the wild type activity. In contrast with the larger peptide substrates beta-endorphin and amyloid beta peptide 1-40, monomeric IDE retained only 1 to 0.25% of wild type activity. Unlike wild type IDE neither bradykinin nor dynorphin B-9 activated the monomeric variant of the enzyme. Similarly, monomeric IDE was not activated by polyphosphates under conditions in which the activity of wild type enzyme was increased more than 50 fold.These findings serve to establish the dimer interface in IDE and demonstrate the requirement for an oligomeric form of the enzyme for its regulatory properties. The data support a mechanism where the binding of activators to oligomeric IDE induces a conformational change that cannot occur in the monomeric variant. Since a conformational change from a closed to a more open structure is likely the rate-determining step in the IDE reaction, the subunit induced conformational change likely shifts the structure of the oligomeric enzyme to a more open conformation.

  1. Kinin B1 Receptor Promotes Neurogenic Hypertension Through Activation of Centrally Mediated Mechanisms.

    Science.gov (United States)

    Sriramula, Srinivas; Lazartigues, Eric

    2017-12-01

    Hypertension is associated with increased activity of the kallikrein-kinin system. Kinin B1 receptor (B1R) activation leads to vasoconstriction and inflammation. Despite evidence supporting a role for the B1R in blood pressure regulation, the mechanisms by which B1R could alter autonomic function and participate in the pathogenesis of hypertension remain unidentified. We sought to explore whether B1R-mediated inflammation contributes to hypertension and investigate the molecular mechanisms involved. In this study, we tested the hypothesis that activation of B1R in the brain is involved in the pathogenesis of hypertension, using the deoxycorticosterone acetate-salt model of neurogenic hypertension in wild-type and B1R knockout mice. Deoxycorticosterone acetate-salt treatment in wild-type mice led to significant increases in B1R mRNA and protein levels and bradykinin levels, enhanced gene expression of carboxypeptidase N supporting an increase in the B1R ligand, associated with enhanced blood pressure, inflammation, sympathoexcitation, autonomic dysfunction, and impaired baroreflex sensitivity, whereas these changes were blunted or prevented in B1R knockout mice. B1R stimulation was further shown to involve activation of the ASK1-JNK-ERK1/2 and NF-κB pathways in the brain. To dismiss potential developmental alterations in knockout mice, we further used B1R blockade selectively in the brain of wild-type mice. Supporting the central origin of this mechanism, intracerebroventricular infusion of a specific B1R antagonist, attenuated the deoxycorticosterone acetate-salt-induced increase in blood pressure in wild-type mice. Our data provide the first evidence of a central role for B1R-mediated inflammatory pathways in the pathogenesis of deoxycorticosterone acetate-salt hypertension and offer novel insights into possible B1R-targeted therapies for the treatment of neurogenic hypertension. © 2017 American Heart Association, Inc.

  2. Lack of plasma kallikrein-kinin system cascade in teleosts.

    Directory of Open Access Journals (Sweden)

    Marty Kwok-Shing Wong

    Full Text Available The kallikrein-kinin system (KKS consists of two major cascades in mammals: "plasma KKS" consisting of high molecular-weight (HMW kininogen (KNG, plasma kallikrein (KLKB1, and bradykinin (BK; and "tissue KKS" consisting of low molecular-weight (LMW KNG, tissue kallikreins (KLKs, and [Lys(0]-BK. Some components of the KKS have been identified in the fishes, but systematic analyses have not been performed, thus this study aims to define the KKS components in teleosts and pave a way for future physiological and evolutionary studies. Through a combination of genomics, molecular, and biochemical methods, we showed that the entire plasma KKS cascade is absent in teleosts. Instead of two KNGs as found in mammals, a single molecular weight KNG was found in various teleosts, which is homologous to the mammalian LMW KNG. Results of molecular phylogenetic and synteny analyses indicated that the all current teleost genomes lack KLKB1, and its unique protein structure, four apple domains and one trypsin domain, could not be identified in any genome or nucleotide databases. We identified some KLK-like proteins in teleost genomes by synteny and conserved domain analyses, which could be the orthologs of tetrapod KLKs. A radioimmunoassay system was established to measure the teleost BK and we found that [Arg(0]-BK is the major circulating form instead of BK, which supports that the teleost KKS is similar to the mammalian tissue KKS. Coincidently, coelacanths are the earliest vertebrate that possess both HMW KNG and KLKB1, which implies that the plasma KKS could have evolved in the early lobe-finned fish and descended to the tetrapod lineage. The co-evolution of HMW KNG and KLKB1 in lobe-finned fish and early tetrapods may mark the emergence of the plasma KKS and a contact activation system in blood coagulation, while teleosts may have retained a single KKS cascade.

  3. Naturally Occurring Missense MRGPRX2 Variants Display Loss of Function Phenotype for Mast Cell Degranulation in Response to Substance P, Hemokinin-1, Human β-Defensin-3, and Icatibant.

    Science.gov (United States)

    Alkanfari, Ibrahim; Gupta, Kshitij; Jahan, Tahsin; Ali, Hydar

    2018-05-23

    Human mast cells (MCs) express a novel G protein-coupled receptor (GPCR) known as Mas-related GPCR X2 (MRGPRX2). Activation of this receptor by a diverse group of cationic ligands such as neuropeptides, host defense peptides, and Food and Drug Administration-approved drugs contributes to chronic inflammatory diseases and pseudoallergic drug reactions. For most GPCRs, the extracellular (ECL) domains and their associated transmembrane (TM) domains display the greatest structural diversity and are responsible for binding different ligands. The goal of the current study was to determine if naturally occurring missense variants within MRGPRX2's ECL/TM domains contribute to gain or loss of function phenotype for MC degranulation in response to neuropeptides (substance P and hemokinin-1), a host defense peptide (human β-defensin-3) and a Food and Drug Administration-approved cationic drug (bradykinin B2 receptor antagonist, icatibant). We have identified eight missense variants within MRGPRX2's ECL/TM domains from publicly available exome-sequencing databases. We investigated the ability of MRGPRX2 ligands to induce degranulation in rat basophilic leukemia-2H3 cells individually expressing these naturally occurring MRGPRX2 missense variants. Using stable and transient transfections, we found that all variants express in rat basophilic leukemia cells. However, four natural MRGPRX2 variants, G165E (rs141744602), D184H (rs372988289), W243R (rs150365137), and H259Y (rs140862085) failed to respond to any of the ligands tested. Thus, diverse MRGPRX2 ligands use common sites on the receptor to induce MC degranulation. These findings have important clinical implications for MRGPRX2 and MC-mediated pseudoallergy and chronic inflammatory diseases. Copyright © 2018 by The American Association of Immunologists, Inc.

  4. Contact Lens-Induced Discomfort and Inflammatory Mediator Changes in Tears.

    Science.gov (United States)

    Masoudi, Simin; Zhao, Zhenjun; Stapleton, Fiona; Willcox, Mark

    2017-01-01

    Studies indicate that contact lens (CL) discontinuation mostly occurs because of dryness and discomfort symptoms. This study aimed to investigate relationships between changes in the concentration of tear inflammatory mediators with subjective comfort ratings with CL wear and no contact lens wear between morning and evening. Forty-five subjects collected tears twice daily in the morning and in the evening with or without lenses. Comfort was rated subjectively on a scale from 1 to 100 (where 100 was extremely comfortable) just before each tear collection. Tear samples were assayed for complement components (C3 and C3a), leukotriene B4 (LTB4), secretory phospholipase A2 (sPLA2), secretory immunoglobulin A (sIgA), and bradykinin using commercially available immuno-based assay kits. Comfort ratings showed a statistically significant decline from morning to evening both with CL (89.0±10.1 AM vs. 76.7±15.2 PM; P0.05). Leukotriene B4 levels were slightly higher in CL (CL 43.4±12.6 pg/ml vs. No CL 39.4±13.4 pg/mL; P=0.034), whereas the concentration of LTB4, C3, C3a, and sIgA dropped by the end of the day in the presence or absence of lens wear (Ptear levels were not correlated with comfort ratings in any of the conditions. Leukotriene B4 had a higher concentration in the evening, and when measured as a ratio to sIgA, there was a trend for increased concentration of this mediator during CL wear. Although specific mediators showed changes from morning to evening with and without lens wear, most of these were not correlated with subjective comfort ratings in lens wear. The only mediator that showed an increase in concentration during the day and during lens wear was LTB4, and further studies on this mediator are warranted.

  5. Sacubitril/valsartan: beyond natriuretic peptides.

    Science.gov (United States)

    Singh, Jagdeep S S; Burrell, Louise M; Cherif, Myriam; Squire, Iain B; Clark, Andrew L; Lang, Chim C

    2017-10-01

    Natriuretic peptides, especially B-type natriuretic peptide (BNP), have primarily been regarded as biomarkers in heart failure (HF). However, they are also possible therapeutic agents due to their potentially beneficial physiological effects. The angiotensin receptor-neprilysin inhibitor, sacubitril/valsartan, simultaneously augments the natriuretic peptide system (NPS) by inhibiting the enzyme neprilysin (NEP) and inhibits the renin-angiotensin-aldosterone system (RAAS) by blocking the angiotensin II receptor. It has been shown to improve mortality and hospitalisation outcomes in patients with HF due to left ventricular systolic dysfunction. The key advantage of sacubitril/valsartan has been perceived to be its ability to augment BNP, while its other effects have largely been overlooked. This review highlights the important effects of sacubitril/valsartan, beyond just the augmentation of BNP. First we discuss how NPS physiology differs between healthy individuals and those with HF by looking at mechanisms like the overwhelming effects of RAAS on the NPS, natriuretic peptide receptor desensitisation and absolute natriuretic deficiency. Second, this review explores other hormones that are augmented by sacubitril/valsartan such as bradykinin, substance P and adrenomedullin that may contribute to the efficacy of sacubitril/valsartan in HF. We also discuss concerns that sacubitril/valsartan may interfere with amyloid-β homeostasis with potential implications on Alzheimer's disease and macular degeneration. Finally, we explore the concept of 'autoinhibition' which is a recently described observation that humans have innate NEP inhibitory capability when natriuretic peptide levels rise above a threshold. There is speculation that autoinhibition may provide a surge of natriuretic and other vasoactive peptides to rapidly reverse decompensation. We contend that by pre-emptively inhibiting NEP, sacubitril/valsartan is inducing this surge earlier during decompensation

  6. ACE inhibition is superior to angiotensin receptor blockade for renography in renal artery stenosis

    International Nuclear Information System (INIS)

    Karanikas, Georgios; Becherer, Alexander; Wiesner, Karoline; Dudczak, Robert; Kletter, Kurt

    2002-01-01

    more sensitive than valsartan renography in detecting a clinically significant renal artery stenosis. Furthermore, our data suggest that other effects, such as that on the prostaglandin-bradykinin system, are of at least similar importance to ACE inhibition for the high diagnostic sensitivity of captopril renography regarding renovascular hypertension. (orig.)

  7. ACE inhibition is superior to angiotensin receptor blockade for renography in renal artery stenosis

    Energy Technology Data Exchange (ETDEWEB)

    Karanikas, Georgios; Becherer, Alexander; Wiesner, Karoline; Dudczak, Robert; Kletter, Kurt [Department of Nuclear Medicine, University of Vienna (Austria)

    2002-03-01

    more sensitive than valsartan renography in detecting a clinically significant renal artery stenosis. Furthermore, our data suggest that other effects, such as that on the prostaglandin-bradykinin system, are of at least similar importance to ACE inhibition for the high diagnostic sensitivity of captopril renography regarding renovascular hypertension. (orig.)

  8. Inflammation in complex regional pain syndrome

    Science.gov (United States)

    Parkitny, Luke; McAuley, James H.; Di Pietro, Flavia; Stanton, Tasha R.; O’Connell, Neil E.; Marinus, Johan; van Hilten, Jacobus J.

    2013-01-01

    Objectives: We conducted a systematic review of the literature with meta-analysis to determine whether complex regional pain syndrome (CRPS) is associated with a specific inflammatory profile and whether this is dependent on the duration of the condition. Methods: Comprehensive searches of the literature using MEDLINE, Embase, Scopus, Web of Science, and reference lists from published reviews identified articles that measured inflammatory factors in CRPS. Two independent investigators screened titles and abstracts, and performed data extraction and risk of bias assessments. Studies were subgrouped by medium (blood, blister fluid, and CSF) and duration (acute and chronic CRPS). Where possible, meta-analyses of inflammatory factor concentrations were performed and pooled effect sizes were calculated using random-effects models. Results: Twenty-two studies were included in the systematic review and 15 in the meta-analysis. In acute CRPS, the concentrations of interleukin (IL)-8 and soluble tumor necrosis factor receptors I (sTNF-RI) and II (sTNF-RII) were significantly increased in blood. In chronic CRPS, significant increases were found in 1) TNFα, bradykinin, sIL-1RI, IL-1Ra, IL-2, sIL-2Ra, IL-4, IL-7, interferon-γ, monocyte chemoattractant protein-1 (MCP-1), and sRAGE (soluble receptor for advanced glycation end products) in blood; 2) IL-1Ra, MCP-1, MIP-1β, and IL-6 in blister fluid; and 3) IL-1β and IL-6 in CSF. Chronic CRPS was also associated with significantly decreased 1) substance P, sE-selectin, sL-selectin, sP-selectin, and sGP130 in blood; and 2) soluble intercellular adhesion molecule-1 (sICAM-1) in CSF. Most studies failed to meet 3 or more of our quality criteria. Conclusion: CRPS is associated with the presence of a proinflammatory state in the blood, blister fluid, and CSF. Different inflammatory profiles were found for acute and chronic cases. PMID:23267031

  9. Tissue kallikrein protects neurons from hypoxia/reoxygenation-induced cell injury through Homer1b/c.

    Science.gov (United States)

    Su, Jingjing; Tang, Yuping; Zhou, Houguang; Liu, Ling; Dong, Qiang

    2012-11-01

    Previous studies have demonstrated that human tissue kallikrein (TK) gene delivery protects against mouse cerebral ischemia/reperfusion (I/R) injury through bradykinin B2 receptor (B2R) activation. We have also reported that exogenous TK administration can suppress glutamate- or acidosis-induced neurotoxicity through the extracellular signal-regulated kinase1/2 (ERK1/2) pathway. To further explore the neuroprotection mechanisms of TK, in the present study we performed immunoprecipitation analysis and identified a scaffolding protein Homer1b/c using MALDI-TOF MS analysis. Here, we tested the hypothesis that TK reduces cell injury induced by oxygen and glucose deprivation/reoxygenation (OGD/R) through activating Homer1b/c. We found that TK increased the expression of Homer1b/c in a concentration- and time-dependent manner. Moreover, TK facilitated the translocation of Homer1b/c to the plasma membrane under OGD/R condition by confocal microscope assays. We also observed that overexpression of Homer1b/c showed the neuroprotection against OGD/R-induced cell injury by enhancing cell survival, reducing LDH release, caspase-3 activity and cell apoptosis. However, the knockdown of Homer1b/c by small interfering RNA showed the opposite effects, indicating that Homer1b/c had protective effects against OGD/R-induced neuronal injury. More interestingly, TK exerted its much more significantly neuroprotective effects after Homer1b/c overexpression, whereas it exerted its reduced effects after Homer1b/c knockdown. In addition, TK pretreatment increased the phosphorylation of the ERK1/2 and Akt-GSK3β through Homer1b/c activation. The beneficial effects of Homer1b/c were abolished by the ERK1/2 or PI3K antagonist. Therefore, we propose novel signaling mechanisms involved in the anti-hypoxic function of TK through activation of Homer1b/c-ERK1/2 and Homer1b/c-PI3K-Akt signaling pathways. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Analysis of characteristics associated with reinjection of icatibant: Results from the icatibant outcome survey.

    Science.gov (United States)

    Longhurst, Hilary J; Aberer, Werner; Bouillet, Laurence; Caballero, Teresa; Fabien, Vincent; Zanichelli, Andrea; Maurer, Marcus

    2015-01-01

    Phase 3 icatibant trials showed that most hereditary angioedema (HAE) (C1 inhibitor deficiency) acute attacks were treated successfully with one injection of icatibant, a selective bradykinin B2 receptor antagonist. We conducted a post hoc analysis of icatibant reinjection for HAE type I and II attacks in a real-world setting by using data from the Icatibant Outcome Survey, an ongoing observational study that monitors the safety and effectiveness of icatibant treatment. Descriptive retrospective analyses of icatibant reinjection were performed on Icatibant Outcome Survey data (February 2008 to December 2012). New attacks were defined as the onset of new symptoms after full resolution of the previous attack. Potential associations between the patient and attack characteristics and reinjection were explored by using logistic regression analysis. Icatibant was administered for 652 attacks in 170 patients with HAE type I or II. Most attacks (89.1%) were treated with a single icatibant injection. For attacks that required two or three injections, the second injection was given a median of 11.0 hours after the first injection, with 90.4% of second injections administered ≥6 hours after the first injection. Time to resolution and attack duration were significantly longer for two or three injections versus one icatibant injection (p < 0.0001 and p < 0.05, respectively). Multivariate logistic regression analysis identified sex, attack severity, and laryngeal attacks as significantly correlated with reinjection (all p ≤ 0.05). These factors did not remain predictors for reinjection when two outlier patients with distinct patterns of icatibant use were excluded. In this real-world setting, most HAE attacks resolved with one icatibant injection. There was no distinct profile for patients or attacks that required reinjection when outliers with substantially different patterns of use were excluded. Because new attacks were not distinguished from the recurrence of symptoms

  11. Crystal structure of cathepsin A, a novel target for the treatment of cardiovascular diseases

    Energy Technology Data Exchange (ETDEWEB)

    Schreuder, Herman A., E-mail: herman.schreuder@sanofi.com; Liesum, Alexander, E-mail: alexander.liesum@sanofi.com; Kroll, Katja, E-mail: katja.kroll@sanofi.com; Böhnisch, Britta, E-mail: britta.boehnisch@sanofi.com; Buning, Christian, E-mail: christian.buning@sanofi.com; Ruf, Sven, E-mail: sven.ruf@sanofi.com; Sadowski, Thorsten, E-mail: thorsten.sadowski@sanofi.com

    2014-03-07

    Graphical abstract: - Highlights: • The structures of active cathepsin A and the inactive precursor are very similar. • The only major difference is the absence of a 40 residue activation domain. • The termini of the active catalytic core are held together by a disulfide bond. • Compound 1 reacts with the catalytic Ser150, building a tetrahedral intermediate. • Compound 2 is cleaved by the enzyme and a fragment remained bound. - Abstract: The lysosomal serine carboxypeptidase cathepsin A is involved in the breakdown of peptide hormones like endothelin and bradykinin. Recent pharmacological studies with cathepsin A inhibitors in rodents showed a remarkable reduction in cardiac hypertrophy and atrial fibrillation, making cathepsin A a promising target for the treatment of heart failure. Here we describe the crystal structures of activated cathepsin A without inhibitor and with two compounds that mimic the tetrahedral intermediate and the reaction product, respectively. The structure of activated cathepsin A turned out to be very similar to the structure of the inactive precursor. The only difference was the removal of a 40 residue activation domain, partially due to proteolytic removal of the activation peptide, and partially by an order–disorder transition of the peptides flanking the removed activation peptide. The termini of the catalytic core are held together by the Cys253–Cys303 disulfide bond, just before and after the activation domain. One of the compounds we soaked in our crystals reacted covalently with the catalytic Ser150 and formed a tetrahedral intermediate. The other compound got cleaved by the enzyme and a fragment, resembling one of the natural reaction products, was found in the active site. These studies establish cathepsin A as a classical serine proteinase with a well-defined oxyanion hole. The carboxylate group of the cleavage product is bound by a hydrogen-bonding network involving one aspartate and two glutamate side chains

  12. Production of soluble Neprilysin by endothelial cells

    International Nuclear Information System (INIS)

    Kuruppu, Sanjaya; Rajapakse, Niwanthi W.; Minond, Dmitriy; Smith, A. Ian

    2014-01-01

    Highlights: • A soluble full-length form of Neprilysin exists in media of endothelial cells. • Exosomal release is the key mechanism for the production of soluble Neprilysin. • Inhibition of ADAM-17 by specific inhibitors reduce Neprilysin release. • Exosome mediated release of Neprilysin is dependent on ADAM-17 activity. - Abstract: A non-membrane bound form of Neprilysin (NEP) with catalytic activity has the potential to cleave substrates throughout the circulation, thus leading to systemic effects of NEP. We used the endothelial cell line Ea.hy926 to identify the possible role of exosomes and A Disintegrin and Metalloprotease 17 (ADAM-17) in the production of non-membrane bound NEP. Using a bradykinin based quenched fluorescent substrate (40 μM) assay, we determined the activity of recombinant human NEP (rhNEP; 12 ng), and NEP in the media of endothelial cells (10% v/v; after 24 h incubation with cells) to be 9.35 ± 0.70 and 6.54 ± 0.41 μmols of substrate cleaved over 3 h, respectively. The presence of NEP in the media was also confirmed by Western blotting. At present there are no commercially available inhibitors specific for ADAM-17. We therefore synthesised two inhibitors TPI2155-14 and TPI2155-17, specific for ADAM-17 with IC 50 values of 5.36 and 4.32 μM, respectively. Treatment of cells with TPI2155-14 (15 μM) and TPI2155-17 (4.3 μM) resulted in a significant decrease in NEP activity in media (62.37 ± 1.43 and 38.30 ± 4.70, respectively as a % of control; P < 0.0001), implicating a possible role for ADAM-17 in NEP release. However, centrifuging media (100,000g for 1 h at 4 °C) removed all NEP activity from the supernatant indicating the likely role of exosomes in the release of NEP. Our data therefore indicated for the first time that NEP is released from endothelial cells via exosomes, and that this process is dependent on ADAM-17

  13. Bauhinia bauhinioides cruzipain inhibitor reduces endothelial proliferation and induces an increase of the intracellular Ca2+ concentration.

    Science.gov (United States)

    Bilgin, Mehmet; Neuhof, Christiane; Doerr, Oliver; Benscheid, Utz; Andrade, Sheila S; Most, Astrid; Abdallah, Yaser; Parahuleva, Mariana; Guenduez, Dursun; Oliva, Maria L; Erdogan, Ali

    2010-12-01

    Proteinase inhibitors, isolated from different types of Bauhinia, have an effect on apoptosis, angiogenesis and inflammation. The Bauhinia bauhinioides cruzipain inhibitor (BbCI) is a Kunitz-type inhibitor and inactivates the cysteine proteinases cruzipain and cruzain from Trypanosoma cruzi. Cruzipain and tissue kallikrein have similar biochemical properties, e.g. the proteolytic cleavage of the kininogen precursor of lys-bradykinin. Tissue kallikrein stimulation in endothelial cells causes migration and capillary tube formation. The aim of this study was to examine whether the antiproliferative effect of BbCI is dependent on changes of the intracellular calcium concentration and membrane hyperpolarization. Endothelial cells were isolated from human umbilical cord veins (HUVEC). For proliferation experiments, HUVEC were incubated with BbCI (10-100 μmol/L) for 48 h. The proliferation was detected by cell counting with a Neubauer chamber. The effect of BbCI (10-100 μM) on the membrane potential was measured with the fluorescence dye DiBAC4(3) and the effect on [Ca+2]i with the fluorescence probe Fluo-3 AM. The change of the fluorescence intensity was determined with a GENios plate reader (Tecan). The experiments showed that BbCI (10-100 μmol/L) reduces the endothelial cell proliferation significantly in a concentration-dependent manner with a maximum effect at 100 μmol/L (35.1±1.8% as compared to control (p≤0.05; n=45)). As compared to the control, the addition of BbCI (100 μmol/L) caused a significant increase of systolic Ca2+ of 28.4±5.0% after 30 min incubation. HUVEC treatment with BbCI (100 μmol/L) showed a weak but significant decrease of the membrane potential of 9.5±0.9% as compared to control (p≤0.05; n=80). BbCI influenced significantly the endothelial proliferation, the intracellular Ca2+ concentration and the membrane potential.

  14. Kallikrein–Kinin System Suppresses Type I Interferon Responses: A Novel Pathway of Interferon Regulation

    Directory of Open Access Journals (Sweden)

    Alecia Seliga

    2018-02-01

    Full Text Available The Kallikrein–Kinin System (KKS, comprised of kallikreins (klks, bradykinins (BKs angiotensin-converting enzyme (ACE, and many other molecules, regulates a number of physiological processes, including inflammation, coagulation, angiogenesis, and control of blood pressure. In this report, we show that KKS regulates Type I IFN responses, thought to be important in lupus pathogenesis. We used CpG (TLR9 ligand, R848 (TLR7 ligand, or recombinant IFN-α to induce interferon-stimulated genes (ISGs and proteins, and observed that this response was markedly diminished by BKs, klk1 (tissue kallikrein, or captopril (an ACE inhibitor. BKs significantly decreased the ISGs induced by TLRs in vitro and in vivo (in normal and lupus-prone mice, and in human PBMCs, especially the induction of Irf7 gene (p < 0.05, the master regulator of Type I IFNs. ISGs induced by IFN-α were also suppressed by the KKS. MHC Class I upregulation, a classic response to Type I IFNs, was reduced by BKs in murine dendritic cells (DCs. BKs decreased phosphorylation of STAT2 molecules that mediate IFN signaling. Among the secreted pro-inflammatory cytokines/chemokines analyzed (IL-6, IL12p70, and CXCL10, the strongest suppressive effect was on CXCL10, a highly Type I IFN-dependent cytokine, upon CpG stimulation, both in normal and lupus-prone DCs. klks that break down into BKs, also suppressed CpG-induced ISGs in murine DCs. Captopril, a drug that inhibits ACE and increases BK, suppressed ISGs, both in mouse DCs and human PBMCs. The effects of BK were reversed with indomethacin (compound that inhibits production of PGE2, suggesting that BK suppression of IFN responses may be mediated via prostaglandins. These results highlight a novel regulatory mechanism in which members of the KKS control the Type I IFN response and suggest a role for modulators of IFNs in the pathogenesis of lupus and interferonopathies.

  15. Mechanism of antihypertensive effect of Mucuna pruriens L. seed extract and its isolated compounds.

    Science.gov (United States)

    Khan, Mohammad Yaseen; Kumar, Vimal

    2017-06-21

    Background In the search of safe and effective lead molecules from natural sources, Mucuna pruriens (MP) L. (Fabaceae) seeds were utilized for exploring the antihypertensive potential. Traditionally, it is used as diuretic and hypotensive. Methods Bioassay-guided fractions were utilized for the isolation of active compounds by column chromatography. IC50 value, enzyme kinetics and inhibition mechanism were determined. In vivo time and dose-dependent hypotensive study followed by changes in mean arterial pressure (MAP) induced by angiotensin I (3 nmol/kg), angiotensin II (3 nmol/kg), and bradykinin (10 nmol/kg) in anesthetized rats was done. Plasma and tissue angiotensin I-converting enzyme (ACE) activities were also determined. Results Phytochemical analysis by spectroscopic techniques revealed the presence of known compounds like genistein, ursolic acid and L-DOPA from the ethyl acetate and water fraction, respectively. In vitro study revealed MP ethyl acetate (MPEA) fraction and genistein as the most active fraction (IC50 156.45 µg/mL) and compound (IC50 253.81 µM), respectively. Lineweaver-Burk plots revealed a non-competitive mode of inhibition. ACE protein precipitation was the suggested mechanism for inhibition. The extract showed a time- and dose-dependent decrease in MAP. Genistein was able to dose-dependently reduce the MAP, up to 53±1.5 mmHg (40 mg/kg, i.v.). As compared to control, it showed a dose-dependent decrease in plasma ACE activity of 40.61 % and 54.76 % at 10 mg/kg and 20 mg/kg, respectively. It also decreased the ACE activity in the aorta (107.67nM/ml min at 10 mg, p<0.001; 95.33nM/ml min at 20 mg p<0.001). Captopril was used as a standard for various in vitro and in vivo assays. Conclusions The study revealed the antihypertensive potential of MP seed compounds via ACE inhibition.

  16. Unveiling the participation of avian kinin ornithokinin and its receptors in the chicken inflammatory response.

    Science.gov (United States)

    Guabiraba, Rodrigo; Garrido, Damien; Bailleul, Geoffrey; Trotereau, Angélina; Pinaud, Mélanie; Lalmanach, Anne-Christine; Chanteloup, Nathalie K; Schouler, Catherine

    2017-06-01

    Vasoactive peptides are key early mediators of inflammation released through activation of different enzymatic systems. The mammalian kinin-kallikrein (K-KLK) system produces bradykinin (BK) through proteolytic cleavage of a kininogen precursor by enzymes named kallikreins. BK acts through specific ubiquitous G-protein coupled receptors (B1R and B2R) to participate in physiological processes and inflammatory responses, such as activation of mononuclear phagocytes. In chickens, the BK-like nonapeptide ornithokinin (OK) has been shown to promote intracellular calcium increase in embryonic fibroblasts and to be vasodilatory in vivo. Also, one of its receptors (B2R) was already cloned. However, the participation of chicken K-KLK system components in the inflammatory response remains unknown and was therefore investigated. We first showed that B1R, B2R and kininogen 1 (KNG1) are expressed in unstimulated chicken tissues and macrophages. We next showed that chicken B1R and B2R are expressed at transcript and protein levels in chicken macrophages and are upregulated by E. coli LPS or avian pathogenic E. coli (APEC) infection. Interestingly, exogenous OK induced internalization and degradation of OK receptors protein, notably B2R. Also, OK induced intracellular calcium increase and potentiated zymosan-induced ROS production and Dextran-FITC endocytosis by chicken macrophages. Exogenous OK itself did not promote APEC killing and had no pro-inflammatory effect. However, when combined with LPS or APEC, OK upregulated cytokine/chemokine gene expression and NO production by chicken macrophages. This effect was not blocked by canonical non-peptide B1R or B2R receptor antagonists but was GPCR- and PI3K/Akt-dependent. In vivo, pulmonary colibacillosis led to upregulation of OK receptors expression in chicken lungs and liver. Also, colibacillosis led to significant upregulation of OK precursor KNG1 expression in liver and in cultured hepatocytes (LMH). We therefore provide hitherto

  17. Contribution of adrenal hormones to nicotine-induced inhibition of synovial plasma extravasation in the rat.

    Science.gov (United States)

    Miao, F J; Benowitz, N L; Heller, P H; Levine, J D

    1997-01-01

    1. In this study, we examined the mechanism(s) by which s.c. nicotine inhibits synovial plasma extravasation. We found that nicotine dose-dependently inhibited bradykinin (BK)- and platelet activating factor (PAF)-induced plasma extravasation. 2. The effect of nicotine on both BK- and PAF-induced plasma extravasation was attenuated by adrenal medullectomy. ICI-118,551 (a selective beta 2-adrenoceptor blocker) (30 micrograms ml-1, intra-articularly) significantly attenuated the inhibitory action of high-dose (1 mg kg-1) nicotine on BK-induced plasma extravasation without affecting the inhibition by low- (0.01 microgram kg-1) dose nicotine or that on PAF-induced plasma extravasation by nicotine at any dose. This suggested that beta 2-adrenoceptors mediate the inhibitory actions of high-dose, but not low-dose, nicotine. We also found that systemic naloxone (an opioid receptor antagonist) (two hourly injections of 1 mg kg-1, i.p.) attenuated the inhibitory action produced by all doses of nicotine on BK- or PAF-induced plasma extravasation, suggesting the contribution of endogenous opioids. 3. RU-38,486 (a glucocorticoid receptor antagonist) (30 mg kg-1, s.c.), and metyrapone (a glucocorticoid synthesis inhibitor) (two hourly injections of 100 mg kg-1, i.p.) both attenuated the action of high-dose nicotine without affecting that of low-dose nicotine. 4. Spinal mecamylamine (a nicotinic receptor antagonist) (0.025 mg kg-1, intrathecally, i.t.) attenuated the action of high-dose, but not low-dose, nicotine, suggesting that part of the action of high-dose nicotine is mediated by spinal nicotinic receptors. 5. Combined treatment with ICI-118,551, naloxone and RU-38,486 attenuated the action of low-dose nicotine by an amount similar to that produced by naloxone alone but produced significantly greater attenuation of the effect of high-dose nicotine when compared to the action of any of the three antagonists alone.

  18. Partial characterization of a putative new growth factor present in pathological human vitreous.

    Science.gov (United States)

    Pombo, C; Bokser, L; Casabiell, X; Zugaza, J; Capeans, M; Salorio, M; Casanueva, F

    1996-03-01

    Several growth factors have been implicated in the development of proliferative eye diseases, and some of those are present in human vitreous (HV). The effects of HV on cellular responses which modulate proliferative cell processes were studied. This study describes the partial characterization of a vitreous factor activity which does not correspond to any of the previously reported growth factors in pathological HV. Vitreous humour was obtained from medical vitrectomies, from patients with PDR and PVR. The biological activity of the vitreous factor was determined by its ability to increase cytosolic calcium concentration ([Ca2+]i), increase production of inositol phosphates, and induce cell proliferation in the cell line EGFR T17. In some experiments other cell lines, such as NIH 3T3, 3T3-L1, FRTL5, A431, PC12, Y79, and GH3, were also employed. Measurement of [Ca2+]i in cell suspensions was performed using the fluorescent Ca2+ indicator fura-2. The activity of the factor present in HV was compared with other growth factors by means of: (a) [Ca2+]i mobilization pattern, (b) sequential homologous and heterologous desensitization of receptors, (c) effects of phorbol esters on their action, and (d) inactivation after treatment with different proteolytic enzymes. The HV-induced cell proliferation and increases in [Ca2+]i concentration were characterized by a peculiar time pattern. The different approaches used ruled out its identity with PDGF, bFGF, EGF, TGF-beta, IGFs, TNF-alpha, NGF, and other compounds such as ATP, angiotensin I, and bradykinin. Vitreous factor actions are mediated by specific receptors apparently regulated by PKC. This factor is able to induce [Ca2+]i mobilization in most of the cell lines studied, indicating that its effects are not tissue specific. These results suggest the presence of a growth factor activity in pathological HV which may be due to the presence of an undescribed growth factor in the eye.

  19. The effect of endogenous essential and nonessential fatty acids on the uptake and subsequent agonist-induced release of arachidonate

    International Nuclear Information System (INIS)

    Furth, E.E.; Hurtubise, V.; Schott, M.A.; Laposata, M.

    1989-01-01

    We have demonstrated that the uptake and agonist-induced release of a pulse of arachidonate are influenced by the size and composition of preexisting endogenous fatty acid pools. EFD-1 cells, an essential fatty acid-deficient mouse fibrosarcoma cell line, were incubated with radiolabeled (14C or 3H) arachidonate, linoleate, eicosapentaenoate (EPA), palmitate, or oleate in concentrations of 0-33 microM for 24 h. After 24 h, the cells were pulsed with 0.67 microM radiolabeled (3H or 14C, opposite first label) arachidonate for 15 min and then stimulated with 10 microM bradykinin for 4 min. Because EFD-1 cells contain no endogenous essential fatty acids, we were able to create essential fatty acid-repleted cells for which the specific activity of the newly constructed endogenous essential fatty acid pool was known. Loading the endogenous pool with the essential fatty acids arachidonate, eicosapentaenoate, or linoleate (15-20 nmol of fatty acid incorporated/10(6) cells) decreased the uptake of a pulse of arachidonate from 200 to 100 pmol/10(6) cells but had no effect on palmitate uptake. The percent of arachidonate incorporated during the pulse which was released upon agonist stimulation increased 2-fold (4-8%) as the endogenous pool of essential fatty acids was increased from 0 to 15-20 nmol/10(6) cells. This 8% release was at least 3-fold greater than the percent release from the various endogenous essential fatty acid pools. In contrast, loading the endogenous pool with the nonessential fatty acids oleate or palmitate to more than 2-3 times their preexisting cellular level had no effect on the uptake of an arachidonate pulse. Like the essential fatty acids, increasing endogenous oleate increased (by 2-fold) the percent release of arachidonate incorporated during the pulse, whereas endogenous palmitate had no effect on subsequent agonist-induced release from this arachidonate pool

  20. Genes Whose Gain or Loss-Of-Function Increases Skeletal Muscle Mass in Mice: A Systematic Literature Review

    Directory of Open Access Journals (Sweden)

    Sander A. J. Verbrugge

    2018-05-01

    Full Text Available Skeletal muscle mass differs greatly in mice and humans and this is partially inherited. To identify muscle hypertrophy candidate genes we conducted a systematic review to identify genes whose experimental loss or gain-of-function results in significant skeletal muscle hypertrophy in mice. We found 47 genes that meet our search criteria and cause muscle hypertrophy after gene manipulation. They are from high to small effect size: Ski, Fst, Acvr2b, Akt1, Mstn, Klf10, Rheb, Igf1, Pappa, Ppard, Ikbkb, Fstl3, Atgr1a, Ucn3, Mcu, Junb, Ncor1, Gprasp1, Grb10, Mmp9, Dgkz, Ppargc1a (specifically the Ppargc1a4 isoform, Smad4, Ltbp4, Bmpr1a, Crtc2, Xiap, Dgat1, Thra, Adrb2, Asb15, Cast, Eif2b5, Bdkrb2, Tpt1, Nr3c1, Nr4a1, Gnas, Pld1, Crym, Camkk1, Yap1, Inhba, Tp53inp2, Inhbb, Nol3, Esr1. Knock out, knock down, overexpression or a higher activity of these genes causes overall muscle hypertrophy as measured by an increased muscle weight or cross sectional area. The mean effect sizes range from 5 to 345% depending on the manipulated gene as well as the muscle size variable and muscle investigated. Bioinformatical analyses reveal that Asb15, Klf10, Tpt1 are most highly expressed hypertrophy genes in human skeletal muscle when compared to other tissues. Many of the muscle hypertrophy-regulating genes are involved in transcription and ubiquitination. Especially genes belonging to three signaling pathways are able to induce hypertrophy: (a Igf1-Akt-mTOR pathway, (b myostatin-Smad signaling, and (c the angiotensin-bradykinin signaling pathway. The expression of several muscle hypertrophy-inducing genes and the phosphorylation of their protein products changes after human resistance and high intensity exercise, in maximally stimulated mouse muscle or in overloaded mouse plantaris.

  1. Photoprotective effects of sulindac against ultraviolet B-induced phototoxicity in the skin of SKH-1 hairless mice

    International Nuclear Information System (INIS)

    Athar, Mohammad; An, Kathy P.; Tang Xiuwei; Morel, Kimberly D.; Kim, Arianna L.; Kopelovich, Levy; Bickers, David R.

    2004-01-01

    Sulindac is a nonsteroidal anti-inflammatory drug with demonstrated potency as a chemopreventive agent in animal models of carcinogenesis and in patients with familial adenomatous polyposis. Because tumor promotion is generally associated with exposure to pro-inflammatory stimuli, it is likely that anti-inflammatory agents may have potent antitumor effects. In human skin, sulindac reduces bradykinin-induced edema. In this study, we tested the hypothesis that the cyclooxygenase inhibitor sulindac can protect against ultraviolet (UVB)-induced injury that is crucial for the induction of cancer. Exposure of SKH-1 hairless mice to two consecutive doses of UVB (230 mJ/cm 2 ) induces various inflammatory responses including erythema, edema, epidermal hyperplasia, infiltration of polymorphonuclear leukocytes, etc. Topical application of sulindac (1.25-5.0 mg/0.2 ml acetone) to the dorsal skin of SKH-1 hairless mice either 1 h before or immediately after UVB exposure substantially inhibited these inflammatory responses in a dose-dependent manner. Oral administration of sulindac in drinking water (160 ppm) for 15 days before and during UVB irradiation similarly reduced these inflammatory responses. These potent anti-inflammatory effects of sulindac suggested the possibility that the drug could inhibit signaling processes that relate to carcinogenic insult by UVB. Accordingly, studies were conducted to assess the efficacy of sulindac in attenuating the expression of UVB-induced early surrogate molecular markers of photodamage and carcinogenesis. UVB exposure enhanced the expression of p53, c-fos, cyclins D1 and A, and PCNA 24 h after irradiation. Treatment of animals with either topical or oral administration of sulindac largely abrogated the expression of these UVB-induced surrogate markers. These results indicate that the cyclooxygenase inhibitor sulindac is effective in reducing UVB-induced events relevant to carcinogenesis and that this category of topically applied or

  2. The involvement of proteoglycans in the human plasma prekallikrein interaction with the cell surface.

    Directory of Open Access Journals (Sweden)

    Camila Lopes Veronez

    Full Text Available INTRODUCTION: The aim of this work was to evaluate the role of human plasma prekallikrein assembly and processing in cells and to determine whether proteoglycans, along with high molecular weight kininogen (H-kininogen, influence this interaction. METHODS: We used the endothelial cell line ECV304 and the epithelial cell lines CHO-K1 (wild type and CHO-745 (deficient in proteoglycans. Prekallikrein endocytosis was studied using confocal microscopy, and prekallikrein cleavage/activation was determined by immunoblotting using an antibody directed to the prekallikrein sequence C364TTKTSTR371 and an antibody directed to the entire H-kininogen molecule. RESULTS: At 37°C, prekallikrein endocytosis was assessed in the absence and presence of exogenously applied H-kininogen and found to be 1,418.4±0.010 and 1,070.3±0.001 pixels/cell, respectively, for ECV304 and 1,319.1±0.003 and 631.3±0.001 pixels/cell, respectively, for CHO-K1. No prekallikrein internalization was observed in CHO-745 in either condition. Prekallikrein colocalized with LysoTracker in the absence and presence of exogenous H-kininogen at levels of 76.0% and 88.5%, respectively, for ECV304 and at levels of 40.7% and 57.0%, respectively, for CHO-K1. After assembly on the cell surface, a plasma kallikrein fragment of 53 kDa was predominant in the incubation buffer of all the cell lines studied, indicating specific proteolysis; plasma kallikrein fragments of 48-44 kDa and 34-32 kDa were also detected in the incubation buffer, indicating non-specific cleavage. Bradykinin free H-kininogen internalization was not detected in CHO-K1 or CHO-745 cells at 37°C. CONCLUSION: The prekallikrein interaction with the cell surface is temperature-dependent and independent of exogenously applied H-kininogen, which results in prekallikrein endocytosis promoted by proteoglycans. Prekallikrein proteolysis/activation is influenced by H-kininogen/glycosaminoglycans assembly and controls plasma kallikrein

  3. Local gene expression changes after UV-irradiation of human skin.

    Directory of Open Access Journals (Sweden)

    Benjamin Weinkauf

    Full Text Available UV-irradiation is a well-known translational pain model inducing local inflammation and primary hyperalgesia. The mediators and receptor proteins specifically contributing to mechanical or heat hyperalgesia are still unclear. Therefore, we irradiated buttock skin of humans (n = 16 with 5-fold MED of UV-C and assessed the time course of hyperalgesia and axon reflex erythema. In parallel, we took skin biopsies at 3, 6 and 24 h after UVC irradiation and assessed gene expression levels (RT-PCR of neurotrophins (e.g. NGF, BDNF, GDNF, ion channels (e.g. NaV1.7, TRPV1, inflammatory mediators (e.g. CCL-2, CCL-3 and enzymes (e.g. PGES, COX2. Hyperalgesia to mechanical impact (12 m/s and heat (48 °C stimuli was significant at 6 h (p<0.05 and p<0.01 and 24 h (p<0.005 and p<0.01 after irradiation. Axon reflex erythema upon mechanical and thermal stimuli was significantly increased 3 h after irradiation and particularly strong at 6 h. A significant modulation of 9 genes was found post UV-C irradiation, including NGF (3, 6, 24 h, TrkA (6, 24 h, artemin, bradykinin-1 receptor, COX-2, CCL-2 and CCL-3 (3 and 6 h each. A significant down-regulation was observed for TRPV1 and iNOS (6, 24 h. Individual one-to-one correlation analysis of hyperalgesia and gene expression revealed that changes of Nav1.7 (SCN9A mRNA levels at 6 and 24 h correlated to the intensity of mechanical hyperalgesia recorded at 24 h post UV-irradiation (Pearson r: 0.57, p<0.04 and r: 0.82, p<0.001. Expression of COX-2 and mPGES at 6 h correlated to the intensity of heat-induced erythema 24 h post UV (r: 0.57, p<0.05 for COX-2 and r: 0.83, p<0.001 for PGES. The individual correlation analyses of functional readouts (erythema and pain response with local expression changes provided evidence for a potential role of Nav1.7 in mechanical hyperalgesia.

  4. Neprilysin inhibition with sacubitril/valsartan in the treatment of heart failure: mortality bang for your buck.

    Science.gov (United States)

    Ansara, A J; Kolanczyk, D M; Koehler, J M

    2016-04-01

    Heart failure remains a leading cause of morbidity and mortality worldwide. Advanced therapies have prolonged survival in patients with advanced heart failure, but pharmacotherapeutic optimization remains the mainstay of treatment. It has been over 10 years since the last mortality-reducing medication has been approved by the Food and Drug Administration. This article reviews the background, current knowledge and data supporting the use of sacubitril/valsartan (Entresto(®) ), the newly FDA-approved medication that dually inhibits angiotensin and neprilysin, in the treatment of heart failure. A literature search was performed (January 1980 to August 2015) using PubMed and the search terms were as follows: neprilysin inhibitor, heart failure, endopeptidase, natriuretic peptides, angiotensin, omapatrilat, LCZ696, valsartan and sacubitril. Peer-reviewed, published clinical trials, review articles, relevant treatment guidelines and prescribing information documents were identified and reviewed for relevance. Additionally, reference citations from publications identified were reviewed. The inhibition of endopeptidases has been an area of extensive study for the treatment of heart failure. Previously published literature with the endopeptidase inhibitor omapatrilat failed to demonstrate a sufficient balance between clinical efficacy and safety to justify its approval. Omapatrilat blocked three pathways that break down bradykinin, leading to high rates of angioedema. Sacubitril, on the other hand, is metabolized to a form that is highly selective for neprilysin without possessing activity for the other two peptidases, ACE and APP. The combination of sacubitril with valsartan in a single formulation offers the benefit of concurrent blockade of the renin angiotensin aldosterone system and the inhibition of neprilysin while minimizing angioedema risk. When compared to ACE inhibitor therapy in systolic heart failure patients, sacubitril/valsartan demonstrated reductions in

  5. Intermittent losartan administration triggers cardiac post-conditioning in isolated rat hearts: role of BK2 receptors.

    Directory of Open Access Journals (Sweden)

    Luca Sgarra

    Full Text Available The angiotensin (Ang and bradykinin (BK tissue-system plays a pivotal role in post-conditioning, but the efficacy of angiotensin type 1 receptor (AT1R blockers (ARBs in post-ischemic strategies is still under investigation. We evaluated functional and morphological outcomes, together with activation of cytosolic RISK pathway kinases, in rat hearts subjected to losartan (LOS or irbesartan (IRB post-ischemic administration.Isolated rat hearts underwent 30 min ischemia and 120 min reperfusion. Post-conditioning was obtained by intermittent (10 s/each or continuous drug infusion during the first 3 min of reperfusion. Left ventricular end-diastolic pressure (LVEDP, left ventricular developed pressure (dLVP, coronary flow (CF, and left ventricular infarct mass (IM were measured together with the activation status of RISK kinases Akt, p42/44 MAPK and GSK3β.When compared to hearts subjected to ischemia/reperfusion (iI/R alone, continuous IRB or LOS administration did not significantly reduce total infarct mass (cIRB or cLOS vs. iI/R, p = 0.2. Similarly, intermittent IRB (iIRB was not able to enhance cardioprotection. Conversely, intermittent LOS administration (iLOS significantly ameliorated cardiac recovery (iLOS vs iI/R, p<0.01. Differences between iLOS and iIRB persisted under continuous blockade of AT2R (iLOS+cPD vs. iIRB+cPD, p<0.05. Interestingly, iLOS cardioprotection was lost when BK2R was simultaneously blocked (iLOS+cHOE vs. iI/R, p = 0.6, whereas concurrent administration of iBK and iIRB replicated iLOS effects (iIRB+iBK vs. iLOS, p = 0.7. At the molecular level, iIRB treatment did not significantly activate RISK kinases, whereas both iLOS and iBK treatments were associated with activation of the Akt/GSK3β branch of the RISK pathways (p<0.05 vs. iI/R, for both.Our results suggest that intermittent losartan is effective in mediating post-conditioning cardioprotection, whereas irbesartan is not. The infarct mass reduction by intermittent

  6. Morphology and Function of the Lamb Ileum following Preterm Birth

    Directory of Open Access Journals (Sweden)

    Tracey J. Flores

    2018-01-01

    Full Text Available BackgroundFor infants born moderately/late preterm (32–37 weeks of gestation, immaturity of the intestine has the potential to impact both short- and long-term gastrointestinal function. The aim of this study conducted in sheep was to compare the morphology and smooth muscle contractility of the ileum in term and late preterm lambs.Materials and methodsLambs delivered preterm (132 days gestation; n = 7 or term (147 days gestation; n = 9 were milk-fed after birth and euthanased at 2 days of age. A segment of distal ileum was collected for analysis of the length and cellular composition of the villi and crypts, smooth muscle width and contractility, and mRNA expression of the cell markers Ki67, lysozyme, mucin 2, synaptophysin, chromogranin A, olfactomedin 4, axis inhibition protein 2, and leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5.ResultsThere was no difference in the proportion of inflammatory, proliferating, apoptotic, enterocyte, or goblet cells between groups, but preterm lambs exhibited a significant upregulation of the stem cell marker LGR5 (p = 0.01. Absolute villus height (term: 1,032 ± 147 µm, preterm: 651 ± 52 µm; p < 0.0001 and crypt depth (term: 153 ± 11 µm, preterm: 133 ± 17 µm; p = 0.01 were significantly shorter in the preterm ileums, with a trend (p = 0.06 for a reduction in muscularis externa width. There was no difference between groups in the contractile response to acetylcholine, but peak contractility in response to bradykinin (p = 0.02 and angiotensin II (p = 0.03 was significantly greater in the preterm lambs.ConclusionFindings demonstrate that the crypt-villus units are shorter in the ileum of late preterm offspring, but functionally mature with an equivalent cellular composition and normal contractile response to acetylcholine compared with term offspring. The exaggerated contractility to inflammatory mediators evident in the

  7. Antithrombotic Potential of Tormentil Extract in Animal Models

    Directory of Open Access Journals (Sweden)

    Natalia Marcinczyk

    2017-08-01

    Full Text Available Potentilla species that have been investigated so far display pharmacological activity mainly due to the presence of polyphenols. Recently, it was shown that polyphenol-rich extract from rhizome of Potentilla erecta (tormentil extract affects the metabolism of arachidonic acid and exerts both anti-inflammatory and anti-oxidant activities, suggesting a possible effect on thrombosis. Accordingly, the aim of the study was to evaluate the effect of tormentil extract on haemostasis in a rat model of thrombosis. Lyophilized water-methanol extract from P. erecta rhizome was administrated per os for 14 days in doses of 100, 200, and 400 mg/kg in a volume of 2 mL/kg in a 5% water solution of gummi arabici (VEH. In the in vivo experiment an electrically induced carotid artery thrombosis model with blood flow monitoring was used in Wistar rats. Collected blood samples were analyzed ex vivo functionally and biochemically for changes in haemostasis. Tormentil extract (400 mg/kg significantly decreased thrombus weight and prolonged the time to carotid artery occlusion and bleeding time without changes in the blood pressure. In the ex vivo experiment tormentil extract (400 mg/kg reduced thromboxane production and decreased t-PA activity, while total t-PA concentration, as well as total PAI-1 concentration and PAI-1 activity remained unchanged. Furthermore, tormentil extract (400 mg/kg decreased bradykinin concentration and shortened the time to reach maximal optical density during fibrin generation. Prothrombin time, activated partial thromboplastin time, QUICK index, fibrinogen level, and collagen-induced aggregation remained unchanged. To investigate the involvement of platelets in the antithrombotic effect of tormentil, the extract was administrated per os for 2 days to mice and irreversible platelets activation after ferric chloride induced thrombosis was evaluated under intravital conditions using confocal microscopy system. In this model tormentil

  8. Pomegranate Extract Enhances Endothelium-Dependent Coronary Relaxation in Isolated Perfused Hearts from Spontaneously Hypertensive Ovariectomized Rats

    Science.gov (United States)

    Delgado, Nathalie T. B.; Rouver, Wender do N.; Freitas-Lima, Leandro C.; de Paula, Tiago D.-C.; Duarte, Andressa; Silva, Josiane F.; Lemos, Virgínia S.; Santos, Alexandre M. C.; Mauad, Helder; Santos, Roger L.; Moysés, Margareth R.

    2017-01-01

    Decline in estrogen levels promotes endothelial dysfunction and, consequently, the most prevalent cardiovascular diseases in menopausal women. The use of natural therapies such as pomegranate can change these results. Pomegranate [Punica granatum L. (Punicaceae)] is widely used as a phytotherapeutic agent worldwide, including in Brazil. We hypothesized that treatment with pomegranate hydroalcoholic extract (PHE) would improve coronary vascular reactivity and cardiovascular parameters. At the beginning of treatment, spontaneously hypertensive female rats were divided into Sham and ovariectomized (OVX) groups, which received pomegranate extract (PHE) (250 mg/kg) or filtered water (V) for 30 days by gavage. Systolic blood pressure was measured by tail plethysmography. After euthanasia, the heart was removed and coronary vascular reactivity was assessed by Langendorff retrograde perfusion technique. A dose-response curve for bradykinin was performed, followed by L-NAME inhibition. The protein expression of p-eNOS Ser1177, p-eNOS Thr495, total eNOS, p-AKT Ser473, total AKT, SOD-2, and catalase was quantified by Western blotting. The detection of coronary superoxide was performed using the protocol of dihydroethidium (DHE) staining Plasma nitrite measurement was analyzed by Griess method. Systolic blood pressure increased in both Sham-V and OVX-V groups, whereas it was reduced after treatment in Sham-PHE and OVX-PHE groups. The baseline coronary perfusion pressure was reduced in the Sham-PHE group. The relaxation was significantly higher in the treated group, and L-NAME attenuated the relaxation in all groups. The treatment has not changed p-eNOS (Ser1177), total eNOS, p-AKT (Ser473) and total AKT in any groups. However, in Sham and OVX group the treatment reduced the p-eNOS (Thr495) and SOD-2. The ovariectomy promoted an increasing in the superoxide anion levels and the treatment was able to prevent this elevation and reducing oxidative stress. Moreover, the treatment

  9. Targeted Catalytic Inactivation of Angiotensin Converting Enzyme by Lisinopril-Coupled Transition Metal Chelates

    Science.gov (United States)

    Joyner, Jeff C.; Hocharoen, Lalintip; Cowan, J. A.

    2012-01-01

    A series of compounds that target reactive transition metal chelates to somatic Angiotensin Converting Enzyme (sACE-1) have been synthesized. Half maximal inhibitory concentrations (IC50) and rate constants for both inactivation and cleavage of full length sACE-1 have been determined and evaluated in terms of metal-chelate size, charge, reduction potential, coordination unsaturation, and coreactant selectivity. Ethylenediamine-tetraacetic acid (EDTA), nitrilotriacetic acid (NTA), 1,4,7,10-tetraazacyclo-dodecane-1,4,7,10-tetraacetic acid (DOTA), and tripeptide GGH were linked to the lysine sidechain of lisinopril by EDC/NHS coupling. The resulting amide-linked chelate-lisinopril (EDTA-lisinopril, NTA-lisinopril, DOTA-lisinopril, and GGH-lisinopril) conjugates were used to form coordination complexes with iron, cobalt, nickel and copper, such that lisinopril could mediate localization of the reactive metal chelates to sACE-1. ACE activity was assayed by monitoring cleavage of the fluorogenic substrate Mca-RPPGFSAFK(Dnp)-OH, a derivative of bradykinin, following pre-incubation with metal-chelate-lisinopril compounds. Concentration-dependent inhibition of sACE-1 by metal-chelate-lisinopril complexes revealed IC50 values ranging from 44 nM to 4,500 nM for Ni-NTA-lisinopril and Ni-DOTA-lisinopril, respectively, versus 1.9 nM for lisinopril. Stronger inhibition was correlated with smaller size and lower negative charge of the attached metal chelates. Time-dependent inactivation of sACE-1 by metal-chelate-lisinopril complexes revealed a remarkable range of catalytic activities, with second order rate constants as high as 150,000 M−1min−1 (Cu-GGH-lisinopril), while catalyst-mediated cleavage of sACE-1 typically occurred at much lower rates, indicating that inactivation arose primary from sidechain modification. Optimal inactivation of sACE-1 was observed when the reduction potential for the metal center was poised near 1000 mV, reflecting the difficulty of protein

  10. Targeted catalytic inactivation of angiotensin converting enzyme by lisinopril-coupled transition-metal chelates.

    Science.gov (United States)

    Joyner, Jeff C; Hocharoen, Lalintip; Cowan, J A

    2012-02-22

    A series of compounds that target reactive transition-metal chelates to somatic angiotensin converting enzyme (sACE-1) have been synthesized. Half-maximal inhibitory concentrations (IC(50)) and rate constants for both inactivation and cleavage of full-length sACE-1 have been determined and evaluated in terms of metal chelate size, charge, reduction potential, coordination unsaturation, and coreactant selectivity. Ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), and tripeptide GGH were linked to the lysine side chain of lisinopril by 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide hydrochloride/N-hydroxysuccinimide coupling. The resulting amide-linked chelate-lisinopril (EDTA-lisinopril, NTA-lisinopril, DOTA-lisinopril, and GGH-lisinopril) conjugates were used to form coordination complexes with iron, cobalt, nickel, and copper, such that lisinopril could mediate localization of the reactive metal chelates to sACE-1. ACE activity was assayed by monitoring cleavage of the fluorogenic substrate Mca-RPPGFSAFK(Dnp)-OH, a derivative of bradykinin, following preincubation with metal chelate-lisinopril compounds. Concentration-dependent inhibition of sACE-1 by metal chelate-lisinopril complexes revealed IC(50) values ranging from 44 to 4500 nM for Ni-NTA-lisinopril and Ni-DOTA-lisinopril, respectively, versus 1.9 nM for lisinopril. Stronger inhibition was correlated with smaller size and lower negative charge of the attached metal chelates. Time-dependent inactivation of sACE-1 by metal chelate-lisinopril complexes revealed a remarkable range of catalytic activities, with second-order rate constants as high as 150,000 M(-1) min(-1) (Cu-GGH-lisinopril), while catalyst-mediated cleavage of sACE-1 typically occurred at much lower rates, indicating that inactivation arose primarily from side chain modification. Optimal inactivation of sACE-1 was observed when the reduction potential for the

  11. Potentiation of the vascular response to kinins by inhibition of myocardial kininases.

    Science.gov (United States)

    Dendorfer, A; Wolfrum, S; Schäfer, U; Stewart, J M; Inamura, N; Dominiak, P

    2000-01-01

    Inhibitors of angiotensin I-converting enzyme (ACE) are very efficacious in the potentiation of the actions of bradykinin (BK) and are able to provoke a B(2) receptor-mediated vasodilation even after desensitization of this receptor. Because this activity cannot be easily explained only by an inhibition of kinin degradation, direct interactions of ACE inhibitors with the B(2) receptor or its signal transduction have been hypothesized. To clarify the significance of degradation-independent potentiation, we studied the vasodilatory effects of BK and 2 degradation-resistant B(2) receptor agonists in the isolated rat heart, a model in which ACE and aminopeptidase P (APP) contribute equally to the degradation of BK. Coronary vasodilation to BK and to a peptidic (B6014) and a nonpeptidic (FR190997) degradation-resistant B(2) agonist was assessed in the presence or absence of the ACE inhibitor ramiprilat, the APP inhibitor mercaptoethanol, or both. Ramiprilat or mercaptoethanol induced leftward shifts in the BK dose-response curve (EC(50)=3.4 nmol/L) by a factor of 4.6 or 4.9, respectively. Combined inhibition of ACE and APP reduced the EC(50) of BK to 0.18 nmol/L (ie, by a factor of 19) but potentiated the activity of B6014 (EC(50)=1.9 nmol/L) only weakly without altering that of FR190997 (EC(50)=0.34 nmol/L). Desensitization of B(2) receptors was induced by the administration of BK (0.2 micromol/L) or FR190997 (0.1 micromol/L) for 30 minutes; the vascular reactivity to ramiprilat or increasing doses of BK was tested thereafter. After desensitization with BK, but not FR190997, an additional application of ramiprilat provoked a B(2) receptor-mediated vasodilation. High BK concentrations were still effective at the desensitized receptor. The process of desensitization was not altered by ramiprilat. These results show that in this model, all potentiating actions of ACE inhibitors on kinin-induced vasodilation are exclusively related to the reduction in BK breakdown and are

  12. Increased angiotensin-converting enzyme activity in the left ventricle after infarction

    Directory of Open Access Journals (Sweden)

    V.C.W. Busatto

    1997-05-01

    high ACE activity present in the fibrous scar may increase the angiotensin II concentration and decrease bradykinin in the cardiac tissues surrounding the infarcted area. The increased angiotensin II in the fibrous scar may contribute to the reactive fibrosis and hypertrophy in the left ventricular muscle surviving infarction

  13. A transcriptomic analysis of gene expression in the venom gland of the snake Bothrops alternatus (urutu

    Directory of Open Access Journals (Sweden)

    Menossi Marcelo

    2010-10-01

    Full Text Available Abstract Background The genus Bothrops is widespread throughout Central and South America and is the principal cause of snakebite in these regions. Transcriptomic and proteomic studies have examined the venom composition of several species in this genus, but many others remain to be studied. In this work, we used a transcriptomic approach to examine the venom gland genes of Bothrops alternatus, a clinically important species found in southeastern and southern Brazil, Uruguay, northern Argentina and eastern Paraguay. Results A cDNA library of 5,350 expressed sequence tags (ESTs was produced and assembled into 838 contigs and 4512 singletons. BLAST searches of relevant databases showed 30% hits and 70% no-hits, with toxin-related transcripts accounting for 23% and 78% of the total transcripts and hits, respectively. Gene ontology analysis identified non-toxin genes related to general metabolism, transcription and translation, processing and sorting, (polypeptide degradation, structural functions and cell regulation. The major groups of toxin transcripts identified were metalloproteinases (81%, bradykinin-potentiating peptides/C-type natriuretic peptides (8.8%, phospholipases A2 (5.6%, serine proteinases (1.9% and C-type lectins (1.5%. Metalloproteinases were almost exclusively type PIII proteins, with few type PII and no type PI proteins. Phospholipases A2 were essentially acidic; no basic PLA2 were detected. Minor toxin transcripts were related to L-amino acid oxidase, cysteine-rich secretory proteins, dipeptidylpeptidase IV, hyaluronidase, three-finger toxins and ohanin. Two non-toxic proteins, thioredoxin and double-specificity phosphatase Dusp6, showed high sequence identity to similar proteins from other snakes. In addition to the above features, single-nucleotide polymorphisms, microsatellites, transposable elements and inverted repeats that could contribute to toxin diversity were observed. Conclusions Bothrops alternatus venom gland

  14. In silico prediction of harmful effects triggered by drugs and chemicals

    International Nuclear Information System (INIS)

    Vedani, Angelo; Dobler, Max; Lill, Markus A.

    2005-01-01

    While the computer-assisted discovery and optimization of drug candidates based on the known three-dimensional structure of the macromolecular target (structure-based design) or a binding-site surrogate (receptor modeling) is doubtless one of the more potent approaches in rational drug design, the simulation and quantification of side effects triggered by drugs and chemicals are still in their infancy. Major obstacles include the often not available 3D structure of the molecular target, the low specificity of the involved bioregulators and the identification of the controlling metabolic pathways. In the recent past, our laboratory has explored concepts allowing to simulate receptor-mediated toxic phenomena by developing algorithms, allowing to construct realistic 3D binding-site surrogates of receptors known or assumed triggering adverse effects and validating them against large batches of molecular data. The underlying technology (software Quasar and Raptor, respectively) specifically allows for induced fit, solvation phenomena and entropic effects. It has been applied to various systems both of pharmacological and toxicological interest including the neurokinin-1, chemokine-3, bradykinin B 2 , steroid, 5 HT 2A , aryl hydrocarbon, estrogen and androgen receptor, respectively. In this account, we describe the design of a virtual laboratory allowing for a reliable estimation of harmful effects triggered by drugs, chemicals and their metabolites in silico. In the recent past, the Biographics Laboratory 3R has compiled a 3D database including the surrogates of three major receptor systems known to mediate adverse effects (the aryl hydrocarbon, the estrogen and the androgen receptor, respectively) and validated them against a total of 345 compounds (drugs, chemicals, toxins) using multidimensional QSAR technologies. Within this pilot project, we could demonstrate that our virtual laboratory is able to both recognize toxic compounds substantially different from those

  15. Polimorfismos genéticos determinantes da performance física em atletas de elite Genetic polymorphisms determining of the physical performance in elite athletes

    Directory of Open Access Journals (Sweden)

    Rodrigo Gonçalves Dias

    2007-06-01

    Full Text Available Este artigo direciona-se à revisão de publicações sobre os "genes candidatos" e sua relação com os fenótipos de performance física humana em atletas de elite. Nosso objetivo é trazer ao conhecimento do leitor informações atualizadas sobre marcadores e variantes genéticas que podem levar certos indivíduos a sobressair-se em modalidades esportivas específicas. Além disso, serão descritos os mecanismos pelos quais um gene pode contribuir para a performance física, detalhando em cada momento as propriedades celulares, fisiológicas e moleculares do sistema em questão. Por esse motivo, limitamos nossa discussão a um número pequeno de variantes genéticas: polimorfismos R577X do gene da alfa-actinina 3 (ACTN3, C34T do gene da AMP deaminase (AMPD1, I/D da enzima conversora de angiotensina (ECA, -9/+9 do receptor beta2 de bradicinina (BDKRB2 e 985+185/1170 do gene da enzima creatina quinase M (CK-M. Esperamos com este artigo informar e sensibilizar o leitor para o fato de que a identificação de talentos e a otimização do potencial individual do atleta, com conseqüente sucesso no esporte, estão diretamente associados a variantes genéticas.This article is focused on the review of studies looking for "candidate genes" and their relationship with physical performance phenotypes in elite athletes. Our goal is to bring to readers what makes some individuals excel in some sports modalities, based on variants in genetic loci and markers. In addition, we assume the necessity to describe by what mechanisms a gene can contribute in physical performance, detailing in each part the cellular, physiological and molecular pathways involved. For this reason, we limited our discussion to a small number of genetic variants: polymorphisms R577X alpha-actinin 3 gene (ACTN3, C34T AMP deaminase gene (AMPD1, I/D angiotensin converting enzyme gene (ACE, -9/+9 beta2 bradykinin receptor gene (BDKRB2, and 985+185/ 1170 creatine kinase M gene (CK-M. We

  16. An interaction of renin-angiotensin and kallikrein-kinin systems contributes to vascular hypertrophy in angiotensin II-induced hypertension: in vivo and in vitro studies.

    Directory of Open Access Journals (Sweden)

    Graziela S Ceravolo

    Full Text Available The kallikrein-kinin and renin-angiotensin systems interact at multiple levels. In the present study, we tested the hypothesis that the B1 kinin receptor (B1R contributes to vascular hypertrophy in angiotensin II (ANG II-induced hypertension, through a mechanism involving reactive oxygen species (ROS generation and extracellular signal-regulated kinase (ERK1/2 activation. Male Wistar rats were infused with vehicle (control rats, 400 ng/Kg/min ANG II (ANG II rats or 400 ng/Kg/min ANG II plus B1 receptor antagonist, 350 ng/Kg/min des-Arg(9-Leu(8-bradykinin (ANGII+DAL rats, via osmotic mini-pumps (14 days or received ANG II plus losartan (10 mg/Kg, 14 days, gavage - ANG II+LOS rats. After 14 days, ANG II rats exhibited increased systolic arterial pressure [(mmHg 184 ± 5.9 vs 115 ± 2.3], aortic hypertrophy; increased ROS generation [2-hydroxyethidium/dihydroethidium (EOH/DHE: 21.8 ± 2.7 vs 6.0 ± 1.8] and ERK1/2 phosphorylation (% of control: 218.3 ± 29.4 vs 100 ± 0.25]. B1R expression was increased in aortas from ANG II and ANG II+DAL rats than in aortas from the ANG II+LOS and control groups. B1R antagonism reduced aorta hypertrophy, prevented ROS generation (EOH/DHE: 9.17 ± 3.1 and ERK1/2 phosphorylation (137 ± 20.7% in ANG II rats. Cultured aortic vascular smooth muscle cells (VSMC stimulated with low concentrations (0.1 nM of ANG II plus B1R agonist exhibited increased ROS generation, ERK1/2 phosphorylation, proliferating-cell nuclear antigen expression and [H3]leucine incorporation. At this concentration, neither ANG II nor the B1R agonist produced any effects when tested individually. The ANG II/B1R agonist synergism was inhibited by losartan (AT1 blocker, 10 µM, B1R antagonist (10 µM and Tiron (superoxide anion scavenger, 10 mM. These data suggest that B1R activation contributes to ANG II-induced aortic hypertrophy. This is associated with activation of redox-regulated ERK1/2 pathway that controls aortic smooth muscle cells growth

  17. Endothelium-dependent relaxation induced by cathepsin G in porcine pulmonary arteries

    Science.gov (United States)

    Glusa, Erika; Adam, Christine

    2001-01-01

    Serine proteinases elicit profound cellular effects in various tissues mediated by activation of proteinase-activated receptors (PAR). In the present study, we investigated the vascular effects of cathepsin G, a serine proteinase that is present in the azurophil granules of leukocytes and is known to activate several cells that express PARs. In prostaglandin F2α (3 μM)-precontracted rings from porcine pulmonary arteries with intact endothelium, cathepsin G caused concentration-dependent relaxant responses (pEC50=9.64±0.12). The endothelium-dependent relaxant effect of cathepsin G could also be demonstrated in porcine coronary arteries (pEC50=9.23±0.07). In pulmonary arteries the cathepsin G-induced relaxation was inhibited after blockade of nitric oxide synthesis by L-NAME (200 μM) and was absent in endothelium-denuded vessels. Bradykinin- and cathepsin G-induced relaxant effects were associated with a 5.7 fold and 2.4 fold increase in the concentration of cyclic GMP, respectively. Compared with thrombin and trypsin, which also produced an endothelium-dependent relaxation in pulmonary arteries, cathepsin G was 2.5 and four times more potent, respectively. Cathepsin G caused only small homologous desensitization. In cathepsin G-challenged vessels, thrombin was still able to elicit a relaxant effect. The effects of cathepsin G were blocked by soybean trypsin inhibitor (IC50=0.043 μg ml−1), suggesting that proteolytic activity is essential for induction of relaxation. Recombinant acetyl-eglin C proved to be a potent inhibitor (IC50=0.14 μg ml−1) of the cathepsin G effect, whereas neither indomethacin (3 μM) nor the thrombin inhibitor hirudin (5 ATU ml−1) elicited any inhibitory activity. Due to their polyanionic structure defibrotide (IC50=0.11 μg ml−1), heparin (IC50=0.48 μg ml−1) and suramin (IC50=1.85 μg ml−1) diminished significantly the relaxation in response to the basic protein cathepsin G. In conclusion, like

  18. The hypoalgesic effects of low-intensity infrared laser therapy: a study on 555 cases

    Science.gov (United States)

    Tam, Giuseppe

    2004-09-01

    Objective: Low energy lasers are widely used to treat a variety of musculoskeletal conditions. The aim of this clinical study is to determine the action of the IR diode laser 904 nm pulsed on pain reduction therapy. Summary Background Data: With respect to pain, has been shown the Low power density laser increases the endorphin synthesis in the dorsal posterior horn of the spinal cord stopping the production of bradykinin and serotonin. Besides laser causes local vasodilatation of the capillaries and an improved circulation of drainage liquids in interstitial space causing an analgesic effect. Additionally, laser interferes in the cytochines (TNF-α, interleukin-1 and interleukin-6) that drive inflammation in the arthritis and are secreted from CD4 e T cells. Methods: Treatment was carried out on 555 cases and 525 patients (322 women and 203 men) in the period between 1987 and 2002. The patients, whose age ranged from 25 to 70, with a mean age of 45 years, were suffering from rheumatic, degenerative and traumatic pathologies. The majority of the patients had been seen by orthopaedists and rheumatologists and had undergone x-ray, ultrasound scanning, Tac, RM examination. All patients had received drug-based treatment and/or physiotherapy with poor results. Two thirds were experiencing acute symptomatic pain, while the others presented a chronic pathology with recurrent crises. We used a pulsed IR diode laser, GaAs 904 nm, maximum power 60 W, frequency impulse 1300 Hz, pulsed duration 200 nanoseconds; peak power per pulse 27W; maximal energy density: 9J/cm2; total number of Joules per treatment session: 10-75J/cm2, chronic 12-90J/cm2. Average number of applications: 12; maximum number of applications: 20. Results: In the evaluation of the results the following parameters have been considered: disappearance of spontaneous and induced pain (Likert scale, Rolland Morris disability scale, dynamometer). The pathologies treated were osteoarthritis in general, epicondylitis

  19. Differential regulation of collagen secretion by kinin receptors in cardiac fibroblast and myofibroblast

    Energy Technology Data Exchange (ETDEWEB)

    Catalán, Mabel; Smolic, Christian [Centro de estudios moleculares de la célula, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile (Chile); Contreras, Ariel [Instituto Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile (Chile); Ayala, Pedro; Olmedo, Ivonne; Copaja, Miguel; Boza, Pía; Vivar, Raúl; Avalos, Yennifer [Centro de estudios moleculares de la célula, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile (Chile); Lavandero, Sergio [Centro de estudios moleculares de la célula, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile (Chile); Instituto Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile (Chile); Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX (United States); Velarde, Victoria [Departamento de Ciencias Fisiológicas, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago (Chile); Díaz-Araya, Guillermo, E-mail: gadiaz@ciq.uchile.cl [Centro de estudios moleculares de la célula, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile (Chile)

    2012-06-15

    Kinins mediate their cellular effects through B1 (B1R) and B2 (B2R) receptors, and the activation of B2R reduces collagen synthesis in cardiac fibroblasts (CF). However, the question of whether B1R and/or B2R have a role in cardiac myofibroblasts remains unanswered. Methods: CF were isolated from neonate rats and myofibroblasts were generated by an 84 h treatment with TGF-β1 (CMF). B1R was evaluated by western blot, immunocytochemistry and radioligand assay; B2R, inducible nitric oxide synthase (iNOS), endothelial nitric oxide synthase (eNOS), and cyclooxygenases 1and 2 (COX-1, and COX-2) were evaluated by western blot; intracellular Ca{sup +2} levels were evaluated with Fluo-4AM; collagen secretion was measured in the culture media using the picrosirius red assay kit. Results: B2R, iNOS, COX-1 and low levels of B1R but not eNOS, were detected by western blot in CF. Also, B1R, B2R, and COX-2 but not iNOS, eNOS or COX-1, were detected by western blot in CMF. By immunocytochemistry, our results showed lower intracellular B1R levels in CF and higher B1R levels in CMF, mainly localized on the cell membrane. Additionally, we found B1R only in CMF cellular membrane through radioligand displacement assay. Bradykinin (BK) B2R agonist increased intracellular Ca{sup 2+} levels and reduced collagen secretion both in CF and CMF. These effects were blocked by HOE-140, and inhibited by L-NAME, 1400W and indomethacin. Des-Arg-kallidin (DAKD) B1R agonist did not increase intracellular Ca{sup 2+} levels in CF; however, after preincubation for 1 h with DAKD and re-stimulation with the same agonist, we found a low increase in intracellular Ca{sup 2+} levels. Finally, DAKD increased intracellular Ca{sup 2+} levels and decreased collagen secretion in CMF, being this effect blocked by the B1R antagonist des-Arg9-Leu8-kallidin and indomethacin, but not by L-NAME or 1400 W. Conclusion: B1R, B2R, iNOS and COX-1 were expressed differently between CF and CMF, and collagen secretion was

  20. Bile acids induce necrosis in pancreatic stellate cells dependent on calcium entry and sodium‐driven bile uptake

    Science.gov (United States)

    Jakubowska, Monika A.; Gerasimenko, Julia V.; Gerasimenko, Oleg V.; Petersen, Ole H.

    2016-01-01

    +‐dependent bile acid uptake mechanism in stellate cells. Bile acid treatment caused necrosis predominantly in stellate cells, which was abolished by removal of extracellular Ca2+ and significantly reduced in the absence of Na+, showing that bile‐dependent cell death was a downstream event of Ca2+ signals. Finally, combined application of TLC‐S and the inflammatory mediator bradykinin caused more extensive necrosis in both stellate and acinar cells than TLC‐S alone. Our findings shed new light on the mechanism by which bile acids promote pancreatic pathology. This involves not only signalling in acinar cells but also in stellate cells. PMID:27406326

  1. Proteomic identification of gender molecular markers in Bothrops jararaca venom.

    Science.gov (United States)

    Zelanis, André; Menezes, Milene C; Kitano, Eduardo S; Liberato, Tarcísio; Tashima, Alexandre K; Pinto, Antonio F M; Sherman, Nicholas E; Ho, Paulo L; Fox, Jay W; Serrano, Solange M T

    2016-04-29

    Variation in the snake venom proteome is a well-documented phenomenon; however, sex-based variation in the venom proteome/peptidome is poorly understood. Bothrops jararaca shows significant sexual size dimorphism and here we report a comparative proteomic/peptidomic analysis of venoms from male and female specimens and correlate it with the evaluation of important venom features. We demonstrate that adult male and female venoms have distinct profiles of proteolytic activity upon fibrinogen and gelatin. These differences were clearly reflected in their different profiles of SDS-PAGE, two-dimensional electrophoresis and glycosylated proteins. Identification of differential protein bands and spots between male or female venoms revealed gender-specific molecular markers. However, the proteome comparison by in-solution trypsin digestion and label-free quantification analysis showed that the overall profiles of male and female venoms are similar at the polypeptide chain level but show striking variation regarding their attached carbohydrate moieties. The analysis of the peptidomes of male and female venoms revealed different contents of peptides, while the bradykinin potentiating peptides (BPPs) showed rather similar profiles. Furthermore we confirmed the ubiquitous presence of four BPPs that lack the C-terminal Q-I-P-P sequence only in the female venom as gender molecular markers. As a result of these studies we demonstrate that the sexual size dimorphism is associated with differences in the venom proteome/peptidome in B. jararaca species. Moreover, gender-based variations contributed by different glycosylation levels in toxins impact venom complexity. Bothrops jararaca is primarily a nocturnal and generalist snake species, however, it exhibits a notable ontogenetic shift in diet and in venom proteome upon neonate to adult transition. As is common in the Bothrops genus, B. jararaca shows significant sexual dimorphism in snout-vent length and weight, with females being

  2. Comparative venomics of the Prairie Rattlesnake (Crotalus viridis viridis) from Colorado: Identification of a novel pattern of ontogenetic changes in venom composition and assessment of the immunoreactivity of the commercial antivenom CroFab®.

    Science.gov (United States)

    Saviola, Anthony J; Pla, Davinia; Sanz, Libia; Castoe, Todd A; Calvete, Juan J; Mackessy, Stephen P

    2015-05-21

    Here we describe and compare the venomic and antivenomic characteristics of both neonate and adult Prairie Rattlesnake (Crotalus viridis viridis) venoms. Although both neonate and adult venoms contain unique components, similarities among protein family content were seen. Both neonate and adult venoms consisted of myotoxin, bradykinin-potentiating peptide (BPP), phospholipase A2 (PLA2), Zn(2+)-dependent metalloproteinase (SVMP), serine proteinase, L-amino acid oxidase (LAAO), cysteine-rich secretory protein (CRISP) and disintegrin families. Quantitative differences, however, were observed, with venoms of adults containing significantly higher concentrations of the non-enzymatic toxic compounds and venoms of neonates containing higher concentrations of pre-digestive enzymatic proteins such as SVMPs. To assess the relevance of this venom variation in the context of snakebite and snakebite treatment, we tested the efficacy of the common antivenom CroFab® for recognition of both adult and neonate venoms in vitro. This comparison revealed that many of the major protein families (SVMPs, CRISP, PLA2, serine proteases, and LAAO) in both neonate and adult venoms were immunodepleted by the antivenom, whereas myotoxins, one of the major toxic components of C. v. viridis venom, in addition to many of the small peptides, were not efficiently depleted by CroFab®. These results therefore provide a comprehensive catalog of the venom compounds present in C. v. viridis venom and new molecular insight into the potential efficacy of CroFab® against human envenomations by one of the most widely distributed rattlesnake species in North America. Comparative proteomic analysis of venoms of neonate and adult Prairie Rattlesnake (Crotalus viridis viridis) from a discrete population in Colorado revealed a novel pattern of ontogenetic shifts in toxin composition for viperid snakes. The observed stage-dependent decrease of the relative content of disintegrins, catalytically active D49-PLA2s

  3. Hereditary angio-oedema in the Western Cape Province, South Africa.

    Science.gov (United States)

    Coovadia, K M; Chothia, M-Y; Baker, S G; Peter, J G; Potter, P C

    2018-03-28

    Hereditary angio-oedema (HAE) is an autosomal dominant condition caused by a deficiency in the C1-esterase inhibitor protein, resulting in increased bradykinin release. It presents clinically with recurrent attacks of angio-oedema, commonly affecting the limbs, face, upper airway and gastrointestinal tract. Little is known about this condition in sub-Saharan Africa. To analyse and report on the clinical presentation and treatment of patients with HAE in the Western Cape Province, South Africa. A retrospective analysis was conducted on a series of 60 cases of HAE seen between 2010 and 2015 at the Allergy Diagnostic and Clinical Research Unit, University of Cape Town Lung Institute, and the Allergy Clinic at Groote Schuur Hospital, Cape Town. The findings in 43 cases of type 1 HAE are described. Parameters assessed included age, gender, age of diagnosis, duration of illness, family history, identifiable triggers, average duration of attack, number of attacks per year and type of attack. A total of 43 patients were included in this study. Of these, 65.1% (28/43) were female. The median age at diagnosis was 20 years (interquartile range (IQR) 10 - 27) and the median duration of illness 10.5 years (IQR 6 - 22). Of the patients, 62.8% (27/43), 32.6% (14/43) and 4.7% (2/43) were of mixed ancestry, white and black African, respectively; 51.2% (22/43) were index cases, with the remaining 48.8% (21/43) diagnoses via family member screening, 12 families making up the majority of the cohort. The mean (standard deviation) duration of an acute attack was 49 (25.8) hours, and 64.3% (27/42), 71.4% (30/42), 14.3% (6/42) and 88.1% (37/42) of patients experienced facial or upper airway, abdominal, external genitalia and limb attacks, respectively. Danazol for long-term prophylaxis was used in 21 patients, while C1-inhibitor concentrate (Berinert) was accessed for short-term prophylaxis in only four patients. Acute life-threating attacks were treated with fresh frozen plasma in 11

  4. Differential regulation of collagen secretion by kinin receptors in cardiac fibroblast and myofibroblast

    International Nuclear Information System (INIS)

    Catalán, Mabel; Smolic, Christian; Contreras, Ariel; Ayala, Pedro; Olmedo, Ivonne; Copaja, Miguel; Boza, Pía; Vivar, Raúl; Avalos, Yennifer; Lavandero, Sergio; Velarde, Victoria; Díaz-Araya, Guillermo

    2012-01-01

    Kinins mediate their cellular effects through B1 (B1R) and B2 (B2R) receptors, and the activation of B2R reduces collagen synthesis in cardiac fibroblasts (CF). However, the question of whether B1R and/or B2R have a role in cardiac myofibroblasts remains unanswered. Methods: CF were isolated from neonate rats and myofibroblasts were generated by an 84 h treatment with TGF-β1 (CMF). B1R was evaluated by western blot, immunocytochemistry and radioligand assay; B2R, inducible nitric oxide synthase (iNOS), endothelial nitric oxide synthase (eNOS), and cyclooxygenases 1and 2 (COX-1, and COX-2) were evaluated by western blot; intracellular Ca +2 levels were evaluated with Fluo-4AM; collagen secretion was measured in the culture media using the picrosirius red assay kit. Results: B2R, iNOS, COX-1 and low levels of B1R but not eNOS, were detected by western blot in CF. Also, B1R, B2R, and COX-2 but not iNOS, eNOS or COX-1, were detected by western blot in CMF. By immunocytochemistry, our results showed lower intracellular B1R levels in CF and higher B1R levels in CMF, mainly localized on the cell membrane. Additionally, we found B1R only in CMF cellular membrane through radioligand displacement assay. Bradykinin (BK) B2R agonist increased intracellular Ca 2+ levels and reduced collagen secretion both in CF and CMF. These effects were blocked by HOE-140, and inhibited by L-NAME, 1400W and indomethacin. Des-Arg-kallidin (DAKD) B1R agonist did not increase intracellular Ca 2+ levels in CF; however, after preincubation for 1 h with DAKD and re-stimulation with the same agonist, we found a low increase in intracellular Ca 2+ levels. Finally, DAKD increased intracellular Ca 2+ levels and decreased collagen secretion in CMF, being this effect blocked by the B1R antagonist des-Arg9-Leu8-kallidin and indomethacin, but not by L-NAME or 1400 W. Conclusion: B1R, B2R, iNOS and COX-1 were expressed differently between CF and CMF, and collagen secretion was regulated differentially by

  5. Asymmetric dimethylarginine (ADMA) elevation and arginase up‐regulation contribute to endothelial dysfunction related to insulin resistance in rats and morbidly obese humans

    Science.gov (United States)

    El Assar, Mariam; Angulo, Javier; Santos‐Ruiz, Marta; Ruiz de Adana, Juan Carlos; Pindado, María Luz; Sánchez‐Ferrer, Alberto; Hernández, Alberto

    2016-01-01

    IR score and negatively with pD2 for bradykinin. Gene expression determination by RT‐PCR revealed not only the decreased expression of ADMA degrading enzyme dimethylarginine dimethylaminohydrolase (DDAH)1/2 in IR‐MO microarteries, but also increased expression of arginase‐2. Arginase inhibition improved endothelial vasodilatation in IR‐MO. Analysis of endothelial vasodilatation in a non‐obese IR model (fructose‐fed rat) confirmed an elevation of circulating and aortic ADMA concentrations, as well as reduced DDAH aortic content and increased aortic arginase activity in IR. Improvement of endothelial vasodilatation in IR rats by l‐arginine supplementation and arginase inhibition provided functional corroboration. These results demonstrate that increased ADMA and up‐regulated arginase contribute to endothelial dysfunction as determined by the presence of IR in human obesity, most probably by compromising arginine availability. The results provide novel insights regarding the mechanisms of endothelial dysfunction related to obesity and IR and establish potential therapeutic targets for intervention. PMID:26840628

  6. Cardiac Remote Conditioning and Clinical Relevance: All Together Now!

    Directory of Open Access Journals (Sweden)

    Kristin Luther

    2015-12-01

    mechanisms related to cardioprotection, and in the last five to ten years, it has become clear that the mechanisms are similar, whether induced by ischemic or non-ischemic stimuli. Taking together much of the data in the literature, we propose that all of these cardioprotective “conditioning” phenomena represent activation from different entry points of a cardiac conditioning network that converges upon specific mediators and effectors of myocardial cell survival, including NF-кB, Stat3/5, protein kinase C, bradykinin, and the mitoKATP channel. Nervous system pathways may represent a novel mechanism for initiating conditioning of the heart and other organs. IPC and RIPC have proven difficult to translate clinically, as they have associated risks and cannot be used in some patients. Because of this, the use of neural and nociceptive stimuli is emerging as a potential non-ischemic and non-traumatic means to initiate cardiac conditioning. Clinical relevance is underscored by the demonstration of postconditioning with one of these modalities, supporting the conclusion that the development of pharmaceuticals and electroceuticals for this purpose is an area ripe for clinical development.

  7. Keeping pace with ACE: are ACE inhibitors and angiotensin II type 1 receptor antagonists potential doping agents?

    Science.gov (United States)

    Wang, Pei; Fedoruk, Matthew N; Rupert, Jim L

    2008-01-01

    In the decade since the angiotensin-converting enzyme (ACE) gene was first proposed to be a 'human gene for physical performance', there have been numerous studies examining the effects of ACE genotype on physical performance phenotypes such as aerobic capacity, muscle function, trainability, and athletic status. While the results are variable and sometimes inconsistent, and corroborating phenotypic data limited, carriers of the ACE 'insertion' allele (the presence of an alu repeat element in intron 16 of the gene) have been reported to have higher maximum oxygen uptake (VO2max), greater response to training, and increased muscle efficiency when compared with individuals carrying the 'deletion' allele (absence of the alu repeat). Furthermore, the insertion allele has been reported to be over-represented in elite athletes from a variety of populations representing a number of endurance sports. The mechanism by which the ACE insertion genotype could potentiate physical performance is unknown. The presence of the ACE insertion allele has been associated with lower ACE activity (ACEplasma) in number of studies, suggesting that individuals with an innate tendency to have lower ACE levels respond better to training and are at an advantage in endurance sporting events. This could be due to lower levels of angiotensin II (the vasoconstrictor converted to active form by ACE), higher levels of bradykinin (a vasodilator degraded by ACE) or some combination of the two phenotypes. Observations that individuals carrying the ACE insertion allele (and presumably lower ACEplasma) have an enhanced response to training or are over-represented amongst elite athletes raises the intriguing question: would individuals with artificially lowered ACEplasma have similar training or performance potential? As there are a number of drugs (i.e. ACE inhibitors and angiotensin II type 1 receptor antagonists [angiotensin receptor blockers--ARBs]) that have the ability to either reduce ACEplasma

  8. Metformin as a prevention and treatment for preeclampsia: effects on soluble fms-like tyrosine kinase 1 and soluble endoglin secretion and endothelial dysfunction.

    Science.gov (United States)

    Brownfoot, Fiona C; Hastie, Roxanne; Hannan, Natalie J; Cannon, Ping; Tuohey, Laura; Parry, Laura J; Senadheera, Sevvandi; Illanes, Sebastian E; Kaitu'u-Lino, Tu'uhevaha J; Tong, Stephen

    2016-03-01

    explant-conditioned media (to whole vessels). Finally, we examined the effects of metformin on angiogenesis on maternal omental vessel explants. Metformin reduced soluble fms-like tyrosine kinase 1 and soluble endoglin secretion from primary endothelial cells, villous cytotrophoblast cells, and preterm preeclamptic placental villous explants. The reduction in soluble fms-like tyrosine kinase 1 and soluble endoglin secretion was rescued by coadministration of succinate, which suggests that the effects of metformin on soluble fms-like tyrosine kinase 1 and soluble endoglin were likely to be regulated at the level of the mitochondria. In addition, the mitochondrial electron transport chain inhibitors rotenone and antimycin reduced soluble fms-like tyrosine kinase 1 secretion, which further suggests that soluble fms-like tyrosine kinase 1 secretion is regulated through the mitochondria. Mitochondrial electron transport chain activity in preterm preeclamptic placentas was increased compared with gestation-matched control subjects. Metformin improved features of endothelial dysfunction relevant to preeclampsia. It reduced endothelial cell messenger RNA expression of vascular cell adhesion molecule 1 that was induced by tumor necrosis factor-α (vascular cell adhesion molecule 1 is an inflammatory adhesion molecule up-regulated with endothelial dysfunction and is increased in preeclampsia). Placental conditioned media impaired bradykinin-induced vasodilation; this effect was reversed by metformin. Metformin also improved whole blood vessel angiogenesis impaired by fms-like tyrosine kinase 1. Metformin reduced soluble fms-like tyrosine kinase 1 and soluble endoglin secretion from primary human tissues, possibly by inhibiting the mitochondrial electron transport chain. The activity of the mitochondrial electron transport chain was increased in preterm preeclamptic placenta. Metformin reduced endothelial dysfunction, enhanced vasodilation in omental arteries, and induced

  9. Radiation toxins: molecular mechanisms of action and radiomimetic properties .

    Science.gov (United States)

    Popov, Dmitri; Maliev, Vecheslav

    Introduction: Acute Radiation Disease (ARD) or Acute Radiation Syndromes (ARS) were defined as a toxic poisonous with development of the acute pathological processes in irradi-ated animals: systemic inflammatory response syndrome(SIRS), toxic multiple organ injury (TMOI), toxic multiple organ dysfunction syndromes (TMOD), toxic multiple organ failure (TMOF). However, the nature of radiation toxins, their mechanisms of formation, molecular structure, and mechanism of actions remain uncertain. Moderate and high doses of radiation induce apoptotic necrosis of radiosensitive cells with formation of Radiation Toxins and in-flammation development. Mild doses of radiation induce apoptosis or controlled programmed death of radiosensitive cells without Radiation Toxins formation and development of inflam-mation processes. Only radiation induced apoptotic necrosis initiates formation of Radiation Toxins(RT). Radiation Toxins are playing an important role as the trigger mechanisms for in-flammation development and cell lysis. The systemic inflammatory response syndrome after radiation involves an influence of various endogenous agents and mediators of inflammation such as bradykinin, histamine, serotonin and phospholipases activation, prostaglandins biosyn-thesis. Although, formation of non-specific toxins such as Reactive Oxygen Species (ROS) is an important pathological process at mild or high doses of radiation. Reactive Oxygen Species play an important role in molecules damage and development of peroxidation of lipids and pro-teins which are the structural parts of cell and mitochondrial membranes. ROS and bio-radicals induce damage of DNA and RNA and peroxidation of their molecules. But high doses of radia-tion, severe and extremely severe physiological stress, result in cells death by apoptotic necrosis and could be defined as the neuroimmune acute disease. Excitotoxicity is an important patho-logical mechanism which damages the central nervous system. We postulate that