WorldWideScience

Sample records for behavior surface properties

  1. Anisotropic surface chemistry properties and adsorption behavior of silicate mineral crystals.

    Science.gov (United States)

    Xu, Longhua; Tian, Jia; Wu, Houqin; Fang, Shuai; Lu, Zhongyuan; Ma, Caifeng; Sun, Wei; Hu, Yuehua

    2018-03-07

    Anisotropic surface properties of minerals play an important role in a variety of fields. With a focus on the two most intensively investigated silicate minerals (i.e., phyllosilicate minerals and pegmatite aluminosilicate minerals), this review highlights the research on their anisotropic surface properties based on their crystal structures. Four surface features comprise the anisotropic surface chemistry of minerals: broken bonds, energy, wettability, and charge. Analysis of surface broken bond and energy anisotropy helps to explain the cleavage and growth properties of mineral crystals, and understanding surface wettability and charge anisotropy is critical to the analysis of minerals' solution behavior, such as their flotation performance and rheological properties. In a specific reaction, the anisotropic surface properties of minerals are reflected in the adsorption strengths of reagents on different mineral surfaces. Combined with the knowledge of mineral crushing and grinding, a thorough understanding of the anisotropic surface chemistry properties and the anisotropic adsorption behavior of minerals will lead to the development of effective relational models comprising their crystal structure, surface chemistry properties, and targeted reagent adsorption. Overall, such a comprehensive approach is expected to firmly establish the connection between selective cleavage of mineral crystals for desired surfaces and designing novel reagents selectively adsorbed on the mineral surfaces. As tools to characterize the anisotropic surface chemistry properties of minerals, DLVO theory, atomic force microscopy (AFM), and molecular dynamics (MD) simulations are also reviewed. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Surface properties and corrosion behavior of Co-Cr alloy fabricated with selective laser melting technique.

    Science.gov (United States)

    Xin, Xian-zhen; Chen, Jie; Xiang, Nan; Wei, Bin

    2013-01-01

    We sought to study the corrosion behavior and surface properties of a commercial cobalt-chromium (Co-Cr) alloy which was fabricated with selective laser melting (SLM) technique. For this purpose, specimens were fabricated using different techniques, such as SLM system and casting methods. Surface hardness testing, microstructure observation, surface analysis using X-ray photoelectron spectroscopy (XPS) and electrochemical corrosion test were carried out to evaluate the corrosion properties and surface properties of the specimens. We found that microstructure of SLM specimens was more homogeneous than that of cast specimens. The mean surface hardness values of SLM and cast specimens were 458.3 and 384.8, respectively; SLM specimens showed higher values than cast ones in hardness. Both specimens exhibited no differences in their electrochemical corrosion properties in the artificial saliva through potentiodynamic curves and EIS, and no significant difference via XPS. Therefore, we concluded that within the scope of this study, SLM-fabricated restorations revealed good surface properties, such as proper hardness, homogeneous microstructure, and also showed sufficient corrosion resistance which could meet the needs of dental clinics.

  3. Effect of temperature on the behavior of surface properties of alcohols in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Romero, Carmen M. [Facultad de Ciencias, Universidad Nacional de Colombia, Bogota (Colombia)], E-mail: cmromeroi@unal.edu.co; Jimenez, Eulogio [Facultade de Ciencias, Universidade da Coruna (Spain); Suarez, Felipe [Facultad de Ciencias, Universidad Nacional de Colombia, Bogota (Colombia)

    2009-04-15

    The influence of temperature on the behavior of surface properties of aqueous solutions has often been used to obtain information about solute structural effects on water. In this work, we present experimental results for surface tension of aqueous solutions of n-pentanol, n-hexanol, n-heptanol, and n-octanol at T = (283.15, 288.15, 293.15, 298.15, 303.15, and 308.15) K at several concentrations. The results were used to evaluate the limiting experimental slopes of surface tension with respect to mole fraction and the hydrophobicity constant of the Connors model at each temperature. The thermodynamic behavior of aqueous alcohol solutions is discussed in terms of the effect of the hydrocarbon chain on water structure. The temperature dependence of the limiting slopes of surface tension with respect to mole fraction, as well as the hydrophobicity constant derived from surface measurements, is interpreted in terms of alcohol hydration.

  4. Effect of temperature on the behavior of surface properties of alcohols in aqueous solution

    International Nuclear Information System (INIS)

    Romero, Carmen M.; Jimenez, Eulogio; Suarez, Felipe

    2009-01-01

    The influence of temperature on the behavior of surface properties of aqueous solutions has often been used to obtain information about solute structural effects on water. In this work, we present experimental results for surface tension of aqueous solutions of n-pentanol, n-hexanol, n-heptanol, and n-octanol at T = (283.15, 288.15, 293.15, 298.15, 303.15, and 308.15) K at several concentrations. The results were used to evaluate the limiting experimental slopes of surface tension with respect to mole fraction and the hydrophobicity constant of the Connors model at each temperature. The thermodynamic behavior of aqueous alcohol solutions is discussed in terms of the effect of the hydrocarbon chain on water structure. The temperature dependence of the limiting slopes of surface tension with respect to mole fraction, as well as the hydrophobicity constant derived from surface measurements, is interpreted in terms of alcohol hydration

  5. Defined wetting properties of optical surfaces

    Science.gov (United States)

    Felde, Nadja; Coriand, Luisa; Schröder, Sven; Duparré, Angela; Tünnermann, Andreas

    2017-10-01

    Optical surfaces equipped with specific functional properties have attracted increasing importance over the last decades. In the light of cost reduction, hydrophobic self-cleaning behavior is aspired. On the other side, hydrophilic properties are interesting due to their anti-fog effect. It has become well known that such wetting states are significantly affected by the surface morphology. For optical surfaces, however, this fact poses a problem, as surface roughness can induce light scattering. The generation of optical surfaces with specific wetting properties, hence, requires a profound understanding of the relation between the wetting and the structural surface properties. Thus, our work concentrates on a reliable acquisition of roughness data over a wide spatial frequency range as well as on the comprehensive description of the wetting states, which is needed for the establishment of such correlations. We will present our advanced wetting analysis for nanorough optical surfaces, extended by a vibration-based procedure, which is mainly for understanding and tailoring the wetting behavior of various solid-liquid systems in research and industry. Utilizing the relationships between surface roughness and wetting, it will be demonstrated how different wetting states for hydrophobicity and hydrophilicity can be realized on optical surfaces with minimized scatter losses.

  6. Mechanical Properties and Tribological Behavior of In Situ NbC/Fe Surface Composites

    Science.gov (United States)

    Cai, Xiaolong; Zhong, Lisheng; Xu, Yunhua

    2017-01-01

    The mechanical properties and tribological behavior of the niobium carbide (NbC)-reinforced gray cast iron surface composites prepared by in situ synthesis have been investigated. Composites are comprised of a thin compound layer and followed by a deep diffusion zone on the surface of gray cast iron. The graded distributions of the hardness and elastic modulus along the depth direction of the cross section of composites form in the ranges of 6.5-20.1 and 159.3-411.2 GPa, respectively. Meanwhile, dry wear tests for composites were implemented on pin-on-disk equipment at sliding speed of 14.7 × 10-2 m/s and under 5 or 20 N, respectively. The result indicates that tribological performances of composites are considerably dependent on the volume fraction and the grain size of the NbC as well as the mechanical properties of the matrices in different areas. The surface compound layer presents the lowest coefficient of friction and wear rate, and exhibits the highest wear resistance, in comparison with diffusion zone and substrate. Furthermore, the worn morphologies observed reveal the dominant wear mechanism is abrasive wear feature in compound layer and diffusion zone.

  7. Surface properties of functional polymer systems

    Science.gov (United States)

    Wong, Derek

    Polymer surface modification typically involves blending with other polymers or chemical modification of the parent polymer. Such strategies inevitably result in polymer systems that are spatially and chemically heterogeneous, and which exhibit the phenomenon of surface segregation. This work investigates the effects of chain architecture on the surface segregation behavior of such functionally modified polymers using a series of end- and center-fluorinated poly(D,L-lactide). Surface segregation of the fluorinated functional groups was observed in both chain architectures via AMPS and water contact angle. Higher surface segregation was noted for functional groups located at the chain end as opposed to those in the middle of the chain. A self-consistent mean-field lattice theory was used to model the composition depth profiles of functional groups and excellent agreement was found between the model predictions and the experimental AMPS data in both chain architectures. Polymer properties are also in general dependent on both time and temperature, and exhibit a range of relaxation times in response to environmental stimuli. This behavior arises from the characteristic frequencies of molecular motions of the polymer chain and the interrelationship between time and temperature has been widely established for polymer bulk properties. There is evidence that surface properties also respond in a manner that is time and temperature dependent and that this dependence may not be the same as that observed for bulk properties. AMPS and water contact angle experiments were used to investigate the surface reorganization behavior of functional groups using a series of anionically synthesized end-fluorinated and end-carboxylated poly(styrene). It was found that both types of functional end-groups reorganized upon a change in the polarity of the surface environment in order to minimize the surface free energy. ADXPS and contact angle results suggest that the reorganization depth was

  8. d-α-tocopherol nanoemulsions: Size properties, rheological behavior, surface tension, osmolarity and cytotoxicity

    Directory of Open Access Journals (Sweden)

    M.C. Teixeira

    2017-02-01

    Full Text Available The aim of this study was the assessment of the physicochemical stability of d-α-tocopherol formulated in medium chain triglyceride nanoemulsions, stabilized with Tween®80 and Lipoid®S75 as surfactant and co-surfactant, respectively. d-α-tocopherol was selected as active ingredient because of its well-recognized interesting anti-oxidant properties (such as radical scavenger for food and pharmaceutical industries. A series of nanoemulsions of mean droplet size below 90 nm (polydispersity index < 0.15 have been produced by high-pressure homogenization, and their surface electrical charge (zeta potential, pH, surface tension, osmolarity, and rheological behavior, were characterized as a function of the d-α-tocopherol loading. In vitro studies in Caco-2 cell lines confirmed the safety profile of the developed nanoemulsions with percentage of cell viability above 90% for all formulations.

  9. Influence of particle surface properties on the dielectric behavior of silica/epoxy nanocomposites

    International Nuclear Information System (INIS)

    Cheng Lihong; Zheng Liaoying; Li Guorong; Zeng Jiangtao; Yin Qingrui

    2008-01-01

    Silica/epoxy composites have been widely used in functional electric device applications. Silica nanoparticles, both unmodified and modified with the coupling agent KH-550, were used to prepare epoxy composites. Dielectric measurements showed that nanocomposites exhibit a higher dielectric constant than the control sample, and had more obvious dielectric relaxation characteristics. Results showed that particle surface properties have a profound effect on the dielectric behavior of the nanocomposites. These characteristics are attributed to the local ununiformity of the microstructure caused by the large interface area and the interaction between the filler and the matrix. This phenomenon is explained in terms of prolonging chemical chains created during the curing process. The mechanism is discussed with measurements of X-ray diffraction (XRD) and Fourier transform infrared (FTIR)

  10. Thermal behavior of horizontally mixed surfaces on Mars

    Science.gov (United States)

    Putzig, Nathaniel E.; Mellon, Michael T.

    2007-11-01

    Current methods for deriving thermal inertia from spacecraft observations of planetary brightness temperature generally assume that surface properties are uniform for any given observation or co-located set of observations. As a result of this assumption and the nonlinear relationship between temperature and thermal inertia, sub-pixel horizontal heterogeneity may yield different apparent thermal inertia at different times of day or seasons. We examine the effects of horizontal heterogeneity on Mars by modeling the thermal behavior of various idealized mixed surfaces containing differing proportions of either dust, sand, duricrust, and rock or slope facets at different angles and azimuths. Latitudinal effects on mixed-surface thermal behavior are also investigated. We find large (several 100 J m -2 K -1 s -1/2) diurnal and seasonal variations in apparent thermal inertia even for small (˜10%) admixtures of materials with moderately contrasting thermal properties or slope angles. Together with similar results for layered surfaces [Mellon, M.T., Putzig, N.E., 2007. Lunar Planet. Sci. XXXVIII. Abstract 2184], this work shows that the effects of heterogeneity on the thermal behavior of the martian surface are substantial and may be expected to result in large variations in apparent thermal inertia as derived from spacecraft instruments. While our results caution against the over-interpretation of thermal inertia taken from median or average maps or derived from single temperature measurements, they also suggest the possibility of using a suite of apparent thermal inertia values derived from single observations over a range of times of day and seasons to constrain the heterogeneity of the martian surface.

  11. Mechanical and tribological properties of ion beam-processed surfaces

    International Nuclear Information System (INIS)

    Kodali, P.

    1998-01-01

    The intent of this work was to broaden the applications of well-established surface modification techniques and to elucidate the various wear mechanisms that occur in sliding contact of ion-beam processed surfaces. The investigation included characterization and evaluation of coatings and modified surfaces synthesized by three surface engineering methods; namely, beam-line ion implantation, plasma-source ion implantation, and DC magnetron sputtering. Correlation among measured properties such as surface hardness, fracture toughness, and wear behavior was also examined. This dissertation focused on the following areas of research: (1) investigating the mechanical and tribological properties of mixed implantation of carbon and nitrogen into single crystal silicon by beam-line implantation; (2) characterizing the mechanical and tribological properties of diamond-like carbon (DLC) coatings processed by plasma source ion implantation; and (3) developing and evaluating metastable boron-carbon-nitrogen (BCN) compound coatings for mechanical and tribological properties. The surface hardness of a mixed carbon-nitrogen implant sample improved significantly compared to the unimplanted sample. However, the enhancement in the wear factor of this sample was found to be less significant than carbon-implanted samples. The presence of nitrogen might be responsible for the degraded wear behavior since nitrogen-implantation alone resulted in no improvement in the wear factor. DLC coatings have low friction, low wear factor, and high hardness. The fracture toughness of DLC coatings has been estimated for the first time. The wear mechanism in DLC coatings investigated with a ruby slider under a contact stress of 1 GPa was determined to be plastic deformation. The preliminary data on metastable BCN compound coatings indicated high friction, low wear factor, and high hardness

  12. Parametric surface and properties defined on parallelogrammic domain

    OpenAIRE

    Shuqian Fan; Jinsong Zou; Mingquan Shi

    2014-01-01

    Similar to the essential components of many mechanical systems, the geometrical properties of the teeth of spiral bevel gears greatly influence the kinematic and dynamic behaviors of mechanical systems. Logarithmic spiral bevel gears show a unique advantage in transmission due to their constant spiral angle property. However, a mathematical model suitable for accurate digital modeling, differential geometrical characteristics, and related contact analysis methods for tooth surfaces have not b...

  13. Effect of perfluorodecyltrichlorosilane on the surface properties and anti-corrosion behavior of poly(dimethylsiloxane)-ZnO coatings

    Science.gov (United States)

    Arukalam, Innocent O.; Meng, Meijiang; Xiao, Haigang; Ma, Yuantai; Oguzie, Emeka E.; Li, Ying

    2018-03-01

    Poly(dimethylsiloxane)-ZnO coatings modified with different amounts of perfluorodecyltrichlorosilane (FDTS) were prepared using sol-gel technique. The results of field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) examinations showed that the surface structures and roughness of the coatings were respectively influenced by the increasing addition of FDTS. The water contact angle measurements showed maximum value of 130.52° with the 0.10 g FDTS-modified coating sample. The X-ray photoelectron spectroscopy (XPS) results indicated the coatings' hydrophobicity was also influenced by surface chemistry. The FTIR-ATR characterization results showed there was remarkable increase in the crystallinity of 0.10 g FDTS-modified coating after modification, and was confirmed by differential scanning calorimetry (DSC) analysis of crystallization temperature and the X-ray diffraction (XRD) results with an estimation of 71.29% percent crystallinity. The mechanical properties of the coatings were also conducted. The EIS measurements for anti-corrosion behavior showed that 0.10 g FDTS-modified coating had the highest barrier performance and lowest rate of degradation. Indeed, the obtained data have demonstrated that 0.10 g (≈ 0.18%) FDTS produced the most significantly effect on the surface and barrier properties of the coatings and thus, can effectively be used for anti-corrosion application in the marine environments.

  14. BIOPHYSICAL PROPERTIES OF NUCLEIC ACIDS AT SURFACES RELEVANT TO MICROARRAY PERFORMANCE

    OpenAIRE

    Rao, Archana N.; Grainger, David W.

    2014-01-01

    Both clinical and analytical metrics produced by microarray-based assay technology have recognized problems in reproducibility, reliability and analytical sensitivity. These issues are often attributed to poor understanding and control of nucleic acid behaviors and properties at solid-liquid interfaces. Nucleic acid hybridization, central to DNA and RNA microarray formats, depends on the properties and behaviors of single strand (ss) nucleic acids (e.g., probe oligomeric DNA) bound to surface...

  15. Effects of high-temperature gas dealkalization on surface mechanical properties of float glass

    Science.gov (United States)

    Senturk, Ufuk

    The surface topography, and the near-surface structure and mechanical property changes on float glass, that was treated in atmospheres containing SOsb2, HCl, and 1,1 difluoroethane (DFE) gases, at temperatures in the glass transition region, were studied. Structure was investigated using surface sensitive infrared spectroscopy techniques (attenuated total reflectance (ATR) and diffuse reflectance (DRIFT)) and the topography was evaluated using atomic force microscopy (AFM). The results obtained from the two FTIR methods were in agreement with each other. Mechanical property characteristics of the surface were determined by measuring microhardness using a recording microindentation set-up. A simple analysis performed on the three hardness calculation methods-LVH, LVHsb2, and Lsb2VH-indicated that LVH and LVHsb2 are less effected by measurement errors and are better suited for the calculation of hardness. Contact damage characteristics of the treated glass was also studied by monitoring the crack initiation behavior during indentation, using acoustic emission. The results of the studies, aiming for the understanding of the structure, topography, and hardness property changes indicate that the treatment parameters-temperature, time, and treatment atmosphere conditions-are significant factors influencing these properties. The analysis of these results suggest a relation to exist between the three properties. This relation is used in understanding the surface mechanical properties of the treated float glasses. The difference in the thermal expansion coefficients between the dealkalized surface and bulk, the nature of surface structure changes, structural relaxation, surface water content, and glass transformation temperature are identified as the major factors having an influence on the properties. A model connecting these features is suggested. A difference in the structure, hardness, and topography on the air and tin sides of float glass is also shown to exist. The

  16. Effect of surface topography and bioactive properties on early adhesion and growth behavior of mouse preosteoblast MC3T3-E1 cells.

    Science.gov (United States)

    Li, Na; Chen, Gang; Liu, Jue; Xia, Yang; Chen, Hanbang; Tang, Hui; Zhang, Feimin; Gu, Ning

    2014-10-08

    The effects of bioactive properties and surface topography of biomaterials on the adhesion and spreading properties of mouse preosteoblast MC3T3-E1 cells was investigated by preparation of different surfaces. Poly lactic-co-glycolic acid (PLGA) electrospun fibers (ES) were produced as a porous rough surface. In our study, coverslips were used as a substrate for the immobilization of 3,4-dihydroxyphenylalanine (DOPA) and collagen type I (COL I) in the preparation of bioactive surfaces. In addition, COL I was immobilized onto porous electrospun fibers surfaces (E-COL) to investigate the combined effects of bioactive molecules and topography. Untreated coverslips were used as controls. Early adhesion and growth behavior of MC3T3-E1 cells cultured on the different surfaces were studied at 6, 12, and 24 h. Evaluation of cell adhesion and morphological changes showed that the all the surfaces were favorable for promoting the adhesion and spreading of cells. CCK-8 assays and flow cytometry revealed that both topography and bioactive properties were favorable for cell growth. Analysis of β1, α1, α2, α5, α10 and α11 integrin expression levels by immunofluorescence, real-time RT-PCR, and Western blot and indicated that surface topography plays an important role in the early stage of cell adhesion. However, the influence of topography and bioactive properties of surfaces on integrins is variable. Compared with any of the topographic or bioactive properties in isolation, the combined effect of both types of properties provided an advantage for the growth and spreading of MC3T3-E1 cells. This study provides a new insight into the functions and effects of topographic and bioactive modifications of surfaces at the interface between cells and biomaterials for tissue engineering.

  17. Heterogeneous Ice Nucleation: Interplay of Surface Properties and Their Impact on Water Orientations.

    Science.gov (United States)

    Glatz, Brittany; Sarupria, Sapna

    2018-01-23

    Ice is ubiquitous in nature, and heterogeneous ice nucleation is the most common pathway of ice formation. How surface properties affect the propensity to observe ice nucleation on that surface remains an open question. We present results of molecular dynamics studies of heterogeneous ice nucleation on model surfaces. The models surfaces considered emulate the chemistry of kaolinite, an abundant component of mineral dust. We investigate the interplay of surface lattice and hydrogen bonding properties in affecting ice nucleation. We find that lattice matching and hydrogen bonding are necessary but not sufficient conditions for observing ice nucleation at these surfaces. We correlate this behavior to the orientations sampled by the metastable supercooled water in contact with the surfaces. We find that ice is observed in cases where water molecules not only sample orientations favorable for bilayer formation but also do not sample unfavorable orientations. This distribution depends on both surface-water and water-water interactions and can change with subtle modifications to the surface properties. Our results provide insights into the diverse behavior of ice nucleation observed at different surfaces and highlight the complexity in elucidating heterogeneous ice nucleation.

  18. Validation of a laboratory method for evaluating dynamic properties of reconstructed equine racetrack surfaces.

    Directory of Open Access Journals (Sweden)

    Jacob J Setterbo

    Full Text Available Racetrack surface is a risk factor for racehorse injuries and fatalities. Current research indicates that race surface mechanical properties may be influenced by material composition, moisture content, temperature, and maintenance. Race surface mechanical testing in a controlled laboratory setting would allow for objective evaluation of dynamic properties of surface and factors that affect surface behavior.To develop a method for reconstruction of race surfaces in the laboratory and validate the method by comparison with racetrack measurements of dynamic surface properties.Track-testing device (TTD impact tests were conducted to simulate equine hoof impact on dirt and synthetic race surfaces; tests were performed both in situ (racetrack and using laboratory reconstructions of harvested surface materials. Clegg Hammer in situ measurements were used to guide surface reconstruction in the laboratory. Dynamic surface properties were compared between in situ and laboratory settings. Relationships between racetrack TTD and Clegg Hammer measurements were analyzed using stepwise multiple linear regression.Most dynamic surface property setting differences (racetrack-laboratory were small relative to surface material type differences (dirt-synthetic. Clegg Hammer measurements were more strongly correlated with TTD measurements on the synthetic surface than the dirt surface. On the dirt surface, Clegg Hammer decelerations were negatively correlated with TTD forces.Laboratory reconstruction of racetrack surfaces guided by Clegg Hammer measurements yielded TTD impact measurements similar to in situ values. The negative correlation between TTD and Clegg Hammer measurements confirms the importance of instrument mass when drawing conclusions from testing results. Lighter impact devices may be less appropriate for assessing dynamic surface properties compared to testing equipment designed to simulate hoof impact (TTD.Dynamic impact properties of race surfaces

  19. RELATIONSHIP BETWEEN FOAMING BEHAVIOR AND SURFACE ENERGY OF ASPHALT BINDER

    Directory of Open Access Journals (Sweden)

    Jian-ping Xu

    2017-12-01

    Full Text Available To solve the problem of insufficiency in microscopic performance of foamed asphalt binder, surface energy theory was utilized to analyze the foaming behavior and wettability of asphalt binder. Based on the surface energy theory, the Wilhelmy plate method and universal sorption device method were employed to measure the surface energy components of asphalt binders and aggregates, respectively. Combined with the traditional evaluation indictor for foamed asphalt, the relationship between the foaming property and surface energy of asphalt binder was analyzed. According to the surface energy components, the wettability of asphalt binder to aggregate was calculated to verify the performance of foamed asphalt mixture. Results indicate that the foaming behavior of asphalt will be influenced by surface energy, which will increase with the decline of surface energy. In addition, the surface energy of asphalt binder significantly influences the wettability of asphalt binder to aggregates. Meanwhile, there is an inversely proportional relationship between surface energy of asphalt binder and wettability. Therefore, it can be demonstrated that surface energy is a good indictor which can be used to evaluate the foaming behavior of the asphalt binder. And it is suggested to choose the asphalt binder with lower surface energy in the process of design of foamed asphalt mixture.

  20. Surface Properties of Al-Functionalized Mesoporous MCM-41 and the Melting Behavior of Water in Al-MCM-41 Nanopores.

    Science.gov (United States)

    Sterczyńska, Angelina; Deryło-Marczewska, Anna; Zienkiewicz-Strzałka, Małgorzata; Śliwińska-Bartkowiak, Małgorzata; Domin, Kamila

    2017-10-24

    We report an experimental investigation of structural and adhesive properties for Al-containing mesoporous MCM-41 and MCM-41 surfaces. In this work, highly ordered hexagonal mesoporous structures of aluminosilica with two different Si/Al molar ratios equal to 50 and 80 and silica samples were studied; Al was incorporated into the MCM-41 structures using the direct synthesis method, with CTAB as a surfactant. The incorporation of aluminum was evidenced simultaneously without any change in the hexagonal arrangement of cylindrical mesopores. The porous materials were examined by techniques such as low-temperature nitrogen sorption, energy-dispersive spectroscopy, and scanning and transmission electron microscopy. Surface properties were determined through X-ray photoelectron spectroscopy, potentiometric titration, and static contact angle measurements. It was shown that an increase in surface acidity leads to an increase in the wetting energy of the surface. To investigate the influence of acidity on the confinement effects, the melting behavior of water in Al-MCM-41 and MCM-41 with the same pore size was determined by using dielectric relaxation spectroscopy and differential scanning calorimetry methods. We found that the melting-point depression of water in pores is larger in the functionalized pores than in pure silica pores of the same pore diameter.

  1. Surface effects on the mechanical properties of nanoporous materials

    International Nuclear Information System (INIS)

    Xia Re; Li Xide; Feng Xiqiao; Qin Qinghua; Liu Jianlin

    2011-01-01

    Using the theory of surface elasticity, we investigate the mechanical properties of nanoporous materials. The classical theory of porous materials is modified to account for surface effects, which become increasingly important as the characteristic sizes of microstructures shrink to nanometers. First, a refined Timoshenko beam model is presented to predict the effective elastic modulus of nanoporous materials. Then the surface effects on the elastic microstructural buckling behavior of nanoporous materials are examined. In particular, nanoporous gold is taken as an example to illustrate the application of the proposed model. The results reveal that both the elastic modulus and the critical buckling behavior of nanoporous materials exhibit a distinct dependence on the characteristic sizes of microstructures, e.g. the average ligament width.

  2. Surface effects on the mechanical properties of nanoporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Xia Re [School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072 (China); Li Xide; Feng Xiqiao [AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084 (China); Qin Qinghua [School of Engineering, Australian National University, Canberra, ACT 0200 (Australia); Liu Jianlin, E-mail: fengxq@tsinghua.edu.cn [Department of Engineering Mechanics, China University of Petroleum, Qingdao 266555 (China)

    2011-07-01

    Using the theory of surface elasticity, we investigate the mechanical properties of nanoporous materials. The classical theory of porous materials is modified to account for surface effects, which become increasingly important as the characteristic sizes of microstructures shrink to nanometers. First, a refined Timoshenko beam model is presented to predict the effective elastic modulus of nanoporous materials. Then the surface effects on the elastic microstructural buckling behavior of nanoporous materials are examined. In particular, nanoporous gold is taken as an example to illustrate the application of the proposed model. The results reveal that both the elastic modulus and the critical buckling behavior of nanoporous materials exhibit a distinct dependence on the characteristic sizes of microstructures, e.g. the average ligament width.

  3. Study on tribological properties of multi-layer surface texture on Babbitt alloys surface

    Science.gov (United States)

    Zhang, Dongya; Zhao, Feifei; Li, Yan; Li, Pengyang; Zeng, Qunfeng; Dong, Guangneng

    2016-12-01

    To improve tribological properties of Babbitt alloys, multi-layer surface texture consisted of the main grooves and secondary micro-dimples are fabricated on the Babbitt substrate through laser pulse ablation. The tribological behaviors of multi-layer surface texture are investigated using a rotating type pin-on-disc tribo-meter under variation sliding speeds, and the film pressure distributions on the textured surfaces are simulated using computational fluid dynamics (CFD) method for elucidating the possible mechanisms. The results suggest that: (i) the multi-layer surface texture can reduce friction coefficient of Babbitt alloy, which has lowest friction coefficient of 0.03, in case of the groove parameter of 300 μm width and 15% of area density; (ii) the improvement effect may be more sensitive to the groove area density and the siding speed, and the textured surface with lower area density has lower friction coefficient under high sliding speed. Based on the reasons of (i) the secondary micro-dimples on Babbitt alloy possesses a hydrophobicity surface and (ii) the CFD analysis indicates that main grooves enhancing hydrodynamic effect, thus the multi-layer surface texture is regarded as dramatically improve the lubricating properties of the Babbitt alloy.

  4. Wetting behavior of magnesite and dolomite surfaces

    Science.gov (United States)

    Gence, Nermin

    2006-03-01

    Magnesite and dolomite are salt-type minerals that show similar chemical composition and flotation behavior due to same crystal structure, and sparingly soluble nature. The surface properties of minerals play a major role in determining their separation from each other in processes such as flotation. During flotation process, selectivity problem arises between magnesite and associated gangue minerals such as dolomite. There is a close relationship between floatability of minerals and their contact angles. Therefore, surface hydrophobicity of magnesite and dolomite minerals was investigated by contact angle measurements in the absence and presence of flotation reagents. Magnesite and dolomite show hydrophilic properties and they have got a small contact angle (magnesite ˜10.4° and dolomite ˜6.6°) in distilled water in the absence of any surfactant. The contact angle values at the magnesite and dolomite surfaces remained at 9.7°-10.9° in the presence of petroleum sulphonates (R825 and R840) while sodium oleate affected hydrophobicity of magnesite, and the contact angle value increased up to 79°. The contact angle value of 39° at dolomite surface was obtained in the solution of sodium oleate, respectively.

  5. Effect of Extracellular Polymeric Substances on Surface Properties and Attachment Behavior of Acidithiobacillus ferrooxidans

    Directory of Open Access Journals (Sweden)

    Qian Li

    2016-09-01

    Full Text Available Bacterial contact leaching of ores is more effective than non-contact leaching. Adhesion is the first step for leaching bacteria to form a biofilm on a mineral surface. Extracellular polymeric substances (EPS are pivotal for mediating bacterial adhesion to a substratum. In order to clarify the role of EPS, we measured the adhesion forces between chalcopyrite-, sulfur- or FeSO4·7H2O-grown cells of Acidithiobacillus ferrooxidans and chalcopyrite by an atomic force microscope (AFM before and after EPS removal. Surface properties of these cells were assessed by measurements of the contact angle, zeta potential, Fourier transform infrared spectroscopy (FTIR and acid-base titration. Bacterial attachment to chalcopyrite was monitored for 140 min. The results indicate that the EPS control the surface properties of the cells. In addition, the surface properties are decisive for adhesion. The adhesion forces and the amounts of attached cells decreased dramatically after removing EPS, which was not dependent on the preculture.

  6. Modulation of dry tribological property of stainless steel by femtosecond laser surface texturing

    Science.gov (United States)

    Wang, Zhuo; Zhao, Quanzhong; Wang, Chengwei; Zhang, Yang

    2015-06-01

    We reported on the modification of tribological properties of stainless steel by femtosecond laser surface microstructuring. Regular arranged micro-grooved textures with different spacing were produced on the AISI 304L steel surfaces by an 800-nm femtosecond laser. The tribological properties of smooth surface and textured surface were investigated by carrying out reciprocating ball-on-flat tests against Al2O3 ceramic balls under dry friction. Results show that the spacing of micro-grooves had a significant impact on friction coefficient of textured surfaces. Furthermore, the wear behaviors of smooth and textured surface were also investigated. Femtosecond laser surface texturing had a marked potential for modulating friction and wear properties if the micro-grooves were distributed in an appropriate manner.

  7. Electrochemical Properties of Alkanethiol Monolayers Adsorbed on Nanoporous Au Surfaces

    International Nuclear Information System (INIS)

    Chu, Yeon Yi; Seo, Bora; Kim, Jong Won

    2010-01-01

    We investigated the electrochemical properties of alkanethiol monolayers adsorbed on NPG surfaces by cyclic voltammetry and electrochemical impedance spectroscopy, and the results are compared to those on flat Au surfaces. The reductive desorption of alkanethiols on NPG surfaces is observed in more negative potential regions than that on flat Au surfaces due the stronger S-Au interaction on NPG surfaces. While the electron transfer through alkanethiol monolayers on flat Au surfaces occurs via a tunneling process through the monolayer films, the redox species can permeate through the monolayers on NPG surfaces to transfer the electrons to the Au surfaces. The results presented here will help to elucidate the intrinsic electrochemical properties of alkanethiol monolayers adsorbed on curved Au surfaces, particularly on the surface of AuNPs. Self-assembled monolayers (SAMs) of thiolate molecules on Au surfaces have been the subject of intensive research for the last few decades due to their unique physical and chemical properties. The well-organized surface structures of thiolate SAMs with various end-group functionalities can be further utilized for many applications in biology and nanotechnology. In addition to the practical applications, SAMs of thiolate molecules on Au surfaces also provide unique opportunities to address fundamental issues in surface chemistry such as self-organized surface structures, electron transfer behaviors, and moleculesubstrate interactions. Although there have been numerous reports on the fundamental physical and chemical properties of thiolate SAMs on Au surfaces, most of them were investigated on flat Au surfaces, typically on well-defined Au(111) surfaces

  8. Microstructural evolution and surface properties of nanostructured Cu-based alloy by ultrasonic nanocrystalline surface modification technique

    Energy Technology Data Exchange (ETDEWEB)

    Amanov, Auezhan, E-mail: amanov_a@yahoo.com [Department of Mechanical Engineering, Sun Moon University, Asan 336-708 (Korea, Republic of); Cho, In-Sik [R& D Group, Mbrosia Co., Ltd., Asan 336-708 (Korea, Republic of); Pyun, Young-Sik [Department of Mechanical Engineering, Sun Moon University, Asan 336-708 (Korea, Republic of)

    2016-12-01

    Graphical abstract: - Highlights: • A nanostructured surface was produced by UNSM technique. • Porosities were eliminated from the surface by UNSM technique. • Extremely high hardness obtained at the top surface after UNSM treatment. • Friction and wear behavior was improved by UNSM technique. • Resistance to scratch behavior was improved by UNSM technique. - Abstract: A nanostructured surface layer with a thickness of about 180 μm was successfully produced in Cu-based alloy using an ultrasonic nanocrystalline surface modification (UNSM) technique. Cu-based alloy was sintered onto low carbon steel using a powder metallurgy (P/M) method. Transmission electron microscope (TEM) characterization revealed that the severe plastic deformation introduced by UNSM technique resulted in nano-sized grains in the topmost surface layer and deformation twins. It was also found by atomic force microscope (AFM) observations that the UNSM technique provides a significant reduction in number of interconnected pores. The effectiveness of nanostructured surface layer on the tribological and micro-scratch properties of Cu-based alloy specimens was investigated using a ball-on-disk tribometer and micro-scratch tester, respectively. Results exhibited that the UNSM-treated specimen led to an improvement in tribological and micro-scratch properties compared to that of the sintered specimen, which may be attributed to the presence of nanostructured surface layer having an increase in surface hardness and reduction in surface roughness. The findings from this study are expected to be implemented to the automotive industry, in particular connected rod bearings and bushings in order to increase the efficiency and performance of internal combustion engines (ICEs).

  9. Microstructure evolution and tribological properties of acrylonitrile-butadiene rubber surface modified by atmospheric plasma treatment

    Science.gov (United States)

    Shen, Ming-xue; Zhang, Zhao-xiang; Peng, Xu-dong; Lin, Xiu-zhou

    2017-09-01

    For the purpose of prolonging the service life for rubber sealing elements, the frictional behavior of acrylonitrile-butadiene rubber (NBR) surface by dielectric barrier discharge plasma treatments was investigated in this paper. Surface microstructure and chemical composition were measured by atomic force microscopy, field-emission scanning electron microscopy, and X-ray photoelectron spectroscopy, respectively. Water contact angles of the modified rubber surface were also measured to evaluate the correlation between surface wettability and tribological properties. The results show that plasma treatments can improve the properties of the NBR against friction and wear effectively, the surface microstructure and roughness of plasma-modified NBR surface had an important influence on the surface tribological behavior, and the wear depth first decreased and then increased along with the change of plasma treatment time. It was found that the wettability of the modified surface was gradually improved, which was mainly due to the change of the chemical composition after the treatment. This study suggests that the plasma treatment could effectively improve the tribological properties of the NBR surface, and also provides information for developing wear-resistant NBR for industrial applications.

  10. Surface Layer Fluorination-Modulated Space Charge Behaviors in HVDC Cable Accessory

    Directory of Open Access Journals (Sweden)

    Jin Li

    2018-05-01

    Full Text Available Space charges tend to accumulate on the surface and at the interface of ethylene–propylene–diene terpolymer (EPDM, serving as high voltage direct current (HVDC cable accessory insulation, which likely induces electrical field distortion and dielectric breakdown. Direct fluorination is an effective method to modify the surface characteristics of the EPDM without altering the bulk properties too much. In this paper, the surface morphology, hydrophobic properties, relative permittivity, and DC conductivity of the EPDM before and after fluorination treatment were tested. Furthermore, the surface and interface charge behaviors in the HVDC cable accessory were investigated by the pulsed electroacoustic (PEA method, and explained from the point of view of trap distribution. The results show that fluorination helps the EPDM polymer obtain lower surface energy and relative permittivity, which is beneficial to the interface match in composite insulation systems. The lowest degree of space charge accumulation occurs in EPDM with 30 min of fluorination. After analyzing the results of the 3D potentials and the density of states (DOS behaviors in EPDM before and after fluorination, it can be found that fluorination treatment introduces shallower electron traps, and the special electrostatic potential after fluorination can significantly suppress the space charge accumulation at the interface in the HVDC cable accessory.

  11. Switching behavior of double-decker single molecule magnets on a metal surface

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Yingshuang; Schwoebel, Joerg; Hoffmann, Germar; Brede, Jens; Wiesendanger, Roland [University of Hamburg, Hamburg (Germany); Dillulo, Andrew [Ohio University, Athens (United States); Klyatskaya, Svetlana [Karlsruhe Institute of Technology, Karlsruhe (Germany); Ruben, Mario [Karlsruhe Institute of Technology, Karlsruhe (Germany); Universite de Strasbourg, Strasbourg (France)

    2011-07-01

    Single molecule magnets (SMM) are most promising materials for spin based molecular electronics. Due to their large magnetic anisotropy stabilized by inside chemical bonds, SMM can potentially be used for information storage at the single molecule level. For applications, it is of importance to adsorb the SMM onto surfaces and to study their subsequent conformational, electronic and magnetic properties. We have investigated the adsorption behavior of Tb and Dy based double-decker SMM on an Ir(111) surface with low temperature scanning tunneling microscopy and spectroscopy. It is found that Tb double-decker molecules bind tightly to the Ir(111) surface. By resonantly injecting tunneling electrons into its LUMO or HOMO state, the Tb double-decker molecule can be switched from a four-lobed structure to an eight-lobed structure. After switching, energy positions of the HOMO and LUMO states both shift closer to the Fermi level. Dy double-decker molecules also exhibit the same switching properties on the Ir(111) surface. The switching behavior of the molecules is tentatively attributed to a conformational change of the double-decker molecular frame.

  12. BIOPHYSICAL PROPERTIES OF NUCLEIC ACIDS AT SURFACES RELEVANT TO MICROARRAY PERFORMANCE.

    Science.gov (United States)

    Rao, Archana N; Grainger, David W

    2014-04-01

    Both clinical and analytical metrics produced by microarray-based assay technology have recognized problems in reproducibility, reliability and analytical sensitivity. These issues are often attributed to poor understanding and control of nucleic acid behaviors and properties at solid-liquid interfaces. Nucleic acid hybridization, central to DNA and RNA microarray formats, depends on the properties and behaviors of single strand (ss) nucleic acids (e.g., probe oligomeric DNA) bound to surfaces. ssDNA's persistence length, radius of gyration, electrostatics, conformations on different surfaces and under various assay conditions, its chain flexibility and curvature, charging effects in ionic solutions, and fluorescent labeling all influence its physical chemistry and hybridization under assay conditions. Nucleic acid (e.g., both RNA and DNA) target interactions with immobilized ssDNA strands are highly impacted by these biophysical states. Furthermore, the kinetics, thermodynamics, and enthalpic and entropic contributions to DNA hybridization reflect global probe/target structures and interaction dynamics. Here we review several biophysical issues relevant to oligomeric nucleic acid molecular behaviors at surfaces and their influences on duplex formation that influence microarray assay performance. Correlation of biophysical aspects of single and double-stranded nucleic acids with their complexes in bulk solution is common. Such analysis at surfaces is not commonly reported, despite its importance to microarray assays. We seek to provide further insight into nucleic acid-surface challenges facing microarray diagnostic formats that have hindered their clinical adoption and compromise their research quality and value as genomics tools.

  13. BIOPHYSICAL PROPERTIES OF NUCLEIC ACIDS AT SURFACES RELEVANT TO MICROARRAY PERFORMANCE

    Science.gov (United States)

    Rao, Archana N.; Grainger, David W.

    2014-01-01

    Both clinical and analytical metrics produced by microarray-based assay technology have recognized problems in reproducibility, reliability and analytical sensitivity. These issues are often attributed to poor understanding and control of nucleic acid behaviors and properties at solid-liquid interfaces. Nucleic acid hybridization, central to DNA and RNA microarray formats, depends on the properties and behaviors of single strand (ss) nucleic acids (e.g., probe oligomeric DNA) bound to surfaces. ssDNA’s persistence length, radius of gyration, electrostatics, conformations on different surfaces and under various assay conditions, its chain flexibility and curvature, charging effects in ionic solutions, and fluorescent labeling all influence its physical chemistry and hybridization under assay conditions. Nucleic acid (e.g., both RNA and DNA) target interactions with immobilized ssDNA strands are highly impacted by these biophysical states. Furthermore, the kinetics, thermodynamics, and enthalpic and entropic contributions to DNA hybridization reflect global probe/target structures and interaction dynamics. Here we review several biophysical issues relevant to oligomeric nucleic acid molecular behaviors at surfaces and their influences on duplex formation that influence microarray assay performance. Correlation of biophysical aspects of single and double-stranded nucleic acids with their complexes in bulk solution is common. Such analysis at surfaces is not commonly reported, despite its importance to microarray assays. We seek to provide further insight into nucleic acid-surface challenges facing microarray diagnostic formats that have hindered their clinical adoption and compromise their research quality and value as genomics tools. PMID:24765522

  14. Parametric surface and properties defined on parallelogrammic domain

    Directory of Open Access Journals (Sweden)

    Shuqian Fan

    2014-01-01

    Full Text Available Similar to the essential components of many mechanical systems, the geometrical properties of the teeth of spiral bevel gears greatly influence the kinematic and dynamic behaviors of mechanical systems. Logarithmic spiral bevel gears show a unique advantage in transmission due to their constant spiral angle property. However, a mathematical model suitable for accurate digital modeling, differential geometrical characteristics, and related contact analysis methods for tooth surfaces have not been deeply investigated, since such gears are not convenient in traditional cutting manufacturing in the gear industry. Accurate mathematical modeling of the tooth surface geometry for logarithmic spiral bevel gears is developed in this study, based on the basic gearing kinematics and spherical involute geometry along with the tangent planes geometry; actually, the tooth surface is a parametric surface defined on a parallelogrammic domain. Equivalence proof of the tooth surface geometry is then given in order to greatly simplify the mathematical model. As major factors affecting the lubrication, surface fatigue, contact stress, wear, and manufacturability of gear teeth, the differential geometrical characteristics of the tooth surface are summarized using classical fundamental forms. By using the geometrical properties mentioned, manufactura-bility (and its limitation in logarithmic spiral bevel gears is analyzed using precision forging and multi-axis freeform milling, rather than classical cradle-type machine tool based milling or hobbing. Geometry and manufacturability analysis results show that logarithmic spiral gears have many application advantages, but many urgent issues such as contact tooth analysis for precision plastic forming and multi-axis freeform milling also need to be solved in a further study.

  15. Surface coating affects behavior of metallic nanoparticles in a biological environment

    Directory of Open Access Journals (Sweden)

    Darija Domazet Jurašin

    2016-02-01

    Full Text Available Silver (AgNPs and maghemite, i.e., superparamagnetic iron oxide nanoparticles (SPIONs are promising candidates for new medical applications, which implies the need for strict information regarding their physicochemical characteristics and behavior in a biological environment. The currently developed AgNPs and SPIONs encompass a myriad of sizes and surface coatings, which affect NPs properties and may improve their biocompatibility. This study is aimed to evaluate the effects of surface coating on colloidal stability and behavior of AgNPs and SPIONs in modelled biological environments using dynamic and electrophoretic light scattering techniques, as well as transmission electron microscopy to visualize the behavior of the NP. Three dispersion media were investigated: ultrapure water (UW, biological cell culture medium without addition of protein (BM, and BM supplemented with common serum protein (BMP. The obtained results showed that different coating agents on AgNPs and SPIONs produced different stabilities in the same biological media. The combination of negative charge and high adsorption strength of coating agents proved to be important for achieving good stability of metallic NPs in electrolyte-rich fluids. Most importantly, the presence of proteins provided colloidal stabilization to metallic NPs in biological fluids regardless of their chemical composition, surface structure and surface charge. In addition, an assessment of AgNP and SPION behavior in real biological fluids, rat whole blood (WhBl and blood plasma (BlPl, revealed that the composition of a biological medium is crucial for the colloidal stability and type of metallic NP transformation. Our results highlight the importance of physicochemical characterization and stability evaluation of metallic NPs in a variety of biological systems including as many NP properties as possible.

  16. A systematic study of mechanical properties, corrosion behavior and biocompatibility of AZ31B Mg alloy after ultrasonic nanocrystal surface modification.

    Science.gov (United States)

    Hou, Xiaoning; Qin, Haifeng; Gao, Hongyu; Mankoci, Steven; Zhang, Ruixia; Zhou, Xianfeng; Ren, Zhencheng; Doll, Gary L; Martini, Ashlie; Sahai, Nita; Dong, Yalin; Ye, Chang

    2017-09-01

    Magnesium alloys have tremendous potential for biomedical applications due to their good biocompatibility, osteoconductivity, and degradability, but can be limited by their poor mechanical properties and fast corrosion in the physiological environment. In this study, ultrasonic nanocrystal surface modification (UNSM), a recently developed surface processing technique that utilizes ultrasonic impacts to induce plastic strain on metal surfaces, was applied to an AZ31B magnesium (Mg) alloy. The mechanical properties, corrosion resistance, and biocompatibility of the alloy after UNSM treatment were studied systematically. Significant improvement in hardness, yield stress and wear resistance was achieved after the UNSM treatment. In addition, the corrosion behavior of UNSM-treated AZ31B was not compromised compared with the untreated samples, as demonstrated by the weight loss and released element concentrations of Mg and Al after immersion in alpha-minimum essential medium (α-MEM) for 24h. The in vitro biocompatibility of the AZ31B Mg alloys toward adipose-derived stem cells (ADSCs) before and after UNSM processing was also evaluated using a cell culture study. Comparable cell attachments were achieved between the two groups. These studies showed that UNSM could significantly improve the mechanical properties of Mg alloys without compromising their corrosion rate and biocompatibility in vitro. These findings suggest that UNSM is a promising method to treat biodegradable Mg alloys for orthopaedic applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. A new approach of tailoring wetting properties of TiO2 nanotubular surfaces

    KAUST Repository

    Isimjan, Tayirjan T.

    2012-11-01

    TiO2 nanotube layers were grown on a Ti surface by electrochemical anodization. As prepared, these layers showed a superhydrophilic wetting behavior. Modified with 1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane (PTES), the layers showed a superhydrophobic behavior. We demonstrate how to change the surface characteristics of the TiO2 nanotube layers in order to achieve any desirable degree of hydrophobicity between 100° to 170°. The treated superhydrophobic TiO2 nanotube layers have an advanced contact angle exceeding 165°, a receding angle more than 155°and a slide angle less than 5°. It is found that the surface morphology of the film which depends on anodization time among other variables, has a great influence on the superhydrophobic properties of the surface after PTES treatment. The hydrodynamic properties of the surface are discussed in terms of both Cassie and Wenzel mechanisms. The layers are characterized with dynamic contact angle measurements, SEM, and XPS analyses. © 2012 American Scientific Publishers.

  18. Cell behavior on microparticles with different surface morphology

    International Nuclear Information System (INIS)

    Huang Sha; Fu Xiaobing

    2010-01-01

    Microparticles can serve as substrates for cell amplification and deliver the cell aggregation to the site of the defect for tissue regeneration. To develop favorable microparticles for cell delivery application, we fabricated and evaluated three types of microparticles that differ in surface properties. The microparticles with varied surface morphology (smooth, pitted and multicavity) were created from chemically crosslinked gelatin particles that underwent various drying treatments. Three types of microparticles were characterized and assessed in terms of the cell behavior of human keratinocytes and fibroblasts seeded on them. The cells could attach, spread and proliferate on all types of microparticles but spread and populated more slowly on the microparticles with smooth surfaces than on those with pitted or multicavity surfaces. Microparticles with a multicavity surface demonstrated the highest cell attachment and growth rate. Furthermore, cells tested on microparticles with a multicavity surface exhibited better morphology and induced the earlier formation of extracellular-based cell-microparticle aggregation than those on microparticles with other surface morphology (smooth and pitted). Thus, microparticles with a multicavity surface show promise for attachment and proliferation of cells in tissue engineering.

  19. A Method to Simulate the Observed Surface Properties of Proton Irradiated Silicon Strip Sensors

    CERN Document Server

    Peltola, Timo Hannu Tapani

    2014-01-01

    A defect model of Synopsys Sentaurus TCAD simulation package for the bulk properties of proton irradiated devices has been producing simulations closely matching to measurements of silicon strip detectors. However, the model does not provide the expected behavior due to the fluence increased surface damage. The solution requires an approach that does not affect the accurate bulk properties produced by the proton model, but only adds to it the required radiation induced properties close to the surface. These include the observed position dependency of the strip detector's...

  20. Surface modification and fatigue behavior of nitinol for load bearing implants

    Science.gov (United States)

    Bernard, Sheldon A.

    Musculoskeletal disorders are recognized amongst the most significant human health problems that exist today. Even though considerable research and development has gone towards understanding musculoskeletal disorders, there is still lack of bone replacement materials that are appropriate for restoring lost structures and functions, particularly for load-bearing applications. Many materials on the market today, such as titanium and stainless steel, suffer from significantly higher modulus than natural bone and low bioactivity leading to stress shielding and implant loosening over longer time use. Nitinol (NiTi) is an equiatomic intermetallic compound of nickel and titanium whose unique biomechanical and biological properties contributed to its increasing use as a biomaterial. An innovative method for creating dense and porous net shape NiTi alloy parts has been developed to improve biological properties while maintaining comparable or better mechanical properties than commercial materials that are currently in use. Laser engineered net shaping (LENS(TM)) and surface electrochemistry modification was used to create dense/porous samples and micro textured surfaces on NiTi parts, respectively. Porous implants are known to promote cell adhesion and have a low elastic modulus, a combination that can significantly increase the life of an implant. However, porosity can significantly reduce the fatigue life of an implant, and very little work has been reported on the fatigue behavior of bulk porous metals, specifically on porous nitinol alloy. High-cycle rotating bending and compression-compression fatigue behavior of porous NiTi fabricated using LENS(TM) were studied. In cyclic compression loading, plastic strain increased with increasing porosity and it was evident that maximum strain was achieved during the first 50000 cycles and remained constant throughout the remaining loading. No failures were observed due to loading up to 150% of the yield strength. When subjected

  1. Surface properties and dye loading behavior of Zn2SnO4 nanoparticles hydrothermally synthesized using different mineralizers

    International Nuclear Information System (INIS)

    Annamalai, Alagappan; Eo, Yang Dam; Im, Chan; Lee, Man-Jong

    2011-01-01

    We present for the first time the influence of different mineralizers on the isoelectric point (IEP) of zinc stannate (Zn 2 SnO 4 ) nanoparticles hydrothermally prepared using three different mineralizers, viz., Na 2 CO 3 , KOH and tert-butyl amine, and the effect of the IEPs on the dye loading behavior of Zn 2 SnO 4 based photoelectrodes in dye sensitized solar cells (DSSCs). To produce highly crystalline, uniform sized Zn 2 SnO 4 nanoparticles, hydrothermal processing parameters, such as reaction temperature, time, and the mineralizers used have been critically adjusted. The structural and morphological features of the as-synthesized Zn 2 SnO 4 nanoparticles have been observed using both scanning and transmission electron microscopy. For the surface state characterization of shape- and size-controlled Zn 2 SnO 4 nanoparticles, the IEPs of Zn 2 SnO 4 surfaces were determined through zeta potential measurements. The IEPs were found to be 5.7, 7.4 and 8.1 for Zn 2 SnO 4 nanoparticles formed using Na 2 CO 3 , KOH and tert-butyl amine, respectively, suggesting that the surface properties of Zn 2 SnO 4 nanoparticles can be manipulated through the choice of the mineralizers used during the hydrothermal reaction. The amount of N719 dye loading on the surfaces of Zn 2 SnO 4 electrodes having different IEPs was also evaluated. It was revealed that the higher the IEP, the higher the dye loading amount, which means that the IEP mainly affects the dye loading at the dye-metal oxide interface. - Highlights: → The effect of various mineralizers on the isoelectric point of Zn 2 SnO 4 was discussed. → The IEP of Zn 2 SnO 4 can be modified by the choice of mineralizer. → Change in IEP affects the surface properties and the morphology of Zn 2 SnO 4 particles. → Modified surface affects the N719 dye loading behaviour of the Zn 2 SnO 4 based DSSCs.

  2. Local deformation behavior of surface porous polyether-ether-ketone.

    Science.gov (United States)

    Evans, Nathan T; Torstrick, F Brennan; Safranski, David L; Guldberg, Robert E; Gall, Ken

    2017-01-01

    Surface porous polyether-ether-ketone has the ability to maintain the tensile monotonic and cyclic strength necessary for many load bearing orthopedic applications while providing a surface that facilitates bone ingrowth; however, the relevant deformation behavior of the pore architecture in response to various loading conditions is not yet fully characterized or understood. The focus of this study was to examine the compressive and wear behavior of the surface porous architecture using micro Computed Tomography (micro CT). Pore architectures of various depths (~0.5-2.5mm) and pore sizes (212-508µm) were manufactured using a melt extrusion and porogen leaching process. Compression testing revealed that the pore architecture deforms in the typical three staged linear elastic, plastic, and densification stages characteristic of porous materials. The experimental moduli and yield strengths decreased as the porosity increased but there was no difference in properties between pore sizes. The porous architecture maintained a high degree of porosity available for bone-ingrowth at all strains. Surface porous samples showed no increase in wear rate compared to injection molded samples, with slight pore densification accompanying wear. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Surface properties of beached plastics.

    Science.gov (United States)

    Fotopoulou, Kalliopi N; Karapanagioti, Hrissi K

    2015-07-01

    Studying plastic characteristics in the marine environment is important to better understand interaction between plastics and the environment. In the present study, high-density polyethylene (HDPE), polyethylene terephalate (PET), and polyvinyl chloride (PVC) samples were collected from the coastal environment in order to study their surface properties. Surface properties such as surface functional groups, surface topography, point of zero charge, and color change are important factors that change during degradation. Eroded HDPE demonstrated an altered surface topography and color and new functional groups. Eroded PET surface was uneven, yellow, and occasionally, colonized by microbes. A decrease in Fourier transform infrared (FTIR) peaks was observed for eroded PET suggesting that degradation had occurred. For eroded PVC, its surface became more lamellar and a new FTIR peak was observed. These surface properties were obtained due to degradation and could be used to explain the interaction between plastics, microbes, and pollutants.

  4. The relationship between the particle properties, mechanical behavior, and surface roughness of some pharmaceutical excipient compacts

    International Nuclear Information System (INIS)

    Narayan, Padma; Hancock, Bruno C.

    2003-01-01

    Several common pharmaceutical excipient powders were compacted at a constant solid fraction (SF) in order to study the relationship between powder properties, compact surface roughness, and compact mechanical properties such as hardness, elasticity, and brittleness. The materials used in this study included microcrystalline cellulose (MCC), fumaric acid, mannitol, lactose monohydrate, spray dried lactose, sucrose, and dibasic calcium phosphate dihydrate. A slow consolidation process was used to make compacts at a SF of 0.85 (typical for most pharmaceutical tablets) from single excipient components. A model was proposed to describe the surface roughness of compacts based on the brittle or ductile deformation tendencies of the powder materials. The roughness profile would also be dependent upon the magnitude of the compression stress in relation to the yield stress (onset of irreversible deformation) values of the excipients. It was hypothesized that brittle materials would produce smooth compacts with high surface variability due to particle fracture, and the converse would apply for ductile materials. Compact surfaces should be smoother if the materials were compressed above their yield pressure values. Non-contact optical profilometry was used along with scanning electron microscopy to quantify and characterize the surface morphology of the excipient compacts. The roughness parameters R a (average roughness), R q (RMS roughness), R q /R a (ratio describing surface variability), and R sk (skewness) were found to correlate with the deformation properties of the excipients. Brittle materials such as lactose, sucrose, and calcium phosphate produced compacts with low values of R a and R q , high variability, and negative R sk . The opposite was found with plastic materials such as MCC, mannitol, and fumaric acid. The highly negative skewness values for brittle material compacts may indicate their propensity to be vulnerable to cracks or surface defects. These findings

  5. The relationship between the particle properties, mechanical behavior, and surface roughness of some pharmaceutical excipient compacts

    Energy Technology Data Exchange (ETDEWEB)

    Narayan, Padma; Hancock, Bruno C

    2003-08-25

    Several common pharmaceutical excipient powders were compacted at a constant solid fraction (SF) in order to study the relationship between powder properties, compact surface roughness, and compact mechanical properties such as hardness, elasticity, and brittleness. The materials used in this study included microcrystalline cellulose (MCC), fumaric acid, mannitol, lactose monohydrate, spray dried lactose, sucrose, and dibasic calcium phosphate dihydrate. A slow consolidation process was used to make compacts at a SF of 0.85 (typical for most pharmaceutical tablets) from single excipient components. A model was proposed to describe the surface roughness of compacts based on the brittle or ductile deformation tendencies of the powder materials. The roughness profile would also be dependent upon the magnitude of the compression stress in relation to the yield stress (onset of irreversible deformation) values of the excipients. It was hypothesized that brittle materials would produce smooth compacts with high surface variability due to particle fracture, and the converse would apply for ductile materials. Compact surfaces should be smoother if the materials were compressed above their yield pressure values. Non-contact optical profilometry was used along with scanning electron microscopy to quantify and characterize the surface morphology of the excipient compacts. The roughness parameters R{sub a} (average roughness), R{sub q} (RMS roughness), R{sub q}/R{sub a} (ratio describing surface variability), and R{sub sk} (skewness) were found to correlate with the deformation properties of the excipients. Brittle materials such as lactose, sucrose, and calcium phosphate produced compacts with low values of R{sub a} and R{sub q}, high variability, and negative R{sub sk}. The opposite was found with plastic materials such as MCC, mannitol, and fumaric acid. The highly negative skewness values for brittle material compacts may indicate their propensity to be vulnerable to

  6. Surface orientation effects on bending properties of surgical mesh are independent of tensile properties.

    Science.gov (United States)

    Simon, David D; Andrews, Sharon M; Robinson-Zeigler, Rebecca; Valdes, Thelma; Woods, Terry O

    2018-02-01

    Current mechanical testing of surgical mesh focuses primarily on tensile properties even though implanted devices are not subjected to pure tensile loads. Our objective was to determine the flexural (bending) properties of surgical mesh and determine if they correlate with mesh tensile properties. The flexural rigidity values of 11 different surgical mesh designs were determined along three textile directions (machine, cross-machine, and 45° to machine; n = 5 for each) using ASTM D1388-14 while tracking surface orientation. Tensile testing was also performed on the same specimens using ASTM D882-12. Linear regressions were performed to compare mesh flexural rigidity to mesh thickness, areal mass density, filament diameter, ultimate tensile strength, and maximum extension. Of 33 mesh specimen groups, 30 had significant differences in flexural rigidity values when comparing surface orientations (top and bottom). Flexural rigidity and mesh tensile properties also varied with textile direction (machine and cross-machine). There was no strong correlation between the flexural and tensile properties, with mesh thickness having the best overall correlation with flexural rigidity. Currently, surface orientation is not indicated on marketed surgical mesh, and a single mesh may behave differently depending on the direction of loading. The lack of correlation between flexural stiffness and tensile properties indicates the need to examine mesh bending stiffness to provide a more comprehensive understanding of surgical mesh mechanical behaviors. Further investigation is needed to determine if these flexural properties result in the surgical mesh behaving mechanically different depending on implantation direction. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 854-862, 2018. © 2017 Wiley Periodicals, Inc.

  7. Near-surface modifications for improved crack tolerant behavior of high strength alloys: trends and prospects

    International Nuclear Information System (INIS)

    Hettche, L.R.; Rath, B.B.

    1982-01-01

    The purpose of this chapter is to examine the potential of surface modifications in improving the crack tolerant behavior of high strength alloys. Provides a critique of two of the most promising and versatile techniques: ion implantation and laser beam surface processing. Discusses crack tolerant properties; engineering characterization; publication trends and Department of Defense interests; and emergent surface modification techniques. Finds that the efficiency with which high strength alloys can be incorporated into a structure or component is dependent on the following crack tolerant properties: fracture toughness, fatigue resistance, sustained loading cracking resistance, fretting fatigue resistance, and hydrogen embrittlement resistance. Concludes that ion implantation and laser surface processing coupled with other advanced metallurgical procedures and fracture mechanic analyses provide the means to optimize both the bulk and surface controlled crack tolerant properties

  8. Friction behavior of a microstructured polymer surface inspired by snake skin.

    Science.gov (United States)

    Baum, Martina J; Heepe, Lars; Gorb, Stanislav N

    2014-01-01

    The aim of this study was to understand the influence of microstructures found on ventral scales of the biological model, Lampropeltis getula californiae, the California King Snake, on the friction behavior. For this purpose, we compared snake-inspired anisotropic microstructured surfaces to other microstructured surfaces with isotropic and anisotropic geometry. To exclude that the friction measurements were influenced by physico-chemical variations, all friction measurements were performed on the same epoxy polymer. For frictional measurements a microtribometer was used. Original data were processed by fast Fourier transformation (FFT) with a zero frequency related to the average friction and other peaks resulting from periodic stick-slip behavior. The data showed that the specific ventral surface ornamentation of snakes does not only reduce the frictional coefficient and generate anisotropic frictional properties, but also reduces stick-slip vibrations during sliding, which might be an adaptation to reduce wear. Based on this extensive comparative study of different microstructured polymer samples, it was experimentally demonstrated that the friction-induced stick-slip behavior does not solely depend on the frictional coefficient of the contact pair.

  9. Friction behavior of a microstructured polymer surface inspired by snake skin

    Directory of Open Access Journals (Sweden)

    Martina J. Baum

    2014-01-01

    Full Text Available The aim of this study was to understand the influence of microstructures found on ventral scales of the biological model, Lampropeltis getula californiae, the California King Snake, on the friction behavior. For this purpose, we compared snake-inspired anisotropic microstructured surfaces to other microstructured surfaces with isotropic and anisotropic geometry. To exclude that the friction measurements were influenced by physico-chemical variations, all friction measurements were performed on the same epoxy polymer. For frictional measurements a microtribometer was used. Original data were processed by fast Fourier transformation (FFT with a zero frequency related to the average friction and other peaks resulting from periodic stick-slip behavior. The data showed that the specific ventral surface ornamentation of snakes does not only reduce the frictional coefficient and generate anisotropic frictional properties, but also reduces stick-slip vibrations during sliding, which might be an adaptation to reduce wear. Based on this extensive comparative study of different microstructured polymer samples, it was experimentally demonstrated that the friction-induced stick-slip behavior does not solely depend on the frictional coefficient of the contact pair.

  10. Electrochemical Characteristics of Layered Transition Metal Oxide Cathode Materials for Lithium Ion Batteries: Surface, Bulk Behavior, and Thermal Properties.

    Science.gov (United States)

    Tian, Chixia; Lin, Feng; Doeff, Marca M

    2018-01-16

    Layered lithium transition metal oxides, in particular, NMCs (LiNi x Co y Mn z O 2 ) represent a family of prominent lithium ion battery cathode materials with the potential to increase energy densities and lifetime, reduce costs, and improve safety for electric vehicles and grid storage. Our work has focused on various strategies to improve performance and to understand the limitations to these strategies, which include altering compositions, utilizing cation substitutions, and charging to higher than usual potentials in cells. Understanding the effects of these strategies on surface and bulk behavior and correlating structure-performance relationships advance our understanding of NMC materials. This also provides information relevant to the efficacy of various approaches toward ensuring reliable operation of these materials in batteries intended for demanding traction and grid storage applications. In this Account, we start by comparing NMCs to the isostructural LiCoO 2 cathode, which is widely used in consumer batteries. Effects of changing the metal content (Ni, Mn, Co) upon structure and performance of NMCs are briefly discussed. Our early work on the effects of partial substitution of Al, Fe, and Ti for Co on the electrochemical and bulk structural properties is then covered. The original aim of this work was to reduce the Co content (and thus the raw materials cost) and to determine the effect of the substitutions on the electrochemical and bulk structural properties. More recently, we have turned to the application of synchrotron and advanced microscopy techniques to understand both bulk and surface characteristics of the NMCs. Via nanoscale-to-macroscale spectroscopy and atomically resolved imaging techniques, we were able to determine that the surfaces of NMC undergo heterogeneous reconstruction from a layered structure to rock salt under a variety of conditions. Interestingly, formation of rock salt also occurs under abuse conditions. The surface

  11. Superhydrophobic properties induced by sol-gel routes on copper surfaces

    Science.gov (United States)

    Raimondo, M.; Veronesi, F.; Boveri, G.; Guarini, G.; Motta, A.; Zanoni, R.

    2017-11-01

    Superhydrophobic surfaces are attracting increasing attention in different fields such as energy, transportation, building industry and electronics, as they exhibit many interesting properties such as high water repellence, anti-fogging, anti-corrosion, anti-fouling and self-cleaning abilities. Here, superhydrophobic nanostructured hybrid materials obtained by depositing alumina nanoparticles on copper surfaces via dip coating in Al2O3 sol are presented. Two different preparation routes were explored, based on either an alcoholic or an aqueous Al2O3 sol, and the resulting wetting properties were compared. Wettability measurements showed that when the alcoholic sol is used superhydrophobicity is attained, with values of water contact angle very close to the upper limit of 180°, while highly hydrophobic coatings are obtained with the aqueous sol. These findings were further supported by electron microscopy and X-ray photoelectron spectroscopy, which revealed that the surface layer deposited on Cu is more homogenous and richer in alumina nanoparticles when the alcoholic sol was used. Durability of the superhydrophobic coating was assessed by performing ageing tests in chemically aggressive environments. A remarkable resistance is displayed by the superhydrophobic coating in acid environment, while alkaline conditions severely affect its properties. Such behaviors were investigated by XPS and FE-SEM measurements, which disclosed the nature of the surface reactions under the different conditions tested. The present results underline that a thorough investigation of surface morphology, chemical composition and wetting properties reveals their strongly connection and helps optimizing the combination of substrate nanostructuring and suitable chemical coating for an improved durability in different aggressive environments.

  12. Tailoring surface properties of ArF resists thin films with functionally graded materials (FGM)

    Science.gov (United States)

    Takemoto, Ichiki; Ando, Nobuo; Edamatsu, Kunishige; Fuji, Yusuke; Kuwana, Koji; Hashimoto, Kazuhiko; Funase, Junji; Yokoyama, Hiroyuki

    2007-03-01

    Our recent research effort has been focused on new top coating-free 193nm immersion resists with regard to leaching of the resist components and lithographic performance. We have examined methacrylate-based resins that control the surface properties of ArF resists thin films by surface segregation behavior. For a better understanding of the surface properties of thin films, we prepared the six resins (Resin 1-6) that have three types fluorine containing monomers, a new monomer (Monomer A), Monomer B and Monomer C, respectively. We blended the base polymer (Resin 0) with Resin (1-6), respectively. We evaluated contact angles, surface properties and lithographic performances of the polymer blend resists. The static and receding contact angles of the resist that contains Resin (1-6) are greater than that of the base polymer (Resin 0) resist. The chemical composition of the surface of blend polymers was investigated with X-ray photoelectron spectroscopy (XPS). It was shown that there was significant segregation of the fluorine containing resins to the surface of the blend films. We analyzed Quantitative Structure-Property Relationships (QSPR) between the surface properties and the chemical composition of the surface of polymer blend resists. The addition of 10 wt% of the polymer (Resin 1-6) to the base polymer (Resin 0) did not influence the lithographic performance. Consequently, the surface properties of resist thin films can be tailored by the appropriate choice of fluorine containing polymer blends.

  13. Calculated Fermi surface properties of LaSn3 and YSn3 under pressure

    International Nuclear Information System (INIS)

    Kanchana, V.

    2012-01-01

    The electronic structure, Fermi surface and elastic properties of the iso-structural and iso-electronic LaSn 3 and YSn 3 intermetallic compounds are studied under pressure within the frame work of density functional theory including spin-orbit coupling. The LaSn 3 Fermi surface consists of two sheets, of which the second is very complex. Under pressure a third sheet appears around compression V/V 0 =0.94, while a small topology changes in the second sheet is seen at compression V/V 0 =0.90. This may be in accordance with the anomalous behavior in the superconducting transition temperature observed in LaSn 3 , which has been suggested to reflect a Fermi surface topological transition, along with a non-monotonic pressure dependence of the density of states at the Fermi level. The similar behavior is not observed in YSn 3 for which the Fermi surface includes three sheets already at ambient conditions, and the topology remains unchanged under pressure. The reason for the difference in behavior between LaSn 3 and YSn 3 is the role of spin-orbit coupling and the hybridization of La-4f state with the Sn-p state in the vicinity of the Fermi level, which is well explained using the band structure calculation. The elastic constants and related mechanical properties are calculated at ambient as well as at elevated pressures. The elastic constants increase with pressure for both compounds and satisfy the conditions for mechanical stability under pressure. (author)

  14. Applications of asymmetric nanotextured parylene surface using its wetting and transport properties

    Science.gov (United States)

    Sekeroglu, Koray

    In this thesis, basic digital fluidics devices were introduced using polymeric nanorods (nano-PPX) inspired from nature. Natural inspiration ignited this research by observing butterfly wings, water strider legs, rye grass leaves, and their asymmetric functions. Nano-PPX rods, manufactured by an oblique angle polymerization (OAP) method, are asymmetrically aligned structures that have unidirectional wetting properties. Nano-PPX demonstrates similar functions to the directional textured surfaces of animals and plants in terms of wetting, adhesion, and transport. The water pin-release mechanism on the asymmetric nano-PPX surface with adhesion function provides a great transport property. How the asymmetry causes transport is discussed in terms of hysteresis and interface contact of water droplets. In this study, the transport property of nano-PPX rods is used to guide droplets as well as transporting cargo such as microgels. With the addition of tracks on the nano-PPX rods, the surfaces were transformed into basic digital fluidics devices. The track-assisted nano-PPX has been employed to applications (i.e. sorting, mixing, and carrying cargo particles). Thus, digital fluidics devices fabricated on nano-PPX surface is a promising pathway to assemble microgels in the field of bioengineering. The characterization of the nano textured surface was completed using methods such as Scanning Electron Microscopy, Atomic Force Microscopy, Contact Angle Goniometry, and Fourier Transform Infra-Red Spectroscopy. These methods helped to understand the physical and chemical properties of nano-PPX. Parameters such as advancing and receding contact angles, nanorod tilt angle, and critical drop volumes were utilized to investigate the anisotropic wetting properties of nano-PPX surface. This investigation explained the directional wetting behavior of the surface as well as approaching new design parameters for adjusting surface properties. The nanorod tilt angle was a key parameter

  15. Enhanced protective properties of epoxy/polyaniline-camphorsulfonate nanocomposite coating on an ultrafine-grained metallic surface

    International Nuclear Information System (INIS)

    Pour-Ali, Sadegh; Kiani-Rashid, Alireza; Babakhani, Abolfazl; Davoodi, Ali

    2016-01-01

    Highlights: • Preparing mild steel surface with ultrafine grains by wire brushing process. • Performance of a smart coating on micro- and nano-crystalline surfaces. • Corrosion evaluation, surface analysis and ac/dc electrochemical measurements. • Ultrafine surface grains improve protective behavior of epoxy/PANI-CSA coating. - Abstract: An ultrafine-grained surface layer on mild steel substrate with average grain size of 77 nm was produced through wire brushing process. Surface grain size was determined through transmission electron microscopy and X-ray diffraction methods. This substrate was coated with epoxy and an in situ synthesized epoxy/polyaniline-camphorsulfonate (epoxy/PANI-CSA) nanocomposite. The corrosion behavior was studied by open circuit potential, potentiodynamic polarization and impedance measurements. Results of electrochemical tests evidenced the enhanced protective properties of epoxy/PANI-CSA coating on the substrate with ultrafine-grained surface.

  16. Enhanced protective properties of epoxy/polyaniline-camphorsulfonate nanocomposite coating on an ultrafine-grained metallic surface

    Energy Technology Data Exchange (ETDEWEB)

    Pour-Ali, Sadegh, E-mail: pourali2020@ut.ac.ir; Kiani-Rashid, Alireza; Babakhani, Abolfazl; Davoodi, Ali

    2016-07-15

    Highlights: • Preparing mild steel surface with ultrafine grains by wire brushing process. • Performance of a smart coating on micro- and nano-crystalline surfaces. • Corrosion evaluation, surface analysis and ac/dc electrochemical measurements. • Ultrafine surface grains improve protective behavior of epoxy/PANI-CSA coating. - Abstract: An ultrafine-grained surface layer on mild steel substrate with average grain size of 77 nm was produced through wire brushing process. Surface grain size was determined through transmission electron microscopy and X-ray diffraction methods. This substrate was coated with epoxy and an in situ synthesized epoxy/polyaniline-camphorsulfonate (epoxy/PANI-CSA) nanocomposite. The corrosion behavior was studied by open circuit potential, potentiodynamic polarization and impedance measurements. Results of electrochemical tests evidenced the enhanced protective properties of epoxy/PANI-CSA coating on the substrate with ultrafine-grained surface.

  17. Surface properties of SmB{sub 6} from X-ray photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Heming, Nadine; Treske, Uwe; Knupfer, Martin; Koitzsch, Andreas [Institute for Solid State Research, IFW Dresden (Germany); Buechner, Bernd [Institute for Solid State Research, IFW Dresden (Germany); Institut fuer Festkoerperphysik, TU Dresden (Germany); Inosov, Dmytro [Institut fuer Festkoerperphysik, TU Dresden (Germany); Shitsevalova, Natalya Y.; Filipov, Volodymyr B. [Institute for Problems of Material Science, Kiev (Ukraine); Kraus, Stephan [BESSY II, Berlin (Germany)

    2015-07-01

    The mixed valence compound SmB{sub 6} has been well known for its anomalous low temperature resistivity behavior for decades: At temperatures below 50 K, SmB{sub 6} transmutes from a metal to an insulator but shows residual resistivity for temperatures less than 5 K. Renewed interest in this material comes from theoretical proposals, predicting topological protected surface states making this compound the prime candidate for the new material class of ''Topological Kondo Insulators''. Indeed, elaborate transport experiments have evidenced that the residual conductivity occurs only at the surface. However, it is generally well known that the surface of f-systems undergoes valence changes and reconstructions, which may also influence the surface properties of this material. Applying surface sensitive soft X-ray photoemission spectroscopy, we have investigated the surface properties of freshly cleaved SmB{sub 6} single crystals at 15 K monitoring the Sm valance, the chemical state of boron as well as the surface stoichiometry, and also the development of these over time and with increased temperature: We have found that the surface shows an unexpected complexity stemming from both intrinsic and extrinsic changes.

  18. Surface composition and surface properties of water hyacinth ...

    African Journals Online (AJOL)

    Surface composition and surface properties of water hyacinth ( Eichhornia ... (2/1, v/v) followed by ethanol, using Fourier Transform Infra-red (FT-IR) spectroscopy, ... polar organic solvents and non-polar n-alkane hydrocarbons is discussed.

  19. Size- and shape-dependent surface thermodynamic properties of nanocrystals

    Science.gov (United States)

    Fu, Qingshan; Xue, Yongqiang; Cui, Zixiang

    2018-05-01

    As the fundamental properties, the surface thermodynamic properties of nanocrystals play a key role in the physical and chemical changes. However, it remains ambiguous about the quantitative influence regularities of size and shape on the surface thermodynamic properties of nanocrystals. Thus by introducing interface variables into the Gibbs energy and combining Young-Laplace equation, relations between the surface thermodynamic properties (surface Gibbs energy, surface enthalpy, surface entropy, surface energy and surface heat capacity), respectively, and size of nanocrystals with different shapes were derived. Theoretical estimations of the orders of the surface thermodynamic properties of nanocrystals agree with available experimental values. Calculated results of the surface thermodynamic properties of Au, Bi and Al nanocrystals suggest that when r > 10 nm, the surface thermodynamic properties linearly vary with the reciprocal of particle size, and when r < 10 nm, the effect of particle size on the surface thermodynamic properties becomes greater and deviates from linear variation. For nanocrystals with identical equivalent diameter, the more the shape deviates from sphere, the larger the surface thermodynamic properties (absolute value) are.

  20. Surface properties and bond strength measurements of N-vinylcaprolactam (NVC)-containing glass-ionomer cements.

    Science.gov (United States)

    Moshaverinia, Alireza; Chee, Winston W; Brantley, William A; Schricker, Scott R

    2011-03-01

    N-vinylcaprolactam (NVC)-containing glass ionomers are promising dental restorative materials with improved mechanical properties; however, little information is available on other physical characteristics of these types of modified glass ionomers, especially their surface properties. Understanding the surface characteristics and behavior of glass ionomers is important for understanding their clinical behavior and predictability as dental restorative materials. The purpose of this study was to investigate the effect of NVC-containing terpolymers on the surface properties and bond strength to dentin of GIC (glass-ionomer cement), and to evaluate the effect of NVC-containing terpolymer as a dentin conditioner. The terpolymer of acrylic acid (AA)-itaconic acid (IA)-N-vinylcaprolactam (NVC) with a molar ratio of 8:1:1 (AA:IA:NVC) was synthesized by free radical polymerization and characterized using nuclear magnetic resonance ((1)H-NMR) and Fourier transform infrared spectroscopy (FTIR). The synthesized terpolymer was used in glass-ionomer cement formulations (Fuji IX GP). Ten disc-shaped specimens (12 × 1 mm) were mixed and fabricated at room temperature. Surface properties (wettability) of modified cements were studied by contact angle measurements as a function of time. Work of adhesion values of different surfaces were also determined. The effect of NVC-modified polyacid on the bond strength of glass-ionomer cement to dentin was investigated. The mean data obtained from contact angle and bonding strength measurements were subjected to t test and 2-way ANOVA (α=.05). NVC-modified glass-ionomer cements showed significantly (Pcement also showed significantly higher values for shear bond strength to dentin (8.7 ±0.15 MPa after 1 month) when compared to the control group (8.4 ±0.13 MPa after 1 month). NVC-containing terpolymers may enhance the surface properties of GICs and increase their bond strength to the dentin. Furthermore, NVC-containing polyelectrolytes are

  1. Physico-chemical properties of PDMS surfaces suitable as substrates for cell cultures

    Energy Technology Data Exchange (ETDEWEB)

    Raczkowska, Joanna, E-mail: joanna.raczkowska@uj.edu.pl [The Marian Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-428 Kraków (Poland); Prauzner-Bechcicki, Szymon [Institute of Nuclear Physics Polish Academy of Sciences, Radzikowskiego 152, 31-342 Kraków (Poland); Lukes, Jaroslav; Sepitka, Josef [Czech Technical University in Prague, Faculty of Mechanical Engineering, Technicka 4, 16607 Prague (Czech Republic); Bernasik, Andrzej [Faculty of Physics and Applied Computer Science, AGH - University of Science and Technology, Reymonta 19, 30-049 Kraków (Poland); Awsiuk, Kamil [The Marian Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-428 Kraków (Poland); Paluszkiewicz, Czesława; Pabijan, Joanna; Lekka, Małgorzata [Institute of Nuclear Physics Polish Academy of Sciences, Radzikowskiego 152, 31-342 Kraków (Poland); Budkowski, Andrzej [The Marian Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-428 Kraków (Poland)

    2016-12-15

    Highlights: • Series of PDMS substrates with monotonically tuned elasticity were produced. • Method to estimate PDMS stiffness based on AFM force-distance curves was shown. • No change in surface properties of PDMS other than elasticity was demonstrated. • MTT performed for cancer cells showed impact of PDMS elasticity on cells behavior. - Abstract: Elastic properties of the substrate have profound effect on adhesion and proliferation of cells. Here, we introduce a method to produce polydimethylsiloxane (PDMS) substrates with stiffness tuned monotonically from 1.67 to 0.24 MPa, by the time of UV irradiation adjusted up to 5 h. The Young’s modulus (determined by using nanoindenter) scales linearly with stiffness calculated using AFM-based force spectroscopy data. Such a relation enables the determination of the Young modulus from AFM force – distance curves also when the Herz model is not applicable. Our findings demonstrate that surface properties of PDMS substrates are not affected by the applied methodology of tuning substrate elasticity. Finally, the colorimetric proliferation assay (MTT) carried out for non-malignant (HCV29) and cancerous (T24) bladder cancer cells depicted a significant contribution of PDMS substrate elasticity to the behavior of cells. The softer PDMS substrate demonstrated excellent cytocompatibility whereas the stiff one is more cell-repellent.

  2. Temperature dependence of coercivity behavior in iron films on silicone oil surfaces

    International Nuclear Information System (INIS)

    Xu Xiaojun; Ye Quanlin; Ye Gaoxiang

    2007-01-01

    A new iron film system, deposited on silicone oil surfaces by vapor phase deposition method, has been fabricated and its microstructure as well as magnetic properties has been studied. It is found that the temperature dependence of the coercive field H c (T) of the films exhibits a peak around a critical temperature T crit =10-15 K: for the temperature T crit ,H c (T) increases with the temperature; if T>T crit , however, it decreases rapidly and then approaches a steady value as T further increases. Our study shows that, for T>T crit , the observed coercivity behavior is mainly dominated by the effect of the non-uniform single-domain particle size distribution, and for T crit , the anomalous coercivity behavior may be resulted from the surface anisotropy, the surface effect and the characteristic internal stress distribution in the films. The influence of the shape and size of the particles on the thermal dependence of the magnetization is also investigated

  3. Salt effects on the air/solution interfacial properties of PEO-containing copolymers: equilibrium, adsorption kinetics and surface rheological behavior.

    Science.gov (United States)

    Llamas, Sara; Mendoza, Alma J; Guzmán, Eduardo; Ortega, Francisco; Rubio, Ramón G

    2013-06-15

    Lithium cations are known to form complexes with the oxygen atoms of poly(oxyethylene) chains. The effect of Li(+) on the surface properties of three block-copolymers containing poly(oxyethylene) (PEO) have been studied. Two types of copolymers have been studied, a water soluble one of the pluronic family, PEO-b-PPO-b-PEO, PPO being poly(propyleneoxyde), and two water insoluble ones: PEO-b-PS and PEO-b-PS-b-PEO, PS being polystyrene. In the case of the pluronic the adsorption kinetics, the equilibrium surface tension isotherm and the aqueous/air surface rheology have been measured, while for the two insoluble copolymers only the surface pressure and the surface rheology have been studied. In all the cases two different Li(+) concentrations have been used. As in the absence of lithium ions, the adsorption kinetics of pluronic solutions shows two processes, and becomes faster as [Li(+)] increases. The kinetics is not diffusion controlled. For a given pluronic concentration the equilibrium surface pressure increases with [Li(+)], and the isotherms show two surface phase transitions, though less marked than for [Li(+)]=0. A similar behavior was found for the equilibrium isotherms of PEO-b-PS and PEO-b-PS-b-PEO. The surface elasticity of these two copolymers was found to increase with [Li(+)] over the whole surface concentration and frequency ranges studied. A smaller effect was found in the case of the pluronic solutions. The results of the pluronic solutions were modeled using a recent theory that takes into account that the molecules can be adsorbed at the surface in two different states. The theory gives a good fit for the adsorption kinetics and a reasonably good prediction of the equilibrium isotherms for low and intermediate concentrations of pluronic. However, the theory is not able to reproduce the isotherm for [Li(+)]=0. Only a semi-quantitative prediction of the surface elasticity is obtained for [pluronic]≤1×10(-3) mM. Copyright © 2013 Elsevier Inc. All

  4. Derivatization, characterization, and tribological behavior of an amine-terminated polymer surface

    International Nuclear Information System (INIS)

    Ren, S.L.; Yang, S.R.; Zhao, Y.P.

    2004-01-01

    The derivatization, characterization, and micro-tribological behavior of an amine-terminated polymer surface were investigated. Thus, the heptafluorobutyric anhydride (HFBA) derivatized film was characterized by means of contact-angle measurement and X-ray photoelectron spectroscopy (XPS). It was found that the HFBA-derivatized film was generated on the PEI surface in the presence of a chemical amide bond. The tribological properties were characterized as well. The polymer PEI film had relative high adhesion, friction, and poor anti-wear ability, while the HFBA-derivatized polymer film possessed a very low adhesive force of only about 5.5 nN (a pyramidal Si 3 N 4 tip with radius of curvature about 50 nm was used to measure the adhesion), which was more than an order of magnitude lower than that of the silicon substrate surface. Besides, the HFBA-derivatized film registered good friction-reducing ability and thermal stability. Thus, a good alternative method was presented to improve the tribological properties of polymer film by chemisorbing molecules with low surface energy. This makes it feasible for the derivatized polymer film to find promising application in resolving the tribological problems of micro-electromechanical systems (MEMS)

  5. Chemical, electronic, and magnetic structure of LaFeCoSi alloy: Surface and bulk properties

    Energy Technology Data Exchange (ETDEWEB)

    Lollobrigida, V. [Dipartimento di Scienze, Università Roma Tre, I-00146 Rome (Italy); Dipartimento di Matematica e Fisica, Università Roma Tre, I-00146 Rome (Italy); Basso, V.; Kuepferling, M.; Coïsson, M.; Olivetti, E. S.; Celegato, F. [Istituto Nazionale di Ricerca Metrologica (INRIM), I-10135 Torino (Italy); Borgatti, F. [CNR, Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), I-40129 Bologna (Italy); Torelli, P.; Panaccione, G. [CNR, Istituto Officina dei Materiali (IOM), Lab. TASC, I-34149 Trieste (Italy); Tortora, L. [Laboratorio di Analisi di Superficie, Dipartimento di Matematica e Fisica, Università Roma Tre, I-00146 Rome (Italy); Dipartimento di Ingegneria Meccanica, Università Tor Vergata, I-00133 Rome (Italy); Stefani, G.; Offi, F. [Dipartimento di Scienze, Università Roma Tre, I-00146 Rome (Italy)

    2014-05-28

    We investigate the chemical, electronic, and magnetic structure of the magnetocaloric LaFeCoSi compound with bulk and surface sensitive techniques. We put in evidence that the surface retains a soft ferromagnetic behavior at temperatures higher than the Curie temperature of the bulk due to the presence of Fe clusters at the surface only. This peculiar magnetic surface effect is attributed to the exchange interaction between the ferromagnetic Fe clusters located at the surface and the bulk magnetocaloric alloy, and it is used here to monitor the magnetic properties of the alloy itself.

  6. Chemical, electronic, and magnetic structure of LaFeCoSi alloy: Surface and bulk properties

    Science.gov (United States)

    Lollobrigida, V.; Basso, V.; Borgatti, F.; Torelli, P.; Kuepferling, M.; Coïsson, M.; Olivetti, E. S.; Celegato, F.; Tortora, L.; Stefani, G.; Panaccione, G.; Offi, F.

    2014-05-01

    We investigate the chemical, electronic, and magnetic structure of the magnetocaloric LaFeCoSi compound with bulk and surface sensitive techniques. We put in evidence that the surface retains a soft ferromagnetic behavior at temperatures higher than the Curie temperature of the bulk due to the presence of Fe clusters at the surface only. This peculiar magnetic surface effect is attributed to the exchange interaction between the ferromagnetic Fe clusters located at the surface and the bulk magnetocaloric alloy, and it is used here to monitor the magnetic properties of the alloy itself.

  7. Chemical, electronic, and magnetic structure of LaFeCoSi alloy: Surface and bulk properties

    International Nuclear Information System (INIS)

    Lollobrigida, V.; Basso, V.; Kuepferling, M.; Coïsson, M.; Olivetti, E. S.; Celegato, F.; Borgatti, F.; Torelli, P.; Panaccione, G.; Tortora, L.; Stefani, G.; Offi, F.

    2014-01-01

    We investigate the chemical, electronic, and magnetic structure of the magnetocaloric LaFeCoSi compound with bulk and surface sensitive techniques. We put in evidence that the surface retains a soft ferromagnetic behavior at temperatures higher than the Curie temperature of the bulk due to the presence of Fe clusters at the surface only. This peculiar magnetic surface effect is attributed to the exchange interaction between the ferromagnetic Fe clusters located at the surface and the bulk magnetocaloric alloy, and it is used here to monitor the magnetic properties of the alloy itself.

  8. Effect of surface oxidation on thermomechanical behavior of NiTi shape memory alloy wire

    Science.gov (United States)

    Ng, Ching Wei; Mahmud, Abdus Samad

    2017-12-01

    Nickel titanium (NiTi) alloy is a unique alloy that exhibits special behavior that recovers fully its shape after being deformed to beyond elastic region. However, this alloy is sensitive to any changes of its composition and introduction of inclusion in its matrix. Heat treatment of NiTi shape memory alloy to above 600 °C leads to the formation of the titanium oxide (TiO2) layer. Titanium oxide is a ceramic material that does not exhibit shape memory behaviors and possess different mechanical properties than that of NiTi alloy, thus disturbs the shape memory behavior of the alloy. In this work, the effect of formation of TiO2 surface oxide layer towards the thermal phase transformation and stress-induced deformation behaviors of the NiTi alloy were studied. The NiTi wire with composition of Ti-50.6 at% Ni was subjected to thermal oxidation at 600 °C to 900 °C for 30 and 60 minutes. The formation of the surface oxide layers was characterized by using the Scanning Electron Microscope (SEM). The effect of surface oxide layers with different thickness towards the thermal phase transformation behavior was studied by using the Differential Scanning Calorimeter (DSC). The effect of surface oxidation towards the stress-induced deformation behavior was studied through the tensile deformation test. The stress-induced deformation behavior and the shape memory recovery of the NiTi wire under tensile deformation were found to be affected marginally by the formation of thick TiO2 layer.

  9. Metrology and properties of engineering surfaces

    CERN Document Server

    Greenwood, J; Chetwynd, D

    2001-01-01

    Metrology and Properties of Engineering Surfaces provides in a single volume a comprehensive and authoritative treatment of the crucial topics involved in the metrology and properties of engineering surfaces. The subject matter is a central issue in manufacturing technology, since the quality and reliability of manufactured components depend greatly upon the selection and qualities of the appropriate materials as ascertained through measurement. The book can in broad terms be split into two parts; the first deals with the metrology of engineering surfaces and covers the important issues relating to the measurement and characterization of surfaces in both two and three dimensions. This covers topics such as filtering, power spectral densities, autocorrelation functions and the use of Fractals in topography. A significant proportion is dedicated to the calibration of scanning probe microscopes using the latest techniques. The remainder of the book deals with the properties of engineering surfaces and covers a w...

  10. The control mechanism of surface traps on surface charge behavior in alumina-filled epoxy composites

    International Nuclear Information System (INIS)

    Li, Chuanyang; Hu, Jun; Lin, Chuanjie; He, Jinliang

    2016-01-01

    To investigate the role surface traps play in the charge injection and transfer behavior of alumina-filled epoxy composites, surface traps with different trap levels are introduced by different surface modification methods which include dielectric barrier discharges plasma, direct fluorination, and Cr 2 O 3 coating. The resulting surface physicochemical characteristics of experimental samples were observed using atomic force microscopy, scanning electron microscopy and fourier transform infrared spectroscopy. The surface potential under dc voltage was detected and the trap level distribution was measured. The results suggest that the surface morphology of the experimental samples differs dramatically after treatment with different surface modification methods. Different surface trap distributions directly determine the charge injection and transfer property along the surface. Shallow traps with trap level of 1.03–1.11 eV and 1.06–1.13 eV introduced by plasma and fluorination modifications are conducive for charge transport along the insulating surface, and the surface potential can be modified, producing a smoother potential curve. The Cr 2 O 3 coating can introduce a large number of deep traps with energy levels ranging from 1.09 to 1.15 eV. These can prevent charge injection through the reversed electric field formed by intensive trapped charges in the Cr 2 O 3 coatings. (paper)

  11. Enhancing the Properties of Carbon and Gold Substrates by Surface Modification

    Energy Technology Data Exchange (ETDEWEB)

    Harnisch, Jennifer Anne [Iowa State Univ., Ames, IA (United States)

    2001-01-01

    The properties of both carbon and gold substrates are easily affected by the judicious choice of a surface modification protocol. Several such processes for altering surface composition have been published in literature. The research presented in this thesis primarily focuses on the development of on-column methods to modify carbon stationary phases used in electrochemically modulated liquid chromatography (EMLC). To this end, both porous graphitic carbon (PGC) and glassy carbon (GC) particles have been modified on-column by the electroreduction of arenediazonium salts and the oxidation of arylacetate anions (the Kolbe reaction). Once modified, the carbon stationary phases show enhanced chromatographic performance both in conventional liquid chromatographic columns and EMLC columns. Additionally, one may also exploit the creation of aryl films to by electroreduction of arenediazonium salts in the creation of nanostructured materials. The formation of mercaptobenzene film on the surface of a GC electrode provides a linking platform for the chemisorption of gold nanoparticles. After deposition of nanoparticles, the surface chemistry of the gold can be further altered by self-assembled monolayer (SAM) formation via the chemisorption of a second thiol species. Finally, the properties of gold films can be altered such that they display carbon-like behavior through the formation of benzenehexathiol (BHT) SAMs. BHT chemisorbs to the gold surface in a previously unprecedented planar fashion. Carbon and gold substrates can be chemically altered by several methodologies resulting in new surface properties. The development of modification protocols and their application in the analytical arena is considered herein.

  12. Mechanical properties and fracture behavior of single-layer phosphorene at finite temperatures

    International Nuclear Information System (INIS)

    Sha, Zhen-Dong; Pei, Qing-Xiang; Ding, Zhiwei; Zhang, Yong-Wei; Jiang, Jin-Wu

    2015-01-01

    Phosphorene, a new two-dimensional (2D) material beyond graphene, has attracted great attention in recent years due to its superior physical and electrical properties. However, compared to graphene and other 2D materials, phosphorene has a relatively low Young’s modulus and fracture strength, which may limit its applications due to possible structure failures. For the mechanical reliability of future phosphorene-based nanodevices, it is necessary to have a deep understanding of the mechanical properties and fracture behaviors of phosphorene. Previous studies on the mechanical properties of phosphorene were based on first principles calculations at 0 K. In this work, we employ molecular dynamics simulations to explore the mechanical properties and fracture behaviors of phosphorene at finite temperatures. It is found that temperature has a significant effect on the mechanical properties of phosphorene. The fracture strength and strain reduce by more than 65% when the temperature increases from 0 K to 450 K. Moreover, the fracture strength and strain in the zigzag direction is more sensitive to the temperature rise than that in the armchair direction. More interestingly, the failure crack propagates preferably along the groove in the puckered structure when uniaxial tension is applied in the armchair direction. In contrast, when the uniaxial tension is applied in the zigzag direction, multiple cracks are observed with rough fracture surfaces. Our present work provides useful information about the mechanical properties and failure behaviors of phosphorene at finite temperatures. (paper)

  13. Reorganization of lipid nanocapsules at air-water interface: Part 2. Properties of the formed surface film.

    Science.gov (United States)

    Minkov, I; Ivanova, Tz; Panaiotov, I; Proust, J; Saulnier, P

    2005-09-01

    The state, electrical and dilatational rheological properties of surface films formed at air-water interface from lipid nanocapsules (LNC) with various compositions as well as model monolayers formed by the LNC constituents-Labrafac, Solutol and Lipoid are investigated. These nanocapsules constitute potential drug delivery systems where lypophilic drug will be loaded in their core. The study of the model Labrafac/Solutol (Lab/Sol) mixed monolayers shows behavior close to the ideal. Small negative deviations in the mean molecular areas a and dipole moments mu are observed. All studied monolayers have elastic behavior during the small continuous compressions. The comparison between the properties of surface films formed from LNC with those of the model monolayers confirms the idea developed in the kinetic study that the surface films formed after a rapid disaggregation of the unstable nanocapsule fraction (LNC I) contains mainly Labrafac and Solutol. The Labrafac molar part (xLab) in the formed Lab/Sol mixed layer is established.

  14. Surface, structural and tensile properties of proton beam irradiated zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Rafique, Mohsin; Chae, San; Kim, Yong-Soo, E-mail: yongskim@hanyang.ac.kr

    2016-02-01

    This paper reports the surface, structural and tensile properties of proton beam irradiated pure zirconium (99.8%). The Zr samples were irradiated by 3.5 MeV protons using MC-50 cyclotron accelerator at different doses ranging from 1 × 10{sup 13} to 1 × 10{sup 16} protons/cm{sup 2}. Both un-irradiated and irradiated samples were characterized using Field Emission Scanning Electron Microscope (FESEM), X-ray Diffraction (XRD) and Universal Testing Machine (UTM). The average surface roughness of the specimens was determined by using Nanotech WSxM 5.0 develop 7.0 software. The FESEM results revealed the formation of bubbles, cracks and black spots on the samples’ surface at different doses whereas the XRD results indicated the presence of residual stresses in the irradiated specimens. Williamson–Hall analysis of the diffraction peaks was carried out to investigate changes in crystallite size and lattice strain in the irradiated specimens. The tensile properties such as the yield stress, ultimate tensile stress and percentage elongation exhibited a decreasing trend after irradiation in general, however, an inconsistent behavior was observed in their dependence on proton dose. The changes in tensile properties of Zr were associated with the production of radiation-induced defects including bubbles, cracks, precipitates and simultaneous recovery by the thermal energy generated with the increase of irradiation dose.

  15. Surface, structural and tensile properties of proton beam irradiated zirconium

    Science.gov (United States)

    Rafique, Mohsin; Chae, San; Kim, Yong-Soo

    2016-02-01

    This paper reports the surface, structural and tensile properties of proton beam irradiated pure zirconium (99.8%). The Zr samples were irradiated by 3.5 MeV protons using MC-50 cyclotron accelerator at different doses ranging from 1 × 1013 to 1 × 1016 protons/cm2. Both un-irradiated and irradiated samples were characterized using Field Emission Scanning Electron Microscope (FESEM), X-ray Diffraction (XRD) and Universal Testing Machine (UTM). The average surface roughness of the specimens was determined by using Nanotech WSxM 5.0 develop 7.0 software. The FESEM results revealed the formation of bubbles, cracks and black spots on the samples' surface at different doses whereas the XRD results indicated the presence of residual stresses in the irradiated specimens. Williamson-Hall analysis of the diffraction peaks was carried out to investigate changes in crystallite size and lattice strain in the irradiated specimens. The tensile properties such as the yield stress, ultimate tensile stress and percentage elongation exhibited a decreasing trend after irradiation in general, however, an inconsistent behavior was observed in their dependence on proton dose. The changes in tensile properties of Zr were associated with the production of radiation-induced defects including bubbles, cracks, precipitates and simultaneous recovery by the thermal energy generated with the increase of irradiation dose.

  16. Surface properties and dye loading behavior of Zn{sub 2}SnO{sub 4} nanoparticles hydrothermally synthesized using different mineralizers

    Energy Technology Data Exchange (ETDEWEB)

    Annamalai, Alagappan; Eo, Yang Dam [Department of Advanced Technology Fusion, Konkuk University, 1 Hwayang-dong, Kwangjin-gu, Seoul 143-701 (Korea, Republic of); Im, Chan [Department of Chemistry, Konkuk University, 1 Hwayang-dong, Kwangjin-gu, Seoul 143-701 (Korea, Republic of); Lee, Man-Jong, E-mail: leemtx@konkuk.ac.kr [Department of Advanced Technology Fusion, Konkuk University, 1 Hwayang-dong, Kwangjin-gu, Seoul 143-701 (Korea, Republic of)

    2011-10-15

    We present for the first time the influence of different mineralizers on the isoelectric point (IEP) of zinc stannate (Zn{sub 2}SnO{sub 4}) nanoparticles hydrothermally prepared using three different mineralizers, viz., Na{sub 2}CO{sub 3}, KOH and tert-butyl amine, and the effect of the IEPs on the dye loading behavior of Zn{sub 2}SnO{sub 4} based photoelectrodes in dye sensitized solar cells (DSSCs). To produce highly crystalline, uniform sized Zn{sub 2}SnO{sub 4} nanoparticles, hydrothermal processing parameters, such as reaction temperature, time, and the mineralizers used have been critically adjusted. The structural and morphological features of the as-synthesized Zn{sub 2}SnO{sub 4} nanoparticles have been observed using both scanning and transmission electron microscopy. For the surface state characterization of shape- and size-controlled Zn{sub 2}SnO{sub 4} nanoparticles, the IEPs of Zn{sub 2}SnO{sub 4} surfaces were determined through zeta potential measurements. The IEPs were found to be 5.7, 7.4 and 8.1 for Zn{sub 2}SnO{sub 4} nanoparticles formed using Na{sub 2}CO{sub 3}, KOH and tert-butyl amine, respectively, suggesting that the surface properties of Zn{sub 2}SnO{sub 4} nanoparticles can be manipulated through the choice of the mineralizers used during the hydrothermal reaction. The amount of N719 dye loading on the surfaces of Zn{sub 2}SnO{sub 4} electrodes having different IEPs was also evaluated. It was revealed that the higher the IEP, the higher the dye loading amount, which means that the IEP mainly affects the dye loading at the dye-metal oxide interface. - Highlights: {yields} The effect of various mineralizers on the isoelectric point of Zn{sub 2}SnO{sub 4} was discussed. {yields} The IEP of Zn{sub 2}SnO{sub 4} can be modified by the choice of mineralizer. {yields} Change in IEP affects the surface properties and the morphology of Zn{sub 2}SnO{sub 4} particles. {yields} Modified surface affects the N719 dye loading behaviour of the Zn{sub 2

  17. Laser induced surface structuring of Cu for enhancement of field emission properties

    Science.gov (United States)

    Akram, Mahreen; Bashir, Shazia; Jalil, Sohail Abdul; Shahid Rafique, Muhammad; Hayat, Asma; Mahmood, Khaliq

    2018-02-01

    The effect of Nd:YAG (1064 nm, 10 ns, 10 Hz) laser induced surface structuring of copper (Cu) for enhancement of field emission (FE) properties has been investigated. X-ray diffraction analysis was employed to investigate the surface structural and compositional modifications. The surface structuring was explored by scanning electron microscope investigation. FE properties were studied under UHV conditions in a parallel plate configuration of planar un-irradiated Cu anode and laser irradiated Cu cathode. The Fowler-Nordheim plots were drawn to confirm the dominance of FE behavior of the measured I-V characteristics. The obtained values of turn-on field ‘E o’, field enhancement factor ‘β’ and maximum current density ‘J max’ come out to be to be in the range of 5.5-8.5 V μm-1, 1380-2730 and 147-375 μA cm-2 respectively for the Cu samples irradiated at laser irradiance ranging from 13 to 50 GW cm-2. The observed enhancement in the FE properties has been correlated with the growth of various surface structures such as ridged protrusions, cones and pores/tiny holes. The porous morphology is found to be responsible for a significant enhancement in the FE parameters.

  18. First-principles study of the surface properties of U-Mo system

    Energy Technology Data Exchange (ETDEWEB)

    Mei, Zhi-Gang; Liang, Linyun; Yacout, Abdellatif M.

    2018-02-01

    U-Mo alloys are promising fuels for future high-performance research reactors with low enriched uranium. Surface properties, such as surface energy, are important inputs for mesoscale simulations (e.g., phase field method) of fission gas bubble behaviors in irradiated nuclear fuels. The lack of surface energies of U-Mo alloys prevents an accurate modeling of the morphology of gas bubbles and gas bubble-induced fuel swelling. To this end, we study the surface properties of U-Mo system, including bcc Mo, alpha-U, gamma-U, and gamma U-Mo alloys. All surfaces up to a maximum Miller index of three and two are calculated for cubic Mo and gamma-U and non-cubic alpha-U, respectively. The equilibrium crystal shapes of bcc Mo, alpha-U and gamma-U are constructed using the calculated surface energies. The dominant surface orientations and the area fraction of each facet are determined from the constructed equilibrium crystal shape. The disordered gamma U-Mo alloys are simulated using the Special Quasirandom Structure method. The (1 1 0) and (1 0 0) surface energies of gamma U-7Mo and U-10Mo alloys are predicted to lie between those of gamma-U and bcc Mo, following a linear combination of the two constituents' surface energies. To better compare with future measurements of surface energies, the area fraction weighted surface energies of alpha-U, gamma-U and gamma U-7Mo and U-10Mo alloys are also predicted. (C) 2017 Published by Elsevier B.V.

  19. Surface interactions and fouling properties of Micrococcus luteus with microfiltration membranes.

    Science.gov (United States)

    Feng, Lei; Li, Xiufen; Song, Ping; Du, Guocheng; Chen, Jian

    2011-11-01

    This study was conducted to investigate microbial adhesion of Micrococcus luteus to polypropylene (PP) and polyvinylidene fluoride (PVDF) membranes in relation to the variation of the interfacial energies in the membrane-bacteria systems, for revealing effects of short-range surface interactions on filtration behavior. Both the membranes and M. luteus showed typical strong electron donors and hydrophilic properties. The AB component was dominant in the interfacial energies of the two membrane-bacteria systems. M. luteus presented larger negative U(mlb)(XDLVO) to the PP membrane than to the PVDF membrane. The adhesion experiments also proved that M. luteus had higher adhesion percentage to the PP membrane. This study demonstrated that the adhesion potentials of M. luteus to the PP and PVDF membranes might be explained in terms of bacterium, membrane, and intervening medium surface properties, which are mainly determined by the interfacial energies in the systems according to the XDLVO theory.

  20. Lunar surface engineering properties experiment definition

    Science.gov (United States)

    Mitchell, J. K.; Goodman, R. E.; Hurlbut, F. C.; Houston, W. N.; Willis, D. R.; Witherspoon, P. A.; Hovland, H. J.

    1971-01-01

    Research on the mechanics of lunar soils and on developing probes to determine the properties of lunar surface materials is summarized. The areas of investigation include the following: soil simulation, soil property determination using an impact penetrometer, soil stabilization using urethane foam or phenolic resin, effects of rolling boulders down lunar slopes, design of borehole jack and its use in determining failure mechanisms and properties of rocks, and development of a permeability probe for measuring fluid flow through porous lunar surface materials.

  1. Molecular dynamics for lateral surface adhesion and peeling behavior of single-walled carbon nanotubes on gold surfaces

    International Nuclear Information System (INIS)

    Huang, Pei-Hsing

    2011-01-01

    Highlights: ► Adhesion and peeling behaviors of SWCNTs are investigated by detailed, fully atomistic MD simulations. ► Adhesion energy of SWCNTs are discussed. ► Dynamical behaviors of SWCNTs in low temperature adhesion are analyzed. ► Adhesion strengths of SWCNTs obtained from MD simulations are compared with the predictions of Hamaker theory and JKR model. - Abstract: Functional gecko-inspired adhesives have attracted a lot of research attention in the last decade. In this work, the lateral surface adhesion and normal peeling-off behavior of single-walled carbon nanotubes (SWCNTs) on gold substrates are investigated by performing detailed, fully atomistic molecular dynamics (MD) simulations. The effects of the diameter and adhered length of CNTs on the adhesive properties were systematically examined. The simulation results indicate that adhesion energies between the SWCNTs and the Au surface varied from 220 to 320 mJ m −2 over the reported chirality range. The adhesion forces on the lateral surface and the tip of the nanotubes obtained from MD simulations agree very well with the predictions of Hamaker theory and Johnson–Kendall–Roberts (JKR) model. The analyses of covalent bonds indicate that the SWCNTs exhibited excellent flexibility and extensibility when adhering at low temperatures (∼100 K). This mechanism substantially increases adhesion time compared to that obtained at higher temperatures (300–700 K), which makes SWCNTs promising for biomimetic adhesives in ultra-low temperature surroundings.

  2. Molecular dynamics for lateral surface adhesion and peeling behavior of single-walled carbon nanotubes on gold surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Pei-Hsing, E-mail: phh@mail.npust.edu.tw [Department of Mechanical Engineering, National Pingtung University of Science and Technology, Pingtung 912, Taiwan (China)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Adhesion and peeling behaviors of SWCNTs are investigated by detailed, fully atomistic MD simulations. Black-Right-Pointing-Pointer Adhesion energy of SWCNTs are discussed. Black-Right-Pointing-Pointer Dynamical behaviors of SWCNTs in low temperature adhesion are analyzed. Black-Right-Pointing-Pointer Adhesion strengths of SWCNTs obtained from MD simulations are compared with the predictions of Hamaker theory and JKR model. - Abstract: Functional gecko-inspired adhesives have attracted a lot of research attention in the last decade. In this work, the lateral surface adhesion and normal peeling-off behavior of single-walled carbon nanotubes (SWCNTs) on gold substrates are investigated by performing detailed, fully atomistic molecular dynamics (MD) simulations. The effects of the diameter and adhered length of CNTs on the adhesive properties were systematically examined. The simulation results indicate that adhesion energies between the SWCNTs and the Au surface varied from 220 to 320 mJ m{sup -2} over the reported chirality range. The adhesion forces on the lateral surface and the tip of the nanotubes obtained from MD simulations agree very well with the predictions of Hamaker theory and Johnson-Kendall-Roberts (JKR) model. The analyses of covalent bonds indicate that the SWCNTs exhibited excellent flexibility and extensibility when adhering at low temperatures ({approx}100 K). This mechanism substantially increases adhesion time compared to that obtained at higher temperatures (300-700 K), which makes SWCNTs promising for biomimetic adhesives in ultra-low temperature surroundings.

  3. Friction behavior and other material properties of nickel-titanium and titanium-molybdenum archwires following electrochemical surface refinement.

    Science.gov (United States)

    Meier, Miriam Julia; Bourauel, Christoph; Roehlike, Jan; Reimann, Susanne; Keilig, Ludger; Braumann, Bert

    2014-07-01

    The aim of this work was to investigate whether electrochemical surface treatment of nickel-titanium (NiTi) and titanium-molybdenum (TiMo) archwires (OptoTherm and BetaTitan; Ortho-Dent Specials, Kisdorf, Germany) reduces friction inside the bracket-archwire complex. We also evaluated further material properties and compared these to untreated wires. The material properties of the surface-treated wires (Optotherm/LoFrix and BetaTitan/LoFrix) were compared to untreated wires made by the same manufacturer (see above) and by another manufacturer (Neo Sentalloy; GAC, Bohemia, NY, USA). We carried out a three-point bending test, leveling test, and friction test using an orthodontic measurement and simulation system (OMSS). In addition, a pure bending test was conducted at a special test station, and scanning electron micrographs were obtained to analyze the various wire types for surface characteristics. Finally, edge beveling and cross-sectional dimensions were assessed. Force losses due to friction were reduced by 10 percentage points (from 36 to 26%) in the NiTi and by 12 percentage points (from 59 to 47%) in the TiMo wire specimens. Most of the other material properties exhibited no significant changes after surface treatment. While the three-point bending tests revealed mildly reduced force levels in the TiMo specimens due to diameter losses of roughly 2%, these force levels remained almost unchanged in the NiTi specimens. Compared to untreated NiTi and TiMo archwire specimens, the surface-treated specimens demonstrated reductions in friction loss by 10 and 12 percentage points, respectively.

  4. The unusual properties of beryllium surfaces

    International Nuclear Information System (INIS)

    Stumpf, R.; Hannon, J.B.

    1994-01-01

    Be is a ''marginal metal.'' The stable phase, hcp-Be, has a low Fermi-level density of states and very anisotropic structural and elastic properties, similar to a semiconductor's. At the Be(0001) surface, surface states drastically increase the Fermi-level density of states. The different nature of bonding in bulk-Be and at the Be(0001) surface explains the large outward relaxation. The presence of surface states causes large surface core-level shifts by inducing a higher electrostatic potential in the surface layers and by improving the screening at the surface. The authors experimental and theoretical investigations of atomic vibrations at the Be(0001) surface demonstrate clearly that Be screening of atomic motion by the surface states makes the surface phonon dispersion fundamentally different from that of the bulk. Properties of Be(0001) are so different from those of the bulk that the surface can be considered a new ''phase'' of beryllium with unique electronic and structural characteristics. For comparison they also study Be(11 bar 20), a very open surface without important surface states. Be(11 bar 20) is the only clean s-p metal surface known to reconstruct (1 x 3 missing row reconstruction)

  5. Constraining the surface properties of effective Skyrme interactions

    Science.gov (United States)

    Jodon, R.; Bender, M.; Bennaceur, K.; Meyer, J.

    2016-08-01

    Background: Deformation energy surfaces map how the total binding energy of a nuclear system depends on the geometrical properties of intrinsic configurations, thereby providing a powerful tool to interpret nuclear spectroscopy and large-amplitude collective-motion phenomena such as fission. The global behavior of the deformation energy is known to be directly connected to the surface properties of the effective interaction used for its calculation. Purpose: The precise control of surface properties during the parameter adjustment of an effective interaction is key to obtain a reliable and predictive description of nuclear properties. The most relevant indicator is the surface-energy coefficient asurf. There are several possibilities for its definition and estimation, which are not fully equivalent and require a computational effort that can differ by orders of magnitude. The purpose of this study is threefold: first, to identify a scheme for the determination of asurf that offers the best compromise between robustness, precision, and numerical efficiency; second, to analyze the correlation between values for asurf and the characteristic energies of the fission barrier of 240Pu; and third, to lay out an efficient and robust procedure for how the deformation properties of the Skyrme energy density functional (EDF) can be constrained during the parameter fit. Methods: There are several frequently used possibilities to define and calculate the surface energy coefficient asurf of effective interactions built for the purpose of self-consistent mean-field calculations. The most direct access is provided by the model system of semi-infinite nuclear matter, but asurf can also be extracted from the systematics of binding energies of finite nuclei. Calculations can be carried out either self-consistently [Hartree-Fock (HF)], which incorporates quantal shell effects, or in one of the semiclassical extended Thomas-Fermi (ETF) or modified Thomas-Fermi (MTF) approximations. The

  6. Transformation behavior, chemical composition, surface topography and bending properties of five selected 0.016" x 0.022" NiTi archwires.

    Science.gov (United States)

    Fischer-Brandies, Helge; Es-Souni, Mohammed; Kock, Norman; Raetzke, Klaus; Bock, Ole

    2003-03-01

    The aim of this study was to characterize five selected commercial NiTi archwires in terms of their transformation behavior, chemical composition, surface topography and mechanical properties (at temperatures of 22 degrees C, 37 degrees C and 60 degrees C). The rectangular orthodontic archwires investigated were Neo Sentalloy F80 (GAC, Central Islip, NY, USA), 35 degrees C Thermo-Active Copper NiTi (A-Company/Ormco, Glendora, CA, USA), Rematitan "Lite" (Dentaurum, Pforzheim, Germany), Titanol SE S (Forestadent, Pforzheim, Germany) and Titanal (Lancer, San Marcos, CA, USA) in size 0.016" x 0.022". The chemical composition and surface topography were analyzed by energy dispersive X-ray spectroscopy using an analytical scanning electron microscope (XL30, EDAX SUTW Saphire Detector; Philips, Eindhoven, Netherlands). The transition temperatures were measured by means of differential scanning calorimetry (DSC; Perkin-Elmer Pyris 1, Perkin-Elmer, Fremont, CA, USA) in a range of - 80 degrees C to + 80 degrees C. The mechanical properties and their dependence on temperature were determined by means of 3-point bending tests. The binary archwire materials were characterized by a two-phase structure (NiTi matrix and Ni3Ti4 precipitates). The SEM analyses revealed abradant residues in virtually all archwires, while DSC revealed complex transformation properties. In addition to the martensitic and austenitic transformations, an R-phase transformation was also detected. The bending tests showed pronounced loading and unloading plateaus. The martensitic archwires (Neo Sentalloy F80, 35 degrees C Thermo-Active Copper NiTi) were found to have a lower strength than the martensitic-austenitic (Rematitan "Lite") and the austenitic archwires (Titanol SE S, Titanal). With increasing temperature (in the range from 22 degrees C to 60 degrees C) a linear rise in the plateau forces was recorded. When assessing the quality of archwires, account should be taken of the surface quality, as it is

  7. Surface acid-base behaviors of Chinese loess.

    Science.gov (United States)

    Chu, Zhaosheng; Liu, Wenxin; Tang, Hongxiao; Qian, Tianwei; Li, Shushen; Li, Zhentang; Wu, Guibin

    2002-08-15

    Acid-base titration was applied to investigate the surface acid-base properties of a Chinese loess sample at different ionic strengths. The acidimetric supernatant was regarded as the system blank of titration to correct the influence of particle dissolution on the estimation of proton consumption. The titration behavior of the system blank could be described by the hydrolysis of Al3+ and Si(OH)4 in aqueous solution as well as the production of hydroxyaluminosilicates. The formation of Al-Si species on homogeneous surface sites by hydrous aluminum and silicic acid, released from solid substrate during the acidic titration, was considered in the model description of the back-titration procedure. A surface reaction model was suggested as follows: >SOHSO(-)+H+, pK(a)(int)=3.48-3.98;>SOH+Al(3+)+H4SiO4SOAl(OSi(OH)3(+)+2H+, pK(SC)=3.48-4.04. Two simple surface complexation models accounted for the interfacial structure, i.e., the constant capacitance model (CCM) and the diffuse layer model (DLM), and gave a satisfactory description of the experimental data. Considering the effect of ionic strength on the electrostatic profile at the solid-aqueous interface, the DLM was appropriate at the low concentrations (0.01 and 0.005 mol/L) of background electrolyte (NaNO3 in this study), while the CCM was preferable in the case of high ionic strength (0.1 mol/L).

  8. Corrosion behavior, mechanical properties, and long-term aging of nickel-plated uranium

    International Nuclear Information System (INIS)

    Dini, J.W.; Johnson, H.R.; Schoenfelder, C.W.

    1976-01-01

    The behavior of nickel-plated uranium upon exposure to moist nitrogen was evaluated. Plating thicknesses of 0.051 mm (2 mil) were adequate to prevent corrosion. Specimens with thinner coats showed some corrosion and some reduction in mechanical properties during subsequent testing. Plated samples exposed to dry air at ambient pressure for 10 y showed no corrosion and no degradation of mechanical properties. Surface and bulk hydrogen content, as well as free hydrogen generated during the test, were measured to determine the extent of corrosion. Results support an earlier proposed mechanism for uranium corrosion at low humidities

  9. Effects of bio-functionalizing surface treatments on the mechanical behavior of open porous titanium biomaterials.

    Science.gov (United States)

    Amin Yavari, S; Ahmadi, S M; van der Stok, J; Wauthle, R; Riemslag, A C; Janssen, M; Schrooten, J; Weinans, H; Zadpoor, A A

    2014-08-01

    Bio-functionalizing surface treatments are often applied for improving the bioactivity of biomaterials that are based on otherwise bioinert titanium alloys. When applied on highly porous titanium alloy structures intended for orthopedic bone regeneration purposes, such surface treatments could significantly change the static and fatigue properties of these structures and, thus, affect the application of the biomaterial as bone substitute. Therefore, the interplay between biofunctionalizing surface treatments and mechanical behavior needs to be controlled. In this paper, we studied the effects of two bio-functionalizing surface treatments, namely alkali-acid heat treatment (AlAcH) and acid-alkali (AcAl), on the static and fatigue properties of three different highly porous titanium alloy implants manufactured using selective laser melting. It was found that AlAcH treatment results in minimal mass loss. The static and fatigue properties of AlAcH specimens were therefore not much different from as-manufactured (AsM) specimens. In contrast, AcAl resulted in substantial mass loss and also in significantly less static and fatigue properties particularly for porous structures with the highest porosity. The ratio of the static mechanical properties of AcAl specimens to that of AsM specimen was in the range of 1.5-6. The fatigue lives of AcAl specimens were much more severely affected by the applied surface treatments with fatigue lives up to 23 times smaller than that of AsM specimens particularly for the porous structures with the highest porosity. In conclusion, the fatigue properties of surface treated porous titanium are dependent not only on the type of applied surface treatment but also on the porosity of the biomaterial. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Fabrication of metallic surfaces with long-term superhydrophilic property using one-stop laser method

    International Nuclear Information System (INIS)

    Guan, Y.C.; Luo, F.F.; Lim, G.C.; Hong, M.H.; Zheng, H.Y.; Qi, Bojin

    2015-01-01

    Highlights: • One-stop laser method is presented to fabricate superhydrophilic surface on metals. • Wettability study shows the longest superhydrophilic duration as more than 1 month. • Water-soluble compounds, polar functional groups and dual-scale structures were formed. • Surface roughness shows an amplification effect of the wetting behavior. - Abstract: A simple method for fabricating stable superhydrophilic surface at metallic substrates is reported. This technique comprises irradiating the surface with multiple laser pulses. Surface wettability can be taylored through controlling laser parameters and processing conditions. The substrates were selected as aluminum alloy and stainless steel. Physical morphology and chemical composition of laser-textured surfaces were characterized by SEM, XPS, and 3D profiler measurements. Results showed that the longest wettability duration was achieved as more than 1 month for stainless steel and more than 200 h for Al alloy, respectively. The possible mechanism of hydrophilic behavior of laser-textured surfaces was discussed. The effect of surface topography on superhydrophilicity property was also evaluated. This study presents a promising method in fabricating long-term superhydrophilic surfaces, which is useful for improving adhesion or achieving water-assisted flow in industrial applications as well as developing cell-based technologies in biomedical applications

  11. Enhanced protective properties of epoxy/polyaniline-camphorsulfonate nanocomposite coating on an ultrafine-grained metallic surface

    Science.gov (United States)

    Pour-Ali, Sadegh; Kiani-Rashid, Alireza; Babakhani, Abolfazl; Davoodi, Ali

    2016-07-01

    An ultrafine-grained surface layer on mild steel substrate with average grain size of 77 nm was produced through wire brushing process. Surface grain size was determined through transmission electron microscopy and X-ray diffraction methods. This substrate was coated with epoxy and an in situ synthesized epoxy/polyaniline-camphorsulfonate (epoxy/PANI-CSA) nanocomposite. The corrosion behavior was studied by open circuit potential, potentiodynamic polarization and impedance measurements. Results of electrochemical tests evidenced the enhanced protective properties of epoxy/PANI-CSA coating on the substrate with ultrafine-grained surface.

  12. Critical behavior of collapsing surfaces

    DEFF Research Database (Denmark)

    Olsen, Kasper; Sourdis, C.

    2009-01-01

    We consider the mean curvature evolution of rotationally symmetric surfaces. Using numerical methods, we detect critical behavior at the threshold of singularity formation resembling that of gravitational collapse. In particular, the mean curvature simulation of a one-parameter family of initial...... data reveals the existence of a critical initial surface that develops a degenerate neckpinch. The limiting flow of the type II singularity is accurately modeled by the rotationally symmetric translating soliton....

  13. A new model for thermodynamic analysis on wetting behavior of superhydrophobic surfaces

    International Nuclear Information System (INIS)

    Zhang Hongyun; Li Wen; Fang Guoping

    2012-01-01

    Superhydrophobic surfaces have shown inspiring applications in microfluidics, and self-cleaning coatings owing to water-repellent and low-friction properties. However, thermodynamic mechanism responsible for contact angle hysteresis (CAH) and free energy barrier (FEB) have not been understood completely yet. In this work, we propose an intuitional 3-dimension (3D) droplet model along with a reasonable thermodynamic approach to gain a thorough insight into the physical nature of CAH. Based on this model, the relationships between radius of three-phase contact line, change in surface free energy (CFE), average or local FEB and contact angle (CA) are established. Moreover, a thorough theoretical consideration is given to explain the experimental phenomena related to the superhydrophobic behavior. The present study can therefore provide some guidances for the practical fabrications of the superhydrophobic surfaces.

  14. A Method to Simulate the Observed Surface Properties of Proton Irradiated Silicon Strip Sensors

    CERN Document Server

    INSPIRE-00335524; Bhardwaj, A.; Dalal, R.; Eber, R.; Eichhorn, T.; Lalwani, K.; Messineo, A.; Printz, M.; Ranjan, K.

    2015-04-23

    During the scheduled high luminosity upgrade of LHC, the world's largest particle physics accelerator at CERN, the position sensitive silicon detectors installed in the vertex and tracking part of the CMS experiment will face more intense radiation environment than the present system was designed for. To upgrade the tracker to required performance level, extensive measurements and simulations studies have already been carried out. A defect model of Synopsys Sentaurus TCAD simulation package for the bulk properties of proton irradiated devices has been producing simulations closely matching with measurements of silicon strip detectors. However, the model does not provide expected behavior due to the fluence increased surface damage. The solution requires an approach that does not affect the accurate bulk properties produced by the proton model, but only adds to it the required radiation induced properties close to the surface. These include the observed position dependency of the strip detector's charge collec...

  15. Low temperature self-cleaning properties of superhydrophobic surfaces

    Science.gov (United States)

    Wang, Fajun; Shen, Taohua; Li, Changquan; Li, Wen; Yan, Guilong

    2014-10-01

    Outdoor surfaces are usually dirty surfaces. Ice accretion on outdoor surfaces could lead to serious accidents. In the present work, the superhydrophobic surface based on 1H, 1H, 2H, 2H-Perfluorodecanethiol (PFDT) modified Ag/PDMS composite was prepared to investigate the anti-icing property and self-cleaning property at temperatures below freezing point. The superhydrophobic surface was deliberately polluted with activated carbon before testing. It was observed that water droplet picked up dusts on the cold superhydrophobic surface and took it away without freezing at a measuring temperature of -10 °C. While on a smooth PFDT surface and a rough surface base on Ag/PDMS composite without PFDT modification, water droplets accumulated and then froze quickly at the same temperature. However, at even lower temperature of -12 °C, the superhydrophobic surface could not prevent the surface water from icing. In addition, it was observed that the frost layer condensed from the moisture pay an important role in determining the low temperature self-cleaning properties of a superhydrophobic surface.

  16. Surface effects and discontinuity behavior in nano-systems composed of Prussian blue analogues

    Science.gov (United States)

    Drissi, L. B.; Zriouel, S.; Bahmad, L.

    2018-04-01

    Magnetic properties and hysteresis loops of a nano-ferrimagnetic surface-bulk Prussian blue analogues (PBA) have been studied by means of Monte Carlo simulations. We have reported the effects of the magnetic and the crystal fields, as well as the intermediate and the bulk couplings, the temperature and the size on the phase diagram, the magnetization, the susceptibility, the hysteresis loops, the critical and the discontinuity temperatures of the model. The thermal dependence of the coercivity and the remanent magnetization are also discussed. This study shows a number of characteristic behaviors, such as the discontinuities in the magnetizations, the existence of Q- and N-types behaviors in the Néel classification nomenclature and the occurrence of single and triple hysteresis loops with high number of step-like plateaus. The obtained results make ferrimagnetic surface-bulk PBA useful for technological applications such as thermo-optical recording.

  17. Temperature dependence of nuclear surface properties

    International Nuclear Information System (INIS)

    Campi, X.; Stringari, S.

    1982-01-01

    Thermal properties of nuclear surface are investigated in a semi-infinite medium. Explicit analytical expression are given for the temperature dependence of surface thickness, surface energy and surface free energy. In this model the temperature effects depend critically on the nuclear incompressibility and on the shape of the effective mass at the surface. To illustrate the relevance of these effects we made an estimate of the temperature dependence of the fission barrier height. (orig.)

  18. Surface Nb-ALLOYING on 0.4C-13Cr Stainless Steel: Microstructure and Tribological Behavior

    Science.gov (United States)

    Yu, Shengwang; You, Kai; Liu, Xiaozhen; Zhang, Yihui; Wang, Zhenxia; Liu, Xiaoping

    2016-02-01

    0.4C-13Cr stainless steel was alloyed with niobium using double glow plasma surface alloying and tribological properties of Nb-alloyed steel such as hardness, friction and wear were measured. Effects of the alloying temperature on microstructure and the tribological behavior of the alloyed steel were investigated compared with untreated steel. Formation mechanisms of Nb-alloyed layers and increased wear resistance were also studied. The result shows that after surface Nb-alloying treatment, the 0.4C-13Cr steel exhibits a diffusion adhesion at the alloyed layer/substrate interface and improved tribological property. The friction coefficient of Nb-alloyed steel is decreased by about 0.3-0.45 and the wear rate after Nb-alloying is only 2-5% of untreated steel.

  19. Rent-seeking behaviors in property development: A literature review

    Science.gov (United States)

    Ali, Suhaila; Aziz, Abdul Rashid Abdul

    2017-11-01

    This paper reviews the literature on rent-seeking behaviors in property development, and discusses three major areas: (1) definition and concept of rent-seeking; (2) factors for the rent-seeking behavior appeared; and (3) the impact of rent-seeking behaviors, particularly on property development. In general, there is no exact word that can define what rent-seeking is. It is found that from the reviewed studies that a few researches have adopted search tasks to predict rent-seeking behavior effects in the economy and the respective economic performance. Based on the findings of the review, rent-seeking behavior increases social cost and this might lead to problems such as corruption. This paper paves the way for future studies in examining rent-seeking behaviors in the Malaysian property development, especially for targeted actions to be taken to alleviate upward pressure on home prices.

  20. E. coli Surface Properties Differ between Stream Water and Sediment Environments

    Directory of Open Access Journals (Sweden)

    Xiao Liang

    2016-11-01

    Full Text Available The importance of E. coli as an indicator organism in fresh water has led to numerous studies focusing on cell properties and transport behavior. However, previous studies have been unable to assess if differences in E. coli cell surface properties and genomic variation are associated with different environmental habitats. In this study, we investigated the variation in characteristics of E. coli obtained from stream water and stream bottom sediments. Cell properties were measured for 77 genomically different E. coli strains (44 strains isolated from sediments and 33 strains isolated from water under common stream conditions in the Upper Midwestern United States: pH 8.0, ionic strength 10mM and 22˚C. Measured cell properties include hydrophobicity, zeta potential, net charge, total acidity and extracellular polymeric substance (EPS composition. Our results indicate that stream sediment E. coli had significantly greater hydrophobicity, greater EPS protein content and EPS sugar content, less negative net charge, and higher point of zero charge than stream water E. coli. A significant positive correlation was observed between hydrophobicity and EPS protein for stream sediment E. coli but not for stream water E. coli. Additionally, E. coli surviving in the same habitat tended to have significantly larger (GTG5 genome similarity. After accounting for the intrinsic impact from the genome, environmental habitat was determined to be a factor influencing some cell surface properties, such as hydrophobicity. The diversity of cell properties and its resulting impact on particle interactions should be considered for environmental fate and transport modeling of aquatic indicator organisms such as E. coli.

  1. E. coli Surface Properties Differ between Stream Water and Sediment Environments.

    Science.gov (United States)

    Liang, Xiao; Liao, Chunyu; Thompson, Michael L; Soupir, Michelle L; Jarboe, Laura R; Dixon, Philip M

    2016-01-01

    The importance of E. coli as an indicator organism in fresh water has led to numerous studies focusing on cell properties and transport behavior. However, previous studies have been unable to assess if differences in E. coli cell surface properties and genomic variation are associated with different environmental habitats. In this study, we investigated the variation in characteristics of E. coli obtained from stream water and stream bottom sediments. Cell properties were measured for 77 genomically different E. coli strains (44 strains isolated from sediments and 33 strains isolated from water) under common stream conditions in the Upper Midwestern United States: pH 8.0, ionic strength 10 mM and 22°C. Measured cell properties include hydrophobicity, zeta potential, net charge, total acidity, and extracellular polymeric substance (EPS) composition. Our results indicate that stream sediment E. coli had significantly greater hydrophobicity, greater EPS protein content and EPS sugar content, less negative net charge, and higher point of zero charge than stream water E. coli . A significant positive correlation was observed between hydrophobicity and EPS protein for stream sediment E. coli but not for stream water E. coli . Additionally, E. coli surviving in the same habitat tended to have significantly larger (GTG) 5 genome similarity. After accounting for the intrinsic impact from the genome, environmental habitat was determined to be a factor influencing some cell surface properties, such as hydrophobicity. The diversity of cell properties and its resulting impact on particle interactions should be considered for environmental fate and transport modeling of aquatic indicator organisms such as E. coli .

  2. Effect of surface oxidation on the nm-scale wear behavior of a metallic glass

    International Nuclear Information System (INIS)

    Caron, A.; Louzguine-Luzguin, D. V.; Sharma, P.; Inoue, A.; Shluger, A.; Fecht, H.-J.

    2011-01-01

    Metallic glasses are good candidates for applications in micromechanical systems. With size reduction of mechanical components into the micrometer and submicrometer range, the native surface oxide layer starts playing an important role in contact mechanical applications of metallic glasses. We use atomic force microscopy to investigate the wear behavior of the Ni 62 Nb 38 metallic glass with a native oxide layer and with an oxide grown after annealing in air. After the annealing, the wear rate is found to have significantly decreased. Also the dependency of the specific wear on the velocity is found to be linear in the case of the as spun sample while it follows a power law in the case of the sample annealed in air. We discuss these results in relation to the friction behavior and properties of the surface oxide layer obtained on the same alloy.

  3. Structural stability and the electronic and magnetic properties of ferrimagnetic Mn_4N(0 0 1) surfaces

    International Nuclear Information System (INIS)

    Guerrero-Sánchez, J.; Takeuchi, Noboru

    2017-01-01

    Highlights: • Surface formation energy calculations demonstrate a N-dependent stability. • The magnetic alignment of these surfaces remains bulk-like, in a ferrimagnetic fashion. • A ferrimagnetic behavior in both structures is confirmed by density of states calculations. - Abstract: We have carried out spin-polarized first principles calculations to describe the surface stability and the electronic and magnetic properties of Mn_4N(0 0 1) surfaces. Results show two different surface terminations with different N content. The surface formation energies indicate that for manganese rich conditions the most stable structure is a MnN terminated surface. Whereas, from intermediate to nitrogen rich conditions, a MnN terminated surface with excess of nitrogen atoms is the most favorable. The stability of these surfaces can be traced to the formation of Mn–N bonds at the surface. The stable surfaces are Ferrimagnetic along the direction perpendicular to the surface, retaining a bulk-like behavior. However, there is a decrease in the Mn magnetic moments due to the presence of the surface. Density of states shows an asymmetric behavior, inherent of a Ferrimagnetic state. Finally, the surfaces are metallic with the main contributions around the Fermi level coming from the Mn-d orbitals. The knowledge about the atomic arrangements of the Mn_4N surfaces may serve to explain and understand the formation of more complex and technologically applicable ferromagnetic/ferrimagnetic and antiferromagnetic/ferrimagnetic heterostructures.

  4. Structure, electronic properties, and aggregation behavior of hydroxylated carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    López-Oyama, A. B.; Silva-Molina, R. A.; Ruíz-García, J.; Guirado-López, R. A., E-mail: guirado@ifisica.uaslp.mx [Instituto de Física “Manuel Sandoval Vallarta,” Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, 78000 San Luis Potosí, San Luis Potosí (Mexico); Gámez-Corrales, R. [Departamento de Física, Universidad de Sonora, Apartado Postal 5-088, 83190, Hermosillo, Sonora (Mexico)

    2014-11-07

    We present a combined experimental and theoretical study to analyze the structure, electronic properties, and aggregation behavior of hydroxylated multiwalled carbon nanotubes (OH–MWCNT). Our MWCNTs have average diameters of ∼2 nm, lengths of approximately 100–300 nm, and a hydroxyl surface coverage θ∼0.1. When deposited on the air/water interface the OH–MWCNTs are partially soluble and the floating units interact and link with each other forming extended foam-like carbon networks. Surface pressure-area isotherms of the nanotube films are performed using the Langmuir balance method at different equilibration times. The films are transferred into a mica substrate and atomic force microscopy images show that the foam like structure is preserved and reveals fine details of their microstructure. Density functional theory calculations performed on model hydroxylated carbon nanotubes show that low energy atomic configurations are found when the OH groups form molecular islands on the nanotube's surface. This patchy behavior for the OH species is expected to produce nanotubes having reduced wettabilities, in line with experimental observations. OH doping yields nanotubes having small HOMO–LUMO energy gaps and generates a nanotube → OH direction for the charge transfer leading to the existence of more hole carriers in the structures. Our synthesized OH–MWCNTs might have promising applications.

  5. Mechanical properties and deformation behavior of Al/Al7075, two-phase material

    International Nuclear Information System (INIS)

    Sherafat, Z.; Paydar, M.H.; Ebrahimi, R.; Sohrabi, S.

    2010-01-01

    In the present study, mechanical properties and deformation behavior of Al/Al7075, two-phase material were investigated. The two-phase materials were fabricated by mixing commercially pure Al powder with Al7075 chips and consolidating the mixture through hot extrusion process at 500 o C. Mechanical properties and deformation behavior of the fabricated samples were evaluated using tensile and compression tests. A scanning electron microscope was used to study the fracture surface of the samples including different amount of Al powder, after they were fractured in tensile test. The results of the tensile and compression tests showed that with decreasing the amount of Al powder, the strength increases and ductility decreases. Calculation of work hardening exponent (n) indicated that deformation behavior does not follow a regular trend. In a way that the n value was approved to be variable and a strong function of strain and Al powder wt% of the sample. The results of the fractography studies indicate that the type of fracture happened changes from completely ductile to nearly brittle by decreasing the wt% of Al powder from 90% to 40%.

  6. Surface Properties of TNOs: Preliminary Statistical Analysis

    Science.gov (United States)

    Antonieta Barucci, Maria; Fornasier, S.; Alvarez-Cantal, A.; de Bergh, C.; Merlin, F.; DeMeo, F.; Dumas, C.

    2009-09-01

    An overview of the surface properties based on the last results obtained during the Large Program performed at ESO-VLT (2007-2008) will be presented. Simultaneous high quality visible and near-infrared spectroscopy and photometry have been carried out on 40 objects with various dynamical properties, using FORS1 (V), ISAAC (J) and SINFONI (H+K bands) mounted respectively at UT2, UT1 and UT4 VLT-ESO telescopes (Cerro Paranal, Chile). For spectroscopy we computed the spectral slope for each object and searched for possible rotational inhomogeneities. A few objects show features in their visible spectra such as Eris, whose spectral bands are displaced with respect to pure methane-ice. We identify new faint absorption features on 10199 Chariklo and 42355 Typhon, possibly due to the presence of aqueous altered materials. The H+K band spectroscopy was performed with the new instrument SINFONI which is a 3D integral field spectrometer. While some objects show no diagnostic spectral bands, others reveal surface deposits of ices of H2O, CH3OH, CH4, and N2. To investigate the surface properties of these bodies, a radiative transfer model has been applied to interpret the entire 0.4-2.4 micron spectral region. The diversity of the spectra suggests that these objects represent a substantial range of bulk compositions. These different surface compositions can be diagnostic of original compositional diversity, interior source and/or different evolution with different physical processes affecting the surfaces. A statistical analysis is in progress to investigate the correlation of the TNOs’ surface properties with size and dynamical properties.

  7. Rapid comparison of properties on protein surface.

    Science.gov (United States)

    Sael, Lee; La, David; Li, Bin; Rustamov, Raif; Kihara, Daisuke

    2008-10-01

    The mapping of physicochemical characteristics onto the surface of a protein provides crucial insights into its function and evolution. This information can be further used in the characterization and identification of similarities within protein surface regions. We propose a novel method which quantitatively compares global and local properties on the protein surface. We have tested the method on comparison of electrostatic potentials and hydrophobicity. The method is based on 3D Zernike descriptors, which provides a compact representation of a given property defined on a protein surface. Compactness and rotational invariance of this descriptor enable fast comparison suitable for database searches. The usefulness of this method is exemplified by studying several protein families including globins, thermophilic and mesophilic proteins, and active sites of TIM beta/alpha barrel proteins. In all the cases studied, the descriptor is able to cluster proteins into functionally relevant groups. The proposed approach can also be easily extended to other surface properties. This protein surface-based approach will add a new way of viewing and comparing proteins to conventional methods, which compare proteins in terms of their primary sequence or tertiary structure.

  8. High temperature mechanical properties and surface fatigue behavior improving of steel alloy via laser shock peening

    International Nuclear Information System (INIS)

    Ren, N.F.; Yang, H.M.; Yuan, S.Q.; Wang, Y.; Tang, S.X.; Zheng, L.M.; Ren, X.D.; Dai, F.Z.

    2014-01-01

    Highlights: • The properties of 00C r 12 were improved by laser shock processing. • A deep layer of residual compressive stresses was introduced. • Fatigue life was enhanced about 58% at elevated temperature up to 600 °C. • The pinning effect is the reason of prolonging fatigue life at high temperature. - Abstract: Laser shock peening was carried out to reveal the effects on ASTM: 410L 00C r 12 microstructures and fatigue resistance in the temperature range 25–600 °C. The new conception of pinning effect was proposed to explain the improvements at the high temperature. Residual stress was measured by X-ray diffraction with sin 2 ψ method, a high temperature extensometer was utilized to measure the strain and control the strain signal. The grain and precipitated phase evolutionary process were observed by scanning electron microscopy. These results show that a deep layer of compressive residual stress is developed by laser shock peening, and ultimately the isothermal stress-controlled fatigue behavior is enhanced significantly. The formation of high density dislocation structure and the pinning effect at the high temperature, which induces a stronger surface, lower residual stress relaxation and more stable dislocation arrangement. The results have profound guiding significance for fatigue strengthening mechanism of components at the elevated temperature

  9. Reversible switching of wetting properties and erasable patterning of polymer surfaces using plasma oxidation and thermal treatment

    Science.gov (United States)

    Rashid, Zeeshan; Atay, Ipek; Soydan, Seren; Yagci, M. Baris; Jonáš, Alexandr; Yilgor, Emel; Kiraz, Alper; Yilgor, Iskender

    2018-05-01

    Polymer surfaces reversibly switchable from superhydrophobic to superhydrophilic by exposure to oxygen plasma and subsequent thermal treatment are demonstrated. Two inherently different polymers, hydrophobic segmented polydimethylsiloxane-urea copolymer (TPSC) and hydrophilic poly(methyl methacrylate) (PMMA) are modified with fumed silica nanoparticles to prepare superhydrophobic surfaces with roughness on nanometer to micrometer scale. Smooth TPSC and PMMA surfaces are also used as control samples. Regardless of their chemical structure and surface topography, all surfaces display completely reversible wetting behavior changing from hydrophobic to hydrophilic and back for many cycles upon plasma oxidation followed by thermal annealing. Influence of plasma power, plasma exposure time, annealing temperature and annealing time on the wetting behavior of polymeric surfaces are investigated. Surface compositions, textures and topographies are characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and white light interferometry (WLI), before and after oxidation and thermal annealing. Wetting properties of the surfaces are determined by measuring their static, advancing and receding water contact angle. We conclude that the chemical structure and surface topography of the polymers play a relatively minor role in reversible wetting behavior, where the essential factors are surface oxidation and migration of polymer molecules to the surface upon thermal annealing. Reconfigurable water channels on polymer surfaces are produced by plasma treatment using a mask and thermal annealing cycles. Such patterned reconfigurable hydrophilic regions can find use in surface microfluidics and optofluidics applications.

  10. Surface elastic properties in silicon nanoparticles

    Science.gov (United States)

    Melis, Claudio; Giordano, Stefano; Colombo, Luciano

    2017-09-01

    The elastic behavior of the external surface of a solid body plays a key role in nanomechanical phenomena. While bulk elasticity enjoys the benefits of a robust theoretical understanding, many surface elasticity features remain unexplored: some of them are here addressed by blending together continuum elasticity and atomistic simulations. A suitable readdressing of the surface elasticity theory allows to write the balance equations in arbitrary curvilinear coordinates and to investigate the dependence of the surface elastic parameters on the mean and Gaussian curvatures of the surface. In particular, we predict the radial strain induced by surface effects in spherical and cylindrical silicon nanoparticles and provide evidence that the surface parameters are nearly independent of curvatures and, therefore, of the surface conformation.

  11. Average nuclear surface properties

    International Nuclear Information System (INIS)

    Groote, H. von.

    1979-01-01

    The definition of the nuclear surface energy is discussed for semi-infinite matter. This definition is extended also for the case that there is a neutron gas instead of vacuum on the one side of the plane surface. The calculations were performed with the Thomas-Fermi Model of Syler and Blanchard. The parameters of the interaction of this model were determined by a least squares fit to experimental masses. The quality of this fit is discussed with respect to nuclear masses and density distributions. The average surface properties were calculated for different particle asymmetry of the nucleon-matter ranging from symmetry beyond the neutron-drip line until the system no longer can maintain the surface boundary and becomes homogeneous. The results of the calculations are incorporated in the nuclear Droplet Model which then was fitted to experimental masses. (orig.)

  12. Surface modification of Fe2O3 nanoparticles with 3-aminopropyltrimethoxysilane (APTMS): An attempt to investigate surface treatment on surface chemistry and mechanical properties of polyurethane/Fe2O3 nanocomposites

    International Nuclear Information System (INIS)

    Palimi, M.J.; Rostami, M.; Mahdavian, M.; Ramezanzadeh, B.

    2014-01-01

    Highlights: • Surface treatment of Fe 2 O 3 with amino propyl tri methoxy silane. • The surface chemistry pigments were affected by the chemical treatment. • Surface treatment of the nanoparticles by silane resulted in the significant improvement of the mechanical properties of the polyurethane coating. • The improvement was most pronounced when the nanoparticles were modified with 3 gr silane/5 g nanoparticles. - Abstract: Fe 2 O 3 nanoparticles were modified with various amounts of 3-amino propyl trimethoxy silane (APTMS). Modified and unmodified nanoparticles were introduced into the polyurethane matrix at different concentrations. Fourier transform infrared radiation (FT-IR) and X-ray photoelectron spectrophotometer (XPS) were employed in order to investigate the APTMS grafting on the nanoparticles field emission-scanning electron microscope (FE-SEM) was utilized in order to investigate nanoparticles dispersion in the polyurethane coating matrix as well as the fracture behavior of the nanocomposites. The mechanical properties of the nanocomposites were investigated by dynamic mechanical thermal analysis (DMTA) and tensile test. The FTIR spectra and XPS analysis clearly showed that APTMS was grafted on the surface of nanoparticles successfully and formed chemical bonds with the surface. Also, surface treatment of the nanoparticles by silane resulted in the significant improvement of the mechanical properties of the polyurethane coating. The improvement was most pronounced when the nanoparticles were modified with 3 gr silane/5 g nanoparticles

  13. Excimer laser surface modification: Process and properties

    Energy Technology Data Exchange (ETDEWEB)

    Jervis, T.R.; Nastasi, M. [Los Alamos National Lab., NM (United States); Hirvonen, J.P. [Technical Research Institute, Espoo (Finland). Metallurgy Lab.

    1992-12-01

    Surface modification can improve materials for structural, tribological, and corrosion applications. Excimer laser light has been shown to provide a rapid means of modifying surfaces through heat treating, surface zone refining, and mixing. Laser pulses at modest power levels can easily melt the surfaces of many materials. Mixing within the molten layer or with the gas ambient may occur, if thermodynamically allowed, followed by rapid solidification. The high temperatures allow the system to overcome kinetic barriers found in some ion mixing experiments. Alternatively, surface zone refinement may result from repeated melting-solidification cycles. Ultraviolet laser light couples energy efficiently to the surface of metallic and ceramic materials. The nature of the modification that follows depends on the properties of the surface and substrate materials. Alloying from both gas and predeposited layer sources has been observed in metals, semiconductors, and ceramics as has surface enrichment of Cr by zone refinement of stainless steel. Rapid solidification after melting often results in the formation of nonequilibrium phases, including amorphous materials. Improved surface properties, including tribology and corrosion resistance, are observed in these materials.

  14. Eu2O3: properties and irradiation behavior

    International Nuclear Information System (INIS)

    Pasto, A.E.; Martin, M.M.

    1977-08-01

    Europium sesquioxide is an excellent candidate control material for fast reactors. Its properties and behavior have been under extensive investigation at ORNL since 1972. This report is a compilation of the results of these efforts. Processes for synthesizing powders and fabricating dense pellets from them are described. Physical and chemical properties data measured on these pellets, along with their irradiation behavior, are also summarized

  15. Mineralization behavior and interface properties of BG-PVA/bone composite implants in simulated body fluid

    Energy Technology Data Exchange (ETDEWEB)

    Ma Yanxuan; Zheng Yudong; Huang Xiaoshan; Xi Tingfei; Han Dongfei [School of Materials Science and Engineering, Beijing University of Science and Technology, Beijing 100083 (China); Lin Xiaodan [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Song Wenhui, E-mail: zhengyudong@mater.ustb.edu.c, E-mail: wenhui.song@brunel.ac.u [Wolfson Center for Materials Processing, School of Engineering and Design, Brunel University, West London, UB8 3PH (United Kingdom)

    2010-04-15

    Due to the non-bioactivity and poor conjunction performance of present cartilage prostheses, the main work here is to develop the bioactive glass-polyvinyl alcohol hydrogel articular cartilage/bone (BG-PVA/bone) composite implants. The essential criterion for a biomaterial to bond with living bone is well-matched mechanical properties as well as biocompatibility and bioactivity. In vitro studies on the formation of a surface layer of carbonate hydroxyl apatite (HCA) and the corresponding variation of the properties of biomaterials are imperative for their clinical application. In this paper, the mineralization behavior and variation of the interface properties of BG-PVA/bone composites were studied in vitro by using simulated body fluid (SBF). The mineralization and HCA layer formed on the interface between the BG-PVA hydrogel and bone in SBF could provide the composites with bioactivity and firmer combination. The compression property, shear strength and interface morphology of BG-PVA/bone composite implants varying with the immersion time in SBF were characterized. Also, the influence laws of the immersion time, content of BG in the composites and aperture of bones to the mineralization behavior and interface properties were investigated. The good mineralization behavior and enhanced conjunction performance of BG-PVA/bone composites demonstrated that this kind of composite implant might be more appropriate cartilage replacements.

  16. Mineralization behavior and interface properties of BG-PVA/bone composite implants in simulated body fluid.

    Science.gov (United States)

    Ma, Yanxuan; Zheng, Yudong; Huang, Xiaoshan; Xi, Tingfei; Lin, Xiaodan; Han, Dongfei; Song, Wenhui

    2010-04-01

    Due to the non-bioactivity and poor conjunction performance of present cartilage prostheses, the main work here is to develop the bioactive glass-polyvinyl alcohol hydrogel articular cartilage/bone (BG-PVA/bone) composite implants. The essential criterion for a biomaterial to bond with living bone is well-matched mechanical properties as well as biocompatibility and bioactivity. In vitro studies on the formation of a surface layer of carbonate hydroxyl apatite (HCA) and the corresponding variation of the properties of biomaterials are imperative for their clinical application. In this paper, the mineralization behavior and variation of the interface properties of BG-PVA/bone composites were studied in vitro by using simulated body fluid (SBF). The mineralization and HCA layer formed on the interface between the BG-PVA hydrogel and bone in SBF could provide the composites with bioactivity and firmer combination. The compression property, shear strength and interface morphology of BG-PVA/bone composite implants varying with the immersion time in SBF were characterized. Also, the influence laws of the immersion time, content of BG in the composites and aperture of bones to the mineralization behavior and interface properties were investigated. The good mineralization behavior and enhanced conjunction performance of BG-PVA/bone composites demonstrated that this kind of composite implant might be more appropriate cartilage replacements.

  17. Conductorlike behavior of a photoemitting dielectric surface

    Science.gov (United States)

    De, B. R.

    1979-01-01

    It has been suggested in the past that a uniformly illuminated photoemitting dielectric surface of finite extent acquires in the steady state a surface charge distribution as if the surface were conducting (i.e., the surface becomes equipotential). In this paper an analytical proof of this conductorlike behavior is given. The only restrictions are that the photoelectron emission from the surface has azimuthal symmetry and that the photosheath may be assumed to be collisionless. It is tacitly assumed that a steady state is attainable, which means that the photoelectron spectrum has a high-energy cutoff.

  18. Friction behavior of nano-textured polyimide surfaces measured by AFM colloidal probe

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaoliang [College of Equipment Manufacturing, Hebei University of Engineering, Handan 056038 (China); State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Wu, Chunxia; Che, Hongwei; Hou, Junxian [College of Equipment Manufacturing, Hebei University of Engineering, Handan 056038 (China); Jia, Junhong, E-mail: jhjia@licp.cas.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2014-11-30

    Highlights: • Flat PI film and nano-textured PI film were prepared by spin-coating process. • The nano-textured PI surface has effectively reduced the adhesion and friction. • Friction increased with the increasing of contact area and adhesion. • The growth rate of friction decreased with the increasing of applied load. - Abstract: Flat polyimide (PI) film and silicon dioxide nanoparticle-textured PI film were prepared by means of the spin-coating technique. The adhesion and friction properties of the flat PI surface and nano-textured PI surface were investigated by a series of Atomic force microscope (AFM) colloidal probes. Experimental results revealed that the nano-textured PI surface can significantly reduce the adhesive force and friction force, compared with the flat PI surface. The main reason is that the nano-textures can reduce the contact area between the sample surface and colloidal probe. The effect of colloidal probe size on the friction behavior of the flat and nano-textured PI surfaces was evaluated. The adhesive force and friction force of nano-textured PI surface were increased with the increasing of the size of interacting pairs (AFM colloidal probe) due to the increased contact area. Moreover, the friction forces of flat and nano-textured PI surfaces were increased with applied load and sliding velocity.

  19. Structural stability and the electronic and magnetic properties of ferrimagnetic Mn{sub 4}N(0 0 1) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero-Sánchez, J., E-mail: guerrero@cnyn.unam.mx; Takeuchi, Noboru

    2017-06-15

    Highlights: • Surface formation energy calculations demonstrate a N-dependent stability. • The magnetic alignment of these surfaces remains bulk-like, in a ferrimagnetic fashion. • A ferrimagnetic behavior in both structures is confirmed by density of states calculations. - Abstract: We have carried out spin-polarized first principles calculations to describe the surface stability and the electronic and magnetic properties of Mn{sub 4}N(0 0 1) surfaces. Results show two different surface terminations with different N content. The surface formation energies indicate that for manganese rich conditions the most stable structure is a MnN terminated surface. Whereas, from intermediate to nitrogen rich conditions, a MnN terminated surface with excess of nitrogen atoms is the most favorable. The stability of these surfaces can be traced to the formation of Mn–N bonds at the surface. The stable surfaces are Ferrimagnetic along the direction perpendicular to the surface, retaining a bulk-like behavior. However, there is a decrease in the Mn magnetic moments due to the presence of the surface. Density of states shows an asymmetric behavior, inherent of a Ferrimagnetic state. Finally, the surfaces are metallic with the main contributions around the Fermi level coming from the Mn-d orbitals. The knowledge about the atomic arrangements of the Mn{sub 4}N surfaces may serve to explain and understand the formation of more complex and technologically applicable ferromagnetic/ferrimagnetic and antiferromagnetic/ferrimagnetic heterostructures.

  20. Cells behaviors and genotoxicity on topological surface

    International Nuclear Information System (INIS)

    Yang, N.; Yang, M.K.; Bi, S.X.; Chen, L.; Zhu, Z.Y.; Gao, Y.T.; Du, Z.

    2013-01-01

    To investigate different cells behaviors and genotoxicity, which were driven by specific microenvironments, three patterned surfaces (pillars, wide grooves and narrow grooves) and one smooth surface were prepared by template-based technique. Vinculin is a membrane-cytoskeletal protein in focal adhesion plaques and associates with cell–cell and cell–matrix junctions, which can promote cell adhesion and spreading. The immunofluorescence staining of vinculin revealed that the narrow grooves patterned substrate was favorable for L929 cell adhesion. For cell multiplication, the narrow grooves surface was fitted for the proliferation of L929, L02 and MSC cells, the pillars surface was only in favor of L929 cells to proliferate during 7 days of cell cultivation. Cell genetic toxicity was evaluated by cellular micronuclei test (MNT). The results indicated that topological surfaces were more suitable for L929 cells to proliferate and maintain the stability of genome. On the contrary, the narrow grooves surface induced higher micronuclei ratio of L02 and MSC cells than other surfaces. With the comprehensive results of cell multiplication and MNT, it was concluded that the wide grooves surface was best fitted for L02 cells to proliferate and have less DNA damages, and the smooth surface was optimum for the research of MSC cells in vitro. - Highlights: • Different cells behaviors on microstructure surfaces were discussed in this paper. • The expression of cell protein of Vinculin was studied in this research. • Cellular micronuclei test was applied to evaluate cells' genotoxicity. • Cell genotoxicity was first studied in the research field of topological surfaces

  1. Surface topography and chemistry shape cellular behavior on wide band-gap semiconductors.

    Science.gov (United States)

    Bain, Lauren E; Collazo, Ramon; Hsu, Shu-Han; Latham, Nicole Pfiester; Manfra, Michael J; Ivanisevic, Albena

    2014-06-01

    The chemical stability and electrical properties of gallium nitride make it a promising material for the development of biocompatible electronics, a range of devices including biosensors as well as interfaces for probing and controlling cellular growth and signaling. To improve the interface formed between the probe material and the cell or biosystem, surface topography and chemistry can be applied to modify the ways in which the device interacts with its environment. PC12 cells are cultured on as-grown planar, unidirectionally polished, etched nanoporous and nanowire GaN surfaces with and without a physisorbed peptide sequence that promotes cell adhesion. While cells demonstrate preferential adhesion to roughened surfaces over as-grown flat surfaces, the topography of that roughness also influences the morphology of cellular adhesion and differentiation in neurotypic cells. Addition of the peptide sequence generally contributes further to cellular adhesion and promotes development of stereotypic long, thin neurite outgrowths over alternate morphologies. The dependence of cell behavior on both the topographic morphology and surface chemistry is thus demonstrated, providing further evidence for the importance of surface modification for modulating bio-inorganic interfaces. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Tailoring surface groups of carbon quantum dots to improve photoluminescence behaviors

    International Nuclear Information System (INIS)

    Tian, Ruixue; Hu, Shengliang; Wu, Lingling; Chang, Qing; Yang, Jinlong; Liu, Jun

    2014-01-01

    Highlights: • We develop a facile and green method to tailor surface groups. • Photoluminescence behaviors of carbon quantum dots are improved by tailoring their surface groups. • Highly luminescent efficiency is produced by amino-hydrothermal treatment of reduced carbon quantum dots. - Abstract: A facile and green method to tailor surface groups of carbon quantum dots (CQDs) is developed by hydrothermal treatment in an autoclave. The photoluminescence (PL) behaviors of CQDs depend on the types of surface groups. Highly efficient photoluminescence is obtained through amino-hydrothermal treatment of the CQDs reduced by NaBH 4 . The effects of surface groups on PL behavior are attributed to the degrees of energy band bending induced by surface groups

  3. Evaluation of Fatigue Behavior and Surface Characteristics of Aluminum Alloy 2024 T6 After Electric Discharge Machining

    Science.gov (United States)

    Mehmood, Shahid; Shah, Masood; Pasha, Riffat Asim; Sultan, Amir

    2017-10-01

    The effect of electric discharge machining (EDM) on surface quality and consequently on the fatigue performance of Al 2024 T6 is investigated. Five levels of discharge current are analyzed, while all other electrical and nonelectrical parameters are kept constant. At each discharge current level, dog-bone specimens are machined by generating a peripheral notch at the center. The fatigue tests are performed on four-point rotating bending machine at room temperature. For comparison purposes, fatigue tests are also performed on the conventionally machined specimens. Linearized SN curves for 95% failure probability and with four different confidence levels (75, 90, 95 and 99%) are plotted for each discharge current level as well as for conventionally machined specimens. These plots show that the electric discharge machined (EDMed) specimens give inferior fatigue behavior as compared to conventionally machined specimen. Moreover, discharge current inversely affects the fatigue life, and this influence is highly pronounced at lower stresses. The EDMed surfaces are characterized by surface properties that could be responsible for change in fatigue life such as surface morphology, surface roughness, white layer thickness, microhardness and residual stresses. It is found that all these surface properties are affected by changing discharge current level. However, change in fatigue life by discharge current could not be associated independently to any single surface property.

  4. Corrosion properties of sealing surface material for RPV under abnormal working conditions

    International Nuclear Information System (INIS)

    Liu Jinhua; Wen Yan; Zhang Xuemei; Hou Songmin; Gong Bin; He Yanchun

    2012-01-01

    Based on the corrosion issue of sealing surface material for RPV in some nuclear projects, the corrosion properties of sealing surface material for RPV under abnormal working conditions were investigated. The corrosion behavior of 308L stainless steel were studied by using autoclave in different contents of Cl - solutions, and these samples were observed and analyzed by means of the metalloscope and Scanning electron microscope (SEM). Results show that no pitting, crevice and stress corrosion occurred, when the content of Cl - was lower than 1 mg/L at the temperatures of 270℃ and the pressure of 5.5 MPa. However, with the increase of the content of Cl - , the susceptibility to pitting, crevice and stress corrosion of 308L was enhanced remarkably. (authors)

  5. Surface Behavior of Rhodamin and Tartrazine on Silica-Cellulose Sol-Gel Surfaces by Thin Layer Elution

    Directory of Open Access Journals (Sweden)

    Surjani Wonorahardjo

    2016-05-01

    Full Text Available Physical and chemical interactions are the principles for different types of separation systems as the equillibrium dynamics on surface plays a key-role. Surface modification is a way for selective separation at interfaces. Moreover, synthesis of gel silica by a sol-gel method is preferred due to the homogeneity and surface feature easily controlled. Cellulose can be added in situ to modified the silica features during the process. Further application for to study interaction of rhodamin and tartrazine in its surface and their solubilities in mobile phase explains the possibility for their separation. This paper devoted to evaluate the surface behavior in term of adsorption and desorption of tartrazine and rhodamin on silica-cellulose thin layer in different mobile phase. Some carrier liquids applied such as methanol, acetone, n-hexane and chloroform. The result proves tartrazine and rhodamin is separated and have different behavior in different mobile phase. The retardation factors (Rf of the mixtures suggest complexity behavior on silica-cellulose surface.

  6. Control of cell behavior on PTFE surface using ion beam irradiation

    International Nuclear Information System (INIS)

    Kitamura, Akane; Kobayashi, Tomohiro; Meguro, Takashi; Suzuki, Akihiro; Terai, Takayuki

    2009-01-01

    A polytetrafluoroethylene (PTFE) surface is smooth and biologically inert, so that cells cannot attach to it. Ion beam irradiation of the PTFE surface forms micropores and a melted layer, and the surface is finally covered with a large number of small protrusions. Recently, we found that cells could adhere to this irradiated PTFE surface and spread over the surface. Because of their peculiar attachment behavior, these surfaces can be used as biological tools. However, the factors regulating cell adhesion are still unclear, although some new functional groups formed by irradiation seem to contribute to this adhesion. To control cell behavior on PTFE surfaces, we must determine the effects of the outermost irradiated surface on cell adhesion. In this study, we removed the thin melted surface layer by postirradiation annealing and investigated cell behavior on the surface. On the surface irradiated with 3 x 10 16 ions/cm 2 , cells spread only on the remaining parts of the melted layer. From these results, it is clear that the melted layer had a capacity for cell attachment. When the surface covered with protrusions was irradiated with a fluence of 1 x 10 17 ions/cm 2 , the distribution of cells changed after the annealing process from 'sheet shaped' into multicellular aggregates with diameters of around 50 μm. These results indicate that we can control cell behavior on PTFE surfaces covered with protrusions using irradiation and subsequent annealing. Multicellular spheroids can be fabricated for tissue engineering using this surface.

  7. Tribological Properties of Surface-Textured and Plasma-Nitrided Pure Titanium Under Oil Lubrication Condition

    Science.gov (United States)

    Zhang, Baosen; Dong, Qiangsheng; Ba, Zhixin; Wang, Zhangzhong; Shi, Hancheng; Xue, Yanting

    2018-01-01

    Plasma nitriding was conducted as post-treatment for surface texture on pure titanium to obtain a continuous nitriding layer. Supersonic fine particles bombarding (SFPB) was carried out to prepare surface texture. The surface morphologies and chemical composition were analyzed using scanning electron microscope and energy disperse spectroscopy. The microstructures of modified layers were characterized by transmission electron microscope. The tribological properties of surface-textured and duplex-treated pure titanium under oil lubrication condition were systematically investigated in the ball-on-plate reciprocating mode. The effects of applied load and sliding velocity on the tribological behavior were analyzed. The results show that after duplex treatments, the grains size in modified layer becomes slightly larger, and hardness is obviously improved. Wear resistance of duplex-treated pure titanium is significantly improved referenced to untreated and surface-textured pure titanium, which is 3.22 times as much as untreated pure titanium and 2.15 times of that for surface-textured pure titanium, respectively.

  8. Contact Angle Hysteresis on Graphene Surfaces and Hysteresis-free Behavior on Oil-infused Graphite Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Cyuan-Jhang; Li, Yueh-Feng [Department of Chemical and Materials Engineering, National Central University, Jhongli 320, Taiwan (China); Woon, Wei-Yen [Department of Physics, National Central University, Jhongli 320, Taiwan (China); Sheng, Yu-Jane, E-mail: yjsheng@ntu.edu.tw [Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan (China); Tsao, Heng-Kwong, E-mail: hktsao@cc.ncu.edu.tw [Department of Chemical and Materials Engineering, National Central University, Jhongli 320, Taiwan (China); Department of Physics, National Central University, Jhongli 320, Taiwan (China)

    2016-11-01

    Highlights: • Contact angle hysteresis(CAH) on four graphitic surfacesisinvestigated. • The hysteresis loopof water drops on the polished graphite sheetshowsparticularly small receding contact angle. • The significant CAH observed on CVD graphene and highly oriented pyrolytic graphite is attributed mainly to adhesion hysteresis. • An oil-infused surface of a graphite sheet is produced by imbibition of hexadecane into its porous structure. • The hysteresis-free property for water drops on such a surface is examined and quantitatively explained. - Abstract: Contact angle hysteresis (CAH) on graphitic surfaces, including chemical vapor deposition (CVD) graphene, reduced electrophoretic deposition (EPD) graphene, highly oriented pyrolytic graphite (HOPG), and polished graphite sheet, has been investigated. The hysteresis loops of water drops on the first three samples are similar but the receding contact angle is particularly small for the polished graphite sheet.The significant CAH observed on CVD graphene and HOPG associated with atom-scale roughness has to be attributed mainly to adhesion hysteresis (surface relaxation), instead of roughness or defects.The difference of the wetting behavior among those four graphitic samples has been further demonstrated by hexadecane drops. On the surface of HOPG or CVD graphene,the contact line expands continuously with time, indicating total wetting for which the contact angle does not exist and contact line pinning disappears. In contrast, on the surface of reduced EPD graphene, spontaneous spreading is halted by spikes on it and partial wetting with small contact angle (θ≈4°) is obtained. On the surface of polished graphite sheet, the superlipophilicity and porous structure are demonstrated by imbibition and capillary rise of hexadecane. Consequently, an oil-infused graphite surface can be fabricated and the ultralow CAH of water (∆θ≈2°) is achieved.

  9. Oleophobic properties of the step-and-terrace sapphire surface

    Energy Technology Data Exchange (ETDEWEB)

    Muslimov, A. E., E-mail: amuslimov@mail.ru; Butashin, A. V.; Kanevsky, V. M. [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Research Center “Crystallography and Photonics” (Russian Federation)

    2017-03-15

    Sapphire is widely used in production of optical windows for various devices due to its mechanical and optical properties. However, during operation the surface can be affected by fats, oils, and other organic contaminations. Therefore, it is important to improve the oleophobic properties of sapphire windows. In this study, we investigate the interaction of a supersmooth sapphire surface with oleic acid droplets, which imitate human finger printing. It is established that chemical–mechanical polishing with additional annealing in air, which leads to the formation of an atomically smooth sapphire surface, makes it possible to significantly improve the oleophobic properties of the surface. The results are analyzed using the Ventsel–Deryagin homogeneous wetting model.

  10. Surface active properties of lipid nanocapsules.

    Directory of Open Access Journals (Sweden)

    Celia R A Mouzouvi

    Full Text Available Lipid nanocapsules (LNCs are biomimetic nanocarriers used for the encapsulation of a broad variety of active ingredients. Similar to surface active compounds, LNCs contain both hydrophilic and hydrophobic parts in their structure. Moreover, the components of LNCs, macrogol 15 hydroxystearate (MHS and lecithin, are known for their surface active properties. Therefore, the aim of this paper was to investigate the capability of the LNCs to decrease surface tension using two techniques: drop tensiometry and the Wilhelmy plate method. LNCs with diameters ranging from 30 to 100 nm were successfully obtained using a phase inversion technique. The LNCs' properties, such as size and zeta potential, depend on the composition. LNCs exhibit a lower limiting surface tension compared to MHS (34.8-35.0 mN/m and 37.7-38.8 mN/m, respectively, as confirmed by both drop tensiometry and the Wilhelmy plate method. LNCs have exhibited a saturated interfacial concentration (SIC that was 10-fold higher than the critical micellar concentration (CMC of MHS or the SIC of binary and ternary mixtures of LNC ingredients. The SIC of the LNC formulations depended on the mass mixing ratio of the MHS/triglycerides but not on the presence of lecithin. The CMC/SIC values measured by the Wilhelmy plate method were higher than those obtained using drop tensiometry because of the longer duration of the tensiometry measurement. In conclusion, the surfactant-like properties of the LNCs offer new possibilities for medical and pharmaceutical applications.

  11. Surface active monomers synthesis, properties, and application

    CERN Document Server

    Borzenkov, Mykola

    2014-01-01

    This brief includes information on the background?of and development of synthesis of various types of surface active monomers. The authors explain the importance of utilization of surface active monomers for creation of surface active polymers? and the various biomedical applications of such compounds . This brief introduces techniques for the synthesis of novel types of surface active monomers, their colloidal and polymerizable properties and application for needs of medicine and biology.

  12. Organic fouling behavior of superhydrophilic polyvinylidene fluoride (PVDF) ultrafiltration membranes functionalized with surface-tailored nanoparticles: Implications for organic fouling in membrane bioreactors

    KAUST Repository

    Liang, Shuai

    2014-08-01

    This study systematically investigates the organic fouling behavior of a superhydrophilic polyvinylidene fluoride (PVDF) ultrafiltration membrane functionalized via post-fabrication tethering of surface-tailored silica nanoparticles to poly(methacrylic acid)-grafted PVDF membrane surface. Sodium alginate (SA), Suwannee River natural organic matter (SRNOM), and bovine serum albumin (BSA) were used as model organic foulants to investigate the antifouling behavior of the superhydrophilic membrane with combined-fouling (mixture of foulants) and individual-fouling (single foulant) tests. A membrane bioreactor (MBR) plant supernatant was also used to verify the organic antifouling property of the superhydrophilic membrane under realistic conditions. Foulant size distributions and foulant-membrane interfacial forces were measured to interpret the observed membrane fouling behavior. Molecular weight cutoff measurements confirmed that membrane functionalization did not adversely affect the intrinsic membrane selectivity. Both filtration tests with the synthetic foulant-mixture solution (containing SA, SRNOM, and BSA) and MBR plant supernatant demonstrated the reliability and durability of the antifouling property of the superhydrophilic membrane. The conspicuous reduction in foulant-membrane interfacial forces for the functionalized membrane further verified the antifouling properties of the superhydrophilic membrane, suggesting great potential for applications in wastewater treatment. © 2014 Elsevier B.V.

  13. Tribological Behavior of Coating Cr Layer on 40Cr after Surface Electron Beam Pretreatment

    Science.gov (United States)

    Hu, J. J.; Wang, J.; Jiang, P.; Xu, H. B.; Li, H.; Hou, T. F.

    2017-12-01

    In this study,the friction and wear behavior of PVD coatings which were treated by 5 different processes,based on gear material-40Cr. Analyzing the effects of treating the gear material with electron beam in combination with magnetron sputtering on it,for dry friction and wear properties.The result showed that the electron beam pretreated substrate was useful to improve the tribological performance of coating material.Furthermore, the surface roughness of coating, the bonding force between substrate and coating as well as the load are the main factors affecting the tribological performance of this coating. Most importantly, the contribution of plowing effect on friction coefficient should be considered when the surface roughness is high.

  14. A study of hydrogen environment effects on microstructure property behavior of NASA-23 alloy and related alloy systems

    International Nuclear Information System (INIS)

    Diwan, R.M.

    1990-01-01

    The influence of hydrogen on the tensile properties and ductility behavior of NASA-23 alloy were analyzed. NASA-23 and other referenced alloys in cast and hipped conditions were solution treated and aged under selected conditions and characterized using optical metallography, scanning electron microscopy, and electron microprobe analysis techniques. The yield strength of NASA-23 is not affected much by hydrogen under tensile tests carried at 5000 psig conditions; however, the ultimate strength and ductility properties are degraded. This implies that the physical mechanisms operating would be related to the plastic deformation process. The fracture surfaces characteristics of NASA-23 specimens tensile tested in hydrogen, helium, and air were also analyzed. These revealed surface cracks around specimen periphery with the fracture surface showing a combination of intergranular and transgranular modes of fracture. It is seen that the specimens charged in hydrogen seem to favor a more brittle fracture mode in comparison to air and helium charged specimens. The AMCC casting characterization program is to be analyzed for their hydrogen behavior. As a result of this program, the basic microstructural factors and fracture characteristics in some cases were analyzed

  15. Influence of surface roughness on the friction property of textured surface

    OpenAIRE

    Yuankai Zhou; Hua Zhu; Wenqian Zhang; Xue Zuo; Yan Li; Jianhua Yang

    2015-01-01

    In contrast with dimple textures, surface roughness is a texture at the micro-scale, essentially which will influence the load-bearing capacity of lubricant film. The numerical simulation was carried out to investigate the influence of surface roughness on friction property of textured surface. The lubricant film pressure was obtained using the method of computational fluid dynamics according to geometric model of round dimple, and the renormalization-group k–ε turbulent model was adopted in ...

  16. Surface analysis and biocorrosion properties of nanostructured surface sol-gel coatings on Ti6Al4V titanium alloy implants.

    Science.gov (United States)

    Advincula, Maria C; Petersen, Don; Rahemtulla, Firoz; Advincula, Rigoberto; Lemons, Jack E

    2007-01-01

    Surfaces of biocompatible alloys used as implants play a significant role in their osseointegration. Surface sol-gel processing (SSP), a variant of the bulk sol-gel technique, is a relatively new process to prepare bioreactive nanostructured titanium oxide for thin film coatings. The surface topography, roughness, and composition of sol-gel processed Ti6Al4V titanium alloy coatings was investigated by atomic force microscopy (AFM) and X-ray electron spectroscopy (XPS). This was correlated with corrosion properties, adhesive strength, and bioreactivity in simulated body fluids (SBF). Electroimpedance spectroscopy (EIS) and polarization studies indicated similar advantageous corrosion properties between sol-gel coated and uncoated Ti6Al4V, which was attributed to the stable TiO2 composition, topography, and adhesive strength of the sol-gel coating. In addition, inductive coupled plasma (ICP) and scanning electron microscopy with energy dispersive spectrometry (SEM-EDS) analysis of substrates immersed in SBF revealed higher deposition of calcium and phosphate and low release rates of alloying elements from the sol-gel modified alloys. The equivalent corrosion behavior and the definite increase in nucleation of calcium apatite indicate the potential of the sol-gel coating for enhanced bioimplant applications. 2006 Wiley Periodicals, Inc.

  17. Elemental mercury: Its unique properties affect its behavior and fate in the environment

    International Nuclear Information System (INIS)

    Gonzalez-Raymat, Hansell; Liu, Guangliang; Liriano, Carolina; Li, Yanbin; Yin, Yongguang; Shi, Jianbo; Jiang, Guibin; Cai, Yong

    2017-01-01

    Elemental mercury (Hg 0 ) has different behavior in the environment compared to other pollutants due to its unique properties. It can remain in the atmosphere for long periods of time and so can travel long distances. Through air-surface (e.g., vegetation or ocean) exchange (dry deposition), Hg 0 can enter terrestrial and aquatic systems where it can be converted into other Hg species. Despite being ubiquitous and playing a key role in Hg biogeochemical cycling, Hg 0 behavior in the environment is not well understood. The objective of this review is to provide a better understanding of how the unique physicochemical properties of Hg 0 affects its cycling and chemical transformations in different environmental compartments. The first part focuses on the fundamental chemistry of Hg 0 , addressing why Hg 0 is liquid at room temperature and the formation of amalgam, Hg halide, and Hg chalcogenides. The following sections discuss the long-range transport of Hg 0 as well as its redistribution in the atmosphere, aquatic and terrestrial systems, in particular, on the sorption/desorption processes that occur in each environmental compartment as well as the involvement of Hg 0 in chemical transformation processes driven by photochemical, abiotic, and biotic reactions. - Highlights: • Unique property of Hg 0 make it to behave differently with other toxic metals. • Hg 0 is considered the only global metal pollutant due to its uniqueness. • Hg 0 can be easily transformed and efficiently redistributed in the environments. - A better understanding of the properties and behavior of Hg 0 is the key to elucidate the biogeochemical cycling of mercury, a global pollutant in the environment.

  18. Surface properties of semi-infinite Fermi systems

    International Nuclear Information System (INIS)

    Campi, X.; Stringari, S.

    1979-10-01

    A functional relation between the kinetic energy density and the total density is used to analyse the surface properties of semi-infinite Fermi systems. One find an explicit expression for the surface thickness in which the role of the infinite matter compressibility, binding energy and non-locality effects is clearly shown. The method, which holds both for nuclear and electronic systems (liquid metals), yields a very simple relation between the surface thickness and the surface energy

  19. Effects of nonideal surfaces on the derived thermal properties of Mars

    International Nuclear Information System (INIS)

    Jakosky, B.M.

    1979-01-01

    The thermal inertia of the surface of Mars varies spatially by a factor of 8. This is attributable to changes in the average particle size of the fine material, the surface elevation, the atmospheric opacity due to dust, and the fraction of the surface covered by rocks an fine material. The effects of these nonideal properties on the surface temperatures and derived thermal inertias are modeled, along with the effects of slopes, CO 2 condensed onto the surface, and layering of fine material upon solid rock. The nonideal models are capable of producing thermal behavior similar to that observed by the Viking infrared thermal mapper, including a morning delay in the postdawn temperature rise and an enhanced cooling in the afternoon relative to any ideal, homogeneous model. The enhanced afternoon cooling observed at the Viking 1 landing site is reproduced by the nonideal models while that atop Arsia Mons volcano is not, but may be attributed to the observing geometry. A histogram of surface thermal inertia versus elevation shows at least two distinct classes: a single region near Amazonis Planitia has low inertias at low elevation; many of the remaining data show an anticorrelation between inertia and elevation, expected because of the change in thermal inertia produced by changes in the atmospheric pressure an dust opacity with elevation

  20. Oxidative nanopatterning of titanium generates mesoporous surfaces with antimicrobial properties

    Directory of Open Access Journals (Sweden)

    Variola F

    2014-05-01

    Full Text Available Fabio Variola,1,2 Sylvia Francis Zalzal,3 Annie Leduc,3 Jean Barbeau,3 Antonio Nanci31Faculty of Engineering, Department of Mechanical Engineering, 2Faculty of Science, Department of Physics, University of Ottawa, Ottawa, ON, 3Faculty of Dental Medicine, Université de Montréal, Montreal, QC, CanadaAbstract: Mesoporous surfaces generated by oxidative nanopatterning have the capacity to selectively regulate cell behavior, but their impact on microorganisms has not yet been explored. The main objective of this study was to test the effects of such surfaces on the adherence of two common bacteria and one yeast strain that are responsible for nosocomial infections in clinical settings and biomedical applications. In addition, because surface characteristics are known to affect bacterial adhesion, we further characterized the physicochemical properties of the mesoporous surfaces. Focused ion beam (FIB was used to generate ultrathin sections for elemental analysis by energy-dispersive X-ray spectroscopy (EDS, nanobeam electron diffraction (NBED, and high-angle annular dark field (HAADF scanning transmission electron microscopy (STEM imaging. The adherence of Staphylococcus aureus, Escherichia coli and Candida albicans onto titanium disks with mesoporous and polished surfaces was compared. Disks with the two surfaces side-by-side were also used for direct visual comparison. Qualitative and quantitative results from this study indicate that bacterial adhesion is significantly hindered by the mesoporous surface. In addition, we provide evidence that it alters structural parameters of C. albicans that determine its invasiveness potential, suggesting that microorganisms can sense and respond to the mesoporous surface. Our findings demonstrate the efficiency of a simple chemical oxidative treatment in generating nanotextured surfaces with antimicrobial capacity with potential applications in the implant manufacturing industry and hospital setting

  1. High temperature oxidation behavior of AISI 304L stainless steel—Effect of surface working operations

    International Nuclear Information System (INIS)

    Ghosh, Swati; Kumar, M. Kiran; Kain, Vivekanand

    2013-01-01

    Highlights: ► Surface working resulted in thinner oxide on the surface. ► Oxides on machined/ground surfaces richer in Cr, higher in specific resistivity. ► Additional ionic transport process at the metal-oxide for ground sample established. ► Presence of fragmented grains and martensite influenced oxide nature/morphology. - Abstract: The oxidation behavior of grade 304L stainless steel (SS) subjected to different surface finishing (machining and grinding) operations was followed in situ by contact electric resistance (CER) and electrochemical impedance spectroscopy (EIS) measurements using controlled distance electrochemistry (CDE) technique in high purity water (conductivity −1 ) at 300 °C and 10 MPa in an autoclave connected to a recirculation loop system. The results highlight the distinct differences in the oxidation behavior of surface worked material as compared to solution annealed material in terms of specific resistivity and low frequency Warburg impedance. The resultant oxide layer was characterized for (a) elemental analyses by glow discharge optical emission spectroscopy (GDOES) and (b) morphology by scanning electron microscopy (SEM). Oxide layers with higher specific resistivity and chromium content were formed in case of machined and ground conditions. Presence of an additional ionic transport process has also been identified for the ground condition at the metal/oxide interface. These differences in electrochemical properties and distinct morphological features of the oxide layer as a result of surface working were attributed to the prevalence of heavily fragmented grain structure and presence of martensite.

  2. Influence of the biological conditions in the surface magnetic properties of nanocrystalline CoFeCrSiB ribbons

    International Nuclear Information System (INIS)

    Fal-Miyar, V.; Cerdeira, M.A.; Garcia, J.A.; Tejedor, M.; Potatov, A.P.; Pierna, A.R.; Marzo, F.F.; Vara, G.

    2007-01-01

    In this paper the result of a study of the influence of the biological conditions on the surface magnetic properties of nanocrystalline Co 64.5 Fe 2.5 Cr 3 B 15 Si 15 ribbons are presented and discussed. After the biological treatment the results show that, in the longitudinal direction, there is a hardening of the magnetic behavior and in the transverse direction the magnetization takes place in two steps. The surface saturation magnetization decreases in the treated samples. These results are explained considering the presence of magnetic oxides and non-conducting oxides on the surface of the treated samples

  3. Effect of surface treatment on mechanical properties of glass fiber/stainless steel wire mesh reinforced epoxy hybrid composites

    Energy Technology Data Exchange (ETDEWEB)

    N, Karunagaran [S.K.P Engineering College, Tiruvannamalai (India); A, Rajadurai [Anna University, Chennai (India)

    2016-06-15

    This paper investigates the effect of surface treatment for glass fiber, stainless steel wire mesh on tensile, flexural, inter-laminar shear and impact properties of glass fiber/stainless steel wire mesh reinforced epoxy hybrid composites. The glass fiber fabric is surface treated either by 1 N solution of sulfuric acid or 1 N solution of sodium hydroxide. The stainless steel wire mesh is also surface treated by either electro dissolution or sand blasting. The hybrid composites are fabricated using epoxy resin reinforced with glass fiber and fine stainless steel wire mesh by hand lay-up technique at room temperature. The hybrid composite consisting of acid treated glass fiber and sand blasted stainless steel wire mesh exhibits a good combination of tensile, flexural, inter-laminar shear and impact behavior in comparison with the composites made without any surface treatment. The fine morphological modifications made on the surface of the glass fiber and stainless steel wire mesh enhances the bonding between the resin and reinforcement which inturn improved the tensile, flexural, inter-laminar shear and impact properties.

  4. A study on the fabrication of superhydrophobic iron surfaces by chemical etching and galvanic replacement methods and their anti-icing properties

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kunquan, E-mail: likunquan1987@gmail.com; Zeng, Xingrong, E-mail: psxrzeng@gmail.com; Li, Hongqiang, E-mail: hqli1979@gmail.com; Lai, Xuejun, E-mail: msxjlai@scut.edu.cn

    2015-08-15

    Graphical abstract: - Highlights: • Superhydrophobic iron surfaces were prepared by etching and replacement method. • The fabrication process was simple, time-saving and inexpensive. • Galvanic replacement method was more favorable to create roughness on iron surface. • The superhydrophobic iron surface showed excellent anti-icing properties. - Abstract: Hierarchical structures on iron surfaces were constructed by means of chemical etching by hydrochloric acid (HCl) solution or the galvanic replacement by silver nitrate (AgNO{sub 3}) solution. The superhydrophobic iron surfaces were successfully prepared by subsequent hydrophobic modification with stearic acid. The superhydrophobic iron surfaces were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and water contact angle (WCA). The effects of reactive concentration and time on the microstructure and the wetting behavior were investigated. In addition, the anti-icing properties of the superhydrophobic iron surfaces were also studied. The FTIR study showed that the stearic acid was chemically bonded onto the iron surface. With the HCl concentration increase from 4 mol/L to 8 mol/L, the iron surface became rougher with a WCA ranging from 127° to 152°. The AgNO{sub 3} concentration had little effect on the wetting behavior, but a high AgNO{sub 3} concentration caused Ag particle aggregates to transform from flower-like formations into dendritic crystals, owing to the preferential growth direction of the Ag particles. Compared with the etching method, the galvanic replacement method on the iron surface more favorably created roughness required for achieving superhydrophobicity. The superhydrophobic iron surface showed excellent anti-icing properties in comparison with the untreated iron. The icing time of water droplets on the superhydrophobic surface was delayed to 500 s, which was longer than that of 295 s for

  5. Evaluating non-stick properties of different surface materials for contact frying

    DEFF Research Database (Denmark)

    Ashokkumar, Saranya; Adler-Nissen, Jens

    2011-01-01

    to evaluate non-stick and cleaning properties of the coatings. In accordance with industry standards pancake was selected as the food model for the non-stick properties. The performance of different frying surfaces (stainless steel, aluminium, PTFE (polytetrafluoroethylene) and three ceramic coatings with two...... on their non-stick properties, so that the smoother surfaces gave a higher force of adhesion between pancake and surface....

  6. Mechanical properties of ion implanted ceramic surfaces

    International Nuclear Information System (INIS)

    Burnett, P.J.

    1985-01-01

    This thesis investigates the mechanisms by which ion implantation can affect those surface mechanical properties of ceramics relevant to their tribological behaviour, specifically hardness and indentation fracture. A range of model materials (including single crystal Si, SiC, A1 2 0 3 , Mg0 and soda-lime-silica glass) have been implanted with a variety of ion species and at a range of ion energies. Significant changes have been found in both low-load microhardness and indentation fracture behaviour. The changes in hardness have been correlated with the evolution of an increasingly damaged and eventually amorphous thin surface layer together with the operation of radiation-, solid-solution- and precipitation-hardening mechanisms. Compressive surface stresses have been shown to be responsible for the observed changes in identation fracture behaviour. In addition, the levels of surface stress present have been correlated with the structure of the surface layer and a simple quantitative model proposed to explain the observed stress-relief upon amorphisation. Finally, the effects of ion implantation upon a range of polycrystalline ceramic materials has been investigated and the observed properties modifications compared and contrasted to those found for the model single crystal materials. (author)

  7. Improvement of carbon fibre surface properties using electron beam irradiation

    International Nuclear Information System (INIS)

    Eddy Segura Pino; Luci Diva Brocardo Machado; Claudia Giovedi

    2006-01-01

    dose rate of 44.81 kGy·s -1 to obtain equal entrance-equal exit dose in the sample. Overall doses applied were 20, 50, 80, 100, 200, 300, 400 and 500 kGy. EB radiation was applied on the carbon fiber itself before preparing test specimens. Blank samples for mechanical test were made with carbon fiber rovings that were not irradiated. Tensile strength measurements were carried out with resin-impregnated thermal cured specimens according to ASTM D4018, to overcome the difficulties to perform mechanical tests directly with carbon filaments. For impregnation, the resin formulation was commercial epoxy, a hardner and an accelerator for thermally cured. Tensile measurements were performed using an Instron Universal testing machine model 4206 with extensometer in accordance to ASTM E 83. SEM micrographs of the fiber surfaces from fractured samples were obtained using a scanning electron microscope model JXA-6400 (JEOL). Experimental results have shown that EB irradiation improved the tensile strength of carbon fibers samples.The behavior of the mechanical performance as a function of radiation dose is presented in Figure 1. The maximum value in tensile strength (7%) was reached at about 250 kGy, in comparison with the tensile strength of carbon fiber roving samples without irradiation. For samples irradiated with doses over 250 kGy, the values of tensile strength decrease, possibly due to degradation of the sizing material. These results indicate modifications on the carbon fiber surface characteristics and improvement in the fiber-matrix adhesion properties. After breakage, the morphology aspect of the tensile specimens prepared with irradiated and non-irradiated carbon fibers were evaluated. Test specimens from non-irradiated carbon fibers presented a highly scattered aspect with many separated filaments giving a very disordered aspect. On the other hand, test specimens prepared from irradiated carbon fiber have shown a more organized morphology, with high number of

  8. Laser modification of macroscopic properties of metal surface layer

    Science.gov (United States)

    Kostrubiec, Franciszek

    1995-03-01

    Surface laser treatment of metals comprises a number of diversified technological operations out of which the following can be considered the most common: oxidation and rendering surfaces amorphous, surface hardening of steel, modification of selected physical properties of metal surface layers. In the paper basic results of laser treatment of a group of metals used as base materials for electric contacts have been presented. The aim of the study was to test the usability of laser treatment from the viewpoint of requirements imposed on materials for electric contacts. The results presented in the paper refer to two different surface treatment technologies: (1) modification of infusible metal surface layer: tungsten and molybdenum through laser fusing of their surface layer and its crystallization, and (2) modification of surface layer properties of other metals through laser doping of their surface layer with foreign elements. In the paper a number of results of experimental investigations obtained by the team under the author's supervision are presented.

  9. Effects of Surface Modification of MWCNT on the Mechanical and Electrical Properties of Fluoro Elastomer/MWCNT Nanocomposites

    Directory of Open Access Journals (Sweden)

    Tao Xu

    2012-01-01

    Full Text Available Surface modification is a good way to improve the surface activity and interfacial strength of multiwalled carbon nanotubes (MWCNTs when used as fillers in the polymer composites. Among the reported methods for nanotube modification, mixed acid oxidation and plasma treatment is often used by introducing polar groups to the sidewall of MWCNT successfully. The purpose of this study is to evaluate the effect of different surface modification of MWCNT on the mechanical property and electrical conductivity of Fluoro-elastomer (FE/MWCNT nanocomposites. MWCNTs were surface modified by mixed oxidation and CF4 plasma treatment and then used to reinforce the fluoro elastomer (FE, a copolymer of trifluorochloroethylene and polyvinylidene fluoride. FE/MWCNT composite films were prepared from mixture solutions of ethylacetate and butylacetate, using untreated CNTs (UCNTs, acid-modified CNTs (ACNTs, and CF4 plasma-modified CNT (FCNTs. In each case, MWCNT content was 0.01 wt%, 0.05 wt%, 0.1 wt%, and 0.2 wt% with respect to the polymer. Morphology and mechanical properties were characterized by using scanning electron microscopy (SEM, Raman spectroscopy, as well as dynamic mechanical tests. The SEM results indicated that dispersion of ACNTs and especially FCNTs in FE was better than that of UCNTs. DMA indicated mechanical properties of FCNT composites were improved over ACNT and UCNT filled FE. The resulting electrical properties of the composites ranged from dielectric behavior to bulk conductivities of 10-2 Sm-1 and were found to depend strongly on the surface modification methods of MWCNTs.

  10. Effects of surface atomistic modification on mechanical properties of gold nanowires

    International Nuclear Information System (INIS)

    Sun, Xiao-Yu; Xu, Yuanjie; Wang, Gang-Feng; Gu, Yuantong; Feng, Xi-Qiao

    2015-01-01

    Highlights: • Molecular dynamics simulations of surface modification effect of Au nanowires. • Surface modification can greatly affect the mechanical properties of nanowires. • Core–shell model is used to elucidate the effect of residual surface stress. - Abstract: Modulation of the physical and mechanical properties of nanowires is a challenging issue for their technological applications. In this paper, we investigate the effects of surface modification on the mechanical properties of gold nanowires by performing molecular dynamics simulations. It is found that by modifying a small density of silver atoms to the surface of a gold nanowire, the residual surface stress state can be altered, rendering a great improvement of its plastic yield strength. This finding is in good agreement with experimental measurements. The underlying physical mechanisms are analyzed by a core–shell nanowire model. The results are helpful for the design and optimization of advanced nanomaterial with superior mechanical properties

  11. Structural and electronic properties of hydrosilylated silicon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Baumer, A.

    2005-11-15

    The structural and electronic properties of alkyl-terminated Si surfaces prepared by thermallyinduced hydrosilylation have been studied in detail in the preceding chapters. Various surfaces have been used for the functionalization ranging from crystalline Si over amorphous hydrogenated Si to nanoscaled materials such as Si nanowires and nanoparticles. In each case, the alkyl-terminated surfaces have been compared to the native oxidized and H-terminated surfaces. (orig.)

  12. A study of hydrogen environment effects on microstructure property behavior of NASA-23 alloy and related alloy systems

    Science.gov (United States)

    Diwan, Ravinder M.

    1990-01-01

    This work is part of the overall advanced main combustion chamber (AMCC) casting characterization program of the Materials and Processes Laboratory of the Marshall Space Flight Center. The influence of hydrogen on the tensile properties and ductility behavior of NASA-23 alloy were analyzed. NASA-23 and other referenced alloys in cast and hipped conditions were solution treated and aged under selected conditions and characterized using optical metallography, scanning electron microscopy, and electron microprobe analysis techniques. The yield strength of NASA-23 is not affected much by hydrogen under tensile tests carried at 5000 psig conditions; however, the ultimate strength and ductility properties are degraded. This implies that the physical mechanisms operating would be related to the plastic deformation process. The fracture surfaces characteristics of NASA-23 specimens tensile tested in hydrogen, helium, and air were also analyzed. These revealed surface cracks around specimen periphery with the fracture surface showing a combination of intergranular and transgranular modes of fracture. It is seen that the specimens charged in hydrogen seem to favor a more brittle fracture mode in comparison to air and helium charged specimens. The AMCC casting characterization program is to be analyzed for their hydrogen behavior. As a result of this program, the basic microstructural factors and fracture characteristics in some cases were analyzed.

  13. The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects

    International Nuclear Information System (INIS)

    Yan, Z; Jiang, L Y

    2011-01-01

    In this work, the influence of surface effects, including residual surface stress, surface elasticity and surface piezoelectricity, on the vibrational and buckling behaviors of piezoelectric nanobeams is investigated by using the Euler-Bernoulli beam theory. The surface effects are incorporated by applying the surface piezoelectricity model and the generalized Young-Laplace equations. The results demonstrate that surface effects play a significant role in predicting these behaviors. It is found that the influence of the residual surface stress and the surface piezoelectricity on the resonant frequencies and the critical electric potential for buckling is more prominent than the surface elasticity. The nanobeam boundary conditions are also found to influence the surface effects on these parameters. This study also shows that the resonant frequencies can be tuned by adjusting the applied electrical load. The present study is envisaged to provide useful insights for the design and applications of piezoelectric-beam-based nanodevices.

  14. A study on the fabrication of superhydrophobic iron surfaces by chemical etching and galvanic replacement methods and their anti-icing properties

    Science.gov (United States)

    Li, Kunquan; Zeng, Xingrong; Li, Hongqiang; Lai, Xuejun

    2015-08-01

    Hierarchical structures on iron surfaces were constructed by means of chemical etching by hydrochloric acid (HCl) solution or the galvanic replacement by silver nitrate (AgNO3) solution. The superhydrophobic iron surfaces were successfully prepared by subsequent hydrophobic modification with stearic acid. The superhydrophobic iron surfaces were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and water contact angle (WCA). The effects of reactive concentration and time on the microstructure and the wetting behavior were investigated. In addition, the anti-icing properties of the superhydrophobic iron surfaces were also studied. The FTIR study showed that the stearic acid was chemically bonded onto the iron surface. With the HCl concentration increase from 4 mol/L to 8 mol/L, the iron surface became rougher with a WCA ranging from 127° to 152°. The AgNO3 concentration had little effect on the wetting behavior, but a high AgNO3 concentration caused Ag particle aggregates to transform from flower-like formations into dendritic crystals, owing to the preferential growth direction of the Ag particles. Compared with the etching method, the galvanic replacement method on the iron surface more favorably created roughness required for achieving superhydrophobicity. The superhydrophobic iron surface showed excellent anti-icing properties in comparison with the untreated iron. The icing time of water droplets on the superhydrophobic surface was delayed to 500 s, which was longer than that of 295 s for untreated iron. Meanwhile, the superhydrophobic iron surface maintained superhydrophobicity after 10 icing and de-icing cycles in cold conditions.

  15. Tribological properties of nanostripe surface structures-a design concept for improving tribological properties

    International Nuclear Information System (INIS)

    Miyake, K; Nakano, M; Korenaga, A; Mano, H; Ando, Y

    2010-01-01

    The tribological properties of nanostripe surface structures were investigated using a pin-on-plate tribometer in order to propose a design concept for improving the tribological properties. The authors used four kinds of nanostripe structures consisting of different combinations of materials (Fe-Au, C-SiC, Al-Al 2 O 3 and Al-Pt) fabricated by a process they had previously proposed. The frictional properties of the nanostripe structures depended on the materials that constituted the nanostripes. When the sliding direction in friction tests was parallel to the microgrooves, nanostripe structures remained on all surfaces even after friction tests. Based on the friction test results, the authors considered a design concept for nanostripe structures in tribological applications.

  16. Impurities and Electronic Property Variations of Natural MoS 2 Crystal Surfaces

    KAUST Repository

    Addou, Rafik; McDonnell, Stephen; Barrera, Diego; Guo, Zaibing; Azcatl, Angelica; Wang, Jian; Zhu, Hui; Hinkle, Christopher L.; Quevedo-Lopez, Manuel; Alshareef, Husam N.; Colombo, Luigi; Hsu, Julia W P; Wallace, Robert M.

    2015-01-01

    Room temperature X-ray photoelectron spectroscopy (XPS), inductively coupled plasma mass spectrometry (ICPMS), high resolution Rutherford backscattering spectrometry (HR-RBS), Kelvin probe method, and scanning tunneling microscopy (STM) are employed to study the properties of a freshly exfoliated surface of geological MoS2 crystals. Our findings reveal that the semiconductor 2H-MoS2 exhibits both n- and p-type behavior, and the work function as measured by the Kelvin probe is found to vary from 4.4 to 5.3 eV. The presence of impurities in parts-per-million (ppm) and a surface defect density of up to 8% of the total area could explain the variation of the Fermi level position. High resolution RBS data also show a large variation in the MoSx composition (1.8 < x < 2.05) at the surface. Thus, the variation in the conductivity, the work function, and stoichiometry across small areas of MoS2 will have to be controlled during crystal growth in order to provide high quality uniform materials for future device fabrication. © 2015 American Chemical Society.

  17. Impurities and Electronic Property Variations of Natural MoS 2 Crystal Surfaces

    KAUST Repository

    Addou, Rafik

    2015-09-22

    Room temperature X-ray photoelectron spectroscopy (XPS), inductively coupled plasma mass spectrometry (ICPMS), high resolution Rutherford backscattering spectrometry (HR-RBS), Kelvin probe method, and scanning tunneling microscopy (STM) are employed to study the properties of a freshly exfoliated surface of geological MoS2 crystals. Our findings reveal that the semiconductor 2H-MoS2 exhibits both n- and p-type behavior, and the work function as measured by the Kelvin probe is found to vary from 4.4 to 5.3 eV. The presence of impurities in parts-per-million (ppm) and a surface defect density of up to 8% of the total area could explain the variation of the Fermi level position. High resolution RBS data also show a large variation in the MoSx composition (1.8 < x < 2.05) at the surface. Thus, the variation in the conductivity, the work function, and stoichiometry across small areas of MoS2 will have to be controlled during crystal growth in order to provide high quality uniform materials for future device fabrication. © 2015 American Chemical Society.

  18. Emphasizing the role of surface chemistry on hydrophobicity and cell adhesion behavior of polydimethylsiloxane/TiO2 nanocomposite films.

    Science.gov (United States)

    Yousefi, Seyedeh Zahra; Tabatabaei-Panah, Pardis-Sadat; Seyfi, Javad

    2018-07-01

    Improving the bioinertness of materials is of great importance for developing biomedical devices that contact human tissues. The main goal of this study was to establish correlations among surface morphology, roughness and chemistry with hydrophobicity and cell adhesion in polydimethylsiloxane (PDMS) nanocomposites loaded with titanium dioxide (TiO 2 ) nanoparticles. Firstly, wettability results showed that the nanocomposite loaded with 30 wt.% of TiO 2 exhibited a superhydrophobic behavior; however, the morphology and roughness analysis proved that there was no discernible difference between the surface structures of samples loaded with 20 and 30 wt.% of nanoparticles. Both cell culture and MTT assay experiments showed that, despite the similarity between the surface structures, the sample loaded with 30 wt.% nanoparticles exhibits the greatest reduction in the cell viability (80%) as compared with the pure PDMS film. According to the X-ray photoelectron spectroscopy results, the remarkable reduction in cell viability of the superhydrophobic sample could be majorly attributed to the role of surface chemistry. The obtained results emphasize the importance of adjusting the surface properties especially surface chemistry to gain the optimum cell adhesion behavior. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. A review of the surface features and properties, surfactant adsorption and floatability of four key minerals of diasporic bauxite resources.

    Science.gov (United States)

    Zhang, Ningning; Nguyen, Anh V; Zhou, Changchun

    2018-04-01

    Diasporic bauxite represents one of the major aluminum resources. Its upgrading for further processing involves a separation of diaspore (the valuable mineral) from aluminosilicates (the gangue minerals) such as kaolinite, illite, and pyrophyllite. Flotation is one of the most effective ways to realize the upgrading. Since flotation is a physicochemical process based on the difference in the surface hydrophobicity of different components, determining the adsorption characteristics of various flotation surfactants on the mineral surfaces is critical. The surfactant adsorption properties of the minerals, in turn, are controlled by the surface chemistry of the minerals, while the latter is related to the mineral crystal structures. In this paper, we first discuss the crystal structures of the four key minerals of diaspore, kaolinite, illite, and pyrophyllite as well as the broken bonds on their exposed surfaces after grinding. Next, we summarize the surface chemistry properties such as surface wettability and surface electrical properties of the four minerals, and the differences in these properties are explained from the perspective of mineral crystal structures. Then we review the adsorption mechanism and adsorption characteristics of surfactants such as collectors (cationic, anionic, and mixed surfactants), depressants (inorganic and organic), dispersants, and flocculants on these mineral surfaces. The separation of diaspore and aluminosilicates by direct flotation and reverse flotation are reviewed, and the collecting properties of different types of collectors are compared. Furthermore, the abnormal behavior of the cationic flotation of kaolinite is also explained in this section. This review provides a strong theoretical support for the optimization of the upgrading of diaspore bauxite ore by flotation and the early industrialization of the reverse flotation process. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Reflection properties of road surfaces. Contribution to OECD Scientific Expert Group AC4 on Road Surface Characteristics.

    NARCIS (Netherlands)

    Schreuder, D.A.

    1983-01-01

    Photometric characteristics of road surfaces are dealt with. Representation of reflection properties in public lighting; quality criteria of road lighting installations; classification of road surfaces; the relation between reflection characteristics and other properties of road pavements in public

  1. Wetting characteristics of 3-dimensional nanostructured fractal surfaces

    Science.gov (United States)

    Davis, Ethan; Liu, Ying; Jiang, Lijia; Lu, Yongfeng; Ndao, Sidy

    2017-01-01

    This article reports the fabrication and wetting characteristics of 3-dimensional nanostructured fractal surfaces (3DNFS). Three distinct 3DNFS surfaces, namely cubic, Romanesco broccoli, and sphereflake were fabricated using two-photon direct laser writing. Contact angle measurements were performed on the multiscale fractal surfaces to characterize their wetting properties. Average contact angles ranged from 66.8° for the smooth control surface to 0° for one of the fractal surfaces. The change in wetting behavior was attributed to modification of the interfacial surface properties due to the inclusion of 3-dimensional hierarchical fractal nanostructures. However, this behavior does not exactly obey existing surface wetting models in the literature. Potential applications for these types of surfaces in physical and biological sciences are also discussed.

  2. Acid-base behavior of the gaspeite (NiCO3(s)) surface in NaCl solutions.

    Science.gov (United States)

    Villegas-Jiménez, Adrián; Mucci, Alfonso; Pokrovsky, Oleg S; Schott, Jacques

    2010-08-03

    Gaspeite is a low reactivity, rhombohedral carbonate mineral and a suitable surrogate to investigate the surface properties of other more ubiquitous carbonate minerals, such as calcite, in aqueous solutions. In this study, the acid-base properties of the gaspeite surface were investigated over a pH range of 5 to 10 in NaCl solutions (0.001, 0.01, and 0.1 M) at near ambient conditions (25 +/- 3 degrees C and 1 atm) by means of conventional acidimetric and alkalimetric titration techniques and microelectrophoresis. Over the entire experimental pH range, surface protonation and electrokinetic mobility are strongly affected by the background electrolyte, leading to a significant decrease of the pH of zero net proton charge (PZNPC) and the pH of isoelectric point (pH(iep)) at increasing NaCl concentrations. This challenges the conventional idea that carbonate mineral surfaces are chemically inert to background electrolyte ions. Multiple sets of surface complexation reactions (i.e., ionization and ion adsorption) were formulated within the framework of three electrostatic models (CCM, BSM, and TLM) and their ability to simulate proton adsorption and electrokinetic data was evaluated. A one-site, 3-pK, constant capacitance surface complexation model (SCM) reproduces the proton adsorption data at all ionic strengths and qualitatively predicts the electrokinetic behavior of gaspeite suspensions. Nevertheless, the strong ionic strength dependence exhibited by the optimized SCM parameters reveals that the influence of the background electrolyte on the surface reactivity of gaspeite is not fully accounted for by conventional electrostatic and surface complexation models and suggests that future refinements to the underlying theories are warranted.

  3. Modification of Textile Materials' Surface Properties Using Chemical Softener

    Directory of Open Access Journals (Sweden)

    Jurgita KOŽENIAUSKIENĖ

    2011-03-01

    Full Text Available In the present study the effect of technological treatment involving the processes of washing or washing and softening with chemical cationic softener "Surcase" produced in Great Britain on the surface properties of cellulosic textile materials manufactured from cotton, bamboo and viscose spun yarns was investigated. The changes in textile materials surface properties were evaluated using KTU-Griff-Tester device and FEI Quanta 200 FEG scanning electron microscope (SEM. It was observed that the worst hand properties and the higher surface roughness are observed of cotton materials if compared with those of bamboo and viscose materials. Also, it was shown that depending on the material structure the handle parameters of knitted materials are the better than the ones of woven fabrics.http://dx.doi.org/10.5755/j01.ms.17.1.249

  4. Biomechanical Properties of Murine Meniscus Surface via AFM-based Nanoindentation

    Science.gov (United States)

    Li, Qing; Doyran, Basak; Gamer, Laura W.; Lu, X. Lucas; Qin, Ling; Ortiz, Christine; Grodzinsky, Alan J.; Rosen, Vicki; Han, Lin

    2015-01-01

    This study aimed to quantify the biomechanical properties of murine meniscus surface. Atomic force microscopy (AFM)-based nanoindentation was performed on the central region, proximal side of menisci from 6- to 24-week old male C57BL/6 mice using microspherical tips (Rtip ≈ 5 μm) in PBS. A unique, linear correlation between indentation depth, D, and response force, F, was found on menisci from all age groups. This non-Hertzian behavior is likely due to the dominance of tensile resistance by the collagen fibril bundles on meniscus surface that are mostly aligned along the circumferential direction observed on 12-week old menisci. The indentation resistance was calculated as both the effective stiffness, Sind = dF/dD, and the effective modulus, Eind, via the isotropic Hertz model. Values of Sind and Eind were found to depend on indentation rate, suggesting the existence of poro-viscoelasticity. These values do not significantly vary with anatomical sites, lateral versus medial compartments, or mouse age. In addition, Eind of meniscus surface (e.g., 6.1 ± 0.8 MPa for 12 weeks of age, mean ± SEM, n = 13) was found to be significantly higher than those of meniscus surfaces in other species, and of murine articular cartilage surface (1.4 ± 0.1 MPa, n = 6). In summary, these results provided the first direct mechanical knowledge of murine knee meniscus tissues. We expect this understanding to serve as a mechanics-based benchmark for further probing the developmental biology and osteoarthritis symptoms of meniscus in various murine models. PMID:25817332

  5. Thermodynamic and surface properties of liquid Co–Cr–Ni alloys

    International Nuclear Information System (INIS)

    Costa, C.; Delsante, S.; Borzone, G.; Zivkovic, D.; Novakovic, R.

    2014-01-01

    Highlights: • The liquid phases of Co–Cr, Co–Ni and Cr–Ni were modelled by the Quasi Chemical Approximation for regular solutions. • The excess Gibbs free energy of mixing of the liquid Co–Cr–Ni phase is estimated by the three thermodynamic models. • Prediction of structure can compensate the lack of structural data of Co–Cr, Co–Ni and Cr–Ni melts. • Thermodynamic modelling of the surface properties of Co–Cr–Ni melts. • Weak effects of short range ordering among nearest neighbours in Co–Cr, Co–Ni and Cr–Ni liquid alloys can be deduced. -- Abstract: Direct measurements of bulk and surface properties of liquid alloys at elevated temperatures are often technically difficult or even impossible, and therefore, theoretical models can be used to estimate missing property values. The energetics of mixing in liquid Co–Cr, Cr–Ni and Co–Ni systems has been analysed through the study of the concentration dependence of various thermodynamic, surface (surface tension and surface composition) and structural properties (concentration fluctuations in the long-wavelength limit and chemical short-range order parameter) by the first or the Quasi-Chemical Approximation (QCA) for regular solutions, developed by Bhatia and Singh, in the framework of statistical mechanical theory in conjunction with the Quasi-Lattice Theory (QLT). The results obtained for these binary systems have been extended to study the thermodynamics and surface properties of ternary Co–Cr–Ni liquid alloys

  6. Effects of local mechanical and fracture properties on LBB behavior of a dissimilar metal welded joint in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Du, L.Y.; Wang, G.Z., E-mail: gzwang@ecust.edu.cn; Xuan, F.Z.; Tu, S.T.

    2013-12-15

    Highlights: • Effect of local mechanical and fracture properties on LBB behavior were investigated. • Considering local mechanical properties leads to slightly high LBB curve. • Use of fracture resistance of base or weld will produce non-conservative LBB result. • Local fracture properties of interface region cannot be ignored in LBB analysis. - Abstract: In this paper, three-dimensional finite element models with and without considering local mechanical properties were built for a dissimilar metal welded joint (DMWJ) connected the safe end to pipe-nozzle of a reactor pressure vessel. The inner circumferential surface cracks were postulated at the interface of A508 steel and buttering Alloy52Mb. Based on the elastic–plastic fracture mechanics theory of J-integral, the crack growth stability was analyzed. The effects of the local mechanical and fracture resistance properties on LBB behavior were investigated. The results show that considering local mechanical properties leads to slightly high LBB curve. For the A508/Alloy52Mb interface region cracks in the DMWJ, if the fracture resistance curve of base metal A508 or the buttering Alloy52Mb is used, the non-conservative (unsafe) LBB assessment result will be produced. With increasing the applied bending moment, the degree of un-conservatism in LBB behavior becomes large. Therefore, to obtain accurate LBB assessment results, the local fracture resistance properties of the interface region should be used.

  7. Surface Structures and Thermal Desorption Behaviors of Cyclopentanethiol Self-Assembled Monolayers on Au(111)

    International Nuclear Information System (INIS)

    Kang, Hun Gu; Kim, You Young; Park, Tae Sun; Noh, Jae Geun; Park, Joon B.; Ito, Eisuke; Hara, Masahiko

    2011-01-01

    The surface structures, adsorption conditions, and thermal desorption behaviors of cyclopentanethiol (CPT) self-assembled monolayers (SAMs) on Au(111) were investigated by scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and thermal desorption spectroscopy (TDS). STM imaging revealed that although the adsorption of CPT on Au(111) at room temperature generates disordered SAMs, CPT molecules at 50 .deg. C formed well-ordered SAMs with a (2√3 x √5)R41".deg. packing structure. XPS measurements showed that CPT SAMs at room temperature were formed via chemical reactions between the sulfur atoms and gold surfaces. TDS measurements showed two dominant TD peaks for the decomposed fragments (C_5H_9 "+, m/e = 69) generated via C-S bond cleavage and the parent molecular species (C_5H_9SH"+, m/e = 102) derived from a recombination of the chemisorbed thiolates and hydrogen atoms near 440 K. Interestingly, dimerization of sulfur atoms in n-alkanethiol SAMs usually occurs during thermal desorption and the same reaction did not happen for CPT SAMs, which may be due to the steric hindrance of cyclic rings of the CPT molecules. In this study, we demonstrated that the alicyclic ring of organic thiols strongly affected the surface structure and thermal desorption behavior of SAMs, thus providing a good method for controlling chemical and physical properties of organic thiol SAMs

  8. Dislocation behavior of surface-oxygen-concentration controlled Si wafers

    International Nuclear Information System (INIS)

    Asazu, Hirotada; Takeuchi, Shotaro; Sannai, Hiroya; Sudo, Haruo; Araki, Koji; Nakamura, Yoshiaki; Izunome, Koji; Sakai, Akira

    2014-01-01

    We have investigated dislocation behavior in the surface area of surface-oxygen-concentration controlled Si wafers treated by a high temperature rapid thermal oxidation (HT-RTO). The HT-RTO process allows us to precisely control the interstitial oxygen concentration ([O i ]) in the surface area of the Si wafers. Sizes of rosette patterns, generated by nano-indentation and subsequent thermal annealing at 900 °C for 1 h, were measured for the Si wafers with various [O i ]. It was found that the rosette size decreases in proportion to the − 0.25 power of [O i ] in the surface area of the Si wafers, which were higher than [O i ] of 1 × 10 17 atoms/cm 3 . On the other hand, [O i ] of lower than 1 × 10 17 atoms/cm 3 did not affect the rosette size very much. These experimental results demonstrate the ability of the HT-RTO process to suppress the dislocation movements in the surface area of the Si wafer. - Highlights: • Surface-oxygen-concentration controlled Si wafers have been made. • The oxygen concentration was controlled by high temperature rapid thermal oxidation. • Dislocation behavior in the surface area of the Si wafers has been investigated. • Rosette size decreased with increasing of interstitial oxygen atoms. • The interstitial oxygen atoms have a pinning effect of dislocations at the surface

  9. Unravelling merging behaviors and electrostatic properties of CVD-grown monolayer MoS2 domains

    International Nuclear Information System (INIS)

    Hao, Song; Yang, Bingchu; Gao, Yongli

    2016-01-01

    The presence of grain boundaries is inevitable for chemical vapor deposition (CVD)-grown MoS 2 domains owing to various merging behaviors, which greatly limits its potential applications in novel electronic and optoelectronic devices. It is therefore of great significance to unravel the merging behaviors of the synthesized polygon shape MoS 2 domains. Here we provide systematic investigations of merging behaviors and electrostatic properties of CVD-grown polycrystalline MoS 2 crystals by multiple means. Morphological results exhibit various polygon shape features, ascribed to polycrystalline crystals merged with triangle shape MoS 2 single crystals. The thickness of triangle and polygon shape MoS 2 crystals is identical manifested by Raman intensity and peak position mappings. Three merging behaviors are proposed to illustrate the formation mechanisms of observed various polygon shaped MoS 2 crystals. The combined photoemission electron microscopy and kelvin probe force microscopy results reveal that the surface potential of perfect merged crystals is identical, which has an important implication for fabricating MoS 2 -based devices.

  10. Ergodic properties and thermodynamic behavior of elementary reversible cellular automata. I. Basic properties

    International Nuclear Information System (INIS)

    Takesue, Shinji

    1989-01-01

    This is the first part of a series devoted to the study of thermodynamic behavior of large dynamical systems with the use of a family of full-discrete and conservative models named elementary reversible cellular automata (ERCAs). In this paper, basic properties such as conservation laws and phase space structure are investigated in preparation for the later studies. ERCAs are a family of one-dimensional reversible cellular automata having two Boolean variables on each site. Reflection and Boolean conjugation symmetries divide them into 88 equivalence classes. For each rule, additive conserved quantities written in a certain form are regarded as a kind of energy, if they exist. By the aid of the discreteness of the variables, every ERCA satisfies the Liouville theorem or the preservation of phase space volume. Thus, if an energy exists in the above sense, statistical mechanics of the model can formally be constructed. If a locally defined quantity is conserved, however, it prevents the realization of statistical mechanics. The existence of such a quantity is examined for each class and a number of rules which have at least one energy but no local conservation laws are selected as hopeful candidates for the realization of thermodynamic behavior. In addition, the phase space structure of ERCAs is analyzed by enumerating cycles exactly in the phase space for systems of comparatively small sizes. As a result, it is revealed that a finite ERCA is not ergodic, that is, a large number of orbits coexist on an energy surface. It is argued that this fact does not necessarily mean the failure of thermodynamic behavior on the basis of an analogy with the ergodic nature of infinite systems

  11. Influence of the structural properties on the pseudocritical magnetic behavior of single-wall ferromagnetic nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Salazar-Enriquez, C.D. [PCM Computational Applications, Universidad Nacional de Colombia - Sede Manizales, A.A. 127 Manizales (Colombia); Restrepo-Parra, E., E-mail: erestrepopa@unal.edu.co [PCM Computational Applications, Universidad Nacional de Colombia - Sede Manizales, A.A. 127 Manizales (Colombia); Restrepo, J. [Grupo de Magnetismo y Simulacion Gplus, Instituto de Fisica, Universidad de Antioquia, A.A. 1226 Medellin (Colombia)

    2012-04-15

    In this work we address the influence of the crystalline structure, concretely when the system under study is formed by square or hexagonal unit cells, upon the magnetic properties and pseudocritical behavior of single-wall ferromagnetic nanotubes. We focus not only on the effect of the geometrical shape of the unit cell but also on their dimensions. The model employed is based on the Monte Carlo method, the Metropolis dynamics and a nearest neighbors classical Heisenberg Hamiltonian. Magnetization per magnetic site, magnetic susceptibility, specific heat and magnetic energy were computed. These properties were computed varying the system size, unit cell dimension and temperature. The dependence of the nearest neighbor exchange integral on the nanotubes geometrical characteristics is also discussed. Results revealed a strong influence of the system topology on the magnetic properties caused by the difference in the coordination number between square and hexagonal unit cell. Moreover, the nanotubes diameter influence on magnetic properties is only observed at very low values, when the distance between atoms is less than it, presented by the 2D sheet. On the other hand, it was concluded that the surface-related finite-size effects do not influence the magnetic nanotubes properties, contrary to the case of other nano-systems as thin films and nanoparticles among others. - Highlights: Black-Right-Pointing-Pointer Unit cell geometry has strong influence on the magnetic properties in ferromagnetic nanotubes. Black-Right-Pointing-Pointer The nanotube diameter increase produces a decrease of interaction between nearest neighbor. Black-Right-Pointing-Pointer Surface-related finite-size effects do not influence the magnetic nanotubes properties.

  12. Influence of the structural properties on the pseudocritical magnetic behavior of single-wall ferromagnetic nanotubes

    International Nuclear Information System (INIS)

    Salazar-Enríquez, C.D.; Restrepo-Parra, E.; Restrepo, J.

    2012-01-01

    In this work we address the influence of the crystalline structure, concretely when the system under study is formed by square or hexagonal unit cells, upon the magnetic properties and pseudocritical behavior of single-wall ferromagnetic nanotubes. We focus not only on the effect of the geometrical shape of the unit cell but also on their dimensions. The model employed is based on the Monte Carlo method, the Metropolis dynamics and a nearest neighbors classical Heisenberg Hamiltonian. Magnetization per magnetic site, magnetic susceptibility, specific heat and magnetic energy were computed. These properties were computed varying the system size, unit cell dimension and temperature. The dependence of the nearest neighbor exchange integral on the nanotubes geometrical characteristics is also discussed. Results revealed a strong influence of the system topology on the magnetic properties caused by the difference in the coordination number between square and hexagonal unit cell. Moreover, the nanotubes diameter influence on magnetic properties is only observed at very low values, when the distance between atoms is less than it, presented by the 2D sheet. On the other hand, it was concluded that the surface-related finite-size effects do not influence the magnetic nanotubes properties, contrary to the case of other nano-systems as thin films and nanoparticles among others. - Highlights: ► Unit cell geometry has strong influence on the magnetic properties in ferromagnetic nanotubes. ► The nanotube diameter increase produces a decrease of interaction between nearest neighbor. ► Surface-related finite-size effects do not influence the magnetic nanotubes properties.

  13. Surface correlation behaviors of metal-organic Langmuir-Blodgett films on differently passivated Si(001) surfaces

    Science.gov (United States)

    Bal, J. K.; Kundu, Sarathi

    2013-03-01

    Langmuir-Blodgett films of standard amphiphilic molecules like nickel arachidate and cadmium arachidate are grown on wet chemically passivated hydrophilic (OH-Si), hydrophobic (H-Si), and hydrophilic plus hydrophobic (Br-Si) Si(001) surfaces. Top surface morphologies and height-difference correlation functions g(r) with in-plane separation (r) are obtained from the atomic force microscopy studies. Our studies show that deposited bilayer and trilayer films have self-affine correlation behavior irrespective of different passivations and different types of amphiphilic molecules, however, liquid like correlation coexists only for a small part of r, which is located near the cutoff length (1/κ) or little below the correlation length ξ obtained from the liquid like and self-affine fitting, respectively. Thus, length scale dependent surface correlation behavior is observed for both types of Langmuir-Blodgett films. Metal ion specific interactions (ionic, covalent, etc.,) in the headgroup and the nature of the terminated bond (polar, nonpolar, etc.,) of Si surface are mainly responsible for having different correlation parameters.

  14. Effect of surface modified kaolin on properties of polypropylene grafted maleic anhydride

    Science.gov (United States)

    Yang, Ni; Zhang, Zuo-Cai; Ma, Ning; Liu, Huan-Li; Zhan, Xue-Qing; Li, Bing; Gao, Wei; Tsai, Fang-Chang; Jiang, Tao; Chang, Chang-Jung; Chiang, Tai-Chin; Shi, Dean

    To achieve reinforcement of mechanical and thermal performances of polypropylene (PP) product, this work aimed at fabrication of surface modified kaolin (M-kaolin) filled polypropylene grafted maleic anhydride (PP-g-MAH) composites with varying contents of fillers and investigation of their mechanical and thermal properties. And the prepared PP-g-MAH/M-kaolin composites were characterized by means of Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). Fracture analysis by SEM showed M-kaolin particles were well dispersed in the PP-g-MAH matrix. Mechanical behaviors were determined by tensile strength, tensile strain at break and impact strength analysis. Impact strength of PP-g-MAH/2 wt% M-kaolin composites was improved up to 30% comparing with unfilled composites. Thermostability had been found enhanced when M-kaolin added. The results revealed PP-g-MAH/M-kaolin composites showed the optimal thermal and mechanical properties when 2 wt% of M-kaolin was added.

  15. Effects of surface functionalization on the electronic and structural properties of carbon nanotubes: A computational approach

    Science.gov (United States)

    Ribeiro, M. S.; Pascoini, A. L.; Knupp, W. G.; Camps, I.

    2017-12-01

    Carbon nanotubes (CNTs) have important electronic, mechanical and optical properties. These features may be different when comparing a pristine nanotube with other presenting its surface functionalized. These changes can be explored in areas of research and application, such as construction of nanodevices that act as sensors and filters. Following this idea, in the current work, we present the results from a systematic study of CNT's surface functionalized with hydroxyl and carboxyl groups. Using the entropy as selection criterion, we filtered a library of 10k stochastically generated complexes for each functional concentration (5, 10, 15, 20 and 25%). The structurally related parameters (root-mean-square deviation, entropy, and volume/area) have a monotonic relationship with functionalization concentration. Differently, the electronic parameters (frontier molecular orbital energies, electronic gap, molecular hardness, and electrophilicity index) present and oscillatory behavior. For a set of concentrations, the nanotubes present spin polarized properties that can be used in spintronics.

  16. Characterizing the statistical properties of protein surfaces

    Science.gov (United States)

    Bak, Ji Hyun; Bitbol, Anne-Florence; Bialek, William

    Proteins and their interactions form the body of the signaling transduction pathway in many living systems. In order to ensure the accuracy as well as the specificity of signaling, it is crucial that proteins recognize their correct interaction partners. How difficult, then, is it for a protein to discriminate its correct interaction partner(s) from the possibly large set of other proteins it may encounter in the cell? An important ingredient of recognition is shape complementarity. The ensemble of protein shapes should be constrained by the need for maintaining functional interactions while avoiding spurious ones. To address this aspect of protein recognition, we consider the ensemble of proteins in terms of the shapes of their surfaces. We take into account the high-resolution structures of E.coli non-DNA-binding cytoplasmic proteins, retrieved from the Protein Data Bank. We aim to characterize the statistical properties of the protein surfaces at two levels: First, we study the intrinsic dimensionality at the level of the ensemble of the surface objects. Second, at the level of the individual surfaces, we determine the scale of shape variation. We further discuss how the dimensionality of the shape space is linked to the statistical properties of individual protein surfaces. Jhb and WB acknowledge support from National Science Foundation Grants PHY-1305525 and PHY-1521553. AFB acknowledges support from the Human Frontier Science Program.

  17. Surface effects on the mechanical properties of nanoporous materials

    International Nuclear Information System (INIS)

    Lu Zixing; Zhang Cungang; Liu Qiang; Yang Zhenyu

    2011-01-01

    In this paper, surface effects on the mechanical behaviour of nanoporous materials are investigated using the theory of surface elasticity and Timoshenko beam theory based on the tetrakaidecahedron (or Kelvin) open-cell foam model. Meanwhile, the influence of surface elasticity and residual surface stress on the mechanical properties of nanoporous materials is discussed. In addition, the results derived from the theory of Euler-Bernoulli beam model are also provided for comparison. Theoretical results show that the effective Young's modulus of the nanoporous materials increases as the diameter of the strut decreases, but in contrast Poisson's ratio and the brittle collapse strength decrease with the diameter of the strut. The contribution of shear deformation to surface effects on elastic properties is more significant, while the surface effects on brittle collapse strength are not sensitive to shear deformation, and it can even be neglected. As the strut size increases, the present results can be reduced to the cases without considering surface effects, which verifies the efficiency of the present model to a certain extent.

  18. Near surface mechanical properties of optical single crystals and surface response to deterministic microgrinding

    Science.gov (United States)

    Randi, Joseph A., III

    2005-12-01

    This thesis makes use of microindentation, nanoindentation and nanoscratching methods to better understand the mechanical properties of single crystalline silicon, calcium fluoride, and magnesium fluoride. These properties are measured and are used to predict the material's response to material removal, specifically by grinding and polishing, which is a combination of elastic, plastic and fracture processes. The hardness anisotropy during Knoop microindentation, hardness from nanoindentation, and scratch morphology from nanoscratching are reported. This information is related to the surface microroughness from grinding. We show that mechanical property relationships that predict the surface roughness from lapping and deterministic microgrinding of optical glasses are applicable to single crystals. We show the range of hardness from some of the more common crystallographic faces. Magnesium fluoride, having a tetragonal structure, has 2-fold hardness anisotropy. Nanoindentation, as expected provides higher hardness than microindentation, but anisotropy is not observed. Nanoscratching provides the scratch profile during loading, after the load has been removed, and the coefficient of friction during the loading. Ductile and brittle mode scratching is present with brittle mode cracking being orientation specific. Subsurface damage (SSD) measurements are made using a novel process known as the MRF technique. Magnetorheological finishing is used to polish spots into the ground surface where SSD can be viewed. SSD is measured using an optical microscope and knowledge of the spot profile. This technique is calibrated with a previous technique and implemented to accurately measure SSD in single crystals. The data collected are compared to the surface microroughness of the ground surface, resulting in an upper bound relationship. The results indicate that SSD is always less than 1.4 times the peak-to-valley surface microroughness for single crystals regardless of the

  19. Effects of Surface Treatments of Montmorillonite Nanoclay on Cure Behavior of Diglycidyl Ether of Bisphenol A Epoxy Resin

    International Nuclear Information System (INIS)

    Tcherbi-Narteh, A.; Hosur, M.V.; Triggs, E.; Jelaani, S.

    2013-01-01

    Diglycidyl ether of Bisphenol A (DGEBA) based SC-15 epoxy resin was modified with three different commercially available montmorillonite (MMT) nanoclay: Nanomer I.28E and Cloisite 10A and 30B. Cure behavior of nanocomposites was studied using a variety of techniques. Primary focus of this study was to investigate influence of different surface modifications of MMT nanoclay on rheological properties and cure behavior of SC-15 epoxy resin. By adding MMT to SC-15 epoxy resin, chemistry of the epoxy is altered leading to changes in rheological properties and ultimately enthalpy and activation energy of reactions. Addition of Nanomer I.28E delayed gelation, while Cloisite 10A and 30B accelerated gelation, regardless of the curing temperature. Activation energy of reaction was lower with the addition of Nanomer I.28E and Cloisite 10A and higher for Cloisite 30B compared to neat SC-15 epoxy composite.

  20. Surface properties of CNTs and their interaction with silica.

    Science.gov (United States)

    Sobolkina, Anastasia; Mechtcherine, Viktor; Bellmann, Cornelia; Khavrus, Vyacheslav; Oswald, Steffen; Hampel, Silke; Leonhardt, Albrecht

    2014-01-01

    In order to improve the embedding of carbon nanotubes (CNTs) in cement-based matrices, silica was deposited on the sidewall of CNTs by a sol-gel method. Knowledge of the conditions of CNTs' surfaces is a key issue in understanding the corresponding interaction mechanisms. In this study various types of CNTs synthesized using acetonitrile, cyclohexane, and methane were investigated with regard to their physicochemical surface properties. Significant differences in surface polarity as well as in the wetting properties of the CNTs, depending on the precursors used, were revealed by combining electro-kinetic potential and contact angle measurements. The hydrophobicity of CNTs decreases by utilising the carbon sources in the following order: cyclohexane, methane, and finally acetonitrile. The XPS analysis, applied to estimate the chemical composition at the CNT surface, showed nitrogen atoms incorporated into the tube structure by using acetonitrile as a carbon source. It was found that the simultaneous presence of nitrogen- and/or oxygen-containing sites with different acid-base properties increased the surface polarity of the CNTs, imparting amphoteric characteristics to them and improving their wetting behaviour. Regarding the silica deposition, strong differences in adsorption capacity of the CNTs were observed. The mechanism of silica adsorption through interfacial bond formation was discussed. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Novel procedure to enhance PLA surface properties by chitosan irreversible immobilization

    Science.gov (United States)

    Stoleru, Elena; Dumitriu, Raluca Petronela; Munteanu, Bogdanel Silvestru; Zaharescu, Traian; Tănase, Elisabeta Elena; Mitelut, Amalia; Ailiesei, Gabriela-Liliana; Vasile, Cornelia

    2016-03-01

    A novel two step procedure was applied for poly(lactic acid) (PLA) functionalization consisting in the exposure to cold radiofrequency plasma in nitrogen atmosphere or to gamma irradiation followed by ;grafting to; of a chitosan layer using carbodiimide chemistry. The adhesion and stability of the deposited surface layer was assured by plasma/gamma irradiation treatment while the chitosan layer offers antifungal/antibacterial/antioxidant activities. Chitosan with different viscosities/deacetylation degree was deposited by electrospinning or immersion methods. Correlations between rheological behavior of chitosan solutions and chitosan layer deposition conditions are made. The PLA surface properties were investigated by water contact angle measurements, ATR-FTIR spectroscopy, AFM, chemiluminiscence, etc. It has been established that the surface roughness increases direct proportional with cold plasma duration and gamma irradiation dose and further increases by chitosan coating which at its turn depends on chitosan characteristics (viscosity and deacetylation degree) and method of deposition. Nano-fibers with relatively homogeneous and reproducible features are obtained by electrospinning of highly viscous chitosan while with the other two types of chitosan both microparticles and nano-fibers are formed. The chitosan coating obtained by immersion is more homogenous and compact and has a better antibacterial activity than the electrospun layer as fiber meshes.

  2. Using surfaces, ligands, and dimensionality to obtain desired nanostructure properties

    Science.gov (United States)

    Nagpal, Prashant; Singh, Vivek; Ding, Yuchen

    2014-03-01

    Nanostructured materials are intensively investigated to obtain material properties different from their bulk counterparts. It has been demonstrated that nanoscaled semiconductor can have interesting size, shape and morphology dependent optoelectronic properties. But the effect of surfaces, ligands and dimensionality (0D quantum dots to 2D nanosheets) has been largely unexplored. Here, we will show how tuning the surface and dimensionality can affect the electronic states of the semiconductor, and how these states can play an important role in their fundamental photophysical properties or thermal transport. Using the specific case for silicon, we will show how ``new'' surface states in small uniform can lead to light absorption/emission without phonon assistance, while hindering the phonon-drag of charge carriers leading to low Seebeck coefficient for thermoelectric applications. These measurements will shed light on designing appropriate surface, size, and dimensionality for desired applications of nanostructured films.

  3. Surface properties of adsorption layers formed from triterpenoid and steroid saponins

    NARCIS (Netherlands)

    Pagureva, N.; Tcholakova, S.; Golemanov, K.; Denkov, N.; Pelan, E.; Stoyanov, S.D.

    2016-01-01

    Saponins are natural surfactants with non-trivial surface and aggregation properties which find numerous important applications in several areas (food, pharma, cosmetic and others). In the current paper we study the surface properties of ten saponin extracts, having different molecular structure

  4. Surface chemistry and bonding configuration of ultrananocrystalline diamond surfaces and their effects on nanotribological properties

    International Nuclear Information System (INIS)

    Sumant, A. V.; Grierson, D. S.; Carpick, R. W.; Gerbi, J. E.; Carlisle, J. A.; Auciello, O.

    2007-01-01

    We present a comprehensive study of surface composition and nanotribology for ultrananocrystalline diamond (UNCD) surfaces, including the influence of film nucleation on these properties. We describe a methodology to characterize the underside of the films as revealed by sacrificial etching of the underlying substrate. This enables the study of the morphology and composition resulting from the nucleation and initial growth of the films, as well as the characterization of nanotribological properties which are relevant for applications including micro-/nanoelectromechanical systems. We study the surface chemistry, bonding configuration, and nanotribological properties of both the topside and the underside of the film with synchrotron-based x-ray absorption near-edge structure spectroscopy to identify the bonding state of the carbon atoms, x-ray photoelectron spectroscopy to determine the surface chemical composition, Auger electron spectroscopy to further verify the composition and bonding configuration, and quantitative atomic force microscopy to study the nanoscale topography and nanotribological properties. The films were grown on SiO 2 after mechanically polishing the surface with detonation synthesized nanodiamond powder, followed by ultrasonication in a methanol solution containing additional nanodiamond powder. The sp 2 fraction, morphology, and chemistry of the as-etched underside are distinct from the topside, exhibiting a higher sp 2 fraction, some oxidized carbon, and a smoother morphology. The nanoscale single-asperity work of adhesion between a diamond nanotip and the as-etched UNCD underside is far lower than for a silicon-silicon interface (59.2±2 vs 826±186 mJ/m 2 , respectively). Exposure to atomic hydrogen dramatically reduces nanoscale adhesion to 10.2±0.4 mJ/m 2 , at the level of van der Waals' interactions and consistent with recent ab initio calculations. Friction is substantially reduced as well, demonstrating a direct link between the

  5. Thermodynamic properties of water solvating biomolecular surfaces

    Science.gov (United States)

    Heyden, Matthias

    Changes in the potential energy and entropy of water molecules hydrating biomolecular interfaces play a significant role for biomolecular solubility and association. Free energy perturbation and thermodynamic integration methods allow calculations of free energy differences between two states from simulations. However, these methods are computationally demanding and do not provide insights into individual thermodynamic contributions, i.e. changes in the solvent energy or entropy. Here, we employ methods to spatially resolve distributions of hydration water thermodynamic properties in the vicinity of biomolecular surfaces. This allows direct insights into thermodynamic signatures of the hydration of hydrophobic and hydrophilic solvent accessible sites of proteins and small molecules and comparisons to ideal model surfaces. We correlate dynamic properties of hydration water molecules, i.e. translational and rotational mobility, to their thermodynamics. The latter can be used as a guide to extract thermodynamic information from experimental measurements of site-resolved water dynamics. Further, we study energy-entropy compensations of water at different hydration sites of biomolecular surfaces. This work is supported by the Cluster of Excellence RESOLV (EXC 1069) funded by the Deutsche Forschungsgemeinschaft.

  6. Silver nanowire/polyaniline composite transparent electrode with improved surface properties

    International Nuclear Information System (INIS)

    Kumar, A.B.V. Kiran; Jiang, Jianwei; Bae, Chang Wan; Seo, Dong Min; Piao, Longhai; Kim, Sang-Ho

    2014-01-01

    Highlights: • AgNWs/PANI transparent electrode was prepared by layer-by-layer coating method. • The surface roughness of the electrode reached to 6.5 nm (root mean square). • The electrode had reasonable sheet resistance (25 Ω/□) and transmittance (83.5%). - Abstract: Silver nanowires (AgNWs) are as potential candidates to replace indium tin oxide (ITO) in transparent electrodes because of their preferred conducting and optical properties. However, their rough surface properties are not favorable for the fabrication of optoelectronic devices, such as displays and thin-film solar cells. In the present investigation, AgNWs/polyaniline composite transparent electrodes with better surface properties were successfully prepared. AgNWs were incorporated into polyaniline:polystyrene sulfonate (PANI:PSS) by layer-by-layer coating and mechanical pressing. PANI:PSS decreased the surface roughness of the AgNWs electrode by filling the gap of the random AgNWs network. The transparent composite electrode had decreased surface roughness (root mean square 6.5 nm) with reasonable sheet resistance (25 Ω/□) and transmittance (83.5%)

  7. Solder wetting behavior enhancement via laser-textured surface microcosmic topography

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Haiyan [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072 (China); Shaanxi Key Laboratory of Friction Welding Technologies, Xi’an 710072 (China); Peng, Jianke [Shaanxi Key Laboratory of Friction Welding Technologies, Xi’an 710072 (China); Fu, Li, E-mail: fuli@nwpu.edu.cn [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072 (China); Shaanxi Key Laboratory of Friction Welding Technologies, Xi’an 710072 (China); Wang, Xincheng [Shaanxi Key Laboratory of Friction Welding Technologies, Xi’an 710072 (China); Xie, Yan [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China)

    2016-04-15

    Graphical abstract: - Highlights: • The wetting angle of lead free solder on Cu was reduced by surface microstructure. • The wetting form of Sn-Ag-Cu solder on Cu was “non-composite surface”. • The experimental results had a sound fit with the theoretical calculation. - Abstract: In order to reduce or even replace the use of Sn-Pb solder in electronics industry, the laser-textured surface microstructures were used to enhance the wetting behavior of lead free solder during soldering. According to wetting theory and Sn-Ag-Cu lead free solder performance, we calculated and designed four microcosmic structures with the similar shape and different sizes to control the wetting behavior of lead free solder. The micro-structured surfaces with different dimensions were processed on copper plates by fiber femtosecond laser, and the effect of microstructures on wetting behavior was verified experimentally. The results showed that the wetting angle of Sn-Ag-Cu solder on the copper plate with microstructures decreased effectively compared with that on the smooth copper plate. The wetting angles had a sound fit with the theoretical values calculated by wetting model. The novel method provided a feasible route for adjusting the wetting behavior of solders and optimizing solders system.

  8. A theoretical model on surface electronic behavior: Strain effect

    International Nuclear Information System (INIS)

    Qin, W.G.; Shaw, D.

    2009-01-01

    Deformation from mechanical loading can affect surface electronic behavior. Surface deformation and electronic behavior can be quantitatively expressed using strain and work function, respectively, and their experimental relationship can be readily determined using the Kelvin probing technique. However, the theoretical correlation between work function and strain has been unclear. This study reports our theoretical exploration, for the first time, of the effect of strain on work function. We propose a simple electrostatic action model by considering the effect of a dislocation on work function of a one-dimensional lattice and further extend this model to the complex conditions for the effect of dislocation density. Based on this model, we established successfully a theoretical correlation between work function and strain.

  9. Dynamic superhydrophobic behavior in scalable random textured polymeric surfaces

    Science.gov (United States)

    Moreira, David; Park, Sung-hoon; Lee, Sangeui; Verma, Neil; Bandaru, Prabhakar R.

    2016-03-01

    Superhydrophobic (SH) surfaces, created from hydrophobic materials with micro- or nano- roughness, trap air pockets in the interstices of the roughness, leading, in fluid flow conditions, to shear-free regions with finite interfacial fluid velocity and reduced resistance to flow. Significant attention has been given to SH conditions on ordered, periodic surfaces. However, in practical terms, random surfaces are more applicable due to their relative ease of fabrication. We investigate SH behavior on a novel durable polymeric rough surface created through a scalable roll-coating process with varying micro-scale roughness through velocity and pressure drop measurements. We introduce a new method to construct the velocity profile over SH surfaces with significant roughness in microchannels. Slip length was measured as a function of differing roughness and interstitial air conditions, with roughness and air fraction parameters obtained through direct visualization. The slip length was matched to scaling laws with good agreement. Roughness at high air fractions led to a reduced pressure drop and higher velocities, demonstrating the effectiveness of the considered surface in terms of reduced resistance to flow. We conclude that the observed air fraction under flow conditions is the primary factor determining the response in fluid flow. Such behavior correlated well with the hydrophobic or superhydrophobic response, indicating significant potential for practical use in enhancing fluid flow efficiency.

  10. Molecular Dynamics Simulation for Surface and Transport Properties of Fluorinated Silica Nanoparticles in Water or Decane: Application to Gas Recovery Enhancement

    Directory of Open Access Journals (Sweden)

    Sepehrinia Kazem

    2017-05-01

    Full Text Available Determination of surface and transport properties of nanoparticles (NPs is essential for a variety of applications in enhanced oil and gas recoveries. In this paper, the impact of the surface chemistry of silica NPs on their hydro- and oleo-phobic properties as well as their transport properties are investigated in water or decane using molecular dynamics simulation. Trifluoromethyl or pentafluoroethyl groups as water and oil repellents are placed on the NPs. It is found that the density and residence time of liquid molecules around the NPs are modulated considerably with the existence of the functional groups on the NPs’ surfaces. Also, much larger density fluctuations for liquids close to the surface of the NPs are observed when the number of the groups on the NPs increases, indicating increased hydrophobicity. In addition, the diffusion coefficient of the NPs in either water or decane increases with increasing the number or length of the fluorocarbon chains, demonstrating non-Brownian behavior for the NPs. The surface chemistry imparts a considerable contribution on the diffusion coefficient of the NPs. Finally, potential of mean force calculations are undertaken. It is observed that the free energy of adsorption of the NPs on a mineral surface is more favorable than that of the aggregation of the NPs, which suggests the NPs adsorb preferably on the mineral surface.

  11. Surface Structures and Thermal Desorption Behaviors of Cyclopentanethiol Self-Assembled Monolayers on Au(111)

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hun Gu; Kim, You Young; Park, Tae Sun; Noh, Jae Geun [Hanyang University, Seoul (Korea, Republic of); Park, Joon B. [Chonbuk National University, Jeonju (Korea, Republic of); Ito, Eisuke; Hara, Masahiko [RIKEN-HYU Collaboration Center, Saitama (Japan)

    2011-04-15

    The surface structures, adsorption conditions, and thermal desorption behaviors of cyclopentanethiol (CPT) self-assembled monolayers (SAMs) on Au(111) were investigated by scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and thermal desorption spectroscopy (TDS). STM imaging revealed that although the adsorption of CPT on Au(111) at room temperature generates disordered SAMs, CPT molecules at 50 .deg. C formed well-ordered SAMs with a (2√3 x √5)R41{sup .}deg. packing structure. XPS measurements showed that CPT SAMs at room temperature were formed via chemical reactions between the sulfur atoms and gold surfaces. TDS measurements showed two dominant TD peaks for the decomposed fragments (C{sub 5}H{sub 9} {sup +}, m/e = 69) generated via C-S bond cleavage and the parent molecular species (C{sub 5}H{sub 9}SH{sup +}, m/e = 102) derived from a recombination of the chemisorbed thiolates and hydrogen atoms near 440 K. Interestingly, dimerization of sulfur atoms in n-alkanethiol SAMs usually occurs during thermal desorption and the same reaction did not happen for CPT SAMs, which may be due to the steric hindrance of cyclic rings of the CPT molecules. In this study, we demonstrated that the alicyclic ring of organic thiols strongly affected the surface structure and thermal desorption behavior of SAMs, thus providing a good method for controlling chemical and physical properties of organic thiol SAMs.

  12. Unravelling merging behaviors and electrostatic properties of CVD-grown monolayer MoS{sub 2} domains

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Song; Yang, Bingchu, E-mail: bingchuyang@csu.edu.cn [College of Physics and Electronics, Institute of Super Microstructure and Ultrafast Process in Advanced Materials, Central South University, 605 South Lushan Road, Changsha 410012 (China); Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, Central South University, 932 South Lushan Road, Changsha 410012 (China); Gao, Yongli [College of Physics and Electronics, Institute of Super Microstructure and Ultrafast Process in Advanced Materials, Central South University, 605 South Lushan Road, Changsha 410012 (China); Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, Central South University, 932 South Lushan Road, Changsha 410012 (China); Department of Physics and Astronomy, University of Rochester, Rochester, New York 14534 (United States)

    2016-08-28

    The presence of grain boundaries is inevitable for chemical vapor deposition (CVD)-grown MoS{sub 2} domains owing to various merging behaviors, which greatly limits its potential applications in novel electronic and optoelectronic devices. It is therefore of great significance to unravel the merging behaviors of the synthesized polygon shape MoS{sub 2} domains. Here we provide systematic investigations of merging behaviors and electrostatic properties of CVD-grown polycrystalline MoS{sub 2} crystals by multiple means. Morphological results exhibit various polygon shape features, ascribed to polycrystalline crystals merged with triangle shape MoS{sub 2} single crystals. The thickness of triangle and polygon shape MoS{sub 2} crystals is identical manifested by Raman intensity and peak position mappings. Three merging behaviors are proposed to illustrate the formation mechanisms of observed various polygon shaped MoS{sub 2} crystals. The combined photoemission electron microscopy and kelvin probe force microscopy results reveal that the surface potential of perfect merged crystals is identical, which has an important implication for fabricating MoS{sub 2}-based devices.

  13. Properties of water surface discharge at different pulse repetition rates

    International Nuclear Information System (INIS)

    Ruma,; Yoshihara, K.; Hosseini, S. H. R.; Sakugawa, T.; Akiyama, H.; Akiyama, M.; Lukeš, P.

    2014-01-01

    The properties of water surface discharge plasma for variety of pulse repetition rates are investigated. A magnetic pulse compression (MPC) pulsed power modulator able to deliver pulse repetition rates up to 1000 Hz, with 0.5 J per pulse energy output at 25 kV, was used as the pulsed power source. Positive pulse with a point-to-plane electrode configuration was used for the experiments. The concentration and production yield of hydrogen peroxide (H 2 O 2 ) were quantitatively measured and orange II organic dye was treated, to evaluate the chemical properties of the discharge reactor. Experimental results show that the physical and chemical properties of water surface discharge are not influenced by pulse repetition rate, very different from those observed for under water discharge. The production yield of H 2 O 2 and degradation rate per pulse of the dye did not significantly vary at different pulse repetition rates under a constant discharge mode on water surface. In addition, the solution temperature, pH, and conductivity for both water surface and underwater discharge reactors were measured to compare their plasma properties for different pulse repetition rates. The results confirm that surface discharge can be employed at high pulse repetition rates as a reliable and advantageous method for industrial and environmental decontamination applications.

  14. Novel procedure to enhance PLA surface properties by chitosan irreversible immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Stoleru, Elena; Dumitriu, Raluca Petronela [Petru Poni Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, 41A, 700487 Iasi (Romania); Munteanu, Bogdanel Silvestru [“Al. I. Cuza” University, Faculty of Physics, 11 Carol I Blvd., 700506 Iasi (Romania); Zaharescu, Traian [INCDIE ICPE CA, Bucharest (Romania); Tănase, Elisabeta Elena; Mitelut, Amalia [Industrial Biotechnology Department, Faculty of Biotechnology – USAMV Bucharest (Romania); Ailiesei, Gabriela-Liliana [Petru Poni Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, 41A, 700487 Iasi (Romania); Vasile, Cornelia, E-mail: cvasile@icmpp.ro [Petru Poni Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, 41A, 700487 Iasi (Romania)

    2016-03-30

    Graphical abstract: - Highlights: • PLA requires functionalization prior to surface attaching chitosan. • Chitosan with different molecular weights was grafted onto PLA surface. • Antibacterial, antifungal, antioxidant PLA-based materials are obtained. • Nano-fibers coatings obtained by electrospinning of high molecular weight chitosan. - Abstract: A novel two step procedure was applied for poly(lactic acid) (PLA) functionalization consisting in the exposure to cold radiofrequency plasma in nitrogen atmosphere or to gamma irradiation followed by “grafting to” of a chitosan layer using carbodiimide chemistry. The adhesion and stability of the deposited surface layer was assured by plasma/gamma irradiation treatment while the chitosan layer offers antifungal/antibacterial/antioxidant activities. Chitosan with different viscosities/deacetylation degree was deposited by electrospinning or immersion methods. Correlations between rheological behavior of chitosan solutions and chitosan layer deposition conditions are made. The PLA surface properties were investigated by water contact angle measurements, ATR-FTIR spectroscopy, AFM, chemiluminiscence, etc. It has been established that the surface roughness increases direct proportional with cold plasma duration and gamma irradiation dose and further increases by chitosan coating which at its turn depends on chitosan characteristics (viscosity and deacetylation degree) and method of deposition. Nano-fibers with relatively homogeneous and reproducible features are obtained by electrospinning of highly viscous chitosan while with the other two types of chitosan both microparticles and nano-fibers are formed. The chitosan coating obtained by immersion is more homogenous and compact and has a better antibacterial activity than the electrospun layer as fiber meshes.

  15. Surface-enhanced chiroptical spectroscopy with superchiral surface waves.

    Science.gov (United States)

    Pellegrini, Giovanni; Finazzi, Marco; Celebrano, Michele; Duò, Lamberto; Biagioni, Paolo

    2018-07-01

    We study the chiroptical properties of one-dimensional photonic crystals supporting superchiral surface waves by introducing a simple formalism based on the Fresnel reflection matrix. We show that the proposed framework provides useful insights on the behavior of all the relevant chiroptical quantities, allowing for a deeper understanding of surface-enhanced chiral sensing platforms based on one-dimensional photonic crystals. Finally, we analyze and discuss the limitations of such platforms as the surface concentration of the target chiral analytes is gradually increased. © 2018 Wiley Periodicals, Inc.

  16. Hemoglobin bioconjugates with surface-protected gold nanoparticles in aqueous media: The stability depends on solution pH and protein properties.

    Science.gov (United States)

    Del Caño, Rafael; Mateus, Lucia; Sánchez-Obrero, Guadalupe; Sevilla, José Manuel; Madueño, Rafael; Blázquez, Manuel; Pineda, Teresa

    2017-11-01

    The identification of the factors that dictate the formation and physicochemical properties of protein-nanomaterial bioconjugates are important to understand their behavior in biological systems. The present work deals with the formation and characterization of bioconjugates made of the protein hemoglobin (Hb) and gold nanoparticles (AuNP) capped with three different molecular layers (citrate anions (c), 6-mercaptopurine (MP) and ω-mercaptoundecanoic acid (MUA)). The main focus is on the behavior of the bioconjugates in aqueous buffered solutions in a wide pH range. The stability of the bioconjugates have been studied by UV-visible spectroscopy by following the changes in the localized surface resonance plasmon band (LSRP), Dynamic light scattering (DLS) and zeta-potential pH titrations. It has been found that they are stable in neutral and alkaline solutions and, at pH lower than the protein isoelectric point, aggregation takes place. Although the surface chemical properties of the AuNPs confer different properties in respect to colloidal stability, once the bioconjugates are formed their properties are dictated by the Hb protein corona. The protein secondary structure, as analyzed by Attenuated total reflectance infrared (ATR-IR) spectroscopy, seems to be maintained under the conditions of colloidal stability but some small changes in protein conformation take place when the bioconjugates aggregate. These findings highlight the importance to keep the protein structure upon interaction with nanomaterials to drive the stability of the bioconjugates. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Friction Properties of Surface-Fluorinated Carbon Nanotubes

    Science.gov (United States)

    Wal, R. L. Vander; Miyoshi, K.; Street, K. W.; Tomasek, A. J.; Peng, H.; Liu, Y.; Margrave, J. L.; Khabashesku, V. N.

    2005-01-01

    Surface modification of the tubular or sphere-shaped carbon nanoparticles through chemical treatment, e.g., fluorination, is expected to significantly affect their friction properties. In this study, a direct fluorination of the graphene-built tubular (single-walled carbon nanotubes) structures has been carried out to obtain a series of fluorinated nanotubes (fluoronanotubes) with variable C(n)F (n =2-20) stoichiometries. The friction coefficients for fluoronanotubes, as well as pristine and chemically cut nanotubes, were found to reach values as low as 0.002-0.07, according to evaluation tests run in contact with sapphire in air of about 40% relative humidity on a ball-on-disk tribometer which provided an unidirectional sliding friction motion. These preliminary results demonstrate ultra-low friction properties and show a promise in applications of surface modified nanocarbons as a solid lubricant.

  18. Membranes with Surface-Enhanced Antifouling Properties for Water Purification

    Science.gov (United States)

    Shahkaramipour, Nima; Tran, Thien N.; Ramanan, Sankara; Lin, Haiqing

    2017-01-01

    Membrane technology has emerged as an attractive approach for water purification, while mitigation of fouling is key to lower membrane operating costs. This article reviews various materials with antifouling properties that can be coated or grafted onto the membrane surface to improve the antifouling properties of the membranes and thus, retain high water permeance. These materials can be separated into three categories, hydrophilic materials, such as poly(ethylene glycol), polydopamine and zwitterions, hydrophobic materials, such as fluoropolymers, and amphiphilic materials. The states of water in these materials and the mechanisms for the antifouling properties are discussed. The corresponding approaches to coat or graft these materials on the membrane surface are reviewed, and the materials with promising performance are highlighted. PMID:28273869

  19. Influence of surface roughness on the friction property of textured surface

    Directory of Open Access Journals (Sweden)

    Yuankai Zhou

    2015-02-01

    Full Text Available In contrast with dimple textures, surface roughness is a texture at the micro-scale, essentially which will influence the load-bearing capacity of lubricant film. The numerical simulation was carried out to investigate the influence of surface roughness on friction property of textured surface. The lubricant film pressure was obtained using the method of computational fluid dynamics according to geometric model of round dimple, and the renormalization-group k–ε turbulent model was adopted in the computation. The numerical simulation results suggest that there is an optimum dimensionless surface roughness, and near this value, the maximum load-bearing capacity can be achieved. The load-bearing capacity is determined by the surface texture, the surface roughness, and the interaction between them. To get information of friction coefficient, the experiments were conducted. This experiment was used to evaluate the simulation. The experimental results show that for the frequency of 4 and 6 Hz, friction coefficient decreases at first and then increases with decreasing surface roughness, which indicates that there exists the optimum region of surface roughness leading to the best friction reduction effect, and it becomes larger when area fractions increase from 2% to 10%. The experimental results agree well with the simulation results.

  20. Hydrodynamic slip length as a surface property

    Science.gov (United States)

    Ramos-Alvarado, Bladimir; Kumar, Satish; Peterson, G. P.

    2016-02-01

    Equilibrium and nonequilibrium molecular dynamics simulations were conducted in order to evaluate the hypothesis that the hydrodynamic slip length is a surface property. The system under investigation was water confined between two graphite layers to form nanochannels of different sizes (3-8 nm). The water-carbon interaction potential was calibrated by matching wettability experiments of graphitic-carbon surfaces free of airborne hydrocarbon contamination. Three equilibrium theories were used to calculate the hydrodynamic slip length. It was found that one of the recently reported equilibrium theories for the calculation of the slip length featured confinement effects, while the others resulted in calculations significantly hindered by the large margin of error observed between independent simulations. The hydrodynamic slip length was found to be channel-size independent using equilibrium calculations, i.e., suggesting a consistency with the definition of a surface property, for 5-nm channels and larger. The analysis of the individual trajectories of liquid particles revealed that the reason for observing confinement effects in 3-nm nanochannels is the high mobility of the bulk particles. Nonequilibrium calculations were not consistently affected by size but by noisiness in the smallest systems.

  1. Effects of modified surfaces produced at plasma-facing surface on hydrogen release behavior in the LHD

    Directory of Open Access Journals (Sweden)

    Y. Nobuta

    2017-08-01

    Full Text Available In the present study, an additional deuterium (D ion irradiation was performed against long-term samples mounted on the helical coil can and in the outer private region in the LHD during the 17th experimental campaign. Based on the release behavior of the D and hydrogen (H retained during the experimental campaign, the difference of release behavior at the top surface and in bulk of modified surfaces is discussed. Almost all samples on the helical coil can were erosion-dominant and some samples were covered with boron or carbon, while a very thick carbon films were formed in the outer private region. In the erosion-dominant area, the D desorbed at much lower temperatures compared to that of H retained during the LHD plasma operation. For the samples covered with boron, the D tended to desorb at lower temperatures compared to H. For the carbon deposition samples, the D desorbed at much higher temperatures compared to no deposition and boron-covered samples, which was very similar to that of H. The D retention capabilities at the top surface of carbon and boron films were 2–3 times higher than no deposition area. The results indicate that the retention and release behavior at the top surface of the modified layer can be different from that of bulk substrate material.

  2. Determination of Surface Properties of Liquid Transition Metals

    International Nuclear Information System (INIS)

    Korkmaz, S. D.

    2008-01-01

    Certain surface properties of liquid simple metals are reported. Using the expression derived by Gosh and coworkers we investigated the surface entropy of liquid transition metals namely Fe, Co and Ni. We have also computed surface tensions of the metals concerned. The pair distribution functions are calculated from the solution of Ornstein-Zernike integral equation with Rogers-Young closure using the individual version of the electron-ion potential proposed by Fioalhais and coworkers which was originally developed for solid state. The predicted values of surface tension and surface entropy are in very good agreement with available experimental data. The present study results show that the expression derived by Gosh and coworkers is very useful for the surface entropy by using Fioalhais pseudopotential and Rogers-Young closure

  3. Wetting characteristics of 3-dimensional nanostructured fractal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Ethan, E-mail: ethan.davis4@huskers.unl.edu [Nano & Microsystems Research Laboratory, Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, W342 Nebraska Hall, Lincoln, NE 68588-0526 (United States); Liu, Ying; Jiang, Lijia; Lu, Yongfeng [Laser Assisted Nano Engineering Lab, Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, 209N Scott Engineering Center, Lincoln, NE 68588-0511 (United States); Ndao, Sidy, E-mail: sndao2@unl.edu [Nano & Microsystems Research Laboratory, Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, W342 Nebraska Hall, Lincoln, NE 68588-0526 (United States)

    2017-01-15

    Highlights: • Hierarchically structured surfaces were fabricated on the micro/nano-scale. • These structures reduced the contact angle of the inherently hydrophilic material. • Similar surfaces have applications in two-phase heat transfer and microfluidics. - Abstract: This article reports the fabrication and wetting characteristics of 3-dimensional nanostructured fractal surfaces (3DNFS). Three distinct 3DNFS surfaces, namely cubic, Romanesco broccoli, and sphereflake were fabricated using two-photon direct laser writing. Contact angle measurements were performed on the multiscale fractal surfaces to characterize their wetting properties. Average contact angles ranged from 66.8° for the smooth control surface to 0° for one of the fractal surfaces. The change in wetting behavior was attributed to modification of the interfacial surface properties due to the inclusion of 3-dimensional hierarchical fractal nanostructures. However, this behavior does not exactly obey existing surface wetting models in the literature. Potential applications for these types of surfaces in physical and biological sciences are also discussed.

  4. Wetting characteristics of 3-dimensional nanostructured fractal surfaces

    International Nuclear Information System (INIS)

    Davis, Ethan; Liu, Ying; Jiang, Lijia; Lu, Yongfeng; Ndao, Sidy

    2017-01-01

    Highlights: • Hierarchically structured surfaces were fabricated on the micro/nano-scale. • These structures reduced the contact angle of the inherently hydrophilic material. • Similar surfaces have applications in two-phase heat transfer and microfluidics. - Abstract: This article reports the fabrication and wetting characteristics of 3-dimensional nanostructured fractal surfaces (3DNFS). Three distinct 3DNFS surfaces, namely cubic, Romanesco broccoli, and sphereflake were fabricated using two-photon direct laser writing. Contact angle measurements were performed on the multiscale fractal surfaces to characterize their wetting properties. Average contact angles ranged from 66.8° for the smooth control surface to 0° for one of the fractal surfaces. The change in wetting behavior was attributed to modification of the interfacial surface properties due to the inclusion of 3-dimensional hierarchical fractal nanostructures. However, this behavior does not exactly obey existing surface wetting models in the literature. Potential applications for these types of surfaces in physical and biological sciences are also discussed.

  5. Structural, electronic and magnetic properties of Mn{sub 3}N{sub 2}(0 0 1) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero-Sánchez, J., E-mail: guerrero@ifuap.buap.mx [Department of Physics and Astronomy, Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, OH 45701 (United States); Benemérita Universidad Autónoma de Puebla, Instituto de Física “Ing Luis Rivera Terrazas”, Apartado Postal J-48, Puebla 72570 (Mexico); Mandru, Andrada-Oana; Wang, Kangkang [Department of Physics and Astronomy, Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, OH 45701 (United States); Takeuchi, Noboru [Department of Physics and Astronomy, Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, OH 45701 (United States); Centro de Nanociencias y Nanotecnologia, Universidad Nacional Autónoma de México, Apartado Postal 14, Ensenada, Baja California, Codigo Postal 22800 (Mexico); Cocoletzi, Gregorio H. [Benemérita Universidad Autónoma de Puebla, Instituto de Física “Ing Luis Rivera Terrazas”, Apartado Postal J-48, Puebla 72570 (Mexico); Smith, Arthur R. [Department of Physics and Astronomy, Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, OH 45701 (United States)

    2015-11-15

    Graphical abstract: - Abstract: Spin-polarized first-principles total energy calculations have been performed to study the structural, electronic and magnetic properties of Mn{sub 3}N{sub 2}(0 0 1) surfaces. It is found that three surface terminations are energetically stable, in agreement with previous scanning tunneling microscopy experiments that have found three different electronic contrasts in their images. It is also found that in all three cases, the topmost layer has a MnN stoichiometry. Density of states calculations show a metallic behavior for all the stable structures with the most important contribution close to the Fermi level coming from the Mn-d orbitals. Our Tersoff–Hamann scanning tunneling microscopy simulations are in good agreement with previous experimental results.

  6. Investigation of the surface adsorption and biotribological properties of mucins

    DEFF Research Database (Denmark)

    Madsen, Jan Busk

    to a surface. However, in other instances the inverse properties are desirable. Mucins are found on epithelial surfaces throughout the body and are a key component of the mucus barrier. Here, they facilitate friction reduction, thus lowering the impact of physical abrasions, but they also act as a physical...... charge due to the oligosaccharides being capped by negatively charged species such as sialic acid or sulphate groups. Mucins display phenotypic diversion according to their expression site. This is most pronounced in the oligosaccharide composition of the central domains. The amphiphilic nature of mucins...... and their aqueous lubrication properties have led to them being proposed as possible biocompatible lubricants. In this thesis, we investigate the biotribological properties of two commercially available mucins on the soft, elastomeric and hydrophobic surface of PDMS under different conditions. Due to the presence...

  7. Effective modification of particle surface properties using ultrasonic water mist

    DEFF Research Database (Denmark)

    Genina, Natalja; Räikkönen, Heikki; Heinämäki, Jyrki

    2009-01-01

    The goal of the present study was to design a new technique to modify particle surface properties and, through that, to improve flowability of poorly flowing drug thiamine hydrochloride and pharmaceutical sugar lactose monohydrate of two different grades. The powdered particles were supplied...... properties. It was found that rapid exposition of pharmaceutical materials by water mist resulted in the improvement of powder technical properties. The evident changes in flowability of coarser lactose were obviously due to smoothing of particle surface and decreasing in the level of fines with very slight...... increment in particle size. The changes in thiamine powder flow were mainly due to narrowing in particle size distribution where the tendency for better flow of finer lactose was related to surface and size modifications. The aqueous mist application did not cause any alteration of the crystal structures...

  8. Surface properties of Ti-6Al-4V alloy part I: Surface roughness and apparent surface free energy.

    Science.gov (United States)

    Yan, Yingdi; Chibowski, Emil; Szcześ, Aleksandra

    2017-01-01

    Titanium (Ti) and its alloys are the most often used implants material in dental treatment and orthopedics. Topography and wettability of its surface play important role in film formation, protein adhesion, following osseointegration and even duration of inserted implant. In this paper, we prepared Ti-6Al-4V alloy samples using different smoothing and polishing materials as well the air plasma treatment, on which contact angles of water, formamide and diiodomethane were measured. Then the apparent surface free energy was calculated using four different approaches (CAH, LWAB, O-W and Neumann's Equation of State). From LWAB approach the components of surface free energy were obtained, which shed more light on the wetting properties of samples surface. The surface roughness of the prepared samples was investigated with the help of optical profilometer and AFM. It was interesting whether the surface roughness affects the apparent surface free energy. It was found that both polar interactions the electron donor parameter of the energy and the work of water adhesion increased with decreasing roughness of the surfaces. Moreover, short time plasma treatment (1min) caused decrease in the surface hydrophilic character, while longer time (10min) treatment caused significant increase in the polar interactions and the work of water adhesion. Although Ti-6Al-4V alloy has been investigated many times, to our knowledge, so far no paper has been published in which surface roughness and changes in the surface free energy of the alloy were compared in the quantitative way in such large extent. This novel approach deliver better knowledge about the surface properties of differently smoothed and polished samples which may be helpful to facilitate cell adhesion, proliferation and mineralization. Therefore the results obtained present also potentially practical meaning. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Thermal stability, swelling behavior and CO 2 absorption properties of Nanoscale Ionic Materials (NIMs)

    KAUST Repository

    Andrew Lin, Kun-Yi

    2014-11-11

    © The Royal Society of Chemistry 2015. Nanoscale Ionic Materials (NIMs) consist of a nanoscale core, a corona of charged brushes tethered on the surface of the core, and a canopy of the oppositely charged species linked to the corona. Unlike conventional polymeric nanocomposites, NIMs can display liquid-like behavior in the absence of solvents, have a negligible vapor pressure and exhibit unique solvation properties. These features enable NIMs to be a promising CO2 capture material. To optimize NIMs for CO2 capture, their structure-property relationships were examined by investigating the roles of the canopy and the core in their thermal stability, and thermally- and CO2-induced swelling behaviors. NIMs with different canopy sizes and core fractions were synthesized and their thermal stability as well as thermally- and CO2-induced swelling behaviors were determined using thermogravimetry, and ATR FT-IR and Raman spectroscopies. It was found that the ionic bonds between the canopy and the corona, as well as covalent bonds between the corona and the core significantly improved the thermal stability compared to pure polymer and polymer/nanofiller mixtures. A smaller canopy size and a larger core fraction led to a greater enhancement in thermal stability. This thermal stability enhancement was responsible for the long-term thermal stability of NIMs over 100 temperature swing cycles. Owing to their ordered structure, NIMs swelled less when heated or when they adsorbed CO2 compared to their corresponding polymers. This journal is

  10. Thermal stability, swelling behavior and CO 2 absorption properties of Nanoscale Ionic Materials (NIMs)

    KAUST Repository

    Andrew Lin, Kun-Yi; Park, Youngjune; Petit, Camille; Park, Ah-Hyung Alissa

    2014-01-01

    © The Royal Society of Chemistry 2015. Nanoscale Ionic Materials (NIMs) consist of a nanoscale core, a corona of charged brushes tethered on the surface of the core, and a canopy of the oppositely charged species linked to the corona. Unlike conventional polymeric nanocomposites, NIMs can display liquid-like behavior in the absence of solvents, have a negligible vapor pressure and exhibit unique solvation properties. These features enable NIMs to be a promising CO2 capture material. To optimize NIMs for CO2 capture, their structure-property relationships were examined by investigating the roles of the canopy and the core in their thermal stability, and thermally- and CO2-induced swelling behaviors. NIMs with different canopy sizes and core fractions were synthesized and their thermal stability as well as thermally- and CO2-induced swelling behaviors were determined using thermogravimetry, and ATR FT-IR and Raman spectroscopies. It was found that the ionic bonds between the canopy and the corona, as well as covalent bonds between the corona and the core significantly improved the thermal stability compared to pure polymer and polymer/nanofiller mixtures. A smaller canopy size and a larger core fraction led to a greater enhancement in thermal stability. This thermal stability enhancement was responsible for the long-term thermal stability of NIMs over 100 temperature swing cycles. Owing to their ordered structure, NIMs swelled less when heated or when they adsorbed CO2 compared to their corresponding polymers. This journal is

  11. Electrochemical Properties of High Surface Area Vanadium Oxide Aerogels

    National Research Council Canada - National Science Library

    Dong, Winny

    2001-01-01

    .... Traditional composite electrode structures have prevented truly quantitative analysis of surface area effects in nanoscale battery materials, as well as a study of their innate electrochemical behavior...

  12. Fluorination effects on the thermodynamic, thermophysical and surface properties of ionic liquids

    International Nuclear Information System (INIS)

    Vieira, N.S.M.; Luís, A.; Reis, P.M.; Carvalho, P.J.; Lopes-da-Silva, J.A.; Esperança, J.M.S.S.; Araújo, J.M.M.; Rebelo, L.P.N.; Freire, M.G.; Pereiro, A.B.

    2016-01-01

    Highlights: • Surface tension of fluorinated ionic liquids. • Thermophysical properties of fluorinated ionic liquids. • Thermal properties and thermodynamic functions. - Abstract: This paper reports the thermal, thermodynamic, thermophysical and surface properties of eight ionic liquids with fluorinated alkyl side chain lengths equal or greater than four carbon atoms. Melting and decomposition temperatures were determined together with experimental densities, surface tensions, refractive indices, dynamic viscosities and ionic conductivities in a temperature interval ranging from (293.15 to 353.15) K. The surface properties of these fluorinated ionic liquids were discussed and several thermodynamic functions, as well as critical temperatures, were estimated. Coefficients of isobaric thermal expansion, molecular volumes and free volume effects were calculated from experimental values of density and refractive index and compared with previous data. Finally, Walden plots were used to evaluate the ionicity of the investigated ionic liquids.

  13. Modification of surface characteristic and tribo-electric properties of polymers by DBD plasma in atmospheric air

    Science.gov (United States)

    Bekkara, Mohammed Fethi; Dascalescu, Lucien; Benmimoun, Youcef; Zeghloul, Thami; Tilmatine, Amar; Zouzou, Noureddine

    2018-01-01

    The aim of this paper is to quantify the effects of dielectric barrier discharge (DBD) exposure on the physico-chemical and tribo-electric properties of polymers. The study was conducted in atmospheric air on polypropylene, polyethylene and polyvinyl-chloride. These three types of polymers are widely used in industry. The polymers were characterized by means of an optical profilometer, a fourier-transform infrared (FTIR) spectrometer and an electric charge measurement system. The latter is composed of a Faraday pail connected to an electrometer. The profilometer analyses showed that the DBD plasma treatment has increased the surface roughness of the three polymers. FTIR revealed that oxygen atoms and polar groups were grafted on their surfaces, thereby conferring them a hydrophilic character. The short (2 sec) DBD plasma treatment has considerably improved the electrostatic charge acquired by the polymers during electrostatic tribo-charging, while longer exposures conferred the polymer anti-static properties and decreased its tribo-charging capability. The correlation between the results of the physico-chemical analyses and the tribo-electric behavior has been discussed.

  14. Poly (d/l) lactide/polycaprolactone/bioactive glasss nanocomposites materials for anterior cruciate ligament reconstruction screws: The effect of glass surface functionalization on mechanical properties and cell behaviors.

    Science.gov (United States)

    Esmaeilzadeh, Javad; Hesaraki, Saeed; Hadavi, Seyed Mohammad-Mehdi; Ebrahimzadeh, Mohammad Hosein; Esfandeh, Masoud

    2017-08-01

    In this paper, different nanocomposites made of a polymer blend (80% of PDLLA and 20% of PCL in w/w) and various amounts of a sol-gel derived bioactive glass nanoparticles (0, 1, 3 and 6wt%) were prepared using a solvent-evaporation technique. The morphology, mechanical properties and osteoblastic cell behaviors of the nanocomposites were evaluated. According to the early results, addition of bioactive glass nanoparticles to the polymer matrix reduced the tensile and flexural strength because of a non-uniform distribution of the nanoparticles. Thus, a homogeneous dispersion was obtained by surface modification of the glass nanoparticles using (3-aminopropyl)triethoxysilane as a coupling agent. The results showed that the tensile and flexural strength of the nanocomposite were improved by the nanoparticle functionalization, however the glass content was a crucial factor. The maximum tensile and flexural strength values of 38MPa and 94MPa were obtained for the polymer matrix loaded with 3wt% of the modified nanofiller and further increase of filler content led to sever agglomeration and hence a reduction of the mechanical properties. The obtained mechanical properties are favorable for anterior cruciate ligament reconstruction screws. Besides, the results of cell culture using human osteoblastic cells illustrated better cell attachment and cell growth of the nanocomposites compared to the neat polymer blend. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Behavior of GaSb (100) and InSb (100) surfaces in the presence of H{sub 2}O{sub 2} in acidic and basic cleaning solutions

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Dongwan; Na, Jihoon; Lee, Seunghyo; Lim, Sangwoo, E-mail: swlim@yonsei.ac.kr

    2017-03-31

    Highlights: • Surface behavior of GaSb and InSb was investigated in acidic and basic solutions. • H{sub 2}O{sub 2} plays a key role in the surface oxidation of GaSb and InSb in acidic hydrochloric acid/hydrogen peroxide mixture (HPM) solution. • GaSb and InSb surfaces were hardly oxidized in basic ammonium hydroxide/hydrogen peroxide mixture (APM) solution in the presence of H{sub 2}O{sub 2}. • The effect of dilution of APM solution on the oxidation of the InSb surface was minimal. • Surface characteristics of GaSb and InSb in HPM and APM solutions are mainly determined by the behaviors of the group III elements rather than the group V element. - Abstract: Gallium antimonide (GaSb) and indium antimonide (InSb) have attracted strong attention as new channel materials for transistors due to their excellent electrical properties and lattice matches with various group III–V compound semiconductors. In this study, the surface behavior of GaSb (100) and InSb (100) was investigated and compared in hydrochloric acid/hydrogen peroxide mixture (HPM) and ammonium hydroxide/hydrogen peroxide mixture (APM) solutions. In the acidic HPM solution, surface oxidation was greater and the etching rates of the GaSb and InSb surfaces increased when the solution is concentrated, which indicates that H{sub 2}O{sub 2} plays a key role in the surface oxidation of GaSb and InSb in acidic HPM solution. However, the GaSb and InSb surfaces were hardly oxidized in basic APM solution in the presence of H{sub 2}O{sub 2} because gallium and indium are in the thermodynamically stable forms of H{sub 2}GaO{sub 3}{sup −} and InO{sub 2}{sup −}, respectively. When the APM solution was diluted, however, the Ga on the GaSb surface was oxidized by H{sub 2}O, increasing the etching rate. However, the effect of dilution of the APM solution on the oxidation of the InSb surface was minimal; thus, the InSb surface was less oxidized than the GaSb surface and the change in the etching rate of In

  16. Surface properties and wetting behavior of liquid Ag-Sb-Sn alloys

    Directory of Open Access Journals (Sweden)

    Sklyarchuk V.

    2012-01-01

    Full Text Available Surface tension and density measurements of liquid Ag-Sb-Sn alloys were carried out over a wide temperature range by using the sessile drop method. The surface tension experimental data were analyzed by the Butler thermodynamic model in the regular solution approximation. The wetting characteristics of these alloys on Cu and Ni substrates have been also determined. The new experimental results were compared with the calculated values as well as with data available in the literature.

  17. Effects of surface modification with hydroxyl terminated polydimethylsiloxane on the corrosion protection of polyurethane coating

    International Nuclear Information System (INIS)

    Jeon, Jae Hong; Shon, Min Young

    2014-01-01

    Polyurethane coating was designed to give a hydrophobic property on its surface by modifying it with hydroxyl terminated polydimethylsiloxane and then effects of surface hydrophobic tendency, water transport behavior and hence corrosion protectiveness of the modified polyurethane coating were examined using FT-IR/ATR spectroscopy, contact angle measurement and electrochemical impedance test. As results, the surface of polyurethane coating was changed from hydrophilic to hydrophobic property due primarily to a phase separation tendency between polyurethane and modifier by the modification. The phase separation tendency is more appreciable when modified by polydimethylsiloxane with higher content. Water transport behavior of the modified polyurethane coating decreased more in that with higher hydrophobic surface property. The decrease in the impedance modulus ⅠZⅠ at low frequency region in immersion test for polyurethane coatings was associated with the water transport behavior and surface hydrophobic properties of modified polyurethane coatings. The corrosion protectiveness of the modified polyurethane coated carbon steel generally increased with an increase in the modifier content, confirming that corrosion protectiveness of the modified polyurethane coating is well agreed with its water transport behavior

  18. ODMBP: Behavior Forwarding for Multiple Property Destinations in Mobile Social Networks

    Directory of Open Access Journals (Sweden)

    Jia Xu

    2016-01-01

    Full Text Available The smartphones are widely available in recent years. Wireless networks and personalized mobile devices are deeply integrated and embedded in our lives. The behavior based forwarding has become a new transmission paradigm for supporting many novel applications. However, the commodities, services, and individuals usually have multiple properties of their interests and behaviors. In this paper, we profile these multiple properties and propose an Opportunistic Dissemination Protocol based on Multiple Behavior Profile, ODMBP, in mobile social networks. We first map the interest space to the behavior space and extract the multiple behavior profiles from the behavior space. Then, we propose the correlation computing model based on the principle of BM25 to calculate the correlation metric of multiple behavior profiles. The correlation metric is used to forward the message to the users who are more similar to the target in our protocol. ODMBP consists of three stages: user initialization, gradient ascent, and group spread. Through extensive simulations, we demonstrate that the proposed multiple behavior profile and correlation computing model are correct and efficient. Compared to other classical routing protocols, ODMBP can significantly improve the performance in the aspect of delivery ratio, delay, and overhead ratio.

  19. Correlation properties of surface and percolation transfer of electrons

    International Nuclear Information System (INIS)

    Bakunin, O.G.

    2002-01-01

    In this work was received equation, connecting correlatively properties of surface with electrons distribution function. Usually for equilibrium is necessary a large number of collisions. Collisions are 'destroying' correlations. In case rare collisions large importance have correlations and 'memory' effects. Non-Markov's character of emitting particles by surface lead to strongly nonequilibrium condition of 'gas'. Here kinetic equation of diffusive form does not apply. Classical kinetic equation are described only conditions near to equilibrium. This work offers to use ideas anomal diffusion in phase-space. The correlation properties of surface describe by correlations of velocities of emitting electrons: B(t). We offer to use functional equation for probability collision instead of kinetic equation: ∫ 0 ν 0 W noncoll F(ν) dv = 1 - B(t). This functional allow to consider 'memory' effects. It is important for consideration of electrons and clusters near surfaces. Distribution function become direct connected with correlations. In classical Kubo-Mory theory of transfer is necessary to get nondivergences integral: D ∝ ∫ 0 ∞ B(t). In considering case we can use even 'power function'. It was used 'slow' correlation function as Kohlraush in calculations. The information about kinetics and correlations properties are containing in one functional equation. It was received solution of this equation in form Levy function: F(ν) ∝ 1/ν α exp(-1/ν). The solution of this form can not be get with help asymptotic methods of kinetic theory. Asymptotics of solution have scale-invariant character F(V) ∝ 1/V α . This indicate on fractal properties phase-space. (author)

  20. Surface properties and aggregate morphology of partially fluorinated carboxylate-type anionic gemini surfactants.

    Science.gov (United States)

    Yoshimura, Tomokazu; Bong, Miri; Matsuoka, Keisuke; Honda, Chikako; Endo, Kazutoyo

    2009-11-01

    Three anionic homologues of a novel partially fluorinated carboxylate-type anionic gemini surfactant, N,N'-di(3-perfluoroalkyl-2-hydroxypropyl)-N,N'-diacetic acid ethylenediamine (2C(n)(F) edda, where n represents the number of carbon atoms in the fluorocarbon chain (4, 6, and 8)) were synthesized. In these present gemini surfactants, the relatively small carboxylic acid moieties form hydrophilic head groups. The surface properties or structures of the aggregates of these surfactants are strongly influenced by the nonflexible fluorocarbons and small head groups; this is because these surfactants have a closely packed molecular structure. The equilibrium surface tension properties of these surfactants were measured at 298.2K for various fluorocarbon chain lengths. The plot of the logarithm of the critical micelle concentration (cmc) against the fluorocarbon chain lengths for 2C(n)(F) edda (n=4, 6, and 8) showed a minimum for n=6. Furthermore, the lowest surface tension of 2C(6)(F) edda at the cmc was 16.4mNm(-1). Such unique behavior has not been observed even in the other fluorinated surfactants. Changes in the shapes and sizes of these surfactant aggregate with concentration were investigated by dynamic light scattering and transmission electron microscopy (TEM). The TEM micrographs showed that in an aqueous alkali solution, 2C(n)(F) edda mainly formed aggregates with stringlike (n=4), cagelike (n=6), and distorted bilayer structures (n=8). The morphological changes in the aggregates were affected by the molecular structure composed of nonflexible fluorocarbon chains and flexible hydrocarbon chains.

  1. Surface properties of activated carbon treated by cold plasma heating

    Energy Technology Data Exchange (ETDEWEB)

    Norikazu, Kurano [Shigematsu works Co. Ltd., 267 Yashita, Iwatsuki 3390046 (Japan); Yamada, Hiroshi [Shigematsu works Co. Ltd., 267 Yashita, Iwatsuki 3390046 (Japan); Yajima, Tatsuhiko [Faculty of Engineering, Saitama Institute of Technology, 1690 Fusoiji, Okabe 3690293 (Japan); Sugiyama, Kazuo [Faculty of Engineering, Saitama University, 255 Shimo-okubo, Sakura-Ku, Saitama 3388570 (Japan)]. E-mail: sugi@apc.saitama-u.ac.jp

    2007-03-12

    To modify the surface properties of activated carbon powders, we have applied the cold plasma treatment method. The cold plasma was used to be generated in the evacuated reactor vessel by 2.45 GHz microwave irradiation. In this paper, changes of surface properties such as distribution of acidic functional groups and roughness morphology were examined. By the cold plasma treatment, activated carbons with large specific surface area of ca. 2000 m{sup 2}/g or more could be prepared in a minute. The amount of every gaseous organic compound adsorbed on the unit gram of treated activated carbons was more increased that on the unit gram of untreated carbons. Especially, the adsorbed amount of carbon disulfide was remarkably increased even if it was compared by the amount per unit surface area. These results suggest that the surface property of the sample was modified by the plasma treatment. It became apparent by observing SEM photographs that dust and impure particles in macropores of activated carbons were far more reduced by the plasma treatment than by the conventional heating in an electric furnace under vacuum. In addition, a bubble-like surface morphology of the sample was observed by AEM measurement. The amount of acidic functional groups at the surface was determined by using the Boehm's titration method. Consequently, the increase of lactone groups and the decrease of carboxyl groups were also observed.

  2. The Biological Properties of OGI Surfaces Positively Act on Osteogenic and Angiogenic Commitment of Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Paolo Ghensi

    2017-11-01

    Full Text Available Osteogenesis process displays a fundamental role during dental implant osteointegration. In the present work, we studied the influence of Osteon Growth Induction (OGI surface properties on the angiogenic and osteogenic behaviors of Mesenchymal Stem cells (MSC. MSC derived from dental pulp and HUVEC (Human Umbilical Vein Endothelial Cells were grown in on OGI titanium surfaces, and cell proliferation and DNA synthesis were evaluated by MTT [3-(4,5-dimethylthiazol-2yl-2,5-diphenyltetrazolium bromide] test and DNA quantification. Gene expression has been performed in order to evaluate the presence of mRNA related to endothelial and osteogenesis markers. Moreover, morphological and biochemical analyses of osteogenesis commitments has been performed. On OGI surfaces, MSC and HUVEC are able to proliferate. Gene expression profiler confirms that MSC on OGI surfaces are able to express endothelial and osteogenic markers, and that these expression are higher compared the expression on control surfaces. In conclusion On OGI surfaces proliferation, expression and morphological analyses of angiogenesis-associated markers in MSC are promoted. This process induces an increasing on their osteogenesis commitment.

  3. The surface properties of biopolymer-coated fruit: A review

    Directory of Open Access Journals (Sweden)

    Diana Cristina Moncayo Martinez

    2013-09-01

    Full Text Available Environmental conservation concerns have led to research and development regarding biodegradable materials from biopolymers, leading to new formulations for edible films and coatings for preserving the quality of fresh fruit and vegetables. Determining fruit skin surface properties for a given coating solution has led to predicting coating efficiency. Wetting was studied by considering spreading, adhesion and cohesion and measuring the contact angle, thus optimising the coating formulation in terms of biopolymer, plasticiser, surfactant, antimicrobial and antioxidant concentration. This work reviews the equations for determining fruit surface properties by using polar and dispersive interaction calculations and by determining the contact angle.

  4. Effects of engineered nano-titanium dioxide on pore surface properties and phosphorus adsorption of sediment: its environmental implications.

    Science.gov (United States)

    Luo, Zhuanxi; Wang, Zhenhong; Wei, Qunshan; Yan, Changzhou; Liu, Feng

    2011-09-15

    Understanding the environmental safety and human health implications of engineered nanoparticles (ENPs) is of worldwide importance. As an important ENPs, engineered nano-TiO(2) (Enano-TiO(2)) may have been substantially deposited in aquatic sediments because of its widely uses. Sediment pore surface properties would be thus significantly influenced due to the large surface area of Enano-TiO(2). In this study, Enano-TiO(2) was found to greatly impact on sediment pore surface properties. The attachment of Enano-TiO(2) particles to sediment surfaces enhanced markedly BET specific surface area and t-Plot external specific surface area, and thereby increased sediment phosphorus (P) adsorption maximum (S(max)). Contrarily, the fill of Enano-TiO(2) particles into the micropores of sediments could significantly reduce t-Plot micropore specific surface area, and cause slight decrease in sediment P binding energy (K). Clearly, P sorbed in sediment would be easily released because of the decreasing P binding energy of the sediment with elevated Enano-TiO(2). Enano-TiO(2) would thus cause aggravated endogenous pollution in water if such sediment was re-suspended on disturbance. The results obtained in this study contribute to our increasing knowledge of how to regulate physicochemical behavior of pollutants in sediments under the influences of Enano-TiO(2) and/or similar ENPs. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Influence of surface treatment on the oxidation behavior of zirconium and zircaloy-4

    International Nuclear Information System (INIS)

    Costa, I.; Ramanathan, L.V.

    1986-01-01

    The influence of fluoride concentration in surface treatment solutions on the oxidation behavior of Zr and Zircaloy-4 in the temperature range 350-760 0 C have been studied by means of thermogravimetric analysis. Two solutions containing different concentrations of hydrofluoric acid have been used for surface treatments, following which surface roughness measurements were also carried out. The influence of fluoride ion concentration on oxidation behavior has been found to be significant at higher temperatures. (Author) [pt

  6. Is there an optimal topographical surface in nano-scale affecting protein adsorption and cell behaviors? Part II

    Energy Technology Data Exchange (ETDEWEB)

    Wang Huajie, E-mail: wanghuajie972001@163.com; Sun Yuanyuan; Cao Ying, E-mail: caoying1130@sina.com; Wang Kui; Yang Lin [Henan Normal University, College of Chemistry and Environmental Science (China); Zhang Yidong; Zheng Zhi [Xuchang University, Institute of Surface Micro and Nano Materials (China)

    2012-05-15

    Although nano-structured surfaces exhibit superior biological activities to the smooth or micro-structured surfaces, whether there is an optimal topographical surface in nano-scale affecting protein adsorption and cell behaviors is still controversial. In this study, porous aluminum oxide membranes with different pore sizes ranging from 25 to 120 nm were prepared by the anodic oxidation technique. The surface morphology, topography and wettability were analyzed by scanning electron microscope, atomic force microscope and water contact angle measurement, respectively. The results indicated that the synergistic action of the nano-topography structure and hydrophilic/hydrophobic properties resulted in a highest protein adsorption on the aluminum oxide membrane with 80 nm pore size. Additionally, the morphological, metabolic and cell counting methods showed that cells had different sensitivity to porous aluminum oxide membranes with different surface features. Furthermore, this sensitivity was cell type dependent. The optimal pore size of aluminum oxide membranes for cell growth was 80 nm for PC12 cells and 50 nm for NIH 3T3 cells.

  7. Effects of surface properties on droplet formation inside a microfluidic device

    Science.gov (United States)

    Steinhaus, Ben; Shen, Amy

    2004-11-01

    Micro-fluidic devices offer a unique method of creating and controlling droplets on small length scales. A microfluidic device is used to study the effects of surface properties on droplet formation of a 2-phase flow system. Four phase diagrams are generated to compare the dynamics of the 2 immiscible fluid system (silicone oil and water) inside microchannels with different surface properties. Results show that the channel surface plays an important role in determining the flow patterns and the droplet formation of the 2-phase fluid system.

  8. A new approach to the retrieval of surface properties from earthshine measurements

    Energy Technology Data Exchange (ETDEWEB)

    Spurr, R.J.D. E-mail: rspurr@cfa.harvard.edu

    2004-01-01

    Instruments such as the MODIS and MISR radiometers on EOS AM-1, and POLDER on ADEOS have been deployed for the remote sensing retrieval of surface properties. Typically, retrieval algorithms use linear combinations of semi-empirical bidirectional reflectance distribution function (BRDF) kernels to model surface reflectance. The retrieval proceeds in two steps; first, an atmospheric correction relates surface BRDF to top-of-atmosphere (TOA) reflectances, then regression is used to establish the linear coefficients used in the kernel combination. BRDF kernels may also depend on a number of physical or empirical non-linear parameters (e.g. ocean wind speed for a specular BRDF); such parameters are usually assumed known. A major source of error in this retrieval comes from lack of knowledge of planetary boundary layer (PBL) aerosol properties. In this paper, we present a different approach to surface property retrieval. For the radiative transfer simulations, we use the discrete ordinate LIDORT model, which has the capability to generate simultaneous fields of radiances and weighting functions in a multiply scattering multi-layer atmosphere. Surface-atmosphere coupling due to multiple scattering and reflection effects is treated in full; the use of an atmospheric correction is not required. Further, it is shown that sensitivities of TOA reflectances to both linear and non-linear surface BRDF parameters may be established directly by explicit analytic differentiation of the discrete ordinate radiative transfer equations. Surface properties may thus be retrieved directly and conveniently from satellite measurements using standard non-linear fitting methods. In the fitting for BRDF parameters, lower-boundary aerosol properties can either be retrieved as auxiliary parameters, or they can be regarded as forward model parameter errors. We present examples of simulated radiances and surface/aerosol weighting functions for combinations of multi-angle measurements at several

  9. A new approach to the retrieval of surface properties from earthshine measurements

    International Nuclear Information System (INIS)

    Spurr, R.J.D.

    2004-01-01

    Instruments such as the MODIS and MISR radiometers on EOS AM-1, and POLDER on ADEOS have been deployed for the remote sensing retrieval of surface properties. Typically, retrieval algorithms use linear combinations of semi-empirical bidirectional reflectance distribution function (BRDF) kernels to model surface reflectance. The retrieval proceeds in two steps; first, an atmospheric correction relates surface BRDF to top-of-atmosphere (TOA) reflectances, then regression is used to establish the linear coefficients used in the kernel combination. BRDF kernels may also depend on a number of physical or empirical non-linear parameters (e.g. ocean wind speed for a specular BRDF); such parameters are usually assumed known. A major source of error in this retrieval comes from lack of knowledge of planetary boundary layer (PBL) aerosol properties. In this paper, we present a different approach to surface property retrieval. For the radiative transfer simulations, we use the discrete ordinate LIDORT model, which has the capability to generate simultaneous fields of radiances and weighting functions in a multiply scattering multi-layer atmosphere. Surface-atmosphere coupling due to multiple scattering and reflection effects is treated in full; the use of an atmospheric correction is not required. Further, it is shown that sensitivities of TOA reflectances to both linear and non-linear surface BRDF parameters may be established directly by explicit analytic differentiation of the discrete ordinate radiative transfer equations. Surface properties may thus be retrieved directly and conveniently from satellite measurements using standard non-linear fitting methods. In the fitting for BRDF parameters, lower-boundary aerosol properties can either be retrieved as auxiliary parameters, or they can be regarded as forward model parameter errors. We present examples of simulated radiances and surface/aerosol weighting functions for combinations of multi-angle measurements at several

  10. Dielectric properties of DNA oligonucleotides on the surface of silicon nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Bagraev, N. T., E-mail: bagraev@mail.ioffe.ru [St. Petersburg Polytechnic University (Russian Federation); Chernev, A. L. [Russian Academy of Sciences, St. Petersburg Academic University—Nanotechnology Research and Education Center (Russian Federation); Klyachkin, L. E. [St. Petersburg Polytechnic University (Russian Federation); Malyarenko, A. M. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Emel’yanov, A. K.; Dubina, M. V. [Russian Academy of Sciences, St. Petersburg Academic University—Nanotechnology Research and Education Center (Russian Federation)

    2016-10-15

    Planar silicon nanostructures that are formed as a very narrow silicon quantum well confined by δ barriers heavily doped with boron are used to study the dielectric properties of DNA oligonucleotides deposited onto the surface of the nanostructures. The capacitance characteristics of the silicon nanostructures with oligonucleotides deposited onto their surface are determined by recording the local tunneling current–voltage characteristics by means of scanning tunneling microscopy. The results show the possibility of identifying the local dielectric properties of DNA oligonucleotide segments consisting of repeating G–C pairs. These properties apparently give grounds to correlate the segments with polymer molecules exhibiting the properties of multiferroics.

  11. Disruptive behavior scale for adolescents (DISBA): development and psychometric properties.

    Science.gov (United States)

    Karimy, Mahmood; Fakhri, Ahmad; Vali, Esmaeel; Vali, Farzaneh; Veiga, Feliciano H; Stein, L A R; Araban, Marzieh

    2018-01-01

    Growing evidence indicates that if disruptive behavior is left unidentified and untreated, a significant proportion of these problems will persist and may develop into problems linked with delinquency, substance abuse, and violence. Research is needed to develop valid and reliable measures of disruptive behavior to assist recognition and impact of treatments on disruptive behavior. The aim of this study was to develop and evaluate the psychometric properties of a scale for disruptive behavior in adolescents. Six hundred high school students (50% girls), ages ranged 15-18 years old, selected through multi stage random sampling. Psychometrics of the disruptive behavior scale for adolescents (DISBA) (Persian version) was assessed through content validity, explanatory factor analysis (EFA) using Varimax rotation and confirmatory factor analysis (CFA). The reliability of this scale was assessed via internal consistency and test-retest reliability. EFA revealed four factors accounting for 59% of observed variance. The final 29-item scale contained four factors: (1) aggressive school behavior, (2) classroom defiant behavior, (3) unimportance of school, and (4) defiance to school authorities. Furthermore, CFA produced a sufficient Goodness of Fit Index > 0.90. Test-retest and internal consistency reliabilities were acceptable at 0.85 and 0.89, respectively. The findings from this study suggest that the Iranian version of DISBA questionnaire has content validity. Further studies are needed to evaluate stronger psychometric properties for DISBA.

  12. Designed cellulose nanocrystal surface properties for improving barrier properties in polylactide nanocomposites.

    Science.gov (United States)

    Espino-Pérez, Etzael; Bras, Julien; Almeida, Giana; Plessis, Cédric; Belgacem, Naceur; Perré, Patrick; Domenek, Sandra

    2018-03-01

    Nanocomposites are an opportunity to increase the performance of polymer membranes by fine-tuning their morphology. In particular, the understanding of the contribution of the polymer matrix/nanofiller interface to the overall transport properties is key to design membranes with tailored selective and adsorptive properties. In that aim, cellulose nanocrystals (CNC)/polylactide (PLA) nanocomposites were fabricated with chemically designed interfaces, which were ensuring the compatibility between the constituents and impacting the mass transport mechanism. A detailed analysis of the mass transport behaviour of different permeants in CNC/PLA nanocomposites was carried out as a function of their chemical affinity to grafted CNC surfaces. Penetrants (O 2 and cyclohexane), which were found to slightly interact with the constituents of the nanocomposites, provided information on the small tortuosity effect of CNC on diffusive mass transport. The mass transport of water (highly interacting with CNC) and anisole (interacting only with designed CNC surfaces) exhibited non-Fickian, Case II behaviour. The water vapour caused significant swelling of the CNC, which created a preferential pathway for mass transport. CNC surface grafting could attenuate this phenomenon and decrease the water transport rate. Anisole, an aromatic organic vapour, became reversibly trapped at the specifically designed CNC/PLA interface, but without any swelling or creation of an accelerated pathway. This caused the decrease of the overall mass transport rate. The latter finding could open a way to the creation of materials with specifically designed barrier properties by designing nanocomposites interfaces with specific interactions towards permeants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Nd:YOV4 laser surface texturing on DLC coating: Effect on morphology, adhesion, and dry wear behavior

    Science.gov (United States)

    Surfaro, Maria; Giorleo, Luca; Montesano, Lorenzo; Allegri, Gabriele; Ceretti, Elisabetta; La Vecchia, Giovina Marina

    2018-05-01

    The surface of structural components is usually subjected to higher stresses, greater wear or fatigue damage, and more direct environmental exposure than the inner parts. For this reason, the interest to improve superficial properties of items is constantly increasing in different fields as automotive, electronic, biomedical, etc. Different approaches can be used to achieve this goal: case hardening by means of superficial heat treatments like carburizing or nitriding, deposition of thin or thick coatings, roughness modification, etc. Between the available technologies to modify components surface, Laser Surface Texturing (LST) has already been recognized in the last decade as a process, which improves the tribological properties of various parts. Based on these considerations the aim of the present research work was to realize a controlled laser texture on a Diamond-like Carbon (DLC) thin coating (about 3 µm thick) without damaging both the coating itself and the substrate. In particular, the effect of laser process parameters as marking speed and loop cycle were investigated in terms of texture features modifications. Both qualitative and quantitative analyses of the texture were executed by using a scanning electron microscope and a laser probe system to select the proper laser parameters. Moreover, the effect of the selected texture on the DLC nanohardness, adhesion and wear behavior was pointed out.

  14. Automated Surface Classification of SRF Cavities for the Investigation of the Influence of Surface Properties onto the Operational Performance

    Energy Technology Data Exchange (ETDEWEB)

    Wenskat, Marc

    2015-07-15

    Superconducting niobium radio-frequency cavities are fundamental for the European XFEL and the International Linear Collider. To use the operational advantages of superconducting cavities, the inner surface has to fulfill quite demanding requirements. The surface roughness and cleanliness improved over the last decades and with them, the achieved maximal accelerating field. Still, limitations of the maximal achieved accelerating field are observed, which are not explained by localized geometrical defects or impurities. The scope of this thesis is a better understanding of these limitations in defect free cavities based on global, rather than local, surface properties. For this goal, more than 30 cavities underwent subsequent surface treatments, cold RF tests and optical inspections within the ILC-HiGrade research program and the XFEL cavity production. An algorithm was developed which allows an automated surface characterization based on an optical inspection robot. This algorithm delivers a set of optical surface properties, which describes the inner cavity surface. These optical surface properties deliver a framework for a quality assurance of the fabrication procedures. Furthermore, they shows promising results for a better understanding of the observed limitations in defect free cavities.

  15. Automated Surface Classification of SRF Cavities for the Investigation of the Influence of Surface Properties onto the Operational Performance

    International Nuclear Information System (INIS)

    Wenskat, Marc

    2015-07-01

    Superconducting niobium radio-frequency cavities are fundamental for the European XFEL and the International Linear Collider. To use the operational advantages of superconducting cavities, the inner surface has to fulfill quite demanding requirements. The surface roughness and cleanliness improved over the last decades and with them, the achieved maximal accelerating field. Still, limitations of the maximal achieved accelerating field are observed, which are not explained by localized geometrical defects or impurities. The scope of this thesis is a better understanding of these limitations in defect free cavities based on global, rather than local, surface properties. For this goal, more than 30 cavities underwent subsequent surface treatments, cold RF tests and optical inspections within the ILC-HiGrade research program and the XFEL cavity production. An algorithm was developed which allows an automated surface characterization based on an optical inspection robot. This algorithm delivers a set of optical surface properties, which describes the inner cavity surface. These optical surface properties deliver a framework for a quality assurance of the fabrication procedures. Furthermore, they shows promising results for a better understanding of the observed limitations in defect free cavities.

  16. Improvement of Surface Properties of Inconel718 by HVOF Coating with WC-Metal Powder and by Laser Heat Treatment of the Coating

    Directory of Open Access Journals (Sweden)

    Hui Gon Chun

    2015-01-01

    Full Text Available High-velocity oxygen-fuel (HVOF thermal spray coating with WC-metal powder was carried out by using optimal coating process on an Inconel718 surface for improvement of the surface properties, friction, wear, and corrosion resistance. Binder metals such as Cr and Ni were completely melted and WC was decomposed partially to W2C and graphite during the high temperature (up to 3500°C thermal spraying. The melted metals were bonded with WC and other carbides and were formed as WC-metal coating. The graphite and excessively sprayed oxygen formed carbon oxide gases, and these gases formed porous coating by evolution of the gases. The surface properties were improved by HVOF coating and were improved further by CO2 laser heat treatment (LH. Wear resistance of In718 surface was improved by coating and LH at 25°C and an elevated temperature of 450°C, resulting in reduction of wear trace traces, and was further improved by LH of the coating in reducing wear depth. Corrosion resistance due to coating in sea water was improved by LH. HVOF coating of WC-metal powder on a metal surface and a LH of the coating were highly recommended for the improvement of In718 surface properties, the friction behavior, and wear resistance.

  17. Effect of surface oxide on the melting behavior of lead-free solder nanowires and nanorods

    International Nuclear Information System (INIS)

    Gao Fan; Rajathurai, Karunaharan; Cui, Qingzhou; Zhou, Guangwen; NkengforAcha, Irene; Gu Zhiyong

    2012-01-01

    Lead-free nanosolders have shown promise in nanowire and nanoelectronics assembly. Among various important parameters, melting is the most fundamental property affecting the assembly process. Here we report that the melting behavior of tin and tin/silver nanowires and nanorods can be significantly affected by the surface oxide of nanosolders. By controlling the nanosolder reflow atmosphere using a flux, the surface oxide of the nanowires/nanorods can be effectively removed and complete nanosolder melting can be achieved. The complete melting of the nanosolders leads to the formation of nanoscale to microscale spherical solder balls, followed by Ostwald ripening phenomenon. The contact angle of the microscale solder balls formed on Si substrate was measured by direct electron microscopic imaging. These results provide new insights into micro- and nanoscale phase transition and liquid droplet coalescence from nanowires/nanorods to spheroids, and are relevant to nanoscale assembly and smaller ball grid array formation.

  18. Effect of Ge surface termination on oxidation behavior

    Science.gov (United States)

    Lee, Younghwan; Park, Kibyung; Cho, Yong Soo; Lim, Sangwoo

    2008-09-01

    Sulfur-termination was formed on the Ge(1 0 0) surface using (NH 4) 2S solution. Formation of Ge-S and the oxidation of the S-terminated Ge surface were monitored with multiple internal reflection Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. In the 0.5, 5, or 20% (NH 4) 2S solution, H-termination on the Ge(1 0 0) surface was substituted with S-termination in 1 min. When the S-terminated Ge(1 0 0) surface was exposed in air ambient, the oxidation was retarded for about 3600 min. The preservation time of the oxide layer up to one monolayer of S-terminated Ge(1 0 0) surface was about 120 times longer than for the H-terminated Ge(1 0 0) surface. However, the oxidation of S-terminated Ge(1 0 0) surface drastically increased after the threshold time. There was no significant difference in threshold time between S-terminations formed in 0.5, 5, and 20% (NH 4) 2S solutions. With the surface oxidation, desorption of S on the Ge surface was observed. The desorption behavior of sulfur on the S-terminated Ge(1 0 0) surface was independent of the concentration of the (NH 4) 2S solution that forms S-termination. Non-ideal S-termination on Ge surfaces may be related to drastic oxidation of the Ge surface. Finally, with the desulfurization on the S-terminated Ge(1 0 0) surface, oxide growth is accelerated.

  19. Nanomechanical and nanotribological properties of plasma nanotextured superhydrophilic and superhydrophobic polymeric surfaces

    International Nuclear Information System (INIS)

    Skarmoutsou, A; Charitidis, C A; Gnanappa, A K; Tserepi, A; Gogolides, E

    2012-01-01

    Oxygen plasma-induced surface modification of polymethylmethacrylate (PMMA), under plasma conditions favouring (maximizing) roughness formation, has been shown to create textured surfaces of roughness size and morphology dependent on the plasma-treatment time and subsequent morphology stabilization procedure. Superhydrophobic or superhydrophilic surfaces can thus be obtained, with potential applications in antireflective self-cleaning surfaces, microfluidics, wetting–dewetting control, anti-icing etc, necessitating determination of their mechanical properties. In this study, nanoindentation is used to determine the reduced modulus and hardness of the surface, while nanoscratch tests are performed to measure the coefficient of friction. The data are combined to assess the wear behaviour of such surfaces as a first guide for their practical applications. Short-time plasma treatment slightly changes mechanical, tribological and wear properties compared to untreated PMMA. However, a significant decrease in the reduced modulus and hardness and an increase in the coefficient of friction are observed after long plasma-treatment times. The C 4 F 8 plasma deposited thin hydrophobic layer on the polymeric surfaces (untreated and treated) reveals good adhesion, while its mechanical properties are greatly influenced by the substrate; it is also found that it effectively protects the polymeric surfaces, reducing plastic deformation. (paper)

  20. Surface properties of Ti-6Al-4V alloy part I: Surface roughness and apparent surface free energy

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yingdi; Chibowski, Emil; Szcześ, Aleksandra, E-mail: aszczes@poczta.umcs.lublin.pl

    2017-01-01

    Titanium (Ti) and its alloys are the most often used implants material in dental treatment and orthopedics. Topography and wettability of its surface play important role in film formation, protein adhesion, following osseointegration and even duration of inserted implant. In this paper, we prepared Ti-6Al-4V alloy samples using different smoothing and polishing materials as well the air plasma treatment, on which contact angles of water, formamide and diiodomethane were measured. Then the apparent surface free energy was calculated using four different approaches (CAH, LWAB, O-W and Neumann's Equation of State). From LWAB approach the components of surface free energy were obtained, which shed more light on the wetting properties of samples surface. The surface roughness of the prepared samples was investigated with the help of optical profilometer and AFM. It was interesting whether the surface roughness affects the apparent surface free energy. It was found that both polar interactions the electron donor parameter of the energy and the work of water adhesion increased with decreasing roughness of the surfaces. Moreover, short time plasma treatment (1 min) caused decrease in the surface hydrophilic character, while longer time (10 min) treatment caused significant increase in the polar interactions and the work of water adhesion. Although Ti-6Al-4V alloy has been investigated many times, to our knowledge, so far no paper has been published in which surface roughness and changes in the surface free energy of the alloy were compared in the quantitative way in such large extent. This novel approach deliver better knowledge about the surface properties of differently smoothed and polished samples which may be helpful to facilitate cell adhesion, proliferation and mineralization. Therefore the results obtained present also potentially practical meaning. - Highlights: • Surface of five Ti-6Al-4V alloy samples were smoothed and polished successively. • The

  1. Effects of high-energy electro-pulsing treatment on microstructure, mechanical properties and corrosion behavior of Ti-6Al-4V alloy.

    Science.gov (United States)

    Ye, Xiaoxin; Wang, Lingsheng; Tse, Zion T H; Tang, Guoyi; Song, Guolin

    2015-04-01

    The effect of electro-pulsing treatment (EPT) on the microstructure, mechanical properties and corrosion behavior of cold-rolled Ti-6Al-4V alloy strips was investigated in this paper. It was found that the elongation to failure of materials obtains a noticeable enhancement with increased EPT processing time while slightly sacrificing strength. Fine recrystallized grains and the relative highest elongation to failure (32.5%) appear in the 11second-EPT samples. Grain coarsening and decreased ductility were brought in with longer EPT duration time. Fracture surface analysis shows that transition from intergranular brittle facture to transgranular dimple fracture takes place with an increase in processing time of EPT. Meanwhile, corrosion behavior of titanium alloys is greatly improved with increased EPT processing time, which is presented by polarization test and surface observation with the beneficial effect of forming a protective anatase-TiO2 film on the surface of alloys. The rapid recrystallization behavior and oxide formation of the titanium alloy strip under EPTs are attributed to the enhancement of nucleation rate, atomic diffusion and oxygen migration resulting from the coupling of the thermal and athermal effects. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Surface morphology, structural and electrical properties of RF ...

    Indian Academy of Sciences (India)

    5

    electrical properties of RF sputtered ITO thin films deposited onto Si(100). .... scanning electron microscopy (SEM) surface images are shown along with the cross- ..... annealing effect”, J. of Alloys and Compounds 509, (2011) 6072-6076.

  3. Effects of a Chitosan Coating Layer on the Surface Properties and Barrier Properties of Kraft Paper

    Directory of Open Access Journals (Sweden)

    Shanhui Wang

    2016-01-01

    Full Text Available Biodegradable chitosan can be applied as a coating on the surface of kraft paper in order to improve its barrier properties against water vapor and air. The food packaging industry can benefit from the addition of chitosan to its current packaging, and in turn reduce pollution from plastic packaging plants. This paper discusses the film formation of chitosan, the permeability of paper coated with a chitosan layer, and the influence on the paper’s surface and barrier properties under different process conditions. SEM (scanning electron microscope, AFM (atomic force microscope, ATR-FTIR (Fourier transmission infrared spectroscope with attenuated total reflection, and PDA (penetration dynamics analysis were used to analyze the properties of chitosan’s film formation and permeability. A controlled experiment showed that the chitosan layer was smoother than the surface of the uncoated kraft paper, had better film formation, and that there was no chitosan penetration through the kraft paper. The barrier properties against water vapor were strongest when there was a higher concentration of chitosan solution at the optimum pH, stirring speed, and those with a thicker coating on the kraft paper.

  4. Engineering Surface Critical Behavior of (2 +1 )-Dimensional O(3) Quantum Critical Points

    Science.gov (United States)

    Ding, Chengxiang; Zhang, Long; Guo, Wenan

    2018-06-01

    Surface critical behavior (SCB) refers to the singularities of physical quantities on the surface at the bulk phase transition. It is closely related to and even richer than the bulk critical behavior. In this work, we show that three types of SCB universality are realized in the dimerized Heisenberg models at the (2 +1 )-dimensional O(3) quantum critical points by engineering the surface configurations. The ordinary transition happens if the surface is gapped in the bulk disordered phase, while the gapless surface state generally leads to the multicritical special transition, even though the latter is precluded in classical phase transitions because the surface is in the lower critical dimension. An extraordinary transition is induced by the ferrimagnetic order on the surface of the staggered Heisenberg model, in which the surface critical exponents violate the results of the scaling theory and thus seriously challenge our current understanding of extraordinary transitions.

  5. Probing Anisotropic Surface Properties of Molybdenite by Direct Force Measurements.

    Science.gov (United States)

    Lu, Zhenzhen; Liu, Qingxia; Xu, Zhenghe; Zeng, Hongbo

    2015-10-27

    Probing anisotropic surface properties of layer-type mineral is fundamentally important in understanding its surface charge and wettability for a variety of applications. In this study, the surface properties of the face and the edge surfaces of natural molybdenite (MoS2) were investigated by direct surface force measurements using atomic force microscope (AFM). The interaction forces between the AFM tip (Si3N4) and face or edge surface of molybdenite were measured in 10 mM NaCl solutions at various pHs. The force profiles were well-fitted with classical DLVO (Derjaguin-Landau-Verwey-Overbeek) theory to determine the surface potentials of the face and the edge surfaces of molybdenite. The surface potentials of both the face and edge surfaces become more negative with increasing pH. At neutral and alkaline conditions, the edge surface exhibits more negative surface potential than the face surface, which is possibly due to molybdate and hydromolybdate ions on the edge surface. The point of zero charge (PZC) of the edge surface was determined around pH 3 while PZC of the face surface was not observed in the range of pH 3-11. The interaction forces between octadecyltrichlorosilane-treated AFM tip (OTS-tip) and face or edge surface of molybdenite were also measured at various pHs to study the wettability of molybdenite surfaces. An attractive force between the OTS-tip and the face surface was detected. The force profiles were well-fitted by considering DLVO forces and additional hydrophobic force. Our results suggest the hydrophobic feature of the face surface of molybdenite. In contrast, no attractive force between the OTS-tip and the edge surface was detected. This is the first study in directly measuring surface charge and wettability of the pristine face and edge surfaces of molybdenite through surface force measurements.

  6. Improving tribological properties of Ti-5Zr-3Sn-5Mo-15Nb alloy by double glow plasma surface alloying

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Lili; Qin, Lin, E-mail: qinlin@tyut.edu.cn; Kong, Fanyou; Yi, Hong; Tang, Bin

    2016-12-01

    Highlights: • The Mo alloyed layers were successfully prepared on TLM surface by DG-PSA. • The surface microhardness of TLM is remarkably enhanced by Mo alloying. • The TLM samples after Mo alloying exhibit good wettability. • The Mo alloyed TLM samples show excellent tribological properties. - Abstract: Molybdenum, an alloying element, was deposited and diffused on Ti-5Zr-3Sn-5Mo-15Nb (TLM) substrate by double glow plasma surface alloying technology at 900, 950 and 1000 °C. The microstructure, composition distribution and micro-hardness of the Mo modified layers were analyzed. Contact angles on deionized water and wear behaviors of the samples against corundum balls in simulated human body fluids were investigated. Results show that the surface microhardness is significantly enhanced after alloying and increases with treated temperature rising, and the contact angles are lowered to some extent. More importantly, compared to as-received TLM alloy, the Mo modified samples, especially the one treated at 1000 °C, exhibit the significant improvement of tribological properties in reciprocating wear tests, with lower specific wear rate and friction coefficient. To conclude, Mo alloying treatment is an effective approach to obtain excellent comprehensive properties including optimal wear resistance and improved wettability, which ensure the lasting and safety application for titanium alloys as the biomedical implants.

  7. Tribological behaviors of UHMWPE composites with different counter surface morphologies

    Science.gov (United States)

    Wang, Yanzhen; Yin, Zhongwei; Li, Hulin; Gao, Gengyuan

    2017-12-01

    The influence of counter surface morphologies on hybrid glass fiber (GF) and carbon fiber (CF) filled ultrahigh molecular weight polyethylene (UHMWPE) were studied under various contact pressure and sliding speed against GCr15 steel in dry condition. The goals were to investigate the tribological behavior of GF/CF/UHMWPE composite as a kind of water lubricated journal bearing material. The friction and wear behavior of composites were examined using a pin-on-disc tribometer. The morphologies of the worn surface were examined by scanning electron microscopy (SEM) and laser 3D micro-imaging and profile measurement. Generally, the wear rate and friction coefficient of composites increase as the increment of counter surface roughness. The friction coefficient increases firstly and then decrease with an increase in sliding speed and contact pressure for counterface with Ra=0.2 and 3.5 μm, while the friction coefficient decreased for counterface with Ra=0.6 μm.

  8. Anticoagulation and endothelial cell behaviors of heparin-loaded graphene oxide coating on titanium surface

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Chang-Jiang, E-mail: panchangjiang@hyit.edu.cn [Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai' an 223003 (China); Pang, Li-Qun [Department of General Surgery, Huai' an First People' s Hospital, Nanjing Medical University, Huai' an 223300 (China); Gao, Fei [Zhejiang Zylox Medical Devices Co., Ltd., Hangzhou 310000 (China); Wang, Ya-Nan; Liu, Tao; Ye, Wei; Hou, Yan-Hua [Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai' an 223003 (China)

    2016-06-01

    Owing to its unique physical and chemical properties, graphene oxide (GO) has attracted tremendous interest in many fields including biomaterials and biomedicine. The purpose of the present study is to investigate the endothelial cell behaviors and anticoagulation of heparin-loaded GO coating on the titanium surface. To this end, the titanium surface was firstly covered by the polydopamine coating followed by the deposition of the GO coating. Heparin was finally loaded on the GO coating to improve the blood compatibility. The results of attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) indicated that the heparin-loaded GO coating was successfully created on the titanium surface. The scanning electron microscopy (SEM) images indicated that a relative uniform GO coating consisting of multilayer GO sheets was formed on the substrate. The hydrophilicity of the titanium surface was enhanced after the deposition of GO and further improved significantly by the loading heparin. The GO coating can enhance the endothelial cell adhesion and proliferation as compared with polydopamine coating and the blank titanium. Loading heparin on the GO coating can significantly reduce the platelet adhesion and prolong the activated partial thromboplastin time (APTT) while not influence the endothelial cell adhesion and proliferation. Therefore, the heparin-loaded GO coating can simultaneously enhance the cytocompatibility to endothelial cells and blood compatibility of biomaterials. Because the polydopamine coating can be easily prepared on most of biomaterials including polymer, ceramics and metal, thus the approach of the present study may open up a new window of promising an effective and efficient way to promote endothelialization and improve the blood compatibility of blood-contact biomedical devices such as intravascular stents. - Highlights: • Heparin-loaded graphene oxide coating was

  9. Surface chemistry, microstructure and friction properties of some ferrous-base metallic glasses at temperatures to 750 C

    Science.gov (United States)

    Miyoshi, K.; Buckley, D. H.

    1982-01-01

    X-ray photoelectron spectroscopy analysis, transmission electron microscopy, diffraction studies, and sliding friction experiments were conducted with ferrous-base metallic glasses in sliding contact with aluminum oxide at temperatures from room to 750 C in a vacuum of 30 nPa. The results indicate that there is a significant temperature influence on the friction properties, surface chemistry, and microstructure of metallic glasses. The relative concentrations of the various constituents at the surface of the sputtered specimens were very different from the normal bulk compositions. Contaminants can come from the bulk of the material to the surface upon heating and impart boric oxide and silicon oxide at 350 C and boron nitride above 500 C. The coefficient of friction increased with increasing temperature to 350 C. Above 500 C the coefficient of friction decreased rapidly. The segregation of contaminants may be responsible for the friction behavior.

  10. Morpho-chemical characterization and surface properties of carcinogenic zeolite fibers

    International Nuclear Information System (INIS)

    Mattioli, Michele; Giordani, Matteo; Dogan, Meral; Cangiotti, Michela; Avella, Giuseppe; Giorgi, Rodorico; Dogan, A. Umran; Ottaviani, Maria Francesca

    2016-01-01

    Highlights: • Differently carcinogenic zeolite fibers were investigated combining physico-chemical methods. • For the first time, zeolite fibers were studied by means of the EPR technique using different spin probes. • The structural properties and the adsorption capability are function of different types and distributions of adsorption sites. • The interacting ability of erionite is higher than that of other fibrous zeolites. • The surface interacting properties may be related with the carcinogenicity of the zeolite fibers. - Abstract: Erionite belonging to the zeolite family is a human health-hazard, since it was demonstrated to be carcinogenic. Conversely, offretite family zeolites were suspected carcinogenic. Mineralogical, morphological, chemical, and surface characterizations were performed on two erionites (GF1, MD8) and one offretite (BV12) fibrous samples and, for comparison, one scolecite (SC1) sample. The specific surface area analysis indicated a larger availability of surface sites for the adsorption onto GF1, while SC1 shows the lowest one and the presence of large pores in the poorly fibrous zeolite aggregates. Selected spin probes revealed a high adsorption capacity of GF1 compared to the other zeolites, but the polar/charged interacting sites were well distributed, intercalated by less polar sites (Si–O–Si). MD8 surface is less homogeneous and the polar/charged sites are more interacting and closer to each other compared to GF1. The interacting ability of BV12 surface is much lower than that found for GF1 and MD8 and the probes are trapped in small pores into the fibrous aggregates. In comparison with the other zeolites, the non-carcinogenic SC1 shows a poor interacting ability and a lower surface polarity. These results helped to clarify the chemical properties and the surface interacting ability of these zeolite fibers which may be related to their carcinogenicity.

  11. Theoretical studies of growth processes and electronic properties of nanostructures on surfaces

    Science.gov (United States)

    Mo, Yina

    Low dimensional nanostructures have been of particular interest because of their potential applications in both theoretical studies and industrial use. Although great efforts have been put into obtaining better understanding of the formation and properties of these materials, many questions still remain unanswered. This thesis work has focused on theoretical studies of (1) the growth processes of magnetic nanowires on transition-metal surfaces, (2) the dynamics of pentacene thin-film growth and island structures on inert surfaces, and (3) our proposal of a new type of semiconducting nanotube. In the first study, we elucidated a novel and intriguing kinetic pathway for the formation of Fe nanowires on the upper edge of a monatomic-layer-high step on Cu(111) using first-principles calculations. The identification of a hidden fundamental Fe basal line within the Cu steps prior to the formation of the apparent upper step edge Fe wire produces a totally different view of step-decorating wire structures and offers new possibilities for the study of the properties of these wires. Subsequent experiments with scanning tunneling microscopy unambiguously established the essential role of embedded Fe atoms as precursors to monatomic wire growth. A more general study of adatom behavior near transition-metal step edges illustrated a systematic trend in the adatom energetics and kinetics, resulted from the electronic interactions between the adatom and the surfaces. This work opens the possibility of controlled manufacturing of one-dimensional nanowires. In the second study, we investigated pentacene thin-films on H-diamond, H-silica and OH-silica surfaces via force field molecular dynamics simulations. Pentacene island structures on these surfaces were identified and found to have a 90-degree rotation relative to the structure proposed by some experimental groups. Our work may facilitate the design and control of experimental pentacene thin-film growth, and thus the development

  12. The hydrophobic effect: Molecular dynamics simulations of water confined between extended hydrophobic and hydrophilic surfaces

    DEFF Research Database (Denmark)

    Jensen, Morten Østergaard; Mouritsen, Ole G.; Peters, Günther H.J.

    2004-01-01

    Structural and dynamic properties of water confined between two parallel, extended, either hydrophobic or hydrophilic crystalline surfaces of n-alkane C36H74 or n-alcohol C35H71OH, are studied by molecular dynamics simulations. Electron density profiles, directly compared with corresponding......-correlation functions reveal that water molecules have characteristic diffusive behavior and orientational ordering due to the lack of hydrogen bonding interactions with the surface. These observations suggest that the altered dynamical properties of water in contact with extended hydrophobic surfaces together...... at both surfaces. The ordering is characteristically different between the surfaces and of longer range at the hydrophilic surface. Furthermore, the dynamic properties of water are different at the two surfaces and different from the bulk behavior. In particular, at the hydrophobic surface, time...

  13. Impact of surface energy on the shock properties of granular explosives

    Science.gov (United States)

    Bidault, X.; Pineau, N.

    2018-01-01

    This paper presents the first part of a two-fold molecular dynamics study of the impact of the granularity on the shock properties of high explosives. Recent experimental studies show that the granularity can have a substantial impact on the properties of detonation products {i.e., variations in the size distributions of detonation nanodiamonds [V. Pichot et al., Sci. Rep. 3, 2159 (2013)]}. These variations can have two origins: the surface energy, which is a priori enhanced from micro- to nano-scale, and the porosity induced by the granular structure. In this first report, we study the impact of the surface-energy contribution on the inert shock compression of TATB, TNT, α-RDX, and β-HMX nano-grains (triaminotrinitrobenzene, trinitrotoluene, hexogen and octogen, respectively). We compute the radius-dependent surface energy and combine it with an ab initio-based equation of state in order to obtain the resulting shock properties through the Rankine-Hugoniot relations. We find that the enhancement of the surface energy results in a moderate overheating under shock compression. This contribution is minor with respect to porosity, when compared to a simple macroscopic model. This result motivates further atomistic studies on the impact of nanoporosity networks on the shock properties.

  14. Effects of engineered nano-titanium dioxide on pore surface properties and phosphorus adsorption of sediment: Its environmental implications

    International Nuclear Information System (INIS)

    Luo, Zhuanxi; Wang, Zhenhong; Wei, QunShan; Yan, Changzhou; Liu, Feng

    2011-01-01

    Highlights: → The attachment of Enano-TiO 2 to surface enhanced markedly sediment BET surface area and t-Plot external surface area. → The fill of Enano-TiO 2 into the micropores reduced significantly the sediment t-Plot micropore surface area. → Enano-TiO 2 could increase sediment phosphorus (P) adsorption maximum and decrease in sediment P binding energy. → P would be easily released because of the decreasing P binding energy of the sediment with elevated Enano-TiO 2 . - Abstract: Understanding the environmental safety and human health implications of engineered nanoparticles (ENPs) is of worldwide importance. As an important ENPs, engineered nano-TiO 2 (Enano-TiO 2 ) may have been substantially deposited in aquatic sediments because of its widely uses. Sediment pore surface properties would be thus significantly influenced due to the large surface area of Enano-TiO 2 . In this study, Enano-TiO 2 was found to greatly impact on sediment pore surface properties. The attachment of Enano-TiO 2 particles to sediment surfaces enhanced markedly BET specific surface area and t-Plot external specific surface area, and thereby increased sediment phosphorus (P) adsorption maximum (S max ). Contrarily, the fill of Enano-TiO 2 particles into the micropores of sediments could significantly reduce t-Plot micropore specific surface area, and cause slight decrease in sediment P binding energy (K). Clearly, P sorbed in sediment would be easily released because of the decreasing P binding energy of the sediment with elevated Enano-TiO 2 . Enano-TiO 2 would thus cause aggravated endogenous pollution in water if such sediment was re-suspended on disturbance. The results obtained in this study contribute to our increasing knowledge of how to regulate physicochemical behavior of pollutants in sediments under the influences of Enano-TiO 2 and/or similar ENPs.

  15. Fluorinated cellular polypropylene films with time-invariant excellent surface electret properties by post-treatments

    International Nuclear Information System (INIS)

    An Zhenlian; Mao Mingjun; Yao Junlan; Zhang Yewen; Xia Zhongfu

    2010-01-01

    In this work, to improve the electret properties of cellular polypropylene films, they were fluorinated and post-treated with nitrous oxide and by isothermal crystallization. Surface electret properties of the samples were investigated by thermally stimulated discharge current measurements, and their compositions and structures were analysed by attenuated total reflection infrared spectroscopy and wide angle x-ray diffraction, respectively. Time-dependent deterioration of surface electret properties was observed for the fluorinated samples without the nitrous oxide post-treatment. However, deterioration did not occur for the fluorinated samples post-treated with nitrous oxide, and time-invariant excellent surface electret properties or deep surface charge traps were obtained by the combined post-treatments of the fluorinated samples with nitrous oxide and by isothermal crystallization. Based on the analyses of composition and structure of the treated samples, the deterioration was clarified to be due to a trace of oxygen in the reactive mixture, which led to the formation of peroxy RO 2 . radicals in the fluorinated surface layer. The time invariability of surface electret properties was owing to the rapid termination of the peroxy RO 2 . radicals by nitrous oxide. And the deep surface charge traps resulted from the isothermal crystallization treatment which led to an increase in the efficient charging interface between the crystallite and amorphous region and its property change.

  16. Tailoring Silica Surface Properties by Plasma Polymerization for Elastomer Applications

    NARCIS (Netherlands)

    Tiwari, M.; Dierkes, Wilma K.; Datta, Rabin; Talma, Auke; Noordermeer, Jacobus W.M.; van Ooij, W.J.

    2009-01-01

    The surface properties of reinforcing fillers are a crucial factor for dispersion and filler–polymer interaction in rubber compounds, as they strongly influence the final vulcanized properties of the rubber article. Silica is gaining more and more importance as reinforcing filler for rubbers, as it

  17. Tailoring Silica Surface Properties by Plasma Polymerization for Elastomer Applications

    NARCIS (Netherlands)

    Tiwari, M.; Dierkes, W.K.; Datta, R.N.; Talma, A.G.; Noordermeer, J.W.M.; van Ooij, W.J.

    2011-01-01

    The surface properties of reinforcing fillers are a crucial factor for dispersion and filler–polymer interaction in rubber compounds, as they strongly influence the final vulcanized properties of the rubber article. Silica is gaining more and more importance as reinforcing filler for rubbers, as it

  18. Use of neutrals backscattering for studying the vibrational properties of solid surfaces

    International Nuclear Information System (INIS)

    Lapujoulade, J.

    1975-01-01

    The neutrals (rare gases) elastic scattering may be used for studying some interesting properties of surfaces. However, an analysis of inelastic phenomena is mostly to be performed when vibrational properties of metallic surfaces are investigated. The dispersion relation of surface phonons has not yet been experimentally obtained from neutrals backscattering from solid surfaces, but the quasi-elastic scattering of helium should give this information on condition that velocity measurements are refined in view of directly obtained the distribution function rather than its moments and determining the preponderance of one-phonon transitions, or obtaining a detailed description of many-phonon exchanges [fr

  19. The turmeric protective properties at ethanol-induced behavioral disorders.

    Directory of Open Access Journals (Sweden)

    Goldina I.A.

    2017-03-01

    Full Text Available The aim of the study was to determine the effect of mechanically modified turmeric extract on the parameters of orienting-exploratory behavior in mice with chronic ethanol consumption. Material and methods. Mice behavior was assessed in the "open field" test. In the both control groups the animals received water or 10% ethanol solution; in the test group — turmeric extract in 10% ethanol solution. Amount of blood mononuclear cells, thymocytes, and splenocytes were estimated. Results. Analysis of the behavioral parameters in animals after chronic exposure to ethanol showed suppression of motor and exploratory components of the behavior. In mice that received both ethanol and turmeric extract recorded behavior parameters were significantly higher than in the group of animals who received ethanol only. It was shown that the turmeric extract enhances the amount of blood immune cells. Conclusion. Mechanically modified turmeric extract possesses protective properties against ethanol-induced behavioral disorders.

  20. Laser alloying of aluminium to improve surface properties - MSSA 2010

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2010-07-01

    Full Text Available and microstructure of the surface without affecting the bulk properties of the material. The process involves melting the substrate surface and injecting the powder of the alloying material into the melt pool. Process parameters such as laser power, beam spot size...

  1. CH-π Interaction Driven Macroscopic Property Transition on Smart Polymer Surface

    Science.gov (United States)

    Li, Minmin; Qing, Guangyan; Xiong, Yuting; Lai, Yuekun; Sun, Taolei

    2015-10-01

    Life systems have evolved to utilize weak noncovalent interactions, particularly CH-π interaction, to achieve various biofunctions, for example cellular communication, immune response, and protein folding. However, for artificial materials, it remains a great challenge to recognize such weak interaction, further transform it into tunable macroscopic properties and realize special functions. Here we integrate monosaccharide-based CH-π receptor capable of recognizing aromatic peptides into a smart polymer with three-component “Recognition-Mediating-Function” design, and report the CH-π interaction driven surface property switching on smart polymer film, including wettability, adhesion, viscoelasticity and stiffness. Detailed studies indicate that, the CH-π interaction induces the complexation between saccharide unit and aromatic peptide, which breaks the initial amphiphilic balance of the polymer network, resulting in contraction-swelling conformational transition for polymer chains and subsequent dramatic switching in surface properties. This work not only presents a new approach to control the surface property of materials, but also points to a broader research prospect on CH-π interaction at a macroscopic level.

  2. Microphase separated structure and surface properties of fluorinated polyurethane resin

    International Nuclear Information System (INIS)

    Sudaryanto; Nishino, T.; Hori, Y.; Nakamae, K.

    2000-01-01

    The effect of fluorination on microphase separation and surface properties of segmented polyurethane (PU) resin were investigated. A series of fluorinated polyurethane resin (FPU) was synthesized by reacting a fluorinated diol with aromatic diisocyanate. The microphase separated structure of FPU was studied by thermal analysis, and small angle X-ray scattering (SAXS) as well as wide angle X-ray diffraction (WAXD). The surface structure and properties were characterized by X-ray photoelectron spectroscopy (XPS) and dynamic contact angle measurement. The incorporation of fluorine into hard segment brings the FPU to have a higher hard domain cohesion and increase the phase separation, however localization of fluorine on the surface could not be observed. On the other hands, localization of fluorine on the surface could be achieved for soft segment fluorinated PU without any significant change in microphase separated structure. The result from this study give an important basic information for designing PU coating material with a low surface energy and strong adhesion as well as for development of release film on pressure sensitive adhesive tape. (author)

  3. Welcome to Surface Topography: Metrology and Properties

    Science.gov (United States)

    Leach, Richard

    2013-11-01

    I am delighted to welcome readers to this inaugural issue of Surface Topography: Metrology and Properties (STMP). In these days of citation indexes and academic reviews, it is a tough, and maybe a brave, job to start a new journal. But the subject area has never been more active and we are seeing genuine breakthroughs in the use of surfaces to control functional performance. Most manufactured parts rely on some form of control of their surface characteristics. The surface is usually defined as that feature on a component or device, which interacts with either the environment in which it is housed (or in which the device operates), or with another surface. The surface topography and material characteristics of a part can affect how fluids interact with it, how the part looks and feels and how two bearing parts will slide together. The need to control, and hence measure, surface features is becoming increasingly important as we move into a miniaturized world. Surface features can become the dominant functional features of a part and may become large in comparison to the overall size of an object. Research into surface texture measurement and characterization has been carried out for over a century and is now more active than ever, especially as new areal surface texture specification standards begin to be introduced. The range of disciplines for which the function of a surface relates to its topography is very diverse; from metal sheet manufacturing to art restoration, from plastic electronics to forensics. Until now, there has been no obvious publishing venue to bring together all these applications with the underlying research and theory, or to unite those working in academia with engineering and industry. Hence the creation of Surface Topography: Metrology and Properties . STMP will publish the best work being done across this broad discipline in one journal, helping researchers to share common themes and highlighting and promoting the extraordinary benefits this

  4. Bayesian inference of substrate properties from film behavior

    International Nuclear Information System (INIS)

    Aggarwal, R; Demkowicz, M J; Marzouk, Y M

    2015-01-01

    We demonstrate that by observing the behavior of a film deposited on a substrate, certain features of the substrate may be inferred with quantified uncertainty using Bayesian methods. We carry out this demonstration on an illustrative film/substrate model where the substrate is a Gaussian random field and the film is a two-component mixture that obeys the Cahn–Hilliard equation. We construct a stochastic reduced order model to describe the film/substrate interaction and use it to infer substrate properties from film behavior. This quantitative inference strategy may be adapted to other film/substrate systems. (paper)

  5. Investigations of the Electronic Properties and Surface Structures of Aluminium-Rich Quasicrystalline Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Barrow, Jason A. [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    equations. Transport behavior is described in terms of charge carriers and the mean-free time between carrier collisions. It is concluded that the mean-free time is much longer in the periodic direction than in the aperiodic direction. This difference produces the observed anisotropy in thermal transport. The third study presented a detailed analysis of the reversible, sputter-induced phase transformation which occurs on the 5-fold surface of an icosahedral Al-Cu-Fe quasicrystal. Reflection high-energy electron diffraction (RHEED), x-ray photoemission spectroscopy (XPS), and ultra-violet photoemission spectroscopy (UPS) data were collected as a function of annealing temperature and were used to probe surface structure, surface composition, and electronic structure, respectively. The composition and structure of the sputtered surface are consistent with a transformation to the β-Al-Cu-Fe cubic structure, and shows a sharp metallic cut-off in the spectral intensity of the electronic structure at the Fermi edge. Upon annealing the surface reverts to a quasicrystalline composition and structure. This transformation has been correlated with a reduction in the spectral intensity of the electronic structure at the Fermi level. This data clearly demonstrates that the observed reduction is intrinsic to a quasicrystalline surface. It is concluded that this is due to the opening of a pseudo-gap in the electronic density of states as the surface reverts from β-Al-Cu-Fe to quasicrystalline.

  6. Near-surface and bulk behavior of Ag in SiC

    International Nuclear Information System (INIS)

    Xiao, H.Y.; Zhang, Y.; Snead, L.L.; Shutthanandan, V.; Xue, H.Z.; Weber, W.J.

    2012-01-01

    Highlights: ► Ag release from SiC poses problems in safe operation of nuclear reactors. ► Near-surface and bulk behavior of Ag are studied by ab initio and ion beam methods. ► Ag prefers to adsorb on the surface rather than in the bulk SiC. ► At high temperature Ag desorbs from the surface instead of diffusion into bulk SiC. ► Surface diffusion may be a dominating mechanism accounting for Ag release from SiC. - Abstract: The diffusive release of fission products, such as Ag, from TRISO particles at high temperatures has raised concerns regarding safe and economic operation of advanced nuclear reactors. Understanding the mechanisms of Ag diffusion is thus of crucial importance for effective retention of fission products. Two mechanisms, i.e., grain boundary diffusion and vapor or surface diffusion through macroscopic structures such as nano-pores or nano-cracks, remain in debate. In the present work, an integrated computational and experimental study of the near-surface and bulk behavior of Ag in silicon carbide (SiC) has been carried out. The ab initio calculations show that Ag prefers to adsorb on the SiC surface rather than in the bulk, and the mobility of Ag on the surface is high. The energy barrier for Ag desorption from the surface is calculated to be 0.85–1.68 eV, and Ag migration into bulk SiC through equilibrium diffusion process is not favorable. Experimentally, Ag ions are implanted into SiC to produce Ag profiles buried in the bulk and peaked at the surface. High-temperature annealing leads to Ag release from the surface region instead of diffusion into the interior of SiC. It is suggested that surface diffusion through mechanical structural imperfection, such as vapor transport through cracks in SiC coatings, may be a dominating mechanism accounting for Ag release from the SiC in the nuclear reactor.

  7. Surface fractal dimensions and textural properties of mesoporous alkaline-earth hydroxyapatites

    International Nuclear Information System (INIS)

    Vilchis-Granados, J.; Granados-Correa, F.; Barrera-Díaz, C.E.

    2013-01-01

    This work examines the surface fractal dimensions (D f ) and textural properties of three different alkaline-earth hydroxyapatites. Calcium, strontium and barium hydroxyapatite compounds were successfully synthesized via chemical precipitation method and characterized using X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectrometry, Fourier transform infrared spectroscopy, and N 2 -physisorption measurements. Surface fractal dimensions were determined using single N 2 -adsorption/desorption isotherms method to quantify the irregular surface of as-prepared compounds. The obtained materials were also characterized through their surface hydroxyl group content, determined by the mass titration method. It was found that the D f values for the three materials covered the range of 0.77 ± 0.04–2.33 ± 0.11; these results indicated that the materials tend to have smooth surfaces, except the irregular surface of barium hydroxyapatite. Moreover, regarding the synthesized calcium hydroxyapatite exhibited better textural properties compared with the synthesized strontium and barium hydroxyapatites for adsorbent purposes. However, barium hydroxyapatite shows irregular surface, indicating a high population of active sites across the surface, in comparison with the others studied hydroxyapatites. Finally, the results showed a linear correlation between the surface hydroxyl group content at the external surface of materials and their surface fractal dimensions.

  8. First principle study of structural, electronic and fermi surface properties of aluminum praseodymium

    Science.gov (United States)

    Shugani, Mani; Aynyas, Mahendra; Sanyal, S. P.

    2018-05-01

    We present a structural, Electronic and Fermi surface properties of Aluminum Praseodymium (AlPr) using First-principles density functional calculation by using full potential linearized augmented plane wave (FP-LAPW) method within generalized gradient approximation (GGA). The ground state properties along with electronic and Fermi surface properties are studied. It is found that AlPr is metallic and the bonding between Al and Pr is covalent.

  9. Geographic, seasonal, and diurnal surface behavior of harbor porpoises

    DEFF Research Database (Denmark)

    Teilmann, Jonas; Christiansen, C.T.; Kjellerup, Sanne

    2013-01-01

    are essential information on the status and management of the species. Thirty-five free-ranging harbor porpoises (Phocoena phocoena) were tracked in the region between the Baltic and the North Sea for 25-349 d using Argos satellite transmitters. No differences were found in surface behavior between geographical...... areas or the size of the animals. Slight differences were found between the two sexes and time of day. Surface time peaked in April, where 6% was spent with the transmitter above surface and 61.5% between 0 and 2 m depth, while the minimum values occurred in February (3.4% and 42.5%, respectively......). The analyses reveal that individual variation among porpoises is the most important factor in explaining variation in surface rates. However, the large number of animals documented in the present study covering a wide range of age and sex groups justifies the use of the seasonal average surface times...

  10. Surface properties of hydrogenated nanodiamonds: a chemical investigation.

    Science.gov (United States)

    Girard, H A; Petit, T; Perruchas, S; Gacoin, T; Gesset, C; Arnault, J C; Bergonzo, P

    2011-06-28

    Hydrogen terminations (C-H) confer to diamond layers specific surface properties such as a negative electron affinity and a superficial conductive layer, opening the way to specific functionalization routes. For example, efficient covalent bonding of diazonium salts or of alkene moieties can be performed on hydrogenated diamond thin films, owing to electronic exchanges at the interface. Here, we report on the chemical reactivity of fully hydrogenated High Pressure High Temperature (HPHT) nanodiamonds (H-NDs) towards such grafting, with respect to the reactivity of as-received NDs. Chemical characterizations such as FTIR, XPS analysis and Zeta potential measurements reveal a clear selectivity of such couplings on H-NDs, suggesting that C-H related surface properties remain dominant even on particles at the nanoscale. These results on hydrogenated NDs open up the route to a broad range of new functionalizations for innovative NDs applications development. This journal is © the Owner Societies 2011

  11. Relation between surface properties of thin composite films and osteoblast behaviour in vitro

    International Nuclear Information System (INIS)

    Polak, B; Olkowski, R; Kobiela, T; Lewandowska-Szumiel, M; Fabianowski, W

    2007-01-01

    Si supports for cell culture were modified using poly(acrylic acid) (PAA) and bentonite in order to obtain 'sandwich'-like structures. A layer of PAA cast from water solution was followed with a bentonite layer also cast from water dispersion, then another PAA layer and so on up to six layers. The prepared surfaces had different physical and chemical properties like thickness, topography and elasticity. Chemical composition was characterized by Raman spectroscopy. The elastic properties and topography of modified sandwich-like surfaces were evaluated using nanoindentation and atomic force microscopy measurements. In the next step bone cells were cultured on such modified surfaces composed of one to six layers. The influence of the substrate surface properties on the growth and behaviour of human bone derived cells (HBDC) was studied. The influence of surface topography, elasticity and chemical composition on cells is discussed

  12. Surface restructuring behavior of various types of poly(dimethylsiloxane) in water detected by SFG.

    Science.gov (United States)

    Chen, Chunyan; Wang, Jie; Chen, Zhan

    2004-11-09

    Surface structures of several different poly(dimethylsiloxane) (PDMS) materials, tetraethoxysilane-cured hydroxy-terminated PDMS (TEOS-PDMS), platinum-cured vinyl-terminated PDMS (Pt-PDMS), platinum-cured vinyl-terminated poly(diphenylsiloxane)-co-poly(dimethylsiloxane) (PDPS-co-PDMS), and PDMS-co-polystyrene (PDMS-co-PS) copolymer in air and water have been investigated by sum frequency generation (SFG) vibrational spectroscopy. The SFG spectra collected from all PDMS surfaces in both air and water are dominated by methyl group stretches, indicating that all the surfaces are mainly covered by methyl groups. Other than surface-dominating methyl groups, some -Si-CH2-CH2- moieties on the Pt-PDMS surface have also been detected in air, which are present at cross-linking points. Information about the average orientation angle and angle distribution of the methyl groups on the PDMS surface has been evaluated. Surface restructuring of the methyl groups has been observed for all PDMS surfaces in water. Upon contacting water, the methyl groups on all PDMS surfaces tilt more toward the surface. The detailed restructuring behaviors of several PDMS surfaces in water and the effects of molecular weight on restructuring behaviors have been investigated. For comparison, in addition to air and water, surface structures of PDMS materials mentioned above in a nonpolar solvent, FC-75, have also been studied. By comparing the different response of phenyl groups to water on both PDPS-co-PDMS and PS-co-PDMS surfaces, we have demonstrated how the restructuring behaviors of surface phenyl groups are affected by the structural flexibility of the molecular chains where they are attached.

  13. Effect of surfactant for magnetic properties of iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Haracz, S. [Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89B, 61-614 Poznań (Poland); Hilgendorff, M. [Freie Universität Berlin, Fachbereich Physik, Arnimalle 14, 14195 Berlin (Germany); Rybka, J.D. [Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89B, 61-614 Poznań (Poland); Giersig, M. [Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89B, 61-614 Poznań (Poland); Freie Universität Berlin, Fachbereich Physik, Arnimalle 14, 14195 Berlin (Germany)

    2015-12-01

    Highlights: • Dynamic behavior of magnetic nanoparticles. • Synthesis of iron oxide nanoparticles. • Effect of surfactant for magnetic properties. - Abstract: For different medical applications nanoparticles (NPs) with well-defined magnetic properties have to be used. Coating ligand can change the magnetic moment on the surface of nanostructures and therefore the magnetic behavior of the system. Here we investigated magnetic NPs in a size of 13 nm conjugated with four different kinds of surfactants. The surface anisotropy and the magnetic moment of the system were changed due to the presence of the surfactant on the surface of iron oxide NPs.

  14. Thermodynamic and surface properties of Sb–Sn and In–Sn liquid ...

    Indian Academy of Sciences (India)

    properties through the activity coefficients of the alloy components in the bulk. .... In the model for studying surface properties, a statistical mechanical approach .... experimental values of Scc(0) determined by fitting the experimental activity ...

  15. [Adsorption of Cu on Core-shell Structured Magnetic Particles: Relationship Between Adsorption Performance and Surface Properties].

    Science.gov (United States)

    Li, Qiu-mei; Chen, Jing; Li, Hai-ning; Zhang, Xiao-lei; Zhang, Gao-sheng

    2015-12-01

    In order to reveal the relationship between the adsorption performance of adsorbents and their compositions, structure, and surface properties, the core-shell structured Fe₃O₄/MnO2 and Fe-Mn/Mn₂2 magnetic particles were systematically characterized using multiple techniques and their Cu adsorption behaviors as well as mechanism were also investigated in details. It was found that both Fe₃O4 and Fe-Mn had spinel structure and no obvious crystalline phase change was observed after coating with MnO₂. The introduction of Mn might improve the affinity between the core and the shell, and therefore enhanced the amount and distribution uniformity of the MnO₂ coated. Consequently, Fe-Mn/MnO₂ exhibited a higher BET specific surface area and a lower isoelectric point. The results of sorption experiments showed that Fe-Mn had a higher maximal Cu adsorption capacity of 33.7 mg · g⁻¹ at pH 5.5, compared with 17.5 mg · g⁻¹ of Fe₃O4. After coating, the maximal adsorption capacity of Fe-Mn/MnO₂ was increased to 58.2 mg · g⁻¹, which was 2.6 times as high as that of Fe₃O₄/MnO₂ and outperformed the majority of magnetic adsorbents reported in literature. In addition, a specific adsorption of Cu occurred at the surface of Fe₃O₄/MnO₂ or Fe-Mn/MnO₂ through the formation of inner-sphere complexes. In conclusion, the adsorption performance of the magnetic particles was positively related to their compositions, structure, and surface properties.

  16. Road-surface properties affecting rates of energy dissipation from vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Igwe, E.A. [Department of Civil Engineering, Rivers State University of Science and Technology, Port Harcourt, P.M.B 5080, Rivers State (Nigeria); Ayotamuno, M.J.; Okparanma, R.N. [Department of Agricultural and Environmental Engineering, Rivers State University of Science and Technology, Port Harcourt, P.M.B 5080, Rivers State (Nigeria); Ogaji, S.O.T.; Probert, S.D. [School of Engineering, Cranfield University, Bedfordshire Mk43 OAL (United Kingdom)

    2009-09-15

    The rates of energy that moving vehicles dissipate to road surfaces as well as noise emissions and their propensities for pitting (and hence their repair costs per year) all depend upon the structural properties of these surfaces. Thus, to increase the strength of bituminous concrete (i.e. a typical flexible road-surface) has been one of the major recent aims in highway engineering. The present study explored techniques that will increase these strength properties by modifying the material, using rubber latex, through rubberization and hence, improve the strength of the flexible trafficked surface when in contact with vehicles. At the optimal design asphalt (i.e. bitumen) content of 4.68%, the successive addition of various percentages of the rubber latex produced a design value of 1.65% rubber content, which increased the stability of the roadway from 1595 to 2639 N (i.e. an 65.5% increase) and the density from 2447 to 2520.8 kg/m{sup 3} (i.e. a 3.02% increase). This shows that the addition of rubber latex to bituminous concrete (a flexible road-surface) increased sustainability and the strength (in terms of stability and density). Similarly, the air voids and voids in the mineral aggregate (VMA) were reduced by introducing latex from 4.22% to 3.45% (i.e. a 17.06% reduction) and 16.25% to 13.43% (i.e. an 17.4% reduction), respectively. Whereas, the reduction in voidage volume added strength to the bituminous concrete by increasing its stability and density, the reduction in VMA had no positive impact on the strength properties of the flexible road-surface. (author)

  17. Controlling Gel Structure to Modulate Cell Adhesion and Spreading on the Surface of Microcapsules.

    Science.gov (United States)

    Zheng, Huizhen; Gao, Meng; Ren, Ying; Lou, Ruyun; Xie, Hongguo; Yu, Weiting; Liu, Xiudong; Ma, Xiaojun

    2016-08-03

    The surface properties of implanted materials or devices play critical roles in modulating cell behavior. However, the surface properties usually affect cell behaviors synergetically so that it is still difficult to separately investigate the influence of a single property on cell behavior in practical applications. In this study, alginate-chitosan (AC) microcapsules with a dense or loose gel structure were fabricated to understand the effect of gel structure on cell behavior. Cells preferentially adhered and spread on the loose gel structure microcapsules rather than on the dense ones. The two types of microcapsules exhibited nearly identical surface positive charges, roughness, stiffness, and hydrophilicity; thus, the result suggested that the gel structure was the principal factor affecting cell behavior. X-ray photoelectron spectroscopy analyses demonstrated that the overall percentage of positively charged amino groups was similar on both microcapsules. The different gel structures led to different states and distributions of the positively charged amino groups of chitosan, so we conclude that the loose gel structure facilitated greater cell adhesion and spreading mainly because more protonated amino groups remained unbound and exposed on the surface of these microcapsules.

  18. Design, development and applications of novel techniques for studying surface mechanical properties

    Science.gov (United States)

    Miyoshi, Kazuhisa

    1989-01-01

    Research is reviewed for the adhesion, friction, and micromechanical properties of materials and examples of the results presented. The ceramic and metallic materials studied include silicon carbide, aluminum oxide, and iron-base amorphous alloys. The design and operation of a torsion balance adapted for study of adhesion from the Cavendish balance are discussed first. The pull-off force (adhesion) and shear force (friction) required to break the interfacial junctions between contacting surfaces of the materials were examined at various temperatures in a vacuum. The surface chemistry of the materials was analyzed by X-ray photoelectron spectroscopy. Properties and environmental conditions of the surface regions which affect adhesion and friction-such as surface segregation, composition, crystal structure, surface chemistry, and temperature were also studied.

  19. Surface crystallization and magnetic properties of amorphous Fe80B20 alloy

    International Nuclear Information System (INIS)

    Vavassori, P.; Ronconi, F.; Puppin, E.

    1997-01-01

    We have studied the effects of surface crystallization on the magnetic properties of Fe 80 B 20 amorphous alloys. The surface magnetic properties have been studied with magneto-optic Kerr measurements, while those of bulk with a vibrating sample magnetometer. This study reveals that surface crystallization is similar to the bulk process but occurs at a lower temperature. At variance with previous results on other iron-based amorphous alloys the surface crystalline layer does not induce bulk magnetic hardening. Furthermore, both the remanence to saturation ratio and the bulk magnetic anisotropy do not show appreciable variations after the formation of the surface crystalline layer. The Curie temperature of the surface layer is lower with respect to the bulk of the sample. These effects can be explained by a lower boron concentration in the surface region of the as-cast amorphous alloy. Measurements of the chemical composition confirm a reduction of boron concentration in the surface region. copyright 1997 American Institute of Physics

  20. Optical properties of single semiconductor nanowires and nanowire ensembles. Probing surface physics by photoluminescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pfueller, Carsten

    2011-06-27

    This thesis presents a detailed investigation of the optical properties of semiconductor nanowires (NWs) in general and single GaN NWs and GaN NW ensembles in particular by photoluminescence (PL) spectroscopy. NWs are often considered as potential building blocks for future nanometer-scaled devices. This vision is based on several attractive features that are generally ascribed to NWs. For instance, they are expected to grow virtually free of strain and defects even on substrates with a large structural mismatch. In the first part of the thesis, some of these expectations are examined using semiconductor NWs of different materials. On the basis of the temperature-dependent PL of Au- and selfassisted GaAs/(Al,Ga)As core-shell NWs, the influence of foreign catalyst particles on the optical properties of NWs is investigated. For the Au-assisted NWs, we find a thermally activated, nonradiative recombination channel, possibly related to Auatoms incorporated from the catalyst. These results indicate the limited suitability of catalyst-assisted NWs for optoelectronic applications. The effect of the substrate choice is studied by comparing the PL of ZnO NWs grown on Si, Al{sub 2}O{sub 3}, and ZnO substrates. Their virtually identical optical characteristics indicate that the synthesis of NWs may indeed overcome the constraints that limit the heteroepitaxial deposition of thin films. The major part of this thesis discusses the optical properties of GaN NWs grown on Si substrates. The investigation of the PL of single GaN NWs and GaN NW ensembles reveals the significance of their large surface-to-volume ratio. Differences in the recombination behavior of GaNNW ensembles and GaN layers are observed. First, the large surface-to-volume ratio is discussed to be responsible for the different recombination mechanisms apparent in NWs. Second, certain optical features are only found in the PL of GaN NWs, but not in that of GaN layers. An unexpected broadening of the donor

  1. Fracture behavior of circumferentially surface-cracked elbows. Technical report, October 1993--March 1996

    International Nuclear Information System (INIS)

    Kilinski, T.; Mohan, R.; Rudland, D.; Fleming, M.

    1996-12-01

    This report presents the results from Task 2 of the Second International Piping Integrity Research Group (IPIRG-2) program. The focus of the Task 2 work was directed towards furthering the understanding of the fracture behavior of long-radius elbows. This was accomplished through a combined analytical and experimental program. J-estimation schemes were developed for both axial and circumferential surface cracks in elbows. Large-scale, quasi-static and dynamic, pipe-system, elbow fracture experiments under combined pressure and bending loads were performed on elbows containing an internal surface crack at the extrados. In conjunction with the elbow experiments, material property data were developed for the A106-90 carbon steel and WP304L stainless steel elbow materials investigated. A comparison of the experimental data with the maximum stress predictions using existing straight pipe fracture prediction analysis methods, and elbow fracture prediction methods developed in this program was performed. This analysis was directed at addressing the concerns regarding the validity of using analysis predictions developed for straight pipe to predict the fracture stresses of cracked elbows. Finally, a simplified fitting flaw acceptance criteria incorporating ASME B2 stress indices and straight pipe, circumferential-crack analysis was developed

  2. Fracture behavior of circumferentially surface-cracked elbows. Technical report, October 1993--March 1996

    Energy Technology Data Exchange (ETDEWEB)

    Kilinski, T.; Mohan, R.; Rudland, D.; Fleming, M. [and others

    1996-12-01

    This report presents the results from Task 2 of the Second International Piping Integrity Research Group (IPIRG-2) program. The focus of the Task 2 work was directed towards furthering the understanding of the fracture behavior of long-radius elbows. This was accomplished through a combined analytical and experimental program. J-estimation schemes were developed for both axial and circumferential surface cracks in elbows. Large-scale, quasi-static and dynamic, pipe-system, elbow fracture experiments under combined pressure and bending loads were performed on elbows containing an internal surface crack at the extrados. In conjunction with the elbow experiments, material property data were developed for the A106-90 carbon steel and WP304L stainless steel elbow materials investigated. A comparison of the experimental data with the maximum stress predictions using existing straight pipe fracture prediction analysis methods, and elbow fracture prediction methods developed in this program was performed. This analysis was directed at addressing the concerns regarding the validity of using analysis predictions developed for straight pipe to predict the fracture stresses of cracked elbows. Finally, a simplified fitting flaw acceptance criteria incorporating ASME B2 stress indices and straight pipe, circumferential-crack analysis was developed.

  3. Understanding the wetting properties of nanostructured selenium coatings: the role of nanostructured surface roughness and air-pocket formation

    Directory of Open Access Journals (Sweden)

    Tran PA

    2013-05-01

    Full Text Available Phong A Tran,1,2 Thomas J Webster31Department of Chemical and Biomolecular Engineering, University of Melbourne, Melbourne, VIC, Australia; 2The Particulate Fluid Processing Centre, University of Melbourne, Melbourne, VIC, Australia; 3Department of Chemical Engineering and Program in Bioengineering, Northeastern University, Boston, MA, USAAbstract: Wetting properties of biomaterials, in particular nanomaterials, play an important role, as these influence interactions with biological elements, such as proteins, bacteria, and cells. In this study, the wetting phenomenon of titanium substrates coated with selenium nanoparticles was studied using experimental and mathematical modeling tools. Importantly, these selenium-coated titanium substrates were previously reported to increase select protein adsorption (such as vitronectin and fibronectin, to decrease bacteria growth, and increase bone cell growth. Increased selenium nanoparticle coating density resulted in higher contact angles but remained within the hydrophilic regime. This trend was found in disagreement with the Wenzel model, which is widely used to understand the wetting properties of rough surfaces. The trend also did not fit well with the Cassie–Baxter model, which was developed to understand the wetting properties of composite surfaces. A modified wetting model was thus proposed in this study, to understand the contributing factors of material properties to the hydrophilicity/hydrophobicity of these nanostructured selenium-coated surfaces. The analysis and model created in this study can be useful in designing and/or understanding the wetting behavior of numerous biomedical materials and in turn, biological events (such as protein adsorption as well as bacteria and mammalian cell functions.Keywords: hydrophilicity, hydrophobicity, Wenzel model, Cassie–Baxter model, free energy, implant material, proteins, cells, bacteria

  4. Investigation of some properties of Nylon-6 surface treated by corona discharge in helium

    International Nuclear Information System (INIS)

    Dumitrascu, N.; Surdu, S.; Popa, Gh.; Raileanu, D.

    1996-01-01

    In this work an easy and less expensive method of treatment has been used by corona discharge. This allows to modify the surface properties and especially to improve the compatibility of polymers with biological tissue. The Nylon-6 as a test material was chosen. A scanning electron microscope to visualize the morphology of the morphology of the surface and an IR spectrophotometer able to identify the amide groups and other as well, have been used. Morphology of the treated surface by corona discharge emphasis an etching an etching and/or a crosslinking of amorphous domains, generally important to improve the properties as wetting, dyeing, adhesion, etc. Over all treated surface there is significant blood compatible properties without the need of heparinization of surface. The treated surface influences the biological behaviour of micro-organisms, respectively, that surface is a favourable medium for division of cells and may increase their lifetime. (authors)

  5. Effects of growth rate on structural property and adatom migration behaviors for growth of GaInNAs/GaAs (001) by molecular beam epitaxy

    Science.gov (United States)

    Li, Jingling; Gao, Peng; Zhang, Shuguang; Wen, Lei; Gao, Fangliang; Li, Guoqiang

    2018-03-01

    We have investigated the structural properties and the growth mode of GaInNAs films prepared at different growth rates (Rg) by molecular beam epitaxy. The crystalline structure is studied by high resolution X-ray diffraction, and the evolution of GaInNAs film surface morphologies is studied by atomic force microscopy. It is found that both the crystallinity and the surface roughness are improved by increasing Rg, and the change in the growth mode is attributed to the adatom migration behaviors particularly for In atoms, which is verified by elemental analysis. In addition, we have presented some theoretical calculation results related to the N adsorption energy to show the unique N migration behavior, which is instructive to interpret the growth mechanism of GaInNAs films.

  6. General predictive model of friction behavior regimes for metal contacts based on the formation stability and evolution of nanocrystalline surface films.

    Energy Technology Data Exchange (ETDEWEB)

    Argibay, Nicolas [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Cheng, Shengfeng [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Sawyer, W. G. [Univ. of Florida, Gainesville, FL (United States); Michael, Joseph R. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Chandross, Michael E. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2015-09-01

    The prediction of macro-scale friction and wear behavior based on first principles and material properties has remained an elusive but highly desirable target for tribologists and material scientists alike. Stochastic processes (e.g. wear), statistically described parameters (e.g. surface topography) and their evolution tend to defeat attempts to establish practical general correlations between fundamental nanoscale processes and macro-scale behaviors. We present a model based on microstructural stability and evolution for the prediction of metal friction regimes, founded on recently established microstructural deformation mechanisms of nanocrystalline metals, that relies exclusively on material properties and contact stress models. We show through complementary experimental and simulation results that this model overcomes longstanding practical challenges and successfully makes accurate and consistent predictions of friction transitions for a wide range of contact conditions. This framework not only challenges the assumptions of conventional causal relationships between hardness and friction, and between friction and wear, but also suggests a pathway for the design of higher performance metal alloys.

  7. Transport properties of high-temperature superconductors: Surface vs bulk effect

    International Nuclear Information System (INIS)

    Burlachkov, L.; Koshelev, A.E.; Vinokur, V.M.

    1996-01-01

    We investigate surface-related transport properties of high-temperature superconductors. We find the mean vortex velocity under applied transport current determined by the activation energies for vortex penetration and exit through the Bean-Livingston barrier. We determine the current distribution between the surfaces of superconductor and the field and current dependencies of the transport activation energies. For a three-dimensional superconductor the transport activation energy, U s 3D , is found to decrease with the external field, H, and transport current, J, as U s 3D ∝H -1/2 and U s 3D ∝J -1/2 , respectively. In the quasi-two-dimensional compounds, U s 2D decays logarithmically with field and current. The interplay between the surface and the bulk contributions to the transport properties, such as current-voltage characteristics, is discussed. copyright 1996 The American Physical Society

  8. Angle-dependent lubricated tribological properties of stainless steel by femtosecond laser surface texturing

    Science.gov (United States)

    Wang, Zhuo; Li, Yang-Bo; Bai, Feng; Wang, Cheng-Wei; Zhao, Quan-Zhong

    2016-07-01

    Lubricated tribological properties of stainless steel were investigated by femtosecond laser surface texturing. Regular-arranged micro-grooved textures with different spacing and micro-groove inclination angles (between micro-groove path and sliding direction) were produced on AISI 304L steel surfaces by an 800 nm femtosecond laser. The spacing of micro-groove was varied from 25 to 300 μm, and the inclination angles of micro-groove were measured as 90° and 45°. The tribological properties of the smooth and textured surfaces with micro-grooves were investigated by reciprocating ball-on-flat tests against Al2O3 ceramic balls under starved oil lubricated conditions. Results showed that the spacing of micro-grooves significantly affected the tribological property. With the increase of micro-groove spacing, the average friction coefficients and wear rates of textured surfaces initially decreased then increased. The tribological performance also depended on the inclination angles of micro-grooves. Among the investigated patterns, the micro-grooves perpendicular to the sliding direction exhibited the lowest average friction coefficient and wear rate to a certain extent. Femtosecond laser-induced surface texturing may remarkably improve friction and wear properties if the micro-grooves were properly distributed.

  9. Surface modification and electrochemical properties of activated carbons for supercapacitor electrodes

    Science.gov (United States)

    Yang, Dan; Qiu, Wenmei; Xu, Jingcai; Han, Yanbing; Jin, Hongxiao; Jin, Dingfeng; Peng, Xiaoling; Hong, Bo; Li, Ji; Ge, Hongliang; Wang, Xinqing

    2015-12-01

    Modifications with different acids (HNO3, H2SO4, HCl and HF, respectively) were introduced to treat the activated carbons (ACs) surface. The microstructures and surface chemical properties were discussed by X-ray diffraction (XRD), thermogravimetric analysis (TGA), ASAP, Raman spectra and Fourier transform infrared (FTIR) spectra. The ACs electrode-based supercapacitors were assembled with 6 mol ṡ L-1 KOH electrolyte. The electrochemical properties were studied by galvanostatic charge-discharge and cyclic voltammetry. The results indicated that although the BET surface area of modified ACs decreased, the functional groups were introduced and the ash contents were reduced on the surface of ACs, receiving larger specific capacitance to initial AC. The specific capacitance of ACs modified with HCl, H2SO4, HF and HNO3 increased by 31.4%, 23%, 21% and 11.6%, respectively.

  10. Influence of surface oxidation on the radiative properties of ZrB{sub 2}-SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ning, E-mail: lncaep@163.com [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, 621900 (China); Xing, Pifeng; Li, Cui [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, 621900 (China); Wang, Peng [School of Material Science and Engineering, Shandong University of Technology, Zibo 255049 (China); Jin, Xinxin [College of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150040 (China); Zhang, Xinghong [Science and Technology on Advanced Composites in Special Environments Laboratory, Harbin Institute of Technology, Harbin 150001 (China)

    2017-07-01

    Highlights: • Surface component affected radiative properties of ZrB{sub 2}-SiC composites significantly. • Emissivity in long-wave range gradually increased with the thickness of oxide scale. • The surface temperature had a little effect on radiative properties of composites. • Influence of surface roughness on emissivity could be negligible. • Covering the surface with glass is a method for improving radiative properties. - Abstract: The spectral emissivities of ZrB{sub 2}-20 vol.% SiC composites with various surface components of ZrB{sub 2}/SiC (ZS1), silica-rich glass (ZS2) and porous zirconia (ZS3) were measured using infrared spectrometer in the wavelength range from 2.5 to 25.0 μm. The relationship between surface oxidation (associated with surface component, thickness of oxide scale, testing temperature as well as roughness) and the radiative properties of ZrB{sub 2}-SiC composites were investigated systematically. Surface component affected the radiative properties of composites significantly. The total emissivity of ZS1 varied from 0.22 to 0.81 accompanied with surface oxidation in the temperature range 300–900 °C. The emissivity of ZS2 was about 1.5 times as that of ZS3 under the same testing conditions. The oxide scale on specimen surface enhanced the radiative properties especially in terms of short-wave range, and the emissivity in the long-wave range gradually increased with the thickness of oxide scale within a certain range. The influence of testing temperature and surface roughness was also investigated. The testing temperature had a little effect on radiative properties, whereas effect of surface roughness could be negligible.

  11. Surface transport properties of Fe-based superconductors: The influence of degradation and inhomogeneity

    Energy Technology Data Exchange (ETDEWEB)

    Plecenik, T.; Gregor, M.; Sobota, R.; Truchly, M.; Satrapinskyy, L.; Kus, P.; Plecenik, A. [Department of Experimental Physics, FMPI, Comenius University, 842 48 Bratislava (Slovakia); Kurth, F.; Holzapfel, B.; Iida, K. [Institute for Metallic Materials, IFW Dresden, P. O. Box 270116, D-01171 Dresden (Germany)

    2013-07-29

    Surface properties of Co-doped BaFe{sub 2}As{sub 2} epitaxial superconducting thin films were inspected by X-ray photoelectron spectroscopy, scanning spreading resistance microscopy (SSRM), and point contact spectroscopy (PCS). It has been shown that surface of Fe-based superconductors degrades rapidly if being exposed to air, what results in suppression of gap-like structure on PCS spectra. Moreover, SSRM measurements revealed inhomogeneous surface conductivity, what is consistent with strong dependence of PCS spectra on contact position. Presented results suggest that fresh surface and small probing area should be assured for surface sensitive measurements like PCS to obtain intrinsic properties of Fe-based superconductors.

  12. An expert system to characterize the surface morphological properties according to their functionalities

    International Nuclear Information System (INIS)

    Bigerelle, M; Mathia, T; Iost, A; Correvits, T; Anselme, K

    2011-01-01

    In this paper we propose a new methodology to characterize the morphological properties of a surface in relation with its functionality (tribological properties, surface coating adhesion, brightness, wettability...). We create a software based on experimental design and surface profile recording. Using an appropriate database structure, the roughness parameters are automatically computed at different scales. The surface files are saved in a hard disk directory and roughness parameters are computed at different scales. Finally, a statistical analysis system proposes the roughness parameter (or the pair of roughness parameters) that better describe(s) the functionality of the surface and the spatial scales at which the parameter(s) is (are) the more relevant.

  13. An expert system to characterize the surface morphological properties according to their functionalities

    Energy Technology Data Exchange (ETDEWEB)

    Bigerelle, M [Laboratoire Roberval, UMR 6253, UTC/CNRS, UTC Centre de Recherches de Royallieu BP 20529, 60205 Compiegne France stol BS1 6BE (United Kingdom); Mathia, T [Laboratoire de Tribologie et Dynamique des Systemes, UMR 5513, Ecole Centrale de Lyon, 36 Av Guy de Collongue, 69134 Ecully Cedex (France); Iost, A [Laboratoire de Mecanique de Lille, UMR CNRS 8107, Arts et Metiers ParisTech - Lille, 8, boulevard Louis XIV 59046 Lille (France); Correvits, T [Laboratoire de Metrologie. Arts et Metiers ParisTech, ENSAM, 8 boulevard Louis XIV, 59046 LILLE Cedex (France); Anselme, K, E-mail: maxence.bigerelle@utc.fr [Institut De Sciences Des Materiaux De Mulhouse, CNRS LRC 7228, 15, rue Jean Starcky, Universite De Haute-Alsace, BP 2488, 68057 Mulhouse (France)

    2011-08-19

    In this paper we propose a new methodology to characterize the morphological properties of a surface in relation with its functionality (tribological properties, surface coating adhesion, brightness, wettability...). We create a software based on experimental design and surface profile recording. Using an appropriate database structure, the roughness parameters are automatically computed at different scales. The surface files are saved in a hard disk directory and roughness parameters are computed at different scales. Finally, a statistical analysis system proposes the roughness parameter (or the pair of roughness parameters) that better describe(s) the functionality of the surface and the spatial scales at which the parameter(s) is (are) the more relevant.

  14. Behavioral properties of Balanites aegyptiaca in rodents.

    Science.gov (United States)

    Ya'u, J; Abdulmalik, U N; Yaro, A H; Chindo, B A; Anuka, J A; Hussaini, I M

    2011-06-01

    Balanites aegyptiaca is a native plant from the dry tropical areas of Africa and Arabia. It has been used in traditional medicine to treat psychoses, epilepsy, rheumatism and for the management of cough, liver and spleen conditions for many years. The plant is also used as antihelmintic and molluscicide. The present studies aimed at investigating the behavioral properties of ethanol extract of the root of this medicinal plant, which is already in common applications in the Nigerian traditional medicine. The intraperitoneal and oral mean lethal dose (LD(50)) of the extract was determined using the Lorke's method. The preliminary phytochemical screening of the extract was carried out to identify the secondary metabolites in the extract. Furthermore, the behavioral properties of the extract were evaluated using diazepam-induced sleep, open field test, staircase test and beam walking assay all in mice. The extract significantly (popen field test, the extract (150 and 300 mg/kg) and diazepam (0.05 mg/kg) produced a significant (pwalking assay the extract did not produce any significant increase in the time taken to complete task as compared to diazepam 1mg/kg which was significant at p<0.05. Furthermore, 30 mg/kg of the extract and diazepam 1mg/kg showed significant (p<0.05) mean number of foot slips, suggesting that the central nervous system depressant activity might not necessarily due to peripheral neuromuscular blockade. The result indicates that the extract of Balanites aegyptiaca possess biologically active compound(s) that have anxiolytic and sedative properties, which support the ethnomedicinal use of the plant as antipsychotic and antiepileptic agents. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  15. Comparative study on two different seal surface structure for reactor pressure vessel sealing behavior

    International Nuclear Information System (INIS)

    Chen Jun; Xiong Guangming; Deng Xiaoyun

    2014-01-01

    The seal surface structure is very important to reactor pressure vessel (RPV) sealing behavior. In this paper, two 3-D RPV sealing analysis finite models have been established with different seal surface structures, in order to study the influence of two structures. The separation of RPV upper and lower flanges, bolt loads and etc. are obtained, which are used to evaluate the sealing behavior of the RPV. Meanwhile, the comparative analysis of safety margin of two seal surface structural had been done, which provides the theoretical basis for RPV seal structure design optimization. (authors)

  16. Transient atomic behavior and surface kinetics of GaN

    International Nuclear Information System (INIS)

    Moseley, Michael; Billingsley, Daniel; Henderson, Walter; Trybus, Elaissa; Doolittle, W. Alan

    2009-01-01

    An in-depth model for the transient behavior of metal atoms adsorbed on the surface of GaN is developed. This model is developed by qualitatively analyzing transient reflection high energy electron diffraction (RHEED) signals, which were recorded for a variety of growth conditions of GaN grown by molecular-beam epitaxy (MBE) using metal-modulated epitaxy (MME). Details such as the initial desorption of a nitrogen adlayer and the formation of the Ga monolayer, bilayer, and droplets are monitored using RHEED and related to Ga flux and shutter cycles. The suggested model increases the understanding of the surface kinetics of GaN, provides an indirect method of monitoring the kinetic evolution of these surfaces, and introduces a novel method of in situ growth rate determination.

  17. Transient atomic behavior and surface kinetics of GaN

    Science.gov (United States)

    Moseley, Michael; Billingsley, Daniel; Henderson, Walter; Trybus, Elaissa; Doolittle, W. Alan

    2009-07-01

    An in-depth model for the transient behavior of metal atoms adsorbed on the surface of GaN is developed. This model is developed by qualitatively analyzing transient reflection high energy electron diffraction (RHEED) signals, which were recorded for a variety of growth conditions of GaN grown by molecular-beam epitaxy (MBE) using metal-modulated epitaxy (MME). Details such as the initial desorption of a nitrogen adlayer and the formation of the Ga monolayer, bilayer, and droplets are monitored using RHEED and related to Ga flux and shutter cycles. The suggested model increases the understanding of the surface kinetics of GaN, provides an indirect method of monitoring the kinetic evolution of these surfaces, and introduces a novel method of in situ growth rate determination.

  18. Mesoscopic modeling of structural and thermodynamic properties of fluids confined by rough surfaces.

    Science.gov (United States)

    Terrón-Mejía, Ketzasmin A; López-Rendón, Roberto; Gama Goicochea, Armando

    2015-10-21

    The interfacial and structural properties of fluids confined by surfaces of different geometries are studied at the mesoscopic scale using dissipative particle dynamics simulations in the grand canonical ensemble. The structure of the surfaces is modeled by a simple function, which allows us to simulate readily different types of surfaces through the choice of three parameters only. The fluids we have modeled are confined either by two smooth surfaces or by symmetrically and asymmetrically structured walls. We calculate structural and thermodynamic properties such as the density, temperature and pressure profiles, as well as the interfacial tension profiles for each case and find that a structural order-disorder phase transition occurs as the degree of surface roughness increases. However, the magnitude of the interfacial tension is insensitive to the structuring of the surfaces and depends solely on the magnitude of the solid-fluid interaction. These results are important for modern nanotechnology applications, such as in the enhanced recovery of oil, and in the design of porous materials with specifically tailored properties.

  19. Surface electrical properties of stainless steel fibres: An AFM-based study

    International Nuclear Information System (INIS)

    Yin, Jun; D’Haese, Cécile; Nysten, Bernard

    2015-01-01

    Highlights: • Surface electrical conductivity of stainless steel fibre is measured and mapped by CS-AFM. • Surface potential of stainless steel fibre is measured and mapped by KPFM. • Surface electronic properties are governed by the chromium oxide passivation layer. • Electron tunnelling through the passivation layer is the dominant mechanisms for conduction. - Abstract: Atomic force microscopy (AFM) electrical modes were used to study the surface electrical properties of stainless steel fibres. The surface electrical conductivity was studied by current sensing AFM and I–V spectroscopy. Kelvin probe force microscopy was used to measure the surface contact potential. The oxide film, known as passivation layer, covering the fibre surface gives rise to the observation of an apparently semiconducting behaviour. The passivation layer generally exhibits a p-type semiconducting behaviour, which is attributed to the predominant formation of chromium oxide on the surface of the stainless steel fibres. At the nanoscale, different behaviours are observed from points to points, which may be attributed to local variations of the chemical composition and/or thickness of the passivation layer. I–V curves are well fitted with an electron tunnelling model, indicating that electron tunnelling may be the predominant mechanism for electron transport

  20. Reversible Surface Properties of Polybenzoxazine/Silica Nanocomposites Thin Films

    Directory of Open Access Journals (Sweden)

    Wei-Chen Su

    2013-01-01

    Full Text Available We report the reversible surface properties (hydrophilicity, hydrophobicity of a polybenzoxazine (PBZ thin film through simple application of alternating UV illumination and thermal treatment. The fraction of intermolecularly hydrogen bonded O–H⋯O=C units in the PBZ film increased after UV exposure, inducing a hydrophilic surface; the surface recovered its hydrophobicity after heating, due to greater O–H⋯N intramolecular hydrogen bonding. Taking advantage of these phenomena, we prepared a PBZ/silica nanocomposite coating through two simple steps; this material exhibited reversible transitions from superhydrophobicity to superhydrophilicity upon sequential UV irradiation and thermal treatment.

  1. Electrostatic behavior of the charge-regulated bacterial cell surface.

    Science.gov (United States)

    Hong, Yongsuk; Brown, Derick G

    2008-05-06

    The electrostatic behavior of the charge-regulated surfaces of Gram-negative Escherichia coli and Gram-positive Bacillus brevis was studied using numerical modeling in conjunction with potentiometric titration and electrophoretic mobility data as a function of solution pH and electrolyte composition. Assuming a polyelectrolytic polymeric bacterial cell surface, these experimental and numerical analyses were used to determine the effective site numbers of cell surface acid-base functional groups and Ca(2+) sorption coefficients. Using effective site concentrations determined from 1:1 electrolyte (NaCl) experimental data, the charge-regulation model was able to replicate the effects of 2:1 electrolyte (CaCl(2)), both alone and as a mixture with NaCl, on the measured zeta potential using a single Ca(2+) surface binding constant for each of the bacterial species. This knowledge is vital for understanding how cells respond to changes in solution pH and electrolyte composition as well as how they interact with other surfaces. The latter is especially important due to the widespread use of the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory in the interpretation of bacterial adhesion. As surface charge and surface potential both vary on a charge-regulated surface, accurate modeling of bacterial interactions with surfaces ultimately requires use of an electrostatic model that accounts for the charge-regulated nature of the cell surface.

  2. Surface properties and microporosity of polyhydroxybutyrate under scanning electron microscopy

    International Nuclear Information System (INIS)

    Raouf, A.A.; Samsudin, A.R.; Samian, R.; Akool, K.; Abdullah, N.

    2004-01-01

    This study was designed to investigate the surface properties especially surface porosity of polyhydroxybutyrate (PHB) using scanning electron microscopy. PHB granules were sprinkled on the double-sided sticky tape attached on a SEM aluminium stub and sputtered with gold (10nm thickness) in a Polaron SC515 Coater, following which the samples were placed into the SEM specimen chamber for viewing and recording. Scanning electron micrographs with different magnification of PHB surface revealed multiple pores with different sizes. (Author)

  3. Confinement properties of 2D porous molecular networks on metal surfaces

    International Nuclear Information System (INIS)

    Müller, Kathrin; Enache, Mihaela; Stöhr, Meike

    2016-01-01

    Quantum effects that arise from confinement of electronic states have been extensively studied for the surface states of noble metals. Utilizing small artificial structures for confinement allows tailoring of the surface properties and offers unique opportunities for applications. So far, examples of surface state confinement include thin films, artificial nanoscale structures, vacancy and adatom islands, self-assembled 1D chains, vicinal surfaces, quantum dots and quantum corrals. In this review we summarize recent achievements in changing the electronic structure of surfaces by adsorption of nanoporous networks whose design principles are based on the concepts of supramolecular chemistry. Already in 1993, it was shown that quantum corrals made from Fe atoms on a Cu(1 1 1) surface using single atom manipulation with a scanning tunnelling microscope confine the Shockley surface state. However, since the atom manipulation technique for the construction of corral structures is a relatively time consuming process, the fabrication of periodic two-dimensional (2D) corral structures is practically impossible. On the other side, by using molecular self-assembly extended 2D porous structures can be achieved in a parallel process, i.e. all pores are formed at the same time. The molecular building blocks are usually held together by non-covalent interactions like hydrogen bonding, metal coordination or dipolar coupling. Due to the reversibility of the bond formation defect-free and long-range ordered networks can be achieved. However, recently also examples of porous networks formed by covalent coupling on the surface have been reported. By the choice of the molecular building blocks, the dimensions of the network (pore size and pore to pore distance) can be controlled. In this way, the confinement properties of the individual pores can be tuned. In addition, the effect of the confined state on the hosting properties of the pores will be discussed in this review article

  4. Preparation, Surface Properties, and Therapeutic Applications of Gold Nanoparticles in Biomedicine.

    Science.gov (United States)

    Panahi, Yunes; Mohammadhosseini, Majid; Nejati-Koshki, Kazem; Abadi, Azam Jafari Najaf; Moafi, Hadi Fallah; Akbarzadeh, Abolfazl; Farshbaf, Masoud

    2017-02-01

    Gold nanoparticles (AuNPs) due to their unique properties and manifold surface functionalities have been applied in bio-nanotechnology. The application of GNPs in recent medical and biological research is very extensive. Especially it involves applications such as detection and photothermalysis of microorganisms and cancer stem cells, biosensors; optical bio-imaging and observing of cells and these nanostructures also serve as practical platforms for therapeutic agents. In this review we studied all therapeutic applications of gold nanoparticles in biomedicine, synthesis methods, and surface properties. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Ionic liquids influence on the surface properties of electron beam irradiated wood

    Energy Technology Data Exchange (ETDEWEB)

    Croitoru, Catalin [“Transilvania” University of Brasov, Product Design and Environment Department, 29 Eroilor Str., 500036, Brasov (Romania); Patachia, Silvia, E-mail: st.patachia@unitbv.ro [“Transilvania” University of Brasov, Product Design and Environment Department, 29 Eroilor Str., 500036, Brasov (Romania); Doroftei, Florica; Parparita, Elena; Vasile, Cornelia [“Petru Poni” Institute of Macromolecular Chemistry, Physical Chemistry of Polymers Department, 41A Gr. Ghica Voda Alley, Iasi (Romania)

    2014-09-30

    Highlights: • Wood veneers impregnated with three imidazolium-based ionic liquids and irradiated with electron beam were studied by FTIR-ATR, SEM/EDX, AFM, contact angle and image analysis. • ILs preserve the surface properties of the wood (surface energy, roughness, color) upon irradiation, in comparison with the reference wood, but the surface composition is changed by treatment with IL-s, mainly with 1-butyl-3-methylimidazolium tetrafluoroborate. • Under electron beam irradiation covalent bonding of the imidazolium moiety to wood determines a higher resistance to water penetration and spreading on the surface. - Abstract: In this paper, the influence of three imidazolium-based ionic liquids (1-butyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium hexafluorophosphate and 1-hexyl-3-methylimidazolium chloride) on the structure and surface properties of sycamore maple (Acer pseudoplatanus) veneers submitted to electron beam irradiation with a dose of 50 kGy has been studied by using Fourier transform infrared spectroscopy, as well as image, scanning electron microscopy/SEM/EDX, atomic force microscopy and contact angle analysis. The experimental results have proven that the studied ionic liquids determine a better preservation of the structural features of wood (cellulose crystallinity index and lignin concentration on the surface) as well as some of surface properties such as surface energy, roughness, color upon irradiation with electron beam, in comparison with the reference wood, but surface composition is changed by treatment with imidazolium-based ionic liquids mainly with 1-butyl-3-methylimidazolium tetrafluoroborate. Also, under electron beam irradiation covalent bonding of the imidazolium moiety to wood determines a higher resistance to water penetration and spreading on the surface.

  6. Optical and thermal properties in ultrafast laser surface nanostructuring on biodegradable polymer

    Science.gov (United States)

    Yada, Shuhei; Terakawa, Mitsuhiro

    2015-03-01

    We investigate the effect of optical and thermal properties in laser-induced periodic surface structures (LIPSS) formation on a poly-L-lactic acid (PLLA), a biodegradable polymer. Surface properties of biomaterials are known to be one of the key factors in tissue engineering. Methods to process biomaterial surfaces have been studied widely to enhance cell adhesive and anisotropic properties. LIPSS formation has advantages in a dry processing which is able to process complex-shaped surfaces without using a toxic chemical component. LIPSS, however, was difficult to be formed on PLLA due to its thermal and optical properties compared to other polymers. To obtain new perspectives in effect of these properties above, LIPSS formation dependences on wavelength, pulse duration and repetition rate have been studied. At 800 nm of incident wavelength, high-spatial frequency LIPSS (HSFL) was formed after applying 10000 femtosecond pulses at 1.0 J/cm2 in laser fluence. At 400 nm of the wavelength, HSFL was formed at fluences higher than 0.20 J/cm2 with more than 3000 pulses. Since LIPSS was less formed with lower repetition rate, certain heat accumulation may be required for LIPSS formation. With the pulse duration of 2.0 ps, higher laser fluence as well as number of pulses compared to the case of 120 fs was necessary. This indicates that multiphoton absorption process is essential for LIPSS formation. Study on biodegradation modification was also performed.

  7. Neutron-induced modifications on Hostaphan and Makrofol wettability and etching behaviors

    International Nuclear Information System (INIS)

    El-Sayed, D.; El-Saftawy, A.A.; Abd El Aal, S.A.; Fayez-Hassan, M.; Al-Abyad, M.; Mansour, N.A.; Seddik, U.

    2017-01-01

    Understanding the nature of polymers used as nuclear detectors is crucial to enhance their behaviors. In this work, the induced modifications in wettability and etching properties of Hostaphan and Makrofol polymers irradiated by different fluences of thermal neutrons are investigated. The wetting properties are studied by contact angle technique which showed the spread out of various liquids over the irradiated polymers surfaces (wettability enhanced). This wetting behavior is attributed to the induced changes in surface free energy (SFE), morphology, roughness, structure, hardness, and chemistry. SFE values are calculated by three different models and found to increase after neutrons irradiation associated with differences depending on the used model. These differences result from the intermolecular interactions in the liquid/polymer system. Surface morphology and roughness of both polymers showed drastic changes after irradiation. Additionally, surface structure and hardness of pristine and irradiated polymers were discussed and correlated to the surface wettability improvements. The changes in surface chemistry are examined by Fourier transform infrared spectroscopy (FTIR), which indicate an increase in surface polarity due to the formation of polar groups. The irradiated polymers etching characteristics and activation energies are discussed as well. Lastly, it is evident that thermal neutrons show efficiency in improving surface wettability and etching properties of Hostaphan and Makrofol in a controlled way. - Highlights: • Neutrons radiation used to modify Hostaphan and Makrofol polymer wetting behavior. • Tailoring surface structure, topography and chemistry control its wettability. • Bulk etching rate and activation energy improved after neutrons irradiation.

  8. Manipulation of fluids in three-dimensional porous photonic structures with patterned surface properties

    Energy Technology Data Exchange (ETDEWEB)

    Aizenberg, Joanna; Burgess, Ian; Mishchenko, Lidiya; Hatton, Benjamin; Loncar, Marko

    2017-12-26

    A three-dimensional porous photonic structure, whose internal pore surfaces can be provided with desired surface properties in a spatially selective manner with arbitrary patterns, and methods for making the same are described. When exposed to a fluid (e.g., via immersion or wicking), the fluid can selectively penetrate the regions of the structure with compatible surface properties. Broad applications, for example in security, encryption and document authentication, as well as in areas such as simple microfluidics and diagnostics, are anticipated.

  9. Anisotropic surface physicochemical properties of spodumene and albite crystals: Implications for flotation separation

    Science.gov (United States)

    Xu, Longhua; Peng, Tiefeng; Tian, Jia; Lu, Zhongyuan; Hu, Yuehua; Sun, Wei

    2017-12-01

    Aluminosilicate minerals (e.g., spodumene, albite) have complex crystal structures and similar surface chemistries, but they have poor selectivity compared to traditional fatty acid collectors, making flotation separation difficult. Previous research has mainly considered the mineral crystal structure as a whole. In contrast, the surface characteristics at the atomic level and the effects of different crystal interfaces on the flotation behavior have rarely been investigated. This study focuses on investigating the surface anisotropy quantitatively, including the chemical bond characteristics, surface energies, and broken bond densities, using density functional theory and classical theoretical calculations. In addition, the anisotropy of the surface wettability and adsorption characteristics were examined using contact angle, zeta potential, and Fourier-transform infrared measurements. Finally, these surface anisotropies with different flotation behaviors were investigated and interpreted using molecular dynamics simulations, scanning electron microscopy, and X-ray photoelectron spectroscopy. This systematic research offers new ideas concerning the selective grinding and stage flotation of aluminosilicate minerals based on the crystal characteristics.

  10. Surface chemical functionalities affect the behavior of human adipose-derived stem cells in vitro

    International Nuclear Information System (INIS)

    Liu, Xujie; Feng, Qingling; Bachhuka, Akash; Vasilev, Krasimir

    2013-01-01

    This study examines the effect of surface chemical functionalities on the behavior of human adipose-derived stem cells (hASCs) in vitro. Plasma polymerized films rich in amine (-NH 2 ), carboxyl (-COOH) and methyl (-CH 3 ), were generated on hydroxyapatite (HAp) substrates. The surface chemical functionalities were characterized by X-ray photoelectron spectroscopy (XPS). The ability of different substrates to absorb proteins was evaluated. The results showed that substrates modified with hydrophilic functional group (-COOH and -NH 2 ) can absorb more proteins than these modified with more hydrophobic functional group (-CH 3 ). The behavior of human adipose-derived stem cells (hASCs) cultured on different substrates was investigated in vitro: cell counting kit-8 (CCK-8) analysis was used to characterize cell proliferation, scanning electronic microscopy (SEM) analysis was used to characterize cell morphology and alkaline phosphatase (ALP) activity analysis was used to account for differentiation. The results of this study demonstrated that the -NH 2 modified surfaces encourage osteogenic differentiation; the -COOH modified surfaces promote cell adhesion and spreading and the -CH 3 modified surfaces have the lowest ability to induce osteogenic differentiation. These findings confirmed that the surface chemical states of biomaterials can affect the behavior of hASCs in vitro.

  11. Surface chemical functionalities affect the behavior of human adipose-derived stem cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xujie [State key laboratory of new ceramics and fine processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Feng, Qingling, E-mail: biomater@mail.tsinghua.edu.cn [State key laboratory of new ceramics and fine processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Bachhuka, Akash [Mawson Institute, University of South Australia, Mawson Lakes 5095 (Australia); Vasilev, Krasimir [Mawson Institute, University of South Australia, Mawson Lakes 5095 (Australia); School of Advanced Manufacturing, University of South Australia, Mawson Lakes 5095 (Australia)

    2013-04-01

    This study examines the effect of surface chemical functionalities on the behavior of human adipose-derived stem cells (hASCs) in vitro. Plasma polymerized films rich in amine (-NH{sub 2}), carboxyl (-COOH) and methyl (-CH{sub 3}), were generated on hydroxyapatite (HAp) substrates. The surface chemical functionalities were characterized by X-ray photoelectron spectroscopy (XPS). The ability of different substrates to absorb proteins was evaluated. The results showed that substrates modified with hydrophilic functional group (-COOH and -NH{sub 2}) can absorb more proteins than these modified with more hydrophobic functional group (-CH{sub 3}). The behavior of human adipose-derived stem cells (hASCs) cultured on different substrates was investigated in vitro: cell counting kit-8 (CCK-8) analysis was used to characterize cell proliferation, scanning electronic microscopy (SEM) analysis was used to characterize cell morphology and alkaline phosphatase (ALP) activity analysis was used to account for differentiation. The results of this study demonstrated that the -NH{sub 2} modified surfaces encourage osteogenic differentiation; the -COOH modified surfaces promote cell adhesion and spreading and the -CH{sub 3} modified surfaces have the lowest ability to induce osteogenic differentiation. These findings confirmed that the surface chemical states of biomaterials can affect the behavior of hASCs in vitro.

  12. Effects of engineered nano-titanium dioxide on pore surface properties and phosphorus adsorption of sediment: Its environmental implications

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Zhuanxi [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Wang, Zhenhong [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Zhangzhou Normal University, Department of Chemistry and Environment Sciences, Zhangzhou 363000 (China); Wei, QunShan [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Yan, Changzhou, E-mail: czyan@iue.ac.cn [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Liu, Feng [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China)

    2011-09-15

    Highlights: {yields} The attachment of Enano-TiO{sub 2} to surface enhanced markedly sediment BET surface area and t-Plot external surface area. {yields} The fill of Enano-TiO{sub 2} into the micropores reduced significantly the sediment t-Plot micropore surface area. {yields} Enano-TiO{sub 2} could increase sediment phosphorus (P) adsorption maximum and decrease in sediment P binding energy. {yields} P would be easily released because of the decreasing P binding energy of the sediment with elevated Enano-TiO{sub 2}. - Abstract: Understanding the environmental safety and human health implications of engineered nanoparticles (ENPs) is of worldwide importance. As an important ENPs, engineered nano-TiO{sub 2} (Enano-TiO{sub 2}) may have been substantially deposited in aquatic sediments because of its widely uses. Sediment pore surface properties would be thus significantly influenced due to the large surface area of Enano-TiO{sub 2}. In this study, Enano-TiO{sub 2} was found to greatly impact on sediment pore surface properties. The attachment of Enano-TiO{sub 2} particles to sediment surfaces enhanced markedly BET specific surface area and t-Plot external specific surface area, and thereby increased sediment phosphorus (P) adsorption maximum (S{sub max}). Contrarily, the fill of Enano-TiO{sub 2} particles into the micropores of sediments could significantly reduce t-Plot micropore specific surface area, and cause slight decrease in sediment P binding energy (K). Clearly, P sorbed in sediment would be easily released because of the decreasing P binding energy of the sediment with elevated Enano-TiO{sub 2}. Enano-TiO{sub 2} would thus cause aggravated endogenous pollution in water if such sediment was re-suspended on disturbance. The results obtained in this study contribute to our increasing knowledge of how to regulate physicochemical behavior of pollutants in sediments under the influences of Enano-TiO{sub 2} and/or similar ENPs.

  13. STRUCTURAL AND PHYSICOCHEMICAL SURFACE-PROPERTIES OF SERRATIA-MARCESCENS STRAINS

    NARCIS (Netherlands)

    VANDERMEI, HC; COWAN, MM; GENET, MJ; ROUXHET, PG; BUSSCHER, HJ

    1992-01-01

    Serratia marcescens is an important pathogen with noteworthy hydrophobicity characteristics as assessed by microbial adhesion to hydrocarbons. However, the present knowledge on the surface characteristics of S. marcescens strains does not include physicochemical properties relevant for adhesion such

  14. Model of coordination melting of crystals and anisotropy of physical and chemical properties of the surface

    Science.gov (United States)

    Bokarev, Valery P.; Krasnikov, Gennady Ya

    2018-02-01

    Based on the evaluation of the properties of crystals, such as surface energy and its anisotropy, the surface melting temperature, the anisotropy of the work function of the electron, and the anisotropy of adsorption, were shown the advantages of the model of coordination melting (MCM) in calculating the surface properties of crystals. The model of coordination melting makes it possible to calculate with an acceptable accuracy the specific surface energy of the crystals, the anisotropy of the surface energy, the habit of the natural crystals, the temperature of surface melting of the crystal, the anisotropy of the electron work function and the anisotropy of the adhesive properties of single-crystal surfaces. The advantage of our model is the simplicity of evaluating the surface properties of the crystal based on the data given in the reference literature. In this case, there is no need for a complex mathematical tool, which is used in calculations using quantum chemistry or modeling by molecular dynamics.

  15. A comparison of reflectance properties on polymer micro-structured functional surface

    DEFF Research Database (Denmark)

    Regi, Francesco; Li, Dongya; Nielsen, Jannik Boll

    In this study, a functional micro-structure surface [1] has been developed as a combination of arrays of micro ridges. The scope of the surface is to achieve specific directional optical properties: that is, under constrained lighting, maximizing the reflectance from a certain viewing direction, ...

  16. Surface, dynamic and structural properties of liquid Al-Ti alloys

    International Nuclear Information System (INIS)

    Novakovic, R.; Giuranno, D.; Ricci, E.; Tuissi, A.; Wunderlich, R.; Fecht, H.-J.; Egry, I.

    2012-01-01

    The systems containing highly reactive element such as Ti are the most difficult to be determined experimentally and therefore, it is often necessary to estimate the missing values by theoretical models. The thermodynamic data of the Al-Ti system are scarce, its phase diagram is still incomplete and there are very few data on the thermophysical properties of Al-Ti melts. The study on surface, dynamic and static structural properties of liquid Al-Ti alloys has been carried out within the framework of the Compound Formation Model. In spite of the experimental difficulties, the surface tension of liquid Al-2 at.%Ti alloy has been measured over a temperature range by the pinned drop method.

  17. Surface structure and properties of functionalized nanodiamonds: a first-principles study

    International Nuclear Information System (INIS)

    Datta, Aditi; Kirca, Mesut; Fu Yao; To, Albert C

    2011-01-01

    The goal of this work is to gain fundamental understanding of the surface and internal structure of functionalized detonation nanodiamonds (NDs) using quantum mechanics based density functional theory (DFT) calculations. The unique structure of ND assists in the binding of different functional groups to its surface which in turn facilitates binding with drug molecules. The ability to comprehensively model the surface properties, as well as drug-ND interactions during functionalization, is a challenge and is the problem of our interest. First, the structure of NDs of technologically relevant size (∼5 nm) was optimized using classical mechanics based molecular mechanics simulations. Quantum mechanics based density functional theory (DFT) was then employed to analyse the properties of smaller relevant parts of the optimized cluster further to address the effect of functionalization on the stability of the cluster and reactivity at its surface. It is found that functionalization is preferred over reconstruction at the (100) surface and promotes graphitization in the (111) surface for NDs functionalized with the carbonyl oxygen (C = O) group. It is also seen that the edges of ND are the preferred sites for functionalization with the carboxyl group (-COOH) vis-a-vis the corners of ND.

  18. Surface structure and properties of functionalized nanodiamonds: a first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Datta, Aditi; Kirca, Mesut; Fu Yao; To, Albert C, E-mail: albertto@pitt.edu [Department of Mechanical Engineering and Materials Science and Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States)

    2011-02-11

    The goal of this work is to gain fundamental understanding of the surface and internal structure of functionalized detonation nanodiamonds (NDs) using quantum mechanics based density functional theory (DFT) calculations. The unique structure of ND assists in the binding of different functional groups to its surface which in turn facilitates binding with drug molecules. The ability to comprehensively model the surface properties, as well as drug-ND interactions during functionalization, is a challenge and is the problem of our interest. First, the structure of NDs of technologically relevant size ({approx}5 nm) was optimized using classical mechanics based molecular mechanics simulations. Quantum mechanics based density functional theory (DFT) was then employed to analyse the properties of smaller relevant parts of the optimized cluster further to address the effect of functionalization on the stability of the cluster and reactivity at its surface. It is found that functionalization is preferred over reconstruction at the (100) surface and promotes graphitization in the (111) surface for NDs functionalized with the carbonyl oxygen (C = O) group. It is also seen that the edges of ND are the preferred sites for functionalization with the carboxyl group (-COOH) vis-a-vis the corners of ND.

  19. Electronic properties of adsorbates and clean surfaces of metals and semiconductors

    International Nuclear Information System (INIS)

    Lecante, J.

    1980-01-01

    This paper surveys recent progress in experimental studies on electronic properties of adsorbates and clean metal surfaces. Electron spectroscopy and particularly angle resolved photoelectron spectroscopy appears to be a very powerful tool to get informations on electronic levels of adsorbates or clean surfaces. Moreover this technique may also give informations about the atomic geometry of the surface. Experimental investigation about surface plasmons, surface states, core level shifts are presented for clean surfaces. As examples of adsorbate covered surfaces two typical cases are chosen: two dimensional band structure and oriented molecules. Finally the photoelectron diffraction may be used for surface structure determination either in the case of an adsorbate or a clean metal surface [fr

  20. Magnetic nanoparticles: surface effects and properties related to biomedicine applications.

    Science.gov (United States)

    Issa, Bashar; Obaidat, Ihab M; Albiss, Borhan A; Haik, Yousef

    2013-10-25

    Due to finite size effects, such as the high surface-to-volume ratio and different crystal structures, magnetic nanoparticles are found to exhibit interesting and considerably different magnetic properties than those found in their corresponding bulk materials. These nanoparticles can be synthesized in several ways (e.g., chemical and physical) with controllable sizes enabling their comparison to biological organisms from cells (10-100 μm), viruses, genes, down to proteins (3-50 nm). The optimization of the nanoparticles' size, size distribution, agglomeration, coating, and shapes along with their unique magnetic properties prompted the application of nanoparticles of this type in diverse fields. Biomedicine is one of these fields where intensive research is currently being conducted. In this review, we will discuss the magnetic properties of nanoparticles which are directly related to their applications in biomedicine. We will focus mainly on surface effects and ferrite nanoparticles, and on one diagnostic application of magnetic nanoparticles as magnetic resonance imaging contrast agents.

  1. Improvement of carbon fiber surface properties using electron beam irradiation

    International Nuclear Information System (INIS)

    Pino, E.S.; Machado, L.D.B.; Giovedi, C.

    2007-01-01

    Carbon fiber-reinforced advance composites have been used for structural applications, mainly on account of their mechanical properties. The main factor for a good mechanical performance of carbon fiber-reinforced composite is the interfacial interaction between its components, which are carbon fiber and polymeric matrix. The aim of this study is to improve the surface properties of the carbon fiber using ionizing radiation from an electron beam to obtain better adhesion properties in the resultant composite. EB radiation was applied on the carbon fiber itself before preparing test specimens for the mechanical tests. Experimental results showed that EB irradiation improved the tensile strength of carbon fiber samples. The maximum value in tensile strength was reached using doses of about 250 kGy. After breakage, the morphology aspect of the tensile specimens prepared with irradiated and non-irradiated car- bon fibers were evaluated. SEM micrographs showed modifications on the carbon fiber surface. (authors)

  2. Investigation of CVD graphene topography and surface electrical properties

    International Nuclear Information System (INIS)

    Wang, Rui; Pearce, Ruth; Gallop, John; Patel, Trupti; Pollard, Andrew; Hao, Ling; Zhao, Fang; Jackman, Richard; Klein, Norbert; Zurutuza, Amaia

    2016-01-01

    Combining scanning probe microscopy techniques to characterize samples of graphene, a selfsupporting, single atomic layer hexagonal lattice of carbon atoms, provides far more information than a single technique can. Here we focus on graphene grown by chemical vapour deposition (CVD), grown by passing carbon containing gas over heated copper, which catalyses single atomic layer growth of graphene on its surface. To be useful for applications the graphene must be transferred onto other substrates. Following transfer it is important to characterize the CVD graphene. We combine atomic force microscopy (AFM) and scanning Kelvin probe microscopy (SKPM) to reveal several properties of the transferred film. AFM alone provides topographic information, showing ‘wrinkles’ where the transfer provided incomplete substrate attachment. SKPM measures the surface potential indicating regions with different electronic properties for example graphene layer number. By combining AFM and SKPM local defects and impurities can also be observed. Finally, Raman spectroscopy can confirm the structural properties of the graphene films, such as the number of layers and level of disorder, by observing the peaks present. We report example data on a number of CVD samples from different sources. (paper)

  3. Effect of Surface Treatment on the Properties of Wool Fabric

    Science.gov (United States)

    Kan, C. W.; Yuen, C. W. M.; Chan, C. K.; Lau, M. P.

    Wool fiber is commonly used in textile industry, however, it has some technical problems which affect the quality and performance of the finished products such as felting shrinkage, handle, lustre, pilling, and dyeability. These problems may be attributed mainly in the presence of wool scales on the fiber surface. Recently, chemical treatments such as oxidation and reduction are the commonly used descaling methods in the industry. However, as a result of the pollution caused by various chemical treatments, physical treatment such as low temperature plasma (LTP) treatment has been introduced recently because it is similarly capable of achieving a comparable descaling effect. Most of the discussions on the applications of LTP treatment on wool fiber were focused on applying this technique for improving the surface wettability and shrink resistance. Meanwhile, little discussion has been made on the mechanical properties, thermal properties, and the air permeability. In this paper, wool fabric was treated with LTP treatment with the use of a non-polymerizing gas, namely oxygen. After the LTP treatment, the fabrics low-stress mechanical properties, air permeability, and thermal properties were evaluated and discussed.

  4. Surface mechanical attrition treatment induced phase transformation behavior in NiTi shape memory alloy

    International Nuclear Information System (INIS)

    Hu, T.; Wen, C.S.; Lu, J.; Wu, S.L.; Xin, Y.C.; Zhang, W.J.; Chu, C.L.; Chung, J.C.Y.; Yeung, K.W.K.; Kwok, D.T.K.; Chu, Paul K.

    2009-01-01

    The phase constituents and transformation behavior of the martensite B19' NiTi shape memory alloy after undergoing surface mechanical attrition treatment (SMAT) are investigated. SMAT is found to induce the formation of a parent B2 phase from the martensite B19' in the top surface layer. By removing the surface layer-by-layer, X-ray diffraction reveals that the amount of the B2 phase decreases with depth. Differential scanning calorimetry (DSC) further indicates that the deformed martensite in the sub-surface layer up to 300 μm deep exhibits the martensite stabilization effect. The graded phase structure and transformation behavior in the SMATed NiTi specimen can be attributed to the gradient change in strain with depth.

  5. Plasma surface modification of polypropylene track-etched membrane to improve its performance properties

    Science.gov (United States)

    Kravets, L. I.; Elinson, V. M.; Ibragimov, R. G.; Mitu, B.; Dinescu, G.

    2018-02-01

    The surface and electrochemical properties of polypropylene track-etched membrane treated by plasma of nitrogen, air and oxygen are studied. The effect of the plasma-forming gas composition on the surface morphology is considered. It has been found that the micro-relief of the membrane surface formed under the gas-discharge etching, changes. Moreover, the effect of the non-polymerizing gas plasma leads to formation of oxygen-containing functional groups, mostly carbonyl and carboxyl. It is shown that due to the formation of polar groups on the surface and its higher roughness, the wettability of the plasma-modified membranes improves. In addition, the presence of polar groups on the membrane surface layer modifies its electrochemical properties so that conductivity of plasma-treated membranes increase.

  6. Effects of anisotropic properties on bursting behavior of rectangular cup with a V-notch

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Tai [R and D Center, TERA Co. Ltd., Seoul (Korea, Republic of); Kim, Sang Mok [R and D Center, Hyosung Power and Industrial Systems PG, Changwon (Korea, Republic of); Kang, Beom Soo [Dept. of Aerospace Engineering, Pusan National University, Busan (Korea, Republic of); Ku, Tae Wan [Engineering Research Center of Innovative Technology on Advanced Forming, Pusan National University, Busan (Korea, Republic of)

    2016-09-15

    Effects of mechanical anisotropic properties on bursting failure and its pressure of rectangular deep-drawn cup fabricated by using AA3005-H14 thin sheet are investigated to utilize for electrolyte container of lithium-ion secondary batteries. The V-notch shape with a depth of 0.1 mm and an angle of 20.0 degrees is defined on the rectangular cup, which has a thickness of 0.20 mm on the major surface and that of 0.30 mm on the minor surface. With the measured mechanical properties by uni-axial tensile tests and the defined V-notch geometry, a series of numerical prediction models considering isotropic, planar and normal anisotropic characteristics, are built-up and the bursting simulations are performed. Thereafter, the bursting fracture behavior is investigated by adopting ductile fracture criterion proposed by Cockcroft and Latham. The results predicted for the planar and the normal anisotropic models show that the bursting fracture pressure is well matched to 0.400 MPa, and the isotropic and the planar anisotropic models present a bursting fracture height of about 4.95 mm and 4.92 mm, respectively. A series of experimental investigations are undertaken to verify the bursting deformation that had been predicted. The bursting pressure and its height during experimental verifications are shown to be in good agreement with each variation of about 5.88% and roughly 0.20% with respect to the numerical results obtained using the planar anisotropic model.

  7. Modeling of surface stress effects on bending behavior of nanowires: Incremental deformation theory

    International Nuclear Information System (INIS)

    Song, F.; Huang, G.L.

    2009-01-01

    The surface stress effects on bending behavior of nanowires have recently attracted a lot of attention. In this letter, the incremental deformation theory is first applied to study the surface stress effects upon the bending behavior of the nanowires. Different from other linear continuum approaches, the local geometrical nonlinearity of the Lagrangian strain is considered, therefore, the contribution of the surface stresses is naturally derived by applying the Hamilton's principle, and influence of the surface stresses along all surfaces of the nanowires is captured. It is first shown that the surface stresses along all surfaces have contribution not only on the effective Young's modulus of the nanowires but also on the loading term in the governing equation. The predictions of the effective Young's modulus and the resonance shift of the nanowires from the current method are compared with those from the experimental measurement and other existing approaches. The difference with other models is discussed. Finally, based on the current theory, the resonant shift predictions by using both the modified Euler-Bernoulli beam and the modified Timoshenko beam theories of the nanowires are investigated and compared. It is noticed that the higher vibration modes are less sensitive to the surface stresses than the lower vibration modes.

  8. Inverse gas chromatography as a method for determination of surface properties of binding materials

    Science.gov (United States)

    Yu, Jihai; Lu, Xiaolei; Yang, Chunxia; Du, Baoli; Wang, Shuxian; Ye, Zhengmao

    2017-09-01

    Inverse gas chromatography (IGC) is a promising measurement technique for investigating the surface properties of binding materials, which are the major influence element for the adsorption performance of superplasticizer. In this work, using the IGC method, blast furnace slag (BFS), sulphoaluminate cement (SAC) and portland cement (P·O) are employed to systematically evaluate the corresponding dispersive component (γsd), specific surface free energy (γsab), and acid-base properties. The obtained results show that γsd contributes to a major section of the surface free energy in the three binding materials, suggesting they are of a relatively low polarity. Compared to the two kinds of cements, the BFS possesses the highest dispersive and specific surface free energies (the values are 45.01 mJ/m2 and 11.68 mJ/m2, respectively), and also exhibits a wider distribution range of γsd, indicating their surfaces are heterogeneous. For acid-base properties, the results indicate the surfaces of three samples are basic in nature. In addition, the adsorption investigation shows that per unit surface of BFS adsorbs the most superplasticizer molecules, which indicates the higher surface free energies is beneficial to the superplasticizer adsorption.

  9. Role of molecular properties of ulvans on their ability to elaborate antiadhesive surfaces.

    Science.gov (United States)

    Gadenne, Virginie; Lebrun, Laurent; Jouenne, Thierry; Thebault, Pascal

    2015-03-01

    Antiadhesive properties of polysaccharides (such ulvans) once immobilized on a surface are described in the literature but the parameters governing their antifouling properties are not yet well identified. In the present study, the relationship between molecular parameters of ulvans and the inhibition of bacterial adhesion was investigated. To this aim, various ulvans were grafted on silicon wafers under two different experimental immobilization conditions. Results showed that the experimental immobilization conditions and the polysaccharides molecular weight led to specific layer conformations which exhibited a key role in the surface antiadhesive properties. © 2014 Wiley Periodicals, Inc.

  10. Nanotextured Si surfaces derived from block-copolymer self-assembly with superhydrophobic, superhydrophilic, or superamphiphobic properties

    DEFF Research Database (Denmark)

    Telecka, Agnieszka; Li, Tao; Ndoni, Sokol

    2018-01-01

    by oxygen plasma treatment. The different texture and surface chemistry configurations are characterized with respect to their wetting properties with water, alkanes and organic oils. While, both nano-pillar and nano-hole surfaces feature excellent superhydrophobic properties with water contact angles (WCAs......) exceeding 170 degrees and roll-off angles below 5 degrees, only the nano-pillar surfaces exhibit convincing superhydrophilicity with WCAs below 5 degrees. The repellency of low surface tension liquids known as amphiphobicity is demonstrated for the nano-hoodoo surfaces....

  11. Poly(ethylene glycol)-grafted cyclic acetals based polymer networks with non-water-swellable, biodegradable and surface hydrophilic properties

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Ruixue, E-mail: qdruinyan@hotmail.com [Complex and Intelligent Research Center, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai (China); Zhang, Nan; Wu, Wentao [School of Materials Science and Engineering, Changzhou University, Changzhou 213164 (China); Wang, Kemin, E-mail: kemin-wang@hotmail.com [School of Materials Science and Engineering, Changzhou University, Changzhou 213164 (China)

    2016-05-01

    Cyclic acetals based biomaterial without acidic products during hydrolytic degradation is a promising candidate for tissue engineering applications; however, low hydrophilicity is still one limitation for its biomedical application. In this work, we aim to achieve non-water-swellable cyclic acetal networks with improved hydrophilicity and surface wettability by copolymerization of cyclic acetal units based monomer, 5-ethyl-5-(hydroxymethyl)-β,β-dimethyl-1, 3-dioxane-2-ethanol diacrylate (EHD) and methoxy poly(ethylene glycol) monoacrylate (mPEGA) under UV irradiation, to avoid swelling of conventional hydrogels which could limit their applicability in particular of the mechanical properties and geometry integrity. Various EHD/mPEGA networks were fabricated with different concentrations of mPEGA from 0 to 30%, and the results showed photopolymerization behavior, mechanical property and thermal stability could not be significantly affected by addition of mPEGA, while the surface hydrophilicity was dramatically improved with the increase of mPEGA and could achieve a water contact angle of 37° with 30% mPEGA concentration. The obtained EHD/mPEGA network had comparative degradation rate to the PECA hydrogels reported previously, and MTT assay indicated it was biocompatible to L929 cells. - Highlights: • Cyclic acetals contained EHD/mPEGA networks were fabricated by photopolymerization. • It can be degraded under simulated physiological condition without acidic products. • Surface hydrophilicity was increased without swelling in water.

  12. Effect of electropulsing on surface mechanical properties and microstructure of AISI 304 stainless steel during ultrasonic surface rolling process

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haibo [Advanced Materials Institute, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Key Laboratory of Advanced Materials, Tsinghua University, Beijing 100084 (China); Song, Guolin [Advanced Materials Institute, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Tang, Guoyi, E-mail: tanggy@mail.tsinghua.edu.cn [Advanced Materials Institute, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Key Laboratory of Advanced Materials, Tsinghua University, Beijing 100084 (China)

    2016-04-26

    The present work integrates 3D digital optical microscopy (OM), nano-indentation, X-ray diffraction (XRD), scanning electron microscopy (SEM) with electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) to systematically investigate the effect of electropulsing on the surface mechanical properties and microstructure of AISI 304 stainless steel during the ultrasonic surface rolling process (USRP). Compared with the original USRP, the introduction of electropulsing with optimal parameters can effectively facilitate surface crack healing and improve surface hardness and wear resistance dramatically, and the residual compressive stress is further enhanced. Meanwhile, more martensite phase and fewer deformation twins can be found in the strengthened layer. Rapid improvement of the surface mechanical properties should be attributed to the ultra-refined grains, accelerated martensitic phase transformation and suppressed deformation twining induced by the coupling effect of USRP and electropulsing. The high strain rate given by USRP, increased stacking fault energy and accelerated dislocation mobility caused by electropulsing are likely the primary intrinsic reasons for the observed phenomena.

  13. Effect of surface physical and chemical properties on interaction and annihilation mechanisms of positrons

    International Nuclear Information System (INIS)

    Gol'danskij, V.I.; Levin, B.M.; Shantarovich, V.P.

    1982-01-01

    The possibility of positron use is illustrated, to investigate physical and chemical properties of the surface, by a number of effects found by the authors while studying the interaction and annihilation of β + -decay positrons in highly-dispersed heterogeneous systems positronium formation and ortho-para conversion close to the surface of metal particles in a dielectric matrix, postronium oxidation by proton centers on the surface of an aluminosilicate catalyst). The ways, new in the main, are revealed to study the properties of the surface by the technique of monochromatic positron beams of low energy

  14. Correlation between surface microstructure and optical properties of porous silicon

    Directory of Open Access Journals (Sweden)

    Saeideh Rhramezani Sani

    2007-12-01

    Full Text Available   We have studied the effect of increasing porosity and its microstructure surface variation on the optical and dielectric properties of porous silicon. It seems that porosity, as the surface roughness within the range of a few microns, shows quantum effect in the absorption and reflection process of porous silicon. Optical constants of porous silicon at normal incidence of light with wavelength in the range of 250-3000 nm have been calculated by Kramers-Kroning method. Our experimental analysis shows that electronic structure and dielectric properties of porous silicon are totally different from silicon. Also, it shows that porous silicon has optical response in the visible region. This difference was also verified by effective media approximation (EMA.

  15. Effect of Leaf Surface Chemical Properties on Efficacy of Sanitizer for Rotavirus Inactivation

    Science.gov (United States)

    Fuzawa, Miyu; Ku, Kang-Mo; Palma-Salgado, Sindy Paola; Nagasaka, Kenya; Feng, Hao; Juvik, John A.; Sano, Daisuke; Shisler, Joanna L.

    2016-01-01

    ABSTRACT The use of sanitizers is essential for produce safety. However, little is known about how sanitizer efficacy varies with respect to the chemical surface properties of produce. To answer this question, the disinfection efficacies of an oxidant-based sanitizer and a new surfactant-based sanitizer for porcine rotavirus (PRV) strain OSU were examined. PRV was attached to the leaf surfaces of two kale cultivars with high epicuticular wax contents and one cultivar of endive with a low epicuticular wax content and then treated with each sanitizer. The efficacy of the oxidant-based sanitizer correlated with leaf wax content as evidenced by the 1-log10 PRV disinfection on endive surfaces (low wax content) and 3-log10 disinfection of the cultivars with higher wax contents. In contrast, the surfactant-based sanitizer showed similar PRV disinfection efficacies (up to 3 log10) that were independent of leaf wax content. A statistical difference was observed with the disinfection efficacies of the oxidant-based sanitizer for suspended and attached PRV, while the surfactant-based sanitizer showed similar PRV disinfection efficacies. Significant reductions in the entry and replication of PRV were observed after treatment with either disinfectant. Moreover, the oxidant-based-sanitizer-treated PRV showed sialic acid-specific binding to the host cells, whereas the surfactant-based sanitizer increased the nonspecific binding of PRV to the host cells. These findings suggest that the surface properties of fresh produce may affect the efficacy of virus disinfection, implying that food sanitizers should be carefully selected for the different surface characteristics of fresh produce. IMPORTANCE Food sanitizer efficacies are affected by the surface properties of vegetables. This study evaluated the disinfection efficacies of two food sanitizers, an oxidant-based sanitizer and a surfactant-based sanitizer, on porcine rotavirus strain OSU adhering to the leaf epicuticular surfaces of

  16. Effects of heating rate on slow pyrolysis behavior, kinetic parameters and products properties of moso bamboo.

    Science.gov (United States)

    Chen, Dengyu; Zhou, Jianbin; Zhang, Qisheng

    2014-10-01

    Effects of heating rate on slow pyrolysis behaviors, kinetic parameters, and products properties of moso bamboo were investigated in this study. Pyrolysis experiments were performed up to 700 °C at heating rates of 5, 10, 20, and 30 °C/min using thermogravimetric analysis (TGA) and a lab-scale fixed bed pyrolysis reactor. The results show that the onset and offset temperatures of the main devolatilization stage of thermogravimetry/derivative thermogravimetry (TG/DTG) curves obviously shift toward the high-temperature range, and the activation energy values increase with increasing heating rate. The heating rate has different effects on the pyrolysis products properties, including biochar (element content, proximate analysis, specific surface area, heating value), bio-oil (water content, chemical composition), and non-condensable gas. The solid yields from the fixed bed pyrolysis reactor are noticeably different from those of TGA mainly because the thermal hysteresis of the sample in the fixed bed pyrolysis reactor is more thorough. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Altering textural properties of fermented milk by using surface-engineered Lactococcus lactis.

    Science.gov (United States)

    Tarazanova, Mariya; Huppertz, Thom; Kok, Jan; Bachmann, Herwig

    2018-05-09

    Lactic acid bacteria are widely used for the fermentation of dairy products. While bacterial acidification rates, proteolytic activity and the production of exopolysaccharides are known to influence textural properties of fermented milk products, little is known about the role of the microbial surface on microbe-matrix interactions in dairy products. To investigate how alterations of the bacterial cell surface affect fermented milk properties, 25 isogenic Lactococcus lactis strains that differed with respect to surface charge, hydrophobicity, cell chaining, cell-clumping, attachment to milk proteins, pili expression and EPS production were used to produce fermented milk. We show that overexpression of pili increases surface hydrophobicity of various strains from 3-19% to 94-99%. A profound effect of different cell surface properties was an altered spatial distribution of the cells in the fermented product. Aggregated cells tightly fill the cavities of the protein matrix, while chaining cells seem to be localized randomly. A positive correlation was found between pili overexpression and viscosity and gel hardness of fermented milk. Gel hardness also positively correlated with clumping of cells in the fermented milk. Viscosity of fermented milk was also higher when it was produced with cells with a chaining phenotype or with cells that overexpress exopolysaccharides. Our results show that alteration of cell surface morphology affects textural parameters of fermented milk and cell localization in the product. This is indicative of a cell surface-dependent potential of bacterial cells as structure elements in fermented foods. © 2018 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  18. Sialic acid-triggered macroscopic properties switching on a smart polymer surface

    Science.gov (United States)

    Xiong, Yuting; Li, Minmin; Wang, Hongxi; Qing, Guangyan; Sun, Taolei

    2018-01-01

    Constructing smart surfaces with responsive polymers capable of dynamically and reversibly changing their chemical and physical properties by responding to the recognition of biomolecules remains a challenging task. And, the key to achieving this purpose relies on the design of polymers to precisely interact with the target molecule and successfully transform the interaction signal into tunable macroscopic properties, further achieve special bio-functions. Herein, inspired by carbohydrate-carbohydrate interaction (CCI) in life system, we developed a three-component copolymer poly(NIPAAm-co-PT-co-Glc) bearing a binding unit glucose (Glc) capable of recognizing sialic acid, a type of important molecular targets for cancer diagnosis and therapy, and reported the sialic acid triggered macroscopic properties switching on this smart polymer surface. Detailed mechanism studies indicated that multiple hydrogen bonding interactions between Glc unit and Neu5Ac destroyed the initial hydrogen bond network of the copolymer, leading to a reversible "contraction-to-swelling" conformational transition of the copolymer chains, accompanied with distinct macroscopic property switching (i.e., surface wettability, morphology, stiffness) of the copolymer film. And these features enabled this copolymer to selectively capture sialic acid-containing glycopeptides from complex protein samples. This work provides an inspiration for the design of novel smart polymeric materials with sensitive responsiveness to sialic acid, which would promote the development of sialic acid-specific bio-devices and drug delivery systems.

  19. Spectroscopic study on variations in illite surface properties after acid-base titration.

    Science.gov (United States)

    Liu, Wen-xin; Coveney, R M; Tang, Hong-xiao

    2003-07-01

    FT-IR, Raman microscopy, XRD, 29Si and 27Al MAS NMR, were used to investigate changes in surface properties of a natural illite sample after acid-base potentiometric titration. The characteristic XRD lines indicated the presence of surface Al-Si complexes, preferable to Al(OH)3 precipitates. In the microscopic Raman spectra, the vibration peaks of Si-O and Al-O bonds diminished as a result of treatment with acid, then increased after hydroxide back titration. The varied ratio of signal intensity between (IV)Al and (VI)Al species in 27Al MAS NMR spectra, together with the stable BET surface area after acidimetric titration, suggested that edge faces and basal planes in the layer structure of illite participated in dissolution of structural components. The combined spectroscopic evidence demonstrated that the reactions between illite surfaces and acid-leaching silicic acid and aluminum ions should be considered in the model description of surface acid-base properties of the aqueous illite.

  20. Influence of the surface roughness on the fatigue properties in ausferritic ductile irons (ADI

    Directory of Open Access Journals (Sweden)

    Svenningsson Roger

    2014-06-01

    Full Text Available Heat treatment of cast ductile iron (DI to ausferritic ductile iron (ADI is known to increase fatigue properties. However, the surface roughness of the cast material is also of significant importance. In this investigation, test rods with seven different surface qualities were cast from the same melt i.e. with same chemical composition. The surfaces of the test rods were varied by a number of parameters; grain size of the moulding sand, coated or non-coated mould surfaces, as-cast or machined and polished, shot peened or not. In addition, a reference material in conventional DI was cast and tested. All eight series were subjected to high-cycle fatigue bending tests. The results show that surface defects, such as micro porosity and minor inclusions drastically decrease the fatigue properties. For some ADI materials the stress amplitude limit was actually lower compared to the non-heat treated DI. The machined, polished and shot-peened material demonstrated the best fatigue properties, which is as expected.

  1. Modifying surface properties of diamond-like carbon films via nanotexturing

    Energy Technology Data Exchange (ETDEWEB)

    Corbella, C; Portal-Marco, S; Rubio-Roy, M; Bertran, E; Andujar, J L [FEMAN Group, IN2UB, Departament de Fisica Aplicada i Optica, Universitat de Barcelona, c/ Marti i Franques 1, 08028 Barcelona (Spain); Oncins, G [Serveis CientIfico-Tecnics, Universitat de Barcelona, c/ Marti i Franques s/n, 08028 Barcelona (Spain); Vallve, M A; Ignes-Mullol, J, E-mail: corberoc@hotmail.com [SOC and SAM Group, IN2UB, Departament de Quimica Fisica, Universitat de Barcelona, c/ Marti i Franques 1, 08028 Barcelona (Spain)

    2011-10-05

    Diamond-like amorphous carbon (DLC) films have been grown by pulsed-dc plasma-enhanced chemical vapour deposition on silicon wafers, which were previously patterned by means of colloidal lithography. The substrate conditioning comprised two steps: first, deposition of a self-assembled monolayer of silica sub-micrometre spheres ({approx}300 nm) on monocrystalline silicon ({approx}5 cm{sup 2}) by Langmuir-Blodgett technique, which acted as lithography template; second, substrate patterning via ion beam etching (argon) of the colloid samples (550 eV) at different incidence angles. The plasma deposition of a DLC thin film on the nanotextured substrates resulted in hard coatings with distinctly different surface properties compared with planar DLC. Also, in-plane anisotropy was generated depending on the etching angle. The samples were morphologically characterized by scanning electron microscopy and atomic force microscopy. The anisotropy introduced by the texture was evidenced in the surface properties, as shown by the directional dependences of wettability (water contact angle) and friction coefficient. The latter was measured using a nanotribometer and a lateral force microscope. These two techniques showed how the nanopatterns influenced the tribological properties at different scales of load and contact area. This fabrication technique finds applications in the industry of microelectromechanical systems, anisotropic tribological coatings, nanoimprint lithography, microfluidics, photonic crystals, and patterned surfaces for biomedicine.

  2. Yield surface evolution for columnar ice

    Science.gov (United States)

    Zhou, Zhiwei; Ma, Wei; Zhang, Shujuan; Mu, Yanhu; Zhao, Shunpin; Li, Guoyu

    A series of triaxial compression tests, which has capable of measuring the volumetric strain of the sample, were conducted on columnar ice. A new testing approach of probing the experimental yield surface was performed from a single sample in order to investigate yield and hardening behaviors of the columnar ice under complex stress states. Based on the characteristic of the volumetric strain, a new method of defined the multiaxial yield strengths of the columnar ice is proposed. The experimental yield surface remains elliptical shape in the stress space of effective stress versus mean stress. The effect of temperature, loading rate and loading path in the initial yield surface and deformation properties of the columnar ice were also studied. Subsequent yield surfaces of the columnar ice have been explored by using uniaxial and hydrostatic paths. The evolution of the subsequent yield surface exhibits significant path-dependent characteristics. The multiaxial hardening law of the columnar ice was established experimentally. A phenomenological yield criterion was presented for multiaxial yield and hardening behaviors of the columnar ice. The comparisons between the theoretical and measured results indicate that this current model is capable of giving a reasonable prediction for the multiaxial yield and post-yield properties of the columnar ice subjected to different temperature, loading rate and path conditions.

  3. Changes in surface properties caused by ion implantation

    International Nuclear Information System (INIS)

    Iwaki, Masaya

    1987-01-01

    This report outlines various aspects of ion implantation. Major features of ion implantation are described first, focusing on the structure of ion implantation equipment and some experimental results of ion implantation into semiconductors. Distribution of components in ion-implantated layers is then discussed. The two major features of ion implantation in relation to the distribution of implanted ions are: (1) high controllability of addition of ions to a surface layer and (2) formation of a large number of lattice defects in a short period of time. Application of ion implantation to metallic materials is expected to permit the following: (1) formation of a semi-stable alloy surface layer by metallic ion implantation, (2) formation of a semi-stable ceramic surface layer or buried layer by non-metallic ion implantation, and (3) formation of a buried layer by combined implementation of a different metallic ion and non-metallic ion. Ion implantation in carbon materials, polymers and ceramics is discussed next. The last part of the report is dedicated to macroscopic properties of an ion-implanted layer, centering on surface modification, formation of a conductive surface layer, and tribology. (Nogami, K.) 60 refs

  4. Surface properties of anatase TiO2 nanowire films grown from a fluoride-containing solution.

    Science.gov (United States)

    Berger, Thomas; Anta, Juan A; Morales-Flórez, Víctor

    2013-06-03

    Controlling the surface chemistry of nucleating seeds during wet-chemical synthesis allows for the preparation of morphologically well-defined nanostructures. Synthesis conditions play a key role in the surface properties, which directly affect the functional properties of the material. Therefore, it is important to establish post-synthesis treatments to facilitate the optimization of surface properties with respect to a specific application, without losing the morphological peculiarity of the nanostructure. We studied the surface properties of highly crystalline and porous anatase TiO2 nanowire (NW) electrodes, grown by chemical-bath deposition in fluoride-containing solutions, using a combined electrochemical and spectroscopic approach. As-deposited films showed low capacity for catechol adsorption and a poor photoelectrocatalytic activity for water oxidation. Mild thermal annealing at 200 °C resulted in a significant improvement of the electrode photoelectrocatalytic activity, whereas the bulk properties of the NWs (crystal structure, band-gap energy) remained unchanged. Enhancement of the functional properties of the material is discussed on the basis of adsorption capacity and electronic properties. The temperature-induced decrease of recombination centers, along with the concomitant increase of adsorption and reaction sites upon thermal annealing are called to be responsible for such improved performance. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Physical properties of the martian surface from the Viking 1 lander: preliminary results

    International Nuclear Information System (INIS)

    Shorthill, R.W.; Hutton, R.E.; Moore, H.J. II; Scott, R.E.; Spitzer, C.R.

    1976-01-01

    The purpose of the physical properties experiment is to determine the characteristics of the martian ''soil'' based on the use of the Viking lander imaging system, the surface sampler, and engineering sensors. Viking 1 lander made physical contact with the surface of Mars at 11:53:07.1 hours on 20 July 1976 G.M.T. Twenty-five seconds later a high-resolution image sequence of the area around a footpad was started which contained the first information about surface conditions on Mars. The next image is a survey of the martian landscape in front of the lander, including a view of the top support of two of the landing legs. Each leg has a stroke gauge which extends from the top of the leg support an amount equal to the crushing experienced by the shock absorbers during touchdown. Subsequent images provided views of all three stroke gauges which, together with the knowledge of the impact velocity, allow determination of ''soil'' properties. In the images there is evidence of surface erosion from the engines. Several laboratory tests were carried out prior to the mission with a descent engine to determine what surface alterations might occur during a Mars landing. On sol 2 the shroud, which protected the surface sampler collector head from biological contamination, was ejected onto the surface. Later a cylindrical pin which dropped from the boom housing of the surface sampler during the modified unlatching sequence produced a crater (the second Mars penetrometer experiment). These two experiments provided further insight into the physical properties of the martian surface

  6. A combinatorial variation in surface chemistry and pore size of three-dimensional porous poly(ε-caprolactone) scaffolds modulates the behaviors of mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yingdi; Tan, Ke; Zhou, Yan; Ye, Zhaoyang, E-mail: zhaoyangye@ecust.edu.cn; Tan, Wen-Song

    2016-02-01

    Biomaterial properties play significant roles in controlling cellular behaviors. The objective of the present study was to investigate how pore size and surface chemistry of three-dimensional (3D) porous scaffolds regulate the fate of mesenchymal stem cells (MSCs) in vitro in combination. First, on poly(ε-caprolactone) (PCL) films, the hydrolytic treatment was found to stimulate the adhesion, spreading and proliferation of human MSCs (hMSCs) in comparison with pristine films, while the aminolysis showed mixed effects. Then, 3D porous PCL scaffolds with varying pore sizes (100–200 μm, 200–300 μm and 300–450 μm) were fabricated and subjected to either hydrolysis or aminolysis. It was found that a pore size of 200–300 μm with hydrolysis in 3D scaffolds was the most favorable condition for growth of hMSCs. Importantly, while a pore size of 200–300 μm with hydrolysis for 1 h supported the best osteogenic differentiation of hMSCs, the chondrogenic differentiation was greatest in scaffolds with a pore size of 300–450 μm and treated with aminolysis for 1 h. Taken together, these results suggest that surface chemistry and pore size of 3D porous scaffolds may potentially have a synergistic impact on the behaviors of MSCs. - Highlights: • Surface chemistry of poly(ε-caprolactone) films actively modulates MSC behaviors. • Varying surface chemistry and pore size in combination is enabled in 3D scaffolds. • Surface chemistry and pore size potentially dictate MSC fates in synergy.

  7. A combinatorial variation in surface chemistry and pore size of three-dimensional porous poly(ε-caprolactone) scaffolds modulates the behaviors of mesenchymal stem cells

    International Nuclear Information System (INIS)

    Zhao, Yingdi; Tan, Ke; Zhou, Yan; Ye, Zhaoyang; Tan, Wen-Song

    2016-01-01

    Biomaterial properties play significant roles in controlling cellular behaviors. The objective of the present study was to investigate how pore size and surface chemistry of three-dimensional (3D) porous scaffolds regulate the fate of mesenchymal stem cells (MSCs) in vitro in combination. First, on poly(ε-caprolactone) (PCL) films, the hydrolytic treatment was found to stimulate the adhesion, spreading and proliferation of human MSCs (hMSCs) in comparison with pristine films, while the aminolysis showed mixed effects. Then, 3D porous PCL scaffolds with varying pore sizes (100–200 μm, 200–300 μm and 300–450 μm) were fabricated and subjected to either hydrolysis or aminolysis. It was found that a pore size of 200–300 μm with hydrolysis in 3D scaffolds was the most favorable condition for growth of hMSCs. Importantly, while a pore size of 200–300 μm with hydrolysis for 1 h supported the best osteogenic differentiation of hMSCs, the chondrogenic differentiation was greatest in scaffolds with a pore size of 300–450 μm and treated with aminolysis for 1 h. Taken together, these results suggest that surface chemistry and pore size of 3D porous scaffolds may potentially have a synergistic impact on the behaviors of MSCs. - Highlights: • Surface chemistry of poly(ε-caprolactone) films actively modulates MSC behaviors. • Varying surface chemistry and pore size in combination is enabled in 3D scaffolds. • Surface chemistry and pore size potentially dictate MSC fates in synergy.

  8. Pseudopotentials for calculating the bulk and surface properties of solids

    International Nuclear Information System (INIS)

    Cohen, M.L.

    1983-01-01

    A survey is presented describing research in condensed matter physics using pseudopotentials to calculate electronic, structural, and vibrational properties of solids. Semiconductors are emphasized, and both bulk and surface calculations are discussed. (author) [pt

  9. From surfaces to magnetic properties: special section dedicated to Juan Rojo

    Science.gov (United States)

    Mascaraque, A.; Rodríguez de la Fuente, O.; González-Barrio, Miguel A.

    2013-12-01

    Surface physics and magnetism, in particular the connection between surface defects, reduced dimensionality or size, crystal structure, electronic density of states and the mechanical and magnetic properties of solids, were always at the core of Juan Rojo's scientific interest and output. Both fields seem to meet at the nanoscale, a privileged playing field which is ideal for testing theoretical concepts, exploring new physics or probing a wealth of new, stunning and unheard-of applications. Upon reducing size or dimensionality, either in bulk systems or in thin films, surfaces and surface effects are telling. Thus, for instance, an ultra-thin coating can make nanoparticles of non-magnetic materials exhibit magnetic behaviour; or atomic steps can modify the local mechanical properties of a metallic single crystal. In this special section there are eight invited papers by disciples and close collaborators of Juan Rojo, that cover an ample spectrum of the above mentioned topics. The first paper, by Palacio et al, investigates the temperature and oxygen partial pressure conditions for FeO mono- and bi-layer growth on Ru(0001). The following paper, by Cortés-Gil et al, reports on the dramatic change in the electric resistivity of the manganite perovskite (La0.5Ca0.5)z MnO3 as a function of Ca content, an effect related to the removal of a charge-ordered state and a magnetic transition. Baeza et al study biomaterials for bone cancer treatment and skeletal reinforcing, as well as targeted magnetic nanoparticles used for intracell hyperthermia in cancer therapies. In the following paper, Marcano et al, assisted by a multi-technique approach, revisit the extraordinarily rich magnetic phase diagram of the Kondo system CeNi1- x Cux down to 100 mK temperatures. The magnetic field dependence of the martensitic transition temperature of the meta-magnetic shape memory alloy Ni50Mn34.5In15.5 in a crystalline and amorphous phase, in fields up to 13 T, is the subject of the paper

  10. Surface Properties of Squalene/Meibum Films and NMR Confirmation of Squalene in Tears

    Directory of Open Access Journals (Sweden)

    Slavyana Ivanova

    2015-09-01

    Full Text Available Squalene (SQ possesses a wide range of pharmacological activities (antioxidant, drug carrier, detoxifier, hydrating, emollient that can be of benefit to the ocular surface. It can come in contact with human meibum (hMGS; the most abundant component of the tear film lipid layer as an endogenous tear lipid or from exogenous sources as eyelid sebum or pharmaceuticals. The aims of this study were to determine (i if SQ is in tear lipids and (ii its influence on the surface properties of hMGS films. Heteronuclear single quantum correlation NMR confirmed 7 mol % SQ in Schirmer’s strips extracts. The properties of SQ/hMGS pseudo-binary films at the air/water interface were studied with Langmuir surface balance, stress-relaxation dilatational rheology and Brewster angle microscopy. SQ does not possess surfactant properties. When mixed with hMGS squalene (i localized over the layers’ thinner regions and (ii did not affect the film pressure at high compression. Therefore, tear SQ is unlikely to instigate dry eye, and SQ can be used as a safe and “inert” ingredient in formulations to protect against dry eye. The layering of SQ over the thinner film regions in addition to its pharmacological properties could contribute to the protection of the ocular surface.

  11. Surface effect on the electronic and the magnetic properties of rock-salt alkaline-earth metal silicides

    International Nuclear Information System (INIS)

    Bialek, Beata; Lee, Jaeil

    2011-01-01

    An all electron ab-initio method was employed to study the electronic and the magnetic properties of the (001) surface of alkaline-earth metal silicides, CaSi, SrSi, and BaSi, in the rock-salt structure. The three compounds retain their ferromagnetic metallic properties at the surface. Due to the surface effects, the magnetism of the topmost layer is changed as compared with the bulk. This is a short-range effect. In CaSi, the magnetism of the surface layer is noticeably reduced, as compared with the bulk: magnetic moments (MMs) on both Ca and Si atoms are reduced. In SrSi (001), the polarization of electrons in the surface atoms is similar to that in the bulk atoms, and the values of MMs on the component atoms in the topmost layer do not change as much as in CaSi. In BaSi (001), the magnetic properties of Si surface atoms are enhanced slightly, and the magnetism of Ba atoms is not affected considerably by the surface effect. The calculated densities of states confirm the short-range effect of the surface on the electronic properties of the metal silicides.

  12. Modeling electrochemical resistance with coal surface properties in a direct carbon fuel cell based on molten carbonate

    Science.gov (United States)

    Eom, Seongyong; Ahn, Seongyool; Kang, Kijoong; Choi, Gyungmin

    2017-12-01

    In this study, a numerical model of activation and ohmic polarization is modified, taking into account the correlation function between surface properties and inner resistance. To investigate the correlation function, the surface properties of coal are changed by acid treatment, and the correlations between the inner resistance measured by half-cell tests and the surface characteristics are analyzed. A comparison between the model and experimental results demonstrates that the absolute average deviations for each fuel are less than 10%. The numerical results show that the sensitivities of the coal surface properties affecting polarization losses change depending on the operating temperature. The surface oxygen concentrations affect the activation polarization and the sensitivity decreased with increasing temperature. The surface ash of coal is an additional index to be considered along with ohmic polarization and it has the greatest effect on the surface properties at 973 K.

  13. Effect of nanocoating with rhamnogalacturonan-I on surface properties and osteoblasts response

    DEFF Research Database (Denmark)

    Gurzawska, Katarzyna Aleksandra; Svava, Rikke; Syberg, Susanne

    2012-01-01

    -I) on surface properties and osteoblasts response. Three different RG-Is from apple and lupin pectins were modified and coated on amino-functionalized tissue culture polystyrene plates (aminated TCPS). Surface properties were evaluated by scanning electron microscopy, contact angle measurement, atomic force...... microscopy, and X-ray photoelectron spectroscopy. The effects of nanocoating on proliferation, matrix formation and mineralization, and expression of genes (real-time PCR) related to osteoblast differentiation and activity were tested using human osteoblast-like SaOS-2 cells. It was shown that RG-I coatings...

  14. Enzymatic Treatments to Improve Mechanical Properties and Surface Hydrophobicity of Jute Fiber Membranes

    Directory of Open Access Journals (Sweden)

    Aixue Dong

    2016-02-01

    Full Text Available Fiber membranes prepared from jute fragments can be valuable, low cost, and renewable. They have broad application prospects in packing bags, geotextiles, filters, and composite reinforcements. Traditionally, chemical adhesives have been used to improve the properties of jute fiber membranes. A series of new laccase, laccase/mediator systems, and multi-enzyme synergisms were attempted. After the laccase treatment of jute fragments, the mechanical properties and surface hydrophobicity of the produced fiber membranes increased because of the cross-coupling of lignins with ether bonds mediated by laccase. The optimum conditions were a buffer pH of 4.5 and an incubation temperature of 60 °C with 0.92 U/mL laccase for 3 h. Laccase/guaiacol and laccase/alkali lignin treatments resulted in remarkable increases in the mechanical properties; in contrast, the laccase/2,2’-azino-bis-(3-ethylthiazoline-6-sulfonate (ABTS and laccase/2,6-dimethoxyphenol treatments led to a decrease. The laccase/ guaiacol system was favorable to the surface hydrophobicity of jute fiber membranes. However, the laccase/alkali lignin system had the opposite effect. Xylanase/laccase and cellulase/laccase combined treatments were able to enhance both the mechanical properties and the surface hydrophobicity of jute fiber membranes. Among these, cellulase/laccase treatment performed better; compared to mechanical properties, the surface hydrophobicity of the jute fiber membranes showed only a slight increase after the enzymatic multi-step processes.

  15. Chaotic behavior of a quantum waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Pérez-Aguilar, H., E-mail: hiperezag@yahoo.com [Facultad de Ciencias Físico-Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Av. Francisco J. Mújica S/N 58030, Morelia, Michoacán (Mexico); Mendoza-Suárez, A.; Tututi, E.S. [Facultad de Ciencias Físico-Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Av. Francisco J. Mújica S/N 58030, Morelia, Michoacán (Mexico); Herrera-González, I.F. [Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48, 72570 Puebla (Mexico)

    2013-02-15

    In this work we consider an infinite quantum waveguide composed of two periodic, hard walls, one-dimensional rippled surfaces. We find that, under certain conditions, the proposed system presents some traces of quantum chaos, when the corresponding classical limit has chaotic behavior. Thus, it is possible to obtain disordered probability densities in a system with smooth surfaces. When the system has chaotic behavior we show numerically that the correlation length of the autocorrelation function of the probability density goes to zero. To corroborate some properties obtained for infinite waveguide that are physically admissible, we study the corresponding finite version of this system.

  16. Chaotic behavior of a quantum waveguide

    International Nuclear Information System (INIS)

    Pérez-Aguilar, H.; Mendoza-Suárez, A.; Tututi, E.S.; Herrera-González, I.F.

    2013-01-01

    In this work we consider an infinite quantum waveguide composed of two periodic, hard walls, one-dimensional rippled surfaces. We find that, under certain conditions, the proposed system presents some traces of quantum chaos, when the corresponding classical limit has chaotic behavior. Thus, it is possible to obtain disordered probability densities in a system with smooth surfaces. When the system has chaotic behavior we show numerically that the correlation length of the autocorrelation function of the probability density goes to zero. To corroborate some properties obtained for infinite waveguide that are physically admissible, we study the corresponding finite version of this system

  17. Surface stress-induced change in overall elastic behavior and self-bending of ultrathin cantilever plates

    NARCIS (Netherlands)

    Sadeghian, H.; Goosen, J.F.L.; Bossche, A.; Van Keulen, F.

    2009-01-01

    In this letter, the dominant role of surface stress and surface elasticity on the overall elastic behavior of ultrathin cantilever plates is studied. A general framework based on two-dimensional plane-stress analysis is presented. Because of either surface reconstruction or molecular adsorption,

  18. The monodromy property for K3 surfaces allowing a triple-point-free model

    DEFF Research Database (Denmark)

    Jaspers, Annelies Kristien J

    2017-01-01

    The aim of this thesis is to study under which conditions K3 surfaces allowing a triple-point-free model satisfy the monodromy property. This property is a quantitative relation between the geometry of the degeneration of a Calabi-Yau variety X and the monodromy action on the cohomology of...... X: a Calabi- Yau variety X satisfies the monodromy property if poles of the motivic zeta function ZX,ω(T) induce monodromy eigenvalues on the cohomology of X. Let k be an algebraically closed field of characteristic 0, and set K = k((t)). In this thesis, we focus on K3 surfaces over K allowing a triple-point...... is very precise, which allows to use a combination of geometrical and combinatorial techniques to check the monodromy property in practice. The first main result is an explicit computation of the poles of ZX,ω(T) for a K3 surface X allowing a triple-point-free model and a volume form ! on X. We show that...

  19. Microstructure and surface chemistry of amorphous alloys important to their friction and wear behavior

    Science.gov (United States)

    Miyoshi, K.; Buckley, D. H.

    1986-01-01

    An investigation was conducted to examine the microstructure and surface chemistry of amorphous alloys, and their effects on tribological behavior. The results indicate that the surface oxide layers present on amorphous alloys are effective in providing low friction and a protective film against wear in air. Clustering and crystallization in amorphous alloys can be enhanced as a result of plastic flow during the sliding process at a low sliding velocity, at room temperature. Clusters or crystallines with sizes to 150 nm and a diffused honeycomb-shaped structure are produced on sizes to 150 nm and a diffused honeycomb-shaped structure are produced on the wear surface. Temperature effects lead to drastic changes in surface chemistry and friction behavior of the alloys at temperatures to 750 C. Contaminants can come from the bulk of the alloys to the surface upon heating and impart to the surface oxides at 350 C and boron nitride above 500 C. The oxides increase friction while the boron nitride reduces friction drastically in vacuum.

  20. Electronic and structural properties of TiB2: Bulk, surface, and nanoscale effects

    International Nuclear Information System (INIS)

    Volonakis, George; Tsetseris, Leonidas; Logothetidis, Stergios

    2011-01-01

    Titanium diboride (TiB 2 ), is a widely used hard material that comprises graphene-like layers of B and intercalated Ti atoms. Here we report the results of extensive first-principles calculations on key properties of bulk TiB 2 , TiB 2 surfaces, and TiB 2 nanocrystals (NCs). The computational approach is first validated based on the agreement between calculated structural and electronic properties of bulk TiB 2 and available experimental and theoretical data. We then obtain the formation energies for several surface cuts and use these values to construct TiB 2 NCs based on the Wulff theorem. Finally, we demonstrate by studying the adsorption of small molecules that hydrogen and oxygen adatoms can be attached through strongly exothermic chemisorption reactions on TiB 2 surfaces. Likewise, water molecules bind on various TiB 2 surfaces and NC facets, with an energetic preference for the latter. The results are relevant to applications that depend on reactivity-related TiB 2 properties, for example resistance to corrosion and interactions with water-based solutions.

  1. A comparative study on optical and magnetic resonance properties of near-surface NV centers in nano and bulk diamond

    International Nuclear Information System (INIS)

    Frederico Brandao

    2014-01-01

    Using shallow nitrogen-vacancy (NV) centers in diamond for applications in magnetometry requires the generation of stable defects in the NV charge state in sufficiently high density and high quality spin properties. Recent studies reported about NV defects close to the surface created by ion implantation or during chemical vapor deposition growth technique and in nanodiamonds point to a scenario where defects are stabilized in the neutral charge state and that the minority of negatively charged state defects have poor spin properties, i.e.g shorter coherence times compared to NV defects deeply localized in bulk diamond. This undesirable behavior appears to result from the interaction with rapidly fluctuating electric fields created by moving charges at the surface and with interface effects associated with the termination of the diamond surface. Here we report studies of photoluminescence and magnetic resonance properties of shallow NV ensembles created by low energy nitrogen ion implantation in electronic grade diamond substrate and nanodiamonds with low nitrogen concentration. We verified the shallow NV center spin properties through pulsed optically detected magnetic resonance (ODMR) protocols and found longitudinal time constant (T1) of a few milliseconds and transversal relaxation time constant (T2) of a few microseconds for shallow defects implanted in bulk diamond. For nanodiamonds, the T2 coherence time is similar to the case in bulk sample but on the other hand the T1 coherence time is ten times shorter than in bulk. Additionally was found the T2* is around one microsecond for shallow NV defects in bulk samples meanwhile in nanodiamonds it is around twenty nanoseconds. It worth to mention that all the measurements were performed in NV ensembles which show just two ODMR resonance lines with applied magnetic field as if they were magnetically equivalent. In that sense we are trying to apply chirped pulses and Ramsey pulse sequence to check this assumption

  2. Experimental and numerical study on free surface behavior of windowless target

    International Nuclear Information System (INIS)

    Su Guanyu; Gu Hanyang; Cheng Xu

    2012-01-01

    The formation and control method of coolant free surface is one of the key technologies for the design of windowless target in accelerator driven sub-critical system (ADS). Experimental and CFD investigations on free surface behavior were performed in a scaled windowless target model by using water as test fluid. Laser induced fluorescence was applied for flow field visualization. The free surface and flow field visualization were obtained at Re=30000-50000. Under high Re conditions, an unsteady vortex pair was obtained. By decreasing Re, the structure of the vortex becomes more turbulent. CFD simulation was performed using LES and kω-SST turbulence models, separately. The numerical results show that LES model can qualitatively reproduce the characteristics of flow field and free surface. (authors)

  3. Effect of Ultrasonic Surface Impact on the Fatigue Behavior of Ti-6Al-4V Subject to Simulated Body Fluid

    Directory of Open Access Journals (Sweden)

    Xiaojian Cao

    2017-10-01

    Full Text Available The effect of ultrasonic nanocrystal surface modification (UNSM on the fatigue behavior of Ti6Al4V (TC4 in simulated body fluid (SBF was investigated. UNSM with the condition of a static load of 25 N, vibration amplitude of 30 μm and 36,000 strikes per unit produced about 35 μm surface severe plastic deformation (SPD layers on the TC4 specimens. One group was treated with a hybrid surface treatment (UNSM + TiN film. UNSM technique improves the micro hardness and the compressive residual stress. The surface roughness is increased slightly, but it can be remarkably improved by the TiN film. The fatigue strength of TC4 is improved by about 7.9% after UNSM. Though the current density of corrosion is increased and the pitting corrosion is accelerated, UNSM still improved the fatigue strength of TC4 after pre-soaking in SBF by 10.8%. Interior cracks initiate at the deformed carbide and oxide inclusions due to the ultrasonic impacts of UNSM. Corrosion products are always observed at the edge of fracture surface to both interior cracks and surface cracks. Coating a TiN film on the UNSMed surface helps to improve the whole properties of TC4 further.

  4. Surface hydrophilic modification of acrylonitrile-butadiene-styrene terpolymer by poly(ethylene glycol-co-1,4-cyclohexanedimethanol terephthalate): Preparation, characterization, and properties studies

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Tingting; Zhang, Jun, E-mail: zhangjun@njtech.edu.cn

    2016-12-01

    Highlights: • Surface hydrophilic modified ABS was prepared by melt blending with PETG. • O= C−O groups were enriched on the surface with increasing PETG content. • Hydrophilic property of the blends was enhanced with increasing PETG content. • Phase inversion behavior of the blends occurred around intermediate composition. • Tensile and flexural strength were enhanced with increasing PETG content. - Abstract: Surface hydrophilic modified acrylonitrile-butadiene-styrene (ABS) terpolymer was prepared by melt blending with poly(ethylene glycol-co-1,4-cyclohexanedimethanol terephthalate) (PETG) random copolymer as the modifier. Attenuated total reflectance-Fourier transform-infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS) were used for surface analysis. Through the contact angle measurement, the relationship between surface properties of the ABS/PETG blends and PETG content was investigated. Scanning electron microscope (SEM) and dynamical mechanical thermal analysis (DMTA) were used to characterize interface morphology and compatibility of the blends. The effect of PETG content on the mechanical and rheological properties was examined. The ATR-FTIR and XPS analysis suggested that the hydrophilic groups were enriched on the surface with increasing PETG content in the blend. The decrease of the water contact angle and the increase of the polarity for the blends with increasing PETG content indicated that the hydrophilic property of the blends was enhanced with increasing PETG content. The ABS/PETG blends were partially miscible. And the blends with ≤50 wt% PETG had better compatibility than the blends with above 50 wt% PETG. It was clear that below 50 wt% PETG, the PETG phase was dispersed in spherical form and the ABS phase was continuous. Above 50 wt% PETG, the PETG phase became continuous and the ABS phase was dispersed in irregular form. Moreover, the tensile strength and flexural strength of the blends were enhanced with

  5. Structural and electronic properties of low-index stoichiometric BiOI surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Wen-Wu; Zhao, Zong-Yan, E-mail: zzy@kmust.edu.cn

    2017-06-01

    As promising photocatalyst driven by visible-light, BiOI has attracted more and more attention in the past years. However, the surface structure and properties of BiOI that is the most important place for the photocatalytic have not been investigated in details. To this end, density functional theory was performed to calculate the structural and electronic properties of four low-index stoichiometric surfaces of BiOI. It is found that the relaxation of the low-index BiOI surfaces are relatively small, especially the (001) surface. Thus, the surface energies of BiOI are very relatively small. Moreover, there are a few surface states below the bottom of conduction band in the first layer except the (001) surface, which maybe capture the photo-excited carriers. In all of the most stable terminated planes, all the dangling bonds are cleaved from the broken Bi-O bonds. In the case of (001) surface, the dangling bond density of Bi atoms for the (001) surface is zero per square nano. Therefore, the (001) surface is thermodynamically lowest-energy surface of BiOI, and it is the predominant surface (51.4%). As a final remark, the dangling bonds density of bismuth atoms determines not only the surface energy, but also the surface relaxation. Finally, the equilibrium morphology of BiOI was also proposed and provided, which is determined through the Wulff construction. These results will help us to better understand the underlying photocatalytic mechanism that is related to BiOI surfaces, and provide theoretical support for some experimental studies about BiOI-based photocatalyst in future. - Highlights: • Four low-index BiOI surfaces have been calculated by DFT method. • The relaxations of the low-index BiOI surfaces are relatively small. • There are a few surface states below the bottom of conduction band in the first layer. • The dangling bonds density of bismuth atoms determines not only the surface energy, but also the surface relaxation. • The thermodynamic

  6. Dynamic Wetting Behavior of Vibrated Droplets on a Micropillared Surface

    Directory of Open Access Journals (Sweden)

    Zhi-hai Jia

    2016-01-01

    Full Text Available The dynamical wetting behavior has been observed under vertical vibration of a water droplet placed on a micropillared surface. The wetting transition takes place under the different processes. In compression process, the droplet is transited from Cassie state to Wenzel state. The droplet undergoes a Wenzel-Cassie wetting transition in restoring process and the droplet bounces off from the surface in bouncing process. Meanwhile, the wetting and dewetting models during vibration are proposed. The wetting transition is confirmed by the model calculation. This study has potential to be used to control the wetting state.

  7. AlSiTiN and AlSiCrN multilayer coatings: Effects of structure and surface composition on tribological behavior under dry and lubricated conditions

    International Nuclear Information System (INIS)

    Faga, Maria Giulia; Gautier, Giovanna; Cartasegna, Federico; Priarone, Paolo C.; Settineri, Luca

    2016-01-01

    Graphical abstract: - Highlights: • The demand for high performance nanostructured coatings has been increasing. • AlSiTiN and AlSiCrN nanocomposite coatings were deposited by PVD technique. • Coatings were analyzed in terms of structure, hardness and adhesion. • Tribological properties under dry and lubricated conditions were studied. • The effects of surface and bulk properties on friction evolution were assessed. - Abstract: Nanocomposite coatings have been widely studied over the last years because of their high potential in several applications. The increased interest for these coatings prompted the authors to study the tribological properties of two nanocomposites under dry and lubricated conditions (applying typical MQL media), in order to assess the influence of the surface and bulk properties on friction evolution. To this purpose, multilayer and nanocomposite AlSiTiN and AlSiCrN coatings were deposited onto tungsten carbide-cobalt (WC-Co) samples. Uncoated WC-Co materials were used as reference. Coatings were analyzed in terms of hardness and adhesion. The structure of the samples was assessed by X-ray diffraction (XRD), while the surface composition was studied by XPS analysis. Friction tests were carried out under both dry and lubricated conditions using an inox ball as counterpart. Both coatings showed high hardness and good adhesion to the substrate. As far as the friction properties are concerned, in dry conditions the surface properties affect the sliding contact at the early beginning, while bulk structure and tribolayer formation determine the main behavior. Only AlSiTiN coating shows a low and stable coefficient of friction (COF) under dry condition, while the use of MQL media results in a rapid stabilization of the COF for all the materials.

  8. Effect of processing history on the surface interfacial properties of budesonide in carrier-based dry-powder inhalers.

    Science.gov (United States)

    Shur, Jagdeep; Pitchayajittipong, Chonladda; Rogueda, Philippe; Price, Robert

    2013-08-01

    Influence of air-jet micronization, post-micronization conditioning and storage on the surface properties of budesonide in dry-powder inhaler formulations was investigated. Crystalline budesonide was air jet-micronized and conditioned using organic vapor. Particle engineering was also used to fabricate respirable particles of budesonide. Surface imaging by atomic force microscopy suggested that micronized material possessed process-induced surface disorder, which relaxed upon conditioning with organic vapor. Particle engineered material was devoid of such surface disorder. Surface interfacial properties of all batches were different and correlated to in vitro fine particle delivery. The surface properties and in vitro performance of the conditioned material changed upon storage of the budesonide at 44% relative humidity and 25°C, while the micronized and particle-engineered material remained stable. These data suggest that processing conditions of budesonide affected the surface properties of the material, which was demonstrated to have direct affect on dry-powder inhaler formulation performance.

  9. Effect of Physical Property and Surface Morphology of Copper Foil at Electrodeposition Parameter

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Tae Gyu; Park, Il Song; Lee, Man Hyung; Seol, Kyeong Won [Chonbuk National University, Jeonju (Korea, Republic of)

    2014-06-15

    The effect of additives, current density and plated temperature on the surface morphology and physical property, during copper electrodeposition on polyimide (PI) film was investigated. Two kinds of additives, Cl and leveler (additive B), were used in this study. Electrochemical experiments were performed in conjunction with SEM, XRD and four-point probe to characterize the morphology and mechanical characteristics of copper electrodeposited in the presence of the additives. The surface roughness, crystal growth orientation and resistivity was controlled by the concentration of additive B. High resistivity and lower peel strength were observed on the surface of the copper layer electroplated in the electrolyte without additive B. However, a uniform surface, lower resistivity and high flexibility were obtained with a combination of 20 ppm Cl and 100 ppm additive B. Large particles were observed on the surface of the copper layer electroplated using a current density of 25 mA/cm{sup 2}, but a uniform surface and lower resistivity were obtained using a current density of 10 mA/cm{sup 2}. One of the required important properties of FCCL is flexibility of the copper foil. High flexibility of FCCL was obtained at a low current density, rather than a high current density. Moreover, a reasonable current density is 20 mA/cm{sup 2}, considering the productivity and mechanical properties of copper foil.

  10. Study on the cold and hot properties of medicinal herbs by thermotropism in mice behavior.

    Science.gov (United States)

    Zhao, Yan-Ling; Wang, Jia-Bo; Xiao, Xiao-He; Zhao, Hai-ping; Zhou, Can-ping; Zhang, Xue-ru; Ren, Yong-shen; Jia, Lei

    2011-02-16

    It is a common sense that chewing a mint leaf causes a cold feeling, while masticating a piece of ginger root is associated with a hot sensation. The Traditional Chinese Medicine has termed this phenomenon as cold and hot properties of herbs and applied them in treating certain human diseases successfully for thousands of years. Here, we have developed an Animal Thermotropism Behavior Surveillance System, and by using this device and other approaches, we not only verified the existence of, but also characterized and quantitated the cold and hot properties of medicinal herbs in animal behavioral experiments. The results suggested that the hot and cold properties of herbal drugs indeed correlated with the alteration of animal behavior in search for residence temperature. Copyright © 2010. Published by Elsevier Ireland Ltd.

  11. Statistical behavior of the tensile property of heated cotton fiber

    Science.gov (United States)

    The temperature dependence of the tensile property of single cotton fiber was studied in the range of 160-300°C using Favimat test, and its statistical behavior was interpreted in terms of structural changes. The tenacity of control cotton fiber was well described by the single Weibull distribution,...

  12. Tribological properties and surface structures of ion implanted 9Cr18Mo stainless steels

    Science.gov (United States)

    Fengbin, Liu; Guohao, Fu; Yan, Cui; Qiguo, Sun; Min, Qu; Yi, Sun

    2013-07-01

    The polished quenched-and-tempered 9Cr18Mo steels were implanted with N ions and Ti ions respectively at a fluence of 2 × 1017 ions/cm2. The mechanical properties of the samples were investigated by using nanoindenter and tribometer. The results showed that the ion implantations would improve the nanohardness and tribological property, especially N ion implantation. The surface analysis of the implanted samples was carried out by using XRD, XPS and AES. It indicated that the surface exhibits graded layers after ion implantation. For N ion implantation, the surface about 20 nm thickness is mainly composed of supersaturated interstitial N solid solution, oxynitrides, CrxCy phase and metal nitrides. In the subsurface region, the metal nitrides dominate and the other phases disappear. For Ti ion implantation, the surface of about 20 nm thickness is mainly composed of titanium oxides and carbon amorphous phase, the interstitial solid solution of Ti in Fe is abundant in the subsurface region. The surface components and structures have significant contributions to the improved mechanical properties.

  13. Tribological properties and surface structures of ion implanted 9Cr18Mo stainless steels

    International Nuclear Information System (INIS)

    Fengbin, Liu; Guohao, Fu; Yan, Cui; Qiguo, Sun; Min, Qu; Yi, Sun

    2013-01-01

    The polished quenched-and-tempered 9Cr18Mo steels were implanted with N ions and Ti ions respectively at a fluence of 2 × 10 17 ions/cm 2 . The mechanical properties of the samples were investigated by using nanoindenter and tribometer. The results showed that the ion implantations would improve the nanohardness and tribological property, especially N ion implantation. The surface analysis of the implanted samples was carried out by using XRD, XPS and AES. It indicated that the surface exhibits graded layers after ion implantation. For N ion implantation, the surface about 20 nm thickness is mainly composed of supersaturated interstitial N solid solution, oxynitrides, Cr x C y phase and metal nitrides. In the subsurface region, the metal nitrides dominate and the other phases disappear. For Ti ion implantation, the surface of about 20 nm thickness is mainly composed of titanium oxides and carbon amorphous phase, the interstitial solid solution of Ti in Fe is abundant in the subsurface region. The surface components and structures have significant contributions to the improved mechanical properties

  14. Effect of surface machining on corrosion behavior of SA182-304 in simulated

    International Nuclear Information System (INIS)

    Zhang Zhiming; Wang Jianqiu; Han Enhou; Ke Wei

    2015-01-01

    Different machining processes of mechanical parts can cause surface damage layers with different levels. The surface deformed layer can affect the corrosion behavior and service life of these mechanical parts a lot during the following service process. As a result, it is a key issue for the fabrication of the mechanical parts with long life that the selection of proper machining parameters and the removal of surface damage. The purpose of this study is to study the influence of different turning parameters on the corrosion behavior of nuclear grade SA182-304 stainless steel widely used in the advanced pressured water reactors (PWRs). 6 kinds of samples with different surface state are prepared by a lathe with different machining parameters, such as the feed, cutting speed and back engagement of the cutting edge. The high temperature and high pressure immersion test of these samples in the simulated PWR primary watershows that machining processes can affect the microstructure and chemical composition of the formed surface oxide scales a lot. According to the experimental results, the proper machining parameters for the studied SA182-304 are suggested. (authors)

  15. Handling sticky Resin by Stingless Bees: Adhesive Properties of Surface Structures

    Directory of Open Access Journals (Sweden)

    MARKUS GASTAUER

    2013-09-01

    Full Text Available Many Stingless Bees (Hymenoptera: Meliponini like Tetragonisca angustula collect resin to defend their nests against intruders like ants or Robber Bees. Small portions of resin are attached to intruders bodies and extremities causing their immobilization. It has been observed that resin is removed easily from the bee's mandible but adheres strongly to the intruder's cuticle. We tested the hypothesis that resin sticks lesser to the mandibles of Stingless Bees than to the surface of intruders due to special surface structures or adhesive properties of these structures. The surface structures of the mandible of T. angustula and the trochanter of Camponotus sericeiventris were studied by scanning electron microscopy. To measure adhesion properties, selected surfaces were fixed on a fine glass pin and withdrawn from a glass tip covered with resin. The deformation of the glass pin indicates adhesion forces operating between the resin and the selective surface. The absolute value of the forces is computed from the glass pin's stiffness. It has been shown that resin sticks more to the smooth mandible of the bee than to the structured trochanter of the ant. A new hypothesis to be tested says that the bees might lubricate their mandibles with nectar or honey to reduce the resin's adhesion temporarily.

  16. Bacterial surface appendages strongly impact nanomechanical and electrokinetic properties of Escherichia coli cells subjected to osmotic stress.

    Directory of Open Access Journals (Sweden)

    Grégory Francius

    Full Text Available The physicochemical properties and dynamics of bacterial envelope, play a major role in bacterial activity. In this study, the morphological, nanomechanical and electrohydrodynamic properties of Escherichia coli K-12 mutant cells were thoroughly investigated as a function of bulk medium ionic strength using atomic force microscopy (AFM and electrokinetics (electrophoresis. Bacteria were differing according to genetic alterations controlling the production of different surface appendages (short and rigid Ag43 adhesins, longer and more flexible type 1 fimbriae and F pilus. From the analysis of the spatially resolved force curves, it is shown that cells elasticity and turgor pressure are not only depending on bulk salt concentration but also on the presence/absence and nature of surface appendage. In 1 mM KNO(3, cells without appendages or cells surrounded by Ag43 exhibit large Young moduli and turgor pressures (∼700-900 kPa and ∼100-300 kPa respectively. Under similar ionic strength condition, a dramatic ∼50% to ∼70% decrease of these nanomechanical parameters was evidenced for cells with appendages. Qualitatively, such dependence of nanomechanical behavior on surface organization remains when increasing medium salt content to 100 mM, even though, quantitatively, differences are marked to a much smaller extent. Additionally, for a given surface appendage, the magnitude of the nanomechanical parameters decreases significantly when increasing bulk salt concentration. This effect is ascribed to a bacterial exoosmotic water loss resulting in a combined contraction of bacterial cytoplasm together with an electrostatically-driven shrinkage of the surface appendages. The former process is demonstrated upon AFM analysis, while the latter, inaccessible upon AFM imaging, is inferred from electrophoretic data interpreted according to advanced soft particle electrokinetic theory. Altogether, AFM and electrokinetic results clearly demonstrate the

  17. Multipulse nanosecond laser irradiation of silicon for the investigation of surface morphology and photoelectric properties

    Science.gov (United States)

    Sardar, Maryam; Chen, Jun; Ullah, Zaka; Jelani, Mohsan; Tabassum, Aasma; Cheng, Ju; Sun, Yuxiang; Lu, Jian

    2017-12-01

    We irradiate the single crystal boron-doped silicon (Si) with different number of laser pulses at constant fluence (7.5 J cm-2) in ambient air using Nd:YAG laser and examine its surface morphology and photoelectric properties in details. The results obtained from optical micrographs reveal the increase in heat affected zone (HAZ) and melted area of laser irradiated Si with increasing number of laser pulses. The SEM micrographs evidence the formation of various surface morphologies like laser induced periodic surface structures, crater, microcracks, clusters, cavities, pores, trapped bubbles, nucleation sites, micro-bumps, redeposited material and micro- and nano-particles on the surface of irradiated Si. The surface profilometry analysis informs that the depth of crater is increased with increase in number of incident laser pulses. The spectroscopic ellipsometry reveals that the multipulse irradiation of Si changes its optical properties (refractive index and extinction coefficient). The current-voltage (I-V) characteristic curves of laser irradiated Si show that although the multipulse laser irradiation produces considerable number of surface defects and damages, the electrical properties of Si are well sustained after the multipulse irradiation. The current findings suggest that the multipulse irradiation can be an effective way to tune the optical properties of Si for the fabrication of wide range of optoelectronic devices.

  18. Propagation behavior of two transverse surface waves in a three-layer piezoelectric/piezomagnetic structure

    Science.gov (United States)

    Nie, Guoquan; Liu, Jinxi; Liu, Xianglin

    2017-10-01

    Propagation of transverse surface waves in a three-layer system consisting of a piezoelectric/piezomagnetic (PE/PM) bi-layer bonded on an elastic half-space is theoretically investigated in this paper. Dispersion relations and mode shapes for transverse surface waves are obtained in closed form under electrically open and shorted boundary conditions at the upper surface. Two transverse surface waves related both to Love-type wave and Bleustein-Gulyaev (B-G) type wave propagating in corresponding three-layer structure are discussed through numerically solving the derived dispersion equation. The results show that Love-type wave possesses the property of multiple modes, it can exist all of the values of wavenumber for every selected thickness ratios regardless of the electrical boundary conditions. The presence of PM interlayer makes the phase velocity of Love-type wave decrease. There exist two modes allowing the propagation of B-G type wave under electrically shorted circuit, while only one mode appears in the case of electrically open circuit. The modes of B-G type wave are combinations of partly normal dispersion and partly anomalous dispersion whether the electrically open or shorted. The existence range of mode for electrically open case is greatly related to the thickness ratios, with the thickness of PM interlayer increasing the wavenumber range for existence of B-G type wave quickly shortened. When the thickness ratio is large enough, the wavenumber range of the second mode for electrically shorted circuit is extremely narrow which can be used to remove as an undesired mode. The propagation behaviors and mode shapes of transverse surface waves can be regulated by the modification of the thickness of PM interlayer. The obtained results provide a theoretical prediction and basis for applications of PE-PM composites and acoustic wave devices.

  19. Study on the surface sulfidization behavior of smithsonite at high temperature

    Science.gov (United States)

    Lv, Jin-fang; Tong, Xiong; Zheng, Yong-xing; Xie, Xian; Wang, Cong-bing

    2018-04-01

    Surface sulfidization behavior of smithsonite at high temperature was investigated by X-ray powder diffractometer (XRD) along with thermodynamic calculation, X-ray photoelectron spectroscopy (XPS) and electron probe microanalysis (EPMA). The XRD and thermodynamic analyses indicated that the smithsonite was decomposed into zincite at high temperatures. After introducing a small amount of pyrite, artificial sulfides were formed at surface of the obtained zincite. The XPS analyses revealed that the sulfide species including zinc sulfide and zinc disulfide were generated at the zincite surface. The EPMA analyses demonstrated that the film of sulfides was unevenly distributed at the zincite surface. The average concentration of elemental sulfur at the sample surface increased with increasing of pyrite dosage. A suitable mole ratio of FeS2 to ZnCO3 for the surface thermal modification was determined to be about 0.3. These findings can provide theoretical support for improving the process during which the zinc recovery from refractory zinc oxide ores is achieved by xanthate flotation.

  20. Surface plasma functionalization influences macrophage behavior on carbon nanowalls

    Energy Technology Data Exchange (ETDEWEB)

    Ion, Raluca [University of Bucharest, Department of Biochemistry and Molecular Biology, 91-95 Spl. Independentei, 050095 Bucharest (Romania); Vizireanu, Sorin [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor, PO Box MG-36, 077125, Magurele, Bucharest (Romania); Stancu, Claudia Elena [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor, PO Box MG-36, 077125, Magurele, Bucharest (Romania); Leibniz Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany); Luculescu, Catalin [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor, PO Box MG-36, 077125, Magurele, Bucharest (Romania); Cimpean, Anisoara, E-mail: anisoara.cimpean@bio.unibuc.ro [University of Bucharest, Department of Biochemistry and Molecular Biology, 91-95 Spl. Independentei, 050095 Bucharest (Romania); Dinescu, Gheorghe [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor, PO Box MG-36, 077125, Magurele, Bucharest (Romania)

    2015-03-01

    The surfaces of carbon nanowall samples as scaffolds for tissue engineering applications were treated with oxygen or nitrogen plasma to improve their wettability and to functionalize their surfaces with different functional groups. X-ray photoelectron spectroscopy and water contact angle results illustrated the effective conversion of the carbon nanowall surfaces from hydrophobic to hydrophilic and the incorporation of various amounts of carbon, oxygen and nitrogen functional groups during the treatments. The early inflammatory responses elicited by un-treated and modified carbon nanowall surfaces were investigated by quantifying tumor necrosis factor-alpha and macrophage inflammatory protein-1 alpha released by attached RAW 264.7 macrophage cells. Scanning electron microscopy and fluorescence studies were employed to investigate the changes in macrophage morphology and adhesive properties, while MTT assay was used to quantify cell proliferation. All samples sustained macrophage adhesion and growth. In addition, nitrogen plasma treatment was more beneficial for cell adhesion in comparison with un-modified carbon nanowall surfaces. Instead, oxygen plasma functionalization led to increased macrophage adhesion and spreading suggesting a more activated phenotype, confirmed by elevated cytokine release. Thus, our findings showed that the chemical surface alterations which occur as a result of plasma treatment, independent of surface wettability, affect macrophage response in vitro. - Highlights: • N{sub 2} and O{sub 2} plasma treatments alter the CNW surface chemistry and wettability. • Cells seeded on CNW scaffolds are viable and metabolically active. • Surface functional groups, independent of surface wettability, affect cell response. • O{sub 2} plasma treatment of CNW leads to a more activated macrophage phenotype.

  1. [Corrosion resistant properties of different anodized microtopographies on titanium surfaces].

    Science.gov (United States)

    Fangjun, Huo; Li, Xie; Xingye, Tong; Yueting, Wang; Weihua, Guo; Weidong, Tian

    2015-12-01

    To investigate the corrosion resistant properties of titanium samples prepared by anodic oxidation with different surface morphologies. Pure titanium substrates were treated by anodic oxidation to obtain porous titanium films in micron, submicron, and micron-submicron scales. The surface morphologies, coating cross-sectional morphologies, crystalline structures, and surface roughness of these samples were characterized. Electrochemical technique was used to measure the corrosion potential (Ecorr), current density of corrosion (Icorr), and polarization resistance (Rp) of these samples in a simulated body fluid. Pure titanium could be modified to exhibit different surface morphologies by the anodic oxidation technique. The Tafel curve results showed that the technique can improve the corrosion resistance of pure titanium. Furthermore, the corrosion resistance varied with different surface morphologies. The submicron porous surface sample demonstrated the best corrosion resistance, with maximal Ecorr and Rp and minimal Icorr. Anodic oxidation technology can improve the corrosion resistance of pure titanium in a simulated body fluid. The submicron porous surface sample exhibited the best corrosion resistance because of its small surface area and thick barrier layer.

  2. Surface properties of copper based cermet materials

    International Nuclear Information System (INIS)

    Voinea, M.; Vladuta, C.; Bogatu, C.; Duta, A.

    2008-01-01

    The paper presents the characterization of the surface properties of copper based cermets obtained by two different techniques: spray pyrolysis deposition (SPD) and electrodeposition. Copper acetate was used as precursor of Cu/CuO x cermet. The surface morphology was tailored by adding copolymers of maleic anhydride with controlled hydrophobia. The films morphology of Cu/CuO x was assessed using contact angle measurements and AFM analysis. The porous structures obtained via SPD lead to higher liquid adsorption rate than the electrodeposited films. A highly polar liquid - water is recommended as testing liquid in contact angle measurements, for estimating the porosity of copper based cermets, while glycerol can be used to distinguish among ionic and metal predominant structures. Thus, contact angle measurements can be used for a primary evaluation of the films morphology and, on the other hand, of the ratio between the cermet components

  3. JOB BEHAVIORAL FACTORS AND TURNOVER INTENTION: EVIDENCE FROM SIME DARBY PROPERTY LIMITED

    OpenAIRE

    Amran Awang; Abdul Razak Amir; Wirda Osman

    2013-01-01

    Some job behavioral factors are utilized to examine their relationship with turnover intention among 201 employees in Sime Darby Property (Malaysia) Limited. Job satisfaction, job stress, organizational commitment, job enrichment and person-organization fit are the job behavioral factors selected for the study. The variables used in the study justify the reliability scores consistent with indicators in previous studies. Research methodology justifies the quantitative requirements ...

  4. Surface adhesion properties of graphene and graphene oxide studied by colloid-probe atomic force microscopy

    International Nuclear Information System (INIS)

    Ding Yanhuai; Zhang Ping; Ren Huming; Zhuo Qin; Yang Zhongmei; Jiang Xu; Jiang Yong

    2011-01-01

    Surface adhesion properties are important to various applications of graphene-based materials. Atomic force microscopy is powerful to study the adhesion properties of samples by measuring the forces on the colloidal sphere tip as it approaches and retracts from the surface. In this paper we have measured the adhesion force between the colloid probe and the surface of graphene (graphene oxide) nanosheet. The results revealed that the adhesion force on graphene and graphene oxide surface were 66.3 and 170.6 nN, respectively. It was found the adhesion force was mainly determined by the water meniscus, which was related to the surface contact angle of samples.

  5. Atomic interactions at the (100) diamond surface and the impact of surface and interface changes on the electronic transport properties

    Science.gov (United States)

    Deferme, Wim

    Centuries and centuries already, diamond is a material that speaks to ones imagination. Till the 18th century it was only mined in India, after it was also found in Brazil and South-Africa. But along the fascinating properties of diamond, it is also a very interesting material for industry. After the discovery at the end of the 18th century that diamond consists of carbon, it took until the 50's of the previous century before research groups from Russia, Japan and the USA were able to reproduce the growth process of diamond. In 1989 it was discovered that the surface of intrinsic, insulation diamond can be made conductive by hydrogenating the surface. It was clear that not only hydrogen at the surface but also the so called "adsorbates" were responsible for this conductivity. It was still not completely clear what was the influence of other species (like oxygen) on the mechanism of surface conductivity and therefore in this thesis the influence of oxygen on the electronic transport properties of atomically flat diamond are researched. Besides the growth of atomically flat diamond with the use of CVD (chemical vapour deposition) en the study of the grown surfaces with characterising techniques such as AFM (atomic force microscopy) and STM (scanning tunnelling microscopy), the study of the surface treatment with plasma techniques is the main topic of this thesis. The influence of oxygen on the surface conductivity is studied and with the ToF (Time-of-Flight) technique the transport properties of the freestanding diamond are examined. With a short laserflash, electrons and holes are created at the diamond/aluminium interface and due to an electric field (up to 500V) the charge carriers are translated to the back contact. In this way the influence of the surface and the changes at the aluminum contacts is studied leading to very interesting results.

  6. Surface-defect induced modifications in the optical properties of α-MnO_2 nanorods

    International Nuclear Information System (INIS)

    John, Reenu Elizabeth; Chandran, Anoop; Thomas, Marykutty; Jose, Joshy; George, K.C.

    2016-01-01

    Graphical abstract: - Highlights: • Alpha-MnO_2 nanorods are prepared by chemical method. • Difference in surface defect density is achieved. • Characterized using XRD, Rietveld, XPS, EDS, HR-TEM, BET, UV–vis absorption spectroscopy and PL spectroscopy. • Explains the bandstructure modification due to Jahn–Teller distortions using crystal field theory. • Modification in the intensity of optical emissions related to defect levels validates the concept of surface defect induced tuning of optical properties. - Abstract: The science of defect engineering via surface tuning opens a new route to modify the inherent properties of nanomaterials for advanced functional and practical applications. In this work, two independent synthesis methods (hydrothermal and co-precipitation) are adopted to fabricate α-MnO_2 nanorods with different defect structures so as to understand the effect of surface modifications on their optical properties. The crystal structure and morphology of samples are investigated with the aid of X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). Atomic composition calculated from energy dispersive spectroscopy (EDS) confirms non-stoichiometry of the samples. The surface properties and chemical environment are thoroughly studied using X-ray photoelectron spectroscopy (XPS) and Brunauer–Emmett–Teller (BET) analysis. Bond angle variance and bond valence sum are determined to validate distortions in the basic MnO_6 octahedron. The surface studies indicate that the concentration of Jahn–Teller manganese (III) (Mn"3"+) ion in the samples differ from each other which results in their distinct properties. Band structure modifications due to Jahn–Teller distortion are examined with the aid of ultraviolet–visible (UV) reflectance and photoluminescence (PL) studies. The dual peaks obtained in derivative spectrum conflict the current concept on the bandgap energy of MnO_2. These studies suggest that

  7. Molecular dynamics simulation of wetting behaviors of Li on W surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xuegui [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China); Xiao, Shifang [Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082 (China); Deng, Huiqiu, E-mail: hqdeng@hnu.edu.cn [Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082 (China); Hu, Wangyu, E-mail: wyuhu@hnu.edu.cn [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China)

    2017-04-15

    A modified analytic embedded atom potential has been developed for the Li-W system. The potential has been fitted to physical quantities derived from density functional theory calculations. It is shown that the new potential is capable of reproducing the solubility of solid solution for Li-W systems. The wetting behaviors between solid tungsten and liquid Li are examined by using molecular dynamics simulations. The MD simulation results for the Li droplet wetting on the W surface illustrated that our MAEAM potential model has a good forecasting ability for the contact angle of liquid Li on W the cleaning surface above the wetting temperature. And the results of Li film dewetting from the W surfaces are consistent with relative experimental results. It is believed that the potential can be used to investigate the surfaces wettability of liquid Li on W substrate. We also simulated the lithium droplet on grooved surface. It is shown that the grooving W surfaces can obviously improve the wetting of liquid Li on W surfaces.

  8. Measurement Properties of Indirect Assessment Methods for Functional Behavioral Assessment: A Review of Research

    Science.gov (United States)

    Floyd, Randy G.; Phaneuf, Robin L.; Wilczynski, Susan M.

    2005-01-01

    Indirect assessment instruments used during functional behavioral assessment, such as rating scales, interviews, and self-report instruments, represent the least intrusive techniques for acquiring information about the function of problem behavior. This article provides criteria for examining the measurement properties of these instruments…

  9. Surface physicochemical properties at the micro and nano length scales: role on bacterial adhesion and Xylella fastidiosa biofilm development.

    Science.gov (United States)

    Lorite, Gabriela S; Janissen, Richard; Clerici, João H; Rodrigues, Carolina M; Tomaz, Juarez P; Mizaikoff, Boris; Kranz, Christine; de Souza, Alessandra A; Cotta, Mônica A

    2013-01-01

    The phytopathogen Xylella fastidiosa grows as a biofilm causing vascular occlusion and consequently nutrient and water stress in different plant hosts by adhesion on xylem vessel surfaces composed of cellulose, hemicellulose, pectin and proteins. Understanding the factors which influence bacterial adhesion and biofilm development is a key issue in identifying mechanisms for preventing biofilm formation in infected plants. In this study, we show that X. fastidiosa biofilm development and architecture correlate well with physicochemical surface properties after interaction with the culture medium. Different biotic and abiotic substrates such as silicon (Si) and derivatized cellulose films were studied. Both biofilms and substrates were characterized at the micro- and nanoscale, which corresponds to the actual bacterial cell and membrane/ protein length scales, respectively. Our experimental results clearly indicate that the presence of surfaces with different chemical composition affect X. fastidiosa behavior from the point of view of gene expression and adhesion functionality. Bacterial adhesion is facilitated on more hydrophilic surfaces with higher surface potentials; XadA1 adhesin reveals different strengths of interaction on these surfaces. Nonetheless, despite different architectural biofilm geometries and rates of development, the colonization process occurs on all investigated surfaces. Our results univocally support the hypothesis that different adhesion mechanisms are active along the biofilm life cycle representing an adaptation mechanism for variations on the specific xylem vessel composition, which the bacterium encounters within the infected plant.

  10. Effect of surface roughness scattering on the transport properties of a 2DEG

    International Nuclear Information System (INIS)

    Yarar, Z.

    2004-01-01

    In this work surface roughness scattering of electrons in a two dimensional electron gas (2DEG) formed at heterojunction interfaces is investigated for various auto-correlation functions. Gaussian, exponential and Lorentzian auto-correlation functions are used to represent surface roughness. Poisson and Schrodinger equations are solved self consistently at the hetero interface to find the energy levels, the wave functions corresponding to each level and electron concentrations at each level. Using these wave functions and the auto-correlation functions mentioned above, the scattering rates due to surface roughness are calculated. Scattering rates resulting from acoustic and optical phonons are also calculated. These rates are used to study the transport properties of the two dimensional electrons using ensemble Monte Carlo method at various temperatures. Emphasis is given to the effect of surface roughness scattering on the transport properties of the electrons

  11. [Clinical and microbiological study regarding surface antibacterial properties of bioactive dental materials].

    Science.gov (United States)

    Târcă, T; Bădescu, Aida; Topoliceanu, C; Lăcătuşu, St

    2010-01-01

    In the new era of dentistry the coronal restoration materials must possess "bio-active" features represented by fluor ions release, chemical adhesion and antibacterial agents. Our study aims to determine the surface antibacterial properties of glassionomer cements and compomers. The study group included 64 patients with high cariogenic risk with 80 teeth with acute and chronic dental caries affecting proximal and occlusal dental surfaces. The teeth with cariogenic lesions were restored with zinc-oxide-eugenol (n=20), glassionomer cement GC Fuji Triage (n=20), glassionomer cement modified with resins Fuji II LC (n=20), compomer Dyract (n=20). DENTOCULT SM test (Orion Diagnostica, Finland) was used for bacterial analyses. The samples from bacterial biofilm were collected from the restorated dental surfaces (study group) and intact enamel surfaces (control group). The recorded data were processed using non-parametrical statistical tests. The lowest mean value of bacterial indices was recorded for glassionomer cement Fuji Triage (0.4), and Fuji II LC (1.2), material with highest surface antibacterial properties. The highest value (1.5) was recorded for compomer Dyract. The Kruskal-Wallis test proves the significant statistical differences between the three bioactive materials. The materials with bioactive features have the ability to inhibate the growth of Streptococcus mutans in bacterial biofilm to the surfaces of coronal restoration.

  12. The effects of size, shape, and surface composition on the diffusive behaviors of nanoparticles at/across water–oil interfaces via molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Wei; Jiao, Yang; Dai, Lenore L., E-mail: Lenore.Dai@asu.edu [Arizona State University, School of Engineering of Matter, Transport, and Energy (United States)

    2016-04-15

    We have employed molecular dynamics simulations to systematically investigate the effects of nanoparticles’ structural and chemical properties on their diffusive behaviors at/across the water–benzene interface. Four different nanoparticles were studied: modified hydrocarbon nanoparticles with a mean diameter of 1.2 nm (1.2HCPs), modified hydrocarbon nanoparticles with a mean diameter of 0.6 nm (0.6HCPs), single-walled carbon nanotubes (SWCNTs), and buckyballs. We found that the diffusion coefficients of 0.6 and 1.2HCP were larger than the corresponding values predicted using the Stokes–Einstein (SE) equation and attributed this deviation to the small particle size and the anisotropy of the interface system. In addition, the observed directional diffusive behaviors for various particles were well-correlated with the derivative of the potential of mean force (PMF), which might indicate an effective driving force for the particles along the direction perpendicular to the interface. We also found that nanoparticles with isotropic shape and uniform surface, e.g., buckyballs, tend to have smaller diffusion coefficients than those of nanoparticles with comparable dimensions but anisotropic shapes and non-uniform surface composition, e.g., SWCNT and 0.6HCP. One possible hypothesis for this behavior is that the “perfect” isotropic shape and uniform surface of buckyballs result in a better-defined “solvation shell” (i.e., a shell of solution molecules), which leads to a larger “effective radius” of the particle, and thus, a reduced diffusion coefficient.

  13. Effect of complex alloying of powder materials on properties of laser melted surface layers

    International Nuclear Information System (INIS)

    Tesker, E.I.; Gur'ev, V.A.; Elistratov, V.S.; Savchenko, A.N.

    2001-01-01

    Quality and properties of laser melted surface layers produced using self-fluxing powder mixture of Ni-Cr-B-Si system and the same powders with enhanced Fe content alloyed with Co, Ti, Nb, Mo have been investigated. Composition of powder material is determined which does not cause of defect formation under laser melting and makes possible to produce a good mechanical and tribological properties of treated surface [ru

  14. Correlation of water vapor adsorption behavior of wood with surface thermodynamic properties

    Science.gov (United States)

    Mandla A. Tshabalala; Agnes R. Denes; R. Sam. Williams

    1999-01-01

    To improve the overall performance of wood-plastic composites, appropriate technologies are needed to control moisture sorption and to improve the interaction of wood fiber with selected hydrophobic matrices. The objective of this study was to determine the surface thermodynamic characteristics of a wood fiber and to correlate those characteristics with the fiberas...

  15. Surface tension effects on the behavior of a cavity growing, collapsing, and rebounding near a rigid wall.

    Science.gov (United States)

    Zhang, Zhen-yu; Zhang, Hui-sheng

    2004-11-01

    Surface tension effects on the behavior of a pure vapor cavity or a cavity containing some noncondensible contents, which is growing, collapsing, and rebounding axisymmetrically near a rigid wall, are investigated numerically by the boundary integral method for different values of dimensionless stand-off parameter gamma, buoyancy parameter delta, and surface tension parameter beta. It is found that at the late stage of the collapse, if the resultant action of the Bjerknes force and the buoyancy force is not small, surface tension will not have significant effects on bubble behavior except that the bubble collapse time is shortened and the liquid jet becomes wider. If the resultant action of the two force is small enough, surface tension will have significant and in some cases substantial effects on bubble behavior, such as changing the direction of the liquid jet, making a new liquid jet appear, in some cases preventing the bubble from rebound before jet impact, and in other cases causing the bubble to rebound or even recollapse before jet impact. The mechanism of surface tension effects on the collapsing behavior of a cavity has been analyzed. The mechanisms of some complicated phenomena induced by surface tension effects are illustrated by analysis of the computed velocity fields and pressure contours of the liquid flow outside the bubble at different stages of the bubble evolution.

  16. Effects of atomic oxygen irradiation on the surface properties of phenolphthalein poly(ether sulfone)

    International Nuclear Information System (INIS)

    Pei Xianqiang; Li Yan; Wang Qihua; Sun Xiaojun

    2009-01-01

    To study the effects of low earth orbit environment on the surface properties of polymers, phenolphthalein poly(ether sulfone) (PES-C) blocks were irradiated by atomic oxygen in a ground-based simulation system. The surface properties of the pristine and irradiated blocks were studied by attenuated total-reflection FTIR (FTIR-ATR), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM). It was found that atomic oxygen irradiation induced the destruction of PES-C molecular chains, including the scission and oxidation of PES-C molecular chains, as evidenced by FTIR and XPS results. The scission of PES-C molecular chains decreased the relative concentration of C in the surface, while the oxidation increased the relative concentration of O in the surface. The changes in surface chemical structure and composition also changed the surface morphology of the block, which shifted from smooth structure before irradiation to 'carpet-like' structure after irradiation

  17. High temperature oxidation behavior of aluminide on a Ni-based single crystal superalloy in different surface orientations

    Institute of Scientific and Technical Information of China (English)

    Fahamsyah H.Latief; Koji Kakehi; El-Sayed M.Sherif

    2014-01-01

    An investigation on oxidation behavior of coated Ni-based single crystal superalloy in different surface orientations has been carried out at 1100 1C. It has been found that the {100} surface shows a better oxidation resistance than the {110} one, which is attributed that the {110}surface had a slightly higher oxidation rate when compared to the {100} surface. The experimental results also indicated that the anisotropic oxidation behavior took place even with a very small difference in the oxidation rates that was found between the two surfaces. The differences of the topologically close packed phase amount and its penetration depth between the two surfaces, including the ratio of α-Al2O3 after 500 h oxidation, were responsible for the oxidation anisotropy.

  18. Characterization of the molecular structure and mechanical properties of polymer surfaces and protein/polymer interfaces by sum frequency generation vibrational spectroscopy and atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Koffas, Telly Stelianos [Univ. of California, Berkeley, CA (United States)

    2004-01-01

    Sum frequency generation (SFG) vibrational spectroscopy, atomic force microscopy (AFM), and other complementary surface-sensitive techniques have been used to study the surface molecular structure and surface mechanical behavior of biologically-relevant polymer systems. SFG and AFM have emerged as powerful analytical tools to deduce structure/property relationships, in situ, for polymers at air, liquid and solid interfaces. The experiments described in this dissertation have been performed to understand how polymer surface properties are linked to polymer bulk composition, substrate hydrophobicity, changes in the ambient environment (e.g., humidity and temperature), or the adsorption of macromolecules. The correlation of spectroscopic and mechanical data by SFG and AFM can become a powerful methodology to study and engineer materials with tailored surface properties. The overarching theme of this research is the interrogation of systems of increasing structural complexity, which allows us to extend conclusions made on simpler model systems. We begin by systematically describing the surface molecular composition and mechanical properties of polymers, copolymers, and blends having simple linear architectures. Subsequent chapters focus on networked hydrogel materials used as soft contact lenses and the adsorption of protein and surfactant at the polymer/liquid interface. The power of SFG is immediately demonstrated in experiments which identify the chemical parameters that influence the molecular composition and ordering of a polymer chain's side groups at the polymer/air and polymer/liquid interfaces. In general, side groups with increasingly greater hydrophobic character will be more surface active in air. Larger side groups impose steric restrictions, thus they will tend to be more randomly ordered than smaller hydrophobic groups. If exposed to a hydrophilic environment, such as water, the polymer chain will attempt to orient more of its hydrophilic groups to

  19. Investigation of the Effects of Marble Material Properties on the Surface Quality

    Directory of Open Access Journals (Sweden)

    Sümeyra Cevheroğlu Çıra

    2018-01-01

    Full Text Available This study aims to investigate the effects of material properties of marble on surface roughness and glossiness. For this purpose, four types of limestones were investigated. Physicomechanical properties of samples were determined through laboratory measurements. Mineralogical and petrographical characterizations were made using thin-section analysis. X-ray fluorescence (XRF semiquantitative method was used for chemical analysis. Six different grinding-polishing tests for each marble unit were done under fixed operational conditions using the same abrasive series. Relationship between the material properties and the surface quality was investigated. Although the polishing-grinding tests were conducted under the same operational conditions, different levels of roughness and glossiness were observed on different samples. Data obtained from the study proved that the main cause of this difference is textural and chemical composition variations of the marble specimen. Moreover, statistical evaluations showed that porosity, uniaxial compressive strength, and indirect tensile strength have strong effects on the surface roughness and glossiness of the marble specimen. The presence of an inverse relationship between the glossiness and roughness levels was determined as the result of this study as well.

  20. Interfacial Shear Strength and Adhesive Behavior of Silk Ionomer Surfaces.

    Science.gov (United States)

    Kim, Sunghan; Geryak, Ren D; Zhang, Shuaidi; Ma, Ruilong; Calabrese, Rossella; Kaplan, David L; Tsukruk, Vladimir V

    2017-09-11

    The interfacial shear strength between different layers in multilayered structures of layer-by-layer (LbL) microcapsules is a crucial mechanical property to ensure their robustness. In this work, we investigated the interfacial shear strength of modified silk fibroin ionomers utilized in LbL shells, an ionic-cationic pair with complementary ionic pairing, (SF)-poly-l-glutamic acid (Glu) and SF-poly-l-lysine (Lys), and a complementary pair with partially screened Coulombic interactions due to the presence of poly(ethylene glycol) (PEG) segments and SF-Glu/SF-Lys[PEG] pair. Shearing and adhesive behavior between these silk ionomer surfaces in the swollen state were probed at different spatial scales and pressure ranges by using functionalized atomic force microscopy (AFM) tips as well as functionalized colloidal probes. The results show that both approaches were consistent in analyzing the interfacial shear strength of LbL silk ionomers at different spatial scales from a nanoscale to a fraction of a micron. Surprisingly, the interfacial shear strength between SF-Glu and SF-Lys[PEG] pair with partially screened ionic pairing was greater than the interfacial shear strength of the SF-Glu and SF-Lys pair with a high density of complementary ionic groups. The difference in interfacial shear strength and adhesive strength is suggested to be predominantly facilitated by the interlayer hydrogen bonding of complementary amino acids and overlap of highly swollen PEG segments.

  1. Redox behavior of a low-doped Pr-CeO_2(111) surface. A DFT+U study

    International Nuclear Information System (INIS)

    Milberg, Brian; Juan, Alfredo; Irigoyen, Beatriz

    2017-01-01

    Highlights: • Pr doping facilitates oxygen donation due to the easy formation of Pr"3"+/Pr"4"+ and Ce"3"+/Ce"4"+ redox couples. • Pr doping also favors the formation of superoxide (O_2"−) radicals on surface O-holes. • CO can be oxidized by superoxide radical forming a CO_2 molecule floating on the surface. • CO can also interact on the (O_2"−)/Pr"3"+ interphase and forms weakly adsorbed carbonate-type intermediates. - Abstract: In this work, we investigated the redox behavior (donation and replenishing of oxygen) of a low praseodymium (Pr)-doped CeO_2(111) surface. We considered a 3.7 at.% Pr doping and performed density functional calculations using the GGA formalism with the ‘U’ correction on Ce(4f) and Pr(4f) orbitals. Our results indicate that Pr doping promotes oxygen donation by lowering the energy necessary to form surface anionic vacancies. When the Ce_0_._9_6_3Pr_0_._0_3_7O_2(111) surface donates one oxygen, the two excess electrons locate on Pr and Ce cations and reduce them to Pr"3"+ and Ce"3"+ ones. Praseodymium doping also favors the activation of O_2 molecule on surface O-holes, leading to formation of a superoxide (O_2"−) radical as well as to reoxidation of the Ce"3"+ cation to Ce"4"+ one. Additionally, we used the CO molecular adsorption for testing the reactivity of those superoxide species. The calculations expose the ability of these radicals to oxidize CO forming a CO_2 molecule floating on the surface. However, when the superoxide is in the immediate vicinity of Pr dopant a carbonate-type species is formed. Our theoretical results may help to gain insight into redox properties and improved catalytic performance of low-doped Pr-CeO_2 solids.

  2. Effects of surface proteins and lipids on molecular structure, thermal properties, and enzymatic hydrolysis of rice starch

    Directory of Open Access Journals (Sweden)

    Pan HU

    Full Text Available Abstract Rice starches with different amylose contents were treated with sodium dodecyl sulfate (SDS to deplete surface proteins and lipids, and the changes in molecular structure, thermal properties, and enzymatic hydrolysis were evaluated. SDS treatment did not significantly change the molecular weight distribution, crystalline structure, short-range ordered degree, and gelatinization properties of starch, but significantly altered the pasting properties and increased the swelling power of starch. The removal of surface proteins and lipids increased the enzymatic hydrolysis and in vitro digestion of starch. The influences of removing surface proteins and lipids from starch on swelling power, pasting properties, and enzymatic hydrolysis were different among the various starches because of the differences in molecular structures of different starch styles. The aforementioned results indicated that removing the surface proteins and lipids from starch did not change the molecular structure but had significant effects on some functional properties.

  3. Experimental study on surface properties of the PMMA used in high power spark gaps

    Science.gov (United States)

    Han, Ruoyu; Wu, Jiawei; Ding, Weidong; Liu, Yunfei; Gou, Yang

    2017-10-01

    This paper studies the surface properties of the Polymethylmethacrylate (PMMA) insulator samples used in high power spark gaps. Experiments on surface morphology, surface profile, surface chemical composition and surface leakage current were performed. Metal particles ejected in tangent direction of discharge spots were researched on the sample surface. Three kinds of distinct bands were found on the surface after 1500 shots: colorless and transparent sinking band, black band, and grey powdered coating band. The thickness of the coating band was tens of microns and the maximum radial erosion rate was about 10 μm/C. Surface content analysis indicated that the powdered coating was a mixture of decomposed insulator material and electrode material oxides. In addition, leakage current significantly depended on water content in the chamber and presented an U-shape curve distribution along the insulator surface, in keeping with the amount of powdered coating due to shock waves. Possible reasons of the surface property changes were discussed. Electroconductive oxides of low valence states of Cu and W produced by the reactions between electrode materials and arc plasmas were considered to be the cause of dielectric performance degradation.

  4. Cage and linear structured polysiloxane/epoxy hybrids for coatings: Surface property and film permeability.

    Science.gov (United States)

    Ma, Yanli; He, Ling; Jia, Mengjun; Zhao, Lingru; Zuo, Yanyan; Hu, Pingan

    2017-08-15

    Three polysiloxane/epoxy hybrids obtained by evolving cage- or linear-structured polysiloxane into poly glycidyl methacrylate (PGMA) matrix are compared used as coatings. One is the cage-structured hybrid of P(GMA/MA-POSS) copolymer obtained by GMA and methacrylisobutyl polyhedral oligomeric silsesquioxane (MA-POSS) via free radical polymerization, the other two are PGMA/NH 2 -POSS and PGMA/NH 2 -PDMS hybrids by cage-structured aminopropyllsobutyl POSS (NH 2 -POSS) or linear-structured diamino terminated poly(dimethylsiloxane) (NH 2 -PDMS) to cure PGMA. The effect of MA-POSS, NH 2 -POSS and NH 2 -PDMS on polysiloxane/epoxy hybrid films is characterized according to their surface morphology, transparency, permeability, adhesive strength and thermo-mechanical properties. Due to caged POSS tending to agglomerate onto the film surface, P(GMA/MA-POSS) and PGMA/NH 2 -POSS films exhibit much more heterogeneous surfaces than PGMA/NH 2 -PDMS film, but the well-compatibility between epoxy matrix and MA-POSS has provided P(GMA/MA-POSS) film with much higher transmittance (98%) than PGMA/NH 2 -POSS film (24%), PGMA/NH 2 -PDMS film (27%) and traditional epoxy resin film (5%). The introduction of polysiloxane into epoxy matrix is confirmed to create hybrids with strong adhesive strength (526-1113N) and high thermos-stability (T g =262-282°C), especially the cage-structured P(GMA/MA-POSS) hybrid (1113N and 282°C), but the flexible PDMS improves PGMA/NH 2 -PDMS hybrid with much higher storage modulus (519MPa) than PGMA/NH 2 -POSS (271MPa), which suggests that PDMS is advantage in improving the film stiffness than POSS cages. However, cage-structured P(GMA/MA-POSS) and PGMA/NH 2 -POSS indicate higher permeability than PGMA/NH 2 -PDMS and traditional epoxy resin. Comparatively, the cage-structured P(GMA/MA-POSS) hybrid is the best coating in transparency, permeability, adhesive strength and thermostability, but linear-structured PGMA/NH 2 -PDMS hybrid behaviors the best coating in

  5. Effect of Laser Feeding on Heat Treated Aluminium Alloy Surface Properties

    Directory of Open Access Journals (Sweden)

    Labisz K.

    2016-06-01

    Full Text Available In this paper are presented the investigation results concerning microstructure as well as mechanical properties of the surface layer of cast aluminium-silicon-copper alloy after heat treatment alloyed and/ or remelted with SiC ceramic powder using High Power Diode Laser (HPDL. For investigation of the achieved structure following methods were used: light and scanning electron microscopy with EDS microanalysis as well as mechanical properties using Rockwell hardness tester were measured. By mind of scanning electron microscopy, using secondary electron detection was it possible to determine the distribution of ceramic SiC powder phase occurred in the alloy after laser treatment. After the laser surface treatment carried out on the previously heat treated aluminium alloys, in the structure are observed changes concerning the distribution and morphology of the alloy phases as well as the added ceramic powder, these features influence the hardness of the obtained layers. In the structure, there were discovered three zones: the remelting zone (RZ the heat influence zone (HAZ and transition zone, with different structure and properties. In this paper also the laser treatment conditions: the laser power and ceramic powder feed rate were investigated. The surface laser structure changes in a manner, that there zones are revealed in the form of. This carried out investigations make it possible to develop, interesting technology, which could be very attractive for different branches of industry.

  6. The influence of surface functionalisation on the electrical properties and thermal stability of nanodiamonds

    Energy Technology Data Exchange (ETDEWEB)

    Welch, Joseph O; Li, Pei; Chaudhary, Aysha; Edgington, Robert; Jackman, Richard B., E-mail: r.jackman@ucl.ac.uk [London Centre for Nanotechnology and the Department of Electronic and Electrical Engineering, University College London, 17-19 Gordon Street, London WC1H 0AH (United Kingdom)

    2014-10-07

    Detonation nanodiamond (ND) has recently emerged as a useful new class of diamond material. However, to date there has been little investigation of the electrical properties of this material. Due to the nanoscale dimensions, the surface functionalisation of the individual ND is of particular importance to the characteristics of ND films. Here, hydrogen and oxygen termination of ND, verified using Fourier transform infrared spectroscopy, are shown to strongly influence the electronic properties of NDs. Hydrogen terminated ND exhibiting a far greater resilience to thermal decomposition when compared to the oxygen terminated NDs. Moreover, H-NDs also displayed so-called “surface conductivity,” a property displayed by hydrogen-terminated bulk diamond films, whilst O-NDs display properties high resistivity. These results indicate that under the correct conditions ND layers can display similar electrical properties to “bulk” diamond thin films.

  7. Magnetic and surface properties of Fe-Nb (Mo, V)-Cu-B-Si ribbons

    International Nuclear Information System (INIS)

    Butvinova, B.; Butvin, P.; Svec, P. Sr.; Matko, I.; Svec, P.; Janickovic, D.; Kadlecikova, M.

    2014-01-01

    The rapidly quenched Finemet (FeNbCuBSi) ribbons prepared by planar flow casting of the melt are very variable to obtain very good soft-magnetic properties. An appropriate thermal treatment leading to ultra-fine grain structure enables to attain such properties as desired for practical use. Increasing Fe percentage to the detriment of non-magnetic components lifts saturation induction above 1.3 T, preserves low coercivity and makes the alloy even cheaper to suit its mass production for use in power electronics. Apart from the plenty of benefits the ribbons show some risks. One of them is macroscopic heterogeneity, which often manifests via differences between surfaces and interior of a ribbon [3]. The surfaces squeeze (by in-plane force) the interior of many such ribbons and if engaged in magnetoelastic interaction, the force affects the resulting magnetic anisotropy [4]. Current research shows that changes of hysteresis loop shape come rather from surface crystallization and not from oxides namely in positively magnetostrictive alloys FeNbCuBSi known as low- Si Finemets. The object of this work is to verify whether the substitution of another element instead of Nb (usually incorporated as the grain-growth blocker) can change surface properties and affects the resulting magnetic properties. We chose V and Mo instead of Nb. Oxides, oxyhydroxides and a possible squeezing layer was looked for after higher temperature annealing which ensures partially nanocrystalline structure. (authors)

  8. Emergence of Metallic Properties at LiFePO4 Surfaces and LiFePO4/Li2S Interfaces: An Ab Initio Study.

    Science.gov (United States)

    Timoshevskii, Vladimir; Feng, Zimin; Bevan, Kirk H; Zaghib, Karim

    2015-08-26

    The atomic and electronic structures of the LiFePO4 (LFP) surface, both bare and reconstructed upon possible oxygenation, are theoretically studied by ab initio methods. On the basis of total energy calculations, the atomic structure of the oxygenated surface is proposed, and the effect of surface reconstruction on the electronic properties of the surface is clarified. While bare LFP(010) surface is insulating, adsorption of oxygen leads to the emergence of semimetallic behavior by inducing the conducting states in the band gap of the system. The physical origin of these conducting states is investigated. We further demonstrate that deposition of Li2S layers on top of oxygenated LFP(010) surface leads to the formation of additional conducting hole states in the first layer of Li2S surface because of the charge transfer from sulfur p-states to the gap states of LFP surface. This demonstrates that oxygenated LFP surface not only provides conducting layers itself, but also induces conducting channels in the top layer of Li2S. These results help to achieve further understanding of potential role of LFP particles in improving the performance of Li-S batteries through emergent interface conductivity.

  9. Behavior of aircraft antiskid braking systems on dry and wet runway surfaces: Hydromechanically controlled system

    Science.gov (United States)

    Tanner, J. A.; Stubbs, S. M.; Smith, E. G.

    1981-01-01

    The investigation utilized one main gear wheel, brake, and tire assembly of a McDonnell Douglas DC-9 series 10 airplane. The landing-gear strut was replaced by a dynamometer. During maximum braking, average braking behavior indexes based upon brake pressure, brake torque, and drag-force friction coefficient developed by the antiskid system were generally higher on dry surfaces than on wet surfaces. The three braking behavior indexes gave similar results but should not be used interchangeably as a measure of the braking of this antiskid sytem. During the transition from a dry to a flooded surface under heavy braking, the wheel entered into a deep skid but the antiskid system reacted quickly by reducing brake pressure and performed normally during the remainder of the run on the flooded surface. The brake-pressure recovery following transition from a flooded to a dry surface was shown to be a function of the antiskid modulating orifice.

  10. Adhesion defective BHK cell mutant has cell surface heparan sulfate proteoglycan of altered properties

    DEFF Research Database (Denmark)

    Couchman, J R; Austria, R; Woods, A

    1988-01-01

    In the light of accumulating data that implicate cell surface heparan sulfate proteoglycans (HSPGs) with a role in cell interactions with extracellular matrix molecules such as fibronectin, we have compared the properties of these molecules in wild-type BHK cells and an adhesion-defective ricin......-resistant mutant (RicR14). Our results showed that the mutant, unlike BHK cells, cannot form focal adhesions when adherent to planar substrates in the presence of serum. Furthermore, while both cell lines possess similar amounts of cell surface HSPG with hydrophobic properties, that of RicR14 cells had decreased...... sulfation, reduced affinity for fibronectin and decreased half-life on the cell surface when compared to the normal counterpart. Our conclusions based on this data are that these altered properties may, in part, account for the adhesion defect in the ricin-resistant mutant. Whether this results from...

  11. Dynamical properties of tertiarybutylarsine on GaAs(0 0 1) surface

    CERN Document Server

    Ozeki, M; Tanaka, Y

    2002-01-01

    The dynamical properties of tertiarybutylarsine (TBA) was studied on GaAs(0 0 1) surface using a supersonic molecular beam. The temperature and incident energy dependence of the reflected beam revealed a reaction channel of TBA on GaAs surface with a large decrease in the activation energy from 2.7 to 1.8 eV as the incident energy increases from 0.04 to 2.5 eV.

  12. Surface Treatment of Polymeric Materials Controlling the Adhesion of Biomolecules

    Directory of Open Access Journals (Sweden)

    Willy Zorzi

    2012-08-01

    Full Text Available This review describes different strategies of surface elaboration for a better control of biomolecule adsorption. After a brief description of the fundamental interactions between surfaces and biomolecules, various routes of surface elaboration are presented dealing with the attachment of functional groups mostly thanks to plasma techniques, with the grafting to and from methods, and with the adsorption of surfactants. The grafting of stimuli-responsive polymers is also pointed out. Then, the discussion is focused on the protein adsorption phenomena showing how their interactions with solid surfaces are complex. The adsorption mechanism is proved to be dependent on the solid surface physicochemical properties as well as on the surface and conformation properties of the proteins. Different behaviors are also reported for complex multiple protein solutions.

  13. Surface Treatment of Polymeric Materials Controlling the Adhesion of Biomolecules

    Science.gov (United States)

    Poncin-Epaillard, Fabienne; Vrlinic, Tjasa; Debarnot, Dominique; Mozetic, Miran; Coudreuse, Arnaud; Legeay, Gilbert; El Moualij, Benaïssa; Zorzi, Willy

    2012-01-01

    This review describes different strategies of surface elaboration for a better control of biomolecule adsorption. After a brief description of the fundamental interactions between surfaces and biomolecules, various routes of surface elaboration are presented dealing with the attachment of functional groups mostly thanks to plasma techniques, with the grafting to and from methods, and with the adsorption of surfactants. The grafting of stimuli-responsive polymers is also pointed out. Then, the discussion is focused on the protein adsorption phenomena showing how their interactions with solid surfaces are complex. The adsorption mechanism is proved to be dependent on the solid surface physicochemical properties as well as on the surface and conformation properties of the proteins. Different behaviors are also reported for complex multiple protein solutions. PMID:24955631

  14. Mg-Fe-mixed oxides derived from layered double hydroxides: A study of the surface properties

    Directory of Open Access Journals (Sweden)

    Marinković-Nedučin Radmila P.

    2011-01-01

    Full Text Available The influence of surface properties on the selectivity of the synthesized catalysts was studied, considering that their selectivity towards particular hydrocarbons is crucial for their overall activity in the chosen Fischer- -Tropsch reaction. Magnesium- and iron-containing layered double hydroxides (LDH, with the general formula: [Mg1-xFex(OH2](CO3x/2?mH2O, x = = n(Fe/(n(Mg+n(Fe, synthesized with different Mg/Fe ratio and their thermally derived mixed oxides were investigated. Magnesium was chosen because of its basic properties, whereas iron was selected due to its well-known high Fischer-Tropsch activity, redox properties and the ability to form specific active sites in the layered LDH structure required for catalytic application. The thermally less stable multiphase system (synthesized outside the optimal single LDH phase range with additional Fe-phase, having a lower content of surface acid and base active sites, a lower surface area and smaller fraction of smaller mesopores, showed higher selectivity in the Fischer-Tropsch reaction. The results of this study imply that the metastability of derived multiphase oxides structure has a greater influence on the formation of specific catalyst surface sites than other investigated surface properties.

  15. The effect of polyether functional polydimethylsiloxane on surface and thermal properties of waterborne polyurethane

    Science.gov (United States)

    Zheng, Guikai; Lu, Ming; Rui, Xiaoping

    2017-03-01

    Waterborne polyurethanes (WPU) modified with polyether functional polydimethylsiloxane (PDMS) were synthesized by pre-polymerization method using isophorone diisocyanate (IPDI) and 1,4-butanediol (BDO) as hard segments and polybutylene adipate glycol (PBA) and polyether functional PDMS as soft segments. The effect of polyether functional PDMS on phase separation, thermal properties, surface properties including surface composition, morphology and wettability were investigated by FTIR, contact angle measurements, ARXPS, SEM-EDS, AFM, TG and DSC. The results showed that the compatibility between urethane hard segment and PDMS modified with polyether was good, and there was no distinct phase separation in both bulk and surface of WPU films. The degradation temperature and low temperature flexibility increased with increasing amounts of polyether functional PDMS. The enrichment of polyether functional PDMS with low surface energy on the surface imparted excellent hydrophobicity to WPU films.

  16. Adsorption behavior of Fe atoms on a naphthalocyanine monolayer on Ag(111) surface

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Linghao; Wu, Rongting; Bao, Deliang; Ren, Junhai; Zhang, Yanfang; Zhang, Haigang; Huang, Li; Wang, Yeliang; Du, Shixuan; Huan, Qing; Gao, Hong-Jun

    2015-05-29

    Adsorption behavior of Fe atoms on a metal-free naphthalocyanine (H2Nc) monolayer on Ag(111) surface at room temperature has been investigated using scanning tunneling microscopy combined with density functional theory (DFT) based calculations. We found that the Fe atoms adsorbed at the centers of H2Nc molecules and formed Fe-H2Nc complexes at low coverage. DFT calculations show that the configuration of Fe at the center of a molecule is the most stable site, in good agreement with the experimental observations. After an Fe-H2Nc complex monolayer was formed, the extra Fe atoms self-assembled to Fe clusters of uniform size and adsorbed dispersively at the interstitial positions of Fe-H2Nc complex monolayer. Furthermore, the H2Nc monolayer grown on Ag(111) could be a good template to grow dispersed magnetic metal atoms and clusters at room temperature for further investigation of their magnetism-related properties.

  17. Magnetic and electrical transport properties of LaBaCo2O(5.5+δ) thin films on vicinal (001) SrTiO3 surfaces.

    Science.gov (United States)

    Ma, Chunrui; Liu, Ming; Collins, Gregory; Wang, Haibin; Bao, Shanyong; Xu, Xing; Enriquez, Erik; Chen, Chonglin; Lin, Yuan; Whangbo, Myung-Hwan

    2013-01-23

    Highly epitaxial LaBaCo(2)O(5.5+δ) thin films were grown on the vicinal (001) SrTiO(3) substrates with miscut angles of 0.5°, 3.0°, and 5.0° to systemically study strain effect on its physical properties. The electronic transport properties and magnetic behaviors of these films are strongly dependent on the miscut angles. With increasing the miscut angle, the transport property of the film changes from semiconducting to semimetallic, which results most probably from the locally strained domains induced by the surface step terraces. In addition, a very large magnetoresistance (34% at 60 K) was achieved for the 0.5°-miscut film, which is ~30% larger than that for the film grown on the regular (001) SrTiO(3) substrates.

  18. Theory of melt polyelectrolyte blends and block copolymers: Phase behavior, surface tension, and microphase periodicity

    Energy Technology Data Exchange (ETDEWEB)

    Sing, Charles E. [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Zwanikken, Jos W.; Olvera de la Cruz, Monica [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States)

    2015-01-21

    Polymer mixtures such as blends or block copolymers are of great interest in energy applications and functional materials, and often, one or more of these species contain charges. The traditional fashion in which such materials are studied uses Self-Consistent Field Theory (SCFT) methods that incorporate electrostatics using Poisson-Boltzmann (PB) theory. We adapt a new and rigorous approach that does not rely on the mean-field assumptions inherent in the PB theory and instead uses Liquid State (LS) integral equation theory to articulate charge correlations that are completely neglected in PB. We use this theory to calculate phase diagrams for both blends and block copolyelectrolytes using SCFT-LS and demonstrate how their phase behavior is highly dependent on chain length, charge fraction, charge size, and the strength of Coulombic interactions. Beyond providing phase behavior of blends and block copolyelectrolytes, we can use this theory to investigate the interfacial properties such as surface tension and block copolyelectrolyte lamellar spacing. Lamellar spacing provides a way to directly compare the SCFT-LS theory to the results of experiments. SCFT-LS will provide conceptual and mathematical clarification of the role of charge correlations in these systems and aid in the design of materials based on charge polymers.

  19. Theory of melt polyelectrolyte blends and block copolymers: Phase behavior, surface tension, and microphase periodicity

    International Nuclear Information System (INIS)

    Sing, Charles E.; Zwanikken, Jos W.; Olvera de la Cruz, Monica

    2015-01-01

    Polymer mixtures such as blends or block copolymers are of great interest in energy applications and functional materials, and often, one or more of these species contain charges. The traditional fashion in which such materials are studied uses Self-Consistent Field Theory (SCFT) methods that incorporate electrostatics using Poisson-Boltzmann (PB) theory. We adapt a new and rigorous approach that does not rely on the mean-field assumptions inherent in the PB theory and instead uses Liquid State (LS) integral equation theory to articulate charge correlations that are completely neglected in PB. We use this theory to calculate phase diagrams for both blends and block copolyelectrolytes using SCFT-LS and demonstrate how their phase behavior is highly dependent on chain length, charge fraction, charge size, and the strength of Coulombic interactions. Beyond providing phase behavior of blends and block copolyelectrolytes, we can use this theory to investigate the interfacial properties such as surface tension and block copolyelectrolyte lamellar spacing. Lamellar spacing provides a way to directly compare the SCFT-LS theory to the results of experiments. SCFT-LS will provide conceptual and mathematical clarification of the role of charge correlations in these systems and aid in the design of materials based on charge polymers

  20. The angiogenic behaviors of human umbilical vein endothelial cells (HUVEC) in co-culture with osteoblast-like cells (MG-63) on different titanium surfaces.

    Science.gov (United States)

    Shi, Bin; Andrukhov, Oleh; Berner, Simon; Schedle, Andreas; Rausch-Fan, Xiaohui

    2014-08-01

    Interaction between osteogenesis and angiogenesis plays an important role in implant osseointegration. In the present study we investigated the influence of titanium surface properties on the angiogenic behaviors of endothelial cells grown in direct contact co-culture with osteoblasts. Human umbilical vein endothelial cells (HUVECs) and osteoblast-like cells (MG-63 cells) were grown in direct co-culture on the following titanium surfaces: acid-etched (A), hydrophilic A (modA), coarse-gritblasted and acid-etched (SLA) and hydrophilic SLA (SLActive). Cell proliferation was evaluated by cell counting combined with flow cytometry. The expression of von Willebrand Factor (vWF), thrombomodulin (TM), endothelial cell protein C receptor (EPCR), E-Selectin, as well as vascular endothelial growth factor (VEGF) receptors Flt-1 and KDR in HUVECs and VEGF in MG-63 were measured by qPCR. The dynamic behavior of endothelial cells was recorded by time-lapse microscopy. Proliferation of HUVECs was highest on A, followed by SLA, modA and SLActive surfaces. The expression of vWF, TM, EPCR, E-Selectin and Flt-1 in HUVECs was significantly higher on A than on all other surfaces. The expression of KDR in HUVECs grown on A surface was below detection limit. VEGF expression in MG-63 cells was significantly higher on SLActive vs SLA and modA vs A surfaces. Time-lapse microscopy revealed that HUVECs moved quickest and formed cell clusters earlier on A surface, followed by SLA, modA and SLActive surface. In co-culture conditions, proliferation and expression of angiogenesis associated genes in HUVECs are promoted by smooth hydrophobic Ti surface, which is in contrast to previous mono-culture studies. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  1. Surface and conductivity properties of imidazoles solutions

    International Nuclear Information System (INIS)

    Rogalski, Marek; Domanska, Urszula; Czyrny, Dagmara; Dyczko, Dagmara

    2002-01-01

    The surface tension, σ, of the solutions of benzimidazole, 2-phenylimidazole and 2,4,5-triphenylimidazole in water, or water + 10 mol% of acetonitrile, or in other solvents as well as the solubilities and conductivity of benzimidazole and 2-phenylimidazole in water in function of concentration at 298.15 K were measured. The enthalpy of fusion, or solid-solid phase transition and the melting temperatures were determined for the substances under study by the scanning calorimetry (DSC). These solutions exhibit, in a wide range of concentrations, the normal linear, or parabolic decreasing dependencies and the maximum of surface tension at very low concentrations and show the S-shaped dependencies, being in function of the initial sample, never reported before. The results were confirmed by the conductivity measurements. The results were interpreted in terms of the changing structure of the interface. It was concluded that the observed phenomena were caused by an induced nucleation of benzimidazole, 2-phenylimidazole and especially by 2,4,5-triphenylimidazole by columnar discotic structures due to the initial concentration. The surface properties of these solutions reflect the interactions of hydrophobic parts of the guest molecules adsorbed at the interface, as a result of the hydrogen bonded structure of the solution

  2. Theoretical study on the electronic and optical properties of bulk and surface (001) InxGa1-xAs

    Science.gov (United States)

    Liu, XueFei; Ding, Zhao; Luo, ZiJiang; Zhou, Xun; Wei, JieMin; Wang, Yi; Guo, Xiang; Lang, QiZhi

    2018-05-01

    The optical properties of surface and bulk InxGa1-xAs materials are compared systematically first time in this paper. The band structures, density of states and optical properties including dielectric function, reflectivity, absorption coefficient, loss function and refractive index of bulk and surface InxGa1-xAs materials are investigated by first-principles based on plane-wave pseudo-potentials method within the LDA approximation. The results agree well with the available theoretical and experimental studies and indicate that the electronic and optical properties of bulk and surface InxGa1-xAs materials are much different, and the results show that the considered optical properties of the both materials vary with increasing indium composition in an opposite way. The calculations show that the optical properties of surface In0.75Ga0.25As material are unexpected to be far from the other two indium compositions of surface InxGa1-xAs materials while the optical properties of bulk InxGa1-xAs materials vary with increasing indium composition in an expected regular way.

  3. The role of crystal orientation and surface proximity in the self-similar behavior of deformed Cu single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Judy W.L., E-mail: pangj@ornl.gov [Materials Science and Technology Division, Oak Ridge National Laboratory, 1 Behtel Valley Road, Oak Ridge, TN 37831 (United States); Ice, Gene E. [Materials Science and Technology Division, Oak Ridge National Laboratory, 1 Behtel Valley Road, Oak Ridge, TN 37831 (United States); Liu Wenjun [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2010-11-25

    We report on novel 3D spatially resolved X-ray diffraction microscopy studies of self-affine behavior in deformed single crystals. This study extends surface profile measurements of self-affined morphology changes in single crystals during deformation to include local lattice rotations and sub-surface behavior. Investigations were made on the spatial correlation of the local lattice rotations in 8% tensile deformed Cu single crystals oriented with [1 2 3], [1 1 1] and [0 0 1] axes parallel to the tensile axis. The nondestructive depth-resolved measurements were made over a length scale of one to hundreds of micrometers. Self-affined correlation was found both at the surface and below the surface of the samples. A universal exponent for the power-law similar to that observed with surface profile methods is found at the surface of all samples but crystallographically sensitive changes are observed as a function of depth. Correlation lengths of the self-affine behavior vary with the [1 2 3] crystal exhibiting the longest self-affine length scale of 70 {mu}m with only 18 {mu}m for the [1 1 1] and [0 0 1] crystals. These measurements illuminate the transition from surface-like to bulk-like deformation behavior and provide new quantitative information to guide emerging models of self-organized structures in plasticity.

  4. Influence of non-thermal plasma forming gases on improvement of surface properties of low density polyethylene (LDPE)

    Energy Technology Data Exchange (ETDEWEB)

    Pandiyaraj, K. Navaneetha, E-mail: dr.knpr@gmail.com [Surface Engineering Laboratory, Department of Physics, Sri Shakthi Institute of Engineering and Technology, L and T by pass, Chinniyam Palayam (post), Coimbatore 641062 (India); Deshmukh, R.R. [Department of Physics, Institute of Chemical Technology, Matunga, Mumbai 400 019 (India); Ruzybayev, Inci; Shah, S. Ismat [Department of Physics and Astronomy, Department of Materials Science and Engineering, University of Delaware, 208 Dupont Hall, Newark, NJ (United States); Su, Pi-Guey [Department of Chemistry, Chinese Culture University, Taipei 111, Taiwan (China); Halleluyah, Jr. mercy; Halim, Ahmad Sukari [School of Medical Sciences, Health Campus Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia)

    2014-07-01

    Owing to the superior physico-chemical properties, the low density polyethylene (LDPE) has been widely used in the various industrial applications; especially in biomedical field for artificial organs, medical devices and disposable clinical apparatus. However, the poor anticoagulation property is one of the main drawbacks of the LDPE due to its poor surface properties. Therefore, in this paper we present the effect of plasma forming gases such as argon (Ar), oxygen (O{sub 2}), air and argon-oxygen (Ar + O{sub 2}) mixture on improvement of the surfaces properties of LDPE film using direct current (dc) excited glow discharge plasma. Contact angle with evaluation of surface energy, X-ray photo electron spectroscopy (XPS), atomic force microscopy (AFM) techniques were used to examine the change in surface properties such as hydrophilicity, chemical composition and surface topography, respectively. Furthermore, the hydrophobic recovery of the plasma treated LDPE was analyzed using ageing effect under different storage condition i.e. in air and water. The adhesive strength of the LDPE films was determined using T-peel test. In vitro tests were used to examine the blood compatibility of the surface modified LDPE films. It has been found that the hydrophilicity of the various plasma treated LDPE films was improved significantly due to the formation of oxygen containing polar groups such as OH, COO, C-O, C=O as confirmed by contact angle and XPS analysis. AFM revealed the changes in surface topography of plasma processed films. The gas mixture Ar + O{sub 2} plasma influenced the remarkable improvement on the surface properties of a LDPE film compared with other gaseous plasmas. These physiochemical changes induced by the plasma on the surface facilitate to improve the adhesive strength and blood compatibility.

  5. Influence of non-thermal plasma forming gases on improvement of surface properties of low density polyethylene (LDPE)

    International Nuclear Information System (INIS)

    Pandiyaraj, K. Navaneetha; Deshmukh, R.R.; Ruzybayev, Inci; Shah, S. Ismat; Su, Pi-Guey; Halleluyah, Jr. mercy; Halim, Ahmad Sukari

    2014-01-01

    Owing to the superior physico-chemical properties, the low density polyethylene (LDPE) has been widely used in the various industrial applications; especially in biomedical field for artificial organs, medical devices and disposable clinical apparatus. However, the poor anticoagulation property is one of the main drawbacks of the LDPE due to its poor surface properties. Therefore, in this paper we present the effect of plasma forming gases such as argon (Ar), oxygen (O 2 ), air and argon-oxygen (Ar + O 2 ) mixture on improvement of the surfaces properties of LDPE film using direct current (dc) excited glow discharge plasma. Contact angle with evaluation of surface energy, X-ray photo electron spectroscopy (XPS), atomic force microscopy (AFM) techniques were used to examine the change in surface properties such as hydrophilicity, chemical composition and surface topography, respectively. Furthermore, the hydrophobic recovery of the plasma treated LDPE was analyzed using ageing effect under different storage condition i.e. in air and water. The adhesive strength of the LDPE films was determined using T-peel test. In vitro tests were used to examine the blood compatibility of the surface modified LDPE films. It has been found that the hydrophilicity of the various plasma treated LDPE films was improved significantly due to the formation of oxygen containing polar groups such as OH, COO, C-O, C=O as confirmed by contact angle and XPS analysis. AFM revealed the changes in surface topography of plasma processed films. The gas mixture Ar + O 2 plasma influenced the remarkable improvement on the surface properties of a LDPE film compared with other gaseous plasmas. These physiochemical changes induced by the plasma on the surface facilitate to improve the adhesive strength and blood compatibility.

  6. Chemical Gel for Surface Decontamination

    International Nuclear Information System (INIS)

    Jung, Chong Hun; Moon, J. K.; Won, H. J.; Lee, K. W.; Kim, C. K.

    2010-01-01

    Many chemical decontamination processes operate by immersing components in aggressive chemical solutions. In these applications chemical decontamination technique produce large amounts of radioactive liquid waste. Therefore it is necessary to develop processes using chemical gels instead of chemical solutions, to avoid the well-known disadvantages of chemical decontamination techniques while retaining their high efficiency. Chemical gels decontamination process consists of applying the gel by spraying it onto the surface of large area components (floors, walls, etc) to be decontaminated. The gel adheres to any vertical or complex surface due to their thixotropic properties and operates by dissolving the radioactive deposit, along with a thin layer of the gel support, so that the radioactivity trapped at the surface can be removed. Important aspects of the gels are that small quantities can be used and they show thixitropic properties : liquid during spraying, and solid when stationary, allowing for strong adherence to surfaces. This work investigates the decontamination behaviors of organic-based chemical gel for SS 304 metallic surfaces contaminated with radioactive materials

  7. Evolution of Collective Behaviors for a Real Swarm of Aquatic Surface Robots.

    Science.gov (United States)

    Duarte, Miguel; Costa, Vasco; Gomes, Jorge; Rodrigues, Tiago; Silva, Fernando; Oliveira, Sancho Moura; Christensen, Anders Lyhne

    2016-01-01

    Swarm robotics is a promising approach for the coordination of large numbers of robots. While previous studies have shown that evolutionary robotics techniques can be applied to obtain robust and efficient self-organized behaviors for robot swarms, most studies have been conducted in simulation, and the few that have been conducted on real robots have been confined to laboratory environments. In this paper, we demonstrate for the first time a swarm robotics system with evolved control successfully operating in a real and uncontrolled environment. We evolve neural network-based controllers in simulation for canonical swarm robotics tasks, namely homing, dispersion, clustering, and monitoring. We then assess the performance of the controllers on a real swarm of up to ten aquatic surface robots. Our results show that the evolved controllers transfer successfully to real robots and achieve a performance similar to the performance obtained in simulation. We validate that the evolved controllers display key properties of swarm intelligence-based control, namely scalability, flexibility, and robustness on the real swarm. We conclude with a proof-of-concept experiment in which the swarm performs a complete environmental monitoring task by combining multiple evolved controllers.

  8. Sliding behavior of oil droplets on nanosphere stacking layers with different surface textures

    International Nuclear Information System (INIS)

    Hsieh, Chien-Te; Wu, Fang-Lin; Chen, Wei-Yu

    2010-01-01

    Two facile coating techniques, gravitational sediment and spin coating, were applied for the creation of silica sphere stacking layers with different textures onto glass substrates that display various sliding abilities toward liquid drops with different surface tensions, ranged from 25.6 to 72.3 mN/m. The resulting silica surface exhibits oil repellency, long-period durability > 30 days, and oil sliding capability. The two-tier texture offers a better roll-off ability toward liquid drops with a wide range of γ L , ranged from 30.2 to 72.3 mN/m, i.e., when the sliding angle (SA) ad ) appears to describe the sliding behavior within the W ad region: 2.20-3.03 mN/m. The smaller W ad , the easier drop sliding (i.e., the smaller SA value) takes place on the surfaces. The W ad value ∼3.03 mN/m shows a critical kinetic barrier for drop sliding on the silica surfaces from stationary to movement states. This work proposes a mathematical model to simulate the sliding behavior of oil drops on a nanosphere stacking layer, confirming the anti-oil contamination capability.

  9. Fabrication of biomimetic superhydrophobic surface using hierarchical polyaniline spheres.

    Science.gov (United States)

    Dong, Xiaofei; Wang, Jixiao; Zhao, Yanchai; Wang, Zhi; Wang, Shichang

    2011-06-01

    Wettability and water-adhesion behavior are the most important properties of solid surfaces from both fundamental and practical aspects. Here, the biomimetic superhydrophobic surface was fabricated via a simple coating process using polyaniline (PANI) microspheres which is covered with PANI nanowires as functional component, and poly-vinyl butyral (PVB, poly-vinyl alcohol crosslinked with n-butylaldehyde) as PANI microsphere adhering improvement agent to the substrate. The obtained surface displays superhydrophobic behavior without any modification with low-surface-energy materials such as thiol- or fluoroalkylsilane. The effects of coating process and the content of PANI microspheres on superhydropbobic behavior were discussed. Combine contact angle, water-adhesion measurements, scanning electronic microscopy (SEM) observations with selected areas energy dispersion spectrometer (EDS), the hydrophobic mechanism was proposed. The superhydrophobicity is attributed to a hierarchical morphology of PANI microspheres and the nature of the material itself. In addition, induced by van der Waals forces, the created superhydrophobic surface here shows the strong water-adhesion behavior. The surface has the combination performance of Lotus leaf and gecko's pad. The special wettability would be of great significance to the liquid microtransport in microfluid devices. The experimental results show that the ordinary coating process is a facile approach for fabrication of superhydrophobic surfaces.

  10. Surface and Adsorption Properties of Activated Carbon Fabric Prepared from Cellulosic Polymer: Mixed Activation Method

    Energy Technology Data Exchange (ETDEWEB)

    Bhati, Surendra; Mahur, J. S.; Choubey, O. N. [Barkatullah Univ., Bhopal (India); Dixit, Mahur Savita [Maulana Azad National Institute of Technology, Bhopla (India)

    2013-02-15

    In this study, activated carbon fabric was prepared from a cellulose-based polymer (viscose rayon) via a combination of physical and chemical activation (mixed activation) processes by means of CO{sub 2} as a gasifying agent and surface and adsorption properties were evaluated. Experiments were performed to investigate the consequence of activation temperature (750, 800, 850 and 925 .deg. C), activation time (15, 30, 45 and 60 minutes) and CO{sub 2} flow rate (100, 200, 300 and 400 mL/min) on the surface and adsorption properties of ACF. The nitrogen adsorption isotherm at 77 K was measured and used for the determination of surface area, total pore volume, micropore volume, mesopore volume and pore size distribution using BET, t-plot, DR, BJH and DFT methods, respectively. It was observed that BET surface area and TPV increase with rising activation temperature and time due to the formation of new pores and the alteration of micropores into mesopores. It was also found that activation temperature dominantly affects the surface properties of ACF. The adsorption of iodine and CCl{sub 4} onto ACF was investigated and both were found to correlate with surface area.

  11. Surface and Adsorption Properties of Activated Carbon Fabric Prepared from Cellulosic Polymer: Mixed Activation Method

    International Nuclear Information System (INIS)

    Bhati, Surendra; Mahur, J. S.; Choubey, O. N.; Dixit, Mahur Savita

    2013-01-01

    In this study, activated carbon fabric was prepared from a cellulose-based polymer (viscose rayon) via a combination of physical and chemical activation (mixed activation) processes by means of CO 2 as a gasifying agent and surface and adsorption properties were evaluated. Experiments were performed to investigate the consequence of activation temperature (750, 800, 850 and 925 .deg. C), activation time (15, 30, 45 and 60 minutes) and CO 2 flow rate (100, 200, 300 and 400 mL/min) on the surface and adsorption properties of ACF. The nitrogen adsorption isotherm at 77 K was measured and used for the determination of surface area, total pore volume, micropore volume, mesopore volume and pore size distribution using BET, t-plot, DR, BJH and DFT methods, respectively. It was observed that BET surface area and TPV increase with rising activation temperature and time due to the formation of new pores and the alteration of micropores into mesopores. It was also found that activation temperature dominantly affects the surface properties of ACF. The adsorption of iodine and CCl 4 onto ACF was investigated and both were found to correlate with surface area

  12. Preparation of Artificial Skin that Mimics Human Skin Surface and Mechanical Properties.

    Science.gov (United States)

    Shimizu, Rana; Nonomura, Yoshimune

    2018-01-01

    We have developed an artificial skin that mimics the morphological and mechanical properties of human skin. The artificial skin comprises a polyurethane block possessing a microscopically rough surface. We evaluated the tactile sensations when skin-care cream was applied to the artificial skin. Many subjects perceived smooth, moist, and soft feels during the application process. Cluster analysis showed that these characteristic tactile feels are similar to those when skin-care cream is applied to real human skin. Contact angle analysis showed that an oil droplet spread smoothly on the artificial skin surface, which occurred because there were many grooves several hundred micrometers in width on the skin surface. In addition, when the skin-care cream was applied, the change in frictional force during the dynamic friction process increased. These wetting and frictional properties are important factors controlling the similarity of artificial skin to real human skin.

  13. Bulk and surface properties of liquid Al-Cr and Cr-Ni alloys

    International Nuclear Information System (INIS)

    Novakovic, R

    2011-01-01

    The energetics of mixing and structural arrangement in liquid Al-Cr and Cr-Ni alloys has been analysed through the study of surface properties (surface tension and surface segregation), dynamic properties (chemical diffusion) and microscopic functions (concentration fluctuations in the long-wavelength limit and chemical short-range order parameter) in the framework of statistical mechanical theory in conjunction with quasi-lattice theory. The Al-Cr phase diagram exhibits the existence of different intermetallic compounds in the solid state, while that of Cr-Ni is a simple eutectic-type phase diagram at high temperatures and includes the low-temperature peritectoid reaction in the range near a CrNi 2 composition. Accordingly, the mixing behaviour in Al-Cr and Cr-Ni alloy melts was studied using the complex formation model in the weak interaction approximation and by postulating Al 8 Cr 5 and CrNi 2 chemical complexes, respectively, as energetically favoured.

  14. Bulk and surface properties of liquid Al-Cr and Cr-Ni alloys.

    Science.gov (United States)

    Novakovic, R

    2011-06-15

    The energetics of mixing and structural arrangement in liquid Al-Cr and Cr-Ni alloys has been analysed through the study of surface properties (surface tension and surface segregation), dynamic properties (chemical diffusion) and microscopic functions (concentration fluctuations in the long-wavelength limit and chemical short-range order parameter) in the framework of statistical mechanical theory in conjunction with quasi-lattice theory. The Al-Cr phase diagram exhibits the existence of different intermetallic compounds in the solid state, while that of Cr-Ni is a simple eutectic-type phase diagram at high temperatures and includes the low-temperature peritectoid reaction in the range near a CrNi(2) composition. Accordingly, the mixing behaviour in Al-Cr and Cr-Ni alloy melts was studied using the complex formation model in the weak interaction approximation and by postulating Al(8)Cr(5) and CrNi(2) chemical complexes, respectively, as energetically favoured.

  15. Surface Properties of PAN-based Carbon Fibers Modified by Electrochemical Oxidization in Organic Electrolyte Systems

    Directory of Open Access Journals (Sweden)

    WU Bo

    2016-09-01

    Full Text Available PAN-based carbon fibers were modified by electrochemical oxidization using fatty alcohol polyoxyethylene ether phosphate (O3P, triethanolamine (TEOA and fatty alcohol polyoxyethylene ether ammonium phosphate (O3PNH4 as organic electrolyte respectively. Titration analysis, single fiber fracture strength measurement and field emission scanning electron microscopy (FE-SEM were used to evaluate the content of acidic functional group on the surface, mechanical properties and surface morphology of carbon fiber. The optimum process of electrochemical treatment obtained is at 50℃ for 2min and O3PNH4 (5%, mass fraction as the electrolyte with current density of 2A/g. In addition, the surface properties of modified carbon fibers were characterized by X-ray photoelectron spectroscopy (XPS and single fiber contact angle test. The results show that the hydrophilic acidic functional groups on the surface of carbon fiber which can enhance the surface energy are increased by the electrochemical oxidation using O3PNH4 as electrolyte, almost without any weakening to the mechanical properties of carbon fiber.

  16. On the behavior of crack surface ligaments

    International Nuclear Information System (INIS)

    Nilsson, P.; Staahle, P.; Sundin, K.G.

    1998-01-01

    Small ligaments connecting the fracture surfaces just behind a moving crack front are assumed to exist under certain conditions. The ligaments are rapidly torn as the crack advances. Inelastic straining of such ligaments influences the energy balance in the fracture process. The rapid tearing of a single ligament is studied both numerically and experimentally. An elastic visco-plastic material model is adopted for finite-element calculations. The results show that relatively large amounts of energy are dissipated during the tearing process. Further, the energy needed to tear a ligament increases rapidly with increasing tearing rate. The computed behavior is partly verified in a few preliminary experiments. The implications for slow stable crack tip speeds during dynamic fracture are discussed. (orig.)

  17. Temperature dependence of the bulk and surface properties of liquid Zn-Cd alloys

    Energy Technology Data Exchange (ETDEWEB)

    Awe, O.E. [University of Ibadan, Department of Physics, Ibadan (Nigeria); Azeez, A.A. [African University of Science and Technology, Abuja (Nigeria)

    2017-05-15

    The effects of temperature on the bulk and surface properties of liquid Zn-Cd alloys have been theoretically investigated, using a combination of self association model, Darken's thermodynamic equation for diffusion, empirical model for viscosity and a statistical mechanics model. The results from this study show that change in temperature resulted in cross-over effects in bulk and surface properties. We also found that with an increase in temperature, a pronounced asymmetry of viscosity isotherm is significantly reduced, and viscosity isotherm exhibited anomalous behaviour. Our results reveal that the homocoordination tendency in Zn-Cd liquid alloys is not strong and reduces with increasing temperature. The study further suggests a pronounced segregation of Cd-atoms at the surface of Zn-Cd liquid alloys and the extent of segregation reduces with temperature. We as well found that, in addition to the reported understanding that size-factor determines the compositional location of asymmetry of the viscosity isotherm, temperature is an operating parameter that has effect, not only on the composition of asymmetry, but also on the magnitude of asymmetry. In all the properties investigated, the most pronounced effect of temperature (52.9 %) is on the viscosity while the least effect (7.1 %) is on the surface tension. (orig.)

  18. Basic properties of fuel determining its behavior under irradiation

    International Nuclear Information System (INIS)

    Konovalov, I.I.

    2000-01-01

    The theoretical model describing a swelling of nuclear fuel at low irradiation temperatures is considered. The critical physical parameters of substances determining behavior of point defects, gas fission atoms, dislocation density, nucleation and growth of gas-contained pores are determined. The correlation between meanings of critical parameters and physical properties of substance is offered. The accounts of swelling of various dense fuels with reference to work in conditions of research reactors are given. (author)

  19. A fundamental approach to adhesion: Synthesis, surface analysis, thermodynamics and mechanics. [acid-base properties of titanium 6-4 surfaces

    Science.gov (United States)

    Siriwardane, R.; Wightman, J. P.

    1980-01-01

    The acid-base properties of titanium 6-4 plates (low surface area) were investigated after three different pretreatments, namely Turco, phosphate-fluoride and Pasa-Jell. A series of indicators was used and color changes were detected using diffuse reflectance visible spectroscopy. Electron spectroscopy for chemical analysis was used to examine the indicator on the Ti 6-4 surface. Specular reflectance infra-red spectroscopy was used to study the adsorption of stearic acid from cyclohexane solutions on the Ti 6-4 surface.

  20. Synthesis and properties of a novel UV-cured fluorinated siloxane graft copolymer for improved surface, dielectric and tribological properties of epoxy acrylate coating

    International Nuclear Information System (INIS)

    Yan, Zhenlong; Liu, Weiqu; Gao, Nan; Wang, Honglei; Su, Kui

    2013-01-01

    A novel functional fluorinated siloxane graft copolymer bearing with vinyl end-groups was synthesized from dihydroxypropyl-terminated poly(dimethylsiloxane) (PDMS), dicarboxyl terminated poly(2,2,3,4,4,4-hexafluorobutyl acrylate) oligomer (CTHFA), 2,4-toluene diissocyanate (TDI) and 2-hydroxyethyl methacrylate (HEMA). The chemical structure was characterized by FT-IR and GPC. The effect of concentration of the vinyl-capped fluorosilicone graft copolymer (Vi-PFSi) on the surface, thermal properties, dielectric and tribological properties of UV-cured films was investigated. Contact angles and surface energies showed that the high hydrophobic and oleophobic surfaces were obtained by incorporation of Vi-PFSi at very low amount (0.5 wt%). X-ray photoelectron spectroscopy (XPS) evidenced that the fluorinated and siloxane moiety selectively migrated to the outermost surface of UV-cured film, thus reduced its surface energy from 45.42 to 15.40 mN/m 2 without affecting its bulk properties. The morphology of fracture surface of modified film exhibited rough fracture surface only at the outermost surface, revealing fluorinated and siloxane groups migrated toward air-side surface. The dielectric constants decreased from 5.32 (1 MHz) for bisphenol-A epoxy methacrylate (EMA) to 2.82 (1 MHz) for modified film when the Vi-PFSi copolymer concentration increased from 0 to 0.8 wt%. Tribological results from abrasion tester suggested that the Vi-PFSi could obviously reduce the abrasion weight loss of modified films.

  1. Antibacterial Au nanostructured surfaces

    Science.gov (United States)

    Wu, Songmei; Zuber, Flavia; Brugger, Juergen; Maniura-Weber, Katharina; Ren, Qun

    2016-01-01

    We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It was found that all the Au nanostructures, regardless their shapes, exhibited similar excellent antibacterial properties. A comparison of live cells attached to nanotopographic surfaces showed that the number of live S. aureus cells was flat and rough reference surfaces. Our micro/nanofabrication process is a scalable approach based on cost-efficient self-organization and provides potential for further developing functional surfaces to study the behavior of microbes on nanoscale topographies.We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It was found that all

  2. the study of thermal effect on the surface properties of gamma ...

    African Journals Online (AJOL)

    eobe

    excellent properties such as highly uniform channels, large surface area and narrow pore size distribution. It has been widely used as adsorbents, ... important material that can be prepared from bauxite or kaolin in several different phases.

  3. Electronic structure of disordered alloys, surfaces and interfaces

    CERN Document Server

    Turek, Ilja; Kudrnovský, Josef; Šob, Mojmír; Weinberger, Peter

    1997-01-01

    At present, there is an increasing interest in the prediction of properties of classical and new materials such as substitutional alloys, their surfaces, and metallic or semiconductor multilayers. A detailed understanding based on a thus of the utmost importance for fu­ microscopic, parameter-free approach is ture developments in solid state physics and materials science. The interrela­ tion between electronic and structural properties at surfaces plays a key role for a microscopic understanding of phenomena as diverse as catalysis, corrosion, chemisorption and crystal growth. Remarkable progress has been made in the past 10-15 years in the understand­ ing of behavior of ideal crystals and their surfaces by relating their properties to the underlying electronic structure as determined from the first principles. Similar studies of complex systems like imperfect surfaces, interfaces, and mul­ tilayered structures seem to be accessible by now. Conventional band-structure methods, however, are of limited use ...

  4. Surface chemistry manipulation of gold nanorods preserves optical properties for bio-imaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Polito, Anthony B.; Maurer-Gardner, Elizabeth I.; Hussain, Saber M., E-mail: saber.hussain@us.af.mil [Air Force Research Laboratory, Molecular Bioeffects Branch, Bioeffects Division, Human Effectiveness Directorate (United States)

    2015-12-15

    Due to their anisotropic shape, gold nanorods (GNRs) possess a number of advantages for biosystem use including, enhanced surface area and tunable optical properties within the near-infrared (NIR) region. However, cetyl trimethylammonium bromide-related cytotoxicity, overall poor cellular uptake following surface chemistry modifications, and loss of NIR optical properties due to material intracellular aggregation in combination remain as obstacles for nanobased biomedical GNR applications. In this article, we report that tannic acid-coated 11-mercaptoundecyl trimethylammonium bromide (MTAB) GNRs (MTAB-TA) show no significant decrease in either in vitro cell viability or stress activation after exposures to A549 human alveolar epithelial cells. In addition, MTAB-TA GNRs demonstrate a substantial level of cellular uptake while displaying a unique intracellular clustering pattern. This clustering pattern significantly reduces intracellular aggregation, preserving the GNRs NIR optical properties, vital for biomedical imaging applications. These results demonstrate how surface chemistry modifications enhance biocompatibility, allow for higher rate of internalization with low intracellular aggregation of MTAB-TA GNRs, and identify them as prime candidates for use in nanobased bio-imaging applications.Graphical Abstract.

  5. Effect of surface texturing on friction properties of WC/Co cemented carbide

    International Nuclear Information System (INIS)

    Wu, Ze; Deng, Jianxin; Xing, Youqiang; Cheng, Hongwei; Zhao, Jun

    2012-01-01

    Highlights: ► Tribological properties of surface textured WC/Co cemented carbide were studied. ► Textured surfaces have better performance of antifriction and antiwear. ► Area density of textures has significant effect on tribological performance. -- Abstract: An experimental study was carried out to investigate the tribological properties of different surface textured WC/Co cemented carbide. The influence of applied load, sliding speed and area density of textures on frictional performance of surface textured patterns was investigated by Taguchi method. Results show that the textured surfaces filled with molybdenum disulfide solid lubricants can reduce the average friction coefficient, wear rates of Ti–6Al–4V alloy balls and adhesion of Ti–6Al–4V alloy materials on the worn track of cemented carbide compared with un-textured ones. Variance analysis of the experimental data indicates that the area density of textures plays major contribution of both average friction coefficient and wear rate of Ti–6Al–4V alloy balls. Higher area density of textures is beneficial to improve tribological performance of the cemented carbide samples. Sliding speed seems to have no effect on the tribological performance of textured surfaces within the reliability interval of 90%. Applied load has effect on both average friction coefficient and wear rate of Ti–6Al–4V alloy balls at the reliability interval of 95%.

  6. Heterogeneous structure and its effect on properties and electrochemical behavior of ion-exchange membrane

    Science.gov (United States)

    Ariono, D.; Khoiruddin; Subagjo; Wenten, I. G.

    2017-02-01

    Generally, commercially available ion-exchange membrane (IEM) can be classified into homogeneous and heterogeneous membranes. The classification is based on degree of heterogeneity in membrane structure. It is well known that the heterogeneity greatly affects the properties of IEM, such as conductivity, permselectivity, chemical and mechanical stability. The heterogeneity also influences ionic and electrical current transfer behavior of IEM-based processes during their operation. Therefore, understanding the role of heterogeneity in IEM properties is important to provide preliminary information on their operability and applicability. In this paper, the heterogeneity and its effect on IEM properties are reviewed. Some models for describing the heterogeneity of IEM and methods for characterizing the degree of heterogeneity are discussed. In addition, the influence of heterogeneity on the performance of IEM-based processes and their electrochemical behavior are described.

  7. Modification of polyvinyl alcohol surface properties by ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Pukhova, I.V., E-mail: ivpuhova@mail.ru [National Research Tomsk State University, 36 Lenin Ave, Tomsk 634050 (Russian Federation); Institute of High Current Electronics, 2/3 Akademichesky Ave, Tomsk 634055 (Russian Federation); Kurzina, I.A. [National Research Tomsk State University, 36 Lenin Ave, Tomsk 634050 (Russian Federation); Savkin, K.P. [Institute of High Current Electronics, 2/3 Akademichesky Ave, Tomsk 634055 (Russian Federation); Laput, O.A. [National Research Tomsk Polytechnic University, 30 Lenin Ave, Tomsk 634050 (Russian Federation); Oks, E.M. [Institute of High Current Electronics, 2/3 Akademichesky Ave, Tomsk 634055 (Russian Federation)

    2017-05-15

    We describe our investigations of the surface physicochemical properties of polyvinyl alcohol modified by silver, argon and carbon ion implantation to doses of 1 × 10{sup 14}, 1 × 10{sup 15} and 1 × 10{sup 16} ion/cm{sup 2} and energies of 20 keV (for C and Ar) and 40 keV (for Ag). Infrared spectroscopy (IRS) indicates that destructive processes accompanied by chemical bond (−C=O) generation are induced by implantation, and X-ray photoelectron spectroscopy (XPS) analysis indicates that the implanted silver is in a metallic Ag3d state without stable chemical bond formation with polymer chains. Ion implantation is found to affect the surface energy: the polar component increases while the dispersion part decreases with increasing implantation dose. Surface roughness is greater after ion implantation and the hydrophobicity increases with increasing dose, for all ion species. We find that ion implantation of Ag, Ar and C leads to a reduction in the polymer microhardness by a factor of five, while the surface electrical resistivity declines modestly.

  8. Effect of ion irradiation on the surface, structural and mechanical properties of brass

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Shahbaz; Bashir, Shazia, E-mail: shaziabashir@gcu.edu.pk; Ali, Nisar; Umm-i-Kalsoom,; Yousaf, Daniel; Faizan-ul-Haq,; Naeem, Athar; Ahmad, Riaz; Khlaeeq-ur-Rahman, M.

    2014-04-01

    Highlights: • Brass targets were exposed to carbon ions of energy 2 MeV. • The effect of ion dose has been investigated. • The surface morphology is investigated by SEM analysis. • XRD analysis is performed to reveal structural modification. • Mechanical properties were investigated by tensile testing and microhardness testing. - Abstract: Modifications to the surface, structural and mechanical properties of brass after ion irradiation have been investigated. Brass targets were bombarded by carbon ions of 2 MeV energy from a Pelletron linear accelerator for various fluences ranging from 56 × 10{sup 12} to 26 × 10{sup 13} ions/cm{sup 2}. A scanning electron microscope and X-ray diffractometer were utilized to analyze the surface morphology and crystallographic structure respectively. To explore the mechanical properties e.g., yield stress, ultimate tensile strength and microhardness of irradiated brass, an universal tensile testing machine and Vickers microhardness tester were used. Scanning electron microscopy results revealed an irregular and randomly distributed sputter morphology for a lower ion fluence. With increasing ion fluence, the incoherently shaped structures were transformed into dendritic structures. Nano/micro sized craters and voids, along with the appearance of pits, were observed at the maximum ion fluence. From X-ray diffraction results, no new phases were observed to be formed in the brass upon irradiation. However, a change in the peak intensity and higher and lower angle shifting were observed, which represents the generation of ion-induced defects and stresses. Analyses confirmed modifications in the mechanical properties of irradiated brass. The yield stress, ultimate tensile strength and hardness initially decreased and then increased with increasing ion fluence. The changes in the mechanical properties of irradiated brass are well correlated with surface and crystallographic modifications and are attributed to the generation

  9. Influence of viscoelastic property on laser-generated surface acoustic waves in coating-substrate systems

    International Nuclear Information System (INIS)

    Sun Hongxiang; Zhang Shuyi; Xu Baiqiang

    2011-01-01

    Taking account of the viscoelasticity of materials, the pulsed laser generation of surface acoustic waves in coating-substrate systems has been investigated quantitatively by using the finite element method. The displacement spectra of the surface acoustic waves have been calculated in frequency domain for different coating-substrate systems, in which the viscoelastic properties of the coatings and substrates are considered separately. Meanwhile, the temporal displacement waveforms have been obtained by applying inverse fast Fourier transforms. The numerical results of the normal surface displacements are presented for different configurations: a single plate, a slow coating on a fast substrate, and a fast coating on a slow substrate. The influences of the viscoelastic properties of the coating and the substrate on the attenuation of the surface acoustic waves have been studied. In addition, the influence of the coating thickness on the attenuation of the surface acoustic waves has been also investigated in detail.

  10. Laser irradiation effects on the surface, structural and mechanical properties of Al-Cu alloy 2024

    Science.gov (United States)

    Yousaf, Daniel; Bashir, Shazia; Akram, Mahreen; kalsoom, Umm-i.-; Ali, Nisar

    2014-02-01

    Laser irradiation effects on surface, structural and mechanical properties of Al-Cu-Mg alloy (Al-Cu alloy 2024) have been investigated. The specimens were irradiated for various fluences ranging from 3.8 to 5.5 J/cm2 using an Excimer (KrF) laser (248 nm, 18 ns, 30 Hz) under vacuum environment. The surface and structural modifications of the irradiated targets have been investigated by scanning electron microscope (SEM) and X-ray diffractometer (XRD), respectively. SEM analysis reveals the formation of micro-sized craters along the growth of periodic surface structures (ripples) at their peripheries. The size of the craters initially increases and then decreases by increasing the laser fluence. XRD analysis shows an anomalous trend in the peak intensity and crystallite size of the specimen irradiated for various fluences. A universal tensile testing machine and Vickers microhardness tester were employed in order to investigate the mechanical properties of the irradiated targets. The changes in yield strength, ultimate tensile strength and microhardness were found to be anomalous with increasing laser fluences. The changes in the surface and structural properties of Al-Cu alloy 2024 after laser irradiation have been associated with the changes in mechanical properties.

  11. Yttrium ion implantation on the surface properties of magnesium

    International Nuclear Information System (INIS)

    Wang, X.M.; Zeng, X.Q.; Wu, G.S.; Yao, S.S.

    2006-01-01

    Owing to their excellent physical and mechanical properties, magnesium and its alloys are receiving more attention. However, their application has been limited to the high reactivity and the poor corrosion resistance. The aim of the study was to investigate the beneficial effects of ion-implanted yttrium using a MEVVA ion implanter on the surface properties of pure magnesium. Isothermal oxidation tests in pure O 2 at 673 and 773 K up to 90 min indicated that the oxidation resistance of magnesium had been significantly improved. Surface morphology of the oxide scale was analyzed using scanning electron microscope (SEM). Auger electron spectroscopy (AES) and X-ray diffraction (XRD) analyses indicated that the implanted layer was mainly composed of MgO and Y 2 O 3 , and the implanted layer with a duplex structure could decrease the inward diffusion of oxygen and reduce the outward diffusion of Mg 2+ , which led to improving the oxidation resistance of magnesium. Potentiodynamic polarization curves were used to evaluate the corrosion resistance of the implanted magnesium. The results show yttrium implantation could enhance the corrosion resistance of implanted magnesium compared with that of pure magnesium

  12. Surface ferromagnetism and superconducting properties of nanocrystalline niobium nitride

    International Nuclear Information System (INIS)

    Shipra, R.; Kumar, Nitesh; Sundaresan, A.

    2013-01-01

    Nanocrystalline δ-NbN x samples have been synthesized by reacting NbCl 5 and urea at three different temperatures. A comparison of their structural, magnetic, transport and thermal properties is reported in the present study. The size of the particles and their agglomeration extent increase with increasing reaction temperature. The sample prepared at 900 °C showed the highest superconducting transition temperature (T c ) of 16.2 K with a transition width, ∼1.8 K, as obtained from the resistivity measurement on cold-pressed bars. Above T c , magnetization measurements revealed the presence of surface ferromagnetism which coexists with superconductivity below T c . Heat capacity measurements confirm superconductivity with strong electron–phonon coupling constant. The sample prepared at 800 °C shows a lower T c (10 K) while that prepared at 700 °C exhibit no superconductivity down to the lowest temperature (3 K) measured. - Highlights: ► Synthesis of δ-NbN nanoparticles by urea nitridation of NbCl 5 . ► Superconducting transition temperature (T c ) is 16.2 K. ► Superconductivity and surface ferromagnetism coexist in the nanoparticles. ► Effect of size and agglomeration on the physical properties of nanoparticles

  13. Thermal behavior and mechanical properties of physically crosslinked PVA/Gelatin hydrogels.

    Science.gov (United States)

    Liu, Yurong; Geever, Luke M; Kennedy, James E; Higginbotham, Clement L; Cahill, Paul A; McGuinness, Garrett B

    2010-02-01

    Poly (vinyl alcohol)/Gelatin hydrogels are under active investigation as potential vascular cell culture biomaterials, tissue models and vascular implants. The PVA/Gelatin hydrogels are physically crosslinked by the freeze-thaw technique, which is followed by a coagulation bath treatment. In this study, the thermal behavior of the gels was examined by differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA). Rheological measurement and uniaxial tensile tests revealed key mechanical properties. The role of polymer fraction in relation to these mechanical properties is explored. Gelatin has no significant effect on the thermal behavior of PVA, which indicates that no substantial change occurs in the PVA crystallite due to the presence of gelatin. The glass transition temperature, melting temperature, degree of crystallinity, polymer fraction, storage modulus (G') and ultimate strength of one freeze-thaw cycle (1FT) hydrogels are inferior to those of 3FT hydrogels. With coagulation, both 1FT and 3FT hydrogels shifted to a lower value of T(g), melting temperature and polymer fraction are further increased and the degree of crystallinity is depressed. The mechanical properties of 1FT, but not 3FT, were strengthened with coagulation treatment. This study gives a detailed investigation of the microstructure formation of PVA/Gelatin hydrogel in each stage of physical treatments which helps us to explain the role of physical treatments in tuning their physical properties for biomechanical applications. Copyright 2009 Elsevier Ltd. All rights reserved.

  14. Nonlinear mean field theory for nuclear matter and surface properties

    International Nuclear Information System (INIS)

    Boguta, J.; Moszkowski, S.A.

    1983-01-01

    Nuclear matter properties are studied in a nonlinear relativistic mean field theory. We determine the parameters of the model from bulk properties of symmetric nuclear matter and a reasonable value of the effective mass. In this work, we stress the nonrelativistic limit of the theory which is essentially equivalent to a Skyrme hamiltonian, and we show that most of the results can be obtained, to a good approximation, analytically. The strength of the required parameters is determined from the binding energy and density of nuclear matter and the effective nucleon mass. For realistic values of the parameters, the nonrelativistic approximation turns out to be quite satisfactory. Using reasonable values of the parameters, we can account for other key properties of nuclei, such as the spin-orbit coupling, surface energy, and diffuseness of the nuclear surface. Also the energy dependence of the nucleon-nucleus optical model is accounted for reasonably well except near the Fermi surface. It is found, in agreement with empirical results, that the Landau parameter F 0 is quite small in normal nuclear matter. Both density dependence and momentum dependence of the NN interaction, but especially the former, are important for nuclear saturation. The required scalar and vector coupling constants agree fairly well with those obtained from analyses of NN scattering phase shifts with one-boson-exchange models. The mean field theory provides a semiquantitative justification for the weak Skyrme interaction in odd states. The strength of the required nonlinear term is roughly consistent with that derived using a new version of the chiral mean field theory in which the vector mass as well as the nucleon mass is generated by the sigma-field. (orig.)

  15. Evaporation of tiny water aggregation on solid surfaces with different wetting properties.

    Science.gov (United States)

    Wang, Shen; Tu, Yusong; Wan, Rongzheng; Fang, Haiping

    2012-11-29

    The evaporation of a tiny amount of water on the solid surface with different wettabilities has been studied by molecular dynamics simulations. From nonequilibrium MD simulations, we found that, as the surface changed from hydrophobic to hydrophilic, the evaporation speed did not show a monotonic decrease as intuitively expected, but increased first, and then decreased after it reached a maximum value. The analysis of the simulation trajectory and calculation of the surface water interaction illustrate that the competition between the number of water molecules on the water-gas surface from where the water molecules can evaporate and the potential barrier to prevent those water molecules from evaporating results in the unexpected behavior of the evaporation. This finding is helpful in understanding the evaporation on biological surfaces, designing artificial surfaces of ultrafast water evaporating, or preserving water in soil.

  16. Superhydrophobic TiO2-polymer nanocomposite surface with UV-induced reversible wettability and self-cleaning properties.

    Science.gov (United States)

    Xu, Qian Feng; Liu, Yang; Lin, Fang-Ju; Mondal, Bikash; Lyons, Alan M

    2013-09-25

    Multifunctional superhydrophobic nanocomposite surfaces based on photocatalytic materials, such as fluorosilane modified TiO2, have generated significant research interest. However, there are two challenges to forming such multifunctional surfaces with stable superhydrophobic properties: the photocatalytic oxidation of the hydrophobic functional groups, which leads to the permanent loss of superhydrophobicity, as well as the photoinduced reversible hydrolysis of the catalytic particle surface. Herein, we report a simple and inexpensive template lamination method to fabricate multifunctional TiO2-high-density polyethylene (HDPE) nanocomposite surfaces exhibiting superhydrophobicity, UV-induced reversible wettability, and self-cleaning properties. The laminated surface possesses a hierarchical roughness spanning the micro- to nanoscale range. This was achieved by using a wire mesh template to emboss the HDPE surface creating an array of polymeric posts while partially embedding untreated TiO2 nanoparticles selectively into the top surface of these features. The surface exhibits excellent superhydrophobic properties immediately after lamination without any chemical surface modification to the TiO2 nanoparticles. Exposure to UV light causes the surface to become hydrophilic. This change in wettability can be reversed by heating the surface to restore superhydrophobicity. The effect of TiO2 nanoparticle surface coverage and chemical composition on the mechanism and magnitude of wettability changes was studied by EDX and XPS. In addition, the ability of the surface to shed impacting water droplets as well as the ability of such droplets to clean away particulate contaminants was demonstrated.

  17. Microstructural evolution and mechanical properties of Ti–Zr beta titanium alloy after laser surface remelting

    International Nuclear Information System (INIS)

    Yao, Y.; Li, X.; Wang, Y.Y.; Zhao, W.; Li, G.; Liu, R.P.

    2014-01-01

    Highlights: • The surface mechanical properties of the alloy have been greatly improved. • Its grain size was decreased from 100 μm to 10 μm. • The metastable ω with the size of 20–50 nm was observed in the alloy after LSR. • The strengthening effect is mainly due to fine microstructure and strengthened phase. -- Abstract: The effects of laser surface remelting (LSR) on the microstructural evolution and surface mechanical properties of Ti–Zr beta titanium alloy were investigated. The surfaces of the Ti–Zr alloy was re-melted using a CO 2 laser. X-ray diffraction, Scanning electron microscope, Transmission electron microscope, nanoindentation, and microhardness analyses were performed to evaluate the microstructural and mechanical properties of the alloy. The results showed that the alloy microstructure in the remelting region was greatly refined and homogeneous compared with that in the base material because of the rapid remelting and resolidifying. Meanwhile, the metastable hexagonal ω phases with the size of 20–50 nm was found and uniformly distributed throughout the β matrix after LSR. Phase transformation and microstructural refinement were the major microstructural changes in the alloys after LSR. The microhardness and elastic modulus in the remelted region clearly increased by 92.9% and 21.78%, respectively, compared with those in the region without laser processing. The strengthening effect of LSR on the mechanical properties of the Ti–Zr alloy was also addressed. Our results indicated that LSR was an effective method of improving the surface mechanical properties of alloys

  18. Remote Determination of Time-Dependent Stiffness of Surface-Degrading-Polymer Scaffolds Via Synchrotron-Based Imaging.

    Science.gov (United States)

    Bawolin, N K; Chen, X B

    2017-04-01

    Surface-degrading polymers have been widely used to fabricate scaffolds with the mechanical properties appropriate for tissue regeneration/repair. During their surface degradation, the material properties of polymers remain approximately unchanged, but the scaffold geometry and thus mechanical properties vary with time. This paper presents a novel method to determine the time-dependent mechanical properties, particularly stiffness, of scaffolds from the geometric changes captured by synchrotron-based imaging, with the help of finite element analysis (FEA). Three-dimensional (3D) tissue scaffolds were fabricated from surface-degrading polymers, and during their degradation, the tissue scaffolds were imaged via the synchrotron-based imaging to characterize their changing geometry. On this basis, the stiffness behavior of scaffolds was estimated from the FEA, and the results obtained were compared to the direct measurements of scaffold stiffness from the load-displacement material testing. The comparison illustrates that the Young's moduli estimated from the FEA and characterized geometry are in agreement with the ones of direct measurements. The developed method of estimating the mechanical behavior was also demonstrated effective with a nondegrading scaffold that displays the nonlinear stress-strain behavior. The in vivo monitoring of Young's modulus by morphology characterization also suggests the feasibility of characterizing experimentally the difference between in vivo and in vitro surface degradation of tissue engineering constructs.

  19. Silane surface modification effects on the electromagnetic properties of phosphatized iron-based SMCs

    Science.gov (United States)

    Fan, Liang-Fang; Hsiang, Hsing-I.; Hung, Jia-Jing

    2018-03-01

    It is difficult to achieve homogeneous phosphatized iron powder dispersion in organic resins during the preparation of soft magnetic composites (SMCs). Inhomogeneous iron powder mixing in organic resins generally leads to the formation of micro-structural defects in SMCs and hence causes the magnetic properties to become worse. Phosphatized iron powder dispersion in organic resins can be improved by coating the phosphatized iron powder surfaces with a coupling agent. This study investigated the (3-aminopropyl) triethoxysilane (APTES) surface modification effects on the electromagnetic properties of phosphatized iron-based soft magnetic composites (SMCs). The results showed that the phosphatized iron powder surface can be modified using APTES to improve the phosphatized iron powder and epoxy resin compatibility and hence enhance phosphate iron powder epoxy mixing. The tensile strength, initial permeability, rated current under DC-bias superposition and magnetic loss in SMCs prepared using phosphatized iron powders can be effectively improved using APTES surface modification, which provides a promising candidate for power chip inductor applications.

  20. Surface modification of montmorillonite on surface Acid-base characteristics of clay and thermal stability of epoxy/clay nanocomposites.

    Science.gov (United States)

    Park, Soo-Jin; Seo, Dong-Il; Lee, Jae-Rock

    2002-07-01

    In this work, the effect of surface treatments on smectitic clay was investigated in surface energetics and thermal behaviors of epoxy/clay nanocomposites. The pH values, X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR) were used to analyze the effect of cation exchange on clay surface and the exfoliation phenomenon of clay interlayer. The surface energetics of clay and thermal properties of epoxy/clay nanocomposites were investigated in contact angles and thermogravimetric analysis (TGA), respectively. From the experimental results, the surface modification of clay by dodecylammonium chloride led to the increases in both distance between silicate layers of about 8 A and surface acid values, as well as in the electron acceptor component (gamma(+)(s)) of surface free energy, resulting in improved interfacial adhesion between basic (or electron donor) epoxy resins and acidic (electron acceptor) clay interlayers. Also, the thermal stability of nanocomposites was highly superior to pure epoxy resin due to the presence of the well-dispersed clay nanolayer, which has a barrier property in a composite system.

  1. Sustainable Development and Airport Surface Access: The Role of Technological Innovation and Behavioral Change

    Directory of Open Access Journals (Sweden)

    Bilal Qazi

    2013-04-01

    Full Text Available Sustainable development reflects an underlying tension to achieve economic growth whilst addressing environmental challenges, and this is particularly the case for the aviation sector. Although much of the aviation-related focus has fallen on reducing aircraft emissions, airports have also been under increasing pressure to support the vision of a low carbon energy future. One of the main sources of airport-related emissions is passenger journeys to and from airports (the surface access component of air travel, which is the focus of this paper. Two aspects associated with the relationship between sustainable development and airport surface access are considered. Firstly, there is an evaluation of three technological innovation options that will enable sustainable transport solutions for surface access journeys: telepresence systems to reduce drop-off/pick-up trips, techniques to improve public transport and options to encourage the sharing of rides. Secondly, the role of behavioral change for surface access journeys from a theoretical perspective, using empirical data from Manchester airport, is evaluated. Finally, the contribution of technology and behavioral intervention measures to improvements in sustainable development are discussed.

  2. Directional radiative properties of anisotropic rough silicon and gold surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H.J.; Chen, Y.B.; Zhang, Z.M. [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2006-11-15

    Recent studies have shown that the topography of some chemically etched microrough silicon surfaces is non-Gaussian and may be strongly anisotropic. However, the bidirectional reflectance distribution function (BRDF) of anisotropic surfaces has not been fully understood. The present study uses the Monte Carlo method to investigate the out-of-plane BRDF, multiple scattering, and the change of the polarization state upon reflection. Two ray-tracing algorithms are developed that incorporate the surface topography or slope distribution of the samples obtained by the use of an atomic force microscope. The predicted BRDFs for silicon surfaces with or without a gold coating are in reasonable agreement with the results measured using a laser scatterometer at a wavelength of 635nm. The employment of surface topographic data is indispensable to the BRDF modeling of anisotropic surfaces. While first-order scattering makes the dominant contribution to reflections from the studied surfaces, it is critical to consider the polarization state change in order to correctly predict the out-of-plane BRDF. The versatile Monte Carlo modeling tools developed through the present study help gain a better understanding of the directional radiative properties of microrough surfaces and, furthermore, will have an impact on thermal metrology in the semiconductor industry. (author)

  3. Influence of Surface Properties and Impact Conditions on Adhesion of Insect Residues

    Science.gov (United States)

    Wohl, Christopher J.; Smith, Joseph G.; Connell, John W.; Siochi, Emilie J.; Doss, Jereme R.; Shanahan, Michelle H.; Penner, Ronald K.

    2015-01-01

    Insect residues can cause premature transition to turbulent flow on laminar flow airfoils. Engineered surfaces that mitigate the adhesion of insect residues provide, therefore, a route to more efficient aerodynamics and reduced fuel burn rates. Areal coverage and heights of residues depend not only on surface properties, but also on impact conditions. We report high speed photography of fruit fly impacts at different angles of inclination on a rigid aluminum surface, optical microscopy and profilometry, and contact angle goniometry to support the design of engineered surfaces. For the polyurethane and epoxy coatings studied, some of which exhibited superhydrophobicity, it was determined that impact angle and surface compositions play critical roles in the efficacy of these surfaces to reduce insect residue adhesion.

  4. Behavior of a Liquid Bridge between Nonparallel Hydrophobic Surfaces.

    Science.gov (United States)

    Ataei, Mohammadmehdi; Chen, Huanchen; Amirfazli, Alidad

    2017-12-26

    When a liquid bridge is formed between two nonparallel identical surfaces, it can move along the surfaces. Literature indicates that the direction of bridge movement is governed by the wettability of surfaces. When the surfaces are hydrophilic, the motion of the bridge is always toward the cusp (intersection of the plane of the two bounding surfaces). On the other hand, the movement is hitherto thought to be always pointing away from the cusp when the surfaces are hydrophobic. In this study, through experiments, numerical simulations, and analytical reasoning, we demonstrate that for hydrophobic surfaces, wettability is not the only factor determining the direction of the motion. A new geometrical parameter, i.e., confinement (cf), was defined as the ratio of the distance of the farthest contact point of the bridge to the cusp, and that of the closest contact point to the cusp. The direction of the motion depends on the amount of confinement (cf). When the distance between the surfaces is large (resulting in a small cf), the bridge tends to move toward the cusp through a pinning/depinning mechanism of contact lines. When the distance between the surfaces is small (large cf), the bridge tends to move away from the cusp. For a specific system, a maximum cf value (cf max ) exists. A sliding behavior (i.e., simultaneous advancing on the wider side and receding on the narrower side) can also be seen when a liquid bridge is compressed such that the cf exceeds the cf max . Contact angle hysteresis (CAH) is identified as an underpinning phenomenon that together with cf fundamentally explains the movement of a trapped liquid between two hydrophobic surfaces. If there is no CAH, however, i.e., the case of ideal hydrophobic surfaces, the cf will be a constant; we show that the bridge slides toward the cusp when it is stretched, while it slides away from the cusp when it is compressed (note sliding motion is different from motion due to pinning/depinning mechanism of contact

  5. Surface-defect induced modifications in the optical properties of α-MnO{sub 2} nanorods

    Energy Technology Data Exchange (ETDEWEB)

    John, Reenu Elizabeth [Department of Physics, St. Berchmans College, Changanassery, Kerala 686101 (India); Chandran, Anoop [School of Pure and Applied Physics, MG University, Kottayam, Kerala 686560 (India); Thomas, Marykutty [Department of Physics, BCM College, Kottayam, Kerala 686001 (India); Jose, Joshy [Department of Physics, St. Berchmans College, Changanassery, Kerala 686101 (India); George, K.C., E-mail: drkcgeorge@gmail.com [Department of Physics, St. Berchmans College, Changanassery, Kerala 686101 (India)

    2016-03-30

    Graphical abstract: - Highlights: • Alpha-MnO{sub 2} nanorods are prepared by chemical method. • Difference in surface defect density is achieved. • Characterized using XRD, Rietveld, XPS, EDS, HR-TEM, BET, UV–vis absorption spectroscopy and PL spectroscopy. • Explains the bandstructure modification due to Jahn–Teller distortions using crystal field theory. • Modification in the intensity of optical emissions related to defect levels validates the concept of surface defect induced tuning of optical properties. - Abstract: The science of defect engineering via surface tuning opens a new route to modify the inherent properties of nanomaterials for advanced functional and practical applications. In this work, two independent synthesis methods (hydrothermal and co-precipitation) are adopted to fabricate α-MnO{sub 2} nanorods with different defect structures so as to understand the effect of surface modifications on their optical properties. The crystal structure and morphology of samples are investigated with the aid of X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). Atomic composition calculated from energy dispersive spectroscopy (EDS) confirms non-stoichiometry of the samples. The surface properties and chemical environment are thoroughly studied using X-ray photoelectron spectroscopy (XPS) and Brunauer–Emmett–Teller (BET) analysis. Bond angle variance and bond valence sum are determined to validate distortions in the basic MnO{sub 6} octahedron. The surface studies indicate that the concentration of Jahn–Teller manganese (III) (Mn{sup 3+}) ion in the samples differ from each other which results in their distinct properties. Band structure modifications due to Jahn–Teller distortion are examined with the aid of ultraviolet–visible (UV) reflectance and photoluminescence (PL) studies. The dual peaks obtained in derivative spectrum conflict the current concept on the bandgap energy of MnO{sub 2}. These

  6. Effects of immersion disinfection of agar-alginate combined impressions on the surface properties of stone casts.

    Science.gov (United States)

    Iwasaki, Yukiko; Hiraguchi, Hisako; Iwasaki, Eriko; Yoneyama, Takayuki

    2016-01-01

    This study investigated the effects of disinfection of agar-alginate combined impressions on the surface properties of the resulting stone casts. Two brands of cartridge-form agar impression material and one alginate impression material were used. Agar-alginate combined impressions of smooth glass plates were prepared. The impressions were immersed in 0.55% ortho-phthalaldehyde solution or 0.5% sodium hypochlorite solution for 1, 3, 5 and 10 min. A stone cast made with an impression that had not been immersed was prepared as a control. The surface roughness (Ra) of the stone casts was measured, and the cast surfaces were observed by SEM. Immersion of agar-alginate combined impressions in 0.5% sodium hypochlorite solution for up to 10 min had no serious adverse effects on the surface properties of the stone casts. In contrast, even 1 min of immersion in 0.55% ortho-phthalaldehyde solution caused deterioration of the cast surface properties.

  7. An ellipsometric measurement of optical properties for InP surfaces

    International Nuclear Information System (INIS)

    Liu, X.; Irene, E.A.; Hattangady, S.; Fountain, G.

    1990-01-01

    Several chemical cleaning procedures for InP surfaces have been studied using ellipsometry. The strong influence of cleaning on the optical properties of InP surfaces suggests that the measurements involved the formation of surface films. In order to determine the complex index of refraction for InP, a novel method which employs ellipsometry measurements of a thin nonabsorbing film on a substrate rather than measurements of a bare surface has been explored. From the knowledge of the refractive index for a series of thicknesses of films on a substrate, the complex refractive index value for the substrate can be determined. Plasma enhanced chemical vapor deposition (PECVD) SiO 2 and Si 3 N 4 films on InP have been used for this experiment, and the complex refractive index for InP has been determined to be 3.521 + i0.300 at the wavelength of 632.8 nm

  8. Modification of Bi:YIG film properties by substrate surface ion pre-treatment

    International Nuclear Information System (INIS)

    Shaposhnikov, A.N.; Prokopov, A.R.; Karavainikov, A.V.; Berzhansky, V.N.; Mikhailova, T.V.; Kotov, V.A.; Balabanov, D.E.; Sharay, I.V.; Salyuk, O.Y.; Vasiliev, M.; Golub, V.O.

    2014-01-01

    Highlights: • Effects of substrates ion beam treatment on magnetoptical properties Bi:YIG films. • Substrate surface damage results in sign inversion of the magneto-optical effects. • Atomically smooth films growth takes place on low energy ions treated substrates. • High energy ions treatment results in selective nucleation mechanism of the growth. - Abstract: The effect of a controlled ion beam pre-treatment of (1 1 1)-oriented Gd 3 Ga 5 O 12 substrates on the magneto-optical properties and surface morphology of the ultrathin bismuth-substituted yttrium–iron garnet films with a composition Bi 2.8 Y 0.2 Fe 5 O 12 was studied. It has been shown that the observed sign inversion of magneto-optical effects (Faraday rotation and magnetic circular dichroism) observed in films that were deposited on the GGG substrate pre-treated by 1 keV and 4 keV Ar + ion beams is a result of the substrate surface amorphization caused by the ion bombardment

  9. Effect of Electropulsing-Assisted Ultrasonic Nanocrystalline Surface Modification on the Surface Mechanical Properties and Microstructure of Ti-6Al-4V Alloy

    Science.gov (United States)

    Ye, Yongda; Wang, Haibo; Tang, Guoyi; Song, Guolin

    2018-05-01

    The effect of electropulsing-assisted ultrasonic nanocrystalline surface modification (EP-UNSM) on surface mechanical properties and microstructure of Ti-6Al-4V alloy is investigated. Compared to conventional ultrasonic nanocrystalline surface modification (UNSM), EP-UNSM can effectively facilitate surface roughness and morphology, leading to excellent surface roughness (reduced from Ra 0.918 to Ra 0.028 μm by UNSM and Ra 0.019 μm by EP-UNSM) and smoother morphology with less cracks and defects. Surface friction coefficients are enhanced, resulting in lower and smoother friction coefficients. In addition, the surface-strengthened layer and ultra-refined grains are significantly enhanced with more severe plastic deformation and a greater surface hardness (a maximum hardness value of 407 HV and an effective depth of 550 μm, in comparison with the maximum hardness value of 364 HV and effective depth of 300 μm obtained by conventional UNSM). Remarkable enhancement of surface mechanical properties can be attributed to the refined gradient microstructure and the enhanced severe plastic deformation layer induced by coupling the effects of UNSM and electropulsing. The accelerated dislocation mobility and atom diffusion caused by the thermal and athermal effects of electropulsing treatment may be the primary intrinsic reasons for these improvements.

  10. Effects of Surface Roughness and Mechanical Properties of Cover-Layer on Near-Field Optical Recording

    Science.gov (United States)

    Kim, Jin-Hong; Lee, Jun-Seok; Lim, Jungshik; Seo, Jung-Kyo

    2009-03-01

    Narrow gap distance in cover-layer incident near-field recording (NFR) configuration causes a collision problem in the interface between a solid immersion lens and a disk surface. A polymer cover-layer with smooth surface results in a stable gap servo while a nanocomposite cover-layer with high refractive index shows a collision problem during the gap servo test. Even though a dielectric cover-layer, in which the surface is rougher than the polymer, supplements the mechanical properties, an unclear eye pattern due to an unstable gap servo can be obtained after a chemical mechanical polishing. Not only smooth surface but also good mechanical properties of cover-layer are required for the stable gap servo in the NFR.

  11. Performance of fire behavior fuel models developed for the Rothermel Surface Fire Spread Model

    Science.gov (United States)

    Robert Ziel; W. Matt Jolly

    2009-01-01

    In 2005, 40 new fire behavior fuel models were published for use with the Rothermel Surface Fire Spread Model. These new models are intended to augment the original 13 developed in 1972 and 1976. As a compiled set of quantitative fuel descriptions that serve as input to the Rothermel model, the selected fire behavior fuel model has always been critical to the resulting...

  12. Geometrical properties of rough metallic surfaces and their implication in electromagnetic problems

    International Nuclear Information System (INIS)

    Hernandez, A.; Chicon, R.; Ortuno, M.; Abellan, J.

    1987-01-01

    We analyze the geometrical properties and their implications in the effective surface resistance and wall losses of rough metallic surfaces. The power spectrum and the autocorrelation function are calculated for a simple model that adequately represent the rough surface. The roughness parameters are obtained through average values of the roughness and its derivative. We calculate the density profile, directly related to the depth-dependent effective conductivity. The data from the profilometer are corrected to take into account the finite size of the tip. (author)

  13. Cell Surface Properties of Lactococcus lactis Reveal Milk Protein Binding Specifically Evolved in Dairy Isolates

    Directory of Open Access Journals (Sweden)

    Mariya Tarazanova

    2017-09-01

    Full Text Available Surface properties of bacteria are determined by the molecular composition of the cell wall and they are important for interactions of cells with their environment. Well-known examples of bacterial interactions with surfaces are biofilm formation and the fermentation of solid materials like food and feed. Lactococcus lactis is broadly used for the fermentation of cheese and buttermilk and it is primarily isolated from either plant material or the dairy environment. In this study, we characterized surface hydrophobicity, charge, emulsification properties, and the attachment to milk proteins of 55 L. lactis strains in stationary and exponential growth phases. The attachment to milk protein was assessed through a newly developed flow cytometry-based protocol. Besides finding a high degree of biodiversity, phenotype-genotype matching allowed the identification of candidate genes involved in the modification of the cell surface. Overexpression and gene deletion analysis allowed to verify the predictions for three identified proteins that altered surface hydrophobicity and attachment of milk proteins. The data also showed that lactococci isolated from a dairy environment bind higher amounts of milk proteins when compared to plant isolates. It remains to be determined whether the alteration of surface properties also has potential to alter starter culture functionalities.

  14. Cell Surface Properties of Lactococcus lactis Reveal Milk Protein Binding Specifically Evolved in Dairy Isolates

    Science.gov (United States)

    Tarazanova, Mariya; Huppertz, Thom; Beerthuyzen, Marke; van Schalkwijk, Saskia; Janssen, Patrick; Wels, Michiel; Kok, Jan; Bachmann, Herwig

    2017-01-01

    Surface properties of bacteria are determined by the molecular composition of the cell wall and they are important for interactions of cells with their environment. Well-known examples of bacterial interactions with surfaces are biofilm formation and the fermentation of solid materials like food and feed. Lactococcus lactis is broadly used for the fermentation of cheese and buttermilk and it is primarily isolated from either plant material or the dairy environment. In this study, we characterized surface hydrophobicity, charge, emulsification properties, and the attachment to milk proteins of 55 L. lactis strains in stationary and exponential growth phases. The attachment to milk protein was assessed through a newly developed flow cytometry-based protocol. Besides finding a high degree of biodiversity, phenotype-genotype matching allowed the identification of candidate genes involved in the modification of the cell surface. Overexpression and gene deletion analysis allowed to verify the predictions for three identified proteins that altered surface hydrophobicity and attachment of milk proteins. The data also showed that lactococci isolated from a dairy environment bind higher amounts of milk proteins when compared to plant isolates. It remains to be determined whether the alteration of surface properties also has potential to alter starter culture functionalities. PMID:28936202

  15. Rotary bending fatigue properties of Inconel 718 alloys by ultrasonic nanocrystal surface modification technique

    Directory of Open Access Journals (Sweden)

    Jun-Hyong Kim

    2015-08-01

    Full Text Available This study investigates the influence of ultrasonic nanocrystal surface modification (UNSM technique on fatigue properties of SAE AMS 5662 (solution treatment of Inconel 718 alloys. The fatigue properties of the specimens were investigated using a rotary bending fatigue tester. Results revealed that the UNSM-treated specimens showed longer fatigue life in comparison with those of the untreated specimens. The improvement in fatigue life of the UNSM-treated specimens is attributed mainly to the induced compressive residual stress, increased hardness, reduced roughness and refined grains at the top surface. Fractured surfaces were analysed using a scanning electron microscopy (SEM in order to give insight into the effectiveness of UNSM technique on fracture mechanisms and fatigue life.

  16. Fracture Behavior and Properties of Functionally Graded Fiber-Reinforced Concrete

    International Nuclear Information System (INIS)

    Roesler, Jeffery; Bordelon, Amanda; Gaedicke, Cristian; Park, Kyoungsoo; Paulino, Glaucio

    2008-01-01

    In concrete pavements, a single concrete mixture design is selected to resist mechanical loading without attempting to adversely affect the concrete pavement shrinkage, ride quality, or noise attenuation. An alternative approach is to design distinct layers within the concrete pavement surface which have specific functions thus achieving higher performance at a lower cost. The objective of this research was to address the structural benefits of functionally graded concrete materials (FGCM) for rigid pavements by testing and modeling the fracture behavior of different combinations of layered plain and synthetic fiber-reinforced concrete materials. Fracture parameters and the post-peak softening behavior were obtained for each FGCM beam configuration by the three point bending beam test. The peak loads and initial fracture energy between the plain, fiber-reinforced, and FGCM signified similar crack initiation. The total fracture energy indicated improvements in fracture behavior of FGCM relative to full-depth plain concrete. The fracture behavior of FGCM depended on the position of the fiber-reinforced layer relative to the starter notch. The fracture parameters of both fiber-reinforced and plain concrete were embedded into a finite element-based cohesive zone model. The model successfully captured the experimental behavior of the FGCMs and predicted the fracture behavior of proposed FGCM configurations and structures. This integrated approach (testing and modeling) demonstrates the viability of FGCM for designing layered concrete pavements system

  17. Surface Estimation, Variable Selection, and the Nonparametric Oracle Property.

    Science.gov (United States)

    Storlie, Curtis B; Bondell, Howard D; Reich, Brian J; Zhang, Hao Helen

    2011-04-01

    Variable selection for multivariate nonparametric regression is an important, yet challenging, problem due, in part, to the infinite dimensionality of the function space. An ideal selection procedure should be automatic, stable, easy to use, and have desirable asymptotic properties. In particular, we define a selection procedure to be nonparametric oracle (np-oracle) if it consistently selects the correct subset of predictors and at the same time estimates the smooth surface at the optimal nonparametric rate, as the sample size goes to infinity. In this paper, we propose a model selection procedure for nonparametric models, and explore the conditions under which the new method enjoys the aforementioned properties. Developed in the framework of smoothing spline ANOVA, our estimator is obtained via solving a regularization problem with a novel adaptive penalty on the sum of functional component norms. Theoretical properties of the new estimator are established. Additionally, numerous simulated and real examples further demonstrate that the new approach substantially outperforms other existing methods in the finite sample setting.

  18. Synthesis and characterization of biodegradable lignin nanoparticles with tunable surface properties

    NARCIS (Netherlands)

    Richter, Alexander P.; Bharti, Bhuvnesh; Armstrong, Hinton B.; Brown, Joseph S.; Plemmons, Dayne; Paunov, Vesselin N.; Stoyanov, Simeon D.; Velev, Orlin D.

    2016-01-01

    Lignin nanoparticles can serve as biodegradable carriers of biocidal actives with minimal environmental footprint. Here we describe the colloidal synthesis and interfacial design of nanoparticles with tunable surface properties using two different lignin precursors, Kraft (Indulin AT) lignin and

  19. Microstructure and properties of cast iron after laser surface hardening

    Directory of Open Access Journals (Sweden)

    Stanislav

    2013-12-01

    Full Text Available Laser surface hardening of cast iron is not trivial due to the material’s heterogeneity and coarse-grained microstructure, particularly in massive castings. Despite that, hardening of heavy moulds for automotive industry is in high demand. The present paper summarises the findings collected over several years of study of materials structure and surface properties. Phase transformations in the vicinity of graphite are described using examples from production of body parts in automotive industry. The description relates to formation of martensite and carbide-based phases, which leads to hardness values above 65 HRC and to excellent abrasion resistance.

  20. On the influence of mechanical surface treatments--deep rolling and laser shock peening--on the fatigue behavior of Ti-6Al-4V at ambient and elevated temperatures

    International Nuclear Information System (INIS)

    Nalla, R.K.; Altenberger, I.; Noster, U.; Liu, G.Y.; Scholtes, B.; Ritchie, R.O.

    2003-01-01

    It is well known that mechanical surface treatments, such as deep rolling, shot peening and laser shock peening, can significantly improve the fatigue behavior of highly-stressed metallic components. Deep rolling (DR) is particularly attractive since it is possible to generate, near the surface, deep compressive residual stresses and work hardened layers while retaining a relatively smooth surface finish. In the present investigation, the effect of DR on the low-cycle fatigue (LCF) and high-cycle fatigue (HCF) behavior of a Ti-6Al-4V alloy is examined, with particular emphasis on the thermal and mechanical stability of the residual stress states and the near-surface microstructures. Preliminary results on laser shock peened Ti-6Al-4V are also presented for comparison. Particular emphasis is devoted to the question of whether such surface treatments are effective for improving the fatigue properties at elevated temperatures up to ∼450 deg. C, i.e. at a homologous temperature of ∼0.4T/T m (where T m is the melting temperature). Based on cyclic deformation and stress/life (S/N) fatigue behavior, together with the X-ray diffraction and in situ transmission electron microscopy (TEM) observations of the microstructure, it was found that deep rolling can be quite effective in retarding the initiation and initial propagation of fatigue cracks in Ti-6Al-4V at such higher temperatures, despite the almost complete relaxation of the near-surface residual stresses. In the absence of such stresses, it is shown that the near-surface microstructures, which in Ti-6Al-4V consist of a layer of work hardened nanoscale grains, play a critical role in the enhancement of fatigue life by mechanical surface treatment

  1. Spin properties of dense near-surface ensembles of nitrogen-vacancy centers in diamond

    Science.gov (United States)

    Tetienne, J.-P.; de Gille, R. W.; Broadway, D. A.; Teraji, T.; Lillie, S. E.; McCoey, J. M.; Dontschuk, N.; Hall, L. T.; Stacey, A.; Simpson, D. A.; Hollenberg, L. C. L.

    2018-02-01

    We present a study of the spin properties of dense layers of near-surface nitrogen-vacancy (NV) centers in diamond created by nitrogen ion implantation. The optically detected magnetic resonance contrast and linewidth, spin coherence time, and spin relaxation time, are measured as a function of implantation energy, dose, annealing temperature, and surface treatment. To track the presence of damage and surface-related spin defects, we perform in situ electron spin resonance spectroscopy through both double electron-electron resonance and cross-relaxation spectroscopy on the NV centers. We find that, for the energy (4 -30 keV) and dose (5 ×1011-1013ions/cm 2 ) ranges considered, the NV spin properties are mainly governed by the dose via residual implantation-induced paramagnetic defects, but that the resulting magnetic sensitivity is essentially independent of both dose and energy. We then show that the magnetic sensitivity is significantly improved by high-temperature annealing at ≥1100 ∘C . Moreover, the spin properties are not significantly affected by oxygen annealing, apart from the spin relaxation time, which is dramatically decreased. Finally, the average NV depth is determined by nuclear magnetic resonance measurements, giving ≈10 -17 nm at 4-6 keV implantation energy. This study sheds light on the optimal conditions to create dense layers of near-surface NV centers for high-sensitivity sensing and imaging applications.

  2. Microscale interfacial behavior at vapor film collapse on high-temperature particle surface

    International Nuclear Information System (INIS)

    Abe, Yutaka; Tochio, Daisuke

    2009-01-01

    It has been pointed out that vapor film on a premixed high-temperature droplet surface should be collapsed to trigger vapor explosion. Thus, it is important to clarify the micromechanism of vapor film collapse behavior for the occurrence of vapor explosion. In the present study, microscale vapor-liquid interface behavior upon vapor film collapse caused by an external pressure pulse is experimentally observed and qualitatively analyzed. In the analytical investigation, interfacial temperature and interface movement were estimated with heat conduction analysis and visual data processing technique. Results show that condensation can possibly occur at the vapor-liquid interface when the pressure pulse arrived. That is, this result indicates that the vapor film collapse behavior is dominated not by fluid motion but by phase change. (author)

  3. Photochemical modification of diamond powder with sulfur functionalities and its behavior on gold surfaces

    International Nuclear Information System (INIS)

    Nakamura, T; Ohana, T; Hagiwara, Y; Tsubota, T

    2010-01-01

    A useful method of modifying the surface of diamond powders with sulfur-containing functionalities was developed by the use of the photolysis of elemental sulfur. The introduction of sulfur-containing functional groups on the diamond surfaces was confirmed by means of XPS, DRIFT and mass spectroscopy analyses. The sulfur-modified diamond powders exhibited surface-attachment behavior to gold surfaces through the sulfur-containing linkage. In brief, exposure of the modified diamond powders to gold colloids resulted in gold nanoparticles being attached to the diamond powders. Treatment of the modified diamond powders with gold thin film on Si substrate afforded alignment of surface-attached diamond powders through sulfur linkages by self-assembly.

  4. Investigation of surface properties of physico-chemically modified natural fibres using inverse gas chromatography

    CSIR Research Space (South Africa)

    Cordeiro, N

    2011-01-01

    Full Text Available Inverse gas chromatography (IGC) is a suitable method to determine surface energy of natural fibres when compared to wetting techniques. In the present study, the surface properties of raw and modified lignocellulosic fibres have been investigated...

  5. Lipophilic phytosterol derivatives: synthesis, thermal property and nanoemulsion behavior

    DEFF Research Database (Denmark)

    Panpipat, Worawan; Xu, Xuebing; Guo, Zheng

    Phytosterols and their esters have been reported as a cholesterol lowering agent in human. However, natural phytosterols have a low solubility in both water and fat resulting in a poor absorption in intestine. To improve the intestinal absorption and bioavailability of phytosterols, conversion...... of phytosterols into enzyme-liable lipophilic derivatives, such as fatty acid esters was one of the possible strategies. Differences in molecular structures of modified phytosterols may result in the differences in their thermal and micelling behaviors. Therefore, the objectives of this study were to improve...... the productive yield of a series of -sitosteryl fatty acid esters (C2-C18) and to investigate the thermal property and nano-emulsion behaviors of those compounds. This work reported a novel approach to synthesize phytosterol (-sitosterol as a model) fatty acid ester by employing Candida antarctica lipase...

  6. Surface topography of silicon nitride affects antimicrobial and osseointegrative properties of tibial implants in a murine model.

    Science.gov (United States)

    Ishikawa, Masahiro; de Mesy Bentley, Karen L; McEntire, Bryan J; Bal, B Sonny; Schwarz, Edward M; Xie, Chao

    2017-12-01

    While silicon nitride (Si 3 N 4 ) is an antimicrobial and osseointegrative orthopaedic biomaterial, the contribution of surface topography to these properties is unknown. Using a methicillin-resistant strain of Staphylococcus aureus (MRSA), this study evaluated Si 3 N 4 implants in vitro utilizing scanning electron microscopy (SEM) with colony forming unit (CFU) assays, and later in an established in vivo murine tibia model of implant-associated osteomyelitis. In vitro, the "as-fired" Si 3 N 4 implants displayed significant reductions in adherent bacteria versus machined Si 3 N 4 (2.6 × 10 4 vs. 8.7 × 10 4 CFU, respectively; p SEM imaging demonstrated that MRSA cannot directly adhere to native as-fired Si 3 N 4 . Subsequently, a cross-sectional study was completed in which sterile or MRSA contaminated as-fired and machined Si 3 N 4 implants were inserted into the tibiae of 8-week old female Balb/c mice, and harvested on day 1, 3, 5, 7, 10, or 14 post-operatively for SEM. The findings demonstrated that the antimicrobial activity of the as-fired implants resulted from macrophage clearance of the bacteria during biofilm formation on day 1, followed by osseointegration through the apparent recruitment of mesenchymal stem cells on days 3-5, which differentiated into osteoblasts on days 7-14. In contrast, the antimicrobial behavior of the machined Si 3 N 4 was due to repulsion of the bacteria, a phenomenon that also limited osteogenesis, as host cells were also unable to adhere to the machined surface. Taken together, these results suggest that the in vivo biological behavior of Si 3 N 4 orthopaedic implants is driven by critical features of their surface nanotopography. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3413-3421, 2017. © 2017 Wiley Periodicals, Inc.

  7. Surface properties of magnetite in high temperature aqueous electrolyte solutions: A review.

    Science.gov (United States)

    Vidojkovic, Sonja M; Rakin, Marko P

    2017-07-01

    Deposits and scales formed on heat transfer surfaces in power plant water/steam circuits have a significant negative impact on plant reliability, availability and performance, causing tremendous economic consequences and subsequent increases in electricity cost. Consequently, the improvement of the understanding of deposition mechanisms on power generating surfaces is defined as a high priority in the power industry. The deposits consist principally of iron oxides, which are steel corrosion products and usually present in colloidal form. Magnetite (Fe 3 O 4 ) is the predominant and most abundant compound found in water/steam cycles of all types of power plants. The crucial factor that governs the deposition process and influences the deposition rate of magnetite is the electrostatic interaction between the metal wall surfaces and the suspended colloidal particles. However, there is scarcity of data on magnetite surface properties at elevated temperatures due to difficulties in their experimental measurement. In this paper a generalized overview of existing experimental data on surface characteristics of magnetite at high temperatures is presented with particular emphasis on possible application in the power industry. A thorough analysis of experimental techniques, mathematical models and results has been performed and directions for future investigations have been considered. The state-of-the-art assessment showed that for the characterization of magnetite/aqueous electrolyte solution interface at high temperatures acid-base potentiometric titrations and electrophoresis were the most beneficial and dependable techniques which yielded results up to 290 and 200°C, respectively. Mass titrations provided data on magnetite surface charge up to 320°C, however, this technique is highly sensitive to the minor concentrations of impurities present on the surface of particle. Generally, fairly good correlation between the isoelectric point (pH iep ) and point of zero charge

  8. The Influence of the Tool Surface Texture on Friction and the Surface Layers Properties of Formed Component

    Directory of Open Access Journals (Sweden)

    Jana Šugárová

    2018-03-01

    Full Text Available The morphological texturing of forming tool surfaces has high potential to reduce friction and tool wear and also has impact on the surface layers properties of formed material. In order to understand the effect of different types of tool textures, produced by nanosecond fibre laser, on the tribological conditions at the interface tool-formed material and on the integrity of formed part surface layers, the series of experimental investigations have been carried out. The coefficient of friction for different texture parameters (individual feature shape, including the depth profile of the cavities and orientation of the features relative to the material flow was evaluated via a Ring Test and the surface layers integrity of formed material (surface roughness and subsurface micro hardness was also experimentally analysed. The results showed a positive effect of surface texturing on the friction coefficients and the strain hardening of test samples material. Application of surface texture consisting of dimple-like depressions arranged in radial layout contributed to the most significant friction reduction of about 40%. On the other hand, this surface texture contributed to the increase of surface roughness parameters, Ra parameter increased from 0.49 μm to 2.19 μm and the Rz parameter increased from 0.99 μm to 16.79 μm.

  9. Effect of surface water on tritium release behavior from Li4SiO4

    International Nuclear Information System (INIS)

    Hanada, T.; Fukada, S.; Nishikawa, M.; Suematsu, K.; Yamashita, N.; Kanazawa, T.

    2010-01-01

    The tritium release model to represent the release behavior of bred tritium from solid breeder materials has been developed by the blanket group of Kyushu University. It has been found that water is released to the purge gas from solid breeder materials and that this water affects the tritium release behavior. In this study, the amount of surface water released from Li 4 SiO 4 is quantified by the experiment. In addition, the tritium release behavior from Li 4 SiO 4 are estimated based on the tritium release model using parameters obtained in our studies under conditions of commercial reactor operation and ITER test blanket module operation. The effect of the surface water on tritium release behavior is discussed from the obtained results. Moreover, the tritium inventory of Li 4 SiO 4 is discussed based on calculation under the unsteady state condition. Further, the effects of grain size and temperature on distribution of tritium inventory under the steady state condition are evaluated, and the optimal grain size is discussed from the view point of tritium release from Li 4 SiO 4 .

  10. Characterization of the cell surface properties of drinking water pathogens by microbial adhesion to hydrocarbon and electrophoretic mobility measurements.

    Science.gov (United States)

    Popovici, Jonathan; White, Colin P; Hoelle, Jill; Kinkle, Brian K; Lytle, Darren A

    2014-06-01

    The surface characteristics of microbial cells directly influence their mobility and behavior within aqueous environments. The cell surface hydrophobicity (CSH) and electrophoretic mobility (EPM) of microbial cells impact a number of interactions and processes including aggregation, adhesion to surfaces, and stability of the cells within the aqueous environments. These cell characteristics are unique to the bacterial species and are a reflection of the large diversity of surface structures, proteins, and appendages of microorganisms. CSH and EPM of bacterial cells contribute substantially to the effectiveness of drinking water treatment to remove them, and therefore an investigation of these properties will be useful in predicting their removal through drinking water treatment processes and transport through drinking water distribution systems. EPM and CSH measurements of six microbiological pathogen or surrogate species suspended in phosphate-buffered water are reported in this work. Two strains of Vibrio cholerae were hydrophobic, while three strains of Escherichia coli were hydrophilic. Bacillus cereus was categorized as moderately hydrophobic. The strains of E. coli had the highest (most negative) EPM. Based on the measurements, E. coli species is predicted to be most difficult to remove from water while V. cholerae will be the easiest to remove. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Modification of epoxy resin, silicon and glass surfaces with alkyl- or fluoroalkylsilanes for hydrophobic properties

    International Nuclear Information System (INIS)

    Marczak, Jacek; Kargol, Marta; Psarski, Maciej; Celichowski, Grzegorz

    2016-01-01

    Graphical abstract: - Highlights: • Chemical structure of alkylsilanes and fluoroalkylsilanes can affect the hydrophobic and surface performance of the modified samples. • Wet chemical hydrophobization is relatively simple and inexpensive method to obtain hydrophobic/superhydrophobic coatings. • The samples degradation is not observed and hydrophobic coatings seem to be stable in UV light. - Abstract: Preparation of superhydrophobic materials inspired by nature has attracted a great scientific interest in recent decades. Some of these materials have hierarchical lotus-like structures, i.e. micro- and nano-objects coated by hydrophobic compounds. A major challenge of applying the superhydrophobic surfaces for the self-cleaning coatings preparation is their improved efficiency in varying atmospheric conditions, e.g. UV light. The objective of this research work was to investigate the effect of the different chemical structure and the surface free energy on the hydrophobic and tribological properties of the alkylsilanes and fluoroalkylsilanes deposited on silicon wafers, glass slides and epoxy resin. Tribological and hydrophobic properties of the modified surfaces were correlated with their chemical structures. Chemical structures of the deposited materials were examined by using Fourier transform infrared (FT-IR) spectroscopy and hydrophobic properties were investigated by water contact angle (WCA) and surface free energy (SFE) measurements. The modified surfaces exhibited water contact angles of above 100° for the selected modifiers. It was noticed that the replacement of hydrogen atoms by fluorine atoms in alkyl chain caused an increase in the water contact angle values and a decrease in friction coefficients. The obtained results showed that the carbon chain length of a modifier and its chemical structure can strongly affect the hydrophobic and tribological properties of the modified surfaces. The highest values of WCA, lowest values of SFE and coefficient

  12. Influence of autoclave sterilization on the surface parameters and mechanical properties of six orthodontic wires.

    Science.gov (United States)

    Pernier, C; Grosgogeat, B; Ponsonnet, L; Benay, G; Lissac, M

    2005-02-01

    Orthodontic wires are frequently packaged in individual sealed bags in order to avoid cross-contamination. The instructions on the wrapper generally advise autoclave sterilization of the package and its contents if additional protection is desired. However, sterilization can modify the surface parameters and the mechanical properties of many types of material. The aim of this research was to determine the influence of one of the most widely used sterilization processes, autoclaving (18 minutes at 134 degrees C, as recommended by the French Ministry of Health), on the surface parameters and mechanical properties of six wires currently used in orthodontics (one stainless steel alloy: Tru-Chrome RMO; two nickel-titanium shape memory alloys: Neo Sentalloy and Neo Sentalloy with Ionguard GAC; and three titanium-molybdenum alloys: TMA(R) and Low Friction TMA Ormco and Resolve GAC). The alloys were analysed on receipt and after sterilization, using surface structure observation techniques, including optical, scanning electron and atomic force microscopy and profilometry. The mechanical properties were assessed by three-point bending tests. The results showed that autoclave sterilization had no adverse effects on the surface parameters or on the selected mechanical properties. This supports the possibility for practitioners to systematically sterilize wires before placing them in the oral environment.

  13. Effect of Processing Steps on the Mechanical Properties and Surface Appearance of 6063 Aluminium Extruded Products

    Science.gov (United States)

    Asensio-Lozano, Juan; Suárez-Peña, Beatriz; Vander Voort, George F.

    2014-01-01

    6063 aluminum anodized extrusions may exhibit a common surface defect known as streaking, characterized by the formation of narrow bands with a surface gloss different from the surrounding material. The origin of this banding lies in the differential surface topography produced after etching during the anodizing stage, shown to be connected to certain microstructural characteristics. The present study has attempted to determine the origin of these defects and measure the mechanical properties in these zones, properties which were either barely acceptable or did not meet the specification’s requirements. Quantitative metallography and mechanical testing, both tensile and microhardness, were used for materials assessment at the different steps of the process of manufacturing 6063 anodized extrusions. The results of this research show that nonequilibrium solidification rates during billet casting could lead to the formation of coarse eutectic Mg2Si particles which have a deleterious effect on both mechanical properties and surface appearance in the anodized condition. However, differences in the size and density of the coarse Mg2Si particles have been found to exist in the streak profile compared to the surrounding zones. The study revealed the importance of these particles in explaining the origin of the marginal or sub-marginal properties and anodizing surface defects found. PMID:28788673

  14. Effect of Processing Steps on the Mechanical Properties and Surface Appearance of 6063 Aluminium Extruded Products

    Directory of Open Access Journals (Sweden)

    Juan Asensio-Lozano

    2014-05-01

    Full Text Available 6063 aluminum anodized extrusions may exhibit a common surface defect known as streaking, characterized by the formation of narrow bands with a surface gloss different from the surrounding material. The origin of this banding lies in the differential surface topography produced after etching during the anodizing stage, shown to be connected to certain microstructural characteristics. The present study has attempted to determine the origin of these defects and measure the mechanical properties in these zones, properties which were either barely acceptable or did not meet the specification’s requirements. Quantitative metallography and mechanical testing, both tensile and microhardness, were used for materials assessment at the different steps of the process of manufacturing 6063 anodized extrusions. The results of this research show that nonequilibrium solidification rates during billet casting could lead to the formation of coarse eutectic Mg2Si particles which have a deleterious effect on both mechanical properties and surface appearance in the anodized condition. However, differences in the size and density of the coarse Mg2Si particles have been found to exist in the streak profile compared to the surrounding zones. The study revealed the importance of these particles in explaining the origin of the marginal or sub-marginal properties and anodizing surface defects found.

  15. Surface molecular aggregation structure and surface physicochemical properties of poly(fluoroalkyl acrylate) thin films

    International Nuclear Information System (INIS)

    Honda, K; Yamaguchi, H; Takahara, A; Kobayashi, M; Morita, M

    2008-01-01

    Effect of side chain length on the molecular aggregation states and surface properties of poly(fluoroalkyl acrylate)s [PFA-C y , where y is fluoromethylene number in R f group] thin films were systematically investigated. Spin-coated PFA-C y thin films were characterized by static and dynamic contact angle measurements, X-ray photoelectron spectroscopy (XPS), and grazing- incidence X-ray diffraction (GIXD). The receding contact angles showed small values for PFA-C y with short side chain (y≤6) and increased above y≥8. GIXD revealed that fluoroalkyl side chain of PFA-C y with y≥8 was crystallized and formed ordered structures at the surface region as well as bulk one. These results suggest that water repellent mechanism of PFA-C y can be attributed to the presence of highly ordered fluoroalkyl side chains at the outermost surfaces. The results of XPS in the dry and hydrated states and contact angle measurement in water support the mechanism of lowering contact angle for water by exposure of carbonyl group to the water interface through reorientation of short fluoroalkyl chains. The surface nanotextured PFA-C 8 through imprinting of anodic aluminum oxide mold showed extremely high hydrophobicity as well as high oleophobicity

  16. Nano-oxides to improve the surface properties of ceramic tiles

    International Nuclear Information System (INIS)

    Rambaldi, E.; Tucci, A.; Esposito, L.; Naldi, D.; Timellini, G.

    2010-01-01

    The aim of the present work is to realise ceramic tiles with superior surface mechanical characteristics and chemical resistance, by the addition of nano-oxides, such as zirconia and alumina, since such advanced ceramics oxides are well known for their excellent mechanical properties and good resistance to chemical etching. In order to avoid any dangerousness, the nanoparticles were used in form of aqueous suspension and they were sprayed, by airbrush, directly onto the dried ceramic support, before firing. To observe the distribution of the nanoparticles and to optimise the surface treatment, SEM-EDS analyses were carried out on the fired samples. XRD analysis was conducted to assess the phases evolution of the different materials during the firing step. The surface mechanical characteristics of the samples have been evaluated by Vickers hardness and scratch test. In addition, also chemical resistance tests were performed. Microstructural observations allowed to understand how alumina and zirconia nanoparticles acted to improve the surface performances of the modified ceramic tiles. (Author) 20 refs.

  17. Biocompatibility and Surface Properties of TiO2 Thin Films Deposited by DC Magnetron Sputtering

    Science.gov (United States)

    López-Huerta, Francisco; Cervantes, Blanca; González, Octavio; Hernández-Torres, Julián; García-González, Leandro; Vega, Rosario; Herrera-May, Agustín L.; Soto, Enrique

    2014-01-01

    We present the study of the biocompatibility and surface properties of titanium dioxide (TiO2) thin films deposited by direct current magnetron sputtering. These films are deposited on a quartz substrate at room temperature and annealed with different temperatures (100, 300, 500, 800 and 1100 °C). The biocompatibility of the TiO2 thin films is analyzed using primary cultures of dorsal root ganglion (DRG) of Wistar rats, whose neurons are incubated on the TiO2 thin films and on a control substrate during 18 to 24 h. These neurons are activated by electrical stimuli and its ionic currents and action potential activity recorded. Through X-ray diffraction (XRD), the surface of TiO2 thin films showed a good quality, homogeneity and roughness. The XRD results showed the anatase to rutile phase transition in TiO2 thin films at temperatures between 500 and 1100 °C. This phase had a grain size from 15 to 38 nm, which allowed a suitable structural and crystal phase stability of the TiO2 thin films for low and high temperature. The biocompatibility experiments of these films indicated that they were appropriated for culture of living neurons which displayed normal electrical behavior. PMID:28788667

  18. Mechanical properties and crystallization behavior of hydroxyapatite/poly(butylenes succinate) composites.

    Science.gov (United States)

    Guo, Wenmin; Zhang, Yihe; Zhang, Wei

    2013-09-01

    Biodegradable synthetic polymers have attracted much attention nowadays, and more and more researches have been done on biodegradable polymers due to their excellent mechanical properties, biocompatibility, and biodegradability. In this work, hydroxyapatite (HA) particles were melt-mixing with poly (butylenes succinate) (PBS) to prepare the material, which could be used in the biomedical industry. To develop high-performance PBS for cryogenic engineering applications, it is necessary to investigate the cryogenic mechanical properties and crystallization behavior of HA/PBS composites. Cryogenic mechanical behaviors of the composites were studied in terms of tensile and impact strength at the glass transition temperature (-30°C) and compared to their corresponding behaviors at room temperature. With the increase of HA content, the crystallization of HA/PBS composites decreased and crystallization onset temperature shifted to a lower temperature. The diameter of spherulites increased at first and decreased with a further HA content. At the same time, the crystallization rate became slow when the HA content was no more than 15wt% and increased when HA content reached 20wt%. In all, the results we obtained demonstrate that HA/PBS composites reveal a better tensile strength at -30°C in contrast to the strength at room temperature. HA particles with different amount affect the crystallization of PBS in different ways. Copyright © 2013 Wiley Periodicals, Inc.

  19. Slag Behavior in Gasifiers. Part I: Influence of Coal Properties and Gasification Conditions

    Directory of Open Access Journals (Sweden)

    Ping Wang

    2013-02-01

    Full Text Available In the entrained-flow gasifiers used in integrated gasification combined cycle (IGCC plants, the majority of mineral matter transforms to liquid slag on the wall of the gasifier and flows out the bottom. However, a small fraction of the mineral matter is entrained (as fly ash with the raw syngas out of the gasifier to downstream processing. This molten/sticky fly ash could cause fouling of the syngas cooler. To improve gasification availability through better design and operation of the gasification process, a better understanding of slag behavior and the characteristics of the slagging process is needed. Char/ash properties, gas compositions in the gasifier, the gasifier wall structure, fluid dynamics, and plant operating conditions (mainly temperature and oxygen/carbon ratio all affect slagging behavior. Because coal has varying ash content and composition, different operating conditions are required to maintain the slag flow and limit problems downstream. In Part I, we review the main types and the operating conditions of entrained-flow gasifiers and coal properties used in IGCC plants; we identify and discuss the key coal ash properties and the operating conditions impacting slag behavior; finally, we summarize the coal quality criteria and the operating conditions in entrained-flow gasifiers. In Part II, we discuss the constitutive modeling related to the rheological studies of slag flow.

  20. Influence of operating parameters on surface properties of RF glow discharge oxygen plasma treated TiO{sub 2}/PET film for biomedical application

    Energy Technology Data Exchange (ETDEWEB)

    Pandiyaraj, K. Navaneetha, E-mail: dr.knpr@gmail.com [Surface Engineering Laboratory, Department of Physics, Sri Shakthi Institute of Engineering and Technology, L and T by pass, Chinniyam Palayam (post), Coimbatore 641062 (India); Deshmukh, R.R. [Department of Physics, Institute of Chemical Technology, Matunga, Mumbai 400 019 (India); Mahendiran, R. [Surface Engineering Laboratory, Department of Physics, Sri Shakthi Institute of Engineering and Technology, L and T by pass, Chinniyam Palayam (post), Coimbatore 641062 (India); Su, Pi-G [Department of Chemistry, Chinese Culture University, Taipei 111, Taiwan (China); Yassitepe, Emre; Shah, Ismat [Department of Physics and Astronomy, Department of Materials Science and Engineering, University of Delaware, 208 Dupont Hall, Newark (United States); Perni, Stefano [School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff (United Kingdom); Prokopovich, Polina [School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff (United Kingdom); Institute of Medical Engineering and Medical Physics, School of Engineering, Cardiff University (United Kingdom); Nadagouda, Mallikarjuna N., E-mail: Nadagouda.Mallikarjuna@epamail.epa.gov [The U.S. Environmental Protection Agency, ORD, NRMRL, WSWRD, 26W. Martin Luther King Drive, Cincinnati, OH 45268 (United States)

    2014-03-01

    In this paper, a thin transparent titania (TiO{sub 2}) film was coated on the surface of flexible poly(ethylene terephthalate) (PET) film using the sol–gel method. The surface properties of the obtained TiO{sub 2}/PET film were further improved by RF glow discharge oxygen plasma as a function of exposure time and discharge power. The changes in hydrophilicity of TiO{sub 2}/PET films were analyzed by contact angle measurements and surface energy. The influence of plasma on the surface of the TiO{sub 2}/PET films was analyzed by atomic force microscopy (AFM) as well as the change in chemical state and composition that were investigated by X-ray photo electron spectroscopy (XPS). The cytotoxicity of the TiO{sub 2}/PET films was analyzed using human osteoblast cells and the bacterial eradication behaviors of TiO{sub 2}/PET films were also evaluated against Staphylococcus bacteria. It was found that the surface roughness and incorporation of oxygen containing polar functional groups of the plasma treated TiO{sub 2}/PET films increased substantially as compared to the untreated one. Moreover the increased concentration of Ti{sup 3+} on the surface of plasma treated TiO{sub 2}/PET films was due to the transformation of chemical states (Ti{sup 4+} → Ti{sup 3+}). These morphological and chemical changes are responsible for enhanced hydrophilicity of the TiO{sub 2}/PET films. Furthermore, the plasma treated TiO{sub 2}/PET film exhibited no citotoxicity against osteoblast cells and antibacterial activity against Staphylococcus bacteria which can find application in manufacturing of biomedical devices. - Graphical abstract: Mechanism of plasma treatment on the surface of TiO{sub 2}/PET films. - Highlights: • Investigated the surface properties of TiO{sub 2}/PET films modified by O{sub 2} plasma • Studied the effect of operating parameters on surface properties of TiO{sub 2}/PET films • Mechanism of the plasma treatment on TiO{sub 2}/PET was clearly investigated.