Quantum and classical capacity boosted by a Lorentz transformation
Bradler, Kamil; Nahmad-Achar, Eduardo
2013-01-01
In this paper we show that the quantum channel between two inertial observers who transmit quantum information by sending realistic photonic wave packets is a well studied channel in quantum Shannon theory - the Pauli channel. The parameters of the Pauli channel and therefore its classical and quantum capacity depend on the magnitude of the Lorentz boost relating the two observers. The most striking consequence is that two inertial observers whose Pauli channel has initially zero quantum capacity can achieve nonzero quantum communication rates (reaching in principle its maximal value equal one) by applying a boost in the right direction. This points at a fundamental connection between quantum channel capacities and special relativity.
Super Sensitive Mass Detection in Nonlinear Regime
Azizi, Saber; Ahmadian, Iman; Cetinkaya, Cetin; Rezazadeh, Ghader
2015-11-01
Nonlinear dynamics of a clamped-clamped micro-beam exposed to a two sided electrostatic actuation is investigated to determine super sensitive regions for mass detection. The objective is to investigate the sensitivity of the frequency spectrum of various regions in the phase space to the added mass and force the system to operate in its super sensitive regions by applying an appropriate pulse to its control electrodes. The electrostatic actuation in the top electrode is a combination of a DC, AC and a pulse voltage, the excitation on the lower electrode is only a DC and a pulse voltage. The governing equation of the motion, derived using the Hamiltonian principle, is discretized to an equivalent single-degree of freedom system using the Galerkin method. Depending on the applied electrostatic voltage to the micro-beam, it is demonstrated that the number and types of equilibrium points of the system can be modified. In this study, the level of the DC electrostatic voltage is chosen such a way that the system has three equilibrium points including two centers and a saddle node where the homoclinic orbit originates. According to the reported results, the mass sensing sensitivity depends on the operating orbit; some orbits exhibit considerably higher mass detection sensitivity to the added mass compared to that of a typical quartz crystal micro balance instrument.
The effect of different boost expressions, pertinent to the instant, front and point forms of relativistic quantum mechanics, is considered for the calculation of the ground-state form factor of a two-body system in simple scalar models. Results with a Galilean boost as well as an explicitly covariant calculation based on the Bethe-Salpeter approach are given for comparison. It is found that the present so-called point-form calculations of form factors strongly deviate from all the other ones. This suggests that the formalism which underlies them requires further elaboration. A proposition in this sense is made. (author)
Smith, Alexander R. H.; Piani, Marco; Mann, Robert B.
2016-07-01
Quantum communication without a shared reference frame or the construction of a relational quantum theory requires the notion of a quantum reference frame. We analyze aspects of quantum reference frames associated with noncompact groups, specifically, the group of spatial translations and Galilean boosts. We begin by demonstrating how the usually employed group average, used to dispense of the notion of an external reference frame, leads to unphysical states when applied to reference frames associated with noncompact groups. However, we show that this average does lead naturally to a reduced state on the relative degrees of freedom of a system, which was previously considered by Angelo et al. [J. Phys. A: Math. Theor. 44, 145304 (2011), 10.1088/1751-8113/44/14/145304]. We then study in detail the informational properties of this reduced state for systems of two and three particles in Gaussian states.
Boost invariant quantum evolution of a meson field at large proper times
Asymptotic solutions of the functional Schroedinger equation are constructed for a scalar field in the Gaussian approximation at large proper time. These solutions describe the late proper time stages of the expansion of a meson gas with boost invariant boundary conditions. The relevance of these solutions for the formation of a disoriented chiral condensate in ultra relativistic collisions is discussed. (author)
Boosting the accuracy and speed of quantum Monte Carlo: size-consistency and time-step
Zen, Andrea; Gillan, Michael J; Michaelides, Angelos; Alfè, Dario
2016-01-01
Diffusion Monte Carlo (DMC) simulations for fermions are becoming the standard to provide high quality reference data in systems that are too large to be investigated via quantum chemical approaches. DMC with the fixed-node approximation relies on modifications of the Green function to avoid singularities near the nodal surface of the trial wavefunction. We show that these modifications affect the DMC energies in a way that is not size-consistent, resulting in large time-step errors. Building on the modifications of Umrigar {\\em et al.} and of DePasquale {\\em et al.} we propose a simple Green function modification that restores size-consistency to large values of time-step; substantially reducing the time-step errors. The new algorithm also yields remarkable speedups of up to two orders of magnitude in the calculation of molecule-molecule binding energies and crystal cohesive energies, thus extending the horizons of what is possible with DMC.
Green Stimulated Emission Boosted by Nonradiative Resonant Energy Transfer from Blue Quantum Dots.
Gao, Yuan; Yu, Guannan; Wang, Yue; Dang, Cuong; Sum, Tze Chien; Sun, Handong; Demir, Hilmi Volkan
2016-07-21
Thanks to their tunability and versatility, the colloidal quantum dots (CQDs) made of II-VI semiconductor compound offer the potential to bridge the "green gap" in conventional semiconductors. However, when the CQDs are pumped to much higher initial excitonic states compared to their bandgap, multiexciton interaction is enhanced, leading to a much higher stimulated emission threshold. Here, to circumvent this drawback, for the first time, we show a fully colloidal gain in green enabled by a partially indirect pumping approach assisted by Förster resonance energy transfer process. By introducing the blue CQDs as exciton donors, the lasing threshold of the green CQDs, is reduced dramatically. The blue CQDs thus serve as an energy-transferring buffer medium to reduce excitation energy from pumping photons in a controlled way by injecting photoinduced excitons into green CQDs. Our newly developed colloidal pumping scheme could enable efficient CQD lasers of full visible colors by a single pump source and cascaded exciton transfer. This would potentially pave the way for an efficient multicolor laser for lighting and display applications. PMID:27388758
Xu, Xiaoyong; Bao, Zhijia; Zhou, Gang; Zeng, Haibo; Hu, Jingguo
2016-06-01
Well-steered transport of photogenerated carriers in optoelectronic systems underlies many emerging solar conversion technologies, yet assessing the charge transition route in nanomaterials remains a challenge. Herein, we combine the photoinduced absorption, emission, and excitation properties in high luminescent carbon quantum dots (CQDs) with an amino-modified surface to identify the existence of three photoelectron transition channels, that is, near-band-edge transition, multiphoton active transition in CQDs, and transfer from amino groups to CQDs, and together they contribute to strong blue photoluminescence (PL) independent of the excitation wavelength. Moreover, the enriching electron reservoir via these three channels was demonstrated in a holes cleaning environment to efficiently trigger water splitting into hydrogen with excellent stability and recyclability. PMID:27191031
To boost or not boost in radiotherapy
The aim of this paper it to analyse and discuss standard definition of the 'boost' procedure in relation to clinical results and new forms of the boost designed on physical and radiobiological bases. Seventeen sets of clinical data including over 5000 cases cancer with different tumour stages and locations and treated with various forms of 'boost' method have been subtracted from literature. Effectiveness of boost is analyzed regarding its place in combined treatment, timing and subvolume involved. Radiobiological parameter of D10 and normalization method for biologically equivalent doses and dose intensity are used to simulated cold and not subvolumes (hills and dales) and its influence of effectiveness on the boost delivery. Sequential and concomitant boost using external irradiation, although commonly used, offers LTC benefit lower than expected. Brachytherapy, intraoperative irradiation and concurrent chemotherapy boost methods appear more effective. Conformal radiotherapy, with or without dose-intensity modulation, allows heterogeneous increase in dose intensity within the target volume and can be used to integrate the 'boost dose' into baseline treatment (Simultaneous Integrated Boost and SIB). Analysis of interrelationships between boost-dose; boost volume and its timing shows that a TCP benefit from boosting can be expected when a relatively large part of the target volume is involved. Increase in boost dose above 1.2-1.3 of baseline dose using 'standard' methods does not substantially further increase the achieved TCP benefit unless hypoxic cells are a problem. Any small uncertainties in treatment planning can ruin all potential beneficial effect of the boost. For example, a 50% dose deficit in a very small (e.g. 1%) volume of target can decrease TCP to zero. Therefore boost benefits should be carefully weighed against any risk of cold spots in the target volume. Pros and cons in discussion of the role of boost in radiotherapy lead to the important
Boosting foundations and algorithms
Schapire, Robert E
2012-01-01
Boosting is an approach to machine learning based on the idea of creating a highly accurate predictor by combining many weak and inaccurate "rules of thumb." A remarkably rich theory has evolved around boosting, with connections to a range of topics, including statistics, game theory, convex optimization, and information geometry. Boosting algorithms have also enjoyed practical success in such fields as biology, vision, and speech processing. At various times in its history, boosting has been perceived as mysterious, controversial, even paradoxical.
Mukherjee, Arindam
2015-01-01
If you are a C++ programmer who has never used Boost libraries before, this book will get you up-to-speed with using them. Whether you are developing new C++ software or maintaining existing code written using Boost libraries, this hands-on introduction will help you decide on the right library and techniques to solve your practical programming problems.
A more robust boosting algorithm
Freund, Yoav
2009-01-01
We present a new boosting algorithm, motivated by the large margins theory for boosting. We give experimental evidence that the new algorithm is significantly more robust against label noise than existing boosting algorithm.
Beygelzimer, Alina; Hazan, Elad; Kale, Satyen; Luo, Haipeng
2015-01-01
We extend the theory of boosting for regression problems to the online learning setting. Generalizing from the batch setting for boosting, the notion of a weak learning algorithm is modeled as an online learning algorithm with linear loss functions that competes with a base class of regression functions, while a strong learning algorithm is an online learning algorithm with convex loss functions that competes with a larger class of regression functions. Our main result is an online gradient b...
Highlights: • Large improvement of the cell efficiency of CdSe QDSSC was achieved through a modified ZnS post-treatment by introducing a ZnSe in between CdSe QDs and ZnS • The introduction of ZnSe in post-treatment increased the cell stability. • The thickness of ZnSe was found to be crucial. • The role of ZnSe is ascribed to the suppression of defects at CdSe/ZnS interfaces and facilitating the growth of ZnS with higher quality. -- Abstract: We report here a large improvement of cell performance of CdSe quantum dot sensitized solar cell (QDSSC) by a modified ZnS post-treatment, being carried out by introducing a ZnSe thin layer before ZnS deposition through a successive ion layer adsorption reaction (SILAR) method. CdSe quantum dots were deposited onto TiO2 surface using a chemical bath deposition method. Photovoltaic measurements showed that the introduction of ZnSe layer can significantly increase the photocurrent of CdSe QDSSC, resulting in a large enhancement of the solar energy conversion efficiency of the cell. On variation of the numbers of ZnSe deposition cycle, the effect of the thickness of ZnSe was investigated. The maximum energy conversion efficiency of 3.46% was achieved for CdSe QDSSC with ZnSe/ZnS treatment, showing a 22% increment compared to that of with ZnS treatment. Moreover, it was found that the introduction of ZnSe improved the stability of CdSe QDSSC. The benefit role of ZnSe was ascribed to its intermediate lattice parameter to CdSe and ZnS, which leads to the suppression of defects at CdSe/ZnS interfaces and facilitating the growth of ZnS with higher quality
Earlier this year, a report by a specially-formed subcommittee of the US Nuclear Science Advisory Committee gave an important boost to the proposal to build a high intensity particle beam 'factory' at the Canadian TRIUMF laboratory in Vancouver. (orig./HSI).
Breast boost - why, how, when...?
Background: Breast conservation management including tumorectomy or quadrantectomy and external beam radiotherapy with a dose of 45 to 50 Gy in the treatment of small breast carcinomas is generally accepted. The use of a radiation boost - in particular for specific subgroups - has not been clarified. With regard to the boost technique there is some controversy between groups emphasizing the value of electron boost treatment and groups pointing out the value of interstitial boost treatment. This controversy has become even more complicated as there is an increasing number of institutions reporting the use of HDR interstitial brachytherapy for boost treatment. The most critical issue with regard to interstitial HDR brachytherapy is the assumed serious long-term morbidity after a high single radiation dose as used in HDR-treatments. Methods and Results: This article gives a perspective and recommendations on some aspects of this issue (indication, timing, target volume, dose and dose rate). Conclusion: More information about the indication for a boost is to be expected from the EORTC trial 22881/10882. Careful selection of treatment procedures for specific subgroups of patients and refinement in surgical procedures and radiotherapy techniques may be useful in improving the clinical and cosmetic results in breast conservation therapy. Prospective trials comparing on the one hand different boost techniques and on the other hand particular morphologic criteria in treatments with boost and without boost are needed to give more detailed recommendations for boost indication and for boost techniques. (orig.)
Diversity-Based Boosting Algorithm
Jafar A. Alzubi
2016-05-01
Full Text Available Boosting is a well known and efficient technique for constructing a classifier ensemble. An ensemble is built incrementally by altering the distribution of training data set and forcing learners to focus on misclassification errors. In this paper, an improvement to Boosting algorithm called DivBoosting algorithm is proposed and studied. Experiments on several data sets are conducted on both Boosting and DivBoosting. The experimental results show that DivBoosting is a promising method for ensemble pruning. We believe that it has many advantages over traditional boosting method because its mechanism is not solely based on selecting the most accurate base classifiers but also based on selecting the most diverse set of classifiers.
Boosting Support Vector Machines
Elkin Eduardo García Díaz
2006-11-01
Full Text Available En este artículo, se presenta un algoritmo de clasificación binaria basado en Support Vector Machines (Máquinas de Vectores de Soporte que combinado apropiadamente con técnicas de Boosting consigue un mejor desempeño en cuanto a tiempo de entrenamiento y conserva características similares de generalización con un modelo de igual complejidad pero de representación más compacta./ In this paper we present an algorithm of binary classification based on Support Vector Machines. It is combined with a modified Boosting algorithm. It run faster than the original SVM algorithm with a similar generalization error and equal complexity model but it has more compact representation.
Analytic Boosted Boson Discrimination
Larkoski, Andrew J; Neill, Duff
2015-01-01
Observables which discriminate boosted topologies from massive QCD jets are of great importance for the success of the jet substructure program at the Large Hadron Collider. Such observables, while both widely and successfully used, have been studied almost exclusively with Monte Carlo simulations. In this paper we present the first all-orders factorization theorem for a two-prong discriminant based on a jet shape variable, $D_2$, valid for both signal and background jets. Our factorization theorem simultaneously describes the production of both collinear and soft subjets, and we introduce a novel zero-bin procedure to correctly describe the transition region between these limits. By proving an all orders factorization theorem, we enable a systematically improvable description, and allow for precision comparisons between data, Monte Carlo, and first principles QCD calculations for jet substructure observables. Using our factorization theorem, we present numerical results for the discrimination of a boosted $Z...
Analytic boosted boson discrimination
Andrew J. Larkoski; Moult, Ian; Neill, Duff
2015-01-01
Observables which discriminate boosted topologies from massive QCD jets are of great importance for the success of the jet substructure program at the Large Hadron Collider. Such observables, while both widely and successfully used, have been studied almost exclusively with Monte Carlo simulations. In this paper we present the first all-orders factorization theorem for a two-prong discriminant based on a jet shape variable, $D_2$, valid for both signal and background jets. Our factorization t...
Stark, Giordon; The ATLAS collaboration
2016-01-01
In this talk, I present a discussion of techniques used in supersymmetry searches in papers published by the ATLAS Collaboration from late Run 1 to early Run 2. The goal is to highlight concepts the analyses have in common, why/how they work, and possible SUSY searches that could benefit from boosted studies. Theoretical background will be provided for reference to encourage participants to explore in depth on their own time.
StructBoost: Boosting Methods for Predicting Structured Output Variables.
Chunhua Shen; Guosheng Lin; van den Hengel, Anton
2014-10-01
Boosting is a method for learning a single accurate predictor by linearly combining a set of less accurate weak learners. Recently, structured learning has found many applications in computer vision. Inspired by structured support vector machines (SSVM), here we propose a new boosting algorithm for structured output prediction, which we refer to as StructBoost. StructBoost supports nonlinear structured learning by combining a set of weak structured learners. As SSVM generalizes SVM, our StructBoost generalizes standard boosting approaches such as AdaBoost, or LPBoost to structured learning. The resulting optimization problem of StructBoost is more challenging than SSVM in the sense that it may involve exponentially many variables and constraints. In contrast, for SSVM one usually has an exponential number of constraints and a cutting-plane method is used. In order to efficiently solve StructBoost, we formulate an equivalent 1-slack formulation and solve it using a combination of cutting planes and column generation. We show the versatility and usefulness of StructBoost on a range of problems such as optimizing the tree loss for hierarchical multi-class classification, optimizing the Pascal overlap criterion for robust visual tracking and learning conditional random field parameters for image segmentation. PMID:26352637
Antigen retrieval (AR) and ultra-super sensitive immunohistochemistry (ultra-IHC) have been established for application to archival human pathology specimens. The original ultra-IHC was the ImmunoMax method or the catalyzed signal amplification system (ImmunoMax/CSA method), comprising the streptavidin-biotin complex (sABC) method and catalyzed reporter deposition (CARD) reaction with visualization of its deposition. By introducing procedures to diminish non-specific staining in the original ultra-IHC method, we developed the modified ImmunoMax/CSA method with AR heating sections in an AR solution (heating-AR). The heating-AR and modified ImmunoMax/CSA method visualized expression of the predominantly simple present form of HTLV-1 proviral DNA pX region p40Tax protein (Tax) in adult T-cell leukemia/lymphoma (ATLL) cells in archival pathology specimens in approximately 75% of cases. The simple present form of Tax detected exhibited a close relation with ATLL cell proliferation. We also established a new simplified CSA (nsCSA) system by replacing the sABC method with the secondary antibody- and horse radish peroxidase-labeled polymer reagent method, introducing the pretreatments blocking non-specific binding of secondary antibody reagent, and diminishing the diffusion of deposition in the CARD reaction. Combined with AR treating sections with proteinase K solution (enzymatic-AR), the nsCSA system visualized granular immunostaining of the complex present form of Tax in a small number of ATLL cells in most cases, presenting the possibility of etiological pathological diagnosis of ATLL and suggesting that the complex present form of Tax-positive ATLL cells were young cells derived from ATLL stem cells. The heating-AR and ultra-IHC detected physiological expression of the p53 protein and its probable phosphorylation by Tax in peripheral blood mononuclear cells of peripheral blood tissue specimens from HTLV-1 carriers, as well as physiological and pathological expression
Larkoski, Andrew
2015-04-01
Jets are collimated streams of high-energy particles ubiquitous at any particle collider experiment and serve as proxy for the production of elementary particles at short distances. As the Large Hadron Collider at CERN continues to extend its reach to ever higher energies and luminosities, an increasingly important aspect of any particle physics analysis is the study and identification of jets, electroweak bosons, and top quarks with large Lorentz boosts. In addition to providing a unique insight into potential new physics at the tera-electron volt energy scale, high energy jets are a sensitive probe of emergent phenomena within the Standard Model of particle physics and can teach us an enormous amount about quantum chromodynamics itself. Jet physics is also invaluable for lower-level experimental issues including triggering and background reduction. It is especially important for the removal of pile-up, which is radiation produced by secondary proton collisions that contaminates every hard proton collision event in the ATLAS and CMS experiments at the Large Hadron Collider. In this talk, I will review the myriad ways that jets and jet physics are being exploited at the Large Hadron Collider. This will include a historical discussion of jet algorithms and the requirements that these algorithms must satisfy to be well-defined theoretical objects. I will review how jets are used in searches for new physics and ways in which the substructure of jets is being utilized for discriminating backgrounds from both Standard Model and potential new physics signals. Finally, I will discuss how jets are broadening our knowledge of quantum chromodynamics and how particular measurements performed on jets manifest the universal dynamics of weakly-coupled conformal field theories.
Speziale, Simone
2016-01-01
We study the SL(2,C) Clebsch-Gordan coefficients appearing in the lorentzian EPRL spin foam amplitudes for loop quantum gravity. We show how the amplitudes decompose into SU(2) nj-symbols at the vertices and integrals over boosts at the edges. The integrals define edge amplitudes that can be evaluated analytically using and adapting results in the literature, leading to a pure state sum model formulation. This procedure introduces virtual representations which, in a manner reminiscent to virtual momenta in Feynman amplitudes, are off-shell of the simplicity constraints present in the theory, but with the integrands that peak at the on-shell values. We point out some properties of the edge amplitudes which are helpful for numerical and analytical evaluations of spin foam amplitudes, and suggest among other things a simpler model useful for calculations of certain lowest order amplitudes. As an application, we estimate the large spin scaling behaviour of the simpler model, on a closed foam with all 4-valent edg...
Boost C++ application development cookbook
Polukhin, Antony
2013-01-01
This book follows a cookbook approach, with detailed and practical recipes that use Boost libraries.This book is great for developers new to Boost, and who are looking to improve their knowledge of Boost and see some undocumented details or tricks. It's assumed that you will have some experience in C++ already, as well being familiar with the basics of STL. A few chapters will require some previous knowledge of multithreading and networking. You are expected to have at least one good C++ compiler and compiled version of Boost (1.53.0 or later is recommended), which will be used during the exer
Gradient boosting machines, a tutorial.
Natekin, Alexey; Knoll, Alois
2013-01-01
Gradient boosting machines are a family of powerful machine-learning techniques that have shown considerable success in a wide range of practical applications. They are highly customizable to the particular needs of the application, like being learned with respect to different loss functions. This article gives a tutorial introduction into the methodology of gradient boosting methods with a strong focus on machine learning aspects of modeling. A theoretical information is complemented with descriptive examples and illustrations which cover all the stages of the gradient boosting model design. Considerations on handling the model complexity are discussed. Three practical examples of gradient boosting applications are presented and comprehensively analyzed. PMID:24409142
Gradient Boosting Machines, A Tutorial
Alexey eNatekin
2013-12-01
Full Text Available Gradient boosting machines are a family of powerful machine-learning techniques that have shown considerable success in a wide range of practical applications. They are highly customizable to the particular needs of the application, like being learned with respect to different loss functions. This article gives a tutorial introduction into the methodology of gradient boosting methods. A theoretical information is complemented with many descriptive examples and illustrations which cover all the stages of the gradient boosting model design. Considerations on handling the model complexity are discussed. A set of practical examples of gradient boosting applications are presented and comprehensively analyzed.
Analytic boosted boson discrimination
Larkoski, Andrew J.; Moult, Ian; Neill, Duff
2016-05-01
Observables which discriminate boosted topologies from massive QCD jets are of great importance for the success of the jet substructure program at the Large Hadron Collider. Such observables, while both widely and successfully used, have been studied almost exclusively with Monte Carlo simulations. In this paper we present the first all-orders factorization theorem for a two-prong discriminant based on a jet shape variable, D 2, valid for both signal and background jets. Our factorization theorem simultaneously describes the production of both collinear and soft subjets, and we introduce a novel zero-bin procedure to correctly describe the transition region between these limits. By proving an all orders factorization theorem, we enable a systematically improvable description, and allow for precision comparisons between data, Monte Carlo, and first principles QCD calculations for jet substructure observables. Using our factorization theorem, we present numerical results for the discrimination of a boosted Z boson from massive QCD background jets. We compare our results with Monte Carlo predictions which allows for a detailed understanding of the extent to which these generators accurately describe the formation of two-prong QCD jets, and informs their usage in substructure analyses. Our calculation also provides considerable insight into the discrimination power and calculability of jet substructure observables in general.
Al-Khalili, Jim
2003-01-01
In this lively look at quantum science, a physicist takes you on an entertaining and enlightening journey through the basics of subatomic physics. Along the way, he examines the paradox of quantum mechanics--beautifully mathematical in theory but confoundingly unpredictable in the real world. Marvel at the Dual Slit experiment as a tiny atom passes through two separate openings at the same time. Ponder the peculiar communication of quantum particles, which can remain in touch no matter how far apart. Join the genius jewel thief as he carries out a quantum measurement on a diamond without ever touching the object in question. Baffle yourself with the bizzareness of quantum tunneling, the equivalent of traveling partway up a hill, only to disappear then reappear traveling down the opposite side. With its clean, colorful layout and conversational tone, this text will hook you into the conundrum that is quantum mechanics.
Testa, Massimo
2015-01-01
Based on the fundamental principles of Relativistic Quantum Mechanics, we give a rigorous, but completely elementary, proof of the relation between fundamental observables of a statistical system when measured relatively to two inertial reference frames, connected by a Lorentz transformation.
Electroweak processes in laser-boosted lepton collisions
Mueller, Sarah J.; Keitel, Christoph H. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Mueller, Carsten [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Institut fuer Theoretische Physik I, Heinrich-Heine-Universitaet Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf (Germany)
2014-07-01
Electroweak processes in high-energy lepton collisions are considered in a situation where the incident center-of-mass energy lies below the reaction threshold, but is boosted to the required level by subsequent laser acceleration. Within the framework of laser-dressed quantum field theory, we study the laser-boosted process l{sup +}l{sup -} → HZ{sup 0} in detail and specify the technical demands needed for its experimental realization. Further, we outline possible qualitative differences to field-free processes regarding the detection of the produced Higgs bosons.
Higgs boson creation in laser-boosted lepton collisions
Müller, Sarah J.; Keitel, Christoph H. [Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Müller, Carsten, E-mail: carsten.mueller@tp1.uni-duesseldorf.de [Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Institut für Theoretische Physik I, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf (Germany)
2014-03-07
Electroweak processes in high-energy lepton collisions are considered in a situation where the incident center-of-mass energy lies below the reaction threshold, but is boosted to the required level by subsequent laser acceleration. Within the framework of laser-dressed quantum field theory, we study the laser-boosted process ℓ{sup +}ℓ{sup −}→HZ{sup 0} in detail and specify the technical demands needed for its experimental realization. Further, we outline possible qualitative differences to field-free processes regarding the detection of the produced Higgs bosons.
Ultrarelativistic boost with scalar field
Svítek, O.; Tahamtan, T.
2016-02-01
We present the ultrarelativistic boost of the general global monopole solution which is parametrized by mass and deficit solid angle. The problem is addressed from two different perspectives. In the first one the primary object for performing the boost is the metric tensor while in the second one the energy momentum tensor is used. Since the solution is sourced by a triplet of scalar fields that effectively vanish in the boosting limit we investigate the behavior of a scalar field in a simpler setup. Namely, we perform the boosting study of the spherically symmetric solution with a free scalar field given by Janis, Newman and Winicour. The scalar field is again vanishing in the limit pointing to a broader pattern of scalar field behaviour during an ultrarelativistic boost in highly symmetric situations.
In gluon fusion both a modified top Yukawa and new colored particles can alter the cross section. However in a large set of composite Higgs models and in realistic areas of the MSSM parameter space, these two effects can conspire and hide new physics in a Standard Model-like inclusive cross section. We first show that it is possible to break this degeneracy in the couplings by demanding a boosted Higgs recoiling against a high-pT jet. Subsequently we propose an analysis based on this idea in the H→2l+ET channels. This measurement allows an alternative determination of the important top Yukawa besides the t anti tH channel.
The inclusive Higgs production rate through gluon fusion has been measured to be in agreement with the Standard Model (SM). We show that even if the inclusive Higgs production rate is very SM-like, a precise determination of the boosted Higgs transverse momentum shape offers the opportunity to see effects of natural new physics. These measurements are generically motivated by effective field theory arguments and specifically in extensions of the SM with a natural weak scale, like composite Higgs models and natural supersymmetry. We show in detail how a measurement at high transverse momentum of H→2l+pT via H→ττ and H→WW* could be performed and demonstrate that it offers a compelling alternative to the t anti tH channel. We discuss the sensitivity to new physics in the most challenging scenario of an exactly SM-like inclusive Higgs cross-section.
Detection of Illegitimate Emails using Boosting Algorithm
Nizamani, Sarwat; Memon, Nasrullah; Wiil, Uffe Kock
2011-01-01
spam email detection. For our desired task, we have applied a boosting technique. With the use of boosting we can achieve high accuracy of traditional classification algorithms. When using boosting one has to choose a suitable weak learner as well as the number of boosting iterations. In this paper, we...... propose a Naive Bayes classifier as a suitable weak learner for the boosting algorithm. It achieves maximum performance with very few boosting iterations....
Physics with boosted top quarks
Kuutmann, Elin Bergeaas
2014-01-01
The production at the LHC of boosted top quarks (top quarks with a transverse momentum that greatly exceeds their rest mass) is a promising process to search for phenomena beyond the Standard Model. In this contribution several examples are discussed of new techniques to reconstruct and identify (tag) the collimated decay topology of the boosted hadronic decays of top quarks. Boosted top reconstruction techniques have been utilized in searches for new physical phenomena. An overview is given of searches by ATLAS, CDF and CMS for heavy new particles decaying into a top and an anti-top quark, vector-like quarks and supersymmetric partners to the top quark.
Distribution-Specific Agnostic Boosting
Feldman, Vitaly
2009-01-01
We consider the problem of boosting the accuracy of weak learning algorithms in the agnostic learning framework of Haussler (1992) and Kearns et al. (1992). Known algorithms for this problem (Ben-David et al., 2001; Gavinsky, 2002; Kalai et al., 2008) follow the same strategy as boosting algorithms in the PAC model: the weak learner is executed on the same target function but over different distributions on the domain. We demonstrate boosting algorithms for the agnostic learning framework that only modify the distribution on the labels of the points (or, equivalently, modify the target function). This allows boosting a distribution-specific weak agnostic learner to a strong agnostic learner with respect to the same distribution. When applied to the weak agnostic parity learning algorithm of Goldreich and Levin (1989) our algorithm yields a simple PAC learning algorithm for DNF and an agnostic learning algorithm for decision trees over the uniform distribution using membership queries. These results substantia...
Rosacea Might Boost Parkinson's Risk
... medlineplus/news/fullstory_157883.html Rosacea Might Boost Parkinson's Risk: Study Research found an association, but did ... may be linked to an increased risk for Parkinson's disease, a large, new study suggests. Among more ...
Gradient boosting machines, a tutorial
Natekin, Alexey; Knoll, Alois
2013-01-01
Gradient boosting machines are a family of powerful machine-learning techniques that have shown considerable success in a wide range of practical applications. They are highly customizable to the particular needs of the application, like being learned with respect to different loss functions. This article gives a tutorial introduction into the methodology of gradient boosting methods with a strong focus on machine learning aspects of modeling. A theoretical information is complemented with de...
Gradient Boosting Machines, A Tutorial
Alexey Natekin; Alois Knoll
2013-01-01
Gradient boosting machines are a family of powerful machine-learning techniques that have shown considerable success in a wide range of practical applications. They are highly customizable to the particular needs of the application, like being learned with respect to different loss functions. This article gives a tutorial introduction into the methodology of gradient boosting methods. A theoretical information is complemented with many descriptive examples and illustrations which cover all th...
Boost.Asio C++ network programming
Torjo, John
2013-01-01
What you want is an easy level of abstraction, which is just what this book provides in conjunction with Boost.Asio. Switching to Boost.Asio is just a few extra #include directives away, with the help of this practical and engaging guide.This book is great for developers that need to do network programming, who don't want to delve into the complicated issues of a raw networking API. You should be familiar with core Boost concepts, such as smart pointers and shared_from_this, resource classes (noncopyable), functors and boost::bind, boost mutexes, and the boost date/time library. Readers should
Boosted Horizon of a Boosted Space-Time Geometry
Battista, Emmanuele; Scudellaro, Paolo; Tramontano, Francesco
2015-01-01
We apply the ultrarelativistic boosting procedure to map the metric of Schwarzschild-de Sitter spacetime into a metric describing de Sitter spacetime plus a shock-wave singularity located on a null hypersurface, by exploiting the picture of the embedding of an hyperboloid in a five-dimensional Minkowski spacetime. After reverting to the usual four-dimensional formalism, we also solve the geodesic equation and evaluate the Riemann curvature tensor of the boosted Schwarzschild-de Sitter metric by means of numerical calculations, which make it possible to reach the ultrarelativistic regime gradually by letting the boost velocity approach the speed of light. Eventually, the analysis of the Kretschmann invariant (and of the geodesic equation) shows the global structure of space- time, as we demonstrate the presence of a "scalar curvature singularity" within a 3-sphere and find that it is also possible to define what we have called "boosted horizon", a sort of elastic wall where all particles are surprisingly pushe...
Pirandola, Stefano; Lupo, Cosmo; Giovannetti, Vittorio; Mancini, Stefano; Braunstein, Samuel L.
2011-01-01
The readout of a classical memory can be modelled as a problem of quantum channel discrimination, where a decoder retrieves information by distinguishing the different quantum channels encoded in each cell of the memory [S. Pirandola, Phys. Rev. Lett. 106, 090504 (2011)]. In the case of optical memories, such as CDs and DVDs, this discrimination involves lossy bosonic channels and can be remarkably boosted by the use of nonclassical light (quantum reading). Here we generalize these concepts b...
Can you boost your metabolism?
... more calories than fat. So will building more muscle not boost your metabolism? Yes, but only by a small amount. Most ... you burn. Plus, when not in active use, muscles burn very few calories. Most ... most of your metabolism. What to do: Lift weights for stronger bones ...
Boosting Applied to Word Sense Disambiguation
Escudero, Gerard; Marquez, Lluis; Rigau, German
2000-01-01
In this paper Schapire and Singer's AdaBoost.MH boosting algorithm is applied to the Word Sense Disambiguation (WSD) problem. Initial experiments on a set of 15 selected polysemous words show that the boosting approach surpasses Naive Bayes and Exemplar-based approaches, which represent state-of-the-art accuracy on supervised WSD. In order to make boosting practical for a real learning domain of thousands of words, several ways of accelerating the algorithm by reducing the feature space are s...
Metrology: Schrödinger's cat beats a quantum limit
Adams, Charles S.
2016-07-01
Quantum effects have been used in devices that measure various quantities, but not to measure electric fields. The sensitivity of an electrometer has now been boosted using the phenomenon of quantum superposition. See Letter p.262
Reweighting with Boosted Decision Trees
Rogozhnikov, A
2016-01-01
Machine learning tools are commonly used in modern high energy physics (HEP) experiments. Different models, such as boosted decision trees (BDT) and artificial neural networks (ANN), are widely used in analyses and even in the software triggers. In most cases, these are classification models used to select the "signal" events from data. Monte Carlo simulated events typically take part in training of these models. While the results of the simulation are expected to be close to real data, in practical cases there is notable disagreement between simulated and observed data. In order to use available simulation in training, corrections must be introduced to generated data. One common approach is reweighting - assigning weights to the simulated events. We present a novel method of event reweighting based on boosted decision trees. The problem of checking the quality of reweighting step in analyses is also discussed.
Boosting Infrastructure Investments in Africa
Donald Kaberuka
2011-01-01
The absolute and relative lack of infrastructure in Africa suggests that the continentâ€™s competitiveness could be boosted by scaling up investments in infrastructure. Such investments would facilitate domestic and international trade, enhance Africaâ€™s integration into the global economy and promote better human development outcomes, especially, by bringing unconnected rural communities into the mainstream economy. While there are yawning gaps in all infrastructure subsectors, inadequate e...
Duality and Data Dependence in Boosting /
Telgarsky, Matus
2013-01-01
Boosting algorithms produce accurate predictors for complex phenomena by welding together collections of simple predictors. In the classical method AdaBoost, as well as its immediate variants, the welding points are determined by convex optimization; unlike typical applications of convex optimization in machine learning, however, the AdaBoost scheme eschews the usual regularization and constraints used to control numerical and statistical properties. On the other hand, the data and simple pre...
Positive Semidefinite Metric Learning with Boosting
Shen, Chunhua; Kim, Junae; Wang, Lei; Hengel, Anton van den
2009-01-01
The learning of appropriate distance metrics is a critical problem in image classification and retrieval. In this work, we propose a boosting-based technique, termed \\BoostMetric, for learning a Mahalanobis distance metric. One of the primary difficulties in learning such a metric is to ensure that the Mahalanobis matrix remains positive semidefinite. Semidefinite programming is sometimes used to enforce this constraint, but does not scale well. \\BoostMetric is instead based on a key observat...
Adaptive Sampling for Large Scale Boosting
Dubout, Charles; Fleuret, Francois
2014-01-01
Classical Boosting algorithms, such as AdaBoost, build a strong classifier without concern for the computational cost. Some applications, in particular in computer vision, may involve millions of training examples and very large feature spaces. In such contexts, the training time of off-the-shelf Boosting algorithms may become prohibitive. Several methods exist to accelerate training, typically either by sampling the features or the examples used to train the weak learners. Even if some of th...
Where boosted significances come from
Plehn, Tilman; Schichtel, Peter; Wiegand, Daniel
2014-03-01
In an era of increasingly advanced experimental analysis techniques it is crucial to understand which phase space regions contribute a signal extraction from backgrounds. Based on the Neyman-Pearson lemma we compute the maximum significance for a signal extraction as an integral over phase space regions. We then study to what degree boosted Higgs strategies benefit ZH and tt¯H searches and which transverse momenta of the Higgs are most promising. We find that Higgs and top taggers are the appropriate tools, but would profit from a targeted optimization towards smaller transverse momenta. MadMax is available as an add-on to MadGraph 5.
Quantum teleportation of propagating quantum microwaves
Di Candia, R.; Felicetti, S.; Sanz, M. [University of the Basque Country UPV/EHU, Department of Physical Chemistry, Bilbao (Spain); Fedorov, K.G.; Menzel, E.P. [Bayerische Akademie der Wissenschaften, Walther-Meissner-Institut, Garching (Germany); Technische Universitaet Muenchen, Physik-Department, Garching (Germany); Zhong, L.; Deppe, F.; Gross, R. [Bayerische Akademie der Wissenschaften, Walther-Meissner-Institut, Garching (Germany); Technische Universitaet Muenchen, Physik-Department, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany); Marx, A. [Bayerische Akademie der Wissenschaften, Walther-Meissner-Institut, Garching (Germany); Solano, E. [University of the Basque Country UPV/EHU, Department of Physical Chemistry, Bilbao (Spain); Basque Foundation for Science, IKERBASQUE, Bilbao (Spain)
2015-12-15
Propagating quantum microwaves have been proposed and successfully implemented to generate entanglement, thereby establishing a promising platform for the realisation of a quantum communication channel. However, the implementation of quantum teleportation with photons in the microwave regime is still absent. At the same time, recent developments in the field show that this key protocol could be feasible with current technology, which would pave the way to boost the field of microwave quantum communication. Here, we discuss the feasibility of a possible implementation of microwave quantum teleportation in a realistic scenario with losses. Furthermore, we propose how to implement quantum repeaters in the microwave regime without using photodetection, a key prerequisite to achieve long distance entanglement distribution. (orig.)
Recursive bias estimation and L2 boosting
Hengartner, Nicolas W [Los Alamos National Laboratory; Cornillon, Pierre - Andre [INRA, FRANCE; Matzner - Lober, Eric [RENNE, FRANCE
2009-01-01
This paper presents a general iterative bias correction procedure for regression smoothers. This bias reduction schema is shown to correspond operationally to the L{sub 2} Boosting algorithm and provides a new statistical interpretation for L{sub 2} Boosting. We analyze the behavior of the Boosting algorithm applied to common smoothers S which we show depend on the spectrum of I - S. We present examples of common smoother for which Boosting generates a divergent sequence. The statistical interpretation suggest combining algorithm with an appropriate stopping rule for the iterative procedure. Finally we illustrate the practical finite sample performances of the iterative smoother via a simulation study.
Modifications to Lorentz invariant dispersion in relatively boosted frames
We investigate the implications of energy dependence of the speed of photons, one of the candidate effects of quantum-gravity theories that has been most studied recently, from the perspective of observations in different reference frames. We examine how a simultaneous burst of photons would be measured by two observers with a relative velocity, establishing some associated conditions for the consistency of theories. For scenarios where the Lorentz transformations remain valid, these consistency conditions allow us to characterize the violations of Lorentz symmetry through an explicit description of the modification of the quantum-gravity scale in boosted frames with respect to its definition in a preferred frame. When applied to relativistic scenarios with a deformation of Lorentz invariance that preserves the equivalence of inertial observers, we find an insightful characterization of the necessity to adopt in such frameworks nonclassical features of spacetime geometry, e.g. events that are at the same spacetime point for one observer cannot be considered at the same spacetime point for other observers. Our findings also suggest that, at least in principle (and perhaps one day even in practice), measurements of the dispersion of photons in relatively boosted frames can be particularly valuable for the purpose of testing these scenarios.
RBOOST: RIEMANNIAN DISTANCE BASED REGULARIZED BOOSTING.
Liu, Meizhu; Vemuri, Baba C
2011-03-30
Boosting is a versatile machine learning technique that has numerous applications including but not limited to image processing, computer vision, data mining etc. It is based on the premise that the classification performance of a set of weak learners can be boosted by some weighted combination of them. There have been a number of boosting methods proposed in the literature, such as the AdaBoost, LPBoost, SoftBoost and their variations. However, the learning update strategies used in these methods usually lead to overfitting and instabilities in the classification accuracy. Improved boosting methods via regularization can overcome such difficulties. In this paper, we propose a Riemannian distance regularized LPBoost, dubbed RBoost. RBoost uses Riemannian distance between two square-root densities (in closed form) - used to represent the distribution over the training data and the classification error respectively - to regularize the error distribution in an iterative update formula. Since this distance is in closed form, RBoost requires much less computational cost compared to other regularized Boosting algorithms. We present several experimental results depicting the performance of our algorithm in comparison to recently published methods, LP-Boost and CAVIAR, on a variety of datasets including the publicly available OASIS database, a home grown Epilepsy database and the well known UCI repository. Results depict that the RBoost algorithm performs better than the competing methods in terms of accuracy and efficiency. PMID:21927643
Boosting as a Product of Experts
Edakunni, Narayanan U; Kovacs, Tim
2012-01-01
In this paper, we derive a novel probabilistic model of boosting as a Product of Experts. We re-derive the boosting algorithm as a greedy incremental model selection procedure which ensures that addition of new experts to the ensemble does not decrease the likelihood of the data. These learning rules lead to a generic boosting algorithm - POE- Boost which turns out to be similar to the AdaBoost algorithm under certain assumptions on the expert probabilities. The paper then extends the POEBoost algorithm to POEBoost.CS which handles hypothesis that produce probabilistic predictions. This new algorithm is shown to have better generalization performance compared to other state of the art algorithms.
Abubakkar Siddik A
2012-06-01
Full Text Available Increasing in power demand and shortage of conventional energy sources, researchers are focused on renewable energy. The proposed solar power generation circuit consists of solar array, boost converter and boost inverter. Low voltage, of photovoltaic array, is boosted using dc-dc boost converter to charge the battery and boost inverter convert this battery voltage to high quality sinusoidal ac voltage. The output of solar power fed from boost inverter feed to autonomous load without any intermediate conversion stage and a filter. For boost converter operation duty cycle is varied through fuzzy logic controller and PWM block to regulate the converter output voltage. The ac voltage total harmonic distortion (THD obtained using this configuration is quite acceptable. The proposed power generation system has several desirable features such as low cost and compact size as number of switches used, are limited to four as against six switches used in classical two-stage inverters.
Advanced Airfoils Boost Helicopter Performance
2007-01-01
Carson Helicopters Inc. licensed the Langley RC4 series of airfoils in 1993 to develop a replacement main rotor blade for their Sikorsky S-61 helicopters. The company's fleet of S-61 helicopters has been rebuilt to include Langley's patented airfoil design, and the helicopters are now able to carry heavier loads and fly faster and farther, and the main rotor blades have twice the previous service life. In aerial firefighting, the performance-boosting airfoils have helped the U.S. Department of Agriculture's Forest Service control the spread of wildfires. In 2003, Carson Helicopters signed a contract with Ducommun AeroStructures Inc., to manufacture the composite blades for Carson Helicopters to sell
ATLAS boosted object tagging 2
Caudron, Julien; The ATLAS collaboration
2015-01-01
A detailed study into the optimal techniques for identifying boosted hadronically decaying W or Z bosons is presented. Various algorithms for reconstructing, grooming and tagging bosonic jets are compared for W bosons with a wide range of transverse momenta using 8 TeV data and 8 TeV and 13 TeV MC simulations. In addition, given that a hadronic jet has been identified as resulting from the hadronic decay of a W or Z, a technique is developed to discriminate between W and Z bosons. The modeling of the tagging variables used in this technique is studied using 8 TeV pp collision data and systematic uncertainties for the tagger efficiency and fake rates are evaluated.
Orthodontics Align Crooked Teeth and Boost Self-Esteem
... desktop! more... Orthodontics Align Crooked Teeth and Boost Self- esteem Article Chapters Orthodontics Align Crooked Teeth and Boost Self- esteem Orthodontics print full article print this chapter email ...
Avoiding Anemia: Boost Your Red Blood Cells
... link, please review our exit disclaimer . Subscribe Avoiding Anemia Boost Your Red Blood Cells If you’re ... and sluggish, you might have a condition called anemia. Anemia is a common blood disorder that many ...
Anemia Boosts Stroke Death Risk, Study Finds
... page: https://medlineplus.gov/news/fullstory_160476.html Anemia Boosts Stroke Death Risk, Study Finds Blood condition ... 2016 (HealthDay News) -- Older stroke victims suffering from anemia -- a lack of red blood cells -- may have ...
Riemann curvature of a boosted spacetime geometry
Battista, Emmanuele; Scudellaro, Paolo; Tramontano, Francesco
2014-01-01
The ultrarelativistic boosting procedure had been applied in the literature to map the metric of Schwarzschild-de Sitter spacetime into a metric describing de Sitter spacetime plus a shock-wave singularity located on a null hypersurface. This paper evaluates the Riemann curvature tensor of the boosted Schwarzschild-de Sitter metric by means of numerical calculations, which make it possible to reach the ultrarelativistic regime gradually by letting the boost velocity approach the speed of light. Thus, for the first time in the literature, the singular limit of curvature through Dirac's delta distribution and its derivatives is numerically evaluated for this class of spacetimes. Eventually, the analysis of the Kteschmann invariant and the geodesic equation show that the spacetime possesses a scalar curvature singularity within a 3-sphere and it is possible to define what we here call boosted horizon, a sort of elastic wall where all particles are surprisingly pushed away, as numerical analysis demonstrates. Thi...
On the generator of Lorentz boost
Wang Zhi-Yong; Xiong Cai-Dong
2006-01-01
Traditionally, the theory related to the spatial angular momentum has been studied completely, while the investigation in the generator of Lorentz boost is inadequate. This paper shows that the generator of Lorentz boost has a nontrivial physical significance: it endows a charged system with an electric moment, and has an important significance for the electrical manipulations of electron spin in spintronics. An alternative treatment and interpretation for the traditional Darwin term and spin-orbit coupling are given.
Internationalization of Boost Juice to Malaysia
Jane L. Menzies; Stuart C. Orr
2014-01-01
This case describes the process that the Australian juice retail chain, Boost Juice, has used to internationalize to Malaysia. The main objective of this case is to demonstrate good practice in regard to internationalization. The case provides the background of the juice bar industry in Malaysia and determines that it is an attractive market for new start-up juice bars. An analysis of Boost Juice's capability determined that the company utilized the skills of its staff, product innovations, b...
Philippine campaign boosts child immunizations.
Manuel-santana, R
1993-03-01
In 1989, USAID awarded the Philippines a 5-year, US $50 million Child Survival Program targeting improvement in immunization coverage of children, prenatal care coverage for pregnant women, and contraceptive prevalence. Upon successful completion of performance benchmarks at the end of each year, USAID released monies to fund child survival activities for the following year. This program accomplished a major program goal, which was decentralization of health planning. The Philippine Department of Health soon incorporated provincial health planning. The Philippine Department of Health soon incorporated provincial health planning in its determination of allocation of resources. Social marketing activities contributed greatly to success in achieving the goal of boosting the immunization coverage rate for the 6 antigens listed under the Expanded Program for Immunization (51%-85% of infants, 1986-1991). In fact, rural health officers in Tarlac Province in Central Luzon went from household to household to talk to mothers about the benefits of immunizing a 1-year-old child, thereby contributing greatly to their achieving a 95% full immunization coverage rate by December 1991. Social marketing techniques included modern marketing strategies and multimedia channels. They first proved successful in metro Manila which, at the beginning of the campaign, had the lowest immunization rate of all 14 regions. Every Wednesday was designated immunization day and was when rural health centers vaccinated the children. Social marketing also successfully publicized oral rehydration therapy (ORT), breast feeding, and tuberculosis control. Another contributing factor to program success in child survival activities was private sector involvement. For example, the Philippine Pediatric Society helped to promote ORT as the preferred treatment for acute diarrhea. Further, the commercial sector distributed packets of oral rehydration salts and even advertised its own ORT product. At the end of 2
An update on Shankhpushpi, a cognition-boosting Ayurvedic medicine.
Sethiya, Neeraj Kumar; Nahata, Alok; Mishra, Sri Hari; Dixit, Vinod Kumar
2009-11-01
Shankhpushpi is an Ayurvedic drug used for its action on the central nervous system, especially for boosting memory and improving intellect. Quantum of information gained from Ayurvedic and other Sanskrit literature revealed the existence of four different plant species under the name of Shankhpushpi, which is used in various Ayurvedic prescriptions described in ancient texts, singly or in combination with other herbs. The sources comprise of entire herbs with following botanicals viz., Convulvulus pluricaulis Choisy. (Convulvulaceae), Evolvulus alsinoides Linn. (Convulvulaceae), Clitoria ternatea Linn. (Papilionaceae) and Canscora decussata Schult. (Gentianaceae). A review on the available scientific information in terms of pharmacognostical characteristics, chemical constituents, pharmacological activities, preclinical and clinical applications of controversial sources of Shankhpushpi is prepared with a view to review scientific work undertaken on Shankhpushpi. It may provide parameters of differentiation and permit appreciation of variability of drug action by use of different botanical sources. PMID:19912732
Comparative Study of 4-Switch Buck-Boost Controller and Regular Buck-Boost
Taufik Taufik
2011-01-01
Full Text Available A very important characteristic that dc-dc converters require is the ability to efficiently regulate an output voltage with a wide ranging value of input voltages. A recently developed solution to this requirement is a synchronous 4-Switch Buck-Boost controller developed by Linear Technology. The Linear Technology’s LTC3780 controller chip enables the adoption of a 4-Switch switching topology as opposed to the traditional single-switch Buck-Boost topology. In this paper, the LTC3780’s 4-Switch BuckBoost topology is analyzed and its performance is compared against those of the regular single-switch Buck-Boost topology. Results from computer simulations demonstrate the benefits of using the 4-switch approach than the conventional buck-boost method.
Concomitant boost radiotherapy in oropharynx carcinomas
Fifty-five patients with resectable and unresectable oropharynx carcinomas were treated with concomitant boost radiotherapy. Forty-two of the patients (76%) had stages III-IV disease. Although none of the patients had undergone major surgery to the primary tumor, 11 had neck dissections prior to radiotherapy, and 19 (35%) received chemotherapy. The planned total tumor dose was 69.9 Gy, delivered over 5.5 weeks. During the last 3.5 weeks, a boost to the initial gross disease was delivered in 13 fractions of 1.5 Gy each, as a second daily fraction in a progressively accelerated schedule; the prescribed dose outside the boost volume thus was 50.4 Gy. Median follow-up for surviving patients was 31.5 months (range: 16-65 months). All patients but one completed the planned radiotherapy schedule. According to the RTOG scoring system, 48 patients (88%) presented with grades 3-4 acute toxicity. The rate of grades 3-4 late complications was 12%. At three years the actuarial locoregional control rate was 69.5% and overall survival was 60%. We conclude that this concomitant boost schedule is feasible and does not seem to be associated with an excess risk of late complications. Acute toxicity was higher in association with chemotherapy, but remained manageable. Although the oncological results appear encouraging, evaluation of the efficacy of concomitant boost schedules compared with conventionally fractionated irradiation with or without concomitant chemotherapy requires prospective randomized trials. (orig.)
Concomitant boost radiotherapy in oropharynx carcinomas
Bieri, S.; Allal, A.S.; Kurtz, J.M. [Ospedale San Giovanni, Bellinzona (Switzerland). Dept. of Radiation Oncology; Dulguerov, P.; Lehmann, W. [Geneva Univ. Hospital (Switzerland). Div. of Head and Neck Surgery
1998-12-31
Fifty-five patients with resectable and unresectable oropharynx carcinomas were treated with concomitant boost radiotherapy. Forty-two of the patients (76%) had stages III-IV disease. Although none of the patients had undergone major surgery to the primary tumor, 11 had neck dissections prior to radiotherapy, and 19 (35%) received chemotherapy. The planned total tumor dose was 69.9 Gy, delivered over 5.5 weeks. During the last 3.5 weeks, a boost to the initial gross disease was delivered in 13 fractions of 1.5 Gy each, as a second daily fraction in a progressively accelerated schedule; the prescribed dose outside the boost volume thus was 50.4 Gy. Median follow-up for surviving patients was 31.5 months (range: 16-65 months). All patients but one completed the planned radiotherapy schedule. According to the RTOG scoring system, 48 patients (88%) presented with grades 3-4 acute toxicity. The rate of grades 3-4 late complications was 12%. At three years the actuarial locoregional control rate was 69.5% and overall survival was 60%. We conclude that this concomitant boost schedule is feasible and does not seem to be associated with an excess risk of late complications. Acute toxicity was higher in association with chemotherapy, but remained manageable. Although the oncological results appear encouraging, evaluation of the efficacy of concomitant boost schedules compared with conventionally fractionated irradiation with or without concomitant chemotherapy requires prospective randomized trials. (orig.)
Positive Semidefinite Metric Learning with Boosting
Shen, Chunhua; Wang, Lei; Hengel, Anton van den
2009-01-01
The learning of appropriate distance metrics is a critical problem in image classification and retrieval. In this work, we propose a boosting-based technique, termed \\BoostMetric, for learning a Mahalanobis distance metric. One of the primary difficulties in learning such a metric is to ensure that the Mahalanobis matrix remains positive semidefinite. Semidefinite programming is sometimes used to enforce this constraint, but does not scale well. \\BoostMetric is instead based on a key observation that any positive semidefinite matrix can be decomposed into a linear positive combination of trace-one rank-one matrices. \\BoostMetric thus uses rank-one positive semidefinite matrices as weak learners within an efficient and scalable boosting-based learning process. The resulting method is easy to implement, does not require tuning, and can accommodate various types of constraints. Experiments on various datasets show that the proposed algorithm compares favorably to those state-of-the-art methods in terms of classi...
Solar High Temperature Water-Splitting Cycle with Quantum Boost
Taylor, Robin [SAIC; Davenport, Roger [SAIC; Talbot, Jan [UCSD; Herz, Richard [UCSD; Genders, David [Electrosynthesis Co.; Symons, Peter [Electrosynthesis Co.; Brown, Lloyd [TChemE
2014-04-25
A sulfur family chemical cycle having ammonia as the working fluid and reagent was developed as a cost-effective and efficient hydrogen production technology based on a solar thermochemical water-splitting cycle. The sulfur ammonia (SA) cycle is a renewable and sustainable process that is unique in that it is an all-fluid cycle (i.e., with no solids handling). It uses a moderate temperature solar plant with the solar receiver operating at 800°C. All electricity needed is generated internally from recovered heat. The plant would operate continuously with low cost storage and it is a good potential solar thermochemical hydrogen production cycle for reaching the DOE cost goals. Two approaches were considered for the hydrogen production step of the SA cycle: (1) photocatalytic, and (2) electrolytic oxidation of ammonium sulfite to ammonium sulfate in aqueous solutions. Also, two sub-cycles were evaluated for the oxygen evolution side of the SA cycle: (1) zinc sulfate/zinc oxide, and (2) potassium sulfate/potassium pyrosulfate. The laboratory testing and optimization of all the process steps for each version of the SA cycle were proven in the laboratory or have been fully demonstrated by others, but further optimization is still possible and needed. The solar configuration evolved to a 50 MW(thermal) central receiver system with a North heliostat field, a cavity receiver, and NaCl molten salt storage to allow continuous operation. The H2A economic model was used to optimize and trade-off SA cycle configurations. Parametric studies of chemical plant performance have indicated process efficiencies of ~20%. Although the current process efficiency is technically acceptable, an increased efficiency is needed if the DOE cost targets are to be reached. There are two interrelated areas in which there is the potential for significant efficiency improvements: electrolysis cell voltage and excessive water vaporization. Methods to significantly reduce water evaporation are proposed for future activities. Electrolysis membranes that permit higher temperatures and lower voltages are attainable. The oxygen half cycle will need further development and improvement.
Centrifugal compressor design for electrically assisted boost
Y Yang, M.; Martinez-Botas, R. F.; Zhuge, W. L.; Qureshi, U.; Richards, B.
2013-12-01
Electrically assisted boost is a prominent method to solve the issues of transient lag in turbocharger and remains an optimized operation condition for a compressor due to decoupling from turbine. Usually a centrifugal compressor for gasoline engine boosting is operated at high rotational speed which is beyond the ability of an electric motor in market. In this paper a centrifugal compressor with rotational speed as 120k RPM and pressure ratio as 2.0 is specially developed for electrically assisted boost. A centrifugal compressor including the impeller, vaneless diffuser and the volute is designed by meanline method followed by 3D detailed design. Then CFD method is employed to predict as well as analyse the performance of the design compressor. The results show that the pressure ratio and efficiency at design point is 2.07 and 78% specifically.
Improved Stereo Matching With Boosting Method
Shiny B
2015-06-01
Full Text Available Abstract This paper presents an approach based on classification for improving the accuracy of stereo matching methods. We propose this method for occlusion handling. This work employs classification of pixels for finding the erroneous disparity values. Due to the wide applications of disparity map in 3D television medical imaging etc the accuracy of disparity map has high significance. An initial disparity map is obtained using local or global stereo matching methods from the input stereo image pair. The various features for classification are computed from the input stereo image pair and the obtained disparity map. Then the computed feature vector is used for classification of pixels by using GentleBoost as the classification method. The erroneous disparity values in the disparity map found by classification are corrected through a completion stage or filling stage. A performance evaluation of stereo matching using AdaBoostM1 RUSBoost Neural networks and GentleBoost is performed.
Boost Breaking in the EFT of Inflation
Delacretaz, Luca V; Senatore, Leonardo
2015-01-01
If time-translations are spontaneously broken, so are boosts. This symmetry breaking pattern can be non-linearly realized by either just the Goldstone boson of time translations, or by four Goldstone bosons associated with time translations and boosts. In this paper we extend the Effective Field Theory of Multifield Inflation to consider the case in which the additional Goldstone bosons associated with boosts are light and coupled to the Goldstone boson of time translations. The symmetry breaking pattern forces a coupling to curvature so that the mass of the additional Goldstone bosons is predicted to be equal to $\\sqrt{2}H$ in the vast majority of the parameter space where they are light. This pattern therefore offers a natural way of generating self-interacting particles with Hubble mass during inflation. After constructing the general effective Lagrangian, we study how these particles mix and interact with the curvature fluctuations, generating potentially detectable non-Gaussian signals.
Centrifugal compressor design for electrically assisted boost
Electrically assisted boost is a prominent method to solve the issues of transient lag in turbocharger and remains an optimized operation condition for a compressor due to decoupling from turbine. Usually a centrifugal compressor for gasoline engine boosting is operated at high rotational speed which is beyond the ability of an electric motor in market. In this paper a centrifugal compressor with rotational speed as 120k RPM and pressure ratio as 2.0 is specially developed for electrically assisted boost. A centrifugal compressor including the impeller, vaneless diffuser and the volute is designed by meanline method followed by 3D detailed design. Then CFD method is employed to predict as well as analyse the performance of the design compressor. The results show that the pressure ratio and efficiency at design point is 2.07 and 78% specifically
New approaches for boosting to uniformity
The use of multivariate classifiers has become commonplace in particle physics. To enhance the performance, a series of classifiers is typically trained; this is a technique known as boosting. This paper explores several novel boosting methods that have been designed to produce a uniform selection efficiency in a chosen multivariate space. Such algorithms have a wide range of applications in particle physics, from producing uniform signal selection efficiency across a Dalitz-plot to avoiding the creation of false signal peaks in an invariant mass distribution when searching for new particles
Concomitant boost radiotherapy in oropharynx carcinomas
Bieri, Sabine; Allal, Abdelkarim Said; Dulguerov, Pavel; Lehmann, Willy; Kurtz, John
1998-01-01
Fifty-five patients with resectable and unresectable oropharynx carcinomas were treated with concomitant boost radiotherapy. Forty-two of the patients (76%) had stages III-IV disease. Although none of the patients had undergone major surgery to the primary tumor, 11 had neck dissections prior to radiotherapy, and 19 (35%) received chemotherapy. The planned total tumor dose was 69.9 Gy, delivered over 5.5 weeks. During the last 3.5 weeks, a boost to the initial gross disease was delivered in 1...
Entanglement asymmetry for boosted black branes
Mishra, Rohit
2016-01-01
We study the effects of asymmetry in entanglement thermodynamics of the CFT subsystems. It is found that `boosted' $p$-branes backgrounds give rise to the first law of the entanglement thermodynamics where the CFT pressure plays decisive role in the entanglement. Two different strip like subsystems, one parallel to the boost and the other perpendicular, are studied in the perturbative regime, where $T_{thermal}\\ll T_E$. We also discuss the AdS-wave backgrounds where some universal bounds can be obtained.
Three papers on boosting: an introduction
Koltchinskii, Vladimir; Yu, Bin
2004-01-01
The notion of boosting originated in the Machine Learning literature in the 1980's [VALIANT, L.G. (1984). A theory of the learnable. In Proc. 16th Annual ACM Symposium on Theory of Computing 436-445. ACM Press, New York]. The goal of boosting is to improve the generalization performance of weak (or base) learning algorithms by combining them in a certain way. The first algorithm of this type was discovered by Schapire [SCHAPIRE, R.E. (1990). The strength of weak learnability. Machine Learning...
Quantum Interferometric Sensors
Kapale, K T; Lee, H; Kok, P; Dowling, J P; Kapale, Kishore T.; Didomenico, Leo D.; Lee, Hwang; Kok, Pieter; Dowling, Jonathan P.
2005-01-01
Quantum entanglement has the potential to revolutionize the entire field of interferometric sensing by providing many orders of magnitude improvement in interferometer sensitivity. The quantum-entangled particle interferometer approach is very general and applies to many types of interferometers. In particular, without nonlocal entanglement, a generic classical interferometer has a statistical-sampling shot-noise limited sensitivity that scales like $1/\\sqrt{N}$, where $N$ is the number of particles passing through the interferometer per unit time. However, if carefully prepared quantum correlations are engineered between the particles, then the interferometer sensitivity improves by a factor of $\\sqrt{N}$ to scale like 1/N, which is the limit imposed by the Heisenberg Uncertainty Principle. For optical interferometers operating at milliwatts of optical power, this quantum sensitivity boost corresponds to an eight-order-of-magnitude improvement of signal to noise. This effect can translate into a tremendous s...
Music Might Give Babies' Language Skills a Boost
... nlm.nih.gov/medlineplus/news/fullstory_158486.html Music Might Give Babies' Language Skills a Boost Small ... April 25, 2016 (HealthDay News) -- Can listening to music boost your baby's brainpower? Maybe, at least in ...
Music Might Give Babies' Language Skills a Boost
... page: https://medlineplus.gov/news/fullstory_158486.html Music Might Give Babies' Language Skills a Boost Small ... April 25, 2016 (HealthDay News) -- Can listening to music boost your baby's brainpower? Maybe, at least in ...
Boosted Neural Networks in Evolutionary Computation
Holeňa, Martin; Linke, D.; Steinfeldt, N.
Bangkok : King Mongkut's University of Technology Thonburi, 2009. s. 225-226. [ICONIP 2009. International Conference on Neural Information Processing /16./. 01.12.2009-05.12.2009, Bangkok] Institutional research plan: CEZ:AV0Z10300504 Keywords : evolutionary algorithms * empirical objective functions * surrogate modelling * surrogate modelling * artificial neural networks * boosting Subject RIV: IN - Informatics, Computer Science
Taxation Policies Adjust,Motor Vehicles Boost
Alice
2007-01-01
@@ In recent years,Chinese automotive industry,as one of the pillar industries has kept on rising.In 2006,Chinese auto production ranked the third in the world.The governmental authorities are also studying the corresponding taxations to boost the healthy development of Chinese automotive industry.
The Attentional Boost Effect and Context Memory
Mulligan, Neil W.; Smith, S. Adam; Spataro, Pietro
2016-01-01
Stimuli co-occurring with targets in a detection task are better remembered than stimuli co-occurring with distractors--the attentional boost effect (ABE). The ABE is of interest because it is an exception to the usual finding that divided attention during encoding impairs memory. The effect has been demonstrated in tests of item memory but it is…
A Boosting Framework on Grounds of Online Learning
Naghibi, Tofigh; Pfister, Beat
2014-01-01
By exploiting the duality between boosting and online learning, we present a boosting framework which proves to be extremely powerful thanks to employing the vast knowledge available in the online learning area. Using this framework, we develop various algorithms to address multiple practically and theoretically interesting questions including sparse boosting, smooth-distribution boosting, agnostic learning and some generalization to double-projection online learning algorithms, as a by-product.
A High Efficient Improved Soft Switched Interleaved Boost Converter
A High Efficient Improved Soft Switched Interleaved Boost Converter
2013-01-01
In this paper an improved ZVT interleaved boost PFC topology is introduced. The proposed ZVT interleaved boost converter is composed of two cell boost conversion units and an active auxiliary circuit. The proposed converter has two important advantages over the similar soft switching converters. The first one is that parallel to the main switches of the converter the auxiliary switch also operates under soft switching condition. Providing soft switching conditions for interleaved boost conver...
Díaz López, Daniel; Meneses Herrera, David; Oliver Ramírez, Jesús Angel; García Suárez, Oscar; Alou Cervera, Pedro; Cobos Márquez, José Antonio
2009-01-01
The boost topology with ripple cancellation network allows input and output current ripple attenuation, which means the suppression of the input filter and a high reduction of the output filter. However, to achieve the ripple cancellation, the complexity and the number of components of the converter increase compared with the conventional boost. A detailed analysis has been developed to specify the advantages and drawbacks of this topology. This paper presents the averaged model that derives ...
Primary Paralleled Isolated Boost Converter with Extended Operating Voltage Range
Hernandez Botella, Juan Carlos; Sen, Gökhan; Mira Albert, Maria del Carmen;
2012-01-01
Applications requiring wide input and output voltage range cannot often be satisfied by using buck or boost derived topologies. Primary paralleled isolated boost converter (PPIBC) [1]-[2] is a high efficiency boost derived topology. This paper proposes a new operation mode for extending the input...
Does ICT boost Dutch productivity growth?
Henry van der Wiel
2001-01-01
From an historical and international perspective, Dutch labour productivity growth rates have been lacklustre. Using a growth accounting framework, this document analyses whether ICT has recently boosted Dutch labour productivity growth, similar to developments in the US. Labour productivity growth in the Dutch market sector slightly accelerated in the second half of the 1990s. The acceleration seems to be related to the production and use of ICT. The productivity performance of the Dutch ICT...
Multiclass Boosting for Fast Multiclass Object Detection /
Saberian, Mohammad
2014-01-01
In this thesis the problem of designing a fast multiclass object detector based on cascade architecture is considered. A classifier cascade is a sequence of simple to complex sub-classifiers where each stage either rejects the input or pass it to the next stage. Since most of the non-target inputs get rejected with the simple sub- classifiers in the early stages of the cascade, the overall classification will be fast. Since cascade sub- classifier are usually trained with Boosting algorithms,...
Search for New Physics in Boosted Topologies
Cochran, James; The ATLAS collaboration
2014-01-01
The presentation is expected to focus on the opportunities of discovery of new physics profiting of the latest reconstruction tools for boosted top-quark or boson (W,Z,H) reconstruction and their large effect on increasing the analysis efficiency. A summary of Run 1 results showing latest techniques for background suppression and data-driven background estimate should be included pointing out the possibilities and improvements for Run 2.
Cash boost to Great British science unveiled
2002-01-01
"Trade and Industry Secretary, Patricia Hewitt today unveiled new plans for the DTI's record science budget over the next three years, to keep Britain at the forefront of world science. The plans include funding to develop life saving new health techniques, to seek alternative energy sources, to help our rural economy, to develop the computers of tomorrow and boost business with the next generation of leading edge technologies" (1 page).
Do process innovations boost SMEs productivity growth?
Juan Antonio Máñez Castillejo; Amparo Sanchis Llopis; Sanchis Llopis, Juan A.; María Engracia. Rochina Barrachina
2009-01-01
In this paper we explore in depth the effect of process innovations on total factor productivity growth for small and medium enterprises (SMEs), taking into account the potential endogeneity problem that may be caused by self selection into these activities. First, we analyse whether the ex-ante most productive SMEs are those that start introducing process innovations; then, we test whether process innovations boost SMEs productivity growth using matching techniques to control for the possibi...
Blazar sequence - an artefact of Doppler boosting
Nieppola, E.; Valtaoja, E.; Tornikoski, M.; Hovatta, T.; Kotiranta, M.
2008-01-01
The blazar sequence is a scenario in which the bolometric luminosity of the blazar governs the appearance of its spectral energy distribution. The most prominent result is the significant negative correlation between the synchrotron peak frequencies and the synchrotron peak luminosities of the blazar population. Observational studies of the blazar sequence have, in general, neglected the effect of Doppler boosting. We study the dependence of both the synchrotron peak frequency and luminosity ...
Image enhancement based on edge boosting algorithm
Ngernplubpla, Jaturon; Chitsobhuk, Orachat
2015-12-01
In this paper, a technique for image enhancement based on proposed edge boosting algorithm to reconstruct high quality image from a single low resolution image is described. The difficulty in single-image super-resolution is that the generic image priors resided in the low resolution input image may not be sufficient to generate the effective solutions. In order to achieve a success in super-resolution reconstruction, efficient prior knowledge should be estimated. The statistics of gradient priors in terms of priority map based on separable gradient estimation, maximum likelihood edge estimation, and local variance are introduced. The proposed edge boosting algorithm takes advantages of these gradient statistics to select the appropriate enhancement weights. The larger weights are applied to the higher frequency details while the low frequency details are smoothed. From the experimental results, the significant performance improvement quantitatively and perceptually is illustrated. It can be seen that the proposed edge boosting algorithm demonstrates high quality results with fewer artifacts, sharper edges, superior texture areas, and finer detail with low noise.
Robust LogitBoost and Adaptive Base Class (ABC) LogitBoost
Li, Ping
2012-01-01
Logitboost is an influential boosting algorithm for classification. In this paper, we develop robust logitboost to provide an explicit formulation of tree-split criterion for building weak learners (regression trees) for logitboost. This formulation leads to a numerically stable implementation of logitboost. We then propose abc-logitboost for multi-class classification, by combining robust logitboost with the prior work of abc-boost. Previously, abc-boost was implemented as abc-mart using the mart algorithm. Our extensive experiments on multi-class classification compare four algorithms: mart, abcmart, (robust) logitboost, and abc-logitboost, and demonstrate the superiority of abc-logitboost. Comparisons with other learning methods including SVM and deep learning are also available through prior publications.
Quantum simulation of noncausal kinematic transformations.
Alvarez-Rodriguez, U; Casanova, J; Lamata, L; Solano, E
2013-08-30
We propose the implementation of Galileo group symmetry operations or, in general, linear coordinate transformations in a quantum simulator. With an appropriate encoding, unitary gates applied to our quantum system give rise to Galilean boosts or spatial and time parity operations in the simulated dynamics. This framework provides us with a flexible toolbox that enhances the versatility of quantum simulation theory, allowing the direct access to dynamical quantities that would otherwise require full tomography. Furthermore, this method enables the study of noncausal kinematics and phenomena beyond special relativity in a quantum controllable system. PMID:24033011
Purpose: To evaluate the influence of a radiotherapy boost on the cosmetic outcome after 3 years of follow-up in patients treated with breast-conserving therapy (BCT). Methods and Materials: In EORTC trial 22881/10882, 5569 Stage I and II breast cancer patients were treated with tumorectomy and axillary dissection, followed by tangential irradiation of the breast to a dose of 50 Gy in 5 weeks, at 2 Gy per fraction. Patients having a microscopically complete tumor excision were randomized between no boost and a boost of 16 Gy. The cosmetic outcome was evaluated by a panel, scoring photographs of 731 patients taken soon after surgery and 3 years later, and by digitizer measurements, measuring the displacement of the nipple of 3000 patients postoperatively and of 1141 patients 3 years later. Results: There was no difference in the cosmetic outcome between the two treatment arms after surgery, before the start of radiotherapy. At 3-year follow-up, both the panel evaluation and the digitizer measurements showed that the boost had a significant adverse effect on the cosmetic result. The panel evaluation at 3 years showed that 86% of patients in the no-boost group had an excellent or good global result, compared to 71% of patients in the boost group (p = 0.0001). The digitizer measurements at 3 years showed a relative breast retraction assessment (pBRA) of 7.6 pBRA in the no-boost group, compared to 8.3 pBRA in the boost group, indicating a worse cosmetic result in the boost group at follow-up (p = 0.04). Conclusions: These results showed that a boost dose of 16 Gy had a negative, but limited, impact on the cosmetic outcome after 3 years
Boost matrix converters in clean energy systems
Karaman, Ekrem
This dissertation describes an investigation of novel power electronic converters, based on the ultra-sparse matrix topology and characterized by the minimum number of semiconductor switches. The Z-source, Quasi Z-source, Series Z-source and Switched-inductor Z-source networks were originally proposed for boosting the output voltage of power electronic inverters. These ideas were extended here on three-phase to three-phase and three-phase to single-phase indirect matrix converters. For the three-phase to three-phase matrix converters, the Z-source networks are placed between the three-switch input rectifier stage and the output six-switch inverter stage. A brief shoot-through state produces the voltage boost. An optimal pulse width modulation technique was developed to achieve high boosting capability and minimum switching losses in the converter. For the three-phase to single-phase matrix converters, those networks are placed similarly. For control purposes, a new modulation technique has been developed. As an example application, the proposed converters constitute a viable alternative to the existing solutions in residential wind-energy systems, where a low-voltage variable-speed generator feeds power to the higher-voltage fixed-frequency grid. Comprehensive analytical derivations and simulation results were carried out to investigate the operation of the proposed converters. Performance of the proposed converters was then compared between each other as well as with conventional converters. The operation of the converters was experimentally validated using a laboratory prototype.
Quantum Permanents and Quantum Hafnians
Jing, Naihuan; Jian ZHANG
2015-01-01
Analogous to the quantum general linear group, a quantum group is investigated on which the quantum determinant is shown to be equal to the quantum permanent. The quantum Hafnian is then computed by a closely related quantum permanent. Similarly the quantum Pfaffian is proved to be identical to the quantum Hafnian on the quantum algebra.
A Composite PWM Control Strategy for Boost Converter
Qingfeng, Liu; Zhaoxia, Leng; Jinkun, Sun; Huamin, Wang
In order to improve the control performance of boost converter with large signal disturbance, a composite PWM control strategy for boost converter operating in continuous condition mode (CCM) was proposed in this paper. The parasitical loss of Boost converter was analyzed and a loss compensation strategy was adopted to design feed-forward tracker for converter. The composite PWM controller consisted of the tracker and PID controller. Simulation and experiment results validated the validity of the control strategy presented in this paper.
Boosted Neural Networks in Evolutionary Computation
Holeňa, Martin; Linke, D.; Steinfeldt, N.
Berlin : Springer, 2009 - (Leung, C.; Lee, M.; Chan, J.), s. 131-140 ISBN 978-3-642-10682-8. - (Lecture Notes in Computer Science. 5864). [ICONIP 2009. International Conference on Neural Information Processing /16./. Bangkok (TH), 01.12.2009-05.12.2009] R&D Projects: GA ČR GA201/08/0802; GA ČR GEICC/08/E018 Institutional research plan: CEZ:AV0Z10300504 Keywords : evolutionary algorithms * empirical objective functions * surrogate modelling * surrogate modelling * artificial neural network s * boosting Subject RIV: IN - Informatics, Computer Science
Zhenhai to Boost Crude on Rising Demand
无
2003-01-01
@@ Zhenhai Refining & Chemical plans to boost July crude throughput by at least 5 percent from June due to expectations of a rise in domestic demand, an industry official said on June 24. The forecast July level could match the refinery's April throughput at 1.06 million tons, the highest so far in 2003, an official close to the refinery's operations said, adding "China could see a big rise in demand from domestic travels next month especially after Beijing was dropped off the travel warning list."
Boosted Surrogate Models in Evolutionary Optimization
Holeňa, Martin
Seňa : Pont, 2009 - (Vojtáš, P.), s. 15-22 ISBN 978-80-970179-2-7. [ITAT 2009. Conference on Theory and Practice of Information Theory. Kráľova studňa (SK), 25.09.2009-29.09.2009] R&D Projects: GA ČR GA201/08/1744 Institutional research plan: CEZ:AV0Z10300504 Keywords : evolutionary optimization * genetic algorithms * surrogate modelling * regression models * boosting Subject RIV: IN - Informatics, Computer Science
BOOSTING CED USING ROBUST ORIENTATION ESTIMATION
Tariq M. Khan
2014-05-01
Full Text Available In this paper, Coherence Enhancement Diffusion (CED is boosted feeding external orientation using new robust orientation estimation. In CED, proper scale selection is very important as the gradient vector at that scale reﬂects the orientation of local ridge. For this purpose a new scheme is proposed in which pre calculated orientation, by using local and integration scales. From the experiments it is found the proposed scheme is working much better in noisy environment as compared to the traditional Coherence Enhancement Diffusion
Nanophotonic boost of intermolecular energy transfer
de Roque, P M; Sapienza, R
2015-01-01
We propose a scheme for efficient long-range energy transfer between two distant light emitters separated by more than one wavelength of light, i.e. much beyond the classical Forster radius. A hybrid nanoantenna-waveguide system mediates the transmission of energy, showing enhancements up to 10^8 as compared to vacuum. Our model shows how energy transfer in nanostructured media can be boosted, beyond the simple donor Purcell enhancement, and in particular for large donor-acceptor separations. The scheme we propose connects realistic emitters and could lead to practical on-chip implementations.
Mixed Lorentz boosted $Z^{0}'s$
Kjaer, N J
2001-01-01
A novel technique is proposed to study systematic errors on jet reconstruction in W physics measurements at LEP2 with high statistical precision. The method is based on the emulation of W pair events using Mixed Lorentz Boosted Z0 events. The scope and merits of the method and its statistical accuracy are discussed in the context of the DELPHI W mass measurement in the fully hadronic channel. The numbers presented are preliminary in the sense that they do not constitute the final DELPHI systematic errors.
Precision Jet Substructure from Boosted Event Shapes
Feige, Ilya; Stewart, Iain; Thaler, Jesse
2012-01-01
Jet substructure has emerged as a critical tool for LHC searches, but studies so far have relied heavily on shower Monte Carlos, which formally approximate QCD at leading-log level. We demonstrate that systematic higher-order QCD computations of jet substructure can be carried out by boosting global event shapes by a large momentum Q, and accounting for effects due to finite jet size, initial state radiation (ISR), and underlying event (UE) as 1/Q corrections. In particular, we compute the 2-subjettiness substructure distribution for boosted Z -> q qbar events at the LHC at next-to-next-to-next-to-leading log order. The calculation is greatly simplified by recycling known results for the thrust distribution in e+ e- collisions. The 2-subjettiness distribution quickly saturates, becoming Q independent for Q > 400 GeV. Crucially, the effects of jet contamination from ISR/UE can be subtracted out analytically at large Q, without knowing their detailed form. Amusingly, the Q=infinity and Q=0 distributions are rel...
A Magnetohydrodynamic Boost for Relativistic Jets
Mizuno, Yosuke; Hardee, Philip; Hartmann, Dieter H.; Nishikawa, Ken-Ichi; Zhang, Bing
2007-01-01
We performed relativistic magnetohydrodynamic simulations of the hydrodynamic boosting mechanism for relativistic jets explored by Aloy & Rezzolla (2006) using the RAISHIN code. Simulation results show that the presence of a magnetic field changes the properties of the shock interface between the tenuous, overpressured jet (V^z j) flowing tangentially to a dense external medium. We find that magnetic fields can lead to more efficient acceleration of the jet, in comparison to the pure-hydrodynamic case. A "poloidal" magnetic field (B^z), tangent to the interface and parallel to the jet flow, produces both a stronger outward moving shock and a stronger inward moving rarefaction wave. This leads to a large velocity component normal to the interface in addition to acceleration tangent to the interface, and the jet is thus accelerated to larger Lorentz factors than those obtained in the pure-hydrodynamic case. Likewise, a strong "toroidal" magnetic field (B^y), tangent to the interface but perpendicular to the jet flow, also leads to stronger acceleration tangent to the shock interface relative to the pure-hydrodynamic case. Thus. the presence and relative orientation of a magnetic field in relativistic jets can significant modify the hydrodynamic boost mechanism studied by Aloy & Rezzolla (2006).
A multiview boosting approach to tissue segmentation
Kwak, Jin Tae; Xu, Sheng; Pinto, Peter A.; Turkbey, Baris; Bernardo, Marcelino; Choyke, Peter L.; Wood, Bradford J.
2014-04-01
Digitized histopathology images have a great potential for improving or facilitating current assessment tools in cancer pathology. In order to develop accurate and robust automated methods, the precise segmentation of histologic objects such epithelium, stroma, and nucleus is necessary, in the hopes of information extraction not otherwise obvious to the subjective eye. Here, we propose a multivew boosting approach to segment histology objects of prostate tissue. Tissue specimen images are first represented at different scales using a Gaussian kernel and converted into several forms such HSV and La*b*. Intensity- and texture-based features are extracted from the converted images. Adopting multiview boosting approach, we effectively learn a classifier to predict the histologic class of a pixel in a prostate tissue specimen. The method attempts to integrate the information from multiple scales (or views). 18 prostate tissue specimens from 4 patients were employed to evaluate the new method. The method was trained on 11 tissue specimens including 75,832 epithelial and 103,453 stroma pixels and tested on 55,319 epithelial and 74,945 stroma pixels from 7 tissue specimens. The technique showed 96.7% accuracy, and as summarized into a receiver operating characteristic (ROC) plot, the area under the ROC curve (AUC) of 0.983 (95% CI: 0.983-0.984) was achieved.
Boosted Higgs boson tagging using jet substructures
Shvydkin, Pavel
2016-01-01
Searching BSM particles via the Higgs boson final state has now become common. The mass of desired BSM particle is more than 1 TeV, thereby its decay products are highly Lorentz-boosted. Hence the jets from b quark-antiquark pair - which the Higgs boson mostly decays into - are very closed to each other, and merged into one jet, that is typically reconstructed using large jet sizes (∆R = 0.8). In this work regression technique is applied to AK8 jets (which defined by anti-kT algorithm, using ΔR = 0.8). The regression makes use of boosted jets with substructure information, coupled with the pecularities of a b quark decay, like the presence of a soft lepton (SL) inside the jet. It has allowed to improve the resolution of the mass reconstruction and transverse momentum of the Higgs boson. This application results in improvement of the mass reconstruction by 3-4 percent. These result may be improved firstly by making more careful pileup rejection. Then it is possible to combine base regression train for dif...
Galilei covariance and Einstein's equivalence principle in quantum reference frames
Pereira, S. T.; Angelo, R. M.
2014-01-01
The covariance of the Schr\\"odinger equation under Galilei boosts and the compatibility of nonrelativistic quantum mechanics with Einstein's equivalence principle have been constrained for so long to the existence of a superselection rule which would prevent a quantum particle from being found in superposition states of different masses. In an effort to avoid this expedient, and thus allow nonrelativistic quantum mechanics to account for unstable particles, recent works have suggested that th...
Quantum hoop conjecture: Black hole formation by particle collisions
Casadio, Roberto; Micu, Octavian(Institute of Space Science, Bucharest, P.O. Box MG-23, Bucharest-Magurele, RO-077125, Romania); Scardigli, Fabio
2014-01-01
We address the issue of (quantum) black hole formation by particle collision in quantum physics. We start by constructing the horizon wave-function for quantum mechanical states representing two highly boosted non-interacting particles that collide in flat one-dimensional space. From this wave-function, we then derive a probability that the system becomes a black hole as a function of the initial momenta and spatial separation between the particles. This probability allows us to extend the ho...
Boosted objects: a probe of beyond the standard model physics
Abdesselam, A.; Belyaev, A.; Kuutmann, E. B.;
2011-01-01
We present the report of the hadronic working group of the BOOST2010 workshop held at the University of Oxford in June 2010. The first part contains a review of the potential of hadronic decays of highly boosted particles as an aid for discovery at the LHC and a discussion of the status of tools ...
Boost-rotation symmetric vacuum spacetimes with spinning sources
Pravdova, A.; Pravda, V.
2001-01-01
Boost-rotation symmetric vacuum spacetimes with spinning sources which correspond to gravitational field of uniformly accelerated spinning "particles" are studied. Regularity conditions and asymptotic properties are analyzed. News functions are derived by transforming the general spinning boost-rotation symmetric vacuum metric to Bondi-Sachs coordinates.
Diode-Assisted Buck-Boost Current Source Inverters
Gao, F.; Cai, Liang; Loh, P.C.; Blaabjerg, Frede
This paper presents a couple of novel current source inverters (CSIs) with the enhanced current buckboost capability. With the unique diode-inductor network added between current source inverter circuitry and current boost elements, the proposed buck-boost current source inverters demonstrate a...
Quantum Erasure: Quantum Interference Revisited
Walborn, Stephen P.; Cunha, Marcelo O Terra; Pádua, Sebastião; Monken, Carlos H.
2005-01-01
Recent experiments in quantum optics have shed light on the foundations of quantum physics. Quantum erasers - modified quantum interference experiments - show that quantum entanglement is responsible for the complementarity principle.
Application ofBoost Inverter to Multi Input PV system
G.SHINYVIKRAM
2014-11-01
Full Text Available With the shortage of the energy and ever increasing of the oil price, research on the renewable and green energy sources, especially the solar arrays and the fuel cells, becomes more and more important. How to achieve high step- up and high efficiency DC/DC converters is the major consideration in the renewable power applications due to the low voltage of PV arrays and fuel cells. The conventional boost converters increase the harmonics rate and add an extra stage of power conversion. This paper proposes a boost dc-ac inverter that can invert and boost the output voltage in a single stage. In this paper the proposed boost dc-ac inverter is applied to the solar power panels and is simulated using Simulink. The output results of the boost inverter are worthy promising.
Very boosted Higgs in gluon fusion
The Higgs production and decay rates offer a new way to probe new physics beyond the Standard Model. While dynamics aiming at alleviating the hierarchy problem generically predict deviations in the Higgs rates, the current experimental analyses cannot resolve the long- and short-distance contributions to the gluon fusion process and thus cannot access directly the coupling between the Higgs and the top quark. We investigate the production of a boosted Higgs in association with a high-transverse momentum jet as an alternative to the t anti th channel to pin down this crucial coupling. Presented rst in the context of an effective field theory, our analysis is then applied to models of partial compositeness at the TeV scale and of natural supersymmetry.
Dattagupta, Aparajita; The ATLAS collaboration
2016-01-01
A detailed study of the techniques for identifying boosted hadronically decaying W or Z bosons is presented. The best performing algorithm for reconstructing, grooming and tagging bosonic jets as seen in studies using 8 TeV data and simulation is validated for W bosons with a wide range of transverse momenta using 13 TeV data and MC simulations. The same is studied for Z bosons in 13 TeV MC simulation. Improvement in tagger performance using detector tracking information is also studied. In addition, given that a hadronic jet has been identified as resulting from the hadronic decay of a W or Z, a technique is developed to discriminate between W and Z bosons using 8 TeV data. The alternative of using variable-R jets for capturing the hadronic decay products compared to standard techniques is also discussed.
Boosting jet power in black hole spacetimes
Neilsen, David; Palenzuela, Carlos; Hirschmann, Eric W; Liebling, Steven L; Motl, Patrick M; Garret, T
2010-01-01
The extraction of rotational energy from a spinning black hole via the Blandford-Znajek mechanism has long been understood as an important component in models to explain energetic jets from compact astrophysical sources. Here we show more generally that the kinetic energy of the black hole, both rotational and translational, can be tapped, thereby producing even more luminous jets powered by the interaction of the black hole with its surrounding plasma. We study the resulting Poynting jet that arises from single boosted black holes and binary black hole systems. In the latter case, we find that increasing the orbital angular momenta of the system and/or the spins of the individual black holes results in an enhanced Poynting flux.
Boosting jet power in black hole spacetimes
Neilsen, David; Lehner, Luis; Palenzuela, Carlos; Hirschmann, Eric W.; Liebling, Steven L.; Motl, Patrick M.; Garrett, Travis
2011-01-01
The extraction of rotational energy from a spinning black hole via the Blandford–Znajek mechanism has long been understood as an important component in models to explain energetic jets from compact astrophysical sources. Here we show more generally that the kinetic energy of the black hole, both rotational and translational, can be tapped, thereby producing even more luminous jets powered by the interaction of the black hole with its surrounding plasma. We study the resulting Poynting jet that arises from single boosted black holes and binary black hole systems. In the latter case, we find that increasing the orbital angular momenta of the system and/or the spins of the individual black holes results in an enhanced Poynting flux. PMID:21768341
Giving top quark effective operators a boost
Englert, Christoph; Moore, Liam; Russell, Michael
2016-01-01
We investigate the prospects to systematically improve generic effective field theory-based searches for new physics in the top sector during LHC run 2 as well as the high luminosity phase. In particular, we assess the benefits of high momentum transfer final states on top EFT-fit as a function of systematic uncertainties in comparison with sensitivity expected from fully-resolved analyses focusing on $t\\bar t$ production. We find that constraints are typically driven by fully-resolved selections, while boosted top quarks can serve to break degeneracies in the global fit. This demystifies and clarifies the importance of high momentum transfer final states for global fits to new interactions in the top sector from direct measurements.
Boosted top quarks and jet structure
Schaetzel, Sebastian [Ruprecht-Karls-Universitaet Heidelberg, Physikalisches Institut, Heidelberg (Germany)
2015-09-15
The Large Hadron Collider is the first particle accelerator that provides high enough energy to produce large numbers of boosted top quarks. The decay products of these top quarks are confined to a cone in the top quark flight direction and can be clustered into a single jet. Top quark reconstruction then amounts to analysing the structure of the jet and looking for subjets that are kinematically compatible with top quark decay. Many techniques have been developed in this context to identify top quarks in a large background of non-top jets. This article reviews the results obtained using data recorded in the years 2010-2012 by the experiments ATLAS and CMS. Studies of Standard Model top quark production and searches for new massive particles that decay to top quarks are presented. (orig.)
Very boosted Higgs in gluon fusion
Grojean, C. [Univ. Autonoma de Barcelona, Bellaterra (Spain). ICREA at IFAE; Salvioni, E. [California Univ., Davis, CA (United States). Dept. of Physics; European Organization for Nuclear Research (CERN), Geneva (Switzerland); Padova Univ. (Italy). Dipt. di Fisica e Astronomica; INFN, Sezione di Padova (Italy); Schlaffer, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Weiler, A. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2013-12-15
The Higgs production and decay rates offer a new way to probe new physics beyond the Standard Model. While dynamics aiming at alleviating the hierarchy problem generically predict deviations in the Higgs rates, the current experimental analyses cannot resolve the long- and short-distance contributions to the gluon fusion process and thus cannot access directly the coupling between the Higgs and the top quark. We investigate the production of a boosted Higgs in association with a high-transverse momentum jet as an alternative to the t anti th channel to pin down this crucial coupling. Presented rst in the context of an effective field theory, our analysis is then applied to models of partial compositeness at the TeV scale and of natural supersymmetry.
Boosted top quarks and jet structure
The Large Hadron Collider is the first particle accelerator that provides high enough energy to produce large numbers of boosted top quarks. The decay products of these top quarks are confined to a cone in the top quark flight direction and can be clustered into a single jet. Top quark reconstruction then amounts to analysing the structure of the jet and looking for subjets that are kinematically compatible with top quark decay. Many techniques have been developed in this context to identify top quarks in a large background of non-top jets. This article reviews the results obtained using data recorded in the years 2010-2012 by the experiments ATLAS and CMS. Studies of Standard Model top quark production and searches for new massive particles that decay to top quarks are presented. (orig.)
Opportunities to boost bioenergy in Lithuania
Silveira, Semida [International Secretariat, Swedish Energy Agency, Box 310, SE-631 04 Eskilstuna (Sweden); Andersson, Lars [Skogsvaardsstyrelsen Vaermland OErebro/Regional Forestry Board, Skogsenheten/Forest Department, P.O. Box 387, S-651 09 Karlstad (Sweden); Lebedys, Arvydas [Forest Economics Service, Forestry Department, Food and Agriculture Organization of UN, Viale delle Terme di Caracalla, 00100 Rome (Italy)
2006-12-15
Significant efforts have been made in Lithuania to enhance the utilization of bioenergy since the early 1990s. While opportunities are large and signs of development visible, bioenergy still needs technical, institutional and policy-related support for further development side by side with other industries. This paper discusses the existing bioenergy potential in Lithuanian forests, biofuels market formation in the region and possible roads to boost development. The retrofitting of heat plants, forest management and policies are reviewed as a way to identify opportunities to promote bioenergy in the country. It is shown that the interplay between national and regional forces can promote technological and managerial improvements in the forest industry while also enhancing the biomass supply and sustainability of bioenergy systems. (author) (author)
Locally Boosted Graph Aggregation for Community Detection
Kun, Jeremy; Carter, Kevin
2014-01-01
Learning the right graph representation from noisy, multi-source data has garnered significant interest in recent years. A central tenet of this problem is relational learning. Here the objective is to incorporate the partial information each data source gives us in a way that captures the true underlying relationships. To address this challenge, we present a general, boosting-inspired framework for combining weak evidence of entity associations into a robust similarity metric. Building on previous work, we explore the extent to which different local quality measurements yield graph representations that are suitable for community detection. We present empirical results on a variety of datasets demonstrating the utility of this framework, especially with respect to real datasets where noise and scale present serious challenges. Finally, we prove a convergence theorem in an ideal setting and outline future research into other application domains.
A boost to the French hydraulic plan
A plan for boosting the hydroelectric power generation in France is presented, the first step of an energy policy based on the conclusions of the Grenelle Environnement Forum which targets a 23 percent objective for the renewable energies in France by 2020. Hydroelectricity represents nowadays 12 percent of total electric power generation. The plan is composed of three parts: attribution of concessions will be opened to competition (concessions of the 400 largest dams will be renewed); investments in dams will be strongly encouraged and assisted by the government in order to increase France's hydraulic power generation capacities and enhance its security of power supply - small and micro hydraulic power generation is to be developed; the quality of river waters will be improved
Boosted top quarks and jet structure
Schätzel, Sebastian
2015-09-01
The Large Hadron Collider is the first particle accelerator that provides high enough energy to produce large numbers of boosted top quarks. The decay products of these top quarks are confined to a cone in the top quark flight direction and can be clustered into a single jet. Top quark reconstruction then amounts to analysing the structure of the jet and looking for subjets that are kinematically compatible with top quark decay. Many techniques have been developed in this context to identify top quarks in a large background of non-top jets. This article reviews the results obtained using data recorded in the years 2010-2012 by the experiments ATLAS and CMS. Studies of Standard Model top quark production and searches for new massive particles that decay to top quarks are presented.
Boosting low-mass hadronic resonances
Shimmin, Chase
2016-01-01
Searches for new hadronic resonances typically focus on high-mass spectra, due to overwhelming QCD backgrounds and detector trigger rates. We present a study of searches for relatively low-mass hadronic resonances at the LHC in the case that the resonance is boosted by recoiling against a well-measured high-$p_{\\textrm{T}}$ probe such as a muon, photon or jet. The hadronic decay of the resonance is then reconstructed either as a single large-radius jet or as a resolved pair of standard narrow-radius jets, balanced in transverse momentum to the probe. We show that the existing 2015 LHC dataset of $pp$ collisions with $\\int\\mathcal{L}dt = 4\\ \\mathrm{fb}^{-1}$ should already have powerful sensitivity to a generic $Z'$ model which couples only to quarks, for $Z'$ masses ranging from 20-500 GeV/c$^2$.
The attentional boost effect and context memory.
Mulligan, Neil W; Smith, S Adam; Spataro, Pietro
2016-04-01
Stimuli co-occurring with targets in a detection task are better remembered than stimuli co-occurring with distractors-the attentional boost effect (ABE). The ABE is of interest because it is an exception to the usual finding that divided attention during encoding impairs memory. The effect has been demonstrated in tests of item memory but it is unclear if context memory is likewise affected. Some accounts suggest enhanced perceptual encoding or associative binding, predicting an ABE on context memory, whereas other evidence suggests a more abstract, amodal basis of the effect. In Experiment 1, context memory was assessed in terms of an intramodal perceptual detail, the font and color of the study word. Experiment 2 examined context memory cross-modally, assessing memory for the modality (visual or auditory) of the study word. Experiments 3 and 4 assessed context memory with list discrimination, in which 2 study lists are presented and participants must later remember which list (if either) a test word came from. In all experiments, item (recognition) memory was also assessed and consistently displayed a robust ABE. In contrast, the attentional-boost manipulation did not enhance context memory, whether defined in terms of visual details, study modality, or list membership. There was some evidence that the mode of responding on the detection task (motoric response as opposed to covert counting of targets) may impact context memory but there was no evidence of an effect of target detection, per se. In sum, the ABE did not occur in context memory with verbal materials. (PsycINFO Database Record PMID:26348201
Glucose starvation boosts Entamoeba histolytica virulence.
Ayala Tovy
2011-08-01
Full Text Available The unicellular parasite, Entamoeba histolytica, is exposed to numerous adverse conditions, such as nutrient deprivation, during its life cycle stages in the human host. In the present study, we examined whether the parasite virulence could be influenced by glucose starvation (GS. The migratory behaviour of the parasite and its capability to kill mammalian cells and to lyse erythrocytes is strongly enhanced following GS. In order to gain insights into the mechanism underlying the GS boosting effects on virulence, we analyzed differences in protein expression levels in control and glucose-starved trophozoites, by quantitative proteomic analysis. We observed that upstream regulatory element 3-binding protein (URE3-BP, a transcription factor that modulates E.histolytica virulence, and the lysine-rich protein 1 (KRiP1 which is induced during liver abscess development, are upregulated by GS. We also analyzed E. histolytica membrane fractions and noticed that the Gal/GalNAc lectin light subunit LgL1 is up-regulated by GS. Surprisingly, amoebapore A (Ap-A and cysteine proteinase A5 (CP-A5, two important E. histolytica virulence factors, were strongly down-regulated by GS. While the boosting effect of GS on E. histolytica virulence was conserved in strains silenced for Ap-A and CP-A5, it was lost in LgL1 and in KRiP1 down-regulated strains. These data emphasize the unexpected role of GS in the modulation of E.histolytica virulence and the involvement of KRiP1 and Lgl1 in this phenomenon.
Transforming quantum operations: quantum supermaps
Chiribella, G.; D'Ariano, G. M.; Perinotti, P.
2008-01-01
We introduce the concept of quantum supermap, describing the most general transformation that maps an input quantum operation into an output quantum operation. Since quantum operations include as special cases quantum states, effects, and measurements, quantum supermaps describe all possible transformations between elementary quantum objects (quantum systems as well as quantum devices). After giving the axiomatic definition of supermap, we prove a realization theorem, which shows that any sup...
Quantum correlation via quantum coherence
Yu, Chang-shui; Zhang, Yang; Zhao, Haiqing
2014-01-01
Quantum correlation includes quantum entanglement and quantum discord. Both entanglement and discord have a common necessary condition--------quantum coherence or quantum superposition. In this paper, we attempt to give an alternative understanding of how quantum correlation is related to quantum coherence. We divide the coherence of a quantum state into several classes and find the complete coincidence between geometric (symmetric and asymmetric) quantum discords and some particular classes ...
Photovoltaic Simplified Boost Z Source Inverter for Ac Module Applications
J. Sam Alaric
2014-08-01
Full Text Available This study mainly proposed PV z source boost inverter used to boundary grid or ac module applications. Separate types of converter used for solar system due to its current lagging, here capacitor multiplier based boost converter introduced for maintain the current lagging and voltage gain. Here, the switched inductor z source inverter implemented for grid interface. Proposed z source inverter is controlled by pulse width modulation. A simplified capacitor multiplier controlled by continuous conduction mode, A detailed topology analysis and a generalized discussion are given. The multiplier boost converter has the merits of maintain voltage level and reducing cost and current lagging. Simulation results are implemented and analysis MATLAB software.
Boosted Black Holes on Kaluza-Klein Bubbles
Iguchi, Hideo; Tomizawa, Shinya
2007-01-01
We construct an exact stationary solution of black hole -- bubble sequence in the five dimensional Kaluza-Klein theory by using solitonic solution generating techniques. The solution describes two boosted black holes with topology S^3 on a Kaluza-Klein bubble and has a linear momentum component in the compactified direction. The ADM mass and the linear momentum depend on the two boosted velocity parameters of black holes. In the effective four dimensional theory, the solution has an electric charge which is proportional to the linear momentum. The solution includes the static solution found by Elvang and Horowitz and a limit of single boosted black string.
Remote Sensing Data Binary Classification Using Boosting with Simple Classifiers
Nowakowski Artur
2015-10-01
Full Text Available Boosting is a classification method which has been proven useful in non-satellite image processing while it is still new to satellite remote sensing. It is a meta-algorithm, which builds a strong classifier from many weak ones in iterative way. We adapt the AdaBoost.M1 boosting algorithm in a new land cover classification scenario based on utilization of very simple threshold classifiers employing spectral and contextual information. Thresholds for the classifiers are automatically calculated adaptively to data statistics.
Discrete Quantum Gravity and Quantum Field Theory
Gudder, Stan
2016-01-01
We introduce a discrete 4-dimensional module over the integers that appears to have maximal symmetry. By adjoining the usual Minkowski distance, we obtain a discrete 4-dimensional Minkowski space. Forming universe histories in this space and employing the standard causal order, the histories become causal sets. These causal sets increase in size rapidly and describe an inflationary period for the early universe. We next consider the symmetry group $G$ for the module. We show that $G$ has order 24 and we construct its group table. In a sense $G$ is a discrete approximation to the Lorentz group. However, we note that it contains no boosts and is essentially a rotation group. Unitary representations of $G$ are constructed. The energy-momentum space dual to the discrete module is obtained and a quantum formalism is derived. A discrete Fock space is introduced on this structure and free quantum fields are considered. Finally, we take the first step in a study of interacting quantum fields.
Corinne Pralavorio
2015-01-01
The first HIE-ISOLDE cryomodule was commissioned at the end of October. The radioactive ion beams can now be accelerated to 4.3 MeV per nucleon. The ISOLDE beamline that supplies the Miniball array. The first HIE-ISOLDE cryomodule can be seen in the background, in its light-grey cryostat. ISOLDE is getting an energy boost. The first cryomodule of the new superconducting linear accelerator HIE-ISOLDE (High Intensity and Energy ISOLDE), located downstream of the REX-ISOLDE accelerator, increases the energy of the radioactive ion beams from 3 to 4.3 MeV per nucleon. It supplies the Miniball array, where an experiment using radioactive zinc ions (see box) began at the end of October. This is the first stage in the commissioning of HIE-ISOLDE. The facility will ultimately be equipped with four cryomodules that will accelerate the beams to 10 MeV per nucleon. Each cryomodule has five accelerating cavities and a solenoid, which focuses the beam. All of these components are superconducting. This first ...
Exploiting tRNAs to Boost Virulence
Suki Albers
2016-01-01
Full Text Available Transfer RNAs (tRNAs are powerful small RNA entities that are used to translate nucleotide language of genes into the amino acid language of proteins. Their near-uniform length and tertiary structure as well as their high nucleotide similarity and post-transcriptional modifications have made it difficult to characterize individual species quantitatively. However, due to the central role of the tRNA pool in protein biosynthesis as well as newly emerging roles played by tRNAs, their quantitative assessment yields important information, particularly relevant for virus research. Viruses which depend on the host protein expression machinery have evolved various strategies to optimize tRNA usage—either by adapting to the host codon usage or encoding their own tRNAs. Additionally, several viruses bear tRNA-like elements (TLE in the 5′- and 3′-UTR of their mRNAs. There are different hypotheses concerning the manner in which such structures boost viral protein expression. Furthermore, retroviruses use special tRNAs for packaging and initiating reverse transcription of their genetic material. Since there is a strong specificity of different viruses towards certain tRNAs, different strategies for recruitment are employed. Interestingly, modifications on tRNAs strongly impact their functionality in viruses. Here, we review those intersection points between virus and tRNA research and describe methods for assessing the tRNA pool in terms of concentration, aminoacylation and modification.
New ways to boost molecular dynamics simulations.
Krieger, Elmar; Vriend, Gert
2015-05-15
We describe a set of algorithms that allow to simulate dihydrofolate reductase (DHFR, a common benchmark) with the AMBER all-atom force field at 160 nanoseconds/day on a single Intel Core i7 5960X CPU (no graphics processing unit (GPU), 23,786 atoms, particle mesh Ewald (PME), 8.0 Å cutoff, correct atom masses, reproducible trajectory, CPU with 3.6 GHz, no turbo boost, 8 AVX registers). The new features include a mixed multiple time-step algorithm (reaching 5 fs), a tuned version of LINCS to constrain bond angles, the fusion of pair list creation and force calculation, pressure coupling with a "densostat," and exploitation of new CPU instruction sets like AVX2. The impact of Intel's new transactional memory, atomic instructions, and sloppy pair lists is also analyzed. The algorithms map well to GPUs and can automatically handle most Protein Data Bank (PDB) files including ligands. An implementation is available as part of the YASARA molecular modeling and simulation program from www.YASARA.org. PMID:25824339
Super-Sensitive and Robust Biosensors from Supported Polymer Bilayers
Paxton, Walter F. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)
2015-09-01
Biological organisms are potentially the most sensitive and selective biological detection systems known, yet we are currently severely limited in our ability to exploit biological interactions in sensory devices, due in part to the limited stability of biological systems and derived materials. This proposal addresses an important aspect of integrating biological sensory materials in a solid state device. If successful, such technology could enable entirely new classes of robust biosensors that could be miniaturized and deployed in the field. The critical aims of the proposed work were 1) the calibration of a more versatile approach to measuring pH, 2) the use of this method to monitor pH changes caused by the light-induced pumping of protons across vesicles with bacteriorhodopsin integrated into the membranes (either polymer or lipid); 3) the preparation of bilayer assemblies on platinum surfaces; 4) the enhanced detection of lightinduced pH changes driven by bR-loaded supported bilayers. I have developed a methodology that may enable that at interfaces and developed a methodology to characterize the functionality of bilayer membranes with reconstituted membrane proteins. The integrity of the supported bilayer films however must be optimized prior to the full realization of the work originally envisioned in the original proposal. Nevertheless, the work performed on this project and the encouraging results it has produced has demonstrated that these goals are challenging yet within reach.
Super-sensitive Molecule-hugging Graphene Nanopores
Garaj, Slaven; Branton, Daniel; Golovchenko, Jene A
2012-01-01
Longitudinal resolution and lateral sensitivity are decisive characteristics that determine the suitability of a nanopore sensor for sequencing a strand of DNA as well as other important polymers. Previous modeling of DNA induced ionic current blockades in single atom thick graphene nanopores has shown these nanopores to have sufficient longitudinal resolution to distinguish individual nucleobases along the length of a DNA molecule. Here we experimentally focus on the sensitivity to small changes in DNA diameter that can be discerned with graphene nanopores. We show that remarkably large sensitivities (0.5 nA/A)are obtained when the nanopore is tailored to have a diameter close to that of the polymer of interest. Our results have been obtained with double-stranded DNA (dsDNA). Smaller graphene nanopores that can be tuned to the diameter of single-stranded DNA (ssDNA) for sequencing have only recently been demonstrated. Our results indicate that nanopore sensors based on such pores will provide excellent resol...
Melanoma Drug Boosting Survival for Many, Study Shows
... nlm.nih.gov/medlineplus/news/fullstory_158928.html Melanoma Drug Boosting Survival for Many, Study Shows Keytruda ... 2016 (HealthDay News) -- A new drug for advanced melanoma is dramatically shifting the odds in favor of ...
A High Efficient Improved Soft Switched Interleaved Boost Converter
A High Efficient Improved Soft Switched Interleaved Boost Converter
2013-06-01
Full Text Available In this paper an improved ZVT interleaved boost PFC topology is introduced. The proposed ZVT interleaved boost converter is composed of two cell boost conversion units and an active auxiliary circuit. The proposed converter has two important advantages over the similar soft switching converters. The first one is that parallel to the main switches of the converter the auxiliary switch also operates under soft switching condition. Providing soft switching conditions for interleaved boost converters with more than one cells using only one auxiliary switch is another advantage of this topology. The prototype for the proposed converter was developed with an input of 110V ac power supply feeding a resistive output load of 600 watts. In addition, the proposed converter has the advantages of fewer structure complications, lower cost and ease of control.
Severe Obesity May Boost Infection Risk After Heart Surgery
... nih.gov/medlineplus/news/fullstory_159143.html Severe Obesity May Boost Infection Risk After Heart Surgery Excess ... new study suggests. The researchers found that severe obesity was linked to much higher odds of developing ...
Zika's Delivery Via Mosquito Bite May Boost Its Effect
... page: https://medlineplus.gov/news/fullstory_159484.html Zika's Delivery Via Mosquito Bite May Boost Its Effect ... The inflammation caused by a mosquito bite helps Zika and other viruses spread through the body more ...
Omega-3 Fish Oil Supplements Might Boost Antidepressants' Effects
... html Omega-3 Fish Oil Supplements Might Boost Antidepressants' Effects Data from 8 randomized clinical trials suggests ... fish oil supplements may improve the effectiveness of antidepressants, new research suggests. Researchers reviewed the findings of ...
Remote Sensing Data Binary Classification Using Boosting with Simple Classifiers
Nowakowski, Artur
2015-10-01
Boosting is a classification method which has been proven useful in non-satellite image processing while it is still new to satellite remote sensing. It is a meta-algorithm, which builds a strong classifier from many weak ones in iterative way. We adapt the AdaBoost.M1 boosting algorithm in a new land cover classification scenario based on utilization of very simple threshold classifiers employing spectral and contextual information. Thresholds for the classifiers are automatically calculated adaptively to data statistics. The proposed method is employed for the exemplary problem of artificial area identification. Classification of IKONOS multispectral data results in short computational time and overall accuracy of 94.4% comparing to 94.0% obtained by using AdaBoost.M1 with trees and 93.8% achieved using Random Forest. The influence of a manipulation of the final threshold of the strong classifier on classification results is reported.
Insurance Mandates Boost U.S. Autism Diagnoses
... page: https://medlineplus.gov/news/fullstory_159812.html Insurance Mandates Boost U.S. Autism Diagnoses Early treatment provides ... the Penn researchers analyzed inpatient and outpatient health insurance claims from 2008 through 2012 for more than ...
Testosterone Therapy May Boost Older Men's Sex Lives
... 159622.html Testosterone Therapy May Boost Older Men's Sex Lives Gel hormone treatment led to improved libido ... experienced a moderate but significant improvement in their sex drive, sexual activity and erectile function compared to ...
Superconducting Electric Boost Pump for Nuclear Thermal Propulsion Project
National Aeronautics and Space Administration — A submersible, superconducting electric boost pump sized to meet the needs of future Nuclear Thermal Propulsion systems in the 25,000 lbf thrust range is proposed....
Exposure / Ritual Prevention Therapy Boosts Antidepressant Treatment of OCD
... NIMH (99 items) Exposure / Ritual Prevention Therapy Boosts Antidepressant Treatment of OCD CBT Trumps Antipsychotic for Augmentation, ... Update A form of behavioral therapy can augment antidepressant treatment of obsessive compulsive disorder (OCD) better than ...
A Little Excess Weight May Boost Colon Cancer Survival
... 158930.html A Little Excess Weight May Boost Colon Cancer Survival Researchers saw an effect, but experts stress ... a surprise, a new study found that overweight colon cancer patients tended to have better survival than their ...
Severe Obesity May Boost Infection Risk After Heart Surgery
... https://medlineplus.gov/news/fullstory_159143.html Severe Obesity May Boost Infection Risk After Heart Surgery Excess ... new study suggests. The researchers found that severe obesity was linked to much higher odds of developing ...
Quantum Instantons and Quantum Chaos
Jirari, H.; Kröger, H.; Luo, X. Q.; Moriarty, K. J. M.; Rubin, S. G.
1999-01-01
Based on a closed form expression for the path integral of quantum transition amplitudes, we suggest rigorous definitions of both, quantum instantons and quantum chaos. As an example we compute the quantum instanton of the double well potential.
The statistical error is ineluctable in any measurement. Quantum techniques, especially with the development of quantum information, can help us squeeze the statistical error and enhance the precision of measurement. In a quantum system, there are some quantum parameters, such as the quantum state, quantum operator, and quantum dimension, which have no classical counterparts. So quantum metrology deals with not only the traditional parameters, but also the quantum parameters. Quantum metrology includes two important parts: measuring the physical parameters with a precision beating the classical physics limit and measuring the quantum parameters precisely. In this review, we will introduce how quantum characters (e.g., squeezed state and quantum entanglement) yield a higher precision, what the research areas are scientists most interesting in, and what the development status of quantum metrology and its perspectives are. (topical review - quantum information)
Face Alignment using Boosted Appeareance Model (Discriminative Appearance Model)
Muddamsetty, Satya Mahesh
2009-01-01
This thesis explores decriminative face alignment using Boosted Appearance Model (BAM). In this method face alignment is done by maximizing the score of the trained two classifier which learns both correct and incorrect alignment and is able to distinguish correct and incorrect alignment so that the correct alignment gets maximum positve score. During the training stage we trained Point Distribution Model (PDM) which acts as shape model and a boosting based classifier based on Haar like Recta...
Positive Semidefinite Metric Learning Using Boosting-like Algorithms
Shen, Chunhua; Kim, Junae; Wang, Lei; Hengel, Anton van den
2011-01-01
The success of many machine learning and pattern recognition methods relies heavily upon the identification of an appropriate distance metric on the input data. It is often beneficial to learn such a metric from the input training data, instead of using a default one such as the Euclidean distance. In this work, we propose a boosting-based technique, termed BoostMetric, for learning a quadratic Mahalanobis distance metric. Learning a valid Mahalanobis distance metric requires enforcing the co...
Complexified boost invariance and holographic heavy ion collisions
Gubser, Steven; van der Schee, Wilke
2014-01-01
At strong coupling holographic studies have shown that heavy ion collisions do not obey normal boost invariance. Here we study a modified boost invariance through a complex shift in time, and show that this leads to surprisingly good agreement with numerical holographic computations. When including perturbations the agreement becomes even better, both in the hydrodynamic and the far-from-equilibrium regime. One of the main advantages is an analytic formulation of the stress-energy tensor of t...
Boosted dark matter signals uplifted with self-interaction
Kyoungchul Kong; Gopolang Mohlabeng; Jong-Chul Park
2014-01-01
We explore detection prospects of a non-standard dark sector in the context of boosted dark matter. We focus on a scenario with two dark matter particles of a large mass difference, where the heavier candidate is secluded and interacts with the standard model particles only at loops, escaping existing direct and indirect detection bounds. Yet its pair annihilation in the galactic center or in the Sun may produce boosted stable particles, which could be detected as visible Cherenkov light in l...
Boost IORT in Breast Cancer: Body of Evidence
Felix Sedlmayer; Roland Reitsamer; Christoph Fussl; Ingrid Ziegler; Franz Zehentmayr; Heinz Deutschmann; Peter Kopp; Gerd Fastner
2014-01-01
The term IORT (intraoperative radiotherapy) is currently used for various techniques that show decisive differences in dose delivery. The largest evidence for boost IORT preceding whole breast irradiation (WBI) originates from intraoperative electron treatments with single doses around 10 Gy, providing outstandingly low local recurrence rates in any risk constellation also at long term analyses. Compared to other boost methods, an intraoperative treatment has evident advantages as follows. Pr...
Three Phase High Power Quality Two- Stage Boost Rectifier
P.NAMMALVAR; S. ANNAPOORANI
2012-01-01
Three-phase two-stage boost rectifier with sinusoidal input current are presented and a novel topology with two active power devices is proposed. These contain a capacitor for pumping action in DC circuit. This gives twostage boost operation to obtain higher DC output voltage. The rectifier can be operated in the switch mode forpumping action and for forcing the input current to follow its sinusoidal reference independent of the working conditions. The results of the proposed rectifier are co...
Boosting the partial least square algorithm for regression modelling
Ling YU; Tiejun WU
2006-01-01
Boosting algorithms are a class of general methods used to improve the general performance of regression analysis. The main idea is to maintain a distribution over the train set. In order to use the given distribution directly,a modified PLS algorithm is proposed and used as the base learner to deal with the nonlinear multivariate regression problems. Experiments on gasoline octane number prediction demonstrate that boosting the modified PLS algorithm has better general performance over the PLS algorithm.
Boosting-like Deep Learning For Pedestrian Detection
Wang, Lei; Zhang, Baochang
2015-01-01
This paper proposes boosting-like deep learning (BDL) framework for pedestrian detection. Due to overtraining on the limited training samples, overfitting is a major problem of deep learning. We incorporate a boosting-like technique into deep learning to weigh the training samples, and thus prevent overtraining in the iterative process. We theoretically give the details of derivation of our algorithm, and report the experimental results on open data sets showing that BDL achieves a better sta...
Quantum Computation and Quantum Information
Wang, Yazhen
2012-01-01
Quantum computation and quantum information are of great current interest in computer science, mathematics, physical sciences and engineering. They will likely lead to a new wave of technological innovations in communication, computation and cryptography. As the theory of quantum physics is fundamentally stochastic, randomness and uncertainty are deeply rooted in quantum computation, quantum simulation and quantum information. Consequently quantum algorithms are random in nature, and quantum ...
Concomitant boost radiotherapy for muscle invasive bladder cancer
Purpose: To evaluate the feasibility and efficacy of a concomitant partial bladder boost schedule in radiotherapy for invasive bladder cancer, coupling a limited boost volume with shortening of the overall treatment time. Methods and materials: Between 1994 and 1999, 50 patients with a T2-T4 N0M0 transitional cell carcinoma of the bladder received radiotherapy delivered in a short overall treatment time with a concomitant boost technique. With this technique a dose of 40 Gy in 2-Gy fractions was administered to the small pelvis with a concomitant boost limited to the bladder tumor area plus margin of 15 Gy in fractions of 0.75 Gy. The total tumor dose was 55 Gy in 20 fractions in 4 weeks. Toxicity was scored according to EORTC/RTOG toxicity criteria. Results: The feasibility of the treatment was good. Severe acute toxicity ≥G3 was observed in seven patients (14%). Severe late toxicity ≥G3 was observed in six patients (13%). Thirty-seven patients (74%) showed a complete and five (10 %) a partial remission after treatment. The actuarial 3-year freedom of local progression was 55%. Conclusion: In external radiotherapy for muscle invasive bladder cancer a concomitant boost technique coupling a partial bladder boost with shortening of the overall treatment time provides a high probability of local control with acceptable toxicity
Quantum confinement effects across two-dimensional planes in MoS2 quantum dots
The low quantum yield (∼10−5) has restricted practical use of photoluminescence (PL) from MoS2 composed of a few layers, but the quantum confinement effects across two-dimensional planes are believed to be able to boost the PL intensity. In this work, PL from 2 to 9 nm MoS2 quantum dots (QDs) is excluded from the solvent and the absorption and PL spectra are shown to be consistent with the size distribution. PL from MoS2 QDs is also found to be sensitive to aggregation due to the size effect
Quantum confinement effects across two-dimensional planes in MoS{sub 2} quantum dots
Gan, Z. X.; Liu, L. Z.; Wu, H. Y.; Hao, Y. L.; Shan, Y.; Wu, X. L., E-mail: hkxlwu@nju.edu.cn, E-mail: paul.chu@cityu.edu.hk [Key Laboratory of Modern Acoustics, MOE, Institute of Acoustics and Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Chu, Paul K., E-mail: hkxlwu@nju.edu.cn, E-mail: paul.chu@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)
2015-06-08
The low quantum yield (∼10{sup −5}) has restricted practical use of photoluminescence (PL) from MoS{sub 2} composed of a few layers, but the quantum confinement effects across two-dimensional planes are believed to be able to boost the PL intensity. In this work, PL from 2 to 9 nm MoS{sub 2} quantum dots (QDs) is excluded from the solvent and the absorption and PL spectra are shown to be consistent with the size distribution. PL from MoS{sub 2} QDs is also found to be sensitive to aggregation due to the size effect.
The readout of a classical memory can be modelled as a problem of quantum channel discrimination, where a decoder retrieves information by distinguishing the different quantum channels encoded in each cell of the memory (Pirandola 2011 Phys. Rev. Lett. 106 090504). In the case of optical memories, such as CDs and DVDs, this discrimination involves lossy bosonic channels and can be remarkably boosted by the use of nonclassical light (quantum reading). Here we generalize these concepts by extending the model of memory from single-cell to multi-cell encoding. In general, information is stored in a block of cells by using a channel-codeword, i.e. a sequence of channels chosen according to a classical code. Correspondingly, the readout of data is realized by a process of ‘parallel’ channel discrimination, where the entire block of cells is probed simultaneously and decoded via an optimal collective measurement. In the limit of a large block we define the quantum reading capacity of the memory, quantifying the maximum number of readable bits per cell. This notion of capacity is nontrivial when we suitably constrain the physical resources of the decoder. For optical memories (encoding bosonic channels), such a constraint is energetic and corresponds to fixing the mean total number of photons per cell. In this case, we are able to prove a separation between the quantum reading capacity and the maximum information rate achievable by classical transmitters, i.e. arbitrary classical mixtures of coherent states. In fact, we can easily construct nonclassical transmitters that are able to outperform any classical transmitter, thus showing that the advantages of quantum reading persist in the optimal multi-cell scenario. (paper)
Quantum hoop conjecture: Black hole formation by particle collisions
We address the issue of (quantum) black hole formation by particle collision in quantum physics. We start by constructing the horizon wave-function for quantum mechanical states representing two highly boosted non-interacting particles that collide in flat one-dimensional space. From this wave-function, we then derive a probability that the system becomes a black hole as a function of the initial momenta and spatial separation between the particles. This probability allows us to extend the hoop conjecture to quantum mechanics and estimate corrections to its classical counterpart.
Quantum hoop conjecture: Black hole formation by particle collisions
Casadio, Roberto, E-mail: casadio@bo.infn.it [Dipartimento di Fisica e Astronomia, Università di Bologna, via Irnerio 46, 40126 Bologna (Italy); I.N.F.N., Sezione di Bologna, viale Berti Pichat 6/2, 40127 Bologna (Italy); Micu, Octavian, E-mail: octavian.micu@spacescience.ro [Institute of Space Science, Bucharest, P.O. Box MG-23, RO-077125 Bucharest-Magurele (Romania); Scardigli, Fabio, E-mail: fabio@phys.ntu.edu.tw [Dipartimento di Matematica, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano (Italy); Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan)
2014-05-01
We address the issue of (quantum) black hole formation by particle collision in quantum physics. We start by constructing the horizon wave-function for quantum mechanical states representing two highly boosted non-interacting particles that collide in flat one-dimensional space. From this wave-function, we then derive a probability that the system becomes a black hole as a function of the initial momenta and spatial separation between the particles. This probability allows us to extend the hoop conjecture to quantum mechanics and estimate corrections to its classical counterpart.
Georgescu, I. M.; Ashhab, S.; Nori, Franco
2013-01-01
Simulating quantum mechanics is known to be a difficult computational problem, especially when dealing with large systems. However, this difficulty may be overcome by using some controllable quantum system to study another less controllable or accessible quantum system, i.e., quantum simulation. Quantum simulation promises to have applications in the study of many problems in, e.g., condensed-matter physics, high-energy physics, atomic physics, quantum chemistry and cosmology. Quantum simulat...
Mosca, Michele
2009-01-01
One of the earliest cryptographic applications of quantum information was to create quantum digital cash that could not be counterfeited. In this paper, we describe a new type of quantum money: quantum coins, where all coins of the same denomination are represented by identical quantum states. We state desirable security properties such as anonymity and unforgeability and propose two candidate quantum coin schemes: one using black box operations, and another using blind quantum computation.
Far from equilibrium energy flow in quantum critical systems
Bhaseen, M J; Lucas, Andrew; Schalm, Koenraad
2013-01-01
We investigate far from equilibrium energy transport in strongly coupled quantum critical systems. Combining results from gauge-gravity duality, relativistic hydrodynamics, and quantum field theory, we argue that long-time energy transport occurs via a universal steady-state for any spatial dimensionality. This is described by a boosted thermal state. We determine the transport properties of this emergent steady state, including the average energy flow and its long-time fluctuations.
Quantum key distribution secure against the efficiency loophole
Ma, Xiongfeng; Moroder, Tobias; Lütkenhaus, Norbert
2008-01-01
An efficiency-loophole-free quantum key distribution (QKD) scheme is proposed, which involves no hardware change but a modification in the data post-processing step. The scheme applies to a generic class of detection systems which allow correlations between the detection efficiency and the outcomes. We study the system transmittance and the detection error rate that allow implementing this scheme. We also consider the case that a quantum memory is used to boost the performance and investigate...
Evolving Quantum-Universe Aggregates: A Theory of Every 'Thing'
Chew, Geoffrey F
2016-01-01
'Quc' here stands for 'quantum-universe constituent'. A quc's 3-vector momentum 'Dirac-displaces' its location in a curved Riemannian space; a quc's energy Dirac-boosts its rapidity. No quc is a 'thing' but quc-aggregates (photons, electrons, quarks, molecules, stars, galaxies...), via aggregating Noether-conserved quc attributes, enable human language and (Popper) science.
Boosted Fast Flux Loop Final Report
The Boosted Fast Flux Loop (BFFL) project was initiated to determine basic feasibility of designing, constructing, and installing in a host irradiation facility, an experimental vehicle that can replicate with reasonable fidelity the fast-flux test environment needed for fuels and materials irradiation testing for advanced reactor concepts. Originally called the Gas Test Loop (GTL) project, the activity included (1) determination of requirements that must be met for the GTL to be responsive to potential users, (2) a survey of nuclear facilities that may successfully host the GTL, (3) conceptualizing designs for hardware that can support the needed environments for neutron flux intensity and energy spectrum, atmosphere, flow, etc. needed by the experimenters, and (4) examining other aspects of such a system, such as waste generation and disposal, environmental concerns, needs for additional infrastructure, and requirements for interfacing with the host facility. A revised project plan included requesting an interim decision, termed CD-1A, that had objectives of establishing the site for the project at the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL), deferring the CD 1 application, and authorizing a research program that would resolve the most pressing technical questions regarding GTL feasibility, including issues relating to the use of booster fuel in the ATR. Major research tasks were (1) hydraulic testing to establish flow conditions through the booster fuel, (2) mini-plate irradiation tests and post-irradiation examination to alleviate concerns over corrosion at the high heat fluxes planned, (3) development and demonstration of booster fuel fabrication techniques, and (4) a review of the impact of the GTL on the ATR safety basis. A revised cooling concept for the apparatus was conceptualized, which resulted in renaming the project to the BFFL. Before the subsequent CD-1 approval request could be made, a decision was made in April 2006 that
Quantum Genetics, Quantum Automata and Quantum Computation
Baianu, Professor I. C.
2004-01-01
The concepts of quantum automata and quantum computation are studied in the context of quantum genetics and genetic networks with nonlinear dynamics. In a previous publication (Baianu,1971a) the formal concept of quantum automaton was introduced and its possible implications for genetic and metabolic activities in living cells and organisms were considered. This was followed by a report on quantum and abstract, symbolic computation based on the theory of categories, functors and natural trans...
Le Gouët, Jean-Louis; Moiseev, Sergey
2012-06-01
Interaction of quantum radiation with multi-particle ensembles has sparked off intense research efforts during the past decade. Emblematic of this field is the quantum memory scheme, where a quantum state of light is mapped onto an ensemble of atoms and then recovered in its original shape. While opening new access to the basics of light-atom interaction, quantum memory also appears as a key element for information processing applications, such as linear optics quantum computation and long-distance quantum communication via quantum repeaters. Not surprisingly, it is far from trivial to practically recover a stored quantum state of light and, although impressive progress has already been accomplished, researchers are still struggling to reach this ambitious objective. This special issue provides an account of the state-of-the-art in a fast-moving research area that makes physicists, engineers and chemists work together at the forefront of their discipline, involving quantum fields and atoms in different media, magnetic resonance techniques and material science. Various strategies have been considered to store and retrieve quantum light. The explored designs belong to three main—while still overlapping—classes. In architectures derived from photon echo, information is mapped over the spectral components of inhomogeneously broadened absorption bands, such as those encountered in rare earth ion doped crystals and atomic gases in external gradient magnetic field. Protocols based on electromagnetic induced transparency also rely on resonant excitation and are ideally suited to the homogeneous absorption lines offered by laser cooled atomic clouds or ion Coulomb crystals. Finally off-resonance approaches are illustrated by Faraday and Raman processes. Coupling with an optical cavity may enhance the storage process, even for negligibly small atom number. Multiple scattering is also proposed as a way to enlarge the quantum interaction distance of light with matter. The
Intake Manifold Boosting of Turbocharged Spark-Ignited Engines
Lino Guzzella
2013-03-01
Full Text Available Downsizing and turbocharging is a widely used approach to reduce the fuel consumption of spark ignited engines while retaining the maximum power output. However, a substantial loss in drivability must be expected due to the occurrence of the so-called turbo lag. The turbo lag results from the additional inertia that the turbocharger adds to the system. Supplying air by an additional valve, the boost valve, to the intake manifold can be used to overcome the turbo lag. This turbo lag compensationmethod is referred to as intakemanifold boosting. The aims of this study are to show the effectiveness of intake manifold boosting on a turbocharged spark-ignited engine and to show that intake manifold boosting can be used as an enabler of strong downsizing. Guidelines for the dimensioning of the boost valve are given and a control strategy is presented. The trade-off between additional fuel consumption and the consumption of pressurized air during the turbo lag compensation is discussed. For a load step at 2000 rpm the rise time can be reduced from 2.8 s to 124ms, requiring 11.8 g of pressurized air. The transient performance is verified experimentally by means of load steps at various engine speeds to various engine loads.
Scalar Controlled Boost PWM Rectifier for Micro Wind Energy Systems
J. Chelladurai
2015-05-01
Full Text Available Uses of Permanent Magnet Synchronous Generators (PMSG are increasing in variable speed micro-Wind Energy Conversion Systems (WECS. In stand-alone or grid-connected Micro-WECS, extraction of maximum power is vital. To extract maximum power output and to obtain a constant DC bus voltage from variable magnitude and variable frequency voltage output of PMSG and generally a two stage scheme namely i conventional diode bridge rectifier and ii DC-DC Boost/Buck/Buck-Boost converters are used. In this study, a single stage Scalar Controlled PWM (SCPWM Boost Rectifier is proposed in order to minimize the current harmonics and to improve the power factor on source side. The modeling and simulation of PMSG based wind generator and SCPWM Boost rectifier was developed in MATLAB. The harmonic content in the input current waveform of the proposed SCPWM rectifier is compared with the conventional three-phase bridge rectifier. The Simulation results show the effectiveness of the PWM Boost rectifier in terms of effective utilization of source, improved efficiency and harmonic mitigation for PMSG based Wind Generator. Simulation results demonstrate the effectiveness of the proposed system in reducing the current and voltage THD on source side.
Positive Semidefinite Metric Learning Using Boosting-like Algorithms
Shen, Chunhua; Wang, Lei; Hengel, Anton van den
2011-01-01
The success of many machine learning and pattern recognition methods relies heavily upon the identification of on an appropriate distance metric on the input data. It is often beneficial to learn such a metric from the input training data, instead of using a default one such as the Euclidean distance. In this work, we propose a boosting-based technique, termed BoostMetric, for learning a quadratic Mahalanobis distance metric. Learning a valid Mahalanobis distance metric requires enforcing the constraint that the matrix parameter to the metric remains positive definite. Semidefinite programming is often used to enforce this constraint, but does not scale well and easy to implement. BoostMetric is instead based on the observation that any positive semidefinite matrix can be decomposed into a linear combination of trace-one rank-one matrices. BoostMetric thus uses rank-one positive semidefinite matrices as weak learners within an efficient and scalable boosting-based learning process. The resulting methods are e...
The impact of subsea boosting on deepwater field development
Ribeiro, O.J.S.; Camargo, R.M.T.; Paulo, C.A.S. [Petrobras, Rio de Janeiro (Brazil)
1996-12-31
This paper describes the impact that the use of a subsea boosting system will have on the development of a deepwater field. The analysis covers the technology demands and constraints encountered on screening studies executed for the fields of Marlim, Albacora and Barracuda, as well as an overview of the economic benefits encountered. The paper focuses on the technological demands and constraints identified as well as some considerations about possible alternatives. The demands and constraints identified in the study will provide the industry with some more input to guide the development of the subsea boosting technology, as well as a better understanding of how to apply this new tool on the development of deepwater prospects. The results of the screening study are showing that the subsea boosting systems are a valuable tool to reduce the costs of deepwater developments. The cost cutting possibilities through an integration between the conventional subsea hardware and the subsea boosting systems and the combination of boosting systems are promising alternatives. The encouraging economic results found, as well as the demands and constraints raised in the paper will be of use for those trying to apply these technologies in various areas of the world.
Quantum Distinction: Quantum Distinctiones!
Dainis ZEPS
2009-07-01
Full Text Available How many distinctions, in Latin, quantum distinctions have? We suggest approach of anthropic principle based on anthropic reference system which should be applied equally both in theoretical physics and in mathematics. We come to principle that within reference system of life subject of mathematics (that of thinking should be equated with subject of physics (that of nature. For this reason we enter notions of series of distinctions, quantum distinction, and argue that quantum distinction may be considered as freedom of motion.
Chang, Mou-Hsiung
2015-01-01
The classical probability theory initiated by Kolmogorov and its quantum counterpart, pioneered by von Neumann, were created at about the same time in the 1930s, but development of the quantum theory has trailed far behind. Although highly appealing, the quantum theory has a steep learning curve, requiring tools from both probability and analysis and a facility for combining the two viewpoints. This book is a systematic, self-contained account of the core of quantum probability and quantum stochastic processes for graduate students and researchers. The only assumed background is knowledge of the basic theory of Hilbert spaces, bounded linear operators, and classical Markov processes. From there, the book introduces additional tools from analysis, and then builds the quantum probability framework needed to support applications to quantum control and quantum information and communication. These include quantum noise, quantum stochastic calculus, stochastic quantum differential equations, quantum Markov semigrou...
Gisin, Nicolas; Ribordy, Grégoire; Tittel, Wolfgang; Zbinden, Hugo
2002-01-01
Quantum cryptography could well be the first application of quantum mechanics at the single-quantum level. The rapid progress in both theory and experiment in recent years is reviewed, with emphasis on open questions and technological issues.
Purpose: To compare the dose and volume of bladder and rectum treated using high-dose-rate (HDR) prostate implant boost versus conformal external beam radiotherapy boost, and to use the dose-volume information to perform a critical volume tolerance (CVT) analysis and then estimate the potential for further dose escalation using HDR brachytherapy boost. Methods and Materials: Using CT scan data collected before and after patients underwent HDR prostate implant, a 7-field conformal prostate-only external beam treatment plan and HDR brachytherapy treatment plan were constructed for each patient. Doses to the normal structures were calculated. Dose-volume histograms (DVH) were plotted for comparison of the two techniques. Wilcoxon signed rank test was performed at four dose levels to compare the dose to normal structures between the two treatment techniques. The acute and late effects of HDR brachytherapy were calculated based on the linear-quadratic (LQ) model. CVT analyses were performed to calculate the potential dose gain (PDG) using HDR brachytherapy boost. Results: The volume of bladder and rectum receiving high dose was significantly less from implant boost. On the average, 0.19 cc of the bladder received 100% of the brachytherapy prescription dose, compared with 5.1 cc of the bladder receiving 100% of the prescription dose in the 7-field conformal external beam radiotherapy boost. Similarly, 0.25 cc of the rectum received 100% of the dose with the implant boost, as compared to 2.9 cc in the conformal external beam treatment. The implant also delivered higher doses inside the prostate volume. On average, 47% of the prostate received ≥150% of the prescription dose. The CVT analysis revealed a range of PDG using the HDR brachytherapy boost which depended on the following variables: critical volume (CV), critical volume tolerance dose (CVTD), number of HDR fractions (N), and the dose of external beam radiotherapy (XRT) delivered with brachytherapy boost. The PDG
Wu, Lian-Ao; Lidar, Daniel A.
2005-01-01
When quantum communication networks proliferate they will likely be subject to a new type of attack: by hackers, virus makers, and other malicious intruders. Here we introduce the concept of "quantum malware" to describe such human-made intrusions. We offer a simple solution for storage of quantum information in a manner which protects quantum networks from quantum malware. This solution involves swapping the quantum information at random times between the network and isolated, distributed an...
Gisin, Nicolas; Thew, Rob
2007-01-01
Quantum communication, and indeed quantum information in general, has changed the way we think about quantum physics. In 1984 and 1991, the first protocol for quantum cryptography and the first application of quantum non-locality, respectively, attracted a diverse field of researchers in theoretical and experimental physics, mathematics and computer science. Since then we have seen a fundamental shift in how we understand information when it is encoded in quantum systems. We review the curren...
Ronnie Kosloff
2013-01-01
Quantum thermodynamics addresses the emergence of thermodynamic laws from quantum mechanics. The viewpoint advocated is based on the intimate connection of quantum thermodynamics with the theory of open quantum systems. Quantum mechanics inserts dynamics into thermodynamics, giving a sound foundation to finite-time-thermodynamics. The emergence of the 0-law, I-law, II-law and III-law of thermodynamics from quantum considerations is presented. The emphasis is on consistency between the two the...
A Low Cost Single-Switch Bridgeless Boost PFC Converter
Younghoon Cho
2014-03-01
Full Text Available This paper proposes the single-switch bridgeless boost power factor correction (PFC converter to achieve high efficiency in low cost. The proposed converter utilizes only one active switching device for PFC operation as well as expecting higher efficiency than typical boost PFC converters. On the other hand, the implementation cost is less than traditional bridgeless boost PFC converters, in where two active switching deivces are necessary. The operational principle, the modeling, and the control scheme of the proposed converter are discussed in detail. In order to verify the operation of the proposed converter, a 500W switching model is built in PSIM software package. The simulation results show that the proposed converter perfectly achieves PFC operation with only a single active switch.
(In)Direct Detection of Boosted Dark Matter
Agashe, Kaustubh; Necib, Lina; Thaler, Jesse
2015-01-01
We present a new multi-component dark matter model with a novel experimental signature that mimics neutral current interactions at neutrino detectors. In our model, the dark matter is composed of two particles, a heavier dominant component that annihilates to produce a boosted lighter component that we refer to as boosted dark matter. The lighter component is relativistic and scatters off electrons in neutrino experiments to produce Cherenkov light. This model combines the indirect detection of the dominant component with the direct detection of the boosted dark matter. Directionality can be used to distinguish the dark matter signal from the atmospheric neutrino background. We discuss the viable region of parameter space in current and future experiments.
Borovitskaya, Elena
2002-01-01
In this book, leading experts on quantum dot theory and technology provide comprehensive reviews of all aspects of quantum dot systems. The following topics are covered: (1) energy states in quantum dots, including the effects of strain and many-body effects; (2) self-assembly and self-ordering of quantum dots in semiconductor systems; (3) growth, structures, and optical properties of III-nitride quantum dots; (4) quantum dot lasers. Contents: Low-Dimensional Systems (E Borovitskaya & M S Shur); Energy States in Quantum Dots (A J Williamson); Self-Organized Quantum Dots (A R Woll et al.); Grow
Khrennikov, Andrei
2014-01-01
The present wave of interest in quantum foundations is caused by the tremendous development of quantum information science and its applications to quantum computing and quantum communication. It has become clear that some of the difficulties encountered in realizations of quantum information processing have roots at the very fundamental level. To solve such problems, quantum theory has to be reconsidered. This book is devoted to the analysis of the probabilistic structure of quantum theory, probing the limits of classical probabilistic representation of quantum phenomena.
Diode-Assisted Buck-Boost Voltage-Source Inverters
Gao, Feng; Loh, Poh Chiang; Teodorescu, Remus;
2009-01-01
This paper proposes a number of diode-assisted buck-boost voltage-source inverters with a unique X-shaped diode-capacitor network inserted between the inverter circuitry and dc source for producing a voltage gain that is comparatively higher than those of other buck-boost conversion techniques....... Using the diode-assisted network, the proposed inverters can naturally configure themselves to perform capacitive charging in parallel and discharging in series to give a higher voltage multiplication factor without compromising waveform quality. In addition, by adopting different front-end circuitries...
Component-Minimized Buck-Boost Voltage Source Inverters
Gao, F.; Loh, P.C.; Blaabjerg, Frede;
2007-01-01
order to form a distinct neutral potential in the corresponding voltage boost circuitry for correct B4 inverter operation, necessary modifications are derived step by step. The resulted dc networks with symmetrical placement of passive components allow complete charging and equal energy distribution...... between capacitors. Modulation wise, the proposed buck-boost B4 inverters can be controlled using a carefully designed carrier-based pulse-width modulation (PWM) scheme that will always ensure balanced threephase outputs as desired, while simultaneously achieving minimal voltage stress across...
Dynamic characteristics of boost inverter with waveform control
Chen, W.; Zhu, GR; Xiao, CY; Wang, HR; Tan, SC
2014-01-01
The input current of single-phase inverter typically has an AC ripple component at twice the output frequency. The low-frequency current ripple can cause a reduction in both the operating lifetime of its DC source and the energy conversion efficiency of the system. In this paper1, a proposed waveform control method which can eliminate such a ripple current in boost inverter system, is discussed. The characteristics of the waveform control method in boost inverter under input voltage or wide r...
Scalar Controlled Boost PWM Rectifier for Micro Wind Energy Systems
J. CHELLADURAI; B. Vinod; T. Bogaraj; J. Kanakaraj; Sundaram, M.
2015-01-01
Uses of Permanent Magnet Synchronous Generators (PMSG) are increasing in variable speed micro-Wind Energy Conversion Systems (WECS). In stand-alone or grid-connected Micro-WECS, extraction of maximum power is vital. To extract maximum power output and to obtain a constant DC bus voltage from variable magnitude and variable frequency voltage output of PMSG and generally a two stage scheme namely i) conventional diode bridge rectifier and ii) DC-DC Boost/Buck/Buck-Boost converters are used. In ...
Complexified boost invariance and holographic heavy ion collisions
Gubser, Steven S
2015-01-01
At strong coupling holographic studies have shown that heavy ion collisions do not obey normal boost invariance. Here we study a modified boost invariance through a complex shift in time, and show that this leads to surprisingly good agreement with numerical holographic computations. When including perturbations the agreement becomes even better, both in the hydrodynamic and the far-from-equilibrium regime. One of the main advantages is an analytic formulation of the stress-energy tensor of the longitudinal dynamics of holographic heavy ion collisions.
Boosted Objects: A Probe of Beyond the Standard Model Physics
Abdesselam, A.; /Oxford U.; Kuutmann, E.Bergeaas; /DESY; Bitenc, U.; /Freiburg U.; Brooijmans, G.; /Columbia U.; Butterworth, J.; /University Coll. London; Bruckman de Renstrom, P.; /Cracow, INP; Buarque Franzosi, D.; /Turin U.; Buckingham, R.; /Oxford U.; Chapleau, B.; /McGill U.; Dasgupta, M.; /Manchester U.; Davison, A.; /University Coll. London; Dolen, J.; /UC, Davis; Ellis, S.; /Washington U., Seattle; Fassi, F.; /Lyon, IPN; Ferrando, J.; /Oxford U.; Frandsen, M.T.; /Oxford U.; Frost, J.; /Cambridge U.; Gadfort, T.; /Brookhaven; Glover, N.; /Durham U.; Haas, A.; /SLAC; Halkiadakis, E.; /Rutgers U., Piscataway /INFN, Milan Bicocca /Oxford U. /Ohio State U. /Rutherford /Oxford U. /Oxford U. /Maryland U. /Bristol U. /Princeton U. /Oxford U. /Oxford U. /Arizona U. /Johns Hopkins U. /Oxford U. /Fermilab /Rutherford /Bristol U. /Karlsruhe U., EKP /Weizmann Inst. /Washington U., Seattle /Johns Hopkins U. /Oslo U. /Durham U. /Princeton U. /Paris, LPTHE /CERN /Southern Denmark U., CP3-Origins /Granada U. /SLAC /Rutherford /Toronto U. /Stockholm U., OKC /Stockholm U. /Yale U.; /more authors..
2012-06-12
We present the report of the hadronic working group of the BOOST2010 workshop held at the University of Oxford in June 2010. The first part contains a review of the potential of hadronic decays of highly boosted particles as an aid for discovery at the LHC and a discussion of the status of tools developed to meet the challenge of reconstructing and isolating these topologies. In the second part, we present new results comparing the performance of jet grooming techniques and top tagging algorithms on a common set of benchmark channels. We also study the sensitivity of jet substructure observables to the uncertainties in Monte Carlo predictions.
Searches for New Physics in Boosted Topologies at ATLAS
Nobe, Takuya; The ATLAS collaboration
2016-01-01
The Large Hadron Collider started data taking in proton-proton collisions at a centre-of-mass energy of 13 TeV. Using the dataset collected with the ATLAS detector in 2015 corresponding to an integrated luminosity of 3.2 fb^{-1}, many interesting physics results are already reported. One of the most important physics programs with ATLAS is searches for new physics beyond the Standard Model at high mass region above approximately 1 TeV. The `boosted' object tagging technique is an important key of the analyses. This letter reports on the latest ATLAS search results for new physics using the boosted object tagging techniques.
Nonlinear Dynamics In Quantum Physics -- Quantum Chaos and Quantum Instantons
Kröger, H.
2003-01-01
We discuss the recently proposed quantum action - its interpretation, its motivation, its mathematical properties and its use in physics: quantum mechanical tunneling, quantum instantons and quantum chaos.
Quantum Optics with Quantum Gases
Mekhov, Igor B.; Ritsch, Helmut
2009-01-01
Quantum optics with quantum gases represents a new field, where the quantum nature of both light and ultracold matter plays equally important role. Only very recently this ultimate quantum limit of light-matter interaction became feasible experimentally. In traditional quantum optics, the cold atoms are considered classically, whereas, in quantum atom optics, the light is used as an essentially classical axillary tool. On the one hand, the quantization of optical trapping potentials can signi...
Quantum Chaos and Quantum Computers
Shepelyansky, D L
2001-01-01
The standard generic quantum computer model is studied analytically and numerically and the border for emergence of quantum chaos, induced by imperfections and residual inter-qubit couplings, is determined. This phenomenon appears in an isolated quantum computer without any external decoherence. The onset of quantum chaos leads to quantum computer hardware melting, strong quantum entropy growth and destruction of computer operability. The time scales for development of quantum chaos and ergodicity are determined. In spite the fact that this phenomenon is rather dangerous for quantum computing it is shown that the quantum chaos border for inter-qubit coupling is exponentially larger than the energy level spacing between quantum computer eigenstates and drops only linearly with the number of qubits n. As a result the ideal multi-qubit structure of the computer remains rather robust against imperfections. This opens a broad parameter region for a possible realization of quantum computer. The obtained results are...
The following topics are dealt with: Artificial atoms and molecules, tailored from solids, fractional flux quanta, molecular magnets, controlled interaction in quantum gases, the theory of quantum correlations in mott matter, cold gases, and mesoscopic systems, Bose-Einstein condensates on the chip, on the route to the quantum computer, a quantum computer in diamond. (HSI)
Wide Temperature Range DC-DC Boost Converters for Command/Control/Drive Electronics Project
National Aeronautics and Space Administration — We shall develop wide temperature range DC-DC boost converters that can be fabricated using commercial CMOS foundries. The boost converters will increase the low...
BioBoost. Biomass based energy intermediates boosting bio-fuel production
Niebel, Andreas [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Institut fuer Katalyseforschung und -technologie (IKFT)
2013-10-01
To increase the share of biomass for renewable energy in Europe conversion pathways which are economic, flexible in feedstock and energy efficient are needed. The BioBoost project concentrates on dry and wet residual biomass and wastes as feedstock for de-central conversion by fast pyrolysis, catalytic pyrolysis and hydrothermal carbonization to the intermediate energy carriers oil, coal or slurry. Based on straw the energy density increases from 2 to 20-30 GJ/m{sup 3}, enabling central GW scale gasification plants for bio-fuel production. A logistic model for feedstock supply and connection of de-central with central conversion is set up and validated allowing the determination of costs, the number and location of de-central and central sites. Techno/economic and environmental assessment of the value chain supports the optimization of products and processes. The utilization of energy carriers is investigated in existing and coming applications of heat and power production and synthetic fuels and chemicals. (orig.)
High Efficiency Boost Converter with Three State Switching Cell
Klimczak, Pawel; Munk-Nielsen, Stig
2009-01-01
The boost converter with the three-state switching cell seems to be a good candidate for a dc-dc stage for non-isolated generators based on alternative energy sources. It provides a high voltage gain, a reduced voltage stress on transistors and limited input current ripples. In this paper the focus...
Integrated Current Balancing Transformer for Primary Parallel Isolated Boost Converter
Sen, Gökhan; Ouyang, Ziwei; Thomsen, Ole Cornelius; Andersen, Michael A. E.; Møller, Lars
2011-01-01
A simple, PCB compatible integrated solution is proposed for the current balancing requirement of the primary parallel isolated boost converter (PPIBC). Input inductor and the current balancing transformer are merged into the same core, which reduces the number of components allowing a cheaper an...
Classification of airborne laser scanning data using JointBoost
Guo, Bo; Huang, Xianfeng; Zhang, Fan; Sohn, Gunho
2015-02-01
The demands for automatic point cloud classification have dramatically increased with the wide-spread use of airborne LiDAR. Existing research has mainly concentrated on a few dominant objects such as terrain, buildings and vegetation. In addition to those key objects, this paper proposes a supervised classification method to identify other types of objects including power-lines and pylons from point clouds using a JointBoost classifier. The parameters for the learning model are estimated with various features computed based on the geometry and echo information of a LiDAR point cloud. In order to overcome the shortcomings stemming from the inclusion of bare ground data before classification, the proposed classifier directly distinguishes terrain using a feature step-off count. Feature selection is conducted using JointBoost to evaluate feature correlations thus improving both classification accuracy and operational efficiency. In this paper, the contextual constraints for objects extracted by graph-cut segmentation are used to optimize the initial classification results obtained by the JointBoost classifier. Our experimental results show that the step-off count significantly contributes to classification. Seventeen effective features are selected for the initial classification results using the JointBoost classifier. Our experiments indicate that the proposed features and method are effective for classification of airborne LiDAR data from complex scenarios.
Healthy Fats in Mediterranean Diet Won't Boost Weight
... page: https://medlineplus.gov/news/fullstory_159217.html Healthy Fats in Mediterranean Diet Won't Boost Weight Vegetable oils, nuts can ... groups, though less so in those on the healthy fat diets. The low-fat group had an increase of ...
Color edge saliency boosting using natural image statistics
D. Rojas Vigo; J. van de Weijer; T. Gevers
2010-01-01
State of the art methods for image matching, content-based retrieval and recognition use local features. Most of these still exploit only the luminance information for detection. The color saliency boosting algorithm has provided an efficient method to exploit the saliency of color edges based on in
Isolated Boost Converter with Bidirectional Operation for Supercapacitor Applications
Hernandez Botella, Juan Carlos; Mira Albert, Maria del Carmen; Sen, Gökhan;
2013-01-01
This paper presents an isolated bidirectional dc/dc converter based on primary parallel isolated boost converter (PPIBC). This topology is an efficient solution in low voltage high power applications due to its ability to handle high currents in the low voltage side. In this paper, the converter...
Search for new resonances with boosted signatures at CMS
CERN. Geneva
2015-01-01
The LHC and its experiments are ideally suited to search for these new resonances in order to validate or constrain the corresponding theories. At resonance masses well above 1 TeV, these searches face specific challenges. The decay products have large Lorentz boosts, resulting in very collimated final state topologies. Jet substructure methods and the use of non-isolate...
Lanzagorta, Marco
2011-01-01
This book offers a concise review of quantum radar theory. Our approach is pedagogical, making emphasis on the physics behind the operation of a hypothetical quantum radar. We concentrate our discussion on the two major models proposed to date: interferometric quantum radar and quantum illumination. In addition, this book offers some new results, including an analytical study of quantum interferometry in the X-band radar region with a variety of atmospheric conditions, a derivation of a quantum radar equation, and a discussion of quantum radar jamming.This book assumes the reader is familiar w
Ruiz, Alfonso de la Fuente
2014-01-01
Brief description on the state of the art of some local optimization methods: Quantum annealing Quantum annealing (also known as alloy, crystallization or tempering) is analogous to simulated annealing but in substitution of thermal activation by quantum tunneling. The class of algorithmic methods for quantum annealing (dubbed: 'QA'), sometimes referred by the italian school as Quantum Stochastic Optimization ('QSO'), is a promising metaheuristic tool for solving local search problems in mult...
Haas, Fernando
2005-01-01
The quantum hydrodynamic model for charged particle systems is extended to the cases of non zero magnetic fields. In this way, quantum corrections to magnetohydrodynamics are obtained starting from the quantum hydrodynamical model with magnetic fields. The quantum magnetohydrodynamics model is analyzed in the infinite conductivity limit. The conditions for equilibrium in ideal quantum magnetohydrodynamics are established. Translationally invariant exact equilibrium solutions are obtained in t...
Quantum ontologies are conceptions of the constitution of the universe that are compatible with quantum theory. The ontological orientation is contrasted to the pragmatic orientation of science, and reasons are given for considering quantum ontologies both within science, and in broader contexts. The principal quantum ontologies are described and evaluated. Invited paper at conference: Bell's Theorem, Quantum Theory, and Conceptions of the Universe, George Mason University, October 20-21, 1988. 16 refs
Scarani, Valerio; Iblisdir, Sofyan; Gisin, Nicolas; Acin, Antonio
2005-01-01
The impossibility of perfectly copying (or cloning) an arbitrary quantum state is one of the basic rules governing the physics of quantum systems. The processes that perform the optimal approximate cloning have been found in many cases. These "quantum cloning machines" are important tools for studying a wide variety of tasks, e.g. state estimation and eavesdropping on quantum cryptography. This paper provides a comprehensive review of quantum cloning machines (both for discrete-dimensional an...
Benefit of Radiation Boost After Whole-Breast Radiotherapy
Purpose: To determine whether a boost to the tumor bed after breast-conserving surgery (BCS) and radiotherapy (RT) to the whole breast affects local control and disease-free survival. Methods and Materials: A total of 1,138 patients with pT1 to pT2 breast cancer underwent adjuvant RT at the University of Florence. We analyzed only patients with a minimum follow-up of 1 year (range, 1-20 years), with negative surgical margins. The median age of the patient population was 52.0 years (±7.9 years). The breast cancer relapse incidence probability was estimated by the Kaplan-Meier method, and differences between patient subgroups were compared by the log rank test. Cox regression models were used to evaluate the risk of breast cancer relapse. Results: On univariate survival analysis, boost to the tumor bed reduced breast cancer recurrence (p < 0.0001). Age and tamoxifen also significantly reduced breast cancer relapse (p = 0.01 and p = 0.014, respectively). On multivariate analysis, the boost and the medium age (45-60 years) were found to be inversely related to breast cancer relapse (hazard ratio [HR], 0.27; 95% confidence interval [95% CI], 0.14-0.52, and HR 0.61; 95% CI, 0.37-0.99, respectively). The effect of the boost was more evident in younger patients (HR, 0.15 and 95% CI, 0.03-0.66 for patients <45 years of age; and HR, 0.31 and 95% CI, 0.13-0.71 for patients 45-60 years) on multivariate analyses stratified by age, although it was not a significant predictor in women older than 60 years. Conclusion: Our results suggest that boost to the tumor bed reduces breast cancer relapse and is more effective in younger patients.
Quantum correlations; quantum probability approach
Majewski, W A
2014-01-01
This survey gives a comprehensive account of quantum correlations understood as a phenomenon stemming from the rules of quantization. Centered on quantum probability it describes the physical concepts related to correlations (both classical and quantum), mathematical structures, and their consequences. These include the canonical form of classical correlation functionals, general definitions of separable (entangled) states, definition and analysis of quantumness of correlations, description o...
Quantum Computer Games: Quantum Minesweeper
Gordon, Michal; Gordon, Goren
2010-01-01
The computer game of quantum minesweeper is introduced as a quantum extension of the well-known classical minesweeper. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. Quantum minesweeper demonstrates the effects of superposition, entanglement and their non-local characteristics. While in the classical…
Quantum CPU and Quantum Simulating
Wang, An Min
1999-01-01
Making use of an universal quantum network or QCPU proposed by me [6], some special quantum networks for simulating some quantum systems are given out. Specially, it is obtained that the quantum network for the time evolution operator which can simulate, in general, Schr\\"odinger equation.
Quantum CPU and Quantum Algorithm
Wang, An Min
1999-01-01
Making use of an universal quantum network -- QCPU proposed by me\\upcite{My1}, it is obtained that the whole quantum network which can implement some the known quantum algorithms including Deutsch algorithm, quantum Fourier transformation, Shor's algorithm and Grover's algorithm.
Quantum Entanglement and Quantum Chromodynamics
Abbas, Afsar
2000-01-01
Non-locality or entanglement is an experimentally well established property of quantum mechanics. Here we study the role of quantum entanglement for higher symmetry group like $ SU(3_c) $, the gauge group of quantum chromodynamics (QCD). We show that the hitherto unexplained property of confinement in QCD arises as a fundamental feature of quantum entanglement in $ SU(3_c) $.
Studies of Boosted Decision Trees for MiniBooNE Particle Identification
Yang, Hai-Jun; Roe, Byron P.; Zhu, Ji
2005-01-01
Boosted decision trees are applied to particle identification in the MiniBooNE experiment operated at Fermi National Accelerator Laboratory (Fermilab) for neutrino oscillations. Numerous attempts are made to tune the boosted decision trees, to compare performance of various boosting algorithms, and to select input variables for optimal performance.
Quantum teleportation and quantum information
The scheme of quantum teleportation is described in a mathematically rigorous way, including analysis of the role and importance of quantum entanglement. The experiments with quantum teleportation performed in Innsbruck and in Rome are described in detail, and some differences between the two approaches are discussed. The elements of quantum information theory are introduced and compared with Shannon's classical information theory. The phenomenon of quantum teleportation is placed into a wider context of the developing quantum information theory, which enables quantum teleportation to be described by using the particle physics language. (Z.J.)
Quantum Correlations in Quantum Cloning
Chakrabarty, Indranil
2010-01-01
We utilize quantum discord to charecterize the correlation present in Buzek-Hillery quantum copying machine \\cite{bh} (not necessarily universal quantum cloning machine). In other words we quantify the correlation present beetween the original and the replicated copy of the quantum state obtained at the outport port, Interestingly, we find some domain of the machine parameter, for which the quantum disord is non negative even in the mere absence of entanglement. These non zero values of the quantum discord is a strong signature for the presence of non classical correlations. This is one step forward evidence in the support of the fact that quantum discord and entanglement are not synonymous.
Quantum noise and quantum communication
Jennewein, Thomas; Zeilinger, Anton
2004-05-01
We show how the probabilistic interpretation of quantum mechanics leads to unavoidable quantum noise, even for deterministic evolution of the quantum state. Far from being a nuisance, this consequent quantum randomness is at the heart of new concepts in technology. We discuss explicitly the quantum random number generator based on the partitition noise at the beam splitter. Another application of quantum noise is quantum cryptography, where the randomness of the detection event leads to the generation of a random cryptographic key at two locations without the necessity of transporting that key from A to B. Finally, we will show how quantum noise is an intrinsically important part of quantum teleportation, and we conclude with a brief discussion of the possibilities of free-space quantum communication.
Quantum Histories and Quantum Gravity
Henson, Joe
2009-01-01
This paper reviews the histories approach to quantum mechanics. This discussion is then applied to theories of quantum gravity. It is argued that some of the quantum histories must approximate (in a suitable sense) to classical histories, if the correct classical regime is to be recovered. This observation has significance for the formulation of new theories (such as quantum gravity theories) as it puts a constraint on the kinematics, if the quantum/classical correspondence principle is to be...
Pfeiffer, P.; Egusquiza, I. L.; Di Ventra, M.; Sanz, M.; Solano, E.
2016-01-01
Technology based on memristors, resistors with memory whose resistance depends on the history of the crossing charges, has lately enhanced the classical paradigm of computation with neuromorphic architectures. However, in contrast to the known quantized models of passive circuit elements, such as inductors, capacitors or resistors, the design and realization of a quantum memristor is still missing. Here, we introduce the concept of a quantum memristor as a quantum dissipative device, whose decoherence mechanism is controlled by a continuous-measurement feedback scheme, which accounts for the memory. Indeed, we provide numerical simulations showing that memory effects actually persist in the quantum regime. Our quantization method, specifically designed for superconducting circuits, may be extended to other quantum platforms, allowing for memristor-type constructions in different quantum technologies. The proposed quantum memristor is then a building block for neuromorphic quantum computation and quantum simulations of non-Markovian systems. PMID:27381511
Pfeiffer, P; Egusquiza, I L; Di Ventra, M; Sanz, M; Solano, E
2016-01-01
Technology based on memristors, resistors with memory whose resistance depends on the history of the crossing charges, has lately enhanced the classical paradigm of computation with neuromorphic architectures. However, in contrast to the known quantized models of passive circuit elements, such as inductors, capacitors or resistors, the design and realization of a quantum memristor is still missing. Here, we introduce the concept of a quantum memristor as a quantum dissipative device, whose decoherence mechanism is controlled by a continuous-measurement feedback scheme, which accounts for the memory. Indeed, we provide numerical simulations showing that memory effects actually persist in the quantum regime. Our quantization method, specifically designed for superconducting circuits, may be extended to other quantum platforms, allowing for memristor-type constructions in different quantum technologies. The proposed quantum memristor is then a building block for neuromorphic quantum computation and quantum simulations of non-Markovian systems. PMID:27381511
Concomitant boost radiotherapy for squamous carcinoma of the tonsillar fossa
Purpose: To assess the efficacy of a concomitant boost fractionation schedule of radiotherapy for treating patients with squamous carcinoma of the tonsillar fossa. Patients and Methods: Between December 1983 and November 1992, 83 patients with squamous carcinoma of the tonsil were treated with concomitant boost fractionation. The distribution of American Joint Committee on Cancer T stages was TX-4, T1-5, T2-29, T3-41, T4-4; N stages were NX-1, N0-26, N1-13, N2-31, N3-12. Patients were treated with standard large fields to 54 Gy in 6 weeks. The boost treatment consisted of a second daily 1.5 Gy fraction for 10-12 fractions, usually delivered during the final phase of treatment. The tumor dose was 69-72 Gy, given over 6 weeks. Twenty-one patients, who all had N2 or N3 regional disease, underwent neck dissections, either before (13 patients) or 6 weeks after radiotherapy (8 patients); the other patients were treated with radiotherapy alone. Results: The 5-year actuarial disease-specific survival and overall survival rates were 71 and 60%, respectively. Patients with T2 and T3 primary tumors had 5-year actuarial local control rates of 96 and 78%, respectively. Patients with T3 disease who received the final-phase boost had a 5-year actuarial local control rate of 82%. Actuarial 5-year regional disease control rates were N0, 92%; N1, 76%; N2, 89%; and N3, 89%. The 21 patients who had neck dissections all had their disease regionally controlled. Patients presenting with nodal disease or after a node excision who were treated with radiation alone had a 5-year actuarial regional disease control rate of 79%. All but five patients had confluent Grade 4 mucositis during treatment. Severe late complications attributable to radiation included mandibular necrosis, in-field osteosarcoma, and chronic dysphagia for solid foods. Conclusions: High rates of local and regional disease control were achieved with the concomitant boost fractionation schedule, with few cases of severe late
Chattaraj, Pratim Kumar
2010-01-01
The application of quantum mechanics to many-particle systems has been an active area of research in recent years as researchers have looked for ways to tackle difficult problems in this area. The quantum trajectory method provides an efficient computational technique for solving both stationary and time-evolving states, encompassing a large area of quantum mechanics. Quantum Trajectories brings the expertise of an international panel of experts who focus on the epistemological significance of quantum mechanics through the quantum theory of motion.Emphasizing a classical interpretation of quan
A recently proposed test of quantumness Alicki and Van Ryn (2008 J. Phys. A: Math. Theor. 41 062001) is put into a broader mathematical and physical perspective. The notion of quantumness witnesses is introduced, in analogy to entanglement witnesses, and is illustrated by examples of single qubit and many-body systems with additive observables. We also compare our proposal with the quantumness test based on quantum correlations (entanglement) and Bell inequalities, and go on to discuss a class of quantumness witnesses associated with the phase-space representation of quantum mechanics
An Empirical Comparison of Boosting and Bagging Algorithms
R. Kalaichelvi Chandrahasan
2011-11-01
Full Text Available Classification is one of the data mining techniques that analyses a given data set and induces a model for each class based on their features present in the data. Bagging and boosting are heuristic approaches to develop classification models. These techniques generate a diverse ensemble of classifiers by manipulating the training data given to a base learning algorithm. They are very successful in improving the accuracy of some algorithms in artificial and real world datasets. We review the algorithms such as AdaBoost, Bagging, ADTree, and Random Forest in conjunction with the Meta classifier and the Decision Tree classifier. Also we describe a large empirical study by comparing several variants. The algorithms are analyzed on Accuracy, Precision, Error Rate and Execution Time.
Nine Level Inverter with Boost Converter from Renewable Energy Source
Maruthu Pandiyan.R
2015-01-01
Full Text Available A new single phase nine level multilevel inverter is proposed. The input to the proposed nine level multilevel inverter is obtained from solar panel . The solar energy obtained from the solar panel is not constant and it varies with times. In order to maintain the constant voltage obtained from the solar panel the boost converter is used to maintain the constant output voltage using MPPT ( Perturb and observe algorithm algorithm. Then the buck boost converter output voltage is stored in the battery bank. Finally the battery energy is connected to the 9 level inverter circuits. The harmonics in the inverter is eliminated by using the fuzzy logic controller. The gate pulse for the multilevel inverter is given by the fuzzy logic controller which in turn reduces the harmonics in the inverter. Then the inverter output is connected to the grid are some application.
Black brane entropy and hydrodynamics: The boost-invariant case
The framework of slowly evolving horizons is generalized to the case of black branes in asymptotically anti-de Sitter spaces in arbitrary dimensions. The results are used to analyze the behavior of both event and apparent horizons in the gravity dual to boost-invariant flow. These considerations are motivated by the fact that at second order in the gradient expansion the hydrodynamic entropy current in the dual Yang-Mills theory appears to contain an ambiguity. This ambiguity, in the case of boost-invariant flow, is linked with a similar freedom on the gravity side. This leads to a phenomenological definition of the entropy of black branes. Some insights on fluid/gravity duality and the definition of entropy in a time-dependent setting are elucidated.
Boosting bonsai trees for handwritten/printed text discrimination
Ricquebourg, Yann; Raymond, Christian; Poirriez, Baptiste; Lemaitre, Aurélie; Coüasnon, Bertrand
2013-12-01
Boosting over decision-stumps proved its efficiency in Natural Language Processing essentially with symbolic features, and its good properties (fast, few and not critical parameters, not sensitive to over-fitting) could be of great interest in the numeric world of pixel images. In this article we investigated the use of boosting over small decision trees, in image classification processing, for the discrimination of handwritten/printed text. Then, we conducted experiments to compare it to usual SVM-based classification revealing convincing results with very close performance, but with faster predictions and behaving far less as a black-box. Those promising results tend to make use of this classifier in more complex recognition tasks like multiclass problems.
Investigating light NMSSM pseudoscalar states with boosted ditau tagging
Conte, Eric; Guo, Jun; Li, Jinmian; Williams, Anthony G
2016-01-01
We study a class of realizations of the Next-to-Minimal Supersymmetric Standard Model that is motivated by dark matter and Higgs data, and in which the lightest pseudoscalar Higgs boson mass is smaller than twice the bottom quark mass and greater than twice the tau lepton mass. In such scenarios, the lightest pseudoscalar Higgs boson can be copiously produced at the LHC from the decay of heavier superpartners and will dominantly further decay into a pair of tau leptons that is generally boosted. We make use of a boosted object tagging technique designed to tag such a ditau jet, and estimate the sensitivity of the LHC to the considered supersymmetric scenarios with 20 to 50~fb$^{-1}$ of proton-proton collisions at a center-of-mass energy of 13~TeV.
How citation boosts promote scientific paradigm shifts and Nobel Prizes
Mazloumian, Amin; Helbing, Dirk; Lozano, Sergi; Fortunato, Santo; 10.1371/journal.pone.0018975
2011-01-01
Nobel Prizes are commonly seen to be among the most prestigious achievements of our times. Based on mining several million citations, we quantitatively analyze the processes driving paradigm shifts in science. We find that groundbreaking discoveries of Nobel Prize Laureates and other famous scientists are not only acknowledged by many citations of their landmark papers. Surprisingly, they also boost the citation rates of their previous publications. Given that innovations must outcompete the rich-gets-richer effect for scientific citations, it turns out that they can make their way only through citation cascades. A quantitative analysis reveals how and why they happen. Science appears to behave like a self-organized critical system, in which citation cascades of all sizes occur, from continuous scientific progress all the way up to scientific revolutions, which change the way we see our world. Measuring the "boosting effect" of landmark papers, our analysis reveals how new ideas and new players can make their...
Three Phase High Power Quality Two- Stage Boost Rectifier
P.NAMMALVAR
2012-04-01
Full Text Available Three-phase two-stage boost rectifier with sinusoidal input current are presented and a novel topology with two active power devices is proposed. These contain a capacitor for pumping action in DC circuit. This gives twostage boost operation to obtain higher DC output voltage. The rectifier can be operated in the switch mode forpumping action and for forcing the input current to follow its sinusoidal reference independent of the working conditions. The results of the proposed rectifier are compared with those of the rectifier with a single active power device. The simulation result gives the better output DC voltage regulation under open loop condition. The simulated results prove that the proposed rectifier has the expected performance.
AdaBoost for Improved Voice-Band Signal Classification
无
2007-01-01
A good voice-band signal classification can not only enable the safe application of speech coding techniques,the implementation of a Digital Signal Interpolation (DSI)system, but also facilitate network administration and planning by providing accurate voice-band traffic analysis.A new method is proposed to detect and classify the presence of various voice-band signals on the General Switched Telephone Network ( GSTN ). The method uses a combination of simple base classifiers through the AdaBoost algorithm. The conventional classification features for voiceband data classification are combined and optimized by the AdaBoost algorithm and spectral subtraction method.Experiments show the simpleness, effectiveness, efficiency and flexibility of the method.