Memory Forensics for QQ from a Live System
Yuhang Gao
2010-04-01
Full Text Available Our paper details the techniques to collect sensitive information of the QQ client, which is the most popular instant messaging (IM in China. We have managed to acquire the contact list, the QQ account, the chats records, the QQ discussion group, the display names and the contents of network notepad. They are of great interest to the examiners. Besides, as the techniques we use to search for process are able to reveal terminated and hidden processes, we are very likely to find sensitive information as long as somebody has logged in the QQ client. What’s more, we propose the method of reconstructing the process space by integrating paging file into memory dump file. We have reconstructed the process space of the QQ client in this way and managed to narrow down the scale of sensitive information about QQ.
Memory Forensics for QQ from a Live System
Yuhang Gao; Tianjie Cao
2010-01-01
Our paper details the techniques to collect sensitive information of the QQ client, which is the most popular instant messaging (IM) in China. We have managed to acquire the contact list, the QQ account, the chats records, the QQ discussion group, the display names and the contents of network notepad. They are of great interest to the examiners. Besides, as the techniques we use to search for process are able to reveal terminated and hidden processes, we are very likely to find sensitive info...
Bounding approaches to system identification
Norton, John; Piet-Lahanier, Hélène; Walter, Éric
1996-01-01
In response to the growing interest in bounding error approaches, the editors of this volume offer the first collection of papers to describe advances in techniques and applications of bounding of the parameters, or state variables, of uncertain dynamical systems. Contributors explore the application of the bounding approach as an alternative to the probabilistic analysis of such systems, relating its importance to robust control-system design.
魏武挥
2012-01-01
事实上,中国最大的社交网络既非人人开心,也非新浪微博,而是腾讯QQ,有可能这个服务实在太过古老(1999年开通),而社交网络又是个时髦的概念,一般人很少将之联系起来吧.QQ坐拥6亿用户,最高峰同时在线1亿人,纵然有人批评QQ用户群体属于三低人群(这个批评我个人深表怀疑),但QQ是中国最大的社交网络,却是不争的事实.但中国这个最大的社交网络和海外最大的社交网络Facebook,从商业角度讲,却非常不同.
Simulation bounds for system availability
System availability is a dominant factor in the practicality of nuclear power electrical generating plants. A proposed model for obtaining either lower bounds or interval estimates on availability uses observed data on ''n'' failure-to-repair cycles of the system to estimate the parameters in the time-to-failure and time-to-repair models. These estimates are then used in simulating failure/repair cycles of the system. The availability estimate is obtained for each of 5000 samples of ''n'' failure/repair cycles to form a distribution of estimates. Specific percentile points of those simulated distributions are selected as lower simulation bounds or simulation interval bounds for the system availability. The method is illustrated with operational data from two nuclear plants for which an exponential time-to-failure and a lognormal time-to-repair are assumed
Jentschura, U.; Soff, G.; Ivanov, V.; Karshenboim, S.
1997-01-01
We consider the hyperfine structure, the atomic spectrum and the decay channels of the bound mu+ mu- system (dimuonium). The annihilation lifetimes of low-lying atomic states of the system lie in the nanosecond range range. The decay rates could be measured by detection of the decay products (high energy photons or electron-positron pairs). The hyperfine structure splitting of the dimuonic system and its decay rate are influenced by electronic vacuum polarization effects in the far time-like ...
Universal Entropy Bound for Rotating Systems
Hod, Shahar
1999-01-01
We conjecture a universal upper bound to the entropy of a rotating system. The entropy bound follows from application of the generalized second law of thermodynamics to an idealized gedanken experiment in which an entropy-bearing rotating system falls into a black hole. This bound is stronger than the Bekenstein entropy bound for non-rotating systems.
In the frame of the QCD perturbation theory and nonrelativistic model of heavy quarkonium the cross-sections of four heavy quark production in e+e- annihilation, as well as the cross-sections of the associative production of the 1S- and 2S-wave (QQ-bar')-mesons in the e+e- → (QQ-bar') + Q'+ Q-bar process are calculated. Basing on the assumption of the quark-hadron duality the number of the Λbc-hyperon expected for LEP experiments is estimated. The fragmentation functions of b-quark into Bc(Bc*)-meson, c- and b-quarks into ηc(ψ)- and ηb(Υ)-mesons, respectively, are obtained. 23 refs., 11 figs., 4 tabs
Weakly bound systems, continuum effects, and reactions
Jaganathen, Y; Ploszajczak, M
2012-01-01
Structure of weakly bound/unbound nuclei close to particle drip lines is different from that around the valley of beta stability. A comprehensive description of these systems goes beyond standard Shell Model and demands an open quantum system description of the nuclear many-body system. We approach this problem using the Gamow Shell Model which provides a fully microscopic description of bound and unbound nuclear states, nuclear decays, and reactions. We present in this paper the first application of the GSM for a description of the elastic and inelastic scattering of protons on 6He.
Call packing bound for overflow loss systems
N.M. van Dijk; E. van der Sluis
2009-01-01
Finite loss queues with overflow naturally arise in a variety of communications structures. For these systems, there is no simple analytic expression for the loss probability. This paper proves and promotes easily computable bounds based on the so-called call packing principle. Under call packing, a
Landauer Bound for Analog Computing Systems
Diamantini, M Cristina; Trugenberger, Carlo A
2016-01-01
By establishing a relation between information erasure and continuous phase transitions we generalise the Landauer bound to analog computing systems. The entropy production per degree of freedom during erasure of an analog variable (reset to standard value) is given by the logarithm of the configurational volume measured in units of its minimal quantum. As a consequence every computation has to be carried on with a finite number of bits and infinite precision is forbidden by the fundamental laws of physics, since it would require an infinite amount of energy.
BOUNDED MINIMUM INHERENT AVAILABILITY REQUIREMENTS FOR THE SYSTEM DESCRIPTION DOCUMENTS
The purpose of this analysis is to establish bounded minimum inherent availability requirements for the Mined Geologic Disposal System (MGDS) System Description Documents (SDDs). The purpose of the bounded minimum inherent availability is to provide a lower bound on availability which will allow design to meet throughput requirements while not affecting the ability of the items to perform their intended safety function
Bounding the volumes of singular Fano threefolds
Lai, Ching-Jui
2012-01-01
Let $(X,\\Delta)$ be an $n$-dimensional $\\epsilon$-klt log $\\QQ$-Fano pair. We give an upper bound for the volume ${\\rm Vol}(-(K_X+\\Delta))=(-(K_X+\\Delta))^n$ when $n=2$ or $n=3$ and $X$ is {$\\QQ$-factorial} of $\\rho(X)=1$. This bound is essentially sharp for $n=2$. Existence of an upper bound for anticanonical volumes is related the Borisov-Alexeev-Borisov Conjecture which asserts boundedness of the set of $\\epsilon$-klt log $\\QQ$-Fano varieties of a given dimension $n$.
Schmitt, Franz-Josef
2009-01-01
Several approaches were used to proof the assumption that an universal upper bound on the entropy to energy ratio (S/E) exists in bounded systems. In 1981 Jacob D. Bekenstein published his findings that S/E is limited by the effective radius of the system and mentioned various approaches to derive S/E employing quantum statistics or thermodynamics. It can be shown that similar results are obtained considering the energetic difference of longitudinal eigenmodes inside a closed cavity like it was done by Max Planck in 1900 to derive the correct formula for the spectral distribution of the black-body radiation. Considering an information theoretical approach this derivation suggests that the variance of an expectation value is the same like the variance of the probability for measuring this expectation value. Implications of these findings are shortly discussed.
Bounded Quadrant System: Error-bounded Trajectory Compression on the Go
Liu, Jiajun; Zhao, Kun; Sommer, Philipp; Shang, Shuo; Kusy, Brano; Jurdak, Raja
2014-01-01
Long-term location tracking, where trajectory compression is commonly used, has gained high interest for many applications in transport, ecology, and wearable computing. However, state-of-the-art compression methods involve high space-time complexity or achieve unsatisfactory compression rate, leading to rapid exhaustion of memory, computation, storage and energy resources. We propose a novel online algorithm for error-bounded trajectory compression called the Bounded Quadrant System (BQS), w...
A branch-and-bound methodology within algebraic modelling systems
Bisschop, J.J.; Heerink, J.B.J.; Kloosterman, G.
1998-01-01
Through the use of application-specific branch-and-bound directives it is possible to find solutions to combinatorial models that would otherwise be difficult or impossible to find by just using generic branch-and-bound techniques within the framework of mathematical programming. {\\sc Minto} is an example of a system which offers the possibility to incorporate user-provided directives (written in {\\sc C}) to guide the branch-and-bound search. Its main focus, however, remains on mathematical p...
Search for a bound K− pp system
Camerini P.
2010-04-01
Full Text Available Data from the K− absorption reaction on 6,7Li, 9Be, 13C and 16O have recently been collected by FINUDA at the DAΦNE φ-factory (Laboratori Nazionali di Frascati-INFN, following an earlier lower statitics run on 12C and some other targets. FINUDA is a high acceptance magnetic spectrometer which performed a wide range of studies by detecting the charged particles and neutrons exiting the targets after the absorption event. In this paper it is discussed about the study of the A(K− , Λp reaction in the context of the search for deeply bound $ar{K}$ - nuclear states. The observation of a bump in the Λp invariant mass distribution is discussed in terms of a possible signature of a deeply bound K− pp kaonic cluster as well as of more conventional physics. An overview of the experimental situation in this ﬁeld will be given.
'Critical' behaviour of weakly bound systems
The class of 3-dimensional finite range or similar potentials λW(r) is discussed, depending on a strength constant λ. The behaviour of the eigenvalue E as function of λ-λc is studied, where λc is the critical value at the transition from 0 → 1 bound state. For the l=0 case, E α (λ-λc)2 was found, whereas the relationship is linear for l≥1. Treating l as a continuous parameter in the radial Schroedinger equation, the evolution of the power-law between l=0 and l=1 is given. Besides spherically symmetric scalar potentials, the case of a repulsive scalar potential combined with a spin-orbit component of the Thomas form is also discussed. (author)
Computation in dynamically bounded asymmetric systems.
Ueli Rutishauser
2015-01-01
Full Text Available Previous explanations of computations performed by recurrent networks have focused on symmetrically connected saturating neurons and their convergence toward attractors. Here we analyze the behavior of asymmetrical connected networks of linear threshold neurons, whose positive response is unbounded. We show that, for a wide range of parameters, this asymmetry brings interesting and computationally useful dynamical properties. When driven by input, the network explores potential solutions through highly unstable 'expansion' dynamics. This expansion is steered and constrained by negative divergence of the dynamics, which ensures that the dimensionality of the solution space continues to reduce until an acceptable solution manifold is reached. Then the system contracts stably on this manifold towards its final solution trajectory. The unstable positive feedback and cross inhibition that underlie expansion and divergence are common motifs in molecular and neuronal networks. Therefore we propose that very simple organizational constraints that combine these motifs can lead to spontaneous computation and so to the spontaneous modification of entropy that is characteristic of living systems.
Bound states in the continuum in quasiperiodic systems
Hsueh, W.J., E-mail: hsuehwj@ntu.edu.t [Department of Engineering Science, National Taiwan University, Taipei 10660, Taiwan (China); Chen, C.H.; Chang, C.H. [Department of Engineering Science, National Taiwan University, Taipei 10660, Taiwan (China)
2010-11-01
We first propose the existence of bound states in the continuums (BICs) in quasiperiodic systems. Owing to long-range correlation, destructive interference may occur in quasiperiodic systems with higher generation order. Occurrences of BICs in Fibonacci quantum wells studied by localization analysis and gap map method are proposed.
Stability and response bounds of non-conservative linear systems
Kliem, Wolfhard; Pommer, Christian
2004-01-01
matrix equation. Then, if a system satisfies the condition of the stability theorem, the associated Lyapunov function can be used to obtain response bounds for the norms as well as for the individual coordinates of the solution. Examples from rotor dynamics illustrate the results.......This paper develops a stability theorem and response bounds for non-conservative systems of the form MX + (D + G)x + (K + N)x = f(t), with hermitian positive-definite matrices M, D and K, and skew-hermitian matrices G and N. To this end, we first find a Lyapunov function by solving the Lyapunov...
Strangeness suppression of qq creation observed in exclusive reactions.
Mestayer, M D; Park, K; Adhikari, K P; Aghasyan, M; Pereira, S Anefalos; Ball, J; Battaglieri, M; Batourine, V; Bedlinskiy, I; Biselli, A S; Boiarinov, S; Briscoe, W J; Brooks, W K; Burkert, V D; Carman, D S; Celentano, A; Chandavar, S; Charles, G; Colaneri, L; Cole, P L; Contalbrigo, M; Cortes, O; Crede, V; D'Angelo, A; Dashyan, N; De Vita, R; Deur, A; Djalali, C; Doughty, D; Dupre, R; El Alaoui, A; El Fassi, L; Elouadrhiri, L; Eugenio, P; Fedotov, G; Fleming, J A; Forest, T A; Garillon, B; Garçon, M; Ghandilyan, Y; Gilfoyle, G P; Giovanetti, K L; Girod, F X; Goetz, J T; Golovatch, E; Gothe, R W; Griffioen, K A; Guegan, B; Guidal, M; Hakobyan, H; Hanretty, C; Hattawy, M; Holtrop, M; Hughes, S M; Hyde, C E; Ilieva, Y; Ireland, D G; Jiang, H; Jo, H S; Joo, K; Keller, D; Khandaker, M; Kim, A; Kim, W; Koirala, S; Kubarovsky, V; Kuleshov, S V; Lenisa, P; Levine, W I; Livingston, K; Lu, H Y; MacGregor, I J D; Mayer, M; McKinnon, B; Meyer, C A; Mirazita, M; Mokeev, V; Montgomery, R A; Moody, C I; Moutarde, H; Movsisyan, A; Camacho, C Munoz; Nadel-Turonski, P; Niccolai, S; Niculescu, G; Niculescu, I; Osipenko, M; Ostrovidov, A I; Pappalardo, L L; Paremuzyan, R; Peng, P; Phelps, W; Pisano, S; Pogorelko, O; Pozdniakov, S; Price, J W; Protopopescu, D; Puckett, A J R; Raue, B A; Rimal, D; Ripani, M; Rizzo, A; Rosner, G; Roy, P; Sabatié, F; Saini, M S; Schott, D; Schumacher, R A; Simonyan, A; Sokhan, D; Strauch, S; Sytnik, V; Tang, W; Tian, Ye; Ungaro, M; Vernarsky, B; Vlassov, A V; Voskanyan, H; Voutier, E; Walford, N K; Watts, D P; Wei, X; Weinstein, L B; Wood, M H; Zachariou, N; Zhang, J; Zhao, Z W; Zonta, I
2014-10-10
We measured the ratios of electroproduction cross sections from a proton target for three exclusive meson-baryon final states: ΛK(+), pπ(0), and nπ(+), with the CLAS detector at Jefferson Lab. Using a simple model of quark hadronization, we extract qq creation probabilities for the first time in exclusive two-body production, in which only a single qq pair is created. We observe a sizable suppression of strange quark-antiquark pairs compared to nonstrange pairs, similar to that seen in high-energy production. PMID:25375706
Efficient Proof Engines for Bounded Model Checking of Hybrid Systems
Fränzle, Martin; Herde, Christian
2005-01-01
In this paper we present HySat, a new bounded model checker for linear hybrid systems, incorporating a tight integration of a DPLL-based pseudo-Boolean SAT solver and a linear programming routine as core engine. In contrast to related tools like MathSAT, ICS, or CVC, our tool exploits all of the...
Analytical solution of relativistic three-body bound systems
Aslanzadeh, M.; Rajabi, A.A. [Shahrood University of Technology, Physics Department, Shahrood (Iran, Islamic Republic of)
2014-10-15
In this paper we have investigated in detail the relativistic three-body bound states. We carried out calculations in six-dimensional representation on the basis of the Jacobi coordinates. The obtained second-degree differential equation is solved by using the Nikiforov-Uvarov method and the energy eigenvalues are obtained. Consequently we obtained the binding energy of the three-nucleon bound system. Here we used the generalized Woods-Saxon spin-independent potential in our calculations. The dependence of the three-body binding energy on the potential parameters is also investigated. (orig.)
Weakly bound systems in the case of complex potentials
We consider weakly bound two-body systems. We study the behavior of the ground state mean square radius as the binding energy tends to zero in the case of complex potentials. We show that the asymptotic law, obtained with real potentials, is modified by the occurrence of a finite width in the case of finite-range potentials. The case of the PT-symmetric potentials is also discussed. We complete our study with few remarks concerning the same problem for three weakly bound particles. (author)
Fate of bound systems in phantom and quintessence cosmologies
We study analytically and numerically the evolution of bound systems in universes with accelerating expansion where the acceleration either increases with time towards a Big Rip singularity (phantom cosmologies) or decreases with time (quintessence). We confirm the finding of Caldwell et al. [R. R. Caldwell, M. Kamionkowski and N. N. Weinberg, Phys. Rev. Lett. 91, 071301 (2003).] that bound structures get dissociated in phantom cosmologies but we demonstrate that this happens earlier than anticipated in Ref. [R. R. Caldwell, M. Kamionkowski and N. N. Weinberg, Phys. Rev. Lett. 91, 071301 (2003).]. In particular we find that the 'rip time' when a bound system gets unbounded is not the time when the repulsive phantom energy gravitational potential due to the average (ρ+3p) balances the attractive gravitational potential of the mass M of the system. Instead, the 'rip time' is the time when the minimum of the time-dependent effective potential (including the centrifugal term) disappears. For the Milky Way galaxy this happens approximately 180 Myrs before the Big Rip singularity instead of approximately 60 Myrs indicated in [R. R. Caldwell, M. Kamionkowski and N. N. Weinberg, Phys. Rev. Lett. 91, 071301 (2003).] for a phantom cosmology with w=-1.5. A numerical reconstruction of the dissociating bound orbits is presented
Applied Bounded Model Checking for Interlocking System Designs
Haxthausen, Anne Elisabeth; Peleska, Jan; Pinger, Ralf
2013-01-01
In this article the verification and validation of interlocking systems is investigated. Reviewing both geographical and route-related interlocking, the verification objectives can be structured from a perspective of computer science into (1) verification of static semantics, and (2) verification...... of behavioural (operational) semantics. The former checks that the plant model – that is, the software components reflecting the physical components of the interlocking system – has been set up in an adequate way. The latter investigates trains moving through the network, with the objective to uncover potential...... safety violations. From a formal methods perspective, these verification objectives can be approached by theorem proving, global, or bounded model checking. This article explains the techniques for application of bounded model checking techniques, and discusses their advantages in comparison...
Applied Bounded Model Checking for Interlocking System Designs
Haxthausen, Anne Elisabeth; Peleska, Jan; Pinger, Ralf
2014-01-01
In this paper the verification and validation of interlocking systems is investigated. Reviewing both geographical and route-related interlocking, the verification objectives can be structured from a perspective of computer science into (1) verification of static semantics, and (2) verification of...... behavioural (operational) semantics. The former checks that the plant model – that is, the software components reflecting the physical components of the interlocking system – has been set up in an adequate way. The latter investigates trains moving through the network, with the objective to uncover potential...... safety violations. From a formal methods perspective, these verification objectives can be approached by theorem proving, global, or bounded model checking. This paper explains the techniques for application of bounded model checking techniques, and discusses their advantages in comparison to the...
Are there compact heavy four-quark bound states?
Vijande, Javier; Weissman, E.; Valcarce, A.; Barnea, N.
2007-01-01
We present an exact method to study four-quark systems based on the hyperspherical harmonics formalism. We apply it to several physical systems of interest containing two heavy and two light quarks using different quark-quark potentials. Our conclusions mark the boundaries for the possible existence of compact, nonmolecular, four-quark bound states. While QQ (n) over bar(n) over bar states may be stable in nature, the stability of Q (Q) over barn (n) over bar states would imply the existence ...
Fluctuation bounds for chaos plus noise in dynamical systems
Maldonado, Cesar
2011-01-01
We are interested in time series of the form $y_{n} = x_{n} + \\xi_{n}$ where ${x_{n}}$ is generated by a chaotic dynamical system and where $\\xi_{n}$ models observational noise. Using concentration inequalities, we derive fluctuation bounds for the auto-covariance function, the empirical measure, the kernel density estimator and the correlation dimension evaluated along $y_{0}, ..., y_{n}$, for all $n$. The chaotic systems we consider include for instance the H\\'{e}non attractor for Benedicks...
Experimental studies of antikaon mediated bound nuclear systems
Recent experimental studies of the synthesis and properties of deeply bound antikaon mediated nuclear systems are reviewed. Following a brief introduction in the basic properties of the antikaon–nucleon interaction which may lead to cold and dense antikaonic nuclear systems, we review the results of very first experiments which give indications of the existence of such exotic clusters of matter. Then ongoing efforts to substantiate the early findings are presented and future experimental approaches which will allow a very detailed study of the decay modes, the sizes and density distributions of these kaonic nuclear clusters are discussed including their relevance for possible phase transitions in cold dense matter. (author)
Mission Availability for Bounded-Cumulative-Downtime System
Zhou, Yu; Kou, Gang; Ergu, Daji; Peng, Yi
2013-01-01
In this research, a mathematics model is proposed to describe the mission availability for bounded-cumulative-downtime system. In the proposed model, the cumulative downtime and cumulative uptime are considered as constraints simultaneously. The mission availability can be defined as the probability that all repairs do not exceed the bounded cumulative downtime constraint of such system before the cumulative uptime has accrued. There are two mutually exclusive cases associated with the probability. One case is the system has not failed, where the probability can be described by system reliability. The other case is the system has failed and the cumulative downtime does not exceed the constraint before the cumulative uptime has accrued. The mathematic description of the probability under the second case is very complex. And the cumulative downtime in a mission can be set as a random variable, whose cumulative distribution means the probability that the failure system can be restored to the operating state. Giving the dependence in the scheduled mission, a mission availability model with closed form expression under this assumption is proposed. Numerical simulations are presented to illustrate the effectiveness of the proposed model. The results indicate that the relative errors are acceptable and the proposed model is effective. Furthermore, three important applications of the proposed mission availability model are discussed. PMID:23843940
qq-production at NLO merged with parton-shower
Precise predictions for the production of SUSY-particles at the LHC require the combination of fixed-order NLO-calculations and parton-showers. This so-called merging can be achieved via the POWHEG-method. I present some results obtained with this method for qq-production, based on the implementation of this process in the program-package POWHEG-BOX.
A narrow quasi-bound state of the DNN system
We have investigated a charmed system of DNN (composed of two nucleons and a D meson) by a complementary study with a variational calculation and a Faddeev calculation with fixed-center approximation (Faddeev-FCA). In the present study, we employ a DN potential based on a vector–meson exchange picture in which a resonant Λc(2595) is dynamically generated as a DN quasi-bound state, similarly to the Λ(1405) as a K¯N one in the strange sector. As a result of the study of variational calculation with an effective DN potential and three kinds of NN potentials, the DNN(Jπ=0−,I=1/2) is found to be a narrow quasi-bound state below Λc(2595)N threshold: total binding energy ∼225 MeV and mesonic decay width ∼25 MeV. On the other hand, the Jπ=1− state is considered to be a scattering state of Λc(2595) and a nucleon. These results are essentially supported by the Faddeev-FCA calculation. By the analysis of the variational wave function, we have found a unique structure in the DNN(Jπ=0−,I=1/2) such that the D meson stays around the center of the total system due to the heaviness of the D meson
Parallel Branch and Bound on a CPU-GPU System
Boukedjar, Abdelamine; Lalami, Mohamed Esseghir; El-Baz, Didier
2012-01-01
Hybrid implementation via CUDA of a branch and bound method for knapsack problems is proposed. Branch and bound computations can be carried out either on the CPU or on the GPU according to the size of the branch and bound list, i.e. the number of nodes. Tests are carried out on a Tesla C2050 GPU. A first series of computational results showing a substantial speedup is displayed and analyzed.
Study on QQ-medium-oriented Ideological and Political Education of College Students
Hong Xiao
2009-01-01
For the time being chatting through QQ medium is fashionable among college students, and QQ also plays an important role in the life of college students. However, college life based on QQ also has demerits, therefore it is necessary and essential to study how to avoid its negative influences and exploit its potential value in ideological and political education of college students, consequently improve ideological and political education of college students in China. In this article, based on...
Bounded Real Lemma for Generalized Linear System with Finite Discrete Jumps
无
2006-01-01
The strict bounded real lemma for linear system with finite discrete jumps was considered. Especially,the case where D matrices in the system are not assumed to be zero was dealt. Several versions of the bounded real lemma are presented in terms of solution to Riccati differential equations or inequalities with finite discrete jumps.Both the finite and infinite horizon cases are considered. These results generalize the existed bounded real lemma for linear systems.
The spectra of qq-bar states and glueballs
Data from LEAR on p-barp → final states with I = 0, C = +1 reveal s-channel resonances corresponding to all qq-bar states (J = 0 to 5) expected in the mass range 1920-2400 MeV/c2. They lie on parallel straight-line trajectories of s = M2 v. radial excitation number. In addition there are four extra states which fail to fit on to these trajectories: f0(1500), f0(2105), f2(1980) and η(2190). All have exotic properties and appear in J/Ψ radiative decays: this suggests glueball character. Their mass ratios agree within errors (typically ±4%) with recent Lattice Gauge calculations of Morningstar and Peardon for the lowest four glueballs
Bounds on the performance of a class of digital communication systems
Polk, D. R.; Gupta, S. C.; Cohn, D. L.
1973-01-01
Bounds on the capacity of a class of digital communication channels are derived. Equating the bounds on capacity to rate-distortion functions of (typical) sources in turn produces bounds on the performance of a class of digital communication systems. For ratios of squared quantization level to noise variance much less than one, the power requirements for this class of digital communication systems are shown to be within approximately 3 dB of the theoretical optimum.
Carrasco, Juan A.
2002-01-01
The transient analysis of large continuous time Markov reliability models of repairable fault-tolerant systems is computationally expensive due to model stiffness. In this paper, we develop and analyze a method to compute bounds for a measure defined on a particular, but quite wide, class of continuous time Markov models, encompassing both exact and bounding continuous time Markov unreliability models of fault-tolerant systems. The method is numerically stable and computes the bounds with wel...
Bayesian analysis of repairable systems showing a bounded failure intensity
The failure pattern of repairable mechanical equipment subject to deterioration phenomena sometimes shows a finite bound for the increasing failure intensity. A non-homogeneous Poisson process with bounded increasing failure intensity is then illustrated and its characteristics are discussed. A Bayesian procedure, based on prior information on model-free quantities, is developed in order to allow technical information on the failure process to be incorporated into the inferential procedure and to improve the inference accuracy. Posterior estimation of the model-free quantities and of other quantities of interest (such as the optimal replacement interval) is provided, as well as prediction on the waiting time to the next failure and on the number of failures in a future time interval is given. Finally, numerical examples are given to illustrate the proposed inferential procedure
Occurrence of organically bound tritium in the Mohelno lake system
Kořínková, Tereza; Světlík, Ivo; Fejgl, Michal; Povinec, P. P.; Šimek, Pavel; Tomášková, Lenka
2016-01-01
Roč. 307, č. 3 (2016), s. 2295-2299. ISSN 0236-5731. [10th International Conference on Methods and Applications of Radioanalytical Chemistry (MARC). Kailua Kona, 12.04.2015-17.04.2015] Institutional support: RVO:61389005 Keywords : Mohelno reservoir * Dukovany nuclear power plant * Tissue free water tritium * Non-exchangeable organically bound tritium Subject RIV: DJ - Water Pollution ; Quality Impact factor: 1.034, year: 2014
Meaningful QQ adjustment of TRMM/GPM daily rainfall estimates.
Pegram, Geoff; Bardossy, Andras; Sinclair, Scott
2016-04-01
In many parts of the world, particularly in Africa, the daily raingauge networks are sparse. It is therefore sensible to use remote sensing estimates of precipitation to fill the gaps, but readily available products like TRMM and it successor GPM are frequently found to be biased. This presentation describes a method of bias adjustment of TRMM using quantile-quantile (QQ) transforms of the probability distributions of TRMM daily rainfall accumulations over its grid of 0.25 degree pixels/blocks. There are 4 main steps in the procedure. The first is to collect the daily gauge readings in those TRMM pixels containing gauges to obtain useful estimates of spatial rainfall for ground referencing. These estimates need to be adjusted from gauge to areal estimates taking the number of gauges in each pixel into account. We found that the distributions of the areal rainfall estimates are influenced by the number of gauges in each block, so we devised a means of transforming point to areal rainfall meaningfully. The second step is to determine the parameters of the probability distributions of the gauge-based block areal rainfall; we found that the Weibull distribution with 2 parameters is a suitable and useful choice. The pairs of Weibull parameters of rainfall on many blocks are correlated. To enable their interpolation, as an intermediate step, they have to be decorrelated using canonical decomposition. These transformed parameter pairs are then separately interpolated to empty blocks over the region of choice. They are then back-transformed at each TRMM pixel to Weibull parameters to provide gauge referenced daily rainfall distributions. The third step is to determine the Weibull distributions of the TRMM daily rainfall estimates in each block, based on their brief 11-year history. The fourth and last step is to QQ transform the individual daily TRMM rainfall estimates via the interpolated gauge-block rainfall distributions. This procedure achieves the desired corrected
Occurrence of organically bound tritium in the Mohelno lake system
This study was focused on the 3Hactivitylevels in the unique 'tritium valley' around the Mohelno reservoir, which receives outlet cooling waters from the Dukovany nuclear power plant. Tritium activity levels above the background reference value were found in water from the reservoir and from the effluent part of the Jihlava water, in air moisture and in plant tissues tissue free water tritium(TFWT), and nonexchangeable organically bound tritium (NE-OBT). These zones were discernible that had noticeably different TFWT and NE-OBT values: (1) littoral zones, (2) slopes above the reservoir, (3) plateaus above the reservoir/river. (author)
Efimov effect and higher bound states in a three particle system
The J=0 bound states for a system of three identical spinless particles interacting in pairs through delta-shell potentials are studied. The Efimov states are identified, and their wave functions obtained. A new family of bound states, which occurs for higher values of the attractive coupling strength was found
Global stabilization of linear continuous time-varying systems with bounded controls
This paper deals with the problem of global stabilization of a class of linear continuous time-varying systems with bounded controls. Based on the controllability of the nominal system, a sufficient condition for the global stabilizability is proposed without solving any Riccati differential equation. Moreover, we give sufficient conditions for the robust stabilizability of perturbation/uncertain linear time-varying systems with bounded controls. (author)
Impact of Feedback Channel on Measured MIMO Systems and Its Lower Bound
ZHANGDuo; WEIGuo; ZHUJinkang
2005-01-01
A lower bound of the rate in feedback channel from a receiver to a transmitter is presented for measured Multiple-input-multiple-output (MIMO) systems based on the formulae of the open-loop and the closedloop MIMO capacity, under the assumptions of quasi-static block-fading MIMO channel, independent nondispersive fading between each transmit and receive antenna, sampling with the period equal to the reciprocal of the signal bandwidth at the receiver, and zero feedback delay. Through Monte Carlo simulations~ we numerically validate the existence of the lower bound and show numerical results of the bound for system design. Also, we conclude that, the Signal-to-noise ratio (SNR) impacts little on the lower bound of the feedback rate for low antenna numbers, a closed-loop system with a feedback rate less than the lower bound is worse than a open-loop system, and the lower bound remains small with respect to the increase of antenna number for low SNRs. Finally, it is shown that the lower bound of the feedback rate and the conclusions are applicable to practical closed-loop MIMO systems.
Estimation variance bounds of importance sampling simulations in digital communication systems
Lu, D.; Yao, K.
1991-01-01
In practical applications of importance sampling (IS) simulation, two basic problems are encountered, that of determining the estimation variance and that of evaluating the proper IS parameters needed in the simulations. The authors derive new upper and lower bounds on the estimation variance which are applicable to IS techniques. The upper bound is simple to evaluate and may be minimized by the proper selection of the IS parameter. Thus, lower and upper bounds on the improvement ratio of various IS techniques relative to the direct Monte Carlo simulation are also available. These bounds are shown to be useful and computationally simple to obtain. Based on the proposed technique, one can readily find practical suboptimum IS parameters. Numerical results indicate that these bounding techniques are useful for IS simulations of linear and nonlinear communication systems with intersymbol interference in which bit error rate and IS estimation variances cannot be obtained readily using prior techniques.
Stability and response bounds of non-conservative linear systems
Pommer, Christian
2003-01-01
For a linear system of second order differential equations the stability is studied by Lyapunov's direct method. The Lyapunov matrix equation is solved and a sufficient condition for stability is expressed by the system matrices. For a system which satisfies the condition for stability the Lyapunov...
Recent results on stability and response bounds of linear systems - a review
Pommer, Christian; Kliem, Wolfhard
2006-01-01
The literature on linear systems emerging from second order differential equations is extensive because such systems are ubiquitous in modeling, particularly modeling of mechanical systems. This paper offers an overview of some of the recent research in this field, in particular on the subject of...... stability and response bounds of linear systems. In addition to reporting some interesting recent stability investigations, the basic concepts of stability are reviewed, and a short introduction to Lyapunov’s direct method is also presented. Particularly important for applications are response bounds for...... stable linear systems; therefore a comprehensive section has been devoted to this specific subject....
Control of Future Air Traffic Systems via Complexity Bound Management
Alexandrov, Natalia
2013-01-01
The complexity of the present system for managing air traffic has led to "discreteness" in approaches to creating new concepts: new concepts are created as point designs, based on experience, expertise, and creativity of the proposer. Discrete point designs may be highly successful but they are difficult to substantiate in the face of equally strong substantiation of competing concepts, as well as the state of the art in concept evaluation via simulations. Hybrid concepts may present a compromise - the golden middle. Yet a hybrid of sometimes in principle incompatible concepts forms another point design that faces the challenge of substantiation and validation. We are faced with the need to re-design the air transportation system ab initio. This is a daunting task, especially considering the problem of transitioning from the present system to any fundamentally new system. However, design from scratch is also an opportunity to reconsider approaches to new concept development. In this position paper we propose an approach, Optimized Parametric Functional Design, for systematic development of concepts for management and control of airspace systems, based on optimization formulations in terms of required system functions and states. This reasoning framework, realizable in the context of ab initio system design, offers an approach to deriving substantiated airspace management and control concepts. With growing computational power, we hope that the approach will also yield a methodology for actual dynamic control of airspace
Robust levitation control for maglev systems with guaranteed bounded airgap.
Xu, Jinquan; Chen, Ye-Hwa; Guo, Hong
2015-11-01
The robust control design problem for the levitation control of a nonlinear uncertain maglev system is considered. The uncertainty is (possibly) fast time-varying. The system has magnitude limitation on the airgap between the suspended chassis and the guideway in order to prevent undesirable contact. Furthermore, the (global) matching condition is not satisfied. After a three-step state transformation, a robust control scheme for the maglev vehicle is proposed, which is able to guarantee the uniform boundedness and uniform ultimate boundedness of the system, regardless of the uncertainty. The magnitude limitation of the airgap is guaranteed, regardless of the uncertainty. PMID:26524957
On accurate computations of bound state properties in three- and four-electron atomic systems
Frolov, Alexei M
2016-01-01
Results of accurate computations of bound states in three- and four-electron atomic systems are discussed. Bound state properties of the four-electron lithium ion Li$^{-}$ in its ground $2^{2}S-$state are determined from the results of accurate, variational computations. We also consider a closely related problem of accurate numerical evaluation of the half-life of the beryllium-7 isotope. This problem is of paramount importance for modern radiochemistry.
Upper bounds on the number of Steiner triple systems and 1-factorizations
Linial, Nathan
2011-01-01
Let STS(n) denote the number of Steiner triple systems on n vertices, and let F(n) denote the number of 1-factorizations of the complete graph on n vertices. We prove the following upper bounds. STS(n) <= ((1 + o(1)) (n/e^2))^(n^2/6) F(n) <= ((1 + o(1)) (n/e^2))^(n^2/2) Both bounds are conjectured be sharp. Our main tool is the entropy method.
Effective Markovian description of decoherence in bound systems
Sanz, A S
2014-01-01
Effective descriptions accounting for the evolution of quantum systems that are acted on by a bath are desirable. As the number of bath degrees of freedom increases and full quantum simulations turn out computationally prohibitive, simpler models become essential to understand and gain an insight into the main physical mechanisms involved in the system dynamics. In this regard, vibrational decoherence of an I$_2$ diatomics is tackled here within the framework of Markovian quantum state diffusion. The I$_2$ dynamics are analyzed in terms of an effective decoherence rate, $\\Lambda$, and the specific choice of the initial state, in particular, Gaussian wave packets and two-state superpositions. It is found that, for Markovian baths, the relevant quantity regarding decoherence is the product of friction ($\\eta$) and temperature ($T$); there is no distinction between varying one or the other. It is also observed that decoherence becomes faster as the energy levels involved in the system state correspond to higher ...
Study on I/O response time bounds of networked storage systems
CUI Bao-jiang; LIU Jun; WANG Gang; LIU Jing
2006-01-01
In order to predict and improve the performance of networked storage systems,this paper explored the relationship between the system I/O response time and its performance factors by quantitative analytical method.Through analyzing data flow in networked RAID storage system,we established its analytical model utilizing closed queueing networks and studied the performance bounds of the system I/O response time.Experimental results show that the theoretical bounds are found to be in agreement with the actual performance bounds of the networked RAID storage system and reflect the dynamic trend of its actual performance.Furthermore,it concludes that the CPU processing power and cache hit rate of the central storage server are the key factors affecting the I/O response time as the concurrent jobs are lower,while the network bandwidth and cache hit rate of the central storage server become the key factors as the concurrent jobs go higher.
The Upper Bound for GMRES on Normal Tridiagonal Toeplitz Linear System
R. Doostaki∗
2015-09-01
Full Text Available The Generalized Minimal Residual method (GMRES is often used to solve a large and sparse system Ax = b. This paper establishes error bound for residuals of GMRES on solving an N × N normal tridiagonal Toeplitz linear system. This problem has been studied previously by Li [R.-C. Li, Convergence of CG and GMRES on a tridiagonal Toeplitz linear system, BIT 47 (3 (2007 577-599.], for two special right-hand sides b = e1, eN . Also, Li and Zhang [R.-C. Li, W. Zhang, The rate of convergence of GMRES on a tridiagonal Toeplitz linear system, Numer. Math. 112 (2009 267-293.] for non-symmetric matrix A, presented upper bound for GMRES residuals. But in this paper we establish the upper bound on normal tridiagonal Toeplitz linear systems for special right-hand sides b = b(lel, for 1 l N
Homeward Bound: Ecological Design of Domestic Information Systems
Wastell, David G.; Sauer, Juergen S.; Schmeink, Claudia
Information technology artefacts are steadily permeating everyday life, just as they have colonized the business domain. Although research in our field has largely addressed the workplace, researchers are beginning to take an interest in the home environment too. Here, we address the domestic realm, focusing on the design of complex, interactive information systems. As such, our work sits in the design science version rather than behavioral science paradigm of IS research. We argue that the home is in many ways a more challenging environment for the designer than the workplace, making good design of critical importance. Regrettably, the opposite would appear to be the norm. Two experiments are reported, both concerned with the design of the user interface for domestic heating systems. Of note is our use of a medium-fidelity laboratory simulation or "microworld" in this work. Two main substantive findings resulted. First, that ecologically designed feedback, embodying a strong mapping between task goals and system status, produced superior task performance. Second, that predictive decision aids provided clear benefits over other forms of user support, such as advisory systems. General implications for the design of domestic information systems are discussed, followed by reflections on the nature of design work in IS, and on the design science project itself. It is concluded that the microworld approach has considerable potential for developing IS design theory. The methodological challenges of design research are highlighted, especially the presence of additional validity threats posed by the need to construct artefacts in order to evaluate theory. It is argued that design theory is necessarily complex, modal, and uncertain, and that design science (like design itself) should be prosecuted in an open, heuristic spirit, drawing more on the proven methods of "good design" (e.g.,prototyping, user participation) in terms of its own praxis.
Spin–orbit coupling rule in bound fermion systems
Ebran, J.-P.; Khan, E.; Mutschler, A.; Vretenar, D.
2016-08-01
Spin–orbit coupling characterizes quantum systems such as atoms, nuclei, hypernuclei, quarkonia, etc, and is essential for understanding their spectroscopic properties. Depending on the system, the effect of spin–orbit coupling on shell structure is large in nuclei, small in quarkonia and perturbative in atoms. In the standard non-relativistic reduction of the single-particle Dirac equation, we derive a universal rule for the relative magnitude of the spin–orbit effect that applies to very different quantum systems, regardless of whether the spin–orbit coupling originates from the strong or electromagnetic interaction. It is shown that in nuclei the near equality of the mass of the nucleon and the difference between the large repulsive and attractive potentials explain the fact that spin–orbit splittings are comparable to the energy spacing between major shells. For a specific ratio between the particle mass and the effective potential whose gradient determines the spin–orbit force, we predict the occurrence of giant spin–orbit energy splittings that dominate the single-particle excitation spectrum.
Adaptive Control of Networked Systems in the Presence of Bounded Disturbances
A. H. Tahoun
2007-01-01
Full Text Available The insertion of data network in the feedback adaptive control loops makes the analysis and design of networked control systems more complex than traditional control systems. This paper addresses the adaptive stabilization problem of linear time-invariant networked control systems when the measurements of the plant states are corrupted by bounded disturbances. The case of state feedback is treated in which only an upper bound on the norm of matrix A is needed. The problem is to find an upper bound on the transmission period h that guarantees the stability of the overall adaptive networked control system under an ideal transmission process, i.e. no transmission delay or packet dropout. Rigorous mathematical proofs are established, that relies heavily on Lyapunov's stability criterion and dead-zone Technique. Simulation results are given to illustrate the efficacy of our design approach.
$D^*$ $\\Xi N$ bound state in strange three-body systems
Garcilazo, H
2016-01-01
The recent update of the strangeness $-2$ ESC08c Nijmegen potential incorporating the NAGARA and KISO events predicts a $\\Xi N$ bound state, $D^*$, in the $^3S_1 (I=1)$ channel. We study if the existence of this two-body bound state could give rise to stable three-body systems. For this purpose we solve the bound state problem of three-body systems where the $\\Xi N$ state is merged with $N$'s, $\\Lambda$'s, $\\Sigma's$ or $\\Xi$'s, making use of the most recent updates of the two-body ESC08c Nijmegen potentials. We found that there appear stable states in the $\\Xi NN$ and $\\Xi \\Xi N$ systems, the $\\Xi \\Lambda N$ and $\\Xi \\Sigma N$ systems being unbound.
Adaptive control for a class of chaotic systems with unknown bounded uncertainties
In this paper, a new adaptive control scheme is developed for a class of chaotic systems with unknown bounded uncertainties. Based on Lyapunov stability theory, an adaptive feedback controller is designed for tracking a smooth orbit that can be a limit cycle or a chaotic orbit of another system. Furthermore, it is worthy of note that the proposed adaptive control scheme does not involve any information about the bounds of uncertainties. A numerical example of the Duffing system is included to verify the validity of the proposed scheme. (author)
Universal localizing bounds for compact invariant sets of natural polynomial Hamiltonian systems
Starkov, Konstantin E. [CITEDI-IPN, Av. del Parque 1310, Mesa de Otay, Tijuana, BC (Mexico)], E-mail: konst@citedi.mx
2008-10-06
In this Letter we study the localization problem of compact invariant sets of natural Hamiltonian systems with a polynomial Hamiltonian. Our results are based on applying the first order extremum conditions. We compute universal localizing bounds for some domain containing all compact invariant sets of a Hamiltonian system by using one quadratic function of a simple form. These bounds depend on the value of the total energy of the system, degree and some coefficients of a potential and, in addition, some positive number got as a result of a solution of one maximization problem. Besides, under some quasihomogeneity condition(s) we generalize our construction of the localization set.
Behavior of QQ-plots and genomic control in studies of gene-environment interaction.
Arend Voorman
Full Text Available Genome-wide association studies of gene-environment interaction (GxE GWAS are becoming popular. As with main effects GWAS, quantile-quantile plots (QQ-plots and Genomic Control are being used to assess and correct for population substructure. However, in G x E work these approaches can be seriously misleading, as we illustrate; QQ-plots may give strong indications of substructure when absolutely none is present. Using simulation and theory, we show how and why spurious QQ-plot inflation occurs in G x E GWAS, and how this differs from main-effects analyses. We also explain how simple adjustments to standard regression-based methods used in G x E GWAS can alleviate this problem.
Excited, bound and resonant positron-atom systems
Bromley, M W J [Department of Physics and Computational Science Research Center, San Diego State University, San Diego CA 92182 (United States); Mitroy, J, E-mail: mbromley@physics.sdsu.ed [ARC Centre for Antimatter-Matter Studies and Faculty of Education, Health and Science, Charles Darwin University, Darwin NT 0909 (Australia)
2010-01-01
Calculations have demonstrated that eleven neutral atoms can bind positrons, while many more can bind positronium. This is a short review of recent progress made in understanding some of the underlying mechanisms. The emphasis here being on configuration interaction calculations with excited state configurations. These have demonstrated the existence of a {sup 2}P{sup o} excited state of e{sup +}Ca, which consists predominantly of a positronium cluster orbiting the Ca{sup +} ion in the L = 1 partial wave. Preliminary results are presented of excited state positron binding to a model alkali atom, where the excited {sup 1}P{sup o} states are stable over a limited region. Implications for the unnatural parity, {sup 2,4}S{sup o}, states of PsH, LiPs, NaPs and KPs are also discussed. The e{sup +}Mg, e{sup +}Cu, e{sup +}Zn and e{sup +}Cd systems show a lack of a {sup 2}P{sup o} excited state, each instead possessing a low-energy p-wave shape resonance of varying strength.
Excited, bound and resonant positron-atom systems
Calculations have demonstrated that eleven neutral atoms can bind positrons, while many more can bind positronium. This is a short review of recent progress made in understanding some of the underlying mechanisms. The emphasis here being on configuration interaction calculations with excited state configurations. These have demonstrated the existence of a 2Po excited state of e+Ca, which consists predominantly of a positronium cluster orbiting the Ca+ ion in the L = 1 partial wave. Preliminary results are presented of excited state positron binding to a model alkali atom, where the excited 1Po states are stable over a limited region. Implications for the unnatural parity, 2,4So, states of PsH, LiPs, NaPs and KPs are also discussed. The e+Mg, e+Cu, e+Zn and e+Cd systems show a lack of a 2Po excited state, each instead possessing a low-energy p-wave shape resonance of varying strength.
Ranking of Business Process Simulation Software Tools with DEX/QQ Hierarchical Decision Model.
Nadja Damij
Full Text Available The omnipresent need for optimisation requires constant improvements of companies' business processes (BPs. Minimising the risk of inappropriate BP being implemented is usually performed by simulating the newly developed BP under various initial conditions and "what-if" scenarios. An effectual business process simulations software (BPSS is a prerequisite for accurate analysis of an BP. Characterisation of an BPSS tool is a challenging task due to the complex selection criteria that includes quality of visual aspects, simulation capabilities, statistical facilities, quality reporting etc. Under such circumstances, making an optimal decision is challenging. Therefore, various decision support models are employed aiding the BPSS tool selection. The currently established decision support models are either proprietary or comprise only a limited subset of criteria, which affects their accuracy. Addressing this issue, this paper proposes a new hierarchical decision support model for ranking of BPSS based on their technical characteristics by employing DEX and qualitative to quantitative (QQ methodology. Consequently, the decision expert feeds the required information in a systematic and user friendly manner. There are three significant contributions of the proposed approach. Firstly, the proposed hierarchical model is easily extendible for adding new criteria in the hierarchical structure. Secondly, a fully operational decision support system (DSS tool that implements the proposed hierarchical model is presented. Finally, the effectiveness of the proposed hierarchical model is assessed by comparing the resulting rankings of BPSS with respect to currently available results.
Ranking of Business Process Simulation Software Tools with DEX/QQ Hierarchical Decision Model.
Damij, Nadja; Boškoski, Pavle; Bohanec, Marko; Mileva Boshkoska, Biljana
2016-01-01
The omnipresent need for optimisation requires constant improvements of companies' business processes (BPs). Minimising the risk of inappropriate BP being implemented is usually performed by simulating the newly developed BP under various initial conditions and "what-if" scenarios. An effectual business process simulations software (BPSS) is a prerequisite for accurate analysis of an BP. Characterisation of an BPSS tool is a challenging task due to the complex selection criteria that includes quality of visual aspects, simulation capabilities, statistical facilities, quality reporting etc. Under such circumstances, making an optimal decision is challenging. Therefore, various decision support models are employed aiding the BPSS tool selection. The currently established decision support models are either proprietary or comprise only a limited subset of criteria, which affects their accuracy. Addressing this issue, this paper proposes a new hierarchical decision support model for ranking of BPSS based on their technical characteristics by employing DEX and qualitative to quantitative (QQ) methodology. Consequently, the decision expert feeds the required information in a systematic and user friendly manner. There are three significant contributions of the proposed approach. Firstly, the proposed hierarchical model is easily extendible for adding new criteria in the hierarchical structure. Secondly, a fully operational decision support system (DSS) tool that implements the proposed hierarchical model is presented. Finally, the effectiveness of the proposed hierarchical model is assessed by comparing the resulting rankings of BPSS with respect to currently available results. PMID:26871694
One-loop corrections to qq-bar → γγγ and qq-bar → gγγ
The observability of a light Higgs boson in the γγ decay mode at LHC may be improved by using the association production of the Higgs boson with a high PT jet. We consider QCD background for pp → H jet → γγ jet process at the next-to-leading order. We present some analytic results for the qq-barγγg subamplitudes at one-loop order. (author)
A curvature dependent bound for entanglement change in classically chaotic systems
Ghikas, D P K; Ghikas, Demetris P.K.; Stamatiou, George
2006-01-01
Using the Calogero-Moser model and the Nakamura equations for a multi-partite quantum system, we prove an inequality between the mean bi-partite entanglement rate of change under the variation of a critical parameter and the level-curvature. This provides an upper bound for the rate of production or distraction of entanglement induced dynamically. We then investigate the dependence of the upper bound on the degree of chaos of the system, which in turn, through the inequality, gives a measure of the stability of the entangled state. Our analytical results are supported with extensive numerical calculations.
The work of Krommes and Smith on rigorous upper bounds for the turbulent transport of a passively advected scalar [/ital Ann. Phys./ 177:246 (1987)] is extended in two directions: (1) For their ''reference model,'' improved upper bounds are obtained by utilizing more sophisticated two-time constraints which include the effects of cross-correlations up to fourth order. Numerical solutions of the model stochastic differential equation are also obtained; they show that the new bounds compare quite favorably with the exact results, even at large Reynolds and Kubo numbers. (2) The theory is extended to take account of a finite spatial autocorrelation length L/sub c/. As a reasonably generic example, the problem of particle transport due to statistically specified stochastic magnetic fields in a collisionless turbulent plasma is revisited. A bound is obtained which reduces for small L/sub c/ to the quasilinear limit and for large L/sub c/ to the strong turbulence limit, and which provides a reasonable and rigorous interpolation for intermediate values of L/sub c/. 18 refs., 6 figs
Bounds for the Sum Capacity of Binary CDMA Systems in Presence of Near-Far Effect
Pad, P; Mansouri, S M; Kabir, P; Marvasti, F
2010-01-01
In this paper we are going to estimate the sum capacity of a binary CDMA system in presence of the near-far effect. We model the near-far effect as a random variable that is multiplied by the users binary data before entering the noisy channel. We will find a lower bound and a conjectured upper bound for the sum capacity in this situation. All the derivations are in the asymptotic case. Simulations show that especially the lower bound is very tight for typical values Eb/N0 and near-far effect. Also, we exploit our idea in conjunction with the Tanaka's formula [6] which also estimates the sum capacity of binary CDMA systems with perfect power control.
Chaotic anti-control for the bounded linear continuous-time system
Li Jianfen; Lin Hui; Li Nong
2008-01-01
With regard to the bounded linear continuous-time system, a universal chaotic anti-controlling method was presented on the basis of tracking control. A tracking controller is designed to such an extent that it can track any chaotic reference input, thus making it possible to chaotify the linear system. The controller is identical in structure for different controlled linear systems. Computer simulations proved the effectiveness of the proposed method.
On Global Existence of Classical Solutions for the Vlasov-Poisson System in Convex Bounded Domains
Hwang, Hyung Ju; Velazquez, Juan J L
2011-01-01
We prove global existence of strong solutions for the Vlasov-Poisson system in a convex bounded domain in the plasma physics case assuming homogeneous Dirichlet boundary conditions for the electric potential and the specular reflection boundary conditions for the distribution density.
Stability bound analysis of singularly perturbed systems with time-delay
Sun Fengqi
2013-01-01
Full Text Available This paper considers the stability bound problem of singularly perturbed systems with time-delay. Some stability criteria are derived by constructing appropriate Lyapunov-Krasovskii functionals. The proposed criteria are less conservative than the existing ones. Two numerical examples are given to illustrate the advantages and effectiveness of the proposed methods.
Heavy-flavored tetraquark states with the $QQ\\bar{Q}\\bar{Q}$ configuration
Wu, Jing; Chen, Kan; Liu, Xiang; Zhu, Shi-Lin
2016-01-01
In the framework of the color-magnetic interaction, we systematically investigate the mass spectrum of the tetraquark states composed of four heavy quarks with the $QQ\\bar Q\\bar Q$ configuration in this work. We also discuss their strong decay patterns, which shall be helpful to the experimental search for these exotic states.
Bounding the Failure Probability Range of Polynomial Systems Subject to P-box Uncertainties
Crespo, Luis G.; Kenny, Sean P.; Giesy, Daniel P.
2012-01-01
This paper proposes a reliability analysis framework for systems subject to multiple design requirements that depend polynomially on the uncertainty. Uncertainty is prescribed by probability boxes, also known as p-boxes, whose distribution functions have free or fixed functional forms. An approach based on the Bernstein expansion of polynomials and optimization is proposed. In particular, we search for the elements of a multi-dimensional p-box that minimize (i.e., the best-case) and maximize (i.e., the worst-case) the probability of inner and outer bounding sets of the failure domain. This technique yields intervals that bound the range of failure probabilities. The offset between this bounding interval and the actual failure probability range can be made arbitrarily tight with additional computational effort.
Minimal time trajectories for two-level quantum systems with two bounded controls
Boscain, Ugo, E-mail: ugo.boscain@polytechnique.edu [CNRS, CMAP Ecole Polytechnique, France and Team GECO, INRIA Saclay (France); Grönberg, Fredrik, E-mail: gronb@kth.se [Department of Physics, Royal Institute of Technology (KTH) (Sweden); Long, Ruixing, E-mail: ruixing.long@gmail.com [General Motors of Canada, 1908 Colonel Sam Drive, Oshawa (Canada); Rabitz, Herschel, E-mail: hrabitz@princeton.edu [Department of Chemistry, Princeton University, Princeton, New Jersey 08544-1009 (United States)
2014-06-15
In this paper we consider the minimum time population transfer problem for a two level quantum system driven by two external fields with bounded amplitude. The controls are modeled as real functions and we do not use the Rotating Wave Approximation. After projection on the Bloch sphere, we treat the time-optimal control problem with techniques of optimal synthesis on 2D manifolds. Based on the Pontryagin Maximum Principle, we characterize a restricted set of candidate optimal trajectories. Properties on this set, crucial for complete optimal synthesis, are illustrated by numerical simulations. Furthermore, when the two controls have the same bound and this bound is small with respect to the difference of the two energy levels, we get a complete optimal synthesis up to a small neighborhood of the antipodal point of the initial condition.
Current Conservation in Electrodisintegration of a Bound System in the Bethe–Salpeter Approach
Using our solutions of the Bethe–Salpeter equation with OBE kernel in Minkowski space both for the bound and scattering states, we calculate the transition form factors for electrodisintegration of the bound system which determine the electromagnetic current J of this process. Special emphasis is put on verifying the gauge invariance which should manifest itself in the current conservation. We find that for any value of the momentum transfer q the contributions of the plane wave and the final state interaction to the quantity J · q cancel each other thus providing J · q = 0. However, this cancellation, is obtained only if the initial BS amplitude (bound state), the final one (scattering state) and the current operator are strictly consistent with each other. A reliable result for the transition form factor can be found only in this case. (author)
Molecular Andreev bound states and Majorana modes in a double dot system
Vernek, Edson; Silva, Joelson F.
Nanostructured systems such as quantum dots (QD) connected to superconductors has attracted a lot of attention in the recent years. One of the well known phenomena in such a system is the formation of a pair of bound called Andreev bound states (ABS). Recently, it have been shown that when a QD is coupled to a topological superconductor wire, a Majorana bound state (MBS) leaks from the end of the wire into the dot. The character of these bound states is much reacher in structures like molecules and is far from being completely understood. In this work we study a system composed by a two inter-connected QDs in which one of then is coupled to a normal superconductor and to a normal lead while the other is coupled to a topological superconductor and to a distinct normal metallic lead. We show that in the atomic limit (for small interdot coupling), one of the dot has a pair of ABS whereas the other has a single a MBS. More interestingly, in the molecular regime (large inter-dot coupling) we observe a localized Majorana mode coexisting with a delocalized molecular ABS. We would like to thank financial support from the Brazilian agencies CNPq, CAPES and FAPEMIG.
Upper and Lower Bounds of Frequency Interval Gramians for a Class of Perturbed Linear Systems
Shaker, Hamid Reza
2012-01-01
investigated for the case of uncertain systems. In this paper, we derive upper and lower bounds of frequency interval gramians under perturbations of an A-matrix in the state-space form. These bounds are obtained by solving algebraic Riccati equations. The results are further used to obtain upper and lower......The notions of controllability and observability play an important role in different problems within feedback control analysis and design. To verify the controllability and observability of a system, several techniques have been introduced. However, often it is not only important to verify if the...... system is controllable or observable, but also it is required to know the degree of controllability or observability of the system. Gramian matrices were introduced to address this issue by providing a quantitative measure for controllability and observability. In many applications, the information on...
Search for Higgs bosons in ττqq-bar topologies with the Delphi detector at LEP
During my thesis, I was doing the official Higgs search in the ττqq-bar topologies for the Delphi collaboration. These final states are useful for 3 different processes for Higgs search, that lead to 3 different analyses. In 1996, I used an inclusive method to search for τ in hadronic events, identifying τ as thin jets quite isolated from the hadronic system. These analyses gave good results published in the official Delphi paper about the search for Higgs bosons. In 1997, with a high luminosity, I developed an exclusive search for τ leptons in hadronic events. This method is a real improvement, with respect to the inclusive one, for background rejection and signal efficiency. This kind of identification is necessary to study τ polarization, which could help measured the Higgs spin. (author)
On bounds for solutions of monotonic first order difference-differential systems
Segura, Javier
2011-01-01
Many special functions are solutions of first order linear systems $y_n'(x)=a_n(x)y_n(x)+d_n(x)y_{n-1}(x)$, $y_{n-1}'(x)=b_n(x)y_{n-1}(x)+e_{n}(x)y_n(x)$. We obtain bounds for the ratios $y_n(x)/y_{n-1}(x)$ and the logarithmic derivatives of $y_n(x)$ for solutions of monotonic systems satisfying certain initial conditions. For the case $d_n(x)e_n(x)>0$, sequences of upper and lower bounds can be obtained by iterating the recurrence relation; for minimal solutions of the recurrence these are convergent sequences. The bounds are related to the Liouville-Green approximation for the associated second order ODEs as well as to the asymptotic behavior of the associated three-term recurrence relation as $n\\rightarrow +\\infty$; the bounds are sharp both as a function of $n$ and $x$. Many special functions are amenable to this analysis, and we give several examples of application: modified Bessel functions, parabolic cylinder functions, Legendre functions of imaginary variable and Laguerre functions. New Tur\\'an-type i...
Bounds for a new chaotic system and its application in chaos synchronization
Zhang, Fuchen; Shu, Yonglu; Yang, Hongliang
2011-03-01
This paper has investigated the localization problem of compact invariant sets of a new chaotic system with the help of the iteration theorem and the first order extremum theorem. If there are more iterations, then the estimation for the bound of the system will be more accurate, because the shape of the chaotic attractor is irregular. We establish that all compact invariant sets of this system are located in the intersection of a ball with two frusta and we also compute its parameters. It is a great advantage that we can attain a smaller bound of the chaotic attractor compared with the classical method. One numerical example illustrating a localization of a chaotic attractor is presented as well.
XIA Yuanqing; HAN Jingqing
2005-01-01
This paper concerns robust Kalman filtering for systems under norm bounded uncertainties in all the system matrices and error covariance constraints. Sufficient conditions are given for the existence of such filters in terms of Riccati equations. The solutions to the conditions can be used to design the filters. Finally, an illustrative example is given to demonstrate the effectiveness of the proposed design procedure.
Applicability of the extended P+QQ model in the upper part of the f7/2 shell
The P0+P2+QQ force has been completely revised, and in its new form, it is capable of describing nuclear structure of N approx. = Z nuclei well. This paper investigates the applicability of the extended P+QQ model in the upper part of the f7/2 shell using shell model calculations. It is shown that the extended P+QQ model can account for the collective bands of most 52 ≤ A ≤ 56 nuclei as well as the lower part of the f7/2 shell. However, considerable discrepancy with experiment exists for 52Fe, which suggests the limit of the applicability of this force. (author)
Waszak, Martin R.
1992-01-01
The application of a sector-based stability theory approach to the formulation of useful uncertainty descriptions for linear, time-invariant, multivariable systems is explored. A review of basic sector properties and sector-based approach are presented first. The sector-based approach is then applied to several general forms of parameter uncertainty to investigate its advantages and limitations. The results indicate that the sector uncertainty bound can be used effectively to evaluate the impact of parameter uncertainties on the frequency response of the design model. Inherent conservatism is a potential limitation of the sector-based approach, especially for highly dependent uncertain parameters. In addition, the representation of the system dynamics can affect the amount of conservatism reflected in the sector bound. Careful application of the model can help to reduce this conservatism, however, and the solution approach has some degrees of freedom that may be further exploited to reduce the conservatism.
On the solvability of the compressible Navier–Stokes system in bounded domains
This paper is dedicated to the well-posedness issue for the barotropic Navier–Stokes system with homogeneous Dirichlet boundary conditions in bounded domains of RN. We aim at considering data in as large a class as possible. Our main result is that if the initial density is bounded away from zero and belongs to some W1,r with r > N, if the initial velocity is in the Besov space B2-(2/p)r,p (and satisfies a suitable boundary condition), and if the body force is in Lploc(R+;Lr) for some p > 1 then the system has a unique local solution. Our regularity assumptions are consistent with a dimensional analysis which shows that critical data would correspond to r = N and p = 1, and improve an old result by Solonnikov (1980 J. Sov. Math. 14 1120–32)
Looking for bound states and resonances in the $\\eta^\\prime K\\bar K$ system
Torres, A Martínez
2016-01-01
Motivated by the continuous experimental investigations of $X(1835)$ in three-body decay channels like $\\eta^\\prime \\pi^+ \\pi^-$, we investigate the $\\eta^\\prime K \\bar K$ system with the aim of searching for bound states and/or resonances when the dynamics involved in the $K\\bar K$ subsystem can form the resonances: $f_0(980)$ in isospin 0 or $a_0(980)$ in isospin 1. For this, we solve the Faddeev equations for the three-body system. The input two-body $t$-matrices are obtained by solving Bethe-Salpeter equations in a coupled channel formalism. As a result, no signal of a three-body bound state or resonance is found.
Frequency Weighted Model Order Reduction Technique and Error Bounds for Discrete Time Systems
Muhammad Imran
2014-01-01
for whole frequency range. However, certain applications (like controller reduction require frequency weighted approximation, which introduce the concept of using frequency weights in model reduction techniques. Limitations of some existing frequency weighted model reduction techniques include lack of stability of reduced order models (for two sided weighting case and frequency response error bounds. A new frequency weighted technique for balanced model reduction for discrete time systems is proposed. The proposed technique guarantees stable reduced order models even for the case when two sided weightings are present. Efficient technique for frequency weighted Gramians is also proposed. Results are compared with other existing frequency weighted model reduction techniques for discrete time systems. Moreover, the proposed technique yields frequency response error bounds.
Analytic Exact Upper Bound for the Lyapunov Dimension of the Shimizu–Morioka System
Gennady A. Leonov
2015-07-01
Full Text Available In applied investigations, the invariance of the Lyapunov dimension under a diffeomorphism is often used. However, in the case of irregular linearization, this fact was not strictly considered in the classical works. In the present work, the invariance of the Lyapunov dimension under diffeomorphism is demonstrated in the general case. This fact is used to obtain the analytic exact upper bound of the Lyapunov dimension of an attractor of the Shimizu–Morioka system.
Cryptanalysis of Pasargad, A Distance Bounding Protocol Based on RFID System
Mahdi Azizi; Abdolrasol Mirgadri; Nasour Bagheri
2012-01-01
In this paper we analyze an authentication protocol so-called Pasargad which proposed by Arjemand et al. [1]. The Pasargad protocol is a distance bounding protocol which has been designed for RFID-based electronic voting systems. The designers have claimed that this protocol is more secure than Preneel and Single protocol [2], against relay attacks. However, in this paper, we present some efficient attacks against it. Our attacks include conditional impersonation attack and recovery key attac...
A bound system in the expanding universe with modified holographic Ricci dark energy and dark matter
Li, En-Kun; Geng, Jin-Ling; Duan, Peng-Fei
2015-01-01
The evolution of a bound system in the expanding background has been investigated in this paper. The background is described by a FRW universe with the modified holographic dark energy model, whose equation of state parameter changes with time and can cross the phantom boundary. To study the evolution of the bound system, an interpolating metric is considered, and on this basis the geodesics of a test particle are given. The equation of motion and the effective potential are also derived from the geodesics. By studying the the effective potential and the evolution of the radius of a test particle in the bound system of the Milky Way galaxy, we have found that the galaxy would go through three stages: expands from a singular point; stays in a discoid for a period of time; big rip in the future. With the help of analysing the critical angular momentum, we find that the test particle needs less angular momentum to escape from the center mass as time passes.
Improved upper bounds on Kaluza-Klein gravity with current Solar System experiments and observations
Deng, Xue-Mei [Chinese Academy of Sciences, Purple Mountain Observatory, Nanjing (China); Xie, Yi [Nanjing University, School of Astronomy and Space Science, Nanjing (China); Shanghai Key Laboratory of Space Navigation and Position Techniques, Shanghai (China); Nanjing University, Ministry of Education, Key Laboratory of Modern Astronomy and Astrophysics, Nanjing (China)
2015-11-15
As an extension of previous works on classical tests of Kaluza-Klein (KK) gravity and as an attempt to find more stringent constraints on this theory, its effects on physical experiments and astronomical observations conducted in the Solar System are studied. We investigate the gravitational time delay at inferior conjunction caused by KK gravity, and use new Solar System ephemerides and the observation of Cassini to strengthen constraints on KK gravity by up to two orders of magnitude. These improved upper bounds mean that the fifth-dimensional space in the soliton case is a very flat extra dimension in the Solar System, even in the vicinity of the Sun. (orig.)
Improved upper bounds on Kaluza-Klein gravity with current Solar System experiments and observations
As an extension of previous works on classical tests of Kaluza-Klein (KK) gravity and as an attempt to find more stringent constraints on this theory, its effects on physical experiments and astronomical observations conducted in the Solar System are studied. We investigate the gravitational time delay at inferior conjunction caused by KK gravity, and use new Solar System ephemerides and the observation of Cassini to strengthen constraints on KK gravity by up to two orders of magnitude. These improved upper bounds mean that the fifth-dimensional space in the soliton case is a very flat extra dimension in the Solar System, even in the vicinity of the Sun. (orig.)
Improved upper bounds on Kaluza-Klein gravity with current Solar System experiments and observations
Deng, Xue-Mei
2015-01-01
As an extension of previous works on classical tests of Kaluza-Klein (KK) gravity and as an attempt to find more stringent constraints on this theory, its effects on physical experiments and astronomical observations conducted in the Solar System are studied. We investigate the gravitational time delay at inferior conjunction caused by KK gravity, and use new Solar System ephemerides and the observation of \\textit{Cassini} to strengthen constraints on KK gravity by up to two orders of magnitude. These improved upper bounds mean that the fifth-dimensional space in the soliton case is a very flat extra dimension in the Solar System, even in the vicinity of the Sun.
Finite Energy and Bounded Actuator Attacks on Cyber-Physical Systems
Djouadi, Seddik M [ORNL; Melin, Alexander M [ORNL; Ferragut, Erik M [ORNL; Laska, Jason A [ORNL; Dong, Jin [ORNL; Drira, Anis [ORNL
2015-01-01
As control system networks are being connected to enterprise level networks for remote monitoring, operation, and system-wide performance optimization, these same connections are providing vulnerabilities that can be exploited by malicious actors for attack, financial gain, and theft of intellectual property. Much effort in cyber-physical system (CPS) protection has focused on protecting the borders of the system through traditional information security techniques. Less effort has been applied to the protection of cyber-physical systems from intelligent attacks launched after an attacker has defeated the information security protections to gain access to the control system. In this paper, attacks on actuator signals are analyzed from a system theoretic context. The threat surface is classified into finite energy and bounded attacks. These two broad classes encompass a large range of potential attacks. The effect of theses attacks on a linear quadratic (LQ) control are analyzed, and the optimal actuator attacks for both finite and infinite horizon LQ control are derived, therefore the worst case attack signals are obtained. The closed-loop system under the optimal attack signals is given and a numerical example illustrating the effect of an optimal bounded attack is provided.
Pleil, Joachim D
2016-01-01
One of the main uses of biomarker measurements is to compare different populations to each other and to assess risk in comparison to established parameters. This is most often done using summary statistics such as central tendency, variance components, confidence intervals, exceedance levels and percentiles. Such comparisons are only valid if the underlying assumptions of distribution are correct. This article discusses methodology for interpreting and evaluating data distributions using quartile-quartile plots (QQ-plots) and making decisions as to how to treat outliers, interpreting effects of mixed distributions, and identifying left-censored data. The QQ-plot graph is shown to be a simple and elegant tool for visual inspection of complex data and deciding if summary statistics should be performed after log-transformation. PMID:27491525
A Study on College EFL Learning Community Based on QQ International
Wei, Li
2013-01-01
An EFL Learning Community has been set up online via a free messaging tool QQ International to consolidate and apply the knowledge learnt in class. One sub-community aims at developing multicultural awareness while the other focuses on expertise training in English for the undergraduates in several universities. Our innovative approach is that the trainees interact with other participants with virtual icons, virtual roles and specific achievement goals according to curriculum-related scenario...
Anicin, Ivan
2016-01-01
We make use of the well-known properties of spontaneous decays of stationary states of bound systems of elementary particles to support the view that the forces which form these systems propagate instantaneously at the moment of their decay.
Studies of light neutron-excess systems from bounds to continuum
Ito Makoto
2011-10-01
Full Text Available The generalized two-center cluster model (GTCM, which can handle various single particle config urations in general two center systems, is applied to the light neutron-rich system, 12Be= α+α+4N. We discuss the change of the neutrons’ configuratio around two α-cores as a variation of an excitation energy. We show that the covalent, ionic and atomic configuration appear in the unbound region above the α+8Heg.s. particledecay threshold. The GTCM calculation is also applied to even Be isotopes, and the systematics on the structural changes from bound region to continuum is discussed.
无
2001-01-01
This paper analyzes some problems arising in determining the mails Whole Delivery Standard of Time Bound (WDSTB) at present, and further on the basis of the postal central office system currently in practice, puts forward the principle, reflection and the concrete approaches in determining the Delivery Standard of Time Bound (DSTB).
Stochastic period-doubling bifurcation analysis of a Roessler system with a bounded random parameter
This paper aims to study the stochastic period-doubling bifurcation of the three-dimensional Roessler system with an arch-like bounded random parameter. First, we transform the stochastic Roessler system into its equivalent deterministic one in the sense of minimal residual error by the Chebyshev polynomial approximation method. Then, we explore the dynamical behaviour of the stochastic Roessler system through its equivalent deterministic system by numerical simulations. The numerical results show that some stochastic period-doubling bifurcation, akin to the conventional one in the deterministic case, may also appear in the stochastic Roessler system. In addition, we also examine the influence of the random parameter intensity on bifurcation phenomena in the stochastic Roessler system. (general)
Relativistic wave equation for the bound states of a system of interacting particles
A method for obtaining the relativistic wave equation for the bound states of a system of interacting charged particles without consideration of spin is proposed. An expansion of the wave function of the system in a complete basis of orthonormal wave functions of vacuum states for each type of particle is used in this equation. It is shown that this equation contains two types of solutions for a proton + electron system. The first type corresponds to Bohr bound states. Exact expressions are obtained for the energy and Bohr radius of the ground state with consideration of the finite mass of the particles. An influence of the energy of translational motion of the system as a whole on the structure of the atomic levels in the laboratory frame is predicted. This effect is due to the finite value of m/M, and leads to removal of the degeneracy of the levels with respect to orbital angular momentum l, and partial removal of the degeneracy with respect to its projection. The second type of solution represents states of the system with binding energy Eb=M+m-√(|M2-m2|) and an exponential wave function damping radius equal to the Compton wavelength of the electron. A complete description of this state requires consideration of the electronic vacuum polarization
Nonlinear control for global stabilization of multiple-integrator system by bounded controls
Bin ZHOU; Guangren DUAN; Liu ZHANG
2008-01-01
The global stabilization problem of the multiple-integrator system by bounded controls is considered.A nonlinear feedback law consisting of nested saturation functions is proposed.This type of nonlinear feedback law that is a modification and generalization of the result given in[1] needs only[(n+1)/2](n is the dimensions of the system)saturation elements,which is fewer than that which the other nonlinear laws need.Funhermore.the poles of the closedloop system Can be placed on any location on the left real axis when none of the saturafion elements in the control laws is saturated.This type of nonlinear control law exhibits a simpler structure and call significantly improve the transient performances of the closed-loop system,and is very superior to the other existing methods.Simulation on a fourth-order system is used to validate the proposed method.
Chunxia Jia; Detong Zhu
2008-01-01
In this paper we propose an affine scaling interior algorithm via conjugate gradient path for solving nonlinear equality systems subject to bounds on variables.By employing the affine scaling conjugate gradient path search strategy,we obtain an iterative direction by solving the linearize model.By using the line search technique,we will find an acceptable trial step length along this direction which is strictly feasible and makes the objective function nonmonotonically decreasing.The global convergence and fast local convergence rate of the proposed algorithm are established under some reasonable conditions.Furthermore,the numerical results of the proposed algorithm indicate to be effective.
Electric dipole transition rates of the bound states of the b bar b system
We calculate the E1 decay rates of the bound states of the b bar b system in the nonsingular potential model of Gupta, Repko, and Suchyta (GRS) and compare them with the recent experimental results. We get predictions somewhat different from the original GRS results and overall these new results are in better agreement with experiment. We point out the importance of including both the relativistic corrections to the wave function and the finite-size corrections to the E1 decay rates, especially for transitions which involve a change of more than one unit in the radial quantum number
A k-Bounded Symbolic Execution for Checking Strong Heap Properties of Open Systems
Lee, Jooyong; Deng, Xianghua; Bogor, Robby
2006-01-01
strong heap properties, and it is fully automatic and flexible in terms of its cost and the guarantees it provides. It allows a user-adjustable mixed compositional/non-compositional reasoning and naturally produces error traces as fault evidence. We implemented Kiasan using the Bogor model checking......This paper presents Kiasan, a bounded technique to reason about open systems based on a path sensitive, relatively sound and complete symbolic execution instead of the usual compositional reasoning through weakest precondition calculation that summarizes all execution paths. Kiasan is able to check...
Continuum bound states as surface states of a finite periodic system
We discuss the relation between continuum bound states (CBSs) localized on a defect, and surface states of a finite periodic system. We model an experiment of Capasso et al. [F. Capasso, C. Sirtori, J. Faist, D. L. Sivco, S-N. G. Chu, and A. Y. Cho, Nature (London) 358, 565 (1992)] using the transfer-matrix method. We compute the rate for intrasubband transitions from the ground state to the CBS and derive a sum rule. Finally we show how to improve the confinement of a CBS while keeping the energy fixed
Effect of the gluon condensate on a bound system of a heavy quark and antiquark
In this thesis the effect of nonperturbative gluonic fluctuations in the quantum chromodynamical ground state - the so-called gluon condensate- on a bound system of heavy quarks is studied. In a first part a survey of the fundamental theoretical terms is given which are used in this thesis. The nontrivial structure of the QCD ground state is pronounced and it is shown that from this a non-vanishing vacuum expectation value (αsub(S)/π) follows. Its determination via the QCD sum rules from the charm cross section in e+e- annihilation is briefly explained. In the second part of the thesis it is studied how the gluon condensate modifies a Coulomb-like bound state of a heavy quark and antiquark. A dynamic equation is derived which describes the time-development in dependence from (αsub(S)/π). From the solution of this equation in the static limit the static energy of the quark-antiquark system is determined in interaction with the gluon condensate. Up to a distance of 0.4 fm the result obtained for the static energy agrees well with the phenomenological potentials of the charmonium and bottomonium systems. (orig.)
Zhili Liang
2016-04-01
Full Text Available Peptide-bound advanced glycation end-products (peptide-bound AGEs can be formed when peptides are heated with reducing saccharides. Pyrraline is the one of most commonly studied AGEs in foods, but the relative importance of the precursor peptide structure is uncertain. In the present study, model systems were prepared by heating peptides with glucose from 60 °C to 220 °C for up to 65 min, and the amounts of peptide-bound pyrraline formed were monitored to evaluate the effect of the neighboring amino acids on the peptide-bound pyrraline formation. The physico-chemical properties were introduced to explore the quantitative structure-reactivity relationships between physicochemical properties and peptide bound formation. 3-DG content in dipeptide-glucose model system was higher than that in the corresponding tripeptide-glucose model systems. Dipeptides produced higher amounts of peptide-bound pyrraline than the corresponding tripeptides. The peptide-bound pyrraline and 3-DG production were influenced by the physico-chemical properties of the side chain of amino acids adjacent to Lys in the following order: Lys-Leu/glucose > Lys-Ile/glucose > Lys-Val/ glucose > Lys-Thr/glucose > Lys-Ser/glucose > Lys-Ala/ glucose > Lys-Gly/glucose; Lys-Leu-Gly/glucose > Lys-Ile-Gly/glucose > Lys-Val-Gly/glucose > Lys-Thr-Gly/glucose > Lys-Ser-Gly/glucose > Lys-Ala-Gly/glucose > Lys-Gly-Gly/glucose. For the side chain of amino acids adjacent to Lys in dipeptides, residue volume, polarizability, molecular volume and localized electrical effect were positively related to the yield of peptide bound pyrraline, while hydrophobicity and pKb were negatively related to the yield of peptide bound pyrraline. In terms of side chain of amino acid adjacent to Lys in tripeptides, a similar result was observed, except hydrophobicity was positively related to the yield of peptide bound pyrraline.
Xie Wen-Xian; Xu Wei; Cai Li; Jin Yan-Fei
2005-01-01
It is shown how the cross-correlation time and strength of coloured cross-correlated white noises can set an upper bound for the time derivative of entropy in a nonequilibrium system. The value of upper bound can be calculateddirectly based on the Schwartz inequality principle and the Fokker-Planck equation of the dynamical system driven by coloured cross-correlated white noises. The present calculations can be used to interpret the interplay of the dissipative constant and cross-correlation time and strength of coloured cross-correlated white noises on the upper bound.
无
2001-01-01
The existence and uniqueness of a strong periodic solution of the evolution system describing geophysical flow in bounded domains of RN(N = 3, 4) are proven if external forces are periodic in time and sufficiently small.
Mønness, Erik Neslein
2015-01-01
bivariate diameter and height distribution yields a unified model of a forest stand. The bivariate Johnson’s System bounded distribution and the bivariate power-normal distribution are explored. The power-normal originates from the well-known Box-Cox transformation. As evaluated by the bivariate Kolmogorov-Smirnov distance, the bivariate power-normal distribution seems to be superior to the bivariate Johnson’s System bounded distribution. The conditional median height given the diameter is...
Shot noise in a quantum dot system coupled with Majorana bound states
We investigate the spectral density of shot noise and current for the system of a quantum dot coupled to Majorana bound states (MBS) employing the nonequilibrium Green’s function. The Majorana bound states at the end of the wire strongly affect the shot noise. There are two types of coupling in the system: dot–MBS and MBS–MBS coupling. The curves of shot noise and current versus coupling strength have novel steps owing to the energy-level splitting caused by dot–MBS coupling. The magnitude of these steps increases with the strength of dot–MBS coupling λ but decreases with the strength of MBS–MBS coupling. The steps shift toward the large ∣eV∣ region as λ or ϵM increases. In addition, dot–MBS coupling enhances the shot noise while MBS–MBS coupling suppresses the shot noise. In the absence of MBS–MBS coupling, a sharp jump emerges in the curve of the Fano factor at zero bias owing to the differential conductance being reduced by a factor of 1/2. This provides a novel technique for the detection of Majorana fermions. (paper)
Shot noise in a quantum dot system coupled with Majorana bound states
Chen, Qiao; Chen, Ke-Qiu; Zhao, Hong-Kang
2014-08-01
We investigate the spectral density of shot noise and current for the system of a quantum dot coupled to Majorana bound states (MBS) employing the nonequilibrium Green’s function. The Majorana bound states at the end of the wire strongly affect the shot noise. There are two types of coupling in the system: dot-MBS and MBS-MBS coupling. The curves of shot noise and current versus coupling strength have novel steps owing to the energy-level splitting caused by dot-MBS coupling. The magnitude of these steps increases with the strength of dot-MBS coupling λ but decreases with the strength of MBS-MBS coupling. The steps shift toward the large ∣eV∣ region as λ or ɛM increases. In addition, dot-MBS coupling enhances the shot noise while MBS-MBS coupling suppresses the shot noise. In the absence of MBS-MBS coupling, a sharp jump emerges in the curve of the Fano factor at zero bias owing to the differential conductance being reduced by a factor of 1/2. This provides a novel technique for the detection of Majorana fermions.
Pad+ma dbang chen
2012-12-01
Full Text Available I heard this story when I was a student in Xi'an City. I added to it, using pieces of other stories I have heard, and my imagination. A gentle breeze blew across everyone's face, creating a feeling of pleasure. Sunshine brought the earth to life in the same way a clanging bell jars sleepers awake. Birds flitted in a cloudless blue sky announcing spring's immanent arrival. It was the second weekend after the start of semester. Sunshine beamed through our dorm room window. I took deep breaths of cool air and felt excellent. Everything seemed new and fresh. I went outside to review some materials for class. I reached the school sports ground and found many students reading aloud and studying their lessons, filling the playground with noise. I sat on a step and began reading. A few minutes later, a young man whom I had seen before walked within about ten meters of me. I realized that he was someone I had first met when the term began. I greeted him and we soon began chatting about our winter holidays. He told me this story about a couple. CHOS DBYANGS AND MGU RU When Chos dbyangs first came to Xi'an to begin her studies, she was gentle and kind with a mind as pure as snow. Everyone liked her. She studied hard during the first semester, listening carefully, and doing what the teachers said. She spent most of her time studying and practiced her Chinese with her Chinese classmates when she had free time. She never wasted time. Her school life was fulfilling and many students envied her. In fact, so many compliments bounced around her that she became somewhat self-intoxicated. Feeling bored one Saturday morning, she considered playing shuttlecock or chatting with someone. Undecided, she instinctively...
Ψ-bounded Solutions for a System of Difference Equations on Z
HAN YU-LIANG; LIU BAI-FENG; SUN XI-DONG; Li Yong
2011-01-01
In this work we discuss the existence of Ψ-bounded solutions for linear difference equations.We present a necessary and sufficient condition for the existence of Ψ-bounded solutions for the linear nonhomogeneous difference equation x (n+ 1) =A(n)x(n) + f(n) for every Ψ-bounded sequence f(n).
Ionization processes for a two dimensional quantum dot subjected to combined electrostatic and alternating electric fields of the same direction are studied using quantum mechanical methods. We derive analytical equations for the ionization probability in dependence on characteristic parameters of the system for both extreme cases of a constant electric field and of a linearly polarized electromagnetic wave. The ionization probabilities for a superposition of dc and low frequency ac electric fields of the same direction are calculated. The impulse distribution of ionization probability for a system bound by short range forces is found for a superposition of constant and alternating fields. The total probability for this process per unit of time is derived within exponential accuracy. For the first time the influence of alternating electric field on electron tunneling probability induced by an electrostatic field is studied taking into account the pre-exponential term
Friedel phase discontinuity and bound states in the continuum in quantum dot systems
Solís, B.; Ladrón de Guevara, M. L.; Orellana, P. A.
2008-06-01
In this Letter we study the Friedel phase of the electron transport in two different systems of quantum dots which exhibit bound states in the continuum (BIC). The Friedel phase jumps abruptly in the energies of the BICs, which is associated to the vanishing width of these states, as shown by Friedrich and Wintgen in [H. Friedrich, D. Wintgen, Phys. Rev. A 31 (1985) 3964]. This odd behavior of the Friedel phase has consequences in the charge through the Friedel sum rule. Namely, if the energy of the BIC drops under the Fermi energy the charge changes abruptly in a unity. We show that this behavior closely relates to discontinuities in the conductance predicted for interacting quantum dot systems.
$f(T)$ gravity: effects on astronomical observation and Solar System experiments and upper-bounds
Xie, Yi
2013-01-01
As an extension of a previous work in which perihelion advances are considered only and as an attempt to find more stringent constraints on its parameters, we investigate effects on astronomical observation and experiments conducted in the Solar System due to the $f(T)$ gravity which contains a quadratic correction of $\\alpha T^2$ ($\\alpha$ is a model parameter) and the cosmological constant $\\Lambda$. Using a spherical solution describing the Sun's gravitational field, the resulting secular evolution of planetary orbital motions, light deflection, gravitational time delay and frequency shift are calculated up to the leading contribution. Among them, we find qualitatively that the light deflection holds a unique bound on $\\alpha$, without dependence on $\\Lambda$, and the time delay experiments during inferior conjunction impose a clean constraint on $\\Lambda$, regardless of $\\alpha$. Based on observation and experiments, especially the supplementary advances in the perihelia provided by the INPOP10a ephemeris...
Turbiner, A V; Pilon, H Olivares
2015-01-01
The second critical charge in the 3-body quantum Coulomb system $(Z, e, e)$ predicted by F Stillinger has been calculated to be equal to $Z_{B}^{\\infty}\\ =\\ 0.904854$ and $Z_{B}^{m_p}\\ =\\ 0.905138$ for infinite and finite (proton) mass $m_p$ of charge $Z$, respectively. In both cases, the ground state energy has a square-root branch point with exponent 3/2 at $Z=Z_B$ in the complex $Z$-plane. Based on analytic continuation, the second, spin-singlet bound state of negative hydrogen ion H${}^-$ is predicted to be at -0.515541 a.u. (-0.515311 a.u. for the proton mass $m_p$). The first critical charge for which the ionization energy vanishes is found for a finite proton mass in the Lagrange mesh method, $Z^{m_p}_{c}\\ =\\ 0.911\\, 069\\, 724\\, 655$.
A Study on College EFL Learning Community Based on QQ International
WEI Li
2013-03-01
Full Text Available An EFL Learning Community has been set up online via a free messaging tool QQ International to consolidate and apply the knowledge learnt in class. One sub-community aims at developing multicultural awareness while the other focuses on expertise training in English for the undergraduates in several universities. Our innovative approach is that the trainees interact with other participants with virtual icons, virtual roles and specific achievement goals according to curriculum-related scenarios. The project team utilized surveys and observations to analyze the advantages and disadvantages from different perspectives and gain further insight into the nature of member participation, knowledge application and learning interests. Results revealed that EFL Learning Community promoted learning interests and training efficiency, contributed to interprofessional collaboration and interpersonal cooperation, with the implication that levels of moderate anonymity are the most optimal for role-plays in a learning community both online and in real life.Keywords: EFL Learning Community, QQ International, designed scenarios, English learning, expertise training, multiculturalism
Characterization of honeybee venom by MALDI-TOF and nanoESI-QqTOF mass spectrometry.
Matysiak, Jan; Schmelzer, Christian E H; Neubert, Reinhard H H; Kokot, Zenon J
2011-01-25
The aim of the study was to comprehensively characterize different honeybee venom samples applying two complementary mass spectrometry methods. 41 honeybee venom samples of different bee strains, country of origin (Poland, Georgia, and Estonia), year and season of the venom collection were analyzed using MALDI-TOF and nanoESI-QqTOF-MS. It was possible to obtain semi-quantitative data for 12 different components in selected honeybee venom samples using MALDI-TOF method without further sophisticated and time consuming sample pretreatment. Statistical analysis (ANOVA) has shown that there are qualitative and quantitative differences in the composition between honeybee venom samples collected over different years. It has also been demonstrated that MALDI-TOF spectra can be used as a "protein fingerprint" of honeybee venom in order to confirm the identity of the product. NanoESI-QqTOF-MS was applied especially for identification purposes. Using this technique 16 peptide sequences were identified, including melittin (12 different breakdown products and precursors), apamine, mast cell degranulating peptide and secapin. Moreover, the significant achievement of this study is the fact that the new peptide (HTGAVLAGV+Amidated (C-term), M(r)=822.53Da) has been discovered in bee venom for the first time. PMID:20850943
Neufeld, N
1999-01-01
The use of RICH detectors allows the identification of charged pions, kaons and protons, covering the full momentum range 0.7qq-bar, Z sup 0->bb-bar and Z sup 0->uu-bar, dd-bar, ss-bar, selected from approx 1,400,000 Z sup 0 decays collected by DELPHI in 1994. This study has been extended to high-energy qq-bar events at LEPII. New heavy particles from 2 GeV/c sup 2 to the kinematic limit at LEPII have been searched using the RICH detectors.
Highlights: • A hierarchical MILP method for optimal design of energy supply systems is proposed. • Lower bounds for the optimal value of the objective function are evaluated. • Bounding operations using the lower bounds are proposed. • The proposed method is implemented into open and commercial MILP solvers. • Validity and effectiveness of the proposed method are clarified by case studies. - Abstract: To attain the highest performance of energy supply systems, it is necessary to rationally determine types, capacities, and numbers of equipment in consideration of their operational strategies corresponding to seasonal and hourly variations in energy demands. In the combinatorial optimization method based on the mixed-integer linear programming (MILP), integer variables are used to express the selection, numbers, and on/off status of operation of equipment, and the number of these variables increases with those of equipment and periods for variations in energy demands, and affects the computation efficiency significantly. In this paper, a MILP method utilizing the hierarchical relationship between design and operation variables is proposed to solve the optimal design problem of energy supply systems efficiently: At the upper level, the optimal values of design variables are searched by the branch and bound method; At the lower level, the values of operation variables are optimized independently at each period by the branch and bound method under the values of design variables given tentatively during the search at the upper level; Lower bounds for the optimal value of the objective function to be minimized are evaluated, and are utilized for the bounding operations at both the levels. This method is implemented into open and commercial MILP solvers. Illustrative and practical case studies on the optimal design of cogeneration systems are conducted, and the validity and effectiveness of the proposed method are clarified
Saric, Dragomir
2006-01-01
We give a short proof of the fact that bounded earthquakes of the unit disk induce quasisymmetric maps of the unit circle. By a similar method, we show that symmetric maps are induced by bounded earthquakes with asymptotically trivial measures.
A Comparison of Error Bounds for a Nonlinear Tracking System with Detection Probability Pd < 1
Xiqin Wang
2012-12-01
Full Text Available Error bounds for nonlinear filtering are very important for performance evaluation and sensor management. This paper presents a comparative study of three error bounds for tracking filtering, when the detection probability is less than unity. One of these bounds is the random finite set (RFS bound, which is deduced within the framework of finite set statistics. The others, which are the information reduction factor (IRF posterior Cramer-Rao lower bound (PCRLB and enumeration method (ENUM PCRLB are introduced within the framework of finite vector statistics. In this paper, we deduce two propositions and prove that the RFS bound is equal to the ENUM PCRLB, while it is tighter than the IRF PCRLB, when the target exists from the beginning to the end. Considering the disappearance of existing targets and the appearance of new targets, the RFS bound is tighter than both IRF PCRLB and ENUM PCRLB with time, by introducing the uncertainty of target existence. The theory is illustrated by two nonlinear tracking applications: ballistic object tracking and bearings-only tracking. The simulation studies confirm the theory and reveal the relationship among the three bounds.
Cavity cooling and normal-mode spectroscopy of a bound atom-cavity system
Full text: Single atoms strongly coupled to the field of an optical cavity form an attractive system for the realization of an atom-light interface useful for quantum information protocols. An experimental implementation of these schemes requires atoms which are trapped, cooled and localized in the cavity mode at a region of strong coupling. In the experiment presented here, single atoms are trapped and stored in a far-detuned intracavity dipole trap. We demonstrate cavity cooling by illuminating the system with a weak, slightly blue-detuned light beam. This extends the storage time of an atom, which is limited by parametric heating from fluctuations of the intracavity dipole trap, by more than a factor of two. The observed cooling force is of Sisyphus-type and was predicted. A special feature of this force is that it does not rely on the spontaneous emission of a photon by the atom, and therefore the cooling force is at least five times larger than the force achievable for free-space cooling methods with comparable excitation of a two-level atom. Preparing single atoms strongly-coupled to the mode of a high-finesse cavity in this way, we observe two well-resolved normal-mode peaks both in transmission of the cavity as well as in the trap lifetime. The experimental data agree well with a Monte Carlo simulation, demonstrating the localization of the atom to within a tenth of a wavelength at a cavity antinode. The ability to individually excite the normal modes of a bound atom-cavity system shows that we have reached good control over this fundamental quantum system. (author)
G. S. Satish Kumar
2012-09-01
Full Text Available Digital signal processing algorithms are repetitive in nature. These algorithms are described by iterative data flow graph (DFG where nodes represent tasks and edges represent communication. Execution of all nodes of the DFG once completes iteration. Successive iteration of any node are executive with a time displacement referred to as the iteration period. For all recursive signal processing algorithms, there exists an inherent fundamental lower bound on the iteration period referred to as the iteration period bound or the iteration period. This bound is fundamental to an algorithm and is independent of the implementation architecture. In other words it is impossible to achieve an iteration period less than the bound even when infinite processors are available to execute the recursive algorithm. Iteration bound need to be determined in rate-optimal scheduling of iterative data flow graph. The iteration bound determination has to pre-order repeatedly in the scheduling phase of the high level synthesis. In recursive constrained scheduling a given processing algorithm is scheduled to achieve the minimum iteration period using the given hardware resources. In order to execute operation of the processing algorithm in parallel, the required number of processors or functional units required to execute the operation in parallel may be larger than the number of available resources. Generally the precedence to be assigned is not unique. Hence the iteration bound should be determined for every possible precedence to check which precedence leads to the final schedule with the minimum iteration period. Consequently the iteration bound may have to be computed many times and it is important to determine the iteration bound in minimum possible time.
Stability of linear switched systems with quadratic bounds and Observability of bilinear systems
Balde, Moussa
2012-01-01
The aim of this paper is to give sufficient conditions for a switched linear system defined by a pair of Hurwitz matrices that share a common but not strict quadratic Lyapunov function to be GUAS. We show that this property is equivalent to the uniform observability of a bilinear system defined on a subspace whose dimension is in most cases much smaller than the dimension of the switched system. Some sufficient conditions of uniform asymptotic stability are then deduced from the equivalence theorem, and illustrated by examples.
Empirical Studies on the Network of Social Groups: The Case of Tencent QQ.
Zhi-Qiang You
Full Text Available Participation in social groups are important but the collective behaviors of human as a group are difficult to analyze due to the difficulties to quantify ordinary social relation, group membership, and to collect a comprehensive dataset. Such difficulties can be circumvented by analyzing online social networks.In this paper, we analyze a comprehensive dataset released from Tencent QQ, an instant messenger with the highest market share in China. Specifically, we analyze three derivative networks involving groups and their members-the hypergraph of groups, the network of groups and the user network-to reveal social interactions at microscopic and mesoscopic level.Our results uncover interesting behaviors on the growth of user groups, the interactions between groups, and their relationship with member age and gender. These findings lead to insights which are difficult to obtain in social networks based on personal contacts.
Empirical studies on the network of social groups: the case of Tencent QQ
You, Zhi-Qiang; Lü, Linyuan; Yeung, Chi Ho
2014-01-01
Participation in social groups are important but the collective behaviors of human as a group are difficult to analyze due to the difficulties to quantify ordinary social relation, group membership, and to collect a comprehensive dataset. Such difficulties can be circumvented by analyzing online social networks. In this paper, we analyze a comprehensive dataset obtained from Tencent QQ, an instant messenger with the highest market share in China. Specifically, we analyze three derivative networks involving groups and their members -- the hypergraph of groups, the network of groups and the user network -- to reveal social interactions at microscopic and mesoscopic level. Our results uncover interesting behaviors on the growth of user groups, the interactions between groups, and their relationship with member age and gender. These findings lead to insights which are difficult to obtain in ordinary social networks.
Grcar, Joseph F.
2002-02-04
A matrix lower bound is defined that generalizes ideas apparently due to S. Banach and J. von Neumann. The matrix lower bound has a natural interpretation in functional analysis, and it satisfies many of the properties that von Neumann stated for it in a restricted case. Applications for the matrix lower bound are demonstrated in several areas. In linear algebra, the matrix lower bound of a full rank matrix equals the distance to the set of rank-deficient matrices. In numerical analysis, the ratio of the matrix norm to the matrix lower bound is a condition number for all consistent systems of linear equations. In optimization theory, the matrix lower bound suggests an identity for a class of min-max problems. In real analysis, a recursive construction that depends on the matrix lower bound shows that the level sets of continuously differential functions lie asymptotically near those of their tangents.
Time-dependent thermal neutron field in two-region bounded systems
A set of solutions of the time-dependent diffusion equation for two-region bounded systems in spherical and cylindrical geometries is presented. Two types of solutions are given for each geometry: the general solution and a solution for the case where the spatial distribution of the thermal neutron flux is constant inside the inner region. These solutions provide the theoretical background for the development of a new method of measuring the thermal neutron macroscopic absorption cross section. The theoretical description of the method worked out for small samples is in good agreement with the experimental results presented. The principles of measuring the neutron transport cross section using small samples and mathematical solutions are described. The possibility of applying a sinusoidally modulated neutron source is presented. Special attention is paid to proper averaging of the thermal neutron diffusion parameters and to the problem of boundary effects. The so-called thermal neutron average dynamic parameters have been used. Results obtained from the modified diffusion theory compare satisfactorily with those obtained form the one-speed transport and P3 theory approximations. (au) (56 refs.)
Robust Consensus of Nonlinear Multiagent Systems With Switching Topology and Bounded Noises.
Chen, Yao; Dong, Hairong; Lu, Jinhu; Sun, Xubin; Liu, Kexin
2016-06-01
Consensus of multiagent systems (MASs) is an intriguing topic in recent years due to its widely used application in robotics, biology, computer, and social science. In the real world, the evolution of MAS is inevitably involved in dynamical environments and the recent development of MAS calls for novel tools for the analysis of MAS with dynamic topology. In addition, the interactions between agents are generally nonlinear and environmental noises are ubiquitous in the communication channels between agents. However, the existing investigation on MAS places little attention on nonlinear models and the inner relationship between external disturbance and consensus is still unclear. Facing these problems, this paper considers an MAS in which the interactions between agents are nonlinear and the communication between agents are infected by environmental noises. By using a novel method of nonsmooth Lyapunov candidate, it has been demonstrated that such an MAS can realize robust consensus under the conditions of jointly (sequentially) connected topology and bounded noises. Finally, simulation results validate the effectiveness of these criteria. PMID:26241983
Luk, Jonathan; Yang, Shiwu
2016-01-01
It is well-known that small, regular, spherically symmetric characteristic initial data to the Einstein-scalar-field system which are decaying towards (future null) infinity give rise to solutions which are foward-in-time global (in the sense of future causal geodesic completeness). We construct a class of spherically symmetric solutions which are global but the initial norms are consistent with initial data not decaying towards infinity. This gives the following consequences: (1) We prove that there exist foward-in-time global solutions with arbitrarily large (and in fact infinite) initial bounded variation (BV) norms and initial Bondi masses. (2) While general solutions with non-decaying data do not approach Minkowski spacetime, we show using the results of Luk--Oh that if a sufficiently strong asymptotic flatness condition is imposed on the initial data, then the solutions we construct (with large BV norms) approach Minkowski spacetime with a sharp inverse polynomial rate. (3) Our construction can be easil...
Does the generalized second law require entropy bounds for a charged system?
Shimomura, T; Shimomura, Takeshi; Mukohyama, Shinji
2000-01-01
We calculate the net change in generalized entropy occurring when one carries out the gedanken experiment in which a box initially containing energy $E$, entropy $S$ and charge $Q$ is lowered adiabatically toward a Reissner-Nordström black hole and then dropped in. This is an extension of the work of Unruh-Wald to a charged system (the contents of the box possesses a charge $Q$). Their previous analysis showed that the effects of acceleration radiation prevent violation of the generalized second law of thermodynamics. In our more generic case, we show that the properties of the thermal atmosphere are equally important when charge is present. Indeed, we prove here that an equilibrium condition for the the thermal atmosphere and the physical properties of ordinary matter are sufficient to enforce the generalized second law. Thus, no additional assumptions concerning entropy bounds on the contents of the box need to be made in this process. The relation between our work and the recent works of Bekenstein and Ma...
Gradient bounds for p-harmonic systems with vanishing neumann data in a convex domain
Banerjee, Agnid; Lewis, John L.
2013-01-01
Let $ \\ti \\Om $ be a bounded convex domain in Euclidean $ n $ space, $ \\hat x \\in \\ar \\ti \\Om, $ and $ r > 0. $ Let $ \\ti u = (\\ti u^1, \\ti u^2, \\dots, \\ti u^N) $ be a weak solution to \\[\
Physical Uncertainty Bounds (PUB)
Vaughan, Diane Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Preston, Dean L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-03-19
This paper introduces and motivates the need for a new methodology for determining upper bounds on the uncertainties in simulations of engineered systems due to limited fidelity in the composite continuum-level physics models needed to simulate the systems. We show that traditional uncertainty quantification methods provide, at best, a lower bound on this uncertainty. We propose to obtain bounds on the simulation uncertainties by first determining bounds on the physical quantities or processes relevant to system performance. By bounding these physics processes, as opposed to carrying out statistical analyses of the parameter sets of specific physics models or simply switching out the available physics models, one can obtain upper bounds on the uncertainties in simulated quantities of interest.
Weakly bound states of two- and three-boson systems in the crossover from two to three dimensions
Yamashita, Marcelo; Bellotti, Filipe Furlan; Frederico, Tobias;
2015-01-01
paper we study weakly bound states of non-relativistic two and three boson systems when passing continuously from a three (3D) to a two-dimensional (2D) regime within a 'squeezed dimension' model. We use periodic boundary conditions to derive a surprisingly simple form of the three-boson Schr...
Xie, Rui-Hua; Gong, Jiangbin
2005-01-01
Based on a simplest molecular orbital theory of H$_{2}^{+}$, a three-parameter model potential function is proposed to describe ground-state diatomic systems with closed-shell and/or S-type valence-shell constituents over a significantly wide range of internuclear distances. More than 200 weakly and strongly bound diatomics have been studied, including neutral and singly-charged diatomics (e.g., H$_{2}$, Li$_{2}$, LiH, Cd$_{2}$, Na$_{2}^{+}$, and RbH$^{-}$), long-range bound diatomics (e.g., ...
Yongfang XIE; Weihua GUI; Zhaohui JIANG
2006-01-01
For a class of value-bounded uncertain descriptor large-scale interconnected systems, the decentralized robust H∞ descriptor output feedback control problem is investigated. A design method based on the bounded real lemma is developed for a decentralized descriptor dynamic output feedback controller, which is reduced to a feasibility problem for a nonlinear matrix inequality (NLMI). It is proposed to solve the NLMI iteratively by the idea of homotopy, where some of the variables are fixed alternately at each iteration to reduce the NLMI to a linear matrix inequality (LMI). A given example shows the efficiency of this method
On Entropy Bounds and Holography
Halyo, Edi
2009-01-01
We show that the holographic entropy bound for gravitational systems and the Bekenstein entropy bound for nongravitational systems are holographically related. Using the AdS/CFT correspondence, we find that the Bekenstein bound on the boundary is obtained from the holographic bound in the bulk by minimizing the boundary energy with respect the AdS radius or the cosmological constant. This relation may also ameliorate some problems associated with the Bekenstein bound.
Quantum Transport through a Triple Quantum Dot System in the Presence of Majorana Bound States
Jiang, Zhao-Tan; Cao, Zhi-Yuan; Zhong, Cheng-Cheng
2016-05-01
We study the electron transport through a special quantum-dot (QD) structure composed of three QDs and two Majorana bound states (MBSs) using the nonequilibrium Green's function technique. This QD-MBS ring structure includes two channels with the two coupled MBSs being Channel 1 and one QD being Channel 2, and three types of transport processes such as the electron transmission (ET), the Andreev reflection (AR), and the crossed Andreev reflection (CAR). By comparing the ET, AR, and CAR processes through Channels 1 and 2, we make a systematic study on the transport properties of the QD-MBS ring. It is shown that there appear two kinds of characteristic transport patterns for Channels 1 and 2, as well as the interplay between the two patterns. Of particular interest is that there exists an AR-assisted ET process in Channel 2, which is different from that in Channel 1. Thus a clear “X” pattern due to the ET and AR processes appears in the ET, AR, and CAR transmission coefficients. Moreover, we study how Channel 2 affects the three transport processes when Channel 1 is tuned in the ET and CAR regimes. It is shown that the transport properties of the ET, AR and CAR processes can be adjusted by tuning the energy level of the QD embedded in Channel 2. We believe this research should be a helpful reference for understanding the transport properties in the QD-MBS coupled systems. Supported by National Natural Science Foundation of China under Grant No. 11274040, and by the Program for New Century Excellent Talents in University under Grant No. NCET-08-0044
Clusters of bound particles in a quantum integrable many-body system and number theory
We construct clusters of bound particles for a quantum integrable derivative δ- function Bose gas in one dimension. It is found that clusters of bound particles can be constructed for this Bose gas for some special values of the coupling constant, by taking the quasi-momenta associated with the corresponding Bethe state to be equidistant points on a single circle in the complex momentum plane. Interestingly, there exists a connection between the above mentioned special values of the coupling constant and some fractions belonging to the Farey sequences in number theory. This connection leads to a classification of the clusters of bound particles for the derivative S-function Bose gas and the determination of various properties of these clusters like their size and their stability under a variation of the coupling constant
Rui Guo
2014-01-01
Full Text Available We mainly investigate the generalized nonlinear Schrödinger-Maxwell-Bloch system which governs the propagation of optical solitons in nonlinear erbium-doped fibers with higher-order effects. We deduce Lax pair, analyze modulation instability conditions, construct the Darboux transformation, and derive the Akhmediev breathers, Ma-breathers, bound solitons, and two-breather solutions for this system. Considering the influences of higher-order effects, propagation properties of those solitons are discussed.
Badraoui Salah
2010-01-01
We study the following reaction-diffusion system with a cross-diffusion matrix and fractional derivatives in , in , on , , in where is a smooth bounded domain, , the diffusion matrix has semisimple and positive eigenvalues , , is an open nonempty set, and is the characteristic function of . Specifically, we prove that under some conditions over the coefficients , the semigroup generated by the linear operator of the system is exponentially stable, and under other c...
Bounded Model Checking and Inductive Verification of Hybrid Discrete-Continuous Systems
Becker, Bernd; Behle, Markus; Eisenbrand, Fritz;
2004-01-01
verication, bounded plan- ning and heuristic search, combinatorial optimization and integer programming. Af- ter sketching the overall verication ow we present rst results indicating that the combination and tight integration of dierent verication engines is a rst step to pave the way to fully automated BMC...
A branch-and-bound algorithm for stable scheduling in single-machine production systems
Leus, Roel; Herroelen, Willy
2004-01-01
Robust scheduling aims at the construction of a schedule that is protected against uncertain events. A stable schedule is a robust schedule that will change little when variations in the input parameters arise. This paper proposes a branch-and-bound algorithm for optimally solving a single-machine scheduling problem with stability objective, when a single job is anticipated to be disrupted.
A Bound on the Variance of the Waiting Time in a Queueing System
Eschenfeldt, Patrick; Pippenger, Nicholas
2011-01-01
Kingman has shown, under very weak conditions on the interarrival- and sevice-time distributions, that First-Come-First-Served minimizes the variance of the waiting time among possible service disciplines. We show, under the same conditions, that Last-Come-First-Served maximizes the variance of the waiting time, thereby giving an upper bound on the variance among all disciplines.
Bounding the Role of Black Carbon in the Climate System: a Scientific Assessment
Bond, T. C.; Doherty, S. J.; Fahey, D. W.; Forster, P. M.; Bernsten, T.; DeAngelo, B. J.; Flanner, M. G.; Ghan, S.; Karcher, B.; Koch, D.; Kinne, S.; Kondo, Y.; Quinn, P. K.; Sarofim, M. C.; Schultz, M. G.; Schulz, M.; Venkataraman, C.; Zhang, H.; Zhang, S.; Bellouin, N.; Guttikunda, S. K.; Hopke, P. K.; Jacobson, M. Z.; Kaiser, J. W.; Klimont, Z.; Lohmann, U.; Schwarz, J. P.; Shindell, D.; Storelvmo, T.; Warren, S. G.; Zender, C. S.
2013-01-01
Black carbon aerosol plays a unique and important role in Earth's climate system. Black carbon is a type of carbonaceous material with a unique combination of physical properties. This assessment provides an evaluation of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice. These effects are calculated with climate models, but when possible, they are evaluated with both microphysical measurements and field observations. Predominant sources are combustion related, namely, fossil fuels for transportation, solid fuels for industrial and residential uses, and open burning of biomass. Total global emissions of black carbon using bottom-up inventory methods are 7500 Gg/yr in the year 2000 with an uncertainty range of 2000 to 29000. However, global atmospheric absorption attributable to black carbon is too low in many models and should be increased by a factor of almost 3. After this scaling, the best estimate for the industrial-era (1750 to 2005) direct radiative forcing of atmospheric black carbon is +0.71 W/sq m with 90% uncertainty bounds of (+0.08, +1.27)W/sq m. Total direct forcing by all black carbon sources, without subtracting the preindustrial background, is estimated as +0.88 (+0.17, +1.48) W/sq m. Direct radiative forcing alone does not capture important rapid adjustment mechanisms. A framework is described and used for quantifying climate forcings, including rapid adjustments. The best estimate of industrial-era climate forcing of black carbon through all forcing mechanisms, including clouds and cryosphere forcing, is +1.1 W/sq m with 90% uncertainty bounds of +0.17 to +2.1 W/sq m. Thus, there is a very high probability that black carbon emissions, independent of co-emitted species, have a positive forcing
Bounding the role of black carbon in the climate system: A scientific assessment
Bond, T. C.; Doherty, S. J.; Fahey, D. W.; Forster, P. M.; Berntsen, T.; Deangelo, B. J.; Flanner, M. G.; Ghan, S.; KäRcher, B.; Koch, D.; Kinne, S.; Kondo, Y.; Quinn, P. K.; Sarofim, M. C.; Schultz, M. G.; Schulz, M.; Venkataraman, C.; Zhang, H.; Zhang, S.; Bellouin, N.; Guttikunda, S. K.; Hopke, P. K.; Jacobson, M. Z.; Kaiser, J. W.; Klimont, Z.; Lohmann, U.; Schwarz, J. P.; Shindell, D.; Storelvmo, T.; Warren, S. G.; Zender, C. S.
2013-06-01
carbon aerosol plays a unique and important role in Earth's climate system. Black carbon is a type of carbonaceous material with a unique combination of physical properties. This assessment provides an evaluation of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice. These effects are calculated with climate models, but when possible, they are evaluated with both microphysical measurements and field observations. Predominant sources are combustion related, namely, fossil fuels for transportation, solid fuels for industrial and residential uses, and open burning of biomass. Total global emissions of black carbon using bottom-up inventory methods are 7500 Gg yr-1 in the year 2000 with an uncertainty range of 2000 to 29000. However, global atmospheric absorption attributable to black carbon is too low in many models and should be increased by a factor of almost 3. After this scaling, the best estimate for the industrial-era (1750 to 2005) direct radiative forcing of atmospheric black carbon is +0.71 W m-2 with 90% uncertainty bounds of (+0.08, +1.27) W m-2. Total direct forcing by all black carbon sources, without subtracting the preindustrial background, is estimated as +0.88 (+0.17, +1.48) W m-2. Direct radiative forcing alone does not capture important rapid adjustment mechanisms. A framework is described and used for quantifying climate forcings, including rapid adjustments. The best estimate of industrial-era climate forcing of black carbon through all forcing mechanisms, including clouds and cryosphere forcing, is +1.1 W m-2 with 90% uncertainty bounds of +0.17 to +2.1 W m-2. Thus, there is a very high probability that black carbon emissions, independent of co-emitted species, have a positive forcing and warm
Bound states and the Bekenstein bound
Bousso, R
2004-01-01
We explore the validity of the generalized Bekenstein bound, S <= pi M a. We define the entropy S as the logarithm of the number of states which have energy eigenvalue below M and are localized to a flat space region of width a. If boundary conditions that localize field modes are imposed by fiat, then the bound encounters well-known difficulties with negative Casimir energy and large species number, as well as novel problems arising only in the generalized form. In realistic systems, however, finite-size effects contribute additional energy. We study two different models for estimating such contributions. Our analysis suggests that the bound is both valid and nontrivial if interactions are properly included, so that the entropy S counts the bound states of interacting fields.
Gutiérrez-Rodríguez, A
2003-01-01
A bound on the nu /sup tau / magnetic moment is calculated through the reaction e/sup +/e/sup -/ to nu nu gamma at the Z/sub 1/-pole, and in the framework of a left-right symmetric model at LEP energies. We find that the bound is almost independent of the mixing angle phi of the model in the allowed experimental range for this parameter. (31 refs).
qq-bar potential at finite T, and weak coupling in N=4 SUSY
We compute the potential between a qq-bar color-singlet state for N=4 SUSY with gauge group SU(N) at finite temperature T, large distances rT>>1, and weak coupling g. As a first step, we only consider the electric modes and compute the Debye mass mD, where we find that each of the 8(N2-1) bosonic degrees of freedom contributes to mD2 (on average) with (N/N2-1)(1/6)g2T2, while each of the 8(N2-1) fermionic degrees of freedom contributes (on average) with (N/N2-1)(1/12)g2T2, yielding mD2=2Ng2T2. Then, motivated by results obtained in the literature from both the weak-coupling results in QCD and the large-coupling investigations of N=4 SUSY through AdS/CFT, we attempt to include magnetic mode corrections. Our results illustrate that, for this particular computation, N=4 SUSY is in striking qualitative agreement with QCD.
Non-denaturing gel electrophoresis system for the purification of membrane bound proteins
A new method is described for the purification of a membrane bound glycoprotein, the kappa opioid receptor from human placental tissue. The method uses preparative slab-gel electrophoresis in the presence of the non-denaturing detergent CHAPS. A linear relationship between log molecular weight and SDS PAGE electrophoretic mobility of known molecular weight markers, in the presence of CHAPS, is observed. Using this method, we were able partially to purify an 3H-etorphine binding glycoprotein, from placental villus tissue, with an apparent molecular weight range of 60-70,000. The iodinated glycoprotein migrates in SDS PAGE with an apparent molecular weight of 63,000. This method may be useful for the isolation of membrane bound proteins, especially when an affinity ligand is not available
Differential Privacy for Relational Algebra: Improving the Sensitivity Bounds via Constraint Systems
Catuscia Palamidessi
2012-07-01
Full Text Available Differential privacy is a modern approach in privacy-preserving data analysis to control the amount of information that can be inferred about an individual by querying a database. The most common techniques are based on the introduction of probabilistic noise, often defined as a Laplacian parametric on the sensitivity of the query. In order to maximize the utility of the query, it is crucial to estimate the sensitivity as precisely as possible. In this paper we consider relational algebra, the classical language for queries in relational databases, and we propose a method for computing a bound on the sensitivity of queries in an intuitive and compositional way. We use constraint-based techniques to accumulate the information on the possible values for attributes provided by the various components of the query, thus making it possible to compute tight bounds on the sensitivity.
Dan Ye; Quan-Yong Fan; Xin-Gang Zhao; Guang-Hong Yang
2013-01-01
This paper is concerned with delay-dependent stochastic stability for time-delay Markovian jump systems (MJSs) with sector-bounded nonlinearities and more general transition probabilities. Different from the previous results where the transition probability matrix is completely known, a more general transition probability matrix is considered which includes completely known elements, boundary known elements, and completely unknown ones. In order to get less conservative criterion, the state a...
Schmidt, H.-J.; Schnack, J.; Luban, M.
2002-02-01
O. Waldmann has shown that some spin systems, which fulfill the condition of a weakly homogeneous coupling matrix, have a spectrum whose minimal or maximal energies are rather poorly approximated by a quadratic dependence on the total spin quantum number. We comment on this observation and provide the new argument that, under certain conditions, the approximating parabolas appear as natural bounds of the spectrum generated by spin coherent states.
Mønness, Erik Neslein
2013-01-01
English: Often, a forest stand is modeled with a diameter distribution and a height curve as somehow separate tasks. A bivariate height and diameter distribution yield a unified model of a forest stand. The conditional median height given the diameter is a possible height curve. Here the bivariate Johnson’s System bounded distribution and the bivariate power-normal distribution are evaluated and compared with a simple hyperbolic height curve. Evaluated by the deviance, the hyperbo...
Johnston, Bryan
2013-01-01
We demonstrate that the fraction of sales lost for the (r, q) system under consideration can be conveniently bounded in a manner suitable for quick, back-of-the-envelope estimates. We assume that customer demand arises from a Poisson process with one unit demanded at a time, that all demand occurring during a stockout is lost, and that lead time is constant. In addition, we allow the situation where multiple replenishment orders may be simultaneously outstanding. We show that the difference b...
An Empirical Study on QQ-based Teacher Learning Community%基于QQ群的教师学习共同体运行现状研究
孟召坤; 兰国帅; 徐梅丹; 张一春
2015-01-01
Recently, online learning is increasingly becoming the main professional development approach for teachers to obtain knowledge and skills. Supported by various online tools, especially the social software platforms, teachers’ learning community can be established spontaneously. In China, QQ chatting tool has become a popular instant mes-sage tool for Internet users. Under this context, we used QQ group to form a learning community in the present study. The research procedure is as follows. Firstly, we conducted a statistical analysis on the basic situation of the teachers’ learning communities and investigated its impact on learning communities. It is found that QQ group satisfies the re-quirement of self-organization system but may limits the development of learning community to some degree. Second-ly, a social network analysis was carried out based on QQ groups’ chatting records and data mining to analyze the characteristics and historical evolution of teachers’ online learning community and clarify its diachronic principles of development. Results showed that the QQ-based teacher learning community has its own features compared with other social software platforms in terms of the density and mutual benefits of social network. Also, the diachronic data indi-cates that teacher learning community, to some extent, is constrained by the uniqueness of teachers’ occupation. Fi-nally, using aforementioned analysis, we found that the population of group members had little to do with its vitality. Instead, shared topics and interests of the members could influence the vitality as well as the lifespan of a certain learning community. The lack of thought leaders was also a bottleneck for the sustainable development of a learning community. Additionally, the lack of shared knowledge blocked the learning community development. Given all those issues that need to be resolved, we recommend the following measures: raise the requirements for new member enroll
Lower bound of local quantum uncertainty for high-dimensional bipartite quantum systems
Wang, Shuhao; Li, Hui; Lu, Xian; Chen, Bin; Long, Gui Lu
2013-01-01
Quantum correlations are of fundamental importance in quantum phenomena and quantum information processing studies. The measure of quantum correlations is one central issue. The recently proposed measure of quantum correlations, the local quantum uncertainty (LQU), satisfies the full physical requirements of a measure of quantum correlations. In this work, by using operator relaxation, a closed form lower bound of the LQU for arbitrary-dimensional bipartite quantum states is derived. We have ...
Interacting Three Fluid System and Thermodynamics of the Universe Bounded by the Event Horizon
Mazumder, Nairwita; Biswas, Ritabrata; Chakraborty, Subenoy
2010-01-01
The work deals with the thermodynamics of the universe bounded by the event horizon. The matter in the universe has three constituents namely dark energy, dark matter and radiation in nature and interaction between then is assumed. The variation of entropy of the surface of the horizon is obtained from unified first law while matter entropy variation is calculated from the Gibbss' law. Finally, validity of the generalized second law of thermodynamics is examined and conclusions are written po...
Upsilon particles as bound states of new heavy quarks
Charmonium spectroscopy (cc) was analysed, recently using a power confining potential and was determined that the energy eigenvalues are in good agreement with experimental values when it was used a power equal to 1/2 (square root potential). Assuming universality of the potential for quark-antiquark (qq) and assuming that the particle γ (9.4 GeV) is the fundamental state of the pair bb (beauty quark). The remaning bound states of this pair and their leptonic and hadronic decay widths are calculated
Studying repair of a single protein-bound nick in vivo using the Flp-nick system
Nielsen, Ida; Andersen, Anni Hangaard; Bjergbæk, Lotte
The Flp-nick system is a simple in vivo system developed for studying the cellular responses to a protein-bound nick at a single genomic site in the budding yeast Saccharomyces cerevisiae. The Flp-nick system takes advantage of a mutant Flp recombinase that can introduce a nick at a specific Flp....... cerevisiae, how to detect FlpH305L at the FRT site using a modified chromatin immunoprecipitation assay where formaldehyde fixation is omitted, and how to monitor nicking at the FRT site by alkaline denaturing gel analysis...
Fully nonlinear interfacial waves in a bounded two-fluid system
Barannyk, Lyudmyla Leonidivna
We study the nonlinear flow which results when two immiscible inviscid incompressible fluids of different densities and separated by an interface which is free to move and which supports surface tension, are caused to flow in a straight infinite channel. Gravity is taken into consideration and the velocities of each phase can be different, thus giving rise to the Kelvin-Helmholtz instability. Our objective is to study the competing effects of the Kelvin-Helmholtz instability coupled with a stably or unstably stratified fluid system (Rayleigh-Taylor instability) when surface tension is present to regularize the dynamics. Our approach involves the derivation of two- and three-dimensional model evolution equations using long-wave asymptotics and the ensuing analysis and computation of these models. In addition, we derive the appropriate Birkhoff-Rott integro-differential equation for two-phase inviscid flows in channels of arbitrary aspect ratios. A long wave asymptotic analysis is undertaken to develop a theory for fully nonlinear interfacial waves allowing amplitudes as large as the channel thickness. The result is a set of evolution equations for the interfacial shape and the velocity jump across the interface. Linear stability analysis reveals that capillary forces stabilize short-wave disturbances in a dispersive manner and we study their effect on the fully nonlinear dynamics described by our models. In the case of two-dimensional interfacial deflections, traveling waves of permanent form are constructed and it is shown that solitary waves are possible for a range of physical parameters. All solitary waves are expressed implicitly in terms of incomplete elliptic integrals of the third kind. When the upper layer has zero density, two explicit solitary-wave solutions have been found whose amplitudes are equal to h/4 or h/9 where 2h is the channel thickness. In the absence of gravity, solitary waves are not possible but periodic ones are. Numerically constructed
Yan, Zheng; Wang, Jun
2014-03-01
This paper presents a neural network approach to robust model predictive control (MPC) for constrained discrete-time nonlinear systems with unmodeled dynamics affected by bounded uncertainties. The exact nonlinear model of underlying process is not precisely known, but a partially known nominal model is available. This partially known nonlinear model is first decomposed to an affine term plus an unknown high-order term via Jacobian linearization. The linearization residue combined with unmodeled dynamics is then modeled using an extreme learning machine via supervised learning. The minimax methodology is exploited to deal with bounded uncertainties. The minimax optimization problem is reformulated as a convex minimization problem and is iteratively solved by a two-layer recurrent neural network. The proposed neurodynamic approach to nonlinear MPC improves the computational efficiency and sheds a light for real-time implementability of MPC technology. Simulation results are provided to substantiate the effectiveness and characteristics of the proposed approach. PMID:24807443
Dey, Rajeeb; Ghosh, Sandip; Ray, Goshaidas; Rakshit, Anjan; Balas, Valentina Emilia
2015-09-01
This paper presents improved robust delay-range-dependent stability analysis of an uncertain linear time-delay system following two different existing approaches - (i) non-delay partitioning (NDP) and (ii) delay partitioning (DP). The derived criterion (for both the approaches) proposes judicious use of integral inequality to approximate the uncertain limits of integration arising out of the time-derivative of Lyapunov-Krasovskii (LK) functionals to obtain less conservative results. Further, the present work compares both the approaches in terms of relative merits as well as highlights tradeoff for achieving higher delay bound and (or) reducing number of decision variables without losing conservatism in delay bound results. The analysis and discussion presented in the paper are validated by considering relevant numerical examples. PMID:26190503
Zhang Min-Min; Wang Can-Jun; Mei Dong-Cheng
2011-01-01
The effects of the time delay on the upper bound of the time derivative of information entropy are investigated in a time-delayed dynamical system driven by correlated noise.Using the Markov approximation of the stochastic delay differential equations and the Schwartz inequality principle,we obtain an analytical expression for the upper bound UB(t) of the time derivative of the information entropy.The results show that there is a critical value of T (delay time),and UB(t) presents opposite behaviours on difference sides of the critical value.For the case of the weak additive noise,T can induce a reentrance transition.Delay time T also causes a reversal behaviour in UB(t)-λ plot,where λ denotes the decree of the correlation between the two noises.
Yong, Wang
2015-01-01
In the present paper, we study the uniform regularity and vanishing dissipation limit for the full compressible Navier-Stokes system whose viscosity and heat conductivity are allowed to vanish at different order. The problem is studied in a 3-D bounded domain with Navier-slip type boundary conditions \\eqref{1.9}. It is shown that there exists a unique strong solution to the full compressible Navier-Stokes system with the boundary conditions \\eqref{1.9} in a finite time interval which is indep...
WANGWei－min; WUHong－bin
2001-01-01
This paper analyzes some problems arising in determining the mails' Whole Delivery Standard of Time Bound(WDSTB) at present, and further on the basis of the postal central office system currently in practice, puts forward the principle, reflection and the concrete approaches in determining the Delivery Standard of Time Bound (DSTB).
Bound and unbound nuclear systems at the drip lines: a one-dimensional model
Moschini, L.; Pérez-Bernal, F.; Vitturi, A.
2016-08-01
We construct a one-dimensional toy model to describe the main features of Borromean nuclei at the continuum threshold. The model consists of a core and two valence neutrons, unbound in the mean potential, that are bound by a residual point contact density-dependent interaction. Different discretization procedures are used (harmonic oscillator and transformed harmonic oscillator bases, or use of large rigid wall box). Resulting energies and wave functions, as well as inelastic transition intensities, are compared within the different discretization techniques, as well as with the exact results in the case of one particle and with the results of the di-neutron cluster model in the two particles case. Despite its simplicity, this model includes the main physical features of the structure of Borromean nuclei in an intuitive and computationally affordable framework, and will be extended to direct reaction calculations.
Wallace, Rodrick
2015-08-01
The stabilization of human cognition via feedback from embedding social and cultural contexts is a dynamic process deeply intertwined with it, constituting, in a sense, the riverbanks directing the flow of a stream of generalized consciousness at different scales: Cultural norms and social interaction are synergistic with individual and group cognition and their disorders. A canonical failure mode in atomistic cultures is found to be a 'ground state' collapse well represented by atomistic models of economic interaction that are increasingly characterized as divorced from reality by heterodox economists. That is, high rates of psychopathic and antisocial personality disorder and obsessive compulsive disorder emerge as culture-bound syndromes particular to Western or Westernizing societies, or to those undergoing social disintegration. PMID:26003470
On bound entanglement assisted distillation
Vedral, V.
1999-01-01
We investigate asymptotic distillation of entanglement in the presence of an unlimited amount of bound entanglement for bi-partite systems. We show that the distillability is still bounded by the relative entropy of entanglement. This offers a strong support to the fact that bound entanglement does not improve distillation of entanglement.
On a Generalization of Kingman's Bounds
Liu, Zhen; Nain, Philippe; Towsley, Don
1994-01-01
In this paper we develop a framework for computing upper and lower bounds of an exponential form for a class of single server queueing systems with non-renewal inputs. These bounds generalize Kingman's bounds for queues with renewal inputs.
Bounded Rationality in Transposition Processes
Vollaard, Hans; Martinsen, Dorte Sindbjerg
2014-01-01
concerns the organisation and financing of national healthcare systems. This article applies the perspective of bounded rationality to explain (irregularities in) the timely and correct transposition of EU directives. The cognitive and organisational constraints long posited by the bounded rationality...... bounded rationality is apparent in the transposition processes in these relatively well-organised countries, future transposition studies should devote greater consideration to the bounded rationality perspective....
Enhancement of sub-barrier fusion cross section in the weakly bound neutron system, 11Be + 10Be
The sub-barrier fusion cross section for the weakly bound neutron system, 11Be + 10Be is discussed in the framework of the coupled-reaction-channel approach for the valence neutron in 11Be and in connection with the molecular orbital formation. In the calculation we observed a big enhancement of the fusion process, due to very strong multi-step processes in the inelastic and transfer transitions of the active neutron, which lead to the formation of a covalent molecule, 10Be + n + 10Be. (author)
A Flp-nick system to study repair of a single protein-bound nick in vivo
Nielsen, Ida; Bentsen, Iben Bach; Lisby, Michael; Hansen, Sabine; Mundbjerg, Kamilla; Andersen, Anni H; Bjergbaek, Lotte
2009-01-01
recombinase recognition target site that has been integrated in the yeast genome. The genetic requirement for cells to cope with this insult is the same as for cells treated with camptothecin, which traps topoisomerase I-DNA cleavage complexes genome-wide. Hence, a single protein-bound nick is enough to kill...... cells if functional repair pathways are lacking. The Flp-nick system can be used to dissect repair, checkpoint and replication fork management pathways activated by a single genomic insult, and it allows the study of events at the damage site, which so far has been impossible to address....
Wu, W. H.; Chao, D. Y.
2016-07-01
Traditional region-based liveness-enforcing supervisors focus on (1) maximal permissiveness of not losing legal states, (2) structural simplicity of minimal number of monitors, and (3) fast computation. Lately, a number of similar approaches can achieve minimal configuration using efficient linear programming. However, it is unclear as to the relationship between the minimal configuration and the net structure. It is important to explore the structures involved for the fewest monitors required. Once the lower bound is achieved, further iteration to merge (or reduce the number of) monitors is not necessary. The minimal strongly connected resource subnet (i.e., all places are resources) that contains the set of resource places in a basic siphon is an elementary circuit. Earlier, we showed that the number of monitors required for liveness-enforcing and maximal permissiveness equals that of basic siphons for a subclass of Petri nets modelling manufacturing, called α systems. This paper extends this to systems more powerful than the α one so that the number of monitors in a minimal configuration remains to be lower bounded by that of basic siphons. This paper develops the theory behind and shows examples.
Cramér-Rao lower bound analysis for guidance systems with bearings-only measurements
ZHANG Yong-an; ZHOU Di; DUAN Guang-ren
2007-01-01
Most currently existing investigations on the observability of passive guidance systems can only protimability analysis of closed-loop guidance systems with bearings-only measurements, is proposed. The new method provides an intuitive result for observability of the guidance system through graphical analysis. As a demonstration, a numerical example is presented, in which the degrees of observability of the guidance systems under two commonly used guidance laws are compared by using the new approach.
It is assumed that quarks are described by Dirac spinors, with current masses which eventually can be set to zero, interacting through a confining and chirally invariant potential. Other than the strength of the interquark potential and the current masses of the quarks, the authors have no free parameters. (3)P(O) quark-antiquark vacuum condensation is allowed and the mass gap equation is solved for the chosen potential. With the help of the Feynman rules, they derive and solve the Salpeter equation (in the presence of the condensed vacuum) for the mesonic bound states eta, K, rho and phi. For these mesons, the authors give wave functions and bare masses (that is, prior to decay). For S-waves, gaussian approximations-the cluster sizes-are also given. The coupling of the bare resonances to the decay channels is implemented. They solve the Dyson series for the S matrix. The S matrix is cast in a separable expansion that leads to the R.G.M. equations for the scattering. The overlap potential is shown to depend strongly on the cluster sizes. The strong dependence is reflected in the corresponding shift of the imaginary part of the resonance mass (the width of the resonance). Scattering amplitudes for K(+) K(-) (eta(+) eta(0)) close to the energy of phi (rho(+)) are also obtained
Degradation of the sulfonamide sulfamethazine (SMZ) by the white-rot fungus Trametes versicolor was assessed. Elimination was achieved to nearly undetectable levels after 20 h in liquid medium when SMZ was added at 9 mg L-1. Experiments with purified laccase and laccase-mediators resulted in almost complete removal. On the other hand, inhibition of SMZ degradation was observed when piperonilbutoxide, a cytochrome P450-inhibitor, was added to the fungal cultures. UPLC-QqTOF-MS analysis allowed the identification and confirmation of 4 different SMZ degradation intermediates produced by fungal cultures or purified laccase: desulfo-SMZ, N4-formyl-SMZ, N4-hydroxy-SMZ and desamino-SMZ; nonetheless SMZ mineralization was not demonstrated with the isotopically labeled sulfamethazine-phenyl-13C6 after 7 days. Inoculation of T. versicolor to sterilized sewage sludge in solid-phase systems showed complete elimination of SMZ and also of other sulfonamides (sulfapyridine, sulfathiazole) at real environmental concentrations, making this fungus an interesting candidate for further remediation research. - Highlights: →Degradation of sulfamethazine by Trametes versicolor was evaluated. →The laccase enzymatic system and cytochrome P-450 were involved in the degradation. →Four different degradation products of sulfamethazine were identified and confirmed. →The molecular structures and masses of the metabolites were accurately calculated. →Full elimination of sulfamethazine was observed in regular sewage sludge.
Garcia-Galan, Ma. Jesus, E-mail: mggqam@cid.csic.es [Departament de Quimica Ambiental, IDAEA-CSIC, C/Jordi Girona 18-26, 08034 Barcelona (Spain); Rodriguez-Rodriguez, Carlos E., E-mail: CarlosEsteban.Rodriguez@uab.cat [Unitat asociada de Biocatalisi Aplicada IQAC-CSIC, Escola d' Enginyeria, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona (Spain); Centro de Investigacion en Contaminacion Ambiental, Universidad de Costa Rica, 2060 San Jose (Costa Rica); Vicent, Teresa, E-mail: Teresa.Vicent@uab.cat [Departament d' Enginyeria Quimica, Escola d' Enginyeria, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona (Spain); Caminal, Gloria, E-mail: Gloria.Caminal@uab.cat [Unitat asociada de Biocatalisi Aplicada IQAC-CSIC, Escola d' Enginyeria, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona (Spain); Diaz-Cruz, M. Silvia, E-mail: sdcqam@cid.csic.es [Departament de Quimica Ambiental, IDAEA-CSIC, C/Jordi Girona 18-26, 08034 Barcelona (Spain); Barcelo, Damia, E-mail: dbcqam@cid.csic.es [Departament de Quimica Ambiental, IDAEA-CSIC, C/Jordi Girona 18-26, 08034 Barcelona (Spain); Catalan Institute for Water Research (ICRA), Parc Cientific i Tecnologic de la Universitat de Girona. C/Emili Grahit, 101 Edifici H2O, E-17003 Girona (Spain); King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia)
2011-11-15
Degradation of the sulfonamide sulfamethazine (SMZ) by the white-rot fungus Trametes versicolor was assessed. Elimination was achieved to nearly undetectable levels after 20 h in liquid medium when SMZ was added at 9 mg L{sup -1}. Experiments with purified laccase and laccase-mediators resulted in almost complete removal. On the other hand, inhibition of SMZ degradation was observed when piperonilbutoxide, a cytochrome P450-inhibitor, was added to the fungal cultures. UPLC-QqTOF-MS analysis allowed the identification and confirmation of 4 different SMZ degradation intermediates produced by fungal cultures or purified laccase: desulfo-SMZ, N{sup 4}-formyl-SMZ, N{sup 4}-hydroxy-SMZ and desamino-SMZ; nonetheless SMZ mineralization was not demonstrated with the isotopically labeled sulfamethazine-phenyl-{sup 13}C{sub 6} after 7 days. Inoculation of T. versicolor to sterilized sewage sludge in solid-phase systems showed complete elimination of SMZ and also of other sulfonamides (sulfapyridine, sulfathiazole) at real environmental concentrations, making this fungus an interesting candidate for further remediation research. - Highlights: {yields}Degradation of sulfamethazine by Trametes versicolor was evaluated. {yields}The laccase enzymatic system and cytochrome P-450 were involved in the degradation. {yields}Four different degradation products of sulfamethazine were identified and confirmed. {yields}The molecular structures and masses of the metabolites were accurately calculated. {yields}Full elimination of sulfamethazine was observed in regular sewage sludge.
Dan Ye
2013-01-01
Full Text Available This paper is concerned with delay-dependent stochastic stability for time-delay Markovian jump systems (MJSs with sector-bounded nonlinearities and more general transition probabilities. Different from the previous results where the transition probability matrix is completely known, a more general transition probability matrix is considered which includes completely known elements, boundary known elements, and completely unknown ones. In order to get less conservative criterion, the state and transition probability information is used as much as possible to construct the Lyapunov-Krasovskii functional and deal with stability analysis. The delay-dependent sufficient conditions are derived in terms of linear matrix inequalities to guarantee the stability of systems. Finally, numerical examples are exploited to demonstrate the effectiveness of the proposed method.
Nuclear explosives may be used to capture small asteroids (e.g., 20--50 meters in diameter) into bound orbits around the earth. The captured objects could be used for construction material for manned and unmanned activity in Earth orbit. Asteroids with small approach velocities, which are the ones most likely to have close approaches to the Earth, require the least energy for capture. They are particularly easy to capture if they pass within one Earth radius of the surface of the Earth. They could be intercepted with intercontinental missiles if the latter were retrofit with a more flexible guiding and homing capability. This asteroid capture-defense system could be implemented in a few years at low cost by using decommissioned ICMs. The economic value of even one captured asteroid is many times the initial investment. The asteroid capture system would be an essential part of the learning curve for dealing with larger asteroids that can hit the earth
EXISTENCE OF BOUNDED SOLUTIONS ON THE REAL LINE FOR LIENARD SYSTEM
肖海滨
2003-01-01
The existence of monotone and non-monotone solutions of boundary value problem on the real line for Lienard equation is studied. Applying the theory of planar dynamical systems and the comparison method of vector fields defined by Lienard system and the system given by symmetric transformation or quasi-symmetric transformation, the invariant regions of the system are constructed. The existence of connecting orbits can be proved. A lot of sufficient conditions to guarantee the existence of solutions of the boundary value problem are obtained. Especially, when the source function is bi-stable, the existence of infinitely many monotone solusion is obtained.
Simulation of a bounded symport/antiport P system with Brane calculi.
Vitale, Antonio; Mauri, Giancarlo; Zandron, Claudio
2008-03-01
Membrane systems (also called P systems) and Brane calculi have been recently introduced as formal models inspired by the structure and the functioning of living cells, but having in mind different goals. The aim of Membrane systems was the formal investigation of the computational nature and power of various features of the cell, while Brane calculi aims to define a model capable of a faithful and intuitive representation of various biological processes. The common background of the two formalisms and the recent growing of interests in applying P systems in Systems Biology have raised the natural question of bridging this two research areas. The present paper goes in this direction, as it presents a direct simulation of a variant of P systems by means of Brane calculi. In particular, we consider a Brane calculus based on three operations called Mate/Bud/Drip, and we show how to use such system to simulate Simple symport/antiport P systems, a variant of P systems purely based on communication of objects. As an example, a simplified sodium-potassium pump modeled in Simple SA is encoded in Mate/Bud/Drip Brane calculus. PMID:17889992
This paper is concerned with the stochastic bounded consensus tracking problems of leader—follower multi-agent systems, where the control input of an agent can only use the information measured at the sampling instants from its neighbours or the virtual leader with a time-varying reference state, and the measurements are corrupted by random noises. The probability limit theory and the algebra graph theory are employed to derive the necessary and sufficient conditions guaranteeing the mean square bounded consensus tracking. It is shown that the maximum allowable upper boundary of the sampling period simultaneously depends on the constant feedback gains and the network topology. Furthermore, the effects of the sampling period on the tracking performance are analysed. It turns out that from the view point of the sampling period, there is a trade-off between the tracking speed and the static tracking error. Simulations are provided to demonstrate the effectiveness of the theoretical results. (interdisciplinary physics and related areas of science and technology)
Wu Zhi-Hai; Peng Li; Xie Lin-Bo; Wen Ji-Wei
2012-01-01
This paper is concerned with the stochastic bounded consensus tracking problems of leader-follower multi-agent systems,where the control input of an agent can only use the information measured at the sampling instants from its neighbours or the virtual leader with a time-varying reference state,and the measurements are corrupted by random noises.The probability limit theory and the algebra graph theory are employed to derive the necessary and sufficient conditions guaranteeing the mean square bounded consensus tracking.It is shown that the maximum allowable upper boundary of the sampling period simultaneously depends on the constant feedback gains and the network topology.Furthermore,the effects of the sampling period on the tracking performance are analysed.It turns out that from the view point of the sampling period,there is a trade-off between the tracking speed and the static tracking error.Simulations are provided to demonstrate the effectiveness of the theoretical results.
Left Ventricular Finite Element Model Bounded by a Systemic Circulation Model
Veress, A. I.; Raymond, G.M.; Gullberg, G. T.; Bassingthwaighte, J.B.
2013-01-01
A series of models were developed in which a circulatory system model was coupled to an existing series of finite element (FE) models of the left ventricle (LV). The circulatory models were used to provide realistic boundary conditions for the LV models. This was developed for the JSim analysis package and was composed of a systemic arterial, capillary, and venous system in a closed loop with a varying elastance LV and left atria to provide the driving pressures and flows matching those of th...
A method for the computation of reliability bounds for non-repairable fault-tolerant systems
Suñé, Víctor; Carrasco, Juan A.
1997-01-01
A realistic modeling of fault-tolerant systems requires to take into account phenomena such as the dependence of component failure rates and coverage parameters on the operational configuration of the system, which cannot be properly captured using combinatorial techniques. Such dependencies can be modeled with detail using continuous-time Markov chains (CTMC’s). However, the use of CTMC models is limited by the well-known state space explosion problem. In this paper we develop a method for t...
Bayesian Prediction of the Overhaul Effect on a Repairable System with Bounded Failure Intensity
Nidhi Jain; Preeti Wanti Srivastava
2011-01-01
This paper deals with the Bayes prediction of the future failures of a deteriorating repairable mechanical system subject to minimal repairs and periodic overhauls. To model the effect of overhauls on the reliability of the system a proportional age reduction model is assumed and the 2-parameter Engelhardt-Bain process (2-EBP) is used to model the failure process between two successive overhauls. 2-EBP has an advantage over Power Law Process (PLP) models. It is found that the failure intensit...
Le Maner, Ch
2003-06-01
The research of the Higgs boson implies a good uniformity of the response of the electromagnetic calorimeter of ATLAS for the study of its leptonic and photonic channels. In the first part of this thesis, I have developed a reliable monitoring tool for checking the quality of the data taking during these tests, shown that the procedure of production of the coefficients of optimal filtering comprises an artifact which influences the uniformity of the response in energy of a module and contributed to the installation of an algorithm of replacement of the missing coefficients. The second part relates to the study of the channel qqH {yields} qqyWW {yields} qqlvj j for a Higgs of 300 GeV/c32. The result reported in the technical design report did not allow to exploit this channel for a discovery because the distributions of the signal and backgrounds merged. Thanks to a new more global approach associated with a new cut on the mass of the Wj system and a relaxation of certain cuts, I have shown that this channel allows the discovery of the Higgs boson as well as the measurement of coupling H {yields} WW. (author)
Impulsive stabilization of a class of nonlinear system with bounded gain error
Considering mechanical limitation or device restriction in practical application, this paper investigates impulsive stabilization of nonlinear systems with impulsive gain error. Compared with the existing impulsive analytical approaches, the proposed impulsive control method is more practically applicable, which includes control gain error with an acceptable boundary. A sufficient criterion for global exponential stability of an impulsive control system is derived, which relaxes the condition for precise impulsive gain efficiently. The effectiveness of the proposed method is confirmed by theoretical analysis and numerical simulation based on Chua's circuit. (general)
Mean sojourn time in two-queue fork-join systems: bounds and approximations
Kemper, B; Mandjes, M.
2011-01-01
This paper considers a fork-join system (or: parallel queue), which is a two-queue network in which any arrival generates jobs at both queues and the jobs synchronize before they leave the system. The focus is on methods to quantify the mean value of the ‘system’s sojourn time’ S: with S i denoting a job’s sojourn time in queue i, S is defined as max{S 1, S 2}. Earlier work has revealed that this class of models is notoriously hard to analyze. In this paper, we focus on the homogeneous case, ...
We study the electronic transport through a four-quantum-dot (FQD) structure with a diamond-like shape through nonequilibrium Green's function theory. It is observed that the bound state in the continuum (BIC) appears in this multiple QDs system, and the position of the BIC in the total density of states (TDOS) spectrum is tightly determined by the strength of the electronic hopping between the upper QD and the lower one. As the symmetry in the energy levels in these two QDs is broken, the BIC is suppressed to a general conductance peak with a finite width, and meanwhile a Fano-type antiresonance with a zero point appears in the conductance spectrum. These results will develop our understanding of the BICs and their spintronic device applications of spin filter and quantum computing.
Connolly, Joseph W.; Kopasakis, George
2010-01-01
This paper covers the propulsion system component modeling and controls development of an integrated mixed compression inlet and turbojet engine that will be used for an overall vehicle Aero-Propulso-Servo-Elastic (APSE) model. Using previously created nonlinear component-level propulsion system models, a linear integrated propulsion system model and loop shaping control design have been developed. The design includes both inlet normal shock position control and jet engine rotor speed control for a potential supersonic commercial transport. A preliminary investigation of the impacts of the aero-elastic effects on the incoming flow field to the propulsion system are discussed, however, the focus here is on developing a methodology for the propulsion controls design that prevents unstart in the inlet and minimizes the thrust oscillation experienced by the vehicle. Quantitative Feedback Theory (QFT) specifications and bounds, and aspects of classical loop shaping are used in the control design process. Model uncertainty is incorporated in the design to address possible error in the system identification mapping of the nonlinear component models into the integrated linear model.
Upper bound on our knowledge about noncommuting observables for a qubit system
A trade-off relation on our knowledge about two noncommuting observables of a qubit system in simultaneous measurement is formulated. The obtained inequality offers a quantitative information-theoretic representation of Bohr's principle of complementarity, and can be interpreted as a trade-off relation on the asymptotic accuracy of the maximum-likelihood estimation of the probability distributions of observables
Cormane, R.H.
1964-01-01
In what respect chronic discoid lupus erythematosus is related to systemic lupus erythematosus is still uncertain. In discoid lupus the lupus-erythematosus (L.E.) phenomenon is negative, and the history does not suggest vascular lesions or involvement of serous membranes. In both diseases the pathog
Benchmark for a quasi-bound state of the $\\overset{\\_}{K}pp$ system
Kezerashvili, Roman Ya; Filikhin, Igor N; Suslov, Vladimir M; Vlahovic, Branislav
2015-01-01
We present three-body nonrelativistic calculations within the framework of a potential model for the kaonic cluster $\\overset{\\_}{K}pp$ using two completely different methods: the method of hyperspherical harmonics in the momentum representation and the method of Faddeev equations in configuration space. To perform a numerical benchmark, different $NN$ and antikaon-nucleon interactions are applied. The results of the calculations for the ground state energy for the $\\overset{\\_}{K}pp$ system obtained by both methods are in reasonable agreement. Although the ground state energy is not sensitive to the $NN$ interaction, it shows very strong dependence on the $\\overset{\\_}%{K}N$ potential. We show that the dominant clustering of the $\\overset{\\_}{K}pp$ \\ system in the configuration $\\Lambda (1405)+p$ allows us to calculate the binding energy to good accuracy within a simple cluster approach for the differential Faddeev equations. The theoretical discrepancies in the binding energy and width for the $\\overset{\\_}...
Ballester Pla, Coralio
2012-03-01
Full Text Available The observation of the actual behavior by economic decision makers in the lab and in the field justifies that bounded rationality has been a generally accepted assumption in many socio-economic models. The goal of this paper is to illustrate the difficulties involved in providing a correct definition of what a rational (or irrational agent is. In this paper we describe two frameworks that employ different approaches for analyzing bounded rationality. The first is a spatial segregation set-up that encompasses two optimization methodologies: backward induction and forward induction. The main result is that, even under the same state of knowledge, rational and non-rational agents may match their actions. The second framework elaborates on the relationship between irrationality and informational restrictions. We use the beauty contest (Nagel, 1995 as a device to explain this relationship.
La observación del comportamiento de los agentes económicos tanto en el laboratorio como en la vida real justifica que la racionalidad acotada sea un supuesto aceptado en numerosos modelos socio-económicos. El objetivo de este artículo es ilustrar las dificultades que conlleva una correcta definición de qué es un agente racional (irracional. En este artículo se describen dos marcos que emplean diferentes metodologías para analizar la racionalidad acotada. El primero es un modelo de segregación espacial donde se contrastan dos metodologías de optimización: inducción hacia atrás y hacia adelante. El resultado principal es que, incluso con el mismo nivel de conocimiento, tanto agentes racionales como irracionales podrían coincidir en sus acciones. El segundo marco trabaja sobre la relación entre irracionalidad y restricción de información. Se utiliza el juego llamado “beauty contest” (Nagel 1995 como mecanismo para explicar dicha relación.
VISCO-ELASTIC SYSTEMS UNDER BOTH DETERMINISTIC AND BOUND RANDOM PARAMETRIC EXCITATION
徐伟; 戎海武; 方同
2003-01-01
The principal resonance of a visco-elastic systems under both deterministic and random parametric excitation was investigated. The method of multiple scales was used to determine the equations of modulation of amplitude and phase. The behavior, stability and bifurcation of steady state response were studied by means of qualitative analysis. The contributions from the visco-elastic force to both damping and stiffness can be taken into account. The effects of damping, detuning, bandwidth, and magnitudes of deterministic and random excitations were analyzed. The theoretical analysis is verified by numerical results.
Solar System's Bounds on the Extra Acceleration of f(R, T) Gravity Revisited
Deng, Xue-Mei; Xie, Yi
2015-06-01
As a generalization of Einstein's general relativity (GR), the f( R, T) gravity replace the gravitational Lagrangian of GR with an arbitrary function of the Ricci scalar R and of the trace of the stress-energy tensor T. It can induce an extra acceleration a E in the dynamics of massive test particles due to the physical coupling between matter and geometry. In this work, we confront this extra acceleration with planetary motions in the solar system. Using the supplementary advances in the perihelia provided by current INPOP10a and EPM2011 ephemerides, we obtain new upper limits on a E when the uncertainty of the Sun's quadrupole moment and the Lense-Thirring effect due to the Sun's angular momentum are properly taken into account. These two factors were mostly absent in previous works dealing with a E. We find that INPOP10a yields the upper limit as a E=(-0.04±4.81)×10-15 m s -2 and EPM2011 gives a E=(0.06±1.58)×10-15 m s -2. Both of them are improved at least by about 10 times than previous results obtained in the solar system and they are smaller than the results given by fitting rotation curves of galaxies by about 4 orders of magnitude. This discrepancy of a E on these scales seems to imply that its effects might be screened in high density regions.
The uniform method of numerical investigation of bound states and scattering processes 2→ 2 (including resonance states) in the Coulomb three-body (CTB) systems is developed. It is based on the adiabatic hyperspherical approach (AHSA) and includes the numerical realization and applications to the three-body mesic atomic systems. The results of calculations of bound states of these systems (including the local characteristics of the wave functions) and the scattering processes 2→ 2 (including the characteristics of the resonance states) are presented
Laurel Drane
2014-10-01
Full Text Available Acquiring the gene expression profiles of specific neuronal cell-types is important for understanding their molecular identities. Genome-wide gene expression profiles of genetically defined cell-types can be acquired by collecting and sequencing mRNA that is bound to epitope-tagged ribosomes (TRAP; Translating Ribosome Affinity Purification. Here, we introduce a transgenic mouse model that combines the TRAP technique with the tetracycline transactivator (tTA system by expressing EGFP-tagged ribosomal protein L10a (EGFP-L10a under control of the tetracycline response element (tetO-TRAP. This allows both spatial control of EGFP-L10a expression through cell-type specific tTA expression, as well as temporal regulation by inhibiting transgene expression through the administration of doxycycline. We show that crossing tetO-TRAP mice with transgenic mice expressing tTA under the Camk2a promoter (Camk2a-tTA results in offspring with cell-type specific expression of EGFP-L10a in CA1 pyramidal neurons and medium spiny neurons in the striatum. Co-immunoprecipitation confirmed that EGFP-L10a integrates into a functional ribosomal complex. In addition, collection of ribosome-bound mRNA from the hippocampus yielded the expected enrichment of genes expressed in CA1 pyramidal neurons, as well as a depletion of genes expressed in other hippocampal cell-types. Finally, we show that crossing tetO-TRAP mice with transgenic Fos-tTA mice enables the expression of EGFP-L10a in CA1 pyramidal neurons that are activated during a fear conditioning trial. The tetO-TRAP mouse can be combined with other tTA mouse lines to enable gene expression profiling of a variety of different cell-types.
Bounding species distribution models
Thomas J. STOHLGREN; Catherine S. JARNEVICH; Wayne E. ESAIAS; Jeffrey T. MORISETTE
2011-01-01
Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern.Many investigators now recognize that extrapolations of these models with geographic information systems (GIS) might be sensitive to the environmental bounds of the data used in their development,yet there is no recommended best practice for “clamping” model extrapolations.We relied on two commonly used modeling approaches:classification and regression tree (CART) and maximum entropy (Maxent) models,and we tested a simple alteration of the model extrapolations,bounding extrapolations to the maximum and minimum values of primary environmental predictors,to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States.Findings suggest that multiple models of bounding,and the most conservative bounding of species distribution models,like those presented here,should probably replace the unbounded or loosely bounded techniques currently used [Current Zoology 57 (5):642-647,2011].
The dose criterion used to derive clearance and exemption levels is of the order of 0.01 mSv/y based on the Basic Safety Standard (BSS) of the International Atomic Energy Agency (IAEA), the use of which has been agreed upon by many countries. It is important for human beings, who are facing the fact that global resources for risk reduction are limited, to carefully consider the practical implementation of radiological protection systems, particularly for low-radiation-dose regions. For example, in direct gamma ray monitoring, to achieve clearance level compliance, difficult issues on how the uncertainty (error) of gamma measurement should be handled and also how the uncertainty (scattering) of the estimation of non-gamma emitters should be treated in clearance must be resolved. To resolve these issues, a new probabilistic approach has been proposed to establish an appropriate safety factor for compliance with the clearance level in Japan. This approach is based on the fundamental concept that 0.1 mSv/y should be complied with the 97.5. percentile of the probability distribution for the uncertainties of both the measurement and estimation of non-gamma emitters. The International Commission on Radiological Protection, ICRP published a new concept of the representative person in Publication 101 Part I. The representative person is a hypothetical person exposed to a dose that is representative of those of highly exposed persons in a population. In a probabilistic dose assessment, the ICRP recommends that the representative person should be defined such that the probability of exposure occurrence is lower than about 5% that of a person randomly selected from the population receiving a high dose. From the new concept of the ICRP, it is reasonable to consider that the 95. percentile of the dose distribution for the representative person is theoretically always lower than the dose constraint. Using this established relationship, it can be concluded that the minimum dose
A High-Throughput UHPLC-QqQ-MS Method for Polyphenol Profiling in Rosé Wines
Marine Lambert
2015-04-01
Full Text Available A rapid, sensitive and selective analysis method using Ultra High Performance Liquid Chromatography coupled to triple-quadrupole Mass Spectrometry (UHPLC-QqQ-MS has been developed for the quantification of polyphenols in rosé wines. The compound detection being based on specific MS transitions in Multiple Reaction Monitoring (MRM mode, the present method allows the selective quantification of up to 152 phenolic and two additional non-phenolic wine compounds in 30 min without sample purification or pre-concentration, even at low concentration levels. This method was repeatably applied to a set of 12 rosé wines and thus proved to be suitable for high-throughput and large-scale metabolomics studies.
Zasche, P; 10.1093/mnras/sts616
2013-01-01
More than three hundred years ago, Ole Romer measured the speed of light only by observing the periodic shifting of the observed eclipse arrival times of Jupiter's moons arising from the varying Earth-Jupiter distance. The same method of measuring the periodic modulation of delays is still used in astrophysics. The ideal laboratories for this effect are eclipsing binaries. The unique system V994 Her consists of two eclipsing binaries orbiting each other. However, until now it was not certain whether these are gravitationally bound and what their orbital period is. We show that the system is in fact quintuple and the two eclipsing binaries are orbiting each other with period about 6.3 years. This analysis was made only from studying the periodic modulation of the two periods, when during the periastron passage one binary has an apparently shorter period, while the other one longer, exactly as required by a theory. Additionally, it was found that both inner eclipsing pairs orbit with slightly eccentric orbits u...
Su-Xin, Wang; Yu-Xian, Li; Jian-Jun, Liu
2016-03-01
Andreev reflection (AR) in a normal-metal/quantum-dot/superconductor (N-QD-S) system with coupled Majorana bound states (MBSs) is investigated theoretically. We find that in the N-QD-S system, the AR can be enhanced when coupling to the MBSs is incorporated. Fano line-shapes can be observed in the AR conductance spectrum when there is an appropriate QD-MBS coupling or MBS-MBS coupling. The AR conductance is always e2/2h at the zero Fermi energy point when only QD-MBSs coupling is considered. In addition, the resonant AR occurs when the MBS-MBS coupling roughly equals to the QD energy level. We also find that an AR antiresonance appears when the QD energy level approximately equals to the sum of the QD-MBS coupling and the MBS-MBS coupling. These features may serve as characteristic signatures for the probe of MBSs. Project supported by the National Natural Science Foundation of China (Grant Nos. 61176089 and 10974043), the Natural Science Foundation of Hebei Province, China (Grant Nos. A2011205092 and 2014205005), and the Fund for Hebei Normal University for Nationalities, China (Grant No. 201109).
Gómez Camacho, A.; Gomes, P. R. S.; Lubian, J.; Aguilera, E. F.
2014-03-01
A brief description is presented of the results obtained in recent years for the simultaneous analysis of elastic and fusion cross section data of nuclear reactions for several nuclear systems with weakly bound and halo projectiles. The method used in this description, consists of simultaneously determine the parameters of fusion UF and direct reaction UDR polarization potentials of Woods-Saxon geometric shapes, that fit the elastic and fusion data. As a matter of fact, UFis an energy dependent potential, with real VF and imaginary WFcomponents, that is responsible for fusion reactions. Similarly, UDR is also energy dependent with real VDR and imaginary WDR parts, that accounts for direct reactions. A general finding for all the systems presented is that, the real and imaginary parts of the fusion potential and direct reaction potentials, are related by a dispersion relation and their energy dependence around and below the Coulomb barrier, show the so-called Breakup Threshold Anomaly. The effect of breakup reactions on fusion cross sections is studied by analyzing the separate effect of the absorption potential WDR and the fusion barrier rising produced by VDR.
LIU Li-Guo; TIAN Cheng-Lin; CHEN Ping-Xing; YUAN Nai-Chang
2009-01-01
We derive an analytical lower bound on the concurrence for bipartite quantum systems with an improved computable cross norm or realignment criterion and an improved positive partial transpose criterion respectively.Furthermore we demonstrate that our bound is better than that obtained from the local uncertainty relations criterion with optimal local orthogonal observables which is known as one of the best estimations of concurrence.
Garcilazo, H
2016-01-01
We have used realistic local interactions based on the recent update of the strangeness $-2$ Nijmegen ESC08c potential to calculate the bound state problem of the $\\Xi NN$ system in the $(I)J^P=(\\frac{1}{2})\\frac{3}{2}^+$ state. We found that this system presents a deeply bound state lying $13.5$ MeV below the $\\Xi d$ threshold. Since in lowest order, pure S$-$wave configuration, this system can not decay into the open $\\Lambda\\Lambda N$ channel, its decay width is expected to be very small. We have also recalculated the $(I)J^P=(\\frac{3}{2})\\frac{1}{2}^+$ state and we have compared with results of quark-model based potentials.
Wilton, Mike; Wong, Megan J Q; Tang, Le; Liang, Xiaoye; Moore, Richard; Parkins, Michael D; Lewenza, Shawn; Dong, Tao G
2016-08-01
Pseudomonas aeruginosa employs its type VI secretion system (T6SS) as a highly effective and tightly regulated weapon to deliver toxic molecules to target cells. T6SS-secreted proteins of P. aeruginosa can be detected in the sputum of cystic fibrosis (CF) patients, who typically present a chronic and polymicrobial lung infection. However, the mechanism of T6SS activation in the CF lung is not fully understood. Here we demonstrate that extracellular DNA (eDNA), abundant within the CF airways, stimulates the dynamics of the H1-T6SS cluster apparatus in Pseudomonas aeruginosa PAO1. Addition of Mg(2+) or DNase with eDNA abolished such activation, while treatment with EDTA mimicked the eDNA effect, suggesting that the eDNA-mediated effect is due to chelation of outer membrane-bound cations. DNA-activated H1-T6SS enables P. aeruginosa to nonselectively attack neighboring species regardless of whether or not it was provoked. Because of the importance of the T6SS in interspecies interactions and the prevalence of eDNA in the environments that P. aeruginosa inhabits, our report reveals an important adaptation strategy that likely contributes to the competitive fitness of P. aeruginosa in polymicrobial communities. PMID:27271742
Restructuring, privatisation and market changes of grid-bound energy systems present processes that characterise the energy sector of today, and the achieved level of these processes vary considerably from one country to another and there is no ideal model. Therefore, the exchange of experiences and broad co-operation in the field is of vital importance. For the first time the concept of the future Croatian energy legislation, presently in the focus of domestic energy related attention, will be introduced. Restructuring includes the changes in organisation anbd economic relations in order to enhance efficiency and reduce operational costs, in keeping with the market trends. Privatisation is a process that should enable the creation of markets and competition. When defining the concept of privatisation, we should primarily design the market, determine the position of individual functioning during market creation, and then determine the course of privatisation. Experiences of developed countries tell us that it is necessary to find a balance between markets and state interventions, as well as among technological-technical, economic and social aspects of energy use
A time-dependent Tsirelson's bound from limits on the rate of information gain in quantum systems
Doherty, Andrew C [Centre for Engineered Quantum Systems, School of Physics, University of Sydney, Sydney (Australia); Wehner, Stephanie, E-mail: wehner@comp.nus.edu.sg [Centre for Quantum Technologies, National University of Singapore, 2 Science Drive 3, 117543 Singapore (Singapore)
2011-07-15
We consider the problem of distinguishing between a set of arbitrary quantum states in a setting in which the time available to perform the measurement is limited. We provide simple upper bounds on how well we can perform state discrimination in a given time as a function of either the average energy or the range of energies available during the measurement. We exhibit a specific strategy that nearly attains this bound. Finally, we consider several applications of our result. Firstly, we obtain a time-dependent Tsirelson's bound that limits the extent of the Bell inequality violation that can be in principle be demonstrated in a given time t. Secondly, we obtain a Margolus-Levitin type bound when considering the special case of distinguishing orthogonal pure states.
A renormalisation approach to investigate travelling wave solutions of an excitable reaction-diffusion system on a deterministic fractal structure has recently been derived. The dynamics of a particular class of solutions which are governed by a two-dimensional subspace of these renormalisation recursion relationships are discussed in this paper. The bifurcations of this mapping are discussed with reference to the discontinuities which arise at the singularities. The map is chaotic for a bounded region in parameter space and bounds on the Hausdorff dimension of the associated invariant hyperbolic set are calculated
Complex bounds for multimodal maps: bounded combinatorics
Smania, Daniel
2000-01-01
We proved the so called complex bounds for multimodal, infinitely renormalizable analytic maps with bounded combinatorics: deep renormalizations have polynomial-like extensions with definite modulus. The complex bounds is the first step to extend the renormalization theory of unimodal maps to multimodal maps.
On Possible S-Wave Bound States for an N-(N) System Within a Constituent Quark Model
CHANG Chao-Hsi; PANG Hou-Rong
2005-01-01
We try to apply a constituent quark model (a variety chiral constituent quark model) and the resonating group approach for the multi-quark problems to compute the effective potential between the NN- in S-wave (the quarks in the nucleons N and N-, and the two nucleons relatively as well, are in S wave) so as to see the possibility if there may be a tight bound state of six quarks as indicated by a strong enhancement at threshold of pp- in J/ψ and B decays. The effective potential which we obtain in terms of the model and approach shows if the experimental enhancement is really caused by a tight S-wave bound state of six quarks, then the quantum number of the bound state is very likely to be I = 1, JPC= 0-+.
The harmonic oscillator approach to the bound states of few-body systems is developed and the lower-energy states are introduced as basis vectors and mixed with a part of harmonic oscillator vectors to calculate the binding energy. The lower energy levels of 3-α system and Λ9Be are presented and compared with experiments or other calculations. The results are satisfactory
Petawatt laser absorption bounded
Levy, Matthew C; Tabak, Max; Libby, Stephen B; Baring, Matthew G
2014-01-01
The interaction of petawatt ($10^{15}\\ \\mathrm{W}$) lasers with solid matter forms the basis for advanced scientific applications such as table-top particle accelerators, ultrafast imaging systems and laser fusion. Key metrics for these applications relate to absorption, yet conditions in this regime are so nonlinear that it is often impossible to know the fraction of absorbed light $f$, and even the range of $f$ is unknown. Here using a relativistic Rankine-Hugoniot-like analysis, we show for the first time that $f$ exhibits a theoretical maximum and minimum. These bounds constrain nonlinear absorption mechanisms across the petawatt regime, forbidding high absorption values at low laser power and low absorption values at high laser power. For applications needing to circumvent the absorption bounds, these results will accelerate a shift from solid targets, towards structured and multilayer targets, and lead the development of new materials.
Effect of sun and planet-bound dark matter on planet and satellite dynamics in the solar system
We apply our recent results on orbital dynamics around a mass-varying central body to the phenomenon of accretion of Dark Matter-assumed not self-annihilating-on the Sun and the major bodies of the solar system due to its motion throughout the Milky Way halo. We inspect its consequences on the orbits of the planets and their satellites over timescales of the order of the age of the solar system. It turns out that a solar Dark Matter accretion rate of ≈ 10−12 yr−1, inferred from the upper limit ΔM/M = 0.02−0.05 on the Sun's Dark Matter content, assumed somehow accumulated during last 4.5 Gyr, would have displaced the planets faraway by about 10−2−101 au 4.5 Gyr ago. Another consequence is that the semimajor axis of the Earth's orbit, approximately equal to the Astronomical Unit, would undergo a secular increase of 0.02-0.05 m yr−1, in agreement with the latest observational determinations of the Astronomical Unit secular increase of 0.07±0.02 m yr−1 and 0.05 m yr−1. By assuming that the Sun will continue to accrete Dark Matter in the next billions year at the same rate as putatively done in the past, the orbits of its planets will shrink by about 10−1−101 au ( ≈ 0.2−0.5 au for the Earth), with consequences for their fate, especially of the inner planets. On the other hand, lunar and planetary ephemerides set upper bounds on the secular variation of the Sun's gravitational parameter GM which are one one order of magnitude smaller than ≈ 10−12 yr−1. Dark Matter accretion on planets has, instead, less relevant consequences for their satellites. Indeed, 4.5 Gyr ago their orbits would have been just 10−2−101 km wider than now. Dark Matter accretion is not able to explain the observed accelerations of the orbits of some of the Galilean satellites of Jupiter, the secular decrease of the semimajor axis of the Earth's artificial satellite LAGEOS and the secular increase of the Moon's orbit eccentricity
Zhi-Hong Tao; Cong-Hua Zhou; Zhong Chen; Li-Fu Wang
2007-01-01
Bounded Model Checking has been recently introduced as an efficient verification method for reactive systems.This technique reduces model checking of linear temporal logic to propositional satisfiability.In this paper we first present how quantified Boolean decision procedures can replace BDDs.We introduce a bounded model checking procedure for temporal logic CTL* which reduces model checking to the satisfiability of quantified Boolean formulas.Our new technique avoids the space blow up of BDDs, and extends the concept of bounded model checking.
In this paper we provide a unified framework for consensus tracking of leader-follower multi-agent systems with measurement noises based on sampled data with a general sampling delay. First, a stochastic bounded consensus tracking protocol based on sampled data with a general sampling delay is presented by employing the delay decomposition technique. Then, necessary and sufficient conditions are derived for guaranteeing leader-follower multi-agent systems with measurement noises and a time-varying reference state to achieve mean square bounded consensus tracking. The obtained results cover no sampling delay, a small sampling delay and a large sampling delay as three special cases. Last, simulations are provided to demonstrate the effectiveness of the theoretical results. (interdisciplinary physics and related areas of science and technology)
Rathsam, C; Giffard, P M; Jacques, N A
1993-01-01
The ftf gene, coding for the cell-bound beta-D-fructosyltransferase (FTF) of Streptococcus salivarius ATCC 25975, has been analyzed, and its deduced amino acid sequence has been compared with that of the secreted FTF of Streptococcus mutans and the levansucrases (SacBs) of Bacillus species. A unique proline-rich region detected at the C terminus of the FTF of S. salivarius preceded a hydrophobic terminal domain. This proline-rich region was shown to possess strong homology to the product of the prgC gene from pCF10 in Enterococcus faecalis, which encodes a pheromone-responsive protein of unknown function, as well as homology to the human proline-rich salivary protein PRP-4. A series of 3'-OH deletions of the S. salivarius ftf gene expressed in Streptococcus gordonii Challis LGR2 showed that the C terminus was required for cell surface attachment in this heterologous organism, as only the complete gene product was cell bound. This cell-bound activity was released in the presence of sucrose, suggesting that the mode of attachment and release of the S. salivarius FTF in S. gordonii was similar to that in its native host. PMID:8331080
Circuit lower bounds in bounded arithmetics
Pich, Ján
2015-01-01
Roč. 166, č. 1 (2015), s. 29-45. ISSN 0168-0072 R&D Projects: GA AV ČR IAA100190902 Keywords : bounded arithmetic * circuit lower bounds Subject RIV: BA - General Mathematics Impact factor: 0.548, year: 2014 http://www.sciencedirect.com/science/article/pii/S0168007214000888
Maldacena, Juan; Stanford, Douglas
2015-01-01
We conjecture a sharp bound on the rate of growth of chaos in thermal quantum systems with a large number of degrees of freedom. Chaos can be diagnosed using an out-of-time-order correlation function closely related to the commutator of operators separated in time. We conjecture that the influence of chaos on this correlator can develop no faster than exponentially, with Lyapunov exponent $\\lambda_L \\le 2 \\pi k_B T/\\hbar$. We give a precise mathematical argument, based on plausible physical assumptions, establishing this conjecture.
Zhou, Quanlin; Birkholzer, Jens T.; Tsang, Chin-Fu
2008-07-15
A number of (semi-)analytical solutions are available to drawdown analysis and leakage estimation of shallow aquifer-aquitard systems. These solutions assume that the systems are laterally infinite. When a large-scale pumping from (or injection into) an aquifer-aquitard system of lower specific storativity occurs, induced pressure perturbation (or hydraulic head drawdown/rise) may reach the lateral boundary of the aquifer. We developed semi-analytical solutions to address the induced pressure perturbation and vertical leakage in a 'laterally bounded' system consisting of an aquifer and an overlying/underlying aquitard. A one-dimensional radial flow equation for the aquifer was coupled with a one-dimensional vertical flow equation for the aquitard, with a no-flow condition imposed on the outer radial boundary. Analytical solutions were obtained for (1) the Laplace-transform hydraulic head drawdown/rise in the aquifer and in the aquitard, (2) the Laplace-transform rate and volume of leakage through the aquifer-aquitard interface integrated up to an arbitrary radial distance, (3) the transformed total leakage rate and volume for the entire interface, and (4) the transformed horizontal flux at any radius. The total leakage rate and volume depend only on the hydrogeologic properties and thicknesses of the aquifer and aquitard, as well as the duration of pumping or injection. It was proven that the total leakage rate and volume are independent of the aquifer's radial extent and wellbore radius. The derived analytical solutions for bounded systems are the generalized solutions of infinite systems. Laplace-transform solutions were numerically inverted to obtain the hydraulic head drawdown/rise, leakage rate, leakage volume, and horizontal flux for given hydrogeologic and geometric conditions of the aquifer-aquitard system, as well as injection/pumping scenarios. Application to a large-scale injection-and-storage problem in a bounded system was demonstrated.
LHC Beam Stability and Performance of the Q/Q' Diagnostic Instrumentation
Gasior, M; Jackson, S; Jones, OR; Steinhagen, RJ
2010-01-01
The BBQ tune (Q) and chromaticity (Q’) diagnostic systems played a crucial role during the LHC commissioning while establishing circulating beam and first ramps. Early on, they allowed identifying issues such as residual tune stability, beam spectrum interferences and beam-beam effects – all of which may impact beam life-times and thus are being addressed in view of nominal LHC operation. This contribution discusses the initial beam stability in relation to the achieved instrumentation sensitivity, corresponding tune frequency and Q’ resolution.
Bounds on dark matter interpretation of Fermi-LAT GeV excess
Kyoungchul Kong
2014-11-01
Full Text Available Annihilation of light dark matter of mDM≈(10–40 GeV into the Standard Model fermions has been suggested as a possible origin of the gamma-ray excess at GeV energies in the Fermi-LAT data. In this paper, we examine possible model-independent signatures of such dark matter models in other experiments such as AMS-02, colliders, and cosmic microwave background (CMB measurements. We point out that first generation of fermion final states is disfavored by the existing experimental data. Currently AMS-02 positron measurements provide stringent bounds on cross sections of dark matter annihilation into leptonic final states, and e+e− final state is in severe tension with this constraint, if not ruled out. The e+e− channel will be complementarily verified in an early stage of ILC and future CMB measurements. Light quark final states (qq¯ are relatively strongly constrained by the LHC and dark matter direct detection experiments even though these bounds are model-dependent. Dark matter signals from annihilations into qq¯ channels would be constrained by AMS-02 antiproton data which will be released in very near future. In optimistic case, diffuse radio emission from nearby galaxy (clusters and the galactic center might provide another hint or limit on dark matter annihilation.
Bounds on dark matter interpretation of Fermi-LAT GeV excess
Annihilation of light dark matter of mDM≈(10–40) GeV into the Standard Model fermions has been suggested as a possible origin of the gamma-ray excess at GeV energies in the Fermi-LAT data. In this paper, we examine possible model-independent signatures of such dark matter models in other experiments such as AMS-02, colliders, and cosmic microwave background (CMB) measurements. We point out that first generation of fermion final states is disfavored by the existing experimental data. Currently AMS-02 positron measurements provide stringent bounds on cross sections of dark matter annihilation into leptonic final states, and e+e− final state is in severe tension with this constraint, if not ruled out. The e+e− channel will be complementarily verified in an early stage of ILC and future CMB measurements. Light quark final states (qq¯) are relatively strongly constrained by the LHC and dark matter direct detection experiments even though these bounds are model-dependent. Dark matter signals from annihilations into qq¯ channels would be constrained by AMS-02 antiproton data which will be released in very near future. In optimistic case, diffuse radio emission from nearby galaxy (clusters) and the galactic center might provide another hint or limit on dark matter annihilation
Brustein, Ram
2000-01-01
The identification of a causal-connection scale motivates us to propose a new covariant bound on entropy within a generic space-like region. This "causal entropy bound", scaling as the square root of EV, and thus lying around the geometric mean of Bekenstein's S/ER and holographic S/A bounds, is checked in various "critical" situations. In the case of limited gravity, Bekenstein's bound is the strongest while naive holography is the weakest. In the case of strong gravity, our bound and Bousso's holographic bound are stronger than Bekenstein's, while naive holography is too tight, and hence typically wrong.
Capacity Bounds for Parallel Optical Wireless Channels
Chaaban, Anas
2016-01-01
A system consisting of parallel optical wireless channels with a total average intensity constraint is studied. Capacity upper and lower bounds for this system are derived. Under perfect channel-state information at the transmitter (CSIT), the bounds have to be optimized with respect to the power allocation over the parallel channels. The optimization of the lower bound is non-convex, however, the KKT conditions can be used to find a list of possible solutions one of which is optimal. The optimal solution can then be found by an exhaustive search algorithm, which is computationally expensive. To overcome this, we propose low-complexity power allocation algorithms which are nearly optimal. The optimized capacity lower bound nearly coincides with the capacity at high SNR. Without CSIT, our capacity bounds lead to upper and lower bounds on the outage probability. The outage probability bounds meet at high SNR. The system with average and peak intensity constraints is also discussed.
Takahashi, Takéo
2003-01-01
In this paper, we study a fluid--rigid-body interaction problem. The motion of the fluid is modeled by the Navier-Stokes equations, written in an unknown bounded domain depending on the displacement of the rigid body. Our main result yields existence and uniqueness of strong solutions. In the two-dimensional case, the solutions are global provided that the rigid body does not touch the boundary. In the three-dimensional case, we obtain local-in-time existence and global existen...
Suñé, Víctor; Carrasco, Juan A.
2001-01-01
CTMC (continuous-time Markov chains) are a commonly used formalism for modeling fault-tolerant systems. One of the major drawbacks of CTMC is the well-known state-space explosion problem. This work develops and analyzes a method (SC-BM) to compute bounds for the reliability of non-repairable fault-tolerant systems in which only a portion of the state space of the CTMC is generated. SC-BM uses the failure distance concept as the method described in [1] but, unlike that method, w...
Scattering of a particle by bound nucleons is discussed. Effects of nucleons that are bound in a nucleus are taken as a structure function. The way how to calculate the structure function is given. (author)
Variance bounding Markov chains
Roberts, Gareth O.; Jeffrey S. Rosenthal
2008-01-01
We introduce a new property of Markov chains, called variance bounding. We prove that, for reversible chains at least, variance bounding is weaker than, but closely related to, geometric ergodicity. Furthermore, variance bounding is equivalent to the existence of usual central limit theorems for all L2 functionals. Also, variance bounding (unlike geometric ergodicity) is preserved under the Peskun order. We close with some applications to Metropolis–Hastings algorithms.
Brustein, R; Veneziano, G
1999-01-01
The identification of a causal-connection scale motivates us to propose a new covariant bound on entropy within a generic space-like region. This "causal entropy bound", scaling as the square root of EV, and thus lying around the geometric mean of Bekenstein's S/ER and holographic S/A bounds, is checked in various "critical" situations. In the case of limited gravity, Bekenstein's bound is the strongest while naive holography is the weakest. In the case of strong gravity, our bound and Bousso...
It is shown that critical long distance behaviour for a two-body potential, defining the finiteness or infinitude of the number of negative eigenvalues of Schrodinger operators in ν-dimensions, are given by v sub(k) (r) = - [ν-2/2r]2 - 1/(2rlnr)2 + ... - 1/(2rlnr.lnlnr...ln sub(k)r)2 where k=0,1... for ν not=2 and k=1,2... if ν=2. This result is a consequence of logarithmic corrections to an inequality known as Uncertainty Principle. If the continuum threshold in the N-body problem is defined by a two-cluster break up our results generate corrections to the existing sufficient conditions for the existence of infinitely many bound states. (Author)
Thermodynamic law from the entanglement entropy bound
Park, Chanyong
2016-04-01
From black hole thermodynamics, the Bekenstein bound has been proposed as a universal thermal entropy bound. It has been further generalized to an entanglement entropy bound which is valid even in a quantum system. In a quantumly entangled system, the non-negativity of the relative entropy leads to the entanglement entropy bound. When the entanglement entropy bound is saturated, a quantum system satisfies the thermodynamicslike law with an appropriately defined entanglement temperature. We show that the saturation of the entanglement entropy bound accounts for a universal feature of the entanglement temperature proportional to the inverse of the system size. In addition, we show that the deformed modular Hamiltonian under a global quench also satisfies the generalized entanglement entropy boundary after introducing a new quantity called the entanglement chemical potential.
Call packing bounds for overflow queues
van Dijk; Sluis, van der, B.
2004-01-01
Finite queueing loss systems are studied with overflow. For these systems there is no simple analytic expression for the loss probability or throughput. This paper aims to prove and promote easily computable bounds as based upon the so-called call packing principle. Under call packing a standard product form expression is available. It is proven that call packing leads to a guaranteed upper bound for the loss probability. In addition, an analytic error bound for the accuracy is derived which ...
The problem of stabilizing a solution of the 2D Navier-Stokes system defined in the exterior of a bounded domain with smooth boundary is investigated. For a given initial velocity field a control on the boundary of the domain must be constructed such that the solution stabilizes to a prescribed vortex solution or trivial solution at the rate of 1/tk. On the way, related questions are investigated, concerning the behaviour of the spectrum of an operator under a relatively compact perturbation and the existence of attracting invariant manifolds. Bibliography: 21 titles.
周胜林
2001-01-01
首先讨论自同构群是典型群PSL(3,q)(q=2l)的区本原的2-(v,k,1)设计,证明了它必是点本原的.其次证明了区本原的2-(v,k,1)设计不能以PSL(2,q)(q=2l)作为其自同构群.%Let D be a 2-(v,k,1) design and G≤Aut be the aut omorphism groupof . In this paper,it is proved that if G is block-primitiv e and PSL(3,q2)(q=2l),then it is also point-primitive. More over,a blo ck-primitive 2-(v,k,1)design does not have PSL(2,q) as its aut omorphism group.
Bourgine, Jean-Emile; Matsuo, Yutaka; Zhang, Hong; Zhu, Rui-Dong
2016-01-01
The instanton partition functions of $\\mathcal{N}=1$ 5d super Yang-Mills are built using elements of the representation theory of quantum $\\mathcal{W}_{1+\\infty}$ algebra: Gaiotto state, intertwiner, vertex operator. This algebra is also known under the names of Ding-Iohara-Miki and quantum toroidal $\\widehat{\\mathfrak{gl}}(1)$ algebra. Exploiting the explicit action of the algebra on the partition function, we prove the regularity of the 5d qq-characters. These characters provide a solution to the Schwinger-Dyson equations, and they can also be interpreted as a quantum version of the Seiberg-Witten curve.
Catastrophic instabilities of modified DA-DC hybrid surface waves in a semi-bounded plasma system
Lee, Myoung-Jae; Jung, Young-Dae
2016-06-01
We find the catastrophic instabilities and derive the growth rates for the dust-cyclotron resonance (DCR) and dust-rotation resonance (DRR) modes of the modified dust-acoustic and dust-cyclotron (DA-DC) hybrid surface waves propagating at the plasma-vacuum interface where the plasma is semi-bounded and composed of electrons and rotating dust grains. The effects of magnetic field and dust rotation frequency on the DCR- and DDR-modes are also investigated. We find that the dust rotation frequency enhances the growth rate of DCR-mode and the effect of dust rotation on this resonance mode decreases with an increase of the wave number. We also find that an increase of magnetic field strength enhances the DCR growth rate, especially, for the short wavelength regime. In the case of DRR-mode, the growth rate is found to be decreased less sensitively with an increase of the wave number compared with the case of DCR, but much significantly enhanced by an increase of dust rotation frequency. The DRR growth rate also decreases with an increase of the magnetic field strength, especially in the long wavelength regime. Interestingly, we find that catastrophic instabilities occur for both DCR- and DRR-modes of the modified DA-DC hybrid surface waves when the rotational frequency is close to the dust-cyclotron frequency. Both modes can also be excited catastrophically due to the cooperative interaction between the DCR-mode and the DRR-mode.
Bousso, Raphael
2016-01-01
We show that known entropy bounds constrain the information carried off by radiation to null infinity. We consider distant, planar null hypersurfaces in asymptotically flat spacetime. Their focussing and area loss can be computed perturbatively on a Minkowski background, yielding entropy bounds in terms of the energy flux of the outgoing radiation. In the asymptotic limit, we obtain boundary versions of the Quantum Null Energy Condition, of the Generalized Second Law, and of the Quantum Bousso Bound.
Tang, D. Y.; B. Zhao; Shen, D. Y.; Lu, C.
2009-01-01
Experimental study on the soliton dynamics of a passively mode locked fiber ring laser firstly revealed a state of bound soliton operation in the laser, where two solitons bind together tightly with fixed pulse separation. We further report on the properties of the bound-soliton emission of the laser. In particular, we demonstrate both experimentally and numerically that, like the single pulse soliton operation of the laser, the bound soliton emission is another intrinsic feature of the laser.
Bounding solutions of Pfaff equations
Esteves, E.; Kleiman, S
2003-01-01
Let \\omega be a Pfaff system of differential forms on a projective space. Let S be its singular locus, and Y a solution of \\omega=0. We prove Y\\cap S is of codimension at most 1 in Y, just as Jouanolou suspected; he proved this result assuming \\omega is completely integrable, and asked if the integrability is, in fact, needed. Furthermore, we prove a lower bound on the Castelnuovo--Mumford regularity of Y\\cap S. As in two related articles, we derive upper bounds on numerical invariants of Y, ...