Tásia Hickmann
2015-11-01
Full Text Available In this paper, an iterative forecasting methodology for time series prediction that integrates wavelet de-noising and decomposition with an Artificial Neural Network (ANN and Bootstrap methods is put forward here. Basically, a given time series to be forecasted is initially decomposed into trend and noise (wavelet components by using a wavelet de-noising algorithm. Both trend and noise components are then further decomposed by means of a wavelet decomposition method producing orthonormal Wavelet Components (WCs for each one. Each WC is separately modelled through an ANN in order to provide both in-sample and out-of-sample forecasts. At each time t, the respective forecasts of the WCs of the trend and noise components are simply added to produce the in-sample and out-of-sample forecasts of the underlying time series. Finally, out-of-sample predictive densities are empirically simulated by the Bootstrap sampler and the confidence intervals are then yielded, considering some level of credibility. The proposed methodology, when applied to the well-known Canadian lynx data that exhibit non-linearity and non-Gaussian properties, has outperformed other methods traditionally used to forecast it.
A neural network based reputation bootstrapping approach for service selection
Wu, Quanwang; Zhu, Qingsheng; Li, Peng
2015-10-01
With the concept of service-oriented computing becoming widely accepted in enterprise application integration, more and more computing resources are encapsulated as services and published online. Reputation mechanism has been studied to establish trust on prior unknown services. One of the limitations of current reputation mechanisms is that they cannot assess the reputation of newly deployed services as no record of their previous behaviours exists. Most of the current bootstrapping approaches merely assign default reputation values to newcomers. However, by this kind of methods, either newcomers or existing services will be favoured. In this paper, we present a novel reputation bootstrapping approach, where correlations between features and performance of existing services are learned through an artificial neural network (ANN) and they are then generalised to establish a tentative reputation when evaluating new and unknown services. Reputations of services published previously by the same provider are also incorporated for reputation bootstrapping if available. The proposed reputation bootstrapping approach is seamlessly embedded into an existing reputation model and implemented in the extended service-oriented architecture. Empirical studies of the proposed approach are shown at last.
Evaluating Neural Network Predictors by Bootstrapping
Blake LeBaron; Andreas S. Weigend
1994-01-01
We present a new method, inspired by the bootstrap, whose goal it is to determine the quality and reliability of a neural network predictor. Our method leads to more robust forecasting along with a large amount of statistical information on forecast performance that we exploit. We exhibit the method in the context of multi-variate time series prediction on financial data from the New York Stock Exchange. It turns out that the variation due to different resamplings (i.e., splits between traini...
On Bootstrap Percolation in Living Neural Networks
Amini, Hamed
2009-01-01
Recent experimental studies of living neural networks reveal that their global activation induced by electrical stimulation can be explained using the concept of bootstrap percolation on a directed random network. The experiment consists in activating externally an initial random fraction of the neurons and observe the process of firing until its equilibrium. The final portion of neurons that are active depends in a non linear way on the initial fraction. The main result of this paper is a theorem which enables us to find the asymptotic of final proportion of the fired neurons in the case of random directed graphs with given node degrees as the model for interacting network. This gives a rigorous mathematical proof of a phenomena observed by physicists in neural networks.
Introduction to Artificial Neural Networks
Larsen, Jan
1999-01-01
The note addresses introduction to signal analysis and classification based on artificial feed-forward neural networks.......The note addresses introduction to signal analysis and classification based on artificial feed-forward neural networks....
Kapil Nahar
2012-12-01
Full Text Available An artificial neural network is an information-processing paradigm that is inspired by the way biological nervous systems, such as the brain, process information. The key element of this paradigm is the novel structure of the information processing system. It is composed of a large number of highly interconnected processing elements (neurons working in unison to solve specific problems. Ann’s, like people, learn by example.
Artificial neural network modelling
Samarasinghe, Sandhya
2016-01-01
This book covers theoretical aspects as well as recent innovative applications of Artificial Neural networks (ANNs) in natural, environmental, biological, social, industrial and automated systems. It presents recent results of ANNs in modelling small, large and complex systems under three categories, namely, 1) Networks, Structure Optimisation, Robustness and Stochasticity 2) Advances in Modelling Biological and Environmental Systems and 3) Advances in Modelling Social and Economic Systems. The book aims at serving undergraduates, postgraduates and researchers in ANN computational modelling. .
Generalized Adaptive Artificial Neural Networks
Tawel, Raoul
1993-01-01
Mathematical model of supervised learning by artificial neural network provides for simultaneous adjustments of both temperatures of neurons and synaptic weights, and includes feedback as well as feedforward synaptic connections. Extension of mathematical model described in "Adaptive Neurons For Artificial Neural Networks" (NPO-17803). Dynamics of neural network represented in new model by less-restrictive continuous formalism.
What are artificial neural networks?
Krogh, Anders
2008-01-01
Artificial neural networks have been applied to problems ranging from speech recognition to prediction of protein secondary structure, classification of cancers and gene prediction. How do they work and what might they be good for? Udgivelsesdato: 2008-Feb......Artificial neural networks have been applied to problems ranging from speech recognition to prediction of protein secondary structure, classification of cancers and gene prediction. How do they work and what might they be good for? Udgivelsesdato: 2008-Feb...
Principles of artificial neural networks
Graupe, Daniel
2013-01-01
Artificial neural networks are most suitable for solving problems that are complex, ill-defined, highly nonlinear, of many and different variables, and/or stochastic. Such problems are abundant in medicine, in finance, in security and beyond. This volume covers the basic theory and architecture of the major artificial neural networks. Uniquely, it presents 18 complete case studies of applications of neural networks in various fields, ranging from cell-shape classification to micro-trading in finance and to constellation recognition - all with their respective source codes. These case studies
Artificial neural networks in NDT
Artificial neural networks, simply known as neural networks, have attracted considerable interest in recent years largely because of a growing recognition of the potential of these computational paradigms as powerful alternative models to conventional pattern recognition or function approximation techniques. The neural networks approach is having a profound effect on almost all fields, and has been utilised in fields Where experimental inter-disciplinary work is being carried out. Being a multidisciplinary subject with a broad knowledge base, Nondestructive Testing (NDT) or Nondestructive Evaluation (NDE) is no exception. This paper explains typical applications of neural networks in NDT/NDE. Three promising types of neural networks are highlighted, namely, back-propagation, binary Hopfield and Kohonen's self-organising maps. (Author)
Artificial neural networks in medicine
Keller, P.E.
1994-07-01
This Technology Brief provides an overview of artificial neural networks (ANN). A definition and explanation of an ANN is given and situations in which an ANN is used are described. ANN applications to medicine specifically are then explored and the areas in which it is currently being used are discussed. Included are medical diagnostic aides, biochemical analysis, medical image analysis and drug development.
Introduction to Concepts in Artificial Neural Networks
Niebur, Dagmar
1995-01-01
This introduction to artificial neural networks summarizes some basic concepts of computational neuroscience and the resulting models of artificial neurons. The terminology of biological and artificial neurons, biological and machine learning and neural processing is introduced. The concepts of supervised and unsupervised learning are explained with examples from the power system area. Finally, a taxonomy of different types of neurons and different classes of artificial neural networks is presented.
Langella, Giuliano; Basile, Angelo; Bonfante, Antonello; Manna, Piero; Terribile, Fabio
2013-04-01
Digital soil mapping procedures are widespread used to build two-dimensional continuous maps about several pedological attributes. Our work addressed a regression kriging (RK) technique and a bootstrapped artificial neural network approach in order to evaluate and compare (i) the accuracy of prediction, (ii) the susceptibility of being included in automatic engines (e.g. to constitute web processing services), and (iii) the time cost needed for calibrating models and for making predictions. Regression kriging is maybe the most widely used geostatistical technique in the digital soil mapping literature. Here we tried to apply the EBLUP regression kriging as it is deemed to be the most statistically sound RK flavor by pedometricians. An unusual multi-parametric and nonlinear machine learning approach was accomplished, called BAGAP (Bootstrap aggregating Artificial neural networks with Genetic Algorithms and Principal component regression). BAGAP combines a selected set of weighted neural nets having specified characteristics to yield an ensemble response. The purpose of applying these two particular models is to ascertain whether and how much a more cumbersome machine learning method could be much promising in making more accurate/precise predictions. Being aware of the difficulty to handle objects based on EBLUP-RK as well as BAGAP when they are embedded in environmental applications, we explore the susceptibility of them in being wrapped within Web Processing Services. Two further kinds of aspects are faced for an exhaustive evaluation and comparison: automaticity and time of calculation with/without high performance computing leverage.
Plant Growth Models Using Artificial Neural Networks
Bubenheim, David
1997-01-01
In this paper, we descrive our motivation and approach to devloping models and the neural network architecture. Initial use of the artificial neural network for modeling the single plant process of transpiration is presented.
Artificial Neural Networks An Introduction
Priddy, Kevin L
2005-01-01
This tutorial text provides the reader with an understanding of artificial neural networks (ANNs) and their application, beginning with the biological systems which inspired them, through the learning methods that have been developed and the data collection processes, to the many ways ANNs are being used today. The material is presented with a minimum of math (although the mathematical details are included in the appendices for interested readers), and with a maximum of hands-on experience. All specialized terms are included in a glossary. The result is a highly readable text that will teach t
Modular, Hierarchical Learning By Artificial Neural Networks
Baldi, Pierre F.; Toomarian, Nikzad
1996-01-01
Modular and hierarchical approach to supervised learning by artificial neural networks leads to neural networks more structured than neural networks in which all neurons fully interconnected. These networks utilize general feedforward flow of information and sparse recurrent connections to achieve dynamical effects. The modular organization, sparsity of modular units and connections, and fact that learning is much more circumscribed are all attractive features for designing neural-network hardware. Learning streamlined by imitating some aspects of biological neural networks.
Artificial neural networks in nuclear medicine
An analysis of the accessible literature on the diagnostic applicability of artificial neural networks in coronary artery disease and pulmonary embolism appears to be comparative to the diagnosis of experienced doctors dealing with nuclear medicine. Differences in the employed models of artificial neural networks indicate a constant search for the most optimal parameters, which could guarantee the ultimate accuracy in neural network activity. The diagnostic potential within systems containing artificial neural networks proves this calculation tool to be an independent or/and an additional device for supporting a doctor's diagnosis of artery disease and pulmonary embolism. (author)
Modelling Microwave Devices Using Artificial Neural Networks
Andrius Katkevičius
2012-04-01
Full Text Available Artificial neural networks (ANN have recently gained attention as fast and flexible equipment for modelling and designing microwave devices. The paper reviews the opportunities to use them for undertaking the tasks on the analysis and synthesis. The article focuses on what tasks might be solved using neural networks, what challenges might rise when using artificial neural networks for carrying out tasks on microwave devices and discusses problem-solving techniques for microwave devices with intermittent characteristics.Article in Lithuanian
Visual Character Recognition using Artificial Neural Networks
Araokar, Shashank
2005-01-01
The recognition of optical characters is known to be one of the earliest applications of Artificial Neural Networks, which partially emulate human thinking in the domain of artificial intelligence. In this paper, a simplified neural approach to recognition of optical or visual characters is portrayed and discussed. The document is expected to serve as a resource for learners and amateur investigators in pattern recognition, neural networking and related disciplines.
Introduction to artificial neural networks.
Grossi, Enzo; Buscema, Massimo
2007-12-01
The coupling of computer science and theoretical bases such as nonlinear dynamics and chaos theory allows the creation of 'intelligent' agents, such as artificial neural networks (ANNs), able to adapt themselves dynamically to problems of high complexity. ANNs are able to reproduce the dynamic interaction of multiple factors simultaneously, allowing the study of complexity; they can also draw conclusions on individual basis and not as average trends. These tools can offer specific advantages with respect to classical statistical techniques. This article is designed to acquaint gastroenterologists with concepts and paradigms related to ANNs. The family of ANNs, when appropriately selected and used, permits the maximization of what can be derived from available data and from complex, dynamic, and multidimensional phenomena, which are often poorly predictable in the traditional 'cause and effect' philosophy. PMID:17998827
Learning in Artificial Neural Systems
Matheus, Christopher J.; Hohensee, William E.
1987-01-01
This paper presents an overview and analysis of learning in Artificial Neural Systems (ANS's). It begins with a general introduction to neural networks and connectionist approaches to information processing. The basis for learning in ANS's is then described, and compared with classical Machine learning. While similar in some ways, ANS learning deviates from tradition in its dependence on the modification of individual weights to bring about changes in a knowledge representation distributed across connections in a network. This unique form of learning is analyzed from two aspects: the selection of an appropriate network architecture for representing the problem, and the choice of a suitable learning rule capable of reproducing the desired function within the given network. The various network architectures are classified, and then identified with explicit restrictions on the types of functions they are capable of representing. The learning rules, i.e., algorithms that specify how the network weights are modified, are similarly taxonomized, and where possible, the limitations inherent to specific classes of rules are outlined.
Tiwari, Mukesh K.; Adamowski, Jan
2013-10-01
A new hybrid wavelet-bootstrap-neural network (WBNN) model is proposed in this study for short term (1, 3, and 5 day; 1 and 2 week; and 1 and 2 month) urban water demand forecasting. The new method was tested using data from the city of Montreal in Canada. The performance of the WBNN method was compared with the autoregressive integrated moving average (ARIMA) and autoregressive integrated moving average model with exogenous input variables (ARIMAX), traditional NNs, wavelet analysis-based NNs (WNN), bootstrap-based NNs (BNN), and a simple naïve persistence index model. The WBNN model was developed as an ensemble of several NNs built using bootstrap resamples of wavelet subtime series instead of raw data sets. The results demonstrated that the hybrid WBNN and WNN models produced significantly more accurate forecasting results than the traditional NN, BNN, ARIMA, and ARIMAX models. It was also found that the WBNN model reduces the uncertainty associated with the forecasts, and the performance of WBNN forecasted confidence bands was found to be more accurate and reliable than BNN forecasted confidence bands. It was found in this study that maximum temperature and total precipitation improved the accuracy of water demand forecasts using wavelet analysis. The performance of WBNN models was also compared for different numbers of bootstrap resamples (i.e., 25, 50, 100, 200, and 500) and it was found that WBNN models produced optimum results with different numbers of bootstrap resamples for different lead time forecasts with considerable variability.
International Conference on Artificial Neural Networks (ICANN)
Mladenov, Valeri; Kasabov, Nikola; Artificial Neural Networks : Methods and Applications in Bio-/Neuroinformatics
2015-01-01
The book reports on the latest theories on artificial neural networks, with a special emphasis on bio-neuroinformatics methods. It includes twenty-three papers selected from among the best contributions on bio-neuroinformatics-related issues, which were presented at the International Conference on Artificial Neural Networks, held in Sofia, Bulgaria, on September 10-13, 2013 (ICANN 2013). The book covers a broad range of topics concerning the theory and applications of artificial neural networks, including recurrent neural networks, super-Turing computation and reservoir computing, double-layer vector perceptrons, nonnegative matrix factorization, bio-inspired models of cell communities, Gestalt laws, embodied theory of language understanding, saccadic gaze shifts and memory formation, and new training algorithms for Deep Boltzmann Machines, as well as dynamic neural networks and kernel machines. It also reports on new approaches to reinforcement learning, optimal control of discrete time-delay systems, new al...
Pragmatic Bootstrapping: A Neural Network Model of Vocabulary Acquisition
Caza, Gregory A.; Knott, Alistair
2012-01-01
The social-pragmatic theory of language acquisition proposes that children only become efficient at learning the meanings of words once they acquire the ability to understand the intentions of other agents, in particular the intention to communicate (Akhtar & Tomasello, 2000). In this paper we present a neural network model of word learning which…
Artificial Neural Networks and Instructional Technology.
Carlson, Patricia A.
1991-01-01
Artificial neural networks (ANN), part of artificial intelligence, are discussed. Such networks are fed sample cases (training sets), learn how to recognize patterns in the sample data, and use this experience in handling new cases. Two cognitive roles for ANNs (intelligent filters and spreading, associative memories) are examined. Prototypes…
Artificial astrocytes improve neural network performance.
Porto-Pazos, Ana B; Veiguela, Noha; Mesejo, Pablo; Navarrete, Marta; Alvarellos, Alberto; Ibáñez, Oscar; Pazos, Alejandro; Araque, Alfonso
2011-01-01
Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN) and artificial neuron-glia networks (NGN) to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function. PMID:21526157
Artificial astrocytes improve neural network performance.
Ana B Porto-Pazos
Full Text Available Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN and artificial neuron-glia networks (NGN to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function.
The principles of artificial neural network information processing
In this article, the basic structure of an artificial neuron is first introduced. In addition, principles of artificial neural network as well as several important artificial neural models such as Perceptron, Back propagation model, Hopfield net, and ART model are briefly discussed and analyzed. Finally, the application of artificial neural network for Chinese Character Recognition is also given. (author)
The principles of artificial neural network information processing
In this article, the basic structure of an artificial neuron is first introduced. In addition, principles of artificial neural network as well as several important artificial neural models such as perception, back propagation model, Hopfield net, and ART model are briefly discussed and analyzed. Finally the application of artificial neural network for Chinese character recognition is also given. (author)
Rule Extraction using Artificial Neural Networks
Kamruzzaman, S M
2010-01-01
Artificial neural networks have been successfully applied to a variety of business application problems involving classification and regression. Although backpropagation neural networks generally predict better than decision trees do for pattern classification problems, they are often regarded as black boxes, i.e., their predictions are not as interpretable as those of decision trees. In many applications, it is desirable to extract knowledge from trained neural networks so that the users can gain a better understanding of the solution. This paper presents an efficient algorithm to extract rules from artificial neural networks. We use two-phase training algorithm for backpropagation learning. In the first phase, the number of hidden nodes of the network is determined automatically in a constructive fashion by adding nodes one after another based on the performance of the network on training data. In the second phase, the number of relevant input units of the network is determined using pruning algorithm. The ...
Alpha spectral analysis via artificial neural networks
Kangas, L.J.; Hashem, S.; Keller, P.E.; Kouzes, R.T. [Pacific Northwest Lab., Richland, WA (United States); Troyer, G.L. [Westinghouse Hanford Co., Richland, WA (United States)
1994-10-01
An artificial neural network system that assigns quality factors to alpha particle energy spectra is discussed. The alpha energy spectra are used to detect plutonium contamination in the work environment. The quality factors represent the levels of spectral degradation caused by miscalibration and foreign matter affecting the instruments. A set of spectra was labeled with a quality factor by an expert and used in training the artificial neural network expert system. The investigation shows that the expert knowledge of alpha spectra quality factors can be transferred to an ANN system.
Alpha spectral analysis via artificial neural networks
An artificial neural network system that assigns quality factors to alpha particle energy spectra is discussed. The alpha energy spectra are used to detect plutonium contamination in the work environment. The quality factors represent the levels of spectral degradation caused by miscalibration and foreign matter affecting the instruments. A set of spectra was labeled with a quality factor by an expert and used in training the artificial neural network expert system. The investigation shows that the expert knowledge of alpha spectra quality factors can be transferred to an ANN system
Bootstrap re-sampling and cross-validation for neural network learning
Dupret, Georges; Koda, Masato
2000-01-01
A technical framework to assess the impact of re-sampling on the ability of a neural network is presented to correctly learn a classification problem.We use the bootstrap expression of the prediction error to identify the optimal re-sampling proportions in a numerical experiment with binary classes and propose a new,simple method to estimate this optimal proportion.An upper and a lower bounds for the optimal proportion are derived based on Bayes decision rule.The analytical considerations to ...
Comparing artificial and biological dynamical neural networks
McAulay, Alastair D.
2006-05-01
Modern computers can be made more friendly and otherwise improved by making them behave more like humans. Perhaps we can learn how to do this from biology in which human brains evolved over a long period of time. Therefore, we first explain a commonly used biological neural network (BNN) model, the Wilson-Cowan neural oscillator, that has cross-coupled excitatory (positive) and inhibitory (negative) neurons. The two types of neurons are used for frequency modulation communication between neurons which provides immunity to electromagnetic interference. We then evolve, for the first time, an artificial neural network (ANN) to perform the same task. Two dynamical feed-forward artificial neural networks use cross-coupling feedback (like that in a flip-flop) to form an ANN nonlinear dynamic neural oscillator with the same equations as the Wilson-Cowan neural oscillator. Finally we show, through simulation, that the equations perform the basic neural threshold function, switching between stable zero output and a stable oscillation, that is a stable limit cycle. Optical implementation with an injected laser diode and future research are discussed.
Psychometric Measurement Models and Artificial Neural Networks
Sese, Albert; Palmer, Alfonso L.; Montano, Juan J.
2004-01-01
The study of measurement models in psychometrics by means of dimensionality reduction techniques such as Principal Components Analysis (PCA) is a very common practice. In recent times, an upsurge of interest in the study of artificial neural networks apt to computing a principal component extraction has been observed. Despite this interest, the…
Web traffic prediction with artificial neural networks
Gluszek, Adam; Kekez, Michal; Rudzinski, Filip
2005-02-01
The main aim of the paper is to present application of the artificial neural network in the web traffic prediction. First, the general problem of time series modelling and forecasting is shortly described. Next, the details of building of dynamic processes models with the neural networks are discussed. At this point determination of the model structure in terms of its inputs and outputs is the most important question because this structure is a rough approximation of the dynamics of the modelled process. The following section of the paper presents the results obtained applying artificial neural network (classical multilayer perceptron trained with backpropagation algorithm) to the real-world web traffic prediction. Finally, we discuss the results, describe weak points of presented method and propose some alternative approaches.
Chaotic time series prediction using artificial neural networks
Bartlett, E.B.
1991-01-01
This paper describes the use of artificial neural networks to model the complex oscillations defined by a chaotic Verhuist animal population dynamic. A predictive artificial neural network model is developed and tested, and results of computer simulations are given. These results show that the artificial neural network model predicts the chaotic time series with various initial conditions, growth parameters, or noise.
Chaotic time series prediction using artificial neural networks
Bartlett, E.B.
1991-12-31
This paper describes the use of artificial neural networks to model the complex oscillations defined by a chaotic Verhuist animal population dynamic. A predictive artificial neural network model is developed and tested, and results of computer simulations are given. These results show that the artificial neural network model predicts the chaotic time series with various initial conditions, growth parameters, or noise.
Artificial neural networks for plasma spectroscopy analysis
Artificial neural networks have been applied to a variety of signal processing and image recognition problems. Of the several common neural models the feed-forward, back-propagation network is well suited for the analysis of scientific laboratory data, which can be viewed as a pattern recognition problem. The authors present a discussion of the basic neural network concepts and illustrate its potential for analysis of experiments by applying it to the spectra of laser produced plasmas in order to obtain estimates of electron temperatures and densities. Although these are high temperature and density plasmas, the neural network technique may be of interest in the analysis of the low temperature and density plasmas characteristic of experiments and devices in gaseous electronics
Artificial neural network applications in ionospheric studies
L. R. Cander
1998-06-01
Full Text Available The ionosphere of Earth exhibits considerable spatial changes and has large temporal variability of various timescales related to the mechanisms of creation, decay and transport of space ionospheric plasma. Many techniques for modelling electron density profiles through entire ionosphere have been developed in order to solve the "age-old problem" of ionospheric physics which has not yet been fully solved. A new way to address this problem is by applying artificial intelligence methodologies to current large amounts of solar-terrestrial and ionospheric data. It is the aim of this paper to show by the most recent examples that modern development of numerical models for ionospheric monthly median long-term prediction and daily hourly short-term forecasting may proceed successfully applying the artificial neural networks. The performance of these techniques is illustrated with different artificial neural networks developed to model and predict the temporal and spatial variations of ionospheric critical frequency, f0F2 and Total Electron Content (TEC. Comparisons between results obtained by the proposed approaches and measured f0F2 and TEC data provide prospects for future applications of the artificial neural networks in ionospheric studies.
Artificial neural networks in neutron dosimetry
Vega C, H.R.; Hernandez D, V.M.; Manzanares A, E.; Mercado, G.A.; Perales M, W.A.; Robles R, J.A. [Unidades Academicas de Estudios Nucleares, UAZ, A.P. 336, 98000 Zacatecas (Mexico); Gallego, E.; Lorente, A. [Depto. de Ingenieria Nuclear, Universidad Politecnica de Madrid, (Spain)
2005-07-01
An artificial neural network has been designed to obtain the neutron doses using only the Bonner spheres spectrometer's count rates. Ambient, personal and effective neutron doses were included. 187 neutron spectra were utilized to calculate the Bonner count rates and the neutron doses. The spectra were transformed from lethargy to energy distribution and were re-binned to 31 energy groups using the MCNP 4C code. Re-binned spectra, UTA4 response matrix and fluence-to-dose coefficients were used to calculate the count rates in Bonner spheres spectrometer and the doses. Count rates were used as input and the respective doses were used as output during neural network training. Training and testing was carried out in Mat lab environment. The artificial neural network performance was evaluated using the {chi}{sup 2}- test, where the original and calculated doses were compared. The use of Artificial Neural Networks in neutron dosimetry is an alternative procedure that overcomes the drawbacks associated in this ill-conditioned problem. (Author)
Artificial neural networks in neutron dosimetry
An artificial neural network has been designed to obtain the neutron doses using only the Bonner spheres spectrometer's count rates. Ambient, personal and effective neutron doses were included. 187 neutron spectra were utilized to calculate the Bonner count rates and the neutron doses. The spectra were transformed from lethargy to energy distribution and were re-binned to 31 energy groups using the MCNP 4C code. Re-binned spectra, UTA4 response matrix and fluence-to-dose coefficients were used to calculate the count rates in Bonner spheres spectrometer and the doses. Count rates were used as input and the respective doses were used as output during neural network training. Training and testing was carried out in Mat lab environment. The artificial neural network performance was evaluated using the χ2- test, where the original and calculated doses were compared. The use of Artificial Neural Networks in neutron dosimetry is an alternative procedure that overcomes the drawbacks associated in this ill-conditioned problem. (Author)
Livermore Big Artificial Neural Network Toolkit
2016-07-01
LBANN is a toolkit that is designed to train artificial neural networks efficiently on high performance computing architectures. It is optimized to take advantages of key High Performance Computing features to accelerate neural network training. Specifically it is optimized for low-latency, high bandwidth interconnects, node-local NVRAM, node-local GPU accelerators, and high bandwidth parallel file systems. It is built on top of the open source Elemental distributed-memory dense and spars-direct linear algebra and optimization library that is released under the BSD license. The algorithms contained within LBANN are drawn from the academic literature and implemented to work within a distributed-memory framework.
Development of programmable artificial neural networks
Meade, Andrew J.
1993-01-01
Conventionally programmed digital computers can process numbers with great speed and precision, but do not easily recognize patterns or imprecise or contradictory data. Instead of being programmed in the conventional sense, artificial neural networks are capable of self-learning through exposure to repeated examples. However, the training of an ANN can be a time consuming and unpredictable process. A general method is being developed to mate the adaptability of the ANN with the speed and precision of the digital computer. This method was successful in building feedforward networks that can approximate functions and their partial derivatives from examples in a single iteration. The general method also allows the formation of feedforward networks that can approximate the solution to nonlinear ordinary and partial differential equations to desired accuracy without the need of examples. It is believed that continued research will produce artificial neural networks that can be used with confidence in practical scientific computing and engineering applications.
Artificial Neural Network for Displacement Vectors Determination
P. Bohmann
1997-09-01
Full Text Available An artificial neural network (NN for displacement vectors (DV determination is presented in this paper. DV are computed in areas which are essential for image analysis and computer vision, in areas where are edges, lines, corners etc. These special features are found by edges operators with the following filtration. The filtration is performed by a threshold function. The next step is DV computation by 2D Hamming artificial neural network. A method of DV computation is based on the full search block matching algorithms. The pre-processing (edges finding is the reason why the correlation function is very simple, the process of DV determination needs less computation and the structure of the NN is simpler.
Artificial Neural Networks, Symmetries and Differential Evolution
Urfalioglu, Onay; Arikan, Orhan
2010-01-01
Neuroevolution is an active and growing research field, especially in times of increasingly parallel computing architectures. Learning methods for Artificial Neural Networks (ANN) can be divided into two groups. Neuroevolution is mainly based on Monte-Carlo techniques and belongs to the group of global search methods, whereas other methods such as backpropagation belong to the group of local search methods. ANN's comprise important symmetry properties, which can influence Monte-Carlo methods....
Forecasting Runoff with Artificial Neural Networks
Neruda, M.; Neruda, Roman; Kudová, Petra
Paris : UNESCO, 2005 - (Maraga, F.), s. 65-69 [ERB 2004. Euromediterranean Network of Experimental and Representative Basins /10./. Turin (IT), 13.10.2004-17.10.2004] R&D Projects: GA ČR(CZ) GA201/02/0428 Institutional research plan: CEZ:AV0Z10300504 Keywords : artificial neural network s * rainfall-runoff modelling * multilayer perceptron * Radial Basis Functions (RBF) Subject RIV: BA - General Mathematics
Artificial Neural Networks for Pollution Forecast
Pasero, Eros; Mesin, Luca
2010-01-01
This chapter provides an introduction to non-linear methods for the prediction of the concentration of air pollutants. We focused on the selection of features and the modelling and processing techniques based on the theory of Artificial Neural Networks, using Multi Layer Perceptrons and Support Vector Machines. Joint measurements of meteorological data and pollutants concentrations is useful in order to increase the number of parameters to be studied for the construction of mathematical air q...
Turing Computation with Recurrent Artificial Neural Networks
Carmantini, Giovanni S; Graben, Peter beim; Desroches, Mathieu; Rodrigues, Serafim
2015-01-01
We improve the results by Siegelmann & Sontag (1995) by providing a novel and parsimonious constructive mapping between Turing Machines and Recurrent Artificial Neural Networks, based on recent developments of Nonlinear Dynamical Automata. The architecture of the resulting R-ANNs is simple and elegant, stemming from its transparent relation with the underlying NDAs. These characteristics yield promise for developments in machine learning methods and symbolic computation with continuous time d...
Web Page Categorization Using Artificial Neural Networks
S. M. Kamruzzaman
2010-01-01
Web page categorization is one of the challenging tasks in the world of ever increasing web technologies. There are many ways of categorization of web pages based on different approach and features. This paper proposes a new dimension in the way of categorization of web pages using artificial neural network (ANN) through extracting the features automatically. Here eight major categories of web pages have been selected for categorization; these are business & economy, education, government, en...
Analysis of SSR Using Artificial Neural Networks
Nagabhushana, BS; Chandrasekharaiah, HS
1996-01-01
Artificial neural networks (ANNs) are being advantageously applied to power system analysis problems. They possess the ability to establish complicated input-output mappings through a learning process, without any explicit programming. In this paper, an ANN based method for subsynchronous resonance (SSR) analysis is presented. The designed ANN outputs a measure of the possibility of the occurrence of SSR and is fully trained to accommodate the variations of power system parameters over the en...
POWER SCALABLE IMPLEMENTATION OF ARTIFICIAL NEURAL NETWORKS
Modi, Sankalp; Wilson, Peter; Brown, Andrew
2005-01-01
As the use of Artificial Neural Network(ANN) in mobile embedded devices gets more pervasive, power consumption of ANN hardware is becoming a major limiting factor. Although considerable research efforts are now directed towards low-power implementations of ANN, the issue of dynamic power scalability of the implemented design has been largely overlooked. In this paper, we discuss the motivation and basic principles for implementing power scaling in ANN Hardware. With the help of a simple examp...
Practical introduction to artificial neural networks
Bougrain, Laurent
2004-01-01
What are they ? What for are they ? How to use them ? This article wants to answer these three fundamental questions about artificial neural networks that every engineer interested by this machine learning technique asks to oneself. We present the most useful architectures. We explain how to train them using a supervised or an unsupervised learning depending on the task we want to do : regression, discrimination or clustering. What kind of data can one use and how to prepare them ? Finally, w...
Network Firewall using Artificial Neural Networks
Kristián Valentín; Michal Malý
2014-01-01
Today's most common firewalls are mostly rule-based. Their knowledge consists of a set of rules upon which they process received packets. They cannot do anything they have not been explicitly configured to do. This makes the system more straightforward to set up, but less flexible and less adaptive to changing circumstances. We will investigate a network firewall whose rule-base we will try to model using an artificial neural network, more specifically using a multi-layer perceptron (MLP) tra...
Classification of coffee using artificial neural network
Yip, DHF; Yu, WWH
1996-01-01
The paper presents a method for classifying coffees according to their scents using artificial neural network (ANN). The proposed method of uses genetic algorithm (GA) to determine the optimal parameters and topology of ANN. It uses adaptive backpropagation to accelerate the training process so that the entire optimization process can be achieved in an accelerated time. The optimized ANN has successfully classified the coffees using a relatively small set of training data. The performance of ...
Seasonal Rainfall Forecasting Using Artificial Neural Network
G.A. Fallah-Ghalhary
2009-01-01
Full Text Available The rainfall of Khorasan Province, the Northeastern part of Iran, was evaluated from Dec. to May that is included 80% total of annual rainfall in the area under study using artificial neural network. The data of 37 rainfall stations were selected and analyzed over a period of 33 years (1970-2002. The Digital Elevation Model (DEM was then used to calculate the average rainfall in the area of interest. The relation between variation of synoptic patterns including Sea Surface Temperature (SST, Sea Level Pressure (SLP, the difference of sea level pressure, the difference between sea surface temperature and 1000 hPa surface level, relative humidity at 300 hPa level, geopotential height at 500 hPa level and air temperature at 850 hPa level with mean rainfall of the region were considered. Then the artificial neural network model was trained for 1970-2002 period and rainfall for period of 1993-2002 was predicted. The results showed that artificial neural network method was very successful in predicting rainfall and in more than 70% of years could predict rainfall within acceptable precision. The root mean square error of the model was found to be 41 mm which is considered negligible at yearly level and it is expected that by increasing the number of years of statistical data the precision of the model would increase.
Neutron spectrometry using artificial neural networks
An artificial neural network has been designed to obtain neutron spectra from Bonner spheres spectrometer count rates. The neural network was trained using 129 neutron spectra. These include spectra from isotopic neutron sources; reference and operational spectra from accelerators and nuclear reactors, spectra based on mathematical functions as well as few energy groups and monoenergetic spectra. The spectra were transformed from lethargy to energy distribution and were re-binned to 31 energy groups using the MCNP 4C code. The re-binned spectra and the UTA4 response matrix were used to calculate the expected count rates in Bonner spheres spectrometer. These count rates were used as input and their respective spectra were used as output during the neural network training. After training, the network was tested with the Bonner spheres count rates produced by folding a set of neutron spectra with the response matrix. This set contains data used during network training as well as data not used. Training and testing was carried out using the Matlab(R) program. To verify the network unfolding performance, the original and unfolded spectra were compared using the root mean square error. The use of artificial neural networks to unfold neutron spectra in neutron spectrometry is an alternative procedure that overcomes the drawbacks associated with this ill-conditioned problem
Applying Artificial Neural Networks for Face Recognition
Thai Hoang Le
2011-01-01
Full Text Available This paper introduces some novel models for all steps of a face recognition system. In the step of face detection, we propose a hybrid model combining AdaBoost and Artificial Neural Network (ABANN to solve the process efficiently. In the next step, labeled faces detected by ABANN will be aligned by Active Shape Model and Multi Layer Perceptron. In this alignment step, we propose a new 2D local texture model based on Multi Layer Perceptron. The classifier of the model significantly improves the accuracy and the robustness of local searching on faces with expression variation and ambiguous contours. In the feature extraction step, we describe a methodology for improving the efficiency by the association of two methods: geometric feature based method and Independent Component Analysis method. In the face matching step, we apply a model combining many Neural Networks for matching geometric features of human face. The model links many Neural Networks together, so we call it Multi Artificial Neural Network. MIT + CMU database is used for evaluating our proposed methods for face detection and alignment. Finally, the experimental results of all steps on CallTech database show the feasibility of our proposed model.
Neutron spectrometry with artificial neural networks
An artificial neural network has been designed to obtain the neutron spectra from the Bonner spheres spectrometer's count rates. The neural network was trained using 129 neutron spectra. These include isotopic neutron sources; reference and operational spectra from accelerators and nuclear reactors, spectra from mathematical functions as well as few energy groups and monoenergetic spectra. The spectra were transformed from lethargy to energy distribution and were re-bin ned to 31 energy groups using the MCNP 4C code. Re-binned spectra and UTA4 response matrix were used to calculate the expected count rates in Bonner spheres spectrometer. These count rates were used as input and the respective spectrum was used as output during neural network training. After training the network was tested with the Bonner spheres count rates produced by a set of neutron spectra. This set contains data used during network training as well as data not used. Training and testing was carried out in the Mat lab program. To verify the network unfolding performance the original and unfolded spectra were compared using the χ2-test and the total fluence ratios. The use of Artificial Neural Networks to unfold neutron spectra in neutron spectrometry is an alternative procedure that overcomes the drawbacks associated in this ill-conditioned problem. (Author)
Hair Loss Diagnosis Using Artificial Neural Networks
Ahmad Esfandiari
2012-09-01
Full Text Available Hair is an appendage of the skin that plays an important role in the beauty of people's face. Daily averages of 50 to 80 hairs are shed naturally. Various factors are effective in hair loss. In this paper using the eight influence attributes of gender, age, genetic factors, surgery, pregnancy, Zinc deficiency, iron deficiency, anemia and the use of cosmetics, the amount of hair loss is predicted. This work has been performed using artificial neural networks. 60 percent of the collected data was used for train, 20 percent for validation and the remaining 20 percent is used for testing the neural networks. For this, various training algorithms has been used. The result of the implementation of these algorithms has been compared. It seems that neural networks can be successful to predict hair loss.
Proceedings of intelligent engineering systems through artificial neural networks
This book contains the edited versions of the technical presentation of ANNIE '91, the first international meeting on Artificial Neural Networks in Engineering. The conference covered the theory of Artificial Neural Networks and its contributions in the engineering domain and attracted researchers from twelve countries. The papers in this edited book are grouped into four categories: Artificial Neural Network Architectures; Pattern Recognition; Adaptive Control, Diagnosis and Process Monitoring; and Neuro-Engineering Systems
Methods of Forecasting Based on Artificial Neural Networks
Stepčenko, A; Borisovs, A
2014-01-01
This article presents an overview of artificial neural network (ANN) applications in forecasting and possible forecasting accuracy improvements. Artificial neural networks are computational models and universal approximators, which can be applied to the time series forecasting with a high accuracy. A great rise in research activities was observed in using artificial neural networks for forecasting. This paper examines multi-layer perceptrons (MLPs) – back-propagation neur...
Prediction of transition boiling heat transfer by artificial neural network
Based on the capability of nonlinear mapping of artificial neural network, a neural network is presented to predict the transition boiling heat transfer in vertical annulus and vertical tube. The predicting results show good accordance with the experimental results
Web Page Categorization Using Artificial Neural Networks
Kamruzzaman, S M
2010-01-01
Web page categorization is one of the challenging tasks in the world of ever increasing web technologies. There are many ways of categorization of web pages based on different approach and features. This paper proposes a new dimension in the way of categorization of web pages using artificial neural network (ANN) through extracting the features automatically. Here eight major categories of web pages have been selected for categorization; these are business & economy, education, government, entertainment, sports, news & media, job search, and science. The whole process of the proposed system is done in three successive stages. In the first stage, the features are automatically extracted through analyzing the source of the web pages. The second stage includes fixing the input values of the neural network; all the values remain between 0 and 1. The variations in those values affect the output. Finally the third stage determines the class of a certain web page out of eight predefined classes. This stage i...
Liquefaction Microzonation of Babol City Using Artificial Neural Network
Farrokhzad, F.; Choobbasti, A.J.; Barari, Amin
2012-01-01
that will be less susceptible to damage during earthquakes. The scope of present study is to prepare the liquefaction microzonation map for the Babol city based on Seed and Idriss (1983) method using artificial neural network. Artificial neural network (ANN) is one of the artificial intelligence (AI) approaches...... is proposed in this paper. To meet this objective, an effort is made to introduce a total of 30 boreholes data in an area of 7 km2 which includes the results of field tests into the neural network model and the prediction of artificial neural network is checked in some test boreholes, finally the liquefaction...
Digital Image Compression Using Artificial Neural Networks
Serra-Ricart, M.; Garrido, L.; Gaitan, V.; Aloy, A.
1993-01-01
The problem of storing, transmitting, and manipulating digital images is considered. Because of the file sizes involved, large amounts of digitized image information are becoming common in modern projects. Our goal is to described an image compression transform coder based on artificial neural networks techniques (NNCTC). A comparison of the compression results obtained from digital astronomical images by the NNCTC and the method used in the compression of the digitized sky survey from the Space Telescope Science Institute based on the H-transform is performed in order to assess the reliability of the NNCTC.
Transient Stability Assessment using Artificial Neural Networks
Krishna, S; Padiyar, KR
2000-01-01
Online transient stability assessment (TSA) of a power system is not yet feasible due to the intensive computation involved. Artificial neural networks (ANN) have been proposed as one of the approaches to this problem because of their ability to quickly map nonlinear relationships between the input data and the output. In this paper a review of the previously published papers on TSA using ANN is presented. The paper also reports the results of the application of ANN to the problem of TSA of a...
With the Bonner spheres spectrometer neutron spectrum is obtained through an unfolding procedure. Monte Carlo methods, Regularization, Parametrization, Least-squares, and Maximum Entropy are some of the techniques utilized for unfolding. In the last decade methods based on Artificial Intelligence Technology have been used. Approaches based on Genetic Algorithms and Artificial Neural Networks (Ann) have been developed in order to overcome the drawbacks of previous techniques. Nevertheless the advantages of Ann still it has some drawbacks mainly in the design process of the network, vg the optimum selection of the architectural and learning Ann parameters. In recent years the use of hybrid technologies, combining Ann and genetic algorithms, has been utilized to. In this work, several Ann topologies were trained and tested using Ann and Genetically Evolved Artificial Neural Networks in the aim to unfold neutron spectra using the count rates of a Bonner sphere spectrometer. Here, a comparative study of both procedures has been carried out. (Author)
Functional expansion representations of artificial neural networks
Gray, W. Steven
1992-01-01
In the past few years, significant interest has developed in using artificial neural networks to model and control nonlinear dynamical systems. While there exists many proposed schemes for accomplishing this and a wealth of supporting empirical results, most approaches to date tend to be ad hoc in nature and rely mainly on heuristic justifications. The purpose of this project was to further develop some analytical tools for representing nonlinear discrete-time input-output systems, which when applied to neural networks would give insight on architecture selection, pruning strategies, and learning algorithms. A long term goal is to determine in what sense, if any, a neural network can be used as a universal approximator for nonliner input-output maps with memory (i.e., realized by a dynamical system). This property is well known for the case of static or memoryless input-output maps. The general architecture under consideration in this project was a single-input, single-output recurrent feedforward network.
Artificial neural networks in predicting current in electric arc furnaces
The paper presents a study of the possibility of using artificial neural networks for the prediction of the current and the voltage of Electric Arc Furnaces. Multi-layer perceptron and radial based functions Artificial Neural Networks implemented in Matlab were used. The study is based on measured data items from an Electric Arc Furnace in an industrial plant in Romania
Computational Ecology: Artificial Neural Networks and Their Applications
WenJun Zhang
2011-04-01
Full Text Available A book, Computational Ecology: Artificial Neural Networks and Their Applications, published in 2010, was introduced and reviewed. This book provides readers with deep insights on algorithms, codes, and applications of artificial neural networks in ecology. A science discipline, computational ecology, is clearly defined and outlined in the book.
Mesh deformation based on artificial neural networks
Stadler, Domen; Kosel, Franc; Čelič, Damjan; Lipej, Andrej
2011-09-01
In the article a new mesh deformation algorithm based on artificial neural networks is introduced. This method is a point-to-point method, meaning that it does not use connectivity information for calculation of the mesh deformation. Two already known point-to-point methods, based on interpolation techniques, are also presented. In contrast to the two known interpolation methods, the new method does not require a summation over all boundary nodes for one displacement calculation. The consequence of this fact is a shorter computational time of mesh deformation, which is proven by different deformation tests. The quality of the deformed meshes with all three deformation methods was also compared. Finally, the generated and the deformed three-dimensional meshes were used in the computational fluid dynamics numerical analysis of a Francis water turbine. A comparison of the analysis results was made to prove the applicability of the new method in every day computation.
Electronic Noses Using Quantitative Artificial Neural Networ
无
2001-01-01
The present paper covers a new type of electronic nose(e-nose) with a four-sensor array,which has been applied to detecting gases quantitatively in the presence of interference. This e-nose has adapted fundamental aspects of relative error(RE) in changing quantitative analysis into the artificial neural network (ANN).. Thus, both the quantitative and the qualitative requirements for ANN in implementing e-nose can be satisfied. In addition, the e-nose uses only 4 sensors in the sensor array, and can be designed for different usages simply by changing one or two sensor(s). Various gases were tested by this kind of e-nose, including alcohol vapor, CO, liquefied-petrol-gas and CO2. Satisfactory quantitative results were obtained and no qualitative mistake in prediction was observed for the samples being mixed with interference gases.
Evolving A-Type Artificial Neural Networks
Orr, Ewan
2011-01-01
We investigate Turing's notion of an A-type artificial neural network. We study a refinement of Turing's original idea, motivated by work of Teuscher, Bull, Preen and Copeland. Our A-types can process binary data by accepting and outputting sequences of binary vectors; hence we can associate a function to an A-type, and we say the A-type {\\em represents} the function. There are two modes of data processing: clamped and sequential. We describe an evolutionary algorithm, involving graph-theoretic manipulations of A-types, which searches for A-types representing a given function. The algorithm uses both mutation and crossover operators. We implemented the algorithm and applied it to three benchmark tasks. We found that the algorithm performed much better than a random search. For two out of the three tasks, the algorithm with crossover performed better than a mutation-only version.
Detector response unfolding using artificial neural networks
We present new results on the identification and unfolding of neutron spectra from the pulse height distribution measured with liquid scintillators. The novelty of the method consists of the dual use of linear and nonlinear artificial neural networks (ANNs). The linear networks solve the superposition problem in the general unfolding problem, whereas the nonlinear networks provide greater accuracy in the neutron source identification problem. Two additional new aspects of the present approach are (i) the use of a very accurate Monte Carlo code for the simulations needed in the training phase of the ANNs and (ii) the ability of the network to respond to short-time and therefore very noisy experimental measurements. This approach ensures sufficient accuracy, timeliness, and robustness to make it a candidate of choice for the heretofore unaddressed nuclear nonproliferation and safeguards applications in which both identification and unfolding are needed
Artificial neural networks in neutron dosimetry
An artificial neural network (ANN) has been designed to obtain neutron doses using only the count rates of a Bonner spheres spectrometer (BSS). Ambient, personal and effective neutron doses were included. One hundred and eighty-one neutron spectra were utilised to calculate the Bonner count rates and the neutron doses. The spectra were transformed from lethargy to energy distribution and were re-binned to 31 energy groups using the MCNP 4C code. Re-binned spectra, UTA4 response matrix and fluence-to-dose coefficients were used to calculate the count rates in the BSS and the doses. Count rates were used as input and the respective doses were used as output during neural network training. Training and testing were carried out in the MATLABR environment. The impact of uncertainties in BSS count rates upon the dose quantities calculated with the ANN was investigated by modifying by ±5% the BSS count rates used in the training set. The use of ANNs in neutron dosimetry is an alternative procedure that overcomes the drawbacks associated with this ill-conditioned problem. (authors)
Eswari J, Satya; Chandrakar, Neha [National Institute of Technology Raipur, Raipur (India)
2016-04-15
Artificial neural networks (ANNs) can be used to develop a technique to classify lymph node negative breast cancer that is prone to distant metastases based on gene expression signatures. The neural network used is a multilayered feed forward network that employs back propagation algorithm. Once trained with DNA microarraybased gene expression profiles of genes that were predictive of distant metastasis recurrence of lymph node negative breast cancer, the ANNs became capable of correctly classifying all samples and recognizing the genes most appropriate to the classification. To test the ability of the trained ANN models in recognizing lymph node negative breast cancer, we analyzed additional idle samples that were not used beforehand for the training procedure and obtained the correctly classified result in the validation set. For more substantial result, bootstrapping of training and testing dataset was performed as external validation. This study illustrates the potential application of ANN for breast tumor diagnosis and the identification of candidate targets in patients for therapy.
Artificial Neural Network applied to lightning flashes
Gin, R. B.; Guedes, D.; Bianchi, R.
2013-05-01
The development of video cameras enabled cientists to study lightning discharges comportment with more precision. The main goal of this project is to create a system able to detect images of lightning discharges stored in videos and classify them using an Artificial Neural Network (ANN)using C Language and OpenCV libraries. The developed system, can be split in two different modules: detection module and classification module. The detection module uses OpenCV`s computer vision libraries and image processing techniques to detect if there are significant differences between frames in a sequence, indicating that something, still not classified, occurred. Whenever there is a significant difference between two consecutive frames, two main algorithms are used to analyze the frame image: brightness and shape algorithms. These algorithms detect both shape and brightness of the event, removing irrelevant events like birds, as well as detecting the relevant events exact position, allowing the system to track it over time. The classification module uses a neural network to classify the relevant events as horizontal or vertical lightning, save the event`s images and calculates his number of discharges. The Neural Network was implemented using the backpropagation algorithm, and was trained with 42 training images , containing 57 lightning events (one image can have more than one lightning). TheANN was tested with one to five hidden layers, with up to 50 neurons each. The best configuration achieved a success rate of 95%, with one layer containing 20 neurons (33 test images with 42 events were used in this phase). This configuration was implemented in the developed system to analyze 20 video files, containing 63 lightning discharges previously manually detected. Results showed that all the lightning discharges were detected, many irrelevant events were unconsidered, and the event's number of discharges was correctly computed. The neural network used in this project achieved a
Application of artificial neural networks to composite ply micromechanics
Brown, D. A.; Murthy, P. L. N.; Berke, L.
1991-01-01
Artificial neural networks can provide improved computational efficiency relative to existing methods when an algorithmic description of functional relationships is either totally unavailable or is complex in nature. For complex calculations, significant reductions in elapsed computation time are possible. The primary goal is to demonstrate the applicability of artificial neural networks to composite material characterization. As a test case, a neural network was trained to accurately predict composite hygral, thermal, and mechanical properties when provided with basic information concerning the environment, constituent materials, and component ratios used in the creation of the composite. A brief introduction on neural networks is provided along with a description of the project itself.
Advances in Artificial Neural Networks – Methodological Development and Application
Yanbo Huang
2009-08-01
Full Text Available Artificial neural networks as a major soft-computing technology have been extensively studied and applied during the last three decades. Research on backpropagation training algorithms for multilayer perceptron networks has spurred development of other neural network training algorithms for other networks such as radial basis function, recurrent network, feedback network, and unsupervised Kohonen self-organizing network. These networks, especially the multilayer perceptron network with a backpropagation training algorithm, have gained recognition in research and applications in various scientific and engineering areas. In order to accelerate the training process and overcome data over-fitting, research has been conducted to improve the backpropagation algorithm. Further, artificial neural networks have been integrated with other advanced methods such as fuzzy logic and wavelet analysis, to enhance the ability of data interpretation and modeling and to avoid subjectivity in the operation of the training algorithm. In recent years, support vector machines have emerged as a set of high-performance supervised generalized linear classifiers in parallel with artificial neural networks. A review on development history of artificial neural networks is presented and the standard architectures and algorithms of artificial neural networks are described. Furthermore, advanced artificial neural networks will be introduced with support vector machines, and limitations of ANNs will be identified. The future of artificial neural network development in tandem with support vector machines will be discussed in conjunction with further applications to food science and engineering, soil and water relationship for crop management, and decision support for precision agriculture. Along with the network structures and training algorithms, the applications of artificial neural networks will be reviewed as well, especially in the fields of agricultural and biological
Layered learning of soccer robot based on artificial neural network
无
2001-01-01
Discusses the application of artificial neural network for MIROSOT, introduces a layered model of BP network of soccer robot for learning basic behavior and cooperative behavior, and concludes from experimental results that the model is effective.
DEM interpolation based on artificial neural networks
Jiao, Limin; Liu, Yaolin
2005-10-01
This paper proposed a systemic resolution scheme of Digital Elevation model (DEM) interpolation based on Artificial Neural Networks (ANNs). In this paper, we employ BP network to fit terrain surface, and then detect and eliminate the samples with gross errors. This paper uses Self-organizing Feature Map (SOFM) to cluster elevation samples. The study area is divided into many more homogenous tiles after clustering. BP model is employed to interpolate DEM in each cluster. Because error samples are eliminated and clusters are built, interpolation result is better. The case study indicates that ANN interpolation scheme is feasible. It also shows that ANN can get a more accurate result by comparing ANN with polynomial and spline interpolation. ANN interpolation doesn't need to determine the interpolation function beforehand, so manmade influence is lessened. The ANN interpolation is more automatic and intelligent. At the end of the paper, we propose the idea of constructing ANN surface model. This model can be used in multi-scale DEM visualization, and DEM generalization, etc.
Geophysical phenomena classification by artificial neural networks
Gough, M. P.; Bruckner, J. R.
1995-01-01
Space science information systems involve accessing vast data bases. There is a need for an automatic process by which properties of the whole data set can be assimilated and presented to the user. Where data are in the form of spectrograms, phenomena can be detected by pattern recognition techniques. Presented are the first results obtained by applying unsupervised Artificial Neural Networks (ANN's) to the classification of magnetospheric wave spectra. The networks used here were a simple unsupervised Hamming network run on a PC and a more sophisticated CALM network run on a Sparc workstation. The ANN's were compared in their geophysical data recognition performance. CALM networks offer such qualities as fast learning, superiority in generalizing, the ability to continuously adapt to changes in the pattern set, and the possibility to modularize the network to allow the inter-relation between phenomena and data sets. This work is the first step toward an information system interface being developed at Sussex, the Whole Information System Expert (WISE). Phenomena in the data are automatically identified and provided to the user in the form of a data occurrence morphology, the Whole Information System Data Occurrence Morphology (WISDOM), along with relationships to other parameters and phenomena.
Automated Wildfire Detection Through Artificial Neural Networks
Miller, Jerry; Borne, Kirk; Thomas, Brian; Huang, Zhenping; Chi, Yuechen
2005-01-01
We have tested and deployed Artificial Neural Network (ANN) data mining techniques to analyze remotely sensed multi-channel imaging data from MODIS, GOES, and AVHRR. The goal is to train the ANN to learn the signatures of wildfires in remotely sensed data in order to automate the detection process. We train the ANN using the set of human-detected wildfires in the U.S., which are provided by the Hazard Mapping System (HMS) wildfire detection group at NOAA/NESDIS. The ANN is trained to mimic the behavior of fire detection algorithms and the subjective decision- making by N O M HMS Fire Analysts. We use a local extremum search in order to isolate fire pixels, and then we extract a 7x7 pixel array around that location in 3 spectral channels. The corresponding 147 pixel values are used to populate a 147-dimensional input vector that is fed into the ANN. The ANN accuracy is tested and overfitting is avoided by using a subset of the training data that is set aside as a test data set. We have achieved an automated fire detection accuracy of 80-92%, depending on a variety of ANN parameters and for different instrument channels among the 3 satellites. We believe that this system can be deployed worldwide or for any region to detect wildfires automatically in satellite imagery of those regions. These detections can ultimately be used to provide thermal inputs to climate models.
Groundwater Level Predictions Using Artificial Neural Networks
毛晓敏; 尚松浩; 刘翔
2002-01-01
The prediction of groundwater level is important for the use and management of groundwater resources. In this paper, the artificial neural networks (ANN) were used to predict groundwater level in the Dawu Aquifer of Zibo in Eastern China. The first step was an auto-correlation analysis of the groundwater level which showed that the monthly groundwater level was time dependent. An auto-regression type ANN (ARANN) model and a regression-auto-regression type ANN (RARANN) model using back-propagation algorithm were then used to predict the groundwater level. Monthly data from June 1988 to May 1998 was used for the network training and testing. The results show that the RARANN model is more reliable than the ARANN model, especially in the testing period, which indicates that the RARANN model can describe the relationship between the groundwater fluctuation and main factors that currently influence the groundwater level. The results suggest that the model is suitable for predicting groundwater level fluctuations in this area for similar conditions in the future.
Hurst Parameter Estimation Using Artificial Neural Networks
S..Ledesma-Orozco
2011-08-01
Full Text Available The Hurst parameter captures the amount of long-range dependence (LRD in a time series. There are severalmethods to estimate the Hurst parameter, being the most popular: the variance-time plot, the R/S plot, theperiodogram, and Whittle’s estimator. The first three are graphical methods, and the estimation accuracy depends onhow the plot is interpreted and calculated. In contrast, Whittle’s estimator is based on a maximum likelihood techniqueand does not depend on a graph reading; however, it is computationally expensive. A new method to estimate theHurst parameter is proposed. This new method is based on an artificial neural network. Experimental results showthat this method outperforms traditional approaches, and can be used on applications where a fast and accurateestimate of the Hurst parameter is required, i.e., computer network traffic control. Additionally, the Hurst parameterwas computed on series of different length using several methods. The simulation results show that the proposedmethod is at least ten times faster than traditional methods.
Artificial neural network for violation analysis
Barrier removal (BR) is a safety-related violation, and it can be analyzed in terms of benefits, costs, and potential deficits. In order to allow designers to integrate BR into the risk analysis during the initial design phase or during re-design work, we propose a connectionist method integrating self-organizing maps (SOM). The basic SOM is an artificial neural network that, on the basis of the information contained in a multi-dimensional space, generates a space of lesser dimensions. Three algorithms--Unsupervised SOM, Supervised SOM, and Hierarchical SOM--have been developed to permit BR classification and prediction in terms of the different criteria. The proposed method can be used, on the one hand, to foresee/predict the possibility level of a new/changed barrier (prospective analysis), and on the other hand, to synthetically regroup/rearrange the BR of a given human-machine system (retrospective analysis). We applied this method to the BR analysis of an experimental railway simulator, and our preliminary results are presented here
Web Software Evaluation Using Artificial Neural Networks
Naser Nematbakhsh
2007-12-01
Full Text Available Software testing is one of the most important phases in the software development procedure which ensures the accordance of the software and its description. Testing is mainly a manual task accomplished by the human operators. This results in increasing the cost and time of the software development process. Also, due to the uncertain nature of the human activities, software reliability will be under threat and the probability of having some aspects and parts of the software untested always would be high. Therefore, the more automatic, the more intelligent, and the more reliable testing procedure always would be of interest. In this paper we introduce a new approach to the software testing automation in web based applications, using Artificial Neural Network (ANN. The applied ANN will be trained by diverse pairs of input/output data provided according to the software functionality, then it attempts to model a testing tool for the software. Next we can use this ANN-based testing tool to evaluate and test the software. We apply the proposed testing scheme on a modified version of a web based university course registration software and show its performance on both error-free and faulty cases.
Artificial neural network models for image understanding
Kulkarni, Arun D.; Byars, P.
1991-06-01
In this paper we introduce a new class of artificial neural network (ANN) models based on transformed domain feature extraction. Many optical and/or digital recognition systems based on transformed domain feature extraction are available in practice. Optical systems are inherently parallel in nature and are preferred for real time applications, whereas digital systems are more suitable for nonlinear operations. In our ANN models we combine advantages of both digital and optical systems. Many transformed domain feature extraction techniques have been developed during the last three decades. They include: the Fourier transform (FT), the Walsh Hadamard transform (WHT), the discrete cosine transform (DCT), etc. As an example, we have developed ANN models using the FT and WHT domain features. The models consist of two stages, the feature extraction stage and the recognition stage. We have used back-propagation and competitive learning algorithms in the recognition stage. We have used these ANN models for invariant object recognition. The models have been used successfully to recognize various types of aircraft, and also have been tested with test patterns. ANN models based on other transforms can be developed in a similar fashion.
Instability localization with artificial neural networks (ANNs)
The aim of this piece of research is to investigate the potential of artificial neural networks (ANNs) for tackling the problem of instability localization. The instability is modeled by a variable strength absorber (point-source) in a two-dimensional bare reactor model with a one neutron-energy group. The proposed approach constitutes an exercise in simplicity in that: (1) an arbitrarily simplified model is employed for ANN training and validation; (2) few training and validation patterns of low complexity are utilized; (3) the ANN inputs are derived directly from the neutron noise signals, the proposed location of instability is given on-line via an uncomplicated combination of ANN outputs; (4) the ANN architecture is independent of the number of possible locations of instability. In fact, unlike previous approaches which employ hundreds of outputs (one for each fuel assembly), only two ANN outputs are employed representing the X- and Y-coordinates (location) of instability; (5) the responses of only a few detectors are employed; (6) a measure of confidence in the prediction is assigned. The results of ANN testing, which is performed on patterns from both actual and simplified models, are reported and analyzed
Electronic circuits modeling using artificial neural networks
Andrejević Miona V.
2003-01-01
Full Text Available In this paper artificial neural networks (ANN are applied to modeling of electronic circuits. ANNs are used for application of the black-box modeling concept in the time domain. Modeling process is described, so the topology of the ANN, the testing signal used for excitation, together with the complexity of ANN are considered. The procedure is first exemplified in modeling of resistive circuits. MOS transistor, as a four-terminal device, is modeled. Then nonlinear negative resistive characteristic is modeled in order to be used as a piece-wise linear resistor in Chua's circuit. Examples of modeling nonlinear dynamic circuits are given encompassing a variety of modeling problems. A nonlinear circuit containing quartz oscillator is considered for modeling. Verification of the concept is performed by verifying the ability of the model to generalize i.e. to create acceptable responses to excitations not used during training. Implementation of these models within a behavioral simulator is exemplified. Every model is implemented in realistic surrounding in order to show its interaction, and of course, its usage and purpose.
Comparing Neural Networks and ARMA Models in Artificial Stock Market
Krtek, Jiří; Vošvrda, Miloslav
2011-01-01
Roč. 18, č. 28 (2011), s. 53-65. ISSN 1212-074X R&D Projects: GA ČR GD402/09/H045 Institutional research plan: CEZ:AV0Z10750506 Keywords : neural networks * vector ARMA * artificial market Subject RIV: AH - Economics http://library.utia.cas.cz/separaty/2011/E/krtek-comparing neural networks and arma models in artificial stock market.pdf
Transient stability Assessment using Artificial Neural Network Considering Fault Location
P.K.Olulope; Folly, K. A.; Chowdhury, S.; Chowdhury, S. P.
2010-01-01
This paper describes the capability of artificial neural network for predicting the critical clearing time of power system. It combines the advantages of time domain integration schemes with artificial neural network for real time transient stability assessment. The training of ANN is done using selected features as input and critical fault clearing time (CCT) as desire target. A single contingency was applied and the target CCT was found using time domain simulatio...
Application of Artificial Neural Networks to Contraception Study
周利锋; 高尔生; 金丕焕
1998-01-01
As a newly developed border line science, the artificial neural network (ANN)has been applied in many fields. The ANN was used in the selection of contraceptives in the article, and the performances of the artificial neural networks and traditional multivariate logistic regression analysis method were compared with the training data and the testing data by receiver operating characteristic (ROC) curves. The results imply that ANN may be applied and developed further in statistics and medical fields hopefully.
Using Artificial Neural Networks for ECG Signals Denoising
Zoltán Germán-Salló; Katalin György
2010-01-01
The authors have investigated some potential applications of artificial neural networks in electrocardiografic (ECG) signal prediction. For this, the authors used an adaptive multilayer perceptron structure to predict the signal. The proposed procedure uses an artificial neural network based learning structure to estimate the (n+1)th sample from n previous samples To train and adjust the network weights, the backpropagation (BP) algorithm was used. In this paper, prediction of ECG signals (as...
Methodological Issues in Building, Training, and Testing Artificial Neural Networks
Ozesmi, Stacy L.; Ozesmi, Uygar; Tan, Can Ozan
2005-01-01
We review the use of artificial neural networks, particularly the feedforward multilayer perceptron with back-propagation for training (MLP), in ecological modelling. Overtraining on data or giving vague references to how it was avoided is the major problem. Various methods can be used to determine when to stop training in artificial neural networks: 1) early stopping based on cross-validation, 2) stopping after a analyst defined error is reached or after the error levels off, 3) use of a tes...
Artificial neural network based modelling of internal combustion engine performance
Boruah, Dibakor; Thakur, Pintu Kumar; Baruah, Dipal
2016-01-01
The present study aims to quantify the applicability of artificial neural network as a black-box model for internal combustion engine performance. In consequence, an artificial neural network (ANN) based model for a four cylinder, four stroke internal combustion diesel engine has been developed on the basis of specific input and output factors, which have been taken from experimental readings for different load and engine speed circumstances. The input parameters that have been used to create...
Artificial Neural Networks: A New Approach to Predicting Application Behavior.
Gonzalez, Julie M. Byers; DesJardins, Stephen L.
2002-01-01
Applied the technique of artificial neural networks to predict which students were likely to apply to one research university. Compared the results to the traditional analysis tool, logistic regression modeling. Found that the addition of artificial intelligence models was a useful new tool for predicting student application behavior. (EV)
Optimal Brain Surgeon on Artificial Neural Networks in
Christiansen, Niels Hørbye; Job, Jonas Hultmann; Klyver, Katrine; Høgsberg, Jan Becker
2012-01-01
It is shown how the procedure know as optimal brain surgeon can be used to trim and optimize artificial neural networks in nonlinear structural dynamics. Beside optimizing the neural network, and thereby minimizing computational cost in simulation, the surgery procedure can also serve as a quick...
Multiple image sensor data fusion through artificial neural networks
With multisensor data fusion technology, the data from multiple sensors are fused in order to make a more accurate estimation of the environment through measurement, processing and analysis. Artificial neural networks are the computational models that mimic biological neural networks. With high per...
THE ARTIFICIAL NEURAL NETWORK OF FORECASTING OPEN MINING SLOPE STABILITY
魏春启; 白润才
2000-01-01
The artificial neural network model which forecasts Open Mining Slope stability is established by neural network theory and method. The nonlinear reflection relation between stability target of open mining slope and its influence factor is described. The method of forecasting Open Mining Slope stability is brought forward.
Advances in Artificial Neural Networks - Methodological Development and Application
Artificial neural networks as a major soft-computing technology have been extensively studied and applied during the last three decades. Research on backpropagation training algorithms for multilayer perceptron networks has spurred development of other neural network training algorithms for other ne...
Development and Evolution of Neural Networks in an Artificial Chemistry
Astor, Jens C.; Adami, Christoph
1998-01-01
We present a model of decentralized growth for Artificial Neural Networks (ANNs) inspired by the development and the physiology of real nervous systems. In this model, each individual artificial neuron is an autonomous unit whose behavior is determined only by the genetic information it harbors and local concentrations of substrates modeled by a simple artificial chemistry. Gene expression is manifested as axon and dendrite growth, cell division and differentiation, substrate production and c...
Web spam classification using supervised artificial neural network algorithms
Chandra, Ashish; Suaib, Mohammad; Beg, Dr. Rizwan
2015-01-01
Due to the rapid growth in technology employed by the spammers, there is a need of classifiers that are more efficient, generic and highly adaptive. Neural Network based technologies have high ability of adaption as well as generalization. As per our knowledge, very little work has been done in this field using neural network. We present this paper to fill this gap. This paper evaluates performance of three supervised learning algorithms of artificial neural network by creating classifiers fo...
Artificial neural networks applied to forecasting time series
Montaño Moreno, Juan José; Palmer Pol, Alfonso; Muñoz Gracia, María del Pilar
2011-01-01
This study offers a description and comparison of the main models of Artificial Neural Networks (ANN) which have proved to be useful in time series forecasting, and also a standard procedure for the practical application of ANN in this type of task. The Multilayer Perceptron (MLP), Radial Base Function (RBF), Generalized Regression Neural Network (GRNN), and Recurrent Neural Network (RNN) models are analyzed. With this aim in mind, we use a time series made up of 244 time points. A comparativ...
Diagnosing pulmonary embolism using artificial neural networks
Pulmonary Embolism (PE), an obstruction of pulmonary blood flow to the distal lung is a life-threatening condition causing chest pain and difficulty of breathing. Hence, prompt diagnosis is necessary so to render medical attention immediately. The standard way of diagnosing PE is through Lung Scintigraphy analyzed by Nuclear Medicine physicians. An expert system using artificial neural network (ANN) is created to diagnose PE with its probability based on Prospective Investigation of Pulmonary Embolism Diagnosis (PIOPED). A set of patients who underwent lung scan due to PE formed the training group while another set of patients formed the test group. None of the training group scans was included in the test group. The training group was trained by ANN using the back propagation method and Delta Rule while the test group was used to measure the performance of the expert system. All scans were examined independently by one expert nuclear medicine physician based on PIOPED criteria. The expert system is a standalone application with user-friendly interface. It shows all the 8 standard projections of lung scan. White spots and hot spots are detected and effectively reduced in the images to warrant more accurate diagnosis. Spaces around the lung images are also removed ensuring proper alignment of the ventilation and perfusion images to the template. Likewise, the system is able to quantify the mismatched between the ventilation and perfusion images. Based on the evaluation of the test group, the system is able to match the diagnosis of the expert physician by 80 %. The expert system can be used as a temporary substitute when there are no immediate help from expert physicians. It can also be used as a teaching tool by resident doctors training in radiology or nuclear medicine and is not meant to replace the expert physicians diagnosis. (authors)
ECO INVESTMENT PROJECT MANAGEMENT THROUGH TIME APPLYING ARTIFICIAL NEURAL NETWORKS
Tamara Gvozdenović
2007-06-01
Full Text Available he concept of project management expresses an indispensable approach to investment projects. Time is often the most important factor in these projects. The artificial neural network is the paradigm of data processing, which is inspired by the one used by the biological brain, and it is used in numerous, different fields, among which is the project management. This research is oriented to application of artificial neural networks in managing time of investment project. The artificial neural networks are used to define the optimistic, the most probable and the pessimistic time in PERT method. The program package Matlab: Neural Network Toolbox is used in data simulation. The feed-forward back propagation network is chosen.
Impulsive Neural Networks Algorithm Based on the Artificial Genome Model
Yuan Gao
2014-05-01
Full Text Available To describe gene regulatory networks, this article takes the framework of the artificial genome model and proposes impulsive neural networks algorithm based on the artificial genome model. Firstly, the gene expression and the cell division tree are applied to generate spiking neurons with specific attributes, neural network structure, connection weights and specific learning rules of each neuron. Next, the gene segment duplications and divergence model are applied to design the evolutionary algorithm of impulsive neural networks at the level of the artificial genome. The dynamic changes of developmental gene regulatory networks are controlled during the whole evolutionary process. Finally, the behavior of collecting food for autonomous intelligent agent is simulated, which is driven by nerves. Experimental results demonstrate that the algorithm in this article has the evolutionary ability on large-scale impulsive neural networks
Artificial neural network based approach to transmission lines protection
The aim of this paper is to present and accurate fault detection technique for high speed distance protection using artificial neural networks. The feed-forward multi-layer neural network with the use of supervised learning and the common training rule of error back-propagation is chosen for this study. Information available locally at the relay point is passed to a neural network in order for an assessment of the fault location to be made. However in practice there is a large amount of information available, and a feature extraction process is required to reduce the dimensionality of the pattern vectors, whilst retaining important information that distinguishes the fault point. The choice of features is critical to the performance of the neural networks learning and operation. A significant feature in this paper is that an artificial neural network has been designed and tested to enhance the precision of the adaptive capabilities for distance protection
Indoor Positioning System Using Artificial Neural Network
Hamid Mehmood
2010-01-01
Full Text Available Problem statement: Location knowledge in indoor environment using Indoor Positioning Systems (IPS has become very useful and popular in recent years. A number of Location Based Services (LBS have been developed, which are based on IPS, these LBS include asset tracking, inventory management and security based applications. Many next-generation LBS applications such as social networking, local search, advertising and geo-tagging are expected to be used in urban and indoor environments where GNSS either underperforms in terms of fix times or accuracy, or fails altogether. To develop an IPS based on Wi-Fi Received Signal Strength (RSS using Artificial Neural Networks (ANN, which should use already available Wi-Fi infrastructure in a heterogeneous environment. Approach: This study discussed the use of ANN for IPS using RSS in an indoor wireless facility which has varying human activity, material of walls and type of Wireless Access Points (WAP, hence simulating a heterogeneous environment. The proposed system used backpropogation method with 4 input neurons, 2 output neurons and 4 hidden layers. The model was trained with three different types of training data. The accuracy assessment for each training data was performed by computing the distance error and average distance error. Results: The results of the experiments showed that using ANN with the proposed method of collecting training data, maximum accuracy of 0.7 m can be achieved, with 30% of the distance error less than 1 m and 60% of the distance error within the range of 1-2 m. Whereas maximum accuracy of 1.01 can be achieved with the commonly used method of collecting training data. The proposed model also showed 67% more accuracy as compared to a probabilistic model. Conclusion: The results indicated that ANN based IPS can provide accuracy and precision which is quite adequate for the development of indoor LBS while using the already available Wi-Fi infrastructure, also the proposed method
Term Structure of Interest Rates Based on Artificial Neural Network
无
2007-01-01
In light of the nonlinear approaching capability of artificial neural networks ( ANN), the term structure of interest rates is predicted using The generalized regression neural network (GRNN) and back propagation (BP) neural networks models. The prediction performance is measured with US interest rate data. Then, RBF and BP models are compared with Vasicek's model and Cox-Ingersoll-Ross (CIR) model. The comparison reveals that neural network models outperform Vasicek's model and CIR model,which are more precise and closer to the real market situation.
Bootstrap, Wild Bootstrap and Generalized Bootstrap
Mammen, Enno
1995-01-01
Some modifications and generalizations of the bootstrap procedurehave been proposed. In this note we will consider the wild bootstrap and the generalized bootstrap and we will give two arguments why it makes sense touse these modifications instead of the original bootstrap. The firstargument is that there exist examples where generalized and wild bootstrapwork, but where the original bootstrap fails and breaks down. The secondargument will be based on higher order considerations. We will show...
Medical image analysis with artificial neural networks.
Jiang, J; Trundle, P; Ren, J
2010-12-01
Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging. PMID:20713305
Adaptive Neurons For Artificial Neural Networks
Tawel, Raoul
1990-01-01
Training time decreases dramatically. In improved mathematical model of neural-network processor, temperature of neurons (in addition to connection strengths, also called weights, of synapses) varied during supervised-learning phase of operation according to mathematical formalism and not heuristic rule. Evidence that biological neural networks also process information at neuronal level.
Quantitative Structure Pharmacokinetic Relationship Using Artificial Neural Network: A Review
S. K. Singh
2009-10-01
Full Text Available Quantitative structure activity relationship (QSAR has become a tool for designing in various areas like drugs, food additive, Pesticides, biochemical reactant, environmental pollutant and toxic products. In QSAR biological activity can be related with physicochemical properties and in QSPkR (Quantitative Structure Pharmacokinetic Relationship, pharmacokinetic properties can be related with physicochemical properties, relation found in terms of quantity. A number of literature and review article have been published on Quantitative structure pharmacokinetic relationship. But prediction of human pharmacokinetic properties of known and unknown is much difficult job in pharmaceutical industry. Pharmacokinetic data of animal cannot be put straightforward. Artificial neural network (ANN is used to predict the pharmacokinetic properties. Artificial neural network has basic structure like biological brain and compose of neurons which are interconnected to each other. The present review not only compiles the literature of QSPkR using ANN, but gives detail about the physicochemical properties and artificial neural network.
Study on optimization control method based on artificial neural network
FU Hua; SUN Shao-guang; XU Zhen-Iiang
2005-01-01
In the goal optimization and control optimization process the problems with common artificial neural network algorithm are unsure convergence, insufficient post-training network precision, and slow training speed, in which partial minimum value question tends to occur. This paper conducted an in-depth study on the causes of the limitations of the algorithm, presented a rapid artificial neural network algorithm, which is characterized by integrating multiple algorithms and by using their complementary advantages. The salient feature of the method is self-organization, which can effectively prevent the optimized results from tending to be partial minimum values. Overall optimization can be achieved with this method, goal function can be searched for in overall scope. With optimization control of coal mine ventilator as a practical application, the paper proves that by integrating multiple artificial neural network algorithms, best control optimization and goal optimized can be achieved.
Metaplasticity Artificial Neural Networks Model Application to Radar Detection
Diego Andina
2007-12-01
Full Text Available Many Artificial Neural Networks design algorithms or learning methods imply the minimization of an error objective function. During learning, weight values are updated following a strategy that tends to minimize the final mean error in the Network performance. Weight values are classically seen as a representation of the synaptic weights in biological neurons and their ability to change its value could be interpreted as artificial plasticity inspired by this biological property of neurons. In such a way, metaplasticity is interpreted in this paper as the ability to change the efficiency of artificial plasticity giving more relevance to weight updating of less frequent activations and resting relevance to frequent ones. Modeling this interpretation in the training phase, the hypothesis of an improved training is tested in the Multilayer Perceptron with Backpropagation case. The results show a much more efficient training maintaining the Artificial Neural Network performance.
Classification of welding defects in metals using artificial neural network
This paper discusses the automatic recognition of the return signal with metal welding defects such as cracks, slag and porosity. Normal samples are used as reference benchmarks. A total of 12 features were used to characterize the types of damages. Classification process is done by using feed forward artificial neural network back propagation. The process of acquisition and data processing were carried out fully automatically. There are artificial neural classification processes using MATLAB software has been successfully undertaken in which the system can identify defects that are owned by more than 90% accuracy. (author)
Artificial Neural Network in Harmonic Reduction of STATCOM
Li Hongmei; Li Zhenran; Zheng Peiying
2005-01-01
To eliminate harmonic pollution incurred from the static synchronous compensator(STATCOM), a method of applying artificial neural network is presented. When PWM wave is formed based on the harmonic suppression theory, a concave is set on certain angle of the square wave to suppress unnecessary harmonics, by timely and on-line determining the chopping angle corresponding to respective harmonics through artificial neural network, i.e. by setting the position of concave to eliminate corresponding harmonics, the harmonic component on output voltage of the inverter can be improved. To conclude through computer simulation test, the perfect control effect has been proved.
Use of artificial neural networks in prostate cancer.
Errejon, A; Crawford, E D; Dayhoff, J; O'Donnell, C; Tewari, A; Finkelstein, J; Gamito, E J
2001-01-01
Artificial neural networks (ANNs) are a type of artificial intelligence software inspired by biological neuronal systems that can be used for nonlinear statistical modeling. In recent years, these applications have played an increasing role in predictive and classification modeling in medical research. We review the basic concepts behind ANNs and examine the role of this technology in selected applications in prostate cancer research. PMID:11790276
Metaplasticity Artificial Neural Networks Model Application to Radar Detection
Diego Andina; Juan Fombellida
2007-01-01
Many Artificial Neural Networks design algorithms or learning methods imply the minimization of an error objective function. During learning, weight values are updated following a strategy that tends to minimize the final mean error in the Network performance. Weight values are classically seen as a representation of the synaptic weights in biological neurons and their ability to change its value could be interpreted as artificial plasticity inspired by this biological property of neurons. In...
Neurons vs Weights Pruning in Artificial Neural Networks
Bondarenko, Andrey; Borisov, Arkady; Alekseeva, Ludmila
2015-01-01
Artificial neural networks (ANN) are well known for their good classification abilities. Recent advances in deep learning imposed second ANN renaissance. But neural networks possesses some problems like choosing hyper parameters such as neuron layers count and sizes which can greatly influence classification rate. Thus pruning techniques were developed that can reduce network sizes, increase its generalization abilities and overcome overfitting. Pruning approaches, in contrast to growing neur...
Modeling of Relative Humidity Using Artificial Neural Network
Samer AlSadi; Tamer Khatib
2012-01-01
This paper presents a relative humidity predictions using feedforward artificial neural network (FFNN). Relative humidity values obtained from weather records for Malaysia are used in training the FFNNs. The prediction of the relative humidity is in terms of Sun shine ration and cloud cover. However, three statistical parameters, namely, mean absolute percentage error, MAPE, mean bias error, MBE, and root mean square error, RMSE are used to evaluate the neural networks. Based on results, the ...
AUTOMATED DEFECT CLASSIFICATION USING AN ARTIFICIAL NEURAL NETWORK
The automated defect classification algorithm based on artificial neural network with multilayer backpropagation structure was utilized. The selected features of flaws were used as input data. In order to train the neural network it is necessary to prepare learning data which is representative database of defects. Database preparation requires the following steps: image acquisition and pre-processing, image enhancement, defect detection and feature extraction. The real digital radiographs of welded parts of a ship were used for this purpose.
Food Safety Evaluation System Construction Based on Artificial Neural Network
Jian Wang; Zhenmin Tang; Xianli Jin
2015-01-01
This study uses regression model and artificial neural network model to apply food safety index in food safety trend predication and makes policy advices in the construction and release of an authoritative food safety index, The results showed that the BP neural network was high-precision, fast and objective, which could be used to food safety evaluation of circulation links of production, processing and sales.
PREDICTION OF LEAF SPRING PARAMETERS USING ARTIFICIAL NEURAL NETWORKS
Dr.D.V.V.KRISHNA PRASAD; J.P.KARTHIK
2013-01-01
In this paper an attempt is made to predict the optimum design parameters using artificial neural networks. For this static and dynamic analysis on various leaf spring configuration is carried out by ANSYS and is used as training data for neural network. Training data includes cross section of the leaf, load on the leaf spring, stresses, displacement and natural frequencies. By creating a network using thickness and width of the leaf, load on the leaf spring as input parameters and stresses, ...
Food Safety Evaluation System Construction Based on Artificial Neural Network
Jian Wang
2015-05-01
Full Text Available This study uses regression model and artificial neural network model to apply food safety index in food safety trend predication and makes policy advices in the construction and release of an authoritative food safety index, The results showed that the BP neural network was high-precision, fast and objective, which could be used to food safety evaluation of circulation links of production, processing and sales.
Recognizing shipbuilding parts using artificial neural networks and Fourier descriptors
Sanders, David
2009-01-01
A pattern recognition system is described for recognizing shipbuilding parts using artificial neural networks and Fourier descriptors. The system uses shape contour information that is invariant of size, translation, and rotation. Fourier descriptors provide information, and the neural networks make decisions about the shapes. A brief review of the current state of the art is included, and results from testing show that the system distinguished between various shapes and proved to be a valid ...
Automated Defect Classification Using AN Artificial Neural Network
Chady, T.; Caryk, M.; Piekarczyk, B.
2009-03-01
The automated defect classification algorithm based on artificial neural network with multilayer backpropagation structure was utilized. The selected features of flaws were used as input data. In order to train the neural network it is necessary to prepare learning data which is representative database of defects. Database preparation requires the following steps: image acquisition and pre-processing, image enhancement, defect detection and feature extraction. The real digital radiographs of welded parts of a ship were used for this purpose.
Advances in Artificial Neural Networks – Methodological Development and Application
Yanbo Huang
2009-01-01
Artificial neural networks as a major soft-computing technology have been extensively studied and applied during the last three decades. Research on backpropagation training algorithms for multilayer perceptron networks has spurred development of other neural network training algorithms for other networks such as radial basis function, recurrent network, feedback network, and unsupervised Kohonen self-organizing network. These networks, especially the multilayer perceptron network with a back...
Applying artificial neural networks in nuclear power plant diagnostics
Artificial neural networks are very effective tools in solving failure detection problems in complex plants such as nuclear power reactors and their subsidiary equipments, as they can perform parallel realizations of complicated classification processes. In the paper, after a brief historical and methodological introduction, a neural network based failure detection system is presented which has been developed for the use in the PWR units of the Nuclear Power Plant Paks (Hungary). A cellular processor array has been used to realize a back-propagation type neural network which can detect changes in the spectral features of the measured signals through off-line supervised learning processes. (authors)
Artificial Neural Network Model for Optical Fiber Direction Coupler Design
李九生; 鲍振武
2004-01-01
A new approach to the design of the optical fiber direction coupler by using neural network is proposed. To train the artificial neural network,the coupling length is defined as the input sample, and the coupling ratio is defined as the output sample. Compared with the numerical value calculation of the theoretical formula, the error of the neural network model output is 1% less.Then, through the model, to design a broadband or a single wavelength optical fiber direction coupler becomes easy. The method is proved to be reliable, accurate and time-saving. So it is promising in the field of both investigation and application.
Optimal control learning with artificial neural networks
This paper shows neural networks capabilities in optimal control applications of non linear dynamic systems. Our method is issued of a classical method concerning the direct research of the optimal control using gradient techniques. We show that neural approach and backpropagation paradigm are able to solve efficiently equations relative to necessary conditions for an optimizing solution. We have taken into account the known capabilities of multi layered networks in approximation functions. And for dynamic systems, we have generalized the indirect learning of inverse model adaptive architecture that is capable to define an optimal control in relation to a temporal criterion. (orig.)
Artificial Neural Networks in Catalyst Development. Chapter 10
Holeňa, Martin; Baerns, M.
New Jersey: John Wiley and Sons, 2003 - (Cawse, J.), s. 163-202 ISBN 0-471-20343-2 Source of funding: V - iné verejné zdroje Keywords : artificial neural networks * multilayer perceptrons * nonlinear dependency * approximation * network training * knowledge extraction Subject RIV: IN - Informatics, Computer Science
Artificial Neural Networks in Policy Research: A Current Assessment.
Woelfel, Joseph
1993-01-01
Suggests that artificial neural networks (ANNs) exhibit properties that promise usefulness for policy researchers. Notes that ANNs have found extensive use in areas once reserved for multivariate statistical programs such as regression and multiple classification analysis and are developing an extensive community of advocates for processing text…
Artificial Neural Networks for Modeling Knowing and Learning in Science.
Roth, Wolff-Michael
2000-01-01
Advocates artificial neural networks as models for cognition and development. Provides an example of how such models work in the context of a well-known Piagetian developmental task and school science activity: balance beam problems. (Contains 59 references.) (Author/WRM)
ARTIFICIAL NEURAL NETWORKS FOR CORN AND SOYBEAN YELD PREDICTION
Crop yield models can be used to quantify nutrient requirements for nutrient management. The objectives of this study were to investigate the effectiveness of artificial neural networks (ANN) for predicting Maryland corn and soybean yields under typical climatic conditions; compare the prediction ca...
[Artificial neural networks for decision making in urologic oncology].
Remzi, M; Djavan, B
2007-06-01
This chapter presents a detailed introduction regarding Artificial Neural Networks (ANNs) and their contribution to modern Urologic Oncology. It includes a description of ANNs methodology and points out the differences between Artifical Intelligence and traditional statistic models in terms of usefulness for patients and clinicians, and its advantages over current statistical analysis. PMID:18260271
Artificial Neural Network Model for Friction Stir Processing
Syed Muhammed Fahd
2014-06-01
Full Text Available Friction stir processing (FSP is an effective means of refining grain size of aluminum alloys. An artificial neural network model (ANN is made for predicting the grain size of alloys which are processed by FSP. The simulated results from the model show how grain size varies with the process parameters.
Introducing Artificial Neural Networks through a Spreadsheet Model
Rienzo, Thomas F.; Athappilly, Kuriakose K.
2012-01-01
Business students taking data mining classes are often introduced to artificial neural networks (ANN) through point and click navigation exercises in application software. Even if correct outcomes are obtained, students frequently do not obtain a thorough understanding of ANN processes. This spreadsheet model was created to illuminate the roles of…
Artificial neural networks as a tool in urban storm drainage
Loke, E.; Warnaars, E.A.; Jacobsen, P.
1997-01-01
The introduction of Artificial Neural Networks (ANNs) as a tool in the field of urban storm drainage is discussed. Besides some basic theory on the mechanics of ANNs and a general classification of the different types of ANNs, two ANN application examples are presented: The prediction of runoff...
Unit 188 - Artificial Neural Networks for Spatial Data Analysis
183, CC in GIScience; Gopal, Sucharita
2000-01-01
This unit presents a definition of artificial neural networks (ANN); describes different types of ANN and their applications in geography and spatial analysis; explains differences between ANN and AI and between ANN and statistics; and describes how to apply a supervised ANN in model classification and function estimation problems.
Recurrent Artificial Neural Networks and Finite State Natural Language Processing.
Moisl, Hermann
It is argued that pessimistic assessments of the adequacy of artificial neural networks (ANNs) for natural language processing (NLP) on the grounds that they have a finite state architecture are unjustified, and that their adequacy in this regard is an empirical issue. First, arguments that counter standard objections to finite state NLP on the…
Vibration monitoring with artificial neural networks
Vibration monitoring of components in nuclear power plants has been used for a number of years. This technique involves the analysis of vibration data coming from vital components of the plant to detect features which reflect the operational state of machinery. The analysis leads to the identification of potential failures and their causes, and makes it possible to perform efficient preventive maintenance. Earlydetection is important because it can decrease the probability of catastrophic failures, reduce forced outgage, maximize utilization of available assets, increase the life of the plant, and reduce maintenance costs. This paper documents our work on the design of a vibration monitoring methodology based on neural network technology. This technology provides an attractive complement to traditional vibration analysis because of the potential of neural network to operate in real-time mode and to handle data which may be distorted or noisy. Our efforts have been concentrated on the analysis and classification of vibration signatures collected from operating machinery. Two neural networks algorithms were used in our project: the Recirculation algorithm for data compression and the Backpropagation algorithm to perform the actual classification of the patterns. Although this project is in the early stages of development it indicates that neural networks may provide a viable methodology for monitoring and diagnostics of vibrating components. Our results to date are very encouraging
Evolving Spiking Neural Networks for Control of Artificial Creatures
Arash Ahmadi
2013-10-01
Full Text Available To understand and analysis behavior of complicated and intelligent organisms, scientists apply bio-inspired concepts including evolution and learning to mathematical models and analyses. Researchers utilize these perceptions in different applications, searching for improved methods andapproaches for modern computational systems. This paper presents a genetic algorithm based evolution framework in which Spiking Neural Network (SNN of artificial creatures are evolved for higher chance of survival in a virtual environment. The artificial creatures are composed ofrandomly connected Izhikevich spiking reservoir neural networks using population activity rate coding. Inspired by biological neurons, the neuronal connections are considered with different axonal conduction delays. Simulations results prove that the evolutionary algorithm has thecapability to find or synthesis artificial creatures which can survive in the environment successfully.
Artificial neural networks in the nuclear engineering (Part 2)
The field of Artificial Neural Networks (ANN), one of the branches of Artificial Intelligence has been waking up a lot of interest in the Nuclear Engineering (NE). ANN can be used to solve problems of difficult modeling, when the data are fail or incomplete and in high complexity problems of control. The first part of this work began a discussion with feed-forward neural networks in back-propagation. In this part of the work, the Multi-synaptic neural networks is applied to control problems. Also, the self-organized maps is presented in a typical pattern classification problem: transients classification. The main purpose of the work is to show that ANN can be successfully used in NE if a carefully choice of its type is done: the application sets this choice. (author)
Transient stability Assessment using Artificial Neural Network Considering Fault Location
P.K.Olulope
2010-06-01
Full Text Available This paper describes the capability of artificial neural network for predicting the critical clearing time of power system. It combines the advantages of time domain integration schemes with artificial neural network for real time transient stability assessment. The training of ANN is done using selected features as input and critical fault clearing time (CCT as desire target. A single contingency was applied and the target CCT was found using time domain simulation. Multi layer feed forward neural network trained with Levenberg Marquardt (LM back propagation algorithm is used to provide the estimated CCT. The effectiveness of ANN, the method is demonstrated on single machine infinite bus system (SMIB. The simulation shows that ANN can provide fast and accurate mapping which makes it applicable to real time scenario.
Using Artificial Neural Networks for ECG Signals Denoising
Zoltán Germán-Salló
2010-12-01
Full Text Available The authors have investigated some potential applications of artificial neural networks in electrocardiografic (ECG signal prediction. For this, the authors used an adaptive multilayer perceptron structure to predict the signal. The proposed procedure uses an artificial neural network based learning structure to estimate the (n+1th sample from n previous samples To train and adjust the network weights, the backpropagation (BP algorithm was used. In this paper, prediction of ECG signals (as time series using multi-layer feedforward neural networks will be described. The results are evaluated through approximation error which is defined as the difference between the predicted and the original signal.The prediction procedure is carried out (simulated in MATLAB environment, using signals from MIT-BIH arrhythmia database. Preliminary results are encouraging enough to extend the proposed method for other types of data signals.
Artificial Neural Network Model for Predicting Compressive
Salim T. Yousif
2013-05-01
Full Text Available Compressive strength of concrete is a commonly used criterion in evaluating concrete. Although testing of the compressive strength of concrete specimens is done routinely, it is performed on the 28th day after concrete placement. Therefore, strength estimation of concrete at early time is highly desirable. This study presents the effort in applying neural network-based system identification techniques to predict the compressive strength of concrete based on concrete mix proportions, maximum aggregate size (MAS, and slump of fresh concrete. Back-propagation neural networks model is successively developed, trained, and tested using actual data sets of concrete mix proportions gathered from literature. The test of the model by un-used data within the range of input parameters shows that the maximum absolute error for model is about 20% and 88% of the output results has absolute errors less than 10%. The parametric study shows that water/cement ratio (w/c is the most significant factor affecting the output of the model. The results showed that neural networks has strong potential as a feasible tool for predicting compressive strength of concrete.
Nuclear fuel, pellet inspection using artificial neural networks
Nuclear fuel must be of high quality before being placed into service in a reactor. Fuel vendors currently use manual inspection for quality control of fabricated nuclear fuel pellets. In order to reduce workers' exposure to radiation and increase the inspection accuracy and speed, the feasibility of automation of fuel pellet inspection using artificial neural networks (ANNs) is studied in this paper. Three kinds of neural network architectures are examined for evaluation of the ANN performance in proper classification of good versus bad pellets. Two supervised neural networks, backpropagation and fuzzy ARTMAP, and one unsupervised neural network called ART2-A are applied. The results indicate that a supervised ANN with adequate training can achieve a high success rate in classification of fuel pellets. (orig.)
Artificial neural networks in the nuclear engineering (Part 1)
Artificial Neural Networks (ANN) can be defined as 'parallel systems composed of layers of simple processing units highly interconnected and inspired in the human brain.' ANN can be used to solve problems of difficult modeling, when the data are fail or incomplete and in problems of control of high complexity. Several problems related with network training and generalization are to be solved to a safe utilization in nuclear plants systems. This work, divided into two parts, intends to begin a discussion on three ANN concepts: feed-forward neural networks, Self-Organized Maps (SOM), and multi-synaptic neural networks. The discussion will cover control applications, approximation of functions and pattern recognition. A few set of samples are commented. This first part focus on feed-forward neural networks with the back-propagation algorithm. (author)
Assessing Landslide Hazard Using Artificial Neural Network
Farrokhzad, Farzad; Choobbasti, Asskar Janalizadeh; Barari, Amin;
2011-01-01
factor of safety. It can be stated that the trained neural networks are capable of predicting the stability of slopes and safety factor of landslide hazard in study area with an acceptable level of confidence. Landslide hazard analysis and mapping can provide useful information for catastrophic loss...... reduction, and assist in the development of guidelines for sustainable land use planning. The analysis is used to identify the factors that are related to landslides and to predict the landslide hazard in the future based on such a relationship....
Unsupervised classification of neural spikes with a hybrid multilayer artificial neural network.
García, P; Suárez, C P; Rodríguez, J; Rodríguez, M
1998-07-01
The understanding of the brain structure and function and its computational style is one of the biggest challenges both in Neuroscience and Neural Computation. In order to reach this and to test the predictions of neural network modeling, it is necessary to observe the activity of neural populations. In this paper we propose a hybrid modular computational system for the spike classification of multiunits recordings. It works with no knowledge about the waveform, and it consists of two moduli: a Preprocessing (Segmentation) module, which performs the detection and centering of spike vectors using programmed computation; and a Processing (Classification) module, which implements the general approach of neural classification: feature extraction, clustering and discrimination, by means of a hybrid unsupervised multilayer artificial neural network (HUMANN). The operations of this artificial neural network on the spike vectors are: (i) compression with a Sanger Layer from 70 points vector to five principal component vector; (ii) their waveform is analyzed by a Kohonen layer; (iii) the electrical noise and overlapping spikes are rejected by a previously unreported artificial neural network named Tolerance layer; and (iv) finally the spikes are labeled into spike classes by a Labeling layer. Each layer of the system has a specific unsupervised learning rule that progressively modifies itself until the performance of the layer has been automatically optimized. The procedure showed a high sensitivity and specificity also when working with signals containing four spike types. PMID:10223516
Improved Local Weather Forecasts Using Artificial Neural Networks
Wollsen, Morten Gill; Jørgensen, Bo Nørregaard
2015-01-01
Solar irradiance and temperature forecasts are used in many different control systems. Such as intelligent climate control systems in commercial greenhouses, where the solar irradiance affects the use of supplemental lighting. This paper proposes a novel method to predict the forthcoming weather...... using an artificial neural network. The neural network used is a NARX network, which is known to model non-linear systems well. The predictions are compared to both a design reference year as well as commercial weather forecasts based upon numerical modelling. The results presented in this paper show...
Modelling of word usage frequency dynamics using artificial neural network
In this paper the method for modelling of word usage frequency time series is proposed. An artificial feedforward neural network was used to predict word usage frequencies. The neural network was trained using the maximum likelihood criterion. The Google Books Ngram corpus was used for the analysis. This database provides a large amount of data on frequency of specific word forms for 7 languages. Statistical modelling of word usage frequency time series allows finding optimal fitting and filtering algorithm for subsequent lexicographic analysis and verification of frequency trend models
INTEGRATING ARTIFICIAL NEURAL NETWORKS FOR DEVELOPING TELEMEDICINE SOLUTION
Mihaela GHEORGHE
2015-06-01
Full Text Available Artificial intelligence is assuming an increasing important role in the telemedicine field, especially neural networks with their ability to achieve meaning from large sets of data characterized by lacking exactness and accuracy. These can be used for assisting physicians or other clinical staff in the process of taking decisions under uncertainty. Thus, machine learning methods which are specific to this technology are offering an approach for prediction based on pattern classification. This paper aims to present the importance of neural networks in detecting trends and extracting patterns which can be used within telemedicine domains, particularly for taking medical diagnosis decisions.
Static human face recognition using artificial neural networks
This paper presents a novel method of human face recognition using digital computers. A digital PC camera is used to take the BMP images of the human faces. An artificial neural network using Back Propagation Algorithm is developed as a recognition engine. The BMP images of the faces serve as the input patterns for this engine. A software 'Face Recognition' has been developed to recognize the human faces for which it is trained. Once the neural network is trained for patterns of the faces, the software is able to detect and recognize them with success rate of about 97%. (author)
Forecast Share Prices with Artificial Neural Network in Crisis Periods
Feyyaz Zeren
2014-09-01
Full Text Available Crisis periods present quite a significant moment for financial markets. Considering not losing and changing the crisis periods into opportunities, forecasts of share prices during these periods have an importance for the investors. In this study, daily closing prices of Borsa Istanbul National 100 index during the three big crisis periods, as 1994, 2001, and 2008, have been tried to be forecasted, by using artificial neural networks. As a result of this study, it is determined that in the forecasts of Borsa Istanbul, artificial neural networks show high performance. This result was proved by both comparing the values that occurred and forecasted on the graphics, and Mean Absolute Percentage Error (MAPE calculations
Numerical solution of differential equations by artificial neural networks
Meade, Andrew J., Jr.
1995-01-01
Conventionally programmed digital computers can process numbers with great speed and precision, but do not easily recognize patterns or imprecise or contradictory data. Instead of being programmed in the conventional sense, artificial neural networks (ANN's) are capable of self-learning through exposure to repeated examples. However, the training of an ANN can be a time consuming and unpredictable process. A general method is being developed by the author to mate the adaptability of the ANN with the speed and precision of the digital computer. This method has been successful in building feedforward networks that can approximate functions and their partial derivatives from examples in a single iteration. The general method also allows the formation of feedforward networks that can approximate the solution to nonlinear ordinary and partial differential equations to desired accuracy without the need of examples. It is believed that continued research will produce artificial neural networks that can be used with confidence in practical scientific computing and engineering applications.
Application of artificial neural networks to micro gas turbines
Bartolini, C.M.; Caresana, F.; Comodi, G.; Pelagalli, L.; Renzi, M.; Vagni, S. [Dipartimento di Energetica, Facolta di Ingegneria, Universita Politecnica delle Marche, via Brecce Bianche, 60131 Ancona (Italy)
2011-01-15
In this work, artificial neural networks (ANNs) were applied to describe the performance of a micro gas turbine (MGT). In particular, they were used (i) to complete performance diagrams for unavailable experimental data; (ii) to assess the influence of ambient parameters on performance; and (iii) to analyze and predict emissions of pollutants in the exhausts. The experimental data used to feed the ANNs were acquired from a manufacturer's test bed. Though large, the data set did not cover the whole working range of the turbine; ANNs and an artificial neural fuzzy interference system (ANFIS) were therefore applied to fill information gaps. The results of this investigation were also used for sensitivity analysis of the machine's behavior in different ambient conditions. ANNs can effectively evaluate both MGT performance and emissions in real installations in any climate, the worst R{sup 2} in the validation set being 0.9962. (author)
Artificial neural networks technology for neutron spectrometry and dosimetry
Artificial Neural Network Technology has been applied to unfold neutron spectra and to calculate 13 dosimetric quantities using seven count rates from a Bonner Sphere Spectrometer with a 6LiI(Eu). Two different networks, one for spectrometry and another for dosimetry, were designed. To train and test both networks, 177 neutron spectra from the IAEA compilation were utilised. Spectra were re-binned into 31 energy groups, and the dosimetric quantities were calculated using the MCNP code and the fluence-to-dose conversion coefficients from ICRP 74. Neutron spectra and UTA4 response matrix were used to calculate the expected count rates in the Bonner spectrometer. Spectra and H*(10) of 239PuBe and 241AmBe were experimentally obtained and compared with those determined with the artificial neural networks. (authors)
Iris Recognition Using Discrete Cosine Transform and Artificial Neural Networks
Ahmad M. Sarhan
2009-01-01
Full Text Available Problem statement: This study presented an efficient Iris recognition system. Approach: The design used the discrete cosine transform for feature extraction and artificial neural networks for classification. The iris images used in this system were obtained from the CASIA database. Results: A robust system for iris recognition was developed. Conclusion: An iris recognition system that produces very low error rates was successfully designed
Application of artificial neural network for NHR fault diagnosis
The author makes researches on 200 MW nuclear heating reactor (NHR) fault diagnosis system using artificial neural network, and use the tendency value and real value of the data under the accidents to train and test two BP networks respectively. The final diagnostic result is the combination of the results of the two networks. The compound system can enhance the accuracy and adaptability of the diagnosis comparing to the single network system
Activated sludge process based on artificial neural network
张文艺; 蔡建安
2002-01-01
Considering the difficulty of creating water quality model for activated sludge system, a typical BP artificial neural network model has been established to simulate the operation of a waste water treatment facilities. The comparison of prediction results with the on-spot measurements shows the model, the model is accurate and this model can also be used to realize intelligentized on-line control of the wastewater processing process.
Artificial neural networks : applications in morphometric and landscape features analysis
Ehsani, Amir Houshang
2007-01-01
In this thesis a semi-automatic method is developed to analyze morphometric features and landscape elements based on Self Organizing Map (SOM) as a unsupervised Artificial Neural Network algorithm. Analysis and parameterization of topography into simple and homogenous land elements (landform) can play an important role as basic information in planning processes and environmental modeling. Landforms and land cover are the main components of landscapes. Landscapes are dynamic systems that invol...
Evolving Spiking Neural Networks for Control of Artificial Creatures
Arash Ahmadi
2013-01-01
To understand and analysis behavior of complicated and intelligent organisms, scientists apply bio-inspired concepts including evolution and learning to mathematical models and analyses. Researchers utilize these perceptions in different applications, searching for improved methods andapproaches for modern computational systems. This paper presents a genetic algorithm based evolution framework in which Spiking Neural Network (SNN) of artificial creatures are evolved for higher chance of survi...
Designing Artificial Neural Networks Using Particle Swarm Optimization Algorithms
Garro, Beatriz A.; Roberto A. Vázquez
2015-01-01
Artificial Neural Network (ANN) design is a complex task because its performance depends on the architecture, the selected transfer function, and the learning algorithm used to train the set of synaptic weights. In this paper we present a methodology that automatically designs an ANN using particle swarm optimization algorithms such as Basic Particle Swarm Optimization (PSO), Second Generation of Particle Swarm Optimization (SGPSO), and a New Model of PSO called NMPSO. The aim of these algori...
Application of artificial neural networks in particle physics
The application of Artificial Neural Networks in Particle Physics is reviewed. Most common is the use of feed-forward nets for event classification and function approximation. This network type is best suited for a hardware implementation and special VLSI chips are available which are used in fast trigger processors. Also discussed are fully connected networks of the Hopfield type for pattern recognition in tracking detectors. (orig.)
Large Scale Artificial Neural Network Training Using Multi-GPUs
Wang, Linnan; Wei WU; Xiao, Jianxiong; Yi, Yang
2015-01-01
This paper describes a method for accelerating large scale Artificial Neural Networks (ANN) training using multi-GPUs by reducing the forward and backward passes to matrix multiplication. We propose an out-of-core multi-GPU matrix multiplication and integrate the algorithm with the ANN training. The experiments demonstrate that our matrix multiplication algorithm achieves linear speedup on multiple inhomogeneous GPUs. The full paper of this project can be found at [1].
Application of Artificial Neural Networks for Predicting Generated Wind Power
Vijendra Singh
2016-01-01
This paper addresses design and development of an artificial neural network based system for prediction of wind energy produced by wind turbines. Now in the last decade, renewable energy emerged as an additional alternative source for electrical power generation. We need to assess wind power generation capacity by wind turbines because of its non-exhaustible nature. The power generation by electric wind turbines depends on the speed of wind, flow direction, fluctuations, density of air, gener...
The equity premium puzzle: an artificial neural network approach
Shee Q. Wong; Nik R. Hassan; Ehsan Feroz
2007-01-01
Purpose – In recent years, equity premiums have been unusually large and efforts to forecast them have been largely unsuccessful. This paper presents evidence suggesting that artificial neural networks (ANNs) outperform traditional statistical methods and can forecast equity premiums reasonably well. Design/methodology/approach – This study replicates out-of-sample estimates of regression using ANN with economic fundamentals as inputs. The theory states that recent large equity premium values...
Artificial Neural Networks in Applications of Industrial Robots
王克胜; JonathanLienhardt; 袁庆丰; 方明伦
2004-01-01
Artificial neural networks (ANNs) have been widely used to solve a number of problems to which analytical solutions are difficult to obtain using traditional mathematical approaches.Such problems exist also in the analysis of industrial robots. This paper presents an overview of ANN applications to robot kinematics, dynamics,control, trajectory and path planning, and sensing. Reasons for using or not using ANNs to industrial robots are explained as well.
Time series prediction using artificial neural network for power stabilization
Time series prediction has been applied to many business and scientific applications. Prominent among them are stock market prediction, weather forecasting, etc. Here, this technique has been applied to forecast plasma torch voltages to stabilize power using a backpropagation, a model of artificial neural network. The Extended-Delta-Bar-Delta algorithm is used to improve the convergence rate of the network and also to avoid local minima. Results from off-line data was quite promising to use in on-line
Research of Artificial Neural Networks Abilities in Printed Words Recognition
A. Bondarenko; Borisovs, A
2010-01-01
This paper provides a brief overview on document analysis and recognition area, highlighting main steps and modules that are used to build recognition systems of the mentioned type. We underline basic workflow of such system down to the problem of single character recognition problem and highlighting possibilities and ways for artificial neural networks usage. Further we are conductinga formal comparison of abilities of printed characters recognition between two well known types of second ge...
Prediction of Inelastic Response Spectra Using Artificial Neural Networks
Alfredo Reyes-Salazar; Ruiz, Sonia E.; Juan Bojórquez; Edén Bojórquez
2012-01-01
Several studies have been oriented to develop methodologies for estimating inelastic response of structures; however, the estimation of inelastic seismic response spectra requires complex analyses, in such a way that traditional methods can hardly get an acceptable error. In this paper, an Artificial Neural Network (ANN) model is presented as an alternative to estimate inelastic response spectra for earthquake ground motion records. The moment magnitude (MW), fault mechanism (FM), Joyner-Boor...
Aspects of artificial neural networks and experimental noise
Derks, E.P.P.A.
1997-01-01
About a decade ago, artificial neural networks (ANN) have been introduced to chemometrics for solving problems in analytical chemistry. ANN are based on the functioning of the brain and can be used for modeling complex relationships within chemical data. An ANN-model can be obtained by earning or training with examples. The model can be realized without any a priory theoretical assumptions about the associations in the data, as is the case for parametric physical or chemical models. The unive...
Application of artificial neural networks in critical heat flux prediction
The critical heat flux (CHF) are predicted and its parametric trends are analyzed by apply in artificial neural networks (ANNs) to the CHF data base of upward flow water in uniformly heated vertical round tubes. The prediction and analysis are based on the local conditions hypothesis. Groeneveld's CHF Look-up Table is used to train the ANNs, and the trained ANN predicts the CHF better than any other conventional correlations method, with root-mean-square (RMS) error of 14%
INTEGRATING ARTIFICIAL NEURAL NETWORKS FOR DEVELOPING TELEMEDICINE SOLUTION
Mihaela GHEORGHE
2015-01-01
Artificial intelligence is assuming an increasing important role in the telemedicine field, especially neural networks with their ability to achieve meaning from large sets of data characterized by lacking exactness and accuracy. These can be used for assisting physicians or other clinical staff in the process of taking decisions under uncertainty. Thus, machine learning methods which are specific to this technology are offering an approach for prediction based on pattern classification. This...
Application of artificial neural networks in particle physics
The application of artificial neural networks in particle physics is reviewed. The use of feed-forward nets is most common for event classification and function approximation. This network type is best suited for a hardware implementation and special VLSI chips are available which are used in fast trigger processors. Also discussed are fully connected networks of the Hopfield type for pattern recognition in tracking detectors. (orig.)
Using Artificial Neural Networks To Forecast Financial Time Series
Aamodt, Rune
2010-01-01
This thesis investigates the application of artificial neural networks (ANNs) for forecasting financial time series (e.g. stock prices).The theory of technical analysis dictates that there are repeating patterns that occur in the historic prices of stocks, and that identifying these patterns can be of help in forecasting future price developments. A system was therefore developed which contains several ``agents'', each producing recommendations on the stock price based on some aspect of techn...
Image reconstruction using Monte Carlo simulation and artificial neural networks
PET data sets are subject to two types of distortions during acquisition: the imperfect response of the scanner and attenuation and scattering in the active distribution. In addition, the reconstruction of voxel images from the line projections composing a data set can introduce artifacts. Monte Carlo simulation provides a means for modeling the distortions and artificial neural networks a method for correcting for them as well as minimizing artifacts. (author) figs., tab., refs
Artificial Neural Networks for SCADA Data based Load Reconstruction (poster)
Hofemann, C.; Van Bussel, G.J.W.; Veldkamp, H.
2011-01-01
If at least one reference wind turbine is available, which provides sufficient information about the wind turbine loads, the loads acting on the neighbouring wind turbines can be predicted via an artificial neural network (ANN). This research explores the possibilities to apply such a network not only within a wind park but on turbines located at different sites. Following the idea to develop a tool to forecast the particular loads of any wind turbine in the field without the need to install ...
Artificial neural networks for static security assessment
Niebur, D.; Fischl, R.
1997-12-31
A reliable, continuous supply of electric energy is essential for the functioning of today`s complex societies. Due to a combination of increasing energy consumption and impediments of various kinds to the extension of existing electric transmission networks, these power systems are operated closer and closer to their limits. This situation requires a significantly less conservative power system operation and control regime which, in turn, is possible only by monitoring the system state in much more detail than was necessary previously. Fortunately, the large quantity of information required can be provided in many cases through recent advances in telecommunications and computing techniques. There is, however, a lack of evaluation techniques required to extract the salient information and to use it for higher-order processing. Whilst the sheer quantity of available information is always a problem, this situation is aggravated in emergency situations when rapid decisions are required. Furthermore, the behaviour of power systems is highly non-linear. Monitoring and control involves several hundred variables which are only partly available by measurements. Load demands and dynamic loads are difficult to model. Therefore models appropriate for normal situations might become invalid in emergency situations. These problems provide important motivation to explore novel data processing and programming techniques from the vast pool of artificial intelligence techniques. The following section gives a short introduction to static security assessment. (Author)
Classifying auroras using artificial neural networks
Rydesater, Peter; Brandstrom, Urban; Steen, Ake; Gustavsson, Bjorn
1999-03-01
In Auroral Large Imaging System (ALIS) there is need of stable methods for analysis and classification of auroral images and images with for example mother of pearl clouds. This part of ALIS is called Selective Imaging Techniques (SIT) and is intended to sort out images of scientific interest. It's also used to find out what and where in the images there is for example different auroral phenomena's. We will discuss some about the SIT units main functionality but this work is mainly concentrated on how to find auroral arcs and how they are placed in images. Special case have been taken to make the algorithm robust since it's going to be implemented in a SIT unit which will work automatic and often unsupervised and some extends control the data taking of ALIS. The method for finding auroral arcs is based on a local operator that detects intensity differens. This gives arc orientation values as a preprocessing which is fed to a neural network classifier. We will show some preliminary results and possibilities to use and improve this algorithm for use in the future SIT unit.
Applications of artificial neural network chips
In a collaboration between CERN and Royal Institute of Technology Stockholm a so called Asynchronous Transfer Mode (ATM) test setup was developed. The main goal of the task was the experimental verification of the harware design principles and methods, partly the application of the test setup for testing the neural network controlled self-routing, asynchronous event-building ATM networks. We took part in the first implementation of the IBM Zero Instruction Set Computer (ZISC036)[2] on a PC-486 ISA-bus card. This chip has been designed for cost-effective recognition and classification in real time. After building the PC interface card and testing the main functions of the built-in logic a code for character recognition was developed for comparing its performance to other RBF-type methods. The results show that the ZISC036 is performing quite well. The most attractive feature of the chip is the speed: if it is operated at 20 MHz, 64 component the evaluation is ready in 0.5 μ sec. (K.A.) 2 refs.; 1 fig
The importance of artificial neural networks in biomedicine
Burke, H.B. [New York Medical College, Valhalla, NY (United States)
1995-12-31
The future explanatory power in biomedicine will be at the molecular-genetic level of analysis (rather than the epidemiologic-demographic or anatomic-cellular levels). This is the level of complex systems. Complex systems are characterized by nonlinearity and complex interactions. It is difficult for traditional statistical methods to capture complex systems because traditional methods attempt to find the model that best fits the statistician`s understanding of the phenomenon; complex systems are difficult to understand and therefore difficult to fit with a simple model. Artificial neural networks are nonparametric regression models. They can capture any phenomena, to any degree of accuracy (depending on the adequacy of the data and the power of the predictors), without prior knowledge of the phenomena. Further, artificial neural networks can be represented, not only as formulae, but also as graphical models. Graphical models can increase analytic power and flexibility. Artificial neural networks are a powerful method for capturing complex phenomena, but their use requires a paradigm shift, from exploratory analysis of the data to exploratory analysis of the model.
Study on the fitting ways of artificial neural networks
SHAO Liang-shan; WANG Jun; SUN Shao-guang
2008-01-01
Function simulation, which is called virtual reality too, is popularly applied to solve uncertain problems. Good performance of hidden layers and perfect capability of function simulation make artificial neural networks one of the best choices to simulate functions with form unknown. Inputs and outputs were used to train the structure of the artificial neural network to make the outputs of network vary with the given inputs and keep consistent with the original data within tolerance. However, we couldn't get expected results by using samples of a simple two-variable-model for the cause of dimensional difference. The way of artificial neural networks to fit functions, which uses "multi-dimensional surface" of high dimension to fit "multi-dimensional line" of low dimension, was proved; the conclusion that good effects of fitting don't mean good function modeling when a dimensional difference exists was provided, and a suggestion of "surface collecting" in practical engineering application was proposed when collecting useful data.
RECOGNITION OF CDNA MICROARRAY IMAGE USING FEEDFORWARD ARTIFICIAL NEURAL NETWORK
R. M. Farouk
2014-09-01
Full Text Available The complementary DNA (cDNA sequence considered the magic biometric technique for personal identification. Microarray image processing used for the concurrent genes identification. In this paper, we present a new method for cDNA recognition based on the artificial neural network (ANN. We have segmented the location of the spots in a cDNA microarray. Thus, a precise localization and segmenting of a spot are essential to obtain a more exact intensity measurement, leading to a more accurate gene expression measurement. The segmented cDNA microarray image resized and used as an input for the proposed artificial neural network. For matching and recognition, we have trained the artificial neural network. Recognition results are given for the galleries of cDNA sequences . The numerical results show that, the proposed matching technique is an effective in the cDNA sequences process. The experimental results of our matching approach using different databases shows that, the proposed technique is an effective matching performance.
Predicting Developmental Disorder in Infants Using an Artificial Neural Network
Farin Soleimani
2013-06-01
Full Text Available Early recognition of developmental disorders is an important goal, and equally important is avoiding misdiagnosing a disorder in a healthy child without pathology. The aim of the present study was to develop an artificial neural network using perinatal information to predict developmental disorder at infancy. A total of 1,232 mother–child dyads were recruited from 6,150 in the original data of Karaj, Alborz Province, Iran. Thousands of variables are examined in this data including basic characteristics, medical history, and variables related to infants. The validated Infant Neurological International Battery test was employed to assess the infant’s development. The concordance indexes showed that true prediction of developmental disorder in the artificial neural network model, compared to the logistic regression model, was 83.1% vs. 79.5% and the area under ROC curves, calculated from testing data, were 0.79 and 0.68, respectively. In addition, specificity and sensitivity of the ANN model vs. LR model was calculated 93.2% vs. 92.7% and 39.1% vs. 21.7%. An artificial neural network performed significantly better than a logistic regression model.
A TLD dose algorithm using artificial neural networks
An artificial neural network was designed and used to develop a dose algorithm for a multi-element thermoluminescence dosimeter (TLD). The neural network architecture is based on the concept of functional links network (FLN). Neural network is an information processing method inspired by the biological nervous system. A dose algorithm based on neural networks is fundamentally different as compared to conventional algorithms, as it has the capability to learn from its own experience. The neural network algorithm is shown the expected dose values (output) associated with given responses of a multi-element dosimeter (input) many times. The algorithm, being trained that way, eventually is capable to produce its own unique solution to similar (but not exactly the same) dose calculation problems. For personal dosimetry, the output consists of the desired dose components: deep dose, shallow dose and eye dose. The input consists of the TL data obtained from the readout of a multi-element dosimeter. The neural network approach was applied to the Harshaw Type 8825 TLD, and was shown to significantly improve the performance of this dosimeter, well within the U.S. accreditation requirements for personnel dosimeters
Artificial neural network modeling of dissolved oxygen in reservoir.
Chen, Wei-Bo; Liu, Wen-Cheng
2014-02-01
The water quality of reservoirs is one of the key factors in the operation and water quality management of reservoirs. Dissolved oxygen (DO) in water column is essential for microorganisms and a significant indicator of the state of aquatic ecosystems. In this study, two artificial neural network (ANN) models including back propagation neural network (BPNN) and adaptive neural-based fuzzy inference system (ANFIS) approaches and multilinear regression (MLR) model were developed to estimate the DO concentration in the Feitsui Reservoir of northern Taiwan. The input variables of the neural network are determined as water temperature, pH, conductivity, turbidity, suspended solids, total hardness, total alkalinity, and ammonium nitrogen. The performance of the ANN models and MLR model was assessed through the mean absolute error, root mean square error, and correlation coefficient computed from the measured and model-simulated DO values. The results reveal that ANN estimation performances were superior to those of MLR. Comparing to the BPNN and ANFIS models through the performance criteria, the ANFIS model is better than the BPNN model for predicting the DO values. Study results show that the neural network particularly using ANFIS model is able to predict the DO concentrations with reasonable accuracy, suggesting that the neural network is a valuable tool for reservoir management in Taiwan. PMID:24078053
Prediction of Skin Penetration using Artificial Neural Network
Sangita Saini,
2010-06-01
Full Text Available The artificial neural networks (ANN technologies provide on-line capability to analyze many inputs and provide information to multiple outputs, and have the capability to learn or adapt to changing conditions. No doubt that the determination of Skin permeability is a time consuming process; which involves a quite tedious work. Material and method: Software Neurodimension was used for this study. A data set was taken from literature and used to train the network. A set of 20 compounds were used to construct the ANN models for training and 10 compounds used for prediction of skin penetration (n=30, molecular weight>500 da. Skin permeability expressed in log Kp (cm/h. Abraham descriptors of R2 (excess molar refraction, π2 H dipolarity/polarizability, Σα2 H, Σβ2 H (the overall or effective hydrogen-bond acidity and basicity, and Vx (the McGowan haracteristic volume were obtained. Result: The correlation between the skin permeability coefficient and the Abraham descriptors were obtained from the trained neural network. The regression coefficient was 0.856 for training subset and MSE was 0.04. In addition, thepredictability of the neural network model was compared to the experimental data. This paper uses artificial neural network for prediction of Skin permeability study.
DESIGN AND ANALOG VLSI IMPLEMENTATION OF ARTIFICIAL NEURAL NETWORK
D.Yammenavar
2011-08-01
Full Text Available Nature has evolved highly advanced systems capable of performing complex computations, adoption andlearning using analog computations. Furthermore nature has evolved techniques to deal with impreciseanalog computations by using redundancy and massive connectivity. In this paper we are making use ofArtificial Neural Network to demonstrate the way in which the biological system processes in analogdomain.We are using 180nm CMOS VLSI technology for implementing circuits which performs arithmeticoperations and for implementing Neural Network. The arithmetic circuits presented here are based onMOS transistors operating in subthreshold region. The basic blocks of artificial neuron are multiplier,adder and neuron activation function.The functionality of designed neural network is verified for analog operations like signal amplificationand frequency multiplication. The network designed can be adopted for digital operations like AND, ORand NOT. The network realizes its functionality for the trained targets which is verified using simulationresults. The schematic, Layout design and verification of proposed Neural Network is carried out usingCadence Virtuoso tool.
Optimizing Artificial Neural Networks using Cat Swarm Optimization Algorithm
John Paul T. Yusiong
2012-12-01
Full Text Available An Artificial Neural Network (ANN is an abstract representation of the biological nervous system which has the ability to solve many complex problems. The interesting attributes it exhibits makes an ANN capable of “learning”. ANN learning is achieved by training the neural network using a training algorithm. Aside from choosing a training algorithm to train ANNs, the ANN structure can also be optimized by applying certain pruning techniques to reduce network complexity. The Cat Swarm Optimization (CSO algorithm, a swarm intelligence-based optimization algorithm mimics the behavior of cats, is used as the training algorithm and the Optimal Brain Damage (OBD method as the pruning algorithm. This study suggests an approach to ANN training through the simultaneous optimization of the connection weights and ANN structure. Experiments performed on benchmark datasets taken from the UCI machine learning repository show that the proposed CSONN-OBD is an effective tool for training neural networks.
Morphological Classification of Galaxies Using Artificial Neural Networks
Ball, N M
2001-01-01
The results of morphological galaxy classifications performed by humans and by automated methods are compared. In particular, a comparison is made between the eyeball classifications of 454 galaxies in the Sloan Digital Sky Survey (SDSS) commissioning data (Shimasaku et al. 2001) with those of supervised artificial neural network programs constructed using the MATLAB Neural Network Toolbox package. Networks in this package have not previously been used for galaxy classification. It is found that simple neural networks are able to improve on the results of linear classifiers, giving correlation coefficients of the order of 0.8 +/- 0.1, compared with those of around 0.7 +/- 0.1 for linear classifiers. The networks are trained using the resilient backpropagation algorithm, which, to the author's knowledge, has not been specifically used in the galaxy classification literature. The galaxy parameters used and the network architecture are both important, and in particular the galaxy concentration index, a measure o...
Niska, Christoffer
2014-01-01
Practical and instruction-based, this concise book will take you from understanding what Bootstrap is, to creating your own Bootstrap theme in no time! If you are an intermediate front-end developer or designer who wants to learn the secrets of Bootstrap, this book is perfect for you.
Multiple simultaneous fault diagnosis via hierarchical and single artificial neural networks
Process fault diagnosis involves interpreting the current status of the plant given sensor reading and process knowledge. There has been considerable work done in this area with a variety of approaches being proposed for process fault diagnosis. Neural networks have been used to solve process fault diagnosis problems in chemical process, as they are well suited for recognizing multi-dimensional nonlinear patterns. In this work, the use of Hierarchical Artificial Neural Networks in diagnosing the multi-faults of a chemical process are discussed and compared with that of Single Artificial Neural Networks. The lower efficiency of Hierarchical Artificial Neural Networks , in comparison to Single Artificial Neural Networks, in process fault diagnosis is elaborated and analyzed. Also, the concept of a multi-level selection switch is presented and developed to improve the performance of hierarchical artificial neural networks. Simulation results indicate that application of multi-level selection switch increase the performance of the hierarchical artificial neural networks considerably
Building an Artificial Idiotopic Immune Model Based on Artificial Neural Network Ideology
Hossam Meshref
2013-01-01
Full Text Available In the literature, there were many research efforts that utilized the artificial immune networks to model their designed applications, but they were considerably complicated, and restricted to a few areas that such as computer security applications. The objective of this research is to introduce a new model for artificial immune networks that adopts features from other biological successful models to overcome its complexity such as the artificial neural networks. Common concepts between the two systems were investigated to design a simple, yet a robust, model of artificial immune networks. Three artificial neural networks learning models were available to choose from in the research design: supervised, unsupervised, and reinforcement learning models. However, it was found that the reinforcement model is the most suitable model. Research results examined network parameters, and appropriate relations between concentration ranges and their dependent parameters as well as the expected reward during network learning. In conclusion, it is recommended the use of the designed model by other researchers in different applications such as controlling robots in hazardous environment to save human lives as well as using it on image retrieval in general to help the police department identify suspects.
A Hybrid Artificial Neural Network Model for Forecasting Short Time Series
Mohan, Anil
2012-01-01
Forecasting has long been the domain of traditional statistical models. Recent research has shown that novel and complex forecasting models do not necessarily outperform simpler models. These include in particular Artificial Neural Networks (ANNs). Even though claims of superior forecasting performance were made by Neural Network researchers, these claims were often unsubstantiated. Artificial neural networks are information processing paradigms motivated by the information ...
Optimization of milling parameters using artificial neural network and artificial immune system
The present paper is an attempt to predict the effective milling parameters on the final surface roughness of the work piece made of Ti 6Al 4V using a multi perceptron artificial neural network. The required data were collected during the experiments conducted on the mentioned material. These parameters include cutting speed, feed per tooth and depth of cut. A relatively newly discovered optimization algorithm entitled, artificial immune system is used to find the best cutting conditions resulting in minimum surface roughness. Finally, the process of validation of the optimum condition is presented
Moiré fringe center determination using artificial neural network
Woo, W. H.; Yen, K. S.
2015-07-01
Moiré methods are commonly used in various engineering metrological practices such as deformation measurements and surface topography. In the past, most of the applications required human intervention in fringe pattern analysis and image processing development to analyze the moiré patterns. In a recent application of using circular gratings moiré pattern, researchers developed graphical analysis method to determine the in-plane (2-D) displacement change between the two circular gratings by analyzing the moiré pattern change. In this work, an artificial neural network approach was proposed to detect and locate moiré fringe centers of circular gratings without image preprocessing and curve fitting. The intensity values in columns of the transformed circular moiré pattern were extracted as the input to the neural network. Moiré fringe centers extracted using graphical analysis method were used as the target for the neural network training. The neural network produced reasonably accurate output with an average mean error of an average mean error of less than 1 unit pixel with standard deviation of less than 4 unit pixels in determining the location of the moiré fringe centers. The result showed that the neural network approach is applicable in moiré fringe centers determination and its feasibility in automating moiré pattern analysis with further improvement.
RECOGNITION OF CDNA MICROARRAY IMAGE USING FEEDFORWARD ARTIFICIAL NEURAL NETWORK
R. M. Farouk
2014-07-01
Full Text Available The complementary DNA (cDNA sequence considered th e magic biometric technique for personal identification. Microarray image processing used fo r the concurrent genes identification. In this pape r, we present a new method for cDNA recognition based on the artificial neural network (ANN. We have segmented the location of the spots in a cDNA micro array. Thus, a precise localization and segmenting of a spot are essential to obtain a more exact intensity measurement, leading to a more accurate gene expression measurement. The segmented cDNA microarr ay image resized and used as an input for the proposed artificial neural network. For matching an d recognition, we have trained the artificial neura l network. Recognition results are given for the gall eries of cDNA sequences . The numerical results sho w that, the proposed matching technique is an effecti ve in the cDNA sequences process. The experimental results of our matching approach using different da tabases shows that, the proposed technique is an effective matching performance.
Prediction of Electrochemical Machining Process Parameters using Artificial Neural Networks
Hoda Hosny Abuzied
2012-01-01
Full Text Available Electrochemical machining (ECM is a non-traditional machining process used mainly to cut hard or difficult to cut metals, where the application of a more traditional process is not convenient. It offers several special advantages including higher machining rate, better precision and control, and a wider range of materials that can be machined. A suitable selection of machining parameters for the ECM process relies heavily on the operator’s technologies and experience because of their numerous and diverse range. Machining parameters provided by the machine tool builder cannot meet the operator’s requirements. So, artificial neural networks were introduced as an efficient approach to predict the values of resulting surface roughness and material removal rate. Many researchers usedartificial neural networks (ANN in improvement of ECM process and also in other nontraditional machining processes as well be seen in later sections. The present study is, initiated to predict values of some of resulting process parameters such as metal removal rate(MRR, and surface roughness (Ra using artificial neural networks based on variation of certain predominant parameters of an electrochemical broaching process such as applied voltage, feed rate and electrolyte flow rate. ANN was found to be an efficient approach as it reduced time & effort required to predict material removal rate & surface roughness if they were found experimentally using trial & error method. To validate the proposed approach the predicted values of surface roughness and material removal rate were compared with a previously obtained ones from the experimental work.
Simulation of lung motions using an artificial neural network
Purpose. A way to improve the accuracy of lung radiotherapy for a patient is to get a better understanding of its lung motion. Indeed, thanks to this knowledge it becomes possible to follow the displacements of the clinical target volume (CTV) induced by the lung breathing. This paper presents a feasibility study of an original method to simulate the positions of points in patient's lung at all breathing phases. Patients and methods. This method, based on an artificial neural network, allowed learning the lung motion on real cases and then to simulate it for new patients for which only the beginning and the end breathing data are known. The neural network learning set is made up of more than 600 points. These points, shared out on three patients and gathered on a specific lung area, were plotted by a MD. Results. - The first results are promising: an average accuracy of 1 mm is obtained for a spatial resolution of 1 x 1 x 2.5 mm3. Conclusion. We have demonstrated that it is possible to simulate lung motion with accuracy using an artificial neural network. As future work we plan to improve the accuracy of our method with the addition of new patient data and a coverage of the whole lungs. (authors)
A genetic-neural artificial intelligence approach to resins optimization
This work presents a preliminary study about the viability and adequacy of a new methodology for the definition of one of the main properties of ion exchange resins used for isotopic separation. Basically, the main problem is the definition of pelicule diameter in case of pelicular ion exchange resins, in order to achieve the best performance in the shortest time. In order to achieve this, a methodology was developed, based in two classic techniques of Artificial Intelligence (AI). At first, an artificial neural network (NN) was trained to map the existing relations between the nucleus radius and the resin's efficiency associated with the exchange time. Later on, a genetic algorithm (GA) was developed in order to find the best pelicule dimension. Preliminary results seem to confirm the potential of the method, and this can be used in any chemical process employing ion exchange resins. (author)
Fault Tolerant Characteristics of Artificial Neural Network Electronic Hardware
Zee, Frank
1995-01-01
The fault tolerant characteristics of analog-VLSI artificial neural network (with 32 neurons and 532 synapses) chips are studied by exposing them to high energy electrons, high energy protons, and gamma ionizing radiations under biased and unbiased conditions. The biased chips became nonfunctional after receiving a cumulative dose of less than 20 krads, while the unbiased chips only started to show degradation with a cumulative dose of over 100 krads. As the total radiation dose increased, all the components demonstrated graceful degradation. The analog sigmoidal function of the neuron became steeper (increase in gain), current leakage from the synapses progressively shifted the sigmoidal curve, and the digital memory of the synapses and the memory addressing circuits began to gradually fail. From these radiation experiments, we can learn how to modify certain designs of the neural network electronic hardware without using radiation-hardening techniques to increase its reliability and fault tolerance.
Reference Crop Evapotranspiration estimation using Artificial Neural Networks
Chowdhary Archana
2010-09-01
Full Text Available Improved water management requires accurate scheduling of irrigation, which in turn requires an accurate estimation of crop evapotranspiration. Crop coefficients are used to estimate crop evapotranspiration from weather based reference evapotranspiration. Reference evapotranspiration is an important quantity for computing the irrigation demands for various crops. Monthly reference evapotranspiration are estimated by FAO Penman-Monteith method and irrigation requirements for the system are estimated based on the methodology suggested in FAO 24. Artificial Neural Network approach is found appropriate for the modeling of reference evapotranspiration for MRP command area. This study explores the potential of feedforward neural network (FFNN for estimation and forecasting of monthly ETo values in MRP command area.
Design of Jetty Piles Using Artificial Neural Networks
Yongjei Lee
2014-01-01
Full Text Available To overcome the complication of jetty pile design process, artificial neural networks (ANN are adopted. To generate the training samples for training ANN, finite element (FE analysis was performed 50 times for 50 different design cases. The trained ANN was verified with another FE analysis case and then used as a structural analyzer. The multilayer neural network (MBPNN with two hidden layers was used for ANN. The framework of MBPNN was defined as the input with the lateral forces on the jetty structure and the type of piles and the output with the stress ratio of the piles. The results from the MBPNN agree well with those from FE analysis. Particularly for more complex modes with hundreds of different design cases, the MBPNN would possibly substitute parametric studies with FE analysis saving design time and cost.
Nuclear power plant fault-diagnosis using artificial neural networks
Artificial neural networks (ANNs) have been applied to various fields due to their fault and noise tolerance and generalization characteristics. As an application to nuclear engineering, we apply neural networks to the early recognition of nuclear power plant operational transients. If a transient or accident occurs, the network will advise the plant operators in a timely manner. More importantly, we investigate the ability of the network to provide a measure of the confidence level in its diagnosis. In this research an ANN is trained to diagnose the status of the San Onofre Nuclear Generation Station using data obtained from the plant's training simulator. Stacked generalization is then applied to predict the error in the ANN diagnosis. The data used consisted of 10 scenarios that include typical design basis accidents as well as less severe transients. The results show that the trained network is capable of diagnosing all 10 instabilities as well as providing a measure of the level of confidence in its diagnoses
Artificial Neural Networks for Solving Ordinary and Partial Differential Equations
Lagaris, I E; Fotiadis, D I
1997-01-01
We present a method to solve initial and boundary value problems using artificial neural networks. A trial solution of the differential equation is written as a sum of two parts. The first part satisfies the boundary (or initial) conditions and contains no adjustable parameters. The second part is constructed so as not to affect the boundary conditions. This part involves a feedforward neural network, containing adjustable parameters (the weights). Hence by construction the boundary conditions are satisfied and the network is trained to satisfy the differential equation. The applicability of this approach ranges from single ODE's, to systems of coupled ODE's and also to PDE's. In this article we illustrate the method by solving a variety of model problems and present comparisons with finite elements for several cases of partial differential equations.
An Artificial Neural Network for Data Forecasting Purposes
Catalina Lucia COCIANU
2015-01-01
Full Text Available Considering the fact that markets are generally influenced by different external factors, the stock market prediction is one of the most difficult tasks of time series analysis. The research reported in this paper aims to investigate the potential of artificial neural networks (ANN in solving the forecast task in the most general case, when the time series are non-stationary. We used a feed-forward neural architecture: the nonlinear autoregressive network with exogenous inputs. The network training function used to update the weight and bias parameters corresponds to gradient descent with adaptive learning rate variant of the backpropagation algorithm. The results obtained using this technique are compared with the ones resulted from some ARIMA models. We used the mean square error (MSE measure to evaluate the performances of these two models. The comparative analysis leads to the conclusion that the proposed model can be successfully applied to forecast the financial data.
Arabic Named Entity Recognition Using Artificial Neural Network
Naji F. Mohammed
2012-01-01
Full Text Available Problem statement: Named Entity Recognition (NER is a task to identify proper names as well as temporal and numeric expressions, in an open-domain text. The NER task can help to improve the performance of various Natural Language Processing (NLP applications such as Information Extraction (IE, Information Retrieval (IR and Question Answering (QA tasks. This study discusses on the Named Entity Recognition of Arabic (NERA. The motivation is due to the lack of resources for Arabic named entities and to enhance the accuracy that has been reached in previous NERA systems. Approach: This system is designed based on neural network approach. The main task of neural network approach is to automatically learn to recognize component patterns and make intelligent decisions based on available data and it can also be applied to classify new information within large databases. The use of machine learning approach to classify NER from Arabic text based on neural network technique is proposed. Neural network approach has performed successfully in many areas of artificial intelligence. The system involves three stages: the first stage is pre-processing that cleans the collected data, the second involves converting Arabic letters to Roman alphabets and the final stage applies neural network to classify the collected data. Results: The accuracy of the system is 92 %. The system is compared with decision tree using the same data. The results showed that the neural network approach achieved better than decision tree. Conclusion: These results prove that our technique is capable to recognize named entities of Arabic texts.
Estimating Processed Cheese Shelf Life with Artificial Neural Networks
Sumit Goyal
2012-05-01
Full Text Available Cascade multilayer artificial neural network (ANN models were developed for estimating the shelf life of processed cheese stored at 7-8oC.Mean square error , root mean square error,coefficient of determination and nash - sutcliffo coefficient were applied in order to compare the prediction ability of the developed models.The developed model with a combination of 5à16à16à1 showed excellent agreement between the actual and the predicted data , thus confirming that multilayer cascade models are good in estimating the shelf life of processed cheese.
A Neuron- and a Synapse Chip for Artificial Neural Networks
Lansner, John; Lehmann, Torsten
1992-01-01
A cascadable, analog, CMOS chip set has been developed for hardware implementations of artificial neural networks (ANN's):I) a neuron chip containing an array of neurons with hyperbolic tangent activation functions and adjustable gains, and II) a synapse chip (or a matrix-vector multiplier) where the matrix is stored on-chip as differential voltages on capacitors. In principal any ANN configuration can be made using these chips. A neuron array of 4 neurons and a 4 Ã— 4 matrix-vector multiplie...
Discrimination between earthquakes and chemical explosions using artificial neural networks
An Artificial Neural Network (ANN) for discriminating between earthquakes and chemical explosions located at epicentral distances, Δ <5 deg from Gauribidanur Array (GBA) has been developed using the short period digital seismograms recorded at GBA. For training the ANN spectral amplitude ratios between P and Lg phases computed at 13 different frequencies in the frequency range of 2-8 Hz, corresponding to 20 earthquakes and 23 chemical explosions were used along with other parameters like magnitude, epicentral distance and amplitude ratios Rg/P and Rg/Lg. After training and development, the ANN has correctly identified a set of 21 test events, comprising 6 earthquakes and 15 chemical explosions. (author)
ARTIFICIAL NEURAL NETWORKS BASED GEARS MATERIAL SELECTION HYBRID INTELLIGENT SYSTEM
X.C. Li; W.X. Zhu; G. Chen; D.S. Mei; J. Zhang; K.M. Chen
2003-01-01
An artificial neural networks(ANNs) based gear material selection hybrid intelligent system is established by analyzing the individual advantages and weakness of expert system (ES) and ANNs and the applications in material select of them. The system mainly consists of tow parts: ES and ANNs. By being trained with much data samples,the back propagation (BP) ANN gets the knowledge of gear materials selection, and is able to inference according to user input. The system realizes the complementing of ANNs and ES. Using this system, engineers without materials selection experience can conveniently deal with gear materials selection.
Accuracy Driven Artificial Neural Networks in Stock Market Prediction
Selvan Simon
2012-06-01
Full Text Available Globalization has made the stock market prediction (SMP accuracy more challenging and rewarding for the researchers and other participants in the stock market. Local and global economic situations alongwith the company’s financial strength and prospects have to be taken into account to improve the prediction accuracy. Artificial Neural Networks (ANN has been identified to be one of the dominant data mining techniques in stock market prediction area. In this paper, we survey different ANN models that have been experimented in SMP with the special enhancement techniques used with them to improve the accuracy. Also, we explore the possible research strategies in this accuracy driven ANN models.
Artificial neural network does better spatiotemporal compressive sampling
Lee, Soo-Young; Hsu, Charles; Szu, Harold
2012-06-01
Spatiotemporal sparseness is generated naturally by human visual system based on artificial neural network modeling of associative memory. Sparseness means nothing more and nothing less than the compressive sensing achieves merely the information concentration. To concentrate the information, one uses the spatial correlation or spatial FFT or DWT or the best of all adaptive wavelet transform (cf. NUS, Shen Shawei). However, higher dimensional spatiotemporal information concentration, the mathematics can not do as flexible as a living human sensory system. The reason is obviously for survival reasons. The rest of the story is given in the paper.
Artificial Neural Network Model of Hydrocarbon Migration and Accumulation
刘海滨; 吴冲龙
2002-01-01
Based on the dynamic simulation of the 3-D structure the sedimentary modeling, the unit entity model has been adopted to transfer the heterogeneous complex pas sage system into limited simple homogeneous entity, and then the traditional dyn amic simulation has been used to calculate the phase and the drive forces of the hyd rocarbon , and the artificial neural network(ANN) technology has been applied to resolve such problems as the direction, velocity and quantity of the hydrocarbo n migration among the unit entities. Through simulating of petroleum migration a nd accumulation in Zhu Ⅲ depression, the complex mechanism of hydrocarbon migra tion and accumulation has been opened out.
Inflow forecasting using Artificial Neural Networks for reservoir operation
Chiamsathit, Chuthamat; Adeloye, Adebayo J.; Bankaru-Swamy, Soundharajan
2016-01-01
In this study, multi-layer perceptron (MLP) artificial neural networks have been applied to forecast one-month-ahead inflow for the Ubonratana reservoir, Thailand. To assess how well the forecast inflows have performed in the operation of the reservoir, simulations were carried out guided by the systems rule curves. As basis of comparison, four inflow situations were considered: (1) inflow known and assumed to be the historic (Type A); (2) inflow known and assumed to be the ...
Product Assembly Cost Estimation Based on Artificial Neural Networks
无
2001-01-01
This paper proposes a method for assembly cost estimation in actual manufacture during the design phase using artificial neural networks (ANN). It can support the de signers in cost effectiveness, then help to control the total cost. The method was used in the assembly cost estimation of the crucial parts of some railway stock products. As a compari son, we use the linear regression (LR) model in the same field. The result shows that ANN model performs better than the LR model in assembly cost estimation.
Estimation of Hourly Mean Ambient Temperatures with Artificial Neural Networks
Dombaycı, Ömer; Çivril, Önder
2006-01-01
In this study, the artificial neural networks have been used for the estimation of hourly ambient temperature in Denizli, Turkey. The model was trained and tested with four years (2002-2005) of hourly mean temperature values. The hourly temperature values for the years 2002-2004 were used in training phase, the values for the year 2005 were used to test the model. The architecture of the ANN model was the multi-layer feedforward architecture and has three layers. Inputs of the network were mo...
Natural and artificial intelligence misconceptions about brains and neural networks
de Callataÿ, A
1992-01-01
How does the mind work? How is data stored in the brain? How does the mental world connect with the physical world? The hybrid system developed in this book shows a radically new view on the brain. Briefly, in this model memory remains permanent by changing the homeostasis rebuilding the neuronal organelles. These transformations are approximately abstracted as all-or-none operations. Thus the computer-like neural systems become plausible biological models. This illustrated book shows how artificial animals with such brains learn invariant methods of behavior control from their repeated action
Artificial Neural Networks for Detection of Malaria in RBCs
Pandit, Purnima
2016-01-01
Malaria is one of the most common diseases caused by mosquitoes and is a great public health problem worldwide. Currently, for malaria diagnosis the standard technique is microscopic examination of a stained blood film. We propose use of Artificial Neural Networks (ANN) for the diagnosis of the disease in the red blood cell. For this purpose features / parameters are computed from the data obtained by the digital holographic images of the blood cells and is given as input to ANN which classifies the cell as the infected one or otherwise.
Artificial neural networks application in duplex/triplex elevator group control system:
Imrak, C. Erdem
2008-01-01
Artificial neural networks can offer the better solution to the passenger call distribution problem when compared to the conventional elevator control systems. Therefore, the application of neural networks in elevator group control system is discussed. The significance of introducing artificial neural networks is presented. Elevator group control systems with neural networks can predict the next stopping floors to stop by considering what has been learnt by processing the changes in passenger...
An Artificial Neural Network has been designed, trained and tested to unfold neutron spectra and simultaneously to calculate equivalent doses. A set of 187 neutron spectra compiled by the International Atomic Energy Agency and 13 equivalent doses were used in the artificial neural network designed, trained and tested. In order to design the neural network was used the robust design of artificial neural networks methodology, which assures that the quality of the neural networks takes into account from the design stage. Unless previous works, here, for first time a group of neural networks were designed and trained to unfold 187 neutron spectra and at the same time to calculate 13 equivalent doses, starting from the count rates coming from the Bonner spheres system by using a systematic and experimental strategy. (Author)
Martinez B, M.R.; Ortiz R, J.M.; Vega C, H.R. [UAZ, Av. Ramon Lopez Velarde No. 801, 98000 Zacatecas (Mexico)
2006-07-01
An Artificial Neural Network has been designed, trained and tested to unfold neutron spectra and simultaneously to calculate equivalent doses. A set of 187 neutron spectra compiled by the International Atomic Energy Agency and 13 equivalent doses were used in the artificial neural network designed, trained and tested. In order to design the neural network was used the robust design of artificial neural networks methodology, which assures that the quality of the neural networks takes into account from the design stage. Unless previous works, here, for first time a group of neural networks were designed and trained to unfold 187 neutron spectra and at the same time to calculate 13 equivalent doses, starting from the count rates coming from the Bonner spheres system by using a systematic and experimental strategy. (Author)
The use of artificial neural networks in experimental data acquisition and aerodynamic design
Meade, Andrew J., Jr.
1991-01-01
It is proposed that an artificial neural network be used to construct an intelligent data acquisition system. The artificial neural networks (ANN) model has a potential for replacing traditional procedures as well as for use in computational fluid dynamics validation. Potential advantages of the ANN model are listed. As a proof of concept, the author modeled a NACA 0012 airfoil at specific conditions, using the neural network simulator NETS, developed by James Baffes of the NASA Johnson Space Center. The neural network predictions were compared to the actual data. It is concluded that artificial neural networks can provide an elegant and valuable class of mathematical tools for data analysis.
Georgopoulos, A. P.; Tan, H.-R. M.; Lewis, S. M.; Leuthold, A. C.; Winskowski, A. M.; Lynch, J. K.; Engdahl, B.
2010-02-01
Traumatic experiences can produce post-traumatic stress disorder (PTSD) which is a debilitating condition and for which no biomarker currently exists (Institute of Medicine (US) 2006 Posttraumatic Stress Disorder: Diagnosis and Assessment (Washington, DC: National Academies)). Here we show that the synchronous neural interactions (SNI) test which assesses the functional interactions among neural populations derived from magnetoencephalographic (MEG) recordings (Georgopoulos A P et al 2007 J. Neural Eng. 4 349-55) can successfully differentiate PTSD patients from healthy control subjects. Externally cross-validated, bootstrap-based analyses yielded >90% overall accuracy of classification. In addition, all but one of 18 patients who were not receiving medications for their disease were correctly classified. Altogether, these findings document robust differences in brain function between the PTSD and control groups that can be used for differential diagnosis and which possess the potential for assessing and monitoring disease progression and effects of therapy.
Application of Artificial Neural Networks for Predicting Generated Wind Power
Vijendra Singh
2016-03-01
Full Text Available This paper addresses design and development of an artificial neural network based system for prediction of wind energy produced by wind turbines. Now in the last decade, renewable energy emerged as an additional alternative source for electrical power generation. We need to assess wind power generation capacity by wind turbines because of its non-exhaustible nature. The power generation by electric wind turbines depends on the speed of wind, flow direction, fluctuations, density of air, generator hours, seasons of an area, and wind turbine position. During a particular season, wind power generation access can be increased. In such a case, wind energy generation prediction is crucial for transmission of generated wind energy to a power grid system. It is advisable for the wind power generation industry to predict wind power capacity to diagnose it. The present paper proposes an effort to apply artificial neural network technique for measurement of the wind energy generation capacity by wind farms in Harshnath, Sikar, Rajasthan, India.
EEG dipole source localization using artificial neural networks
Localization of focal electrical activity in the brain using dipole source analysis of the electroencephalogram (EEG), is usually performed by iteratively determining the location and orientation of the dipole source, until optimal correspondence is reached between the dipole source and the measured potential distribution on the head. In this paper, we investigate the use of feed-forward layered artificial neural networks (ANNs) to replace the iterative localization procedure, in order to decrease the calculation time. The localization accuracy of the ANN approach is studied within spherical and realistic head models. Additionally, we investigate the robustness of both the iterative and the ANN approach by observing the influence on the localization error of both noise in the scalp potentials and scalp electrode mislocalizations. Finally, after choosing the ANN structure and size that provides a good trade-off between low localization errors and short computation times, we compare the calculation times involved with both the iterative and ANN methods. An average localization error of about 3.5 mm is obtained for both spherical and realistic head models. Moreover, the ANN localization approach appears to be robust to noise and electrode mislocations. In comparison with the iterative localization, the ANN provides a major speed-up of dipole source localization. We conclude that an artificial neural network is a very suitable alternative for iterative dipole source localization in applications where large numbers of dipole localizations have to be performed, provided that an increase of the localization errors by a few millimetres is acceptable. (author)
Gap Filling of Daily Sea Levels by Artificial Neural Networks
Lyubka Pashova
2013-06-01
Full Text Available In the recent years, intelligent methods as artificial neural networks are successfully applied for data analysis from different fields of the geosciences. One of the encountered practical problems is the availability of gaps in the time series that prevent their comprehensive usage for the scientific and practical purposes. The article briefly describes two types of the artificial neural network (ANN architectures - Feed-Forward Backpropagation (FFBP and recurrent Echo state network (ESN. In some cases, the ANN can be used as an alternative on the traditional methods, to fill in missing values in the time series. We have been conducted several experiments to fill the missing values of daily sea levels spanning a 5-years period using both ANN architectures. A multiple linear regression for the same purpose has been also applied. The sea level data are derived from the records of the tide gauge Burgas, which is located on the western Black Sea coast. The achieved results have shown that the performance of ANN models is better than that of the classical one and they are very promising for the real-time interpolation of missing data in the time series.
Prediction aluminum corrosion inhibitor efficiency using artificial neural network (ANN)
Ebrahimi, Sh; Kalhor, E. G.; Nabavi, S. R.; Alamiparvin, L.; Pogaku, R.
2016-06-01
In this study, activity of some Schiff bases as aluminum corrosion inhibitor was investigated using artificial neural network (ANN). Hence, corrosion inhibition efficiency of Schiff bases (in any type) were gathered from different references. Then these molecules were drawn and optimized in Hyperchem software. Molecular descriptors generating and descriptors selection were fulfilled by Dragon software and principal component analysis (PCA) method, respectively. These structural descriptors along with environmental descriptors (ambient temperature, time of exposure, pH and the concentration of inhibitor) were used as input variables. Furthermore, aluminum corrosion inhibition efficiency was used as output variable. Experimental data were split into three sets: training set (for model building) and test set (for model validation) and simulation (for general model). Modeling was performed by Multiple linear regression (MLR) methods and artificial neural network (ANN). The results obtained in linear models showed poor correlation between experimental and theoretical data. However nonlinear model presented satisfactory results. Higher correlation coefficient of ANN (R > 0.9) revealed that ANN can be successfully applied for prediction of aluminum corrosion inhibitor efficiency of Schiff bases in different environmental conditions.
Predicting oil price movements: A dynamic Artificial Neural Network approach
Price of oil is important for the economies of oil exporting and oil importing countries alike. Therefore, insight into the likely future behaviour and patterns of oil prices can improve economic planning and reduce the impacts of oil market fluctuations. This paper aims to improve the application of Artificial Neural Network (ANN) techniques to prediction of oil price. We develop a dynamic Nonlinear Auto Regressive model with eXogenous input (NARX) as a form of ANN to account for the time factor. We estimate the model using macroeconomic data from OECD countries. In order to compare the results, we develop time series and ANN static models. We then use the output of time series model to develop a NARX model. The NARX model is trained with historical data from 1974 to 2004 and the results are verified with data from 2005 to 2009. The results show that NARX model is more accurate than time series and static ANN models in predicting oil prices in general as well as in predicting the occurrence of oil price shocks. - Highlights: • Nonlinear Auto Regressive model with eXogenous (NARX) inputs is developed for predicting oil prices. • The results of NARX model in oil price forecasting is more accurate than those of time series and Artificial Neural Network. • The NARX model predicts the price shocks in the oil market. • The NARX model is dynamic and accounts for the factor of time
Nuclear spectral analysis via artificial neural networks for waste handling
Keller, P.E.; Kangas, L.J.; Hashem, S.; Kouzes, R.T. [Pacific Northwest Lab., Richland, WA (United States). Environmental Molecular Sciences Lab.; Troyer, G.L. [Westinghouse Hanford Co., Richland, WA (United States)
1995-08-01
Enormous amounts of hazardous waste were generated by more than 40 years of plutonium production at the US Department of Energy`s Hanford site. A major national and international mission is to manage the existing waste and to restore the surrounding environment in a cost-effective manner. The objective of their research is to demonstrate the information processing capabilities of the neural network paradigm in real-time, automated identification of contaminants. In this paper two applications of artificial neural networks (ANNs) in nuclear spectroscopy analysis are discussed. In the first application, an ANN assigns quality coefficients to alpha particle energy spectra. These spectra are used to detect plutonium contamination in the work environment. The quality coefficients represent the levels of spectral degradation caused by miscalibration and foreign matter affecting the instruments. A set of spectra was labeled with quality coefficients by an expert and used to train the ANN expert system. The investigation shows that the expert knowledge of spectral quality can be transferred to an ANN system. The second application combines a portable gamma-ray spectrometer with an ANN to automatically identify radioactive isotopes in real-time. Two neural network paradigms are examined and compared: the linear perceptron and the optimal linear associative memory (OLAM). Both networks have a linear response and are useful in determining the composition of an unknown sample when the spectrum of the unknown is a linear superposition of known spectra.
Modeling of methane emissions using artificial neural network approach
Stamenković Lidija J.
2015-01-01
Full Text Available The aim of this study was to develop a model for forecasting CH4 emissions at the national level, using Artificial Neural Networks (ANN with broadly available sustainability, economical and industrial indicators as their inputs. ANN modeling was performed using two different types of architecture; a Backpropagation Neural Network (BPNN and a General Regression Neural Network (GRNN. A conventional multiple linear regression (MLR model was also developed in order to compare model performance and assess which model provides the best results. ANN and MLR models were developed and tested using the same annual data for 20 European countries. The ANN model demonstrated very good performance, significantly better than the MLR model. It was shown that a forecast of CH4 emissions at the national level using the ANN model can be made successfully and accurately for a future period of up to two years, thereby opening the possibility to apply such a modeling technique which can be used to support the implementation of sustainable development strategies and environmental management policies. [Projekat Ministarstva nauke Republike Srbije, br. 172007
Consumer Choice Prediction: Artificial Neural Networks versus Logistic Models
Christopher Gan
2005-01-01
Full Text Available Conventional econometric models, such as discriminant analysis and logistic regression have been used to predict consumer choice. However, in recent years, there has been a growing interest in applying artificial neural networks (ANN to analyse consumer behaviour and to model the consumer decision-making process. The purpose of this paper is to empirically compare the predictive power of the probability neural network (PNN, a special class of neural networks and a MLFN with a logistic model on consumers choices between electronic banking and non-electronic banking. Data for this analysis was obtained through a mail survey sent to 1,960 New Zealand households. The questionnaire gathered information on the factors consumers use to decide between electronic banking versus non-electronic banking. The factors include service quality dimensions, perceived risk factors, user input factors, price factors, service product characteristics and individual factors. In addition, demographic variables including age, gender, marital status, ethnic background, educational qualification, employment, income and area of residence are considered in the analysis. Empirical results showed that both ANN models (MLFN and PNN exhibit a higher overall percentage correct on consumer choice predictions than the logistic model. Furthermore, the PNN demonstrates to be the best predictive model since it has the highest overall percentage correct and a very low percentage error on both Type I and Type II errors.
Nuclear spectral analysis via artificial neural networks for waste handling
Enormous amounts of hazardous waste were generated by more than 40 years of plutonium production at the US Department of Energy's Hanford site. A major national and international mission is to manage the existing waste and to restore the surrounding environment in a cost-effective manner. The objective of their research is to demonstrate the information processing capabilities of the neural network paradigm in real-time, automated identification of contaminants. In this paper two applications of artificial neural networks (ANNs) in nuclear spectroscopy analysis are discussed. In the first application, an ANN assigns quality coefficients to alpha particle energy spectra. These spectra are used to detect plutonium contamination in the work environment. The quality coefficients represent the levels of spectral degradation caused by miscalibration and foreign matter affecting the instruments. A set of spectra was labeled with quality coefficients by an expert and used to train the ANN expert system. The investigation shows that the expert knowledge of spectral quality can be transferred to an ANN system. The second application combines a portable gamma-ray spectrometer with an ANN to automatically identify radioactive isotopes in real-time. Two neural network paradigms are examined and compared: the linear perceptron and the optimal linear associative memory (OLAM). Both networks have a linear response and are useful in determining the composition of an unknown sample when the spectrum of the unknown is a linear superposition of known spectra
Neutron spectrometry and dosimetry based on a new approach called Genetic Artificial Neural Networks
Artificial Neural Networks and Genetic Algorithms are two relatively young research areas that were subject to a steadily growing interest during the past years. The structure of a neural network is a significant contributing factor to its performance and the structure is generally heuristically chosen. The use of evolutionary algorithms as search techniques has allowed different properties of neural networks to be evolved. This paper focuses on the intersection on neural networks and evolutionary computation, namely on how evolutionary algorithms can be used to assist neural network design and training, as a novel approach. In this research, a new evolvable artificial neural network modelling approach is presented, which utilizes an optimization process based on the combination of genetic algorithms and artificial neural networks, and is applied in the design of a neural network, oriented to solve the neutron spectrometry and simultaneous dosimetry problems, using only the count rates measured with a Bonner spheres spectrometer system as entrance data. (author)
An Analysis of the Performance of Artificial Neural Network Technique for Stock Market Forecasting
Dr. Ashutosh Kumar Bhatt; Kunwar Singh Vaisla
2010-01-01
In this paper, we showed a method to forecast the daily stock price using neural networks and the result of the Neural Network forecast is compared with the Statistical forecasting result. Stock price prediction is one of the emerging field in neural network forecastingarea. This paper also presents the Neural Networks ability to forecast the daily Stock Market Prices. Stock market prediction is very difficult since it depends on several known and unknown factors while the Artificial Neural N...
Ascending Thermal Localization and Its Strongest Zone Centering by Artificial Neural Networks
Ivan Suzdalev
2011-04-01
Full Text Available Thermal localization and their strongest zone centering by artificial neural networks (ANN, and it are used by the automatic or semiautomatic control system of unmanned aerial vehicles (UAV. Artificial neural network take input data from aircraft avionics. Actual thermal model of space and its value’s correlation with other factors are researched as well. Article in Lithuanian
Bootstrapping heteroskedastic regression models: wild bootstrap vs. pairs bootstrap
Flachaire, Emmanuel
2005-01-01
International audience In regression models, appropriate bootstrap methods for inference robust to heteroskedasticity of unknown form are the wild bootstrap and the pairs bootstrap. The finite sample performance of a heteroskedastic-robust test is investigated with Monte Carlo experiments. The simulation results suggest that one specific version of the wild bootstrap outperforms the other versions of the wild bootstrap and of the pairs bootstrap. It is the only one for which the bootstrap ...
Development of Artificial Neural Network for Optimisation of Reusability in Automotive Components
Mohamad Ariff Shah Mohamed Nazmi
2011-01-01
Full Text Available This study aimed to discuss important factors such as reliability, material and artificial intelligence in realizing the vehicle reuse concept. This study also focused on developing artificial neural network application to predict the critical stress life of a body-in-white car door so that the optimal reusability can be identified. Using the Proton Perdana body-in-white car door, the component was analyzed using pre-post software and optimized using artificial neural network. As a conclusion, reliability, material and artificial intelligence are important factors in initializing vehicle reuse concept. The optimization result showed that artificial neural network application produced good reliability of the proposed reuse component. This indicates that artificial neural network can be used as an optimization tool in reuse development.
Water Turbidity Modelling During Water Treatment Processes Using Artificial Neural Networks
Rak, Adam
2013-01-01
Artificial neural networks are increasingly being used in the research and analysis of unit and technical processes related to water treatment. An artificial neural network model was created to predict the turbidity of treated water in a newly operating water treatment system for surface and retention water at the Sosnówka reservoir, Poland. To model water turbidity during the water treatment process for a selected system, a flexible Bayesian model of neural networks, Gaussian processes a...
Neural networks are a relatively new artificial intelligence technique that emulates the behavior of biological neural systems in digital software or hardware. These networks can 'learn', automatically, complex relationships among data. This feature makes the technique very useful in modeling processes for which mathematical modeling is difficult or impossible. The work described here outlines some examples of the application of neural networks with artificial intelligence technique in the modeling of industrial processes.
Fast Linear Adaptive Skipping Training Algorithm for Training Artificial Neural Network
Manjula Devi, R.; R. C. Suganthe; S. KUPPUSWAMI
2013-01-01
Artificial neural network has been extensively consumed training model for solving pattern recognition tasks. However, training a very huge training data set using complex neural network necessitates excessively high training time. In this correspondence, a new fast Linear Adaptive Skipping Training (LAST) algorithm for training artificial neural network (ANN) is instituted. The core essence of this paper is to ameliorate the training speed of ANN by exhibiting only the input samples that do ...
Er. Amandeep Kaur; Dr. Sandeep Singh Gill; Prof. Baljeet Kaur
2012-01-01
There are several methods introduced to refining the accuracy of Photonic structures. No one has as yet studied the effect of Neural Networks in refining the accuracy of the photonic structure of the Photonic Crystal Fibers. In this paper we use The simulation that will be conducted using artificial neural networks to refining the accuracy of the photonic crystal fibers &.Artificial neural network will be further optimized by varying the number of layers to enhance the accuracy of the photoni...
Selection in sugarcane families with artificial neural networks
Bruno Portela Brasileiro
2015-04-01
Full Text Available The objective of this study was to evaluate Artificial Neural Networks (ANN applied in an selection process within sugarcane families. The best ANN model produced no mistake, but was able to classify all genotypes correctly, i.e., the network made the same selective choice as the breeder during the simulation individual best linear unbiased predictor (BLUPIS, demonstrating the ability of the ANN to learn from the inputs and outputs provided in the training and validation phases. Since the ANN-based selection facilitates the identification of the best plants and the development of a new selection strategy in the best families, to ensure that the best genotypes of the population are evaluated in the following stages of the breeding program, we recommend to rank families by BLUP, followed by selection of the best families and finally, select the seedlings by ANN, from information at the individual level in the best families.
Artificial Neural Networks in Fruits: A Comprehensive Review
Sumit Goyal
2014-04-01
Full Text Available This review discusses the application of artificial neural networks (ANN modeling in fruits. It covers all fruits in which ANN modeling has been applied. ANN is quite a new and easy computational modeling approach used for prediction, which has become popular and accepted by food industry, researchers, scientists and students. ANNs have been applied in almost every field of science and technology, viz., speech synthesis & recognition, pattern classification, adaptive interfaces between humans & complex physical systems, clustering, function approximation, image data compression, non-linear system modeling, associative memory, combinatorial optimization, control and several others, as they have proved valuable tools for obtaining the required output. ANN provides an exciting alternative method for solving a variety of problems in different areas of science and engineering. The aim of this communication is to discover the recent advances of ANN technology implemented in fruits, and discuss the critical role that ANN plays in predictive modelling.