WorldWideScience

Sample records for bond angle

  1. Two Comments on Bond Angles

    Science.gov (United States)

    Glaister, P.

    1997-09-01

    Tetrahedral Bond Angle from Elementary Trigonometry The alternative approach of using the scalar (or dot) product of vectors enables the determination of the bond angle in a tetrahedral molecule in a simple way. There is, of course, an even more straightforward derivation suitable for students who are unfamiliar with vectors, or products thereof, but who do know some elementary trigonometry. The starting point is the figure showing triangle OAB. The point O is the center of a cube, and A and B are at opposite corners of a face of that cube in which fits a regular tetrahedron. The required bond angle alpha = AÔB; and using Pythagoras' theorem, AB = 2(square root 2) is the diagonal of a face of the cube. Hence from right-angled triangle OEB, tan(alpha/2) = (square root 2) and therefore alpha = 2tan-1(square root 2) is approx. 109° 28' (see Fig. 1).

  2. Inter-tetrahedra bond angle of permanently densified silicas extracted from their Raman spectra

    International Nuclear Information System (INIS)

    Hehlen, B

    2010-01-01

    Relative Raman scattering intensities are obtained in three samples of vitreous silica of increasing density. The variation of the intensity upon densification is very different for bending and stretching modes. For the former we find a Raman coupling-to-light coefficient C B ∝ω 2 . A comparative intensity and frequency dependence of the Raman spectral lines in the three glasses is performed. Provided the Raman spectra are normalized by C B , there exists a simple relation between the Si-O-Si bond angle and the frequency of all O-bending motions, including those of fourfold (n = 4) and threefold (n = 3) rings. For 20% densification we find a reduction of ∼5.7 deg. of the maximum of the network angle distribution, a value in very close agreement with previous NMR experiments. The threefold and fourfold rings are weakly perturbed by the densification, with a bond angle reduction of ∼0.5 deg. for the former.

  3. The determinants of bond angle variability in protein/peptide backbones: A comprehensive statistical/quantum mechanics analysis.

    Science.gov (United States)

    Improta, Roberto; Vitagliano, Luigi; Esposito, Luciana

    2015-11-01

    The elucidation of the mutual influence between peptide bond geometry and local conformation has important implications for protein structure refinement, validation, and prediction. To gain insights into the structural determinants and the energetic contributions associated with protein/peptide backbone plasticity, we here report an extensive analysis of the variability of the peptide bond angles by combining statistical analyses of protein structures and quantum mechanics calculations on small model peptide systems. Our analyses demonstrate that all the backbone bond angles strongly depend on the peptide conformation and unveil the existence of regular trends as function of ψ and/or φ. The excellent agreement of the quantum mechanics calculations with the statistical surveys of protein structures validates the computational scheme here employed and demonstrates that the valence geometry of protein/peptide backbone is primarily dictated by local interactions. Notably, for the first time we show that the position of the H(α) hydrogen atom, which is an important parameter in NMR structural studies, is also dependent on the local conformation. Most of the trends observed may be satisfactorily explained by invoking steric repulsive interactions; in some specific cases the valence bond variability is also influenced by hydrogen-bond like interactions. Moreover, we can provide a reliable estimate of the energies involved in the interplay between geometry and conformations. © 2015 Wiley Periodicals, Inc.

  4. Phi ({Phi}) and psi ({Psi}) angles involved in malarial peptide bonds determine sterile protective immunity

    Energy Technology Data Exchange (ETDEWEB)

    Patarroyo, Manuel E., E-mail: mepatarr@gmail.com [Fundacion Instituto de Inmunologia de Colombia (FIDIC), Bogota (Colombia); Universidad Nacional de Colombia, Bogota (Colombia); Moreno-Vranich, Armando; Bermudez, Adriana [Fundacion Instituto de Inmunologia de Colombia (FIDIC), Bogota (Colombia)

    2012-12-07

    Highlights: Black-Right-Pointing-Pointer Phi ({Phi}) and psi ({Psi}) angles determine sterile protective immunity. Black-Right-Pointing-Pointer Modified peptide's tendency to assume a regular conformation related to a PPII{sub L}. Black-Right-Pointing-Pointer Structural modifications in mHABPs induce Ab and protective immunity. Black-Right-Pointing-Pointer mHABP backbone atom's interaction with HLA-DR{beta}1{sup Asterisk-Operator} is stabilised by H-bonds. -- Abstract: Modified HABP (mHABP) regions interacting with HLA-DR{beta}1{sup Asterisk-Operator} molecules have a more restricted conformation and/or sequence than other mHABPs which do not fit perfectly into their peptide binding regions (PBR) and do not induce an acceptable immune response due to the critical role of their {Phi} and {Psi} torsion angles. These angle's critical role was determined in such highly immunogenic, protection-inducing response against experimental malaria using the conformers (mHABPs) obtained by {sup 1}H-NMR and superimposed into HLA-DR{beta}1{sup Asterisk-Operator }-like Aotus monkey molecules; their phi ({Phi}) and psi ({Psi}) angles were measured and the H-bond formation between these molecules was evaluated. The aforementioned mHABP propensity to assume a regular conformation similar to a left-handed polyproline type II helix (PPII{sub L}) led to suggesting that favouring these conformations according to their amino acid sequence would lead to high antibody titre production and sterile protective immunity induction against malaria, thereby adding new principles or rules for vaccine development, malaria being one of them.

  5. Ligand Bridging-Angle-Driven Assembly of Molecular Architectures Based on Quadruply Bonded Mo-Mo Dimers

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jian-Rong; Yakovenko, Andrey A; Lu, Weigang; Timmons, Daren J; Zhuang, Wenjuan; Yuan, Daqiang; Zhou, Hong-Cai

    2010-12-15

    A systematic exploration of the assembly of Mo₂(O₂C-)₄-based metal–organic molecular architectures structurally controlled by the bridging angles of rigid organic linkers has been performed. Twelve bridging dicarboxylate ligands were designed to be of different sizes with bridging angles of 0, 60, 90, and 120° while incorporating a variety of nonbridging functional groups, and these ligands were used as linkers. These dicarboxylate linkers assemble with quadruply bonded Mo–Mo clusters acting as nodes to give 13 molecular architectures, termed metal–organic polygons/polyhedra with metal cluster node arrangements of a linear shape, triangle, octahedron, and cuboctahedron/anti-cuboctahedron. The syntheses of these complexes have been optimized and their structures determined by single-crystal X-ray diffraction. The results have shown that the shape and size of the resulting molecular architecture can be controlled by tuning the bridging angle and size of the linker, respectively. Functionalization of the linker can adjust the solubility of the ensuing molecular assembly but has little or no effect on the geometry of the product. Preliminary gas adsorption, spectroscopic, and electrochemical properties of selected members were also studied. The present work is trying to enrich metal-containing supramolecular chemistry through the inclusion of well-characterized quadruply bonded Mo–Mo units into the structures, which can widen the prospect of additional electronic functionality, thereby leading to novel properties.

  6. Ligand bridging-angle-driven assembly of molecular architectures based on quadruply bonded Mo-Mo dimers.

    Science.gov (United States)

    Li, Jian-Rong; Yakovenko, Andrey A; Lu, Weigang; Timmons, Daren J; Zhuang, Wenjuan; Yuan, Daqiang; Zhou, Hong-Cai

    2010-12-15

    A systematic exploration of the assembly of Mo2(O2C-)4-based metal-organic molecular architectures structurally controlled by the bridging angles of rigid organic linkers has been performed. Twelve bridging dicarboxylate ligands were designed to be of different sizes with bridging angles of 0, 60, 90, and 120° while incorporating a variety of nonbridging functional groups, and these ligands were used as linkers. These dicarboxylate linkers assemble with quadruply bonded Mo-Mo clusters acting as nodes to give 13 molecular architectures, termed metal-organic polygons/polyhedra with metal cluster node arrangements of a linear shape, triangle, octahedron, and cuboctahedron/anti-cuboctahedron. The syntheses of these complexes have been optimized and their structures determined by single-crystal X-ray diffraction. The results have shown that the shape and size of the resulting molecular architecture can be controlled by tuning the bridging angle and size of the linker, respectively. Functionalization of the linker can adjust the solubility of the ensuing molecular assembly but has little or no effect on the geometry of the product. Preliminary gas adsorption, spectroscopic, and electrochemical properties of selected members were also studied. The present work is trying to enrich metal-containing supramolecular chemistry through the inclusion of well-characterized quadruply bonded Mo-Mo units into the structures, which can widen the prospect of additional electronic functionality, thereby leading to novel properties.

  7. Bite angle effects of diphosphines in C-C and C-X bond forming cross coupling reactions

    NARCIS (Netherlands)

    Birkholz, M.N.; Freixa, Z.; van Leeuwen, P.W.N.M.

    2009-01-01

    Catalytic reactions of C-C and C-X bond formation are discussed in this critical review with particular emphasis on cross coupling reactions catalyzed by palladium and wide bite angle bidentate diphosphine ligands. Especially those studies have been collected that allow comparison of the ligand bite

  8. Internal-strain effect on the valence band of strained silicon and its correlation with the bond angles

    Energy Technology Data Exchange (ETDEWEB)

    Inaoka, Takeshi, E-mail: inaoka@phys.u-ryukyu.ac.jp; Yanagisawa, Susumu; Kadekawa, Yukihiro [Department of Physics and Earth Sciences, Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213 (Japan)

    2014-02-14

    By means of the first-principles density-functional theory, we investigate the effect of relative atom displacement in the crystal unit cell, namely, internal strain on the valence-band dispersion of strained silicon, and find close correlation of this effect with variation in the specific bond angles due to internal strain. We consider the [111] ([110]) band dispersion for (111) ((110)) biaxial tensility and [111] ([110]) uniaxial compression, because remarkably small values of hole effective mass m* can be obtained in this dispersion. Under the practical condition of no normal stress, biaxial tensility (uniaxial compression) involves additional normal compression (tensility) and internal strain. With an increase in the internal-strain parameter, the energy separation between the highest and second-highest valence bands becomes strikingly larger, and the highest band with conspicuously small m* extends remarkably down to a lower energy region, until it intersects or becomes admixed with the second band. This is closely correlated with the change in the specific bond angles, and this change can reasonably explain the above enlargement of the band separation.

  9. Si-O-Si bond-angle distribution in vitreous silica from first-principles 29Si NMR analysis

    International Nuclear Information System (INIS)

    Mauri, Francesco; Pasquarello, Alfredo; Pfrommer, Bernd G.; Yoon, Young-Gui; Louie, Steven G.

    2000-01-01

    The correlation between 29 Si chemical shifts and Si-O-Si bond angles in SiO 2 is determined within density-functional theory for the full range of angles present in vitreous silica. This relation closely reproduces measured shifts of crystalline polymorphs. The knowledge of the correlation allows us to reliably extract from the experimental NMR spectrum the mean (151 degree sign ) and the standard deviation (11 degree sign ) of the Si-O-Si angular distribution of vitreous silica. In particular, we show that the Mozzi-Warren Si-O-Si angular distribution is not consistent with the NMR data. This analysis illustrates the potential of our approach for structural determinations of silicate glasses. (c) 2000 The American Physical Society

  10. Phi (Φ) and psi (Ψ) angles involved in malarial peptide bonds determine sterile protective immunity.

    Science.gov (United States)

    Patarroyo, Manuel E; Moreno-Vranich, Armando; Bermúdez, Adriana

    2012-12-07

    Modified HABP (mHABP) regions interacting with HLA-DRβ1(∗) molecules have a more restricted conformation and/or sequence than other mHABPs which do not fit perfectly into their peptide binding regions (PBR) and do not induce an acceptable immune response due to the critical role of their Φ and Ψ torsion angles. These angle's critical role was determined in such highly immunogenic, protection-inducing response against experimental malaria using the conformers (mHABPs) obtained by (1)H-NMR and superimposed into HLA-DRβ1(∗)-like Aotus monkey molecules; their phi (Φ) and psi (Ψ) angles were measured and the H-bond formation between these molecules was evaluated. The aforementioned mHABP propensity to assume a regular conformation similar to a left-handed polyproline type II helix (PPII(L)) led to suggesting that favouring these conformations according to their amino acid sequence would lead to high antibody titre production and sterile protective immunity induction against malaria, thereby adding new principles or rules for vaccine development, malaria being one of them. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. The chemical bond in inorganic chemistry the bond valence model

    CERN Document Server

    Brown, I David

    2016-01-01

    The bond valence model is a version of the ionic model in which the chemical constraints are expressed in terms of localized chemical bonds formed by the valence charge of the atoms. Theorems derived from the properties of the electrostatic flux predict the rules obeyed by both ionic and covalent bonds. They make quantitative predictions of coordination number, crystal structure, bond lengths and bond angles. Bond stability depends on the matching of the bonding strengths of the atoms, while the conflicting requirements of chemistry and space lead to the structural instabilities responsible for the unusual physical properties displayed by some materials. The model has applications in many fields ranging from mineralogy to molecular biology.

  12. Evaluating the effect of dentin surface pretreatment on the static contact angle of a drop of a bonding agent: an in vitro study

    Directory of Open Access Journals (Sweden)

    Mehrdad Barekatain

    2016-03-01

    Full Text Available Introduction: The aim of this study was to investigate the effect of dentinal pretreatment on the static contact angle of a bonding agent as a measure of dentin surface wettability. Materials &Methods: Twenty mid-coronal dentin surfaces were prepared and randomly allocated to four groups (n=5 according to the priming solutions. All segments were etched with 35% phosphoric acid gel for 15 s, rinsed for 30 s and dried. Each group was rehydrated with 10 µL of distilled water, 0.2 % chlorhexidine, 70% ethanol and 5.25% Sodium Hypochlorite respectively and the excess solution was removed after 60 sec using an absorbent paper. Using a micro syringe, a droplet of the Adper Single Bond 2 was placed on each prepared surface. Then the profile and the static contact angle of the droplet were analyzed with a video-based optical contact angle measuring system. The statistical analysis was performed using One-way ANOVA and Dunnett’s t tests (p<0.05. Results: There was a statistically significant difference between the water and sodium hypochlorite groups which indicates the negative effect sodium hypochlorite may have on dentinal surface energy. (p=0.013. The differences between the water and ethanol groups (p=0.168 and between the water and chlorhexidine groups (p=0.665 were not significant. Conclusion: The use of 5.25% sodium hypochlorite as a priming solution in bonding procedure is not recommended. There is no improvement in dentinal surface wettability by using 70% ethanol or 0.2% chlorhexidine instead of water and the recommendation for use of any of the two should be based on other long-term or short-term effects they may have on the bonding procedure.

  13. Achieving ultrafine grained and homogeneous AA1050/ZnO nanocomposite with well-developed high angle grain boundaries through accumulative press bonding

    Energy Technology Data Exchange (ETDEWEB)

    Amirkhanlou, Sajjad, E-mail: s.amirkhanlou@aut.ac.ir [Young Researchers and Elite Club, Najafabad Branch, Islamic Azad University, Najafabad (Iran, Islamic Republic of); Ketabchi, Mostafa; Parvin, Nader; Askarian, Masoomeh [Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Carreño, Fernando [Department of Physical Metallurgy, CENIM-CSIC, Av. Gregorio del Amo 8, 28040 Madrid (Spain)

    2015-03-11

    Aluminum matrix nanocomposites with 2 vol% ZnO nanoparticles were produced using accumulative press bonding (APB) as a very effective and novel severe plastic deformation process. Microstructural evaluation and mechanical properties of specimens were characterized by field-emission scanning electron microscopy (FE-SEM), scanning transmission electron microscopy (STEM), electron backscatter diffraction (EBSD) and tensile test. Microstructure of AA1050/ZnO nanocomposite showed a uniform distribution of ZnO nanoparticles throughout the aluminum matrix. STEM and EBSD observations revealed that ultrafine-grained Al/ZnO nanocomposite with the average grain size of <500 nm and well-developed high angle grain boundaries (80% high angle boundaries and 37° average misorientation angle) was successfully obtained by performing 14 cycles of the APB process. When the number of APB cycles increased the tensile strength of Al/ZnO nanocomposite improved and reached 228 MPa after 14 cycles, which was 2.6 and 1.3 times greater than the obtained values for annealed (raw material, 88 MPa) and monolithic aluminum (180 MPa), respectively.

  14. Incorporation of Hydrogen Bond Angle Dependency into the Generalized Solvation Free Energy Density Model.

    Science.gov (United States)

    Ma, Songling; Hwang, Sungbo; Lee, Sehan; Acree, William E; No, Kyoung Tai

    2018-04-23

    To describe the physically realistic solvation free energy surface of a molecule in a solvent, a generalized version of the solvation free energy density (G-SFED) calculation method has been developed. In the G-SFED model, the contribution from the hydrogen bond (HB) between a solute and a solvent to the solvation free energy was calculated as the product of the acidity of the donor and the basicity of the acceptor of an HB pair. The acidity and basicity parameters of a solute were derived using the summation of acidities and basicities of the respective acidic and basic functional groups of the solute, and that of the solvent was experimentally determined. Although the contribution of HBs to the solvation free energy could be evenly distributed to grid points on the surface of a molecule, the G-SFED model was still inadequate to describe the angle dependency of the HB of a solute with a polarizable continuum solvent. To overcome this shortcoming of the G-SFED model, the contribution of HBs was formulated using the geometric parameters of the grid points described in the HB coordinate system of the solute. We propose an HB angle dependency incorporated into the G-SFED model, i.e., the G-SFED-HB model, where the angular-dependent acidity and basicity densities are defined and parametrized with experimental data. The G-SFED-HB model was then applied to calculate the solvation free energies of organic molecules in water, various alcohols and ethers, and the log P values of diverse organic molecules, including peptides and a protein. Both the G-SFED model and the G-SFED-HB model reproduced the experimental solvation free energies with similar accuracy, whereas the distributions of the SFED on the molecular surface calculated by the G-SFED and G-SFED-HB models were quite different, especially for molecules having HB donors or acceptors. Since the angle dependency of HBs was included in the G-SFED-HB model, the SFED distribution of the G-SFED-HB model is well described

  15. Gas phase detection of the NH-P hydrogen bond and importance of secondary interactions

    DEFF Research Database (Denmark)

    Møller, Kristian Holten; Hansen, Anne Schou; Kjærgaard, Henrik Grum

    2015-01-01

    bond compared to secondary interactions. We find that B3LYP favors the hydrogen bond and M06-2X favors the secondary interactions leading to under- and overestimation, respectively, of the hydrogen bond angle relative to a DF-LCCSD(T)-F12a calculated angle. The remaining functionals tested, B3LYP-D3, B......3LYP-D3BJ, CAM-B3LYP, and ωB97X-D, as well as MP2, show comparable contributions from the hydrogen bond and the secondary interactions and are close to DF-LCCSD(T)-F12a results....

  16. Crystallochemistry of rhenium compounds with metal-metal bonds

    International Nuclear Information System (INIS)

    Koz'min, P.A.; Surazhskaya, M.D.

    1980-01-01

    A review is presented including a brief description of atomic structure of 59 coordination rhenium compounds with metal-metal bond. The most important bond lengths and valent angles are presented for each compound. The dependence of rhenium-rhenium bond length on its multiplicity is discussed and possible causes of deviations from this dependence (namely, axial ligand presence, steric repulsion of ligands) are considered. On the basis of qualitative comparison of electronegativity of ligands in dimer compounds with quarternary bond of rhenium-rhenium a supposition is made on the influence of formal charge of atomic group and summary electro-negativity of ligands on the possibility of the metal-metal bond formation

  17. X-ray-absorption fine structure determination of pressure-induced bond-angle changes in ReO3

    International Nuclear Information System (INIS)

    Houser, B.; Ingalls, R.

    2000-01-01

    We report here on a Marquardt-type method to fit the x-ray absorption fine structure (XAFS) of ReO 3 . We find that, when the ambient-pressure structure of ReO 3 is used as a starting point, the pressure dependence of the angle of the Re-O-Re bond in ReO 3 is fairly straightforwardly and robustly determined using FEFF curved-wave, multiple-scattering programs and is accurate to about ±1.5 degree sign or better. We present an argument that XAFS and scattering experiments fundamentally differ in what they measure in the case of nearly linear atomic bridges. Focussed multiple-scattering paths involving the Re-O-Re bridge make a contribution to the XAFS spectrum that is sensitive to the rms deviation of oxygen from the [100]-type directions. Fits to simulated spectra back up our contention that for XAFS experiments the effective position of the oxygen atom is its rms displacement whether the average displacement is zero or not. (c) 2000 The American Physical Society

  18. Aggregation of bovine serum albumin upon cleavage of its disulfide bonds, studied by the time-resolved small-angle X-ray scattering technique with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ueki, Tatzuo; Inoko, Yoji; Hiragi, Yuzuru; Kataoka, Mikio; Amemiya, Yoshiyuki; Izumi, Yoshinobu; Tagawa, Hiroyuki; Muroga, Yoshio

    1985-11-01

    A rapid mixing system of the stopped-flow type, used with small-angle X-ray scattering equipment using synchrotron radiation, is described. The process of aggregation of bovine serum albumin was traced with a time interval of 50s, initiated upon cleavage of its disulfide bonds by reduction with dithiothreitol. The results indicate that a 218-fold molar excess of dithiothreitol over the number of moles of disulfide bonds in bovine serum albumin is sufficient to initiate the reaction immediately after mixing, which reaches equilibrium in about 15 min. On the other hand, half this amount is not sufficient to initiate the reaction, so that the reaction is delayed by about 150s. Such a single-shot time-resolved experiment showed that experiments with a time interval of 100 ms are possible with repeated multi-shot runs. 26 refs.; 8 figs.

  19. Aggregation of bovine serum albumin upon cleavage of its disulfide bonds, studied by the time-resolved small-angle X-ray scattering technique with synchrotron radiation

    International Nuclear Information System (INIS)

    Ueki, Tatzuo; Inoko, Yoji; Izumi, Yoshinobu; Tagawa, Hiroyuki; Muroga, Yoshio

    1985-01-01

    A rapid mixing system of the stopped-flow type, used with small-angle X-ray scattering equipment using synchrotron radiation, is described. The process of aggregation of bovine serum albumin was traced with a time interval of 50 s, initiated upon cleavage of its disulfide bonds by reduction with dithiothreitol. The results indicate that a 218-fold molar excess of dithiothreitol over the number of moles of disulfide bonds in bovine serum albumin is sufficient to initiate the reaction immediately after mixing, which reaches equilibrium in about 15 min. On the other hand, half this amount is not sufficient to initiate the reaction, so that the reaction is delayed by about 150 s. Such a single-shot time-resolved experiment showed that experiments with a time interval of 100 ms are possible with repeated multi-shot runs. (Auth.)

  20. Directionality of Cation/Molecule Bonding in Lewis Bases Containing the Carbonyl Group.

    Science.gov (United States)

    Valadbeigi, Younes; Gal, Jean-François

    2017-09-14

    Relationship between the C═O-X + (X = H, Li, Na, K, Al, Cu) angle and covalent characteristic of the X + -M (M = CH 2 O, CH 3 CHO, acetone, imidazol-2-one (C 2 H 2 N 2 O), cytosine, γ-butyrolactone) was investigated, theoretically. The calculated electron densities ρ at the bond critical points revealed that the covalency of the M-X + interaction depended on the nature of the cation and varied as H + > Cu + > Al + > Li + > Na + > K + . The alkali cations tended to participate in electrostatic interactions and aligned with the direction of the molecule dipole or local dipole of C═O group to form linear C═O-X geometries. Because of overlapping with lone-pair electrons of the sp 2 carbonyl oxygen, the H + and Cu + formed a bent C═O-X angle. Al + displayed an intermediate behavior; the C═O-Al angle was 180° in [CH 2 O/Al] + (mainly electrostatic), but when the angle was bent (146°) under the effect of local dipole of an adjacent imine group in cytosine, the covalency of the CO-Al + interaction increased. The C═O-X angles in M/X + adduct ions were scanned in different O-X bond lengths. It was found that the most favorable C═O-X angle depended on the O-X bond length. This dependency was attributed to variation of covalent and electrostatic contributions with O-X distance. In addition, the structures of [CH 2 S/X] + and [CH 2 Se/X] + were studied, and only bent C═S-X and C═Se-X angles were obtained for all cations, although the dipole vectors of CH 2 S and CH 2 Se coincide with the C═S and C═Se bonds. The bending of the C═S-X and C═Se-X angles was attributed to the covalent characteristic of S-X and Se-X interactions due to high polarizability of S and Se atoms.

  1. Cement bond evaluation method in horizontal wells using segmented bond tool

    Science.gov (United States)

    Song, Ruolong; He, Li

    2018-06-01

    Most of the existing cement evaluation technologies suffer from tool eccentralization due to gravity in highly deviated wells and horizontal wells. This paper proposes a correction method to lessen the effects of tool eccentralization on evaluation results of cement bond using segmented bond tool, which has an omnidirectional sonic transmitter and eight segmented receivers evenly arranged around the tool 2 ft from the transmitter. Using 3-D finite difference parallel numerical simulation method, we investigate the logging responses of centred and eccentred segmented bond tool in a variety of bond conditions. From the numerical results, we find that the tool eccentricity and channel azimuth can be estimated from measured sector amplitude. The average of the sector amplitude when the tool is eccentred can be corrected to the one when the tool is centred. Then the corrected amplitude will be used to calculate the channel size. The proposed method is applied to both synthetic and field data. For synthetic data, it turns out that this method can estimate the tool eccentricity with small error and the bond map is improved after correction. For field data, the tool eccentricity has a good agreement with the measured well deviation angle. Though this method still suffers from the low accuracy of calculating channel azimuth, the credibility of corrected bond map is improved especially in horizontal wells. It gives us a choice to evaluate the bond condition for horizontal wells using existing logging tool. The numerical results in this paper can provide aids for understanding measurements of segmented tool in both vertical and horizontal wells.

  2. Molecular dynamics simulation for the influence of incident angles of energetic carbon atoms on the structure and properties of diamond-like carbon films

    International Nuclear Information System (INIS)

    Li, Xiaowei; Ke, Peiling; Lee, Kwang-Ryeol; Wang, Aiying

    2014-01-01

    The influence of incident angles of energetic carbon atoms (0–60°) on the structure and properties of diamond-like carbon (DLC) films was investigated by the molecular dynamics simulation using a Tersoff interatomic potential. The present simulation revealed that as the incident angles increased from 0 to 60°, the surface roughness of DLC films increased and the more porous structure was generated. Along the growth direction of DLC films, the whole system could be divided into four regions including substrate region, transition region, stable region and surface region except the case at the incident angle of 60°. When the incident angle was 45°, the residual stress was significantly reduced by 12% with little deterioration of mechanical behavior. The further structure analysis using both the bond angles and bond length distributions indicated that the compressive stress reduction mainly resulted from the relaxation of highly distorted C–C bond length. - Highlights: • The dependence of films properties on different incident angles was investigated. • The change of incident angles reduced the stress without obvious damage of density. • The stress reduction attributed to the relaxation of highly distorted bond length

  3. X-ray diffraction and chemical bonding

    International Nuclear Information System (INIS)

    Bats, J.W.

    1976-01-01

    Chemical bonds are investigated in sulfamic acid (H 3 N-SO 3 ), sodium sulfonlate dihydrate (H 2 NC 6 H 4 SO 3 Na.2H 2 O), 2,5-dimercaptothiadiazole (HS-C 2 N 2 S-SH), sodium cyanide dihydrate (NaCN.2H 2 O), sodium thiocyanate (NaSCN) and ammonium thiocyanate (NH 4 SCN) by X-ray diffraction, and if necessary completed with neutron diffraction. Crystal structures and electron densities are determined together with bond length and angles. Also the effects of thermal motion are discussed

  4. Gauche effect in 1,2-difluoroethane. Hyperconjugation, bent bonds, steric repulsion.

    Science.gov (United States)

    Goodman, Lionel; Gu, Hongbing; Pophristic, Vojislava

    2005-02-17

    Natural bond orbital deletion calculations show that whereas the gauche preference arises from vicinal hyperconjugative interaction between anti C-H bonds and C-F* antibonds, the cis C-H/C-F* interactions are substantial (approximately 25% of the anti interaction). The established significantly >60 degrees FCCF dihedral angle for the equilibrium conformer can then be rationalized in terms of the hyperconjugation model alone by taking into account both anti interactions that maximize near 60 degrees and the smaller cis interactions that maximize at a much larger dihedral angle. This explanation does not invoke repulsive forces to rationalize the 72 degrees equilibrium conformer angle. The relative minimum energy for the trans conformer is the consequence of a balance between decreasing hyperconjugative stabilization and decreasing steric destabilization as the FCCF torsional angle approaches 180 degrees . The torsional coordinate is predicted to be strongly contaminated by CCF bending, with the result that approximately half of the trans --> gauche stabilization energy stems from mode coupling.

  5. The Valency Theory: The Human Bond From A New Psychoanalytic Perspective

    OpenAIRE

    Med Hafsi

    2008-01-01

    The present paper discusses some psychoanalytical conceptions concerning what links people to each other, or the human bond. Psychoanalysis, can be regarded as a science dealing basically with, although not directly, the human bond or link linking the person with his external and internal objects. The fact that this bond is in perpetualtransformation, and therefore can be apprehended from different angles has led to various psychoanalytical conceptions or theories which are more complementary...

  6. Molecularly Tuning the Radicaloid N-H···O═C Hydrogen Bond.

    Science.gov (United States)

    Lu, Norman; Chung, Wei-Cheng; Ley, Rebecca M; Lin, Kwan-Yu; Francisco, Joseph S; Negishi, Ei-Ichi

    2016-03-03

    Substituent effects on the open shell N-H···O═C hydrogen-bond has never been reported. This study examines how 12 functional groups composed of electron donating groups (EDG), halogen atoms and electron withdrawing groups (EWG) affect the N-H···O═C hydrogen-bond properties in a six-membered cyclic model system of O═C(Y)-CH═C(X)N-H. It is found that group effects on this open shell H-bonding system are significant and have predictive trends when X = H and Y is varied. When Y is an EDG, the N-H···O═C hydrogen-bond is strengthened; and when Y is an EWG, the bond is weakened; whereas the variation in electronic properties of X group do not exhibit a significant impact upon the hydrogen bond strength. The structural impact of the stronger N-H···O═C hydrogen-bond are (1) shorter H and O distance, r(H···O) and (2) a longer N-H bond length, r(NH). The stronger N-H···O═C hydrogen-bond also acts to pull the H and O in toward one another which has an effect on the bond angles. Our findings show that there is a linear relationship between hydrogen-bond angle and N-H···O═C hydrogen-bond energy in this unusual H-bonding system. In addition, there is a linear correlation of the r(H···O) and the hydrogen bond energy. A short r(H···O) distance corresponds to a large hydrogen bond energy when Y is varied. The observed trends and findings have been validated using three different methods (UB3LYP, M06-2X, and UMP2) with two different basis sets.

  7. Interaction between benzenedithiolate and gold: Classical force field for chemical bonding

    Science.gov (United States)

    Leng, Yongsheng; Krstić, Predrag S.; Wells, Jack C.; Cummings, Peter T.; Dean, David J.

    2005-06-01

    We have constructed a group of classical potentials based on ab initio density-functional theory (DFT) calculations to describe the chemical bonding between benzenedithiolate (BDT) molecule and gold atoms, including bond stretching, bond angle bending, and dihedral angle torsion involved at the interface between the molecule and gold clusters. Three DFT functionals, local-density approximation (LDA), PBE0, and X3LYP, have been implemented to calculate single point energies (SPE) for a large number of molecular configurations of BDT-1, 2 Au complexes. The three DFT methods yield similar bonding curves. The variations of atomic charges from Mulliken population analysis within the molecule/metal complex versus different molecular configurations have been investigated in detail. We found that, except for bonded atoms in BDT-1, 2 Au complexes, the Mulliken partial charges of other atoms in BDT are quite stable, which significantly reduces the uncertainty in partial charge selections in classical molecular simulations. Molecular-dynamics (MD) simulations are performed to investigate the structure of BDT self-assembled monolayer (SAM) and the adsorption geometry of S adatoms on Au (111) surface. We found that the bond-stretching potential is the most dominant part in chemical bonding. Whereas the local bonding geometry of BDT molecular configuration may depend on the DFT functional used, the global packing structure of BDT SAM is quite independent of DFT functional, even though the uncertainty of some force-field parameters for chemical bonding can be as large as ˜100%. This indicates that the intermolecular interactions play a dominant role in determining the BDT SAMs global packing structure.

  8. A new hydrocarbon empirical potential in angle bending calculation for the molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Ping, Tan Ai; Hoe, Yeak Su [Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Bahru, Johor Darul Takzim (Malaysia)

    2014-07-10

    Typically, short range potential only depends on neighbouring atoms and its parameters function can be categorized into bond stretching, angle bending and bond rotation potential. In this paper, we present our work called Angle Bending (AB) potential, whereas AB potential is the extension of our previous work namely Bond Stretching (BS) potential. Basically, potential will tend to zero after truncated region, potential in specific region can be represented by different piecewise polynomial. We proposed the AB piecewise potential which is possible to solve a system involving three atoms. AB potential able to handle the potential of covalent bonds for three atoms as well as two atoms cases due to its degeneracy properties. Continuity for the piecewise polynomial has been enforced by coupling with penalty methods. There are still plenty of improvement spaces for this AB potential. The improvement for three atoms AB potential will be studied and further modified into torsional potential which are the ongoing current research.

  9. Effects of interface edge configuration on residual stress in the bonded structures for a divertor application

    International Nuclear Information System (INIS)

    Kitamura, K.; Nagata, K.; Shibui, M.; Tachikawa, N.; Araki, M.

    1998-01-01

    Residual stresses in the interface region, that developed at the cool down during the brazing, were evaluated for several bonded structures to assess the mechanical strength of the bonded interface, using thermoelasto-plastic stress analysis. Normal stress components of the residual stresses around the interface edge of graphite-copper (C-Cu) bonded structures were compared for three types of bonded features such as flat-type, monoblock-type and saddle-type. The saddle-type structure was found to be favorable for its relatively low residual stress, easy fabrication accuracy on bonded interface and armor replacement. Residual stresses around the interface edge in three armor materials/copper bonded structures for a divertor plate were also examined for the C-Cu, tungsten-copper (W-Cu) and molybdenum alloy-copper (TZM-Cu), varying the interface wedge angle from 45 to 135 . An optimal bonded configuration for the least value of residual stress was found to have a wedge angle of 45 for the C-Cu, and 135 for both the W-Cu and TZM-Cu bonded ones. (orig.)

  10. Increasing FSW join strength by optimizing feed rate, rotating speed and pin angle

    Science.gov (United States)

    Darmadi, Djarot B.; Purnowidodo, Anindito; Siswanto, Eko

    2017-10-01

    Principally the join in Friction Stir Welding (FSW) is formed due to mechanical bonding. At least there are two factors determines the quality of this join, first is the temperature in the area around the interface and secondly the intense of mixing forces in nugget zone to create the mechanical bonding. The adequate temperature creates good flowability of the nugget zone and an intensive mixing force produces homogeneous strong bonding. Based on those two factors in this research the effects of feed rate, rotating speed and pin angle of the FSW process to the tensile strength of resulted join are studied. The true experimental method was used. Feed rate was varied at 24, 42, 55 and 74 mm/minutes and from the experimental results, it can be concluded that the higher feed rate decreases the tensile strength of weld join and it is believed due to the lower heat embedded in the material. Inversely, the higher rotating speed increases the join’s tensile strength as a result of higher heat embedded in base metal and higher mixing force in the nugget zone. The rotating speed were 1842, 2257 and 2904 RPMs. The pin angle determines the direction of mixing force. With variation of pin angle: 0°, 4°, 8° and 12° the higher pin angle generally increases the tensile strength because of more intensive mixing force. For 12° pin angle the lower tensile strength is found since the force tends to push out the nugget area from the joint gap.

  11. High-resolution crystal structures of protein helices reconciled with three-centered hydrogen bonds and multipole electrostatics.

    Science.gov (United States)

    Kuster, Daniel J; Liu, Chengyu; Fang, Zheng; Ponder, Jay W; Marshall, Garland R

    2015-01-01

    Theoretical and experimental evidence for non-linear hydrogen bonds in protein helices is ubiquitous. In particular, amide three-centered hydrogen bonds are common features of helices in high-resolution crystal structures of proteins. These high-resolution structures (1.0 to 1.5 Å nominal crystallographic resolution) position backbone atoms without significant bias from modeling constraints and identify Φ = -62°, ψ = -43 as the consensus backbone torsional angles of protein helices. These torsional angles preserve the atomic positions of α-β carbons of the classic Pauling α-helix while allowing the amide carbonyls to form bifurcated hydrogen bonds as first suggested by Némethy et al. in 1967. Molecular dynamics simulations of a capped 12-residue oligoalanine in water with AMOEBA (Atomic Multipole Optimized Energetics for Biomolecular Applications), a second-generation force field that includes multipole electrostatics and polarizability, reproduces the experimentally observed high-resolution helical conformation and correctly reorients the amide-bond carbonyls into bifurcated hydrogen bonds. This simple modification of backbone torsional angles reconciles experimental and theoretical views to provide a unified view of amide three-centered hydrogen bonds as crucial components of protein helices. The reason why they have been overlooked by structural biologists depends on the small crankshaft-like changes in orientation of the amide bond that allows maintenance of the overall helical parameters (helix pitch (p) and residues per turn (n)). The Pauling 3.6(13) α-helix fits the high-resolution experimental data with the minor exception of the amide-carbonyl electron density, but the previously associated backbone torsional angles (Φ, Ψ) needed slight modification to be reconciled with three-atom centered H-bonds and multipole electrostatics. Thus, a new standard helix, the 3.6(13/10)-, Némethy- or N-helix, is proposed. Due to the use of constraints from

  12. Angle-Beam Shear Wave Scattering from Buried Crack-like Defects in Bonded Specimens (Postprint)

    Science.gov (United States)

    2017-02-01

    defects: such as understanding the scattering behavior of fatigue cracks emanating from fastener holes in aluminum structural components [2]. Angle...Ultrasonic NDE techniques using angle-beam wedges coupled to PZT transducers have also been utilized in measuring the depth of surface-breaking cracks

  13. Interfacial fracture of dentin adhesively bonded to quartz-fiber reinforced composite

    International Nuclear Information System (INIS)

    Melo, Renata M.; Rahbar, Nima; Soboyejo, Wole

    2011-01-01

    The paper presents the results of an experimental study of interfacial failure in a multilayered structure consisting of a dentin/resin cement/quartz-fiber reinforced composite (FRC). Slices of dentin close to the pulp chamber were sandwiched by two half-circle discs made of a quartz-fiber reinforced composite, bonded with bonding agent (All-bond 2, BISCO, Schaumburg) and resin cement (Duo-link, BISCO, Schaumburg) to make Brazil-nut sandwich specimens for interfacial toughness testing. Interfacial fracture toughness (strain energy release rate, G) was measured as a function of mode mixity by changing loading angles from 0 deg. to 15 deg. The interfacial fracture surfaces were then examined using Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDX) to determine the failure modes when loading angles changed. A computational model was also developed to calculate the driving forces, stress intensity factors and mode mixities. Interfacial toughness increased from ∼ 1.5 to 3.2 J/m 2 when the loading angle increases from ∼ 0 to 15 deg. The hybridized dentin/cement interface appeared to be tougher than the resin cement/quartz-fiber reinforced epoxy. The Brazil-nut sandwich specimen was a suitable method to investigate the mechanical integrity of dentin/cement/FRC interfaces.

  14. Control of concerted two bond versus single bond dissociation in CH3Co(CO)4 via an intermediate state using pump-dump laser pulses

    Science.gov (United States)

    Ambrosek, David; González, Leticia

    2007-10-01

    Wavepacket propagations on ab initio multiconfigurational two-dimensional potential energy surfaces for CH3Co(CO)4 indicate that after irradiation to the lowest first and second electronic excited states, concerted dissociation of CH3 and the axial CO ligand takes place. We employ a pump-dump sequence of pulses with appropriate frequencies and time delays to achieve the selective breakage of a single bond by controlling the dissociation angle. The pump and dump pulse sequence exploits the unbound surface where dissociation occurs in a counterintuitive fashion; stretching of one bond in an intermediate state enhances the single dissociation of the other bond.

  15. Control of concerted two bond versus single bond dissociation in CH(3)Co(CO)(4) via an intermediate state using pump-dump laser pulses.

    Science.gov (United States)

    Ambrosek, David; González, Leticia

    2007-10-07

    Wavepacket propagations on ab initio multiconfigurational two-dimensional potential energy surfaces for CH(3)Co(CO)(4) indicate that after irradiation to the lowest first and second electronic excited states, concerted dissociation of CH(3) and the axial CO ligand takes place. We employ a pump-dump sequence of pulses with appropriate frequencies and time delays to achieve the selective breakage of a single bond by controlling the dissociation angle. The pump and dump pulse sequence exploits the unbound surface where dissociation occurs in a counterintuitive fashion; stretching of one bond in an intermediate state enhances the single dissociation of the other bond.

  16. Interplay between Peptide Bond Geometrical Parameters in Nonglobular Structural Contexts

    Directory of Open Access Journals (Sweden)

    Luciana Esposito

    2013-01-01

    Full Text Available Several investigations performed in the last two decades have unveiled that geometrical parameters of protein backbone show a remarkable variability. Although these studies have provided interesting insights into one of the basic aspects of protein structure, they have been conducted on globular and water-soluble proteins. We report here a detailed analysis of backbone geometrical parameters in nonglobular proteins/peptides. We considered membrane proteins and two distinct fibrous systems (amyloid-forming and collagen-like peptides. Present data show that in these systems the local conformation plays a major role in dictating the amplitude of the bond angle N-Cα-C and the propensity of the peptide bond to adopt planar/nonplanar states. Since the trends detected here are in line with the concept of the mutual influence of local geometry and conformation previously established for globular and water-soluble proteins, our analysis demonstrates that the interplay of backbone geometrical parameters is an intrinsic and general property of protein/peptide structures that is preserved also in nonglobular contexts. For amyloid-forming peptides significant distortions of the N-Cα-C bond angle, indicative of sterical hidden strain, may occur in correspondence with side chain interdigitation. The correlation between the dihedral angles Δω/ψ in collagen-like models may have interesting implications for triple helix stability.

  17. Interplay between peptide bond geometrical parameters in nonglobular structural contexts.

    Science.gov (United States)

    Esposito, Luciana; Balasco, Nicole; De Simone, Alfonso; Berisio, Rita; Vitagliano, Luigi

    2013-01-01

    Several investigations performed in the last two decades have unveiled that geometrical parameters of protein backbone show a remarkable variability. Although these studies have provided interesting insights into one of the basic aspects of protein structure, they have been conducted on globular and water-soluble proteins. We report here a detailed analysis of backbone geometrical parameters in nonglobular proteins/peptides. We considered membrane proteins and two distinct fibrous systems (amyloid-forming and collagen-like peptides). Present data show that in these systems the local conformation plays a major role in dictating the amplitude of the bond angle N-C(α)-C and the propensity of the peptide bond to adopt planar/nonplanar states. Since the trends detected here are in line with the concept of the mutual influence of local geometry and conformation previously established for globular and water-soluble proteins, our analysis demonstrates that the interplay of backbone geometrical parameters is an intrinsic and general property of protein/peptide structures that is preserved also in nonglobular contexts. For amyloid-forming peptides significant distortions of the N-C(α)-C bond angle, indicative of sterical hidden strain, may occur in correspondence with side chain interdigitation. The correlation between the dihedral angles Δω/ψ in collagen-like models may have interesting implications for triple helix stability.

  18. Mechanical aspects of degree of cement bonding and implant wedge effect.

    Science.gov (United States)

    Yoon, Yong-San; Oxland, Thomas R; Hodgson, Antony J; Duncan, Clive P; Masri, Bassam A; Choi, Donok

    2008-11-01

    The degree of bonding between the femoral stem and cement in total hip replacement remains controversial. Our objective was to determine the wedge effect by debonding and stem taper angle on the structural behavior of axisymmetric stem-cement-bone cylinder models. Stainless steel tapered plugs with a rough (i.e. bonded) or smooth (i.e. debonded) surface finish were used to emulate the femoral stem. Three different stem taper angles (5 degrees , 7.5 degrees , 10 degrees ) were used for the debonded constructs. Non-tapered and tapered (7.5 degrees ) aluminum cylindrical shells were used to emulate the diaphyseal and metaphyseal segments of the femur. The cement-aluminum cylinder interface was designed to have a shear strength that simulated bone-cement interfaces ( approximately 8MPa). The test involved applying axial compression at a rate of 0.02mm/s until failure. Six specimens were tested for each combination of the variables. Finite element analysis was used to enhance the understanding of the wedge effect. The debonded stems sustained about twice as much load as the bonded stem, regardless of taper angle. The metaphyseal model carried 35-50% greater loads than the diaphyseal models and the stem taper produced significant differences. Based on the finite element analysis, failure was most probably by shear at the cement-bone interface. Our results in this simplified model suggest that smooth (i.e. debonded) stems have greater failure loads and will incur less slippage or shear failure at the cement-bone interface than rough (i.e. bonded) stems.

  19. Theoretical study of ZnO adsorption and bonding on Al2O3 (0001) surface

    Institute of Scientific and Technical Information of China (English)

    LI Yanrong; YANG Chun; XUE Weidong; LI Jinshan; LIU Yonghua

    2004-01-01

    ZnO adsorption on sapphire (0001) surface is theoretically calculated by using a plane wave ultrasoft pseudo-potential method based on ab initio molecular dynamics. The results reveal that the surface relaxation in the first layer Al-O is reduced, even eliminated after the surface adsorption of ZnO, and the chemical bonding energy is 434.3(±38.6) kJ·mol-1. The chemical bond of ZnO (0.185 ± 0.01 nm) has a 30° angle away from the adjacent Al-O bond, and the stable chemical adsorption position of the Zn is deflected from the surface O-hexagonal symmetry with an angle of about 30°. The analysis of the atomic populations, density of state and bonding electronic density before and after the adsorption indicates that the chemical bond formed by the O2- of the ZnO and the surface Al3+ has a strong ionic bonding characteristic, while the chemical bond formed by the Zn2+ and the surface O2- has an obvious covalent characteristic, which comes mainly from the hybridization of the Zn 4s and the O 2p and partially from that of the Zn 3d and the O 2p.

  20. Physical mechanisms of copper-copper wafer bonding

    International Nuclear Information System (INIS)

    Rebhan, B.; Hingerl, K.

    2015-01-01

    The study of the physical mechanisms driving Cu-Cu wafer bonding allowed for reducing the bonding temperatures below 200 °C. Metal thermo-compression Cu-Cu wafer bonding results obtained at such low temperatures are very encouraging and suggest that the process is possible even at room temperature if some boundary conditions are fulfilled. Sputtered (PVD) and electroplated Cu thin layers were investigated, and the analysis of both metallization techniques demonstrated the importance of decreasing Cu surface roughness. For an equal surface roughness, the bonding temperature of PVD Cu wafers could be even further reduced due to the favorable microstructure. Their smaller grain size enhances the length of the grain boundaries (observed on the surface prior bonding), acting as efficient mass transfer channels across the interface, and hence the grains are able to grow over the initial bonding interface. Due to the higher concentration of random high-angle grain boundaries, this effect is intensified. The model presented is explaining the microstructural changes based on atomic migration, taking into account that the reduction of the grain boundary area is the major driving force to reduce the Gibbs free energy, and predicts the subsequent microstructure evolution (grain growth) during thermal annealing

  1. Methods and system for controlled laser-driven explosive bonding

    Science.gov (United States)

    Rubenchik, Alexander M.; Farmer, Joseph C.; Hackel, Lloyd; Rankin, Jon

    2015-11-19

    A technique for bonding two dissimilar materials includes positioning a second material over a first material at an oblique angle and applying a tamping layer over the second martial. A laser beam is directed at the second material that generates a plasma at the location of impact on the second material. The plasma generates pressure that accelerates a portion of the second material to a very high velocity and towards the first material. The second material impacts the first material causing bonding of the two materials.

  2. Silicate bonding properties: Investigation through thermal conductivity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzini, M; Cesarini, E; Cagnoli, G; Campagna, E; Losurdo, G; Martelli, F; Piergiovanni, F; Vetrano, F [INFN, Istituto Nazionale di Fisica Nucleare, Sez. di Firenze, via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Haughian, K; Hough, J; Martin, I; Reid, S; Rowan, S; Veggel, A A van, E-mail: lorenzini@fi.infn.i [SUPA, University of Glasgow, Department of Physics and Astronomy, Kelvin Building G12 8QQ Glasgow, Scotland (United Kingdom)

    2010-05-01

    A direct approach to reduce the thermal noise contribution to the sensitivity limit of a GW interferometric detector is the cryogenic cooling of the mirrors and mirrors suspensions. Future generations of detectors are foreseen to implement this solution. Silicon has been proposed as a candidate material, thanks to its very low intrinsic loss angle at low temperatures and due to its very high thermal conductivity, allowing the heat deposited in the mirrors by high power lasers to be efficiently extracted. To accomplish such a scheme, both mirror masses and suspension elements must be made of silicon, then bonded together forming a quasi-monolithic stage. Elements can be assembled using hydroxide-catalysis silicate bonding, as for silica monolithic joints. The effect of Si to Si bonding on suspension thermal conductance has therefore to be experimentally studied. A measurement of the effect of silicate bonding on thermal conductance carried out on 1 inch thick silicon bonded samples, from room temperature down to 77 K, is reported. In the explored temperature range, the silicate bonding does not seem to affect in a relevant way the sample conductance.

  3. Control of chemical bonding of the ZnO surface grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Ogata, K.; Komuro, T.; Hama, K.; Koike, K.; Sasa, S.; Inoue, M.; Yano, M.

    2004-01-01

    Toward the fabrication of enzyme modified field effect transistors (EnFETs) as one of organic/inorganic hybridized structures, surface bonding of the ZnO grown by molecular beam epitaxy was controlled by ex situ treatments. Angle resolved X-ray photoelectron spectroscopy (XPS) measurement revealed that O-H bonds exist at the surface of ZnO. It was found that the number of O-H bond could be changed with reversibility using plasma and thermal treatments

  4. Reflectivity quenching of ESR multilayer polymer film reflector in optically bonded scintillator arrays

    Science.gov (United States)

    Loignon-Houle, Francis; Pepin, Catherine M.; Charlebois, Serge A.; Lecomte, Roger

    2017-04-01

    The 3M-ESR multilayer polymer film is a widely used reflector in scintillation detector arrays. As specified in the datasheet and confirmed experimentally by measurements in air, it is highly reflective (> 98 %) over the entire visible spectrum (400-1000 nm) for all angles of incidence. Despite these outstanding characteristics, it was previously found that light crosstalk between pixels in a bonded LYSO scintillator array with ESR reflector can be as high as ∼30-35%. This unexplained light crosstalk motivated further investigation of ESR optical performance. Analytical simulation of a multilayer structure emulating the ESR reflector showed that the film becomes highly transparent to incident light at large angles when surrounded on both sides by materials of refractive index higher than air. Monte Carlo simulations indicate that a considerable fraction (∼25-35%) of scintillation photons are incident at these leaking angles in high aspect ratio LYSO scintillation crystals. The film transparency was investigated experimentally by measuring the scintillation light transmission through the ESR film sandwiched between a scintillation crystal and a photodetector with or without layers of silicone grease. Strong light leakage, up to nearly 30%, was measured through the reflector when coated on both sides with silicone, thus elucidating the major cause of light crosstalk in bonded arrays. The reflector transparency was confirmed experimentally for angles of incidence larger than 60 ° using a custom designed setup allowing illumination of the bonded ESR film at selected grazing angles. The unsuspected ESR film transparency can be beneficial for detector arrays exploiting light sharing schemes, but it is highly detrimental for scintillator arrays designed for individual pixel readout.

  5. A general method for the derivation of the functional forms of the effective energy terms in coarse-grained energy functions of polymers. II. Backbone-local potentials of coarse-grained O 1 →4 -bonded polyglucose chains

    Science.gov (United States)

    Lubecka, Emilia A.; Liwo, Adam

    2017-09-01

    Based on the theory of the construction of coarse-grained force fields for polymer chains described in our recent work [A. K. Sieradzan et al., J. Chem. Phys. 146, 124106 (2017)], in this work effective coarse-grained potentials, to be used in the SUGRES-1P model of polysaccharides that is being developed in our laboratory, have been determined for the O ⋯O ⋯O virtual-bond angles (θ ) and for the dihedral angles for rotation about the O ⋯O virtual bonds (γ ) of 1 → 4 -linked glucosyl polysaccharides, for all possible combinations of [α ,β ]-[d,l]-glucose. The potentials of mean force corresponding to the virtual-bond angles and the virtual-bond dihedral angles were calculated from the free-energy surfaces of [α ,β ]-[d,l]-glucose pairs, determined by umbrella-sampling molecular-dynamics simulations with the AMBER12 force field, or combinations of the surfaces of two pairs sharing the overlapping residue, respectively, by integrating the respective Boltzmann factor over the dihedral angles λ for the rotation of the sugar units about the O ⋯O virtual bonds. Analytical expressions were subsequently fitted to the potentials of mean force. The virtual-bond-torsional potentials depend on both virtual-bond-dihedral angles and virtual-bond angles. The virtual-bond-angle potentials contain a single minimum at about θ =14 0° for all pairs except β -d-[α ,β ] -l-glucose, where the global minimum is shifted to θ =150° and a secondary minimum appears at θ =90°. The torsional potentials favor small negative γ angles for the α -d-glucose and extended negative angles γ for the β -d-glucose chains, as observed in the experimental structures of starch and cellulose, respectively. It was also demonstrated that the approximate expression derived based on Kubo's cluster-cumulant theory, whose coefficients depend on the identity of the disugar units comprising a trisugar unit that defines a torsional potential, fits simultaneously all

  6. The Effect of Nylon and Polyester Peel Ply Surface Preparation on the Bond Quality of Composite Laminates

    Science.gov (United States)

    Moench, Molly K.

    The preparation of the surfaces to be bonded is critical to the success of composite bonds. Peel ply surface preparation is attractive from a manufacturing and quality assurance standpoint, but is a well known example of the extremely system-specific nature of composite bonds. This study examined the role of the surface energy, morphology, and chemistry left by peel ply removal in resulting bond quality. It also evaluated the use of contact angle surface energy measurement techniques for predicting the resulting bond quality of a prepared surface. The surfaces created by preparing three aerospace fiber-reinforced composite prepregs were compared when prepared with a nylon vs a polyester peel ply. The prepared surfaces were characterized with contact angle measurements with multiple fluids, scanning electron microscopy (SEM), and x-ray electron spectroscopy. The laminates were bonded with aerospace grade film adhesives. Bond quality was assessed via double cantilever beam testing followed by optical and scanning electron microscopy of the fracture surfaces.The division was clear between strong bonds (GIC of 600- 1000J/m2 and failure in cohesion) and weak bonds (GIC of 80-400J/m2 and failure in adhesion). All prepared laminates showed the imprint of the peel ply texture and evidence of peel ply remnants after fabric removal, either through SEM or XPS. Within an adhesive system, large amounts of SEM-visible peel ply material transfer correlated with poor bond quality and cleaner surfaces with higher bond quality. The both sides of failed weak bonds showed evidence of peel ply remnants under XPS, showing that at least some failure is occurring through the remnants. The choice of adhesive was found to be significant. AF 555 adhesive was more tolerant of peel ply contamination than MB 1515-3. Although the bond quality results varied substantially between tested combinations, the total surface energies of all prepared surfaces were very similar. Single fluid contact angle

  7. Deuteriation of an asymmetric short hydrogen bond. X-ray crystal structure of KF.(CH2CO2D)2

    International Nuclear Information System (INIS)

    Emsley, J.; Jones, D.J.; Kuroda, R.

    1981-01-01

    Deuteriation of the strong hydrogen bonds of KF.(CH 2 CO 2 H) 2 shows no isotope effect on the bond lengths. The only significant change is in the bond angle at the fluoride ion which widens to 128.5 from 116 0 . The i.r. spectrum shows very little change. Since the O-H ... F - hydrogen bonds are highly asymmetric, these observations challenge previous predictions about the effects of deuteriation on such bonds. (author)

  8. Interphase effects in dental nanocomposites investigated by small-angle neutron scattering.

    Science.gov (United States)

    Wilson, Kristen S; Allen, Andrew J; Washburn, Newell R; Antonucci, Joseph M

    2007-04-01

    Small-angle and ultrasmall-angle neutron scattering (SANS and USANS) were used to characterize silica nanoparticle dispersion morphologies and the interphase in thermoset dimethacrylate polymer nanocomposites. Silica nanoparticle fillers were silanized with varying mass ratios of 3-methacryloxypropyltrimethoxysilane (MPTMS), a silane that interacts with the matrix through covalent and H-bonding, and n-octyltrimethoxysilane (OTMS), a silane that interacts through weak dispersion forces. Interphases with high OTMS mass fractions were found to be fractally rough with fractal dimensions, D(s), between 2.19 and 2.49. This roughness was associated with poor interfacial adhesion and inferior mechanical properties. Mean interparticle distances calculated for composites containing 10 mass % and 25 mass % silica suggest that the nanoparticles treated with more MPTMS than OTMS may be better dispersed than OTMS-rich nanoparticles. The results indicate that the covalent bonding and H-bonding of MPTMS-rich nanoparticles with the matrix are necessary for preparing well-dispersed nanocomposites. In addition, interphases containing equal masses of MPTMS and OTMS may yield composites with overall optimal properties. Finally, the combined SANS/USANS data could distinguish the differences, as a function of silane chemistry, in the nanoparticle/silane and silane/matrix interfaces that affect the overall mechanical properties of the composites. (c) 2006 Wiley Periodicals, Inc.

  9. Electronic properties of interfaces produced by silicon wafer hydrophilic bonding

    Energy Technology Data Exchange (ETDEWEB)

    Trushin, Maxim

    2011-07-15

    The thesis presents the results of the investigations of electronic properties and defect states of dislocation networks (DNs) in silicon produced by wafers direct bonding technique. A new insight into the understanding of their very attractive properties was succeeded due to the usage of a new, recently developed silicon wafer direct bonding technique, allowing to create regular dislocation networks with predefined dislocation types and densities. Samples for the investigations were prepared by hydrophilic bonding of p-type Si (100) wafers with same small misorientation tilt angle ({proportional_to}0.5 ), but with four different twist misorientation angles Atw (being of < , 3 , 6 and 30 , respectively), thus giving rise to the different DN microstructure on every particular sample. The main experimental approach of this work was the measurements of current and capacitance of Schottky diodes prepared on the samples which contained the dislocation network at a depth that allowed one to realize all capabilities of different methods of space charge region spectroscopy (such as CV/IV, DLTS, ITS, etc.). The key tasks for the investigations were specified as the exploration of the DN-related gap states, their variations with gradually increasing twist angle Atw, investigation of the electrical field impact on the carrier emission from the dislocation-related states, as well as the establishing of the correlation between the electrical (DLTS), optical (photoluminescence PL) and structural (TEM) properties of DNs. The most important conclusions drawn from the experimental investigations and theoretical calculations can be formulated as follows: - DLTS measurements have revealed a great difference in the electronic structure of small-angle (SA) and large-angle (LA) bonded interfaces: dominating shallow level and a set of 6-7 deep levels were found in SA-samples with Atw of 1 and 3 , whereas the prevalent deep levels - in LA-samples with Atw of 6 and 30 . The critical twist

  10. In situ ultra-small-angle X-ray scattering study under uniaxial stretching of colloidal crystals prepared by silica nanoparticles bearing hydrogen-bonding polymer grafts

    Directory of Open Access Journals (Sweden)

    Ryohei Ishige

    2016-05-01

    Full Text Available A molded film of single-component polymer-grafted nanoparticles (SPNP, consisting of a spherical silica core and densely grafted polymer chains bearing hydrogen-bonding side groups capable of physical crosslinking, was investigated by in situ ultra-small-angle X-ray scattering (USAXS measurement during a uniaxial stretching process. Static USAXS revealed that the molded SPNP formed a highly oriented twinned face-centered cubic (f.c.c. lattice structure with the [11−1] plane aligned nearly parallel to the film surface in the initial state. Structural analysis of in situ USAXS using a model of uniaxial deformation induced by rearrangement of the nanoparticles revealed that the f.c.c. lattice was distorted in the stretching direction in proportion to the macroscopic strain until the strain reached 35%, and subsequently changed into other f.c.c. lattices with different orientations. The lattice distortion and structural transition behavior corresponded well to the elastic and plastic deformation regimes, respectively, observed in the stress–strain curve. The attractive interaction of the hydrogen bond is considered to form only at the top surface of the shell and then plays an effective role in cross-linking between nanoparticles. The rearrangement mechanism of the nanoparticles is well accounted for by a strong repulsive interaction between the densely grafted polymer shells of neighboring particles.

  11. Flexure mechanism-based parallelism measurements for chip-on-glass bonding

    International Nuclear Information System (INIS)

    Jung, Seung Won; Yun, Won Soo; Jin, Songwan; Jeong, Young Hun; Kim, Bo Sun

    2011-01-01

    Recently, liquid crystal displays (LCDs) have played vital roles in a variety of electronic devices such as televisions, cellular phones, and desktop/laptop monitors because of their enhanced volume, performance, and functionality. However, there is still a need for thinner LCD panels due to the trend of miniaturization in electronic applications. Thus, chip-on-glass (COG) bonding has become one of the most important aspects in the LCD panel manufacturing process. In this study, a novel sensor was developed to measure the parallelism between the tooltip planes of the bonding head and the backup of the COG main bonder, which has previously been estimated by prescale pressure films in industry. The sensor developed in this study is based on a flexure mechanism, and it can measure the total pressing force and the inclination angles in two directions that satisfy the quantitative definition of parallelism. To improve the measurement accuracy, the sensor was calibrated based on the estimation of the total pressing force and the inclination angles using the least-squares method. To verify the accuracy of the sensor, the estimation results for parallelism were compared with those from prescale pressure film measurements. In addition, the influence of parallelism on the bonding quality was experimentally demonstrated. The sensor was successfully applied to the measurement of parallelism in the COG-bonding process with an accuracy of more than three times that of the conventional method using prescale pressure films

  12. Fusion bonding of Si wafers investigated by x ray diffraction

    DEFF Research Database (Denmark)

    Weichel, Steen; Grey, Francois; Rasmussen, Kurt

    2000-01-01

    The interface structure of bonded Si(001) wafers with twist angle 6.5 degrees is studied as a function of annealing temperature. An ordered structure is observed in x-ray diffraction by monitoring a satellite reflection due to the periodic modulation near the interface, which results from...

  13. Incident angle dependence of reactions between graphene and hydrogen atom by molecular dynamics simulation

    International Nuclear Information System (INIS)

    Saito, Seiki; Nakamura, Hiroaki; Ito, Atsushi

    2010-01-01

    Incident angle dependence of reactions between graphene and hydrogen atoms are obtained qualitatively by classical molecular dynamics simulation under the NVE condition with modified Brenner reactive empirical bond order (REBO) potential. Chemical reaction depends on two parameters, i.e., polar angle θ and azimuthal angle φ of the incident hydrogen. From the simulation results, it is found that the reaction rates strongly depend on polar angle θ. Reflection rate becomes larger with increasing θ, and the θ dependence of adsorption rate is also found. The θ dependence is caused by three dimensional structure of the small potential barrier which covers adsorption sites. φ dependence of penetration rate is also found for large θ. (author)

  14. Fabrication and Characterization of Capacitive Micromachined Ultrasonic Transducers with Low-Temperature Wafer Direct Bonding

    Directory of Open Access Journals (Sweden)

    Xiaoqing Wang

    2016-12-01

    Full Text Available This paper presents a fabrication method of capacitive micromachined ultrasonic transducers (CMUTs by wafer direct bonding, which utilizes both the wet chemical and O2plasma activation processes to decrease the bonding temperature to 400 °C. Two key surface properties, the contact angle and surface roughness, are studied in relation to the activation processes, respectively. By optimizing the surface activation parameters, a surface roughness of 0.274 nm and a contact angle of 0° are achieved. The infrared images and static deflection of devices are assessed to prove the good bonding effect. CMUTs having silicon membranes with a radius of 60 μm and a thickness of 2 μm are fabricated. Device properties have been characterized by electrical and acoustic measurements to verify their functionality and thus to validate this low-temperature process. A resonant frequency of 2.06 MHz is obtained by the frequency response measurements. The electrical insertion loss and acoustic signal have been evaluated. This study demonstrates that the CMUT devices can be fabricated by low-temperature wafer direct bonding, which makes it possible to integrate them directly on top of integrated circuit (IC substrates.

  15. Effect of Oxygen Inhibition Layer of Universal Adhesives on Enamel Bond Fatigue Durability and Interfacial Characteristics With Different Etching Modes.

    Science.gov (United States)

    Ouchi, H; Tsujimoto, A; Nojiri, K; Hirai, K; Takamizawa, T; Barkmeier, W W; Latta, M A; Miyazaki, M

    The purpose of this study was to evaluate the effect of the oxygen inhibition layer of universal adhesive on enamel bond fatigue durability and interfacial characteristics with different etching modes. The three universal adhesives used were Scotchbond Universal Adhesive (3M ESPE, St Paul, MN, USA), Adhese Universal (Ivoclar Vivadent, Schaan, Lichtenstein), and G-Premio Bond (GC, Tokyo, Japan). The initial shear bond strength and shear fatigue strength to enamel was determined in the presence and absence of the oxygen inhibition layer, with and without phosphoric acid pre-etching. The water contact angle was also measured in all groups using the sessile drop method. The enamel bonding specimens with an oxygen inhibition layer showed significantly higher (padhesive type and etching mode. Moreover, the water contact angles on the specimens with an oxygen inhibition layer were significantly lower (puniversal adhesives significantly increases the enamel bond fatigue durability and greatly changes interfacial characteristics, suggesting that the bond fatigue durability and interfacial characteristics of these adhesives strongly rely on its presence.

  16. Ray-tracing studies for a whole-viewing-angle retroreflector

    International Nuclear Information System (INIS)

    Yang, B.; Friedsam, H.

    2000-01-01

    The APS Survey and Alignment team uses LEICA laser trackers for the majority of their alignment tasks. These instruments utilize several different retroreflectors for tracking the path of the laser interferometer. Currently in use are open-air corner cubes with an acceptance angle of ±20 degree, corner cube prisms with an acceptance angle of ±50degree, and a Cat's eye with an acceptance angle of ±60degree. Best measurement results can be achieved by using an open-air corner cube that eliminates the need for the laser beam to travel through a different medium before it returns to the instrument detector. However, the trade off is a small acceptance angle. In order to overcome the limitations of the small acceptance angles, Takatsuji et al. has proposed the creation of a full-viewing-angle retroreflector. Based on the notion that the radius R 1 of a common Cat's eye is proportional to R 2 , one can write: R 1 = (n minus 1)R 2 . In the case that n, the refractive index of glass, equals 2, the radii R 1 and R 2 are identical, and one can create a solid sphere Cat's eye. This design has the advantages that no adhesives are used to bond the two hemispheres together, misalignments between the hemispheres are not an issue, and most importantly, larger acceptance angles are possible. This paper shows the results of their ray tracing calculations characterizing the geometrical optics

  17. A dense and strong bonding collagen film for carbon/carbon composites

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Sheng; Li, Hejun, E-mail: lihejun@nwpu.edu.cn; Li, Kezhi; Lu, Jinhua; Zhang, Leilei

    2015-08-30

    Graphical abstract: - Highlights: • Significantly enhancement of biocompatibility on C/C composites by preparing a collagen film. • The dense and continuous collagen film had a strong bonding strength with C/C composites after dehydrathermal treatment (DHT) crosslink. • Numerous oxygen-containing functional groups formed on the surface of C/C composites without matrix damage. - Abstract: A strong bonding collagen film was successfully prepared on carbon/carbon (C/C) composites. The surface conditions of the modified C/C composites were detected by contact angle measurements, scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and Raman spectra. The roughness, optical morphology, bonding strength and biocompatibility of collagen films at different pH values were detected by confocal laser scanning microscope (CLSM), universal test machine and cytology tests in vitro. After a 4-h modification in 30% H{sub 2}O{sub 2} solution at 100 °C, the contact angle on the surface of C/C composites was decreased from 92.3° to 65.3°. Large quantities of hydroxyl, carboxyl and carbonyl functional groups were formed on the surface of the modified C/C composites. Then a dense and continuous collagen film was prepared on the modified C/C substrate. Bonding strength between collagen film and C/C substrate was reached to 8 MPa level when the pH value of this collagen film was 2.5 after the preparing process. With 2-day dehydrathermal treatment (DHT) crosslinking at 105 °C, the bonding strength was increased to 12 MPa level. At last, the results of in vitro cytological test showed that this collagen film made a great improvement on the biocompatibility on C/C composites.

  18. A dense and strong bonding collagen film for carbon/carbon composites

    International Nuclear Information System (INIS)

    Cao, Sheng; Li, Hejun; Li, Kezhi; Lu, Jinhua; Zhang, Leilei

    2015-01-01

    Graphical abstract: - Highlights: • Significantly enhancement of biocompatibility on C/C composites by preparing a collagen film. • The dense and continuous collagen film had a strong bonding strength with C/C composites after dehydrathermal treatment (DHT) crosslink. • Numerous oxygen-containing functional groups formed on the surface of C/C composites without matrix damage. - Abstract: A strong bonding collagen film was successfully prepared on carbon/carbon (C/C) composites. The surface conditions of the modified C/C composites were detected by contact angle measurements, scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and Raman spectra. The roughness, optical morphology, bonding strength and biocompatibility of collagen films at different pH values were detected by confocal laser scanning microscope (CLSM), universal test machine and cytology tests in vitro. After a 4-h modification in 30% H 2 O 2 solution at 100 °C, the contact angle on the surface of C/C composites was decreased from 92.3° to 65.3°. Large quantities of hydroxyl, carboxyl and carbonyl functional groups were formed on the surface of the modified C/C composites. Then a dense and continuous collagen film was prepared on the modified C/C substrate. Bonding strength between collagen film and C/C substrate was reached to 8 MPa level when the pH value of this collagen film was 2.5 after the preparing process. With 2-day dehydrathermal treatment (DHT) crosslinking at 105 °C, the bonding strength was increased to 12 MPa level. At last, the results of in vitro cytological test showed that this collagen film made a great improvement on the biocompatibility on C/C composites

  19. Scalable bonding of nanofibrous polytetrafluoroethylene (PTFE) membranes on microstructures

    Science.gov (United States)

    Mortazavi, Mehdi; Fazeli, Abdolreza; Moghaddam, Saeed

    2018-01-01

    Expanded polytetrafluoroethylene (ePTFE) nanofibrous membranes exhibit high porosity (80%-90%), high gas permeability, chemical inertness, and superhydrophobicity, which makes them a suitable choice in many demanding fields including industrial filtration, medical implants, bio-/nano- sensors/actuators and microanalysis (i.e. lab-on-a-chip). However, one of the major challenges that inhibit implementation of such membranes is their inability to bond to other materials due to their intrinsic low surface energy and chemical inertness. Prior attempts to improve adhesion of ePTFE membranes to other surfaces involved surface chemical treatments which have not been successful due to degradation of the mechanical integrity and the breakthrough pressure of the membrane. Here, we report a simple and scalable method of bonding ePTFE membranes to different surfaces via the introduction of an intermediate adhesive layer. While a variety of adhesives can be used with this technique, the highest bonding performance is obtained for adhesives that have moderate contact angles with the substrate and low contact angles with the membrane. A thin layer of an adhesive can be uniformly applied onto micro-patterned substrates with feature sizes down to 5 µm using a roll-coating process. Membrane-based microchannel and micropillar devices with burst pressures of up to 200 kPa have been successfully fabricated and tested. A thin layer of the membrane remains attached to the substrate after debonding, suggesting that mechanical interlocking through nanofiber engagement is the main mechanism of adhesion.

  20. Analyzing the installation angle error of a SAW torque sensor

    International Nuclear Information System (INIS)

    Fan, Yanping; Ji, Xiaojun; Cai, Ping

    2014-01-01

    When a torque is applied to a shaft, normal strain oriented at ±45° direction to the shaft axis is at its maximum, which requires two one-port SAW resonators to be bonded to the shaft at ±45° to the shaft axis. In order to make the SAW torque sensitivity high enough, the installation angle error of two SAW resonators must be confined within ±5° according to our design requirement. However, there are few studies devoted to the installation angle analysis of a SAW torque sensor presently and the angle error was usually obtained by a manual method. Hence, we propose an approximation method to analyze the angle error. First, according to the sensitive mechanism of the SAW device to torque, the SAW torque sensitivity is deduced based on the linear piezoelectric constitutive equation and the perturbation theory. Then, when a torque is applied to the tested shaft, the stress condition of two SAW resonators mounted with an angle deviating from ±45° to the shaft axis, is analyzed. The angle error is obtained by means of the torque sensitivities of two orthogonal SAW resonators. Finally, the torque measurement system is constructed and the loading and unloading experiments are performed twice. The torque sensitivities of two SAW resonators are obtained by applying average and least square method to the experimental results. Based on the derived angle error estimation function, the angle error is estimated about 3.447°, which is close to the actual angle error 2.915°. The difference between the estimated angle and the actual angle is discussed. The validity of the proposed angle error analysis method is testified to by the experimental results. (technical design note)

  1. The structure of formate on TiO{sub 2}(110) by scanned-energy and scanned-angle photoelectron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Thevuthasan, S.; Kim, Y.J.; Herman, G.S. [Pacific Northwest National Laboratory, Richland, WA (United States)] [and others

    1997-04-01

    There is a considerable interest in understanding the interaction of small organic molecules with oxide surfaces. The chemistry of formate interactions with TiO{sub 2}(110) has been investigated by several groups, but there is little information on the structure of the adsorbate/surface complex. Recently the authors combined high-energy x-ray photoelectron diffraction (XPD) measurements at PNNL with low-energy scanned-angle and scanned-energy photoelectron diffraction measurements at the ALS to investigate the structure of the formate ion on TiO{sub 2}(110) in detail. The high-energy XPD results reveal that formate binds through the oxygens in a bidentate fashion to Ti cation rows along the [001] direction with an O-C-O bond angle of about 126{degrees}. Low-energy photoelectron diffraction data, which is briefly described below, was used to identify the specific bonding geometry, including the bond length between the Ti cation and the oxygen in the formate.

  2. Linear-to-λ-Shape P-O-P Bond Transmutation in Polyphosphates with Infinite (PO3)∞ Chain.

    Science.gov (United States)

    Wang, Ying; Li, Lin; Han, Shujuan; Lei, Bing-Hua; Abudoureheman, Maierhaba; Yang, Zhihua; Pan, Shilie

    2017-09-05

    A new metal polyphosphate, α-CsBa 2 (PO 3 ) 5 , exhibiting the first example of a linear P-O-P bond angle in a one-dimensional (PO 3 ) ∞ chain has been reported. Interestingly, α → β phase transition occurs in CsBa 2 (PO 3 ) 5 along with the P-O-P bonds varying from linear to λ-shape, suggesting that α-CsBa 2 (PO 3 ) 5 with unfavorable linear P-O-P bonds is more stable at ambient temperature.

  3. The Effect of Bond Albedo on Venus' Atmospheric and Surface Temperatures

    Science.gov (United States)

    Bullock, M. A.; Limaye, S. S.; Grinspoon, D. H.; Way, M.

    2017-12-01

    In spite of Venus' high planetary albedo, sufficient solar energy reaches the surface to drive a powerful greenhouse effect. The surface temperature is three times higher than it would be without an atmosphere. However, the details of the energy balance within Venus' atmosphere are poorly understood. Half of the solar energy absorbed within the clouds, where most of the solar energy is absorbed, is due to an unknown agent. One of the challenges of modeling Venus' atmosphere has been to account for all the sources of opacity sufficient to generate a globally averaged surface temperature of 735 K, when only 2% of the incoming solar energy is deposited at the surface. The wavelength and spherically integrated albedo, or Bond albedo, has typically been cited as between 0.7 and 0.82 (Colin 1983). Yet, recent photometry of Venus at extended phase angles between 2 and 179° indicate a Bond albedo of 0.90 (Mallama et al., 2006). The authors note an increase in cloud top brightness at phase angles fixed. Figure 1b (right). Venus surface temperature as Bond Albedo changes. Radiative-convective equilibrium models predict the correct globally averaged surface temperature at a=0.81. Calculations here show that a Bond albedo of a=0.9 would yield a surface temperature of 666.4 K, about 70 K too low, unless there is additional thermal absorption within the atmosphere that is not understood. Colin, L.,, Venus, University of Arizona Press, Tucson, 1983, pp 10-26. Mallama, A., et al., 2006. Icarus. 182, 10-22.

  4. Non-silicon substrate bonding mediated by poly(dimethylsiloxane) interfacial coating

    Science.gov (United States)

    Zhang, Hainan; Lee, Nae Yoon

    2015-02-01

    In this paper, we introduce a simple and robust strategy for bonding poly(dimethylsiloxane) (PDMS) with various thermoplastic substrates to fabricate a thermoplastic-based closed microfluidic device and examine the feasibility of using the proposed method for realizing plastic-plastic bonding. The proposed bonding strategy was realized by first coating amine functionality on an oxidized thermoplastic surface. Next, the amine-functionalized surface was reacted with a monolayer of low-molecular-weight PDMS, terminated with epoxy functionality, by forming a robust amine-epoxy bond. Both the PDMS-coated thermoplastic and PDMS were then oxidized and permanently assembled at 25 °C under a pressure of 0.1 MPa for 15 min, resulting in PDMS-like surfaces on all four inner walls of the microchannel. Surface characterizations were conducted, including water contact angle measurement, X-ray photoelectron spectroscopy (XPS), and fluorescence measurement, to confirm the successful coating of the thin PDMS layer on the plastic surface, and the bond strength was analyzed by conducting a peel test, burst test, and leakage test. Using the proposed method, we could successfully bond various thermoplastics such as poly(methylmethacrylate) (PMMA), polycarbonate (PC), polystyrene (PS), and poly(ethylene terephthalate) (PET) with PDMS without the collapse or deformation of the microchannel, and the proposed method was successfully extended to the bonding of two thermoplastics, PMMA, and PC.

  5. The influence of adherent surface preparation on bond durability

    International Nuclear Information System (INIS)

    Rider, A.N.; Arnott, D.R.; Olsson-Jacques, C.L.

    1999-01-01

    Full text: One of the major factors limiting the use of adhesive bonding is the problem associated with the production of adhesive joints that can maintain their initial strength over long periods of time in hostile environments. It is well known that the adherent surface preparation method is critical to the formation of a durable adhesive bond. Work presented in this paper focuses on the critical aspects of the surface preparation of aluminium employed for the manufacture of aluminium-epoxy joints. The surface preparation procedure examined is currently employed by the RAAF for repairs requiring metal to adhesive bonding. The influence of each step in the surface preparation on the ultimate bond durability performance of the adhesive joint is examined by a combination of methods. Double cantilever wedge style adhesive joints are loaded in mode 1 opening and then exposed to a humid environment. X-ray photoelectron spectroscopy (XPS) and contact angle measurements of the aluminium adherent before bonding provides information about the adherent surface chemistry. XPS is also employed to analyse the surfaces of the bonded specimens post failure to establish the locus of fracture. This approach provides important information regarding the properties influencing bond durability as well as the bond failure mechanisms. A two step bond degradation model was developed to qualitatively describe the observed bond durability performance and fracture data. The first step involves controlled moisture ingress by stress induced microporosity of the adhesive in the interfacial region. The second step determines the locus of fracture through the relative dominance of one of three competitive processes, viz: oxide degradation, polymer desorption, or polymer degradation. A key element of the model is the control exercised over the interfacial microporosity by the combined interaction of stress and the relative densities of strong and weak linkages at the metal to adhesive interface

  6. Crystal structure, vibrational spectra and DFT studies of hydrogen bonded 1,2,4-triazolium hydrogenselenate

    Science.gov (United States)

    Arjunan, V.; Thirunarayanan, S.; Marchewka, M. K.; Mohan, S.

    2017-10-01

    The new hydrogen bonded molecular complex 1,2,4-triazolium hydrogenselenate (THS) is prepared by the reaction of 1H-1,2,4-triazole and selenic acid. This complex is stabilised by N-H⋯O and C-H⋯O hydrogen bonding and electrostatic attractive forces between 1H and 1,2,4-triazolium cations and hydrogen selenate anions. The XRD studies revealed that intermolecular proton transfer occur from selenic acid to 1H-1,2,4-triazole molecule, results in the formation of 1,2,4-triazolium hydrogenselenate which contains 1,2,4-triazolium cations and hydrogenselenate anions. The molecular structure of THS crystal has also been optimised by using Density Functional Theory (DFT) using B3LYP/cc-pVTZ and B3LYP/6-311++G** methods in order to find the whole characteristics of the molecular complex. The theoretical structural parameters such as bond length, bond angle and dihedral angle determined by DFT methods are well agreed with the XRD parameters. The atomic charges and thermodynamic properties are also calculated and analysed. The energies of frontier molecular orbitals HOMO, LUMO, HOMO-1, LUMO+1 and LUMO-HUMO energy gap are calculated to understand the kinetic stability and chemical reactivity of the molecular complex. The natural bond orbital analysis (NBO) has been performed in order to study the intramolecular bonding interactions and delocalisation of electrons. These intra molecular charge transfer may induce biological activities such as antimicrobials, antiinflammatory, antifungal etc. The complete vibrational assignments of THS have been performed by using FT-IR and FT-Raman spectra.

  7. Measurements of the weak bonding interfacial stiffness by using air-coupled ultrasound

    Directory of Open Access Journals (Sweden)

    Wen-Lin Wu

    2017-12-01

    Full Text Available An air-coupled ultrasonic method, focusing on the problem that weak bonding interface is difficult to accurately measure using conventional nondestructive testing technique, is proposed to evaluate the bond integrity. Based on the spring model and the potential function theory, a theoretical model is established to predict the through-transmission spectrum in double-layer adhesive structure. The result of a theoretical algorithm shows that all the resonant transmission peaks move towards higher frequency with the increase of the interfacial stiffness. The reason for these movements is related to either the normal stiffness (KN or the transverse stiffness (KT. A method to optimize the measurement parameters (i.e. the incident angle and testing frequency is put forward through analyzing the relationship between the resonant transmission peaks and the interfacial spring stiffness at the frequency below 1MHz. The air-coupled ultrasonic testing experiments at the normal and oblique incident angle respectively are carried out to verify the theoretical analysis and to accurately measure the interfacial stiffness of double-layer adhesive composite plate. The experimental results are good agreement with the results from the theoretical algorithm, and the relationship between bonding time and interfacial stiffness is presented at the end of this paper.

  8. Small-angle and wide-angle X-ray scattering study on the bilayer structure of synthetic and bovine heart cardiolipins

    International Nuclear Information System (INIS)

    Takahashi, Hiroshi; Hayakawa, Tomohiro; Ito, Kazuki; Takata, Masaki; Kobayashi, Toshihide

    2010-01-01

    Cardiolipin (CL) is a membrane phospholipid containing four fatty acid chains. CL plays an important role in energy transformation in mitochondria. The disorder of CL biosynthesis is involved in a genetic disease, Barth syndrome. Alteration of fatty acid composition of CLs has been found in Barth syndrome patients, i.e., the decrease of unsaturated fatty acid chains. In this study, we investigated how the degree of saturation alters the structure of CL bilayers by using X-ray scattering. Bovine heart CL and two synthetic CLs were compared. Fatty acid compositions of these three CLs have different saturation. Small-angle X-ray scattering data showed that the decrease of the number of double bonds in the unsaturated fatty acid chains causes to thicken the CL bilayers. In addition, wide-angle X-ray scattering data suggested that the decrease reduces the degree of disorder of the hydrophobic region in a liquid crystalline phase. These results may be related to the dysfunction of mitochondria in Barth syndrome.

  9. Small-angle and wide-angle X-ray scattering study on the bilayer structure of synthetic and bovine heart cardiolipins

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hiroshi [Biophysics Laboratory, Department of Chemistry and Chemical Biology, Gunma University, Maebashi, Gunma, 371-8510 (Japan); Hayakawa, Tomohiro [Life Science Laboratory, Advanced Materials Laboratories, Sony Corporation, Yushima, Bunkyo-ku, Tokyo, 113-8510 (Japan); Ito, Kazuki; Takata, Masaki [Structural Materials Science Laboratory, RIKEN SPring-8 Center, Sayo, Hyogo 679-5148 (Japan); Kobayashi, Toshihide, E-mail: htakahas@chem-bio.gunma-u.ac.j [Lipid Biology Laboratory, RIKEN, Wako, Saitama 351-0198 (Japan)

    2010-10-01

    Cardiolipin (CL) is a membrane phospholipid containing four fatty acid chains. CL plays an important role in energy transformation in mitochondria. The disorder of CL biosynthesis is involved in a genetic disease, Barth syndrome. Alteration of fatty acid composition of CLs has been found in Barth syndrome patients, i.e., the decrease of unsaturated fatty acid chains. In this study, we investigated how the degree of saturation alters the structure of CL bilayers by using X-ray scattering. Bovine heart CL and two synthetic CLs were compared. Fatty acid compositions of these three CLs have different saturation. Small-angle X-ray scattering data showed that the decrease of the number of double bonds in the unsaturated fatty acid chains causes to thicken the CL bilayers. In addition, wide-angle X-ray scattering data suggested that the decrease reduces the degree of disorder of the hydrophobic region in a liquid crystalline phase. These results may be related to the dysfunction of mitochondria in Barth syndrome.

  10. Optical modulation in nematic phase of halogen substituted hydrogen bonded liquid crystals

    Science.gov (United States)

    Vijayakumar, V. N.; Madhu Mohan, M. L. N.

    2012-01-01

    A series of halogen-substituted hydrogen-bonded liquid crystalline complexes have been designed and synthesised. A successful attempt has been made to form complementary hydrogen bonding between the dodecyloxy benzoic acid (12BAO) and halogen-substituted benzoic acids and the physical properties exhibited by the individual complexes are studied. The complexes obtained are analysed by polarising optical microscope (POM), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) and dielectric studies. The formation of complementary hydrogen bond is confirmed through FTIR spectra. An interesting feature of this series is the observation of a field-induced transition (FiT) in nematic phase. Another interesting phenomenon is the observation of a new smectic X phase (worm-like texture) in all the synthesised complexes. Dielectric relaxation studies in the smectic C phase of these hydrogen bonded complexes along with the Arrhenius and the Cole-Cole plots are discussed. Optical tilt angle in smectic C phase and the corresponding fitted data analysis concur with the Mean field theory prediction.

  11. Topological Qubits from Valence Bond Solids

    Science.gov (United States)

    Wang, Dong-Sheng; Affleck, Ian; Raussendorf, Robert

    2018-05-01

    Topological qubits based on S U (N )-symmetric valence-bond solid models are constructed. A logical topological qubit is the ground subspace with twofold degeneracy, which is due to the spontaneous breaking of a global parity symmetry. A logical Z rotation by an angle 2 π /N , for any integer N >2 , is provided by a global twist operation, which is of a topological nature and protected by the energy gap. A general concatenation scheme with standard quantum error-correction codes is also proposed, which can lead to better codes. Generic error-correction properties of symmetry-protected topological order are also demonstrated.

  12. A novel bonding method for large scale poly(methyl methacrylate) micro- and nanofluidic chip fabrication

    Science.gov (United States)

    Qu, Xingtian; Li, Jinlai; Yin, Zhifu

    2018-04-01

    Micro- and nanofluidic chips are becoming increasing significance for biological and medical applications. Future advances in micro- and nanofluidics and its utilization in commercial applications depend on the development and fabrication of low cost and high fidelity large scale plastic micro- and nanofluidic chips. However, the majority of the present fabrication methods suffer from a low bonding rate of the chip during thermal bonding process due to air trapping between the substrate and the cover plate. In the present work, a novel bonding technique based on Ar plasma and water treatment was proposed to fully bond the large scale micro- and nanofluidic chips. The influence of Ar plasma parameters on the water contact angle and the effect of bonding conditions on the bonding rate and the bonding strength of the chip were studied. The fluorescence tests demonstrate that the 5 × 5 cm2 poly(methyl methacrylate) chip with 180 nm wide and 180 nm deep nanochannels can be fabricated without any block and leakage by our newly developed method.

  13. Structure and weak hydrogen bonds in liquid acetaldehyde

    Directory of Open Access Journals (Sweden)

    Cordeiro Maria A. M.

    2004-01-01

    Full Text Available Monte Carlo simulations have been performed to investigate the structure and hydrogen bonds formation in liquid acetaldehyde. An all atom model for the acetaldehyde have been optimized in the present work. Theoretical values obtained for heat of vaporisation and density of the liquid are in good agreement with experimental data. Graphics of radial distribution function indicate a well structured liquid compared to other similar dipolar organic liquids. Molecular mechanics minimization in gas phase leads to a trimer of very stable structure. The geometry of this complex is in very good agreement with the rdf. The shortest site-site correlation is between oxygen and the carbonyl hydrogen, suggesting that this correlation play a important role in the liquid structure and properties. The OxxxH average distance and the C-HxxxO angle obtained are characteristic of weak hydrogen bonds.

  14. Angle-adjustable density field formulation for the modeling of crystalline microstructure

    Science.gov (United States)

    Wang, Zi-Le; Liu, Zhirong; Huang, Zhi-Feng

    2018-05-01

    A continuum density field formulation with particle-scale resolution is constructed to simultaneously incorporate the orientation dependence of interparticle interactions and the rotational invariance of the system, a fundamental but challenging issue in modeling the structure and dynamics of a broad range of material systems across variable scales. This generalized phase field crystal-type approach is based upon the complete expansion of particle direct correlation functions and the concept of isotropic tensors. Through applications to the modeling of various two- and three-dimensional crystalline structures, our study demonstrates the capability of bond-angle control in this continuum field theory and its effects on the emergence of ordered phases, and provides a systematic way of performing tunable angle analyses for crystalline microstructures.

  15. Non-silicon substrate bonding mediated by poly(dimethylsiloxane) interfacial coating

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hainan [Department of BioNano Technology, Gachon University, Gyeonggi-do 461-701 (Korea, Republic of); Lee, Nae Yoon, E-mail: nylee@gachon.ac.kr [Department of BioNano Technology, Gachon University, Gyeonggi-do 461-701 (Korea, Republic of); Gachon Medical Research Institute, Gil Medical Center, Inchon 405-760 (Korea, Republic of)

    2015-02-01

    Graphical abstract: Low-molecular-weight PDMS coating on the surfaces of non-silicon substrates such as thermoplastics ensures permanent sealing with a silicone elastomer, PDMS, simply by surface oxidization followed by ambient condition bonding, mediated by a robust siloxane bond formation at the interface. - Highlights: • Non-silicon thermoplastic was bonded with poly(dimethylsiloxane) silicone elastomer. • Low-molecular-weight PDMS interfacial layer was chemically coated on thermoplastic. • Bonding was realized by corona treatment and physical contact under ambient condition. • Bonding is universally applicable regardless of thermoplastic type and property. • Homogeneous PDMS-like microchannel was obtained inside the thermoplastic-PDMS microdevice. - Abstract: In this paper, we introduce a simple and robust strategy for bonding poly(dimethylsiloxane) (PDMS) with various thermoplastic substrates to fabricate a thermoplastic-based closed microfluidic device and examine the feasibility of using the proposed method for realizing plastic–plastic bonding. The proposed bonding strategy was realized by first coating amine functionality on an oxidized thermoplastic surface. Next, the amine-functionalized surface was reacted with a monolayer of low-molecular-weight PDMS, terminated with epoxy functionality, by forming a robust amine-epoxy bond. Both the PDMS-coated thermoplastic and PDMS were then oxidized and permanently assembled at 25 °C under a pressure of 0.1 MPa for 15 min, resulting in PDMS-like surfaces on all four inner walls of the microchannel. Surface characterizations were conducted, including water contact angle measurement, X-ray photoelectron spectroscopy (XPS), and fluorescence measurement, to confirm the successful coating of the thin PDMS layer on the plastic surface, and the bond strength was analyzed by conducting a peel test, burst test, and leakage test. Using the proposed method, we could successfully bond various thermoplastics such

  16. Ceramic Inlays: Effect of Mechanical Cycling and Ceramic Type on Restoration-dentin Bond Strength.

    Science.gov (United States)

    Trindade, F Z; Kleverlaan, C J; da Silva, L H; Feilzer, A J; Cesar, P F; Bottino, M A; Valandro, L F

    2016-01-01

    This study aimed to evaluate the bond strength between dentin and five different ceramic inlays in permanent maxillary premolars, with and without mechanical cycling. One hundred permanent maxillary premolars were prepared and divided into 10 groups (n=10) according to the ceramic system (IPS e.Max Press; IPS e.Max CAD; Vita PM9; Vita Mark II; and Vita VM7) and the mechanical cycling factor (with and without [100 N, 2 Hz, 1.2×10(6) cycles]). The inlays were adhesively cemented, and all of the specimens were cut into microbars (1×1 mm, nontrimming method), which were tested under microtensile loading. The failure mode was classified and contact angle, roughness, and microtopographic analyses were performed on each ceramic surface. The mechanical cycling had a significant effect (p=0.0087) on the bond strength between dentin and IPS e.max Press. The Vita Mark II group had the highest bond strength values under both conditions, with mechanical cycling (9.7±1.8 MPa) and without (8.2±1.9 MPa), while IPS e.Max CAD had the lowest values (2.6±1.6 and 2.2±1.4, respectively). The adhesive failure mode at the ceramic/cement interface was the most frequent. Vita Mark II showed the highest value of average roughness. IPS e.max Press and Vita Mark II ceramics presented the lowest contact angles. In conclusion, the composition and manufacturing process of ceramics seem to have an influence on the ceramic surface and resin cement bond strength. Mechanical cycling did not cause significant degradation on the dentin and ceramic bond strength under the configuration used.

  17. Peculiarities of structure of rare earth β-diketonates and carboxylates with mostly ionic type of bond

    International Nuclear Information System (INIS)

    Kuz'mina, N.P.; Martynenko, L.I.

    1996-01-01

    X-ray diffraction data on β-diketonates and carboxylates of rare earths (3) have been analyzed. Essential features of the compounds structure have been formulated. It is shown that in the compounds mentioned irregular distortions of chelate cycles over the length and angles of bonds are observed, there is no regularity in the ratios of metal-ligand bridge and chelate bond lengths both in the series of compounds of different composition and inside one compound. 2 refs

  18. Analysis on Adhesively-Bonded Joints of FRP-steel Composite Bridge under Combined Loading: Arcan Test Study and Numerical Modeling

    Directory of Open Access Journals (Sweden)

    Xu Jiang

    2016-01-01

    Full Text Available The research presented in this paper is an experimental study and numerical analysis on mechanical behavior of the adhesively-bonded joint between FRP sandwich bridge deck and steel girder. Generally, there are three typical stress states in the adhesively-bonded joint: shear stress, tensile stress, and combination of both. To realize these stress states in the adhesively-bonded joint during tests, a specific loading device is developed with the capacity of providing six different loading angles, which are 0°(pure tension, 18°, 36°, 54°, 72° and 90°(pure shear. Failure modes of adhesively-bonded joints are investigated. It indicates that, for the pure shear loading, the failure mode is the cohesive failure (near the interface between the adhesive layer and the steel support in the adhesive layer. For the pure tensile and combined loading conditions, the failure mode is the combination of fiber breaking, FRP delamination and interfacial adhesion failure between the FRP sandwich deck and the adhesive layer. The load-bearing capacities of adhesive joints under combined loading are much lower than those of the pure tensile and pure shear loading conditions. According to the test results of six angle loading conditions, a tensile/shear failure criterion of the adhesively-bonded joint is obtained. By using Finite Element (FE modeling method, linear elastic simulations are performed to characterize the stress distribution throughout the adhesively-bonded joint.

  19. Saturated bonds and anomalous electronic transport in transition-metal aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, T.

    2006-05-22

    This thesis deals with the special electronic properties of the transition-metal aluminides. Following quasicrystals and their approximants it is shown that even materials with small elementary cells exhibit the same surprising effects. So among the transition-metal aluminides also semi-metallic and semiconducting compounds exist, although if they consist of classic-metallic components like Fe, Al, or Cr. These properties are furthermore coupled with a deep pseusogap respectively gap in the density of states and strongly covalent bonds. Bonds are described in this thesis by two eseential properties. First by the bond charge and second by the energetic effect of the bond. It results that in the caes of semiconducting transition-metal aluminides both a saturation of certain bonds and a bond-antibond alteration in the Fermi level is present. By the analysis of the near-order in form of the so-calles coordination polyeders it has been succeeded to establish a simple rule for semiconductors, the five-fold coordination for Al. This rule states that aluminium atoms with their three valence electrons are not able to build more than five saturated bonds to their nearest transition-metal neighbours. In excellent agreement with the bond angles predicted theoretically under assumption of equal-type bonds it results that all binary transition-element aluminide semiconductors exhibit for the Al atoms the same near order. Typical values for specific resistances of the studied materials at room temperature lie in the range of some 100 {mu}{omega}cm, which is farly larger than some 10 {mu}{omega}cm as in the case of the unalloyed metals. SUrprising is furthermore a high transport anisotropy with a ratio of the specific resistances up to 3.0. An essential result of this thesis can be seen in the coupling of the properties of the electronic transport and the bond properties. The small conducitivities could be explained by small values in the density of states and a bond

  20. In Vitro Comparison of the Bond Strength between Ceramic Repair Systems and Ceramic Materials and Evaluation of the Wettability.

    Science.gov (United States)

    Kocaağaoğlu, Hasan; Manav, Taha; Albayrak, Haydar

    2017-04-01

    When fracture of an all-ceramic restoration occurs, it can be necessary to repair without removing the restoration. Although there are many studies about the repair of metal-ceramic restorations, there are few about all-ceramic restorations. The aim of this study was to evaluate the shear bond strength between ceramic repair systems and esthetic core materials and to evaluate the wettability of all-ceramic core materials. Disk-like specimens (N = 90) made of three dental ceramic infrastructure materials (zirconia ceramic, alumina ceramic, glass ceramic) were polished with silicon carbide paper, prepared for bonding (abrasion with 30 μm diamond rotary cutting instrument). Thirty specimens of each infrastructure were obtained. Each infrastructure group was divided into three subgroups; they were bonded using 3 repair systems: Bisco Intraoral Repair Kit, Cimara & Cimara Zircon Repair System, and Clearfil Repair System. After 1200 thermocycles, shear bond strength was measured in a universal testing machine at a 0.5 mm/min crosshead speed. In addition, the contact angle values of the infrastructures after surface treatments were examined for wettability. Data were analyzed by using ANOVA and Tukey post hoc tests. Although there were no significant differences among the repair systems (p > 0.05) in the glass ceramic and zirconia groups, a significant difference was found among the repair systems in alumina infrastructure (p 0.05); however, a statistically significant difference was found among the repair systems (p < 0.05). No difference was found among the infrastructures and repair systems in terms of contact angle values. Cimara & Cimara Zircon Repair System had higher bond strength values than the other repair systems. Although no difference was found among the infrastructures and repair systems, contact wettability angle was decreased by surface treatments compared with polished surfaces. © 2015 by the American College of Prosthodontists.

  1. Investigation on the mechanism of nitrogen plasma modified PDMS bonding with SU-8

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chengxin; Yuan, Yong J., E-mail: yongyuan@swjtu.edu.cn

    2016-02-28

    Graphical abstract: - Highlights: • Different nitrogen plasma processes modified PDMS bonding with SU-8 had been studied. • The effect of nitrogen plasma modification would produce the best result and the recovery of PDMS hydrophobicity could be delayed. - Abstract: Polydimethylsiloxane (PDMS) and SU-8 are both widely used for microfluidic system. However, it is difficult to permanently seal SU-8 microfluidic channels using PDMS with conventional methods. Previous efforts of combining these two materials mainly employed oxygen plasma modified PDMS. The nitrogen plasma modification of PDMS bonding with SU-8 is rarely studied in recent years. In this work, the mechanism of nitrogen plasma modified PDMS bonding with SU-8 was investigated. The fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and contact angle of a water droplet were used to analyze the nitrogen plasma modified surface and the hydrophilic stability of PDMS samples. Pull-off tests were used for estimating the bonding effect of interface between nitrogen plasma modified PDMS and SU-8.

  2. Surface Characterization of Some Novel Bonded Phase Packing Materials for HPLC Columns Using MAS-NMR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Jude Abia

    2015-03-01

    Full Text Available Information on the surface properties of three novel chemically bonded phase packing materials for High performance liquid chromatography (HPLC were obtained using spectra obtained by solid state cross-polarization (CP magic-angle spinning (MAS nuclear magnetic resonance (NMR spectroscopic experiments for the 29Si, and 13C nuclei. These packing materials were: Cogent bidentate C18 bonded to type-C silica, hybrid packing materials XTerra MS C18, and XBridge Prep. C18. The spectra obtained using cross-polarization magic angle spinning (CP-MAS on the Cogent bidentate C18 bonded to type-C silica show the surface to be densely populated with hydride groups (Si-H, with a relative surface coverage exceeding 80%. The hybrid packing materials XTerra and XBridge gave spectra that reveal the silicon atoms to be bonded to organic moieties embedded in the molecular structure of these materials with over 90% of the alkyl silicon atoms found within the completely condensed silicon environments. The hydrolytic stability of these materials were investigated in acidic aqueous solutions at pHs of 7.0 and 3.0, and it was found that while the samples of XTerra and XBridge were not affected by hydrolysis at this pH range, the sample of Cogent lost a significant proportion of its Si-H groups after five days of treatment in acidic aqueous solution.

  3. Force-field parameters of the Psi and Phi around glycosidic bonds to oxygen and sulfur atoms.

    Science.gov (United States)

    Saito, Minoru; Okazaki, Isao

    2009-12-01

    The Psi and Phi torsion angles around glycosidic bonds in a glycoside chain are the most important determinants of the conformation of a glycoside chain. We determined force-field parameters for Psi and Phi torsion angles around a glycosidic bond bridged by a sulfur atom, as well as a bond bridged by an oxygen atom as a preparation for the next study, i.e., molecular dynamics free energy calculations for protein-sugar and protein-inhibitor complexes. First, we extracted the Psi or Phi torsion energy component from a quantum mechanics (QM) total energy by subtracting all the molecular mechanics (MM) force-field components except for the Psi or Phi torsion angle. The Psi and Phi energy components extracted (hereafter called "the remaining energy components") were calculated for simple sugar models and plotted as functions of the Psi and Phi angles. The remaining energy component curves of Psi and Phi were well represented by the torsion force-field functions consisting of four and three cosine functions, respectively. To confirm the reliability of the force-field parameters and to confirm its compatibility with other force-fields, we calculated adiabatic potential curves as functions of Psi and Phi for the model glycosides by adopting the Psi and Phi force-field parameters obtained and by energetically optimizing other degrees of freedom. The MM potential energy curves obtained for Psi and Phi well represented the QM adiabatic curves and also these curves' differences with regard to the glycosidic oxygen and sulfur atoms. Our Psi and Phi force-fields of glycosidic oxygen gave MM potential energy curves that more closely represented the respective QM curves than did those of the recently developed GLYCAM force-field. (c) 2009 Wiley Periodicals, Inc.

  4. Correlation between protein secondary structure, backbone bond angles, and side-chain orientations

    Science.gov (United States)

    Lundgren, Martin; Niemi, Antti J.

    2012-08-01

    We investigate the fine structure of the sp3 hybridized covalent bond geometry that governs the tetrahedral architecture around the central Cα carbon of a protein backbone, and for this we develop new visualization techniques to analyze high-resolution x-ray structures in the Protein Data Bank. We observe that there is a correlation between the deformations of the ideal tetrahedral symmetry and the local secondary structure of the protein. We propose a universal coarse-grained energy function to describe the ensuing side-chain geometry in terms of the Cβ carbon orientations. The energy function can model the side-chain geometry with a subatomic precision. As an example we construct the Cα-Cβ structure of HP35 chicken villin headpiece. We obtain a configuration that deviates less than 0.4 Å in root-mean-square distance from the experimental x-ray structure.

  5. A facile route for irreversible bonding of plastic-PDMS hybrid microdevices at room temperature.

    Science.gov (United States)

    Tang, Linzhi; Lee, Nae Yoon

    2010-05-21

    Plastic materials do not generally form irreversible bonds with poly(dimethylsiloxane) (PDMS) regardless of oxygen plasma treatment and a subsequent thermal process. In this paper, we perform plastic-PDMS bonding at room temperature, mediated by the formation of a chemically robust amine-epoxy bond at the interfaces. Various plastic materials, such as poly(methylmethacrylate) (PMMA), polycarbonate (PC), polyimide (PI), and poly(ethylene terephthalate) (PET) were adopted as choices for plastic materials. Irrespective of the plastic materials used, the surfaces were successfully modified with amine and epoxy functionalities, confirmed by the surface characterizations such as water contact angle measurements and X-ray photoelectron spectroscopy (XPS), and chemically robust and irreversible bonding was successfully achieved within 1 h at room temperature. The bonding strengths of PDMS with PMMA and PC sheets were measured to be 180 and 178 kPa, respectively, and their assemblies containing microchannel structures endured up to 74 and 84 psi (510 and 579 kPa) of introduced compressed air, respectively, without destroying the microdevices, representing a robust and highly stable interfacial bonding. In addition to microchannel-molded PDMS bonded with flat plastic substrates, microchannel-embossed plastics were also bonded with a flat PDMS sheet, and both types of bonded assemblies displayed sufficiently robust bonding, tolerating an intense influx of liquid whose per-minute injection volume was nearly 1000 to 2000 times higher than the total internal volume of the microchannel used. In addition to observing the bonding performance, we also investigated the potential of surface amine and epoxy functionalities as durable chemical adhesives by observing their storage-time-dependent bonding performances.

  6. Ray-tracing studies for a whole-viewing-angle retro-reflector

    International Nuclear Information System (INIS)

    Yang, B.; Friedsam, H.

    1999-01-01

    The APS Survey and Alignment team uses LEICA laser trackers for the majority of their alignment tasks. These instruments utilize several different retro-reflectors for tracking the path of the laser interferometer. Currently in use are open-air comer cubes with an acceptance angle of ±20 deg C, comer cube prisms with an acceptance angle of ±50 deg C, and a Cat's eye with an acceptance angle of ±60 deg C. Best measurement results can be achieved by using an open-air comer cube that eliminates the need for the laser beam to travel through a different medium before it returns to the instrument detector. However, the trade off is a small acceptance angle. In order to overcome the limitations of the small acceptance angles, Takatsuji et al. have proposed the creation of a full-viewing-angle retro-reflector. Based on the notion that the radius R 1 of a common Cat's eye is proportional to R 2 , one can write: R 1 = (n-1)R 2 In the case that n, the refractive index of glass, equals 2, the radii R 1 and R 2 are identical, and one can create a solid sphere Cat's eye. This design has the advantages that no adhesives are used to bond the two hemispheres together, misalignments between the hemispheres are not an issue, and most importantly, larger acceptance angles are possible. This paper shows the results of our ray tracing calculations characterizing the geometrical optics. In Section 2 we derived the analytical expressions for choosing the index of refraction n of a glass sphere based on the specifications of the reflected beam. We also provided an approximation for calculating the minimum radius of a reflector sphere based on efficiency considerations. Finally, in section 3, the analytically derived results were confirmed in a design study for a Cat's eye. (authors)

  7. Influence of air-powder polishing on bond strength and surface-free energy of universal adhesive systems.

    Science.gov (United States)

    Tamura, Yukie; Takamizawa, Toshiki; Shimamura, Yutaka; Akiba, Shunsuke; Yabuki, Chiaki; Imai, Arisa; Tsujimoto, Akimasa; Kurokawa, Hiroyasu; Miyazaki, Masashi

    2017-11-29

    The influences of air-powder polishing with glycine or sodium bicarbonate powders on shear bond strengths (SBS) and surface-free energies of universal adhesives were examined. Scotchbond Universal Adhesive (SU, 3M ESPE), G-Premio Bond (GP, GC), Adhese Universal (AU, Ivoclar Vivadent), and All-Bond Universal (AB, Bisco) were used in this study. Bovine dentin surfaces were air polished with glycine or sodium bicarbonate powders prior to the bonding procedure, and resin pastes were bonded to the dentin surface using universal adhesives. SBSs were determined after 24-h storage in distilled water at 37°C. Surface-free energy was then determined by measuring contact angles using three test liquids on dentin surfaces. Significantly lower SBSs were observed for dentin that was air-powder polished and surface-free energies were concomitantly lowered. This study indicated that air-powder polishing influences SBSs and surface-free energies. However, glycine powder produced smaller changes in these surface parameters than sodium bicarbonate.

  8. Discovering protein-ligand chalcogen bonding in the protein data bank using endocyclic sulfur-containing heterocycles as ligand search subsets.

    Science.gov (United States)

    Mitchell, Miguel O

    2017-09-24

    The chalcogen bond, the noncovalent, electrostatic attraction between covalently bonded atoms in group 16 and Lewis bases, is present in protein-ligand interactions based on X-ray structures deposited in the Protein Data Bank (PDB). Discovering protein-ligand chalcogen bonding in the PDB employed a strategy that focused on searching the database for protein complexes of five-membered, heterocyclic ligands containing endocyclic sulfur with endo electron-withdrawing groups (isothiazoles; thiazoles; 1,2,3-, 1,2.4-, 1,2,5-, 1,3,4-thiadiazoles) and thiophenes with exo electron-withdrawing groups, e.g., 2-chloro, 2-bromo, 2-amino, 2-alkylthio. Out of 930 ligands investigated, 33 or 3.5% have protein-ligand S---O interactions of which 31 are chalcogen bonds and two appear to be S---HO hydrogen bonds. The bond angles for some of the chalcogen bonds found in the PDB are less than 90°, and an electrostatic model is proposed to explain this phenomenon.

  9. Comparison of shear bond strength of the stainless steel metallic brackets bonded by three bonding systems

    Directory of Open Access Journals (Sweden)

    Mehdi Ravadgar

    2013-09-01

    Full Text Available Introduction: In orthodontic treatment, it is essential to establish a satisfactory bond between enamel and bracket. After the self-etch primers (SEPs were introduced for the facilitation of bracket bonding in comparison to the conventional etch-and-bond system, multiple studies have been carried out on their shear bond strengths which have yielded different results. This study was aimed at comparing shear bond strengths of the stainless steel metallic brackets bonded by three bonding systems. Methods: In this experimental in vitro study, 60 extracted human maxillary premolar teeth were randomly divided into three equal groups: in the first group, Transbond XT (TBXT light cured composite was bonded with Transbond plus self-etching primer (TPSEP in the second group, TBXT composite was bonded with the conventional method of acid etching and in the third group, the self cured composite Unite TM bonding adhesive was bonded with the conventional method of acid etching. In all the groups, Standard edgewise-022 metallic brackets (American Orthodontics, Sheboygan, USA were used. Twenty-four hours after the completion of thermocycling, shear bond strength of brackets was measured by Universal Testing Machine (Zwick. In order to compare the shear bond strengths of the groups, the variance analysis test (ANOVA was adopted and p≤0.05 was considered as a significant level. Results: Based on megapascal, the average shear bond strength for the first, second, and third groups was 8.27±1.9, 9.78±2, and 8.92±2.5, respectively. There was no significant difference in the shear bond strength of the groups. Conclusions: Since TPSEP shear bond strength is approximately at the level of the conventional method of acid etching and within the desirable range for orthodontic brackets shear bond strength, applying TPSEP can serve as a substitute for the conventional method of etch and bond, particularly in orthodontic operations.

  10. Comparison of shear bond strength of the stainless steel metallic brackets bonded by three bonding systems

    Directory of Open Access Journals (Sweden)

    Mehdi Ravadgar

    2013-09-01

    Full Text Available Introduction: In orthodontic treatment, it is essential to establish a satisfactory bond between enamel and bracket. After the self-etch primers (SEPs were introduced for the facilitation of bracket bonding in comparison to the conventional etch-and-bond system, multiple studies have been carried out on their shear bond strengths which have yielded different results. This study was aimed at comparing shear bond strengths of the stainless steel metallic brackets bonded by three bonding systems. Methods: In this experimental in vitro study, 60 extracted human maxillary premolar teeth were randomly divided into three equal groups: in the first group, Transbond XT (TBXT light cured composite was bonded with Transbond plus self-etching primer (TPSEP; in the second group, TBXT composite was bonded with the conventional method of acid etching; and in the third group, the self cured composite Unite TM bonding adhesive was bonded with the conventional method of acid etching. In all the groups, Standard edgewise-022 metallic brackets (American Orthodontics, Sheboygan, USA were used. Twenty-four hours after the completion of thermocycling, shear bond strength of brackets was measured by Universal Testing Machine (Zwick. In order to compare the shear bond strengths of the groups, the variance analysis test (ANOVA was adopted and p≤0.05 was considered as a significant level. Results: Based on megapascal, the average shear bond strength for the first, second, and third groups was 8.27±1.9, 9.78±2, and 8.92±2.5, respectively. There was no significant difference in the shear bond strength of the groups. Conclusions: Since TPSEP shear bond strength is approximately at the level of the conventional method of acid etching and within the desirable range for orthodontic brackets shear bond strength, applying TPSEP can serve as a substitute for the conventional method of etch and bond, particularly in orthodontic operations.

  11. [Effect of sandblasting particle sizes on bonding strength between porcelain and titanium fabricated by rapid laser forming].

    Science.gov (United States)

    Zhang, Li-jun; Wang, Zhong-yi; Gao, Bo; Gao, Yang; Zhang, Chun-bao

    2009-11-01

    To evaluate the effect of sandblasting particle sizes of Al2O3 on the bonding strength between porcelain and titanium fabricated by laser rapid forming (LRF). The thermal expansion coefficient, roughness (Ra), contact angle, surface morphology of titanium surface and the bonding strength between titanium and porcelain were evaluated after the titanium surface being sandblasted using different sizes of Al2O3 (50 microm, 120 microm, 250 microm) at a pressure of 0.5 MPa. The cast titanium specimens were used as control, and were sandblasted with 50 microm Al2O3 at the same pressure. The thermal expansion coefficient of cast titanium [(9.84 +/- 0.42) x 10(-6)/ degrees C] and LRF Ti [(9.79 +/- 0.31) x 10(-6)/ degrees C) matched that of Noritake Ti-22 dentin porcelain [(8.93 +/- 0.36) x 10(-6)/ degrees C). When larger size of Al2O3 was used, the value of Ra and contact angle increased as well. There was no significant difference in bonding strength between the LRF Ti-50 microm [(25.91 +/- 1.02) MPa] and cast titanium [(26.42 +/- 1.65) MPa]. Significantly lower bonding strength was found in LRF Ti-120 microm [(21.86 +/- 1.64) MPa] and LRF Ti-250 microm [(19.96 +/- 1.03) MPa]. The bond strength between LRF Ti and Noritake Ti-22 dentin porcelain was above the lower limit value in the ISO 9693 (25 MPa) after using 50 microm Al2O3 sandblasting in 0.5MPa air pressure.

  12. Bond behavior between CFRP sheet and concrete. Part 2. Improvement of bond strength by out-of plane confinement; CFRP sheet to concrete no fuchaku kyodo (2). Mengai kosoku ni yoru fuchaku tairyoku no kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Y.; Kimura, K.; Kobatake, Y. [Obayashigumi Research Inst., Tokyo (Japan)

    1998-07-30

    Behavior of phase at the bond interface between CFRP sheet and concrete is modeled basing on the result of anchoring experiment, and specimens are subjected to finite element analysis to investigate necessary confining stress and anchoring length. Improvement of bonding strength is confirmed by providing lateral sheet for anchoring on the sheet bonded on concrete. The out-of-plane stress acted on the sheet and the out-of-plane displacement during confinement in the experiment are estimated as average 0.5MPa and 0.16mm, respectively. Providing appropriate angle to a two-node joint and setting proper stress/deformation relation of springs crossing each other, the behavior of the phase at the bond interface subjected to out-of-plane confinement is modeled. The maximum bond stress is improved from 4.56MPa to 5.10MPa, and the area where the bond stress becomes larger than 4.56MPa increases from 25mm to 30mm. To anchor the sheet employed in this experiment, larger than 30mm out-of-plane confining stress of 0.5MPa must be provided in the direction of fiber. 16 refs., 17 figs., (plus 1 appended fig.), 3 tabs.

  13. Equilibrium contact angle or the most-stable contact angle?

    Science.gov (United States)

    Montes Ruiz-Cabello, F J; Rodríguez-Valverde, M A; Cabrerizo-Vílchez, M A

    2014-04-01

    It is well-established that the equilibrium contact angle in a thermodynamic framework is an "unattainable" contact angle. Instead, the most-stable contact angle obtained from mechanical stimuli of the system is indeed experimentally accessible. Monitoring the susceptibility of a sessile drop to a mechanical stimulus enables to identify the most stable drop configuration within the practical range of contact angle hysteresis. Two different stimuli may be used with sessile drops: mechanical vibration and tilting. The most stable drop against vibration should reveal the changeless contact angle but against the gravity force, it should reveal the highest resistance to slide down. After the corresponding mechanical stimulus, once the excited drop configuration is examined, the focus will be on the contact angle of the initial drop configuration. This methodology needs to map significantly the static drop configurations with different stable contact angles. The most-stable contact angle, together with the advancing and receding contact angles, completes the description of physically realizable configurations of a solid-liquid system. Since the most-stable contact angle is energetically significant, it may be used in the Wenzel, Cassie or Cassie-Baxter equations accordingly or for the surface energy evaluation. © 2013 Elsevier B.V. All rights reserved.

  14. Hydrogen-Bonding Surfaces for Ice Mitigation

    Science.gov (United States)

    Smith, Joseph G., Jr.; Wohl, Christopher J.; Kreeger, Richard E.; Hadley, Kevin R.; McDougall, Nicholas

    2014-01-01

    Ice formation on aircraft, either on the ground or in-flight, is a major safety issue. While ground icing events occur predominantly during the winter months, in-flight icing can happen anytime during the year. The latter is more problematic since it could result in increased drag and loss of lift. Under a Phase I ARMD NARI Seedling Activity, coated aluminum surfaces possessing hydrogen-bonding groups were under investigation for mitigating ice formation. Hydroxyl and methyl terminated dimethylethoxysilanes were prepared via known chemistries and characterized by spectroscopic methods. These materials were subsequently used to coat aluminum surfaces. Surface compositions were based on pure hydroxyl and methyl terminated species as well as mixtures of the two. Coated surfaces were characterized by contact angle goniometry. Receding water contact angle data suggested several potential surfaces that may exhibit reduced ice adhesion. Qualitative icing experiments performed under representative environmental temperatures using supercooled distilled water delivered via spray coating were inconclusive. Molecular modeling studies suggested that chain mobility affected the interface between ice and the surface more than terminal group chemical composition. Chain mobility resulted from the creation of "pockets" of increased free volume for longer chains to occupy.

  15. Rapid protein fold determination using secondary chemical shifts and cross-hydrogen bond 15N-13C' scalar couplings (3hbJNC')

    Energy Technology Data Exchange (ETDEWEB)

    Bonvin, Alexandre M.J.J.; Houben, Klaartje; Guenneugues, Marc; Kaptein, Robert; Boelens, Rolf [Utrecht University, Bijvoet Center for Biomolecular Research, NMR Spectroscopy (Netherlands)

    2001-11-15

    The possibility of generating protein folds at the stage of backbone assignment using structural restraints derived from experimentally measured cross-hydrogen bond scalar couplings and secondary chemical shift information is investigated using as a test case the small {alpha}/{beta} protein chymotrypsin inhibitor 2. Dihedral angle restraints for the {phi} and {psi} angles of 32 out of 64 residues could be obtained from secondary chemical shift analysis with the TALOS program (Corneliscu et al., 1999a). This information was supplemented by 18 hydrogen-bond restraints derived from experimentally measured cross-hydrogen bond {sup 3hb}J{sub NC'} coupling constants. These experimental data were sufficient to generate structures that are as close as 1.0 A backbone rmsd from the crystal structure. The fold is, however, not uniquely defined and several solutions are generated that cannot be distinguished on the basis of violations or energetic considerations. Correct folds could be identified by combining clustering methods with knowledge-based potentials derived from structural databases.

  16. Longitudinal changes of angle configuration in primary angle-closure suspects: the Zhongshan Angle-Closure Prevention Trial.

    Science.gov (United States)

    Jiang, Yuzhen; Chang, Dolly S; Zhu, Haogang; Khawaja, Anthony P; Aung, Tin; Huang, Shengsong; Chen, Qianyun; Munoz, Beatriz; Grossi, Carlota M; He, Mingguang; Friedman, David S; Foster, Paul J

    2014-09-01

    To determine longitudinal changes in angle configuration in the eyes of primary angle-closure suspects (PACS) treated by laser peripheral iridotomy (LPI) and in untreated fellow eyes. Longitudinal cohort study. Primary angle-closure suspects aged 50 to 70 years were enrolled in a randomized, controlled clinical trial. Each participant was treated by LPI in 1 randomly selected eye, with the fellow eye serving as a control. Angle width was assessed in a masked fashion using gonioscopy and anterior segment optical coherence tomography (AS-OCT) before and at 2 weeks, 6 months, and 18 months after LPI. Angle width in degrees was calculated from Shaffer grades assessed under static gonioscopy. Angle configuration was also evaluated using angle opening distance (AOD250, AOD500, AOD750), trabecular-iris space area (TISA500, TISA750), and angle recess area (ARA) measured in AS-OCT images. No significant difference was found in baseline measures of angle configuration between treated and untreated eyes. At 2 weeks after LPI, the drainage angle on gonioscopy widened from a mean of 13.5° at baseline to a mean of 25.7° in treated eyes, which was also confirmed by significant increases in all AS-OCT angle width measures (Pgonioscopy (P = 0.18), AOD250 (P = 0.167) and ARA (P = 0.83). In untreated eyes, angle width consistently decreased across all follow-up visits after LPI, with a more rapid longitudinal decrease compared with treated eyes (P values for all variables ≤0.003). The annual rate of change in angle width was equivalent to 1.2°/year (95% confidence interval [CI], 0.8-1.6) in treated eyes and 1.6°/year (95% CI, 1.3-2.0) in untreated eyes (P<0.001). Angle width of treated eyes increased markedly after LPI, remained stable for 6 months, and then decreased significantly by 18 months after LPI. Untreated eyes experienced a more consistent and rapid decrease in angle width over the same time period. Copyright © 2014 American Academy of Ophthalmology. Published by

  17. The influence of flip angle on the magic angle effect

    International Nuclear Information System (INIS)

    Zurlo, J.V.; Blacksin, M.F.; Karimi, S.

    2000-01-01

    Objective. To assess the impact of flip angle with gradient sequences on the ''magic angle effect''. We characterized the magic angle effect in various gradient echo sequences and compared the signal- to-noise ratios present on these sequences with the signal-to-noise ratios of spin echo sequences.Design. Ten normal healthy volunteers were positioned such that the flexor hallucis longus tendon remained at approximately at 55 to the main magnetic field (the magic angle). The tendon was imaged by a conventional spin echo T1- and T2-weighted techniques and by a series of gradient techniques. Gradient sequences were altered by both TE and flip angle. Signal-to-noise measurements were obtained at segments of the flexor hallucis longus tendon demonstrating the magic angle effect to quantify the artifact. Signal-to-noise measurements were compared and statistical analysis performed. Similar measurements were taken of the anterior tibialis tendon as an internal control.Results and conclusions. We demonstrated the magic angle effect on all the gradient sequences. The intensity of the artifact was affected by both the TE and flip angle. Low TE values and a high flip angle demonstrated the greatest magic angle effect. At TE values less than 30 ms, a high flip angle will markedly increase the magic angle effect. (orig.)

  18. FR4-Based Electromagnetic Scanning Micromirror Integrated with Angle Sensor

    Directory of Open Access Journals (Sweden)

    Hongjie Lei

    2018-05-01

    Full Text Available This paper presents a flame retardant 4 (FR4-based electromagnetic scanning micromirror, which aims to overcome the limitations of conventional microelectromechanical systems (MEMS micromirrors for the large-aperture and low-frequency scanning applications. This micromirror is fabricated through a commercial printed circuit board (PCB technology at a low cost and with a short process cycle, before an aluminum-coated silicon mirror plate with a large aperture is bonded on the FR4 platform to provide a high surface quality. In particular, an electromagnetic angle sensor is integrated to monitor the motion of the micromirror in real time. A prototype has been assembled and tested. The results show that the micromirror can reach the optical scan angle of 11.2 ∘ with a low driving voltage of only 425 mV at resonance (361.8 Hz. At the same time, the signal of the integrated angle sensor also shows good signal-to-noise ratio, linearity and sensitivity. Finally, the reliability of the FR4 based micro-mirror has been tested. The prototype successfully passes both shock and vibration tests. Furthermore, the results of the long-term mechanical cycling test (50 million cycles suggest that the maximum variations of resonant frequency and scan angle are less than 0.3% and 6%, respectively. Therefore, this simple and robust micromirror has great potential in being useful in a number of optical microsystems, especially when large-aperture or low-frequency is required.

  19. Effect of ethanol-wet-bonding technique on resin–enamel bonds

    Directory of Open Access Journals (Sweden)

    Muhammet Kerim Ayar

    2014-03-01

    Conclusion: The ethanol-wet-bonding technique may increase the bond strength of commercial adhesives to enamel. The chemical composition of the adhesives can affect the bond strength of adhesives when bonding to acid-etched enamel, using the ethanol-wet-bonding technique. Some adhesive systems used in the present study may simultaneously be applied to enamel and dentin using ethanol-wet-bonding. Furthermore, deploying ethanol-wet-bonding for the tested commercial adhesives to enamel can increase the adhesion abilities of these adhesives to enamel.

  20. A two-angle model of dynamic wetting in microscale capillaries under low capillary numbers with experiments.

    Science.gov (United States)

    Lei, Da; Lin, Mian; Li, Yun; Jiang, Wenbin

    2018-06-15

    An accurate model of the dynamic contact angle θ d is critical for the calculation of capillary force in applications like enhanced oil recovery, where the capillary number Ca ranges from 10 -10 to 10 -5 and the Bond number Bo is less than 10 -4 . The rate-dependence of the dynamic contact angle under such conditions remains blurred, and is the main target of this study. Featuring with pressure control and interface tracking, the innovative experimental system presented in this work achieves the desired ranges of Ca and Bo, and enables the direct optical measurement of dynamic contact angles in capillaries as tiny as 40 × 20 (width × height) μm and 80 × 20 μm. The advancing and receding processes of wetting and nonwetting liquids were tested. The dynamic contact angle was confirmed velocity-independent with 10 -9  contact line velocity V = 0.135-490 μm/s) and it can be described by a two-angle model with desirable accuracy. A modified two-angle model was developed and an empirical form was obtained from experiments. For different liquids contacting the same surface, the advancing angle θ adv approximately equals the static contact angle θ o . The receding angle θ rec was found to be a linear function of θ adv , in good agreement with our and other experiments from the literature. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Parental Bonding

    Directory of Open Access Journals (Sweden)

    T. Paul de Cock

    2014-08-01

    Full Text Available Estimating the early parent–child bonding relationship can be valuable in research and practice. Retrospective dimensional measures of parental bonding provide a means for assessing the experience of the early parent–child relationship. However, combinations of dimensional scores may provide information that is not readily captured with a dimensional approach. This study was designed to assess the presence of homogeneous groups in the population with similar profiles on parental bonding dimensions. Using a short version of the Parental Bonding Instrument (PBI, three parental bonding dimensions (care, authoritarianism, and overprotection were used to assess the presence of unobserved groups in the population using latent profile analysis. The class solutions were regressed on 23 covariates (demographics, parental psychopathology, loss events, and childhood contextual factors to assess the validity of the class solution. The results indicated four distinct profiles of parental bonding for fathers as well as mothers. Parental bonding profiles were significantly associated with a broad range of covariates. This person-centered approach to parental bonding has broad utility in future research which takes into account the effect of parent–child bonding, especially with regard to “affectionless control” style parenting.

  2. Surface properties and bond strength measurements of N-vinylcaprolactam (NVC)-containing glass-ionomer cements.

    Science.gov (United States)

    Moshaverinia, Alireza; Chee, Winston W; Brantley, William A; Schricker, Scott R

    2011-03-01

    N-vinylcaprolactam (NVC)-containing glass ionomers are promising dental restorative materials with improved mechanical properties; however, little information is available on other physical characteristics of these types of modified glass ionomers, especially their surface properties. Understanding the surface characteristics and behavior of glass ionomers is important for understanding their clinical behavior and predictability as dental restorative materials. The purpose of this study was to investigate the effect of NVC-containing terpolymers on the surface properties and bond strength to dentin of GIC (glass-ionomer cement), and to evaluate the effect of NVC-containing terpolymer as a dentin conditioner. The terpolymer of acrylic acid (AA)-itaconic acid (IA)-N-vinylcaprolactam (NVC) with a molar ratio of 8:1:1 (AA:IA:NVC) was synthesized by free radical polymerization and characterized using nuclear magnetic resonance ((1)H-NMR) and Fourier transform infrared spectroscopy (FTIR). The synthesized terpolymer was used in glass-ionomer cement formulations (Fuji IX GP). Ten disc-shaped specimens (12 × 1 mm) were mixed and fabricated at room temperature. Surface properties (wettability) of modified cements were studied by contact angle measurements as a function of time. Work of adhesion values of different surfaces were also determined. The effect of NVC-modified polyacid on the bond strength of glass-ionomer cement to dentin was investigated. The mean data obtained from contact angle and bonding strength measurements were subjected to t test and 2-way ANOVA (α=.05). NVC-modified glass-ionomer cements showed significantly (Pcement also showed significantly higher values for shear bond strength to dentin (8.7 ±0.15 MPa after 1 month) when compared to the control group (8.4 ±0.13 MPa after 1 month). NVC-containing terpolymers may enhance the surface properties of GICs and increase their bond strength to the dentin. Furthermore, NVC-containing polyelectrolytes are

  3. Application of the O-lattice theory for the reconstruction of the high-angle near 90° tilt Si(1 1 0)/(0 0 1) boundary created by wafer bonding

    International Nuclear Information System (INIS)

    Cherkashin, N.; Kononchuk, O.; Reboh, S.; Hÿtch, M.

    2012-01-01

    This work presents an experimental and theoretical identification of defects and morphologies of a high-angle near-90° tilt Si (1 ¯ 10)//(001) boundary created by direct wafer bonding. Two samples with different twist misorientations, between the (1 ¯ 10) layer and the (0 0 1) substrate, were studied using conventional transmission electron microscopy (TEM) and geometric phase analysis of high-resolution TEM images. The O-lattice theory was used for atom reconstruction of the interface along the [11 ¯ 0] sub //[001] lay direction. It is demonstrated that to preserve covalent bonding across the interface, it should consist of {11 ¯ 1} sub,lay //{1 ¯ 12} lay,sub facets intersected by maximum of six {11 ¯ 1} lay,sub planes with three 90° Shockley dislocations per facet. It is shown that a particular atom reconstruction is needed at transition points from one facet to another. The presence or absence of deviation from exact 90° tilt of the layer with respect to the substrate is shown to be related directly to the undulations of the interface. It is demonstrated that the latter has an influence on the Burgers vector of the dislocations adjusting in-plane twist misorientation. A general model for cubic face-centered materials for an arbitrary 〈1 1 0〉 sub,lay tilt interface is proposed, which predicts the net Burgers vector and the spacing between dislocations necessary to realize transition from the lattice of the substrate (layer) to the layer (substrate).

  4. The estimation of H-bond and metal ion-ligand interaction energies in the G-Quadruplex ⋯ Mn+ complexes

    Science.gov (United States)

    Mostafavi, Najmeh; Ebrahimi, Ali

    2018-06-01

    In order to characterize various interactions in the G-quadruplex ⋯ Mn+ (G-Q ⋯ Mn+) complexes, the individual H-bond (EHB) and metal ion-ligand interaction (EMO) energies have been estimated using the electron charge densities (ρs) calculated at the X ⋯ H (X = N and O) and Mn+ ⋯ O (Mn+ is an alkaline, alkaline earth and transition metal ion) bond critical points (BCPs) obtained from the atoms in molecules (AIM) analysis. The estimated values of EMO and EHB were evaluated using the structural parameters, results of natural bond orbital analysis (NBO), aromaticity indexes and atomic charges. The EMO value increase with the ratio of ionic charge to radius, e/r, where a linear correlation is observed between EMO and e/r (R = 0.97). Meaningful relationships are also observed between EMO and indexes used for aromaticity estimation. The ENH value is higher than EOH in the complexes; this is in complete agreement with the trend of N⋯Hsbnd N and O⋯Hsbnd N angles, the E (2) value of nN → σ*NH and nO → σ*NH interactions and the difference between the natural charges on the H-bonded atom and the hydrogen atom of guanine (Δq). In general, the O1MO2 angle becomes closer to 109.5° with the increase in EMO and decrease in EHB in the presence of metal ion.

  5. A study on the contact angles of a water droplet on smooth and rough solid surfaces

    International Nuclear Information System (INIS)

    Park, Ju Young; Ha, Man Yeong; Choi, Ho Jin; Hong, Seung Do; Yoon, Hyun Sik

    2011-01-01

    We investigated the wetting characteristics such as contact angle, wetting radius and topography of water droplets on smooth and random solid surfaces. Molecular dynamic simulation is employed to analyze the wetting behavior of water droplets on smooth and rough surfaces by considering different potential energy models of bond, angle, Lennard-Jones and Coulomb to calculate the interacting forces between water molecules. The Lennard-Jones potential energy model is adopted as an interaction model between water molecules and solid surface atoms. The randomly rough surface is generated by changing the standard deviation of roughness height from 1 A to 3 A with the fixed autocorrelation length. The size of water droplet considered is in the range from 2,000 to 5,000 molecules. The contact angles increase generally with increasing number of water molecules. For a hydrophobic surface whose characteristic energy is 0.1 kcal/mol, the contact angles depend rarely on the standard deviation of the roughness height. However, when the surface energy is 0.5 and 1.0 kcal/mol, the contact angles depend on both the roughness height of surfaces and droplet size

  6. The extended variant of the bond valence-bond length correlation curve for boron(III)-oxygen bonds

    International Nuclear Information System (INIS)

    Sidey, Vasyl

    2015-01-01

    The extended variant of the bond valence (s)-bond length (r) correlation curve for boron(III)-oxygen bonds has been closely approximated using the three-parameter function s = [k/(r - l)] - m, where s is measured in valence units (vu), r is measured in Aa, k = 0.53 Aa.vu, l = 0.975(1) Aa and m = 0.32 vu. The function s = exp[(r 0 - r)/b] traditionally used in the modern bond valence model requires the separate set of the bond valence parameters (r 0 = 1.362 Aa; b = 0.23 Aa) in order to approximate the above s-r curve for the bonds shorter than ∝1.3 Aa.

  7. Understanding Bonds - Denmark

    DEFF Research Database (Denmark)

    Rimmer, Nina Røhr

    2016-01-01

    Undervisningsmateriale. A bond is a debt security, similar to an ”I Owe You document” (IOU). When you purchase a bond, you are lending money to a government, municipality, corporation, federal agency or other entity known as the issuer. In return for the loan, the issuer promises to pay you...... a specified rate of interest during the life of the bond and to repay the face value of the bond (the principal) when it “matures,” or comes due. Among the types of bonds you can choose from are: Government securities, municipal bonds, corporate bonds, mortgage and asset-backed securities, federal agency...... securities and foreign government bonds....

  8. Longitudinal Changes of Angle Configuration in Primary Angle-Closure Suspects

    Science.gov (United States)

    Jiang, Yuzhen; Chang, Dolly S.; Zhu, Haogang; Khawaja, Anthony P.; Aung, Tin; Huang, Shengsong; Chen, Qianyun; Munoz, Beatriz; Grossi, Carlota M.

    2015-01-01

    Objective To determine longitudinal changes in angle configuration in the eyes of primary angle-closure suspects (PACS) treated by laser peripheral iridotomy (LPI) and in untreated fellow eyes. Design Longitudinal cohort study. Participants Primary angle-closure suspects aged 50 to 70 years were enrolled in a randomized, controlled clinical trial. Methods Each participant was treated by LPI in 1 randomly selected eye, with the fellow eye serving as a control. Angle width was assessed in a masked fashion using gonioscopy and anterior segment optical coherence tomography (AS-OCT) before and at 2 weeks, 6 months, and 18 months after LPI. Main Outcome Measures Angle width in degrees was calculated from Shaffer grades assessed under static gonioscopy. Angle configuration was also evaluated using angle opening distance (AOD250, AOD500, AOD750), trabecular-iris space area (TISA500, TISA750), and angle recess area (ARA) measured in AS-OCT images. Results No significant difference was found in baseline measures of angle configuration between treated and untreated eyes. At 2 weeks after LPI, the drainage angle on gonioscopy widened from a mean of 13.5° at baseline to a mean of 25.7° in treated eyes, which was also confirmed by significant increases in all AS-OCT angle width measures (Pgonioscopy (P = 0.18), AOD250 (P = 0.167) and ARA (P = 0.83). In untreated eyes, angle width consistently decreased across all follow-up visits after LPI, with a more rapid longitudinal decrease compared with treated eyes (P values for all variables ≤0.003). The annual rate of change in angle width was equivalent to 1.2°/year (95% confidence interval [CI], 0.8–1.6) in treated eyes and 1.6°/year (95% CI, 1.3–2.0) in untreated eyes (P<0.001). Conclusions Angle width of treated eyes increased markedly after LPI, remained stable for 6 months, and then decreased significantly by 18 months after LPI. Untreated eyes experienced a more consistent and rapid decrease in angle width over the

  9. Predicting backbone Cα angles and dihedrals from protein sequences by stacked sparse auto-encoder deep neural network.

    Science.gov (United States)

    Lyons, James; Dehzangi, Abdollah; Heffernan, Rhys; Sharma, Alok; Paliwal, Kuldip; Sattar, Abdul; Zhou, Yaoqi; Yang, Yuedong

    2014-10-30

    Because a nearly constant distance between two neighbouring Cα atoms, local backbone structure of proteins can be represented accurately by the angle between C(αi-1)-C(αi)-C(αi+1) (θ) and a dihedral angle rotated about the C(αi)-C(αi+1) bond (τ). θ and τ angles, as the representative of structural properties of three to four amino-acid residues, offer a description of backbone conformations that is complementary to φ and ψ angles (single residue) and secondary structures (>3 residues). Here, we report the first machine-learning technique for sequence-based prediction of θ and τ angles. Predicted angles based on an independent test have a mean absolute error of 9° for θ and 34° for τ with a distribution on the θ-τ plane close to that of native values. The average root-mean-square distance of 10-residue fragment structures constructed from predicted θ and τ angles is only 1.9Å from their corresponding native structures. Predicted θ and τ angles are expected to be complementary to predicted ϕ and ψ angles and secondary structures for using in model validation and template-based as well as template-free structure prediction. The deep neural network learning technique is available as an on-line server called Structural Property prediction with Integrated DEep neuRal network (SPIDER) at http://sparks-lab.org. Copyright © 2014 Wiley Periodicals, Inc.

  10. Amalgam shear bond strength to dentin using different bonding agents.

    Science.gov (United States)

    Vargas, M A; Denehy, G E; Ratananakin, T

    1994-01-01

    This study evaluated the shear bond strength of amalgam to dentin using five different bonding agents: Amalgambond Plus, Optibond, Imperva Dual, All-Bond 2, and Clearfil Liner Bond. Flat dentin surfaces obtained by grinding the occlusal portion of 50 human third molars were used for this study. To contain the amalgam on the tooth surface, cylindrical plastic molds were placed on the dentin and secured with sticky wax. The bonding agents were then applied according to the manufacturers' instructions or light activated and Tytin amalgam was condensed into the plastic molds. The samples were thermocycled and shear bond strengths were determined using an Instron Universal Testing Machine. Analysis by one-way ANOVA indicated significant difference between the five groups (P < 0.05). The bond strength of amalgam to dentin was significantly higher with Amalgambond Plus using the High-Performance Additive than with the other four bonding agents.

  11. The paediatric Bohler's angle and crucial angle of Gissane: a case series

    Directory of Open Access Journals (Sweden)

    Crawford Haemish A

    2011-01-01

    Full Text Available Abstract Background Bohler's angle and the crucial angle of Gissane can be used to assess calcaneal fractures. While the normal adult values of these angles are widely known, the normal paediatric values have not yet been established. Our aim is to investigate Bohler's angle and the crucial angle of Gissane in a paediatric population and establish normal paediatric reference values. Method We measured Bohler's angle and the crucial angle of Gissane using normal plain ankle radiographs of 763 patients from birth to 14 years of age completed over a five year period from July 2003 to June 2008. Results In our paediatric study group, the mean Bohler's angle was 35.2 degrees and the mean crucial angle of Gissane was 111.3 degrees. In an adult comparison group, the mean Bohler's angle was 39.2 degrees and the mean crucial angle of Gissane was 113.8 degrees. The differences in Bohler's angle and the crucial angle of Gissane between these two groups were statistically significant. Conclusion We have presented the normal values of Bohler's angle and the crucial angle of Gissane in a paediatric population. These values may provide a useful comparison to assist with the management of the paediatric calcaneal fracture.

  12. Creation of the {pi} angle standard for the flat angle measurements

    Energy Technology Data Exchange (ETDEWEB)

    Giniotis, V; Rybokas, M, E-mail: gi@ap.vtu.l, E-mail: MRybokas@gama.l [Department of Information Technologies, Vilnius Gediminas Technical University, Sauletekio al. 11, 10223 Vilnius-40 (Lithuania)

    2010-07-01

    Angle measurements are based mainly on multiangle prisms - polygons with autocollimators, rotary encoders for high accuracy and circular scales as the standards of the flat angle. Traceability of angle measurements is based on the standard of the plane angle - prism (polygon) calibrated at an appropriate accuracy. Some metrological institutions have established their special test benches (comparators) equipped with circular scales or rotary encoders of high accuracy and polygons with autocollimators for angle calibration purposes. Nevertheless, the standard (etalon) of plane angle - polygon has many restrictions for the transfer of angle unit - radian (rad) and other units of angle. It depends on the number of angles formed by the flat sides of the polygon that is restricted by technological and metrological difficulties related to the production and accuracy determination of the polygon. A possibility to create the standard of the angle equal to {pi} rad or half the circle or the full angle is proposed. It can be created by the circular scale with the rotation axis of very high accuracy and two precision reading instruments, usually, photoelectric microscopes (PM), placed on the opposite sides of the circular scale using the special alignment steps. A great variety of angle units and values can be measured and its traceability ensured by applying the third PM on the scale. Calibration of the circular scale itself and other scale or rotary encoder as well is possible using the proposed method with an implementation of {pi} rad as the primary standard angle. The method proposed enables to assure a traceability of angle measurements at every laboratory having appropriate environment and reading instruments of appropriate accuracy together with a rotary table with the rotation axis of high accuracy - rotation trajectory (runout) being in the range of 0.05 {mu}m. Short information about the multipurpose angle measurement test bench developed is presented.

  13. UV Resonance Raman Elucidation of the Terminal and Internal Peptide Bond Conformations of Crystalline and Solution Oligoglycines.

    Science.gov (United States)

    Bykov, Sergei V; Asher, Sanford A

    2010-11-30

    Spectroscopic investigations of macromolecules generally attempt to interpret the measured spectra in terms of the summed contributions of the different molecular fragments. This is the basis of the local mode approximation in vibrational spectroscopy. In the case of resonance Raman spectroscopy independent contributions of molecular fragments require both a local mode-like behavior and the uncoupled electronic transitions. Here we show that the deep UV resonance Raman spectra of aqueous solution phase oligoglycines show independent peptide bond molecular fragment contributions indicating that peptide bonds electronic transitions and vibrational modes are uncoupled. We utilize this result to separately determine the conformational distributions of the internal and penultimate peptide bonds of oligoglycines. Our data indicate that in aqueous solution the oligoglycine terminal residues populate conformations similar to those found in crystals (3(1)-helices and β-strands), but with a broader distribution, while the internal peptide bond conformations are centered around the 3(1)-helix Ramachandran angles.

  14. Convertible bond valuation focusing on Chinese convertible bond market

    OpenAIRE

    Yang, Ke

    2010-01-01

    This paper mainly discusses the methods of valuation of convertible bonds in Chinese market. Different from common convertible bonds in European market, considering the complicate features of Chinese convertible bond, this paper represents specific pricing approaches for pricing convertible bonds with different provisions along with the increment of complexity of these provisions. More specifically, this paper represents the decomposing method and binomial tree method for pricing both of Non-...

  15. Quantum mechanics models of the methanol dimer: OH⋯O hydrogen bonds of β-d-glucose moieties from crystallographic data.

    Science.gov (United States)

    Cintrón, Michael Santiago; Johnson, Glenn P; French, Alfred D

    2017-04-18

    The interaction of two methanol molecules, simplified models of carbohydrates and cellulose, was examined using a variety of quantum mechanics (QM) levels of theory. Energy plots for hydrogen bonding distance (H⋯O) and angle (OH⋯O) were constructed. All but two experimental structures were located in stabilized areas on the vacuum phase energy plots. Each of the 399 models was analyzed with Bader's atoms-in-molecules (AIM) theory, which showed a widespread ability by the dimer models to form OH⋯O hydrogen bonds that have bond paths and Bond Critical Points. Continuum solvation calculations suggest that a portion of the energy-stabilized structures could occur in the presence of water. A survey of the Cambridge Structural Database (CSD) for all donor-acceptor interactions in β-D-glucose moieties examined the similarities and differences among the hydroxyl groups and acetal oxygen atoms that participate in hydrogen bonds. Comparable behavior was observed for the O2H, O3H, O4H, and O6H hydroxyls, acting either as acceptors or donors. Ring O atoms showed distinct hydrogen bonding behavior that favored mid-length hydrogen bonds. Published by Elsevier Ltd.

  16. Glaucoma, Open-Angle

    Science.gov (United States)

    ... Home » Statistics and Data » Glaucoma, Open-angle Listen Glaucoma, Open-angle Open-angle Glaucoma Defined In open-angle glaucoma, the fluid passes ... 2010 2010 U.S. Age-Specific Prevalence Rates for Glaucoma by Age and Race/Ethnicity The prevalence of ...

  17. Copper wire bonding

    CERN Document Server

    Chauhan, Preeti S; Zhong, ZhaoWei; Pecht, Michael G

    2014-01-01

    This critical volume provides an in-depth presentation of copper wire bonding technologies, processes and equipment, along with the economic benefits and risks.  Due to the increasing cost of materials used to make electronic components, the electronics industry has been rapidly moving from high cost gold to significantly lower cost copper as a wire bonding material.  However, copper wire bonding has several process and reliability concerns due to its material properties.  Copper Wire Bonding book lays out the challenges involved in replacing gold with copper as a wire bond material, and includes the bonding process changes—bond force, electric flame off, current and ultrasonic energy optimization, and bonding tools and equipment changes for first and second bond formation.  In addition, the bond–pad metallurgies and the use of bare and palladium-coated copper wires on aluminum are presented, and gold, nickel and palladium surface finishes are discussed.  The book also discusses best practices and re...

  18. Thermally robust and biomolecule-friendly room-temperature bonding for the fabrication of elastomer-plastic hybrid microdevices.

    Science.gov (United States)

    Nguyen, T P O; Tran, B M; Lee, N Y

    2016-08-16

    Here, we introduce a simple and fast method for bonding a poly(dimethylsiloxane) (PDMS) silicone elastomer to different plastics. In this technique, surface modification and subsequent bonding processes are performed at room temperature. Furthermore, only one chemical is needed, and no surface oxidation step is necessary prior to bonding. This bonding method is particularly suitable for encapsulating biomolecules that are sensitive to external stimuli, such as heat or plasma treatment, and for embedding fracturable materials prior to the bonding step. Microchannel-fabricated PDMS was first oxidized by plasma treatment and reacted with aminosilane by forming strong siloxane bonds (Si-O-Si) at room temperature. Without the surface oxidation of the amine-terminated PDMS and plastic, the two heterogeneous substrates were brought into intimate physical contact and left at room temperature. Subsequently, aminolysis occurred, leading to the generation of a permanent seal via the formation of robust urethane bonds after only 5 min of assembling. Using this method, large-area (10 × 10 cm) bonding was successfully realized. The surface was characterized by contact angle measurements and X-ray photoelectron spectroscopy (XPS) analyses, and the bonding strength was analyzed by performing peel, delamination, leak, and burst tests. The bond strength of the PDMS-polycarbonate (PC) assembly was approximately 409 ± 6.6 kPa, and the assembly withstood the injection of a tremendous amount of liquid with the per-minute injection volume exceeding 2000 times its total internal volume. The thermal stability of the bonded microdevice was confirmed by performing a chamber-type multiplex polymerase chain reaction (PCR) of two major foodborne pathogens - Escherichia coli O157:H7 and Salmonella typhimurium - and assessing the possibility for on-site direct detection of PCR amplicons. This bonding method demonstrated high potential for the stable construction of closed microfluidic systems

  19. Hysteresis-free high-temperature precise bimorph actuators produced by direct bonding of lithium niobate wafers

    Energy Technology Data Exchange (ETDEWEB)

    Shur, V. Ya.; Baturin, I. S.; Mingaliev, E. A.; Zorikhin, D. V.; Udalov, A. R.; Greshnyakov, E. D. [Ferroelectric Laboratory, Institute of Natural Sciences, Ural Federal University, 51 Lenin Ave., 620000 Ekaterinburg (Russian Federation)

    2015-02-02

    The current paper presents a piezoelectric bimorph actuator produced by direct bonding of lithium niobate wafers with the mirrored Y and Z axes. Direct bonding technology allowed to fabricate bidomain plate with precise positioning of ideally flat domain boundary. By optimizing the cutting angle (128° Y-cut), the piezoelectric constant became as large as 27.3 pC/N. Investigation of voltage dependence of bending displacement confirmed that bimorph actuator has excellent linearity and hysteresis-free. Decrease of the applied voltage down to mV range showed the perfect linearity up to the sub-nm deflection amplitude. The frequency and temperature dependences of electromechanical transmission coefficient in wide temperature range (from 300 to 900 K) were investigated.

  20. Effect of Bonding Pressure and Bonding Time on the Tensile Properties of Cu-Foam / Cu-Plate Diffusion Bonded Joint

    International Nuclear Information System (INIS)

    Kim, Sang-Ho; Heo, Hoe-Jun; Kang, Chung-Yun; Yoon, Tae-Jin

    2016-01-01

    Open cell Cu foam, which has been widely utilized in various industries because of its high thermal conductivity, lightweight and large surface area, was successfully joined with Cu plate by diffusion bonding. To prevent excessive deformation of the Cu foam during bonding process, the bonding pressure should be lower than 500 kPa at 800 ℃ for 60 min and bonding pressure should be lowered with increasing holding time. The bonding strength was evaluated by tensile tests. The tensile load of joints increased with the bonding pressure and holding time. In the case of higher bonding pressure or time, the bonded length at the interface was usually longer than the cross-sectional length of the foam, so fracture occurred at the foam. For the same reason, base metal (foam) fracture mainly occurred at the node-plate junction rather than in the strut-plate junction because the bonded surface area of the node was relatively larger than that of the strut.

  1. [Effects of different surface treatments on the zirconia-resin cement bond strength].

    Science.gov (United States)

    Liao, Y; Liu, X Q; Chen, L; Zhou, J F; Tan, J G

    2018-02-18

    To evaluate the effects of different surface treatments on the shear bond strength between zirconia and resin cement. Forty zirconia discs were randomly divided into four groups (10 discs in each group) for different surface treatments: control, no surface treatment; sandblast, applied air abrasion with aluminum oxide particles; ultraviolet (UV), the zirconia sample was placed in the UV sterilizer at the bottom of the UV lamp at 10 mm, and irradiated for 48 h; cold plasma, the discs were put in the cold plasma cabinet with the cold plasma generated from the gas of He for 30 s. Specimens of all the groups were surface treated prior to cementation with Panavia F 2.0 cement. The surface morphology and contact angle of water were measured. The shear bond strengths were tested and the failure modes were examined with a stereomicroscope. Surface morphology showed no difference between the UV/cold plasma group and the control group. Sandblasted zirconia displayed an overall heterogeneous distribution of micropores. The contact angle of the control group was 64.1°±2.0°. After sandblasting, UV irradiation and cold plasma exposure, the values significantly decreased to 48.8°±2.6°, 27.1°±3.6° and 32.0°±3.3°. The values of shear bond strength of the specimens with sandblasted (14.82±2.01) MPa were higher than those with no treatment (9.41±1.07) MPa with statistically significant difference (Pbond strength of the specimens with UV irradiation (10.02±0.64) MPa were higher than those with no treatment (9.41±1.07) MPa, but without statistically significant difference (P>0.05). The values of cold plasma group (18.34±3.05) MPa were significantly higher than those of control group (9.41±1.07) MPa, even more than those with sandblast(14.82±2.01) MPa (PUV and cold plasma treatment. The surface C/O ratio also decreased after UV and cold plasma treatment. Zirconia specimens treated with UV and cold plasma could significantly improve the hydrophilicity. The surface

  2. Bond Issues.

    Science.gov (United States)

    Pollack, Rachel H.

    2000-01-01

    Notes trends toward increased borrowing by colleges and universities and offers guidelines for institutions that are considering issuing bonds to raise money for capital projects. Discussion covers advantages of using bond financing, how use of bonds impacts on traditional fund raising, other cautions and concerns, and some troubling aspects of…

  3. Apparent contact angle and contact angle hysteresis on liquid infused surfaces.

    Science.gov (United States)

    Semprebon, Ciro; McHale, Glen; Kusumaatmaja, Halim

    2016-12-21

    We theoretically investigate the apparent contact angle and contact angle hysteresis of a droplet placed on a liquid infused surface. We show that the apparent contact angle is not uniquely defined by material parameters, but also has a dependence on the relative size between the droplet and its surrounding wetting ridge formed by the infusing liquid. We derive a closed form expression for the contact angle in the limit of vanishing wetting ridge, and compute the correction for small but finite ridge, which corresponds to an effective line tension term. We also predict contact angle hysteresis on liquid infused surfaces generated by the pinning of the contact lines by the surface corrugations. Our analytical expressions for both the apparent contact angle and contact angle hysteresis can be interpreted as 'weighted sums' between the contact angles of the infusing liquid relative to the droplet and surrounding gas phases, where the weighting coefficients are given by ratios of the fluid surface tensions.

  4. Room temperature Cu-Cu direct bonding using surface activated bonding method

    International Nuclear Information System (INIS)

    Kim, T.H.; Howlader, M.M.R.; Itoh, T.; Suga, T.

    2003-01-01

    Thin copper (Cu) films of 80 nm thickness deposited on a diffusion barrier layered 8 in. silicon wafers were directly bonded at room temperature using the surface activated bonding method. A low energy Ar ion beam of 40-100 eV was used to activate the Cu surface prior to bonding. Contacting two surface-activated wafers enables successful Cu-Cu direct bonding. The bonding process was carried out under an ultrahigh vacuum condition. No thermal annealing was required to increase the bonding strength since the bonded interface was strong enough at room temperature. The chemical constitution of the Cu surface was examined by Auger electron spectroscope. It was observed that carbon-based contaminations and native oxides on copper surface were effectively removed by Ar ion beam irradiation for 60 s without any wet cleaning processes. An atomic force microscope study shows that the Ar ion beam process causes no surface roughness degradation. Tensile test results show that high bonding strength equivalent to bulk material is achieved at room temperature. The cross-sectional transmission electron microscope observations reveal the presence of void-free bonding interface without intermediate layer at the bonded Cu surfaces

  5. A study of laser surface treatment in bonded repair of composite aircraft structures.

    Science.gov (United States)

    Li, Shaolong; Sun, Ting; Liu, Chang; Yang, Wenfeng; Tang, Qingru

    2018-03-01

    Surface pre-treatment is one of the key processes in bonded repair of aircraft carbon fibre reinforced polymer composites. This paper investigates the surface modification of physical and chemical properties by laser ablation and conventional polish treatment techniques. Surface morphology analysed by laser scanning confocal microscopy and scanning electron microscopy showed that a laser-treated surface displayed higher roughness than that of a polish-treated specimen. The laser-treated laminate exhibited more functional groups in the form of O 1 s/C 1 s atomic ratio of 30.89% for laser-treated and 20.14% for polish-treated as evidenced by X-ray photoelectron spectroscopy observation. Contact angle goniometry demonstrated that laser treatment can provide increased surface free energy and wettability. In the light of mechanical interlocking, molecular bonding and thermodynamics theories on adhesion, laser etching process displayed enhanced bonding performance relative to the polishing surface treatment. These properties resulted in an increased single lap shear strength and a cohesive failure mode for laser etching while an adhesive failure mode occurred in polish-treated specimen.

  6. Effect of intermolecular hydrogen bonding, vibrational analysis and molecular structure of 4-chlorobenzothioamide

    Science.gov (United States)

    Çırak, Çağrı; Sert, Yusuf; Ucun, Fatih

    2013-09-01

    In the present work, the experimental and theoretical vibrational spectra of 4-chlorobenzothioamide were investigated. The FT-IR (400-4000 cm-1) and μ-Raman spectra (100-4000 cm-1) of 4-chlorobenzothioamide in the solid phase were recorded. The geometric parameters (bond lengths and bond angles), vibrational frequencies, Infrared and Raman intensities of the title molecule in the ground state were calculated using ab initio Hartree-Fock and density functional theory (B3LYP) methods with the 6-311++G(d,p) basis set for the first time. The optimized geometric parameters and the theoretical vibrational frequencies were found to be in good agreement with the corresponding experimental data and with the results found in the literature. The vibrational frequencies were assigned based on the potential energy distribution using the VEDA 4 program. The dimeric form of 4-chlorobenzothioamide was also simulated to evaluate the effect of intermolecular hydrogen bonding on the vibrational frequencies. It was observed that the Nsbnd H stretching modes shifted to lower frequencies, while the in-plane and out-of-plane bending modes shifted to higher frequencies due to the intermolecular Nsbnd H⋯S hydrogen bond. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies and diagrams were presented.

  7. Pressure bonding molybdenum alloy (TZM) to reaction-bonded silicon nitride

    International Nuclear Information System (INIS)

    Huffsmith, S.A.; Landingham, R.L.

    1978-01-01

    Topping cycles could boost the energy efficiencies of a variety of systems by using what is now waste heat. One such topping cycle uses a ceramic helical expander and would require that a reaction-bonded silicon nitride (RBSN) rotor be bonded to a shaft of TZM (Mo-0.5 wt % Ti-0.08 wt % Zr). Coupon studies show that TZM can be bonded to RBSN at 1300 0 C and 69 MPa if there is an interlayer of MoSi 2 . A layer of finely ground (10 μm) MoSi 2 facilitates bond formation and provides a thicker bond interface. The hardness and grain structure of the TZM and RBSN were not affected by the temperature and pressure required to bond the coupons

  8. Estimates of md-mu and left-angle bar dd right-angle -left-angle bar uu right-angle from QCD sum rules for D and D* isospin mass differences

    International Nuclear Information System (INIS)

    Eletsky, V.L.; Ioffe, B.L.

    1993-01-01

    The recent experimental data on D +- D0 and D *+- D*0 mass differences are used as inputs in the QCD sum rules to obtain new estimates on the mass difference of light quarks and on the difference of their condensates: m d -m u =3±1 MeV, left-angle bar dd right-angle -left-angle bar uu right-angle=-(2.5±1)x10 -3 left-angle bar uu right-angle (at a standard normalization point, μ=0.5 GeV)

  9. Chemical bond fundamental aspects of chemical bonding

    CERN Document Server

    Frenking, Gernot

    2014-01-01

    This is the perfect complement to ""Chemical Bonding - Across the Periodic Table"" by the same editors, who are two of the top scientists working on this topic, each with extensive experience and important connections within the community. The resulting book is a unique overview of the different approaches used for describing a chemical bond, including molecular-orbital based, valence-bond based, ELF, AIM and density-functional based methods. It takes into account the many developments that have taken place in the field over the past few decades due to the rapid advances in quantum chemica

  10. Structure and dynamics of double helical DNA in torsion angle hyperspace: a molecular mechanics approach.

    Science.gov (United States)

    Borkar, Aditi; Ghosh, Indira; Bhattacharyya, Dhananjay

    2010-04-01

    Analysis of the conformational space populated by the torsion angles and the correlation between the conformational energy and the sequence of DNA are important for fully understanding DNA structure and function. Presence of seven variable torsion angles about single covalent bonds in DNA main chain puts a big challenge for such analysis. We have carried out restrained energy minimization studies for four representative dinucleosides, namely d(ApA):d(TpT), d(CpG):d(CpG), d(GpC):d(GpC) and d(CpA):d(TpG) to determine the energy hyperspace of DNA in context to the values of the torsion angles and the structural properties of the DNA conformations populating the favorable regions of this energy hyperspace. The torsion angles were manipulated by constraining their values at the reference points and then performing energy minimization. The energy minima obtained on the potential energy contour plots mostly correspond to the conformations populated in crystal structures of DNA. Some novel favorable conformations that are not present in crystal structure data are also found. The plots also suggest few low energy routes for conformational transitions or the associated energy barrier heights. Analyses of base pairing and stacking possibility reveal structural changes accompanying these transitions as well as the flexibility of different base steps towards variations in different torsion angles.

  11. Wire bonding in microelectronics

    CERN Document Server

    Harman, George G

    2010-01-01

    Wire Bonding in Microelectronics, Third Edition, has been thoroughly revised to help you meet the challenges of today's small-scale and fine-pitch microelectronics. This authoritative guide covers every aspect of designing, manufacturing, and evaluating wire bonds engineered with cutting-edge techniques. In addition to gaining a full grasp of bonding technology, you'll learn how to create reliable bonds at exceedingly high yields, test wire bonds, solve common bonding problems, implement molecular cleaning methods, and much more. Coverage includes: Ultrasonic bonding systems and technologies, including high-frequency systems Bonding wire metallurgy and characteristics, including copper wire Wire bond testing Gold-aluminum intermetallic compounds and other interface reactions Gold and nickel-based bond pad plating materials and problems Cleaning to improve bondability and reliability Mechanical problems in wire bonding High-yield, fine-pitch, specialized-looping, soft-substrate, and extreme-temperature wire bo...

  12. Scoliosis angle

    International Nuclear Information System (INIS)

    Marklund, T.

    1978-01-01

    The most commonly used methods of assessing the scoliotic deviation measure angles that are not clearly defined in relation to the anatomy of the patient. In order to give an anatomic basis for such measurements it is proposed to define the scoliotic deviation as the deviation the vertebral column makes with the sagittal plane. Both the Cobb and the Ferguson angles may be based on this definition. The present methods of measurement are then attempts to measure these angles. If the plane of these angles is parallel to the film, the measurement will be correct. Errors in the measurements may be incurred by the projection. A hypothetical projection, called a 'rectified orthogonal projection', is presented, which correctly represents all scoliotic angles in accordance with these principles. It can be constructed in practice with the aid of a computer and by performing measurements on two projections of the vertebral column; a scoliotic curve can be represented independent of the kyphosis and lordosis. (Auth.)

  13. Automated analysis of angle closure from anterior chamber angle images.

    Science.gov (United States)

    Baskaran, Mani; Cheng, Jun; Perera, Shamira A; Tun, Tin A; Liu, Jiang; Aung, Tin

    2014-10-21

    To evaluate a novel software capable of automatically grading angle closure on EyeCam angle images in comparison with manual grading of images, with gonioscopy as the reference standard. In this hospital-based, prospective study, subjects underwent gonioscopy by a single observer, and EyeCam imaging by a different operator. The anterior chamber angle in a quadrant was classified as closed if the posterior trabecular meshwork could not be seen. An eye was classified as having angle closure if there were two or more quadrants of closure. Automated grading of the angle images was performed using customized software. Agreement between the methods was ascertained by κ statistic and comparison of area under receiver operating characteristic curves (AUC). One hundred forty subjects (140 eyes) were included, most of whom were Chinese (102/140, 72.9%) and women (72/140, 51.5%). Angle closure was detected in 61 eyes (43.6%) with gonioscopy in comparison with 59 eyes (42.1%, P = 0.73) using manual grading, and 67 eyes (47.9%, P = 0.24) with automated grading of EyeCam images. The agreement for angle closure diagnosis between gonioscopy and both manual (κ = 0.88; 95% confidence interval [CI), 0.81-0.96) and automated grading of EyeCam images was good (κ = 0.74; 95% CI, 0.63-0.85). The AUC for detecting eyes with gonioscopic angle closure was comparable for manual and automated grading (AUC 0.974 vs. 0.954, P = 0.31) of EyeCam images. Customized software for automated grading of EyeCam angle images was found to have good agreement with gonioscopy. Human observation of the EyeCam images may still be needed to avoid gross misclassification, especially in eyes with extensive angle closure. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  14. Reactive bonding mediated high mass loading of individualized single-walled carbon nanotubes in an elastomeric polymer

    Science.gov (United States)

    Zhao, Liping; Li, Yongjin; Qiu, Jishan; You, Jichun; Dong, Wenyong; Cao, Xiaojun

    2012-09-01

    A reactive chemical bonding strategy was developed for the incorporation of a high mass loading of individual single-wall carbon nanotubes (SWCNTs) into an elastomeric matrix using a reactive ionic liquid as a linker. This method simultaneously prevented the agglomeration of SWCNTs and caused strong interfacial bonding, while the electronic properties of the SWCNTs remained intact. As a result, the high conductivity of the carbon nanotubes (CNTs) and the flexibility of the elastomeric matrix were retained, producing optimum electrical and mechanical properties. A composite material with a loading of 20 wt% SWCNTs was fabricated with excellent mechanical properties and a high conductivity (9500 S m-1). The method could be used to form transparent thin conductive films that could tolerate over 800 bend cycles at a bending angle of 180° while maintaining a constant sheet resistance.A reactive chemical bonding strategy was developed for the incorporation of a high mass loading of individual single-wall carbon nanotubes (SWCNTs) into an elastomeric matrix using a reactive ionic liquid as a linker. This method simultaneously prevented the agglomeration of SWCNTs and caused strong interfacial bonding, while the electronic properties of the SWCNTs remained intact. As a result, the high conductivity of the carbon nanotubes (CNTs) and the flexibility of the elastomeric matrix were retained, producing optimum electrical and mechanical properties. A composite material with a loading of 20 wt% SWCNTs was fabricated with excellent mechanical properties and a high conductivity (9500 S m-1). The method could be used to form transparent thin conductive films that could tolerate over 800 bend cycles at a bending angle of 180° while maintaining a constant sheet resistance. Electronic supplementary information (ESI) available: Conductivity test of the SEBS-SWCNTs film, transmission spectra and sheet resistance for the spin-coated SEBS-SWCNTs thin films on PET slides. See DOI: 10

  15. Analysis of factors influencing the bond strength in roll bonding processes

    Science.gov (United States)

    Khaledi, Kavan; Wulfinghoff, Stephan; Reese, Stefanie

    2018-05-01

    Cold Roll Bonding (CRB) is recognized as an industrial technique in which the metal sheets are joined together in order to produce laminate metal composites. In this technique, a metallurgical bond resulting from severe plastic deformation is formed between the rolled metallic layers. The main objective of this paper is to analyse different factors which may affect the bond formation in rolling processes. To achieve this goal, first, an interface model is employed which describes both the bonding and debonding. In this model, the bond strength evolution between the metallic layers is calculated based on the film theory of bonding. On the other hand, the debonding process is modelled by means of a bilinear cohesive zone model. In the numerical section, different scenarios are taken into account to model the roll bonding process of metal sheets. The numerical simulation includes the modelling of joining during the roll bonding process followed by debonding in a Double Cantilever Beam (DCB) peeling test. In all simulations, the metallic layers are regarded as elastoplastic materials subjected to large plastic deformations. Finally, the effects of some important factors on the bond formation are numerically investigated.

  16. Studies of technetium chemistry. Pt.8. The regularities of the bond length and configuration of rhenium and technetium complexes in crystals

    International Nuclear Information System (INIS)

    Liu Guozheng; Liu Boli

    1995-01-01

    Some bond length regularities in MO 6 , MO-4, MX 5 α and MX 4 αβ moieties of technetium and rhenium compounds are summarized and rationalized by cavity model. The chemical properties of technetium and rhenium are so similar that their corresponding complexes have almost the same configuration and M-X bond lengths when they are in cavity-controlled state. Technetium and Rhenium combine preferably with N, O, F, S, Cl and Br when they are in higher oxidation states (>3), but preferably with P, Se etc. when they are in lower oxidation states ( 4 αβ is approximately constant; (2) the average M-X bond length of MX 6 varies moderately with the oxidation state of M; (3) the bond length of M-X trans to M-α in MX 5 α has a linear relationship with the angle

  17. Simultaneous bond degradation and bond formation during phenol-formaldehyde curing with wood

    Science.gov (United States)

    Daniel J. Yelle; John Ralph

    2016-01-01

    Bonding of wood using phenol–formaldehyde adhesive develops highly durable bonds. Phenol– formaldehyde is believed to form primary bonds with wood cell wall polymers (e.g., lignin). However, it is unclear how this adhesive interacts and bonds to lignin. Through wood solubilisation methodologies, earlywood and latewood bonded assemblies were characterized using two-...

  18. Novel technique for spatially resolved imaging of molecular bond orientations using x-ray birefringence

    Energy Technology Data Exchange (ETDEWEB)

    Sutter, John P., E-mail: john.sutter@diamond.ac.uk; Dolbnya, Igor P.; Collins, Stephen P. [Diamond Light Source Ltd, Harwell Science and Innovation Campus, Chilton, Didcot, Oxfordshire OX11 0DE (United Kingdom); Harris, Kenneth D. M., E-mail: HarrisKDM@cardiff.ac.uk; Edwards-Gau, Gregory R.; Kariuki, Benson M. [School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT (United Kingdom); Palmer, Benjamin A. [Department of Structural Biology, Weizmann Institute of Science, 234 Herzl St., Rehovot 7610001 (Israel)

    2016-07-27

    Birefringence has been observed in anisotropic materials transmitting linearly polarized X-ray beams tuned close to an absorption edge of a specific element in the material. Synchrotron bending magnets provide X-ray beams of sufficiently high brightness and cross section for spatially resolved measurements of birefringence. The recently developed X-ray Birefringence Imaging (XBI) technique has been successfully applied for the first time using the versatile test beamline B16 at Diamond Light Source. Orientational distributions of the C–Br bonds of brominated “guest” molecules within crystalline “host” tunnel structures (in thiourea or urea inclusion compounds) have been studied using linearly polarized incident X-rays near the Br K-edge. Imaging of domain structures, changes in C–Br bond orientations associated with order-disorder phase transitions, and the effects of dynamic averaging of C–Br bond orientations have been demonstrated. The XBI setup uses a vertically deflecting high-resolution double-crystal monochromator upstream from the sample and a horizontally deflecting single-crystal polarization analyzer downstream, with a Bragg angle as close as possible to 45°. In this way, the ellipticity and rotation angle of the polarization of the beam transmitted through the sample is measured as in polarizing optical microscopy. The theoretical instrumental background calculated from the elliptical polarization of the bending-magnet X-rays, the imperfect polarization discrimination of the analyzer, and the correlation between vertical position and photon energy introduced by the monochromator agrees well with experimental observations. The background is calculated analytically because the region of X-ray phase space selected by this setup is sampled inefficiently by standard methods.

  19. Hydrogen bonds, interfacial stiffness moduli, and the interlaminar shear strength of carbon fiber-epoxy matrix composites

    Directory of Open Access Journals (Sweden)

    John H. Cantrell

    2015-03-01

    Full Text Available The chemical treatment of carbon fibers used in carbon fiber-epoxy matrix composites greatly affects the fraction of hydrogen bonds (H-bonds formed at the fiber-matrix interface. The H-bonds are major contributors to the fiber-matrix interfacial shear strength and play a direct role in the interlaminar shear strength (ILSS of the composite. The H-bond contributions τ to the ILSS and magnitudes KN of the fiber-matrix interfacial stiffness moduli of seven carbon fiber-epoxy matrix composites, subjected to different fiber surface treatments, are calculated from the Morse potential for the interactions of hydroxyl and carboxyl acid groups formed on the carbon fiber surfaces with epoxy receptors. The τ calculations range from 7.7 MPa to 18.4 MPa in magnitude, depending on fiber treatment. The KN calculations fall in the range (2.01 – 4.67 ×1017 N m−3. The average ratio KN/|τ| is calculated to be (2.59 ± 0.043 × 1010 m−1 for the seven composites, suggesting a nearly linear connection between ILSS and H-bonding at the fiber-matrix interfaces. The linear connection indicates that τ may be assessable nondestructively from measurements of KN via a technique such as angle beam ultrasonic spectroscopy.

  20. Bond strength of masonry

    NARCIS (Netherlands)

    Pluijm, van der R.; Vermeltfoort, A.Th.

    1992-01-01

    Bond strength is not a well defined property of masonry. Normally three types of bond strength can be distinguished: - tensile bond strength, - shear (and torsional) bond strength, - flexural bond strength. In this contribution the behaviour and strength of masonry in deformation controlled uniaxial

  1. Comparative evaluation of shear bond strength of metallic brackets bonded with two different bonding agents under dry conditions and with saliva contamination

    Directory of Open Access Journals (Sweden)

    Mashallah Khanehmasjedi

    2017-02-01

    Conclusion: Application of Single Bond and Assure bonding agents resulted in adequate bond strength of brackets to tooth structures. Contamination with saliva significantly decreased the bond strength of Assure bonding agent compared with dry conditions.

  2. Pairwise NMR experiments for the determination of protein backbone dihedral angle Φ based on cross-correlated spin relaxation

    International Nuclear Information System (INIS)

    Takahashi, Hideo; Shimada, Ichio

    2007-01-01

    Novel cross-correlated spin relaxation (CCR) experiments are described, which measure pairwise CCR rates for obtaining peptide dihedral angles Φ. The experiments utilize intra-HNCA type coherence transfer to refocus 2-bond J NCα coupling evolution and generate the N (i)-C α (i) or C'(i-1)-C α (i) multiple quantum coherences which are required for measuring the desired CCR rates. The contribution from other coherences is also discussed and an appropriate setting of the evolution delays is presented. These CCR experiments were applied to 15 N- and 13 C-labeled human ubiquitin. The relevant CCR rates showed a high degree of correlation with the Φ angles observed in the X-ray structure. By utilizing these CCR experiments in combination with those previously established for obtaining dihedral angle Ψ, we can determine high resolution structures of peptides that bind weakly to large target molecules

  3. Optimal reconstruction angles

    International Nuclear Information System (INIS)

    Cook, G.O. Jr.; Knight, L.

    1979-07-01

    The question of optimal projection angles has recently become of interest in the field of reconstruction from projections. Here, studies are concentrated on the n x n pixel space, where literative algorithms such as ART and direct matrix techniques due to Katz are considered. The best angles are determined in a Gauss--Markov statistical sense as well as with respect to a function-theoretical error bound. The possibility of making photon intensity a function of angle is also examined. Finally, the best angles to use in an ART-like algorithm are studied. A certain set of unequally spaced angles was found to be preferred in several contexts. 15 figures, 6 tables

  4. Recent Advances in Adhesive Bonding - The Role of Biomolecules, Nanocompounds, and Bonding Strategies in Enhancing Resin Bonding to Dental Substrates.

    Science.gov (United States)

    Münchow, Eliseu A; Bottino, Marco C

    2017-09-01

    To present an overview on the main agents (i.e., biomolecules and nanocompounds) and/or strategies currently available to amplify or stabilize resin-dentin bonding. According to studies retrieved for full text reading (2014-2017), there are currently six major strategies available to overcome resin-dentin bond degradation: (i) use of collagen crosslinking agents, which may form stable covalent bonds with collagen fibrils, thus strengthening the hybrid layer; (ii) use of antioxidants, which may allow further polymerization reactions over time; (iii) use of protease inhibitors, which may inhibit or inactivate metalloproteinases; (iv) modification of the bonding procedure, which may be performed by using the ethanol wet-bonding technique or by applying an additional adhesive (hydrophobic) coating, thereby strengthening the hybrid layer; (v) laser treatment of the substrate prior to bonding, which may cause specific topographic changes in the surface of dental substrates, increasing bonding efficacy; and (vi) reinforcement of the resin matrix with inorganic fillers and/or remineralizing agents, which may positively enhance physico-mechanical properties of the hybrid layer. With the present review, we contributed to the better understanding of adhesion concepts and mechanisms of resin-dentin bond degradation, showing the current prospects available to solve that problematic. Also, adhesively-bonded restorations may be benefited by the use of some biomolecules, nanocompounds or alternative bonding strategies in order to minimize bond strength degradation.

  5. Impact of post-deposition annealing on interfacial chemical bonding states between AlGaN and ZrO2 grown by atomic layer deposition

    International Nuclear Information System (INIS)

    Ye, Gang; Arulkumaran, Subramaniam; Ng, Geok Ing; Li, Yang; Ang, Kian Siong; Wang, Hong; Ng, Serene Lay Geok; Ji, Rong; Liu, Zhi Hong

    2015-01-01

    The effect of post-deposition annealing on chemical bonding states at interface between Al 0.5 Ga 0.5 N and ZrO 2 grown by atomic layer deposition (ALD) is studied by angle-resolved x-ray photoelectron spectroscopy and high-resolution transmission electron microscopy. It has been found that both of Al-O/Al 2p and Ga-O/Ga 3d area ratio decrease at annealing temperatures lower than 500 °C, which could be attributed to “clean up” effect of ALD-ZrO 2 on AlGaN. Compared to Ga spectra, a much larger decrease in Al-O/Al 2p ratio at a smaller take-off angle θ is observed, which indicates higher effectiveness of the passivation of Al-O bond than Ga-O bond through “clean up” effect near the interface. However, degradation of ZrO 2 /AlGaN interface quality due to re-oxidation at higher annealing temperature (>500 °C) is also found. The XPS spectra clearly reveal that Al atoms at ZrO 2 /AlGaN interface are easier to get oxidized as compared with Ga atoms

  6. Comparative evaluation of shear bond strength of metallic brackets bonded with two different bonding agents under dry conditions and with saliva contamination.

    Science.gov (United States)

    Khanehmasjedi, Mashallah; Naseri, Mohammad Ali; Khanehmasjedi, Samaneh; Basir, Leila

    2017-02-01

    This study compared the shear bond strength of metallic brackets bonded with Single Bond and Assure bonding agents under dry and saliva-contamination conditions. Sixty sound premolar teeth were selected, and stainless-steel brackets were bonded on enamel surfaces with Single Bond and Assure bonding agents under dry condition or with saliva contamination. Shear bond strength values of brackets were measured in a universal testing machine. The adhesive remnant index scores were determined after debonding of the brackets under a stereomicroscope. One-way analysis of variance (ANOVA) was used to analyze bond strength. Two-by-two comparisons were made with post hoc Tukey tests (pbrackets to tooth structure were 9.29±8.56 MPa and 21.25±8.93 MPa with the use of Assure resin bonding agent under saliva-contamination and dry conditions, respectively. These values were 10.13±6.69 MPa and 14.09±6.6 MPa, respectively, under the same conditions with the use of Single Bond adhesive. Contamination with saliva resulted in a significant decrease in the bond strength of brackets to tooth structure with the application of Assure adhesive resin (pbrackets to tooth structures. Contamination with saliva significantly decreased the bond strength of Assure bonding agent compared with dry conditions. Copyright © 2016. Published by Elsevier Taiwan LLC.

  7. 29 CFR 2580.412-19 - Term of the bond, discovery period, other bond clauses.

    Science.gov (United States)

    2010-07-01

    ... SECURITY ACT OF 1974 TEMPORARY BONDING RULES General Bond Rules § 2580.412-19 Term of the bond, discovery... 29 Labor 9 2010-07-01 2010-07-01 false Term of the bond, discovery period, other bond clauses... new bond must be obtained each year. There is nothing in the Act that prohibits a bond for a term...

  8. Investigation of ball bond integrity for 0.8 mil (20 microns) diameter gold bonding wire on low k die in wire bonding technology

    Science.gov (United States)

    Kudtarkar, Santosh Anil

    Microelectronics technology has been undergoing continuous scaling to accommodate customer driven demand for smaller, faster and cheaper products. This demand has been satisfied by using novel materials, design techniques and processes. This results in challenges for the chip connection technology and also the package technology. The focus of this research endeavor was restricted to wire bond interconnect technology using gold bonding wires. Wire bond technology is often regarded as a simple first level interconnection technique. In reality, however, this is a complex process that requires a thorough understanding of the interactions between the design, material and process variables, and their impact on the reliability of the bond formed during this process. This research endeavor primarily focused on low diameter, 0.8 mil thick (20 mum) diameter gold bonding wire. Within the scope of this research, the integrity of the ball bond formed by 1.0 mil (25 mum) and 0.8 mil (20 mum) diameter wires was compared. This was followed by the evaluation of bonds formed on bond pads having doped SiO2 (low k) as underlying structures. In addition, the effect of varying the percentage of the wire dopant, palladium and bonding process parameters (bonding force, bond time, ultrasonic energy) for 0.8 mil (20 mum) bonding wire was also evaluated. Finally, a degradation empirical model was developed to understand the decrease in the wire strength. This research effort helped to develop a fundamental understanding of the various factors affecting the reliability of a ball bond from a design (low diameter bonding wire), material (low k and bonding wire dopants), and process (wire bonding process parameters) perspective for a first level interconnection technique, namely wire bonding. The significance of this research endeavor was the systematic investigation of the ball bonds formed using 0.8 mil (20 microm) gold bonding wire within the wire bonding arena. This research addressed low k

  9. Periodontal considerations in the use of bonds or bands on molars in adolescents and adults.

    Science.gov (United States)

    Boyd, R L; Baumrind, S

    1992-01-01

    This longitudinal study compared the periodontal status of bonded and banded molars in 20 adult and 40 adolescent patients before, during and after treatment with fixed orthodontic appliances. Plaque accumulation (measured by the Plaque Index), gingival inflammation (measured by the Gingival Index and the bleeding tendency), and pocket depth were assessed by one examiner at sites along the mesio-buccal line angle of the maxillary right first molar and the mandibular left first molar. Assessments were made immediately prior to the placement of fixed appliances (pretreatment), at 1, 3, 6, 9, 12 and 18 months after appliances were placed; and 3 months after appliances were removed (posttreatment). Loss of attachment between the pretreatment and posttreatment visits also was determined. At pretreatment, no significant differences were found in gingival inflammation between maxillary and mandibular banded and bonded molars. During treatment, both maxillary and mandibular banded molars showed significantly (p less than 0.05) greater gingival inflammation and plaque accumulation than did bonded molars. Three months after appliance removal, the maxillary molars that had been banded continued to show significantly more gingival inflammation and loss of attachment than did the maxillary molars that had been bonded. When all banded and bonded teeth were grouped by patient age, mean values for plaque accumulation and gingival inflammation in the maxillary molar regions were significantly greater for adolescents than for adults.

  10. Structure phenomena in the bond zone of explosively bonded plates

    International Nuclear Information System (INIS)

    Livne, Z.

    1979-12-01

    In the bond areas of couples of explosively bonded plates, there are often zones, generally designated as ''molten pockets'', which have undergone melting and solidification. The object of the present study was to investigate molten pockets, which have a decisive effect on bond quality. The experimental samples for the study were chosen in consideration of the mutual behaviour of the plates constituting the couples, according to their equilibrium phase diagrams. To facilitate the investigation, large plates were bonded under conditions that enabled to to obtain wavy bond zones that included relatively large molten pockets. To clarify the complex nature of molten pockets and their surroundings, a wide variety of methods were employed. It was found that the shape and composition of molten pockets largely depend upon the mechanism of formation of both the bond wave and the molten pockets. It was also found that the composition of molten pockets is not homogeneous, which is manifest in the modification of the composition of the pockets, the solidification morphology, the phases, which have been identified by X-ray diffraction, and the bond strenght and hardness. Moreover, the different solidification morphologies revealed by metallography were found to depend upon the types of plates bonded, the bonding conditions and the location of pockets in the wavy interface. For molten pockets, cooling rates of 10 4 to 10 5 (degC/sec) have been deduced from interdendritic spacing, and found to be in good agreement with calculations after a mathematical model. It seems that the fast cooling rates and the steep temperature gradients are at the origin of the particular solidification phenomena observed in molten pockets

  11. Cooperativity in Surface Bonding and Hydrogen Bonding of Water and Hydroxyl at Metal Surfaces

    DEFF Research Database (Denmark)

    Schiros, T.; Ogasawara, H.; Naslund, L. A.

    2010-01-01

    of the mixed phase at metal surfaces. The surface bonding can be considered to be similar to accepting a hydrogen bond, and we can thereby apply general cooperativity rules developed for hydrogen-bonded systems. This provides a simple understanding of why water molecules become more strongly bonded...... to the surface upon hydrogen bonding to OH and why the OH surface bonding is instead weakened through hydrogen bonding to water. We extend the application of this simple model to other observed cooperativity effects for pure water adsorption systems and H3O+ on metal surfaces.......We examine the balance of surface bonding and hydrogen bonding in the mixed OH + H2O overlayer on Pt(111), Cu(111), and Cu(110) via density functional theory calculations. We find that there is a cooperativity effect between surface bonding and hydrogen bonding that underlies the stability...

  12. Effect of Impact Angle on the Erosion Rate of Coherent Granular Soil, with a Chernozemic Soil as an Example

    Science.gov (United States)

    Larionov, G. A.; Bushueva, O. G.; Gorobets, A. V.; Dobrovol'skaya, N. G.; Kiryukhina, Z. P.; Krasnov, S. F.; Kobylchenko Kuksina, L. V.; Litvin, L. F.; Sudnitsyn, I. I.

    2018-02-01

    It has been shown in experiments in a hydraulic flume with a knee-shaped bend that the rate of soil erosion more than doubles at the flow impact angles to the channel side from 0° to 50°. At higher channel bends, the experiment could not be performed because of backwater. Results of erosion by water stream approaching the sample surface at angles between 2° and 90° are reported. It has been found that the maximum erosion rate is observed at flow impact angles of about 45°, and the minimum rate at 90°. The minimum soil erosion rate is five times lower than the maximum erosion rate. This is due to the difference in the rate of free water penetration into the upper soil layer, and the impact of the hydrodynamic pressure, which is maximum at the impact angle of 90°. The penetration of water into the interaggregate space results in the breaking of bonds between aggregates, which is the main condition for the capture of particles by the flow.

  13. Apparent Contact Angle and Contact Angle Hysteresis on Liquid Infused Surfaces

    OpenAIRE

    Semprebon, Ciro; McHale, Glen; Kusumaatmaja, Halim

    2016-01-01

    We theoretically investigate the apparent contact angle and contact angle hysteresis of a droplet placed on a liquid infused surface. We show that the apparent contact angle is not uniquely defined by material parameters, but also has a strong dependence on the relative size between the droplet and its surrounding wetting ridge formed by the infusing liquid. We derive a closed form expression for the contact angle in the limit of vanishing wetting ridge, and compute the correction for small b...

  14. Undetected angle closure in patients with a diagnosis of open-angle glaucoma.

    Science.gov (United States)

    Varma, Devesh K; Simpson, Sarah M; Rai, Amandeep S; Ahmed, Iqbal Ike K

    2017-08-01

    The aim of this study was to identify the proportion of patients referred to a tertiary glaucoma centre with a diagnosis of open-angle glaucoma (OAG) who were found to have angle closure glaucoma. Retrospective chart review. Consecutive new patients referred for glaucoma management to a tertiary centre between July 2010 and December 2011 were reviewed. Patients whose referrals for glaucoma assessment specified angle status as "open" were included. The data collected included glaucoma specialist's angle assessment, diagnosis, and glaucoma severity. The status of those with 180 degrees or more Shaffer angle grading of 0 was classified as "closed." From 1234 glaucoma referrals, 179 cases were specified to have a diagnosis of OAG or when angles were known to be open. Of these, 16 (8.9%) were found on examination by the glaucoma specialist to have angle closure. Pseudoexfoliation was present in 4 of 16 patients (25%) in the missed angle-closure glaucoma (ACG) group and 22 of 108 patients (13.5%) in the remaining OAG group. There was no difference found in demographic or ocular biometric parameters between those with confirmed OAG versus those with missed ACG. Almost 1 in 11 patients referred by ophthalmologists to a tertiary glaucoma centre with a diagnosis of OAG were in fact found to have angle closure. Given the different treatment approaches for ACG versus OAG, this study suggests a need to strengthen angle evaluations. Copyright © 2017 Canadian Ophthalmological Society. Published by Elsevier Inc. All rights reserved.

  15. Development of a stiffness-angle law for simplifying the measurement of human hair stiffness.

    Science.gov (United States)

    Jung, I K; Park, S C; Lee, Y R; Bin, S A; Hong, Y D; Eun, D; Lee, J H; Roh, Y S; Kim, B M

    2018-04-01

    This research examines the benefits of caffeine absorption on hair stiffness. To test hair stiffness, we have developed an evaluation method that is not only accurate, but also inexpensive. Our evaluation method for measuring hair stiffness culminated in a model, called the Stiffness-Angle Law, which describes the elastic properties of hair and can be widely applied to the development of hair care products. Small molecules (≤500 g mol -1 ) such as caffeine can be absorbed into hair. A common shampoo containing 4% caffeine was formulated and applied to hair 10 times, after which the hair stiffness was measured. The caffeine absorption of the treated hair was observed using Fourier-transform infrared spectroscopy (FTIR) with a focal plane array (FPA) detector. Our evaluation method for measuring hair stiffness consists of a regular camera and a support for single strands of hair. After attaching the hair to the support, the bending angle of the hair was observed with a camera and measured. Then, the hair strand was weighed. The stiffness of the hair was calculated based on our proposed Stiffness-Angle Law using three variables: angle, weight of hair and the distance the hair was pulled across the support. The caffeine absorption was confirmed by FTIR analysis. The concentration of amide bond in the hair certainly increased due to caffeine absorption. After caffeine was absorbed into the hair, the bending angle and weight of the hair changed. Applying these measured changes to the Stiffness-Angle Law, it was confirmed that the hair stiffness increased by 13.2% due to caffeine absorption. The theoretical results using the Stiffness-Angle Law agree with the visual examinations of hair exposed to caffeine and also the known results of hair stiffness from a previous report. Our evaluation method combined with our proposed Stiffness-Angle Law effectively provides an accurate and inexpensive evaluation technique for measuring bending stiffness of human hair. © 2018

  16. Contact Angle and Adhesion Dynamics and Hysteresis on Molecularly Smooth Chemically Homogeneous Surfaces.

    Science.gov (United States)

    Chen, Szu-Ying; Kaufman, Yair; Schrader, Alex M; Seo, Dongjin; Lee, Dong Woog; Page, Steven H; Koenig, Peter H; Isaacs, Sandra; Gizaw, Yonas; Israelachvili, Jacob N

    2017-09-26

    Measuring truly equilibrium adhesion energies or contact angles to obtain the thermodynamic values is experimentally difficult because it requires loading/unloading or advancing/receding boundaries to be measured at rates that can be slower than 1 nm/s. We have measured advancing-receding contact angles and loading-unloading adhesion energies for various systems and geometries involving molecularly smooth and chemically homogeneous surfaces moving at different but steady velocities in both directions, ±V, focusing on the thermodynamic limit of ±V → 0. We have used the Bell Theory (1978) to derive expressions for the dynamic (velocity-dependent) adhesion energies and contact angles suitable for both (i) dynamic adhesion measurements using the classic Johnson-Kendall-Roberts (JKR, 1971) theory of "contact mechanics" and (ii) dynamic contact angle hysteresis measurements of both rolling droplets and syringe-controlled (sessile) droplets on various surfaces. We present our results for systems that exhibited both steady and varying velocities from V ≈ 10 mm/s to 1 nm/s, where in all cases but one, the advancing (V > 0) and receding (V contact angles converged toward the same theoretical (thermodynamic) values as V → 0. Our equations for the dynamic contact angles are similar to the classic equations of Blake & Haynes (1969) and fitted the experimental adhesion data equally well over the range of velocities studied, although with somewhat different fitting parameters for the characteristic molecular length/dimension or area and characteristic bond formation/rupture lifetime or velocity. Our theoretical and experimental methods and results unify previous kinetic theories of adhesion and contact angle hysteresis and offer new experimental methods for testing kinetic models in the thermodynamic, quasi-static, limit. Our analyses are limited to kinetic effects only, and we conclude that hydrodynamic, i.e., viscous, and inertial effects do not play a role at the

  17. Photoelectron Diffraction Imaging for C2H2 and C2H4 Chemisorbed on Si(100) Reveals a New Bonding Configuration

    International Nuclear Information System (INIS)

    Xu, S. H.; Keeffe, M.; Yang, Y.; Chen, C.; Yu, M.; Lapeyre, G. J.; Rotenberg, E.; Denlinger, J.; Yates, J. T. Jr.

    2000-01-01

    A new adsorption site for adsorbed acetylene on Si(100) is observed by photoelectron imaging based on the holographic principle. The diffraction effects in the carbon 1s angle-resolved photoemission are inverted (including the small-cone method) to obtain an image of the atom's neighboring carbon. The chemisorbed acetylene molecule is bonded to four silicon surface atoms. In contrast to the C 2 H 2 case, the image for adsorbed C 2 H 4 shows it bonded to two Si surface atoms. (c) 2000 The American Physical Society

  18. Bond lengths and bond strengths in compounds of the 5f elements

    International Nuclear Information System (INIS)

    Zachariasen, W.H.

    1975-01-01

    The variation of bond length (D) with bond strength (S) in normal valence compounds of 3d, 4d, 5d-4f, and 6d-5f elements can be represented approximately as D(S)=D(0.5) F(S), where D(0.5) is a characteristic constant for a given bond and F(S) an empirical function which is the same for all bonds. A bond strength Ssub(ij)=ssub(ji) is assigned to the bond between atoms i and j such that Σsub(j) Ssub(ij)=vsub(i) and Σsub(i) Ssub(ij)=vsub(j), where vsub(i) and vsub(j) are the normal valences of the two atoms. The function F(S) decreases monotonically with increasing S, and is normalized to unity at S=0.5, so that the constant D(0.5) has the physical meaning of being the bond length adjusted to S=0.5. The method described above was used to interpret and systematize the experimental results on bond lengths in oxides, halides, and oxyhalides of the 5f elements. (U.S.)

  19. Evaluation of blotchy pigments in the anterior chamber angle as a sign of angle closure

    Directory of Open Access Journals (Sweden)

    Harsha L Rao

    2012-01-01

    Full Text Available Background: Blotchy pigments in the anterior chamber (AC angle are considered diagnostic of primary angle closure (PAC. But there are no reports either on the prevalence of blotchy pigments in AC angles or the validity of this sign. Aims: To determine the prevalence of blotchy pigments in AC angles and to evaluate their relationship with glaucomatous optic neuropathy (GON in eyes with occludable angles. Setting and Design: Cross-sectional, comparative study. Materials and Methods: Gonioscopy was performed in 1001 eyes of 526 subjects (245 eyes of 148 consecutive, occludable angle subjects and 756 eyes of 378 non-consecutive, open angle subjects, above 35 years of age. Quadrant-wise location of blotchy pigments was documented. Statistical Analysis: Odds of blotchy pigments in occludable angles against that in open angles were evaluated. Relationship of GON with blotchy pigments in occludable angle eyes was evaluated using a multivariate model. Results: Prevalence of blotchy pigments in occludable angles was 28.6% (95% CI, 22.9-34.3 and in open angles was 4.7% (95% CI, 3.2-6.3. Blotchy pigments were more frequently seen in inferior (16% and superior quadrants (15% of occludable angles, and inferior quadrant of open angles (4%. Odds of superior quadrant blotchy pigments in occludable angles were 33 times that in open angles. GON was seen in 107 occludable angle eyes. Blotchy pigments were not significantly associated with GON (odds ratio = 0.5; P = 0.1. Conclusions: Blotchy pigments were seen in 28.6% of occludable angle eyes and 4.7% of open angles eyes. Presence of blotchy pigments in the superior quadrant is more common in occludable angles. Presence of GON in occludable angle eyes was not associated with blotchy pigments.

  20. Evaluation of blotchy pigments in the anterior chamber angle as a sign of angle closure

    Science.gov (United States)

    Rao, Harsha L; Mungale, Sachin C; Kumbar, Tukaram; Parikh, Rajul S; Garudadri, Chandra S

    2012-01-01

    Background: Blotchy pigments in the anterior chamber (AC) angle are considered diagnostic of primary angle closure (PAC). But there are no reports either on the prevalence of blotchy pigments in AC angles or the validity of this sign. Aims: To determine the prevalence of blotchy pigments in AC angles and to evaluate their relationship with glaucomatous optic neuropathy (GON) in eyes with occludable angles. Setting and Design: Cross-sectional, comparative study. Materials and Methods: Gonioscopy was performed in 1001 eyes of 526 subjects (245 eyes of 148 consecutive, occludable angle subjects and 756 eyes of 378 non-consecutive, open angle subjects), above 35 years of age. Quadrant-wise location of blotchy pigments was documented. Statistical Analysis: Odds of blotchy pigments in occludable angles against that in open angles were evaluated. Relationship of GON with blotchy pigments in occludable angle eyes was evaluated using a multivariate model. Results: Prevalence of blotchy pigments in occludable angles was 28.6% (95% CI, 22.9-34.3) and in open angles was 4.7% (95% CI, 3.2-6.3). Blotchy pigments were more frequently seen in inferior (16%) and superior quadrants (15%) of occludable angles, and inferior quadrant of open angles (4%). Odds of superior quadrant blotchy pigments in occludable angles were 33 times that in open angles. GON was seen in 107 occludable angle eyes. Blotchy pigments were not significantly associated with GON (odds ratio = 0.5; P = 0.1). Conclusions: Blotchy pigments were seen in 28.6% of occludable angle eyes and 4.7% of open angles eyes. Presence of blotchy pigments in the superior quadrant is more common in occludable angles. Presence of GON in occludable angle eyes was not associated with blotchy pigments. PMID:23202393

  1. Voltage-assisted polymer wafer bonding

    International Nuclear Information System (INIS)

    Varsanik, J S; Bernstein, J J

    2012-01-01

    Polymer wafer bonding is a widely used process for fabrication of microfluidic devices. However, best practices for polymer bonds do not achieve sufficient bond strength for many applications. By applying a voltage to a polymer bond in a process called voltage-assisted bonding, bond strength is shown to improve dramatically for two polymers (Cytop™ and poly(methyl methacrylate)). Several experiments were performed to provide a starting point for further exploration of this technique. An optimal voltage range is experimentally observed with a reduction in bonding strength at higher voltages. Additionally, voltage-assisted bonding is shown to reduce void diameter due to bond defects. An electrostatic force model is proposed to explain the improved bond characteristics. This process can be used to improve bond strength for most polymers. (paper)

  2. Effect of intermolecular hydrogen bonding, vibrational analysis and molecular structure of a biomolecule: 5-Hydroxymethyluracil

    Science.gov (United States)

    Çırak, Çağrı; Sert, Yusuf; Ucun, Fatih

    2014-06-01

    In the present work, the experimental and theoretical vibrational spectra of 5-hydroxymethyluracil were investigated. The FT-IR (4000-400 cm-1) spectrum of the molecule in the solid phase was recorded. The geometric parameters (bond lengths and bond angles), vibrational frequencies, Infrared intensities of the title molecule in the ground state were calculated using density functional B3LYP and M06-2X methods with the 6-311++G(d,p) basis set for the first time. The optimized geometric parameters and theoretical vibrational frequencies were found to be in good agreement with the corresponding experimental data, and with the results found in the literature. The vibrational frequencies were assigned based on the potential energy distribution using the VEDA 4 program. The dimeric form of 5-hydroxymethyluracil molecule was also simulated to evaluate the effect of intermolecular hydrogen bonding on its vibrational frequencies. It was observed that the Nsbnd H stretching modes shifted to lower frequencies, while its in-plane and out-of-plane bending modes shifted to higher frequencies due to the intermolecular Nsbnd H⋯O hydrogen bond. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies and diagrams were presented.

  3. Smoothed particle hydrodynamics study of the roughness effect on contact angle and droplet flow.

    Science.gov (United States)

    Shigorina, Elena; Kordilla, Jannes; Tartakovsky, Alexandre M

    2017-09-01

    We employ a pairwise force smoothed particle hydrodynamics (PF-SPH) model to simulate sessile and transient droplets on rough hydrophobic and hydrophilic surfaces. PF-SPH allows modeling of free-surface flows without discretizing the air phase, which is achieved by imposing the surface tension and dynamic contact angles with pairwise interaction forces. We use the PF-SPH model to study the effect of surface roughness and microscopic contact angle on the effective contact angle and droplet dynamics. In the first part of this work, we investigate static contact angles of sessile droplets on different types of rough surfaces. We find that the effective static contact angles of Cassie and Wenzel droplets on a rough surface are greater than the corresponding microscale static contact angles. As a result, microscale hydrophobic rough surfaces also show effective hydrophobic behavior. On the other hand, microscale hydrophilic surfaces may be macroscopically hydrophilic or hydrophobic, depending on the type of roughness. We study the dependence of the transition between Cassie and Wenzel states on roughness and droplet size, which can be linked to the critical pressure for the given fluid-substrate combination. We observe good agreement between simulations and theoretical predictions. Finally, we study the impact of the roughness orientation (i.e., an anisotropic roughness) and surface inclination on droplet flow velocities. Simulations show that droplet flow velocities are lower if the surface roughness is oriented perpendicular to the flow direction. If the predominant elements of surface roughness are in alignment with the flow direction, the flow velocities increase compared to smooth surfaces, which can be attributed to the decrease in fluid-solid contact area similar to the lotus effect. We demonstrate that classical linear scaling relationships between Bond and capillary numbers for droplet flow on flat surfaces also hold for flow on rough surfaces.

  4. 30 CFR 281.33 - Bonds and bonding requirements.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Bonds and bonding requirements. 281.33 Section 281.33 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE LEASING OF MINERALS OTHER THAN OIL, GAS, AND SULPHUR IN THE OUTER CONTINENTAL SHELF Financial Considerations § 281.33...

  5. Are Bonding Agents being Effective on the Shear Bond Strength of Orthodontic Brackets Bonded to the Composite?

    Directory of Open Access Journals (Sweden)

    Fahimeh Farzanegan

    2014-06-01

    Full Text Available Introduction: One of the clinical problems in orthodontics is the bonding of brackets tocomposite restorations. The aim of this study was to evaluate the shear bondstrength of brackets bonded to composite restorations using Excite. Methods:Forty brackets were bonded to composite surfaces, which were embedded inacrylic resin. One of the following four protocols was employed for surfacepreparation of the composite: group 1 37% phosphoric acid for 60 seconds, group2 roughening with a diamond bur plus 37% phosphoric acid for 60 seconds, group3 37% phosphoric acid for 60 seconds and the applying Excite®, group4 roughening with diamond bur plus 37% phosphoric acid for 60 seconds andapplying Excite®. Maxillary central brackets were bonded onto thecomposite prepared samples with Transbond XT. Shear Bond Strength (SBS wasmeasured by a universal testing machine. The ANOVA and Tukey test was utilizedfor data analysis. Results: There was a significant difference betweenthe four groups (P

  6. Insertion reactions into Pd[bond]O and Pd[bond]N bonds: preparation of alkoxycarbonyl, carbonato, carbamato, thiocarbamate, and thioureide complexes of palladium(II).

    Science.gov (United States)

    Ruiz, José; Martínez, M Teresa; Florenciano, Félix; Rodríguez, Venancio; López, Gregorio; Pérez, José; Chaloner, Penny A; Hitchcock, Peter B

    2003-06-02

    Mononuclear palladium hydroxo complexes of the type [Pd(N[bond]N)(C(6)F(5))(OH)] [(N[bond]N = 2,2'-bipyridine (bipy), 4,4'-dimethyl-2,2'-bipyridine (Me(2)bipy), 1,10-phenanthroline (phen), or N,N,N',N'-tetramethylethylenediamine (tmeda)] have been prepared by reaction of [Pd(N[bond]N)(C(6)F(5))(acetone)]ClO(4) with KOH in methanol. These hydroxo complexes react, in methanol, with CO (1 atm, room temperature) to yield the corresponding methoxycarbonyl complexes [Pd(N[bond]N)(C(6)F(5))(CO(2)Me)]. Similar alkoxycarbonyl complexes [Pd(N[bond]N)(C(6)F(5))(CO(2)R)] (N[bond]N = bis(3,5-dimethylpyrazol-1-yl)methane); R = Me, Et, or (i)Pr) are obtained when [Pd(N[bond]N)(C(6)F(5))Cl] is treated with KOH in the corresponding alcohol ROH and CO is bubbled through the solution. The reactions of [Pd(N[bond]N)(C(6)F(5))(OH)] (N[bond]N = bipy or Me(2)bipy) with CO(2), in tetrahydrofuran, lead to the formation of the binuclear carbonate complexes [(N[bond]N)(C(6)F(5))Pd(mu-eta(2)-CO(3))Pd(C(6)F(5))(N[bond]N)]. Complexes [Pd(N[bond]N)(C(6)F(5))(OH)] react in alcohol with PhNCS to yield the corresponding N-phenyl-O-alkylthiocarbamate complexes [Pd(N[bond]N)(C(6)F(5))[SC(OR)NPh

  7. The Nature of the Hydrogen Bond Outline of a Comprehensive Hydrogen Bond Theory

    CERN Document Server

    Gilli, Gastone

    2009-01-01

    Hydrogen bond (H-bond) effects are known: it makes sea water liquid, joins cellulose microfibrils in trees, shapes DNA into genes and polypeptide chains into wool, hair, muscles or enzymes. Its true nature is less known and we may still wonder why O-H...O bond energies range from less than 1 to more than 30 kcal/mol without apparent reason. This H-bond puzzle is re-examined here from its very beginning and presented as an inclusive compilation of experimental H-bond energies andgeometries.New concepts emerge from this analysis: new classes of systematically strong H-bonds (CAHBs and RAHBs: cha

  8. Hydrogen bonding in ionic liquids.

    Science.gov (United States)

    Hunt, Patricia A; Ashworth, Claire R; Matthews, Richard P

    2015-03-07

    Ionic liquids (IL) and hydrogen bonding (H-bonding) are two diverse fields for which there is a developing recognition of significant overlap. Doubly ionic H-bonds occur when a H-bond forms between a cation and anion, and are a key feature of ILs. Doubly ionic H-bonds represent a wide area of H-bonding which has yet to be fully recognised, characterised or explored. H-bonds in ILs (both protic and aprotic) are bifurcated and chelating, and unlike many molecular liquids a significant variety of distinct H-bonds are formed between different types and numbers of donor and acceptor sites within a given IL. Traditional more neutral H-bonds can also be formed in functionalised ILs, adding a further level of complexity. Ab initio computed parameters; association energies, partial charges, density descriptors as encompassed by the QTAIM methodology (ρBCP), qualitative molecular orbital theory and NBO analysis provide established and robust mechanisms for understanding and interpreting traditional neutral and ionic H-bonds. In this review the applicability and extension of these parameters to describe and quantify the doubly ionic H-bond has been explored. Estimating the H-bonding energy is difficult because at a fundamental level the H-bond and ionic interaction are coupled. The NBO and QTAIM methodologies, unlike the total energy, are local descriptors and therefore can be used to directly compare neutral, ionic and doubly ionic H-bonds. The charged nature of the ions influences the ionic characteristics of the H-bond and vice versa, in addition the close association of the ions leads to enhanced orbital overlap and covalent contributions. The charge on the ions raises the energy of the Ylp and lowers the energy of the X-H σ* NBOs resulting in greater charge transfer, strengthening the H-bond. Using this range of parameters and comparing doubly ionic H-bonds to more traditional neutral and ionic H-bonds it is clear that doubly ionic H-bonds cover the full range of weak

  9. Crystal structure and hydrogen bonding in N-(1-deoxy-β-d-fructopyranos-1-yl-2-aminoisobutyric acid

    Directory of Open Access Journals (Sweden)

    Valeri V. Mossine

    2018-01-01

    Full Text Available The title compound, alternatively called d-fructose-2-aminoisobutyric acid (FruAib, C10H19NO7, (I, crystallizes exclusively in the β-pyranose form, with two conformationally non-equivalent molecules [(IA and (IB] in the asymmetric unit. In solution, FruAib establishes an equilibrium, with 75.6% of the population consisting of β-pyranose, 10.4% β-furanose, 10.1% α-furanose, 3.0% α-pyranose and <0.7% the acyclic forms. The carbohydrate ring in (I has the normal 2C5 chair conformation and the amino acid portion is in the zwitterion form. Bond lengths and valence angles compare well with the average values from related pyranose structures. All carboxyl, hydroxy and ammonium groups are involved in hydrogen bonding and form a three-dimensional network of infinite chains that are connected through homodromic rings and short chains. Intramolecular hydrogen bonds bridge the amino acid and sugar portions in both molecules. A comparative Hirshfeld surfaces analysis of FruAib and four other sugar–amino acids suggests an increasing role of intramolecular heteroatom interactions in crystal structures with an increasing proportion of C—H bonds.

  10. Bond-Slip Relationship for CFRP Sheets Externally Bonded to Concrete under Cyclic Loading.

    Science.gov (United States)

    Li, Ke; Cao, Shuangyin; Yang, Yue; Zhu, Juntao

    2018-02-26

    The objective of this paper was to explore the bond-slip relationship between carbon fiber-reinforced polymer (CFRP) sheets and concrete under cyclic loading through experimental and analytical approaches. Modified beam tests were performed in order to gain insight into the bond-slip relationship under static and cyclic loading. The test variables are the CFRP-to-concrete width ratio, and the bond length of the CFRP sheets. An analysis of the test results in this paper and existing test results indicated that the slope of the ascending segment of the bond-slip curve decreased with an increase in the number of load cycles, but the slip corresponding to the maximum shear stress was almost invariable as the number of load cycles increased. In addition, the rate of reduction in the slope of the ascending range of the bond-slip curve during cyclic loading decreased as the concrete strength increased, and increased as the load level or CFRP-to-concrete width ratio enhanced. However, these were not affected by variations in bond length if the residual bond length was longer than the effective bond length. A bilinear bond-slip model for CFRP sheets that are externally bonded to concrete under cyclic loading, which considered the effects of the cyclic load level, concrete strength, and CFRP-to-concrete ratio, was developed based on the existing static bond-slip model. The accuracy of this proposed model was verified by a comparison between this proposed model and test results.

  11. Enamel Bond Strength of New Universal Adhesive Bonding Agents.

    Science.gov (United States)

    McLean, D E; Meyers, E J; Guillory, V L; Vandewalle, K S

    2015-01-01

    Universal bonding agents have been introduced for use as self-etch or etch-and-rinse adhesives depending on the dental substrate and clinician's preference. The purpose of this study was to evaluate the shear bond strength (SBS) of composite to enamel using universal adhesives compared to a self-etch adhesive when applied in self-etch and etch-and-rinse modes over time. Extracted human third molars were used to create 120 enamel specimens. The specimens were ground flat and randomly divided into three groups: two universal adhesives and one self-etch adhesive. Each group was then subdivided, with half the specimens bonded in self-etch mode and half in etch-and-rinse mode. The adhesives were applied as per manufacturers' instructions, and composite was bonded using a standardized mold and cured incrementally. The groups were further divided into two subgroups with 10 specimens each. One subgroup was stored for 24 hours and the second for six months in 37°C distilled water and tested in shear. Failure mode was also determined for each specimen. A three-way analysis of variance (ANOVA) found a significant difference between groups based on bonding agent (p0.05). Clearfil SE in etch-and-rinse and self-etch modes had more mixed fractures than either universal adhesive in either mode. Etching enamel significantly increased the SBS of composite to enamel. Clearfil SE had significantly greater bond strength to enamel than either universal adhesive, which were not significantly different from each other.

  12. Influence of warm air-drying on enamel bond strength and surface free-energy of self-etch adhesives.

    Science.gov (United States)

    Shiratsuchi, Koji; Tsujimoto, Akimasa; Takamizawa, Toshiki; Furuichi, Tetsuya; Tsubota, Keishi; Kurokawa, Hiroyasu; Miyazaki, Masashi

    2013-08-01

    We examined the effect of warm air-drying on the enamel bond strengths and the surface free-energy of three single-step self-etch adhesives. Bovine mandibular incisors were mounted in self-curing resin and then wet ground with #600 silicon carbide (SiC) paper. The adhesives were applied according to the instructions of the respective manufacturers and then dried in a stream of normal (23°C) or warm (37°C) air for 5, 10, and 20 s. After visible-light irradiation of the adhesives, resin composites were condensed into a mold and polymerized. Ten samples per test group were stored in distilled water at 37°C for 24 h and then the bond strengths were measured. The surface free-energies were determined by measuring the contact angles of three test liquids placed on the cured adhesives. The enamel bond strengths varied according to the air-drying time and ranged from 15.8 to 19.1 MPa. The trends for the bond strengths were different among the materials. The value of the γS⁺ component increased slightly when drying was performed with a stream of warm air, whereas that of the γS⁻ component decreased significantly. These data suggest that warm air-drying is essential to obtain adequate enamel bond strengths, although increasing the drying time did not significantly influence the bond strength. © 2013 Eur J Oral Sci.

  13. The Q-angle and sport

    DEFF Research Database (Denmark)

    Hahn, Thomas; Foldspang, Anders

    1997-01-01

    Quadriceps muscle contraction tends to straighten the Q angle. We expected that sports comprising a high amount of quadriceps training could be associated with low Q angles. The aim of the present study was to estimate the Q angle in athletes and to investigate its potential associations with par......Quadriceps muscle contraction tends to straighten the Q angle. We expected that sports comprising a high amount of quadriceps training could be associated with low Q angles. The aim of the present study was to estimate the Q angle in athletes and to investigate its potential associations...... with participation in sport. Three hundred and thirty-nine athletes had their Q angle measured. The mean of right-side Q angles was higher than left side, and the mean Q angle was higher in women than in men. The Q angle was positively associated with years of jogging, and negatively with years of soccer, swimming...... and sports participation at all. It is concluded that the use of Q angle measurements is questionable....

  14. Strength of Al and Al-Mg/alumina bonds prepared using ultrahigh vacuum diffusion bonding

    International Nuclear Information System (INIS)

    King, W.E.; Campbell, G.H.; Wien, W.L.; Stoner, S.L.

    1994-01-01

    The authors have measured the cross-breaking strength of Al and Al-Mg alloys bonded with alumina. Diffusion bonding of Al and Al-Mg alloys requires significantly more bonding time than previously thought to obtain complete bonding. In contrast to previous diffusion bonding studies, fracture morphologies are similar to those obtained in bonds formed by liquid phase reaction; i.e., bonds are as strong or stronger than the ceramic; and fracture tends to propagate in the metal for pure Al and near the interface in the ceramic for the alloys. There are indications that the fracture morphology depends on Mg content and therefore on plasticity in the metal

  15. Contact Angle Goniometer

    Data.gov (United States)

    Federal Laboratory Consortium — Description:The FTA32 goniometer provides video-based contact angle and surface tension measurement. Contact angles are measured by fitting a mathematical expression...

  16. left-angle 100 right-angle Burgers vector in single phase γ' material verified by image simulation

    International Nuclear Information System (INIS)

    Link, T.; Knobloch, C.; Glatzel, U.

    1998-01-01

    The deformation mechanisms of Ni 3 Al, an ordered L1 2 or γ' phase, is under intense research since Westbrook showed the increase of its hardness with temperature in 1957. The super dislocations of this ordered phase normally have Burgers vectors rvec b = a left-angle 110 right-angle, disassociated in either two a/2 left-angle 110 right-angle or two rvec b = a/3 left-angle 112 right-angle, depending on deformation temperature and rate. Recent observations in [111] oriented γ' specimens suggest that additional dislocations with the shorter Burgers vector rvec b = a left-angle 100 right-angle might be active. Dislocations with rvec b = a left-angle 110 right-angle on cube glide planes have a Schmidt factor of 0.47 and on octahedral planes of 0.27. Dislocations with rvec b = a left-angle 100 right-angle have a Schmidt factor of 0.47 for {110} glide planes and 0.33 for cube glide planes. The a left-angle 100 right-angle Burgers vector is the shortest of all complete dislocations of the L1 2 structure and creates no planar fault like antiphase boundaries or stacking faults. Due to the [111] oriented stress axis, which is used in this contribution, plastic deformation by a left-angle 100 right-angle dislocations as well as cube glide planes for left-angle 110 right-angle dislocations is encouraged. These dislocations could be reaction products, but will soon after contribute to deformation

  17. Safe and Liquid Mortgage Bonds

    DEFF Research Database (Denmark)

    Dick-Nielsen, Jens; Gyntelberg, Jacob; Lund, Jesper

    This paper shows that strict match pass-through funding of covered bonds provides safe and liquid mortgage bonds. Despite a 30% drop in house prices during the 2008 global crisis Danish mortgage bonds remained as liquid as most European government bonds. The Danish pass-through system effectively...... eliminates credit risk from the investor's perspective. Similar to other safe bonds, funding liquidity becomes the main driver of mortgage bond liquidity and this creates commonality in liquidity across markets and countries. These findings have implications for how to design a robust mortgage bond system...

  18. Comparative TEM study of bonded silicon/silicon interfaces fabricated by hydrophilic, hydrophobic and UHV wafer bonding

    International Nuclear Information System (INIS)

    Reznicek, A.; Scholz, R.; Senz, S.; Goesele, U.

    2003-01-01

    Wafers of Czochralski-grown silicon were bonded hydrophilically, hydrophobically and in ultrahigh vacuum (UHV) at room temperature. Wafers bonded hydrophilically adhere together by hydrogen bonds, those bonded hydrophobically by van der Waals forces and UHV-bonded ones by covalent bonds. Annealing the pre-bonded hydrophilic and hydrophobic wafer pairs in argon for 2 h at different temperatures increases the initially low bonding energy. UHV-bonded wafer pairs were also annealed to compare the results. Transmission electron microscopy (TEM) investigations show nano-voids at the interface. The void density depends on the initial bonding strength. During annealing the shape, coverage and density of the voids change significantly

  19. Evaluation of a New Nano-filled Bonding Agent for Bonding Orthodontic Brackets as Compared to a Conventional Bonding Agent: An in vitro Study

    Directory of Open Access Journals (Sweden)

    Sandesh S Pai

    2012-01-01

    Conclusion: Although both bonding agents provide clinically acceptable levels of bond strength, the technique to bond the nano-filled Prime and Bond NT is more cumbersome as compared to the Transbond XT material, which makes the latter a more popular choice in the clinical set up. If the application procedures for the Prime and Bond NT can be simplified then it could be a convenient option in the orthodontic practice.

  20. Inversion symmetry and local vs. dispersive interactions in the nucleation of hydrogen bonded cyclic n-mer and tape of imidazolecarboxamidines

    Directory of Open Access Journals (Sweden)

    2008-07-01

    Full Text Available Substitutional changes to imidazolecarboxamidine that preserved intermolecular hydrogen bonding in the solid state were used to study the relationship between packing and the hydrogen bond motif. Various motifs competed, but the most common imidazolecarboxamidine crystalline phase was a Ci symmetric dimer that established inversion centers by associating enantiomeric tautomers. Counter to intuition, the calculated gas-phase energies per molecule of the solid state atomic coordinates of the Ci dimer motifs were higher than those of the C1 dimer, trimer, tetramer and tape motifs, while the packing densities of Ci dimers were found to be higher. This result was interpreted as an enhanced ability of the Ci dimers to pack. If other motifs competed, the hydrogen bonds and conformations should be lower in energy than the Ci dimer. The results detail the effect of packing on the conformation in these molecules. The results are interpreted as a rough measure of the energetic compromise between packing and the energies related to the coordinates involving one dihedral angle and hydrogen bonding. The results establish a connection between solution and solid phase conformation.

  1. Angle Performance on Optima XE

    International Nuclear Information System (INIS)

    David, Jonathan; Satoh, Shu

    2011-01-01

    Angle control on high energy implanters is important due to shrinking device dimensions, and sensitivity to channeling at high beam energies. On Optima XE, beam-to-wafer angles are controlled in both the horizontal and vertical directions. In the horizontal direction, the beam angle is measured through a series of narrow slits, and any angle adjustment is made by steering the beam with the corrector magnet. In the vertical direction, the beam angle is measured through a high aspect ratio mask, and any angle adjustment is made by slightly tilting the wafer platen during implant.Using a sensitive channeling condition, we were able to quantify the angle repeatability of Optima XE. By quantifying the sheet resistance sensitivity to both horizontal and vertical angle variation, the total angle variation was calculated as 0.04 deg. (1σ). Implants were run over a five week period, with all of the wafers selected from a single boule, in order to control for any crystal cut variation.

  2. A Reference-Free and Non-Contact Method for Detecting and Imaging Damage in Adhesive-Bonded Structures Using Air-Coupled Ultrasonic Transducers

    Directory of Open Access Journals (Sweden)

    Timotius Yonathan Sunarsa

    2017-12-01

    Full Text Available Adhesive bonded structures have been widely used in aerospace, automobile, and marine industries. Due to the complex nature of the failure mechanisms of bonded structures, cost-effective and reliable damage detection is crucial for these industries. Most of the common damage detection methods are not adequately sensitive to the presence of weakened bonding. This paper presents an experimental and analytical method for the in-situ detection of damage in adhesive-bonded structures. The method is fully non-contact, using air-coupled ultrasonic transducers (ACT for ultrasonic wave generation and sensing. The uniqueness of the proposed method relies on accurate detection and localization of weakened bonding in complex adhesive bonded structures. The specimens tested in this study are parts of real-world structures with critical and complex damage types, provided by Hyundai Heavy Industries® and IKTS Fraunhofer®. Various transmitter and receiver configurations, including through transmission, pitch-catch scanning, and probe holder angles, were attempted, and the obtained results were analyzed. The method examines the time-of-flight of the ultrasonic waves over a target inspection area, and the spatial variation of the time-of-flight information was examined to visualize and locate damage. The proposed method works without relying on reference data obtained from the pristine condition of the target specimen. Aluminum bonded plates and triplex adhesive layers with debonding and weakened bonding were used to examine the effectiveness of the method.

  3. Mechanism of bonding and debonding using surface activated bonding method with Si intermediate layer

    Science.gov (United States)

    Takeuchi, Kai; Fujino, Masahisa; Matsumoto, Yoshiie; Suga, Tadatomo

    2018-04-01

    Techniques of handling thin and fragile substrates in a high-temperature process are highly required for the fabrication of semiconductor devices including thin film transistors (TFTs). In our previous study, we proposed applying the surface activated bonding (SAB) method using Si intermediate layers to the bonding and debonding of glass substrates. The SAB method has successfully bonded glass substrates at room temperature, and the substrates have been debonded after heating at 450 °C, in which TFTs are fabricated on thin glass substrates for LC display devices. In this study, we conducted the bonding and debonding of Si and glass in order to understand the mechanism in the proposed process. Si substrates are also successfully bonded to glass substrates at room temperature and debonded after heating at 450 °C using the proposed bonding process. By the composition analysis of bonding interfaces, it is clarified that the absorbed water on the glass forms interfacial voids and cause the decrease in bond strength.

  4. Effect of nanoscale surface roughness on the bonding energy of direct-bonded silicon wafers

    Science.gov (United States)

    Miki, N.; Spearing, S. M.

    2003-11-01

    Direct wafer bonding of silicon wafers is a promising technology for manufacturing three-dimensional complex microelectromechanical systems as well as silicon-on-insulator substrates. Previous work has reported that the bond quality declines with increasing surface roughness, however, this relationship has not been quantified. This article explicitly correlates the bond quality, which is quantified by the apparent bonding energy, and the surface morphology via the bearing ratio, which describes the area of surface lying above a given depth. The apparent bonding energy is considered to be proportional to the real area of contact. The effective area of contact is defined as the area sufficiently close to contribute to the attractive force between the two bonding wafers. Experiments were conducted with silicon wafers whose surfaces were roughened by a buffered oxide etch solution (BOE, HF:NH4F=1:7) and/or a potassium hydroxide solution. The surface roughness was measured by atomic force microscopy. The wafers were direct bonded to polished "monitor" wafers following a standard RCA cleaning and the resulting bonding energy was measured by the crack-opening method. The experimental results revealed a clear correlation between the bonding energy and the bearing ratio. A bearing depth of ˜1.4 nm was found to be appropriate for the characterization of direct-bonded silicon at room temperature, which is consistent with the thickness of the water layer at the interface responsible for the hydrogen bonds that link the mating wafers.

  5. Tailoring structures through two-step annealing process in nanostructured aluminum produced by accumulative roll-bonding

    DEFF Research Database (Denmark)

    Kamikawa, Naoya; Huang, Xiaoxu; Hansen, Niels

    2008-01-01

    temperature before annealing at high temperature. By this two-step process, the structure is homogenized and the stored energy is reduced significantly during the first annealing step. As an example, high-purity aluminum has been deformed to a total reduction of 98.4% (equivalent strain of 4.......8) by accumulative roll-bonding at room temperature. Isochronal annealing for 0.5 h of the deformed samples shows the occurrence of recrystallization at 200 °C and above. However, when introducing an annealing step for 6 h at 175 °C, no significant recrystallization is observed and relatively homogeneous structures...... are obtained when the samples afterwards are annealed at higher temperatures up to 300 °C. To underpin these observations, the structural evolution has been characterized by transmission electron microscopy, showing that significant annihilation of high-angle boundaries, low-angle dislocation boundaries...

  6. Australia's Bond Home Bias

    OpenAIRE

    Anil V. Mishra; Umaru B. Conteh

    2014-01-01

    This paper constructs the float adjusted measure of home bias and explores the determinants of bond home bias by employing the International Monetary Fund's high quality dataset (2001 to 2009) on cross-border bond investment. The paper finds that Australian investors' prefer investing in countries with higher economic development and more developed bond markets. Exchange rate volatility appears to be an impediment for cross-border bond investment. Investors prefer investing in countries with ...

  7. Proposal of new bonding technique 'Instantaneous Liquid Phase (ILP) Bonding'

    International Nuclear Information System (INIS)

    Zhang, Yue-Chang; Nakagawa, Hiroji; Matsuda, Fukuhisa.

    1987-01-01

    A new bonding technique named ''Instantaneous Liquid Phase (ILP) bonding'' suitable mainly for welding dissimilar materials was proposed by which instantaneous melting of one or two of the faying surfaces is utilized. The processes of ILP bonding are mainly consisted of three stages, namely the first stage forming thin liquid layer by rapid heating, the second stage joining both specimens by thin liquid layer, and the third stage cooling the specimens rapidly to avoid the formation of brittle layer. The welding temperatures of the specimens to be welded in ILP bonding are generally differentiated from each other. ILP bonding was applied for a variety of combinations of dissimilar materials of aluminum, aluminum alloys, titanium, titanium alloy, carbon steel, austenitic stainless steel, copper and tungsten, and for similar materials of stainless steel and nickel-base alloy. There were no microvoids in these welding joints, and the formation of brittle layer at the bonding interface was suppressed. The welded joints of Al + Ti, Cu + carbon steel and Cu + austenitic stainless steel showed the fracture in base metal having lower tensile strength. Further, the welded joints of Al + carbon steel, Al alloy + Ti, Al alloy + carbon steel or + austenitic stainless steel, Ti + carbon steel or + austenitic stainless steel showed better tensile properties in the comparison with diffusion welding. Furthermore, ILP bonding was available for welding same materials susceptible to hot cracking. Because of the existence of liquid layer, the welding pressure required was extremely low, and preparation of faying surface by simple tooling or polishing by no.80 emery paper was enough. The change in specimen length before and after welding was relatively little, only depending on the thickness of liquid layer. The welding time was very short, and thus high welding efficiency was obtained. (author)

  8. Shear Bond Strength of Orthodontic Brackets Bonded to Zirconium Crowns.

    Science.gov (United States)

    Mehmeti, Blerim; Azizi, Bleron; Kelmendi, Jeta; Iljazi-Shahiqi, Donika; Alar, Željko; Anić-Milošević, Sandra

    2017-06-01

    An increasing demand for esthetic restorations has resulted in an increased use of all-ceramic restorations, such as zirconium. However, one of the challenges the orthodontist must be willing to face is how to increase bond strength between the brackets and various ceramic restorations.Bond strength can beaffected bybracket type, by the material that bracketsaremade of, and their base surface design or retention mode. ​: A im: of this study was to perform a comparative analysis of the shear bond strength (SBS) of metallic and ceramic orthodontic brackets bonded to all-zirconium ceramic surfaces used for prosthetic restorations, and also to evaluate the fracture mode of these two types of orthodontic brackets. Twenty samples/semi-crowns of all-zirconium ceramic, on which orthodontic brackets were bonded, 10 metallic and 10 ceramic polycrystalline brackets, were prepared for this research. SBS has been testedby Universal Testing Machine, with a load applied using a knife edged rod moving at a fixed rate of 1 mm/min, until failure occurred. The force required to debond the brackets was recorded in Newton, then SBS was calculated to MPa. In addition, the samples were analyzed using a digital camera magnifier to determine Adhesive Remnant Index (ARI). Statistical data were processed using t-test, and the level of significance was set at α = 0.05. Higher shear bond strength values were observed in metallic brackets bonded to zirconium crowns compared tothoseof ceramic brackets, with a significant difference. During the test, two of the ceramic brackets were partially or totally damaged. Metallic brackets, compared to ceramic polycrystalline brackets, seemed tocreate stronger adhesion with all-zirconium surfaces due to their better retention mode. Also, ceramic brackets showed higher fragility during debonding.

  9. Integration of European Bond Markets

    DEFF Research Database (Denmark)

    Christiansen, Charlotte

    2014-01-01

    I investigate the time variation in the integration of EU government bond markets. The integration is measured by the explanatory power of European factor portfolios for the individual bond markets for each year. The integration of the government bond markets is stronger for EMU than non-EMU memb......I investigate the time variation in the integration of EU government bond markets. The integration is measured by the explanatory power of European factor portfolios for the individual bond markets for each year. The integration of the government bond markets is stronger for EMU than non...

  10. Small angle neutron scattering and small angle X-ray scattering ...

    Indian Academy of Sciences (India)

    Abstract. The morphology of carbon nanofoam samples comprising platinum nanopar- ticles dispersed in the matrix was characterized by small angle neutron scattering (SANS) and small angle X-ray scattering (SAXS) techniques. Results show that the structure of pores of carbon matrix exhibits a mass (pore) fractal nature ...

  11. Bent CNN bond of diazo compounds, RR'(Cdbnd N+dbnd N-)

    Science.gov (United States)

    Akita, Motoko; Takahashi, Mai; Kobayashi, Keiji; Hayashi, Naoto; Tukada, Hideyuki

    2013-02-01

    The reaction of ninhydrin with benzophenone hydrazone afforded 2-diazo-3-diphenylmethylenehydrazono-1-indanone 1 and 2-diazo-1,3-bis(diphenylmethylenehydrazono)indan 2. X-ray crystal structure analyses of these products showed that the diazo functional group Cdbnd N+dbnd N- of 1 is bent by 172.9°, while that of 2 has a linear geometry. The crystal structure data of diazo compounds have been retrieved from the Cambridge Structural Database (CSD), which hit 177 entries to indicate that the angle of 172.9° in 1 lies in one of the most bent structures. The CSD search also indicated that diazo compounds consisting of a distorted diazo carbon tend to bend the Cdbnd N+dbnd N- bond. On the basis of DFT calculations (B3LYP/6-311++G(d,p)) of model compounds, it was revealed that the bending of the CNN bond is principally induced by steric factors and that the neighboring carbonyl group also plays a role in bending toward the carbonyl side owing to an electrostatic attractive interaction. The potential surface along the path of Cdbnd N+dbnd N- bending in 2-diazopropane shows a significantly shallow profile with only 4 kcal/mol needed to bend the Cdbnd N+dbnd N- bond from 180° to 160°. Thus, the bending of the diazo group in 1 is reasonable as it is provided with all of the factors for facile bending disclosed in this investigation.

  12. Development of non-bonded interaction parameters between graphene and water using particle swarm optimization.

    Science.gov (United States)

    Bejagam, Karteek K; Singh, Samrendra; Deshmukh, Sanket A

    2018-05-05

    New Lennard-Jones parameters have been developed to describe the interactions between atomistic model of graphene, represented by REBO potential, and five commonly used all-atom water models, namely SPC, SPC/E, SPC/Fw, SPC/Fd, and TIP3P/Fs by employing particle swarm optimization (PSO) method. These new parameters were optimized to reproduce the macroscopic contact angle of water on a graphene sheet. The calculated line tension was in the order of 10 -11 J/m for the droplets of all water models. Our molecular dynamics simulations indicate the preferential orientation of water molecules near graphene-water interface with one OH bond pointing toward the graphene surface. Detailed analysis of simulation trajectories reveals the presence of water molecules with ≤∼1, ∼2, and ∼4 hydrogen bonds at the surface of air-water interface, graphene-water interface, and bulk region of the water droplet, respectively. Presence of water molecules with ≤∼1 and ∼2 hydrogen bonds suggest the existence of water clusters of different sizes at these interfaces. The trends observed in the libration, bending, and stretching bands of the vibrational spectra are closely associated with these structural features of water. The inhomogeneity in hydrogen bond network of water at the air-water and graphene-water interface is manifested by broadening of the peaks in the libration band for water present at these interfaces. The stretching band for the molecules in water droplet shows a blue shift as compared to the pure bulk water, which conjecture the presence of weaker hydrogen bond network in a droplet. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Fusion-bonded fluidic interconnects

    International Nuclear Information System (INIS)

    Fazal, I; Elwenspoek, M C

    2008-01-01

    A new approach to realize fluidic interconnects based on the fusion bonding of glass tubes with silicon is presented. Fusion bond strength analyses have been carried out. Experiments with plain silicon wafers and coated with silicon oxide and silicon nitride are performed. The obtained results are discussed in terms of the homogeneity and strength of fusion bond. High pressure testing shows that the bond strength is large enough for most applications of fluidic interconnects. The bond strength for 525 µm thick silicon, with glass tubes having an outer diameter of 6 mm and with a wall thickness of 2 mm, is more than 60 bars after annealing at a temperature of 800 °C

  14. Small-angle scattering study of Aspergillus awamori glycoprotein glucoamylase

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, A. E., E-mail: schmidt@omrb.pnpi.spb.ru; Shvetsov, A. V. [National Research Center “Kurchatov Institute”, Konstantinov Petersburg Nuclear Physics Institute (Russian Federation); Kuklin, A. I. [Joint Institute for Nuclear Research (Russian Federation); Lebedev, D. V.; Surzhik, M. A.; Sergeev, V. R.; Isaev-Ivanov, V. V. [National Research Center “Kurchatov Institute”, Konstantinov Petersburg Nuclear Physics Institute (Russian Federation)

    2016-01-15

    Glucoamylase from fungus Aspergillus awamori is glycoside hydrolase that catalyzes the hydrolysis of α-1,4- and α-1,6-glucosidic bonds in glucose polymers and oligomers. This glycoprotein consists of a catalytic domain and a starch-binding domain connected by an O-glycosylated polypeptide chain. The conformation of the linker, the relative arrangement of the domains, and the structure of the full-length enzyme are unknown. The structure of the recombinant glucoamylase GA1 was studied by molecular modelling and small-angle neutron scattering (SANS) methods. The experimental SANS data provide evidence that glucoamylase exists as a monomer in solution and contains a glycoside component, which makes a substantial contribution to the scattering. The model of full-length glucoamylase, which was calculated without taking into account the effect of glycosylation, is consistent with the experimental data and has a radius of gyration of 33.4 ± 0.6 Å.

  15. Small-angle scattering study of Aspergillus awamori glycoprotein glucoamylase

    International Nuclear Information System (INIS)

    Schmidt, A. E.; Shvetsov, A. V.; Kuklin, A. I.; Lebedev, D. V.; Surzhik, M. A.; Sergeev, V. R.; Isaev-Ivanov, V. V.

    2016-01-01

    Glucoamylase from fungus Aspergillus awamori is glycoside hydrolase that catalyzes the hydrolysis of α-1,4- and α-1,6-glucosidic bonds in glucose polymers and oligomers. This glycoprotein consists of a catalytic domain and a starch-binding domain connected by an O-glycosylated polypeptide chain. The conformation of the linker, the relative arrangement of the domains, and the structure of the full-length enzyme are unknown. The structure of the recombinant glucoamylase GA1 was studied by molecular modelling and small-angle neutron scattering (SANS) methods. The experimental SANS data provide evidence that glucoamylase exists as a monomer in solution and contains a glycoside component, which makes a substantial contribution to the scattering. The model of full-length glucoamylase, which was calculated without taking into account the effect of glycosylation, is consistent with the experimental data and has a radius of gyration of 33.4 ± 0.6 Å

  16. Small-angle scattering study of Aspergillus awamori glycoprotein glucoamylase

    Science.gov (United States)

    Schmidt, A. E.; Shvetsov, A. V.; Kuklin, A. I.; Lebedev, D. V.; Surzhik, M. A.; Sergeev, V. R.; Isaev-Ivanov, V. V.

    2016-01-01

    Glucoamylase from fungus Aspergillus awamori is glycoside hydrolase that catalyzes the hydrolysis of α-1,4- and α-1,6-glucosidic bonds in glucose polymers and oligomers. This glycoprotein consists of a catalytic domain and a starch-binding domain connected by an O-glycosylated polypeptide chain. The conformation of the linker, the relative arrangement of the domains, and the structure of the full-length enzyme are unknown. The structure of the recombinant glucoamylase GA1 was studied by molecular modelling and small-angle neutron scattering (SANS) methods. The experimental SANS data provide evidence that glucoamylase exists as a monomer in solution and contains a glycoside component, which makes a substantial contribution to the scattering. The model of full-length glucoamylase, which was calculated without taking into account the effect of glycosylation, is consistent with the experimental data and has a radius of gyration of 33.4 ± 0.6 Å.

  17. Hydrogen bonding strength of diblock copolymers affects the self-assembled structures with octa-functionalized phenol POSS nanoparticles.

    Science.gov (United States)

    Lu, Yi-Syuan; Yu, Chia-Yu; Lin, Yung-Chih; Kuo, Shiao-Wei

    2016-02-28

    In this study, the influence of the functional groups by the diblock copolymers of poly(styrene-b-4-vinylpyridine) (PS-b-P4VP), poly(styrene-b-2-vinylpyridine) (PS-b-P2VP), and poly(styrene-b-methyl methacrylate) (PS-b-PMMA) on their blends with octa-functionalized phenol polyhedral oligomeric silsesquioxane (OP-POSS) nanoparticles (NPs) was investigated. The relative hydrogen bonding strengths in these blends follow the order PS-b-P4VP/OP-POSS > PS-b-P2VP/OP-POSS > PS-b-PMMA/OP-POSS based on the Kwei equation from differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopic analyses. Small-angle X-ray scattering and transmission electron microscopic analyses show that the morphologies of the self-assembly structures are strongly dependent on the hydrogen bonding strength at relatively higher OP-POSS content. The PS-b-P4VP/OP-POSS hybrid complex system with the strongest hydrogen bonds shows the order-order transition from lamellae to cylinders and finally to body-centered cubic spheres upon increasing OP-POSS content. However, PS-b-P2VP/OP-POSS and PS-b-PMMA/OP-POSS hybrid complex systems, having relatively weaker hydrogen bonds, transformed from lamellae to cylinder structures at lower OP-POSS content (50 wt%).

  18. Composite Bonding to Stainless Steel Crowns Using a New Universal Bonding and Single-Bottle Systems

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Hattan

    2013-01-01

    Full Text Available Aim. The aim of this study is to evaluate the shear bond strength of nanocomposite to stainless steel crowns using a new universal bonding system. Material and Methods. Eighty (80 stainless steel crowns (SSCs were divided into four groups (20 each. Packable nanocomposite was bonded to the lingual surface of the crowns in the following methods: Group A without adhesive (control group, Group B using a new universal adhesive system (Scotchbond Universal Adhesive, 3M ESPE, Seefeld, Germany, and Group C and Group D using two different brands of single-bottle adhesive systems. Shear bond strengths were calculated and the types of failure also were recorded. Results. The shear strength of Group B was significantly greater than that of other groups. No significant differences were found between the shear bond strengths of Groups C and D. The control group had significantly lower shear bond strength ( to composite than the groups that utilized bonding agents. Conclusion. Composites bonding to stainless steel crowns using the new universal bonding agent (Scotchbond Universal Adhesive, 3M ESPE, Seefeld, Germany show significantly greater shear bond strengths and fewer adhesive failures when compared to traditional single-bottle systems.

  19. Interstellar hydrogen bonding

    Science.gov (United States)

    Etim, Emmanuel E.; Gorai, Prasanta; Das, Ankan; Chakrabarti, Sandip K.; Arunan, Elangannan

    2018-06-01

    This paper reports the first extensive study of the existence and effects of interstellar hydrogen bonding. The reactions that occur on the surface of the interstellar dust grains are the dominant processes by which interstellar molecules are formed. Water molecules constitute about 70% of the interstellar ice. These water molecules serve as the platform for hydrogen bonding. High level quantum chemical simulations for the hydrogen bond interaction between 20 interstellar molecules (known and possible) and water are carried out using different ab-intio methods. It is evident that if the formation of these species is mainly governed by the ice phase reactions, there is a direct correlation between the binding energies of these complexes and the gas phase abundances of these interstellar molecules. Interstellar hydrogen bonding may cause lower gas abundance of the complex organic molecules (COMs) at the low temperature. From these results, ketenes whose less stable isomers that are more strongly bonded to the surface of the interstellar dust grains have been observed are proposed as suitable candidates for astronomical observations.

  20. Polarized IR spectra of resonance assisted hydrogen bond (RAHB) in 2-hydroxyazobenzenes

    International Nuclear Information System (INIS)

    Rospenk, Maria; Majewska, Paulina; Czarnik-Matusewicz, Boguslawa; Sobczyk, Lucjan

    2006-01-01

    The polarized IR spectra in the region 4000-400 cm -1 over the temperature range 298-370 K of liquid crystalline (LC) 4-chloro-2'-hydroxy-4'-pentyloxyazobenzene (CHPAB) containing strong O-H...N RAHBs were studied. It has been established that molecules of this compound undergoes a spontaneous ordering in thin layers (10-20 μm) between the KRS-5 plates. The order degree expressed by the S parameter exceeds 0.6 for the Smectic A and crystalline phases. The best indicator of orientation is the mode at 1084 cm -1 as its transition dipole moment is oriented parallel to the long axis of the molecule. A good marker is also the γ(OH) band with the transition dipole moment nearly perpendicular to the long axis. The intramolecular O-H...N hydrogen bonding shows features characteristic of RAHB. The transition dipole moment of the ν(OH) vibrations forms with the long axis of the molecule the angle equal to 43 ± 3 deg. (the OH bond is oriented to this axis at the angle of 9 deg.) that convincingly speaks in favour of a coupling between the proton and π-electron motions. Similar behaviour is manifested by a broad absorption in the finger print region that can be interpreted in terms of the modification of the potential energy shape due to the plane-to-plane intermolecular interaction and appearance of the second minimum. A marked ordering of molecules in the isotropic phase is also observed evidencing some alignment of molecules extended far beyond the monomolecular layers on the surfaces of the KRS-5 windows

  1. Optimising hydrogen bonding in solid wood

    DEFF Research Database (Denmark)

    Engelund, Emil Tang

    2009-01-01

    The chemical bonds of wood are both covalent bonds within the wood polymers and hydrogen bonds within and between the polymers. Both types of bonds are responsible for the coherence, strength and stiffness of the material. The hydrogen bonds are more easily modified by changes in load, moisture...... and temperature distorting the internal bonding state. A problem arises when studying hydrogen bonding in wood since matched wood specimens of the same species will have very different internal bonding states. Thus, possible changes in the bonding state due to some applied treatment such as conditioning...... maintaining 100 % moisture content of the wood. The hypothesis was that this would enable a fast stress relaxation as a result of reorganization of bonds, since moisture plasticizes the material and temperature promotes faster kinetics. Hereby, all past bond distortions caused by various moisture, temperature...

  2. Microstructure and properties of hot roll bonding layer of dissimilar metals. 2. Bonding interface microstructure of Zr/stainless steel by hot roll bonding and its controlling

    International Nuclear Information System (INIS)

    Yasuyama, Masanori; Ogawa, Kazuhiro; Taka, Takao; Nakasuji, Kazuyuki; Nakao, Yoshikuni; Nishimoto, Kazutoshi.

    1996-01-01

    The hot roll bonding of zirconium and stainless steel inserted with tantalium was investigated using the newly developed rolling mill. The effect of hot rolling temperatures of zirconium/stainless steel joints on bonding interface structure was evaluated. Intermetallic compound layer containing cracks was observed at the bonding interface between stainless steel and tantalium when the rolling temperature was above 1373K. The hardness of the bonding layer of zirconium and tantalium bonded above 1273K was higher than tantalium or zirconium base metal in spite of absence of intermetallic compound. The growth of reaction layer at the stainless steel and tantalium interface and at the tantalium and zirconium interface was conforming a parabolic low when that was isothermally heated after hot roll bonding, and the growth rate was almost same as that of static diffusion bonding without using hot roll bonding process. It is estimated that the strain caused by hot roll bonding gives no effect on the growth of reaction layer. It was confirmed that the dissimilar joint of zirconium and stainless steel with insert of tantalium having the sound bonding interface were obtained at the suitable bonding temperature of 1173K by the usage of the newly developed hot roll bonding process. (author)

  3. Distribution of short block copolymer chains in Binary Blends of Block Copolymers Having Hydrogen Bonding

    Science.gov (United States)

    Kwak, Jongheon; Han, Sunghyun; Kim, Jin Kon

    2014-03-01

    A binary mixture of two block copolymers whose blocks are capable of forming the hydrogen bonding allows one to obtain various microdomains that could not be expected for neat block copolymer. For instance, the binary blend of symmetric polystyrene-block-poly(2-vinylpyridine) copolymer (PS-b-P2VP) and polystyrene-block-polyhydroxystyrene copolymer (PS-b-PHS) blends where the hydrogen bonding occurred between P2VP and PHS showed hexagonally packed (HEX) cylindrical and body centered cubic (BCC) spherical microdomains. To know the exact location of short block copolymer chains at the interface, we synthesized deuterated polystyrene-block-polyhydroxystyrene copolymer (dPS-b-PHS) and prepared a binary mixture with PS-b-P2VP. We investigate, via small angle X-ray scattering (SAXS) and neutron reflectivity (NR), the exact location of shorter dPS block chain near the interface of the microdomains.

  4. Sharper angle, higher risk? The effect of cutting angle on knee mechanics in invasion sport athletes.

    Science.gov (United States)

    Schreurs, Mervin J; Benjaminse, Anne; Lemmink, Koen A P M

    2017-10-03

    Cutting is an important skill in team-sports, but unfortunately is also related to non-contact ACL injuries. The purpose was to examine knee kinetics and kinematics at different cutting angles. 13 males and 16 females performed cuts at different angles (45°, 90°, 135° and 180°) at maximum speed. 3D kinematics and kinetics were collected. To determine differences across cutting angles (45°, 90°, 135° and 180°) and sex (female, male), a 4×2 repeated measures ANOVA was conducted followed by post hoc comparisons (Bonferroni) with alpha level set at α≤0.05a priori. At all cutting angles, males showed greater knee flexion angles than females (pcutting angles with no differences in the amount of knee flexion -42.53°±8.95°, females decreased their knee flexion angle from -40.6°±7.2° when cutting at 45° to -36.81°±9.10° when cutting at 90°, 135° and 180° (pcutting towards sharper angles (pcutting angles and then stabilized compared to the 45° cutting angle (pcutting to sharper angles (pcutting angles demand different knee kinematics and kinetics. Sharper cutting angles place the knee more at risk. However, females and males handle this differently, which has implications for injury prevention. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. BONDING ALUMINUM METALS

    Science.gov (United States)

    Noland, R.A.; Walker, D.E.

    1961-06-13

    A process is given for bonding aluminum to aluminum. Silicon powder is applied to at least one of the two surfaces of the two elements to be bonded, the two elements are assembled and rubbed against each other at room temperature whereby any oxide film is ruptured by the silicon crystals in the interface; thereafter heat and pressure are applied whereby an aluminum-silicon alloy is formed, squeezed out from the interface together with any oxide film, and the elements are bonded.

  6. Relationship between thin-film bond strength as measured by a scratch test, and indentation hardness for bonding agents.

    Science.gov (United States)

    Kusakabe, Shusuke; Rawls, H Ralph; Hotta, Masato

    2016-03-01

    To evaluate thin-film bond strength between a bonding agent and human dentin, using a scratch test, and the characteristics and accuracy of measurement. One-step bonding agents (BeautiBond; Bond Force; Adper Easy Bond; Clearfil tri-S Bond) and two-step bonding agents (Cleafil SE Bond; FL-Bond II) were investigated in this study. Flat dentin surfaces were prepared for extracted human molars. The dentin surfaces were ground and bonding agents were applied and light cured. The thin-film bond strength test of the specimens was evaluated by the critical load at which the coated bonding agent failed and dentin appeared. The scratch mark sections were then observed under a scanning electron microscope. Indentation hardness was evaluated by the variation in depth under an applied load of 10gf. Data were compared by one-way ANOVA with the Scheffé's post hoc multiple comparison test (pstrength and indentation hardness were analyzed using analysis of correlation and covariance. The thin-film bond strength of two-step bonding agents were found to be significantly higher than that of one-step bonding agents with small standard deviations. Scratch marks consistently showed adhesive failure in the vicinity of the bonding agent/dentin interface. The indentation hardness showed a trend that two-step bonding agents have greater hardness than one-step bonding agents. A moderately significant correlation (r(2)=0.31) was found between thin-film bond strength and indentation hardness. Thin-film bond strength test is a valid and reliable means of evaluating bond strength in the vicinity of the adhesive interface and is more accurate than other methods currently in use. Further, the thin-film bond strength is influenced by the hardness of the cued bonding agent. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  7. Comparison of shear bond strength of stainless steel brackets bonded with three light- cured adhesives

    Directory of Open Access Journals (Sweden)

    Zahra Minaei Basharik

    2015-09-01

    Full Text Available Introduction: The bonding process of the brackets to enamel has been a critical issue in orthodontic research. The purpose of this study was to evaluate the shear bond strength of 3 light-cured adhesives (transbond XT, Z250, light bond. Materials &Methods: In this study sixty extracted human premolars were collected and randomly divided into 3 test groups. All teeth were etched by 37% phosphoric acid. In first group brackets were bonded by Transbond XT adhesive, in group two brackets were bonded by Light bond adhesive and in third group were bonded by filtek Z250 composite. All of them were cured with Ortholux xt for 40 seconds.24 hours after thermocycling, Shear Bond Strength (SBS values of these brackets were recorded using a Universal Testing Machine. Adhesive Remnant Index (ARI scores were determined after the failure of the brackets, using Stereo Microscope the data were analyzed using ANOVA and Chi-square tests. Results: Mean shear bond strength of Transbond XT, light bond and Z250 were 28.9±2.25 MPa, 25.06±1.98 MPa and 26.8±2.57 MPa, respectively. No significant difference was observed in the SBS among the groups and a clinically acceptable SBS was found for the three adhesives. ARI scores were not significantly different between the various groups (P>0.05. Conclusion: This study showed that the Z250 can be used as light bond and transbond xt to bond orthodontic brackets and ARI and SBS scores were not significantly different.

  8. Comparison of Shear Bond Strengths of three resin systems for a Base Metal Alloy bonded to

    Directory of Open Access Journals (Sweden)

    Jlali H

    1999-12-01

    Full Text Available Resin-bonded fixed partial dentures (F.P.D can be used for conservative treatment of partially edentulous"npatients. There are numerous studies regarding the strength of resin composite bond to base meta! alloys. Shear bond"nstrength of three resin systems were invistigated. In this study these systems consisted of: Panavia Ex, Mirage FLC and"nMarathon V. Thirty base metal specimens were prepared from rexillium III alloy and divided into three groups. Then each"ngroup was bonded to enamel of human extracted molar teeth with these systems. All of specimens were stored in water at"n37ac for 48 hours. A shear force was applied to each specimen by the instron universal testing machine. A statistical"nevaluation of the data using one-way analysis of variance showed that there was highly significant difference (P<0.01"nbetween the bond strengths of these three groups."nThe base metal specimens bonded with panavia Ex luting agent, exhibited the highest mean bond strength. Shear bond"nstrength of the specimens bonded to enamel with Mirage F1C showed lower bond strenght than panavia EX. However, the"nlowest bond strength was obtained by the specimens bonded with Marathon V.

  9. Change of chemical bond and wettability of polylacticacid implanted with high-flux carbon ion

    International Nuclear Information System (INIS)

    Zhang Jizhong; Kang Jiachen; Zhang Xiaoji; Zhou Hongyu

    2008-01-01

    Polylacticacid (PLA) was submitted to high-flux carbon ion implantation with energy of 40 keV. It was investigated to the effect of ion fluence (1 x 10 12 -1 x 10 15 ions/cm 2 ) on the properties of the polymer. X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), wettability, and roughness were employed to study change of structure and properties of the as-implanted PLA samples. Six carbon bonds, that is, C, C-H, C-O-C, C-O, O-C-O, and >C=O, were observed on surfaces of the as-implanted PLA samples. The intensities of various chemical bonds changed with increasing ion fluence. AFM images displayed that there was irradiation damage and that it was related closely with ion fluence. At fluence as high as 1 x 10 15 ions/cm 2 surface-restructuring phenomenum took place on the surface of the PLA. Wettability was also affected by the variation on the fluence. With increasing ion fluence, the water contact angle of the as-implanted PLA samples changed gradually reaching a maximum of 76.5 deg. with 1 x 10 13 ions/cm 2 . The experimental results revealed that carbon ion fluence strongly affected surface chemical bond, morphology, wettability, and roughness of the PLA samples

  10. Study of optical shuttering action in supramolecular hydrogen bonded nematogens

    Science.gov (United States)

    Kavitha, C.; Pongali Sathya Prabu, N.; Madhu Mohan, M. L. N.

    2012-11-01

    Supramolecular hydrogen bonded mesogens are formed between p-n-undecyloxy benzoic acid (11BAO) and p-n-alkyl benzoic acids (nBA, where n = 2-8). The isolated mesogens are characterized by distinct techniques in order to appreciate the optical, thermal, electrical, and dielectric properties. The optical tilt angle measurement is studied for all the members of this homologous series and is found to concur with the mean field theory predicted value. An interesting factor to notice is the observation of optical shuttering action in nematic phase of the entire series which privilege these materials to be used as light modulators. Dielectric measurements were carried out and the dispersion curves were discussed in terms of relaxation frequency and activation energies.

  11. Unique Bond Breaking in Crystalline Phase Change Materials and the Quest for Metavalent Bonding.

    Science.gov (United States)

    Zhu, Min; Cojocaru-Mirédin, Oana; Mio, Antonio M; Keutgen, Jens; Küpers, Michael; Yu, Yuan; Cho, Ju-Young; Dronskowski, Richard; Wuttig, Matthias

    2018-05-01

    Laser-assisted field evaporation is studied in a large number of compounds, including amorphous and crystalline phase change materials employing atom probe tomography. This study reveals significant differences in field evaporation between amorphous and crystalline phase change materials. High probabilities for multiple events with more than a single ion detected per laser pulse are only found for crystalline phase change materials. The specifics of this unusual field evaporation are unlike any other mechanism shown previously to lead to high probabilities of multiple events. On the contrary, amorphous phase change materials as well as other covalently bonded compounds and metals possess much lower probabilities for multiple events. Hence, laser-assisted field evaporation in amorphous and crystalline phase change materials reveals striking differences in bond rupture. This is indicative for pronounced differences in bonding. These findings imply that the bonding mechanism in crystalline phase change materials differs substantially from conventional bonding mechanisms such as metallic, ionic, and covalent bonding. Instead, the data reported here confirm a recently developed conjecture, namely that metavalent bonding is a novel bonding mechanism besides those mentioned previously. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Phenylacetylene and H bond

    Indian Academy of Sciences (India)

    ... all resembling H bonds. Non-linear H bonds due to secondary interactions. C-H stretching frequency shows blue shift. Heavy atom distances are longer than the sum of van der Waals radii. Formed a task group through IUPAC to come up with a modern definition of H bond. 15 international experts including Desiraju.

  13. Origin of the X-Hal (Hal = Cl, Br) bond-length change in the halogen-bonded complexes.

    Science.gov (United States)

    Wang, Weizhou; Hobza, Pavel

    2008-05-01

    The origin of the X-Hal bond-length change in the halogen bond of the X-Hal...Y type has been investigated at the MP2(full)/6-311++G(d,p) level of theory using a natural bond orbital analysis, atoms in molecules procedure, and electrostatic potential fitting methods. Our results have clearly shown that various theories explaining the nature of the hydrogen bond cannot be applied to explain the origin of the X-Hal bond-length change in the halogen bond. We provide a new explanation for this change. The elongation of the X-Hal bond length is caused by the electron-density transfer to the X-Hal sigma* antibonding orbital. For the blue-shifting halogen bond, the electron-density transfer to the X-Hal sigma* antibonding orbital is only of minor importance; it is the electrostatic attractive interaction that causes the X-Hal bond contraction.

  14. Additional disulfide bonds in insulin

    DEFF Research Database (Denmark)

    Vinther, Tine N; Pettersson, Ingrid; Huus, Kasper

    2015-01-01

    The structure of insulin, a glucose homeostasis-controlling hormone, is highly conserved in all vertebrates and stabilized by three disulfide bonds. Recently, we designed a novel insulin analogue containing a fourth disulfide bond located between positions A10-B4. The N-terminus of insulin's B......-chain is flexible and can adapt multiple conformations. We examined how well disulfide bond predictions algorithms could identify disulfide bonds in this region of insulin. In order to identify stable insulin analogues with additional disulfide bonds, which could be expressed, the Cβ cut-off distance had...... in comparison to analogues with additional disulfide bonds that were more difficult to predict. In contrast, addition of the fourth disulfide bond rendered all analogues resistant to fibrillation under stress conditions and all stable analogues bound to the insulin receptor with picomolar affinities. Thus...

  15. Survival and Growth of Cottonwood Clones After Angle Planting and Base Angle Treatments

    Science.gov (United States)

    W.K. Randall; Harvey E. Kennedy

    1976-01-01

    Presently, commercial cottonwood plantations in the lower Mississippi Valley are established using vertically planted, unrooted cuttings with a flat (90°) base. Neither survival nor first-year growth of a group of six Stoneville clones was improved by angle planting or cutting base angles diagonally. For one clone, survival was significantly better when base angle was...

  16. Effect of modified polypropylene on the interfacial bonding of polymer–aluminum laminated films

    International Nuclear Information System (INIS)

    Liang, Chang-Sheng; Lv, Zhong-Fei; Bo, Yang; Cui, Jia-Yang; Xu, Shi-Ai

    2015-01-01

    Highlights: • Aluminium-polymer composite packing material with high T-peel strength was prepared. • Polypropylene was grafted by acrylic acid, glycidyl methacrylate, maleic anhydride. • Grafted polypropylene greatly improved the T-peel strength. • Chemical bonding plays an important role in improving the adhesion strength. - Abstract: The interfacial bonding between functionalized polymers and chromate–phosphate treated aluminum (Al) foil were investigated in this study. Glycidyl methacrylate (GMA), acrylic acid (AA) and maleic anhydride (MAH) were grafted onto polypropylene (PP) to improve its adhesion strength with the treated Al foil. The interfacial peel strength was evaluated by the T-peel test, and the results showed that modification of PP resulted in a significant improvement in the interfacial peel strength from 1 N/15 mm for pure PP to 10–14 N/15 mm for the modified PP. The surface chemistry, topography and surface energy of the modified PP and Al foil after peeling were characterized by time-of-flight secondary ion mass spectrometry (TOF-SIMS), X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM) and contact angle measurement. The treated Al foil could react with the functional groups of PP, resulting in the formation of new carboxylates. The new chemical bonding rather than the mechanical interlocking contributed to the improvement of adhesion strength

  17. Effect of mode of polymerization of bonding agent on shear bond strength of autocured resin composite luting cements.

    Science.gov (United States)

    Dong, Cecilia C S; McComb, Dorothy; Anderson, James D; Tam, Laura E

    2003-04-01

    There have been anecdotal reports of low bond strength with autocured resin composite materials, particularly when light-cured bonding agents that combine primer and adhesive in a 1-bottle preparation are used. The objective of this study was to determine if the mode of polymerization of the bonding agent influences the strength of the attachment of autocured resin composite luting cements to dentin. The shear bond strength of 2 resin luting cements, Calibra and RelyX ARC, polymerized by autocuring, in combination with 4 different bonding agents, Scotchbond Multipurpose Plus, Prime & Bond NT, IntegraBond and Single Bond, polymerized to bovine dentin by light-curing, autocuring or dual-curing, was determined. The pH of each bonding agent and its components was measured. Two-way analysis of variance was used to test the effect of cement and adhesive on shear bond strength. For each bonding agent, the adhesive variable combined the factors product brand and mode of polymerization. With significant interaction among the above variables, the least square means of the 16 combinations of resin cement and adhesive were compared. There was no consistent relationship between shear bond strength and mode of polymerization of the bonding agent. Significant differences in bond strength were specific to the proprietary brand of bonding agent. The pH of the bonding agent depends on the manufacturer's formulation, and low pH may contribute to low bond strength. The low in vitro bond strength occurring with some combinations of bonding agent and resin cement could be clinically significant.

  18. Shear bond strength of orthodontic brackets bonded with different self-etching adhesives.

    Science.gov (United States)

    Scougall Vilchis, Rogelio José; Yamamoto, Seigo; Kitai, Noriyuki; Yamamoto, Kohji

    2009-09-01

    The purpose of this study was to compare the shear bond strength (SBS) of orthodontic brackets bonded with 4 self-etching adhesives. A total of 175 extracted premolars were randomly divided into 5 groups (n = 35). Group I was the control, in which the enamel was etched with 37% phosphoric acid, and stainless steel brackets were bonded with Transbond XT (3M Unitek, Monrovia, Calif). In the remaining 4 groups, the enamel was conditioned with the following self-etching primers and adhesives: group II, Transbond Plus and Transbond XT (3M Unitek); group III, Clearfil Mega Bond FA and Kurasper F (Kuraray Medical, Tokyo, Japan); group IV, Primers A and B, and BeautyOrtho Bond (Shofu, Kyoto, Japan); and group V, AdheSE and Heliosit Orthodontic (Ivoclar Vivadent AG, Liechtenstein). The teeth were stored in distilled water at 37 degrees C for 24 hours and debonded with a universal testing machine. The adhesive remnant index (ARI) including enamel fracture score was also evaluated. Additionally, the conditioned enamel surfaces were observed under a scanning electron microscope. The SBS values of groups I (19.0 +/- 6.7 MPa) and II (16.6 +/- 7.3 MPa) were significantly higher than those of groups III (11.0 +/- 3.9 MPa), IV (10.1 +/- 3.7 MPa), and V (11.8 +/- 3.5 MPa). Fluoride-releasing adhesives (Kurasper F and BeautyOrtho Bond) showed clinically acceptable SBS values. Significant differences were found in the ARI and enamel fracture scores between groups I and II. The 4 self-etching adhesives yielded SBS values higher than the bond strength (5.9 to 7.8 MPa) suggested for routine clinical treatment, indicating that orthodontic brackets can be successfully bonded with any of these self-etching adhesives.

  19. Comparison of Shear Bond Strength of RMGI and Composite Resin for Orthodontic Bracket Bonding

    Science.gov (United States)

    Yassaei, Soghra; Davari, Abdolrahim; Goldani Moghadam, Mahjobeh; Kamaei, Ahmad

    2014-01-01

    Objective: The aim of this study was to compare the shear bond strength (SBS) of resin modified glass ionomer (RMGI) and composite resin for bonding metal and ceramic brackets. Materials and Methods: Eighty-eight human premolars extracted for orthodontic purposes were divided into 4 groups (n=22). In groups 1 and 2, 22 metal and ceramic brackets were bonded using composite resin (Transbond XT), respectively. Twenty-two metal and ceramic brackets in groups 3 and 4, respectively were bonded using RMGI (Fuji Ortho LC, Japan). After photo polymerization, the teeth were stored in water and thermocycled (500 cycles between 5° and 55°). The SBS value of each sample was determined using a Universal Testing Machine. The amount of residual adhesive remaining on each tooth was evaluated under a stereomicroscope. Statistical analyses were done using two-way ANOVA. Results: RMGI bonded brackets had significantly lower SBS value compared to composite resin bonded groups. No statistically significant difference was observed between metal and ceramic brackets bonded with either the RMGI or composite resin. The comparison of the adhesive remnant index (ARI) scores between the groups indicated that the bracket failure mode was significantly different among groups (Porthodontic bonding purposes; however the provided SBS is still within the clinically acceptable range. PMID:25628663

  20. Solvent-free thermoplastic-poly(dimethylsiloxane) bonding mediated by UV irradiation followed by gas-phase chemical deposition of an adhesion linker

    Science.gov (United States)

    Ahn, S. Y.; Lee, N. Y.

    2015-07-01

    Here, we introduce a solvent-free strategy for bonding various thermoplastic substrates with poly(dimethylsiloxane) (PDMS) using ultraviolet (UV) irradiation followed by the gas-phase chemical deposition of aminosilane on the UV-irradiated thermoplastic substrates. The thermoplastic substrates were first irradiated with UV for surface hydrophilic treatment and were then grafted with vacuum-evaporated aminosilane, where the alkoxysilane side reacted with the oxidized surface of the thermoplastic substrate. Next, the amine-terminated thermoplastic substrates were treated with corona discharge to oxidize the surface and were bonded with PDMS, which was also oxidized via corona discharge. The two substrates were then hermetically sealed and pressed under atmospheric pressure for 30 min at 60 °C. This process enabled the formation of a robust siloxane bond (Si-O-Si) between the thermoplastic substrate and PDMS under relatively mild conditions using an inexpensive and commercially available UV lamp and Tesla coil. Various thermoplastic substrates were examined for bonding with PDMS, including poly(methylmethacrylate) (PMMA), polycarbonate (PC), poly(ethyleneterephthalate) (PET) and polystyrene (PS). Surface characterizations were performed by measuring the contact angle and performing x-ray photoelectron spectroscopy analysis, and the bond strength was analyzed by conducting various mechanical force measurements such as pull, delamination, leak and burst tests. The average bond strengths for the PMMA-PDMS, PC-PDMS, PET-PDMS and PS-PDMS assemblies were measured at 823.6, 379.3, 291.2 and 229.0 kPa, respectively, confirming the highly reliable performance of the introduced bonding strategy.

  1. Corporate Bonds in Denmark

    DEFF Research Database (Denmark)

    Tell, Michael

    2015-01-01

    Corporate financing is the choice between capital generated by the corporation and capital from external investors. However, since the financial crisis shook the markets in 2007–2008, financing opportunities through the classical means of financing have decreased. As a result, corporations have...... to think in alternative ways such as issuing corporate bonds. A market for corporate bonds exists in countries such as Norway, Germany, France, the United Kingdom and the United States, while Denmark is still behind in this trend. Some large Danish corporations have instead used foreign corporate bonds...... markets. However, NASDAQ OMX has introduced the First North Bond Market in December 2012 and new regulatory framework came into place in 2014, which may contribute to a Danish based corporate bond market. The purpose of this article is to present the regulatory changes in Denmark in relation to corporate...

  2. Composite bonding to stainless steel crowns using a new universal bonding and single-bottle systems.

    Science.gov (United States)

    Hattan, Mohammad Ali; Pani, Sharat Chandra; Alomari, Mohammad

    2013-01-01

    Aim. The aim of this study is to evaluate the shear bond strength of nanocomposite to stainless steel crowns using a new universal bonding system. Material and Methods. Eighty (80) stainless steel crowns (SSCs) were divided into four groups (20 each). Packable nanocomposite was bonded to the lingual surface of the crowns in the following methods: Group A without adhesive (control group), Group B using a new universal adhesive system (Scotchbond Universal Adhesive, 3M ESPE, Seefeld, Germany), and Group C and Group D using two different brands of single-bottle adhesive systems. Shear bond strengths were calculated and the types of failure also were recorded. Results. The shear strength of Group B was significantly greater than that of other groups. No significant differences were found between the shear bond strengths of Groups C and D. The control group had significantly lower shear bond strength (P universal bonding agent (Scotchbond Universal Adhesive, 3M ESPE, Seefeld, Germany) show significantly greater shear bond strengths and fewer adhesive failures when compared to traditional single-bottle systems.

  3. Structural evolution of regenerated silk fibroin under shear: Combined wide- and small-angle x-ray scattering experiments using synchrotron radiation

    International Nuclear Information System (INIS)

    Rossle, Manfred; Panine, Pierre; Urban, Volker S.; Riekel, Christine

    2004-01-01

    The structural evolution of regenerated Bombyx mori silk fibroin during shearing with a Couette cell has been studied in situ by synchrotron radiation small- and wide-angle x-ray scattering techniques. An elongation of fibroin molecules was observed with increasing shear rate, followed by an aggregation phase. The aggregates were found to be amorphous with β-conformation according to infrared spectroscopy. Scanning x-ray microdiffraction with a 5 (micro)m beam on aggregated material, which had solidified in air, showed silk II reflections and a material with equatorial reflections close to the silk I structure reflections, but with strong differences in reflection intensities. This silk I type material shows up to two low-angle peaks suggesting the presence of water molecules that might be intercalated between hydrogen-bonded sheets.

  4. Structural evolution of regenerated silk fibroin under shear: Combined wide- and small-angle x-ray scattering experiments using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Rossle, Manfred [European Molecular Biology Laboratory (EMBL), France; Panine, Pierre [European Synchrotron Radiation Facility (ESRF); Urban, Volker S [ORNL; Riekel, Christine [European Synchrotron Radiation Facility (ESRF)

    2004-04-01

    The structural evolution of regenerated Bombyx mori silk fibroin during shearing with a Couette cell has been studied in situ by synchrotron radiation small- and wide-angle x-ray scattering techniques. An elongation of fibroin molecules was observed with increasing shear rate, followed by an aggregation phase. The aggregates were found to be amorphous with {beta}-conformation according to infrared spectroscopy. Scanning x-ray microdiffraction with a 5 {micro}m beam on aggregated material, which had solidified in air, showed silk II reflections and a material with equatorial reflections close to the silk I structure reflections, but with strong differences in reflection intensities. This silk I type material shows up to two low-angle peaks suggesting the presence of water molecules that might be intercalated between hydrogen-bonded sheets.

  5. 77 FR 29472 - Surety Companies Acceptable on Federal Bonds-Termination: Atlantic Bonding Company, Inc.

    Science.gov (United States)

    2012-05-17

    ... be accepted from this company, and bonds that are continuous in nature should not be renewed. The... DEPARTMENT OF THE TREASURY Fiscal Service Surety Companies Acceptable on Federal Bonds--Termination: Atlantic Bonding Company, Inc. AGENCY: Financial Management Service, Fiscal Service, Department...

  6. The double Brewster angle effect

    Science.gov (United States)

    Thirion-Lefevre, Laetitia; Guinvarc'h, Régis

    2018-01-01

    The Double Brewster angle effect (DBE) is an extension of the Brewster angle to double reflection on two orthogonal dielectric surfaces. It results from the combination of two pseudo-Brewster angles occurring in complementary incidence angles domains. It can be observed for a large range of incidence angles provided that double bounces mechanism is present. As a consequence of this effect, we show that the reflection coefficient at VV polarization can be at least 10 dB lower than the reflection coefficient at HH polarization over a wide range of incidence angle - typically from 20 to 70∘. It is experimentally demonstrated using a Synthetic Aperture Radar (SAR) image that this effect can be seen on buildings and forests. For large buildings, the difference can reach more than 20 dB. xml:lang="fr"

  7. Influence of methoxy- and nitro-substitutions in the aromatic ring on proton donation ability in hydrogen bond and on the amino group parameters of free and H-bonded molecules of 2-aminopyrimidine

    Science.gov (United States)

    Borisenko, V. E.; Krekov, S. A.; Fomenko, M. Yu.; Koll, A.; Lipkovski, P.

    2008-06-01

    temperature interval are actually linear. Linear regression parameters Y = aT + b (where Y = M(0), M(1), 2( M(2)) 1/2) of free and H-bonded (1:1, with proton acceptors) molecules of 2-aminopyrimidines were determined. Vibrational and electro-optic tasks were solved for free and H-bonded molecules. Valence angles γ(HNH), force constants K(NH), electrooptic parameters ∂ μ/∂ qNH and ∂μ/∂qNH' were determined. Comparative analysis of the influence of methoxy- and nitro-substitution on the amino group spectral characteristics of aniline, 2-aminopyridine and 2-aminopyrimidine in CCl 4 was performed. It was shown that effect of hetero substitution and external substituents in the aromatic ring on spectral characteristics is not additive. Linear correlations were established between spectral, geometrical, force and electro-optical characteristics of the amino group in free and H-bonded (1:1 and 1:2) molecules of substituted 2-aminopyrimidines. Some of these correlations are universal, while most of them are sensitive to the kind, position and number of the substituents in the aromatic ring. During association of 2-aminopyrimidines with dioxane and tetrahydrofourane (1:1 complexes) the charge transfer through the hydrogen bond reveals quite considerable influence on complex formation. The temperature dependence of monomer-complex (1:1) equilibrium constants was studied and following thermodynamical characteristics were determined (using Vant-Hoff equation): enthalpy -Δ H1 and entropy Δ S1. Enthalpy -Δ H2 of 1:2 complexes was determined using the empirical "Intensity rule". It was shown that H-bond strength in 1:1 complexes is higher than in 1:2 complexes. This is also confirmed by the independent calculations of force constants K(NH) in complexes of different composition. The qualitative agreement was stated between experimental results and quantum-mechanical calculations (DFT-B3LYP/6-31G(d,p)) of the amino group spectral characteristics, valence angles γ(HNH) and force

  8. Repair Bond Strength of Aged Resin Composite after Different Surface and Bonding Treatments

    Directory of Open Access Journals (Sweden)

    Michael Wendler

    2016-07-01

    Full Text Available The aim of this study was to compare the effect of different mechanical surface treatments and chemical bonding protocols on the tensile bond strength (TBS of aged composite. Bar specimens were produced using a nanohybrid resin composite and aged in distilled water for 30 days. Different surface treatments (diamond bur, phosphoric acid, silane, and sandblasting with Al2O3 or CoJet Sand, as well as bonding protocols (Primer/Adhesive were used prior to application of the repair composite. TBS of the specimens was measured and the results were analyzed using analysis of variance (ANOVA and the Student–Newman–Keuls test (α = 0.05. Mechanically treated surfaces were characterized under SEM and by profilometry. The effect of water aging on the degree of conversion was measured by means of FTIR-ATR spectroscopy. An important increase in the degree of conversion was observed after aging. No significant differences in TBS were observed among the mechanical surface treatments, despite variations in surface roughness profiles. Phosphoric acid etching significantly improved repair bond strength values. The cohesive TBS of the material was only reached using resin bonding agents. Application of an intermediate bonding system plays a key role in achieving reliable repair bond strengths, whereas the kind of mechanical surface treatment appears to play a secondary role.

  9. Shear Bond Strength of Three Orthodontic Bonding Systems on Enamel and Restorative Materials.

    Science.gov (United States)

    Hellak, Andreas; Ebeling, Jennifer; Schauseil, Michael; Stein, Steffen; Roggendorf, Matthias; Korbmacher-Steiner, Heike

    2016-01-01

    Objective. The aim of this in vitro study was to determine the shear bond strength (SBS) and adhesive remnant index (ARI) score of two self-etching no-mix adhesives (iBond ™ and Scotchbond ™ ) on different prosthetic surfaces and enamel, in comparison with the commonly used total etch system Transbond XT ™ . Materials and Methods . A total of 270 surfaces (1 enamel and 8 restorative surfaces, n = 30) were randomly divided into three adhesive groups. In group 1 (control) brackets were bonded with Transbond XT primer. In the experimental groups iBond adhesive (group 2) and Scotchbond Universal adhesive (group 3) were used. The SBS was measured using a Zwicki 1120 ™ testing machine. The ARI and SBS were compared statistically using the Kruskal-Wallis test ( P ≤ 0.05). Results . Significant differences in SBS and ARI were found between the control group and experimental groups. Conclusions . Transbond XT showed the highest SBS on human enamel. Scotchbond Universal on average provides the best bonding on all other types of surface (metal, composite, and porcelain), with no need for additional primers. It might therefore be helpful for simplifying bonding in orthodontic procedures on restorative materials in patients. If metal brackets have to be bonded to a metal surface, the use of a dual-curing resin is recommended.

  10. Prospective case series on trabecular-iris angle status after an acute episode of phacomorphic angle closure

    Directory of Open Access Journals (Sweden)

    Jacky Lee

    2013-02-01

    Full Text Available AIM:To investigate the trabecular-iris angle with ultrasound biomicroscopy (UBM post cataract extraction after an acute attack of phacomorphic angle closure.METHODS: This prospective study involved 10 cases of phacomorphic angle closure that underwent cataract extraction and intraocular lens insertion after intraocular pressure (IOP lowering. Apart from visual acuity and IOP, the trabecular-iris angle was measured by gonioscopy and UBM at 3 months post attack.RESULTS: In 10 consecutive cases of acute phacomorphic angle closure from December 2009 to December 2010, gonioscopic findings showed peripheral anterior synechiae (PAS ≤ 90° in 30% of phacomorphic patients and a mean Shaffer grading of (3.1±1.0. UBM showed a mean angle of (37.1°±4.5° in the phacomorphic eye with the temporal quadrant being the most opened and (37.1°±8.0° in the contralateral uninvolved eye. The mean time from consultation to cataract extraction was (1.4±0.7 days and the mean total duration of phacomorphic angle closure was (3.6±2.8 days but there was no correlation to the degree of angle closure on UBM (Spearman correlation P=0.7. The presenting mean IOP was (50.5±7.4 mmHg and the mean IOP at 3 months was (10.5±3.4 mmHg but there were no correlations with the degree of angle closure (Spearman correlations P=0.9.CONCLUSION:An open trabecular-iris angle and normal IOP can be achieved after an acute attack of phacomorphic angle closure if cataract extraction is performed within 1 day - 2 days after IOP control. Gonioscopic findings were in agreement with UBM, which provided a more specific and object angle measurement. The superior angle is relatively more narrowed compared to the other quadrants. All contralateral eyes in this series had open angles.

  11. Predicting Bond Betas using Macro-Finance Variables

    DEFF Research Database (Denmark)

    Aslanidis, Nektarios; Christiansen, Charlotte; Cipollini, Andrea

    We conduct in-sample and out-of-sample forecasting using the new approach of combining explanatory variables through complete subset regressions (CSR). We predict bond CAPM betas and bond returns conditioning on various macro-fi…nance variables. We explore differences across long-term government ...... bonds, investment grade corporate bonds, and high-yield corporate bonds. The CSR method performs well in predicting bond betas, especially in-sample, and, mainly high-yield bond betas when the focus is out-of-sample. Bond returns are less predictable than bond betas....

  12. Expanding the peptide beta-turn in alphagamma hybrid sequences: 12 atom hydrogen bonded helical and hairpin turns.

    Science.gov (United States)

    Chatterjee, Sunanda; Vasudev, Prema G; Raghothama, Srinivasarao; Ramakrishnan, Chandrasekharan; Shamala, Narayanaswamy; Balaram, Padmanabhan

    2009-04-29

    Hybrid peptide segments containing contiguous alpha and gamma amino acid residues can form C(12) hydrogen bonded turns which may be considered as backbone expanded analogues of C(10) (beta-turns) found in alphaalpha segments. Exploration of the regular hydrogen bonded conformations accessible for hybrid alphagamma sequences is facilitated by the use of a stereochemically constrained gamma amino acid residue gabapentin (1-aminomethylcyclohexaneacetic acid, Gpn), in which the two torsion angles about C(gamma)-C(beta) (theta(1)) and C(beta)-C(alpha) (theta(2)) are predominantly restricted to gauche conformations. The crystal structures of the octapeptides Boc-Gpn-Aib-Gpn-Aib-Gpn-Aib-Gpn-Aib-OMe (1) and Boc-Leu-Phe-Val-Aib-Gpn-Leu-Phe-Val-OMe (2) reveal two distinct conformations for the Aib-Gpn segment. Peptide 1 forms a continuous helix over the Aib(2)-Aib(6) segment, while the peptide 2 forms a beta-hairpin structure stabilized by four cross-strand hydrogen bonds with the Aib-Gpn segment forming a nonhelical C(12) turn. The robustness of the helix in peptide 1 in solution is demonstrated by NMR methods. Peptide 2 is conformationally fragile in solution with evidence of beta-hairpin conformations being obtained in methanol. Theoretical calculations permit delineation of the various C(12) hydrogen bonded structures which are energetically feasible in alphagamma and gammaalpha sequences.

  13. LED Die-Bonded on the Ag/Cu Substrate by a Sn-BiZn-Sn Bonding System

    Science.gov (United States)

    Tang, Y. K.; Hsu, Y. C.; Lin, E. J.; Hu, Y. J.; Liu, C. Y.

    2016-12-01

    In this study, light emitting diode (LED) chips were die-bonded on a Ag/Cu substrate by a Sn-BixZn-Sn bonding system. A high die-bonding strength is successfully achieved by using a Sn-BixZn-Sn ternary system. At the bonding interface, there is observed a Bi-segregation phenomenon. This Bi-segregation phenomenon solves the problems of the brittle layer-type Bi at the joint interface. Our shear test results show that the bonding interface with Bi-segregation enhances the shear strength of the LED die-bonding joints. The Bi-0.3Zn and Bi-0.5Zn die-bonding cases have the best shear strength among all die-bonding systems. In addition, we investigate the atomic depth profile of the deposited Bi-xZn layer by evaporating Bi-xZn E-gun alloy sources. The initial Zn content of the deposited Bi-Zn alloy layers are much higher than the average Zn content in the deposited Bi-Zn layers.

  14. Phacoemulsification with intraocular lens implantation in primary angle-closure suspect, primary angle-closure and primary angle-closure glaucoma with cataract

    Directory of Open Access Journals (Sweden)

    Kun Zeng

    2013-08-01

    Full Text Available AIM: To evaluate the features and clinical outcomes of cataract extraction by phacoemulsification with intraocular lens implantation in primary angle-closure suspect(PACS, primary angle-closure(PACand primary angle-closure glaucoma(PACGwith cataract.METHODS:Phacoemulsification with intraocular lens implantation was performed on 86 cases(86 eyesdiagnosed as PACS, PAC and PACG co-existing cataract from January to December 2012. All cases were followed up for 3 months to 1 year. Pre-operative and post-operative visual acuity, intraocular pressure(IOP, gonioscopy, ultrasound biomicroscopy(UBM, visual field and usage of anti-glaucomaous eye drops were recorded.RESULTS:Zonular dialysis existed in 19 eyes(22%. The post-operative visual acuity improved in 84 eyes(98%. The post-operative visual acuity was CONCLUSION: PACS, PAC and PACG co-existing zonular dialysis is common. Phacoemulsification with IOL implantation can reduce IOP, deepen anterior chamber and open angle.

  15. Influence of temporary cement contamination on the surface free energy and dentine bond strength of self-adhesive cements.

    Science.gov (United States)

    Takimoto, Masayuki; Ishii, Ryo; Iino, Masayoshi; Shimizu, Yusuke; Tsujimoto, Akimasa; Takamizawa, Toshiki; Ando, Susumu; Miyazaki, Masashi

    2012-02-01

    The surface free energy and dentine bond strength of self-adhesive cements were examined after the removal of temporary cements. The labial dentine surfaces of bovine mandibular incisors were wet ground with #600-grit SiC paper. Acrylic resin blocks were luted to the prepared dentine surfaces using HY Bond Temporary Cement Hard (HY), IP Temp Cement (IP), Fuji TEMP (FT) or Freegenol Temporary Cement (TC), and stored for 1 week. After removal of the temporary cements with an ultrasonic tip, the contact angle values of five specimens per test group were determined for the three test liquids, and the surface-energy parameters of the dentine surfaces were calculated. The dentine bond strengths of the self-adhesive cements were measured after removal of the temporary cements in a shear mode at a crosshead speed of 1.0mm/min. The data were subjected to one-way analysis of variance (ANOVA) followed by Tukey's HSD test. For all surfaces, the value of the estimated surface tension component γ(S)(d) (dispersion) was relatively constant at 41.7-43.3 mJm(-2). After removal of the temporary cements, the value of the γ(S)(h) (hydrogen-bonding) component decreased, particularly with FT and TC. The dentine bond strength of the self-adhesive cements was significantly higher for those without temporary cement contamination (8.2-10.6 MPa) than for those with temporary cement contamination (4.3-7.1 MPa). The γ(S) values decreased due to the decrease of γ(S)(h) values for the temporary cement-contaminated dentine. Contamination with temporary cements led to lower dentine bond strength. The presence of temporary cement interferes with the bonding performance of self-adhesive cements to dentine. Care should be taken in the methods of removal of temporary cement when using self-adhesive cements. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Comparison of shear bond strength of amalgam bonded to primary and permanent dentin

    Directory of Open Access Journals (Sweden)

    Mahdi S

    2008-06-01

    Full Text Available Amalgam′s non-adhesive characteristics necessitate cavity preparations incorporating retentive features, which often require the removal of non-carious tooth structure. Use of adhesives beneath amalgam restorations, would be helpful to overcome this disadvantage. This study was undertaken to compare the mean shear bond strength of amalgam bonded to primary and permanent dentin, to evaluate the efficacy of amalgam adhesives in pediatric dentistry.27 primary and 28 permanent posterior teeth with intact buccal or lingual surfaces were grounded to expose dentin and wet-polished with 400-grit silicone carbide paper. Scotchbond Multi Purpose Plus adhesive system was applied to the dentin surfaces and light cured. Amalgam was condensed onto the treated dentin through a plastic mold.shear bond strength testing was done using an Instron Universal testing machine, at a crosshead speed of 0.5 mm/min.The data were analyzed by independent samples t-test The difference among the two groups was not statistically significant (p>0.05 Bonded amalgam showed the same level of bond strength to primary and permanent dentin; so, application of amalgam bonding agents in pediatric dentistry can be recommended.

  17. Small angle spectrometers: Summary

    International Nuclear Information System (INIS)

    Courant, E.; Foley, K.J.; Schlein, P.E.

    1986-01-01

    Aspects of experiments at small angles at the Superconducting Super Collider are considered. Topics summarized include a small angle spectrometer, a high contingency spectrometer, dipole and toroid spectrometers, and magnet choices

  18. Comparison of the tensile bond strength of high-noble, noble, and base metal alloys bonded to enamel.

    Science.gov (United States)

    Sen, D; Nayir, E; Pamuk, S

    2000-11-01

    Although the bond strengths of various resin composite luting materials have been reported in the literature, the evaluation of these systems with various cast alloys of different compositions has not been completely clarified. To evaluate the tensile bond strength of sandblasted high-noble, noble, and base metal alloys bonded to etched enamel by 2 different bonding agents of different chemical composition: Panavia-Ex (BIS-GMA) and Super-Bond (4-META acrylic). Flat enamel surfaces were prepared on buccal surfaces of 60 extracted noncarious human incisors. Teeth were divided into 3 groups of 20 each. Twenty circular disks of 5 mm diameter were prepared for casting for each group. Group I was cast with a high-noble, group II with a noble, and group III with a base metal alloy. The surfaces of the disks were sandblasted with 250 microm Al(2)O(3). Ten disks of each group were bonded to exposed enamel surfaces with Super-Bond and 10 disks with Panavia-Ex as recommended by the manufacturer. The tensile bond strength was measured with an Instron universal testing machine with a crosshead speed of 0.5 mm/min until failure occurred. Two-way ANOVA was used to evaluate the results. The differences in bond strengths of Super-Bond and Panavia-Ex with different alloys were not significant. The highest bond strengths were obtained in base metal alloys, followed by noble and high-noble alloys. These results were significant. Panavia-Ex and Super-Bond exhibited comparable tensile bond strengths. For both luting agents, the highest bond strengths were achieved with base metal alloys and the lowest with high-noble alloys.

  19. Demonstration of angle widening using EyeCam after laser peripheral iridotomy in eyes with angle closure.

    Science.gov (United States)

    Perera, Shamira A; Quek, Desmond T; Baskaran, Mani; Tun, Tin A; Kumar, Rajesh S; Friedman, David S; Aung, Tin

    2010-06-01

    To evaluate EyeCam in detecting changes in angle configuration after laser peripheral iridotomy (LPI) in comparison to gonioscopy, the reference standard. Prospective comparative study. Twenty-four subjects (24 eyes) with primary angle-closure glaucoma (PACG) were recruited. Gonioscopy and EyeCam (Clarity Medical Systems) imaging of all 4 angle quadrants were performed, before and 2 weeks after LPI. Images were graded according to angle structures visible by an observer masked to clinical data or the status of LPI, and were performed in a random order. Angle closure in a quadrant was defined as the inability to visualize the posterior trabecular meshwork. We determined the number of quadrants with closed angles and the mean number of clock hours of angle closure before and after LPI in comparison to gonioscopy. Using EyeCam, all 24 eyes showed at least 1 quadrant of angle widening after LPI. The mean number of clock hours of angle closure decreased significantly, from 8.15 +/- 3.47 clock hours before LPI to 1.75 +/- 2.27 clock hours after LPI (P gonioscopy showed 1.0 +/- 1.41 (95% CI, 0.43-1.57) quadrants opening from closed to open after LPI compared to 2.0 +/- 1.28 (95% CI, 1.49-2.51, P = .009) quadrants with EyeCam. Intra-observer reproducibility of grading the extent of angle closure in clock hours in EyeCam images was moderate to good (intraclass correlation coefficient 0.831). EyeCam may be used to document changes in angle configuration after LPI in eyes with PACG. Copyright 2010 Elsevier Inc. All rights reserved.

  20. Low-temperature Au/a-Si wafer bonding

    International Nuclear Information System (INIS)

    Jing, Errong; Xiong, Bin; Wang, Yuelin

    2011-01-01

    The Si/SiO 2 /Ti/Au–Au/Ti/a-Si/SiO 2 /Si bonding structure, which can also be used for the bonding of non-silicon material, was investigated for the first time in this paper. The bond quality test showed that the bond yield, bond repeatability and average shear strength are higher for this bonding structure. The interfacial microstructure analysis indicated that the Au-induced crystallization of the amorphous silicon process leads to big Si grains extending across the bond interface and Au filling the other regions of the bond interface, which result into a strong and void-free bond interface. In addition, the Au-induced crystallization reaction leads to a change in the IR images of the bond interface. Therefore, the IR microscope can be used to evaluate and compare the different bond strengths qualitatively. Furthermore, in order to verify the superiority of the bonding structure, the Si/SiO 2 /Ti/Au–a-Si/SiO 2 /Si (i.e. no Ti/Au layer on the a-Si surface) and Si/SiO 2 /Ti/Au–Au/Ti/SiO 2 /Si bonding structures (i.e. Au thermocompression bonding) were also investigated. For the Si/SiO 2 /Ti/Au–a-Si/SiO 2 /Si bonding structure, the poor bond quality is due to the native oxide layer on the a-Si surface, and for the Si/SiO 2 /Ti/Au–Au/Ti/SiO 2 /Si bonding structure, the poor bond quality is caused by the wafer surface roughness which prevents intimate contact and limits the interdiffusion at the bond interface.

  1. Temperature-dependent interface characteristic of silicon wafer bonding based on an amorphous germanium layer deposited by DC-magnetron sputtering

    Science.gov (United States)

    Ke, Shaoying; Lin, Shaoming; Ye, Yujie; Mao, Danfeng; Huang, Wei; Xu, Jianfang; Li, Cheng; Chen, Songyan

    2018-03-01

    We report a near-bubble-free low-temperature silicon (Si) wafer bonding with a thin amorphous Ge (a-Ge) intermediate layer. The DC-magnetron-sputtered a-Ge film on Si is demonstrated to be extremely flat (RMS = 0.28 nm) and hydrophilic (contact angle = 3°). The effect of the post-annealing temperature on the surface morphology and crystallinity of a-Ge film at the bonded interface is systematically identified. The relationship among the bubble density, annealing temperature, and crystallinity of a-Ge film is also clearly clarified. The crystallization of a-Ge film firstly appears at the bubble region. More interesting feature is that the crystallization starts from the center of the bubbles and sprawls to the bubble edge gradually. The H2 by-product is finally absorbed by intermediate Ge layer with crystalline phase after post annealing. Moreover, the whole a-Ge film out of the bubble totally crystallizes when the annealing time increases. This Ge integration at the bubble region leads to the decrease of the bubble density, which in turn increases the bonding strength.

  2. A simple surface treatment and characterization of AA 6061 aluminum alloy surface for adhesive bonding applications

    International Nuclear Information System (INIS)

    Saleema, N.; Sarkar, D.K.; Paynter, R.W.; Gallant, D.; Eskandarian, M.

    2012-01-01

    Highlights: ► A very simple surface treatment method to achieve excellent and durable aluminum adhesive bonding. ► Our method involves simple immersion of aluminum in very dilute NaOH solution at room temperature with no involvement of strong acids or multiple procedures. ► Surface analysis via various surface characterization techniques showed morphological and chemical modifications favorable for obtaining highly durable bond strengths on the treated surface. ► Safe, economical, reproducible and simple method, easily applicable in industries. - Abstract: Structural adhesive bonding of aluminum is widely used in aircraft and automotive industries. It has been widely noted that surface preparation of aluminum surfaces prior to adhesive bonding plays a significant role in improving the strength of the adhesive bond. Surface cleanliness, surface roughness, surface wettability and surface chemistry are controlled primarily by proper surface treatment methods. In this study, we have employed a very simple technique influencing all these criteria by simply immersing aluminum substrates in a very dilute solution of sodium hydroxide (NaOH) and we have studied the effect of varying the treatment period on the adhesive bonding characteristics. A bi-component epoxy adhesive was used to join the treated surfaces and the bond strengths were evaluated via single lap shear (SLS) tests in pristine as well as degraded conditions. Surface morphology, chemistry, crystalline nature and wettability of the NaOH treated surfaces were characterized using various surface analytical tools such as scanning electron microscopy and energy dispersive X-ray analysis (SEM/EDX), optical profilometry, infrared reflection absorption spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and contact angle goniometry. Excellent adhesion characteristics with complete cohesive failure of the adhesive were encountered on the NaOH treated surfaces that are comparable to the benchmark

  3. Manufacturing study of beryllium bonded structures

    International Nuclear Information System (INIS)

    Onozuka, M.; Hirai, S.; Kikuchi, K.; Oda, Y.; Shimizu, K.

    2004-01-01

    Manufacturing study has been conducted on Be-bonded structures employed in the first-wall panel of the blanket system for the ITER. For Be tiles bonded to the Cu-Cr-Zr alloy heat sink with stainless-steel cooling pipes, a one-axis hot press with two heating process has been used to bond the three materials. First, Cu-alloy and SS materials are bonded diffusively. Then, Be tiles are bonded to the pre-bonded structure under 20 MPa and at 560 degree C. An Al-Si base interlayer has been used to bond Be to the Cu-Alloy. Because of the limited heat processes using a conventional hot press, the manufacturing cost can be minimized. Using the above bonding techniques, a partial mockup of a blanket first-wall panel with 16 Be tiles (with 50 mm in size) has been successfully manufactured. (author)

  4. Behavior of Tilted Angle Shear Connectors

    Science.gov (United States)

    Khorramian, Koosha; Maleki, Shervin; Shariati, Mahdi; Ramli Sulong, N. H.

    2015-01-01

    According to recent researches, angle shear connectors are appropriate to transfer longitudinal shear forces across the steel-concrete interface. Angle steel profile has been used in different positions as L-shaped or C-shaped shear connectors. The application of angle shear connectors in tilted positions is of interest in this study. This study investigates the behaviour of tilted-shaped angle shear connectors under monotonic loading using experimental push out tests. Eight push-out specimens are tested to investigate the effects of different angle parameters on the ultimate load capacity of connectors. Two different tilted angles of 112.5 and 135 degrees between the angle leg and steel beam are considered. In addition, angle sizes and lengths are varied. Two different failure modes were observed consisting of concrete crushing-splitting and connector fracture. By increasing the size of connector, the maximum load increased for most cases. In general, the 135 degrees tilted angle shear connectors have a higher strength and stiffness than the 112.5 degrees type. PMID:26642193

  5. Behavior of Tilted Angle Shear Connectors.

    Directory of Open Access Journals (Sweden)

    Koosha Khorramian

    Full Text Available According to recent researches, angle shear connectors are appropriate to transfer longitudinal shear forces across the steel-concrete interface. Angle steel profile has been used in different positions as L-shaped or C-shaped shear connectors. The application of angle shear connectors in tilted positions is of interest in this study. This study investigates the behaviour of tilted-shaped angle shear connectors under monotonic loading using experimental push out tests. Eight push-out specimens are tested to investigate the effects of different angle parameters on the ultimate load capacity of connectors. Two different tilted angles of 112.5 and 135 degrees between the angle leg and steel beam are considered. In addition, angle sizes and lengths are varied. Two different failure modes were observed consisting of concrete crushing-splitting and connector fracture. By increasing the size of connector, the maximum load increased for most cases. In general, the 135 degrees tilted angle shear connectors have a higher strength and stiffness than the 112.5 degrees type.

  6. The choice among non-callable bonds and make whole, claw back and otherwise ordinary callable bonds

    OpenAIRE

    Booth, LD; Gounopoulos, D; Skinner, F

    2012-01-01

    This paper seeks to explain determinates of the choice and the pricing of various types of callable and non-callable bonds. We find that the popularity of different types of callable and non-callable bonds is significantly related to the economic environment. In addition, the popularity of claw back bonds appear to be driven by agency considerations, make whole bonds by the debt overhang problem, ordinary callable bonds by the need by banks to deal with interest rate changes and non-callable ...

  7. Proposal of guideline for bonding to prevention of hydrogen embrittlement at Ta/Zr bond interface. Hydrogen embrittlement in SUS304ULC/Ta/Zr explosive bonded joint

    International Nuclear Information System (INIS)

    Saida, Kazuyoshi; Fujimoto, Tetsuya; Nishimoto, Kazutoshi

    2010-01-01

    The occurrence condition of hydrogen embrittlement cracking at Ta/Zr bond interface was investigated with respect to the hydrogen content and applied stress in order to propose a guideline for the explosive bonding procedure to prevention of hydrogen embrittlement. Hydrogen charging test was conducted for SUS304ULC/Ta/Zr explosive bonded joints applied the different flexural strains. A hydrogen embrittlement crack occurred in the Zr substrate at Ta/Zr bond interface after hydrogen charging, and it was initiated at shorter charging times when the augmented strain was increased. The occurrence condition of hydrogen embrittlement cracking at Ta/Zr bond interface was shifted to lower stress and hydrogen content with an increase in the amount of explosive during bonding. It was suggested that hydrogen embrittlement in Ta/Zr explosive bonded joint could be inhibited by reducing the initial hydrogen content in Ta substrate less than approx. 5 ppm. (author)

  8. Formation of the market of high-bond (junk bonds in the United States in 1970–1980 years

    Directory of Open Access Journals (Sweden)

    Moshenskyi S.Z.

    2017-03-01

    Full Text Available Market of high-yield bonds (also known as «junk bonds» began to emerge in the US in the mid-1970s and was associated with the activities of «junk bond king» Michael Milken from Drexel investment company. Junk bonds emitents are small and newly established companies which cannot get a high credit rating. Emission of high-yield (8–10 % bond was their only chance to find its place in the financial market. Michael Milken realized the potential of these bonds, which, in fact, were often quite reliable securities, and started organizing their emissions by selling junk bonds to Savings and Loan Associations and other investors. In the 1980 issue of such bonds used for aggressive corporate takeovers, which supplied the capital from junk bonds market. Some of takeovers carried out in violation of laws that led to the arrest of Michael Milken, Drexel bankruptcy and the collapse of the entire junk bonds market.

  9. Nucleophilicities of Lewis Bases B and Electrophilicities of Lewis Acids A Determined from the Dissociation Energies of Complexes B⋯A Involving Hydrogen Bonds, Tetrel Bonds, Pnictogen Bonds, Chalcogen Bonds and Halogen Bonds.

    Science.gov (United States)

    Alkorta, Ibon; Legon, Anthony C

    2017-10-23

    It is shown that the dissociation energy D e for the process B⋯A = B + A for 250 complexes B⋯A composed of 11 Lewis bases B (N₂, CO, HC≡CH, CH₂=CH₂, C₃H₆, PH₃, H₂S, HCN, H₂O, H₂CO and NH₃) and 23 Lewis acids (HF, HCl, HBr, HC≡CH, HCN, H₂O, F₂, Cl₂, Br₂, ClF, BrCl, H₃SiF, H₃GeF, F₂CO, CO₂, N₂O, NO₂F, PH₂F, AsH₂F, SO₂, SeO₂, SF₂, and SeF₂) can be represented to good approximation by means of the equation D e = c ' N B E A , in which N B is a numerical nucleophilicity assigned to B, E A is a numerical electrophilicity assigned to A, and c ' is a constant, conveniently chosen to have the value 1.00 kJ mol -1 here. The 250 complexes were chosen to cover a wide range of non-covalent interaction types, namely: (1) the hydrogen bond; (2) the halogen bond; (3) the tetrel bond; (4) the pnictogen bond; and (5) the chalcogen bond. Since there is no evidence that one group of non-covalent interaction was fitted any better than the others, it appears the equation is equally valid for all the interactions considered and that the values of N B and E A so determined define properties of the individual molecules. The values of N B and E A can be used to predict the dissociation energies of a wide range of binary complexes B⋯A with reasonable accuracy.

  10. The impact of inlet angle and outlet angle of guide vane on pump in reversal based hydraulic turbine performance

    International Nuclear Information System (INIS)

    Shi, F X; Yang, J H; Wang, X H; Zhang, R H; Li, C E

    2012-01-01

    In this paper, in order to research the impact of inlet angle and outlet angle of guide vane on hydraulic turbine performance, a centrifugal pump in reversal is adopted as turbine. A numerical simulation method is adopted for researching outer performance and flow field of turbine. The results show: inlet angle has a crucial role to turbine, to the same flow, there is a noticeable decline for the efficiency and head of turbine with the inlet angle increases. At the best efficiency point(EFP),to a same inlet angle, when the inlet angle greater than inlet angle, velocity circulation in guide vane outlet decreases, which lead the efficiency of turbine to reduce, Contrarily, the efficiency rises. With the increase of inlet angle and outlet angle, the EFP moves to the big flow area and the uniformity of pressure distribution becomes worse. The paper indicates that the inlet angle and outlet angle have great impact on the turbine performance, and the best combination exists for the inlet angle and outlet angle of the guide vane.

  11. Rhodium-Catalyzed C-C Bond Formation via Heteroatom-Directed C-H Bond Activation

    Energy Technology Data Exchange (ETDEWEB)

    Colby, Denise; Bergman, Robert; Ellman, Jonathan

    2010-05-13

    Once considered the 'holy grail' of organometallic chemistry, synthetically useful reactions employing C-H bond activation have increasingly been developed and applied to natural product and drug synthesis over the past decade. The ubiquity and relative low cost of hydrocarbons makes C-H bond functionalization an attractive alternative to classical C-C bond forming reactions such as cross-coupling, which require organohalides and organometallic reagents. In addition to providing an atom economical alternative to standard cross - coupling strategies, C-H bond functionalization also reduces the production of toxic by-products, thereby contributing to the growing field of reactions with decreased environmental impact. In the area of C-C bond forming reactions that proceed via a C-H activation mechanism, rhodium catalysts stand out for their functional group tolerance and wide range of synthetic utility. Over the course of the last decade, many Rh-catalyzed methods for heteroatom-directed C-H bond functionalization have been reported and will be the focus of this review. Material appearing in the literature prior to 2001 has been reviewed previously and will only be introduced as background when necessary. The synthesis of complex molecules from relatively simple precursors has long been a goal for many organic chemists. The ability to selectively functionalize a molecule with minimal pre-activation can streamline syntheses and expand the opportunities to explore the utility of complex molecules in areas ranging from the pharmaceutical industry to materials science. Indeed, the issue of selectivity is paramount in the development of all C-H bond functionalization methods. Several groups have developed elegant approaches towards achieving selectivity in molecules that possess many sterically and electronically similar C-H bonds. Many of these approaches are discussed in detail in the accompanying articles in this special issue of Chemical Reviews. One approach

  12. Shear bond strength of composite bonded with three adhesives to Er,Cr:YSGG laser-prepared enamel.

    Science.gov (United States)

    Türkmen, Cafer; Sazak-Oveçoğlu, Hesna; Günday, Mahir; Güngör, Gülşad; Durkan, Meral; Oksüz, Mustafa

    2010-06-01

    To assess in vitro the shear bond strength of a nanohybrid composite resin bonded with three adhesive systems to enamel surfaces prepared with acid and Er,Cr:YSGG laser etching. Sixty extracted caries- and restoration-free human maxillary central incisors were used. The teeth were sectioned 2 mm below the cementoenamel junction. The crowns were embedded in autopolymerizing acrylic resin with the labial surfaces facing up. The labial surfaces were prepared with 0.5-mm reduction to receive composite veneers. Thirty specimens were etched with Er,Cr:YSGG laser. This group was also divided into three subgroups, and the following three bonding systems were then applied on the laser groups and the other three unlased groups: (1) 37% phosphoric acid etch + Bond 1 primer/adhesive (Pentron); (2) Nano-bond self-etch primer (Pentron) + Nano-bond adhesive (Pentron); and (3) all-in-one adhesive-single dose (Futurabond NR, Voco). All of the groups were restored with a nanohybrid composite resin (Smile, Pentron). Shear bond strength was measured with a Zwick universal test device with a knife-edge loading head. The data were analyzed with two-factor ANOVA. There were no significant differences in shear bond strength between self-etch primer + adhesive and all-in-one adhesive systems for nonetched and laser-etched enamel groups (P > .05). However, bond strength values for the laser-etched + Bond 1 primer/adhesive group (48.00 +/- 13.86 MPa) were significantly higher than the 37% phosphoric acid + Bond 1 primer/adhesive group (38.95 +/- 20.07 MPa) (P enamel surface more effectively than 37% phosphoric acid for subsequent attachment of composite material.

  13. Fatigue aging of adhesive bonds

    International Nuclear Information System (INIS)

    DeLollis, N.J.

    1979-01-01

    A year long study has been made of the effect of fatigue on the bond between two epoxy encapsulant formulations and a fused alumina disc. The variables studied included isothermal aging at temperatures up to and including the cure temperature and cyclic thermal aging from +74 to -54 0 C. The encapsulants were glass microballoon filled epoxies differing only in curing agents. One was cured with an aromatic amine eutectic (Shell Curing Agent Z). The other was cured with diethanolamine. The Z cured encapsulant bond failed completely at the bond interface with little or no aging; infrared evidence indicated a soluble interlayer as a possible cause of failure. The diethanolamine cured encapsulant survived a year of isothermal aging with little or no evidence of bond degradation. Cyclic thermal aging resulted in gradual bond failure with time. An extrapolation of the cyclic aging data indicates that the stresses induced by thermal cycling would result in complete bond failure in about 1200 days

  14. Association of bond, market, operational, and financial factors with multi-hospital system bond issues.

    Science.gov (United States)

    Carpenter, C E; McCue, M J; Hossack, J B

    2001-01-01

    Despite the growth of multi-hospital systems in the 1990s, their performance in the tax-exempt bond market has not been adequately evaluated. The purpose of this study is to compare bonds issued by multi-hospital systems to those issued by individual hospitals in terms of bond, market, operational, and financial characteristics. The study sample includes 2,078 newly issued, tax-exempt, revenue bonds between 1991 and 1997. The findings indicate that multi-hospital systems issued larger amounts of debt at a lower cost, were more likely to be insured, had higher debt service coverage and higher operating margins.

  15. Shear bond strength of self-etch and total-etch bonding systems at different dentin depths

    Directory of Open Access Journals (Sweden)

    Ana Carolina Maito Villela-Rosa

    2011-04-01

    Full Text Available The purpose of this study was to evaluate the dentin shear bond strength of four adhesive systems (Adper Single Bond 2, Adper Prompt L-Pop, Magic Bond DE and Self Etch Bond in regards to buccal and lingual surfaces and dentin depth. Forty extracted third molars had roots removed and crowns bisected in the mesiodistal direction. The buccal and lingual surfaces were fixed in a PVC/acrylic resin ring and were divided into buccal and lingual groups assigned to each selected adhesive. The same specimens prepared for the evaluation of superficial dentin shear resistance were used to evaluate the different depths of dentin. The specimens were identified and abraded at depths of 0.5, 1.0, 1.5 and 2.0 mm. Each depth was evaluated by ISO TR 11405 using an EMIC-2000 machine regulated at 0.5 mm/min with a 200 Kgf load cell. We performed statistical analyses on the results (ANOVA, Tukey and Scheffé tests. Data revealed statistical differences (p < 0.01 in the adhesive and depth variation as well as adhesive/depth interactions. The Adper Single Bond 2 demonstrated the highest mean values of shear bond strength. The Prompt L-Pop product, a self-etching adhesive, revealed higher mean values compared with Magic Bond DE and Self Etch Bond adhesives, a total and self-etching adhesive respectively. It may be concluded that the shear bond strength of dentin is dependent on material (adhesive system, substrate depth and adhesive/depth interaction.

  16. Tensile Bond Strength of Metal Bracket Bonding to Glazed Ceramic Surfaces With Different Surface Conditionings

    Directory of Open Access Journals (Sweden)

    M. Imani

    2011-12-01

    Full Text Available Objective: The objective of this study was to compare the tensile bond strength of metal brackets bonding to glazed ceramic surfaces using three various surface treatments.Materials and Methods: Forty two glazed ceramic disks were assigned to three groups. In the first and second groups the specimens were etched with 9.5% hydrofluoric acid (HFA. Subsequently in first group, ceramic primer and adhesive were applied, but in second group a bonding agent alone was used. In third group, specimens were treated with 35% phosphoric acid followed by ceramic primerand adhesive application. Brackets were bonded with light cure composites. The specimens were stored in distilled water in the room temperature for 24 hours and thermocycled 500 times between 5°C and 55°C. The universal testing machine was used to test the tensile bond strength and the adhesive remenant index scores between three groups was evaluated. The data were subjected to one-way ANOVA, Tukey and Kruskal-Wallis tests respectively.Results: The tensile bond strength was 3.69±0.52 MPa forfirst group, 2.69±0.91 MPa for second group and 3.60±0.41 MPa for third group. Group II specimens showed tensile strength values significantly different from other groups (P<0.01.Conclusion: In spite of limitations in laboratory studies it may be concluded that in application of Scotch bond multipurpose plus adhesive, phosphoric acid can be used instead of HFA for bonding brackets to the glazed ceramic restorations with enough tensile bond strength.

  17. A novel bonding method for fabrication of PET planar nanofluidic chip with low dimension loss and high bonding strength

    International Nuclear Information System (INIS)

    Yin, Zhifu; Zou, Helin; Sun, Lei; Xu, Shenbo; Qi, Liping

    2015-01-01

    Plastic planar nanofluidic chips are becoming increasingly important for biological and chemical applications. However, the majority of the present bonding methods for planar nanofluidic chips suffer from high dimension loss and low bonding strength. In this work, a novel thermal bonding technique based on O 2 plasma and ethanol treatment was proposed. With the assistance of O 2 plasma and ethanol, the PET (polyethylene terephthalate) planar nanofluidic chip can be bonded at a low bonding temperature of 50 °C. To increase the bonding rate and bonding strength, the O 2 plasma parameters and thermal bonding parameters were optimized during the bonding process. The tensile test indicates that the bonding strength of the PET planar nanofluidic chip can reach 0.954 MPa, while the auto-fluorescence test demonstrates that there is no leakage or blockage in any of the bonded micro- or nanochannels. (paper)

  18. Oregon School Bond Manual. Fifth Edition.

    Science.gov (United States)

    Oregon State Dept. of Education, Salem.

    To help school districts comply with Oregon's school bond laws, this manual provides guidelines for school district attorneys and personnel in the issuance and sale of school bonds. The document describes the proper time sequence of the bonding procedure, including elections, school board authorizations, necessary certificates, bond registration…

  19. Comparison of shear bond strength between unfilled resin to dry enamel and dentin bonding to moist and dry enamel

    Directory of Open Access Journals (Sweden)

    Yasini E.

    2005-05-01

    Full Text Available Statement of Problem: The use of dentine bondings on enamel and dentin in total etch protocols has recently become popular. Unfilled resin is hydrophobic and dentin bonding is hydrophilic in nature. This chemical difference could be effective in enamel bonding process. Purpose: The aim of this study was to compare the shear bond strength of unfilled resin to dry enamel and dentin bonding to dry and moist enamel. Materials and Methods: In this experimental study, a total of 30 incisor teeth were used. The specimens were randomly assigned to three groups of 10. 37% phosphoric acid etchant was applied to the enamel surfaces in each group for 15 seconds, rinsed with water for 20 seconds and dried for 20 seconds with compressed air in groups one and two. After conditioning, group 1 received unfilled resin (Margin Bond, Colten and group 2 received dentin bonding (Single Bond, 3M and in group 3 after conditioning and rinsing with water, a layer of dentin bonding (Single Bond was applied on wet enamel. The enamel and dentin bonding were light cured for 20 seconds. A ring mold 3.5 mm in diameter and 2 mm height was placed over the specimens to receive the composite filling material (Z100, 3M. The composite was cured for 40 seconds. The specimens were thermocycled and shear bond strengths were determined using an Instron Universal Testing Machine. The findings were analyzed by ANOVA One-Way and Tukey HSD tests. Results: Shear bond strength of dentin bonding to dry enamel was significantly less than unfilled resin to dry enamel (P<0.05. There was no significant difference between the bond strength of dentin bonding to moist and dry enamel. In addition bond strength of dentin bonding to wet enamel was not significantly different from unfilled resin to dry enamel. Conclusion: Based on the findings of this study, it is suggested that enamel surface should remain slightly moist after etching before bonding with single bond but when using unfilled resin, the

  20. Optimal Investment in Structured Bonds

    DEFF Research Database (Denmark)

    Jessen, Pernille; Jørgensen, Peter Løchte

    The paper examines the role of structured bonds in the optimal portfolio of a small retail investor. We consider the typical structured bond essentially repacking an exotic option and a zero coupon bond, i.e. an investment with portfolio insurance. The optimal portfolio is found when the investment...

  1. 46 CFR Sec. 10 - Bonds.

    Science.gov (United States)

    2010-10-01

    ... REPAIRS UNDER NATIONAL SHIPPING AUTHORITY MASTER LUMP SUM REPAIR CONTRACT-NSA-LUMPSUMREP Sec. 10 Bonds. (a... awarded work and the furnishing of the performance and payment bonds required by Article 14 of the NSA... of the NSA-LUMPSUMREP Contract, the standard form of individual performance bond (Standard Form 25...

  2. Selectively dispersed isotope labeling for protein structure determination by magic angle spinning NMR

    Energy Technology Data Exchange (ETDEWEB)

    Eddy, Matthew T. [Massachusetts Institute of Technology, Department of Chemistry (United States); Belenky, Marina [Brandeis University, Department of Chemistry (United States); Sivertsen, Astrid C. [Massachusetts Institute of Technology, Francis Bitter Magnet Laboratory (United States); Griffin, Robert G. [Massachusetts Institute of Technology, Department of Chemistry (United States); Herzfeld, Judith, E-mail: herzfeld@brandeis.edu [Brandeis University, Department of Chemistry (United States)

    2013-10-15

    The power of nuclear magnetic resonance spectroscopy derives from its site-specific access to chemical, structural and dynamic information. However, the corresponding multiplicity of interactions can be difficult to tease apart. Complimentary approaches involve spectral editing on the one hand and selective isotope substitution on the other. Here we present a new 'redox' approach to the latter: acetate is chosen as the sole carbon source for the extreme oxidation numbers of its two carbons. Consistent with conventional anabolic pathways for the amino acids, [1-{sup 13}C] acetate does not label {alpha} carbons, labels other aliphatic carbons and the aromatic carbons very selectively, and labels the carboxyl carbons heavily. The benefits of this labeling scheme are exemplified by magic angle spinning spectra of microcrystalline immunoglobulin binding protein G (GB1): the elimination of most J-couplings and one- and two-bond dipolar couplings provides narrow signals and long-range, intra- and inter-residue, recoupling essential for distance constraints. Inverse redox labeling, from [2-{sup 13}C] acetate, is also expected to be useful: although it retains one-bond couplings in the sidechains, the removal of CA-CO coupling in the backbone should improve the resolution of NCACX spectra.

  3. Common Factors in International Bond Returns

    NARCIS (Netherlands)

    Driessen, J.J.A.G.; Melenberg, B.; Nijman, T.E.

    2000-01-01

    In this paper we estimate and interpret the factors that jointly determine bond returns of different maturities in the US, Germany and Japan.We analyze both currency-hedged and unhedged bond returns.For currency-hedged bond returns, we find that five factors explain 96.5% of the variation of bond

  4. 7 CFR 1726.27 - Contractor's bonds.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false Contractor's bonds. 1726.27 Section 1726.27... AGRICULTURE ELECTRIC SYSTEM CONSTRUCTION POLICIES AND PROCEDURES General § 1726.27 Contractor's bonds. (a) RUS Form 168b, Contractor's Bond, shall be used when a contractor's bond is required by RUS Forms 200, 257...

  5. Relationship between surface area for adhesion and tensile bond strength--evaluation of a micro-tensile bond test.

    Science.gov (United States)

    Sano, H; Shono, T; Sonoda, H; Takatsu, T; Ciucchi, B; Carvalho, R; Pashley, D H

    1994-07-01

    The purpose of this study was to test the null hypothesis that there is no relationship between the bonded surface area of dentin and the tensile strength of adhesive materials. The enamel was removed from the occlusal surface of extracted human third molars, and the entire flat surface was covered with resin composite bonded to the dentin to form a flat resin composite crown. Twenty-four hours later, the bonded specimens were sectioned parallel to the long axis of the tooth into 10-20 thin sections whose upper part was composed of resin composite with the lower half being dentin. These small sections were trimmed using a high speed diamond bur into an hourglass shape with the narrowest portion at the bonded interface. Surface area was varied by altering the specimen thickness and width. Tensile bond strength was measured using custom-made grips in a universal testing machine. Tensile bond strength was inversely related to bonded surface area. At surface areas below 0.4 mm2, the tensile bond strengths were about 55 MPa for Clearfil Liner Bond 2 (Kuraray Co., Ltd.), 38 MPa for Scotchbond MP (3M Dental Products), and 20 MPa for Vitremer (3M Dental Products). At these small surface areas all of the bond failures were adhesive in nature. This new method permits measurement of high bond strengths without cohesive failure of dentin. It also permits multiple measurements to be made within a single tooth.

  6. Evaluation of Shear Bond Strength of Orthodontic Brackets Bonded with Nano-Filled Composites

    OpenAIRE

    Chalipa, Javad; Akhondi, Mohammad Sadegh Ahmad; Arab, Sepideh; Kharrazifard, Mohammad Javad; Ahmadyar, Maryam

    2013-01-01

    Objectives: The purpose of this study was to evaluate the shear bond strength (SBS) of orthodontic brackets bonded with two types of nano-composites in comparison to a conventional orthodontic composite. Materials and Methods: Sixty extracted human first premolars were randomly divided into 3 groups each containing 20 teeth. In group I, a conventional orthodontic composite (Transbond XT) was used to bond the brackets, while two nano-composites (Filtek TM Supreme XT and AELITE Aesthetic Enamel...

  7. Incidence Angle Effect of Energetic Carbon Ions on Deposition Rate, Topography, and Structure of Ultrathin Amorphous Carbon Films Deposited by Filtered Cathodic Vacuum Arc

    KAUST Repository

    Wang, N.

    2012-07-01

    The effect of the incidence angle of energetic carbon ions on the thickness, topography, and structure of ultrathin amorphous carbon (a-C) films synthesized by filtered cathodic vacuum arc (FCVA) was examined in the context of numerical and experimental results. The thickness of a-C films deposited at different incidence angles was investigated in the light of Monte Carlo simulations, and the calculated depth profiles were compared with those obtained from high-resolution transmission electron microscopy (TEM). The topography and structure of the a-C films were studied by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS), respectively. The film thickness decreased with the increase of the incidence angle, while the surface roughness increased and the content of tetrahedral carbon hybridization (sp 3) decreased significantly with the increase of the incidence angle above 45° , measured from the surface normal. TEM, AFM, and XPS results indicate that the smoothest and thinnest a-C films with the highest content of sp 3 carbon bonding were produced for an incidence angle of 45°. The findings of this study have direct implications in ultrahigh-density magnetic recording, where ultrathin and smooth a-C films with high sp 3 contents are of critical importance. © 2012 IEEE.

  8. Diffusionless bonding of aluminum to Zircaloy-2

    International Nuclear Information System (INIS)

    Watson, R.D.

    1965-04-01

    Aluminum can be bonded to zirconium without difficulty even when a thin layer of oxide is present on the surface of the zirconium . No detectable diffusion takes place during the bonding process. The bond layer can be stretched as much. as 8% without affecting the bond. The bond can be heated for 1000 hours at 260 o C (500 o F), and can be water quenched from 260 o C (500 o F) without any noticeable change in the bond strength. An extrusion technique has been devised for making transition sections of aluminum bonded to zirconium which can then be used to join these metals by conventional welding. Welding can be done close to the bond zone without seriously affecting the integrity of the bond. This method of bonding aluminum to Zircaloy-2 is covered by Canadian patent 702,438 January 26, 1965. (author)

  9. Mechatronic modeling and simulation using bond graphs

    CERN Document Server

    Das, Shuvra

    2009-01-01

    Introduction to Mechatronics and System ModelingWhat Is Mechatronics?What Is a System and Why Model Systems?Mathematical Modeling Techniques Used in PracticeSoftwareBond Graphs: What Are They?Engineering SystemsPortsGeneralized VariablesBond GraphsBasic Components in SystemsA Brief Note about Bond Graph Power DirectionsSummary of Bond Direction RulesDrawing Bond Graphs for Simple Systems: Electrical and MechanicalSimplification Rules for Junction StructureDrawing Bond Graphs for Electrical SystemsDrawing Bond Graphs for Mechanical SystemsCausalityDrawing Bond Graphs for Hydraulic and Electronic Components and SystemsSome Basic Properties and Concepts for FluidsBond Graph Model of Hydraulic SystemsElectronic SystemsDeriving System Equations from Bond GraphsSystem VariablesDeriving System EquationsTackling Differential CausalityAlgebraic LoopsSolution of Model Equations and Their InterpretationZeroth Order SystemsFirst Order SystemsSecond Order SystemTransfer Functions and Frequency ResponsesNumerical Solution ...

  10. Factors affecting the shear bond strength of metal and ceramic brackets bonded to different ceramic surfaces.

    Science.gov (United States)

    Abu Alhaija, Elham S J; Abu AlReesh, Issam A; AlWahadni, Ahed M S

    2010-06-01

    The aims of this study were to evaluate the shear bond strength (SBS) of metal and ceramic brackets bonded to two different all-ceramic crowns, IPS Empress 2 and In-Ceram Alumina, to compare the SBS between hydrofluoric acid (HFA), phosphoric acid etched, and sandblasted, non-etched all-ceramic surfaces. Ninety-six all-ceramic crowns were fabricated resembling a maxillary left first premolar. The crowns were divided into eight groups: (1) metal brackets bonded to sandblasted 9.6 per cent HFA-etched IPS Empress 2 crowns; (2) metal brackets bonded to sandblasted 9.6 per cent HFA-etched In-Ceram crowns; (3) ceramic brackets bonded to sandblasted 9.6 per cent HFA-etched IPS Empress 2 crowns; (4) ceramic brackets bonded to sandblasted 9.6 per cent HFA-etched In-Ceram crowns; (5) metal brackets bonded to sandblasted 37 per cent phosphoric acid-etched IPS Empress 2 crowns; (6) metal brackets bonded to sandblasted 37 per cent phosphoric acid-etched In-Ceram crowns; (7) metal brackets bonded to sandblasted, non-etched IPS Empress 2 crowns; and (8) metal brackets bonded to sandblasted, non-etched In-Ceram crowns. Metal and ceramic orthodontic brackets were bonded using a conventional light polymerizing adhesive resin. An Instron universal testing machine was used to determine the SBS at a crosshead speed of 0.1 mm/minute. Comparison between groups was performed using a univariate general linear model and chi-squared tests. The highest mean SBS was found in group 3 (120.15 +/- 45.05 N) and the lowest in group 8 (57.86 +/- 26.20 N). Of all the variables studied, surface treatment was the only factor that significantly affected SBS (P Empress 2 and In-Ceram groups.

  11. In vitro Comparative Evaluation of Tensile Bond Strength of 6(th), 7(th) and 8(th) Generation Dentin Bonding Agents.

    Science.gov (United States)

    Kamble, Suresh S; Kandasamy, Baburajan; Thillaigovindan, Ranjani; Goyal, Nitin Kumar; Talukdar, Pratim; Seal, Mukut

    2015-05-01

    Newer dentin bonding agents were developed to improve the quality of composite restoration and to reduce time consumption in its application. The aim of the present study was to evaluate tensile bond strength of 6(th), 7(th) and 8(th) generation bonding agents by in vitro method. Selected 60 permanent teeth were assigned into 20 in each group (Group I: 6(th) generation bonding agent-Adper SE plus 3M ESPE, Group II: 7(th) generation bonding agent-G-Bond GC Corp Japan and Group III: 8(th) generation dentin adhesives-FuturaBond, DC, Voco, Germany). With high-speed diamond disc, coronal dentin was exposed, and selected dentin bonding agents were applied, followed by composite restoration. All samples were saved in saline for 24 h and tensile bond strength testing was done using a universal testing machine. The obtained data were tabulated and statistically analyzed using ANOVA test. The tensile bond strength readings for 6(th) generation bonding agent was 32.2465, for 7(th) generation was 31.6734, and for 8(th)-generation dentine bonding agent was 34.74431. The highest tensile bond strength was seen in 8(th) generation bonding agent compared to 6(th) and 7(th) generation bonding agents. From the present study it can be conclude that 8(th) generation dentine adhesive (Futura DC, Voco, Germany) resulted in highest tensile bond strength compared to 6(th) (Adper SE plus, 3M ESPE) and 7(th) generation (G-Bond) dentin bonding agents.

  12. Method to improve commercial bonded SOI material

    Science.gov (United States)

    Maris, Humphrey John; Sadana, Devendra Kumar

    2000-07-11

    A method of improving the bonding characteristics of a previously bonded silicon on insulator (SOI) structure is provided. The improvement in the bonding characteristics is achieved in the present invention by, optionally, forming an oxide cap layer on the silicon surface of the bonded SOI structure and then annealing either the uncapped or oxide capped structure in a slightly oxidizing ambient at temperatures greater than 1200.degree. C. Also provided herein is a method for detecting the bonding characteristics of previously bonded SOI structures. According to this aspect of the present invention, a pico-second laser pulse technique is employed to determine the bonding imperfections of previously bonded SOI structures.

  13. Bonding Durability of Four Adhesive Systems

    Directory of Open Access Journals (Sweden)

    Leila Atash Biz Yeganeh

    2016-04-01

    Full Text Available Objectives: This study aimed to compare the durability of four adhesive systems by assessing their microtensile bond strength (MTBS and microleakage during six months of water storage.Materials and Methods: A total of 128 human third molars were used. The adhesives tested were Scotch Bond Multipurpose (SBMP, Single Bond (SB, Clearfil-SE bond (CSEB, and All-Bond SE (ABSE. After sample preparation for MTBS testing, the microspecimens were subjected to microtensile tester after one day and six months of water storage. For microleakage evaluation, facial and lingual class V cavities were prepared and restored with composite. After thermocycling, microleakage was evaluated. Bond strength values were subjected to one-way ANOVA and Tamhane’s test, and the microleakage data were analyzed by the Kruskal-Wallis, Dunn, Mann Whitney and Wilcoxon tests (P<0.05.Results: Single Bond yielded the highest and ABSE yielded the lowest bond strength at one day and six months. Short-term bond strength of SBMP and CSEB was similar. After six months, a significant decrease in bond strength was observed in ABSE and SBMP groups. At one day, ABSE showed the highest microleakage at the occlusal margin; however, at the gingival margin, there was no significant difference among groups. Long-term microleakage of all groups at the occlusal margins was similar, whilst gingival margins of SBMP and SB showed significantly higher microleakage.Conclusion: The highest MTBS and favorable sealability were obtained by Clearfil SE bond. Water storage had no effect on microleakage of self-etch adhesives at the gingival margin or MTBS of CSEB and SB. 

  14. Exfoliation of GaAs caused by MeV 1H and 4He ion implantation at left angle 100 right angle , left angle 110 right angle axial and random orientations

    International Nuclear Information System (INIS)

    Rauhala, E.; Raeisaenen, J.

    1994-01-01

    The exfoliation procedure of the ion range determination of gaseous implants in single crystal GaAs is investigated. The correlation of the observed crater depth with the ion range is studied for random, left angle 100 right angle and left angle 110 right angle axial orientation high dose implantations of 1.5-2.5 MeV 1 H and 4 He ions. Depending on the experimental conditions, the crater depths corresponded to range values between the modal range and the range maximum. The observed crater depths could be related to the actual He concentration depth distributions by determining the profiles of the 4 He implants by 2.7 MeV proton backscattering. The implantation parameters affecting the exfoliation process, and especially the increase rate of the sample temperature, are investigated. The range distribution parameters for the 1.5 MeV 4 He implants are presented. ((orig.))

  15. Microstructure and bonding mechanism of Al/Ti bonded joint using Al-10Si-1Mg filler metal

    International Nuclear Information System (INIS)

    Sohn, Woong H.; Bong, Ha H.; Hong, Soon H.

    2003-01-01

    The microstructures and liquid state diffusion bonding mechanism of cp-Ti to 1050 Al using an Al-10.0wt.%Si-1.0wt.%Mg filler metal with 100 μm in thickness have been investigated at 620 deg. C under 1x10 -4 Torr. The effects of bonding process parameters on microstructure of bonded joint have been analyzed by using an optical microscope, AES, scanning electron microscopy and EDS. The interfacial bond strength of Al/Ti bonded joints was measured by the single lap shear test. The results show that the bonding at the interface between Al and filler metal proceeds by wetting the Al with molten filler metal, and followed by removal of oxide layer on surface of Al. The interface between Al and filler metal moved during the isothermal solidification of filler metal by the diffusion of Si from filler metal into Al layer. The interface between Al and filler metal became curved in shape with increasing bonding time due to capillary force at grain boundaries. The bonding at the interface between Ti and filler metal proceeds by the formation of two different intermetallic compound layers, identified as Al 5 Si 12 Ti 7 and Al 12 Si 3 Ti 5 , followed by the growth of the intermetallic compound layers. The interfacial bond strength at Al/Ti joint increased with increasing bonding time up to 25 min at 620 deg. C. However, the interfacial bond strength of Al/Ti joint decreased after bonding time of 25 min at 620 deg. C due to formation of cavities in Al near Al/intermetallic interfaces

  16. A simplified indirect bonding technique

    Directory of Open Access Journals (Sweden)

    Radha Katiyar

    2014-01-01

    Full Text Available With the advent of lingual orthodontics, indirect bonding technique has become an integral part of practice. It involves placement of brackets initially on the models and then their transfer to teeth with the help of transfer trays. Problems encountered with current indirect bonding techniques used are (1 the possibility of adhesive flash remaining around the base of the brackets which requires removal (2 longer time required for the adhesive to gain enough bond strength for secure tray removal. The new simplified indirect bonding technique presented here overcomes both these problems.

  17. Discrete element simulation studies of angles of repose and shear flow of wet, flexible fibers.

    Science.gov (United States)

    Guo, Y; Wassgren, C; Ketterhagen, W; Hancock, B; Curtis, J

    2018-04-18

    A discrete element method (DEM) model is developed to simulate the dynamics of wet, flexible fibers. The angles of repose of dry and wet fibers are simulated, and the simulation results are in good agreement with experimental results, validating the wet, flexible fiber model. To study wet fiber flow behavior, the model is used to simulate shear flows of wet fibers in a periodic domain under Lees-Edwards boundary conditions. Significant agglomeration is observed in dilute shear flows of wet fibers. The size of the largest agglomerate in the flow is found to depend on a Bond number, which is proportional to liquid surface tension and inversely proportional to the square of the shear strain rate. This Bond number reflects the relative importance of the liquid-bridge force to the particle's inertial force, with a larger Bond number leading to a larger agglomerate. As the fiber aspect ratio (AR) increases, the size of the largest agglomerate increases, while the coordination number in the largest agglomerate initially decreases and then increases when the AR is greater than four. A larger agglomerate with a larger coordination number is more likely to form for more flexible fibers with a smaller bond elastic modulus due to better connectivity between the more flexible fibers. Liquid viscous force resists pulling of liquid bridges and separation of contacting fibers, and therefore it facilitates larger agglomerate formation. The effect of liquid viscous force is more significant at larger shear strain rates. The solid-phase shear stress is increased due to the presence of liquid bridges in moderately dense flows. As the solid volume fraction increases, the effect of fiber-fiber friction coefficient increases sharply. When the solid volume fraction approaches the maximum packing density, the fiber-fiber friction coefficient can be a more dominant factor than the liquid bridge force in determining the solid-phase shear stress.

  18. Bonding with Your Baby

    Science.gov (United States)

    ... the future bonding of the child and parent. Adoptive parents may be concerned about bonding with their ... general emotional support. And it's OK to ask family members and friends for help in the days — ...

  19. Wafer scale oblique angle plasma etching

    Science.gov (United States)

    Burckel, David Bruce; Jarecki, Jr., Robert L.; Finnegan, Patrick Sean

    2017-05-23

    Wafer scale oblique angle etching of a semiconductor substrate is performed in a conventional plasma etch chamber by using a fixture that supports a multiple number of separate Faraday cages. Each cage is formed to include an angled grid surface and is positioned such that it will be positioned over a separate one of the die locations on the wafer surface when the fixture is placed over the wafer. The presence of the Faraday cages influences the local electric field surrounding each wafer die, re-shaping the local field to be disposed in alignment with the angled grid surface. The re-shaped plasma causes the reactive ions to follow a linear trajectory through the plasma sheath and angled grid surface, ultimately impinging the wafer surface at an angle. The selected geometry of the Faraday cage angled grid surface thus determines the angle at with the reactive ions will impinge the wafer.

  20. Oregon School Bond Manual. Fourth Edition.

    Science.gov (United States)

    Oregon State Dept. of Education, Salem.

    The manual is intended to guide attorneys and officials of school districts in the issuance and sale of school district bonds. Purchasers of school district bonds rely on the recommendations of accredited bond attorneys who render opinions concerning the validity and legality of bond issues offered for sale. This manual is designed to assist in…

  1. 27 CFR 24.146 - Bonds.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Bonds. 24.146 Section 24.146 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE.... (c) Wine vinegar plant bond. The proprietor of a wine vinegar plant who withdraws wine from a bonded...

  2. Shear Bond Strength of Three Orthodontic Bonding Systems on Enamel and Restorative Materials

    Directory of Open Access Journals (Sweden)

    Andreas Hellak

    2016-01-01

    Full Text Available Objective. The aim of this in vitro study was to determine the shear bond strength (SBS and adhesive remnant index (ARI score of two self-etching no-mix adhesives (iBond™ and Scotchbond™ on different prosthetic surfaces and enamel, in comparison with the commonly used total etch system Transbond XT™. Materials and Methods. A total of 270 surfaces (1 enamel and 8 restorative surfaces, n=30 were randomly divided into three adhesive groups. In group 1 (control brackets were bonded with Transbond XT primer. In the experimental groups iBond adhesive (group 2 and Scotchbond Universal adhesive (group 3 were used. The SBS was measured using a Zwicki 1120™ testing machine. The ARI and SBS were compared statistically using the Kruskal–Wallis test (P≤0.05. Results. Significant differences in SBS and ARI were found between the control group and experimental groups. Conclusions. Transbond XT showed the highest SBS on human enamel. Scotchbond Universal on average provides the best bonding on all other types of surface (metal, composite, and porcelain, with no need for additional primers. It might therefore be helpful for simplifying bonding in orthodontic procedures on restorative materials in patients. If metal brackets have to be bonded to a metal surface, the use of a dual-curing resin is recommended.

  3. Bonding polycarbonate brackets to ceramic: : Effects of substrate treatment on bond strength

    NARCIS (Netherlands)

    Özcan, Mutlu; Vallittu, Pekka K.; Peltomäki, Timo; Huysmans, Marie-Charlotte; Kalk, Warner

    2004-01-01

    This study evaluated the effects of 5 different surface conditioning methods on the bond strength of polycarbonate brackets bonded to ceramic surfaces with resin based cement. Six disc-shaped ceramic specimens (feldspathic porcelain) with glazed surfaces were used for each group. The specimens were

  4. Angles in hyperbolic lattices

    DEFF Research Database (Denmark)

    Risager, Morten S.; Södergren, Carl Anders

    2017-01-01

    It is well known that the angles in a lattice acting on hyperbolic n -space become equidistributed. In this paper we determine a formula for the pair correlation density for angles in such hyperbolic lattices. Using this formula we determine, among other things, the asymptotic behavior of the den......It is well known that the angles in a lattice acting on hyperbolic n -space become equidistributed. In this paper we determine a formula for the pair correlation density for angles in such hyperbolic lattices. Using this formula we determine, among other things, the asymptotic behavior...... of the density function in both the small and large variable limits. This extends earlier results by Boca, Pasol, Popa and Zaharescu and Kelmer and Kontorovich in dimension 2 to general dimension n . Our proofs use the decay of matrix coefficients together with a number of careful estimates, and lead...

  5. Three methods to measure RH bond energies

    International Nuclear Information System (INIS)

    Berkowitz, J.; Ellison, G.B.; Gutman, D.

    1993-01-01

    In this paper the authors compare and contrast three powerful methods for experimentally measuring bond energies in polyatomic molecules. The methods are: radical kinetics; gas phase acidity cycles; and photoionization mass spectroscopy. The knowledge of the values of bond energies are a basic piece of information to a chemist. Chemical reactions involve the making and breaking of chemical bonds. It has been shown that comparable bonds in polyatomic molecules, compared to the same bonds in radicals, can be significantly different. These bond energies can be measured in terms of bond dissociation energies

  6. Optimum Tilt Angle at Tropical Region

    Directory of Open Access Journals (Sweden)

    S Soulayman

    2015-02-01

    Full Text Available : One of the important parameters that affect the performance of a solar collector is its tilt angle with the horizon. This is because of the variation of tilt angle changes the amount of solar radiation reaching the collector surface. Meanwhile, is the rule of thumb, which says that solar collector Equator facing position is the best, is valid for tropical region? Thus, it is required to determine the optimum tilt as for Equator facing and for Pole oriented collectors. In addition, the question that may arise: how many times is reasonable for adjusting collector tilt angle for a definite value of surface azimuth angle? A mathematical model was used for estimating the solar radiation on a tilted surface, and to determine the optimum tilt angle and orientation (surface azimuth angle for the solar collector at any latitude. This model was applied for determining optimum tilt angle and orientation in the tropical zones, on a daily basis, as well as for a specific period. The optimum angle was computed by searching for the values for which the radiation on the collector surface is a maximum for a particular day or a specific period. The results reveal that changing the tilt angle 12 times in a year (i.e. using the monthly optimum tilt angle maintains approximately the total amount of solar radiation near the maximum value that is found by changing the tilt angle daily to its optimum value. This achieves a yearly gain in solar radiation of 11% to 18% more than the case of a solar collector fixed on a horizontal surface.

  7. Bond characteristics of steel fiber and deformed reinforcing steel bar embedded in steel fiber reinforced self-compacting concrete (SFRSCC)

    Science.gov (United States)

    Aslani, Farhad; Nejadi, Shami

    2012-09-01

    Steel fiber reinforced self-compacting concrete (SFRSCC) is a relatively new composite material which congregates the benefits of the self-compacting concrete (SCC) technology with the profits derived from the fiber addition to a brittle cementitious matrix. Steel fibers improve many of the properties of SCC elements including tensile strength, ductility, toughness, energy absorption capacity, fracture toughness and cracking. Although the available research regarding the influence of steel fibers on the properties of SFRSCC is limited, this paper investigates the bond characteristics between steel fiber and SCC firstly. Based on the available experimental results, the current analytical steel fiber pullout model (Dubey 1999) is modified by considering the different SCC properties and different fiber types (smooth, hooked) and inclination. In order to take into account the effect of fiber inclination in the pullout model, apparent shear strengths ( τ ( app)) and slip coefficient ( β) are incorporated to express the variation of pullout peak load and the augmentation of peak slip as the inclined angle increases. These variables are expressed as functions of the inclined angle ( ϕ). Furthurmore, steel-concrete composite floors, reinforced concrete floors supported by columns or walls and floors on an elastic foundations belong to the category of structural elements in which the conventional steel reinforcement can be partially replaced by the use of steel fibers. When discussing deformation capacity of structural elements or civil engineering structures manufactured using SFRSCC, one must be able to describe thoroughly both the behavior of the concrete matrix reinforced with steel fibers and the interaction between this composite matrix and discrete steel reinforcement of the conventional type. However, even though the knowledge on bond behavior is essential for evaluating the overall behavior of structural components containing reinforcement and steel fibers

  8. Bond strength of composite resin to enamel: assessment of two ethanol wet-bonding techniques.

    Directory of Open Access Journals (Sweden)

    Maryam Khoroushi

    2014-04-01

    Full Text Available Ethanol wet-bonding (EWB technique has been stated to decrease degradation of resin-dentin bond. This study evaluated the effect of two EWB techniques on composite resin-to-enamel bond strength.Silicon carbide papers were used to produce flat enamel surfaces on the buccal faces of forty-five molars. OptiBond FL (OFL adhesive was applied on enamel surfaces in three groups of 15 namely: Enamel surface and OFL (control;Protocol 1 of the EWB technique: absolute ethanol was applied to water-saturated acid-etched enamel surfaces for 1 minute before the application of ethanol-solvated hydrophobic adhesive resin of OFL 3 times;Protocol 2: progressive ethanol replacement; water was gradually removed from the enamel matrix using ascending ethanol concentrations before OFL application. Composite build-ups were made and the specimens were stored for 24 hours at 37°C and 100% relative humidity. Shear bond strength test was performed using a universal testing machine at 1 mm/min crosshead speed. Fracture patterns were evaluated microscopically. Data were analyzed with one-way ANOVA and Fisher's exact test (α=0.05.There were no significant differences in bond strength between the groups (P=0.73. However, regarding failure patterns, the highest cohesive enamel fractures were recorded in groups 2 and 3.In this study, although both methods of EWB did not influence immediate bond strength of composite resin to enamel, the majority of failure patterns occurred cohesively in enamel.

  9. Influence of an oxygen-inhibited layer on enamel bonding of dental adhesive systems: surface free-energy perspectives.

    Science.gov (United States)

    Ueta, Hirofumi; Tsujimoto, Akimasa; Barkmeier, Wayne W; Oouchi, Hajime; Sai, Keiichi; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi

    2016-02-01

    The influence of an oxygen-inhibited layer (OIL) on the shear bond strength (SBS) to enamel and surface free-energy (SFE) of adhesive systems was investigated. The adhesive systems tested were Scotchbond Multipurpose (SM), Clearfil SE Bond (CS), and Scotchbond Universal (SU). Resin composite was bonded to bovine enamel surfaces to determine the SBS, with and without an OIL, of adhesives. The SFE of cured adhesives with and without an OIL were determined by measuring the contact angles of three test liquids. There were no significant differences in the mean SBS of SM and CS specimens with or without an OIL; however, the mean SBS of SU specimens with an OIL was significantly higher than that of SU specimens without an OIL. For all three systems, the mean total SFE (γS), polarity force (γSp), and hydrogen bonding force (γSh) values of cured adhesives with an OIL were significantly higher than those of cured adhesives without an OIL. The results of this study indicate that the presence of an OIL promotes higher SBS of a single-step self-etch adhesive system, but not of a three-step or a two-step self-etch primer system. The SFE values of cured adhesives with an OIL were significantly higher than those without an OIL. The SFE characteristics of the OIL of adhesives differed depending on the type of adhesive. © 2015 Eur J Oral Sci.

  10. Effect of clearfil protect bond and transbond plus self-etch primer on shear bond strength of orthodontic brackets

    Directory of Open Access Journals (Sweden)

    S Hamid Raji

    2011-01-01

    Conclusion: The shear bond strength of clearfil protect bond and transbond plus self-etch primer was enough for bonding the orthodontic brackets. The mode of failure of bonded brackets with these two self-etch primers is safe for enamel.

  11. Tensile bond strength of metal bracket bonding to glazed ceramic surfaces with different surface conditionings.

    Science.gov (United States)

    Akhoundi, Ms Ahmad; Kamel, M Rahmati; Hashemi, Sh Mahmood; Imani, M

    2011-01-01

    The objective of this study was to compare the tensile bond strength of metal brackets bonding to glazed ceramic surfaces using three various surface treatments. Forty two glazed ceramic disks were assigned to three groups. In the first and second groups the specimens were etched with 9.5% hydrofluoric acid (HFA). Subsequently in first group, ceramic primer and adhesive were applied, but in second group a bonding agent alone was used. In third group, specimens were treated with 35% phosphoric acid followed by ceramic primer and adhesive application. Brackets were bonded with light cure composites. The specimens were stored in distilled water in the room temperature for 24 hours and thermocycled 500 times between 5°C and 55°C. The universal testing machine was used to test the tensile bond strength and the adhesive remenant index scores between three groups was evaluated. The data were subjected to one-way ANOVA, Tukey and Kruskal-Wallis tests respectively. The tensile bond strength was 3.69±0.52 MPa forfirst group, 2.69±0.91 MPa for second group and 3.60±0.41 MPa for third group. Group II specimens showed tensile strength values significantly different from other groups (Ptensile bond strength.

  12. Bond markets in Africa

    Directory of Open Access Journals (Sweden)

    Yibin Mu

    2013-07-01

    Full Text Available African bond markets have been steadily growing in recent years, but nonetheless remain undeveloped. African countries would benefit from greater access to financing and deeper financial markets. This paper compiles a unique set of data on government securities and corporate bond markets in Africa. It then applies an econometric model to analyze the key determinants of African government securities market and corporate bond market capitalization. Government securities market capitalization is directly related to better institutions and interest rate volatility, and inversely related to smaller fiscal deficits, higher interest rate spreads, exchange rate volatility, and current and capital account openness. Corporate bond market capitalization is directly linked to economic size, the level of development of the economy and financial markets, better institutions, and interest rate volatility, and inversely related to higher interest rate spreads and current account openness. Policy implications follow.

  13. Bonding in Sulfur-Oxygen Compounds-HSO/SOH and SOO/OSO: An Example of Recoupled Pair π Bonding.

    Science.gov (United States)

    Lindquist, Beth A; Takeshita, Tyler Y; Woon, David E; Dunning, Thom H

    2013-10-08

    The ground states (X(2)A″) of HSO and SOH are extremely close in energy, yet their molecular structures differ dramatically, e.g., re(SO) is 1.485 Å in HSO and 1.632 Å in SOH. The SO bond is also much stronger in HSO than in SOH: 100.3 kcal/mol versus 78.8 kcal/mol [RCCSD(T)-F12/AVTZ]. Similar differences are found in the SO2 isomers, SOO and OSO, depending on whether the second oxygen atom binds to oxygen or sulfur. We report generalized valence bond and RCCSD(T)-F12 calculations on HSO/SOH and OSO/SOO and analyze the bonding in all four species. We find that HSO has a shorter and stronger SO bond than SOH due to the presence of a recoupled pair bond in the π(a″) system of HSO. Similarly, the bonding in SOO and OSO differs greatly. SOO is like ozone and has substantial diradical character, while OSO has two recoupled pair π bonds and negligible diradical character. The ability of the sulfur atom to form recoupled pair bonds provides a natural explanation for the dramatic variation in the bonding in these and many other sulfur-oxygen compounds.

  14. Wafer bonding applications and technology

    CERN Document Server

    Gösele, Ulrich

    2004-01-01

    During the past decade direct wafer bonding has developed into a mature materials integration technology. This book presents state-of-the-art reviews of the most important applications of wafer bonding written by experts from industry and academia. The topics include bonding-based fabrication methods of silicon-on-insulator, photonic crystals, VCSELs, SiGe-based FETs, MEMS together with hybrid integration and laser lift-off. The non-specialist will learn about the basics of wafer bonding and its various application areas, while the researcher in the field will find up-to-date information about this fast-moving area, including relevant patent information.

  15. One-step surface modification for irreversible bonding of various plastics with a poly(dimethylsiloxane) elastomer at room temperature.

    Science.gov (United States)

    Wu, Jing; Lee, Nae Yoon

    2014-05-07

    Here, we introduce a simple and facile method for bonding poly(dimethylsiloxane) (PDMS) to various plastics irreversibly via a one-step chemical treatment at room temperature. This was mediated by poly[dimethylsiloxane-co-(3-aminopropyl)methylsiloxane] (amine-PDMS linker), a chemical composed of a PDMS backbone incorporating an amine side group. Room temperature anchoring of the linker was achieved via a reaction between the amine functionality of the linker and the carbon backbone of the plastics, thereby producing urethane bonds. This resulted in the PDMS functionality being exposed on the plastic surface, mimicking the surface properties of bulk PDMS. Following corona treatment of the PDMS-modified plastic and a sheet of PDMS, the two surfaces were placed in contact with each other and heated at 80 °C for 1 h. This resulted in permanent bonding between PDMS and the plastic. To examine the effectiveness of the amine-PDMS linker coating procedure, the surfaces were characterized by measuring water contact angles and by employing X-ray photoelectron spectroscopy (XPS). Polycarbonate (PC), poly(ethylene terephthalate) (PET), poly(vinylchloride) (PVC), and polyimide (PI) were bonded successfully to PDMS using this method, with bond strengths of PC, PET, and PVC with PDMS measured to be approximately 428.5 ± 17.9, 361.7 ± 31.2, and 430.0 ± 14.9 kPa, respectively. The bond strength of a PC-PC homogeneous assembly, also realized using the proposed method, was measured to be approximately 343.9 ± 7.4 kPa. Delamination tests revealed that the PC-PC assembly was able to withstand intense introduction of a liquid whose per-minute injection volume was approximately 278 times greater than the total internal volume of the microchannel fabricated in PC. This demonstrated the robustness of the seal formed using the proposed technique.

  16. Diffusion bonding techniques

    International Nuclear Information System (INIS)

    Peters, R.D.

    1978-01-01

    The applications of diffusion bonding at the General Electric Neutron Devices Department are briefly discussed, with particular emphasis on the gold/gold or gold/indium joints made between metallized alumina ceramic parts in the vacuum switch tube and the crystal resonator programs. Fixtures which use the differential expansion of dissimilar metals are described and compared to one that uses hydraulic pressure to apply the necessary bonding force

  17. SOCIAL BONDING: REGULATION BY NEUROPEPTIDES

    Directory of Open Access Journals (Sweden)

    Claudia eLieberwirth

    2014-06-01

    Full Text Available Affiliative social relationships (e.g., among spouses, family members, and friends play an essential role in human society. These relationships affect psychological, physiological, and behavioral functions. As positive and enduring bonds are critical for the overall well-being of humans, it is not surprising that considerable effort has been made to study the neurobiological mechanisms that underlie social bonding behaviors. The present review details the involvement of the nonapeptides, oxytocin (OT and arginine vasopressin (AVP, in the regulation of social bonding in mammals including humans. In particular, we will discuss the role of OT and AVP in the formation of social bonds between partners of a mating pair as well as between parents and their offspring. Furthermore, the role of OT and AVP in the formation of interpersonal bonding involving trust is also discussed.

  18. Laser peripheral iridoplasty for angle-closure.

    Science.gov (United States)

    Ng, Wai Siene; Ang, Ghee Soon; Azuara-Blanco, Augusto

    2012-02-15

    Angle-closure glaucoma is a leading cause of irreversible blindness in the world. Treatment is aimed at opening the anterior chamber angle and lowering the IOP with medical and/or surgical treatment (e.g. trabeculectomy, lens extraction). Laser iridotomy works by eliminating pupillary block and widens the anterior chamber angle in the majority of patients. When laser iridotomy fails to open the anterior chamber angle, laser iridoplasty may be recommended as one of the options in current standard treatment for angle-closure. Laser peripheral iridoplasty works by shrinking and pulling the peripheral iris tissue away from the trabecular meshwork. Laser peripheral iridoplasty can be used for crisis of acute angle-closure and also in non-acute situations.   To assess the effectiveness of laser peripheral iridoplasty in the treatment of narrow angles (i.e. primary angle-closure suspect), primary angle-closure (PAC) or primary angle-closure glaucoma (PACG) in non-acute situations when compared with any other intervention. In this review, angle-closure will refer to patients with narrow angles (PACs), PAC and PACG. We searched CENTRAL (which contains the Cochrane Eyes and Vision Group Trials Register) (The Cochrane Library 2011, Issue 12), MEDLINE (January 1950 to January 2012), EMBASE (January 1980 to January 2012), Latin American and Caribbean Literature on Health Sciences (LILACS) (January 1982 to January 2012), the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com), ClinicalTrials.gov (www.clinicaltrials.gov) and the WHO International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). There were no date or language restrictions in the electronic searches for trials. The electronic databases were last searched on 5 January 2012. We included only randomised controlled trials (RCTs) in this review. Patients with narrow angles, PAC or PACG were eligible. We excluded studies that included only patients with acute presentations

  19. Sol-gel bonding of silicon wafers

    International Nuclear Information System (INIS)

    Barbe, C.J.; Cassidy, D.J.; Triani, G.; Latella, B.A.; Mitchell, D.R.G.; Finnie, K.S.; Bartlett, J.R.; Woolfrey, J.L.; Collins, G.A.

    2005-01-01

    Low temperature bonding of silicon wafers was achieved using sol-gel technology. The initial sol-gel chemistry of the coating solution was found to influence the mechanical properties of the resulting bonds. More precisely, the influence of parameters such as the alkoxide concentration, water-to-alkoxide molar ratio, pH, and solution aging on the final bond morphologies and interfacial fracture energy was studied. The thickness and density of the sol-gel coating were characterised using ellipsometry. The corresponding bonded specimens were investigated using attenuated total reflectance Fourier transformed infrared spectroscopy to monitor their chemical composition, infrared imaging to control bond integrity, and cross-sectional transmission electron microscopy to study their microstructure. Their interfacial fracture energy was measured using microindentation. An optimum water-to-alkoxide molar ratio of 10 and hydrolysis water at pH = 2 were found. Such conditions led to relatively dense films (> 90%), resulting in bonds with a fracture energy of 3.5 J/m 2 , significantly higher than those obtained using classical hydrophilic bonding (typically 1.5-2.5 J/m 2 ). Ageing of the coating solution was found to decrease the bond strength

  20. Bonding and orientation of 1,4-benzenedimethanethiol on Au(111) prepared from solution and from gas phase

    International Nuclear Information System (INIS)

    Pasquali, L; Terzi, F; Zanardi, C; Seeber, R; Paolicelli, G; Mahne, N; Nannarone, S

    2007-01-01

    The orientation and bonding of 1,4-benzenedimethanethiol molecules on Au(111) is studied by means of x-ray and ultraviolet (UV) photoemission, x-ray absorption and metastable deexcitation spectroscopy. The organic films are prepared both from solution and by exposing the clean substrate to the vapours of the substance in an evacuated environment. This leads to two different growth modes: when self-assembled monolayers (SAMs) are prepared from solution, the molecules tend to form a bilayer film with the molecules standing upright and with the molecular axis forming an angle of about 30 0 with respect to the substrate normal; when growth is carried out from the gas phase, the molecules tend to assume at the earliest stages of exposure a flat-lying configuration, with both sulfur end-groups bonding to Au; at increasing exposure the surface coverage presents a saturation and the chemisorbed molecules tend to assume an upright arrangement

  1. Raman spectroscopy of supported chromium oxide catalysts : determination of chromium-oxygen bond distances and bond orders

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Wachs, I.E.

    1996-01-01

    An empirical correlation is described for relating Raman stretching frequencies of chromium—oxygen (Cr—O) bonds to their bond lengths in chromium oxide reference compounds. An exponential fit of crystallographically determined Cr—O bond lengths to Cr—O Raman symmetric stretching frequencies

  2. 31 CFR 315.3 - Converting definitive savings bonds to book-entry bonds in New Treasury Direct.

    Science.gov (United States)

    2010-07-01

    ... book-entry bonds through New Treasury Direct, an online system for holding Treasury securities. The Web... definitive savings bonds should follow online instructions for conversion. Regulations governing converted bonds are found at 31 CFR part 363. [70 FR 14941, Mar. 23, 2005] ...

  3. Angle parameter changes of phacoemulsification and combined phacotrabeculectomy for acute primary angle closure

    Directory of Open Access Journals (Sweden)

    Shi-Wei Li

    2015-08-01

    Full Text Available AIM: To evaluate the difference in angle parameters and clinical outcome following phacoemulsification and combined phacotrabeculectomy in patients with acute primary angle closure (APAC using ultrasound biomicroscopy (UBM.METHODS: Patients (n=23, 31 eyes were randomized to receive phacoemulsification or combined phacotrabeculectomy (n=24, 31 eyes. Best-corrected visual acuity (BCVA, intraocular pressure (IOP, the main complications following surgery, and indentation gonioscopy and angle parameters measured using UBM were documented preoperatively and postoperatively.RESULTS:The improvement in BCVA in the phacoemulsification group was significantly greater than in the combined group (P<0.05. IOP in the phacoemulsification group was slightly higher than in the combined group following 1wk of follow-up (P<0.05, whereas there was no significant difference between the two groups at the latter follow-up (P>0.05. Phacoemulsification alone resulted in a slight increase in the trabecular ciliary processes distance compared with the combined surgery (P<0.05, whereas the other angle parameters showed no significant difference between the groups. Complications in combined group were greater than phacoemulsification only group.CONCLUSION:Both surgeries effectively opened the drainage angle and deepened the anterior chamber, and IOP was well controlled postoperatively. However, phacoemulsification showed better efficacy in improving visual function and showed reduced complications following surgery.

  4. Nucleophilicities of Lewis Bases B and Electrophilicities of Lewis Acids A Determined from the Dissociation Energies of Complexes B⋯A Involving Hydrogen Bonds, Tetrel Bonds, Pnictogen Bonds, Chalcogen Bonds and Halogen Bonds

    Directory of Open Access Journals (Sweden)

    Ibon Alkorta

    2017-10-01

    Full Text Available It is shown that the dissociation energy D e for the process B⋯A = B + A for 250 complexes B⋯A composed of 11 Lewis bases B (N2, CO, HC≡CH, CH2=CH2, C3H6, PH3, H2S, HCN, H2O, H2CO and NH3 and 23 Lewis acids (HF, HCl, HBr, HC≡CH, HCN, H2O, F2, Cl2, Br2, ClF, BrCl, H3SiF, H3GeF, F2CO, CO2, N2O, NO2F, PH2F, AsH2F, SO2, SeO2, SF2, and SeF2 can be represented to good approximation by means of the equation D e = c ′ N B E A , in which N B is a numerical nucleophilicity assigned to B, E A is a numerical electrophilicity assigned to A, and c ′ is a constant, conveniently chosen to have the value 1.00 kJ mol−1 here. The 250 complexes were chosen to cover a wide range of non-covalent interaction types, namely: (1 the hydrogen bond; (2 the halogen bond; (3 the tetrel bond; (4 the pnictogen bond; and (5 the chalcogen bond. Since there is no evidence that one group of non-covalent interaction was fitted any better than the others, it appears the equation is equally valid for all the interactions considered and that the values of N B and E A so determined define properties of the individual molecules. The values of N B and E A can be used to predict the dissociation energies of a wide range of binary complexes B⋯A with reasonable accuracy.

  5. Tensile and fatigue properties of weld-bonded and adhesive-bonded magnesium alloy joints

    International Nuclear Information System (INIS)

    Xu, W.; Liu, L.; Zhou, Y.; Mori, H.; Chen, D.L.

    2013-01-01

    The microstructures, tensile and fatigue properties of weld-bonded (WB) AZ31B-H24 Mg/Mg joints with different sizes of bonding area were evaluated and compared with the adhesive-bonded (AB) Mg/Mg joints. Typical equiaxed dendritic structures containing divorced eutectic Mg 17 Al 12 particles formed in the fusion zone of both WB-1 (with a bonding area of 35 mm×35 mm) and WB-0.5 (with a bonding area of 17.5 mm×35 mm) joints. Less solidification shrinkage cracking was observed in the WB-0.5 joints than WB-1 joints. While the WB-0.5 joints exhibited a slightly lower maximum tensile shear stress than the AB-0.5 joints (with a bonding area of 17.5 mm×35 mm), the energy absorption was equivalent. Although the AB-0.5 joints exhibited a higher fatigue resistance at higher cyclic stress levels, both the AB-0.5 and WB-0.5 joints showed an equivalent fatigue resistance at lower cyclic stress levels. A higher fatigue limit was observed in the WB-0.5 joints than in the WB-1 joints owing to the presence of fewer shrinkage pores. Cohesive failure mode along the adhesive layer in conjunction with partial nugget pull-out from the weld was observed at the higher cyclic loads, and fatigue failure occurred in the base metal at the lower cyclic loads

  6. Improvement of hydrogen bond geometry in protein NMR structures by residual dipolar couplings - an assessment of the interrelation of NMR restraints

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Pernille Rose; Axelsen, Jacob Bock [University of Copenhagen, Institute of Molecular Biology (Denmark); Lerche, Mathilde Hauge [Amersham Health (Sweden); Poulsen, Flemming M. [University of Copenhagen, Institute of Molecular Biology (Denmark)], E-mail: fmp@apk.molbio.ku.dk

    2004-01-15

    We have examined how the hydrogen bond geometry in three different proteins is affected when structural restraints based on measurements of residual dipolar couplings are included in the structure calculations. The study shows, that including restraints based solely on {sup 1}H{sup N}-{sup 15}N residual dipolar couplings has pronounced impact on the backbone rmsd and Ramachandran plot but does not improve the hydrogen bond geometry. In the case of chymotrypsin inhibitor 2 the addition of {sup 13}CO-{sup 13}C{sup {alpha}} and {sup 15}N-{sup 13}CO one bond dipolar couplings as restraints in the structure calculations improved the hydrogen bond geometry to a quality comparable to that obtained in the 1.8 A resolution X-ray structure of this protein. A systematic restraint study was performed, in which four types of restraints, residual dipolar couplings, hydrogen bonds, TALOS angles and NOEs, were allowed in two states. This study revealed the importance of using several types of residual dipolar couplings to get good hydrogen bond geometry. The study also showed that using a small set of NOEs derived only from the amide protons, together with a full set of residual dipolar couplings resulted in structures of very high quality. When reducing the NOE set, it is mainly the side-chain to side-chain NOEs that are removed. Despite of this the effect on the side-chain packing is very small when a reduced NOE set is used, which implies that the over all fold of a protein structure is mainly determined by correct folding of the backbone.

  7. Mannobiose Binding Induces Changes in Hydrogen Bonding and Protonation States of Acidic Residues in Concanavalin A As Revealed by Neutron Crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Gerlits, Oksana O. [UT/ORNL; Coates, Leighton [Biology; Woods, Robert J. [Complex; Kovalevsky, Andrey [Biology

    2017-08-30

    Plant lectins are carbohydrate-binding proteins with various biomedical applications. Concanavalin A (Con A) holds promise in treating cancerous tumors. To better understand the Con A carbohydrate binding specificity, we obtained a room-temperature neutron structure of this legume lectin in complex with a disaccharide Manα1–2Man, mannobiose. The neutron structure afforded direct visualization of the hydrogen bonding between the protein and ligand, showing that the ligand is able to alter both protonation states and interactions for residues located close to and distant from the binding site. An unprecedented low-barrier hydrogen bond was observed forming between the carboxylic side chains of Asp28 and Glu8, with the D atom positioned equidistant from the oxygen atoms having an O···D···O angle of 101.5°.

  8. "Vibrational bonding": a new type of chemical bond is discovered.

    Science.gov (United States)

    Rhodes, Christopher J; Macrae, Roderick M

    2015-01-01

    A long-sought but elusive new type of chemical bond, occurring on a minimum-free, purely repulsive potential energy surface, has recently been convincingly shown to be possible on the basis of high-level quantum-chemical calculations. This type of bond, termed a vibrational bond, forms because the total energy, including the dynamical energy of the nuclei, is lower than the total energy of the dissociated products, including their vibrational zero-point energy. For this to be the case, the ZPE of the product molecule must be very high, which is ensured by replacing a conventional hydrogen atom with its light isotope muonium (Mu, mass = 1/9 u) in the system Br-H-Br, a natural transition state in the reaction between Br and HBr. A paramagnetic species observed in the reaction Mu +Br2 has been proposed as a first experimental sighting of this species, but definitive identification remains challenging.

  9. Longevity of Self-etch Dentin Bonding Adhesives Compared to Etch-and-rinse Dentin Bonding Adhesives: A Systematic Review.

    Science.gov (United States)

    Masarwa, Nader; Mohamed, Ahmed; Abou-Rabii, Iyad; Abu Zaghlan, Rawan; Steier, Liviu

    2016-06-01

    A systematic review and meta-analysis were performed to compare longevity of Self-Etch Dentin Bonding Adhesives to Etch-and-Rinse Dentin Bonding Adhesives. The following databases were searched for PubMed, MEDLINE, Web of Science, CINAHL, the Cochrane Library complemented by a manual search of the Journal of Adhesive Dentistry. The MESH keywords used were: "etch and rinse," "total etch," "self-etch," "dentin bonding agent," "bond durability," and "bond degradation." Included were in-vitro experimental studies performed on human dental tissues of sound tooth structure origin. The examined Self-Etch Bonds were of two subtypes; Two Steps and One Step Self-Etch Bonds, while Etch-and-Rinse Bonds were of two subtypes; Two Steps and Three Steps. The included studies measured micro tensile bond strength (μTBs) to evaluate bond strength and possible longevity of both types of dental adhesives at different times. The selected studies depended on water storage as the aging technique. Statistical analysis was performed for outcome measurements compared at 24 h, 3 months, 6 months and 12 months of water storage. After 24 hours (p-value = 0.051), 3 months (p-value = 0.756), 6 months (p-value=0.267), 12 months (p-value=0.785) of water storage self-etch adhesives showed lower μTBs when compared to the etch-and-rinse adhesives, but the comparisons were statistically insignificant. In this study, longevity of Dentin Bonds was related to the measured μTBs. Although Etch-and-Rinse bonds showed higher values at all times, the meta-analysis found no difference in longevity of the two types of bonds at the examined aging times. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Uncertainty in T1 mapping using the variable flip angle method with two flip angles

    International Nuclear Information System (INIS)

    Schabel, Matthias C; Morrell, Glen R

    2009-01-01

    Propagation of errors, in conjunction with the theoretical signal equation for spoiled gradient echo pulse sequences, is used to derive a theoretical expression for uncertainty in quantitative variable flip angle T 1 mapping using two flip angles. This expression is then minimized to derive a rigorous expression for optimal flip angles that elucidates a commonly used empirical result. The theoretical expressions for uncertainty and optimal flip angles are combined to derive a lower bound on the achievable uncertainty for a given set of pulse sequence parameters and signal-to-noise ratio (SNR). These results provide a means of quantitatively determining the effect of changing acquisition parameters on T 1 uncertainty. (note)

  11. The adhesive bonding of beryllium structural components

    International Nuclear Information System (INIS)

    Fullerton-Batten, R.C.

    1977-01-01

    Where service conditions permit, adhesive bonding is a highly recommendable, reliable means of joining beryllium structural parts. Several important programs have successfully used adhesive bonding for joining structural and non-structural beryllium components. Adhesive bonding minimizes stress concentrations associated with other joining techniques and considerably improves fatigue resistance. In addition, no degradation of base metal properties occur. In many instances, structural joints can be fabricated more cheaply by adhesive bonding or in combination with adhesive bonding than by any other method used alone. An evaluation program on structural adhesive bonding of beryllium sheet components is described. A suitable surface pretreatment for beryllium adherends prior to bonding is given. Tensile shear strength and fatigue properties of FM 1000 and FM 123-5 adhesive bonded joints are reviewed and compared with data obtained from riveted joints of similar geometry. (author)

  12. Bonding pathways of high-pressure chemical transformations

    International Nuclear Information System (INIS)

    Hu Anguang; Zhang Fan

    2013-01-01

    A three-stage bonding pathway towards high-pressure chemical transformations from molecular precursors or intermediate states has been identified by first-principles simulations. With the evolution of principal stress tensor components in the response of chemical bonding to compressive loading, the three stages can be defined as the van der Waals bonding destruction, a bond breaking and forming reaction, and equilibrium of new bonds. The three-stage bonding pathway leads to the establishment of a fundamental principle of chemical bonding under compression. It reveals that during high-pressure chemical transformation, electrons moving away from functional groups follow anti-addition, collision-free paths to form new bonds in counteracting the local stress confinement. In applying this principle, a large number of molecular precursors were identified for high-pressure chemical transformations, resulting in new materials. (fast track communication)

  13. Development of bonding techniques for cryogenic components. 1. HIP bonding tests between Ti and cryogenic stainless steels

    International Nuclear Information System (INIS)

    Saito, Shigeru; Ouchi, Nobuo; Ishiyama, Shintaro; Tsuchiya, Yoshinori; Nakajima, Hideo

    2002-05-01

    Around the super conducting (SC) coils of SC linear accelerator or fusion reactor, several kinds of dissimilar material joints will be needed. In case of fusion reactor, pure titanium has been proposed as jacket material of SC coil. Pure titanium has many advantages, for instance, almost same thermal expansion with Nb 3 Sn SC coil, non-magnetivity and good workability. However, it is difficult to bond Ti and cryogenic stainless steels by welding. Therefore, it is necessary to develop new bonding techniques and we started the development of the bonding technology by hot isostatic press (HIP) method to bond titanium with stainless steels. In this experiments, optimization of HIP bonding condition and evaluation of bonding strength were performed by metallurgical observation, mechanical property tests and heat cycle test. (author)

  14. Romanian government bond market

    Directory of Open Access Journals (Sweden)

    Cornelia POP

    2012-12-01

    Full Text Available The present paper aims to present the level of development reached by Romanian government bond market segment, as part of the country financial market. The analysis will be descriptive (the data series available for Romania are short, based on the secondary data offered by the official bodies involved in the process of issuing and trading the Romanian government bonds (Romanian Ministry of Public Finance, Romanian National Bank and Bucharest Stock Exchange, and also on secondary data provided by the Federation of European Stock Exchanges.To enhance the market credibility as a benchmark, a various combination of measures is necessary; among these measures are mentioned: the extension of the yield curve; the issuance calendars in order to improve transparency; increasing the disclosure of information on public debt issuance and statistics; holding regular meetings with dealers, institutional investors and rating agencies; introducing a system of primary dealers; establishing a repurchase (repo market in the government bond market. These measures will be discussed based on the evolution presented inside the paper.The paper conclude with the fact that, until now, the Romanian government bond market did not provide a benchmark for the domestic financial market and that further efforts are needed in order to increase the government bond market transparency and liquidity.

  15. Evaluation of a New Nano-filled Bonding Agent for Bonding Orthodontic Brackets as Compared to a Conventional Bonding Agent: An in vitro Study

    OpenAIRE

    Sandesh S Pai; Amrita Nagendra; Vinaya S Pai; K Neelima; A E Vishwanath; P Vinod; Sharanya Ajit Kumar; Roopa R Tubaki

    2012-01-01

    Introduction: Recent advances in the field of material sciences have opened up a new horizon of options for bonding agents that can be used efficiently in orthodontics. The purpose of this study was evaluate and compare the shear bond strength (SBS) of the traditionally used Transbond XT and a newer nano-filled material Prime and Bond NT. Materials and methods: Sixty freshly extracted maxillary first premolars were stored in 0.1% (weight/volume) thymol. These were divided into two Groups. ...

  16. EXPERIMENTAL INVESTIGATION ON THE EFFECT OF NATURAL TROPICAL WEATHER ON INTERFACIAL BONDING PERFORMANCE OF CFRP-CONCRETE BONDING SYSTEM

    Directory of Open Access Journals (Sweden)

    MOHD H. MOHD HASHIM

    2016-04-01

    Full Text Available The existing reinforced concrete structures may require rehabilitation and strengthening to overcome deficiencies due to defect and environmental deterioration. Fibre Reinforced Polymer (FRP-concrete bonding systems can provide solution for the deficiencies, but the durability of the bonded joint needs to be investigated for reliable structural performance. In this research the interfacial bonding behaviour of CFRP-concrete system under tropical climate exposure is main interest. A 300 mm concrete prism was bonded with CFRP plate on its two sides and exposed for 3, 6, and 9 months to laboratory environment, continuous natural weather, and wet-dry exposure in 3.5% saltwater solution at room and 40 °C temperature. The prisms were subjected to tension and compression load under bonding test to measure the strain and determine stress distribution and shear stress transfer behaviour. The results of the bonding test showed that load transfer was fairly linear and uniform at lower load level and changed to non-linear and non- uniform at higher load level. The force transfers causes the shear stress distribution being shifted along the bonded length. The combination of climate effects may have provided better curing of the bonded joints, but longer duration of exposure may be required to weaken the bond strength. Nevertheless, CFRP-concrete bonding system was only minimally affected under the tropical climate and salt solution.

  17. Shear bond strength of two bonding systems on dentin surfaces prepared with Er:YAG laser

    International Nuclear Information System (INIS)

    Dall'Magro, Eduardo

    2001-01-01

    The purpose of this study was to examine the shear bond strength of two bonding dentin systems, one 'one step' (Single Bond - 3M) and one 'self-etching' (Prompt-L-ESPE), when applied on dentin surfaces prepared with Er:YAG laser (2,94μm) that underwent ar not, acid etched. Forty one human molars just extracted were selected and after the cut with diamond disc and included in acrylic resin, resulting in 81 specimens (hemi crowns). After, the specimens were divided in one group treated with sand paper and another two groups treated with Er:YAG laser with 200 mJ and 250 mJ of energy and 2 Hz of frequency. Next, the prepared surfaces received three treatments with following application: 1) acid + Single Bond + Z 250 resin, 2) prompt-L-Pop + Z 250 resin, and 3) acid without, Single Bond + Z 250 resin. The Z 250 resin was applied and photopolymerized in increments on a Teflon matrix that belonged to an apparatus called 'Assembly Apparatus' machine producing cylinders of 3,5 mm of diameter and 5 mm of height. After these specimens were submitted to thermo cycling during 1 minute the 55 deg C and during 1 minute with 5 deg C with a total of 500 cycles for specimen, and the measures of shear bond strength were abstained using EMIC model DL 2000 rehearsed machine, with speed of 0,5 mm/min, measuring the final rupture tension (Mpa). The results showed an statistic superiority of 5% of probability level in dentin flattened with sandpaper and with laser using 200 mJ of energy with aspect to the ones flattened with laser using 250 mJ of energy. It was observed that using 'Single Bond' bonding dentin system the marks were statistically superior at 5% of probability with reference to the use of the Prompt-L-Pop adhesive system. So, it was concluded that Er:YAG Laser with 200 mJ of energy produced similar dentin cavity prepare than sandpaper and Single Bond seemed the best bonding agent system between restorative material and dentin. (author)

  18. Implant Angle Monitor System of MC3-II

    International Nuclear Information System (INIS)

    Sato, Fumiaki; Sano, Makoto; Nakaoka, Hiroaki; Fujii, Yoshito; Kudo, Tetuya; Nakanishi, Makoto; Koike, Masazumi; Fujino, Yasushi

    2008-01-01

    Precise implant angle control is required for the latest generation of ion implanters to meet further shrink semiconductor device requirements. Especially, the highest angle accuracy is required for Halo implant process of Logic devices. The Halo implant angle affects the device performance, because slight differences of beam divergence change the overlap profile towards the extension. Additionally, twist angle accuracy is demanded in case of channeling angle implant. Therefore monitoring beam angles and wafer twist angles is important. A new monitoring system for the MC3-II, SEN Corp.'s single wafer type medium current implanter has been developed. This paper describes the angle control performance and monitoring system of the MC3-II. For the twist angle control, we developed a wafer notch angle monitor. The system monitors the wafer notch image on the platen. And the notch angle variation is calculated by using image processing method. It is also able to adjust the notch angle according to the angle error. For the tilt angle control, we developed a vertical beam profile monitor. The monitor system can detect beam profile of vertical directions with horizontally scanning beam. It also measures beam angles of a tilt direction to a wafer. The system configuration and sample beam data are presented.

  19. AVE bond index in the H-bond of the Watson-Crick pairs

    International Nuclear Information System (INIS)

    Giambiagi, M.; Giambiagi, M.S. de; Barroso Filho, W.

    1981-01-01

    The normal Watson-Crick base pairs are treated as super-molecules. The properties of the electronic distribution along the N-H...Y bonds are studied in an all-valence-electrons calculation, through a bond index formula devised for non-orthogonal basis. Eletronic density diagrams of the adenine-uracil base pair are analysed. (Auhor) [pt

  20. Small-angle neutron scattering investigation of the chain conformation of lamellar polystyrene/isoprene phase in solid state

    International Nuclear Information System (INIS)

    Constantinescu, L.M.

    1994-01-01

    Small-angle neutron scattering has been used in the study of chain conformation of lamellar styrene/isoprene block copolymers oriented in large single crystals. The radius of gyration of deuterated polystyrene chains around the normal to the interface has been measured. By comparing this direct evolution of the lateral dimension of the chains with the average chain separation given by the molecular area (the surface available at the interface for each covalent bond linking the blocks together) we characterized the transverse interpenetration degree of the chains. The polystyrene chains are displayed in simple strata own micro-domains, without an important interpenetration. (Author) 9 Figs., 2 Tabs., 25 Refs

  1. Energetic and Spatial Bonding Properties from Angular Distributions of Ultraviolet Photoelectrons: Application to the GaAs(110) Surface

    International Nuclear Information System (INIS)

    Fadley, C.S.; Fadley, C.S.; Van Hove, M.A.

    1997-01-01

    Angle-resolved ultraviolet photoemission spectra are interpreted by combining the energetics and spatial properties of the contributing states. One-step calculations are in excellent agreement with new azimuthal experimental data for GaAs(110). Strong variations caused by the dispersion of the surface bands permit an accurate mapping of the electronic structure. The delocalization of the valence states is discussed analogous to photoelectron diffraction. The spatial origin of the electrons is determined, and found to be strongly energy dependent, with uv excitation probing the bonding region. copyright 1997 The American Physical Society

  2. Fusion-bonded fluidic interconnects

    NARCIS (Netherlands)

    Fazal, I.; Elwenspoek, Michael Curt

    2008-01-01

    A new approach to realize fluidic interconnects based on the fusion bonding of glass tubes with silicon is presented. Fusion bond strength analyses have been carried out. Experiments with plain silicon wafers and coated with silicon oxide and silicon nitride are performed. The obtained results are

  3. A review: Biodegradation of resin–dentin bonds

    Directory of Open Access Journals (Sweden)

    Masanori Hashimoto

    2011-02-01

    Full Text Available Resin–dentin bonding was first achieved through mechanical hybridization between resin and collagen fibrils using a functional monomer containing resin system. In the last decade, new adhesive resin systems were frequently released onto the market within a short-period of time. Before and after commercialization, the bond integrity has been tested by bond tests, and leakage evaluation by researchers, but it is very difficult for clinicians to obtain a comprehensive, up-to-date understanding of their nature and degradation. Although newly developed adhesive resins have attempted to improve the bond strength at least in the first 24 h after bonding, the long-term durability of the bonds has not yet been established analytically. However, numerous recent studies have shown micromorphological evidence of biodegradation of resin–dentin bonds, due to hydrolysis of the resin and collagen fibrils within the bonds. This review mainly summarizes the most recent work in biodegradation of resin–dentin bonds based on micromorphological analyses of data obtained by scanning and transmission electron microscopy.

  4. Sibling bereavement and continuing bonds.

    Science.gov (United States)

    Packman, Wendy; Horsley, Heidi; Davies, Betty; Kramer, Robin

    2006-11-01

    Historically, from a Freudian and medical model perspective, emotional disengagement from the deceased was seen as essential to the successful adaptation of bereavement. A major shift in the bereavement literature has occurred and it is now generally accepted that despite the permanence of physical separation, the bereaved remains involved and connected to the deceased and can be emotionally sustained through continuing bonds. The majority of literature has focused on adults and on the nature of continuing bonds following the death of a spouse. In this article, the authors demonstrate how the continuing bonds concept applies to the sibling relationship. We describe the unique continued relationship formed by bereaved children and adolescents following a sibling loss, highlight the factors that influence the siblings continuing bonds expressions, and offer clinical interventions. In our view, mental health professionals can play an important role in helping parents encourage activities that may facilitate the creation and maintenance of continuing bonds in their children.

  5. Deriving the bond pricing equation

    Directory of Open Access Journals (Sweden)

    Kožul Nataša

    2014-01-01

    Full Text Available Given the recent focus on Eurozone debt crisis and the credit rating downgrade not only of US debt, but that of other countries and many UK major banking institutions, this paper aims to explain the concept of bond yield, its different measures and bond pricing equation. Yields on capital market instruments are rarely quoted on the same basis, which makes direct comparison between different as investment choices impossible. Some debt instruments are quoted on discount basis, whilst coupon-bearing ones accrue interest differently, offer different compounding opportunities, have different coupon payment frequencies, and manage non-business day maturity dates differently. Moreover, rules governing debt vary across countries, markets and currencies, making yield calculation and comparison a rather complex issue. Thus, some fundamental concepts applicable to debt instrument yield measurement, with focus on bond equation, are presented here. In addition, bond equation expressed in annuity form and used to apply Newton-Raphson algorithm to derive true bond yield is also shown.

  6. Experimental study of crossing angle collision

    International Nuclear Information System (INIS)

    Chen, T.; Rice, D.; Rubin, D.; Sagan, D.; Tigner, M.

    1993-01-01

    The non-linear coupling due to the beam-beam interaction with crossing angle has been studied. The major effect of a small (∼12mrad) crossing angle is to excite 5Q x ±Q s =integer coupling resonance family on large amplitude particles, which results in bad lifetime. On the CESR, a small crossing angle (∼2.4mr) was created at the IP and a reasonable beam-beam tune-shift was achieved. The decay rate of the beam is measured as a function of horizontal tune with and without crossing angle. The theoretical analysis, simulation and experimental measurements have a good agreement. The resonance strength as a function of crossing angle is also measured

  7. Multi-angle compound imaging

    DEFF Research Database (Denmark)

    Jespersen, Søren Kragh; Wilhjelm, Jens Erik; Sillesen, Henrik

    1998-01-01

    This paper reports on a scanning technique, denoted multi-angle compound imaging (MACI), using spatial compounding. The MACI method also contains elements of frequency compounding, as the transmit frequency is lowered for the highest beam angles in order to reduce grating lobes. Compared to conve......This paper reports on a scanning technique, denoted multi-angle compound imaging (MACI), using spatial compounding. The MACI method also contains elements of frequency compounding, as the transmit frequency is lowered for the highest beam angles in order to reduce grating lobes. Compared...... to conventional B-mode imaging MACI offers better defined tissue boundaries and lower variance of the speckle pattern, resulting in an image with reduced random variations. Design and implementation of a compound imaging system is described, images of rubber tubes and porcine aorta are shown and effects...... on visualization are discussed. The speckle reduction is analyzed numerically and the results are found to be in excellent agreement with existing theory. An investigation of detectability of low-contrast lesions shows significant improvements compared to conventional imaging. Finally, possibilities for improving...

  8. What is a hydrogen bond?

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. What is a hydrogen bond? Precise definition of a hydrogen bond is still elusive!1. Several criteria are listed usually for X-H•••Y, X and Y initially thought to be F, O and N only1. Structural: The X-Y bond length is less than the sum of their van der Waals radii. X-H•••Y is ...

  9. Bond strength tests between silicon wafers and duran tubes (fusion bonded fluidic interconnects)

    NARCIS (Netherlands)

    Fazal, I.; Berenschot, Johan W.; de Boer, J.H.; Jansen, Henricus V.; Elwenspoek, Michael Curt

    2005-01-01

    The fusion bond strength of glass tubes with standard silicon wafers is presented. Experiments with plain silicon wafers and those coated with silicon oxide and silicon nitride are presented. Results obtained are discussed in terms of homogeneity and strength of fusion bond. High pressure testing

  10. Enamel Wetness Effects on Microshear Bond Strength of Different Bonding Agents (Adhesive Systems): An in vitro Comparative Evaluation Study.

    Science.gov (United States)

    Kulkarni, Girish; Mishra, Vinay K

    2016-05-01

    The purpose of this study was to compare the effect of enamel wetness on microshear bond strength using different adhesive systems. To evaluate microshear bond strength of three bonding agents on dry enamel; to evaluate microshear bond strength of three bonding agents on wet enamel; and to compare microshear bond strength of three different bonding agents on dry and wet enamel. Sixty extracted noncarious human premolars were selected for this study. Flat enamel surfaces of approximately 3 mm were obtained by grinding the buccal surfaces of premolars with water-cooled diamond disks. This study evaluated one etch-and-rinse adhesive system (Single Bond 2) and two self-etching adhesive systems (Clearfil SE Bond and Xeno-V). The specimens were divided into two groups (n = 30). Group I (dry) was air-dried for 30 seconds and in group II (wet) surfaces were blotted with absorbent paper to remove excess water. These groups were further divided into six subgroups (n = 10) according to the adhesives used. The resin composite, Filtek Z 250, was bonded to flat enamel surfaces that had been treated with one of the adhesives, following the manufacturer's instructions. After being stored in water at 37°C for 24 hours, bonded specimens were stressed in universal testing machine (Fig. 3) at a crosshead speed of 1 mm/min. The data were evaluated with one-way and two-way analysis of variance (ANOVA), t-test, and Tukey's Multiple Post hoc tests (a = 0.05). The two-way ANOVA and Tukey's Multiple Post hoc tests showed significant differences among adhesive systems, but wetness did not influence microshear bond strength (p = 0.1762). The one-way ANOVA and t-test showed that the all-in-one adhesive (Xeno-V) was the only material influenced by the presence of water on the enamel surface. Xeno-V showed significantly higher microshear bond strength when the enamel was kept wet. Single Bond 2 adhesive showed significantly higher microshear bond strength as compared with Xeno-V adhesive but no

  11. Shear bond strength of resin composite bonded with two adhesives: Influence of Er: YAG laser irradiation distance

    Science.gov (United States)

    Shirani, Farzaneh; Birang, Reza; Malekipour, Mohammad Reza; Hourmehr, Zahra; Kazemi, Shantia

    2014-01-01

    Background: Dental surfaces prepared with different Er:YAG laser distance may have different characteristics compared with those prepared with conventional instruments. The aim of this study was to investigate the effect of Er:YAG laser irradiation distance from enamel and dentin surfaces on the shear bond strength of composite with self-etch and etch and rinse bonding systems compared with conventional preparation method. Materials and Methods: Two hundred caries-free human third molars were randomly divided into twenty groups (n = 10). Ten groups were designated for enamel surface (E1-E10) and ten for dentin surface (D1-D10). Er: YAG laser (2940 nm) was used on the E1-E8 (240 mJ, 25 Hz) and D1-D8 (140 mJ, 30 Hz) groups at four different distances of 0.5 (standard), 2, 4 and 11 mm. Control groups (E9, E10, D9 and D10) were ground with medium grit diamond bur. The enamel and dentin specimens were divided into two subgroups that were bonded with either Single Bond or Clearfil SE Bond. Resin composite (Z100) was dispensed on prepared dentin and enamel. The shear bond strengths were tested using a universal testing machine. Data were analyzed by SPSS12 statistical software using three way analysis of variance, Tukey and independent t-test. P enamel and dentin substrates (P enamel surfaces (in both bonding agent subgroups) and on dentin surfaces (in the Single Bond subgroup). Conclusion: Laser irradiation decreases shear bond strength. Irradiation distance affects shear bond strength and increasing the distance would decrease the negative effects of laser irradiation. PMID:25540665

  12. Comparative in vitro study of the shear bond strength of brackets bonded with restorative and orthodontic resins

    Directory of Open Access Journals (Sweden)

    Hassan Isber

    2011-02-01

    Full Text Available The aim of this study was to evaluate the shear bond strength of brackets bonded with different restorative systems and compare it with that afforded by an established orthodontic bonding system. Seventy human bicuspids were used, divided into five different groups with 14 teeth each. Whereas a specific orthodontic bonding resin (TransbondTM XT was used in the control group, the restorative systems Charisma, Tetric Ceram, TPH Spectrum and Z100 were used in the other four groups. Seven days after bonding the brackets to the samples, shear forces were applied under pressure in a universal testing machine. The data collected was evaluated using the ANOVA test and, when a difference was identified, the Tukey test was applied. A 5% level of significance was adopted. The mean results of the shear bond strength tests were as follows: Group 1 (Charisma, 14.98 MPa; Group 2 (Tetric Ceram, 15.16 MPa; Group 3 (TPH, 17.70 MPa; Group 4 (Z100, 13.91 MPa; and Group 5 or control group (TransbondTM XT, 17.15 MPa. No statistically significant difference was found among the groups. It was concluded that all tested resins have sufficient bond strength to be recommended for bonding orthodontic brackets.

  13. Ionic ASi{sub 2}N{sub 3} (A=Li, Na, K and Rb) stabilized by the covalent Si–N bonding: First-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Huijun [College of Information Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Ren, Jiadong, E-mail: jdren@ysu.edu.cn [College of Information Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Wu, Lailei [Key Laboratory of Metastable Materials Science and Technology, College of Material Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Zhang, Jingwu, E-mail: zjw@ysu.edu.cn [Key Laboratory of Metastable Materials Science and Technology, College of Material Science and Engineering, Yanshan University, Qinhuangdao 066004 (China)

    2017-01-15

    The structural, elastic and electronic properties of LiSi{sub 2}N{sub 3} and its substitutions by Na, K and Rb were investigated through first-principles computations. The expansion of lattice parameters of ASi{sub 2}N{sub 3} from Li, Na, K to Rb is found to be determined by the bond angle of Si–N1–Si, which suggests a possible way to improve the lithium ionic conductivity by substitutions. ASi{sub 2}N{sub 3} (A=Li, Na, K and Rb) shows the similar elastic behaviors, while the electronic band gap gradually decreases from 5.1 to 3.4 eV from LiSi{sub 2}N{sub 3} to RbSi{sub 2}N{sub 3}. Interestingly, the analysis of electronic structure, crystal orbital Hamiltonian populations and Bader charges shows that the covalence of Si–N bonding is critical for the stability of ASi{sub 2}N{sub 3} phase. Among ASi{sub 2}N{sub 3} phases, there is a relatively high ionicity in NaSi{sub 2}N{sub 3}; the Si–N bond strength in [Si{sub 2}N{sub 3}]{sup −} net for KSi{sub 2}N{sub 3} and RbSi{sub 2}N{sub 3} is comparable to LiSi{sub 2}N{sub 3}, but stronger than NaSi{sub 2}N{sub 3}. - Graphic abstract: Universal trend of structural and electronic properties in alkaline metal silicon nitrides, ASi{sub 2}N{sub 3}, A=Li, Na, K and Rb. - Highlights: • Trend in structure, electronic and mechanical properties of ASi{sub 2}N{sub 3} (A=Li-Rb) were predicted. • Lattice expansion of ASi{sub 2}N{sub 3} induced by the bond angle of Si–N1–Si was found. • Calculated band gap decreases from 5.1 to 3.4 eV from LiSi{sub 2}N{sub 3} to RbSi{sub 2}N{sub 3}. • Covalent Si–N bonding is critical for the stability of ASi{sub 2}N{sub 3}.

  14. A Unique Method to Describe the Bonding Strength in a Bonded Solid–Solid Interface by Contact Acoustic Nonlinearity

    International Nuclear Information System (INIS)

    Jian-Jun, Chen; De, Zhang; Yi-Wei, Mao; Jian-Chun, Cheng

    2009-01-01

    We present a unique method to describe the bonding strength at a bonded solid–solid interface in a multilayered composite material by contact acoustic nonlinearity (CAN) parameter. A CAN model on the bonded solid–solid interface is depicted. It can be seen from the model that CAN parameter is very sensitive to the bonding strength at the interface. When an incident focusing acoustic longitudinal wave scans the interface in two dimensions, the transmitted wave can be used to extract CAN parameter. The contour of the bonding strength for a sample is obtained by CAN parameter. The results show that the region with weak bonding strength can be easily distinguished from the contour

  15. Discrete element analysis of the mechanical properties of deep-sea methane hydrate-bearing soils considering interparticle bond thickness

    Science.gov (United States)

    Jiang, Mingjing; He, Jie; Wang, Jianfeng; Zhou, Yaping; Zhu, Fangyuan

    2017-12-01

    Due to increasing global energy demands, research is being conducted on the mechanical properties of methane hydrate-bearing soils (MHBSs), from which methane hydrate (MH) will be explored. This paper presents a numerical approach to study the mechanical properties of MHBSs. The relationship between the level of MH saturation and the interparticle bond thickness is first obtained by analyzing the scanning electron microscope images of MHBS samples, in which is the bridge connecting the micromechanical behavior captured by the DEM with the macroscopic properties of MHBSs. A simplified thermal-hydromechanical (THM) bond model that considers the different bond thicknesses is then proposed to describe the contact behavior between the soil particles and those incorporated into the discrete element method (DEM). Finally, a series of biaxial compression tests are carried out with different MH saturations under different effective confining pressures to analyze the mechanical properties of deep-sea MHBSs. The results of the DEM numerical simulation are also compared with the findings from triaxial compression tests. The results show that the macromechanical properties of deep-sea MHBSs can be qualitatively captured by the proposed DEM. The shear strength, cohesion, and volumetric contraction of deep-sea MHBSs increase with increasing MH saturation, although its influence on the internal friction angle is obscure. The shear strength and volumetric contraction increase with increasing effective confining pressure. The peak shear strength and the dilation of MHBSs increase as the critical bond thickness increases, while the residual deviator stress largely remains the same at a larger axial strain. With increasing the axial strain, the percentage of broken bonds increases, along with the expansion of the shear band.

  16. Disorder-induced quantum bond percolation

    International Nuclear Information System (INIS)

    Nishino, Shinya; Katsuno, Shuji; Goda, Masaki

    2009-01-01

    We investigate the effects of off-diagonal disorder on localization properties in quantum bond percolation networks on cubic lattices, motivated by the finding that the off-diagonal disorder does not always enhance the quantum localization of wavefunctions. We numerically construct a diagram of the 'percolation threshold', distinguishing extended states from localized states as a function of two degrees of disorder, by using the level statistics and finite-size scaling. The percolation threshold increases in a characteristic way on increasing the disorder in the connected bonds, while it gradually decreases on increasing the disorder in the disconnected bonds. Furthermore, the exchange of connected and disconnected bonds induced by the disorder causes a dramatic change of the percolation threshold.

  17. Environmentally dependent bond-order potentials: New ...

    Indian Academy of Sciences (India)

    Environmentally dependent bond-order potentials: New developments and applications ... for modelling amorphous structure we found that the and bond integrals are not only transferable between graphite and diamond structures but they are also strongly anisotropic due to inter-plan bonding between graphite sheets.

  18. Transversely Compressed Bonded Joints

    DEFF Research Database (Denmark)

    Hansen, Christian Skodborg; Schmidt, Jacob Wittrup; Stang, Henrik

    2012-01-01

    The load capacity of bonded joints can be increased if transverse pressure is applied at the interface. The transverse pressure is assumed to introduce a Coulomb-friction contribution to the cohesive law for the interface. Response and load capacity for a bonded single-lap joint was derived using...

  19. Effect of Delayed Bonding and Antioxidant Application on the Bond Strength to Enamel after Internal Bleaching.

    Science.gov (United States)

    Kılınç, Halil İbrahim; Aslan, Tuğrul; Kılıç, Kerem; Er, Özgür; Kurt, Gökmen

    2016-07-01

    This study evaluated the effect of delayed bonding and antioxidant application (AA, 10% sodium ascorbate) after internal bleaching (35% carbamide peroxide) on the shear bond strength of an adhesive cement to enamel. Eighty-four human maxillary central incisors were endodontically treated. The control group remained unbleached with no AA. Experimental groups were all internally bleached. The buccal enamel was finished and polished with metallographic paper to a refinement of #600, in order to obtain a 5-mm(2) flat bonding area. An adhesive cement (Clearfil Esthetic) was placed into a plastic tube with internal diameter of 3 mm and a 3-mm height and cured on the enamel. Bonding occurred either immediately after bleaching (group Im), a 7-day delay (group 7), or a 14-day delay (group 14), and half the specimens were treated with antioxidant application (groups Im-AA, 7-AA, and 14-AA). Shear bond strength testing was performed on a universal testing machine, and data were analyzed with ANOVA and Fisher test (5%). Delaying of bonding is a useful factor for enhancing shear bond strength (p adhesive cementation to enamel is recommended only when delayed 14 days, or delayed 7 days with sodium ascorbate application. © 2015 by the American College of Prosthodontists.

  20. Pricing catastrophic bonds for earthquakes in Mexico

    OpenAIRE

    Cabrera, Brenda López

    2006-01-01

    After the occurrence of a natural disaster, the reconstruction can be financed with catastrophic bonds (CAT bonds) or reinsurance. For insurers, reinsurers and other corporations CAT bonds provide multi year protection without the credit risk present in reinsurance. For investors CAT bonds offer attractive returns and reduction of portfolio risk, since CAT bonds defaults are uncorrelated with defaults of other securities. As the study of natural catastrophe models plays an important role in t...

  1. Angle-dependent XPS study of the mechanisms of 'high-low temperature' activation of GaAs photocathode

    International Nuclear Information System (INIS)

    Du Xiaoqing; Chang Benkang

    2005-01-01

    The surface chemical compositions, atomic concentration percentage and layer thickness after 'high-temperature' single-step activation and 'high-low temperature' two-step activation were obtained using quantitative analysis of angle-dependent X-ray photoelectron spectroscopy (XPS). It was found that compared to single-step activation, the thickness of GaAs-O interface barrier had a remarkable decrease, the degree of As-O bond became much smaller and the Ga-O bond became dominating, and at the same time the thickness of (Cs, O) layer also had a deduction while the ratio of Cs to O had no change after two-step activation. The measured spectral response curves showed that a increase of 29% of sensitivity had been obtained after two-step activation. To explore the inherent mechanisms of influences of the evolution of GaAs(Cs, O) surface layers on photoemission, surface electric barrier models based on the experimental results were built. By calculation of electron escape probability it was found that the decrease of thickness of GaAs-O interface barrier and (Cs, O) layer is the main reasons, which explained why higher sensitivity is achieved after two-step activation than single-step activation

  2. Unusual bonding and properties in main group element chemistry: rational synthesis, characterization, and experimental electron density determination of mixed-valent tetraphosphetes.

    Science.gov (United States)

    Breuers, Verena; Lehmann, Christian W; Frank, Walter

    2015-03-16

    Five dispirocyclic λ(3),λ(5)-tetraphosphetes [{R2Si(NR(1))(NR(2))P2}2] (R(1) = R(2) and R(1) ≠ R(2)) are easily prepared in almost quantitative yields via photolysis of the respective bis(trimethylsilyl)phosphanyldiazaphosphasiletidines with intense visible light. These deep-yellow low-coordinate phosphorus compounds can be considered as the first higher congeners of the well-known cyclodiphosphazenes. The tetraphosphetes are remarkably stable in air and show unexpected molecular properties related to the unique bonding situation of the central four-π-electron four-membered phosphorus ring. The extent of rhombic distortion of the central P4 ring is remarkable due to an unusually acute angle at the σ(2)-phosphorus atoms. All of the P-P bonds are approximately equal in length. The distances are in the middle of the range given by phosphorus single and double bonds. The anisotropic absorption of visible light that can easily be observed in the case of the yellow/colorless dichroic crystals of [{Me2Si(NtBu)(NtBu)P2}2] and the exceptional (31)P NMR chemical shift of the σ(2)-phosphorus atoms are the most remarkable features of the λ(3),λ(5)-tetraphosphetes. In the case of [{Me2Si(NtBu)(NtBu)P2}2], the Hansen-Coppens multipole model is applied to extract the electron density from high-resolution X-ray diffraction data obtained at 100 K. Static deformation density and topological analysis reveal a unique bonding situation in the central unsaturated P4 fragment characterized by polar σ-bonding, pronounced out-of-ring non-bonding lone pair density on the σ(2)-phosphorus atoms, and an additional non-classical three-center back-bonding contribution. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. ROLE OF DIASPORA BONDS IN DEVELOPING COUNTRIES

    Directory of Open Access Journals (Sweden)

    Y. Bunyk

    2015-08-01

    Full Text Available The article deals with the problem of the bond issue for the Diaspora as a source of financing of the national economy and a factor of development. We reveal the following factors driving demand in the diaspora bond market: targeting at a project, channels, audience and marketing. The paper shows international experience to attract migrants’ savings and use them to issue bonds. Investors consider diaspora bonds because: firstly, people who have disposable income, who can commit that income or that excess income to a long term investment should look at diaspora bonds: secondly, people who really want to participate in transforming the home country should look at diaspora bond specifically diaspora bonds related to projects: and last but not least, if there are incentives around diaspora bonds for example whether there’s tax incentive and other kinds of incentive, that also should be taken into account. Also we disclosed the possibility of using this type of securities in Ukraine and its expedience.

  4. Infrared matrix isolation study of hydrogen bonds involving C-H bonds: Substituent effects

    International Nuclear Information System (INIS)

    Jeng, M.L.H.; Ault, B.S.

    1989-01-01

    The matrix isolation technique combined with infrared spectroscopy has been employed to isolate and characterize hydrogen-bonded complexes between a series of substituted alkynes and several oxygen and nitrogen bases. Distinct evidence for hydrogen bond formation was observed in each case, with a characteristic red shift of the hydrogen stretching motion ν r . Shifts between 100 and 300 cm -1 were observed, the largest being for the complex of CF 3 CCH with (CH 3 ) 3 N. The perturbed carbon-carbon triple bond stretching vibration was observed for most complexes, as was the alkynic hydrogen bending motion. Attempts were made to correlate the magnitude of the red shift of ν s with substituent constants for the different substituted alkynes; a roughly linear correlation was found with the Hammett σ parameter. Lack of correlation Δν s with either σ 1 or σ R alone suggests that both inductive and resonance contributions to the strength of the hydrogen-bonding interaction are important

  5. Hydrogen bond dynamics in bulk alcohols

    International Nuclear Information System (INIS)

    Shinokita, Keisuke; Cunha, Ana V.; Jansen, Thomas L. C.; Pshenichnikov, Maxim S.

    2015-01-01

    Hydrogen-bonded liquids play a significant role in numerous chemical and biological phenomena. In the past decade, impressive developments in multidimensional vibrational spectroscopy and combined molecular dynamics–quantum mechanical simulation have established many intriguing features of hydrogen bond dynamics in one of the fundamental solvents in nature, water. The next class of a hydrogen-bonded liquid—alcohols—has attracted much less attention. This is surprising given such important differences between water and alcohols as the imbalance between the number of hydrogen bonds, each molecule can accept (two) and donate (one) and the very presence of the hydrophobic group in alcohols. Here, we use polarization-resolved pump-probe and 2D infrared spectroscopy supported by extensive theoretical modeling to investigate hydrogen bond dynamics in methanol, ethanol, and isopropanol employing the OH stretching mode as a reporter. The sub-ps dynamics in alcohols are similar to those in water as they are determined by similar librational and hydrogen-bond stretch motions. However, lower density of hydrogen bond acceptors and donors in alcohols leads to the appearance of slow diffusion-controlled hydrogen bond exchange dynamics, which are essentially absent in water. We anticipate that the findings herein would have a potential impact on fundamental chemistry and biology as many processes in nature involve the interplay of hydrophobic and hydrophilic groups

  6. Hydrogen bond dynamics in bulk alcohols.

    Science.gov (United States)

    Shinokita, Keisuke; Cunha, Ana V; Jansen, Thomas L C; Pshenichnikov, Maxim S

    2015-06-07

    Hydrogen-bonded liquids play a significant role in numerous chemical and biological phenomena. In the past decade, impressive developments in multidimensional vibrational spectroscopy and combined molecular dynamics-quantum mechanical simulation have established many intriguing features of hydrogen bond dynamics in one of the fundamental solvents in nature, water. The next class of a hydrogen-bonded liquid--alcohols--has attracted much less attention. This is surprising given such important differences between water and alcohols as the imbalance between the number of hydrogen bonds, each molecule can accept (two) and donate (one) and the very presence of the hydrophobic group in alcohols. Here, we use polarization-resolved pump-probe and 2D infrared spectroscopy supported by extensive theoretical modeling to investigate hydrogen bond dynamics in methanol, ethanol, and isopropanol employing the OH stretching mode as a reporter. The sub-ps dynamics in alcohols are similar to those in water as they are determined by similar librational and hydrogen-bond stretch motions. However, lower density of hydrogen bond acceptors and donors in alcohols leads to the appearance of slow diffusion-controlled hydrogen bond exchange dynamics, which are essentially absent in water. We anticipate that the findings herein would have a potential impact on fundamental chemistry and biology as many processes in nature involve the interplay of hydrophobic and hydrophilic groups.

  7. Sol-gel bonding of silicon wafers

    International Nuclear Information System (INIS)

    Barbe, C.J.; Cassidy, D.J.; Triani, G.; Latella, B.A.; Mitchell, D.R.G.; Finnie, K.S.; Short, K.; Bartlett, J.R.; Woolfrey, J.L.; Collins, G.A.

    2005-01-01

    Sol-gel bonds have been produced between smooth, clean silicon substrates by spin-coating solutions containing partially hydrolysed silicon alkoxides. The two coated substrates were assembled and the resulting sandwich fired at temperatures ranging from 60 to 600 deg. C. The sol-gel coatings were characterised using attenuated total reflectance Fourier transform infrared spectroscopy, ellipsometry, and atomic force microscopy, while the corresponding bonded specimens were investigated using scanning electron microscopy and cross-sectional transmission electron microscopy. Mechanical properties were characterised using both microindentation and tensile testing. Bonding of silicon wafers has been successfully achieved at temperatures as low as 60 deg. C. At 300 deg. C, the interfacial fracture energy was 1.55 J/m 2 . At 600 deg. C, sol-gel bonding provided superior interfacial fracture energy over classical hydrophilic bonding (3.4 J/m 2 vs. 1.5 J/m 2 ). The increase in the interfacial fracture energy is related to the increase in film density due to the sintering of the sol-gel interface with increasing temperature. The superior interfacial fracture energy obtained by sol-gel bonding at low temperature is due to the formation of an interfacial layer, which chemically bonds the two sol-gel coatings on each wafer. Application of a tensile stress on the resulting bond leads to fracture of the samples at the silicon/sol-gel interface

  8. Composite interlayer for diffusion bonding

    International Nuclear Information System (INIS)

    1976-01-01

    A ductile interlayer is described, which is useful for transient liquid phase diffusion bonding of metallic articles; the interlayer consisting of a melting point depressant and a plurality of ductile lamellae which are free from carbides, aluminides and borides. The composition and fabrication of the lamellae, and the process for bonding the metallic articles, depend on the composition of the metals to be bonded, and are exemplified in the specification. (U.K.)

  9. Physical mechanisms of Cu-Cu wafer bonding

    International Nuclear Information System (INIS)

    Rebhan, B.

    2014-01-01

    Modern manufacturing processes of complex integrated semiconductor devices are based on wafer-level manufacturing of components which are subsequently interconnected. When compared with classical monolithic bi-dimensional integrated circuits (2D ICs), the new approach of three-dimensional integrated circuits (3D ICs) exhibits significant benefits in terms of signal propagation delay and power consumption due to the reduced metal interconnection length and allows high integration levels with reduced form factor. Metal thermo-compression bonding is a process suitable for 3D interconnects applications at wafer level, which facilitates the electrical and mechanical connection of two wafers even processed in different technologies, such as complementary metal oxide semiconductor (CMOS) and microelectromechanical systems (MEMS). Due to its high electrical conductivity, copper is a very attractive material for electrical interconnects. For Cu-Cu wafer bonding the process requires typically bonding for around 1 h at 400°C and high contact pressure applied during bonding. Temperature reduction below such values is required in order to solve issues regarding (i) throughput in the wafer bonder, (ii) wafer-to-wafer misalignment after bonding and (iii) to minimise thermo-mechanical stresses or device degradation. The aim of this work was to study the physical mechanisms of Cu-Cu bonding and based on this study to further optimise the bonding process for low temperatures. The critical sample parameters (roughness, oxide, crystallinity) were identified using selected analytical techniques and correlated with the characteristics of the bonded Cu-Cu interfaces. Based on the results of this study the impact of several materials and process specifications on the bonding result were theoretically defined and experimentally proven. These fundamental findings subsequently facilitated low temperature (LT) metal thermo-compression Cu-Cu wafer bonding and even room temperature direct

  10. Effect of Storage Time on Bond Strength and Nanoleakage Expression of Universal Adhesives Bonded to Dentin and Etched Enamel.

    Science.gov (United States)

    Makishi, P; André, C B; Ayres, Apa; Martins, A L; Giannini, M

    2016-01-01

    To investigate bond strength and nanoleakage expression of universal adhesives (UA) bonded to dentin and etched enamel. Extracted human third molars were sectioned and ground to obtain flat surfaces of dentin (n = 36) and enamel (n = 48). Dentin and etched enamel surfaces were bonded with one of two UAs, All-Bond Universal (ABU) or Scotchbond Universal (SBU); or a two-step self-etching adhesive, Clearfil SE Bond (CSEB). A hydrophobic bonding resin, Adper Scotchbond Multi-Purpose Bond (ASMP Bond) was applied only on etched enamel. Following each bonding procedure, resin composite blocks were built up incrementally. The specimens were sectioned and subjected to microtensile bond strength (MTBS) testing after 24 hours or one year water storage, or immersed into ammoniacal silver nitrate solution after aging with 10,000 thermocycles and observed using scanning electron microscopy. The percentage distribution of silver particles at the adhesive/tooth interface was calculated using digital image-analysis software. The MTBS (CSEB = SBU > ABU, for dentin; and CSEB > ABU = SBU = ASMP Bond, for etched enamel) differed significantly between the adhesives after 24 hours. After one year, MTBS values were reduced significantly within the same adhesive for both substrates (analysis of variance, Bonferroni post hoc, padhesives for etched enamel. Silver particles could be detected within the adhesive/dentin interface of all specimens tested. Kruskal-Wallis mean ranks for nanoleakage in ABU, SBU, and CSEB were 16.9, 18.5 and 11, respectively (p>0.05). In the short term, MTBS values were material and dental-substrate dependent. After aging, a decrease in bonding effectiveness was observed in all materials, with nanoleakage at the adhesive/dentin interface. The bonding of the UAs was equal or inferior to that of the conventional restorative systems when applied to either substrate and after either storage period.

  11. GROUT-CONCRETE INTERFACE BOND PERFORMANCE: EFFECT OF INTERFACE MOISTURE ON THE TENSILE BOND STRENGTH AND GROUT MICROSTRUCTURE.

    Science.gov (United States)

    De la Varga, I; Muñoz, J F; Bentz, D P; Spragg, R P; Stutzman, P E; Graybeal, B A

    2018-05-01

    Bond between two cementitious materials is crucial in applications such as repairs, overlays, and connections of prefabricated bridge elements (PBEs), to name just a few. It is the latter that has special interest to the authors of this paper. After performing a dimensional stability study on grout-like materials commonly used as connections between PBEs, it was observed that the so-called 'non-shrink' cementitious grouts showed a considerable amount of early-age shrinkage. This might have negative effects on the integrity of the structure, due not only to the grout material's early degradation, but also to a possible loss of bond between the grout and the prefabricated concrete element. Many factors affect the bond strength between two cementitious materials (e.g., grout-concrete), the presence of moisture at the existing concrete substrate surface being one of them. In this regard, pre-moistening the concrete substrate surface prior to the application of the grout material is sometimes recommended for bond enhancement. This topic has been the focus of numerous research studies in the past; however, there is still controversy among practitioners on the real benefits that this practice might provide. This paper evaluates the tensile bond performance of two non-shrink cementitious grouts applied to the exposed aggregate surface of a concrete substrate, and how the supply of moisture at the grout-concrete interface affects the bond strength. "Pull-off" bond results show increased tensile bond strength when the concrete surface is pre-moistened. Reasons to explain the observed increased bond strength are given after a careful microstructural analysis of the grout-concrete interface. Interfaces where sufficient moisture is provided to the concrete substrate such that moisture movement from the grout is prevented show reduced porosity and increased hydration on the grout side of the interface, which is thought to directly contribute to the increased tensile bond

  12. Bond strength and microleakage of current dentin adhesives.

    Science.gov (United States)

    Fortin, D; Swift, E J; Denehy, G E; Reinhardt, J W

    1994-07-01

    The purpose of this in vitro study was to evaluate shear bond strengths and microleakage of seven current-generation dentin adhesive systems. Standard box-type Class V cavity preparations were made at the cemento-enamel junction on the buccal surfaces of eighty extracted human molars. These preparations were restored using a microfill composite following application of either All-Bond 2 (Bisco), Clearfil Liner Bond (Kuraray), Gluma 2000 (Miles), Imperva Bond (Shofu), OptiBond (Kerr), Prisma Universal Bond 3 (Caulk), Scotchbond Multi-Purpose (3M), or Scotchbond Dual-Cure (3M) (control). Lingual dentin of these same teeth was exposed and polished to 600-grit. Adhesives were applied and composite was bonded to the dentin using a gelatin capsule technique. Specimens were thermocycled 500 times. Shear bond strengths were determined using a universal testing machine, and microleakage was evaluated using a standard silver nitrate staining technique. Clearfill Liner Bond and OptiBond, adhesive systems that include low-viscosity, low-modulus intermediate resins, had the highest shear bond strengths (13.3 +/- 2.3 MPa and 12.9 +/- 1.5 MPa, respectively). Along with Prisma Universal Bond 3, they also had the least microleakage at dentin margins of Class V restorations. No statistically significant correlation between shear bond strength and microleakage was observed in this study. Adhesive systems that include a low-viscosity intermediate resin produced the high bond strengths and low microleakage. Similarly, two materials with bond strengths in the intermediate range had significantly increased microleakage, and one material with a bond strength in the low end of the spectrum exhibited microleakage that was statistically greater. Thus, despite the lack of statistical correlation, there were observable trends.

  13. Dilemmas in zirconia bonding: A review

    Directory of Open Access Journals (Sweden)

    Obradović-Đuričić Kosovka

    2013-01-01

    Full Text Available This article presents a literature review on the resin bond to zirconia ceramic. Modern esthetic dentistry has highly recognized zirconia, among other ceramic materials. Biocompatibility of zirconia, chemical and dimensional stability, excellent mechanical properties, all together could guarantee optimal therapeutical results in complex prosthodontic reconstruction. On the other hand, low thermal degradation, aging of zirconia as well as problematic bonding of zirconia framework to dental luting cements and tooth structures, opened the room for discussion concerning their clinical durability. The well known methods of mechanical and chemical bonding used on glass-ceramics are not applicable for use with zirconia. Therefore, under critical clinical situations, selection of the bonding mechanism should be focused on two important points: high initial bond strength value and long term bond strength between zirconia-resin interface. Also, this paper emphases the use of phosphate monomer luting cements on freshly air-abraded zirconia as the simplest and most effective way for zirconia cementation procedure today.

  14. Generalized bond percolation and statistical mechanics

    International Nuclear Information System (INIS)

    Tsallis, C.

    1978-05-01

    A generalization of traditional bond percolation is performed, in the sens that bonds have now the possibility of partially transmitting the information (a fact which leads to the concept of 'fidelity' of the bond), and also in the sens that, besides the normal tendency to equiprobability, the bonds are allowed to substantially change the information. Furthermore the fidelity is allowed, to become an aleatory variable, and the operational rules concerning the associated distribution laws are determined. Thermally quenched random bonds and the whole body of Statistical Mechanics become particular cases of this formalism, which is in general adapted to the treatment of all problems whose main characteristic is to preserve a part of the information through a long path or array (critical phenomena, regime changements, thermal random models, etc). Operationally it provides a quick method for the calculation of the equivalent probability of complex clusters within the traditional bond percolation problem [pt

  15. Bond strength of compomers to dentin using acidic primers.

    Science.gov (United States)

    Tate, W H; You, C; Powers, J M

    1999-10-01

    To determine the in vitro bond strengths of seven compomer/bonding agent restorative systems to human dentin. Seven compomer/bonding agents were bonded to human dentin, stored in water at 37 degrees C for 24 hours, and debonded in tension. Bonding conditions were with and without phosphoric acid etching, with and without the use of combined primer/bonding agents, and under moist and wet bond interfaces. Without phosphoric acid etching, F2000/F2000 Compomer Primer/Adhesive and F2000/Single Bond Dental Adhesive System were less sensitive to dentin wetness. With moist dentin, bond strengths of Dyract/Prime & Bond 2.1, Dyract AP/Prime & Bond 2.1, Hytac/OSB light-curing, one-component bonding agent, F2000/Single Bond, and Freedom/STAE single component light-cured dentin/enamel adhesive system, were improved with phosphoric acid etching. Also, with moist dentin, the bond strength of F2000/F2000 Compomer Primer/Adhesive in the 3M Clicker dispensing system was higher without phosphoric acid etching, whereas bonds of Compoglass/Syntac Single-component were not affected by phosphoric acid etching. Bonding did not occur without primer/bonding agent, regardless of surface condition or use of phosphoric acid etching.

  16. Non-equilibrium hydrogen exchange for determination of H-bond strength and water accessibility in solid proteins.

    Science.gov (United States)

    Grohe, Kristof; Movellan, Kumar Tekwani; Vasa, Suresh Kumar; Giller, Karin; Becker, Stefan; Linser, Rasmus

    2017-05-01

    We demonstrate measurement of non-equilibrium backbone amide hydrogen-deuterium exchange rates (HDX) for solid proteins. The target of this study are the slowly exchanging residues in solid samples, which are associated with stable secondary-structural elements of proteins. These hydrogen exchange processes escape methods measuring equilibrium exchange rates of faster processes. The method was applied to a micro-crystalline preparation of the SH3 domain of chicken α-spectrin. Therefore, from a 100% back-exchanged micro-crystalline protein preparation, the supernatant buffer was exchanged by a partially deuterated buffer to reach a final protonation level of approximately 20% before packing the sample in a 1.3 mm rotor. Tracking of the HN peak intensities for 2 weeks reports on site-specific hydrogen bond strength and also likely reflects water accessibility in a qualitative manner. H/D exchange can be directly determined for hydrogen-bonded amides using 1 H detection under fast magic angle spinning. This approach complements existing methods and provides the means to elucidate interesting site-specific characteristics for protein functionality in the solid state.

  17. Cleavage of sp3 C-O bonds via oxidative addition of C-H bonds.

    Science.gov (United States)

    Choi, Jongwook; Choliy, Yuriy; Zhang, Xiawei; Emge, Thomas J; Krogh-Jespersen, Karsten; Goldman, Alan S

    2009-11-04

    (PCP)Ir (PCP = kappa(3)-C(6)H(3)-2,6-[CH(2)P(t-Bu)(2)](2)) is found to undergo oxidative addition of the methyl-oxygen bond of electron-poor methyl aryl ethers, including methoxy-3,5-bis(trifluoromethyl)benzene and methoxypentafluorobenzene, to give the corresponding aryloxide complexes (PCP)Ir(CH(3))(OAr). Although the net reaction is insertion of the Ir center into the C-O bond, density functional theory (DFT) calculations and a significant kinetic isotope effect [k(CH(3))(OAr)/k(CD(3))(OAr) = 4.3(3)] strongly argue against a simple insertion mechanism and in favor of a pathway involving C-H addition and alpha-migration of the OAr group to give a methylene complex followed by hydride-to-methylene migration to give the observed product. Ethoxy aryl ethers, including ethoxybenzene, also undergo C-O bond cleavage by (PCP)Ir, but the net reaction in this case is 1,2-elimination of ArO-H to give (PCP)Ir(H)(OAr) and ethylene. DFT calculations point to a low-barrier pathway for this reaction that proceeds through C-H addition of the ethoxy methyl group followed by beta-aryl oxide elimination and loss of ethylene. Thus, both of these distinct C-O cleavage reactions proceed via initial addition of a C(sp(3))-H bond, despite the fact that such bonds are typically considered inert and are much stronger than C-O bonds.

  18. EBSD characterization of an IF steel processed by Accumulative Roll Bonding

    International Nuclear Information System (INIS)

    Cruz-Gandarilla, F; Salcedo-Garrido, A M; Avalos, M; Bolmaro, R; Baudin, T; Cabañas-Moreno, J G; Dorantes-Rosales, H J

    2015-01-01

    The objective of this work is to study the texture and microstructure evolution of an IF steel deformed by Accumulative Roll Bonding (ARB) using Electron Backscatter Diffraction. Texture changes occur with increasing number of ARB cycles. For the early cycles, the main components are the α and γ fiber components characteristic of steels. With increasing the number of ARB cycles a tendency towards a random texture is obtained. In the initial state, the mean grain size is 30 μm and after 5 cycles it decreases to 1.2 μm. For the first ARB cycles, the fraction of high angle grain boundary is low but it increases with the number of cycles to about 80% for 5 cycles. The Kernel Average Misorientation (KAM) has no appreciable changes with the number of ARB cycles for all the texture components. (paper)

  19. A systematic structural study of halogen bonding versus hydrogen bonding within competitive supramolecular systems

    Directory of Open Access Journals (Sweden)

    Christer B. Aakeröy

    2015-09-01

    Full Text Available As halogen bonds gain prevalence in supramolecular synthesis and materials chemistry, it has become necessary to examine more closely how such interactions compete with or complement hydrogen bonds whenever both are present within the same system. As hydrogen and halogen bonds have several fundamental features in common, it is often difficult to predict which will be the primary interaction in a supramolecular system, especially as they have comparable strength and geometric requirements. To address this challenge, a series of molecules containing both hydrogen- and halogen-bond donors were co-crystallized with various monotopic, ditopic symmetric and ditopic asymmetric acceptor molecules. The outcome of each reaction was examined using IR spectroscopy and, whenever possible, single-crystal X-ray diffraction. 24 crystal structures were obtained and subsequently analyzed, and the synthon preferences of the competing hydrogen- and halogen-bond donors were rationalized against a background of calculated molecular electrostatic potential values. It has been shown that readily accessible electrostatic potentials can offer useful practical guidelines for predicting the most likely primary synthons in these co-crystals as long as the potential differences are weighted appropriately.

  20. 30 CFR 800.21 - Collateral bonds.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Collateral bonds. 800.21 Section 800.21 Mineral... FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS UNDER REGULATORY PROGRAMS § 800.21 Collateral bonds. (a) Collateral bonds, except for letters of credit, cash accounts, and real property, shall be...

  1. 36 CFR 223.35 - Performance bond.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Performance bond. 223.35 Section 223.35 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND... Performance bond. Timber sale contracts may require the purchaser to furnish a performance bond for...

  2. A lattice determination of gA and left angle x right angle from overlap fermions

    International Nuclear Information System (INIS)

    Guertler, M.; Schiller, A.; Streuer, T.; Freie Univ. Berlin

    2004-10-01

    We present results for the nucleon's axial charge g A and the first moment left angle x right angle of the unpolarized parton distribution function from a simulation of quenched overlap fermions. (orig.)

  3. UNA METODOLOGÍA PARA VALORAR UN CALLABLE BOND A METHODOLOGY TO VALUE A CALLABLE BOND

    Directory of Open Access Journals (Sweden)

    Carlos Alexander Grajales

    2008-12-01

    Full Text Available En este artículo, la metodología empleada para valorar un bono que tiene una opción call incluida (callable bond o bono redimible viene dada por la implementación numérica del modelo de tasa corta de Hull y White, la cual se logra con un árbol trinomial de tasas. Así mismo, se presenta una aplicación para el caso de la compañía Interconexión Eléctrica S. A. -ISA-, que ha emitido dos instrumentos callable bonds. Para el desarrollo de tal aplicación se construyen algunos algoritmos computacionales, los cuales pueden valorar los dos bonos con opción call que tiene dicha compañía y además permiten la estructuración de un bono con opción call incluida de tipo genérico.In this paper the methodology employed for assessing a bond that includes a call option (callable bond is given by the numeric implementation of Hull and White short rate model, which it is accomplished through an interest rates trinomial tree. It also presents an application for the case of the company Interconexión Eléctrica S. A. -ISA-, which has issued two callable bonds instruments. For the development of such application computer algorithms are implemented to value the two bonds of the company, and they also allow the structuring of a bond with a generic type call option included.

  4. Liquidity in Government versus Covered Bond Markets

    DEFF Research Database (Denmark)

    Dick-Nielsen, Jens; Gyntelberg, Jacob; Sangill, Thomas

    We present findings on the secondary market liquidity of government and covered bonds in Denmark before, during and after the 2008 financial crisis. The analysis focuses on wholesale trading in the two markets and is based on a complete transaction level dataset covering November 2007 until end...... 2011. Overall, our findings suggest that Danish benchmark covered bonds by and large are as liquid as Danish government bonds - including in periods of market stress. Before the financial crisis of 2008, government bonds were slightly more liquid than covered bonds. During the crisis, trading continued...... in both markets but the government bond market experienced a brief but pronounced decline in market liquidity while liquidity in the covered bond market was more robust - partly reflective of a number of events as well as policy measures introduced in the autumn of 2008. After the crisis, liquidity...

  5. 48 CFR 728.105-1 - Advance payment bonds.

    Science.gov (United States)

    2010-10-01

    ... GENERAL CONTRACTING REQUIREMENTS BONDS AND INSURANCE Bonds 728.105-1 Advance payment bonds. (a) Generally, advance payment bonds will not be required in connection with USAID contracts containing an advance... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Advance payment bonds. 728...

  6. Does the Angle of the Nail Matter for Pertrochanteric Fracture Reduction? Matching Nail Angle and Native Neck-Shaft Angle.

    Science.gov (United States)

    Parry, Joshua A; Barrett, Ian; Schoch, Bradley; Yuan, Brandon; Cass, Joseph; Cross, William

    2018-04-01

    To determine whether fixation of pertrochanteric hip fractures with cephalomedullary nails (CMNs) with a neck-shaft angle (NSA) less than the native NSA affects reduction and lag screw cutout. Retrospective comparative study. Level I trauma center. Patients treated with a CMN for unstable pertrochanteric femur fractures (OTA/AO 31-A2.2 and 31-A2.3) between 2005 and 2014. CMN fixation. NSA reduction and lag screw cutout. Patients fixed with a nail angle less than their native NSA were less likely to have good reductions [17% vs. 60%, 95% confidence interval (CI), -63% to -18%; P = 0.0005], secondary to more varus reductions (41% vs. 10%, 95% CI, 9%-46%; P = 0.01) and more fractures with ≥4 mm of displacement (63% vs. 35%, 95% CI, 3%-49%; P = 0.03). The cutout was not associated with the use of a nail angle less than the native NSA (60% vs. 76%, 95% CI, -56% to 18%; P = 0.5), varus reductions (60% vs. 32%, 95% CI, -13% to 62%; P = 0.3), or poor reductions (20% vs. 17%, 95% CI, -24% to 44%; P = 1.0). The fixation of unstable pertrochanteric hip fractures with a nail angle less than the native NSA was associated with more varus reductions and fracture displacement but did not affect the lag screw cutout. Therapeutic Level III. See Instructions for Authors for a complete description of levels of evidence.

  7. Probing nanoparticle-macromolecule interaction and resultant structure by small-angle neutron scattering

    International Nuclear Information System (INIS)

    Aswal, V.K.

    2013-01-01

    Nanoparticles display unique and distinct characteristics from those of their constituent atoms and bulk materials which are being employed in numerous applications in the fields of medicine, electronics, optics, communications, energy, environment etc. Many of these applications require adjoining of nanoparticles with macromolecules such as proteins, polymers and surfactants to obtain functional objects. For example, nanoparticle-protein complexes are of great importance in controlling enzymatic behavior, targeted drug delivery and developing biocompatible materials. The nanoparticles interfaced with polymers are shown to be useful in developing protein sensor arrays. Interaction of surfactants with nanoparticles is utilized extensively for technical and industrial applications associated with colloidal stability, detergency and design of nanostructured functional interfaces. The interaction of two components, nanoparticles and macromolecule, strongly depends on the characteristics of both the nanoparticles (size, shape, surface roughness, charge density etc.) and macromolecules (type, charge, shape and solution conditions etc.) used. The interaction of macromolecule on nanoparticle surface is a cumulative effect of a number of forces such as electrostatic force, covalent bonding, hydrogen bonding, non-polar interaction, hydrophobic interactions etc. These interactions depending on the system conditions can lead to various structures. Small-angle neutron scattering (SANS) with the possibility to vary contrast is an ideal technique to study such multi-component systems. In this talk, some of our results of SANS from the complexes of nanoparticle-protein and nanoparticle surfactant systems will be discussed. (author)

  8. Welding, Bonding and Fastening, 1984

    Science.gov (United States)

    Buckley, J. D. (Editor); Stein, B. A. (Editor)

    1985-01-01

    A compilation of papers presented in a joint NASA, American Society for Metals, The George Washington University, American Welding Soceity, and Society of Manufacturing Engineers conference on Welding, Bonding, and Fastening at Langley Research Center, Hampton, VA, on October 23 to 25, 1984 is given. Papers were presented on technology developed in current research programs relevant to welding, bonding, and fastening of structural materials required in fabricating structures and mechanical systems used in the aerospace, hydrospace, and automotive industries. Topics covered in the conference included equipment, hardware and materials used when welding, brazing, and soldering, mechanical fastening, explosive welding, use of unique selected joining techniques, adhesives bonding, and nondestructive evaluation. A concept of the factory of the future was presented, followed by advanced welding techniques, automated equipment for welding, welding in a cryogenic atmosphere, blind fastening, stress corrosion resistant fasteners, fastening equipment, explosive welding of different configurations and materials, solid-state bonding, electron beam welding, new adhesives, effects of cryogenics on adhesives, and new techniques and equipment for adhesive bonding.

  9. Nonperfect synchronization of bond-forming and bond-rupturing processes in the reaction H + H2 → H2 + H

    International Nuclear Information System (INIS)

    Chandra, A.K.; Rao, V.S.

    1996-01-01

    The simplest prototypical hydrogen transfer reaction, i.e., H + H 2 → H 2 + H, is studied by the quantum-mechanical ab initio methods. Results reveal that during this reaction free valence which almost equals the square of the spin density develops on the migrating hydrogen atom. Bond orders are calculated using Mayer's formalism. Both the variations of bond orders and bond lengths along the reaction path are examined. This analysis reveals that the bond formation and bond cleavage processes in this reaction are not perfectly synchronous. The bond clevage process is slightly more advanced on the reaction path. 38 refs., 6 figs., 2 tabs

  10. 36 CFR 9.13 - Performance bond.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Performance bond. 9.13... MINERALS MANAGEMENT Mining and Mining Claims § 9.13 Performance bond. (a) Upon approval of a plan of operations the operator shall be required to file a suitable performance bond with satisfactory surety...

  11. Theoretical investigation of compounds with triple bonds

    International Nuclear Information System (INIS)

    Devarajan, Deepa

    2011-01-01

    In this thesis, compounds with potential triple-bonding character involving the heavier main-group elements, Group 4 transition metals, and the actinides uranium and thorium were studied by using molecular quantum mechanics. The triple bonds are described in terms of the individual orbital contributions (σ, π parallel , and π perpendicular to ), involving electron-sharing covalent or donor-acceptor interactions between the orbitals of two atoms or fragments. Energy decomposition, natural bond orbital, and atoms in molecules analyses were used for the bonding analysis of the triple bonds. The results of this thesis suggest that the triple-bonding character between the heavier elements of the periodic table is important and worth further study and exploration.

  12. Prediction of fracture toughness and durability of adhesively bonded composite joints with undesirable bonding conditions

    Science.gov (United States)

    Musaramthota, Vishal

    Advanced composite materials have enabled the conventional aircraft structures to reduce weight, improve fuel efficiency and offer superior mechanical properties. In the past, materials such as aluminum, steel or titanium have been used to manufacture aircraft structures for support of heavy loads. Within the last decade or so, demand for advanced composite materials have been emerging that offer significant advantages over the traditional metallic materials. Of particular interest in the recent years, there has been an upsurge in scientific significance in the usage of adhesively bonded composite joints (ABCJ's). ABCJ's negate the introduction of stress risers that are associated with riveting or other classical techniques. In today's aircraft transportation market, there is a push to increase structural efficiency by promoting adhesive bonding to primary joining of aircraft structures. This research is focused on the issues associated with the durability and related failures in bonded composite joints that continue to be a critical hindrance to the universal acceptance of ABCJ's. Of particular interest are the short term strength, contamination and long term durability of ABCJ's. One of the factors that influence bond performance is contamination and in this study the influence of contamination on composite-adhesive bond quality was investigated through the development of a repeatable and scalable surface contamination procedure. Results showed an increase in the contaminant coverage area decreases the overall bond strength significantly. A direct correlation between the contaminant coverage area and the fracture toughness of the bonded joint was established. Another factor that influences bond performance during an aircraft's service life is its long term strength upon exposure to harsh environmental conditions or when subjected to severe mechanical loading. A test procedure was successfully developed in order to evaluate durability of ABCJ's comprising severe

  13. The power of hard-sphere models: explaining side-chain dihedral angle distributions of Thr and Val.

    Science.gov (United States)

    Zhou, Alice Qinhua; O'Hern, Corey S; Regan, Lynne

    2012-05-16

    The energy functions used to predict protein structures typically include both molecular-mechanics and knowledge-based terms. In contrast, our approach is to develop robust physics- and geometry-based methods. Here, we investigate to what extent simple hard-sphere models can be used to predict side-chain conformations. The distributions of the side-chain dihedral angle χ(1) of Val and Thr in proteins of known structure show distinctive features: Val side chains predominantly adopt χ(1) = 180°, whereas Thr side chains typically adopt χ(1) = 60° and 300° (i.e., χ(1) = ±60° or g- and g(+) configurations). Several hypotheses have been proposed to explain these differences, including interresidue steric clashes and hydrogen-bonding interactions. In contrast, we show that the observed side-chain dihedral angle distributions for both Val and Thr can be explained using only local steric interactions in a dipeptide mimetic. Our results emphasize the power of simple physical approaches and their importance for future advances in protein engineering and design. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. Ten helical twist angles of B-DNA

    Energy Technology Data Exchange (ETDEWEB)

    Kabsch, W; Sander, C; Trifonov, E N

    1982-01-01

    On the assumption that the twist angles between adjacent base-pairs in the DNA molecule are additive a linear system of 40 equations was derived from experimental measurements of the total twist angles for different pieces of DNA of known sequences. This system of equations is found to be statistically consistent providing a solution for all ten possible twist angles of B-DNA by a least squares fitting procedure. Four of the calculated twist angles were not known before. The other six twist angles calculated are very close to the experimentally measured ones. The data used were obtained by the electrophoretic band-shift method, crystallography and nuclease digestion of DNA adsorbed to mica or Ca-phosphate surface. The validity of the principle of additivity of the twist angles implies that the angle between any particular two base-pairs is a function of only these base-pairs, independent of nearest neighbors.

  15. Body of Knowledge (BOK) for Copper Wire Bonds

    Science.gov (United States)

    Rutkowski, E.; Sampson, M. J.

    2015-01-01

    Copper wire bonds have replaced gold wire bonds in the majority of commercial semiconductor devices for the latest technology nodes. Although economics has been the driving mechanism to lower semiconductor packaging costs for a savings of about 20% by replacing gold wire bonds with copper, copper also has materials property advantages over gold. When compared to gold, copper has approximately: 25% lower electrical resistivity, 30% higher thermal conductivity, 75% higher tensile strength and 45% higher modulus of elasticity. Copper wire bonds on aluminum bond pads are also more mechanically robust over time and elevated temperature due to the slower intermetallic formation rate - approximately 1/100th that of the gold to aluminum intermetallic formation rate. However, there are significant tradeoffs with copper wire bonding - copper has twice the hardness of gold which results in a narrower bonding manufacturing process window and requires that the semiconductor companies design more mechanically rigid bonding pads to prevent cratering to both the bond pad and underlying chip structure. Furthermore, copper is significantly more prone to corrosion issues. The semiconductor packaging industry has responded to this corrosion concern by creating a palladium coated copper bonding wire, which is more corrosion resistant than pure copper bonding wire. Also, the selection of the device molding compound is critical because use of environmentally friendly green compounds can result in internal CTE (Coefficient of Thermal Expansion) mismatches with the copper wire bonds that can eventually lead to device failures during thermal cycling. Despite the difficult problems associated with the changeover to copper bonding wire, there are billions of copper wire bonded devices delivered annually to customers. It is noteworthy that Texas Instruments announced in October of 2014 that they are shipping microcircuits containing copper wire bonds for safety critical automotive applications

  16. A simple semi-empirical approximation for bond energy

    International Nuclear Information System (INIS)

    Jorge, F.E.; Giambiagi, M.; Giambiagi, M.S. de.

    1985-01-01

    A simple semi-empirical expression for bond energy, related with a generalized bond index, is proposed and applied within the IEH framework. The correlation with experimental data is good for the intermolecular bond energy of base pairs of nucleic acids and other hydrogen bonded systems. The intramolecular bond energies for a sample of molecules containing typical bonds and for hydrides are discussed. The results are compared with those obtained by other methods. (Author) [pt

  17. Composite Bonding to Stainless Steel Crowns Using a New Universal Bonding and Single-Bottle Systems

    OpenAIRE

    Mohammad Ali Hattan; Sharat Chandra Pani; Mohammad AlOmari

    2013-01-01

    Aim. The aim of this study is to evaluate the shear bond strength of nanocomposite to stainless steel crowns using a new universal bonding system. Material and Methods. Eighty (80) stainless steel crowns (SSCs) were divided into four groups (20 each). Packable nanocomposite was bonded to the lingual surface of the crowns in the following methods: Group A without adhesive (control group), Group B using a new universal adhesive system (Scotchbond Universal Adhesive, 3M ESPE, Seefeld, Germany), ...

  18. 36 CFR 9.48 - Performance bond.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Performance bond. 9.48... MINERALS MANAGEMENT Non-Federal Oil and Gas Rights § 9.48 Performance bond. (a) Prior to approval of a plan of operations, the operator shall be required to file a suitable performance bond with satisfactory...

  19. Anterior Segment Imaging Predicts Incident Gonioscopic Angle Closure.

    Science.gov (United States)

    Baskaran, Mani; Iyer, Jayant V; Narayanaswamy, Arun K; He, Yingke; Sakata, Lisandro M; Wu, Renyi; Liu, Dianna; Nongpiur, Monisha E; Friedman, David S; Aung, Tin

    2015-12-01

    To investigate the incidence of gonioscopic angle closure after 4 years in subjects with gonioscopically open angles but varying degrees of angle closure detected on anterior segment optical coherence tomography (AS OCT; Visante; Carl Zeiss Meditec, Dublin, CA) at baseline. Prospective, observational study. Three hundred forty-two subjects, mostly Chinese, 50 years of age or older, were recruited, of whom 65 were controls with open angles on gonioscopy and AS OCT at baseline, and 277 were cases with baseline open angles on gonioscopy but closed angles (1-4 quadrants) on AS OCT scans. All subjects underwent gonioscopy and AS OCT at baseline (horizontal and vertical single scans) and after 4 years. The examiner performing gonioscopy was masked to the baseline and AS OCT data. Angle closure in a quadrant was defined as nonvisibility of the posterior trabecular meshwork by gonioscopy and visible iridotrabecular contact beyond the scleral spur in AS OCT scans. Gonioscopic angle closure in 2 or 3 quadrants after 4 years. There were no statistically significant differences in age, ethnicity, or gender between cases and controls. None of the control subjects demonstrated gonioscopic angle closure after 4 years. Forty-eight of the 277 subjects (17.3%; 95% confidence interval [CI], 12.8-23; P < 0.0001) with at least 1 quadrant of angle closure on AS OCT at baseline demonstrated gonioscopic angle closure in 2 or more quadrants, whereas 28 subjects (10.1%; 95% CI, 6.7-14.6; P < 0.004) demonstrated gonioscopic angle closure in 3 or more quadrants after 4 years. Individuals with more quadrants of angle closure on baseline AS OCT scans had a greater likelihood of gonioscopic angle closure developing after 4 years (P < 0.0001, chi-square test for trend for both definitions of angle closure). Anterior segment OCT imaging at baseline predicts incident gonioscopic angle closure after 4 years among subjects who have gonioscopically open angles and iridotrabecular contact on AS OCT at

  20. Hexacoordinate bonding and aromaticity in silicon phthalocyanine.

    Science.gov (United States)

    Yang, Yang

    2010-12-23

    Si-E bondings in hexacoordinate silicon phthalocyanine were analyzed using bond order (BO), energy partition, atoms in molecules (AIM), electron localization function (ELF), and localized orbital locator (LOL). Bond models were proposed to explain differences between hexacoordinate and tetracoordinate Si-E bondings. Aromaticity of silicon phthalocyanine was investigated using nucleus-independent chemical shift (NICS), harmonic oscillator model of aromaticity (HOMA), conceptual density functional theory (DFT), ring critical point (RCP) descriptors, and delocalization index (DI). Structure, energy, bonding, and aromaticity of tetracoordinate silicon phthalocyanine were studied and compared with hexacoordinate one.

  1. Interest Rates and Coupon Bonds in Quantum Finance

    Science.gov (United States)

    Baaquie, Belal E.

    2009-09-01

    1. Synopsis; 2. Interest rates and coupon bonds; 3. Options and option theory; 4. Interest rate and coupon bond options; 5. Quantum field theory of bond forward interest rates; 6. Libor Market Model of interest rates; 7. Empirical analysis of forward interest rates; 8. Libor Market Model of interest rate options; 9. Numeraires for bond forward interest rates; 10. Empirical analysis of interest rate caps; 11. Coupon bond European and Asian options; 12. Empirical analysis of interest rate swaptions; 13. Correlation of coupon bond options; 14. Hedging interest rate options; 15. Interest rate Hamiltonian and option theory; 16. American options for coupon bonds and interest rates; 17. Hamiltonian derivation of coupon bond options; Appendixes; Glossaries; List of symbols; Reference; Index.

  2. PMMA to Polystyrene bonding for polymer based microfluidic systems

    KAUST Repository

    Fan, Yiqiang

    2013-03-29

    A thermal bonding technique for Poly (methylmethacrylate) (PMMA) to Polystyrene (PS) is presented in this paper. The PMMA to PS bonding was achieved using a thermocompression method, and the bonding strength was carefully characterized. The bonding temperature ranged from 110 to 125 C with a varying compression force, from 700 to 1,000 N (0.36-0.51 MPa). After the bonding process, two kinds of adhesion quantification methods were used to measure the bonding strength: the double cantilever beam method and the tensile stress method. The results show that the bonding strength increases with a rising bonding temperature and bonding force. The results also indicate that the bonding strength is independent of bonding time. A deep-UV surface treatment method was also provided in this paper to lower the bonding temperature and compression force. Finally, a PMMA to PS bonded microfluidic device was fabricated successfully. © 2013 Springer-Verlag Berlin Heidelberg.

  3. Influence of Contact Angle, Growth Angle and Melt Surface Tension on Detached Solidification of InSb

    Science.gov (United States)

    Wang, Yazhen; Regel, Liya L.; Wilcox, William R.

    2000-01-01

    We extended the previous analysis of detached solidification of InSb based on the moving meniscus model. We found that for steady detached solidification to occur in a sealed ampoule in zero gravity, it is necessary for the growth angle to exceed a critical value, the contact angle for the melt on the ampoule wall to exceed a critical value, and the melt-gas surface tension to be below a critical value. These critical values would depend on the material properties and the growth parameters. For the conditions examined here, the sum of the growth angle and the contact angle must exceed approximately 130, which is significantly less than required if both ends of the ampoule are open.

  4. The resection angle in apical surgery

    DEFF Research Database (Denmark)

    von Arx, Thomas; Janner, Simone F M; Jensen, Simon S

    2016-01-01

    OBJECTIVES: The primary objective of the present radiographic study was to analyse the resection angle in apical surgery and its correlation with treatment outcome, type of treated tooth, surgical depth and level of root-end filling. MATERIALS AND METHODS: In the context of a prospective clinical...... study, cone beam computed tomography (CBCT) scans were taken before and 1 year after apical surgery to measure the angle of the resection plane relative to the longitudinal axis of the root. Further, the surgical depth (distance from the buccal cortex to the most lingual/palatal point of the resection...... or with the retrofilling length. CONCLUSIONS: Statistically significant differences were observed comparing resection angles of different tooth groups. However, the angle had no significant effect on treatment outcome. CLINICAL RELEVANCE: Contrary to common belief, the resection angle in maxillary anterior teeth...

  5. One period coupon bond valuation with revised first passage time approach and the application in Indonesian corporate bond

    Science.gov (United States)

    Maruddani, Di Asih I.; Rosadi, Dedi; Gunardic, Abdurakhman

    2015-02-01

    The value of a corporate bond is conventionally expressed in terms of zero coupon bond. In practice, the most common form of debt instrument is coupon bond and allows early default before maturity as safety covenant for the bondholder. This paper study valuation for one period coupon bond, a coupon bond that only give one time coupon at the bond period. It assumes that the model give bondholder the right to reorganize a firm if its value falls below a given barrier. Revised first passage time approach is applied for default time rule. As a result, formulas of equity, liability, and probability of default is derived for this specified model. Straightforward integration under risk neutral pricing is used for deriving those formulas. For the application, bond of Bank Rakyat Indonesia (BRI) as one of the largest bank in Indonesia is analyzed. R computing show that value of the equity is IDR 453.724.549.000.000, the liability is IDR 2.657.394.000.000, and the probability if default is 5.645305E-47 %.

  6. 7 CFR 1780.95 - Public bidding on bonds.

    Science.gov (United States)

    2010-01-01

    ... public bidding. The Agency will not submit a bid at the advertised sale unless required by State law, nor... 7 Agriculture 12 2010-01-01 2010-01-01 false Public bidding on bonds. 1780.95 Section 1780.95... Bonds and Bond Transcript Documents for Public Body Applicants § 1780.95 Public bidding on bonds. Bonds...

  7. The diffusion bonding of advanced material

    International Nuclear Information System (INIS)

    Khan, T.I.

    2001-01-01

    As a joining process diffusion bonding has been used since early periods, and artifacts have been found which date back to 3000 years. However, over the last 20 years this joining process has been rediscovered and research has been carried out to understand the mechanisms of the process, and the application of the technique to advanced materials. This paper will review some of the reasons to why diffusion bonding may be preferred over other more conventional welding processes to join advanced alloy systems. It also describes in brief the different types of bonding processes, namely, solid-state and liquid phase bonding techniques. The paper demonstrates the application of diffusion bonding processes to join a range of dissimilar materials for instance: oxide dispersion strengthened superalloys, titanium to duplex stainless steels and engineering ceramics such as Si/sub 3/N/sub 4/ to metal alloys. The research work highlights the success and limitations of the diffusion bonding process and is based on the experience of the author and his colleagues. (author)

  8. The social life of bonding theory.

    Science.gov (United States)

    Crouch, M; Manderson, L

    1995-09-01

    'Bonding' as a crucial factor of the early post-partum entered obstetric and paediatric practice after the publication of Maternal and Infant Bonding in 1976 by Klaus and Kennell. The concept has held its place since, as witnessed by medical textbook accounts of it, and the perception of 'instantaneous bonding' as a vital component of the ideal birth experience has dominated media representations of childbirth and, until very recently, feminist writing. Only during the last few years has this literature taken into account research findings concerning the guilt and anxiety experienced by women whose expectations regarding 'bonding' are not realised. While it is now generally acknowledged that maternal attachment develops over an extended period of time, 'bonding' as used extensively in both popular and scientific literature conflates a wide range of meanings and blurs the boundaries between process and outcome. This facilitates the entry of ideological elements into a field which is, by its very nature, deeply significant for human experience. We therefore argue for a continuing critical appraisal of the role of 'bonding' in both general and scientific research.

  9. Modified Angle's Classification for Primary Dentition.

    Science.gov (United States)

    Chandranee, Kaushik Narendra; Chandranee, Narendra Jayantilal; Nagpal, Devendra; Lamba, Gagandeep; Choudhari, Purva; Hotwani, Kavita

    2017-01-01

    This study aims to propose a modification of Angle's classification for primary dentition and to assess its applicability in children from Central India, Nagpur. Modification in Angle's classification has been proposed for application in primary dentition. Small roman numbers i/ii/iii are used for primary dentition notation to represent Angle's Class I/II/III molar relationships as in permanent dentition, respectively. To assess applicability of modified Angle's classification a cross-sectional preschool 2000 children population from central India; 3-6 years of age residing in Nagpur metropolitan city of Maharashtra state were selected randomly as per the inclusion and exclusion criteria. Majority 93.35% children were found to have bilateral Class i followed by 2.5% bilateral Class ii and 0.2% bilateral half cusp Class iii molar relationships as per the modified Angle's classification for primary dentition. About 3.75% children had various combinations of Class ii relationships and 0.2% children were having Class iii subdivision relationship. Modification of Angle's classification for application in primary dentition has been proposed. A cross-sectional investigation using new classification revealed various 6.25% Class ii and 0.4% Class iii molar relationships cases in preschool children population in a metropolitan city of Nagpur. Application of the modified Angle's classification to other population groups is warranted to validate its routine application in clinical pediatric dentistry.

  10. A comparison of shear bond strength of orthodontic brackets bonded with four different orthodontic adhesives

    Science.gov (United States)

    Sharma, Sudhir; Tandon, Pradeep; Nagar, Amit; Singh, Gyan P; Singh, Alka; Chugh, Vinay K

    2014-01-01

    Objectives: The objective of this study is to compare the shear bond strength (SBS) of stainless steel (SS) orthodontic brackets bonded with four different orthodontic adhesives. Materials and Methods: Eighty newly extracted premolars were bonded to 0.022 SS brackets (Ormco, Scafati, Italy) and equally divided into four groups based on adhesive used: (1) Rely-a-Bond (self-cure adhesive, Reliance Orthodontic Product, Inc., Illinois, USA), (2) Transbond XT (light-cure adhesive, 3M Unitek, CA, USA), (3) Transbond Plus (sixth generation self-etch primer, 3M Unitek, CA, USA) with Transbond XT (4) Xeno V (seventh generation self-etch primer, Dentsply, Konstanz, Germany) with Xeno Ortho (light-cure adhesive, Dentsply, Konstanz, Germany) adhesive. Brackets were debonded with a universal testing machine (Model No. 3382 Instron Corp., Canton, Mass, USA). The adhesive remnant index (ARI) was recordedIn addition, the conditioned enamel surfaces were observed under a scanning electron microscope (SEM). Results: Transbond XT (15.49 MPa) attained the highest bond strength. Self-etching adhesives (Xeno V, 13.51 MPa; Transbond Plus, 11.57 MPa) showed clinically acceptable SBS values and almost clean enamel surface after debonding. The analysis of variance (F = 11.85, P adhesives left on the tooth) to be the most prevalent in Transbond XT (40%), followed by Rely-a-Bond (30%), Transbond Plus with Transbond XT (15%), and Xeno V with Xeno Ortho (10%). Under SEM, enamel surfaces after debonding of the brackets appeared porous when an acid-etching process was performed on the surfaces of Rely-a-Bond and Transbond XT, whereas with self-etching primers enamel presented smooth and almost clean surfaces (Transbond Plus and Xeno V group). Conclusion: All adhesives yielded SBS values higher than the recommended bond strength (5.9-7–8 MPa), Seventh generation self-etching primer Xeno V with Xeno Ortho showed clinically acceptable SBS and the least amount of residual adhesive left on the

  11. Nucleation of small angle boundaries

    CSIR Research Space (South Africa)

    Nabarro, FRN

    1996-12-01

    Full Text Available The internal stresses induced by the strain gradients in an array of lattice cells delineated by low-angle dislocation boundaries are partially relieved by the creation of new low-angle boundaries. This is shown to be a first-order transition...

  12. 25 CFR 216.8 - Performance bond.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Performance bond. 216.8 Section 216.8 Indians BUREAU OF... RECLAMATION OF LANDS General Provisions § 216.8 Performance bond. (a) Upon approval of an exploration plan or mining plan, the operator shall be required to file a suitable performance bond of not less than $2,000...

  13. 43 CFR 23.9 - Performance bond.

    Science.gov (United States)

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Performance bond. 23.9 Section 23.9 Public... LANDS § 23.9 Performance bond. (a)(1) Upon approval of an exploration plan or mining plan, the operator shall be required to file a suitable performance bond of not less than $2,000 with satisfactory surety...

  14. Diffusionless bonding of aluminum to type 304 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Watson, R D

    1963-03-15

    High strength diffusionless bonds can be produced between 1S aluminum and oxidized 304 stainless steel by hot pressing and extrusion bonding. Both the hot pressing and extrusion bonding techniques have been developed to a point where consistently good bonds can be obtained. Although the bonding is performed at elevated temperatures (about 510{sup o}C) a protective atmosphere is not required to produce strong bonds. The aluminum-stainless steel bonded specimens can be used to join aluminum and stainless steel by conventional welding. Welding close to the bond zone does not appear to affect the integrity of the bond. The extrusion bonding technique is covered by Canadian patent 702,438 January 26, 1965 and the hot press bonding technique by Canadian patent application 904,548 June 6, 1964. (author)

  15. Diffusionless bonding of aluminum to type 304 stainless steel

    International Nuclear Information System (INIS)

    Watson, R.D.

    1963-03-01

    High strength diffusionless bonds can be produced between 1S aluminum and oxidized 304 stainless steel by hot pressing and extrusion bonding. Both the hot pressing and extrusion bonding techniques have been developed to a point where consistently good bonds can be obtained. Although the bonding is performed at elevated temperatures (about 510 o C) a protective atmosphere is not required to produce strong bonds. The aluminum-stainless steel bonded specimens can be used to join aluminum and stainless steel by conventional welding. Welding close to the bond zone does not appear to affect the integrity of the bond. The extrusion bonding technique is covered by Canadian patent 702,438 January 26, 1965 and the hot press bonding technique by Canadian patent application 904,548 June 6, 1964. (author)

  16. Revisiting the constant growth angle: Estimation and verification via rigorous thermal modeling

    Science.gov (United States)

    Virozub, Alexander; Rasin, Igal G.; Brandon, Simon

    2008-12-01

    Methods for estimating growth angle ( θgr) values, based on the a posteriori analysis of directionally solidified material (e.g. drops) often involve assumptions of negligible gravitational effects as well as a planar solid/liquid interface during solidification. We relax both of these assumptions when using experimental drop shapes from the literature to estimate the relevant growth angles at the initial stages of solidification. Assumed to be constant, we use these values as input into a rigorous heat transfer and solidification model of the growth process. This model, which is shown to reproduce the experimental shape of a solidified sessile water drop using the literature value of θgr=0∘, yields excellent agreement with experimental profiles using our estimated values for silicon ( θgr=10∘) and germanium ( θgr=14.3∘) solidifying on an isotropic crystalline surface. The effect of gravity on the solidified drop shape is found to be significant in the case of germanium, suggesting that gravity should either be included in the analysis or that care should be taken that the relevant Bond number is truly small enough in each measurement. The planar solidification interface assumption is found to be unjustified. Although this issue is important when simulating the inflection point in the profile of the solidified water drop, there are indications that solidified drop shapes (at least in the case of silicon) may be fairly insensitive to the shape of this interface.

  17. Hong's grading for evaluating anterior chamber angle width.

    Science.gov (United States)

    Kim, Seok Hwan; Kang, Ja Heon; Park, Ki Ho; Hong, Chul

    2012-11-01

    To compare Hong's grading method with anterior segment optical coherence tomography (AS-OCT), gonioscopy, and the dark-room prone-position test (DRPT) for evaluating anterior chamber width. The anterior chamber angle was graded using Hong's grading method, and Hong's angle width was calculated from the arctangent of Hong's grades. The correlation between Hong's angle width and AS-OCT parameters was analyzed. The area under the receiver operating characteristic curve (AUC) for Hong's grading method when discriminating between narrow and open angles as determined by gonioscopy was calculated. Correlation analysis was performed between Hong's angle width and intraocular pressure (IOP) changes determined by DRPT. A total of 60 subjects were enrolled. Of these subjects, 53.5 % had a narrow angle. Hong's angle width correlated significantly with the AS-OCT parameters (r = 0.562-0.719, P < 0.01). A Bland-Altman plot showed relatively good agreement between Hong's angle width and the angle width obtained by AS-OCT. The ability of Hong's grading method to discriminate between open and narrow angles was good (AUC = 0.868, 95 % CI 0.756-0.942). A significant linear correlation was found between Hong's angle width and IOP change determined by DRPT (r = -0.761, P < 0.01). Hong's grading method is useful for detecting narrow angles. Hong's grading correlated well with AS-OCT parameters and DRPT.

  18. Conformational properties of oxazole-amino acids: effect of the intramolecular N-H···N hydrogen bond.

    Science.gov (United States)

    Siodłak, Dawid; Staś, Monika; Broda, Małgorzata A; Bujak, Maciej; Lis, Tadeusz

    2014-03-06

    Oxazole ring occurs in numerous natural peptides, but conformational properties of the amino acid residue containing the oxazole ring in place of the C-terminal amide bond are poorly recognized. A series of model compounds constituted by the oxazole-amino acids occurring in nature, that is, oxazole-alanine (L-Ala-Ozl), oxazole-dehydroalanine (ΔAla-Ozl), and oxazole-dehydrobutyrine ((Z)-ΔAbu-Ozl), was investigated using theoretical calculations supported by FTIR and NMR spectra and single-crystal X-ray diffraction. It was found that the main feature of the studied oxazole-amino acids is the stable conformation β2 with the torsion angles φ and ψ of -150°, -10° for L-Ala-Ozl, -180°, 0° for ΔAla-Ozl, and -120°, 0° for (Z)-ΔAbu-Ozl, respectively. The conformation β2 is stabilized by the intramolecular N-H···N hydrogen bond and predominates in the low polar environment. In the case of the oxazole-dehydroamino acids, the π-electron conjugation that is spread on the oxazole ring and C(α)═C(β) double bond is an additional stabilizing interaction. The tendency to adopt the conformation β2 clearly decreases with increasing the polarity of environment, but still the oxazole-dehydroamino acids are considered to be more rigid and resistant to conformational changes.

  19. Low-temperature wafer-level gold thermocompression bonding: modeling of flatness deviations and associated process optimization for high yield and tough bonds

    Science.gov (United States)

    Stamoulis, Konstantinos; Tsau, Christine H.; Spearing, S. Mark

    2005-01-01

    Wafer-level, thermocompression bonding is a promising technique for MEMS packaging. The quality of the bond is critically dependent on the interaction between flatness deviations, the gold film properties and the process parameters and tooling used to achieve the bonds. The effect of flatness deviations on the resulting bond is investigated in the current work. The strain energy release rate associated with the elastic deformation required to overcome wafer bow is calculated. A contact yield criterion is used to examine the pressure and temperature conditions required to flatten surface roughness asperities in order to achieve bonding over the full apparent area. The results are compared to experimental data of bond yield and toughness obtained from four-point bend delamination testing and microscopic observations of the fractured surfaces. Conclusions from the modeling and experiments indicate that wafer bow has negligible effect on determining the variability of bond quality and that the well-bonded area is increased with increasing bonding pressure. The enhanced understanding of the underlying deformation mechanisms allows for a better controlled trade-off between the bonding pressure and temperature.

  20. Progress in cold roll bonding of metals

    International Nuclear Information System (INIS)

    Li Long; Nagai, Kotobu; Yin Fuxing

    2008-01-01

    Layered composite materials have become an increasingly interesting topic in industrial development. Cold roll bonding (CRB), as a solid phase method of bonding same or different metals by rolling at room temperature, has been widely used in manufacturing large layered composite sheets and foils. In this paper, we provide a brief overview of a technology using layered composite materials produced by CRB and discuss the suitability of this technology in the fabrication of layered composite materials. The effects of process parameters on bonding, mainly including process and surface preparation conditions, have been analyzed. Bonding between two sheets can be realized when deformation reduction reaches a threshold value. However, it is essential to remove surface contamination layers to produce a satisfactory bond in CRB. It has been suggested that the degreasing and then scratch brushing of surfaces create a strong bonding between the layers. Bonding mechanisms, in which the film theory is expressed as the major mechanism in CRB, as well as bonding theoretical models, have also been reviewed. It has also been showed that it is easy for fcc structure metals to bond compared with bcc and hcp structure metals. In addition, hardness on bonding same metals plays an important part in CRB. Applications of composites produced by CRB in industrial fields are briefly reviewed and possible developments of CRB in the future are also described. Corrections were made to the abstract and conclusion of this article on 18 June 2008. The corrected electronic version is identical to the print version. (topical review)

  1. Contact angle hysteresis on superhydrophobic stripes.

    Science.gov (United States)

    Dubov, Alexander L; Mourran, Ahmed; Möller, Martin; Vinogradova, Olga I

    2014-08-21

    We study experimentally and discuss quantitatively the contact angle hysteresis on striped superhydrophobic surfaces as a function of a solid fraction, ϕS. It is shown that the receding regime is determined by a longitudinal sliding motion of the deformed contact line. Despite an anisotropy of the texture the receding contact angle remains isotropic, i.e., is practically the same in the longitudinal and transverse directions. The cosine of the receding angle grows nonlinearly with ϕS. To interpret this we develop a theoretical model, which shows that the value of the receding angle depends both on weak defects at smooth solid areas and on the strong defects due to the elastic energy of the deformed contact line, which scales as ϕS(2)lnϕS. The advancing contact angle was found to be anisotropic, except in a dilute regime, and its value is shown to be determined by the rolling motion of the drop. The cosine of the longitudinal advancing angle depends linearly on ϕS, but a satisfactory fit to the data can only be provided if we generalize the Cassie equation to account for weak defects. The cosine of the transverse advancing angle is much smaller and is maximized at ϕS ≃ 0.5. An explanation of its value can be obtained if we invoke an additional energy due to strong defects in this direction, which is shown to be caused by the adhesion of the drop on solid sectors and is proportional to ϕS(2). Finally, the contact angle hysteresis is found to be quite large and generally anisotropic, but it becomes isotropic when ϕS ≤ 0.2.

  2. Diffusion bonding in compact heat exchangers

    International Nuclear Information System (INIS)

    Southall, David

    2009-01-01

    Heatric's diffusion bonding process is a solid-state joining technology that produces strong, compact, all-metal heat exchanger cores. Diffusion bonding allows for a large quantity of joints to be made in geometries that would normally be inaccessible for conventional welding techniques. Since Heatric's diffusion bonding process uses no interlayer or braze alloy, the resulting heat exchanger core has consistent chemistry throughout and, under carefully controlled conditions, a return to parent metal strength can be reached. This paper will provide an overview of the diffusion bonding process and its origins, and also its application to compact heat exchanger construction. The paper will then discuss recent work that has been done to compare mechanical properties of Heatric's diffusion bonded material with material that has been conventionally welded, as well as with material tested in the as-received condition. (author)

  3. Shear strength of orthodontic bracket bonding with GIC bonding agent after the application of CPP-ACPF paste

    Directory of Open Access Journals (Sweden)

    Melisa Budipramana

    2013-03-01

    Full Text Available Background: White spot lesion is a major problem during fixed orthodontic treatment. This problem can be solved by minimizing white spot lesion before the treatment and using a fluoride-releasing bonding agent. The application of casein phosphopeptidesamorphous calcium phospate fluoride (CPP-ACPF paste as remineralization agent before treatment and GIC as orthodontic bonding agent is expected to overcome this problem as well as to strengthen GIC bonding. Purpose: To measure the shear strength of fix orthodontic appliance using GIC bonding with CPP-ACPF application prior treatment. Methods: In this study, 50 extracted premolars were randomly divided into 2 groups: group 1 as treatment group and group II as control group that was not given CPPACPF pretreatment. After having been cut and put into acrylic device, the samples in group I were given pretreatment with CPP-ACPF paste on enamel surface for 2 minutes twice a day as instructed in product label for 14 days. Orthodontic brackets were bonded with GIC bonding agent on all samples in both groups as instructed in product label. Then, the shear strength was measured by Autograph Shimatzu with crosshead speed 0.5 mm/minute. The data was analyzed with Independent t-test. Results: The mean shear bond strength in treatment group was 19.22 ± 4.04 MPa and in control group was 12.97 ± 3.97 MPa. Independent t-test analysis showed that there was a significant difference between treatment and control group (p<0.05. Conclusion: CPP-ACPF pretreatment could increase GIC orthodontic bonding shear strength.Latar belakang: Lesi putih karies merupakan masalah utama selama perawatan dengan peranti cekat ortodonti. Hal ini dapat diatasi dengan cara mengurangi lesi putih sebelum perawatan dengan menggunakan bahan bonding yang mengandung fluorida. Aplikasi pasta casein phosphopeptides-amorphous calcium phospate fluoride (CPP-ACPF sebagai bahan remineralisasi sebelum perawatan dan bahan bonding GIC diharapkan dapat

  4. Valuing Convertible Bonds Based on LSRQM Method

    Directory of Open Access Journals (Sweden)

    Jian Liu

    2014-01-01

    Full Text Available Convertible bonds are one of the essential financial products for corporate finance, while the pricing theory is the key problem to the theoretical research of convertible bonds. This paper demonstrates how to price convertible bonds with call and put provisions using Least-Squares Randomized Quasi-Monte Carlo (LSRQM method. We consider the financial market with stochastic interest rates and credit risk and present a detailed description on calculating steps of convertible bonds value. The empirical results show that the model fits well the market prices of convertible bonds in China’s market and the LSRQM method is effective.

  5. Green and social bonds - A promising tool

    International Nuclear Information System (INIS)

    Blanc, Dominique; Barochez, Aurelie de; Cozic, Aela

    2013-11-01

    Issues of green bonds, socially responsible bonds and climate bonds are on the rise. Novethic estimates that some Euro 5 billion in such bonds has been issued since the start of 2013 by development banks, the main issuers of this type of debt. The figure is equal to over half of their total issues since 2007. Including local authorities, corporations and banks, a total Euro 8 billion of these bonds has been issued thus far in 2013. Given the size of the bond market, which the OECD estimated at Euro 95,000 billion in 2011, green and social bonds are still something of a niche but have strong growth potential. A number of large issues, from Euro 500 million to Euro 1 billion, were announced at the end of the year. Unlike conventional bonds, green and social bonds are not intended to finance all the activities of the issuer or refinance its debt. They serve instead to finance specific projects, such as producing renewable energy or adapting to climate change, the risk of which is shouldered by the issuer. This makes them an innovative instrument, used to earmark investments in projects with a direct environmental or social benefit rather than simply on the basis of the issuer's sustainable development policy. With financing being sought for the ecological transition, green and social bonds are promising instruments, sketching out at global level the shape of tools adapted to the financing of a green economy. On the strength of these advantages, the interest of responsible investors - the main target of green and social bond issuers - is growing fast. Judging by issuer press releases and the most commonly used currencies, the main subscribers today are US investors, among them CalSTRS and fund managers like Calvert Investment Management and Trillium Asset Management. European asset owners are also starting to focus on green and social bonds. A Novethic survey shows that 13% of them have already subscribed to such an issue or plan to do so. The present study

  6. DETERMINANTS OF ORI001 TYPE GOVERNMENT BOND

    Directory of Open Access Journals (Sweden)

    Yosandi Yulius

    2011-09-01

    Full Text Available The need to build a strong bond market is amenable, especially after the 1997 crises. This paper analyzes the influence of deposit interest rate, foreign exchange rates, and Composite Stock Price Index on yield-to-maturity of Bond Series Retail ORI001, employing monthly data from Bloomberg information service, 2006(8 to 2008(12, using Generalized Autoregressive Conditional Heteroscedasticity type models. It finds the evidence that deposit interest rate and exchange rate have positive significant influence on the bond, and that stock index has a negative significant influence on the bond. It also finds that Deposit Interest Rate, exchange rate, and the stock index significantly influence the bond altogether.Keywords: Interest rate, exchange rate, composite stock price index, yield-to-maturity, bondJEL classification numbers: G12, G15

  7. Bond-Length Distortions in Strained Semiconductor Alloys

    International Nuclear Information System (INIS)

    Woicik, J.C.; Pellegrino, J.G.; Steiner, B.; Miyano, K.E.; Bompadre, S.G.; Sorensen, L.B.; Lee, T.; Khalid, S.

    1997-01-01

    Extended x-ray absorption fine structure measurements performed at In-K edge have resolved the outstanding issue of bond-length strain in semiconductor-alloy heterostructures. We determine the In-As bond length to be 2.581±0.004 Angstrom in a buried, 213 Angstrom thick Ga 0.78 In 0.22 As layer grown coherently on GaAs(001). This bond length corresponds to a strain-induced contraction of 0.015±0.004 Angstrom relative to the In-As bond length in bulk Ga 1-x In x As of the same composition; it is consistent with a simple model which assumes a uniform bond-length distortion in the epilayer despite the inequivalent In-As and Ga-As bond lengths. copyright 1997 The American Physical Society

  8. Comparison of axial lengths in occludable angle and angle-closure glaucoma-The Bhaktapur Glaucoma Study

    NARCIS (Netherlands)

    Thapa, S.S.; Paudyal, I.; Khanal, S.; Paudel, N.; van Rens, G.H.M.B.

    2011-01-01

    Purpose. To compare the anterior chamber depth (ACD) and axial length of eyes in a population-based sample among normal, occludable angle, and primary angle-closure glaucoma (PACG) groups. Methods. Totally, 3979 subjects from a population-based glaucoma prevalence study underwent complete ocular

  9. Effect of bond administration on construction project delivery

    Directory of Open Access Journals (Sweden)

    Oke Ayodeji Emmanuel

    2016-12-01

    Full Text Available Construction bond administration involves management of bond issues from inception of obtaining bond from guarantor to the point of release of contractor by the client. This process has posted a lot of challenges to construction stakeholders; it is therefore, necessary to examine the relationship between bond administration and project success. Archival data of completed bonded building projects were gathered through a pro forma developed for this purpose. Using Pearson product moment of correlation, it was revealed that the cost of securing a construction bond has a positive and significant effect on the initial and final costs of the project, while the number of days needed to secure a construction bond has no significant effect on the initial and final durations of the construction project. In order to establish the relationship between project delivery indices of cost and time and the construction bond administration variables, iteration of linear regression was adopted to arrive at the best-fit equation. Factors affecting the cost of securing construction bonds from guarantors should be identified and given adequate attention by construction stakeholders in order to minimize the effect of construction bond administration on project delivery.

  10. Aberration-corrected transmission electron microscopy analyses of GaAs/Si interfaces in wafer-bonded multi-junction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Häussler, Dietrich [Institute for Materials Science, Christian-Albrechts-University Kiel, Kaiserstraße 2, 24143 Kiel (Germany); Houben, Lothar [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Research Centre Juelich GmbH, 52425 Juelich (Germany); Essig, Stephanie [Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstraße 2, 79110 Freiburg (Germany); Kurttepeli, Mert [Institute for Materials Science, Christian-Albrechts-University Kiel, Kaiserstraße 2, 24143 Kiel (Germany); Dimroth, Frank [Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstraße 2, 79110 Freiburg (Germany); Dunin-Borkowski, Rafal E. [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Research Centre Juelich GmbH, 52425 Juelich (Germany); Jäger, Wolfgang, E-mail: wolfgang.jaeger@tf.uni-kiel.de [Institute for Materials Science, Christian-Albrechts-University Kiel, Kaiserstraße 2, 24143 Kiel (Germany)

    2013-11-15

    Aberration-corrected scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS) investigations have been applied to investigate the structure and composition fluctuations near interfaces in wafer-bonded multi-junction solar cells. Multi-junction solar cells are of particular interest since efficiencies well above 40% have been obtained for concentrator solar cells which are based on III-V compound semiconductors. In this methodologically oriented investigation, we explore the potential of combining aberration-corrected high-angle annular dark-field STEM imaging (HAADF-STEM) with spectroscopic techniques, such as EELS and energy-dispersive X-ray spectroscopy (EDXS), and with high-resolution transmission electron microscopy (HR-TEM), in order to analyze the effects of fast atom beam (FAB) and ion beam bombardment (IB) activation treatments on the structure and composition of bonding interfaces of wafer-bonded solar cells on Si substrates. Investigations using STEM/EELS are able to measure quantitatively and with high precision the widths and the fluctuations in element distributions within amorphous interface layers of nanometer extensions, including those of light elements. Such measurements allow the control of the activation treatments and thus support assessing electrical conductivity phenomena connected with impurity and dopant distributions near interfaces for optimized performance of the solar cells. - Highlights: • Aberration-corrected TEM and EELS reveal structural and elemental profiles across GaAs/Si bond interfaces in wafer-bonded GaInP/GaAs/Si - multi-junction solar cells. • Fluctuations in elemental concentration in nanometer-thick amorphous interface layers, including the disrubutions of light elements, are measured using EELS. • The projected widths of the interface layers are determined on the atomic scale from STEM-HAADF measurements. • The effects of atom and ion beam activation treatment on the bonding

  11. Why are Hydrogen Bonds Directional?

    Indian Academy of Sciences (India)

    century and most chemists appear to think of 'chemi- cal bond' as ..... These complexes, in their global min- ima, have ... taneously act as hydrogen bond donor and acceptor displaying ... also has a local minimum, which is linear and similar to.

  12. Modified angle's classification for primary dentition

    Directory of Open Access Journals (Sweden)

    Kaushik Narendra Chandranee

    2017-01-01

    Full Text Available Aim: This study aims to propose a modification of Angle's classification for primary dentition and to assess its applicability in children from Central India, Nagpur. Methods: Modification in Angle's classification has been proposed for application in primary dentition. Small roman numbers i/ii/iii are used for primary dentition notation to represent Angle's Class I/II/III molar relationships as in permanent dentition, respectively. To assess applicability of modified Angle's classification a cross-sectional preschool 2000 children population from central India; 3–6 years of age residing in Nagpur metropolitan city of Maharashtra state were selected randomly as per the inclusion and exclusion criteria. Results: Majority 93.35% children were found to have bilateral Class i followed by 2.5% bilateral Class ii and 0.2% bilateral half cusp Class iii molar relationships as per the modified Angle's classification for primary dentition. About 3.75% children had various combinations of Class ii relationships and 0.2% children were having Class iii subdivision relationship. Conclusions: Modification of Angle's classification for application in primary dentition has been proposed. A cross-sectional investigation using new classification revealed various 6.25% Class ii and 0.4% Class iii molar relationships cases in preschool children population in a metropolitan city of Nagpur. Application of the modified Angle's classification to other population groups is warranted to validate its routine application in clinical pediatric dentistry.

  13. Oxidation study on as-bonded intermetallic of copper wire–aluminum bond pad metallization for electronic microchip

    International Nuclear Information System (INIS)

    Joseph Sahaya Anand, T.; Yau, Chua Kok; Huat, Lim Boon

    2012-01-01

    In this work, influence of Copper free air ball (FAB) oxidation towards Intermetallic Compound (IMC) at Copper wire–Aluminum bond pad metallization (Cu/Al) is studied. Samples are synthesized with different Copper FAB oxidation condition by turning Forming Gas supply ON and OFF. Studies are performed using Optical Microscope (OM), Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM) and line-scan Energy Dispersive X-ray (EDX). SEM result shows there is a cross-sectional position offset from center in sample synthesized with Forming Gas OFF. This is due to difficulty of determining the position of cross-section in manual grinding/polishing process and high occurrence rate of golf-clubbed shape of oxidized Copper ball bond. TEM inspection reveals that the Copper ball bond on sample synthesized with Forming Gas OFF is having intermediate oxidation. Besides, the presence of IMC at the bonding interface of Cu/Al for both samples is seen. TEM study shows voids form at the bonding interface of Forming Gas ON sample belongs to unbonded area; while that in Forming Gas OFF sample is due to volume shrinkage of IMC growth. Line-scan EDX shows the phases present in the interfaces of as-bonded samples are Al 4 Cu 9 (∼3 nm) for sample with Forming Gas ON and mixed CuAl and CuAl 2 (∼15 nm) for sample with Forming Gas OFF. Thicker IMC in sample with Forming Gas OFF is due to cross-section is positioned at high stress area that is close to edge of ball bond. Mechanical ball shear test shows that shear strength of sample with Forming Gas OFF is about 19% lower than that of sample with Forming Gas ON. Interface temperature is estimated at 437 °C for as-bonded sample with Forming Gas ON by using empirical parabolic law of volume diffusion. -- Highlights: ► 3 nm Al 4 Cu 9 are found in sample prepared with Forming Gas ON. ► 15 nm mixed CuAl + CuAl 2 are found in sample prepared with Forming Gas OFF. ► Voids are present at the bonding interfaces of both

  14. Oxidation study on as-bonded intermetallic of copper wire-aluminum bond pad metallization for electronic microchip

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Sahaya Anand, T., E-mail: anand@utem.edu.my [Faculty of Manufacturing Engineering, University Technical Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka (Malaysia); Yau, Chua Kok [Faculty of Manufacturing Engineering, University Technical Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka (Malaysia); University of Technical Malaysia Supported by Infineon Technology - Malaysia - Sdn. Bhd., Melaka (Malaysia); Huat, Lim Boon [Department of Innovation, Infineon Technology - Malaysia - Sdn. Bhd., FTZ Batu Berendam, 75350 Melaka (Malaysia)

    2012-10-15

    In this work, influence of Copper free air ball (FAB) oxidation towards Intermetallic Compound (IMC) at Copper wire-Aluminum bond pad metallization (Cu/Al) is studied. Samples are synthesized with different Copper FAB oxidation condition by turning Forming Gas supply ON and OFF. Studies are performed using Optical Microscope (OM), Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM) and line-scan Energy Dispersive X-ray (EDX). SEM result shows there is a cross-sectional position offset from center in sample synthesized with Forming Gas OFF. This is due to difficulty of determining the position of cross-section in manual grinding/polishing process and high occurrence rate of golf-clubbed shape of oxidized Copper ball bond. TEM inspection reveals that the Copper ball bond on sample synthesized with Forming Gas OFF is having intermediate oxidation. Besides, the presence of IMC at the bonding interface of Cu/Al for both samples is seen. TEM study shows voids form at the bonding interface of Forming Gas ON sample belongs to unbonded area; while that in Forming Gas OFF sample is due to volume shrinkage of IMC growth. Line-scan EDX shows the phases present in the interfaces of as-bonded samples are Al{sub 4}Cu{sub 9} ({approx}3 nm) for sample with Forming Gas ON and mixed CuAl and CuAl{sub 2} ({approx}15 nm) for sample with Forming Gas OFF. Thicker IMC in sample with Forming Gas OFF is due to cross-section is positioned at high stress area that is close to edge of ball bond. Mechanical ball shear test shows that shear strength of sample with Forming Gas OFF is about 19% lower than that of sample with Forming Gas ON. Interface temperature is estimated at 437 Degree-Sign C for as-bonded sample with Forming Gas ON by using empirical parabolic law of volume diffusion. -- Highlights: Black-Right-Pointing-Pointer 3 nm Al{sub 4}Cu{sub 9} are found in sample prepared with Forming Gas ON. Black-Right-Pointing-Pointer 15 nm mixed CuAl + CuAl{sub 2} are found

  15. Effect of laser peripheral iridotomy on anterior chamber angle anatomy in primary angle closure spectrum eyes

    Science.gov (United States)

    Kansara, Seema; Blieden, Lauren S.; Chuang, Alice Z.; Baker, Laura A.; Bell, Nicholas P.; Mankiewicz, Kimberly A.; Feldman, Robert M.

    2015-01-01

    Purpose To evaluate the change in trabecular-iris circumference volume (TICV) after laser peripheral iridotomy (LPI) in primary angle closure (PAC) spectrum eyes Patients and Methods Forty-two chronic PAC spectrum eyes from 24 patients were enrolled. Eyes with anterior chamber abnormalities affecting angle measurement were excluded. Intraocular pressure, slit lamp exam, and gonioscopy were recorded at each visit. Anterior segment optical coherence tomography (ASOCT) with 3D mode angle analysis scans were taken with the CASIA SS-1000 (Tomey Corp., Nagoya, Japan) before and after LPI. Forty-two pre-LPI ASOCT scans and 34 post-LPI ASOCT scans were analyzed using the Anterior Chamber Analysis and Interpretation (ACAI, Houston, TX) software. A mixed-effect model analysis was used to compare the trabecular-iris space area (TISA) changes among 4 quadrants, as well as to identify potential factors affecting TICV. Results There was a significant increase in all average angle parameters after LPI (TISA500, TISA750, TICV500, and TICV750). The magnitude of change in TISA500 in the superior angle was significantly less than the other angles. The changes in TICV500 and TICV750 were not associated with any demographic or ocular characteristics. Conclusion TICV is a useful parameter to quantitatively measure the effectiveness of LPI in the treatment of eyes with PAC spectrum disease. PMID:26066504

  16. Using Digital Technology to See Angles from Different Angles. Part 2: Openings and Turns

    Science.gov (United States)

    Host, Erin; Baynham, Emily; McMaster, Heather

    2015-01-01

    Ever wondered how to use technology to teach angles? This article follows on from an earlier article published last year, providing a range of ideas for integrating technology and concrete materials with the teaching of angle concepts. The authors also provide a comprehensive list of free online games and learning objects that can be used to teach…

  17. Hydrogen bond donor–acceptor–donor organocatalysis for conjugate addition of benzylidene barbiturates via complementary DAD– ADA hydrogen bonding

    NARCIS (Netherlands)

    Leung, King-Chi; Cui, Jian-Fang; Hui, Tsz-Wai; Zhou, Zhong-Yuan; Wong, Man-Kin

    2014-01-01

    A new class of hydrogen bond donor-acceptor-donor (HB-DAD) organocatalysts has been developed for conjugate addition of benzylidene barbiturates. HB-DAD organocatalyst 1a (featuring para-chloro-pyrimidine as the hydrogen bond acceptor (HBA), N-H as the hydrogen bond donor (HBD) and a trifluoroacetyl

  18. Effects of tacky mat contamination on bond degradation for Chemlok/liner and NBR/liner bonds

    Science.gov (United States)

    Padilla, A. M.

    1989-01-01

    Tacky mats are placed by the rubber lay-up areas for the solid rocket motor segments. These mats dust off the shoes prior to entering the platform where the lay-up work is performed. The possibility exists that a tacky mat could be touched with gloved hands prior to handling the uncured nitride butadiene rubber (NBR). Tests were run to determine if NBR were accidentally touched would there be any degradation of the liner/NBR bond. The tacky mats were judged solely on the basis of bond degradation caused by either direct or indirect contamination. Test results all indicate that there was no notable NBR/Chemlok or liner/NBR bond degradation on samples that came into contact with the tacky mat material. Testing procedures are described. The tacky mat adhesive composition does not contain fluorocarbons or release agents that would affect bonding.

  19. Symmetric bi-pyridyl banana-shaped molecule and its intermolecular hydrogen bonding liquid-crystalline complexes

    Science.gov (United States)

    Sui, Dan; Hou, Qiufei; Chai, Jia; Ye, Ling; Zhao, Liyan; Li, Min; Jiang, Shimei

    2008-11-01

    A new symmetric bi-pyridyl banana-shaped molecule 1,3-phenylene diisonicotinate (PDI) was designed and synthesized. Its molecular structure was confirmed by FTIR, Elemental analysis and 1H NMR. X-ray crystallographic study reveals that there is an angle of approximate 118° among the centroids of the three rings (pyridyl-phenyl-pyridyl) in each PDI molecule indicating a desired banana shape. In addition, a series of liquid crystal complexes nBA:PDI:nBA induced by intermolecular hydrogen bonding between PDI (proton acceptor) and 4-alkoxybenzoic acids (nBA, proton donor) were synthesized and characterized. The mesomorphism properties and optical textures of the complex of nBA:PDI:nBA were investigated by differential scanning calorimetry, polarizing optical microscope and X-ray diffraction.

  20. Dynamic breaking of a single gold bond

    DEFF Research Database (Denmark)

    Pobelov, Ilya V.; Lauritzen, Kasper Primdal; Yoshida, Koji

    2017-01-01

    While one might assume that the force to break a chemical bond gives a measure of the bond strength, this intuition is misleading. If the force is loaded slowly, thermal fluctuations may break the bond before it is maximally stretched, and the breaking force will be less than the bond can sustain...... of a single Au-Au bond and show that the breaking force is dependent on the loading rate. We probe the temperature and structural dependencies of breaking and suggest that the paradox can be explained by fast breaking of atomic wires and slow breaking of point contacts giving very similar breaking forces....

  1. Hydrogen bonding in tight environments

    DEFF Research Database (Denmark)

    Pirrotta, Alessandro; Solomon, Gemma C.; Franco, Ignacio

    2016-01-01

    The single-molecule force spectroscopy of a prototypical class of hydrogen-bonded complexes is computationally investigated. The complexes consist of derivatives of a barbituric acid and a Hamilton receptor that can form up to six simultaneous hydrogen bonds. The force-extension (F-L) isotherms...... of the host-guest complexes are simulated using classical molecular dynamics and the MM3 force field, for which a refined set of hydrogen bond parameters was developed from MP2 ab initio computations. The F-L curves exhibit peaks that signal conformational changes during elongation, the most prominent...... of which is in the 60-180 pN range and corresponds to the force required to break the hydrogen bonds. These peaks in the F-L curves are shown to be sensitive to relatively small changes in the chemical structure of the host molecule. Thermodynamic insights into the supramolecular assembly were obtained...

  2. Variable angle asymmetric cut monochromator

    International Nuclear Information System (INIS)

    Smither, R.K.; Fernandez, P.B.

    1993-09-01

    A variable incident angle, asymmetric cut, double crystal monochromator was tested for use on beamlines at the Advanced Photon Source (APS). For both undulator and wiggler beams the monochromator can expand area of footprint of beam on surface of the crystals to 50 times the area of incident beam; this will reduce the slope errors by a factor of 2500. The asymmetric cut allows one to increase the acceptance angle for incident radiation and obtain a better match to the opening angle of the incident beam. This can increase intensity of the diffracted beam by a factor of 2 to 5 and can make the beam more monochromatic, as well. The monochromator consists of two matched, asymmetric cut (18 degrees), silicon crystals mounted so that they can be rotated about three independent axes. Rotation around the first axis controls the Bragg angle. The second rotation axis is perpendicular to the diffraction planes and controls the increase of the area of the footprint of the beam on the crystal surface. Rotation around the third axis controls the angle between the surface of the crystal and the wider, horizontal axis for the beam and can make the footprint a rectangle with a minimum. length for this area. The asymmetric cut is 18 degrees for the matched pair of crystals, which allows one to expand the footprint area by a factor of 50 for Bragg angles up to 19.15 degrees (6 keV for Si[111] planes). This monochromator, with proper cooling, will be useful for analyzing the high intensity x-ray beams produced by both undulators and wigglers at the APS

  3. Angle measurement with laser feedback instrument.

    Science.gov (United States)

    Chen, Wenxue; Zhang, Shulian; Long, Xingwu

    2013-04-08

    An instrument for angle measurement based on laser feedback has been designed. The measurement technique is based on the principle that when a wave plate placed into a feedback cavity rotates, its phase retardation varies. Phase retardation is a function of the rotating angle of the wave plate. Hence, the angle can be converted to phase retardation. The phase retardation is measured at certain characteristic points identified in the laser outputting curve that are then modulated by laser feedback. The angle of a rotating object can be measured if it is connected to the wave plate. The main advantages of this instrument are: high resolution, compact, flexible, low cost, effective power, and fast response.

  4. Gonioscopy in primary angle closure glaucoma.

    Science.gov (United States)

    Bruno, Christina A; Alward, Wallace L M

    2002-06-01

    Primary angle closure is a condition characterized by obstruction to aqueous humor outflow by the peripheral iris, and results in changes in the iridocorneal angle that are visible through gonioscopic examination. Gonioscopy in these eyes, however, can be difficult. This chapter discusses techniques that might help in the examination. These include beginning the examination with the inferior angle, methods to help in looking over the iris, cycloplegia, locating the corneal wedge, indentation, van Herick estimation, examining the other eye, and topical glycerin. Finally, there is a discussion about the pathology associated with the closed angle, with emphasis on the appearance of iris bombé, plateau iris, and the distinction between iris processes and peripheral anterior synechiae.

  5. Contact angle distribution of particles at fluid interfaces.

    Science.gov (United States)

    Snoeyink, Craig; Barman, Sourav; Christopher, Gordon F

    2015-01-27

    Recent measurements have implied a distribution of interfacially adsorbed particles' contact angles; however, it has been impossible to measure statistically significant numbers for these contact angles noninvasively in situ. Using a new microscopy method that allows nanometer-scale resolution of particle's 3D positions on an interface, we have measured the contact angles for thousands of latex particles at an oil/water interface. Furthermore, these measurements are dynamic, allowing the observation of the particle contact angle with high temporal resolution, resulting in hundreds of thousands of individual contact angle measurements. The contact angle has been found to fit a normal distribution with a standard deviation of 19.3°, which is much larger than previously recorded. Furthermore, the technique used allows the effect of measurement error, constrained interfacial diffusion, and particle property variation on the contact angle distribution to be individually evaluated. Because of the ability to measure the contact angle noninvasively, the results provide previously unobtainable, unique data on the dynamics and distribution of the adsorbed particles' contact angle.

  6. Real space in situ bond energies: toward a consistent energetic definition of bond strength.

    Science.gov (United States)

    Menéndez-Crespo, Daniel; Costales, Aurora; Francisco, Evelio; Martin Pendas, Angel

    2018-04-14

    A rigorous definition of intrinsic bond strength based on the partitioning of a molecule into real space fragments is presented. Using the domains provided by the quantum theory of atoms in molecules (QTAIM) together with the interacting quantum atoms (IQA) energetic decomposition, we show how an in situ bond strength, matching all the requirements of an intrinsic bond energy, can be defined between each pair of fragments. Total atomization or fragmentation energies are shown to be equal to the sum of these in situ bond energies (ISBEs) if the energies of the fragments are measured with respect to their in-the-molecule state. These energies usually lie above the ground state of the isolated fragments by quantities identified with the standard fragment relaxation or deformation energies, which are also provided by the protocol. Deformation energies bridge dissociation energies with ISBEs, and can be dissected using well-known tools of real space theories of chemical bonding. Similarly, ISBEs can be partitioned into ionic and covalent contributions, and this feature adds to the chemical appeal of the procedure. All the energetic quantities examined are observable and amenable, in principle, to experimental determination. Several systems, exemplifying the role of each energetic term herein presented are used to show the power of the approach. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Microtensile bond strength of silorane-based composite specific adhesive system using different bonding strategies

    Directory of Open Access Journals (Sweden)

    Laura AlveBastos

    2015-02-01

    Full Text Available Objectives The aim of this study was to evaluate the effect of pre-etching on the bond strength of silorane-based composite specific adhesive system to dentin. Materials and Methods Thirty human molars were randomly divided into 5 groups according to the different bonding strategies. For teeth restored with silorane-based composite (Filtek Silorane, 3M ESPE, the specific self-etching adhesive system (Adhesive System P90, 3M ESPE was used with and without pre-etching (Pre-etching/Silorane and Silorane groups. Teeth restored with methacrylate based-composite (Filtek Z250, 3M ESPE were hybridized with the two-step self-etching system (Clearfil SE Bond, Kuraray, with and without pre-etching (Pre-etching/Methacrylate and Methacrylate groups, or three-step adhesive system (Adper Scotchbond Multi-Purpose, 3M ESPE (Three-step/Methacrylate group (n = 6. The restored teeth were sectioned into stick-shaped test specimens (1.0 × 1.0 mm, and coupled to a universal test machine (0.5 mm/min to perform microtensile testing. Results Pre-etching/Methacrylate group presented the highest bond strength values, with significant difference from Silorane and Three-step/Methacrylate groups (p < 0.05. However, it was not significantly different from Preetching/Silorane and Methacrylate groups. Conclusions Pre-etching increased bond strength of silorane-based composite specific adhesive system to dentin.

  8. The Nature of the Idealized Triple Bonds Between Principal Elements and the σ Origins of Trans-Bent Geometries-A Valence Bond Study.

    Science.gov (United States)

    Ploshnik, Elina; Danovich, David; Hiberty, Philippe C; Shaik, Sason

    2011-04-12

    We describe herein a valence bond (VB) study of 27 triply bonded molecules of the general type X≡Y, where X and Y are main element atoms/fragments from groups 13-15 in the periodic table. The following conclusions were derived from the computational data: (a) Single π-bond and double π-bond energies for the entire set correlate with the "molecular electronegativity", which is the sum of the X and Y electronegativites for X≡Y. The correlation with the molecular electronegativity establishes a simple rule of periodicity: π-bonding strength generally increases from left to right in a period and decreases down a column in the periodic table. (b) The σ frame invariably prefers trans bending, while π-bonding gets destabilized and opposes the trans distortion. In HC≡CH, the π-bonding destabilization overrides the propensity of the σ frame to distort, while in the higher row molecules, the σ frame wins out and establishes trans-bent molecules with 2(1)/2 bonds, in accord with recent experimental evidence based on solid state (29)Si NMR of the Sekiguchi compound. Thus, in the trans-bent molecules "less bonds pay more". (c) All of the π bonds show significant bonding contributions from the resonance energy due to covalent-ionic mixing. This quantity is shown to correlate linearly with the corresponding "molecular electronegativity" and to reflect the mechanism required to satisfy the equilibrium condition for the bond. The π bonds for molecules possessing high molecular electronegativity are charge-shift bonds, wherein bonding is dominated by the resonance energy of the covalent and ionic forms, rather than by either form by itself.

  9. Measurements of relative chemical shift tensor orientations in solid-state NMR: new slow magic angle spinning dipolar recoupling experiments.

    Science.gov (United States)

    Jurd, Andrew P S; Titman, Jeremy J

    2009-08-28

    Solid-state NMR experiments can be used to determine conformational parameters, such as interatomic distances and torsion angles. The latter can be obtained from measurements of the relative orientation of two chemical shift tensors, if the orientation of these with respect to the surrounding bonds is known. In this paper, a new rotor-synchronized magic angle spinning (MAS) dipolar correlation experiment is described which can be used in this way. Because the experiment requires slow MAS rates, a novel recoupling sequence, designed using symmetry principles, is incorporated into the mixing period. This recoupling sequence is based in turn on a new composite cyclic pulse referred to as COAST (for combined offset and anisotropy stabilization). The new COAST-C7(2)(1) sequence is shown to give good theoretical and experimental recoupling efficiency, even when the CSA far exceeds the MAS rate. In this regime, previous recoupling sequences, such as POST-C7(2)(1), exhibit poor recoupling performance. The effectiveness of the new method has been explored by a study of the dipeptide L-phenylalanyl-L-phenylalanine.

  10. The Effect of Phosphoric Acid Pre-etching Times on Bonding Performance and Surface Free Energy with Single-step Self-etch Adhesives.

    Science.gov (United States)

    Tsujimoto, A; Barkmeier, W W; Takamizawa, T; Latta, M A; Miyazaki, M

    2016-01-01

    The purpose of this study was to evaluate the effect of phosphoric acid pre-etching times on shear bond strength (SBS) and surface free energy (SFE) with single-step self-etch adhesives. The three single-step self-etch adhesives used were: 1) Scotchbond Universal Adhesive (3M ESPE), 2) Clearfil tri-S Bond (Kuraray Noritake Dental), and 3) G-Bond Plus (GC). Two no pre-etching groups, 1) untreated enamel and 2) enamel surfaces after ultrasonic cleaning with distilled water for 30 seconds to remove the smear layer, were prepared. There were four pre-etching groups: 1) enamel surfaces were pre-etched with phosphoric acid (Etchant, 3M ESPE) for 3 seconds, 2) enamel surfaces were pre-etched for 5 seconds, 3) enamel surfaces were pre-etched for 10 seconds, and 4) enamel surfaces were pre-etched for 15 seconds. Resin composite was bonded to the treated enamel surface to determine SBS. The SFEs of treated enamel surfaces were determined by measuring the contact angles of three test liquids. Scanning electron microscopy was used to examine the enamel surfaces and enamel-adhesive interface. The specimens with phosphoric acid pre-etching showed significantly higher SBS and SFEs than the specimens without phosphoric acid pre-etching regardless of the adhesive system used. SBS and SFEs did not increase for phosphoric acid pre-etching times over 3 seconds. There were no significant differences in SBS and SFEs between the specimens with and without a smear layer. The data suggest that phosphoric acid pre-etching of ground enamel improves the bonding performance of single-step self-etch adhesives, but these bonding properties do not increase for phosphoric acid pre-etching times over 3 seconds.

  11. 75 FR 39730 - Tribal Economic Development Bonds

    Science.gov (United States)

    2010-07-12

    ... DEPARTMENT OF THE TREASURY Tribal Economic Development Bonds AGENCY: Department of the Treasury... (``Treasury'') seeks comments from Indian Tribal Governments regarding the Tribal Economic Development Bond... governments, known as ``Tribal Economic Development Bonds,'' under Section 7871(f) of the Internal Revenue...

  12. 48 CFR 228.105 - Other types of bonds.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Other types of bonds. 228..., DEPARTMENT OF DEFENSE GENERAL CONTRACTING REQUIREMENTS BONDS AND INSURANCE Bonds 228.105 Other types of bonds... surety company are desired. [70 FR 8538, Feb. 22, 2005] ...

  13. Enamel and dentin bond strength following gaseous ozone application.

    Science.gov (United States)

    Cadenaro, Milena; Delise, Chiara; Antoniollo, Francesca; Navarra, Ottavia Chiara; Di Lenarda, Roberto; Breschi, Lorenzo

    2009-08-01

    To evaluate the effects of gaseous ozone application on enamel and dentin bond strength produced by two self-etching adhesive systems. The shear bond strength test was conducted to assess adhesion on enamel (protocol 1), while the microtensile bond strength test was performed on dentin (protocol 2). Protocol 1: 96 bovine incisors were randomly divided into 4 groups, and enamel surfaces were bonded in accordance with the following treatments: (1E) ozone + Clearfil Protect Bond; (2E) Clearfil Protect Bond (control); (3E) ozone + Xeno III; (4E) Xeno III (control). Ozone gas was applied for 80 s. Shear bond strength was measured with a universal testing machine. Protocol 2: 40 noncarious human molars were selected. Middle/deep dentin was exposed and bonded in accordance with the following treatments: (1D) ozone+Clearfil Protect Bond; (2D) Clearfil Protect Bond (control); (3D) ozone+Xeno III (4D) Xeno III (control). Four-mm-thick buildups were built on the adhesives, then specimens were sectioned in accordance with the nontrimming technique. Specimens were stressed until failure occurred, and failure modes were analyzed. Shear bond and microtensile bond strength data were analyzed using two-way ANOVA and Tukey's post-hoc test. No statistical differences were found between ozone treated specimens and controls, neither on enamel nor on dentin irrespective of the tested adhesive. Clearfil Protect Bond showed higher bond strength to enamel than Xeno III, irrespective of the ozone treatment (p enamel and dentin bond strength.

  14. Zinc and resin bonded NdFeB magnets

    International Nuclear Information System (INIS)

    Leonowicz, M.; Kaszuwara, W.

    2002-01-01

    Zinc and resin bonded NdFeB magnets were processed. Basic magnetic parameters as well as compressive strength were evaluated versus annealing temperature and volume fraction of the bonding agent. For the zinc bonded magnets phase composition was investigated. The additional NdZn 5 phase was found in the Zn bonded magnets after annealing. Comparison of the Zn and resin bonded magnets reveals higher remanence for the former and higher coercivity for the latter. For the Zn and resin bonded magnets, 15 wt.% Zn / 370 o C and 7-10 wt.% resin were chosen as the optimal processing parameters. (author)

  15. Destination bonding: Hybrid cognition using Instagram

    Directory of Open Access Journals (Sweden)

    Arup Kumar Baksi

    2015-01-01

    Full Text Available Empirical research has identified the phenomenon of destination bonding as a result of summated physical and emotional values associated with the destination. Physical values, namely natural landscape & other physical settings and emotional values, namely the enculturation processes, have a significant role to play in portraying visitors’ cognitive framework for destination preference. The physical values seemed to be the stimulator for bonding that embodies action or behavior tendencies in imagery. The emotional values were the conditions that lead to affective bonding and are reflected in attitudes for a place which were evident in text narratives. Social networking on virtual platforms offers the scope for hybrid cognitive expression using imagery and text to the visitors. Instagram has emerged as an application-window to capture these hybrid cognitions of visitors. This study focuses on assessing the relationship between hybrid cognition of visitors expressed via Instagram and their bond with the destination. Further to this, the study attempts to examine the impact of hybrid cognition of visitors on the behavioral pattern of prospective visitors to the destination. The study revealed that sharing of visual imageries and related text by the visitors is an expression of the physico-emotional bonding with the destination. It was further established that hybrid cognition strongly asserts destination bonding and has been also found to have moderating impact on the link between destination bonding and electronic-word-of-mouth.

  16. Ring magnet firing angle control

    International Nuclear Information System (INIS)

    Knott, M.J.; Lewis, L.G.; Rabe, H.H.

    1975-01-01

    A device is provided for controlling the firing angles of thyratrons (rectifiers) in a ring magnet power supply. A phase lock loop develops a smooth ac signal of frequency equal to and in phase with the frequency of the voltage wave developed by the main generator of the power supply. A counter that counts from zero to a particular number each cycle of the main generator voltage wave is synchronized with the smooth AC signal of the phase lock loop. Gates compare the number in the counter with predetermined desired firing angles for each thyratron and with coincidence the proper thyratron is fired at the predetermined firing angle

  17. Development of HIP bonding procedure and mechanical properties of HIP bonded joints for reduced activation ferritic steel F-82H

    International Nuclear Information System (INIS)

    Oda, Masahiro; Kurasawa, Toshimasa; Kuroda, Toshimasa; Hatano, Toshihisa; Takatsu, Hideyuki

    1997-03-01

    Structural materials of blanket components in fusion DEMO reactors will receive a neutron wall load more than 3-5MW/m 2 as well as exposed by surface heat flux more than 0.5MW/m 2 . A reduced activation ferritic steel F-82H has been developed by JAERI in collaboration with NKK from viewpoints of resistance for high temperature and neutron loads and lower radioactivity. This study intends to obtain basic performance of F-82H to establish the fabrication procedure of the first wall and blanket box by using Hot Isostatic Pressing (HIP) bonding. Before HIP bonding tests, effects of heat treatment temperature and surface roughness on mechanical properties of joints were investigated in the heat treatment tests and diffusion bonding tests, respectively. From these results, the optimum HIP bonding conditions and the post heat treatment were selected. Using these conditions, the HIP bonding tests were carried out to evaluate HIP bondability and to obtain mechanical properties of the joints. Sufficient HIP bonding performance was obtained under the temperature of 1040degC, the compressive stress of 150MPa, the holding time of 2h, and the surface roughness ∼μ m. Mechanical properties of HIP bonded joints with these conditions were similar to those of as-received base metal. An oxide formation on the surface to be bonded would need to be avoided for sufficient bonding. The bonding ratio, Charpy impact value and fatigue performance of the joints strongly depended on the HIP conditions, especially temperature, while micro-structure, Vickers hardness and tensile properties had little dependence on the HIP temperature. The surface roughness strongly affected the bonding ratio and would be required to be in the level of a few μ m. In the HIP bonding test of the welded material, the once-melted surface could be jointed by the HIP bonding under the above-mentioned procedure. (J.P.N.)

  18. Variable-flip-angle spin-echo imaging (VFSE)

    International Nuclear Information System (INIS)

    Kasai, Toshifumi; Sugimura, Kazuro; Kawamitsu, Hideaki; Yasui, Kiyoshi; Ishida, Tetsuya; Tsukamoto, Tetsuji.

    1990-01-01

    T 2 weighted imaging provides images with high object contrast for pathologic conditions in which the water content of tissues is increased. The authors predicted theoretical analysis of the effects of changing flip angle, and analyzed the effects in MR imaging of both phantoms and humans. Variable flip angle spin echo MR imaging (VFSE) with a 1,000/80 (repetition time msec/echo time msec) can obtain T 2 weighted image when flip angle is smaller than 80 degrees. VFSE with 40 to 60 degrees flip angle have higher contrast than other flip angle images. Signal to noise ratio (S/N) of VFSE are 55% at a 30 degree, 76% at a 45 degree, 92% at a 60 degree respectively as compared with conventional spin echo image (2000/80, flip angle 90 degree). VFSE is applicable to obtain T 2 weighted image reduced imaging time. (author)

  19. A thermodynamic model of contact angle hysteresis.

    Science.gov (United States)

    Makkonen, Lasse

    2017-08-14

    When a three-phase contact line moves along a solid surface, the contact angle no longer corresponds to the static equilibrium angle but is larger when the liquid is advancing and smaller when the liquid is receding. The difference between the advancing and receding contact angles, i.e., the contact angle hysteresis, is of paramount importance in wetting and capillarity. For example, it determines the magnitude of the external force that is required to make a drop slide on a solid surface. Until now, fundamental origin of the contact angle hysteresis has been controversial. Here, this origin is revealed and a quantitative theory is derived. The theory is corroborated by the available experimental data for a large number of solid-liquid combinations. The theory is applied in modelling the contact angle hysteresis on a textured surface, and these results are also in quantitative agreement with the experimental data.

  20. Efficacy of microtensile versus microshear bond testing for evaluation of bond strength of dental adhesive systems to enamel

    NARCIS (Netherlands)

    El Zohairy, A.A.; Saber, M.H.; Abdalla, A.I.; Feilzer, A.J.

    2010-01-01

    Objective The aim of the study was to evaluate the efficacy of the microtensile bond test (μTBS) and the microshear bond test (μSBS) in ranking four dental adhesives according to bond strength to enamel and identify the modes of failure involved. Materials and methods Forty-four caries-free human

  1. Solar cell angle of incidence corrections

    Science.gov (United States)

    Burger, Dale R.; Mueller, Robert L.

    1995-01-01

    Literature on solar array angle of incidence corrections was found to be sparse and contained no tabular data for support. This lack along with recent data on 27 GaAs/Ge 4 cm by 4 cm cells initiated the analysis presented in this paper. The literature cites seven possible contributors to angle of incidence effects: cosine, optical front surface, edge, shadowing, UV degradation, particulate soiling, and background color. Only the first three are covered in this paper due to lack of sufficient data. The cosine correction is commonly used but is not sufficient when the incident angle is large. Fresnel reflection calculations require knowledge of the index of refraction of the coverglass front surface. The absolute index of refraction for the coverglass front surface was not known nor was it measured due to lack of funds. However, a value for the index of refraction was obtained by examining how the prediction errors varied with different assumed indices and selecting the best fit to the set of measured values. Corrections using front surface Fresnel reflection along with the cosine correction give very good predictive results when compared to measured data, except there is a definite trend away from predicted values at the larger incident angles. This trend could be related to edge effects and is illustrated by a use of a box plot of the errors and by plotting the deviation of the mean against incidence angle. The trend is for larger deviations at larger incidence angles and there may be a fourth order effect involved in the trend. A chi-squared test was used to determine if the measurement errors were normally distributed. At 10 degrees the chi-squared test failed, probably due to the very small numbers involved or a bias from the measurement procedure. All other angles showed a good fit to the normal distribution with increasing goodness-of-fit as the angles increased which reinforces the very small numbers hypothesis. The contributed data only went to 65 degrees

  2. Water and saliva contamination effect on shear bond strength of brackets bonded with a moisture-tolerant light cure system.

    Science.gov (United States)

    Vicente, Ascensión; Mena, Ana; Ortiz, Antonio José; Bravo, Luis Alberto

    2009-01-01

    To evaluate the effects of water and saliva contamination on shear bond strength of brackets bonded with a moisture-tolerant light cure system. Brackets were bonded to 240 bovine lower incisors divided into 12 groups. Four bonding procedures were evaluated, including (1) TSEP/Transbond XT, (2) TMIP/ Transbond XT, (3) TSEP/Transbond PLUS, and (4) TMIP/Transbond PLUS, each under three different bonding conditions: without contamination, with water contamination, and with saliva contamination. Shear bond strength was measured with a universal testing machine. The adhesive remnant on the teeth was quantified with the use of image analyzing equipment. Without contamination, bond strengths for the four procedures were similar (P > .05). TSEP/Tranbond PLUS and TMIP/Transbond PLUS left significantly less adhesive on the teeth after debonding than TSEP/Transbond XT and TMIP/Transbond XT (P .017), although for TMIP/ Transbond XT, both variables showed significant reductions after contamination (P < .017). TSEP/Transbond PLUS, TMIP/Transbond PLUS, and TSEP/Transbond XT showed greater tolerance to wet conditions than was shown by TMIP/Transbond XT.

  3. The Influence of Face Angle and Club Path on the Resultant Launch Angle of a Golf Ball

    Directory of Open Access Journals (Sweden)

    Paul Wood

    2018-02-01

    Full Text Available A two-part experimental study was conducted in order to better understand how the delivered face angle and club path of a golf club influences the initial launch direction of a golf ball for various club types. A robust understanding of how these parameters influence the ball direction has implications for both coaches and club designers. The first study used a large sample of golfers hitting shots with different clubs. Initial ball direction was measured with a Foresight Sports camera system, while club delivery parameters were recorded with a Vicon motion capture system. The second study used a golf robot and Vision Research camera to measure club and ball parameters. Results from these experiments show that the launch direction fell closer to face angle than club path. The percent toward the face angle ranged from 61% to 83%, where 100% designates a launch angle entirely toward the face angle.

  4. Roll bonding of strained aluminium

    DEFF Research Database (Denmark)

    Staun, Jakob M.

    2003-01-01

    This report investigates roll bonding of pre-strained (å ~ 4) aluminium sheets to produce high strain material from high purity aluminium (99.996%) and commercial pure aluminium (99.6%). The degree of bonding is investigated by optical microscopy and ultrasonic scanning. Under the right...... of the cross rolled volume fraction is found. To further asses this effect, and the anisotropy, it is necessary to acquire knowledge about both texture and microstructure, e.g. by TEM. Roll bonding of pre-strained aluminium is found to be a possible alternative to ARB in the quest for ultra-fine grained...

  5. Adsorption site and structure determination of c(2x2) N{sub 2}/Ni(100) using angle-resolved photoemission extended fine structure

    Energy Technology Data Exchange (ETDEWEB)

    Moler, E.J.; Kellar, S.A.; Huff, W.R.A. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    The authors have determined the atomic spatial structure of c(2x2) N2Ni(100) with Angle-Resolved Photoemission Extended Fine Structure (ARPEFS) from the nitrogen 1s core level using monochromatized x-rays from beamline 6.1 at SSRL and beamline 9.3.2 at the ALS. The chemically shifted N 1s peak intensities were summed together to obtain ARPEFS curves for both nitrogen atoms in the molecule. They used a new, highly-optimized program based on the Rehr-Albers scattering matrix formalism to find the adsorption site and to quantitatively determine the bond-lengths. The nitrogen molecule stands upright at an atop site, with a N-Ni bond length of 2.25(1) {angstrom}, a N-N bond length of 1.10(7) {angstrom}, and a first layer Ni-Ni spacing of 1.76(4) {angstrom}. The shake-up peak shows an identical ARPEFS diffraction pattern, confirming its intrinsic nature and supporting a previous use of this feature to decompose the peak into contributions from the chemically inequivalent nitrogen atoms. Comparison to a previously published theoretical treatment of N-N-Ni and experimental structures of analogous adsorbate systems demonstrates the importance of adsorbate-adsorbate interactions in weakly chemisorbed systems.

  6. Composite Laser Ceramics by Advanced Bonding Technology

    Science.gov (United States)

    Kamimura, Tomosumi; Honda, Sawao

    2018-01-01

    Composites obtained by bonding materials with the same crystal structure and different chemical compositions can create new functions that do not exist in conventional concepts. We have succeeded in bonding polycrystalline YAG and Nd:YAG ceramics without any interstices at the bonding interface, and the bonding state of this composite was at the atomic level, similar to the grain boundary structure in ceramics. The mechanical strength of the bonded composite reached 278 MPa, which was not less than the strength of each host material (269 and 255 MPa). Thermal conductivity of the composite was 12.3 W/mK (theoretical value) which is intermediate between the thermal conductivities of YAG and Nd:YAG (14.1 and 10.2 W/mK, respectively). Light scattering cannot be detected at the bonding interface of the ceramic composite by laser tomography. Since the scattering coefficients of the monolithic material and the composite material formed by bonding up to 15 layers of the same materials were both 0.10%/cm, there was no occurrence of light scattering due to the bonding. In addition, it was not detected that the optical distortion and non-uniformity of the refractive index variation were caused by the bonding. An excitation light source (LD = 808 nm) was collimated to 200 μm and irradiated into a commercial 1% Nd:YAG single crystal, but fracture damage occurred at a low damage threshold of 80 kW/cm2. On the other hand, the same test was conducted on the bonded interface of 1% Nd:YAG-YAG composite ceramics fabricated in this study, but it was not damaged until the excitation density reached 127 kW/cm2. 0.6% Nd:YAG-YAG composite ceramics showed high damage resistance (up to 223 kW/cm2). It was concluded that composites formed by bonding polycrystalline ceramics are ideal in terms of thermo-mechanical and optical properties. PMID:29425152

  7. Composite Laser Ceramics by Advanced Bonding Technology.

    Science.gov (United States)

    Ikesue, Akio; Aung, Yan Lin; Kamimura, Tomosumi; Honda, Sawao; Iwamoto, Yuji

    2018-02-09

    Composites obtained by bonding materials with the same crystal structure and different chemical compositions can create new functions that do not exist in conventional concepts. We have succeeded in bonding polycrystalline YAG and Nd:YAG ceramics without any interstices at the bonding interface, and the bonding state of this composite was at the atomic level, similar to the grain boundary structure in ceramics. The mechanical strength of the bonded composite reached 278 MPa, which was not less than the strength of each host material (269 and 255 MPa). Thermal conductivity of the composite was 12.3 W/mK (theoretical value) which is intermediate between the thermal conductivities of YAG and Nd:YAG (14.1 and 10.2 W/mK, respectively). Light scattering cannot be detected at the bonding interface of the ceramic composite by laser tomography. Since the scattering coefficients of the monolithic material and the composite material formed by bonding up to 15 layers of the same materials were both 0.10%/cm, there was no occurrence of light scattering due to the bonding. In addition, it was not detected that the optical distortion and non-uniformity of the refractive index variation were caused by the bonding. An excitation light source (LD = 808 nm) was collimated to 200 μm and irradiated into a commercial 1% Nd:YAG single crystal, but fracture damage occurred at a low damage threshold of 80 kW/cm². On the other hand, the same test was conducted on the bonded interface of 1% Nd:YAG-YAG composite ceramics fabricated in this study, but it was not damaged until the excitation density reached 127 kW/cm². 0.6% Nd:YAG-YAG composite ceramics showed high damage resistance (up to 223 kW/cm²). It was concluded that composites formed by bonding polycrystalline ceramics are ideal in terms of thermo-mechanical and optical properties.

  8. Handbook of wafer bonding

    CERN Document Server

    Ramm, Peter; Taklo, Maaike M V

    2011-01-01

    Written by an author and editor team from microsystems companies and industry-near research organizations, this handbook and reference presents dependable, first-hand information on bonding technologies.In the first part, researchers from companies and institutions around the world discuss the most reliable and reproducible technologies for the production of bonded wafers. The second part is devoted to current and emerging applications, including microresonators, biosensors and precise measuring devices.

  9. About counterintuitive orbital mixing and bond populations

    International Nuclear Information System (INIS)

    Jorge, F.E.; Giambiagi, M.; Giambiagi, M.S. de

    1983-01-01

    It is shown that negative bond and orbital populations may be avoided by the introduction of a weight factor in a bond index definition, together with a suitable parameterization. The negative bond populations found for first-row metal complexes need not be ascribed to counterintuitive orbital mixing but rather, essentially, to the equipartition of the charge distribution. Different definitions of the bond population are compared for ferrocene and the effects of some parameterizations are discussed. (Author) [pt

  10. Bond graph modeling of centrifugal compression systems

    OpenAIRE

    Uddin, Nur; Gravdahl, Jan Tommy

    2015-01-01

    A novel approach to model unsteady fluid dynamics in a compressor network by using a bond graph is presented. The model is intended in particular for compressor control system development. First, we develop a bond graph model of a single compression system. Bond graph modeling offers a different perspective to previous work by modeling the compression system based on energy flow instead of fluid dynamics. Analyzing the bond graph model explains the energy flow during compressor surge. Two pri...

  11. 1 mil gold bond wire study.

    Energy Technology Data Exchange (ETDEWEB)

    Huff, Johnathon; McLean, Michael B.; Jenkins, Mark W.; Rutherford, Brian Milne

    2013-05-01

    In microcircuit fabrication, the diameter and length of a bond wire have been shown to both affect the current versus fusing time ratio of a bond wire as well as the gap length of the fused wire. This study investigated the impact of current level on the time-to-open and gap length of 1 mil by 60 mil gold bond wires. During the experiments, constant current was provided for a control set of bond wires for 250ms, 410ms and until the wire fused; non-destructively pull-tested wires for 250ms; and notched wires. The key findings were that as the current increases, the gap length increases and 73% of the bond wires will fuse at 1.8A, and 100% of the wires fuse at 1.9A within 60ms. Due to the limited scope of experiments and limited data analyzed, further investigation is encouraged to confirm these observations.

  12. Effect of strain path on microstructure, deformation texture and mechanical properties of nano/ultrafine grained AA1050 processed by accumulative roll bonding (ARB)

    Energy Technology Data Exchange (ETDEWEB)

    Naseri, M.; Reihanian, M. [Department of Materials Science and Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz (Iran, Islamic Republic of); Borhani, E., E-mail: e.borhani@semnan.ac.ir [Department of Nano Technology, Nano Materials Group, Semnan University, Semnan (Iran, Islamic Republic of)

    2016-09-15

    Commercial pure Al sheets were severe plastically deformed at room temperature by accumulative roll bonding (ARB) and cross accumulative roll bonding (CARB). Change in strain path was imposed during CARB by rotating the sheets with 90° around the normal direction axis between each cycle. Microstructural evolution of processed sheets was studied by electron back scattered diffraction (EBSD) analysis and revealed that nano/ultrafine grains (NG/UFG) with the average grain size of 380 nm and 155 nm were formed by both processing routes after eight cycles, respectively. The fraction of high angle grain boundaries and mean misorientation angle of the boundaries in the CARB were 49% and 40.20°, respectively, in comparison to that of ARB sample (41% and 37.37°). Deformation texture evolution demonstrated that the change in strain path leads to the formation of strong orientation along the β-fiber. The major texture components for ARB specimens were Brass {011}<211> and S {123}<634> while those for CARB were Brass {011}<211> and Goss {011}<100>. The CARB processed specimen exhibited the tensile strength, microhardness and elongation of about 230 MPa, 92 HV and 13% compared with ARB sample (180 MPa, 80 HV and 10.5%) after eight cycles. Scanning electron microscopy (SEM) observations of tensile fracture surface of specimens revealed ductile type fracture.

  13. Strength of Bond Covenants and Bond Assessment Framework

    Directory of Open Access Journals (Sweden)

    Noel Yahanpath

    2012-06-01

    Full Text Available We examine bond covenants of 29 New Zealand bond issues between 2001 and 2007.Results from the study indicate that protection provided for bondholders is weak and limited.On average, only 2-3 types of covenants are embedded with the issues and only 27% of thesecovenants provide full protection to the bondholders. However, bondholders are not compensated for taking the additional risk. We propose an alternative assessment framework that directly assesses the level of protection offered to bondholders. We calculate thecovenant quality score for the issues and classify them into four levels of protection: very high protection, moderate, low and very low. Recent legislative changes will go some way towards improving investor protection and confidence, but the effect is yet to be seen. This proposed scoring framework can be used by potential investors to complement the traditional credit ratings when making their investment decisions.

  14. Decomposing European bond and equity volatility

    OpenAIRE

    Christiansen, Charlotte

    2004-01-01

    The paper investigates volatility spillover from US and aggregate European asset markets into European national asset markets. A main contribution is that bond and equity volatilities are analyzed simultaneously. A new model belonging to the "volatilityspillover" family is suggested: The conditional variance of e.g. the unexpected German stock return is divided into separate effects from the contemporaneous idiosyncratic variance of US bonds, US stocks, European bonds, European stocks, German...

  15. Measurements of the microwave spectrum, Re-H bond length, and Re quadrupole coupling for HRe(CO)5

    Science.gov (United States)

    Kukolich, Stephen G.; Sickafoose, Shane M.

    1993-11-01

    Rotational transition frequencies for rhenium pentacarbonyl hydride were measured in the 4-10 GHz range using a Flygare-Balle type microwave spectrometer. The rotational constants and Re nuclear quadrupole coupling constants for the four isotopomers, (1) H187Re(CO)5, (2) H185Re(CO)5, (3) D187Re(CO)5, and (4) D185Re(CO)5, were obtained from the spectra. For the most common isotopomer, B(1)=818.5464(2) MHz and eq Q(187Re)=-900.13(3) MHz. The Re-H bond length (r0) determined by fitting the rotational constants is 1.80(1) Å. Although the Re atom is located at a site of near-octahedral symmetry, the quadrupole coupling is large due to the large Re nuclear moments. A 2.7% increase in Re quadrupole coupling was observed for D-substituted isotopomers, giving a rather large isotope effect on the quadrupole coupling. The Cax-Re-Ceq angle is 96(1)°, when all Re-C-O angles are constrained to 180°.

  16. A gallery approach for off-angle iris recognition

    Science.gov (United States)

    Karakaya, Mahmut; Yoldash, Rashiduddin; Boehnen, Christopher

    2015-05-01

    It has been proven that hamming distance score between frontal and off-angle iris images of same eye differs in iris recognition system. The distinction of hamming distance score is caused by many factors such as image acquisition angle, occlusion, pupil dilation, and limbus effect. In this paper, we first study the effect of the angle variations between iris plane and the image acquisition systems. We present how hamming distance changes for different off-angle iris images even if they are coming from the same iris. We observe that increment in acquisition angle of compared iris images causes the increment in hamming distance. Second, we propose a new technique in off-angle iris recognition system that includes creating a gallery of different off-angle iris images (such as, 0, 10, 20, 30, 40, and 50 degrees) and comparing each probe image with these gallery images. We will show the accuracy of the gallery approach for off-angle iris recognition.

  17. Distance criterion for hydrogen bond

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Distance criterion for hydrogen bond. In a D-H ...A contact, the D...A distance must be less than the sum of van der Waals Radii of the D and A atoms, for it to be a hydrogen bond.

  18. Anomalous H/D isotope effect in hydrogen bonded systems: H-bonded cyclic structures and transfers of protons

    International Nuclear Information System (INIS)

    Marechal, Y.

    1993-01-01

    The systematic H/D substitution is a precious tool to obtain information on the dynamics of H-bonds. It is particularly useful in IR spectroscopy where H-bonds are at the origin of particularly intense and specific bands and where the particularly great value for the m D /m H ratio ensures strongly marked effects. In most H-bonded systems the effects of these substitutions are normal, in the sense that they are at the origin of bands having intensities, centers (of intensity) and widths smaller in D-bonds by a factor close to √2 as compared to H-bonds. In some systems as carboxylic acid dimers, however, anomalous ratios of intensities are found upon such a substitution. Their origin is still obscure. Experimental results suggest that such anomalous ratios have much to do with the cyclic structure of these systems. It leads to stressing an important property of H-bonded cyclic structures which is that they seem necessary for having transfers of protons between molecules through H-bonds in a neutral aqueous medium (p H =7) at room temperature. The mechanism of such transfers of protons is still poorly known, but these transfers are now suspected to play a fundamental role in such widespread reactions as hydrolysis, peptide synthesis, etc... which may make them soon appear as being a crucial basic mechanism for reactivity of aqueous systems, particularly biological systems

  19. An Angle Criterion for Riesz Bases

    DEFF Research Database (Denmark)

    Lindner, Alexander M; Bittner, B.

    1999-01-01

    We present a characterization of Riesz bases in terms ofthe angles between certain finite dimensional subspaces. Correlationsbetween the bounds of the Riesz basis and the size of the angles arederived....

  20. Hydrogen Bonds and Life in the Universe

    Directory of Open Access Journals (Sweden)

    Giovanni Vladilo

    2018-01-01

    Full Text Available The scientific community is allocating more and more resources to space missions and astronomical observations dedicated to the search for life beyond Earth. This experimental endeavor needs to be backed by a theoretical framework aimed at defining universal criteria for the existence of life. With this aim in mind, we have explored which chemical and physical properties should be expected for life possibly different from the terrestrial one, but similarly sustained by genetic and catalytic molecules. We show that functional molecules performing genetic and catalytic tasks must feature a hierarchy of chemical interactions operating in distinct energy bands. Of all known chemical bonds and forces, only hydrogen bonds are able to mediate the directional interactions of lower energy that are needed for the operation of genetic and catalytic tasks. For this reason and because of the unique quantum properties of hydrogen bonding, the functional molecules involved in life processes are predicted to have extensive hydrogen-bonding capabilities. A molecular medium generating a hydrogen-bond network is probably essential to support the activity of the functional molecules. These hydrogen-bond requirements constrain the viability of hypothetical biochemistries alternative to the terrestrial one, provide thermal limits to life molecular processes, and offer a conceptual framework to define a transition from a “covalent-bond stage” to a “hydrogen-bond stage” in prebiotic chemistry.

  1. Hydrogen Bonds and Life in the Universe

    Science.gov (United States)

    2018-01-01

    The scientific community is allocating more and more resources to space missions and astronomical observations dedicated to the search for life beyond Earth. This experimental endeavor needs to be backed by a theoretical framework aimed at defining universal criteria for the existence of life. With this aim in mind, we have explored which chemical and physical properties should be expected for life possibly different from the terrestrial one, but similarly sustained by genetic and catalytic molecules. We show that functional molecules performing genetic and catalytic tasks must feature a hierarchy of chemical interactions operating in distinct energy bands. Of all known chemical bonds and forces, only hydrogen bonds are able to mediate the directional interactions of lower energy that are needed for the operation of genetic and catalytic tasks. For this reason and because of the unique quantum properties of hydrogen bonding, the functional molecules involved in life processes are predicted to have extensive hydrogen-bonding capabilities. A molecular medium generating a hydrogen-bond network is probably essential to support the activity of the functional molecules. These hydrogen-bond requirements constrain the viability of hypothetical biochemistries alternative to the terrestrial one, provide thermal limits to life molecular processes, and offer a conceptual framework to define a transition from a “covalent-bond stage” to a “hydrogen-bond stage” in prebiotic chemistry. PMID:29301382

  2. Hydrogen Bonds and Life in the Universe.

    Science.gov (United States)

    Vladilo, Giovanni; Hassanali, Ali

    2018-01-03

    The scientific community is allocating more and more resources to space missions and astronomical observations dedicated to the search for life beyond Earth. This experimental endeavor needs to be backed by a theoretical framework aimed at defining universal criteria for the existence of life. With this aim in mind, we have explored which chemical and physical properties should be expected for life possibly different from the terrestrial one, but similarly sustained by genetic and catalytic molecules. We show that functional molecules performing genetic and catalytic tasks must feature a hierarchy of chemical interactions operating in distinct energy bands. Of all known chemical bonds and forces, only hydrogen bonds are able to mediate the directional interactions of lower energy that are needed for the operation of genetic and catalytic tasks. For this reason and because of the unique quantum properties of hydrogen bonding, the functional molecules involved in life processes are predicted to have extensive hydrogen-bonding capabilities. A molecular medium generating a hydrogen-bond network is probably essential to support the activity of the functional molecules. These hydrogen-bond requirements constrain the viability of hypothetical biochemistries alternative to the terrestrial one, provide thermal limits to life molecular processes, and offer a conceptual framework to define a transition from a "covalent-bond stage" to a "hydrogen-bond stage" in prebiotic chemistry.

  3. Goniodysgenesis in familial primary open-angle glaucoma

    NARCIS (Netherlands)

    Verbraak, F. D.; vd Berg, W.; Delleman, J. W.; Greve, E. L.

    1994-01-01

    Results of a pilot study to evaluate goniodysgenesis as a cause of familial open-angle glaucoma are reported. Patients with a familial high tension open-angle glaucoma and a goniodysgenetic chamber angle (n = 11), a number of their relatives with glaucoma (n = 12), and their relatives without

  4. Adhesives for orthodontic bracket bonding

    Directory of Open Access Journals (Sweden)

    Déborah Daniella Diniz Fonseca

    2010-04-01

    Full Text Available The advent of acid etching, introduced by Buonocore in 1955, brought the possibility of bonding between the bracket base and enamel, contributing to more esthetic and conservative orthodontics. This direct bracket bonding technique has brought benefits such as reduced cost and time in performing the treatment, as well as making it easier to perform oral hygiene. The aim of this study was to conduct a survey of published studies on orthodontic bracket bonding to dental enamel. It was verified that resin composites and glass ionomer are the most studied and researched materials for this purpose. Resin-modified glass ionomer, with its biocompatibility, capacity of releasing fluoride and no need for acid etching on the tooth structure, has become increasingly popular among dentists. However, due to the esthetic and mechanical properties of light polymerizable resin composite, it continues to be one of the adhesives of choice in the bracket bonding technique and its use is widely disseminated.

  5. The hydrogen bond between N-H or O-H and organic fluorine: favourable yes, competitive no.

    Science.gov (United States)

    Taylor, Robin

    2017-06-01

    A study was made of X-H...F-C interactions (X = N or O) in small-molecule crystal structures. It was primarily based on 6728 structures containing X-H and C-F and no atom heavier than chlorine. Of the 28 451 C-F moieties in these structures, 1051 interact with X-H groups. However, over three-quarters of these interactions are either the weaker components of bifurcated hydrogen bonds (so likely to be incidental contacts) or occur in structures where there is a clear insufficiency of good hydrogen-bond acceptors such as oxygen, nitrogen or halide. In structures where good acceptors are entirely absent, there is about a 2 in 3 chance that a given X-H group will donate to fluorine. Viable alternatives are X-H...π hydrogen bonds (especially to electron-rich aromatics) and dihydrogen bonds. The average H...F distances of X-H...F-C interactions are significantly shorter for CR 3 F (R = C or H) and Csp 2 -F acceptors than for CRF 3 . The X-H...F angle distribution is consistent with a weak energetic preference for linearity, but that of H...F-C suggests a flat energy profile in the range 100-180°. X-H...F-C interactions are more likely when the acceptor is Csp 2 -F or CR 3 F, and when the donor is C-NH 2 . They also occur significantly more often in structures containing tertiary alcohols or solvent molecules, or with Z' > 1, i.e. when there may be unusual packing problems. It is extremely rare to find X-H...F-C interactions in structures where there are several unused good acceptors. When it does happen, there is often a clear reason, e.g. awkwardly shaped molecules whose packing isolates a donor group from the good acceptors.

  6. Double hydrogen bonded ferroelectric liquid crystals: A study of field induced transition (FiT)

    Science.gov (United States)

    Vijayakumar, V. N.; Madhu Mohan, M. L. N.

    2009-12-01

    A novel series of chiral hydrogen bonded liquid crystals have been isolated. Hydrogen bond was formed between chiral nonmesogen ingredient levo tartaric acid and mesogenic p-n-alkoxybenzoic acids. Phase diagram was constructed from the transition temperatures obtained by DSC and polarizing optical microscopic (POM) studies. Thermal and electrical properties exhibited by three complexes namely LTA+8BA, LTA+7BA and LTA+5BA were discussed. Salient feature of the present work was the observation of a reentrant smectic ordering in LTA+8BA complex designated as C r∗ phase. This reentrant phenomenon was confirmed by DSC thermograms, optical textures of POM and temperature variation of capacitance and dielectric loss studies. Tilt angle was measured in smectic C ∗ and reentrant smectic C r∗ phases. Another interesting feature of the present investigation was the observation of a field induced transition (FiT) in the LTA+ nBA homologous series. Three threshold field values were noticed which give rise to two new phases (E 1 and E 2) induced by electric field and on further enhancement of the applied field the mesogen behaves like an optical shutter. FiT is reversible in the sense that when applied field is removed the original texture was restored.

  7. Fracture surface analysis in composite and titanium bonding: Part 1: Titanium bonding

    Science.gov (United States)

    Sanderson, K. A.; Wightman, J. P.

    1985-01-01

    Fractured lap shear Ti 6-4 adherends bonded with polyphenyquinoxaline (PPQ) and polysulfone were analyzed. The effects of adherend pretreatment, stress level, thermal aging, anodizing voltage, and modified adhesive of Ti 6-4 adherend bonded with PPQ on lap shear strength were studied. The effect of adherend pretreatment on lap shear strength was investigated for PS samples. Results of scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) used to study the surface topography and surface composition are also discussed.

  8. Comparison of shear bond strength of orthodontic brackets bonded using two different hydrophilic primers: An in vitro study

    Directory of Open Access Journals (Sweden)

    M Kumaraswamy Anand

    2014-01-01

    Full Text Available Context: Salivary control and maintenance of a dry operating field is a prime requisite of orthodontic bonding. Moisture insensitive primer (MIP with a clinical significant bond strength values have a better edge over the conventional hydrophobic bonding systems. Aim: The aim of this study is to investigate the effectiveness of two hydrophilic primers with respect to conventional hydrophobic primer by comparing their shear bond strength (SBS and adhesive-failure locations after contamination with saliva and saliva substitute. Materials and Methods: A total of 150 extracted human premolars were randomly divided into five group s ; Group A (Transbond MIP/saliva substitute, Group B (Opal Primo/saliva substitute, Group C (Transbond MIP/natural saliva, Group D (Opal Primo/natural saliva, control group - Group E (Transbond XT/dry, adhesive-Transbond XT used for all five groups and bonded using stainless steel brackets. Shear forces were applied to the samples with a universal testing machine. SBSs was measured in megapascals. The mode of bond failure was determined using the adhesive remnant index (ARI. Results: The mean SBS produced by Transbond MIP was higher than Opal Primo, which was statistically significant according to one-way analysis of variance. Both the tested groups showed lesser bond strength values than Transbond XT (the control. ARI scores revealed that there was no statistically significant difference in the site of bond failure between study groups. ARI scores were found to be lower for study groups suggesting adhesive failure, compared to higher ARI scores for the control group suggesting cohesive failure. Conclusion: Transbond XT adhesive with Transbond MIP or Opal Primo have clinically acceptable bond strength in wet fields. Opal Primo is a viable option to use as a hydrophilic primer clinically.

  9. Shear bond strength of two 2-step etch-and-rinse adhesives when bonding ceramic brackets to bovine enamel.

    Science.gov (United States)

    Godard, Marion; Deuve, Benjamin; Lopez, Isabelle; Hippolyte, Marie-Pascale; Barthélemi, Stéphane

    2017-09-01

    The present study assessed a fracture analysis and compared the shear bond strength (SBS) of two 2-step etch-and-rinse (E&R) adhesives when bonding ceramic orthodontic brackets to bovine enamel. Thirty healthy bovine mandibular incisors were selected and were equally and randomly assigned to 2 experimental groups. Ceramic brackets (FLI Signature Clear ® , RMO) were bonded onto bovine enamel using an adhesive system. In group 1 (n=15), the conventional E&R adhesive (OrthoSolo ® +Enlight ® , Ormco) was used, and in group 2 (n=15), the new E&R adhesive limited to ceramic bracket bonding (FLI ceramic adhesive ® : FLI sealant resin ® +FLI adhesive paste ® , RMO) was used. In order to obtain appropriate enamel surfaces, the vestibular surfaces of mandibular bovine incisors were flat ground. After bonding, all the samples were stored in distilled water at room temperature for 21 days and subsequently tested for SBS, using the Instron ® universal testing machine. The Adhesive Remnant Index (ARI) scores were evaluated. Failure modes were assessed using optical microscopy at magnification ×40. A statistic data analysis was performed using the Mann-Whitney U-test (Penamel/adhesive interface. A statistically significant difference was found for the ARI scores between the two groups (P=0.00996). Only two fractured brackets, which remained bonded onto the bovine enamel, were reported. Both occurred in group 1. When bonded to ceramic brackets, FLI ceramic adhesive ® (RMO) was demonstrated to be very predictable and safe for clinical application in enamel bonding, whereas the results obtained with the conventional adhesive system (OrthoSolo ® +Enlight ® , Ormco) were less reproducible and revealed slightly excessive shear bond strength values. Copyright © 2017 CEO. Published by Elsevier Masson SAS. All rights reserved.

  10. Bonding silicon nitride using glass-ceramic

    International Nuclear Information System (INIS)

    Dobedoe, R.S.

    1995-01-01

    Silicon nitride has been successfully bonded to itself using magnesium-aluminosilicate glass and glass-ceramic. For some samples, bonding was achieved using a diffusion bonder, but in other instances, following an initial degassing hold, higher temperatures were used in a nitrogen atmosphere with no applied load. For diffusion bonding, a small applied pressure at a temperature below which crystallisation occurs resulted in intimate contact. At slightly higher temperatures, the extent of the reaction at the interface and the microstructure of the glass-ceramic joint was highly sensitive to the bonding temperature. Bonding in a nitrogen atmosphere resulted in a solution-reprecipitation reaction. A thin layer of glass produced a ''dry'', glass-free joint, whilst a thicker layer resulted in a continuous glassy join across the interface. The chromium silicide impurities within the silicon nitride react with the nucleating agent in the glass ceramic, which may lead to difficulty in producing a fine glass-ceramic microstructure. Slightly lower temperatures in nitrogen resulted in a polycrystalline join but the interfacial contact was poor. It is hoped that one of the bonds produced may be developed to eventually form part of a graded joint between silicon nitride and a high temperature nickel alloy. (orig.)

  11. Bond financing for renewable energy in Asia

    International Nuclear Information System (INIS)

    Ng, Thiam Hee; Tao, Jacqueline Yujia

    2016-01-01

    Addressing the financing gap for renewable energy (RE) projects in Asia is critical to ensure that the rapidly increasing energy needs could be met sustainably. This paper explores the cause of the financing gap in Asia and proposes the use of bond financing to address the financing gap. Specifically, three fixed income instruments, namely local currency denominated (LCY) corporate bonds, asset backed project bonds and financial green bonds, will be assessed. Whilst the potential for these three instruments to mobilize large flows of private sector financing is great, key supportive policies aimed at reducing the capital market bias for conventional power generation technologies and supportive RE policies are required. Another key aspect would be the necessary deepening of local and regional fixed income markets before such capital market instruments are able to play a big role. - Highlights: •This study looks at the current financing gap and RE financing landscape in developing Asia. •LCY corporate bonds, asset backed projects bonds and financial green bonds could help to address the financing gap for RE in the region. •Policy recommendations for building the fixed income market for RE projects are provided.

  12. Protection of MOS capacitors during anodic bonding

    Science.gov (United States)

    Schjølberg-Henriksen, K.; Plaza, J. A.; Rafí, J. M.; Esteve, J.; Campabadal, F.; Santander, J.; Jensen, G. U.; Hanneborg, A.

    2002-07-01

    We have investigated the electrical damage by anodic bonding on CMOS-quality gate oxide and methods to prevent this damage. n-type and p-type MOS capacitors were characterized by quasi-static and high-frequency CV-curves before and after anodic bonding. Capacitors that were bonded to a Pyrex wafer with 10 μm deep cavities enclosing the capacitors exhibited increased leakage current and interface trap density after bonding. Two different methods were successful in protecting the capacitors from such damage. Our first approach was to increase the cavity depth from 10 μm to 50 μm, thus reducing the electric field across the gate oxide during bonding from approximately 2 × 105 V cm-1 to 4 × 104 V cm-1. The second protection method was to coat the inside of a 10 μm deep Pyrex glass cavity with aluminium, forming a Faraday cage that removed the electric field across the cavity during anodic bonding. Both methods resulted in capacitors with decreased interface trap density and unchanged leakage current after bonding. No change in effective oxide charge or mobile ion contamination was observed on any of the capacitors in the study.

  13. Research on recognition of ramp angle based on transducer

    Directory of Open Access Journals (Sweden)

    Wenhao GU

    2015-12-01

    Full Text Available Focusing on the recognition of ramp angle, the relationship between the signal of vehicle transducer and real ramp angle is studied. The force change of vehicle on the ramp, and the relationship between the body tilt angle and front and rear suspension scale is discussed. According to the suspension and tire deformation, error angle of the ramp angle is deduced. A mathematical model is established with Matlab/Simulink and used for simulation to generate error curve of ramp angle. The results show that the error angle increases with the increasing of the ramp angle, and the limit value can reach 6.5%, while the identification method can effectively eliminate this error, and enhance the accuracy of ramp angle recognition.

  14. Comparison of shear bond strength of self-etch and self-adhesive cements bonded to lithium disilicate, enamel and dentin.

    Science.gov (United States)

    Naranjo, Jennifer; Ali, Mohsin; Belles, Donald

    2015-11-01

    Comparison of shear bond strength of self-etch and self-adhesive cements bonded to lithium disilicate, enamel and dentin. With several self-adhesive resin cements currently available, there is confusion about which product and technique is optimal for bonding ceramic restorations to teeth. The objective of this study was to compare the shear bond strength of lithium disilicate cemented to enamel and dentin using 5 adhesive cements. 100 lithium disilicate rods were pretreated with 5% hydrofluoric acid, silane, and cemented to 50 enamel and 50 dentin surfaces using five test cements: Variolink II (etch-and-rinse) control group, Clearfil Esthetic (two step self-etch), RelyX Unicem, SpeedCEM, and BifixSE (self-adhesive). All specimens were stored (37 degrees C, 100% humidity) for 24 hours before testing their shear bond strength using a universal testing machine (Instron). Debonded surfaces were observed under a low-power microscope to assess the location and type of failure. The highest bond strength for both enamel and dentin were recorded for Variolink II, 15.1MPa and 20.4MPa respectively, and the lowest were recorded for BifixSE, 0.6MPa and 0.9MPa respectively. Generally, higher bond strengths were found for dentin (7.4MPa) than enamel (5.3MPa). Tukey's post hoc test showed no significant difference between Clearfil Esthetic and SpeedCem (p = 0.059), Unicem and SpeedCem (p = 0.88), and Unicem and BifixSE (p = 0.092). All cements bonded better to lithium disilicate than to enamel or dentin, as all bond failures occurred at the tooth/adhesive interface except for Variolink II. Bond strengths recorded for self-adhesive cements were very low compared to the control "etch and rinse" and self-etch systems. Further improvements are apparently needed in self-adhesive cements for them to replace multistep adhesive systems. The use of conventional etch and rinse cements such as Veriolink II should be preferred for cementing all ceramic restorations over self-adhesive cements

  15. Anterior chamber angle assessment using gonioscopy and ultrasound biomicroscopy.

    Science.gov (United States)

    Narayanaswamy, Arun; Vijaya, Lingam; Shantha, B; Baskaran, Mani; Sathidevi, A V; Baluswamy, Sukumar

    2004-01-01

    Comparison of anterior chamber angle measurements using ultrasound biomicroscopy (UBM) and gonioscopy. Five hundred subjects were evaluated for grading of angle width by the Shaffer method. UBM was done in the same group to document angle width, angle opening distance (AOD 500), and anterior chamber depth. Biometric parameters were documented in all subjects. UBM and gonioscopic findings were compared. A study was conducted in 282 men and 218 women with a mean age of 57.32 +/- 12.48 years. Gonioscopic grading was used to segregate occludable (slit-like, grades 1 and 2) from nonoccludable (grades 3 and 4) angles. Subjective assessment by gonioscopy resulted in an overestimation of angle width within the occludable group when compared with values obtained by UBM. This did not affect the segregation of occludable versus nonoccludable angles by gonioscopy. Biometric parameters in eyes with occludable angles were significantly lower in comparison with eyes with nonoccludable angles, except for lens thickness. AOD 500 correlated well with angle width. We concluded that clinical segregation into occludable and nonoccludable angles by an experienced observer using gonioscopy is fairly accurate. However, UBM is required for objective quantification of angles, and AOD 500 can be a reliable and standard parameter to grade angle width.

  16. India's Bond Market-Developments and Challenges Ahead

    OpenAIRE

    Schou-Zibell, Lotte; Wells, Stephen

    2008-01-01

    While India boasts a world-class equity market and increasingly important bank assets, its bond market has not kept up. The government bond market remains illiquid. The corporate bond market, in addition, remains restrictive to participants and largely arbitrage-driven. Securitization, which once had the jump on other Asian markets, has failed to take off. To meet the needs of its firms and investors, the bond market must therefore evolve. This will mean creating new market sectors such as ex...

  17. Load-Displacement Curves of Spot Welded, Bonded, and Weld-Bonded Joints for Dissimilar Materials and Thickness

    Directory of Open Access Journals (Sweden)

    E.A. Al-Bahkali

    2011-12-01

    Full Text Available Three-dimensional finite element models of spot welded, bonded and weld-bonded joints are developed using ABAQUS software. Each model consists of two strips with dissimilar materials and thickness and is subjected to an axial loading. The bonded and weld-bonded joints have specific adhesive thickness. A detailed experimental plan to define many properties and quantities such as, the elastic - plastic properties, modulus of elasticity, fracture limit, and properties of the nugget and heat affected zones are carried out. Experiments include standard testing of the base metal, the adhesive, the nugget and heat affected zone. They also include employing the indentation techniques, and ductile fracture limits criteria, using the special notch tests. Complete load-displacement curves are obtained for all joining models and a comparison is made to determine the best combination.

  18. Evaluation of the anti-cariogenic potential and bond strength to enamel of different fluoridated materials used for bracket bonding

    OpenAIRE

    SILVA, Sérgio Ricardo da; SILVA, Luciana Alves Herdy da; BASTING, Roberta Tarkany; LIMA-ARSATI, Ynara Bosco de Oliveira

    2017-01-01

    Abstract Objective To evaluate the in vitro and in situ anti-cariogenic potential and bond strength to enamel of materials containing fluoride (F), used for bracket bonding: Transbond XT (GT, negative control), Transbond Plus Color Change (GTF), Transbond-Self-Etching Primer (GSAF) and Vitremer (GV, positive control). Material and method In the in vitro study, the specimens were premolars with bonded brackets (n=12/group). After pH cycling, the F release, bond strength, fracture mode and pr...

  19. Chemical bond activation observed with an x-ray laser

    International Nuclear Information System (INIS)

    Beye, Martin; Öberg, Henrik; Xin, Hongliang

    2016-01-01

    The concept of bonding and anti-bonding orbitals is fundamental in chemistry. The population of those orbitals and the energetic difference between the two reflect the strength of the bonding interaction. Weakening the bond is expected to reduce this energetic splitting, but the transient character of bond-activation has so far prohibited direct experimental access. Lastly, we apply time-resolved soft X-ray spectroscopy at a free-electron laser to directly observe the decreased bonding–anti-bonding splitting following bond-activation using an ultra short optical laser pulse.

  20. Are Stock and Corporate Bond Markets Integrated?

    NARCIS (Netherlands)

    van Zundert, J.; Driessen, Joost

    2017-01-01

    This study explores the cross-sectional integration of stock and corporate bond markets by comparing a firm’s expected stock return, as implied by corporate bond spreads, to its realized stock return. We compute expected corporate bond returns by correcting credit spreads for expected losses due to

  1. 48 CFR 31.205-4 - Bonding costs.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Bonding costs. 31.205-4... REQUIREMENTS CONTRACT COST PRINCIPLES AND PROCEDURES Contracts With Commercial Organizations 31.205-4 Bonding costs. (a) Bonding costs arise when the Government requires assurance against financial loss to itself...

  2. Liquidity risk premia in corporate bond markets

    NARCIS (Netherlands)

    Driessen, J.J.A.G.; de Jong, F.C.J.M.

    2012-01-01

    This paper explores the role of liquidity risk in the pricing of corporate bonds. We show that corporate bond returns have significant exposures to fluctuations in treasury bond liquidity and equity market liquidity. Further, this liquidity risk is a priced factor for the expected returns on

  3. Optimal Investment in Structured Bonds

    DEFF Research Database (Denmark)

    Jessen, Pernille; Jørgensen, Peter Løchte

    2012-01-01

    of the article is to provide possible explanations for the puzzle of why small retail investors hold structured bonds. The investment universe consists of a stock index, a risk-free bank account, and a structured bond containing an option written on another index. We apply expected utility maximization...

  4. Comparison of bond strengths of ceramic brackets bonded to zirconia surfaces using different zirconia primers and a universal adhesive.

    Science.gov (United States)

    Lee, Ji-Yeon; Ahn, Jaechan; An, Sang In; Park, Jeong-Won

    2018-02-01

    The aim of this study is to compare the shear bond strengths of ceramic brackets bonded to zirconia surfaces using different zirconia primers and universal adhesive. Fifty zirconia blocks (15 × 15 × 10 mm, Zpex, Tosoh Corporation) were polished with 1,000 grit sand paper and air-abraded with 50 µm Al 2 O 3 for 10 seconds (40 psi). They were divided into 5 groups: control (CO), Metal/Zirconia primer (MZ, Ivoclar Vivadent), Z-PRIME Plus (ZP, Bisco), Zirconia Liner (ZL, Sun Medical), and Scotchbond Universal adhesive (SU, 3M ESPE). Transbond XT Primer (used for CO, MZ, ZP, and ZL) and Transbond XT Paste was used for bracket bonding (Gemini clear ceramic brackets, 3M Unitek). After 24 hours at 37°C storage, specimens underwent 2,000 thermocycles, and then, shear bond strengths were measured (1 mm/min). An adhesive remnant index (ARI) score was calculated. The data were analyzed using one-way analysis of variance and the Bonferroni test ( p = 0.05). Surface treatment with primers resulted in increased shear bond strength. The SU group showed the highest shear bond strength followed by the ZP, ZL, MZ, and CO groups, in that order. The median ARI scores were as follows: CO = 0, MZ = 0, ZP = 0, ZL = 0, and SU = 3 ( p < 0.05). Within this experiment, zirconia primer can increase the shear bond strength of bracket bonding. The highest shear bond strength is observed in SU group, even when no primer is used.

  5. Induced Smectic X Phase Through Intermolecular Hydrogen-Bonded Liquid Crystals Formed Between Citric Acid and p- n-(Octyloxy)Benzoic Acid

    Science.gov (United States)

    Sundaram, S.; Subhasri, P.; Rajasekaran, T. R.; Jayaprakasam, R.; Senthil, T. S.; Vijayakumar, V. N.

    2017-08-01

    Hydrogen-bonded liquid crystal (HBLC) is synthesized from citric acid (CA) and 4-(octyloxy)benzoic acid (8OBA) with different mole ratios. Fourier transform infrared spectroscopy (FT-IR) confirms the presence of hydrogen bond between CA and 8OBA. Nuclear magnetic resonance (NMR) spectroscopic studies validate the intermolecular complementary, cyclic type of hydrogen bond, and molecular environment in the designed HBLC complex. Powder X-ray diffraction analysis reveals the monoclinic nature of liquid crystal complex in solid phase. Liquid crystal parameters such as phase transition temperature and enthalpy values for the corresponding mesogenic phases are investigated using a polarizing optical microscope (POM) and differential scanning calorimetry (DSC). It is observed that the change in chain length and steric hindrance while increasing the mole ratio in HBLC complex induces a new smectic X (Sm X) along with higher-order smectic G (Sm G) phases by quenching of smectic C (Sm C). From the experimental observations, induced Sm X phase has been identified as a finger print texture. Also, Sm G is a multi-colored mosaic texture in 1:1, 1:2, and 1:3 mol ratios. The optical tilt angle, thermal stability factor, and enhanced thermal span width of CA + 8OBA complex are discussed.

  6. Thai students' mental model of chemical bonding

    Science.gov (United States)

    Sarawan, Supawadee; Yuenyong, Chokchai

    2018-01-01

    This Research was finding the viewing about concept of chemical bonding is fundamental to subsequent learning of various other topics related to this concept in chemistry. Any conceptions about atomic structures that students have will be shown their further learning. The purpose of this study is to interviews conceptions held by high school chemistry students about metallic bonding and to reveal mental model of atomic structures show according to the educational level. With this aim, the questionnaire prepared making use of the literature and administered for analysis about mental model of chemical bonding. It was determined from the analysis of answers of questionnaire the 10th grade, 11th grade and 12th grade students. Finally, each was shown prompts in the form of focus cards derived from curriculum material that showed ways in which the bonding in specific metallic substances had been depicted. Students' responses revealed that learners across all three levels prefer simple, realistic mental models for metallic bonding and reveal to chemical bonding.

  7. Pricing Chinese Convertible Bonds with Dynamic Credit Risk

    Directory of Open Access Journals (Sweden)

    Ping Li

    2014-01-01

    Full Text Available To price convertible bonds more precisely, least squares Monte Carlo (LSM method is used in this paper for its advantage in handling the dependence of derivatives on the path, and dynamic credit risk is used to replace the fixed one to make the value of convertible bonds reflect the real credit risk. In the empirical study, we price convertible bonds based on static credit risk and dynamic credit risk, respectively. Empirical results indicate that the ICBC convertible bond has been overpriced, resulting from the underestimation of credit risk. In addition, when there is an issue of dividend, the conversion price will change in China's convertible bonds, while it does not change in the international convertible bonds. So we also empirically study the difference between the convertible bond's prices by assuming whether the conversion price changes or not.

  8. Frequency scaling for angle gathers

    KAUST Repository

    Zuberi, M. A H; Alkhalifah, Tariq Ali

    2014-01-01

    Angle gathers provide an extra dimension to analyze the velocity after migration. Space-shift and time shift-imaging conditions are two methods used to obtain angle gathers, but both are reasonably expensive. By scaling the time-lag axis of the time-shifted images, the computational cost of the time shift imaging condition can be considerably reduced. In imaging and more so Full waveform inversion, frequencydomain Helmholtz solvers are used more often to solve for the wavefields than conventional time domain extrapolators. In such cases, we do not need to extend the image, instead we scale the frequency axis of the frequency domain image to obtain the angle gathers more efficiently. Application on synthetic data demonstrate such features.

  9. Angle imaging: Advances and challenges

    Science.gov (United States)

    Quek, Desmond T L; Nongpiur, Monisha E; Perera, Shamira A; Aung, Tin

    2011-01-01

    Primary angle closure glaucoma (PACG) is a major form of glaucoma in large populous countries in East and South Asia. The high visual morbidity from PACG is related to the destructive nature of the asymptomatic form of the disease. Early detection of anatomically narrow angles is important and the subsequent prevention of visual loss from PACG depends on an accurate assessment of the anterior chamber angle (ACA). This review paper discusses the advantages and limitations of newer ACA imaging technologies, namely ultrasound biomicroscopy, Scheimpflug photography, anterior segment optical coherence tomography and EyeCam, highlighting the current clinical evidence comparing these devices with each other and with clinical dynamic indentation gonioscopy, the current reference standard. PMID:21150037

  10. Understanding Angle and Angle Measure: A Design-Based Research Study Using Context Aware Ubiquitous Learning

    Science.gov (United States)

    Crompton, Helen

    2015-01-01

    Mobile technologies are quickly becoming tools found in the educational environment. The researchers in this study use a form of mobile learning to support students in learning about angle concepts. Design-based research is used in this study to develop an empirically-substantiated local instruction theory about students' develop of angle and…

  11. Intermolecular hydrogen bonds: From temperature-driven proton ...

    Indian Academy of Sciences (India)

    Abstract. We have combined neutron scattering and a range of numerical simulations to study hydrogen bonds in condensed matter. Two examples from a recent thesis will be presented. The first concerns proton transfer with increasing temperature in short inter- molecular hydrogen bonds [1,2]. These bonds have unique ...

  12. 30 CFR 800.30 - Replacement of bonds.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Replacement of bonds. 800.30 Section 800.30... REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS UNDER REGULATORY PROGRAMS § 800.30 Replacement... replacement performance bonds. Replacement of a performance bond pursuant to this section shall not constitute...

  13. 27 CFR 24.141 - Bonded wine warehouse.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Bonded wine warehouse. 24..., DEPARTMENT OF THE TREASURY LIQUORS WINE Establishment and Operations Permanent Discontinuance of Operations § 24.141 Bonded wine warehouse. Where all operations at a bonded wine warehouse are to be permanently...

  14. 27 CFR 26.67 - Bond, Form 2897-Wine.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Bond, Form 2897-Wine. 26... Liquors and Articles in Puerto Rico Bonds § 26.67 Bond, Form 2897—Wine. Where a proprietor intends to withdraw, for purpose of shipment to the United States, wine of Puerto Rican manufacture from bonded...

  15. THEORETICAL AND NUMERICAL VALUATION OF CALLABLE BONDS

    OpenAIRE

    Dejun Xie

    2009-01-01

    This paper studies the value of a callable bond and the bond issuer’s optimal financial decision regarding whether to continue the investment on the market or call the bond. Assume the market investment return follows a stochastic model, the value of contract is formulated as a partial differential equation system embedded with a free boundary, defining the level of market return rate at which it is optimal for the issuer to call the bond. A fundamental solution of the partial differential ...

  16. Direct Bonded Pontic (Laporan Kasus

    Directory of Open Access Journals (Sweden)

    Suhandi Sidjaja

    2015-10-01

    Full Text Available Advanced science and technology in dentistry enable dental practitioners to modified she bonding techniques in tooth replacement. A pontic made of composite resin bonded to etched enamel of the adjacent teeth can be used in the replacement of one missing anterior tooth with a virgin or sowed adpicent tooth. The advantages of this technique include a one visit treatment, cow cost, good esthetics, less side effects and easy repair or rebounding. Clinical evaluation showed a high success rate therefore with a proper diagnosis and a perfect skill of the direct bonded technique this treatment can be used as an alternative restoration.

  17. Mechanics of wafer bonding: Effect of clamping

    Science.gov (United States)

    Turner, K. T.; Thouless, M. D.; Spearing, S. M.

    2004-01-01

    A mechanics-based model is developed to examine the effects of clamping during wafer bonding processes. The model provides closed-form expressions that relate the initial geometry and elastic properties of the wafers to the final shape of the bonded pair and the strain energy release rate at the interface for two different clamping configurations. The results demonstrate that the curvature of bonded pairs may be controlled through the use of specific clamping arrangements during the bonding process. Furthermore, it is demonstrated that the strain energy release rate depends on the clamping configuration and that using applied loads usually leads to an undesirable increase in the strain energy release rate. The results are discussed in detail and implications for process development and bonding tool design are highlighted.

  18. Hydrogen bonding characterization in water and small molecules

    Science.gov (United States)

    Silvestrelli, Pier Luigi

    2017-06-01

    The prototypical hydrogen bond in water dimer and hydrogen bonds in the protonated water dimer, in other small molecules, in water cyclic clusters, and in ice, covering a wide range of bond strengths, are theoretically investigated by first-principles calculations based on density functional theory, considering not only a standard generalized gradient approximation functional but also, for the water dimer, hybrid and van der Waals corrected functionals. We compute structural, energetic, and electrostatic (induced molecular dipole moments) properties. In particular, hydrogen bonds are characterized in terms of differential electron density distributions and profiles, and of the shifts of the centres of maximally localized Wannier functions. The information from the latter quantities can be conveyed to a single geometric bonding parameter that appears to be correlated with the Mayer bond order parameter and can be taken as an estimate of the covalent contribution to the hydrogen bond. By considering the water trimer, the cyclic water hexamer, and the hexagonal phase of ice, we also elucidate the importance of cooperative/anticooperative effects in hydrogen-bonding formation.

  19. Diffusion bonding

    International Nuclear Information System (INIS)

    Anderson, R.C.

    1976-01-01

    A method is described for joining beryllium to beryllium by diffusion bonding. At least one surface portion of at least two beryllium pieces is coated with nickel. A coated surface portion is positioned in a contiguous relationship with another surface portion and subjected to an environment having an atmosphere at a pressure lower than ambient pressure. A force is applied on the beryllium pieces for causing the contiguous surface portions to abut against each other. The contiguous surface portions are heated to a maximum temperature less than the melting temperature of the beryllium, and the applied force is decreased while increasing the temperature after attaining a temperature substantially above room temperature. A portion of the applied force is maintained at a temperature corresponding to about maximum temperature for a duration sufficient to effect the diffusion bond between the contiguous surface portions

  20. O hydrogen bonds in alkaloids

    Indian Academy of Sciences (India)

    An overview of general classification scheme, medicinal importance and crystal structure analysis with emphasis on the role of hydrogen bonding in some alkaloids is presented in this paper. The article is based on a general kind of survey while crystallographic analysis and role of hydrogen bonding are limited to only ...