The precision of measurements in modern cosmology has made huge strides in recent years, with measurements of the cosmic microwave background and the determination of the Hubble constant now rivaling the level of precision of the predictions of big bang nucleosynthesis. However, these results are not necessarily consistent with the predictions of the Standard Model of big bang nucleosynthesis. Reconciling these discrepancies may require extensions of the basic tenets of the model, and possibly of the reaction rates that determine the big bang abundances
Testing Big Bang Nucleosynthesis
Steigman, Gary
1996-01-01
Big Bang Nucleosynthesis (BBN), along with the cosmic background radiation and the Hubble expansion, is one of the pillars ofthe standard, hot, big bang cosmology since the primordial synthesis of the light nuclides (D, $^3$He, $^4$He, $^7$Li) must have occurred during the early evolution of a universe described by this model. The overall consistency between the predicted and observed abundances of the light nuclides, each of which spans a range of some nine orders of magnitude, provides impr...
Primordial Big Bang Nucleosynthesis
Olive, Keith A.
1999-01-01
Big Bang Nucleosynthesis is the theory of the production of the the light element isotopes of D, He3, He4, and Li7. After a brief review of the essential elements of the standard Big Bang model at a temperature of about 1 MeV, the theoretical input and predictions of BBN are discussed. The theory is tested by the observational determinations of the light element abundances and the current status of these observations is reviewed. Concordance of standard model and the related observations is f...
Big Bang Nucleosynthesis Calculation
Kurki-Suonio, H
2001-01-01
I review standard big bang nucleosynthesis and some versions of nonstandard BBN. The abundances of the primordial isotopes D, He-3, and Li-7 produced in standard BBN can be calculated as a function of the baryon density with an accuracy of about 10%. For He-4 the accuracy is better than 1%. The calculated abundances agree fairly well with observations, but the baryon density of the universe cannot be determined with high precision. Possibilities for nonstandard BBN include inhomogeneous and antimatter BBN and nonzero neutrino chemical potentials.
We present an overview of the standard model of big bang nucleosynthesis (BBN), which describes the production of the light elements in the early universe. The theoretical prediction for the abundances of D, 3He, 4He, and 7Li is discussed. We emphasize the role of key nuclear reactions and the methods by which experimental cross section uncertainties are propagated into uncertainties in the predicted abundances. The observational determination of the light nuclides is also discussed. Particular attention is given to the comparison between the predicted and observed abundances, which yields a measurement of the cosmic baryon content. The spectrum of anisotropies in the cosmic microwave background (CMB) now independently measures the baryon density to high precision; we show how the CMB data test BBN, and find that the CMB and the D and 4He observations paint a consistent picture. This concordance stands as a major success of the hot big bang. On the other hand, 7Li remains discrepant with the CMB-preferred baryon density; possible explanations are reviewed. Finally, moving beyond the standard model, primordial nucleosynthesis constraints on early universe and particle physics are also briefly discussed
Big Bang Nucleosynthesis: An Update
Olive, Keith A.; Scully, Sean T.
1995-01-01
WThe current status of big bang nucleosynthesis is reviewed with an emphasis on the comparison between the observational determination of the light element abundances of \\D, \\he3, \\he4 and \\li7 and the predictions from theory. In particular, we present new analyses for \\he4 and \\li7. Implications for physics beyond the standard model are also discussed. Limits on the effective number of neutrino flavors are also updated.
Big bang nucleosynthesis: An update
An update on the standard model of big bang nucleosynthesis (BBN) is presented. With the value of the baryon-tophoton ratio determined to high precision by WMAP, standard BBN is a parameter-free theory. In this context, the theoretical prediction for the abundances of D, 4He, and 7Li is discussed and compared to their observational determination. While concordance for D and 4He is satisfactory, the prediction for 7Li exceeds the observational determination by a factor of about four. Possible solutions to this problem are discussed
Big Bang nucleosynthesis in crisis?
A new evaluation of the constraint on the number of light neutrino species (Nν) from big bang nucleosynthesis suggests a discrepancy between the predicted light element abundances and those inferred from observations, unless the inferred primordial 4He abundance has been underestimated by 0.014±0.004 (1σ) or less than 10% (95% C.L.) of 3He survives stellar processing. With the quoted systematic errors in the observed abundances and a conservative chemical evolution parametrization, the best fit to the combined data is Nν=2.1±0.3 (1σ) and the upper limit is Nνν=3) at the 98.6% C.L. copyright 1995 The American Physical Society
Big-bang nucleosynthesis revisited
Olive, Keith A.; Schramm, David N.; Steigman, Gary; Walker, Terry P.
1989-01-01
The homogeneous big-bang nucleosynthesis yields of D, He-3, He-4, and Li-7 are computed taking into account recent measurements of the neutron mean-life as well as updates of several nuclear reaction rates which primarily affect the production of Li-7. The extraction of primordial abundances from observation and the likelihood that the primordial mass fraction of He-4, Y(sub p) is less than or equal to 0.24 are discussed. Using the primordial abundances of D + He-3 and Li-7 we limit the baryon-to-photon ratio (eta in units of 10 exp -10) 2.6 less than or equal to eta(sub 10) less than or equal to 4.3; which we use to argue that baryons contribute between 0.02 and 0.11 to the critical energy density of the universe. An upper limit to Y(sub p) of 0.24 constrains the number of light neutrinos to N(sub nu) less than or equal to 3.4, in excellent agreement with the LEP and SLC collider results. We turn this argument around to show that the collider limit of 3 neutrino species can be used to bound the primordial abundance of He-4: 0.235 less than or equal to Y(sub p) less than or equal to 0.245.
Deuterium and big bang nucleosynthesis
Measurements of deuterium absorption in high redshift quasar absorption systems provide a direct inference of the deuterium abundance produced by big bang nucleosynthesis (BBN). With measurements and limits from five independent absorption systems, we place strong constraints on the primordial ratio of deuterium to hydrogen, (D/H)p = 3.4 ± 0.3 x 10-5 [1,2]. We employ a direct numerical treatment to improve the estimates of critical reaction rates and reduce the uncertainties in BBN predictions of D/H and 7Li/H by a factor of three[3] over previous efforts[4]. Using our measurements of (D/H)p and new BBN predictions, we find at 95% confidence the baryon density ρb = (3.6 ± 0.4) x 10-31 g cm-3 (Ωbh265 = 0.045 ± 0.006 in units of the critical density), and cosmological baryon-photon ratio η = (5.1 ± 0.6) x 10-10
Big bang nucleosynthesis: Present status
Cyburt, Richard H.; Fields, Brian D.; Olive, Keith A.; Yeh, Tsung-Han
2016-01-01
Big bang nucleosynthesis (BBN) describes the production of the lightest nuclides via a dynamic interplay among the four fundamental forces during the first seconds of cosmic time. A brief overview of the essentials of this physics is given, and new calculations presented of light-element abundances through 6Li and 7Li, with updated nuclear reactions and uncertainties including those in the neutron lifetime. Fits are provided for these results as a function of baryon density and of the number of neutrino flavors Nν. Recent developments are reviewed in BBN, particularly new, precision Planck cosmic microwave background (CMB) measurements that now probe the baryon density, helium content, and the effective number of degrees of freedom Neff. These measurements allow for a tight test of BBN and cosmology using CMB data alone. Our likelihood analysis convolves the 2015 Planck data chains with our BBN output and observational data. Adding astronomical measurements of light elements strengthens the power of BBN. A new determination of the primordial helium abundance is included in our likelihood analysis. New D/H observations are now more precise than the corresponding theoretical predictions and are consistent with the standard model and the Planck baryon density. Moreover, D/H now provides a tight measurement of Nν when combined with the CMB baryon density and provides a 2 σ upper limit Nνdata. In contrast with D/H and 4He, 7Li predictions continue to disagree with observations, perhaps pointing to new physics. This paper concludes with a look at future directions including key nuclear reactions, astronomical observations, and theoretical issues.
Big Bang Nucleosynthesis constraints on new physics
Primordial Nucleosynthesis provides a probe of the physics of the early Universe when the temperature and particle densities are high. The Cosmic Nuclear Reactor may, thereby, lead to constraints on new physics which may be inaccessible to current accelerators. Current Big Bang Nucleosynthesis (BBN) bounds to the existence and/or properties of new particles are reviewed and used to constrain physics 'beyond the standard model.' (orig.)
Big Bang Nucleosynthesis and Primordial Black Holes
Sivaram, C; Arun, Kenath
2010-01-01
There are ongoing efforts in detecting Hawking radiation from primordial black holes (PBH) formed during the early universe. Here we put an upper limit on the PBH number density that could have been formed prior to the big bang nucleosynthesis era, based on the constraint that the PBH evaporation energy consisting of high energy radiation not affect the observed abundances' of elements, by disintegrating the nuclei.
Dark Radiation Emerging After Big Bang Nucleosynthesis?
Fischler, Willy; Meyers, Joel
2010-01-01
We show how recent data from observations of the cosmic microwave background may suggest the presence of additional radiation density which appeared after big bang nucleosynthesis. We propose a general scheme by which this radiation could be produced from the decay of non-relativistic matter, we place constraints on the properties of such matter, and we give specific examples of scenarios in which this general scheme may be realized.
Early universe and big bang nucleosynthesis
This is a series of six one-hour lectures tuned to the level of a graduate course covering basically the background required for understanding the phenomenon of the big bang nucleosynthesis. It begins with a brief introduction to the geometry, dynamics and thermodynamics of the universe as a whole, followed by one lecture on the discovery, properties and implications of the 3 K microwave background radiation. Then we move on to the thermodynamical properties of the early universe, effects of pair annihilation, the role of the weak interactions in creating a neutrino background and freezing the ratio of the available free neutrons to protons. In the fourth lecture, we describe the process of the big bang nucleosynthesis leading to the formation of deuterium, helium and lithium. The methods of the observational estimations of these primordial abundances are discussed in the fifth lecture, and finally in the sixth, their comparison with the predictions of the standard model and the inadequacy of the standard model, if any. It is in this respect that primordial nucleosynthesis provides a testing ground for one of the possible cosmological consequences of the quark-hadron phase transition in the early universe. (orig.)
Reconciling sterile neutrinos with Big Bang nucleosynthesis
We reexamine the big bang nucleosynthesis (BBN) bounds on the mixing of neutrinos with sterile species. These bounds depend on the assumption that the relic neutrino asymmetry Lν is very small. We show that for Lν large enough (greater than about 10endash5) the standard BBN bounds do not apply. We apply this result to the sterile neutrino solution to the atmospheric neutrino anomaly and show that for Lν approx-gt 7x10-5 it is consistent with BBN. The BBN bounds on sterile neutrinos mixing with electron neutrinos can also be weakened considerably. copyright 1995 The American Physical Society
Standard Big-Bang nucleosynthesis after Planck
Primordial or Big Bang nucleosynthesis (BBN) is one of the three historical strong evidences for the Big-Bang model together with the expansion of the Universe and the Cosmic Microwave Background radiation (CMB). The results by the Planck mission have changed the baryonic density Ωb compared to the previous WMAP values. We present the BBN predictions for the light elements using this new value of Ωb as well as an improvement of the nuclear network and new spectroscopic observations. The primordial D/H abundance ((2.57 - 2.72) X 10**-5 ) is narrower than recedently, to be compared to the recent observations in the light of sight of quasars, ((2.49 - 2.57) X 10**-5), at redshift z ∼ 3. The primordial Li/H abundance ((4.56 - 5.34) X 10**-10) is still 3 times larger than its observed spectroscopic abundance in halo stars of the Galaxy. Primordial Helium abundance is : Yp = 0.2461 - 0.2466, in a good agreement with the last He observations (0.2368 - 0.2562). (author)
Big Bang Nucleosynthesis in the New Cosmology
Big bang nucleosynthesis (BBN) describes the production of the lightest elements in the first minutes of cosmic time. We review the physics of cosmological element production, and the observations of the primordial element abundances. The comparison between theory and observation has heretofore provided our earliest probe of the universe, and given the best measure of the cosmic baryon content. However, BBN has now taken a new role in cosmology, in light of new precision measurements of the cosmic microwave background (CMB). Recent CMB anisotropy data yield a wealth of cosmological parameters; in particular, the baryon-to-photon ratio η = nB/nγ is measured to high precision. The confrontation between the BBN and CMB ''baryometers'' poses a new and stringent test of the standard cosmology; the status of this test are discussed. Moreover, it is now possible to recast the role of BBN by using the CMB to fix the baryon density and even some light element abundances. This strategy sharpens BBN into a more powerful probe of early universe physics, and of galactic nucleosynthesis processes. The impact of the CMB results on particle physics beyond the Standard Model, and on non-standard cosmology, are illustrated. Prospects for improvement of these bounds via additional astronomical observations and nuclear experiments are discussed, as is the lingering ''lithium problem.''
Big bang nucleosynthesis in the new cosmology
Big bang nucleosynthesis (BBN) describes the production of the lightest elements in the first minutes of cosmic time. We review the physics of cosmological element production, and the observations of the primordial element abundances. The comparison between theory and observation has heretofore provided our earliest probe of the universe, and given the best measure of the cosmic baryon content. However, BBN has now taken a new role in cosmology, in light of new precision measurements of the cosmic microwave background (CMB). Recent CMB anisotropy data yield a wealth of cosmological parameters; in particular, the baryon-to-photon ratio η=nB/nγ is measured to high precision. The confrontation between the BBN and CMB ''baryometers'' poses a new and stringent test of the standard cosmology; the status of this test is discussed. Moreover, it is now possible to recast the role of BBN by using the CMB to fix the baryon density and even some light element abundances. This strategy sharpens BBN into a more powerful probe of early universe physics, and of galactic nucleosynthesis processes. The impact of the CMB results on particle physics beyond the Standard Model, and on non-standard cosmology, are illustrated. Prospects for improvement of these bounds via additional astronomical observations and nuclear experiments are discussed, as is the lingering ''lithium problem''. (orig.)
Effects of a torsion field on Big Bang nucleosynthesis
Brüggen, M.
1999-01-01
In this paper it is investigated whether torsion, which arises naturally in most theories of quantum gravity, has observable implications for the Big Bang nucleosynthesis. Torsion can lead to spin flips amongst neutrinos thus turning them into sterile neutrinos. In the early Universe they can alter the helium abundance which is tightly constrained by observations. Here I calculate to what extent torsion of the string theory type leads to a disagreement with the Big Bang nucleosynthesis predic...
What's Next for Big Bang Nucleosynthesis?
Big bang nucleosynthesis (BBN) plays an important role in the standard hot big bang cosmology. BBN theory is used to predict the primordial abundances of the lightest elements, hydrogen, helium and lithium. Comparison between the predicted and observationally determined light element abundances provides a general test of concordance and can be used to fix the baryon content in the universe. Measurements of the cosmic microwave background (CMB) anisotropies now supplant BBN as the premier baryometer, especially with the latest results from the WMAP satellite. With the WMAP baryon density, the test of concordance can be made even more precise. Any disagreement between theory predictions and observations requires careful discussion. Several possibilities exist to explain discrepancies; (1) observational systematics (either physical or technical) may not be properly treated in determining primordial light element abundances (2) nuclear inputs that determine the BBN predictions may have unknown systematics or may be incomplete, and (3) physics beyond that included in the standard BBN scenario may need to be included in the theory calculation. Before we can be absolutely sure new physics is warranted, points (1) and (2) must be addressed and ruled out. All of these scenarios rely on experimental or observational data to make definitive statements of their applicability and range of validity, which currently is not at the level necessary to discern between these possibilities with high confidence. Thus, new light element abundance observations and nuclear experiments are needed to probe these further. Assuming concordance is established, one can use the light element observations to explore the evolution from their primordial values. This can provide useful information on stellar evolution, cosmic rays and other nuclear astrophysics. When combined with detailed models, BBN, the CMB anisotropy and nuclear astrophysics can provide us with information about the populations
Inhomogeneous neutrino degeneracy and big bang nucleosynthesis
We examine big bang nucleosynthesis (BBN) in the case of inhomogeneous neutrino degeneracy, in the limit where the fluctuations are sufficiently small on large length scales that the present-day element abundances are homogeneous. We consider two representative cases: degeneracy of the electron neutrino alone and equal chemical potentials for all three neutrinos. We use a linear programming method to constrain an arbitrary distribution of the chemical potentials. For the current set of (highly restrictive) limits on the primordial element abundances, homogeneous neutrino degeneracy barely changes the allowed range of the baryon-to-photon ratio η. Inhomogeneous degeneracy allows for little change in the lower bound on η, but the upper bound in this case can be as large as η=1.1x10-8 (only νe degeneracy) or η=1.0x10-9 (equal degeneracies for all three neutrinos). For the case of inhomogeneous neutrino degeneracy, we show that there is no BBN upper bound on the neutrino energy density, which is bounded in this case only by limits from structure formation and the cosmic microwave background. (c) 2000 The American Physical Society
Big-bang nucleosynthesis - observational aspects
Extrapolation of observational data on the abundances of D, 3He, 4He and 7Li in various astrophysical objects to derive their primordial values leads to results in good accordance with calculations from Standard Big Bang nucleosynthesis theory over 9 orders of magnitude in abundance and has led to the following predictions: There are not more than 3 light neutrino species or other particles contributing relativistic degrees of freedom at temperatures of a few MeV; the neutron half-life is less than 10.4 minutes; and baryonic dark matter exists, but not in sufficient quantities to close the universe. (The first two of these predictions have been confirmed by laboratory experiments). Searches for a primordial component in the abundance of any other element heavier than hydrogen - such as might have resulted from inhomogeneities due to phase transitions in the early universe, notably the quark-hadron transition - have so far proved completely negative. The primordial helium abundance is found from observations of extragalactic ionized hydrogen clouds to be close to 0.230 by mass, a little lower than predicted, but the difference does not exceed likely errors. (orig.)
Big bang photosynthesis and pregalactic nucleosynthesis of light elements
Audouze, J.; Lindley, D.; Silk, J.
1985-01-01
Two nonstandard scenarios for pregalactic synthesis of the light elements (H-2, He-3, He-4, and Li-7) are developed. Big bang photosynthesis occurs if energetic photons, produced by the decay of massive neutrinos or gravitinos, partially photodisintegrate He-4 (formed in the standard hot big bang) to produce H-2 and He-3. In this case, primordial nucleosynthesis no longer constrains the baryon density of the universe, or the number of neutrino species. Alternatively, one may dispense partially or completely with the hot big bang and produce the light elements by bombardment of primordial gas, provided that He-4 is synthesized by a later generation of massive stars.
Big-bang Nucleosynthesis Enters the Precision Era
Schramm, David N.; Turner, Michael S.
1997-01-01
The last parameter of big-bang nucleosynthesis, the baryon density, is being pinned down by measurements of the deuterium abundance in high-redshift hydrogen clouds. When it is determined, it will fix the primeval light-element abundances. D, ^3He and ^7Li will become ``tracers'' for the study of Galactic and stellar chemical evolution, and big-bang nucleosynthesis will become an even sharper probe of particle physics, e.g., the bound to the number of light neutrino species will be tightened ...
Nonuniversal scalar-tensor theories and big bang nucleosynthesis
We investigate the constraints that can be set from big bang nucleosynthesis on two classes of models: extended quintessence and scalar-tensor theories of gravity in which the equivalence principle between standard matter and dark matter is violated. In the latter case, and for a massless dilaton with quadratic couplings, the phase space of theories is investigated. We delineate those theories where attraction toward general relativity occurs. It is shown that big bang nucleosynthesis sets more stringent constraints than those obtained from Solar System tests.
Big bang nucleosynthesis: Non-standard models
In spite of the success of the standard model for big band nucleosynthesis, it is always possible that a variant scenario was responsible for the production of the light element abundances, and while successfully predicting these abundances, it may be possible to alter some of the conclusions of the standard model. The most notable of these is the limit on the baryon density of the Universe, η10 = 1010(nB/nγ), 2.8 10 B, 0.01 Bh02 < 0.04. Given the importance of the conclusions of the standard model, an interest in nonstandard nucleosynthesis models remains high. In this contribution, the author briefly summarizes the current status of three non-standard scenarios: (1) Inhomogeneous Models; (2) Decaying Particle Scenarios; and (3) Lepton Degeneracies. 29 refs., 3 figs
Cosmological nucleosynthesis in the Big-Bang and supernovae
Recent observation of the power spectrum of Cosmic Microwave Background (CMB) Radiation has exhibited that the flat cosmology is most likely. This suggests too large universal baryon-density parameter Ωbh2≅0.022∼0.030 to accept a theoretical prediction, Ωbh2≤0.017, in the homogeneous Big-Bang model for primordial nucleosynthesis. Theoretical upper limit arises from the sever constraints on the primordial 7Li abundance. We propose two cosmological models in order to resolve the discrepancy; lepton asymmetric Big-Bang nucleosynthesis model, and baryon inhomogeneous Big-Bang nucleosynthesis model. In these cosmological models the nuclear processes are similar to those of the r-process nucleosynthesis in gravitational collapse supernova explosions. Massive stars≥10(solar mass) culminate their evolution by supernova explosions which are presumed to be the most viable candidate site for the r-process nucleosynthesis. Even in the nucleosynthesis of heavy elements, initial entropy and density at the surface of proto-neutron stars are so high that nuclear statistical equilibrium favors production of abundant light nuclei. In such explosive circumstances many neutron-rich radioactive nuclei of light-to-intermediate mass as well as heavy mass nuclei play the significant roles. (author)
Challenges to the standard model of Big Bang nucleosynthesis
Big Bang nucleosynthesis provides a unique probe of the early evolution of the Universe and a crucial test of the consistency of the standard hot Big Bang cosmological model. Although the primordial abundances of 2H, 3He, 4He, and 7Li inferred from current observational data are in agreement with those predicted by Big Bang nucleosynthesis, recent analysis has severely restricted the consistent range for the nucleon-to-photon ratio: 3.7 ≤ η10 ≤ 4.0. Increased accuracy in the estimate of primordial 4he and observations of Be and B in Pop II stars are offering new challenges to the standard model and suggest that no new light particles may be allowed (NνBBN ≤ 3.0, where Nν is the number of equivalent light neutrinos). 23 refs
Big Bang Nucleosynthesis and the Observed Abundances of Light Elements
Hogan, Craig J.
1996-01-01
The predictions of Standard Big Bang Nucleosynthesis are summarized and compared with observations of abundances of helium in HII regions, deuterium in quasar absorbers, deuterium and helium-3 in the Galaxy, and lithium in metal-poor stars. It is concluded that the prospects are good for a precise test of the theory.
Constraints on massive gravity theory from big bang nucleosynthesis
Lambiase, G.
2012-01-01
The massive gravity cosmology is studied in the scenario of big bang nucleosynthesis. By making use of current bounds on the deviation from the fractional mass, we derive the constraints on the free parameters of the theory. The cosmological consequences of the model are also discussed in the framework of the PAMELA experiment.
Neutrino energy transport in weak decoupling and big bang nucleosynthesis
Grohs, E; Kishimoto, C T; Paris, M W; Vlasenko, A
2015-01-01
We calculate the evolution of the early universe through the epochs of weak decoupling, weak freeze-out and big bang nucleosynthesis (BBN) by simultaneously coupling a full strong, electromagnetic, and weak nuclear reaction network with a multi-energy group Boltzmann neutrino energy transport scheme. Such an approach allows a detailed accounting of the evolution of the $\
Big-Bang nucleosynthesis with updated nuclear data
Primordial nucleosynthesis is one of the three evidences for the Big-Bang model together with the expansion of the Universe and the Cosmic Microwave Background. There is a good global agreement over a range of nine orders of magnitude between abundances of 4He, D, 3He and 7Li deduced from observations and calculated primordial nucleosynthesis. This comparison was used to determine the baryonic density of the Universe. For this purpose, it is now superseded by the analysis of the Cosmic Microwave Background (CMB) radiation anisotropies. Big-Bang nucleosynthesis remains, nevertheless, a valuable tool to probe the physics of the early Universe. However, the yet unexplained, discrepancy between the calculated and observed lithium primordial abundances, has not been reduced, neither by recent nuclear physics experiments, nor by new observations.
Big-bang nucleosynthesis enters the precision era
The last parameter of big-bang nucleosynthesis, the density of ordinary matter (baryons), is being pinned down by measurements of the deuterium abundance in high-redshift hydrogen clouds. When it is, the primeval abundances of the light elements D, 3He, 7Li, and 4He will be fixed. The first three will then become open-quotes tracersclose quotes in the study of Galactic and stellar chemical evolution. A precision determination of the 4He abundance will allow an important consistency test of big-bang nucleosynthesis and will sharpen nucleosynthesis as a probe of fundamental physics, e.g., the bound to the number of light neutrino species. An independent consistency test is on the horizon: a high-precision determination of the baryon density from measurements of the fluctuations of the cosmic background radiation temperature. copyright 1998 The American Physical Society
Capture reactions on C-14 in nonstandard big bang nucleosynthesis
Wiescher, Michael; Gorres, Joachim; Thielemann, Friedrich-Karl
1990-01-01
Nonstandard big bang nucleosynthesis leads to the production of C-14. The further reaction path depends on the depletion of C-14 by either photon, alpha, or neutron capture reactions. The nucleus C-14 is of particular importance in these scenarios because it forms a bottleneck for the production of heavier nuclei A greater than 14. The reaction rates of all three capture reactions at big bang conditions are discussed, and it is shown that the resulting reaction path, leading to the production of heavier elements, is dominated by the (p, gamma) and (n, gamma) rates, contrary to earlier suggestions.
BIG BANG NUCLEOSYNTHESIS WITH A NON-MAXWELLIAN DISTRIBUTION
The abundances of light elements based on the big bang nucleosynthesis model are calculated using the Tsallis non-extensive statistics. The impact of the variation of the non-extensive parameter q from the unity value is compared to observations and to the abundance yields from the standard big bang model. We find large differences between the reaction rates and the abundance of light elements calculated with the extensive and the non-extensive statistics. We found that the observations are consistent with a non-extensive parameter q = 1-0.12+0.05, indicating that a large deviation from the Boltzmann-Gibbs statistics (q = 1) is highly unlikely.
Evolution of the early universe and big-bang nucleosynthesis
Cosmological phase transition can create strongly inhomogeneous baryon density distribution. Inhomogeneous big-bang model for primordial nucleosynthesis allows higher universal mass density parameter of baryons than the standard model does, which is marginally consistent with recent astronomical suggestion that some kind of dark matter is made of baryons. Enhanced heavy-element abundances in halo dwarfs is shown to be an observational signature for the inhomogeneous big-bang model. The studies of radioactive nuclear reactions help predict the theoretical abundances of these elements more precisely. (author). 53 refs., 8 figs
Electron screening and its effects on big-bang nucleosynthesis
We study the effects of electron screening on nuclear reaction rates occurring during the big-bang nucleosynthesis epoch. The sensitivity of the predicted elemental abundances on electron screening is studied in detail. It is shown that electron screening does not produce noticeable results in the abundances unless the traditional Debye-Hueckel model for the treatment of electron screening in stellar environments is enhanced by several orders of magnitude. This work rules out electron screening as a relevant ingredient to big-bang nucleosynthesis, confirming a previous study [see Itoh et al., Astrophys. J. 488, 507 (1997)] and ruling out exotic possibilities for the treatment of screening beyond the mean-field theoretical approach.
Big-Bang Nucleosynthesis verifies classical Maxwell-Boltzmann distribution
Hou, S Q; Parikh, A; Daid, K; Bertulani, C
2014-01-01
We provide the most stringent constraint to date on possible deviations from the usually-assumed Maxwell-Boltzmann (MB) velocity distribution for nuclei in the Big-Bang plasma. The impact of non-extensive Tsallis statistics on thermonuclear reaction rates involved in standard models of Big-Bang Nucleosynthesis (BBN) has been investigated. We find that the non-extensive parameter $q$ may deviate by, at most, $|\\delta q|$=6$\\times$10$^{-4}$ from unity for BBN predictions to be consistent with observed primordial abundances; $q$=1 represents the classical Boltzmann-Gibbs statistics. This constraint arises primarily from the {\\em super}sensitivity of endothermic rates on the value of $q$, which is found for the first time. As such, the implications of non-extensive statistics in other astrophysical environments should be explored. This may offer new insight into the nucleosynthesis of heavy elements.
Review of Big Bang Nucleosynthesis and Primordial Abundances
Tytler, David; O'Meara, John M.; SUZUKI, Nao; Lubin, Dan
2000-01-01
Big Bang Nucleosynthesis (BBN) is the synthesis of the light nuclei, Deuterium, He3, He4 and Li7, during the first few minutes of the universe. This review concentrates on recent improvements in the measurement of the primordial (after BBN, and prior to modification) abundances of these nuclei. We mention improvement in the standard theory, and the non-standard extensions which are limited by the data. (abridged)
The big bang nucleosynthesis and finite temperature field theory
We consider electromagnetic corrections at finite temperature and their effect on the nucleosynthesis in the standard Big Bang scenario. This requires discussing the finite, temperature dependent correction to the neutron-proton mass difference as well as making use of a previous result on the temperature correction to the mass of the electron. We find that these corrections do not affect the conventional results of e.g. the helium abundance to any appreciable extent. (orig.)
Constraints on massive gravity theory from big bang nucleosynthesis
The massive gravity cosmology is studied in the scenario of big bang nucleosynthesis. By making use of current bounds on the deviation from the fractional mass, we derive the constraints on the free parameters of the theory. The cosmological consequences of the model are also analyzed in the framework of the PAMELA experiment, i.e. an excess of positron events, that the conventional cosmology and particle physics cannot explain
Inhomogeneous big bang nucleosynthesis with late-decaying massive particles
Lopez-Suarez, J.; Canal, R.
1998-01-01
We investigate the possibility of accounting for the currently inferred primordial abundances of D, 3He, 4He, and 7Li by big bang nucleosynthesis in the presence of baryon density inhomogeneities plus the effects of late-decaying massive particles (X), and we explore the allowed range of baryonic fraction of the closure density Omega_b in such context. We find that, depending on the parameters of this composite model (characteristic size and density contrast of the inhomogeneities; mass-densi...
Big bang nucleosynthesis revisited via Trojan Horse method measurements
Nuclear reaction rates are among the most important input for understanding primordial nucleosynthesis and, therefore, for a quantitative description of the early universe. An up-to-date compilation of direct cross-sections of 2H(d, p)3H, 2H(d, n)3He, 7Li(p, α)4He, and 3He(d, p)4He reactions is given. These are among the most uncertain cross-sections used and input for big bang nucleosynthesis calculations. Their measurements through the Trojan Horse method are also reviewed and compared with direct data. The reaction rates and the corresponding recommended errors in this work were used as input for primordial nucleosynthesis calculations to evaluate their impact on the 2H, 3,4He, and 7Li primordial abundances, which are then compared with observations.
Big Bang Nucleosynthesis Revisited via Trojan Horse Method Measurements
Pizzone, R. G.; Spartá, R.; Bertulani, C. A.; Spitaleri, C.; La Cognata, M.; Lalmansingh, J.; Lamia, L.; Mukhamedzhanov, A.; Tumino, A.
2014-05-01
Nuclear reaction rates are among the most important input for understanding primordial nucleosynthesis and, therefore, for a quantitative description of the early universe. An up-to-date compilation of direct cross-sections of 2H(d, p)3H, 2H(d, n)3He, 7Li(p, α)4He, and 3He(d, p)4He reactions is given. These are among the most uncertain cross-sections used and input for big bang nucleosynthesis calculations. Their measurements through the Trojan Horse method are also reviewed and compared with direct data. The reaction rates and the corresponding recommended errors in this work were used as input for primordial nucleosynthesis calculations to evaluate their impact on the 2H, 3, 4He, and 7Li primordial abundances, which are then compared with observations.
Big Bang nucleosynthesis revisited via Trojan Horse Method measurements
Pizzone, R G; Bertulani, C A; Spitaleri, C; La Cognata, M; Lalmansingh, J; Lamia, L; Mukhamedzhanov, A; Tumino, A
2014-01-01
Nuclear reaction rates are among the most important input for understanding the primordial nucleosynthesis and therefore for a quantitative description of the early Universe. An up-to-date compilation of direct cross sections of 2H(d,p)3H, 2H(d,n)3He, 7Li(p,alpha)4He and 3He(d,p)4He reactions is given. These are among the most uncertain cross sections used and input for Big Bang nucleosynthesis calculations. Their measurements through the Trojan Horse Method (THM) are also reviewed and compared with direct data. The reaction rates and the corresponding recommended errors in this work were used as input for primordial nucleosynthesis calculations to evaluate their impact on the 2H, 3,4He and 7Li primordial abundances, which are then compared with observations.
Big bang nucleosynthesis revisited via Trojan Horse method measurements
Pizzone, R. G.; Spartá, R.; Spitaleri, C.; La Cognata, M.; Tumino, A. [INFN—Laboratori Nazionali del Sud, Via Santa Sofia 62, I-95123 Catania (Italy); Bertulani, C. A.; Lalmansingh, J. [Department of Physics and Astronomy, Texas A and M University, Commerce, TX 75025 (United States); Lamia, L. [Dipartimento di Fisica e Astronomia, Università degli Studi di Catania, Via Santa Sofia 64, I-95123 Catania (Italy); Mukhamedzhanov, A., E-mail: rgpizzone@lns.infn.it [Cyclotron Institute, Texas A and M University, College Station, TX 77843 (United States)
2014-05-10
Nuclear reaction rates are among the most important input for understanding primordial nucleosynthesis and, therefore, for a quantitative description of the early universe. An up-to-date compilation of direct cross-sections of {sup 2}H(d, p){sup 3}H, {sup 2}H(d, n){sup 3}He, {sup 7}Li(p, α){sup 4}He, and {sup 3}He(d, p){sup 4}He reactions is given. These are among the most uncertain cross-sections used and input for big bang nucleosynthesis calculations. Their measurements through the Trojan Horse method are also reviewed and compared with direct data. The reaction rates and the corresponding recommended errors in this work were used as input for primordial nucleosynthesis calculations to evaluate their impact on the {sup 2}H, {sup 3,4}He, and {sup 7}Li primordial abundances, which are then compared with observations.
Constraining Axion Dark Matter with Big Bang Nucleosynthesis
Kfir Blum; Raffaele Tito D'Agnolo; Mariangela Lisanti; Benjamin R. Safdi
2014-01-01
We show that Big Bang Nucleosynthesis (BBN) significantly constrains axion-like dark matter. The axion acts like an oscillating QCD $\\theta$ angle that redshifts in the early universe, increasing the neutron-proton mass difference at neutron freeze-out. An axion-like particle that couples too strongly to QCD results in the underproduction of 4He during BBN and is thus excluded. The BBN bound overlaps with much of the parameter space that would be covered by proposed searches for time-varying ...
Constraining axion dark matter with Big Bang Nucleosynthesis
We show that Big Bang Nucleosynthesis (BBN) significantly constrains axion-like dark matter. The axion acts like an oscillating QCD θ angle that redshifts in the early Universe, increasing the neutron–proton mass difference at neutron freeze-out. An axion-like particle that couples too strongly to QCD results in the underproduction of 4He during BBN and is thus excluded. The BBN bound overlaps with much of the parameter space that would be covered by proposed searches for a time-varying neutron EDM. The QCD axion does not couple strongly enough to affect BBN
Constraining axion dark matter with Big Bang Nucleosynthesis
Kfir Blum
2014-10-01
Full Text Available We show that Big Bang Nucleosynthesis (BBN significantly constrains axion-like dark matter. The axion acts like an oscillating QCD θ angle that redshifts in the early Universe, increasing the neutron–proton mass difference at neutron freeze-out. An axion-like particle that couples too strongly to QCD results in the underproduction of He4 during BBN and is thus excluded. The BBN bound overlaps with much of the parameter space that would be covered by proposed searches for a time-varying neutron EDM. The QCD axion does not couple strongly enough to affect BBN.
Quark mass variation constraints from Big Bang nucleosynthesis
We study the impact on the primordial abundances of light elements created by a variation of the quark masses at the time of Big Bang nucleosynthesis (BBN). In order to navigate through the particle and nuclear physics required to connect quark masses to binding energies and reaction rates in a model-independent way, we use lattice QCD data and a hierarchy of effective field theories. We find that the measured 4He abundances put a bound of -1% q/mq q/mq.
Dark/visible parallel universes and Big Bang nucleosynthesis
We develop a model for visible matter-dark matter interaction based on the exchange of a massive gray boson called herein the Mulato. Our model hinges on the assumption that all known particles in the visible matter have their counterparts in the dark matter. We postulate six families of particles five of which are dark. This leads to the unavoidable postulation of six parallel worlds, the visible one and five invisible worlds. A close study of big bang nucleosynthesis (BBN), baryon asymmetries, cosmic microwave background (CMB) bounds, galaxy dynamics, together with the Standard Model assumptions, help us to set a limit on the mass and width of the new gauge boson. Modification of the statistics underlying the kinetic energy distribution of particles during the BBN is also discussed. The changes in reaction rates during the BBN due to a departure from the Debye-Hueckel electron screening model is also investigated.
Big bang nucleosynthesis and the quark-hadron transition
An examination and brief review is made of the effects of quark-hadron transition induced fluctuations on Big Bang nucleosynthesis. It is shown that cosmologically critical densities in baryons are difficult to reconcile with observation, but the traditional baryon density constraints from homogeneous calculations might be loosened by as much as 50 percent, to 0.3 of critical density, and the limit on the number of neutrino flavors remains about N(sub nu) is less than or approximately 4. To achieve baryon densities of greater than or approximately 0.3 of critical density would require initial density contrasts R is much greater the 10(exp e), whereas the simplest models for the transition seem to restrict R to less than of approximately 10(exp 2). 43 refs
Big bang nucleosynthesis and the quark-hadron transition
Kurki-Suonio, H.; Matzner, R.A.; Olive, K.A.; Schramm, D.N. (Drexel Univ., Philadelphia, PA (USA) Texas Univ., Austin (USA) Minnesota Univ., Minneapolis (USA) Chicago Univ., IL (USA))
1990-04-01
An examination and brief review is made of the effects of quark-hadron transition induced fluctuations on Big Bang nucleosynthesis. It is shown that cosmologically critical densities in baryons are difficult to reconcile with observation, but the traditional baryon density constraints from homogeneous calculations might be loosened by as much as 50 percent, to 0.3 of critical density, and the limit on the number of neutrino flavors remains about N(sub nu) is less than or approximately 4. To achieve baryon densities of greater than or approximately 0.3 of critical density would require initial density contrasts R is much greater the 10(exp e), whereas the simplest models for the transition seem to restrict R to less than of approximately 10(exp 2). 43 refs.
Big Bang nucleosynthesis and the quark-hadron transition
Kurki-suonio, H.; Matzner, R.A.; Olive, K.A.; Schramm, D.N.
1989-12-01
An examination and brief review is made of the effects of quark-hadron transistion induced fluctuations on Big Bang nucleosynthesis. It is shown that cosmologically critical densities in baryons are difficult to reconcile with observation, but the traditional baryon density constraints from homogeneous calculations might be loosened by as much as 50 percent, to 0.3 of critical density, and the limit on the number of neutrino flavors remains about N(sub nu) is less than or approximately 4. To achieve baryon densities of greater than or approximately 0.3 of critical density would require initial density contrasts R much greater than 10(exp 3), whereas the simplest models for the transition seem to restrict R to less than approximately 10(exp 2).
Big bang nucleosynthesis and the quark-hadron transition
Kurki-Suonio, Hannu; Matzner, Richard A.; Olive, Keith A.; Schramm, David N.
1990-01-01
An examination and brief review is made of the effects of quark-hadron transition induced fluctuations on Big Bang nucleosynthesis. It is shown that cosmologically critical densities in baryons are difficult to reconcile with observation, but the traditional baryon density constraints from homogeneous calculations might be loosened by as much as 50 percent, to 0.3 of critical density, and the limit on the number of neutrino flavors remains about N(sub nu) is less than or approximately 4. To achieve baryon densities of greater than or approximately 0.3 of critical density would require initial density contrasts R is much greater the 10(exp e), whereas the simplest models for the transition seem to restrict R to less than of approximately 10(exp 2).
Sharpening the Predictions of Big-Bang Nucleosynthesis
We have reexamined the nuclear inputs to big-bang nucleosynthesis using Monte Carlo realization of the cross-section data to directly estimate theoretical uncertainties for the yields of D , 3He , and 7Li . Our results indicate that previous estimates of the uncertainties were too large by a factor of 2. Using the Burles - Tytler deuterium measurement, we infer a baryon density ΩBh2=0.019±0.0024 , predict a primeval 4He mass fraction YP=0.246±0.0014 , and obtain a limit to the equivalent number of neutrino species Nν<3.20 (all at 95% C.L.). We also identify key reactions and the energies, where improved data would allow further progress. copyright 1999 The American Physical Society
Weak interaction rate Coulomb corrections in big bang nucleosynthesis
We have applied a fully relativistic Coulomb wave correction to the weak reactions in the full Kawano/Wagoner big bang nucleosynthesis (BBN) code. We have also added the zero-temperature radiative correction. We find that using this higher accuracy Coulomb correction results in good agreement with previous work, giving only a modest ∼0.04% increase in helium mass fraction over correction prescriptions applied previously in BBN calculations. We have calculated the effect of these corrections on other light element abundance yields in BBN, and we have studied these yields as functions of electron neutrino lepton number. This has allowed insights into the role of the weak neutron-proton interconversion processes in the setting of the neutron-to-proton ratio during the BBN epoch. We find that the lepton capture processes' contributions to this ratio are only second order in the Coulomb correction.
Precise measurements of neutron lifetime and big bang nucleosynthesis
In this talk, we review the current status of the relationships between measurements of neutron lifetime and predictions of light element abundances in big-bang nucleosynthesis (BBN). Performing the Monte Carlo simulation with experimental errors in neutron life-time and nuclear reaction rates in the computation, we can estimate the uncertainties of the prediction of primordial value of D, 4He and 7Li. In BBN, especially 4He is the most sensitive element to the neutron lifetime. Recently it was reported that neutron lifetime was measured within 0.1% (τn=885.7 ± 0.8) accuracy. In this situation, we can determine the primordial value of the 4He mass fraction within 0.1% accuracy. (author)
Constraints on neutrino oscillations from big bang nucleosynthesis
We discuss in detail the effect of neutrino oscillations in Big Bang nucleosynthesis between active and sterile neutrinos as well as between active and active neutrinos. We calculate the constraints on mixings between active and sterile neutrinos from the present observation of the primordial helium abundance and discuss the potential implications on various astrophysical and cosmological problems of such oscillations. In particular, we show that large-angle sterile neutrino mixing seems to be excluded as a MSW solution to the solar neutrino situation or a solution to the atmospheric neutrino mixing hinted at in some underground experiments. We show how, with this constraint, the next generation of solar neutrino experiments should be able to determine the resolution of the solar neutrino problem. It is also shown how sterile neutrinos remain a viable dark matter candidate
Big bang nucleosynthesis: The standard model and alternatives
Schramm, David N.
1991-01-01
Big bang nucleosynthesis provides (with the microwave background radiation) one of the two quantitative experimental tests of the big bang cosmological model. This paper reviews the standard homogeneous-isotropic calculation and shows how it fits the light element abundances ranging from He-4 at 24% by mass through H-2 and He-3 at parts in 10(exp 5) down to Li-7 at parts in 10(exp 10). Furthermore, the recent large electron positron (LEP) (and the stanford linear collider (SLC)) results on the number of neutrinos are discussed as a positive laboratory test of the standard scenario. Discussion is presented on the improved observational data as well as the improved neutron lifetime data. Alternate scenarios of decaying matter or of quark-hadron induced inhomogeneities are discussed. It is shown that when these scenarios are made to fit the observed abundances accurately, the resulting conlusions on the baryonic density relative to the critical density, omega(sub b) remain approximately the same as in the standard homogeneous case, thus, adding to the robustness of the conclusion that omega(sub b) approximately equals 0.06. This latter point is the driving force behind the need for non-baryonic dark matter (assuming omega(sub total) = 1) and the need for dark baryonic matter, since omega(sub visible) is less than omega(sub b).
We investigate in detail the parameter space of active-sterile neutrino oscillations that amplifies neutrino chemical potentials at the epoch of big bang nucleosynthesis. We calculate the magnitude of the amplification and show evidence of chaos in the amplification process. We also discuss the implications of the neutrino chemical potential amplification in big bang nucleosynthesis. It is shown that with a ∼1 eV νe, the amplification of its chemical potential by active-sterile neutrino oscillations can lower the effective number of neutrino species at big bang nucleosynthesis to significantly below three. copyright 1996 The American Physical Society
Big-bang nucleosynthesis in the new cosmology
Big bang nucleosynthesis (BBN) describes the production of the lightest elements in the first minutes of cosmic time. I will review the physics of cosmological element production, and the observations of the primordial element abundances. The comparison between theory and observation has heretofore provided our earliest probe of the universe, and given the best measure of the cosmic baryon content. However, BBN has now taken a new role in cosmology, in light of new precision measurements of the cosmic microwave background (CMB). Recent CMB anisotropy data yield a wealth of cosmological parameters; in particular, the baryon-to-photon ratio η = nB/nγ is measured to high precision. The confrontation between the BBN and CMB 'baryometers' poses a new and stringent test of the standard cosmology; the status of this test will be discussed. Moreover, it is now possible to recast the role of BBN by using the CMB to fix the baryon density and even some light element abundances. This strategy sharpens BBN into a more powerful probe of early universe physics, and of galactic nucleosynthesis processes. The impact of the CMB results on particle physics beyond the Standard Model, and on non-standard cosmology, will be illustrated. Prospects for improvement of these bounds via additional astronomical observations and nuclear experiments will be discussed, as will the lingering 'lithium problem.' (author)
Big Bang Nucleosynthesis in Visible and Hidden-Mirror Sectors
One of the still viable candidates for the dark matter is the so-called mirror matter. Its cosmological and astrophysical implications were widely studied, pointing out the importance to go further with research. In particular, the Big Bang nucleosynthesis provides a strong test for every dark matter candidate, since it is well studied and involves relatively few free parameters. The necessity of accurate studies of primordial nucleosynthesis with mirror matter has then emerged. I present here the results of accurate numerical simulations of the primordial production of both ordinary nuclides and nuclides made of mirror baryons, in presence of a hidden mirror sector with unbroken parity symmetry and with gravitational interactions only. These elements are the building blocks of all the structures forming in the Universe; therefore, their chemical composition is a key ingredient for astrophysics with mirror dark matter. The production of ordinary nuclides shows differences from the standard model for a ratio of the temperatures between mirror and ordinary sectors x=T′/T≳0.3, and they present an interesting decrease of the abundance of 7Li. For the mirror nuclides, instead, one observes an enhanced production of 4He, which becomes the dominant element for x≲0.5, and much larger abundances of heavier elements
Did something decay, evaporate, or annihilate during big bang nucleosynthesis?
Results of a detailed examination of the cascade nucleosynthesis resulting from the putative hadronic decay, evaporation, or annihilation of a primordial relic during the big bang nucleosynthesis (BBN) era are presented. It is found that injection of energetic nucleons around cosmic time 103 s may lead to an observationally favored reduction of the primordial 7Li/H yield by a factor 2-3. Moreover, such sources also generically predict the production of the 6Li isotope with magnitude close to the as yet unexplained high 6Li abundances in low-metallicity stars. The simplest of these models operates at a fractional contribution to the baryon density Ωbh2 > or approx. 0.025, slightly larger than that inferred from standard BBN. Though further study is required, such sources, as, for example, due to the decay of the next-to-lightest supersymmetric particle into GeV gravitinos or the decay of an unstable gravitino in the TeV range of abundance ΩGh2∼5x10-4 show promise to explain both the 6Li and 7Li abundances in low-metallicity stars
Big bang nucleosynthesis and physics beyond the standard model
The Hubble expansion of galaxies, the 2.73 K black-body radiation background and the cosmic abundances of the light elements argue for a hot, dense origin of the universe - the standard big bang cosmology - and enable its evolution to be traced back fairly reliably to the nucleosynthesis era when the temperature was of O(1) MeV corresponding to an expansion age of O(1) s. All particles, known and hypothetical, would have been created at higher temperatures in the early universe and analyses of their possible effects on the abundances of the synthesized elements enable many interesting constraints to be obtained on particle properties. These arguments have usefully complemented laboratory experiments in guiding attempts to extend physics beyond the standard SU(3)cxSU(2)LxU(1)Y model, incorporating ideas such as supersymmetry, compositeness and unification. We first present a pedagogical account of relativistic cosmology and primordial nucleosynthesis, discussing both theoretical and observational aspects, and then proceed to examine such constraints in detail, in particular those pertaining to new massless particles and massive unstable particles. Finally, in a section aimed at particle physicists, we illustrate applications of such constraints to models of new physics. (author)
Big bang nucleosynthesis and CMB constraints on dark energy
Current observational data favor cosmological models which differ from the standard model due to the presence of some form of dark energy and, perhaps, by additional contributions to the more familiar dark matter. Primordial nucleosynthesis provides a window on the very early evolution of the universe and constraints from big bang nucleosynthesis (BBN) can bound the parameters of models for dark matter or energy at redshifts of the order of ten billion. The spectrum of temperature fluctuations imprinted on the cosmic microwave background (CMB) radiation opens a completely different window on the universe at epochs from redshifts of the order of ten thousand to nearly the present. The CMB anisotropy spectrum provides constraints on new physics which are independent of and complementary to those from BBN. Here we consider three classes of models for the dark matter or energy: extra particles which were relativistic during the early evolution of the universe ('X'); quintessence models involving a minimally coupled scalar field ('Q'); models with a non-minimally coupled scalar field which modify the strength of gravity during the early evolution of the universe ('G'). We constrain the parameters of these models using data from BBN and the CMB and identify the allowed regions in their parameter spaces consistent with the more demanding joint BBN and CMB constraints. For 'X' and 'Q' such consistency is relatively easy to find; it is more difficult for the 'G' models with an inverse power law potential for the scalar field
Quark-mass variation effect on big bang nucleosynthesis
We calculate the effect of variation in the light-current quark mass, mq, on standard big bang nucleosynthesis. A change in mq at during the era of nucleosynthesis affects nuclear reaction rates, and hence primordial abundances, via changes the binding energies of light nuclei. It is found that a relative variation of δmq/mq = 0.016 ± 0.005 provides better agreement between observed primordial abundances and those predicted by theory. This is largely due to resolution of the existing discrepancies for 7Li. However this method ignores possible changes in the position of resonances in nuclear reactions. The predicted 7Li abundance has a strong dependence on the cross-section of the resonant reactions 3He (d, p) 4He and t (d, n) 4He. We show that changes in mq at the time of BBN could shift the position of these resonances away from the Gamow window and lead to an increased production of 7Li, exacerbating the lithium problem.
Big bang nucleosynthesis constraints on the tau neutrino mass
We re-examine the effect of a massive τ neutrino on primordial nucleosynthesis. An improved calculation of the evolution of the total energy density is presented for both a stable τ neutrino, and for the case where the τ neutrino decays into a lighter neutrino and a scalar. The production of light elements in big bang nucleosynthesis is calculated for the stable τ neutrino and for the unstable case. Using observational limits on the abundances of 4He, D+3He, and 7Li, we constrain the allowed mass and lifetime of ντ. We find that the only range allowed for the mass and lifetime is either mντν> or ∼10-2 s and mντν/10-2 s) MeV for τν-2 s, or 5-10 MeVντ≤qslant31 MeV provided that τνντ from τ→5π±ντ. Tau neutrinos with lifetimes longer than 40 s are excluded by BBN in the mass interval 0.1 MeVντ< or ∼50 MeV. ((orig.))
Standard big bang nucleosynthesis and primordial CNO abundances after Planck
Primordial or big bang nucleosynthesis (BBN) is one of the three historical strong evidences for the big bang model. The recent results by the Planck satellite mission have slightly changed the estimate of the baryonic density compared to the previous WMAP analysis. This article updates the BBN predictions for the light elements using the cosmological parameters determined by Planck, as well as an improvement of the nuclear network and new spectroscopic observations. There is a slight lowering of the primordial Li/H abundance, however, this lithium value still remains typically 3 times larger than its observed spectroscopic abundance in halo stars of the Galaxy. According to the importance of this ''lithium problem, we trace the small changes in its BBN calculated abundance following updates of the baryonic density, neutron lifetime and networks. In addition, for the first time, we provide confidence limits for the production of 6Li, 9Be, 11B and CNO, resulting from our extensive Monte Carlo calculation with our extended network. A specific focus is cast on CNO primordial production. Considering uncertainties on the nuclear rates around the CNO formation, we obtain CNO/H ≈ (5-30)×10-15. We further improve this estimate by analyzing correlations between yields and reaction rates and identified new influential reaction rates. These uncertain rates, if simultaneously varied could lead to a significant increase of CNO production: CNO/H∼10-13. This result is important for the study of population III star formation during the dark ages
The exact parity symmetric model and big bang nucleosynthesis
The assumption of exact, unbroken parity symmetry leads directly to a simple predictive resolution of the atmospheric and solar neutrino puzzles. This is because the existence of this symmetry implies the existence of a set of mirror neutrinos which must mix maximally with the known neutrinos if neutrinos have mass. the maximal mixing of the electron neutrino with the mirror electron neutrino with 3 x 10-10 eV2 ≤ |δm2| ≤ 10-3 eV2 leads to a predicted reduction of the solar neutrino flux by-a factor of 2, which is in quite good agreement with the experiments. The maximal mixing of the muon neutrino with the mirror muon neutrino with |δm2| ∼ 10-2 eV2 also solves the atmospheric neutrino puzzle. We show that there is a significant range of parameters where these solutions are not in conflict with standard Big Bang Nucleosynthesis when the creation of lepton asymmetry due to neutrino oscillations is taken into account. (authors)
Constraint on slepton intergenerational mixing from big-bang nucleosynthesis
We find constraint on intergenerational mixing of slepton from big-bang nucleosynthesis (BBN). Today, we know that there exist lepton flavor violation (LFV) from the observation of neutrino oscillation, though there do not exist LFV in the standard model of particle physics (SM). LFV in charged lepton sector (cLFV) have also been expected to exist. From theoretical point of view, the effects of long-lived stau on BBN have been investigated and it is known that the stau can solve the cosmological 7Li problem. However, in the study so far, tau flavor is exactly conserved and it contradict with the existence of cLFV. In this study, we generalize the flavor to be violated and call the stau as slepton. Even if the violation is tiny, it drastically changes the lifetime and the evolution of relic density of the slepton. Thus we analyze the effects of the long-lived slepton on BBN, and constrain the magnitude of the cLFV.
Constraining pre-big-bang nucleosynthesis expansion using cosmic antiprotons
A host of dark energy models and nonstandard cosmologies predict an enhanced Hubble rate in the early Universe: perfectly viable models, which satisfy big bang nucleosynthesis (BBN), cosmic microwave background and general relativity tests, may nevertheless lead to enhancements of the Hubble rate up to many orders of magnitude. In this paper we show that strong bounds on the pre-BBN evolution of the Universe may be derived, under the assumption that dark matter is a thermal relic, by combining the dark matter relic density bound with constraints coming from the production of cosmic-ray antiprotons by dark matter annihilation in the Galaxy. The limits we derive apply to the Hubble rate around the temperature of dark matter decoupling. For dark matter masses lighter than 100 GeV, the bound on the Hubble rate enhancement ranges from a factor of a few to a factor of 30, depending on the actual cosmological model, while for a mass of 500 GeV the bound falls in the range 50-500. Uncertainties in the derivation of the bounds and situations where the bounds become looser are discussed. We finally discuss how these limits apply to some specific realizations of nonstandard cosmologies: a scalar-tensor gravity model, kination models and a Randall-Sundrum D-brane model
Constraining pre big-bang-nucleosynthesis expansion using cosmic antiprotons
A host of dark energy models and non-standard cosmologies predict an enhanced Hubble rate in the early Universe: perfectly viable models, which satisfy Big Bang Nucleosynthesis (BBN), cosmic microwave background and general relativity tests, may nevertheless lead to enhancements of the Hubble rate up to many orders of magnitude. In this paper we show that strong bounds on the pre-BBN evolution of the Universe may be derived, under the assumption that dark matter is a thermal relic, by combining the dark matter relic density bound with constraints coming from the production of cosmic-ray antiprotons by dark matter annihilation in the Galaxy. The limits we derive can be sizable and apply to the Hubble rate around the temperature of dark matter decoupling. For dark matter masses lighter than 100 GeV, the bound on the Hubble-rate enhancement ranges from a factor of a few to a factor of 30, depending on the actual cosmological model, while for a mass of 500 GeV the bound falls in the range 50-500. Uncertainties in the derivation of the bounds and situations where the bounds become looser are discussed. We finally discuss how these limits apply to some specific realizations of non-standard cosmologies: a scalar-tensor gravity model, kination models and a Randall-Sundrum D-brane model. (Orig.)
Big bang nucleosynthesis constraints on massive, unstable neutrinos
The tau-neutrino, if sufficiently massive, must be unstable. Big Bang Nucleosynthesis (BBN) can provide constraints on the ντ mass and lifetime. The modification to the energy density of the early Universe in the case of a massive τ-neutrino which decays via ντ→νμ+φ (where φ is a weakly coupled massless scalar) is described and the results of BBN production of the light elements is presented. Consistency with the primordial abundances of D, 3He, 7Li and, especially, 4He leads to constraints on the mass (mντ) and lifetime (τντ) of the tau-neutrino. Very massive ντ (mντ≥5-10MeV), up to the ARGUS bound of 31MeV, are only allowed for short lifetimes (≤qslant40sec). Much lighter (mντ≤qslant0.01MeV) ντ are permitted for lifetimes longer than similar 0.01sec but, mντ(MeV)≤qslant10τν(sec) for shorter lifetimes. ((orig.))
Neutrino energy transport in weak decoupling and big bang nucleosynthesis
Grohs, E.; Fuller, G. M.; Kishimoto, C. T.; Paris, M. W.; Vlasenko, A.
2016-04-01
We calculate the evolution of the early universe through the epochs of weak decoupling, weak freeze-out and big bang nucleosynthesis (BBN) by simultaneously coupling a full strong, electromagnetic, and weak nuclear reaction network with a multienergy group Boltzmann neutrino energy transport scheme. The modular structure of our code provides the ability to dissect the relative contributions of each process responsible for evolving the dynamics of the early universe in the absence of neutrino flavor oscillations. Such an approach allows a detailed accounting of the evolution of the νe, ν¯e, νμ, ν¯μ, ντ, ν¯τ energy distribution functions alongside and self-consistently with the nuclear reactions and entropy/heat generation and flow between the neutrino and photon/electron/positron/baryon plasma components. This calculation reveals nonlinear feedback in the time evolution of neutrino distribution functions and plasma thermodynamic conditions (e.g., electron-positron pair densities), with implications for the phasing between scale factor and plasma temperature; the neutron-to-proton ratio; light-element abundance histories; and the cosmological parameter Neff. We find that our approach of following the time development of neutrino spectral distortions and concomitant entropy production and extraction from the plasma results in changes in the computed value of the BBN deuterium yield. For example, for particular implementations of quantum corrections in plasma thermodynamics, our calculations show a 0.4% increase in deuterium. These changes are potentially significant in the context of anticipated improvements in observational and nuclear physics uncertainties.
Inhomogeneous Big Bang Nucleosynthesis and the High Baryon Density Suggested by Boomerang and MAXIMA
Kurki-Suonio, Hannu; Sihvola, Elina
2000-01-01
The recent Boomerang and MAXIMA data on the cosmic microwave background suggest a large value for the baryonic matter density of the universe, omega_b = 0.03. This density is larger than allowed by standard big bang nucleosynthesis theory and observations on the abundances of the light elements. We explore here the possibility of accommodating this high density in inhomogeneous big bang nucleosynthesis (IBBN). It turns out that in IBBN the observed D and Y_p values are quite consistent with t...
Introduction to Big Bang nucleosynthesis: open and closed models, anisotropies
A variety of observations suggest that the Universe had a hot dense origin and that the pregalactic composition of the Universe was determined by nuclear reactions that occurred in the first few minutes. There is no unique hot Big Bang theory, but the simplest version produces a primeval chemical composition that is in good qualitative agreement with the abundances deduced from observation. Whether or not any Big Bang theory will provide quantitative agreement with observations depends on a variety of factors in elementary particle physics (number and masses of stable or long-lived particles, half-life of neutron, structure of grand unified theories) and from observational astronomy (present mean baryon density of the Universe, the Hubble constant and deceleration parameter). The influence of these factors on the abundances is discussed, as is the effect of departures from homogeneity and isotropy in the early Universe. (author)
Astrophysical Li-7 as a product of big bang nucleosynthesis and galactic cosmic-ray spallation
Olive, Keith A.; Schramm, David N.
1992-01-01
The astrophysical Li-7 abundance is considered to be largely primordial, while the Be and B abundances are thought to be due to galactic cosmic ray (GCR) spallation reactions on top of a much smaller big bang component. But GCR spallation should also produce Li-7. As a consistency check on the combination of big bang nucleosynthesis and GCR spallation, the Be and B data from a sample of hot population II stars is used to subtract from the measured Li-7 abundance an estimate of the amount generated by GCR spallation for each star in the sample, and then to add to this baseline an estimate of the metallicity-dependent augmentation of Li-7 due to spallation. The singly reduced primordial Li-7 abundance is still consistent with big bang nucleosynthesis, and a single GCR spallation model can fit the Be, B, and corrected Li-7 abundances for all the stars in the sample.
Big bang nucleosynthesis constraints on the self-gravity of pressure
Using big bang nucleosynthesis and present, high-precision measurements of light element abundances, we constrain the self-gravity of radiation pressure in the early universe. The self-gravity of pressure is strictly non-Newtonian, and thus the constraints we set provide a direct test of this prediction of general relativity and of the standard, Friedmann-Robertson-Walker cosmology
Big Bang Nucleosynthesis in the presence of sterile neutrinos with altered dispersion relations
Aeikens, Elke; Pakvasa, Sandip; Weiler, Thomas J
2016-01-01
Big Bang Nucleosynthesis imposes stringent bounds on light sterile neutrinos mixing with the active flavors. Here we discuss how altered dispersion relations can weaken such bounds and allow compatibility of new sterile neutrino degrees of freedom with a successful generation of the light elements in the early Universe.
Dark matter relic abundance and big bang nucleosynthesis in Horava's gravity
The cosmological consequences of Horava's gravity are reviewed in the frameworks of the PAMELA experiment (which has reported an excess of positron events that likely can be ascribed to weakly interacting massive particles dark matter) and of big bang nucleosynthesis. Constraints on parameters characterizing Horawa's cosmology are derived.
Big-Bang Nucleosynthesis from B^2FH to 21st-Century Cosmology
Fields, Brian
2007-04-01
In majestically laying out the case for element synthesis in stars, B^2FH deliberately avoided primordial nucleosynthesis; nevertheless, they identified stellar sources and sinks for the lightest elements and presciently laid out issues which have remained at the center of big-bang nucleosynthesis (BBN) through to the the present. We will briefly review the theory of cosmological nucleosynthesis (to which Hoyle and Fowler made pivotal contributions) and its broad concordance with observed light element abundances; this agreement not only marks a great success for the hot big bang, but also measures the cosmic baryon density. BBN takes a changing but still central role in the dawning era of precision cosmology: measurements of the cosmic baryon density by WMAP and large-scale structure observations provide an independent test of BBN and cosmology. The status of this test will be discussed, as will implications for dark matter and dark energy.
Big bang nucleosynthesis - The standard model and alternatives
Schramm, David N.
1991-01-01
The standard homogeneous-isotropic calculation of the big bang cosmological model is reviewed, and alternate models are discussed. The standard model is shown to agree with the light element abundances for He-4, H-2, He-3, and Li-7 that are available. Improved observational data from recent LEP collider and SLC results are discussed. The data agree with the standard model in terms of the number of neutrinos, and provide improved information regarding neutron lifetimes. Alternate models are reviewed which describe different scenarios for decaying matter or quark-hadron induced inhomogeneities. The baryonic density relative to the critical density in the alternate models is similar to that of the standard model when they are made to fit the abundances. This reinforces the conclusion that the baryonic density relative to critical density is about 0.06, and also reinforces the need for both nonbaryonic dark matter and dark baryonic matter.
Astrophysical S-factor for destructive reactions of lithium-7 in big bang nucleosynthesis
One of the most prominent success with the Big Bang models is the precise reproduction of mass abundance ratio for 4He. In spite of the success, abundances of lithium isotopes are still inconsistent between observations and their calculated results, which is known as lithium abundance problem. Since the calculations were based on the experimental reaction data together with theoretical estimations, more precise experimental measurements may improve the knowledge of the Big Bang nucleosynthesis. As one of the destruction process of lithium-7, we have performed measurements for the reaction cross sections of the 7L(3He,p)9Be reaction
Low-energy photodisintegration of the deuteron and Big-Bang nucleosynthesis
The photon analyzing power for the photodisintegration of the deuteron was measured for seven gamma-ray energies between 2.39 and 4.05 MeV using the linearly polarized gamma-ray beam of the high-intensity gamma-ray source at the Duke Free-Electron Laser Laboratory. The data provide a stringent test of theoretical calculations for the inverse reaction, the neutron-proton radiative capture reaction at energies important for Big-Bang nucleosynthesis. Our data are in excellent agreement with potential model and effective field theory calculations. Therefore, the uncertainty in the baryon density ΩBh2 obtained from Big-Bang Nucleosynthesis can be reduced at least by 20%
Hannaske, R.; Bemmerer, D.; Beyer, R.; Birgersson, E.; Ferrari, A.; Grosse, E.; Junghans, A. R.; Kempe, M.; Kögler, T.; Kosev, K.; Marta, M.; Massarczyk, R.; Matic, A.; Schilling, K. D.; Schramm, G.; Schwengner, R.; Wagner, A.; Yakorev, D.
2016-01-01
The photodissociation of the deuteron is a key reaction in Big Bang nucleosynthesis, but is only sparsely measured in the relevant energy range. To determine the cross section of the d(γ,n)p reaction we used pulsed bremsstrahlung and measured the time-of-flight of the neutrons. In this article, we describe how the efficiency of the neutron detectors was experimentally determined and how the modification of the neutron spectrum by parts of the experimental setup was simulated and corrected.
Big Bang nucleosynthesis as a probe of varying fundamental 'constants'
We analyze the effect of variation of fundamental couplings and mass scales on primordial nucleosynthesis in a systematic way. The first step establishes the response of primordial element abundances to the variation of a large number of nuclear physics parameters, including nuclear binding energies. We find a strong influence of the n-p mass difference, of the nucleon mass and of A = 3,4,7 binding energies. A second step relates the nuclear parameters to the parameters of the Standard Model of particle physics. The deuterium, and, above all, 7Li abundances depend strongly on the average light quark mass. We calculate the behaviour of abundances when variations of fundamental parameters obey relations arising from grand unification. We also discuss the possibility of a substantial shift in the lithium abundance while the deuterium and 4He abundances are only weakly affected
Low-Energy Photodisintegration of the Deuteron and Big-Bang Nucleosynthesis
W. Tornow; Czakon, N. G.; Howell, C.R.; Hutcheson, A.; Kelley, J.H.; Litvinenko, V. N.; Mikhailov, S.; Pinayev, I. V.; Weisel, G.J.; Witala, H
2003-01-01
The photon analyzing power for the photodisintegration of the deuteron was measured for seven gamma-ray energies between 2.39 and 4.05 MeV using the linearly polarized gamma-ray beam of the High-Intensity Gamma-ray Source at the Duke Free-Electron Laser Laboratory. The data provide a stringent test of theoretical calculations for the inverse reaction, the neutron-proton radiative capture reaction at energies important for Big-Bang Nucleosynthesis. Our data are in excellent agreement with pote...
Revisiting big-bang nucleosynthesis constraints on dark-matter annihilation
Masahiro Kawasaki
2015-12-01
Full Text Available We study the effects of dark-matter annihilation during the epoch of big-bang nucleosynthesis on the primordial abundances of light elements. We improve the calculation of the light-element abundances by taking into account the effects of anti-nucleons emitted by the annihilation of dark matter and the interconversion reactions of neutron and proton at inelastic scatterings of energetic nucleons. Comparing the theoretical prediction of the primordial light-element abundances with the latest observational constraints, we derive upper bounds on the dark-matter pair-annihilation cross section. Implication to some of particle-physics models are also discussed.
Right-handed sneutrino dark matter and big-bang nucleosynthesis
We study the light-element abundances in supersymmetric model where the right-handed sneutrino is the lightest superparticle (LSP), assuming that the neutrino masses are purely Dirac-type. In such a scenario, the lightest superparticle in the minimal supersymmetric standard model sector (which we call MSSM-LSP) becomes long-lived, and thermal relic MSSM-LSP may decay after the big-bang nucleosynthesis starts. We calculate the light-element abundances including non-standard nuclear reactions induced by the MSSM-LSP decay, and derive constraints on the scenario of right-handed sneutrino LSP.
Majorana Neutrino Magnetic Moment and Neutrino Decoupling in Big Bang Nucleosynthesis
Vassh, N; Balantekin, A B; Fuller, G M
2015-01-01
We examine the physics of the early universe when neutrinos (electron neutrino, muon neutrino, tau neutrino) possess transition magnetic moments. These extra couplings beyond the usual weak interaction couplings alter the way neutrinos decouple from the plasma of electrons/positrons and photons. We calculate how transition magnetic moment couplings modify neutrino decoupling temperatures, and then use a full weak, strong, and electromagnetic reaction network to compute corresponding changes in Big Bang Nucleosynthesis abundance yields. We find that light element observational constraints and other cosmological constraints may allow probes of neutrino transition magnetic moments which are not directly available in the laboratory.
Big bang nucleosynthesis constraints on scalar-tensor theories of gravity
We investigate Big bang nucleosynthesis (BBN) in scalar-tensor theories of gravity with arbitrary matter couplings and self-interaction potentials. We first consider the case of a massless dilaton with a quadratic coupling to matter. We perform a full numerical integration of the evolution of the scalar field and compute the resulting light element abundances. We demonstrate in detail the importance of particle mass thresholds on the evolution of the scalar field in a radiation dominated universe. We also consider the simplest extension of this model including a cosmological constant in either the Jordan or Einstein frame
Revisiting big-bang nucleosynthesis constraints on dark-matter annihilation
Kawasaki, Masahiro; Kohri, Kazunori; Moroi, Takeo; Takaesu, Yoshitaro
2015-12-01
We study the effects of dark-matter annihilation during the epoch of big-bang nucleosynthesis on the primordial abundances of light elements. We improve the calculation of the light-element abundances by taking into account the effects of anti-nucleons emitted by the annihilation of dark matter and the interconversion reactions of neutron and proton at inelastic scatterings of energetic nucleons. Comparing the theoretical prediction of the primordial light-element abundances with the latest observational constraints, we derive upper bounds on the dark-matter pair-annihilation cross section. Implication to some of particle-physics models are also discussed.
The standard scenario of big bang nucleosynthesis (BBN) is generalized to take into account nonthermal nuclear reactions in the primordial plasma. These reactions are naturally triggered in the BBN epoch by fast particles generated in various exoergic processes. It is found that, although such particles can appreciably enhance the rates of some individual reactions, their influence on the whole process of element production is not significant. The nonthermal corrections to element abundances are obtained to be 0.1% (3H), −0.03% (7Li), and 0.34 %-0.63% (CNO group).
The main path to C, N, O elements in big bang nucleosynthesis
The production of C, N, O elements in a standard big bang nucleosynthesis scenario is investigated. Using the up-to-date data of nuclear reactions in BBN, in particular the 8Li (n, γ) 9Li which has been measured in China Institute of Atomic Energy, a full nucleosynthesis network calculation of BBN is carried out. Our calculation results show that the abundance of 12C is increased for an order of magnitude after addition of the reaction chain 8Li (n, γ) 9Li (α, n) 12B (β) 12C, which was neglected in previous studies. We find that this sequence provides the main channel to convert the light elements into C, N, O in standard BBN. (authors)
Toward a self-consistent and unitary reaction network for big bang nucleosynthesis
Unitarity, the mathematical expression of the conservation of probability in multichannel reactions, is an essential ingredient in the development of accurate nuclear reaction networks appropriate for nucleosynthesis in a variety of environments. We describe our ongoing program to develop a 'unitary reaction network' for the big-bang nucleosynthesis environment and look at an example of the need and power of unitary parametrizations of nuclear scattering and reaction data. Recent attention has been focused on the possible role of the 9B compound nuclear system in the resonant destruction of 7Li during primordial nucleosynthesis. We have studied reactions in the 9B compound system with a multichannel, two-body unitary R-matrix code (EDA) using the known elastic and reaction data, in a four-channel treatment. The data include elastic 6Li(3He,3He)6Li differential cross sections from 0.7 to 2.0 MeV, integrated reaction cross sections for energies from 0.7 to 5.0 MeV for 6Li(3He,p)8Be* and from 0.4 to 5.0 MeV for the 6Li(3He,γ)7Be reaction. Capture data have been added to the previous analysis with integrated cross section measurements from 0.7 to 0.825 MeV for 6Li(3He,γ)9B. The resulting resonance parameters are compared with tabulated values from TUNL Nuclear Data Group analyses. Previously unidentified resonances are noted and the relevance of this analysis and a unitary reaction network for big-bang nucleosynthesis are emphasized. (author)
STANDARD BIG BANG NUCLEOSYNTHESIS UP TO CNO WITH AN IMPROVED EXTENDED NUCLEAR NETWORK
Coc, Alain [Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse (CSNSM), CNRS/IN2P3, Universite Paris Sud, UMR 8609, Batiment 104, F-91405 Orsay Campus (France); Goriely, Stephane; Xu, Yi [Institut d' Astronomie et d' Astrophysique, Universite Libre de Bruxelles, CP 226, Boulevard du Triomphe, B-1050 Bruxelles (Belgium); Saimpert, Matthias; Vangioni, Elisabeth [Institut d' Astrophysique de Paris, UMR 7095 CNRS, Universite Pierre et Marie Curie, 98 bis Boulevard Arago, Paris 75014 (France)
2012-01-10
Primordial or big bang nucleosynthesis (BBN) is one of the three strong pieces of evidence for the big bang model together with the expansion of the universe and cosmic microwave background radiation. In this study, we improve the standard BBN calculations taking into account new nuclear physics analyses and enlarge the nuclear network up to sodium. This is, in particular, important to evaluate the primitive value of CNO mass fraction that could affect Population III stellar evolution. For the first time we list the complete network of more than 400 reactions with references to the origin of the rates, including Almost-Equal-To 270 reaction rates calculated using the TALYS code. Together with the cosmological light elements, we calculate the primordial beryllium, boron, carbon, nitrogen, and oxygen nuclei. We performed a sensitivity study to identify the important reactions for CNO, {sup 9}Be, and boron nucleosynthesis. We re-evaluated those important reaction rates using experimental data and/or theoretical evaluations. The results are compared with precedent calculations: a primordial beryllium abundance increase by a factor of four compared to its previous evaluation, but we note a stability for B/H and for the CNO/H abundance ratio that remains close to its previous value of 0.7 Multiplication-Sign 10{sup -15}. On the other hand, the extension of the nuclear network has not changed the {sup 7}Li value, so its abundance is still 3-4 times greater than its observed spectroscopic value.
STANDARD BIG BANG NUCLEOSYNTHESIS UP TO CNO WITH AN IMPROVED EXTENDED NUCLEAR NETWORK
Primordial or big bang nucleosynthesis (BBN) is one of the three strong pieces of evidence for the big bang model together with the expansion of the universe and cosmic microwave background radiation. In this study, we improve the standard BBN calculations taking into account new nuclear physics analyses and enlarge the nuclear network up to sodium. This is, in particular, important to evaluate the primitive value of CNO mass fraction that could affect Population III stellar evolution. For the first time we list the complete network of more than 400 reactions with references to the origin of the rates, including ≈270 reaction rates calculated using the TALYS code. Together with the cosmological light elements, we calculate the primordial beryllium, boron, carbon, nitrogen, and oxygen nuclei. We performed a sensitivity study to identify the important reactions for CNO, 9Be, and boron nucleosynthesis. We re-evaluated those important reaction rates using experimental data and/or theoretical evaluations. The results are compared with precedent calculations: a primordial beryllium abundance increase by a factor of four compared to its previous evaluation, but we note a stability for B/H and for the CNO/H abundance ratio that remains close to its previous value of 0.7 × 10–15. On the other hand, the extension of the nuclear network has not changed the 7Li value, so its abundance is still 3-4 times greater than its observed spectroscopic value.
Multiple main sequence of globular clusters as a result of inhomogeneous big bang nucleosynthesis
A new mechanism for enhancing the helium abundance in the blue main sequence stars of ω Centauri and NGC 2808 is investigated. We suggest that helium enhancement was caused by the inhomogeneous big bang nucleosynthesis. Regions with extremely high baryon-to-photon ratios are assumed to be caused by the baryogenesis. Its mass scale is also assumed to be 106M·. An example of the mechanisms to realize these two things was already proposed as the Affleck-Dine baryogenesis. As the baryon-to-photon ratio becomes larger, the primordial helium abundance is enhanced. We calculated the big bang nucleosynthesis and found that there exists a parameter region yielding enough helium to account for the split of the main sequence in the aforementioned globular clusters while keeping the abundance of other elements compatible with observations. Our mechanism predicts that heavy elements with the mass number of around 100 is enhanced in the blue main sequence stars. We estimate the time scales of diffusion of the enhanced helium and mass accretion in several stages after the nucleosynthesis to investigate whether these processes diminish the enhancement of helium. We found that the diffusion does not influence the helium content. A cloud with a sufficiently large baryon-to-photon ratio to account for the multiple main sequence collapsed immediately after the recombination. Subsequently, the cloud accreted the ambient matter with the normal helium content. If the star formation occurred both in the collapsed core and the accreted envelope, then the resultant star cluster has a double main sequence.
178th International School of Physics "Enrico Fermi" : From the Big Bang to the Nucleosynthesis
Nappi, E
2011-01-01
Physicists have devoted much effort to reproducing the conditions of the primordial universe in laboratory conditions in their quest to work out a comprehensive theory of the appearance and evolution of nuclear matter. Whether it be trying to recreate the predicted primordial state of high-energy density matter in which quarks and gluons are effectively deconfined - the so-called Quark Gluon Plasma (QGP) - or exploring the structure and reaction properties of very unstable nuclei in experiments using radioactive beams, they have striven to understand the events which characterized the Big Bang and the various nucleosynthesis mechanisms which occur in the stars. This book contains the proceedings of the 2010 Enrico Fermi summer school held in Varenna, Italy, in July 2010, and devoted to the present understanding of the primordial universe and the origin of the elements, as achieved by studying nuclei and their constituents in extreme regimes of energy and composition. Subjects covered include: QGP formation; e...
Low-lying Resonances and Relativistic Screening in Big Bang Nucleosynthesis
Famiano, Michael A; Kajino, Toshitaka
2016-01-01
We explore effects of the screening due to the relativistic electron-positron plasma and presence of resonances in the secondary reactions leading to A=7 nuclei during the Big Bang Nucleosynthesis. In particular, we investigate and examine possible low-lying resonances in the 7Be(3He, g)10C reaction and examine the resultant destruction of 7Be for various resonance locations and strengths. While a resonance in the 10C compound nucleus is thought to have negligible effects we explore the possibility of an enhancement from plasma screening that may adjust the final 7Be abundance. We find the effects of relativistic screening and possible low-lying resonances to be relatively small in the standard Early Universe models.
Low-lying resonances and relativistic screening in Big Bang nucleosynthesis
Famiano, M. A.; Balantekin, A. B.; Kajino, T.
2016-04-01
We explore effects of the screening due to the relativistic electron-positron plasma and presence of resonances in the secondary reactions leading to A =7 nuclei during the Big Bang nucleosynthesis. In particular, we investigate and examine possible low-lying resonances in the 7Be (3He,γ ) 10C reaction and examine the resultant destruction of 7Be for various resonance locations and strengths. While a resonance in the 10C compound nucleus is thought to have negligible effects we explore the possibility of an enhancement from plasma screening that may adjust the final 7Be abundance. We find the effects of relativistic screening and possible low-lying resonances to be relatively small in the standard Early Universe models.
Jedamzik, K
2006-01-01
Big Bang nucleosynthesis in the presence of decaying relic particles is examined in detail. All non-thermal processes important for the determination of light-element abundance yields of 2H, 3H, 3He, 4He, 6Li, and 7Li are coupled to the thermonuclear fusion reactions to obtain comparatively accurate results. Predicted light-element yields are compared to observationally inferred limits on primordial light-element abundances to infer constraints on the abundances and properties of relic decaying particles with decay times in the interval 0.01 sec < tau < 10^(12) sec. Decaying particles are typically constrained at early times by 4He or 2H, at intermediate times by 6Li, and at large times by the 3He/2H ratio. Constraints are shown for a large number of hadronic branching ratios and decaying particle masses and may be applied to constrain the evolution of the early Universe.
Majorana neutrino magnetic moment and neutrino decoupling in big bang nucleosynthesis
Vassh, N.; Grohs, E.; Balantekin, A. B.; Fuller, G. M.
2015-12-01
We examine the physics of the early universe when Majorana neutrinos (νe, νμ, ντ) possess transition magnetic moments. These extra couplings beyond the usual weak interaction couplings alter the way neutrinos decouple from the plasma of electrons/positrons and photons. We calculate how transition magnetic moment couplings modify neutrino decoupling temperatures, and then use a full weak, strong, and electromagnetic reaction network to compute corresponding changes in big bang nucleosynthesis abundance yields. We find that light element abundances and other cosmological parameters are sensitive to magnetic couplings on the order of 1 0-10μB. Given the recent analysis of sub-MeV Borexino data which constrains Majorana moments to the order of 1 0-11μB or less, we find that changes in cosmological parameters from magnetic contributions to neutrino decoupling temperatures are below the level of upcoming precision observations.
Radiative decay of a long-lived particle and big-bang nucleosynthesis
The effects of radiatively decaying, long-lived particles on big-bang nucleosynthesis (BBN) are discussed. If high-energy photons are emitted after BBN, they may change the abundances of the light elements through photodissociation processes, which may result in a significant discrepancy between the BBN theory and observation. We calculate the abundances of the light elements, including the effects of photodissociation induced by a radiatively decaying particle, but neglecting the hadronic branching ratio. Using these calculated abundances, we derive a constraint on such particles by comparing our theoretical results with observations. Taking into account the recent controversies regarding the observations of the light-element abundances, we derive constraints for various combinations of the measurements. We also discuss several models which predict such radiatively decaying particles, and we derive constraints on such models. copyright 1999 The American Physical Society
SUSY-catalyzed big bang nucleosynthesis as a solution of lithium problems
6Li abundances observed in metal-poor stars appear to exhibit a plateau as a function of metallicity similar to that for 7Li. This suggests a big bang origin for 6Li. However, since the radiative capture of a deuteron by an alpha particle during the big bang nucleosynthesis (BBN) is suppressed, it is difficult to explain the observed 6Li abundance in the framework of standard BBN. The 6Li problem is thus a nagging puzzle in nuclear astrophysics. In addition, observed 7Li abundances is smaller than expected in standard BBN (SBBN). In this paper we show that there is a possible simultaneous solution to both of the lithium problems in the paradigm of catalyzed BBN by negatively charged supersymmetric particle. We also show that there is no observable signature of the particle on primordial abundances of light nuclei with mass number larger than 8. We study effects of rates for important reactions on resulting final abundances of light nuclei, and show the importance of precise theoretical calculation of reaction rates involving supersymmetric particles using a few-body model. We discuss implications of this model to constraining the mass of dark matter particles to be measured with direct detection experiments such as CDMS II.
Big-Bang Nucleosynthesis: lithium problems and scalar-tensor theories of gravity
The observations of the anisotropies of the Cosmic Microwave Background (CMB) radiation, by the WMAP satellite, has provided a determination of the baryonic density of the Universe (Ωbh2) with an unprecedented precision. Using this value, the primordial abundances of the light elements can be calculated in the framework of the Standard Big-Bang Nucleosynthesis model (SBBN). While the agreement is excellent for D and good for 4He, there is a difference of a factor of ≅3 for 7Li. In addition, in a few halo stars, 6Li has also been observed at a level well above SBBN predictions. To enable a more reliable calculation of these 7Li and 6Li yields, two nuclear reactions important for the nucleosynthesis of 7Li and 6Li have been studied experimentally: D(α, γ)6Li and 7Be(d,p)2α. Even though, the lithium primordial production is not well understood, BBN can be used to constrain theories beyond the standard model, for instance, scalar-tensor theories of gravity
A scenario of the big-bang nucleosynthesis is analyzed within the minimal supersymmetric standard model, which is consistent with a stau-neutralino coannihilation scenario to explain the relic abundance of dark matter. We find that we can account for the possible discrepancy of the abundance of 7Li between the observation and the prediction of the big-bang nucleosynthesis by taking the mass of the neutralino as 300 GeV and the mass difference between the stau and the neutralino as (100-120) MeV. We can therefore simultaneously explain the abundance of the dark matter and that of 7Li by these values of parameters. The lifetime of staus in this scenario is predicted to be O(100-1000) sec.
Implication of the Proton-Deuteron Radiative Capture for Big Bang Nucleosynthesis
Marcucci, L. E.; Mangano, G.; Kievsky, A.; Viviani, M.
2016-03-01
The astrophysical S factor for the radiative capture d (p ,γ ) 3He in the energy range of interest for big bang nucleosynthesis (BBN) is calculated using an ab initio approach. The nuclear Hamiltonian retains both two- and three-nucleon interactions—the Argonne v18 and the Urbana IX, respectively. Both one- and many-body contributions to the nuclear current operator are included. The former retain for the first time, besides the 1 /m leading order contribution (m is the nucleon mass), also the next-to-leading order term, proportional to 1 /m3. The many-body currents are constructed in order to satisfy the current conservation relation with the adopted Hamiltonian model. The hyperspherical harmonics technique is applied to solve the A =3 bound and scattering states. Particular attention is paid in this second case in order to obtain, in the energy range of BBN, an uncertainty on the astrophysical S factor of the order or below ˜1 %. Then, in this energy range, the S factor is found to be ˜10 % larger than the currently adopted values. Part of this increase (1%-3%) is due to the 1 /m3 one-body operator, while the remaining is due to the new more accurate scattering wave functions. We have studied the implication of this new determination for the d (p ,γ )3He S factor on the deuterium primordial abundance. We find that the predicted theoretical value for 2H/H is in excellent agreement with its experimental determination, using the most recent determination of the baryon density of the Planck experiment, and with a standard number of relativistic degrees of freedom Neff=3.046 during primordial nucleosynthesis. This calls for a more accurate measurement of the astrophysical S factor in order to confirm the present predictions.
Constraints on Ωb from nucleosynthesis of 7Li in the standard big bang model
We update standard big bang nucleosynthesis (SBBN) calculations on the basis of recent nuclear physics compilations (NACRE in particular), experimental and theoretical works. By a Monte Carlo technique, we calculate the uncertainties on the light element yields (4He, D, 3He and 7Li) related to nuclear reactions. The results are compared to observations that are thought to be representative of the corresponding primordial abundances. It is found that 7Li could lead to more stringent constraints on the baryonic density of the universe (Ωbh2) than deuterium, because of much higher observation statistics and an easier extrapolation to primordial values. The confrontation of SBBN results with 7Li observations is of special interest since other independent approaches have also recently provided Ωbh2 values: (i) the anisotropies of the cosmic microwave background by the BOOMERANG, CBI, DASI and MAXIMA experiments and (ii) the Lyman-α forest at high redshift. A comparison between these results obtained by different methods provides a test of their consistency and could provide a better determination of the baryonic density in the universe. However, the agreement between Ωbh2 values deduced from SBBN calculation and 7Li observation on the one hand and CMB observations on the other hand is only marginal
Implication of the proton-deuteron radiative capture for Big Bang Nucleosynthesis
Marcucci, L E; Kievsky, A; Viviani, M
2015-01-01
The astrophysical $S$-factor for the radiative capture $d(p,\\gamma)^3$He in the energy-range of interest for Big Bang Nucleosynthesis (BBN) is calculated using an {\\it ab-initio} approach. The nuclear Hamiltonian retains both two- and three-nucleon interactions - the Argonne $v_{18}$ and the Urbana IX, respectively. Both one- and many-body contributions to the nuclear current operator are included. The former retain for the first time, besides the $1/m$ leading order contribution ($m$ is the nucleon mass), also the next-to-leading order term, proportional to $1/m^3$. The many-body currents are constructed in order to satisfy the current conservation relation with the adopted Hamiltonian model. The hyperspherical harmonics technique is applied to solve the $A=3$ bound and scattering states. A particular attention is used in this second case in order to obtain, in the energy range of BBN, an uncertainty on the astrophysical $S$-factor of the order or below $\\sim$1 %. Then, in this energy range, the $S$-factor i...
Revisiting constraints on small scale perturbations from big-bang nucleosynthesis
Inomata, Keisuke; Tada, Yuichiro
2016-01-01
We revisit the constraints on the small scale density perturbations ($10^4\\,\\mathrm{Mpc}^{-1}\\lesssim k \\lesssim10^5\\,\\mathrm{Mpc}^{-1}$) from the modification of the freeze-out value of the neutron-proton ratio at big-bang nucleosynthesis era. Around the freeze-out temperature $T\\sim 0.5\\,\\mathrm{MeV}$, the universe can be divided into several local patches which have different temperatures since any perturbation which enters the horizon after the neutrino decoupling has not diffused yet. Taking account of this situation, we calculate the freeze-out value in detail. We find that the small scale perturbations decrease the n-p ratio in contrast to previous works. With use of the latest observed $^4$He abundance, we obtain the constraint on the power spectrum of the curvature perturbations as $\\Delta^2_\\mathcal{R}\\lesssim 0.018$ on $10^4\\,\\mathrm{Mpc}^{-1}\\lesssim k \\lesssim 10^5\\,\\mathrm{Mpc}^{-1}$.
Big bang nucleosynthesis constraints on universal extra dimensions and varying fundamental constants
The successful prediction of light element abundances from big bang nucleosynthesis (BBN) has been a pillar of the standard model of cosmology. Because many of the relevant reaction rates are sensitive to the values of fundamental constants, such as the fine structure constant and the strong coupling constant, BBN is a useful tool to probe and to put constraints on possible cosmological variations of these constants, which arise naturally from many versions of extra-dimensional theories. In this paper, we study the dependences of fundamental constants on the radion field of the universal extra-dimension model, and calculate the effects of such varying constants on BBN. We also discuss the possibility that the discrepancy between BBN and the Wilkinson Microwave Anisotropy Probe (WMAP) data on the baryon-to-photon ratio can be reduced if the volume of the extra dimensions was slightly larger--by O(10-3)--at the BBN era compared to its present value, which would result in smaller gauge couplings at BBN by the same factor
Kernan, P J; Vachaspati, T; Kernan, Peter J.; Starkman, Glenn D.; Vachaspati, Tanmay
1996-01-01
Recently Cheng, Olinto, Schramm and Truran (COST) reexamined the constraints from big bang nucleosynthesis (BBN) on the strength of primordial magnetic fields. Their bottom line agreed with that of an earlier recent paper on the subject (Kernan, Starkman and Vachaspati (KSV)), both in its final limit on the magnetic field during BBN, and in its conclusion that for allowed values of the magnetic field the dominant factor for BBN is the increased expansion rate at a given temperature caused by the energy density of the magnetic field, $B^2/8\\pi$. However, their conclusion that weak interaction rates increased with increasing B-field at these low field values contradicted the earlier results of KSV. In this comment we point out that the Taylor series expansion of the weak interaction rate about B=0 used in COST is not well-defined, while the Euler-McLaurin expansion of KSV is well-behaved and reliable. Using the Euler-McLaurin expansion we find that the weak interaction rates decrease rather than increase with i...
General neutralino NLSP with gravitino dark matter vs. big bang nucleosynthesis
Hasenkamp, Jasper
2009-08-15
We study the scenario of gravitino dark matter with a general neutralino being the next-to-lightest supersymmetric particle (NLSP). Therefore, we compute analytically all 2- and 3-body decays of the neutralino NLSP to determine the lifetime and the electromagnetic and hadronic branching ratio of the neutralino decaying into the gravitino and Standard Model particles. We constrain the gravitino and neutralino NLSP mass via big bang nucleosynthesis and see how those bounds are relaxed for a Higgsino or a wino NLSP in comparison to the bino neutralino case. At neutralino masses >or similar 1 TeV, a wino NLSP is favoured, since it decays rapidly via a newly found 4-vertex. The Higgsino component becomes important, when resonant annihilation via heavy Higgses can occur. We provide the full analytic results for the decay widths and the complete set of Feynman rules necessary for these computations. This thesis closes any gap in the study of gravitino dark matter scenarios with neutralino NLSP coming from approximations in the calculation of the neutralino decay rates and its hadronic branching ratio. (orig.)
Constraints on the strength of a primordial magnetic field from big bang nucleosynthesis
The effects of magnetic fields on big bang nucleosynthesis (BBN) are calculated, and the impact on the abundances of the light elements are investigated numerically. An upper limit on the strength of primordial magnetic fields compatible with observations of light element abundances is thus obtained. In the framework of standard BBN theory, the maximum strength of the primordial magnetic fields, on scales greater than 104 cm but smaller than the event horizon at the BBN epoch (∼1 min, ∼2x1012 cm), is ≤1011 G. This limit is shown to allow magnetic fields at the time of recombination no stronger than ∼0.1 G on scales ≥1011 cm. Our results also strongly indicate that, at the BBN epoch, and for field strengths B≤1013 G, the effects of magnetic fields on the primordial abundances of light elements are dominated by effects from reaction rates in the presence of primeval magnetic fields rather than by magnetic density effects on the expansion rate
Radioactive nuclear beam studies of reactions important to big bang nucleosynthesis
The primordal element abundances provide one of the basic tests of models of big bang nucleosynthesis. Unfortunately, many of the most important reactions for the inhomogeneous models involve short-lived nuclides, so their study requires radioactive nuclear beams. Thus, the authors have used facilities which generate such beams at RIKEN and the Univ. of Notre Dame to study the 8Li(4He,n)11B reaction, several reactions associated with 2H+8Li, and the 18C(n,γ)19C reaction. 8Li(4He,n)11B is important for producing all nuclides heavier than mass 10 amu over much of the inhomogeneous model parameter space, whereas the 2H+8Li reactions serve primarily to destroy 8Li, and hence to limit heavy element production. Because of theoretical uncertainties involving Li, Be, and B, nuclides heavier than 20 amu may provide important test cases. 18C(n,γ)19C may be important in producing such nuclides. Theoretical motivation, experimental techniques, and results are presented
It has been proposed that the apparent discrepancies between the inferred primordial abundances of 6Li and 7Li and the predictions of big bang nucleosynthesis (BBN) can be resolved by the existence of a negatively charged massive unstable supersymmetric particle (X-) during the BBN epoch. Here, we present new BBN calculations with an X- particle utilizing an improved nuclear reaction network including captures of nuclei by the particle, nuclear reactions and β decays of normal nuclei and nuclei bound to the X- particles (X nuclei), and new reaction rates derived from recent rigorous quantum many-body dynamical calculations. We find that this is still a viable model to explain the observed 6Li and 7Li abundances. We also show that with the new rates the production of heavier nuclei is suppressed and there is no signature on abundances of nuclei heavier than Be in the X--particle catalyzed BBN model as has been previously proposed. We also consider the version of this model whereby the X- particle decays into the present cold dark matter. We analyze this paradigm in light of the recent constraints on the dark-matter mass deduced from the possible detected events in the CDMS-II experiment. We conclude that based upon the inferred range for the dark-matter mass, only X- decay via the weak interaction can achieve the desired 7Li destruction while also reproducing the observed 6Li abundance.
Constraints on modified Gauss-Bonnet gravity during big bang nucleosynthesis
Kusakabe, Motohiko; Koh, Seoktae; Kim, K. S.; Cheoun, Myung-Ki
2016-02-01
Modified gravity is considered to be one of the possible explanations of the accelerated expansions of the present and the early universe. We study the effects of modified gravity on big bang nucleosynthesis (BBN). If the effects of modified gravity are significant during the BBN epoch, they should be observed as changes of primordial light element abundances. We assume a f (G ) term with the Gauss-Bonnet term G , during the BBN epoch. A power-law relation of d f /d G ∝tp where t is the cosmic time was assumed for the function f (G ) as an example case. We solve time evolutions of physical variables during BBN in the f (G ) gravity model numerically, and we analyzed the calculated results. It is found that a proper solution for the cosmic expansion rate can be lost in some parameter region. In addition, we show that calculated results of primordial light element abundances can be significantly different from observational data. Especially, observational limits on the primordial D abundance leads to the strongest constraint on the f (G ) gravity. We then derive constraints on parameters of the f (G ) gravity taking into account the existence of the solution of expansion rate and final light element abundances.
Radiative neutron capture on a proton at big-bang nucleosynthesis energies
The total cross section for radiative neutron capture on a proton, np→dγ, is evaluated at big-bang nucleosynthesis (BBN) energies. The electromagnetic transition amplitudes are calculated up to next-to-leading-order within the framework of pionless effective field theory with dibaryon fields. We also calculate the dγ→np cross section and the photon analyzing power for the dγ(vector sign)→np process from the amplitudes. The values of low-energy constants that appear in the amplitudes are estimated by a Markov Chain Monte Carlo analysis using the relevant low-energy experimental data. Our result agrees well with those of other theoretical calculations except for the np→dγ cross section at some energies estimated by an R-matrix analysis. We also study the uncertainties in our estimation of the np→dγ cross section at relevant BBN energies and find that the estimated cross section is reliable to within ∼1% error
Using Big Bang Nucleosynthesis to extend CMB probes of neutrino physics
We present calculations showing that upcoming Cosmic Microwave Background (CMB) experiments will have the power to improve on current constraints on neutrino masses and provide new limits on neutrino degeneracy parameters. The latter could surpass those derived from Big Bang Nucleosynthesis (BBN) and the observationally-inferred primordial helium abundance. These conclusions derive from our Monte Carlo Markov Chain (MCMC) simulations which incorporate a full BBN nuclear reaction network. This provides a self-consistent treatment of the helium abundance, the baryon number, the three individual neutrino degeneracy parameters and other cosmological parameters. Our analysis focuses on the effects of gravitational lensing on CMB constraints on neutrino rest mass and degeneracy parameter. We find for the PLANCK experiment that total (summed) neutrino mass Mν > 0.29 eV could be ruled out at 2σ or better. Likewise neutrino degeneracy parameters ξνe > 0.11 and |ξνμ/τ| > 0.49 could be detected or ruled out at 2σ confidence, or better. For POLARBEAR we find that the corresponding detectable values are Mν > 0.75 eV, ξνe > 0.62, and |ξνμ/τ| > 1.1, while for EPIC we obtain Mν > 0.20 eV, ξνe > 0.045, and |ξνμ/τ| > 0.29. Our forcast for EPIC demonstrates that CMB observations have the potential to set constraints on neutrino degeneracy parameters which are better than BBN-derived limits and an order of magnitude better than current WMAP-derived limits
An update on the big bang nucleosynthesis prediction for 7Li: the problem worsens
The lithium problem arises from the significant discrepancy between the primordial 7Li abundance as predicted by big bang nucleosynthesis (BBN) theory and the Wilkinson Microwave Anisotropy Probe (WMAP) baryon density, and the pre-Galactic lithium abundance inferred from observations of metal-poor (Population II) stars. This problem has loomed for the past decade, with a persistent discrepancy of a factor of 2–3 in 7Li/H. Recent developments have sharpened all aspects of the Li problem. Namely: (1) BBN theory predictions have sharpened due to new nuclear data; in particular, the uncertainty on the reaction rate for3He(α,γ)7Be has reduced to 7.4%, nearly a factor of 2 tighter than previous determinations. (2) The WMAP five-year data set now yields a cosmic baryon density with an uncertainty reduced to 2.7%. (3) Observations of metal-poor stars have tested for systematic effects. With these, we now find that the BBN+WMAP predicts7Li/H = (5.24−0.67+0.71) × 10−10. The central value represents an increase by 23%, most of which is due to the upward shift in the3He(α,γ)7Be rate. More significant is the reduction in the7Li/H uncertainty by almost a factor of 2, tracking the reduction in the3He(α,γ)7Be error bar. These changes exacerbate the Li problem; the discrepancy is now a factor 2.4 or 4.2σ (from globular cluster stars) to 4.3 or 5.3σ (from halo field stars). Possible resolutions to the lithium problem are briefly reviewed, and key experimental and astronomical measurements highlighted
Big Bang nucleosynthesis and the results of the 2H(α,γ)6Li experiment at LUNA
Observations of the 6Li abundance in very metal-poor stars, if confirmed, show a level of 6Li that is several orders of magnitude larger than the production of this nuclide in standard Big Bang nucleosynthesis. The 2H(α,γ)6Li nuclear reaction is believed to dominate 6Li production in the Big Bang, but there are no directly measured data at relevant energies yet. The reaction has been studied at the LUNA 0.4 MV accelerator, deep underground in the Gran Sasso laboratory in Italy, using an intensive He+ beam and a windowless deuterium gas target. The conclusions from the final data analysis of the experiment are presented.
Nakamura, Riou; Fujimoto, Shin-ichiro; Sato, Katsuhiko
2013-01-01
We investigate the observational constraints on the inhomogeneous big-bang nucleosynthesis that Matsuura et al. suggested the possibility of the heavy element production beyond ${}^7$Li in the early universe. From the observational constraints on light elements of ${}^4$He and D, possible regions are found on the plane of the volume fraction of the high density region against the ratio between high-and low-density regions. In these allowed regions, we have confirmed that the heavy elements beyond Ni can be produced appreciably, where $p$- and/or $r$-process elements are produced well simultaneously.
Rate of 3H(7Li,n0)9Be and big-bang nucleosynthesis
The differential cross sections for the 3H(7Li,n0)9Be reaction measured at 5 angles in the energy range E(c.m.)=0.2-0.9 MeV using a pulsed 7Li beam and time-of-flight technique. Absolute values of the cross section were obtained by comparison with the well-known cross section of 3H(d,n)4He at Ed=1.0 MeV. The resulting reaction rates are obtained at temperatures relevant to big-bang nucleosynthesis, and consequences for primordial 9Be abundances are discussed. (orig.)
Constraining the cosmic radiation density due to lepton number with Big Bang Nucleosynthesis
Mangano, Gianpiero; Miele, Gennaro; Pisanti, Ofelia; Sarikas, Srdjan [Istituto Nazionale di Fisica Nucleare – Sezione di Napoli, Complesso Universitario di Monte S. Angelo, I-80126 Napoli (Italy); Pastor, Sergio, E-mail: mangano@na.infn.it, E-mail: miele@na.infn.it, E-mail: pastor@ific.uv.es, E-mail: pisanti@na.infn.it, E-mail: sarikas@na.infn.it [Instituto de Física Corpuscular (CSIC-Universitat de València), Ed. Institutos de Investigación, Apdo. correos 22085, E-46071 Valencia (Spain)
2011-03-01
The cosmic energy density in the form of radiation before and during Big Bang Nucleosynthesis (BBN) is typically parameterized in terms of the effective number of neutrinos N{sub eff}. This quantity, in case of no extra degrees of freedom, depends upon the chemical potential and the temperature characterizing the three active neutrino distributions, as well as by their possible non-thermal features. In the present analysis we determine the upper bounds that BBN places on N{sub eff} from primordial neutrino-antineutrino asymmetries, with a careful treatment of the dynamics of neutrino oscillations. We consider quite a wide range for the total lepton number in the neutrino sector, η{sub ν} = η{sub ν{sub e}}+η{sub ν{sub μ}}+η{sub ν{sub τ}} and the initial electron neutrino asymmetry η{sub ν{sub e}{sup in}}, solving the corresponding kinetic equations which rule the dynamics of neutrino (antineutrino) distributions in phase space due to collisions, pair processes and flavor oscillations. New bounds on both the total lepton number in the neutrino sector and the ν{sub e}−ν-bar {sub e} asymmetry at the onset of BBN are obtained fully exploiting the time evolution of neutrino distributions, as well as the most recent determinations of primordial {sup 2}H/H density ratio and {sup 4}He mass fraction. Note that taking the baryon fraction as measured by WMAP, the {sup 2}H/H abundance plays a relevant role in constraining the allowed regions in the η{sub ν}−η{sub ν{sub e}{sup in}} plane. These bounds fix the maximum contribution of neutrinos with primordial asymmetries to N{sub eff} as a function of the mixing parameter θ{sub 13}, and point out the upper bound N{sub eff}∼<3.4. Comparing these results with the forthcoming measurement of N{sub eff} by the Planck satellite will likely provide insight on the nature of the radiation content of the universe.
Ordinary-sterile neutrino oscillations can generate significant neutrino asymmetry in the early Universe. In this paper we extend this work by computing the evolution of neutrino asymmetries and light element abundances during the big bang nucleosynthesis (BBN) epoch. We show that a significant electron-neutrino asymmetry can be generated in a way that is approximately independent of the oscillation parameters δm2 and sin22θ for a range of parameters in an interesting class of models. The numerical value of the asymmetry leads to the prediction that the effective number of neutrino flavors during BBN is either about 2.5 or 3.4, depending on the sign of the asymmetry. Interestingly, one class of primordial deuterium abundance data favors an effective number of neutrino flavors during the epoch of BBN of less than 3. copyright 1997 The American Physical Society
Zylstra, Alex; Herrmann, Hans; Kim, Yongho; Hale, Gerry; Paris, Mark; McEvoy, Aaron; Gatu Johnson, Maria; Frenje, Johan; Li, Chikang; Seguin, Fredrick; Sio, Hong; Petrasso, Richard; McNabb, Dennis; Sayre, Dan; Pino, Jesse; Brune, Carl; Bacher, Andy; Forrest, Chad; Glebov, Vladimir; Stoeckl, Christian; Janezic, Roger; Sangster, Craig
2015-11-01
The 3He+3He, T+3He, and p +D reactions directly relevant to Stellar or Big-Bang Nucleosynthesis (BBN) have been studied at the OMEGA laser facility using high-temperature low-density `exploding pusher' implosions. The advantage of using these plasmas is that they better mimic astrophysical systems than cold-target accelerator experiments. Measured proton spectra from the 3He3He reaction are used to constrain nuclear R-matrix modeling. The resulting T+3He gamma-ray data rule out an anomalously-high 6Li production during the Big Bang as an explanation to the high observed values in metal poor first generation stars. The proton spectrum from the T+3He reaction is also being used to constrain the R-matrix model. Recent experiments have probed the p +D reaction for the first time in a plasma; this reaction is relevant to energy production in protostars, brown dwarfs and at higher CM energies to BBN. This work was partially supported by the US DOE, NLUF, LLE, and GA.
Big-Bang Nucleosynthesis and Gamma-Ray Constraints on Cosmic Strings with a large Higgs condensate
Mota, H F Santana
2014-01-01
We consider constraints on cosmic strings from their emission of Higgs particles, in the case that the strings have a Higgs condensate with amplitude of order the string mass scale, assuming that a fraction of the energy of condensate can be turned into radiation near cusps. The injection of energy by the decaying Higgs particles affects the light element abundances predicted by standard Big-Bang Nucleosynthesis (BBN), and also contributes to the Diffuse Gamma-Ray Background (DGRB) in the universe today. We examine the two main string scenarios (Nambu-Goto and field theory), and find that the primordial Helium abundance strongly constrains the string tension and the efficiency of the emission process. The Fermi-LAT measurement of the DGRB constrains the field theory scenario (but not the NG scenario) even more strongly, requiring that the product of the string tension {\\mu} and Newton's constant G is bounded by G{\\mu} < 3x10^{-11}{\\beta}_{ft}^{-2}, where {\\beta}_{ft}^2 is the fraction of the strings' energ...
The standard model of big bang nucleosynthesis (BBN) relies on a nuclear reaction network operating with thermal reactivities for Maxwellian plasma. In the primordial plasma, however, a number of non-thermal processes triggered by energetic particles of various origins can take place. In the present work we examine in-flight nuclear reactions induced in the plasma by MeV protons generated in D(d, p)T and 3He(d, p)4He fusions. We particularly focus on several low threshold endoergic processes. These are reactions omitted in the standard network—proton-induced break-ups of loosely bound D, 7Li, 7Be nuclei—and the 3H(p, n)3He charge-exchange reaction important for the interconversion of A = 3 nuclei in the early universe. It is found that the break-up processes in the plasma take the form of Maxwellian processes at temperatures T>70 keV, while in the lower temperature range they proceed as non-thermal reactions. It is shown that at Tp = 0.2457, D/H = 2.542 × 10−5, 3He/H = 1.004 × 10−5, 7Li/H = 4.444 × 10−10. Future steps in the study of non-thermal processes in the primordial plasma are briefly discussed
Data from future high precision cosmic microwave background measurements will be sensitive to the primordial helium abundance Yp. At the same time, this parameter can be predicted from big bang nucleosynthesis (BBN) as a function of the baryon and radiation densities, as well as a neutrino chemical potential. We suggest using this information to impose a self-consistent BBN prior on Yp and determining its impact on parameter inference from simulated planck data. We find that this approach can significantly improve bounds on cosmological parameters compared to an analysis which treats Yp as a free parameter, if the neutrino chemical potential is taken to vanish. We demonstrate that fixing the helium fraction at an arbitrary value can seriously bias parameter estimates. Under the assumption of degenerate BBN (i.e., letting the neutrino chemical potential ξ vary), the BBN prior's constraining power is somewhat weakened, but nevertheless allows us to constrain ξ with an accuracy that rivals that for bounds inferred from present data on light element abundances
Quark-hadron phase transition, QCD lattice calculations, and inhomogeneous big-bang nucleosynthesis
We review recent lattice QCD results for the surface tension at the finite temperature quark-hadron phase transition and discuss their implications on the possible scale of inhomogeneities. In the quenched approximation the average distance between nucleating centers is smaller than the diffusion length of a proton, so that inhomogeneities are washed out by the time nucleosynthesis sets in. At present lattice results are inconclusive when dynamical fermions are included
Big-bang nucleosynthesis and the quark-hadron phase transition
The present status of our knowledge of the quark-hadron phase transition is reviewed. The uncertainties are assessed, in connection, mostly, with their relevance for primordial nucleosynthesis. The most important cosmological implication of these uncertainties is the following: The range of baryonic density compatible with the observations of the light nuclides is somewhat larger than estimated previously. This result, in turn, influences the status of the questions of the hypothetical existence of (1) baryonic dark matter, and (2) non-baryonic matter. I will point out a number of crucial weak points, in need of improvement. (orig.)
Cross sections and reaction rates of d+8Li reactions involved in Big Bang nucleosynthesis
We have measured angular distributions of the 2H(8Li, 7Li)3H and 2H(8Li, 9Be)n reactions at Ec.m.=1.5 to 2.8 MeV using an 8Li-radioactive-beam technique. Astrophysical S-factors and reaction rates were calculated from the measured cross sections. Although the 2H(8Li, 9Be)n cross section is small, it can contribute to 9Be synthesis. The 2H(8Li, 7Li)3H reaction has a sufficiently large cross section to destroy 8Li, which may decrease the synthesis of heavier elements. No products from the 2H(8Li, 9Li)p reaction were detected. We also present the results of calculations using the inhomogeneous model of primordial nucleosynthesis in several regions of parameter space. ((orig.))
Kusakabe, Motohiko; Kim, K. S.; Cheoun, Myung-Ki; Kajino, Toshitaka; Kino, Yasushi; Mathews, Grant. J.
2014-09-01
We extensively reanalyze the effects of a long-lived, negatively charged massive particle, X -, on big bang nucleosynthesis (BBN). The BBN model with an X - particle was originally motivated by the discrepancy between the 6, 7Li abundances predicted in the standard BBN model and those inferred from observations of metal-poor stars. In this model, 7Be is destroyed via the recombination with an X - particle followed by radiative proton capture. We calculate precise rates for the radiative recombinations of 7Be, 7Li, 9Be, and 4He with X -. In nonresonant rates, we take into account respective partial waves of scattering states and respective bound states. The finite sizes of nuclear charge distributions cause deviations in wave functions from those of point-charge nuclei. For a heavy X - mass, mX >~ 100 GeV, the d-wave → 2P transition is most important for 7Li and 7, 9Be, unlike recombination with electrons. Our new nonresonant rate of the 7Be recombination for mX = 1000 GeV is more than six times larger than the existing rate. Moreover, we suggest a new important reaction for 9Be production: the recombination of 7Li and X - followed by deuteron capture. We derive binding energies of X nuclei along with reaction rates and Q values. We then calculate BBN and find that the amount of 7Be destruction depends significantly on the charge distribution of 7Be. Finally, updated constraints on the initial abundance and the lifetime of the X - are derived in the context of revised upper limits to the primordial 6Li abundance. Parameter regions for the solution to the 7Li problem and the primordial 9Be abundances are revised.
We extensively reanalyze the effects of a long-lived, negatively charged massive particle, X –, on big bang nucleosynthesis (BBN). The BBN model with an X – particle was originally motivated by the discrepancy between the 6, 7Li abundances predicted in the standard BBN model and those inferred from observations of metal-poor stars. In this model, 7Be is destroyed via the recombination with an X – particle followed by radiative proton capture. We calculate precise rates for the radiative recombinations of 7Be, 7Li, 9Be, and 4He with X –. In nonresonant rates, we take into account respective partial waves of scattering states and respective bound states. The finite sizes of nuclear charge distributions cause deviations in wave functions from those of point-charge nuclei. For a heavy X – mass, mX ≳ 100 GeV, the d-wave → 2P transition is most important for 7Li and 7, 9Be, unlike recombination with electrons. Our new nonresonant rate of the 7Be recombination for mX = 1000 GeV is more than six times larger than the existing rate. Moreover, we suggest a new important reaction for 9Be production: the recombination of 7Li and X – followed by deuteron capture. We derive binding energies of X nuclei along with reaction rates and Q values. We then calculate BBN and find that the amount of 7Be destruction depends significantly on the charge distribution of 7Be. Finally, updated constraints on the initial abundance and the lifetime of the X – are derived in the context of revised upper limits to the primordial 6Li abundance. Parameter regions for the solution to the 7Li problem and the primordial 9Be abundances are revised
The paper concerns the 'Big Bang' theory of the creation of the Universe 15 thousand million years ago, and traces events which physicists predict occurred soon after the creation. Unified theory of the moment of creation, evidence of an expanding Universe, the X-boson -the particle produced very soon after the big bang and which vanished from the Universe one-hundredth of a second after the big bang, and the fate of the Universe, are all discussed. (U.K.)
The homogeneous standard big-bang nucleosynthesis (SBBN) yields of D, 3He, 4He, and 7Li are computed allowing independent variations of μ1, the chemical potential for electron neutrinos, and μ2, the chemical potential of μ neutrinos (or equivalently of GgR, the product of Newton's constant and the number of effective relativistic degrees of freedom at the epoch of nucleosynthesis). This follows up previous investigations of chemical-potential variations, which however considered only [7Li]/[H]congruent 10-9. It is found that even with a primordial 7Li abundance of 10-10 the hydrogen abundance ΩBh02∼0.1 is permitted as is ΩBh02∼1; however, the required chemical potential for the νe is μ1∼T. The required chemical potential for νμ and/or ντ is μ2∼(5--25)T (for ΩBh02 congruent 0.1 and 1, respectively), or equivalently (GgR)∼(few--103)(GgR)SBBN. Thus baryonic dark matter may be incorporated into the standard big-bang nucleosynthesis model albeit with dramatic requirements for lepto-genesis and/or the constancy of the gravitational coupling. It is also found that the ''lithium dip'' tracks the primordial deuterium abundance and thus may not be an independent measure of the parameters of the SBBN model
S-factor measurement of the 2H(α,γ)6Li reaction at energies relevant for Big-Bang nucleosynthesis
For about 20 years now, observations of 6Li in several old metal-poor stars inside the halo of our galaxy have been reported, which are largely independent of the stars' metallicity, and which point to a possible primordial origin. The observations exceed the predictions of the Standard Big-Bang Nucleosynthesis model by a factor of 500. In the relevant energy range, no directly measured S-factors were available yet for the main production reaction 2H(α,γ)6Li, while different theoretical estimations have an uncertainty of up to two orders of magnitude. The very small cross section in the picobarn range has been measured with a deuterium gas target at the LUNA accelerator (Laboratory for Underground Nuclear Astrophysics), located deep underground inside Laboratori Nazionali del Gran Sasso in Italy. A beam-induced, neutron-caused background in the γ-detector occurred which had to be analyzed carefully and subtracted in an appropriate way, to finally infer the weak signal of the reaction. For this purpose, a method to parameterize the Compton background has been developed. The results are a contribution to the discussion about the accuracy of the recent 6Li observations, and to the question if it is necessary to include new physics into the Standard Big-Bang Nucleosynthesis model.
Gordan Krnjaic
2015-12-01
Full Text Available In a popular class of models, dark matter comprises an asymmetric population of composite particles with short range interactions arising from a confined nonabelian gauge group. We show that coupling this sector to a well-motivated light mediator particle yields efficient darkleosynthesis, a dark-sector version of big-bang nucleosynthesis (BBN, in generic regions of parameter space. Dark matter self-interaction bounds typically require the confinement scale to be above ΛQCD, which generically yields large (≫MeV/dark-nucleon binding energies. These bounds further suggest the mediator is relatively weakly coupled, so repulsive forces between dark-sector nuclei are much weaker than Coulomb repulsion between standard-model nuclei, which results in an exponential barrier-tunneling enhancement over standard BBN. Thus, darklei are easier to make and harder to break than visible species with comparable mass numbers. This process can efficiently yield a dominant population of states with masses significantly greater than the confinement scale and, in contrast to dark matter that is a fundamental particle, may allow the dominant form of dark matter to have high spin (S≫3/2, whose discovery would be smoking gun evidence for dark nuclei.
Ling, Eric
The big bang theory is a model of the universe which makes the striking prediction that the universe began a finite amount of time in the past at the so called "Big Bang singularity." We explore the physical and mathematical justification of this surprising result. After laying down the framework of the universe as a spacetime manifold, we combine physical observations with global symmetrical assumptions to deduce the FRW cosmological models which predict a big bang singularity. Next we prove a couple theorems due to Stephen Hawking which show that the big bang singularity exists even if one removes the global symmetrical assumptions. Lastly, we investigate the conditions one needs to impose on a spacetime if one wishes to avoid a singularity. The ideas and concepts used here to study spacetimes are similar to those used to study Riemannian manifolds, therefore we compare and contrast the two geometries throughout.
In these lectures I briefly review Big Bang baryosynthesis. In the first lecture I discuss the evidence which exists for the BAU, the failure of non-GUT symmetrical cosmologies, the qualitative picture of baryosynthesis, and numerical results of detailed baryosynthesis calculations. In the second lecture I discuss the requisite CP violation in some detail, further the statistical mechanics of baryosynthesis, possible complications to the simplest scenario, and one cosmological implication of Big Bang baryosynthesis. (orig./HSI)
Bailly, S
2008-11-15
The Standard Model of particle physics was developed in the seventies. Despite many experimental successes, it presents many problems that can only be solved with models beyond the Standard Model. Supersymmetry is an interesting candidate, postulating a new symmetry between fermions and bosons. This model can also have interesting applications in cosmology. It offers potentially good candidates for dark matter, what represents 25% of the energy density of the Universe, and its nature is unknown. Another cosmological problem is the lithium problems in Big Bang Nucleosynthesis describing the production of light elements in the first seconds of the Universe. The lithium abundance predicted by the theory is inconsistent with observations. I study a scenario in which a supersymmetric particle, the gravitino, is the candidate for dark matter and the production of this particle through the decay of other supersymmetric particles may solve the lithium problems. (author)
Continuing the analysis of non-thermal effects in standard big bang nucleosynthesis (JCAP05(2008)010), we examine the role of suprathermal nuclear reactions induced in the early universe plasma by energetic nucleons of various origins. The processes of present interest are break-ups of D, 7Li, 7Be nuclei induced by 14-MeV neutrons generated in the plasma via the T(d, n)4He reaction. It is shown that this reaction forms the ensemble of fast neutrons whose fraction in the plasma neutron component is at the level of 0.01 %. In spite of the small percentage, such neutrons can effectively destroy the loosely bound D, 7Li, 7Be nuclei. It is found that at temperatures T9 7Li dominate over other reactions occurring in the n+D and n+7Li systems. However, the non-thermal neutronic effects prove to be insufficiently strong to modify the standard picture of nucleosynthesis. The D, 3He, 4He abundances are obtained to remain unchanged, and only a little effect is marked for primordial 7Li. The 0.01 % fraction of plasma neutrons (fast DT neutrons) reduces the 7Li abundance by 0.02 %
Moods, Patrick
2006-01-01
How did the Universe begin? The favoured theory is that everything - space, time, matter - came into existence at the same moment, around 13.7 thousand million years ago. This event was scornfully referred to as the "Big Bang" by Sir Fred Hoyle, who did not believe in it and maintained that the Universe had always existed.
Silk, Joseph
Our universe was born billions of years ago in a hot, violent explosion of elementary particles and radiation - the big bang. What do we know about this ultimate moment of creation, and how do we know it? Drawing upon the latest theories and technology, this new edition of The big bang, is a sweeping, lucid account of the event that set the universe in motion. Joseph Silk begins his story with the first microseconds of the big bang, on through the evolution of stars, galaxies, clusters of galaxies, quasars, and into the distant future of our universe. He also explores the fascinating evidence for the big bang model and recounts the history of cosmological speculation. Revised and updated, this new edition features all the most recent astronomical advances, including: Photos and measurements from the Hubble Space Telescope, Cosmic Background Explorer Satellite (COBE), and Infrared Space Observatory; the latest estimates of the age of the universe; new ideas in string and superstring theory; recent experiments on neutrino detection; new theories about the presence of dark matter in galaxies; new developments in the theory of the formation and evolution of galaxies; the latest ideas about black holes, worm holes, quantum foam, and multiple universes.
Apolin, Martin
2008-01-01
Physik soll verständlich sein und Spaß machen! Deshalb beginnt jedes Kapitel in Big Bang mit einem motivierenden Überblick und Fragestellungen und geht dann von den Grundlagen zu den Anwendungen, vom Einfachen zum Komplizierten. Dabei bleibt die Sprache einfach, alltagsorientiert und belletristisch. Der Band 6 RG behandelt die Gravitation, Schwingungen und Wellen, Thermodynamik und eine Einführung in die Elektrizität anhand von Alltagsbeispielen und Querverbindungen zu anderen Disziplinen.
Apolin, Martin
2008-01-01
Physik soll verständlich sein und Spaß machen! Deshalb beginnt jedes Kapitel in Big Bang mit einem motivierenden Überblick und Fragestellungen und geht dann von den Grundlagen zu den Anwendungen, vom Einfachen zum Komplizierten. Dabei bleibt die Sprache einfach, alltagsorientiert und belletristisch. In Band 7 werden neben einer Einführung auch viele aktuelle Aspekte von Quantenmechanik (z. Beamen) und Elektrodynamik (zB Elektrosmog), sowie die Klimaproblematik und die Chaostheorie behandelt.
Apolin, Martin
2008-01-01
Physik soll verständlich sein und Spaß machen! Deshalb beginnt jedes Kapitel in Big Bang mit einem motivierenden Überblick und Fragestellungen und geht dann von den Grundlagen zu den Anwendungen, vom Einfachen zum Komplizierten. Dabei bleibt die Sprache einfach, alltagsorientiert und belletristisch. Band 8 vermittelt auf verständliche Weise Relativitätstheorie, Kern- und Teilchenphysik (und deren Anwendungen in der Kosmologie und Astrophysik), Nanotechnologie sowie Bionik.
Apolin, Martin
2007-01-01
Physik soll verständlich sein und Spaß machen! Deshalb beginnt jedes Kapitel in Big Bang mit einem motivierenden Überblick und Fragestellungen und geht dann von den Grundlagen zu den Anwendungen, vom Einfachen zum Komplizierten. Dabei bleibt die Sprache einfach, alltagsorientiert und belletristisch. Der Band 5 RG behandelt die Grundlagen (Maßsystem, Größenordnungen) und die Mechanik (Translation, Rotation, Kraft, Erhaltungssätze).
Kawasaki Masahiro
2012-02-01
Full Text Available The plateau of 7Li abundance as a function of the iron abundance by spectroscopic observations of metal-poor halo stars (MPHSs indicates its primordial origin. The observed abundance levels are about a factor of three smaller than the primordial 7Li abundance predicted in the standard Big Bang Nucleosynthesis (BBN model. This discrepancy might originate from exotic particle and nuclear processes operating in BBN epoch. Some particle models include heavy (m >> 1 GeV long-lived colored particles which would be confined inside exotic heavy hadrons, i.e., strongly interacting massive particles (SIMPs. We have found reactions which destroy 7Be and 7Li during BBN in the scenario of BBN catalyzed by a long-lived sub-strongly interacting massive particle (sub-SIMP, X. The reactions are non radiative X captures of 7 Be and 7Li which can be operative if the X particle interacts with nuclei strongly enough to drive 7 Be destruction but not strongly enough to form a bound state with 4 He of relative angular momentum L = 1. We suggest that 7Li problem can be solved as a result of a new process beyond the standard model through which the observable signature was left on the primordial Li abundance.
Craps, Ben; Sethi, Savdeep; Verlinde, Erik
2005-01-01
The light-like linear dilaton background represents a particularly simple time-dependent 1/2 BPS solution of critical type IIA superstring theory in ten dimensions. Its lift to M-theory, as well as its Einstein frame metric, are singular in the sense that the geometry is geodesically incomplete and the Riemann tensor diverges along a light-like subspace of codimension one. We study this background as a model for a big bang type singularity in string theory/M-theory. We construct the dual Matr...
Towards the study of 2H(p, γ)3He reaction in the Big Bang Nucleosynthesis energy range in LUNA
Kochanek, Izabela
2016-04-01
The Big Bang Nucleosynthesis began a few minutes after the Big Bang, when the Universe was sufficiently cold to allow deuterium nuclei to survive photo-disintegration. The total amount of deuterium produced in the Universe during the first minutes depends on the cosmological parameters (like the energy density in baryons, Ω bh 2, and the effective neutrino number, Neff ) and on the nuclear cross sections of the relevant reactions. The main source of uncertainty in the deuterium estimation comes from the 2H(p, γ)3He cross section. Measurements of Cosmic Microwave Background (CMB) anisotropies obtained by the Planck satellite are in very good agreement with the theoretical predictions of the minimal ΛCDM cosmological model, significantly reducing the uncertainty on its parameters. The Planck data allows to indirectly deduce with very high precision the abundances of primodial nuclides, such as the primodial deuterium fraction 2H/H = (2.65 ± 0.07) .10-5 (68% C.L.). The astrophysical observations in damped Lyman-a systems at high redshifts provide a second high accuracy measurement of the primodial abundance of deuterium 2H/H = (2.53 ± 0.04) · 10-5 (68% C.L.). The present experimental status on the astrophysical S-factor of the 2H(p, γ)3He reaction in the BBN energy range, gives a systematic uncertainties of 9%. Also the difference between ab-initio calculations and experimental values of S12 is at the level of 10%. In order to clarify the actual scenario, a measurement of 2H(p, γ)3He cross section with a precision of a few percent in the 70-400 keV energy range is planned at LUNA in 2016. A feasibility test of the measurement has been performed in October 2014, giving the preliminary results on the cross section. The experimental setup for the test and final measurement campaign will be presented.
De Melis, Cinzia
2013-01-01
Le 2 juin 2013, le CERN inaugure le projet Passeport Big Bang lors d'un grand événement public. Affiche et programme. On 2 June 2013 CERN launches a scientific tourist trail through the Pays de Gex and the Canton of Geneva known as the Passport to the Big Bang. Poster and Programme.
The in flight production of a secondary 8Li radioactive beam using the existing beam transport lines at the SMP13 Tandem accelerator of the Laboratori Nazionali del Sud in Catania is studied. The method consists in the momentum filtering by a switching magnet of the 8Li ions emitted backward in the centre of mass of the 2H(7Li,p)8Li reaction, followed by a time-of-flight tagging of the deflected ions. Details of the experimental procedures and preliminary results of the 8Li(4He,n)11B reaction study relevant for pregalactic nucleosynthesis are presented and discussed
Tian, David Wenjie
2015-01-01
In this paper we investigate the primordial nucleosynthesis in $\\mathscr{L}=\\varepsilon^{2-2\\beta}R^\\beta+{16\\pi}m_P^{-2}\\mathscr{L}_m$ gravity, where $\\varepsilon$ is a constant balancing the dimension of the field equation, and $1<\\beta<(4+\\sqrt{6})/5$ for the positivity of energy density and temperature. From the semianalytical approach, the influences of $\\beta$ to the decoupling of neutrinos, the freeze-out temperature and concentration of nucleons, the opening of deuterium bottleneck, and the $^4$He abundance are all extensively analyzed; then $\\beta$ is constrained to $1<\\beta<1.05$ for $\\varepsilon=1$ [1/s] and $1<\\beta<1.001$ for $\\varepsilon=m_P$ (Planck mass). Supplementarily from the empirical approach, abundances of the lightest elements (D, $^4$He, $^7$Li) are computed by the model-independent best-fit formulae for nonstandard primordial nucleosynthesis, and we find the constraint $1< \\beta \\leq 1.0505$ which corresponds to the extra number of neutrino species $0< \\Delta ...
The light-like linear dilaton background represents a particularly simple time-dependent 1/2 BPS solution of critical type-IIA superstring theory in ten dimensions. Its lift to M-theory, as well as its Einstein frame metric, are singular in the sense that the geometry is geodesically incomplete and the Riemann tensor diverges along a light-like subspace of codimension one. We study this background as a model for a big bang type singularity in string theory/M-theory. We construct the dual Matrix theory description in terms of a (1+1)-d supersymmetric Yang-Mills theory on a time-dependent world-sheet given by the Milne orbifold of (1+1)-d Minkowski space. Our model provides a framework in which the physics of the singularity appears to be under control
Craps, B; Verlinde, E; Craps, Ben; Sethi, Savdeep; Verlinde, Erik
2005-01-01
The light-like linear dilaton background represents a particularly simple time-dependent 1/2 BPS solution of critical type IIA superstring theory in ten dimensions. Its lift to M-theory, as well as its Einstein frame metric, are singular in the sense that the geometry is geodesically incomplete and the Riemann tensor diverges along a light-like subspace of codimension one. We study this background as a model for a big bang type singularity in string theory/M-theory. We construct the dual Matrix theory description in terms of a (1+1)-d supersymmetric Yang-Mills theory on a time-dependent world-sheet given by the Milne orbifold of (1+1)-d Minkowski space. Our model provides a framework in which the physics of the singularity appears to be under control.
Roy, Christelle
2006-01-01
Physiciens have been dreaming of it for 30 years; Thanks to huge particle accelerators, they were able to observe the matter such as it was some instants after the Big Bang (three different articles in 10 pages)
It is shown that LEP probes the Big Bang in two significant ways: (1) nucleosynthesis and (2) dark matter constraints. In the first case, LEP verifies the cosmological standard model prediction on the number of neutrino types, thus strengthening the conclusion that the cosmological baryon density is ∼6% of the critical value. In the second case, LEP shows that the remaining non-baryonic cosmological matter must be somewhat more massive and/or more weakly interacting that the favorite non-baryonic dark matter candidates of a few years ago. 59 refs., 4 figs., 2 tabs
Schramm, David N.
1990-01-01
It is shown that LEP probes the Big Bang in two significant ways: (1) nucleosynthesis, and (2) dark matter constraints. In the first case, LEP verifies the cosmological standard model prediction on the number of neutrino types, thus strengthening the conclusion that the cosmological baryon density is approximately 6 percent of the critical value. In the second case, LEP shows that the remaining non-baryonic cosmological matter must be somewhat more massive and/or more weakly interacting than the favorite non-baryonic dark matter candidates of a few years ago.
Schramm, D.N. (Chicago Univ., IL (USA) Fermi National Accelerator Lab., Batavia, IL (USA))
1990-06-01
It is shown that LEP probes the Big Bang in two significant ways: (1) nucleosynthesis and (2) dark matter constraints. In the first case, LEP verifies the cosmological standard model prediction on the number of neutrino types, thus strengthening the conclusion that the cosmological baryon density is {approximately}6% of the critical value. In the second case, LEP shows that the remaining non-baryonic cosmological matter must be somewhat more massive and/or more weakly interacting that the favorite non-baryonic dark matter candidates of a few years ago. 59 refs., 4 figs., 2 tabs.
It is shown that LEP probes the Big Bang in two significant ways: (1) nucleosynthesis and (2) dark matter constraints. In the first case, LEP verifies the cosmological standard model prediction on the number of neutrino types, thus stregthening the conclusion that the cosmological baryon density is ∼6% of the critical value. In the second case, LEP shows that the remaining non-baryonic cosmological matter must be somewhat more massive and/or more weakly interacting than the favorite non-baryonic dark matter candidates of a few years ago. (author) 59 refs.; 5 figs.; 2 tabs
Khoury, Justin; Ovrut, Burt A.; Seiberg, Nathan; Steinhardt, Paul J.(Princeton Center for Theoretical Science, Princeton University, Princeton, NJ, 08544, USA); Turok, Neil
2001-01-01
We consider conditions under which a universe contracting towards a big crunch can make a transition to an expanding big bang universe. A promising example is 11-dimensional M-theory in which the eleventh dimension collapses, bounces, and re-expands. At the bounce, the model can reduce to a weakly coupled heterotic string theory and, we conjecture, it may be possible to follow the transition from contraction to expansion. The possibility opens the door to new classes of cosmological models. F...
Probing the pre-big bang universe
Superstring theory suggests a new cosmology whereby a long inflationary phase preceded a non singular big bang-like event. After discussing how pre-big bang inflation naturally arises from an almost trivial initial state of the Universe, I will describe how present or near-future experiments can provide sensitive probes of how the Universe behaved in the pre-bang era
Scheider, Walter
2005-01-01
The February 2005 issue of The Science Teacher (TST) reminded everyone that by learning how scientists study stars, students gain an understanding of how science measures things that can not be set up in lab, either because they are too big, too far away, or happened in a very distant past. The authors of "How Far are the Stars?" show how the…
Dual of big bang and big crunch
Starting from the Janus solution and its gauge theory dual, we obtain the dual gauge theory description of the cosmological solution by the procedure of double analytic continuation. The coupling is driven either to zero or to infinity at the big-bang and big-crunch singularities, which are shown to be related by the S-duality symmetry. In the dual Yang-Mills theory description, these are nonsingular as the coupling goes to zero in the N=4 super Yang-Mills theory. The cosmological singularities simply signal the failure of the supergravity description of the full type IIB superstring theory
Big Bang synthesis of nuclear dark matter
Hardy, Edward; Lasenby, Robert; March-Russell, John; West, Stephen M.
2015-06-01
We investigate the physics of dark matter models featuring composite bound states carrying a large conserved dark "nucleon" number. The properties of sufficiently large dark nuclei may obey simple scaling laws, and we find that this scaling can determine the number distribution of nuclei resulting from Big Bang Dark Nucleosynthesis. For plausible models of asymmetric dark matter, dark nuclei of large nucleon number, e.g. ≳ 108, may be synthesised, with the number distribution taking one of two characteristic forms. If small-nucleon-number fusions are sufficiently fast, the distribution of dark nuclei takes on a logarithmically-peaked, universal form, independent of many details of the initial conditions and small-number interactions. In the case of a substantial bottleneck to nucleosynthesis for small dark nuclei, we find the surprising result that even larger nuclei, with size ≫ 108, are often finally synthesised, again with a simple number distribution. We briefly discuss the constraints arising from the novel dark sector energetics, and the extended set of (often parametrically light) dark sector states that can occur in complete models of nuclear dark matter. The physics of the coherent enhancement of direct detection signals, the nature of the accompanying dark-sector form factors, and the possible modifications to astrophysical processes are discussed in detail in a companion paper.
Hawking, Lucy; Parsons, Gary
2012-01-01
George has problems. He has twin baby sisters at home who demand his parents’ attention. His beloved pig Freddy has been exiled to a farm, where he’s miserable. And worst of all, his best friend, Annie, has made a new friend whom she seems to like more than George. So George jumps at the chance to help Eric with his plans to run a big experiment in Switzerland that seeks to explore the earliest moment of the universe. But there is a conspiracy afoot, and a group of evildoers is planning to sabotage the experiment. Can George repair his friendship with Annie and piece together the clues before Eric’s experiment is destroyed forever? This engaging adventure features essays by Professor Stephen Hawking and other eminent physicists about the origins of the universe and ends with a twenty-page graphic novel that explains how the Big Bang happened—in reverse!
Wesson, Paul S.
1994-01-01
A cosmological model is given that has good physical properties for the early and late universe but is a hypersurface in a flat five-dimensional manifold. The big bang can therefore be regarded as an effect of a choice of coordinates in a truncated higher-dimensional geometry. Thus the big bang is in some sense a geometrical illusion.
Hawking, Lucy; Parsons, Gary
2011-01-01
Georges et Annie, sa meilleure amie, sont sur le point d'assister à l'une des plus importantes expériences scientifiques de tous les temps : explorer les premiers instants de l'Univers, le Big Bang ! Grâce à Cosmos, leur super ordinateur, et au Grand Collisionneur de hadrons créé par Éric, le père d'Annie, ils vont enfin pouvoir répondre à cette question essentielle : pourquoi existons nous ? Mais Georges et Annie découvrent qu'un complot diabolique se trame. Pire, c'est toute la recherche scientifique qui est en péril ! Entraîné dans d'incroyables aventures, Georges ira jusqu'aux confins de la galaxie pour sauver ses amis...Une plongée passionnante au coeur du Big Bang. Les toutes dernières théories de Stephen Hawking et des plus grands scientifiques actuels.
Baryon symmetric big bang cosmology
Stecker, F. W.
1978-01-01
Both the quantum theory and Einsteins theory of special relativity lead to the supposition that matter and antimatter were produced in equal quantities during the big bang. It is noted that local matter/antimatter asymmetries may be reconciled with universal symmetry by assuming (1) a slight imbalance of matter over antimatter in the early universe, annihilation, and a subsequent remainder of matter; (2) localized regions of excess for one or the other type of matter as an initial condition; and (3) an extremely dense, high temperature state with zero net baryon number; i.e., matter/antimatter symmetry. Attention is given to the third assumption, which is the simplest and the most in keeping with current knowledge of the cosmos, especially as pertains the universality of 3 K background radiation. Mechanisms of galaxy formation are discussed, whereby matter and antimatter might have collided and annihilated each other, or have coexisted (and continue to coexist) at vast distances. It is pointed out that baryon symmetric big bang cosmology could probably be proved if an antinucleus could be detected in cosmic radiation.
THE 2H(alpha, gamma6LI REACTION AT LUNA AND BIG BANG NUCLEOSYNTHETIS
Carlo Gustavino
2013-12-01
Full Text Available The 2H(α, γ6Li reaction is the leading process for the production of 6Li in standard Big Bang Nucleosynthesis. Recent observations of lithium abundance in metal-poor halo stars suggest that there might be a 6Li plateau, similar to the well-known Spite plateau of 7Li. This calls for a re-investigation of the standard production channel for 6Li. As the 2H(α, γ6Li cross section drops steeply at low energy, it has never before been studied directly at Big Bang energies. For the first time the reaction has been studied directly at Big Bang energies at the LUNA accelerator. The preliminary data and their implications for Big Bang nucleosynthesis and the purported 6Li problem will be shown.
Wright, E. L.
1983-01-01
Techniques for verifying the spectrum defined by Woody and Richards (WR, 1981), which serves as a base for dust-distorted models of the 3 K background, are discussed. WR detected a sharp deviation from the Planck curve in the 3 K background. The absolute intensity of the background may be determined by the frequency dependence of the dipole anisotropy of the background or the frequency dependence effect in galactic clusters. Both methods involve the Doppler shift; analytical formulae are defined for characterization of the dipole anisotropy. The measurement of the 30-300 GHz spectra of cold galactic dust may reveal the presence of significant amounts of needle-shaped grains, which would in turn support a theory of a cold Big Bang.
Post big bang processing of the primordial elements
Balbes, M J; Steigman, G; Thomas, D
1995-01-01
We explore the Gnedin-Ostriker suggestion that a post-Big-Bang photodissociation process may modify the primordial abundances of the light elements. We consider several specific models and discuss the general features that are necessary (but not necessarily sufficient) to make the model work. We find that with any significant processing, the final D and ^3He abundances, which are independent of their initial standard big bang nucleosynthesis (SBBN) values, rise quickly to a level several orders of magnitude above the observationally inferred primordial values. Solutions for specific models show that the only initial abundances that can be photoprocessed into agreement with observations are those that undergo virtually no processing and are already in agreement with observation. Thus it is unlikely that this model can work for any non-trivial case unless an artificial density and/or photon distribution is invoked.
Cosmic relics from the big bang
A brief introduction to the big bang picture of the early universe is given. Dark matter is discussed; particularly its implications for elementary particle physics. A classification scheme for dark matter relics is given. 21 refs., 11 figs., 1 tab
Effective Dynamics of the Matrix Big Bang
Craps, Ben; Rajaraman, Arvind; Sethi, Savdeep
2006-01-01
We study the leading quantum effects in the recently introduced Matrix Big Bang model. This amounts to a study of supersymmetric Yang-Mills theory compactified on the Milne orbifold. We find a one-loop potential that is attractive near the Big Bang. Surprisingly, the potential decays very rapidly at late times, where it appears to be generated by D-brane effects. Usually, general covariance constrains the form of any effective action generated by renormalization group flow. However, the form ...
COBE looks back to the Big Bang
Mather, John C.
1993-01-01
An overview is presented of NASA-Goddard's Cosmic Background Explorer (COBE), the first NASA satellite designed to observe the primeval explosion of the universe. The spacecraft carries three extremely sensitive IR and microwave instruments designed to measure the faint residual radiation from the Big Bang and to search for the formation of the first galaxies. COBE's far IR absolute spectrophotometer has shown that the Big Bang radiation has a blackbody spectrum, proving that there was no large energy release after the explosion.
'Big bang' of quantum universe
The reparametrization-invariant generating functional for the unitary and causal perturbation theory in general relativity in a finite space-time is obtained. The classical cosmology of a Universe and the Faddeev-Popov-DeWitt functional correspond to different orders of decomposition of this functional over the inverse 'mass' of a Universe. It is shown that the invariant content of general relativity as a constrained system can be covered by two 'equivalent' unconstrained systems: the 'dynamic' (with 'dynamic' time as the cosmic scale factor and conformal field variables) and 'geometric' (given by the Levi-Civita type canonical transformation to the action-angle variables which determine initial cosmological states with the arrow of the proper time measured by the watch of an observer in the comoving frame). 'Big Bang', the Hubble evolution, and creation of 'dynamic' particles by the 'geometric' vacuum are determined by 'relations' between the dynamic and geometric systems as pure relativistic phenomena, like the Lorentz-type 'relation' between the rest and comoving frames in special relativity
H-dibaryons and the Big-Bang crisis
An alternative solution for the apparent discrepancy between abundances of light nuclides predicted by the standard big bang and observational data is proposed, by assuming the presence of H dibaryons at the nucleosynthesis era. These dibaryons would be the consequence of a small fraction of strange quarks at the moment of the confinement transition. A relative abundance of H dibaryons of the order of nH/nB ∼ 0.07, decaying in a time-scale of the order of 105 s would be sufficient to explain differences in the 4 He abundance if the primordial deuterium abundance is of the order of 3 x 10-5. (authors)
Relaxing the big-bang bound to the baryon density
In the standard picture of big-bang nucleosynthesis the yields of D, 3He, 4He, and 7Li only agree with their inferred primordial abundances provided the fraction of critical density contributed by baryons is between 1% and 15%. If the τ neutrino has a mass between 20 MeV and 30 MeV and a lifetime between 200 sec and 3000 sec and its decay products include electron neutrinos this crucial bound is relaxed by a factor of 10. Experiments at e± colliders should soon test this possibility
Photo-nuclear reactions in the big-bang and supernovae
Recent observation of the power spectrum of Cosmic Microwave Background Radiation has exhibited that the flat cosmology is most likely. This suggests too large universal baryon-density parameter Ωbh2 approx. = 0.022 - 0.030 to accept a theoretical prediction, Ωbh2 ≤ 0.017, in the homogeneous Big-Bang model for primordial nucleosynthesis. Theoretical upper limit arises from the sever constraints on the primordial 7Li abundance. We propose two cosmological models in order to resolve the discrepancy; lepton asymmetric Big-Bang nucleosynthesis model, and baryon inhomogeneous Big-Bang nucleosynthesis model. In these cosmological models the nuclear processes are similar to those of the r-process nucleosynthesis in gravitational collapse supernova explosions. Massive stars ≥ 10(solar mass) culminate their evolution by supernova explosions which are presumed to be the most viable candidate site for the r-process nucleosynthesis. Even in the nucleosynthesis of heavy elements, initial entropy and density at the surface of proto-neutron stars are so high that nuclear statistical equilibrium favors production of abundant light nuclei. In such explosive circumstances many neutron-rich radioactive nuclei of light-to-intermediate mass as well as heavy mass nuclei play the significant roles. (author)
Constraining Big Bang lithium production with recent solar neutrino data
Takács, Marcell P; Szücs, Tamás; Zuber, Kai
2015-01-01
The 3He({\\alpha},{\\gamma})7Be reaction affects not only the production of 7Li in Big Bang nucleosynthesis, but also the fluxes of 7Be and 8B neutrinos from the Sun. This double role is exploited here to constrain the former by the latter. A number of recent experiments on 3He({\\alpha},{\\gamma})7Be provide precise cross section data at E = 0.5-1.0 MeV center-of-mass energy. However, there is a scarcity of precise data at Big Bang energies, 0.1-0.5 MeV, and below. This problem can be alleviated, based on precisely calibrated 7Be and 8B neutrino fluxes from the Sun that are now available, assuming the neutrino flavour oscillation framework to be correct. These fluxes and the standard solar model are used here to determine the 3He(alpha,gamma)7Be astrophysical S-factor at the solar Gamow peak, S(23+6-5 keV) = 0.548+/-0.054 keVb. This new data point is then included in a re-evaluation of the 3He({\\alpha},{\\gamma})7Be S-factor at Big Bang energies, following an approach recently developed for this reaction in the c...
Turner, Michael S.
1995-01-01
The hot big-bang cosmology provides a reliable accounting of the Universe from about $10^{-2}\\sec$ after the bang until the present, as well as a robust framework for speculating back to times as early as $10^{-43}\\sec$. Cosmology faces a number of important challenges; foremost among them are determining the quantity and composition of matter in the Universe and developing a detailed and coherent picture of how structure (galaxies, clusters of galaxies, superclusters, voids, great walls, and...
From Big Bang to Big Crunch and Beyond
Elitzur, S.; Giveon, A.; Kutasov, D.; Rabinovici, E.
2002-01-01
We study a quotient Conformal Field Theory, which describes a 3+1 dimensional cosmological spacetime. Part of this spacetime is the Nappi-Witten (NW) universe, which starts at a ``big bang'' singularity, expands and then contracts to a ``big crunch'' singularity at a finite time. The gauged WZW model contains a number of copies of the NW spacetime, with each copy connected to the preceeding one and to the next one at the respective big bang/big crunch singularities. The sequence of NW spaceti...
We confront the big bang for the beginning of the universe with an equivalent picture of a slow freeze — a very cold and slowly evolving universe. In the freeze picture the masses of elementary particles increase and the gravitational constant decreases with cosmic time, while the Newtonian attraction remains unchanged. The freeze and big bang pictures both describe the same observations or physical reality. We present a simple “crossover model” without a big bang singularity. In the infinite past space–time is flat. Our model is compatible with present observations, describing the generation of primordial density fluctuations during inflation as well as the present transition to a dark energy-dominated universe
CERN. Geneva
2014-01-01
A new experiment called PTOLEMY (Princeton Tritium Observatory for Light, Early-Universe, Massive-Neutrino Yield) is under development at the Princeton Plasma Physics Laboratory with the goal of challenging one of the most fundamental predictions of the Big Bang – the present-day existence of relic neutrinos produced less than one second after the Big Bang. Using a gigantic graphene surface to hold 100 grams of a single-atomic layer of tritium, low noise antennas that sense the radio waves of individual electrons undergoing cyclotron motion, and a massive array of cryogenic sensors that sit at the transition between normal and superconducting states, the PTOLEMY project has the potential to challenge one of the most fundamental predictions of the Big Bang, to potentially uncover new interactions and properties of the neutrinos, and to search for the existence of a species of light dark matter known as sterile neutrinos.
Pre-big bang cosmology and quantum fluctuations
The quantum fluctuations of a homogeneous, isotropic, open pre-big bang model are discussed. By solving exactly the equations for tensor and scalar perturbations we find that particle production is negligible during the perturbative Pre-Big Bang phase
Big Bang riddles and their revelations
Magueijo, Joao; Baskerville, Kim
1999-01-01
We describe how cosmology has converged towards a beautiful model of the Universe: the Big Bang Universe. We praise this model, but show there is a dark side to it. This dark side is usually called ``the cosmological problems'': a set of coincidences and fine tuning features required for the Big Bang Universe to be possible. After reviewing these ``riddles'' we show how they have acted as windows into the very early Universe, revealing new physics and new cosmology just as the Universe came i...
New physics and the new big bang
The old concept of the big bang is reviewed, and modifications that have recently occurred in the theory are described. The concept of the false vacuum is explained, and its role in the cosmic inflation scenario is shown. The way inflation solves critical problems of the old big bang scenario is indicated. The potential of supersymmetry and Kaluza-Klein theories for the development of a superunified theory of physical forces is discussed. Superstrings and their possible role in a superunified theory, including their usefulness in solving the problem of infinities, is considered
Effective dynamics of the matrix big bang
We study the leading quantum effects in the recently introduced matrix big bang model. This amounts to a study of supersymmetric Yang-Mills theory compactified on the Milne orbifold. We find a one-loop potential that is attractive near the big bang. Surprisingly, the potential decays very rapidly at late times where it appears to be generated by D-brane effects. Usually, general covariance constrains the form of any effective action generated by renormalization group flow. However, the form of our one-loop potential seems to violate these constraints in a manner that suggests a connection between the cosmological singularity and long wavelength, late time physics
Effective Dynamics of the Matrix Big Bang
Craps, B; Sethi, S; Craps, Ben; Rajaraman, Arvind; Sethi, Savdeep
2006-01-01
We study the leading quantum effects in the recently introduced Matrix Big Bang model. This amounts to a study of supersymmetric Yang-Mills theory compactified on the Milne orbifold. We find a one-loop potential that decays near the Big Bang. More surprisingly, the potential decays very rapidly at late times where it appears to be generated by D-brane effects. Usually, general covariance constrains the form of any effective action generated by renormalization group flow. However, the form of our one-loop potential seems to violate these constraints in a manner that suggests a connection between the cosmological singularity and long wavelength, late time physics.
The big bang cosmology - enigmas and nostrums
Some outstanding problems in connection with the big bang cosmology and relativity theory are reviewed under the headings: enigmas; nostrums and elixirs (the universe as Phoenix (an oscillating universe), the anthropomorphic universe (existence of observers in the present universe), reproducing universes (could a mini big bang bounce, perhaps adding entropy and matter and eventually developing into a suitable home for observers), variable strength of the gravitational interaction and oscillating universes (possible bounce models that have led eventually to the present hospitable environment). (U.K.)
Constraining big bang lithium production with recent solar neutrino data
Takács, Marcell P.; Bemmerer, Daniel; Szücs, Tamás; Zuber, Kai
2015-06-01
The 3He (α ,γ )7Be reaction affects not only the production of 7Li in big bang nucleosynthesis, but also the fluxes of 7Be and 8B neutrinos from the Sun. This double role is exploited here to constrain the former by the latter. A number of recent experiments on 3He α ,γ )7Be provide precise cross section data at E =0.5 - 1.0 MeV center-of-mass energies. However, there is a scarcity of precise data at big bang energies, 0.1-0.5 MeV, and below. This problem can be alleviated, based on precisely calibrated 7Be and 8B neutrino fluxes from the Sun that are now available, assuming the neutrino flavor oscillation framework to be correct. These fluxes and the standard solar model are used here to determine the 3He α ,γ )7Be astrophysical S -factor at the solar Gamow peak, S34ν(2 3-5+6 keV ) =0.548 ±0.054 keV b . This new data point is then included in a reevaluation of the 3He α ,γ )7Be S -factor at big bang energies, following an approach recently developed for this reaction in the context of solar fusion studies. The reevaluated S -factor curve is then used to redetermine the 3He α ,γ )7Be thermonuclear reaction rate at big bang energies. The predicted primordial lithium abundance is 7Li H =5.0 ×10-10 , far higher than the Spite plateau.
Supernova bangs as a tool to study big bang
Supernovae and gamma-ray bursts are the most powerful explosions in observed Universe. This educational review tells about supernovae and their applications in cosmology. It is explained how to understand the production of light in the most luminous events with minimum required energy of explosion. These most luminous phenomena can serve as primary cosmological distance indicators. Comparing the observed distance dependence on red shift with theoretical models one can extract information on evolution of the Universe from Big Bang until our epoch.
Big bang and big crunch in matrix string theory
Following the holographic description of linear dilaton null cosmologies with a big bang in terms of matrix string theory put forward by Craps, Sethi, and Verlinde, we propose an extended background describing a universe including both big bang and big crunch singularities. This belongs to a class of exact string backgrounds and is perturbative in the string coupling far away from the singularities, both of which can be resolved using matrix string theory. We provide a simple theory capable of describing the complete evolution of this closed universe
Inhomogeneous Pre-Big Bang String Cosmology
Veneziano, G.
1997-01-01
An inhomogeneous version of pre--Big Bang cosmology emerges, within string theory, from quite generic initial conditions, provided they lie deeply inside the weak-coupling, low-curvature regime. Large-scale homogeneity, flatness, and isotropy appear naturally as late-time outcomes of such an evolution.
Spotts, P
2002-01-01
For 20 years, Paul Steinhardt has played a key role in helping to write and refine the inflationary "big bang" origin of the universe. But over the past few years, he decided to see if he could come up with a plausible alternative to the prevailing notion (1 page).
Lifting gear crucial in Big Bang experiment
2007-01-01
"On November 26 2007, the most complex scientific instrument ever built will be turned on in an attempt to rerun the Big Bang - but i would never have got off the ground - litteraly - without the hundreds of hoists and cranes on site." (1/2 page)
"Big Bang" project put off to 2008
Evans, Robert
2007-01-01
"First tests in a scientific project aimed at solving myteries of the universe and the "Big Bang" that created it have been put off from November to late April or early May next year, an official said on Wednesday" (1/2 page)
Pre-big-bang in string cosmology
We compute the amount of inflation required to solve the horizon problem of cosmology in the pre-big-bang scenario. First we give a quick overview of string cosmology as developed by Veneziano and collaborators. Then we show that the amount of inflation in this background solves the horizon problem. We discuss fine-tuning
Coc, A.
2016-01-01
Primordial nucleosynthesis, or Big Bang Nucleosynthesis (BBN), is one of the three evidences for the Big-Bang model, together with the expansion of the Universe and the Cosmic Microwave Background. There is a good global agreement over a range of nine orders of magnitude between abundances of 4He, D, 3He and 7Li deduced from observations, and calculated in primordial nucleosynthesis. This comparison was used to determine the baryonic density of the Universe. For this purpose, it is now superseded by the analysis of the Cosmic Microwave Background (CMB) radiation anisotropies. However, there remain, a yet unexplained, discrepancy of a factor ≈3, between the calculated and observed lithium primordial abundances, that has not been reduced, neither by recent nuclear physics experiments, nor by new observations. Big-Bang nucleosynthesis, that has been used, to first constrain the baryonic density, and the number of neutrino families, remains, a valuable tool to probe the physics of the early Universe.
From big bang to big crunch and beyond
We study a quotient Conformal Field Theory, which describes a 3+1 dimensional cosmological spacetime. Part of this spacetime is the Nappi-Witten (NW) universe, which starts at a 'big bang' singularity, expands and then contracts to a 'big crunch' singularity at a finite time. The gauged WZW model contains a number of copies of the NW spacetime, with each copy connected to the preceding one and to the next one at the respective big bang/big crunch singularities. The sequence of NW spacetimes is further connected at the singularities to a series of non-compact static regions with closed timelike curves. These regions contain boundaries, on which the observables of the theory live. This suggests a holographic interpretation of the physics. (author)
Antigravity and the big crunch/big bang transition
Bars, Itzhak; Chen, Shih-Hung; Steinhardt, Paul J.(Princeton Center for Theoretical Science, Princeton University, Princeton, NJ, 08544, USA); Turok, Neil
2011-01-01
We point out a new phenomenon which seems to be generic in 4d effective theories of scalar fields coupled to Einstein gravity, when applied to cosmology. A lift of such theories to a Weyl-invariant extension allows one to define classical evolution through cosmological singularities unambiguously, and hence construct geodesically complete background spacetimes. An attractor mechanism ensures that, at the level of the effective theory, generic solutions undergo a big crunch/big bang transition...
Quantum Fields in a Big Crunch/Big Bang Spacetime
Tolley, Andrew J.; Turok, Neil
2002-01-01
We consider quantum field theory on a spacetime representing the Big Crunch/Big Bang transition postulated in the ekpyrotic or cyclic cosmologies. We show via several independent methods that an essentially unique matching rule holds connecting the incoming state, in which a single extra dimension shrinks to zero, to the outgoing state in which it re-expands at the same rate. For free fields in our construction there is no particle production from the incoming adiabatic vacuum. When interacti...
Sailing through the big crunch-big bang transition
Bars, Itzhak; Steinhardt, Paul; Turok, Neil
2013-01-01
In a recent series of papers, we have shown that theories with scalar fields coupled to gravity (e.g., the standard model) can be lifted to a Weyl-invariant equivalent theory in which it is possible to unambiguously trace the classical cosmological evolution through the transition from big crunch to big bang. The key was identifying a sufficient number of finite, Weyl-invariant conserved quantities to uniquely match the fundamental cosmological degrees of freedom across the transition. In so ...
The formation and evolution of the relics of the Big Bang are considered in detail. After considering the thermodynamics of the early universe, the author goes into various questions related to these relics such as the synthesis of helium and the characteristic features of the microwave background. The interplay between particle physics and cosmology is analyzed. Some problems related to the very early universe, including galaxy formation, are also touched upon. (author). 46 refs.; 1 fig.; 2 tabs
Quantum Gravity and the Big Bang
Bojowald, M.
2004-01-01
Quantum gravity has matured over the last decade to a theory which can tell in a precise and explicit way how cosmological singularities of general relativity are removed. A branch of the universe "before" the classical big bang is obtained which is connected to ours by quantum evolution through a region around the singularity where the classical space-time dissolves. We discuss the basic mechanism as well as applications ranging to new phenomenological scenarios of the early universe expansi...
Science Big Bang comes to the Alps
2008-01-01
The most extensive and expensive scientific instrument in history is due to start working this summer at Cern, the European particle physics laboratory near Geneva. Two beams of protons will accelerate in opposite directions around a 27km tunnel under the Alpine foothills until they are travelling almost at the speed of light - and then smash together, reproducing on a tiny scale the intense energy of the new-born universe after the inaugural Big Bang 15bn years ago.
Science: Big Bang comes to the Alps
Cookson, Clive
2008-01-01
"The most extensive and expensive scientific instrument in history is due to start working this summer at CERN, the European particle physics laboratory near Geneva. Two beams of protons will accelerate in opposite directions around a 27 km tunnel under the alpine foothills until they are travelling almost at the speed of light - and then smash together, reproducing on a tiny scale the intense energy of the new-born universe after the inaugural Big Bang 15bn years ago. (1 page)
Five dimensional Gravity and Big Bang Singularity
Parthasarathy, R
2015-01-01
A 5-dimensional gravity theory, motivated by the brane world picture, with factorisable metric and with Kaluza scalar $G_{55}(r)$, is shown to give rise to a positive contribution to the Raychaudhuri equation. This inhibits the focusing of geodesics and possibly cause non-focusing of the geodesics. This feature is translated into the situation in which the universe has an infinite age and hence no beginning avoiding the big bang singularity.
Gravitation, phase transitions, and the big bang
Introduced here is a model of the early universe based on the possibility of a first-order phase transition involving gravity, and arrived at by a consideration of instabilities in the semiclassical theory. The evolution of the system is very different from the standard Friedmann-Robertson-Walker big-bang scenario, indicating the potential importance of semiclassical finite-temperature gravitational effects. Baryosynthesis and monopole production in this scenario are also outlined
Big bang models in string theory
These proceedings are based on lectures delivered at the 'RTN Winter School on Strings, Supergravity and Gauge Theories', CERN, 16-20 January 2006. The school was mainly aimed at PhD students and young postdocs. The lectures start with a brief introduction to spacetime singularities and the string theory resolution of certain static singularities. Then they discuss attempts to resolve cosmological singularities in string theory, mainly focusing on two specific examples: the Milne orbifold and the matrix big bang
Laser interferometry for the Big Bang Observer
Harry, Gregory M.; Fritschel, Peter; Shaddock, Daniel A.; Folkner, William; Phinney, E. Sterl
2006-01-01
The Big Bang Observer is a proposed space-based gravitational-wave detector intended as a follow on mission to the Laser Interferometer Space Antenna (LISA). It is designed to detect the stochastic background of gravitational waves from the early universe. We discuss how the interferometry can be arranged between three spacecraft for this mission and what research and development on key technologies are necessary to realize this scheme.
Primordial alchemy: from the Big Bang to the present universe
Steigman, Gary
Of the light nuclides observed in the universe today, D, 3He, 4He, and 7Li are relics from its early evolution. The primordial abundances of these relics, produced via Big Bang Nucleosynthesis (BBN) during the first half hour of the evolution of the universe provide a unique window on Physics and Cosmology at redshifts ~1010. Comparing the BBN-predicted abundances with those inferred from observational data tests the consistency of the standard cosmological model over ten orders of magnitude in redshift, constrains the baryon and other particle content of the universe, and probes both Physics and Cosmology beyond the current standard models. These lectures are intended to introduce students, both of theory and observation, to those aspects of the evolution of the universe relevant to the production and evolution of the light nuclides from the Big Bang to the present. The current observational data is reviewed and compared with the BBN predictions and the implications for cosmology (e.g., universal baryon density) and particle physics (e.g., relativistic energy density) are discussed. While this comparison reveals the stunning success of the standard model(s), there are currently some challenge which leave open the door for more theoretical and observational work with potential implications for astronomy, cosmology, and particle physics.
Primordial Alchemy From The Big Bang To The Present Universe
Steigman, G
2002-01-01
Of the light nuclides observed in the universe today, D, 3He, 4He, and 7Li are relics from its early evolution. The primordial abundances of these relics, produced via Big Bang Nucleosynthesis (BBN) during the first half hour of the evolution of the universe provide a unique window on Physics and Cosmology at redshifts of order 10^10. Comparing the BBN-predicted abundances with those inferred from observational data tests the consistency of the standard model of cosmology over ten orders of magnitude in redshift, constrains the baryon and other particle content of the universe, and probes both Cosmology and Physics beyond their current standard models. These lectures are intended to introduce students, both of theory and observation, to those aspects of the evolution of the universe relevant to the production and evolution of the light nuclides from the Big Bang to the present. The current observational data is reviewed and compared with the BBN predictions and the implications for cosmology (e.g., universal ...
Pre-Big Bang, vacuum and noncyclic cosmologies
Gonzalez-Mestres, L.
2011-01-01
WMAP and Planck open the way to unprecedented Big Bang phenomenology, potentially allowing to test the standard Big Bang model as well as less conventional approaches including noncyclic pre-Big Bang cosmologies that would incorporate a new fundamental scale beyond the Planck scale and, possibly, new ultimate constituents of matter. Alternatives to standard physics can be considered from a cosmological point of view concerning vacuum structure, the nature of space-time, the origin and evoluti...
Compilation and R-matrix analysis of Big Bang nuclear reaction rates
Descouvemont, Pierre; Adahchour, Abderrahim; Angulo, Carmen; Coc, Alain; Vangioni-Flam, Elisabeth
2004-01-01
We use the R-matrix theory to fit low-energy data on nuclear reactions involved in Big Bang nucleosynthesis. A special attention is paid to the rate uncertainties which are evaluated on statistical grounds. We provide S factors and reaction rates in tabular and graphical formats. Comment: 40 pages, accepted for publication at ADNDT, web site at http://pntpm3.ulb.ac.be/bigbang
Gamma-rays and the case for baryon symmetric big-bang cosmology
Stecker, F. W.
1977-01-01
The baryon symmetric big-bang cosmologies offer an explanation of the present photon-baryon ratio in the universe, the best present explanation of the diffuse gamma-ray background spectrum in the 1-200 MeV range, and a mechanism for galaxy formation. In regard to He production, evidence is discussed that nucleosynthesis of He may have taken place after the galaxies were formed.
Big Bang Day : The Great Big Particle Adventure - 3. Origins
2008-01-01
In this series, comedian and physicist Ben Miller asks the CERN scientists what they hope to find. If the LHC is successful, it will explain the nature of the Universe around us in terms of a few simple ingredients and a few simple rules. But the Universe now was forged in a Big Bang where conditions were very different, and the rules were very different, and those early moments were crucial to determining how things turned out later. At the LHC they can recreate conditions as they were billionths of a second after the Big Bang, before atoms and nuclei existed. They can find out why matter and antimatter didn't mutually annihilate each other to leave behind a Universe of pure, brilliant light. And they can look into the very structure of space and time - the fabric of the Universe
The Big Bang and Cosmic Inflation
Guth, Alan H.
2014-03-01
A summary is given of the key developments of cosmology in the 20th century, from the work of Albert Einstein to the emergence of the generally accepted hot big bang model. The successes of this model are reviewed, but emphasis is placed on the questions that the model leaves unanswered. The remainder of the paper describes the inflationary universe model, which provides plausible answers to a number of these questions. It also offers a possible explanation for the origin of essentially all the matter and energy in the observed universe.
Nuclear Receptors, RXR, and the Big Bang.
Evans, Ronald M; Mangelsdorf, David J
2014-03-27
Isolation of genes encoding the receptors for steroids, retinoids, vitamin D, and thyroid hormone and their structural and functional analysis revealed an evolutionarily conserved template for nuclear hormone receptors. This discovery sparked identification of numerous genes encoding related proteins, termed orphan receptors. Characterization of these orphan receptors and, in particular, of the retinoid X receptor (RXR) positioned nuclear receptors at the epicenter of the "Big Bang" of molecular endocrinology. This Review provides a personal perspective on nuclear receptors and explores their integrated and coordinated signaling networks that are essential for multicellular life, highlighting the RXR heterodimer and its associated ligands and transcriptional mechanism. PMID:24679540
Web Science Big Wins: Information Big Bang & Fundamental Constants
Carr, Les
2010-01-01
We take for granted a Web that provides free and unrestricted information exchange, but the Web is under pressure to change in order to respond to issues of security, commerce, criminality, privacy. Web Science needs to explain how the Web impacts society and predict the outcomes of proposed changes to Web infrastructure on business and society. Using the analogy of the Big Bang, this presentation describes how the Web spread the conditions of its initial creation throughout the whole of soci...
Dual of Big-bang and Big-crunch
Bak, Dongsu
2006-01-01
Starting from the Janus solution and its gauge theory dual, we obtain the dual gauge theory description of the cosmological solution by procedure of the double anaytic continuation. The coupling is driven either to zero or to infinity at the big-bang and big-crunch singularities, which are shown to be related by the S-duality symmetry. In the dual Yang-Mills theory description, these are non singular at all as the coupling goes to zero in the N=4 Super Yang-Mills theory. The cosmological sing...
The Whole Shebang: How Science Produced the Big Bang Model.
Ferris, Timothy
2002-01-01
Offers an account of the accumulation of evidence that has led scientists to have confidence in the big bang theory of the creation of the universe. Discusses the early work of Ptolemy, Copernicus, Kepler, Galileo, and Newton, noting the rise of astrophysics, and highlighting the birth of the big bang model (the cosmic microwave background theory…
Primordial nucleosynthesis revisited
Standard Big Bang nucleosynthesis predictions are compared with the most recent estimates of the primordial light isotope abundances. The dependence of the predicted abundances on low-energy nuclear reaction rates and the neutron half-life is investigated. We conclude that the standard model of Big Bang nucleosynthesis, the Standard Model of particle physics with three light neutrino flavours, and the currently recommended value of the neutron half-life are incompatible. (author)
Quarks, leptons and the big bang
Allday, Jonathan
2016-01-01
Quarks, Leptons and The Big Bang, Third Edition, is a clear, readable and self-contained introduction to particle physics and related areas of cosmology. It bridges the gap between non-technical popular accounts and textbooks for advanced students. The book concentrates on presenting the subject from the modern perspective of quarks, leptons and the forces between them. This book will be of interest to students, teachers and general science readers interested in fundamental ideas of modern physics. This edition brings the book completely up to date by including advances in particle physics and cosmology, such as the discovery of the Higgs boson, the LIGO gravitational wave discovery and the WMAP and PLANCK results.
Rouat, Sylvie
2003-01-01
"Tout n'a pas commencé par une explosion. L'historie du cosmos avait débuté biena vant le Big Bang, si l'on suit la théorie défendue par les partisans d'une nouvelle cosmologie issue de la mystérieuse théorie des cordes. A l'heure où vacillent les scénarios classiques du XXe siècle, se prépare un grand chamboulement de nos idées sur la naissance de l'Univers et son devenir, sur l'existence possible d'univers parallèles. Des théories séduisantes qui seront mises à l'épreuve au cours de la prochaine décennie" (11 pages)
Novel big-bang element synthesis catalyzed by supersymmetric particle stau
The extremely low isotope ratio of 6Li had remained as a drawback of the Big-Bang Nucleosynthesis (BBN) until Pospelov proposed the 6Li synthesis reaction catalyzed by negatively charged electroweak-scale particle X- in 2006. He remarked the catalytic enhancement of 6Li production by about 108 times, as well as the life and initial abundance of X-. The present authors classified BBN catalyzed reaction into six types, i.e. (1) non-resonant transfer, (2) resonant transfer, (3) non-resonant radiative capture, (4) resonant radiative capture, (5) three-body breakup and (6) charge transfer reactions to predict absolute values of cross sections which cannot be observed experimentally. Starting from the three-body treatment for those reactions, 6Li problems, the life-time and abundance of stau are discussed. Large change of element composition at 'late-time' big bang, generation of 9Be by stau catalyzed reaction, 7Li problem and stau catalyzed reactions are also discussed. Finally their relations with the supersymmetry theory and dark matter are mentioned. The basic nuclear calculations are providing quantitative base for the 'effect of nuclear reactions catalyzed by the supersymmetric particle stau on big bang nucleosynthesis'. (S. Funahashi)
On the Initial Conditions for Pre-Big-Bang Cosmology
Borunda, M.; Ruiz-Altaba, M.
1998-01-01
The beautiful scenario of pre-big-bang cosmology is appealling not only because it is more or less derived from string theory, but also because it separates clearly the problem of the initial conditions for the universe from that of high curvatures. Recently, the pre-big-bang program was subject to attack from on the grounds that pre-big-bang cosmology does not solve the horizon and flatness problems in a ``natural'' way, as customary exponential ``new'' inflation does. In particular, it appe...
Antigravity and the big crunch/big bang transition
We point out a new phenomenon which seems to be generic in 4d effective theories of scalar fields coupled to Einstein gravity, when applied to cosmology. A lift of such theories to a Weyl-invariant extension allows one to define classical evolution through cosmological singularities unambiguously, and hence construct geodesically complete background spacetimes. An attractor mechanism ensures that, at the level of the effective theory, generic solutions undergo a big crunch/big bang transition by contracting to zero size, passing through a brief antigravity phase, shrinking to zero size again, and re-emerging into an expanding normal gravity phase. The result may be useful for the construction of complete bouncing cosmologies like the cyclic model.
Solution of a braneworld big crunch/big bang cosmology
We solve for the cosmological perturbations in a five-dimensional background consisting of two separating or colliding boundary branes, as an expansion in the collision speed V divided by the speed of light c. Our solution permits a detailed check of the validity of four-dimensional effective theory in the vicinity of the event corresponding to the big crunch/big bang singularity. We show that the four-dimensional description fails at the first nontrivial order in (V/c)2. At this order, there is nontrivial mixing of the two relevant four-dimensional perturbation modes (the growing and decaying modes) as the boundary branes move from the narrowly separated limit described by Kaluza-Klein theory to the well-separated limit where gravity is confined to the positive-tension brane. We comment on the cosmological significance of the result and compute other quantities of interest in five-dimensional cosmological scenarios
Antigravity and the big crunch/big bang transition
Bars, Itzhak [Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-2535 (United States); Chen, Shih-Hung [Perimeter Institute for Theoretical Physics, Waterloo, ON N2L 2Y5 (Canada); Department of Physics and School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287-1404 (United States); Steinhardt, Paul J., E-mail: steinh@princeton.edu [Department of Physics and Princeton Center for Theoretical Physics, Princeton University, Princeton, NJ 08544 (United States); Turok, Neil [Perimeter Institute for Theoretical Physics, Waterloo, ON N2L 2Y5 (Canada)
2012-08-29
We point out a new phenomenon which seems to be generic in 4d effective theories of scalar fields coupled to Einstein gravity, when applied to cosmology. A lift of such theories to a Weyl-invariant extension allows one to define classical evolution through cosmological singularities unambiguously, and hence construct geodesically complete background spacetimes. An attractor mechanism ensures that, at the level of the effective theory, generic solutions undergo a big crunch/big bang transition by contracting to zero size, passing through a brief antigravity phase, shrinking to zero size again, and re-emerging into an expanding normal gravity phase. The result may be useful for the construction of complete bouncing cosmologies like the cyclic model.
Antigravity and the big crunch/big bang transition
Bars, Itzhak; Chen, Shih-Hung; Steinhardt, Paul J.; Turok, Neil
2012-08-01
We point out a new phenomenon which seems to be generic in 4d effective theories of scalar fields coupled to Einstein gravity, when applied to cosmology. A lift of such theories to a Weyl-invariant extension allows one to define classical evolution through cosmological singularities unambiguously, and hence construct geodesically complete background spacetimes. An attractor mechanism ensures that, at the level of the effective theory, generic solutions undergo a big crunch/big bang transition by contracting to zero size, passing through a brief antigravity phase, shrinking to zero size again, and re-emerging into an expanding normal gravity phase. The result may be useful for the construction of complete bouncing cosmologies like the cyclic model.
Antigravity and the big crunch/big bang transition
Bars, Itzhak; Steinhardt, Paul J; Turok, Neil
2011-01-01
We point out a new phenomenon which seems to be generic in 4d effective theories of scalar fields coupled to Einstein gravity, when applied to cosmology. A lift of such theories to a Weyl-invariant extension allows one to define classical evolution through cosmological singularities unambiguously, and hence construct geodesically complete background spacetimes. An attractor mechanism ensures that, at the level of the effective theory, generic solutions undergo a big crunch/big bang transition by contracting to zero size, passing through a brief antigravity phase, shrinking to zero size again, and re-emerging into an expanding normal gravity phase. The result may be useful for the construction of complete bouncing cosmologies like the cyclic model.
Effects of variation of fundamental constants from big bang to atomic clocks
Full text: Theories unifying gravity with other interactions suggest temporal and spatial variation of the fundamental 'constants' in expanding Universe. I discuss effects of variation of the fine structure constant alpha=e2/h c, strong interaction and quark mass. The measurements of these variations cover lifespan of the Universe from few minutes after Big Bang to the present time and give controversial results. There are some hints for the variation in Big Bang nucleosynthesis, quasar absorption spectra and Oklo natural nuclear reactor data. A very promising method to search for the variation of the fundamental constants consists in comparison of different atomic clocks. A billion times enhancement of the variation effects happens in transition between accidentally degenerate atomic energy levels. Copyright (2005) Australian Institute of Physics
Reheating and dangerous relics in pre-big-bang string cosmology
We discuss the mechanism of reheating in pre-big-bang string cosmology and we calculate the amount of moduli and gravitinos produced gravitationally and in scattering processes of the thermal bath. We find that this abundance always exceeds the limits imposed by big-bang nucleosynthesis, and significant entropy production is required. The exact amount of entropy needed depends on the details of the high curvature phase between the dilaton-driven inflationary era and the radiation era. We show that the domination and decay of the zero-mode of a modulus field, which could well be the dilaton, or of axions, suffices to dilute moduli and gravitinos. In this context, baryogenesis can be accommodated in a simple way via the Affleck-Dine mechanism and in some cases the Affleck-Dine condensate could provide both the source of entropy and the baryon asymmetry
Brane big bang brought on by a bulk bubble
We propose an alternative inflationary universe scenario in the context of Randall-Sundrum braneworld cosmology. In this new scenario the existence of extra dimension(s) plays an essential role. First, the brane universe is initially in the inflationary phase driven by the effective cosmological constant induced by a small mismatch between the vacuum energy in the five-dimensional bulk and the brane tension. This mismatch arises since the bulk is initially in a false vacuum. Then, false vacuum decay occurs, nucleating a true vacuum bubble with negative energy inside the bulk. The nucleated bubble expands in the bulk and consequently hits the brane, causing a hot big-bang brane universe of the Randall-Sundrum type. Here, the termination of the inflationary phase is due to the change of the bulk vacuum energy. The bubble kinetic energy heats up the universe. As a simple realization, we propose a model in which we assume an interaction between the brane and the bubble. We derive the constraints on the model parameters taking into account the following requirements: solving the flatness problem, no force which prohibits the bubble from colliding with the brane, a sufficiently high reheating temperature for the standard nucleosynthesis to work, and the recovery of Newton's law up to 1 mm. We find that a fine-tuning is needed in order to satisfy the first and the second requirements simultaneously, although the other constraints are satisfied in a wide range of the model parameters
Global Fluctuation Spectra in Big Crunch/Big Bang String Vacua
Craps, Ben; Ovrut, Burt A.
2003-01-01
We study Big Crunch/Big Bang cosmologies that correspond to exact world-sheet superconformal field theories of type II strings. The string theory spacetime contains a Big Crunch and a Big Bang cosmology, as well as additional ``whisker'' asymptotic and intermediate regions. Within the context of free string theory, we compute, unambiguously, the scalar fluctuation spectrum in all regions of spacetime. Generically, the Big Crunch fluctuation spectrum is altered while passing through the bounce...
Indian microchip for Big Bang research in Geneva
Bhabani, Soudhriti
2007-01-01
"A premier nuclear physics institute here has come up with India's first indigenously designed microchip that will facilitate research on the Big Bang theory in Geneva's CERN, the world's largest particle physics laboratory." (1 page)
Big Bang test delayed at CERN's LHC until 2008
Atkins, William
2007-01-01
"Scientists at the proton-proton Large Hadron Collider (LHC) particle accelerator and collider will postpone a test that could help solve the mystery of what happened a few nanoseconds after the Big Bang." (1 page)
Estudiarán el Big Bang por Internet
2007-01-01
The most powerful Internet, star of the present, goes for another challenge that mixes past and future: to join the scientific world community to clarify the orígines of the universe, the Big Bang. (1/2 page)
Pre-big bang geometric extensions of inflationary cosmologies
Klein, David
2016-01-01
Robertson-Walker cosmologies within a large class are geometrically extended to larger spacetimes that include spacetime points with zero and negative cosmological times. In the extended spacetimes, the big bang is lightlike, and though singular, it inherits some geometric structure from the original spacetime. Spacelike geodesics are continuous across the cosmological time zero submanifold which is parameterized by the radius of Fermi space slices, i.e, by the proper distances along spacelike geodesics from a comoving observer to the big bang. The continuous extension of the metric, and the continuously differentiable extension of the leading Fermi metric coefficient g{\\tau}{\\tau} of the observer, restrict the geometry of spacetime points with pre-big bang cosmological time coordinates. In our extensions the big bang is two di- mensional in a certain sense, consistent with some findings in quantum gravity.
Pre-big bang cosmology: A long history of time?
The popular myth according to which the Universe - and time itself - started with/near a big bang singularity is questioned. After claiming that the two main puzzles of standard cosmology allow for two possible logical answers, I will argue that superstring theory strongly favours the the pre-big bang (PBB) alternative. I will then explain why PBB inflation is as generic as classical gravitational collapse, and why, as a result of symmetries in the latter problem, recent fine-tuning objections to the PBB scenario are unfounded. A hot big bang state naturally results from the powerful amplification of vacuum quantum fluctuations before the big bang, a phenomenon whose observable consequences will be briefly summarized. (author)
pp Wave Big Bangs: Matrix Strings and Shrinking Fuzzy Spheres
Das, Sumit R.; Michelson, Jeremy
2005-01-01
We find pp wave solutions in string theory with null-like linear dilatons. These provide toy models of big bang cosmologies. We formulate Matrix String Theory in these backgrounds. Near the big bang ``singularity'', the string theory becomes strongly coupled but the Yang-Mills description of the matrix string is weakly coupled. The presence of a second length scale allows us to focus on a specific class of non-abelian configurations, viz. fuzzy cylinders, for a suitable regime of parameters. ...
Generating Ekpyrotic Curvature Perturbations Before the Big Bang
Lehners, Jean-Luc; McFadden, Paul; Turok, Neil; Steinhardt, Paul J.(Princeton Center for Theoretical Science, Princeton University, Princeton, NJ, 08544, USA)
2007-01-01
We analyze a general mechanism for producing a nearly scale-invariant spectrum of cosmological curvature perturbations during a contracting phase preceding a big bang, that can be entirely described using 4d effective field theory. The mechanism, based on first producing entropic perturbations and then converting them to curvature perturbations, can be naturally incorporated in cyclic and ekpyrotic models in which the big bang is modelled as a brane collision, as well as other types of cosmol...
A numerical simulation of pre-big bang cosmology
We analyse numerically the onset of pre-big bang inflation in an inhomogeneous, spherically symmetric Universe. Adding a small dilatonic perturbation to a trivial (Milne) background, we find that suitable regions of space undergo dilaton-driven inflation and quickly become spatially flat (Ω /to 1). Numerical calculations are pushed close enough to the big bang singularity to allow cross checks against previously proposed analytic asymptotic solutions. (author)
Gamma rays and the case for baryon symmetric big-bang cosmology
Stecker, F. W.
1977-01-01
The baryon symmetric big-bang cosmologies offer an explanation of the present photon-baryon ratio in the universe, the best present explanation of the diffuse gamma-ray background spectrum in the 1 to 200 MeV range, and a mechanism for galaxy formation. In the context of an open universe model, the value of omega which best fits the present gamma-ray data is omega equals approx. 0.1 which does not conflict with upper limits on Comptonization distortion of the 3K background radiation. In regard to He production, evidence is discussed that nucleosynthesis of He may have taken place after the galaxies were formed.
Primordial Nucleosynthesis: Theory and Observations
Olive, Keith A.; Steigman, Gary; Walker, Terry P.
1999-01-01
We review the Cosmology and Physics underlying Primordial Nucleosynthesis and survey current observational data in order to compare the predictions of Big Bang Nucleosynthesis with the inferred primordial abundances. From this comparison we report on the status of the consistency of the standard hot big bang model, we constrain the universal density of baryons (nucleons), and we set limits to the numbers and/or effective interactions of hypothetical new "light" particles (equivalent massless ...