Clayton, Christopher E.
2002-04-01
Among all the advanced accelerator concepts that use lasers as the power source, most of the effort to date has been with the idea of using a laser pulse to excite a accelerating mode in a plasma. Within this area, there are a variety of approaches for creating the accelerating mode, as indicated by the other talks in this session. What is common to these approaches is the physics of how a laser pulse pushes on plasma electrons to organize electron-density perturbations, the sources of the ultra-high (> GeV/M) accelerating gradients. It is the "ponderomotive force", proportional to the local gradient of the of the laser intensity, that pushes plasma electrons forward (on the leading edge of the pulse) and backwards (on the trailing edge) which leads to harmonic motion of the electrons. As the laser pulse moves through the plasma at group velocity Vg c, the oscillating electrons show up macroscopically as a plasma mode or wave with frequency w equal to the plasma frequency and k = w/Vg. For short laser pulses, this is the Laser Wakefield Accelerator (LWFA) concept. Closely related is the Plasma Beat-Wave Acceleration (PBWA) concept. Here, the laser pulse that perturbs the plasma is composed of two closely-spaced frequencies that "beat", i.e., periodically constructively and destructively interfere, forming an electromagnetic beat wave. One can visualize this as a train of short pulses. If this beating frequency is set to the plasma frequency, then each pulse in the train will reinforce the density perturbation caused by the previous pulse. The principal advantage of multiple pulses driving up the plasma wave as opposed to a single pulse is in efficiency, allowing for the production of relatively large diameter (more 1-D like) accelerating modes. In this talk I will discuss past, current and planned PBWA experiments which are taking place at UCLA, RAL in England, and LULI in France.
Possible instabilities in the beat wave accelerator
In this article the concept of the beat wave accelerator is studied with emphasis put on the plasma physics. An important effect is the relativistic nature of the electrons oscillating in the electric field of the beat wave. Various instabilities are presented which could limit the overall efficiency of the accelerating process. (author)
Continuing studies of the plasma beat wave accelerator
This is a proposal for the release of third year funds for the ''Plasma Beat Wave Accelerator'' program (PBWA) at UCLA under the direction of Professor C. Joshi. This report is also a summary of progress on this project since March 1990; i.e., the date of the last report to the DOE. Once again we note that although the program is for historical reasons called the Plasma Beat Wave Accelerator Program, our group is active in all areas of applications of lasers and plasmas in future high energy accelerators. These are as follows: heat gradient plasma structures; excited by plasma beat wave technique; laser wake field technique; and plasma wake field technique. Development of a photoinjector-driven, 20 MeV linac; and theoretical studies of the plasma lens and use of plasmas at the final focus
Beat-wave accelerator studies at the Rutherford Appleton Laboratory
The study carried out in 1982-83 at the Rutherford Appleton Laboratory to examine how one might use the beat-wave principle to construct a useful high energy accelerator is reviewed, and comments are made on later developments. A number of problems are evident to which solutions cannot at present be foreseen. (author)
Measurements of beat wave accelerated electrons in a toroidal plasma
Electrons are accelerated by large amplitude electron plasma waves driven by counter-propagating microwaves with a difference frequency approximately equal to the electron plasma frequency. Energetic electrons are observed only when the phase velocity of the wave is in the range 3ve ph e (vph was varied 2ve ph e), where ve is the electron thermal velocity, (kTe/me)1/2. As the phase velocity increases, fewer electrons are accelerated to higher velocities. The measured current contained in these accelerated electrons has the power dependence predicted by theory, but the magnitude is lower than predicted
Recent results on the beat wave acceleration of externally injected electrons on a plasma
In the Plasma Beat Wave Accelerator (PBWA) two laser beams of slightly different frequencies resonantly beat in a plasma in such a way that their frequency and wavenumber differences correspond to the plasma wave frequency and wavenumber. The amplitude-modulated electromagnetic wave envelope of the laser pulse exerts a periodic nonlinear force on the plasma electrons, causing them to bunch. The resulting space-charge wave can have a phase velocity nearly equal to the speed of light. If an electron bunch is injected with a velocity close to this it can be trapped and accelerated. The UCLA program investigating PBWA has found that tunnel or multi-photon ionized plasmas a re homogeneous enough for coherent macroscopic acceleration. The laser pulse should be short, and the peak laser intensity should be such that Iλ2 ∼ 2 x 1016 W/cm2 μm2 in order to get substantial beat wave amplitudes. tab., 3 refs
Inverse free electron laser beat-wave accelerator research
A calculation on the stabilization of the sideband instability in the free electron laser (FEL) and inverse FEL (IFEL) was completed. The issue arises in connection with the use of a tapered (''variable-parameter'') undulator of extended length, such as might be used in an ''enhanced efficiency'' traveling-wave FEL or an IFEL accelerator. In addition, the FEL facility at Columbia was configured as a traveling wave amplifier for a 10-kW signal from a 24-GHz magnetron. The space charge field in the bunches of the FEL was measured. Completed work has been published
Proof-of-principle experiment of the vacuum beat wave accelerator
The vacuum beat wave accelerator (VBWA) is discussed and design parameters for proof-of-principle experiment are presented. The VBWA utilizes two focused laser beams of differing wavelengths to generate a beat wave that can impart a net acceleration to charged particles. Theory and simulations show that the single-stage energy gain of the VBWA is limited by diffraction of the laser beams, particle slippage in phase and velocity, and radial walk-off. In the simulations the particles are synchronous with the beat wave for a short interval of time and the energy gain has the nature of an impulse delivered near the focal region. Simulations also show that the problem of radial walk-off may be ameliorated by using a converging beam of particles. For terawatt-level laser beams, with wavelengths 1 μm and 0.5 μm, and a 4.5 MeV finite-emittance electron beam the energy can be increased to ∼12.5MeV in a non-synchronous interaction over a distance of under 4 mm, with a peak acceleration gradient >15GeV/m and an estimated trapping fraction of -1%. copyright 1997 American Institute of Physics
The first phase of experiments on beat wave acceleration have been completed at UCLA. Here we examined the suitability of a theta pinch as a plasma source. The beatwave was excited to amplitudes providing GeV/m-scale accelerating fields. However, trapped magnetic fields within the theta-pinch plasma hindered the injection of test particles. Optical diagnostics were developed to measure the accelerating gradient-length product which was found to be around 3 MeV. Future plans are also discussed. copyright 1989 American Institute of Physics
Modulational instability and its consequences for the beat-wave accelerator
The modulational instability caused by the coupling of a Langmuir wave to the ion motion is investigated in the domain of large v/sub L//V/sub te/>1 ratios, where v/sub L/ and v/sub t//sub e/ denote the pump Langmuir-wave quiver velocity and the electron thermal velocity, respectively. A convenient approximate expression for the growth rate is given for v/sub L//v/sub te/<50(A/Z)/sup 1/6/. The limitation of the beat plasmon growth due to the modulational instability is studied in the context of plasma beat wave experiments and the maximum beat plasmon amplitude is determined numerically
Optical Beat-Wave Experiment on CTIX
Horton, Robert; Hwang, David; Liu, Fei; Zhu, Ben; Evans, Russell
2009-11-01
By launching intense electromagnetic waves at differing frequencies, a wave at the beat (difference) frequency can be created within a region of plasma. The beat wave is efficiently damped, and electron current generated, if the beat frequency is close to local plasma frequency, and if phase velocity is close to electron thermal velocity. Beat-wave acceleration of plasma electrons was previously demonstrated at low plasma density [1]. At the higher densities of the CTIX compact-toroid accelerator, plasma frequencies are such that CO2 lasers (f 30 THz) are a cost-effective driver. An experiment is being prepared to test beat-wave current drive using two TEA CO2 lasers on CTIX. The experiment will test models of wave mixing, quasilinear modification of the velocity distribution, and amplification of seed current by plasma kinetic effects. An application of the methods developed may be standoff current generation in a target plasma. Experimental issues to be addressed include: precisely-timed production of the compressed, target plasma; grating tuning of the CO2 lasers for frequency selection; high-peak-power, simultaneous operation of TEA lasers, design of optics; optical and plasma diagnostics. Initial results will be presented.[4pt] [1] Rogers, J. H. and Hwang, D. Q., Phys. Rev. Lett. v68 p3877 (1992).
Enhancement of Electron Accelaration in Plasma Beat Wave Accelerator by an Additional Laser Beam
Petržílka, Václav; Krlín, Ladislav; Tataronis, J.
volume 25A. Mulhouse: European Physical Society, 2001 - (Silva, C.; Varandas, D.; Campbell, D.), s. 53-56. (Europhysics Conference Abstracts.. 25A). [European Physical Society Conference on Controlled Fusion and Plasma Physics/28th./. Funchal, Madeira (PT), 18.06.2001-22.06.2001] R&D Projects: GA ČR GA202/00/1217 Institutional research plan: CEZ:AV0Z2043910 Keywords : accelerator , plasma Subject RIV: BL - Plasma and Gas Discharge Physics
This paper presents a scheme for electron acceleration by excitation of an electron plasma wave (EPW) by beating two cross focused Cosh-Gaussian (ChG) laser beams in an underdense plasma where ponderomotive nonlinearity is operative. The ponderomotive nonlinearity depends not only on the intensity of first laser beam but also on that of second laser beam. Therefore, the propagation dynamics of one laser beam affects that of other and hence, cross-focusing of the two laser beams takes place. Virial theorem technique has been invoked to study the propagation dynamics of the laser beams. Due to nonuniform intensity distribution along the wavefronts of the laser beams, the background electron concentration gets modified. The amplitude of EPW, which depends on the background electron concentration, is thus nonlinearly coupled with the laser beams. The effects of ponderomotive nonlinearity and cross-focusing of the laser beams on excitation of EPW have been incorporated. The generated plasma wave produces regions of positive and negative charges and thus establishes an electric field that travels along with the plasma wave. If a charged particle is injected into the plasma at approximately the same velocity as plasma wave, it will stay in phase with the field, absorb energy from the field and accelerate steadily. It has been found that by changing the decentered parameter the peak intensity of ChG laser beam can be shifted in the transverse direction and hence, optimum acceleration of the electrons can be obtained. The plasma based electron accelerators can adieu to the era of gargantuan mega-accelerators. (author)
THz radiation by beating Langmuir waves
Son, S; Park, J Y
2013-01-01
An intense terahertz (THz) radiation generated by the beating of two Langmuir waves, which are excited by the forward Raman scattering, is analyzed theoretically. The radiation energy per shot can be as high as 0.1 J, with the duration of 10 pico-second. Appropriate plasma density and the laser characteristics are examined.
This thesis presents my contributions to the electron acceleration experiment using a plasma wave generated by two beating laser pulses at Ecole Polytechnique, Palaiseau, France. The first chapter describes the principle of particle acceleration by laser generated plasma waves. In order to estimate the energy gain, I examine the influence of the plasma wave's longitudinal profile and I obtain a gain of about 1 MeV over an acceleration length of 3 mm. In the second chapter, I present the beam monitor for the injected 3 MeV electron beam. This beam monitor uses optical transition radiation and has a spatial resolution of 10 μm. It is used to align of the laser beam and the electron beam and thus to control the injection of the electrons into the plasma. The third chapter describes the design of the magnetic spectrograph used to analyze the energy spectrum of the accelerated electrons. The study of the class of stigmatic dipole magnets leads to the selection of a quadrupole-dipole combination. This spectrograph is stigmatic at injection energy (3 MeV) and has a large energy range as well as a high angular acceptance. (author)
Investigation of beat-waves generation with high efficiency
A method for generating high power beating radio-frequency wave with high conversion efficiency is proposed. Based on Cherenkov radiation, two longitudinal resonant modes are excited simultaneously and interacted with intense electron beam synchronously. An experiment was carried out and beat-waves with an average power of about 2.3 GW, frequencies of 9.29 GHz and 10.31 GHz, and efficiency of about 40% were obtained. Through controlling the electron energy, the amplitude proportions of the two resonant modes are altered, and different beat-wave patterns are formed
Modulational instability in the beat-wave generation
The coupling of a large amplitude plasmon, generated by the beat-wave process, to ion acoustic waves may lead to modulational or decay instabilities, which are investigated. A general dispersion relation obtainable from Zakharov equations predicts large growth rates (∼ ωsub(pi) for short wavelength modulations. To avoid these, extremely short pulse lengths are required in the beat-wave experiments. Due to the very long wavelength of the beat-plasmon, the decay instability is not likely below the keV-temperatures. (author)
Cardiac beat-to-beat alternations driven by unusual spiral waves
Kim, Tae Yun; Woo, Sung-Jae; Hwang, Seong-min; Hong, Jin Hee; Lee, Kyoung J.
2007-01-01
Alternans, a beat-to-beat temporal alternation in the sequence of heartbeats, is a known precursor of the development of cardiac fibrillation, leading to sudden cardiac death. The equally important precursor of cardiac arrhythmias is the rotating spiral wave of electro-mechanical activity, or reentry, on the heart tissue. Here, we show that these two seemingly different phenomena can have a remarkable relationship. In well controlled in vitro tissue cultures, isotropic populations of rat vent...
Theory of beat wave excitation in an inhomogeneous plasma
The theory of beat wave excitation in a slightly inhomogeneous plasma is presented. While the theory is general it applies directly to the experiments performed in Alaska by the ionospheric heating facilities HIPAS [High Power Auroral Simulation, Radio Sci. 25, 1269 (1990)] and HAARP [High Frequency Active Auroral Research Project, Geophys. Res. Lett. 25, 257 (1998)]. A ray tracing (WKB) formalism appropriate for computations is developed. The computational implementation of this formalism and extensive results will be presented in a follow up to this paper. Also the beat wave excitation of upper-hybrid waves is investigated analytically. The complicated trajectories of these waves in the plasma are described. When this beat wave reaches the plasma wave resonance it can, in the HIPAS-HAARP experiments, attain nonlinear amplitude. The electrostatic upper-hybrid waves are trapped around the density maximum of the ionosphere. This trapping is investigated in detail. Beat wave pumping of the trapped modes is possible using HAARP and HIPAS or with split beams from HAARP
Phase Shifting and the Beating of Complex Waves
Keeports, David
2011-01-01
At the introductory level, the demonstration and analysis of sound beating is usually limited to the superposition of two purely sinusoidal waves with equal amplitudes and very similar frequencies. Under such conditions, an observer hears the periodic variation of the loudness of a sound with an unchanging timbre. On the other hand, when complex…
Standing wave linear accelerator
Consideration is being given to standing wave linear accelerator containing generator, phase shifter, two accelerating resonator sections, charged particle injector and waveguide bridge. Its first arm is oined up with generator via the phase shifter, the second and the third ones-with accelerating sections and the fourth one - with HF-power absorber. HF-power absorber represents a section of circular diaphragmatic wavequide with transformer with input wave and intrawaveguide output load located between injector and the first accelerating section. The section possesses holes in side walls lying on accelerator axis. The distances between centers of the last cell of the fast accelerating section and the first cell of the second accelerating sectiOn equal (2n+3)lambda/4, where n=1, 2, 3..., lambda - wave length of generator. The suggested system enables to improve by one order spectral characteristics of accelerators as compared to the prototype in which magnetrons are used as generator
Space charge wave accelerators
We present an account of experimental observations showing control of the wave phase velocity for a slow wave, measurements of the wave electric field, and indicate how these results might apply to an ion accelerator. An interesting and new possibility is also indicated, namely the use of fast waves for electron accelerators. In this case preliminary estimates indicate that comparable field gradients to those already obtained in the slow wave scheme should be obtainable in fast waves and that these field gradients can be maintained at phase velocities close to the speed of light. (orig./HSI)
Superconducting traveling wave accelerators
This note considers the applicability of superconductivity to traveling wave accelerators. Unlike CW operation of a superconducting standing wave or circulating wave accelerator section, which requires improvement factors (superconductor conductivity divided by copper conductivity) of about 106 in order to be of practical use, a SUperconducting TRaveling wave Accelerator, SUTRA, operating in the pulsed mode requires improvement factors as low as about 103, which are attainable with niobium or lead at 4.2K, the temperature of liquid helium at atmospheric pressure. Changing from a copper traveling wave accelerator to SUTRA achieves the following. (1) For a given gradient SUTRA reduces the peak and average power requirements typically by a factor of 2. (2) SUTRA reduces the peak power still further because it enables us to increase the filling time and thus trade pulse width for gradient. (3) SUTRA makes possible a reasonably long section at higher frequencies. (4) SUTRA makes possible recirculation without additional rf average power. 8 references, 6 figures, 1 table
Terahertz generation by beating two Langmuir waves in a warm and collisional plasma
Terahertz (THz) radiation generated by beating of two Langmuir waves in a warm and collisional plasma is discussed theoretically. The critical angle between the two Langmuir waves and the critical wave-length (wave vector) of Langmuir waves for generating THz radiation are obtained analytically. Furthermore, the maximum radiation energy is obtained. We find that the critical angle, the critical wave-length, and the generated radiation energy strongly depend on plasma temperature and wave-length of the Langmuir waves. That is, the THz radiation generated by beating of two Langmuir waves in a warm and collisional plasma can be controlled by adjusting the plasma temperature and the Langmuir wave-length
Terahertz generation by beating two Langmuir waves in a warm and collisional plasma
Zhang, Xiao-Bo; Qiao, Xin; Cheng, Li-Hong; Tang, Rong-An; Zhang, Ai-Xia; Xue, Ju-Kui, E-mail: xuejk@nwnu.edu.cn [Key Laboratory of Atomic & Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronics Engineering, Northwest Normal University, Lanzhou 730070 (China)
2015-09-15
Terahertz (THz) radiation generated by beating of two Langmuir waves in a warm and collisional plasma is discussed theoretically. The critical angle between the two Langmuir waves and the critical wave-length (wave vector) of Langmuir waves for generating THz radiation are obtained analytically. Furthermore, the maximum radiation energy is obtained. We find that the critical angle, the critical wave-length, and the generated radiation energy strongly depend on plasma temperature and wave-length of the Langmuir waves. That is, the THz radiation generated by beating of two Langmuir waves in a warm and collisional plasma can be controlled by adjusting the plasma temperature and the Langmuir wave-length.
The possibility of relativistic effects on the parametric instabilities of large amplitude beat waves in a transversely magnetized plasma has been investigated. The relativistic Vlasov equation in gyrokinetic variables has been employed to find the nonlinear response of the plasma electrons. It is noticed that the extreme relativistic consideration does not have any significant effects on the various parametric instabilities of the beat waves in the plasma. (author). 11 refs
Recently attention has focused on charged particle acceleration in a plasma by a fast, large amplitude, longitudinal electron plasma wave. The plasma beat wave and plasma wakefield accelerators are two efficient ways of producing ultra-high accelerating gradients. Starting with the plasma beat wave accelerator (PBWA) and laser wakefield accelerator (LWFA) schemes and the plasma wakefield accelerator (PWFA) steady progress has been made in theory, simulations and experiments. Computations are presented for the study of LWFA. (author)
Observation of Atom-Wave Beats Using a Kerr Modulator for Atom Waves.
Décamps, B; Gillot, J; Vigué, J; Gauguet, A; Büchner, M
2016-02-01
A phase modulation puts the atom in a coherent superposition of quantum states with different kinetic energies. We have detected the interference of such modulated waves at the output of our atom interferometer, and we have observed beats at the difference of the modulation frequencies and its harmonics, in good agreement with theory. The phase modulations were produced by a Kerr phase modulator, i.e., by the propagation of the atom wave in a time-dependent electric field. An extension of this technique to electron interferometry should open the way to very high temporal resolution in electron microscopy. PMID:26894710
On the Interaction of Two Beating Electrostatic Waves with Plasma Electrons
Malá, Z.
2002-01-01
This paper is devoted to the study of the interaction of particles with two beating plasma waves. We follow the instructional article by Ott and Dum. According to them, the sum of wave actions during the interaction is constant, supposing the effect of trapped particles on the beat can be neglected. In the present paper, this problem is solved more generally, just for the case of trapped and also untrapped particles in the wave. Our study shows that the sum of wave actions is constant also in the case when the influence of the trapped particles on the amplitudes of two waves was considered. On the contrary this conclusion is not valid if it is supposed that two original waves are amplitude modulated e.g. by the influence of the interaction of the beat with particles.
Observation of Quantum Beat in Rb by Parametric Four-Wave Mixing
ZHU Chang-Jun; HE Jun-Fang; XUE Bing; ZHAI Xue-Jun
2007-01-01
@@ Two coupled parametric four-wave-mixing processes in Rb atoms are studied using perturbation theory, which reveals clear evidence of the appearance of quantum beat at 608cm-1, corresponding to the energy difference of the 7s - 5d states of Rb atoms, in the parametric four-wave-mixing signals. A pump-probe technique is utilized to observe the quantum beat. Time-varying characteristics of the quantum beat are investigated using time-dependent Fourier transform. The results show that the time-varying characteristics of the quantum beat not only offers a sensitive detecting method for observing the decay of atomic wave packets, but also provides a potential tool for monitoring the dissociation of molecules.
Possible parametric instabilities of beat waves in a transversely magnetized plasma
The effect of an external magnetic field on the various possible parametric instabilities of the longitudinal beat wave at the difference frequency of two incident laser beams in a hot plasma has been thoeretically investigated. The kinetic equation is employed to obtain the nonlinear response of the magnetized electrons due to the nonlinear coupling of the beat wave with the low-frequency electrostatic plasma modes. It is noted that the growth rates of the three-wave and the four-wave parametric instabilities can be influenced by the external transverse magnetic field. (author). 20 refs, 3 figs
Beam cooling by using laser-undulator beat wave
Non-Hamiltonian manipulation of internal structure of phase space of charged particle beams can result in much faster cooling than the conventional stochastic cooling. The longitudinal emittance reduction is accomplished by the ponderomotive force of the beat between the undulator and the laser adjusted appropriate in its broadband spectrum through feedback at each turn. (author)
Nonlinear Spatial Landau Damping of Plasma Waves Beating at Plasma Angular Velocity
Kabantsev, A. A.; Driscoll, C. F.
2014-10-01
Experiments on pure electron plasmas characterize the nonlinear beat between two counter-propagating plasma waves, and the spatial Landau damping of the beat wave at the wave/rotation critical radius. The two plasma waves are (mθ = 1 ,kz = 1 , ω =ω* +/-ω1) , giving the beat wave with (mθ = 2 , ω = 2ω*) . The beat wave is resonant with the plasma rotation Ω (r) at radius r* where Ω (r*) =ω* . The net effect of this resonance is an energy exchange through wave-particle interaction between the two primary plasma waves and the background plasma rotation. Initial excitation of only one of the waves leads first to its fast sharing of energy with the other wave, and then followed by a slower combined decay of both waves. In contrast, initial excitation of both waves to (approximately) the same amplitude leads to three alternative scenarios: 1) both plasma waves may show the slow and synchronous decay evolution; 2) one of the waves may decay faster, with temporarily arrested decay of the other; 3) it may switch back and forth (seemingly randomly) between the first two types of evolution. Interestingly, wave/particle energy flow can be reversed when the plasma density profile is made to have a positive density gradient at r*. In this case, spontaneous excitation (instability) of both ω =ω* +/-ω1 plasma waves is observed. Supported by NSF/DoE Partnership Grants PHY-0903877 and DE-SC000245, and DOE/HEDLP Grant DE-SC0008693.
Verma, Kanika; Sajal, Vivek; Kumar, Ravindra; Sharma, Navneet K.
2016-01-01
The decay instability of non-resonant beat mode is investigated in homogeneous, hot, and collision less plasma having transverse static magnetic field. Two counter-propagating X-mode lasers with frequency difference ω1˜ω2≥2 ωp and wave numbers k→ 1 and k→ 2 drive a non-resonant space charge beat wave at phase matching conditions of frequency ω0=ω1˜ω2 and wave numbers k→ 0=k→ 1+k→ 2 . The driven beat wave acts as a pump for decay instability and parametrically excites a pair of lower hybrid wave (ω,k → ) and sideband upper hybrid wave (ω3,k→ 3) propagating in sideward direction so that momentum remains conserved. The sideband wave couples with the driver beat wave to exert ponderomotive force on plasma electrons at frequency ω=ω0+ω3 . The oscillatory motion of plasma electrons due to ponderomotive force and lower hybrid wave causes density perturbation in plasma, which couples with oscillating beat mode by feedback mechanism and gives rise to a sideband wave at resonance. The maximum growth rate is achieved at scattering angels θs˜30 ° and θs˜150 ° . The growth rate becomes half by changing applied magnetic field from ˜90 T to ˜270 T . The suppression of decay instability can be beneficial for parametric excitation of fast plasma wave (coupled with slow plasma wave) by two counter-propagating lasers for electron acceleration.
Wavelength of ocean waves and surf beat at duck from array measurements
Fernandes, A.A.; Menon, H.B.; Sarma, Y.V.B.; Jog, P.D.; Almeida, A.M.
Wavelength of ocean waves and surf beat (infra gravity waves) has for the first time been computed as a function of frequency from different combinations of non-collinear 3-gauge arrays. Data at the 15-gauge polygonal array at 8 m depth at Duck...
Relativistic blast waves that accelerate
An approximate analytical similarity solution is derived for the problem of an ultrarelativistic, adiabatic blast wave which results from a point explosion at the origin of a cold (i.e., nonrelativistic), spherically symmetric gas in which the density decreases fast enough with radius to accelerate the shock wave toward larger radii. This solution includes both the shock propagation law and the details of the postshock flow. It is revelant to models of compact, extragalactic radio sources involving relativistic shock waves, as well as to the supernova shock model for cosmic ray acceleration
Ponderomotive Acceleration by Relativistic Waves
Lau, Calvin; Yeh, Po-Chun; Luk, Onnie; McClenaghan, Joseph; Ebisuzaki, Toshikazu; Tajima, Toshiki
2014-01-01
In the extreme high intensity regime of electromagnetic (EM) waves in plasma, the acceleration process is found to be dominated by the ponderomotive acceleration (PA). While the wakefields driven by the ponderomotive force of the relativistic intensity EM waves are important, they may be overtaken by the PA itself in the extreme high intensity regime when the dimensionless vector potential $a_0$ of the EM waves far exceeds unity. The energy gain by this regime (in 1D) is shown to be (approximately) proportional to $a_0^2$. Before reaching this extreme regime, the coexistence of the PA and the wakefield acceleration (WA) is observed where the wave structures driven by the wakefields show the phenomenon of multiple and folded wave-breakings. Investigated are various signatures of the acceleration processes such as the dependence on the mass ratio for the energy gain as well as the energy spectral features. The relevance to high energy cosmic ray acceleration and to the relativistic laser acceleration is conside...
Sequentially pulsed traveling wave accelerator
Caporaso, George J.; Nelson, Scott D.; Poole, Brian R.
2009-08-18
A sequentially pulsed traveling wave compact accelerator having two or more pulse forming lines each with a switch for producing a short acceleration pulse along a short length of a beam tube, and a trigger mechanism for sequentially triggering the switches so that a traveling axial electric field is produced along the beam tube in synchronism with an axially traversing pulsed beam of charged particles to serially impart energy to the particle beam.
Wave Detection in Acceleration Plethysmogram
Ahn, Jae Mok
2015-01-01
Objectives Acceleration plethysmogram (APG) obtained from the second derivative of photoplethysmography (PPG) is used to predict risk factors for atherosclerosis with age. This technique is promising for early screening of atherosclerotic pathologies. However, extraction of the wave indices of APG signals measured from the fingertip is challenging. In this paper, the development of a wave detection algorithm including a preamplifier based on a microcontroller that can detect the a, b, c, and ...
Verma, Kanika; Sajal, Vivek, E-mail: vsajal@rediffmail.com; Kumar, Ravindra; Sharma, Navneet K. [Department of Physics and Materials Science and Engineering, Jaypee Institute of Information Technology, Noida 201307, Uttar Pradesh (India); Baliyan, Sweta [Department of Physics, Maitreyi College, University of Delhi, New Delhi 110021 (India)
2015-06-15
The stimulated Brillouin scattering (SBS) of nonresonant beat mode in the presence of static magnetic field is investigated in a plasma. Two counter-propagating lasers of frequencies (ω{sub 1} and ω{sub 2}) and wave vectors (k{sub 1} and k{sub 2}) drive a nonresonant space charge beat mode at the phase matching condition of frequency ω{sub 0}≈ω{sub 1}∼ω{sub 2} and wave number k{sup →}{sub 0}≈k{sup →}{sub 1}+k{sup →}{sub 2}. The driver wave parametrically excites a pair of ion acoustic wave (ω,k{sup →}) and a sideband electromagnetic wave (ω{sub 3},k{sup →}{sub 3}). The beat wave couples with the sideband electromagnetic wave to exert a nonlinear ponderomotive force at the frequency of ion acoustic wave. Density perturbations due to ion acoustic wave and ponderomotive force couple with the oscillatory motion of plasma electron due to velocity of beat wave to give rise to a nonlinear current (by feedback mechanism) responsible for the growth of sideband wave at resonance. The growth rate of SBS was reduced (from ∼10{sup 12}s{sup −1} to 10{sup 10}s{sup −1}) by applying a transverse static magnetic field ∼90 T. The present study can be useful for the excitation of fast plasma waves (for the purpose of electron acceleration) by two counter-propagating laser beams.
Excitation of plasmons and phonons by two transverse electromagnetic waves beating in a plasma
The beating of two transverse electromagnetic waves in a plasma on a longitudinal wave (plasmon, phonon) is demonstrated experimentally with a double microwave bench in the X band. The detection of the coupling is made by two methods: (a) a direct absorption method on one pump wave; (b) an heterodyne scattering of a third wave in near absorption condition. These methods are optimal in the sense that the first one allows the detection of the whole action transfer between the pumps (Manley-Rowe relations for convective damping), while in the second case the scattered wave is the spatially antiphase conjugate of pump wave 2 for a wave 3 close to pump wave 1
Destructive tsunami-like wave generated by surf beat over a coral reef during Typhoon Haiyan.
Roeber, Volker; Bricker, Jeremy D
2015-01-01
Storm surges cause coastal inundation due to setup of the water surface resulting from atmospheric pressure, surface winds and breaking waves. Here we show that during Typhoon Haiyan, the setup generated by breaking waves near the fringing-reef-protected town of Hernani, the Philippines, oscillated with the incidence of large and small wave groups, and steepened into a tsunami-like wave that caused extensive damage and casualties. Though fringing reefs usually protect coastal communities from moderate storms, they can exacerbate flooding during strong events with energetic waves. Typical for reef-type bathymetries, a very short wave-breaking zone over the steep reef face facilitates the freeing of infragravity-period fluctuations (surf beat) with little energy loss. Since coastal flood planning relies on phase-averaged wave modelling, infragravity surges are not being accounted for. This highlights the necessity for a policy change and the adoption of phase-resolving wave models for hazard assessment in regions with fringing reefs. PMID:26245839
Efficiency of dispersive wave generation from a dual-frequency beat signal
Webb, K E; Xu, Y Q; Genty, G; Murdoch, S G
2016-01-01
The emission of dispersive waves (DWs) by temporal solitons can be described as a cascaded four-wave mixing process triggered by a pair of monochromatic continuous waves (CWs). We report experimental and numerical results demonstrating that the efficiency of this process is strongly and non-trivially affected by the frequency detuning of the CW pump lasers. We explain our results by showing that individual cycles of the input dual-frequency beat signal can evolve as higher-order solitons whose temporal compression and soliton fission govern the DW efficiency. Analytical predictions based on the detuning dependence of the soliton order are shown to be in excellent agreement with experimental and numerical observations.
Observation of Quantum Beating from Two Coupled Parametric Six-Wave Mixing Signals in Rb
ZHU Chang-Jun; HE Jun-Fang; ZHAI Xue-Jun; XUE Bing
2008-01-01
Two processes of coupled difference-frequency axially phase-matched parametric six-wave mixing are carried out in Rb vapour by two-photon excitation using fs laser pulses, and parametric six-wave mixing signals in the infrared and near infrared regime are detected. The infrared parametric six-wave mixing signals are up-converted into the visible spectral range by sum-frequency mixing with the pump laser in a LiI03 crystal. Moreover, quantum beating at 608cm-1, corresponding to the 7s - 5d energy difference in Rb, is observed from the sum-frequency signal at 495 nm. As a result, we obtain modulated light signals in the visible, near infrared and infrared spectral ranges, and study the interference between 7s and 5d states of Rb.
Laser beat wave resonant terahertz generation in a magnetized plasma channel
Bhasin, Lalita; Tripathi, V. K. [Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016 (India); Kumar, Pawan, E-mail: kumarpawan-30@yahoo.co.in [Department of Physics, Raj Kumar Goel Institute of Technology, Ghaziabad, Uttar Pradesh 201003 (India)
2016-02-15
Resonant excitation of terahertz (THz) radiation by nonlinear mixing of two lasers in a ripple-free self created plasma channel is investigated. The channel has a transverse static magnetic field and supports a THz X-mode with phase velocity close to the speed of light in vacuum when the frequency of the mode is close to plasma frequency on the channel axis and its value decreases with the intensity of lasers. The THz is resonantly driven by the laser beat wave ponderomotive force. The THz amplitude scales almost three half power of the intensity of lasers as the width of the THz eigen mode shrinks with laser intensity.
Generation of fast and slow upper hybrid waves by two plasmon decay of non-resonant beating mode of two counter-propagating X-mode lasers is modelled in magnetized plasma. Two counter-propagating lasers having frequencies and wave-vectors (ω1,k1) and (ω2,k2), respectively, generate a non resonant beat wave at frequency difference ω0≈ω1∼ω2 and wave number k→0≈k→1+k→2 which parametrically excites a pair of copropagating fast and slow upper hybrid waves at ω0≈2ωh+(3k12vth2/ωh) (1−ωh/ω1) where ωh and vth are the upper hybrid frequency and electron thermal speed, respectively. The fast upper hybrid wave can be utilized for electron acceleration because its phase velocity is close to c. The growth rate of decay process is Γ∼ωp/10 at scattering angle θs∼5π/6 and magnetic field ∼90 T, which is one order higher as compared to the growth rate of Raman process. The growth rate can be further enhanced (∼20%) by increasing the magnetic field ∼450 T
Collective acceleration of protons by the plasma waves in a counterstreaming electron beam
A novel advanced accelerator is proposed. The counterstreaming electron beam accelerator relies on the same physical mechanism as that of the plasma accelerator but replaces the stationary plasma in the plasma accelerator by a magnetized relativistic electron beam, drifting antiparallel to the driving source and the driven particles, as the wave supporting medium. The plasma wave in a counterstreaming electron beam can be excited either by a density-ramped driving electron beam or by properly beating two laser beams. The fundamental advantages of the counterstreaming electron beam accelerator over the plasma accelerator are a longer and tunable plasma wavelength, a longer pump depletion length or a larger transformer ratio, and easier pulse shaping for the driving source and the driven beam. Thus the energy gain of the driven particles can be greatly enhanced whereas the trapping threshold can be dramatically reduced so as to admit the possibility for proton acceleration
Singh, Arvinder; Gupta, Naveen
2015-06-01
A scheme for beat wave excitation of electron plasma wave (EPW) is proposed by relativistic cross-focusing of two coaxial Cosh-Gaussian (ChG) laser beams in an under dense plasma. The plasma wave is generated on account of beating of two coaxial laser beams of frequencies ω1 and ω2 . The mechanism for laser produced nonlinearity is assumed to be relativistic nonlinearity in electron mass. Following moment theory approach in Wentzel Kramers Brillouin (W.K.B) approximation, the coupled differential equations governing the evolution of spot size of laser beams with distance of propagation have been derived. The relativistic nonlinearity depends not only on the intensity of first laser beam but also on the intensity of second laser beam. Therefore, propagation dynamics of one laser beam affect that of second beam and hence cross-focusing of the two laser beams takes place. Due to non uniform intensity distribution of pump laser beams, the background electron concentration gets modified. The amplitude of EPW, which depends on the background electron concentration, thus gets nonlinearly coupled with the laser beams. The effects of relativistic electron mass nonlinearity and the cross-focusing of pump beams on excitation of EPW have been incorporated. Numerical simulations have been carried out to investigate the effect of laser as well as plasma parameters on cross-focusing of laser beams and further its effect on power of excited EPW.
Nondiffracting Accelerating Waves: Weber waves and parabolic momentum
Bandres, Miguel A
2012-01-01
Diffraction is one of the universal phenomena of physics, and a way to overcome it has always represented a challenge for physicists. In order to control diffraction, the study of structured waves has become decisive. Here, we present nondiffracting spatially accelerating solutions of the Maxwell equations: the Weber waves. These nonparaxial waves propagate along a parabolic trajectory while preserving its shape to a good approximation. They are expressed in analytic closed form and naturally separate in forward and backward propagation. We show that the Weber waves are self-healing, can form periodic breather waves, and have a well-defined conserved quantity: the parabolic momentum. We find that our Weber waves for moderate to large values of the parabolic momenta can be described by a modulated Airy function. Because the Weber waves are exact time-harmonic solution of the wave equation, they have implications to many linear wave systems in nature, ranging from acoustic and elastic waves to surface waves in ...
Tereshchenko, E. D.; Shumilov, O. I.; Kasatkina, E. A.; Gomonov, A. D.
2014-07-01
Observations of extremely low frequency (ELF, 3-3000 Hz) radio waves generated by a "beat-wave" (BW) high frequency (~ 4.04-4.9 MHz) ionospheric heating are presented. ELF waves were registered with the ELF receiver located at Lovozero (68°N, 35°E), 660 km east from the European Incoherent Scatter Tromso heating facility (69.6°N, 19.2°E). Frequency shifts between the generated beat-wave and received ELF waves were detected in all sessions. It is shown that the amplitudes of ELF waves depend on the auroral electrojet current strength. Our results showing a strong dependence of ELF signal intensities on the substorm development seem to support the conclusion that electrojet currents may affect the BW generation of ELF/VLF waves.
Traveling Wave Accelerating Structure for a Superconducting Accelerator
Kanareykin, Alex; Solyak, Nikolay
2005-01-01
We are presenting a superconducting traveling wave accelerating structure (STWA) concept, which may prove to be of crucial importance to the International Linear Collider. Compared to the existing design of a TESLA cavity, the traveling wave structure can provide ~20-40% higher accelerating gradient for the same aperture and the same peak surface magnetic RF field. The recently achieved SC structure gradient of 35 MV/m can be increased up to ~50 MV/m with the new STWA structure design. The STWA structure is supposed to be installed into the superconducting resonance ring and is fed by the two couplers with appropriate phase advance to excite a traveling wave inside the structure. The system requires two independent tuners to be able to adjust the cavity and feedback waveguide frequencies and hence to reduce the unwanted backward wave. In this presentation we discuss the structure design, optimization of the parameters, tuning requirements and plans for further development.
Oscillator and system development on the VULCAN glass laser system for the plasma beat-wave program
This thesis describes the oscillator and system development on the VULCAN glass laser undertaken in support of the RAL Plasma Beat-wave experiments. This program seeks to evaluate advanced particle acceleration schemes for a new generation of machines for fundamental research in high energy physics. The experiments required two synchronised high power laser pulses of slightly different wavelength. These pulses were generated using two different laser media; Nd:YAG and Nd:YLF operating at 1.064 and 1.053 microns respectively. The first oscillator system developed operated with both lasing media housed in the same laser cavity. Problems with the stability of the optical output required the development of a second system which housed the two lasing media in separate cavities. The second aspect of the development work, described in this thesis, was the reconfiguration of the VULCAN glass laser system to amplify the two laser pulses to power levels of 0.5 TW per pulse. The first scheduled experiment required the two pulses to be propagated co-linearly. To amplify the pulses to the high output powers required two amplifying media to be used which preferentially amplify the two lasing wavelengths. For the later experiments the two laser pulses were amplified in separate amplifier chains which required the design of an efficient beam combiner. (author)
Beat-Wave Experiments in the Micro Wave Range : Pump Depletion
Andreev, N.; Campos, E; Cros, B.; Godiot, J.; Gorbunov, L.; Matthieussent, G.
1995-01-01
Excitation of electron plasma waves by the mixing of two microwave beams is studied in a laboratory plasma. The first experimental observation of pump wave depletion is presented. The numerical calculations, based on one-dimensional model, describing space-time evolution of eight interacting waves, are in good agreement with experimental data. Estimation of the depletion on the basis of conservation laws is also discussed.
Velocity bunching in travelling wave accelerator with low acceleration gradient
Huang, Rui-Xuan; Li, Wei-Wei; Jia, Qi-Ka
2013-01-01
We present the analytical and simulated results concerning the influences of the acceleration gradient in the velocity bunching process, which is a bunch compression scheme that uses a traveling wave accelerating structure as a compressor. Our study shows that the bunch compression application with low acceleration gradient is more tolerant to phase jitter and more successful to obtain compressed electron beam with symmetrical longitudinal distribution and low energy spread. We also present a transverse emittance compensation scheme to compensate the emittance growth caused by the increasing of the space charge force in the compressing process that is easy to be adjusted for different compressing factors.
Spin wave non-reciprocity and beating in permalloy by the time-resolved magneto-optical Kerr effect
We studied the propagation characteristics of spin wave modes in a permalloy stripe by time-resolved magneto-optical Kerr effect techniques. We observed a beating interference pattern in the time domain under the influence of an electrical square pulse excitation at the centre of the stripe. We also probed the non-reciprocal behaviour of propagating spin waves with a dependence on the external magnetic field. Spatial dependence studies showed that localized edge mode spin waves have a lower frequency than the spin waves at the centre of the stripe, due to the varying magnetization vector across the width of the stripe. (paper)
Soliton radiation beat analysis of optical pulses generated from two continuous-wave lasers
We propose a fibre-based approach for generation of optical frequency combs (OFCs) with the aim of calibration of astronomical spectrographs in the low and medium-resolution range. This approach includes two steps: in the first step, an appropriate state of optical pulses is generated and subsequently moulded in the second step delivering the desired OFC. More precisely, the first step is realised by injection of two continuous-wave (CW) lasers into a conventional single-mode fibre, whereas the second step generates a broad OFC by using the optical solitons generated in step one as initial condition. We investigate the conversion of a bichromatic input wave produced by two initial CW lasers into a train of optical solitons, which happens in the fibre used as step one. Especially, we are interested in the soliton content of the pulses created in this fibre. For that, we study different initial conditions (a single cosine-hump, an Akhmediev breather, and a deeply modulated bichromatic wave) by means of soliton radiation beat analysis and compare the results to draw conclusion about the soliton content of the state generated in the first step. In case of a deeply modulated bichromatic wave, we observed the formation of a collective soliton crystal for low input powers and the appearance of separated solitons for high input powers. An intermediate state showing the features of both, the soliton crystal and the separated solitons, turned out to be most suitable for the generation of OFC for the purpose of calibration of astronomical spectrographs
Soliton radiation beat analysis of optical pulses generated from two continuous-wave lasers
Zajnulina, M.; Giannone, D.; Haynes, R.; Roth, M. M. [innoFSPEC-VKS, Leibniz Institute for Astrophysics, An der Sternwarte 16, 14482 Potsdam (Germany); Böhm, M. [innoFSPEC-InFaSe, University of Potsdam, Am Mühlenberg 3, 14476 Golm (Germany); Blow, K. [Aston Institute of Photonic Technologies, Aston Triangle, Birmingham B4 7ET (United Kingdom); Rieznik, A. A. [Instituto Tecnologico de Buenos Aires and CONICET, Buenos Aires (Argentina)
2015-10-15
We propose a fibre-based approach for generation of optical frequency combs (OFCs) with the aim of calibration of astronomical spectrographs in the low and medium-resolution range. This approach includes two steps: in the first step, an appropriate state of optical pulses is generated and subsequently moulded in the second step delivering the desired OFC. More precisely, the first step is realised by injection of two continuous-wave (CW) lasers into a conventional single-mode fibre, whereas the second step generates a broad OFC by using the optical solitons generated in step one as initial condition. We investigate the conversion of a bichromatic input wave produced by two initial CW lasers into a train of optical solitons, which happens in the fibre used as step one. Especially, we are interested in the soliton content of the pulses created in this fibre. For that, we study different initial conditions (a single cosine-hump, an Akhmediev breather, and a deeply modulated bichromatic wave) by means of soliton radiation beat analysis and compare the results to draw conclusion about the soliton content of the state generated in the first step. In case of a deeply modulated bichromatic wave, we observed the formation of a collective soliton crystal for low input powers and the appearance of separated solitons for high input powers. An intermediate state showing the features of both, the soliton crystal and the separated solitons, turned out to be most suitable for the generation of OFC for the purpose of calibration of astronomical spectrographs.
Soliton radiation beat analysis of optical pulses generated from two continuous-wave lasers.
Zajnulina, M; Böhm, M; Blow, K; Rieznik, A A; Giannone, D; Haynes, R; Roth, M M
2015-10-01
We propose a fibre-based approach for generation of optical frequency combs (OFCs) with the aim of calibration of astronomical spectrographs in the low and medium-resolution range. This approach includes two steps: in the first step, an appropriate state of optical pulses is generated and subsequently moulded in the second step delivering the desired OFC. More precisely, the first step is realised by injection of two continuous-wave (CW) lasers into a conventional single-mode fibre, whereas the second step generates a broad OFC by using the optical solitons generated in step one as initial condition. We investigate the conversion of a bichromatic input wave produced by two initial CW lasers into a train of optical solitons, which happens in the fibre used as step one. Especially, we are interested in the soliton content of the pulses created in this fibre. For that, we study different initial conditions (a single cosine-hump, an Akhmediev breather, and a deeply modulated bichromatic wave) by means of soliton radiation beat analysis and compare the results to draw conclusion about the soliton content of the state generated in the first step. In case of a deeply modulated bichromatic wave, we observed the formation of a collective soliton crystal for low input powers and the appearance of separated solitons for high input powers. An intermediate state showing the features of both, the soliton crystal and the separated solitons, turned out to be most suitable for the generation of OFC for the purpose of calibration of astronomical spectrographs. PMID:26520070
Beat-the-wave evacuation mapping for tsunami hazards in Seaside, Oregon, USA
Priest, George R.; Stimely, Laura; Wood, Nathan J.; Madin, Ian; Watzig, Rudie
2016-01-01
Previous pedestrian evacuation modeling for tsunamis has not considered variable wave arrival times or critical junctures (e.g., bridges), nor does it effectively communicate multiple evacuee travel speeds. We summarize an approach that identifies evacuation corridors, recognizes variable wave arrival times, and produces a map of minimum pedestrian travel speeds to reach safety, termed a “beat-the-wave” (BTW) evacuation analysis. We demonstrate the improved approach by evaluating difficulty of pedestrian evacuation of Seaside, Oregon, for a local tsunami generated by a Cascadia subduction zone earthquake. We establish evacuation paths by calculating the least cost distance (LCD) to safety for every grid cell in a tsunami-hazard zone using geospatial, anisotropic path distance algorithms. Minimum BTW speed to safety on LCD paths is calculated for every grid cell by dividing surface distance from that cell to safety by the tsunami arrival time at safety. We evaluated three scenarios of evacuation difficulty: (1) all bridges are intact with a 5-minute evacuation delay from the start of earthquake, (2) only retrofitted bridges are considered intact with a 5-minute delay, and (3) only retrofitted bridges are considered intact with a 10-minute delay. BTW maps also take into account critical evacuation points along complex shorelines (e.g., peninsulas, bridges over shore-parallel estuaries) where evacuees could be caught by tsunami waves. The BTW map is able to communicate multiple pedestrian travel speeds, which are typically visualized by multiple maps with current LCD-based mapping practices. Results demonstrate that evacuation of Seaside is problematic seaward of the shore-parallel waterways for those with any limitations on mobility. Tsunami vertical-evacuation refuges or additional pedestrian bridges may be effective ways of reducing loss of life seaward of these waterways.
Dust suspensions accelerated by shock waves
Geng, J.H. [Nanjing Univ. of Sci. and Technol. (China). Dept. of Power Eng.; Groenig, H. [Shock Wave Laboratory Technical University of Aachen D-52056 Aachen (Germany)
2000-04-01
The motion of dust suspensions accelerated by shock waves has been experimentally investigated in a vertical shock tube, in which a completely developed plane shock wave of moderate strength propagates into a homogeneously distributed dust suspension with a planar interface. Trajectories of the accelerated interfaces as well as transmitted and reflected shock waves are recorded by using a shadowgraph system with a Cranz-Schardin camera. Two kinds of particle samples, i.e. porous lycopodium particles 30 {mu}m in diameter and corn starch particles with a mean diameter of 10 {mu}m, are employed. The effects of shock wave strength and particle loading ratio are also examined. Experimental data are compared with theoretical results, and the agreement is good. (orig.)
Thermal gravitational waves in accelerating universe
B Ghayour
2013-10-01
Full Text Available Gravitational waves are considered in thermal vacuum state. The amplitude and spectral energy density of gravitational waves are found enhanced in thermal vacuum state compared to its zero temperature counterpart. Therefore, the allowed amount of enhancement depends on the upper bound of WMAP-5 and WMAP-7 for the amplitude and spectral energy density of gravitational waves. The enhancement of amplitude and spectral energy density of the waves in thermal vacuum state is consistent with current accelerating phase of the universe. The enhancement feature of amplitude and spectral energy density of the waves is independent of the expansion model of the universe and hence the thermal effect accounts for it. Therefore, existence of thermal gravitational waves is not ruled out
Yadav, Pinki; Gupta, D. N., E-mail: dngupta@physics.du.ac.in; Avinash, K. [Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India)
2016-01-15
Stimulated Brillouin instability of a beat-wave of two lasers in plasmas with multiple-ion-species (negative-ions) was studied. The inclusion of negative-ions affects the growth of ion-acoustic wave in Brillouin scattering. Thus, the growth rate of instability is suppressed significantly by the density of negative-ions. To obey the phase-matching condition, the growth rate of the instability attains a maxima for an appropriate scattering angle (angle between the pump and scattered sideband waves). This study would be technologically important to have diagnostics in low-temperature plasmas.
Diffusive Shock Acceleration at Cosmological Shock Waves
Kang, Hyesung; Ryu, Dongsu
2012-01-01
We reexamine nonlinear diffusive shock acceleration (DSA) at cosmological shocks in the large scale structure of the Universe, incorporating wave-particle interactions that are expected to operate in collisionless shocks. Adopting simple phenomenological models for magnetic field amplification (MFA) by cosmic-ray (CR) streaming instabilities and Alfv'enic drift, we perform kinetic DSA simulations for a wide range of sonic and Alfv'enic Mach numbers and evaluate the CR injection fraction and a...
Channeled particle acceleration by plasma waves in metals
A solid state accelerator concept utilizing particle acceleration along crystal channels by longitudinal electron plasma waves in a metal is presented. Acceleration gradients of order 100 GV/cm are theoretically possible. Particle dechanneling due to electron multiple scattering can be eliminated with a sufficiently high acceleration gradient. Plasma wave dissipation and generation in metals are also discussed
Pigeon, J J; Joshi, C
2015-01-01
We report on the generation of a train of ~ 2 ps, 10 um laser pulses via multiple four-wave mixing and compression of an infrared laser beat-wave propagating in the negative group velocity dispersion region of bulk GaAs and a combination of GaAs and NaCl. The use of a 200 ps, 106 GHz beat-wave, produced by combining laser pulses amplified on the 10P(20) and 10P(16) transition of a CO2 laser, provides a novel method for generating high-power, picosecond, mid-IR laser pulses at a high repetition rate. By using 165 and 882 GHz beat-waves we show that cascaded phase-mismatched difference frequency generation plays a significant role in the four-wave mixing process in GaAs.
Detection of c, d, and e waves in the acceleration photoplethysmogram.
Elgendi, Mohamed
2014-11-01
Analyzing the acceleration photoplethysmogram (APG) is becoming increasingly important for diagnosis. However, processing an APG signal is challenging, especially if the goal is to detect its small components (c, d, and e waves). Accurate detection of c, d, and e waves is an important first step for any clinical analysis of APG signals. In this paper, a novel algorithm that can detect c, d, and e waves simultaneously in APG signals of healthy subjects that have low amplitude waves, contain fast rhythm heart beats, and suffer from non-stationary effects was developed. The performance of the proposed method was tested on 27 records collected during rest, resulting in 97.39% sensitivity and 99.82% positive predictivity. PMID:25176597
Langmuir Waves and Electron Acceleration at Heliospheric Shocks
Pulupa, Marc Peter
2010-01-01
Radio waves at the local plasma frequency and its harmonic are generated upstream of collisionless shocks in foreshock regions which are magnetically connected to the shock. The radio waves are created in a multi-step process which involves the acceleration of electrons at the shock front, growth of electrostatic Langmuir waves driven by the accelerated electron beam, and conversion of the Langmuir waves into radio waves.These radio waves can be used to remotely determine properties of the s...
Detonation wave initiation of ram accelerator propellants
Bauer, P.; Knowlen, C.
The current ram accelerator operations have shown that data on the ability of the propellants to detonate are required. Previous studies examined the efficacy of initiation techniques based on piston impact. The purpose of the present work is to analyze the effects of detonation wave transmission from a detonating mixture into a low sensitivity mixture. One-dimensional modeling based on the analysis of pressure vs particle velocity for the mixtures is used to interpret experimental data. Furthermore, calculations based on chemical kinetics (CHEMKIN code) are provided. Experimental data together with the modeling of the detonation transmission provide some new insight into the limiting conditions necessary to establish a Chapman-Jouguet (CJ) wave in a detonable mixture.
Acceleration of low energy charged particles by gravitational waves
Voyatzis, G.; Vlahos, L.; Ichtiaroglou, S.; Papadopoulos, D.
2005-01-01
The acceleration of charged particles in the presence of a magnetic field and gravitational waves is under consideration. It is shown that the weak gravitational waves can cause the acceleration of low energy particles under appropriate conditions. Such conditions may be satisfied close to the source of the gravitational waves if the magnetized plasma is in a turbulent state.
Gravitational waves generated by laser accelerated relativistic ions
Gelfer, Evgeny; Kadlecová, Hedvika; Klimo, Ondřej; Weber, Stefan; Korn, Georg
2015-01-01
The generation of gravitational waves by laser accelerated relativistic ions is investigated. The piston and light sail models of laser plasma acceleration are considered and analytical expressions for space-time metric perturbation are derived. For both models the dependence of gravitational waves amplitude on the laser and plasma parameters as well as gravitational waves spectrum and angular distribution are examined
An introduction to acceleration mechanisms
This paper discusses the acceleration of charged particles by electromagnetic fields, i.e., by fields that are produced by the motion of other charged particles driven by some power source. The mechanisms that are discussed include: Ponderamotive Forces, Acceleration, Plasma Beat Wave Acceleration, Inverse Free Electron Laser Acceleration, Inverse Cerenkov Acceleration, Gravity Acceleration, 2D Linac Acceleration and Conventional Iris Loaded Linac Structure Acceleration
Acceleration of cosmic rays by shock waves
In recent years there has been renewed interest in the possibility that the acceleration of cosmic rays should occur, not in discrete sources, but in the diffuse interstellar medium, as a consequence of shock waves associated with supernova remnants. Since the supernova remnants concerned are rather large and indeed tend to dominate the whole interstellar medium it is becoming clear that the problems of acceleration and propagation of cosmic rays cannot be so easily separated. A further difficulty is concerned with the escape of cosmic rays from the galaxy which may be associated with a galactic wind which is partly driven by cosmic ray pressure and therefore not an independent process. These complexities give added interest and significance to the role of cosmic rays in the dynamics of the interstellar medium but of course also make the traditional problems of cosmic ray physics much more difficult to treat. We attempt here to review the current status of investigations into various aspects of the problem of shock acceleration of cosmic rays
Acceleration mechanisms flares, magnetic reconnection and shock waves
Several mechanisms are briefly discussed for the acceleration of particles in the astrophysical environment. Included are hydrodynamic acceleration, spherically convergent shocks, shock and a density gradient, coherent electromagnetic acceleration, the flux tube origin, symmetries and instabilities, reconnection, galactic flares, intergalactic acceleration, stochastic acceleration, and astrophysical shocks. It is noted that the supernova shock wave models still depend critically on the presupernova star structure and the assumption of highly compact presupernova models for type I supernovae. 37 references
Beat-to-Beat Blood Pressure Monitor
Lee, Yong Jin
2012-01-01
This device provides non-invasive beat-to-beat blood pressure measurements and can be worn over the upper arm for prolonged durations. Phase and waveform analyses are performed on filtered proximal and distal photoplethysmographic (PPG) waveforms obtained from the brachial artery. The phase analysis is used primarily for the computation of the mean arterial pressure, while the waveform analysis is used primarily to obtain the pulse pressure. Real-time compliance estimate is used to refine both the mean arterial and pulse pressures to provide the beat-to-beat blood pressure measurement. This wearable physiological monitor can be used to continuously observe the beat-to-beat blood pressure (B3P). It can be used to monitor the effect of prolonged exposures to reduced gravitational environments and the effectiveness of various countermeasures. A number of researchers have used pulse wave velocity (PWV) of blood in the arteries to infer the beat-to-beat blood pressure. There has been documentation of relative success, but a device that is able to provide the required accuracy and repeatability has not yet been developed. It has been demonstrated that an accurate and repeatable blood pressure measurement can be obtained by measuring the phase change (e.g., phase velocity), amplitude change, and distortion of the PPG waveforms along the brachial artery. The approach is based on comparing the full PPG waveform between two points along the artery rather than measuring the time-of-flight. Minimizing the measurement separation and confining the measurement area to a single, well-defined artery allows the waveform to retain the general shape between the two measurement points. This allows signal processing of waveforms to determine the phase and amplitude changes.
Coupler tuning for constant gradient travelling wave accelerating structures
The method of the coupler tuning for the constant gradient traveling wave accelerating structure was described and the formula of coupling coefficient p was deduced on the basis of analyzing the existing methods for the constant impedance traveling wave accelerating structures and coupling-cavity chain equivalent circuits. The method and formula were validated by the simulation result by CST and experiment data. (authors)
Protons Surfatron acceleration by electromagnetic wave in space plasma
In this work fundamental interactions of type wave-particles are discussed. Main object of the investigation is Surfatron accelerations of the protons by single electromagnetic wave. The Surfatron effect of protons acceleration is investigated through numerical simulations, on the basis of nonlinear, nonstationary, second order differential equation for the wave phase at the charged particle’s trajectory. The temporal dynamics of protons Surfatron acceleration for different variants of the initial parameters are studied. The optimal conditions for maximum ultrarelativistic particles Surfatron acceleration by the electromagnetic wave in space plasma are considered. An analytical approximation for protons energy strong growth was done. Key words: Surfatron acceleration, space plasmas, electromagnetic wave, proton, charge trapping
Auroral electron acceleration by lower-hybrid waves
Because the particles and electric fields association with inverted-V electron streams do not have the characteristics expected for acceleration by a quasistatic potential difference, the possiblity that the electrons are stochastically accelerated by waves is investigated. It is demonstrated that the lower hybrid waves seen on auroral field lines have the righ properties to account for the electron acceleration. It is further shown that the lower hybrid wave power measured on auroral field lines can be generated by the streaming ions observed at the boundary of the plasma sheet, and that this wave power is sufficient to account for the electron power observed close to the atmosphere. (author)
Particle acceleration in tangential discontinuities by lower hybrid waves
D. Spicer
2002-01-01
Full Text Available We consider the role that the lower-hybrid wave turbulence plays in providing the necessary resistivity at collisionless reconnection sights. The mechanism for generating the waves is considered to be the lower-hybrid drift instability. We find that the level of the wave amplitude is sufficient enough to heat and accelerate both electrons and ions.
Advanced accelerator and mm-wave structure research at LANL
Simakov, Evgenya Ivanovna [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-06-22
This document outlines acceleration projects and mm-wave structure research performed at LANL. The motivation for PBG research is described first, with reference to couplers for superconducting accelerators and structures for room-temperature accelerators and W-band TWTs. These topics are then taken up in greater detail: PBG structures and the MIT PBG accelerator; SRF PBG cavities at LANL; X-band PBG cavities at LANL; and W-band PBG TWT at LANL. The presentation concludes by describing other advanced accelerator projects: beam shaping with an Emittance Exchanger, diamond field emitter array cathodes, and additive manufacturing of novel accelerator structures.
Electronic excitation by short X-ray pulses: From quantum beats to wave packet revivals
Riviere, Paula; Rost, Jan M
2011-01-01
We propose a simple way to determine the periodicities of wave packets in quantum systems directly from the energy differences of the states involved. The resulting classical periods and revival times are more accurate than those obtained with the traditional expansion of the energies about the central quantum number n, especially when n is low. The latter type of wave packet motion occurs upon excitation of highly charged ions with short XUV or X-ray pulses. Moreover, we formulate the wave packet dynamics in such a form that it directly reveals the origin of phase shifts in the maxima of the autocorrelation function. This phenomenon, so far poorly understood since it is not prominent in the high n regime, becomes a dominant feature in low n wave packet dynamics.
Stochastic particle acceleration by plasma waves in AGN jets
The free energy stored in the stressed magnetic fields in AGN jets could be dissipated via generating turbulent plasma waves. The authors review several key wave-particle resonant interactions and point out the importance of a broad wave spectrum. Under several idealized assumptions, they show that the transit-time damping process can accelerate electrons to TeV energies in an AGN jet environment, and present a preliminary calculation on the evolution of plasma wave, electron, and photon distributions. The authors especially emphasize several open questions on particle acceleration by waves, and argue that a plausible scenario is to energize electrons out of the thermal background via transit-time damping and further accelerate them by the parallel propagating right-handed waves
Thermal gravitational waves in accelerating universe
B Ghayour
2013-01-01
Gravitational waves are considered in thermal vacuum state. The amplitude and spectral energy density of gravitational waves are found enhanced in thermal vacuum state compared to its zero temperature counterpart. Therefore, the allowed amount of enhancement depends on the upper bound of WMAP-5 and WMAP-7 for the amplitude and spectral energy density of gravitational waves. The enhancement of amplitude and spectral energy density of the waves in thermal vacuum state is consistent with curren...
Thomson scattering and ponderomotive intermodulation within standing laser beat waves in plasma.
Sepke, Scott; Lau, Y Y; Holloway, James Paul; Umstadter, Donald
2005-08-01
Electrons in a standing electromagnetic wave--an optical lattice--tend to oscillate due to the quiver and ponderomotive potentials. For sufficiently intense laser fields (Ilamda2 approximately PIC) techniques. This effect resulting in light-frequency conversion has applications both as an infrared light source and as a means to diagnose high laser intensities inside dense plasmas. PMID:16196727
The acceleration of cosmic ray by shock waves
The acceleration of cosmic rays in flows involving shocks and other compressional waves is considered in terms of one-dimensionl, steady flows and the diffusion approximation. The results suggest that very substantial energy conversion can occur. (author)
Reduzzi, M.; Chu, W.-C.; Feng, C.; Dubrouil, A.; Hummert, J.; Calegari, F.; Frassetto, F.; Poletto, L.; Kornilov, O.; Nisoli, M.; Lin, C.-D.; Sansone, G.
2016-03-01
The coherent interaction with ultrashort light pulses is a powerful strategy for monitoring and controlling the dynamics of wave packets in all states of matter. As light presents an oscillation period of a few femtoseconds (T = 2.6 fs in the near infrared spectral range), an external optical field can induce changes in a medium on the sub-cycle timescale, i.e. in a few hundred attoseconds. In this work, we resolve the dynamics of autoionizing states on the femtosecond timescale and observe the sub-cycle evolution of a coherent electronic wave packet in a diatomic molecule, exploiting a tunable ultrashort extreme ultraviolet pulse and a synchronized infrared field. The experimental observations are based on measuring the variations of the extreme ultraviolet radiation transmitted through the molecular gas. The different mechanisms contributing to the wave packet dynamics are investigated through theoretical simulations and a simple three level model. The method is general and can be extended to the investigation of more complex systems.
Beating the spin-down limit on gravitational wave emission from the Vela pulsar
Abadie, J; Abbott, R; Abernathy, M; Accadia, T; Acernese, F; Adams, C; Adhikari, R; Affeldt, C; Allen, B; Allen, G S; Ceron, E Amador; Amariutei, D; Amin, R S; Anderson, S B; Anderson, W G; Antonucci, F; Arai, K; Arain, M A; Araya, M C; Aston, S M; Astone, P; Atkinson, D; Aufmuth, P; Aulbert, C; Aylott, B E; Babak, S; Baker, P; Ballardin, G; Ballmer, S; Barker, D; Barnum, S; Barone, F; Barr, B; Barriga, P; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Bastarrika, M; Basti, A; Bauchrowitz, J; Bauer, Th S; Behnke, B; Beker, M BejgerM G; Bell, A S; Belletoile, A; Belopolski, I; Benacquista, M; Bertolini, A; Betzwieser, J; Beveridge, N; Beyersdorf, P T; Bilenko, I A; Billingsley, G; Birch, J; Birindelli, S; Biswas, R; Bitossi, M; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Bland, B; Blom, M; Bock, O; Bodiya, T P; Bogan, C; Bondarescu, R; Bondu, F; Bonelli, L; Bonnand, R; Bork, R; Born, M; Boschi, V; Bose, S; Bosi, L; Bouhou, B; Boyle, M; Braccini, S; Bradaschia, C; Brady, P R; Braginsky, V B; Brau, J E; Breyer, J; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Britzger, M; Brooks, A F; Brown, D A; Brummit, A; Budzyński, R; Bulik, T; Bulten, H J; Buonanno, A; Burguet--Castell, J; Burmeister, O; Buskulic, D; Buy, C; Byer, R L; Cadonati, L; Cagnoli, G; Cain, J; Calloni, E; Camp, J B; Campagna, E; Campsie, P; Cannizzo, J; Cannon, K; Canuel, B; Cao, J; Capano, C; Carbognani, F; Caride, S; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C; Cesarini, E; Chaibi, O; Chalermsongsak, T; Chalkley, E; Charlton, P; Chassande-Mottin, E; Chelkowski, S; Chen, Y; Chincarini, A; Christensen, N; Chua, S S Y; Chung, C T Y; Chung, S; Clara, F; Clark, D; Clark, J; Clayton, J H; Cleva, F; Coccia, E; Colacino, C N; Colas, J; Colla, A; Colombini, M; Conte, R; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Costa, C A; Coughlin, M; Coulon, J -P; Coward, D M; Coyne, D C; Creighton, J D E; Creighton, T D; Cruise, A M; Culter, R M; Cumming, A; Cunningham, L; Cuoco, E; Dahl, K; Danilishin, S L; Dannenberg, R; D'Antonio, S; Danzmann, K; Das, K; Dattilo, V; Daudert, B; Daveloza, H; Davier, M; Davies, G; Daw, E J; Day, R; Dayanga, T; De Rosa, R; DeBra, D; Debreczeni, G; Degallaix, J; del Prete, M; Dent, T; Dergachev, V; DeRosa, R; DeSalvo, R; Dhurandhar, S; Di Fiore, L; Di Lieto, A; Di Palma, I; Emilio, M Di Paolo; Di Virgilio, A; Díaz, M; Dietz, A; Donovan, F; Dooley, K L; Dorsher, S; Douglas, E S D; Drago, M; Drever, R W P; Driggers, J C; Dumas, J -C; Dwyer, S; Eberle, T; Edgar, M; Edwards, M; Effler, A; Ehrens, P; Engel, R; Etzel, T; Evans, M; Evans, T; Factourovich, M; Fafone, V; Fairhurst, S; Fan, Y; Farr, B F; Fazi, D; Fehrmann, H; Feldbaum, D; Ferrante, I; Fidecaro, F; Finn, L S; Fiori, I; Flaminio, R; Flanigan, M; Foley, S; Forsi, E; Forte, L A; Fotopoulos, N; Fournier, J -D; Franc, J; Frasca, S; Frasconi, F; Frede, M; Frei, M; Frei, Z; Freise, A; Frey, R; Fricke, T T; Friedrich, D; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Galimberti, M; Gammaitoni, L; Garcia, J; Garofoli, J A; Garufi, F; Gáspár, M E; Gemme, G; Genin, E; Gennai, A; Ghosh, S; Giaime, J A; Giampanis, S; Giardina, K D; Giazotto, A; Gill, C; Goetz, E; Goggin, L M; González, G; Gorodetsky, M L; Goßler, S; Gouaty, R; Graef, C; Granata, M; Grant, A; Gras, S; Gray, C; Greenhalgh, R J S; Gretarsson, A M; Greverie, C; Grosso, R; Grote, H; Grunewald, S; Guidi, G M; Guido, C; Gupta, R; Gustafson, E K; Gustafson, R; Hage, B; Hallam, J M; Hammer, D; Hammond, G; Hanks, J; Hanna, C; Hanson, J; Harms, J; Harry, G M; Harry, I W; Harstad, E D; Hartman, M T; Haughian, K; Hayama, K; Hayau, J -F; Hayler, T; Heefner, J; Heitmann, H; Hello, P; Hendry, M A; Heng, I S; Heptonstall, A W; Herrera, V; Hewitson, M; Hild, S; Hoak, D; Hodge, K A; Holt, K; Hong, T; Hooper, S; Hosken, D J; Hough, J; Howell, E J; Huet, D; Hughey, B; Husa, S; Huttner, S H; Ingram, D R; Inta, R; Isogai, T; Ivanov, A; Jaranowski, P; Johnson, W W; Jones, D I; Jones, G; Jones, R; Ju, L; Kalmus, P; Kalogera, V; Kandhasamy, S; Kanner, J B; Katsavounidis, E; Katzman, W; Kawabe, K; Kawamura, S; Kawazoe, F; Kells, W; Kelner, M; Keppel, D G; Khalaidovski, A; Khalili, F Y; Khazanov, E A; Kim, H; Kim, N; King, P J; Kinzel, D L; Kissel, J S; Klimenko, S; Kondrashov, V; Kopparapu, R; Koranda, S; Korth, W Z; Kowalska, I; Kozak, D; Kringel, V; Krishnamurthy, S; Krishnan, B; Królak, A; Kuehn, G; Kumar, R; Kwee, P; Landry, M; Lantz, B; Lastzka, N; Lazzarini, A; Leaci, P; Leong, J; Leonor, I; Leroy, N; Letendre, N; Li, J; Li, T G F; Liguori, N; Lindquist, P E; Lockerbie, N A; Lodhia, D; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lu, P; Luan, J; Lubinski, M; Lück, H; Lundgren, A P; Macdonald, E; Machenschalk, B; MacInnis, M; Mageswaran, M; Mailand, K; Majorana, E; Maksimovic, I; Man, N; Mandel, I; Mandic, V; Mantovani, M; Marandi, A; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Maros, E; Marque, J; Martelli, F; Martin, I W; Martin, R M; Marx, J N; Mason, K; Masserot, A; Matichard, F; Matone, L; Matzner, R A; Mavalvala, N; McCarthy, R; McClelland, D E; McGuire, S C; McIntyre, G; McKechan, D J A; Meadors, G; Mehmet, M; Meier, T; Melatos, A; Melissinos, A C; Mendell, G; Mercer, R A; Merill, L; Meshkov, S; Messenger, C; Meyer, M S; Miao, H; Michel, C; Milano, L; Miller, J; Minenkov, Y; Mino, Y; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Miyakawa, O; Moe, B; Moesta, P; Mohan, M; Mohanty, S D; Mohapatra, S R P; Moraru, D; Moreno, G; Morgado, N; Morgia, A; Mosca, S; Moscatelli, V; Mossavi, K; Mours, B; Mow--Lowry, C M; Mueller, G; Mukherjee, S; Mullavey, A; Müller-Ebhardt, H; Munch, J; Murray, P G; Nash, T; Nawrodt, R; Nelson, J; Neri, I; Newton, G; Nishida, E; Nishizawa, A; Nocera, F; Nolting, D; Ochsner, E; O'Dell, J; Ogin, G H; Oldenburg, R G; O'Reilly, B; O'Shaughnessy, R; Osthelder, C; Ott, C D; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Page, A; Pagliaroli, G; Palladino, L; Palomba, C; Pan, Y; Pankow, C; Paoletti, F; Papa, M A; Parameswaran, A; Pardi, S; Parisi, M; Pasqualetti, A; Passaquieti, R; Passuello, D; Patel, P; Pathak, D; Pedraza, M; Pekowsky, L; Penn, S; Peralta, C; Perreca, A; Persichetti, G; Phelps, M; Pichot, M; Pickenpack, M; Piergiovanni, F; Pietka, M; Pinard, L; Pinto, I M; Pitkin, M; Pletsch, H J; Plissi, M V; Podkaminer, J; Poggiani, R; Pöld, J; Postiglione, F; Prato, M; Predoi, V; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Quetschke, V; Raab, F J; Rabeling, D S; Rácz, I; Radkins, H; Raffai, P; Rakhmanov, M; Ramet, C R; Rankins, B; Rapagnani, P; Raymond, V; Re, V; Redwine, K; Reed, C M; Reed, T; Regimbau, T; Reid, S; Reitze, D H; Ricci, F; Riesen, R; Riles, K; Roberts, P; Robertson, N A; Robinet, F; Robinson, C; Robinson, E L; Rocchi, A; Roddy, S; Rolland, L; Rollins, J; Romano, J D; Romano, R; Romie, J H; Rosińska, D; Röver, C; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sakata, S; Sakosky, M; Salemi, F; Salit, M; Sammut, L; de la Jordana, L Sancho; Sandberg, V; Sannibale, V; Santamaría, L; Santiago-Prieto, I; Santostasi, G; Saraf, S; Sassolas, B; Sathyaprakash, B S; Sato, S; Satterthwaite, M; Saulson, P R; Savage, R; Schilling, R; Schlamminger, S; Schnabel, R; Schofield, R M S; Schulz, B; Schutz, B F; Schwinberg, P; Scott, J; Scott, S M; Searle, A C; Seifert, F; Sellers, D; Sengupta, A S; Sentenac, D; Sergeev, A; Shaddock, D A; Shaltev, M; Shapiro, B; Shawhan, P; Weerathunga, T Shihan; Shoemaker, D H; Sibley, A; Siemens, X; Sigg, D; Singer, A; Singer, L; Sintes, A M; Skelton, G; Slagmolen, B J J; Slutsky, J; Smith, J R; Smith, M R; Smith, N D; Smith, R; Somiya, K; Sorazu, B; Soto, J; Speirits, F C; Sperandio, L; Stefszky, M; Stein, A J; Steinlechner, J; Steinlechner, S; Steplewski, S; Stochino, A; Stone, R; Strain, K A; Strigin, S; Stroeer, A S; Sturani, R; Stuver, A L; Summerscales, T Z; Sung, M; Susmithan, S; Sutton, P J; Swinkels, B; Szokoly, G P; Tacca, M; Talukder, D; Tanner, D B; Tarabrin, S P; Taylor, J R; Taylor, R; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Thüring, A; Titsler, C; Tokmakov, K V; Toncelli, A; Tonelli, M; Torre, O; Torres, C; Torrie, C I; Tournefier, E; Travasso, F; Traylor, G; Trias, M; Tseng, K; Turner, L; Ugolini, D; Urbanek, K; Vahlbruch, H; Vaishnav, B; Vajente, G; Vallisneri, M; Brand, J F J van den; Broeck, C Van Den; van der Putten, S; van der Sluys, M V; van Veggel, A A; Vass, S; Vasuth, M; Vaulin, R; Vavoulidis, M; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Veltkamp, C; Verkindt, D; Vetrano, F; Viceré, A; Villar, A E; Vinet, J -Y; Vocca, H; Vorvick, C; Vyachanin, S P; Waldman, S J; Wallace, L; Wanner, A; Ward, R L; Was, M; Wei, P; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Wen, S; Wessels, P; West, M; Westphal, T; Wette, K; Whelan, J T; Whitcomb, S E; White, D; Whiting, B F; Wilkinson, C; Willems, P A; Williams, H R; Williams, L; Willke, B; Winkelmann, L; Winkler, W; Wipf, C C; Wiseman, A G; Woan, G; Wooley, R; Worden, J; Yablon, J; Yakushin, I; Yamamoto, H; Yamamoto, K; Yang, H; Yeaton-Massey, D; Yoshida, S; Yu, P; Yvert, M; Zanolin, M; Zhang, L; Zhang, Z; Zhao, C; Zotov, N; Zucker, M E; Zweizig, J; Buchner, S; Hotan, A; Palfreyman, J
2011-01-01
We present direct upper limits on continuous gravitational wave emission from the Vela pulsar using data from the Virgo detector's second science run. These upper limits have been obtained using three independent methods that assume the gravitational wave emission follows the radio timing. Two of the methods produce frequentist upper limits for an assumed known orientation of the star's spin axis and value of the wave polarization angle of, respectively, $1.9\\ee{-24}$ and $2.2\\ee{-24}$, with 95% confidence. The third method, under the same hypothesis, produces a Bayesian upper limit of $2.1\\ee{-24}$, with 95% degree of belief. These limits are below the indirect {\\it spin-down limit} of $3.3\\ee{-24}$ for the Vela pulsar, defined by the energy loss rate inferred from observed decrease in Vela's spin frequency, and correspond to a limit on the star ellipticity of $\\sim 10^{-3}$. Slightly less stringent results, but still well below the spin-down limit, are obtained assuming the star's spin axis inclination and ...
Accelerating the Universe with Gravitational Waves
Brown, I A; Schrempp, L.; Ananda, K
2009-01-01
Inflation generically produces primordial gravitational waves with a red spectral tilt. In this paper we calculate the backreaction produced by these gravitational waves on the expansion of the universe. We find that in radiation domination the backreaction acts as a relativistic fluid, while in matter domination a small dark energy emerges with an equation of state w=-8/9.
Effects of small wavenumber Alfven waves on particle acceleration
Energetic charged particles are accelerated by turbulent Alfven waves via resonant interaction. We discuss effects of nonresonant Alfven waves on energy diffusion by using test particle simulations. When the Alfven waves are given at wavenumbers larger than the resonant wavenumber with small amplitude, simulated diffusion coefficient is similar to that by the quasi-linear theory. If the Alfven waves are added at wavenumbers smaller than the resonant wavenumber, it is found that the simulated diffusion coefficient exceeds the quasi-linear one and becomes larger with increasing the energy density of the nonresonant Alfven waves. (author)
Detection of a and b waves in the acceleration photoplethysmogram
Elgendi, Mohamed; Norton, Ian; Brearley, Matt; Abbott, Derek; Schuurmans, Dale
2014-01-01
Background Analyzing acceleration photoplethysmogram (APG) signals measured after exercise is challenging. In this paper, a novel algorithm that can detect a waves and consequently b waves under these conditions is proposed. Accurate a and b wave detection is an important first step for the assessment of arterial stiffness and other cardiovascular parameters. Methods Nine algorithms based on fixed thresholding are compared, and a new algorithm is introduced to improve the detection rate using...
Wave Acceleration Induced Sediment Transport in the Surf Zone
Hoefel, F.; Elgar, S.
2002-12-01
A bedload sediment transport formulation (Drake and Calantoni, 2001) that accounts for the effects of near-bottom wave-orbital velocity acceleration skewness predicts onshore sandbar migration observed near Duck, NC. Including acceleration effects in an energetics sediment transport model results in improved skill in reproducing cross-shore sandbar migration patterns observed over a 40 day period during which the bar moved both offshore in storms and onshore between storms. These results suggest that skewed acceleration time series, associated with the pitched forward shapes of nearly breaking and broken waves, play an important role in wave-induced sediment transport in the surf zone. The passage of steep wave fronts results in spikes in acceleration when orbital velocities are directed onshore, producing strong horizontal pressure gradient forces that act on the sediment. In contrast to velocity skewness, which remains approximately constant across the surf zone, acceleration skewness is observed to increase from small values offshore to a maximum near the bar crest, and then to decrease toward the shoreline, producing cross-shore spatial gradients in acceleration-driven transport that are consistent with erosion offshore and accretion onshore of the bar crest. As the sandbar migrates shoreward, the maximum of acceleration skewness also moves onshore, causing a positive feedback mechanism that promotes continued onshore sediment transport motion provided the forcing remains constant. Funded by ARO, ONR, and NOPP.
Electromechanical processes in a H-wave accelerator
The effect of elastic strain of an accelerating system resulting from electromechanical forces on the electric characteristics of a H-wave accelerator is considered. The elastic strain changes the natural frequency of the system as well as the shape of the resonance curve. As the energy stored in the cavity is increased, the electromechanical distortion of the resonance curve becomes equal to an sometimes greater than the width of the resonance region. In spite of the fact that the resonance curve of the elastic system can be ''corrected'' by incorporating feedback into the generator-load system, the electromechanical processes in the superconducting accelerator deserve serious attention for at least two reasons. First, the various components of the accelerating system are deformed differently. Second, operation of an accelerator in a superconducting mode can cause multiple resonant mechanical oscillations of the accelerating system and of the cavity walls. These oscillations change the Q-factor of the accelerating system significantly. (author)
Thomson scattering and ponderomotive intermodulation within standing laser beat waves in plasma
Electrons in a standing electromagnetic wave--an optical lattice--tend to oscillate due to the quiver and ponderomotive potentials. For sufficiently intense laser fields (Iλ2 17 W cm-2 μm2) and in plasmas with sufficiently low electron densities (n 18 cm-3), these oscillations can occur faster than the plasma can respond. This paper shows that these oscillations result in Thomson scattering of light at both the laser and ponderomotive bounce frequencies and their harmonics as well as at mixtures of these frequencies. We term this mixing ponderomotive intermodulation. Here, the case of counterpropagating laser beams creating a one-dimensional (1D) optical lattice is analyzed. The near-equilibrium electron orbits and subsequent Thomson scattering patterns are computed in the single-particle limit. Scaling laws are derived to quantify the range of validity of this approach. Finally, collective plasma and laser focusing effects are included by using particle-in-cell (PIC) techniques. This effect resulting in light-frequency conversion has applications both as an infrared light source and as a means to diagnose high laser intensities inside dense plasmas
Stochastic acceleration of ions driven by Pc1 wave packets
The stochastic motion of protons and He+ ions driven by Pc1 wave packets is studied in the context of resonant particle heating. Resonant ion cyclotron heating typically occurs when wave powers exceed 10−4 nT2/Hz. Gyroresonance breaks the first adiabatic invariant and energizes keV ions. Cherenkov resonances with the electrostatic component of wave packets can also accelerate ions. The main effect of this interaction is to accelerate thermal protons to the local Alfven speed. The dependencies of observable quantities on the wave power and plasma parameters are determined, and estimates for the heating extent and rate of particle heating in these wave-particle interactions are shown to be in reasonable agreement with known empirical data
Cosmic Rays Accelerated at Cosmological Shock Waves
Renyi Ma; Dongsu Ryu; Hyesung Kang
2011-03-01
Based on hydrodynamic numerical simulations and diffusive shock acceleration model, we calculated the ratio of cosmic ray (CR) to thermal energy. We found that the CR fraction can be less than ∼ 0.1 in the intracluster medium, while it would be of order unity in the warm-hot intergalactic medium.
Materials for acceleration by surface electromagnetic waves
Recommendation to the choice of materials for accelerating dielectric resonator are elaborated on the basis of a great number of studied literature on optical resistance. A catalog of properties of material perspective for the use in this purpose is made up (CsI, Ge, LiF, SrTiO3 and etc, in particular)
Breakdown of Acceleration Waves in Radiative Magneto-fluids
Arisudan Rai
2003-10-01
Full Text Available The problem of propagation of acceleration waves in an optically thick medium of electrically conducting fluid has been dealt with. During propagation of the waves, the effects of radiation pressure, radiation energy density, and heat transfer through thermal radiation and thermal conduction have been taken into account. The growth equation for the variation of amplitude of the wave has been derived and solved. It has been concluded that all the compressive waves with initial amplitudes greater than a critical value will grow and terminate into a shock wave due to nonlinear steepening, while all expansion waves will decay out. Acritical stage, when the compressive wave will either grow or decay, has also been discussed. The effects of radiation pressure and radiative heat transfer on the shock formation have been discussed and analysed.
Plasma production for electron acceleration by resonant plasma wave
Anania, M. P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Croia, M.; Curcio, A.; Di Giovenale, D.; Di Pirro, G. P.; Filippi, F.; Ghigo, A.; Lollo, V.; Pella, S.; Pompili, R.; Romeo, S.; Ferrario, M.
2016-09-01
Plasma wakefield acceleration is the most promising acceleration technique known nowadays, able to provide very high accelerating fields (10-100 GV/m), enabling acceleration of electrons to GeV energy in few centimeter. However, the quality of the electron bunches accelerated with this technique is still not comparable with that of conventional accelerators (large energy spread, low repetition rate, and large emittance); radiofrequency-based accelerators, in fact, are limited in accelerating field (10-100 MV/m) requiring therefore hundred of meters of distances to reach the GeV energies, but can provide very bright electron bunches. To combine high brightness electron bunches from conventional accelerators and high accelerating fields reachable with plasmas could be a good compromise allowing to further accelerate high brightness electron bunches coming from LINAC while preserving electron beam quality. Following the idea of plasma wave resonant excitation driven by a train of short bunches, we have started to study the requirements in terms of plasma for SPARC_LAB (Ferrario et al., 2013 [1]). In particular here we focus on hydrogen plasma discharge, and in particular on the theoretical and numerical estimates of the ionization process which are very useful to design the discharge circuit and to evaluate the current needed to be supplied to the gas in order to have full ionization. Eventually, the current supplied to the gas simulated will be compared to that measured experimentally.
X-band coaxial standing-wave linear accelerator structure
A new high efficiency X-Band, standing-wave linear accelerator cavity structure has been developed. It utilizes a shaped coaxial cavity as the coupling cavity between accelerating cavities for π/2 mode operation, hence the overall diameter is extremely small while maintaining a very high shunt impedance. The coupling cavity and accelerating cavity are easily machined on opposite sides of a single cell, eliminating any subassembly steps. Cavity geometries were developed using the computer codes LACC and LALA. Prototype 1.5 MeV and 4.0 MeV, 20 cm long accelerators are now under development. The accelerators employ a stepped field focusing technique to keep the beam focused at low field levels. The beam dynamics code PARMELA was used to optimize the longitudinal bunching and transverse beam characteristics. The accelerator design parameters, as well as experimental results, are presented
The acceleration of cosmic rays by shock waves
The direct transfer of energy to cosmic rays from supersonic motions of the background medium via shock waves, by means of an efficient first order Fermi mechanism, is considered. The acceleration of cosmic rays by shock waves is most effective in the dilute and hot, 1,000,000-K component of the interstellar medium. There is no limit to the energy that can be achieved by shock acceleration, if enough time is available and the particles can be contained in the vicinity of the shock. The two basic first order Fermi mechanisms contributing to the overall process of shock acceleration of cosmic rays are reflection at, or transmission through, the magnetic field jump associated with the shock, and multiple reflection between the media upstream and downstream of the shock, due to the presence of waves that scatter the particles in pitch angle
Traveling wave linear accelerator with RF power flow outside of accelerating cavities
Dolgashev, Valery A.
2016-06-28
A high power RF traveling wave accelerator structure includes a symmetric RF feed, an input matching cell coupled to the symmetric RF feed, a sequence of regular accelerating cavities coupled to the input matching cell at an input beam pipe end of the sequence, one or more waveguides parallel to and coupled to the sequence of regular accelerating cavities, an output matching cell coupled to the sequence of regular accelerating cavities at an output beam pipe end of the sequence, and output waveguide circuit or RF loads coupled to the output matching cell. Each of the regular accelerating cavities has a nose cone that cuts off field propagating into the beam pipe and therefore all power flows in a traveling wave along the structure in the waveguide.
High frequency single mode traveling wave structure for particle acceleration
Ivanyan, M. I.; Danielyan, V. A.; Grigoryan, B. A.; Grigoryan, A. H.; Tsakanian, A. V.; Tsakanov, V. M.; Vardanyan, A. S.; Zakaryan, S. V.
2016-09-01
The development of the new high frequency slow traveling wave structures is one of the promising directions in accomplishment of charged particles high acceleration gradient. The disc and dielectric loaded structures are the most known structures with slowly propagating modes. In this paper a large aperture high frequency metallic two-layer accelerating structure is studied. The electrodynamical properties of the slowly propagating TM01 mode in a metallic tube with internally coated low conductive thin layer are examined.
Cremonese, Edoardo; Filippa, Gianluca; Migliavacca, Mirco; Siniscalco, Consolata; Oddi, Ludovica; Galvagno, Marta
2016-04-01
The year 2015 has been one of the warmest on record for many regions of the world. The record-breaking temperatures did not spare the European Alps, where the summer anomaly reached +4°C. This heat wave caused important impacts on the seasonal development and structural properties of alpine grasslands that deserve investigations. Phenocams are useful tools to describe canopy greenness seasonal dynamics and many recent studies demonstrated that the major phenological events (e.g. budbrust, senescence, …) can be extracted from greenness trajectories. In contrast, little is know about their capabilities to describe the impact of extreme climate events on a fully developed canopy. Moreover the relation between quantitative structural and functional vegetation properties (e.g. biomass, LAI, …) and phenocam data remains poorly investigated. In this study we examine the impact of the 2015 summer heat wave on a subalpine grassland by jointly analyzing phenocam greenness trajectories, proximal sensing and flux data together with field measures of vegetation structural properties. The effect of different environmental drivers on greenness seasonal development was further evaluated by a modeling approach (GSI model). Phenocam tracked the impact of heatwave 2015 that caused a lower canopy development and an anticipation of yellowing by more than 2 months. The same pattern was observed for CO2 fluxes, NDVI and field measures. GSI model results show that during the heatwave, a combination of moisture and high temperature limitation was responsible for the observed reduction of the canopy development. Moreover, spatially explicit analysis of digital images allowed to highlight the differential response of specific plant functional types to the extreme event.
Large Cosmic Shock Waves as Sites for Particle Acceleration
Miniati, Francesco; Ryu, Dongsu; Kang, Hyesung; Jones, T. W.
1999-01-01
The properties of cosmic shock waves are studied through numerical simulations in two cosmological scenarios (SCDM and LCDM). The scaling relations for the average radius and velocity associated with the accretion shocks are somewhat different, yet qualitatively similar to the self similar solutions for a flat Omega_M=1 universe. The energy supplied by infalling gas at accretion shock waves is large enough to sustain production of abundant cosmic ray populations if a viable acceleration mecha...
铷原子中参量六波混频和量子拍的研究%Parametric Six-Wave Mixing and Quantum Beatings in Rb
朱长军; 薛兵; 翟学军; 贺俊芳
2009-01-01
在铷原子中实现了轴向相位匹配的参量六波混频,并探测到位于红外光谱区的六波混频信号.六波混频信号与泵浦激光进行和频,产生了位于可见光范围内的可调谐的和频信号,并从和频信号中观察到频率为608 cm-1的量子拍.结果表明,六波混频信号中的量子拍能够用于研究原子和分子的相干特性.%Axially phase-matched parametric six-wave mixing was achieved in Rb and the parametric six-wave mixing signals in the infrared range were detected. Tunable signals in the visible range were produced by sum-frequency mixing of the pump laser and the parametric six-wave mixing signals in the infrared range. And, quantum beating at a frequency of 608 cm-1 was observed from the sum-frequency signal, indicating that the coherent properties of atoms and molecules can be studied by means of quantum beating recovered from parametric six-wave mixing signals.
Gravitational waves generated by laser accelerated relativistic ions
Gelfer, Evgeny; Klimo, Ondřej; Weber, Stefan; Korn, Georg
2015-01-01
The generation of gravitational waves by laser accelerated relativistic ions in the piston model and light sail model is investigated. Analytical expressions are derived for space-time metric perturbation, the energy spectrum and the emitted energy of the gravitational radiation for the two models as function of the laser and plasma parameters.
Numeric Spectrum of Relic Gravitational Waves in Accelerating Universe
ZHANG Yang; ZHAO Wen; YUAN Ye-Fei; XIA Tian-Yang
2005-01-01
@@ The accelerating expansion of the Universe in the present stage is a process that will change the spectrum of relic gravitational waves. Here we present a numerical calculation for the power spectrum of relic gravitational waves in the accelerating Universe. The results show that although the overall features of the power spectrum are similar to those in the non-accelerating models, the amplitude is smaller in order of 10-1. We also find that the spectrum is very sensitive to the index β of the inflationary expansion with the scale factor a(τ) ∝ |τ|1+β. With increase of β, the resulting spectrum tends to be flatter with more power on high frequencies, and the sensitivity of the second science run of the LIGO detectors puts a restriction on the parameterβ＜ -1.8. The influence of reheating followed by the inflation has been examined.
Stochastic electron acceleration during turbulent reconnection in strong shock waves
Matsumoto, Yosuke
2016-04-01
Acceleration of charged particles is a fundamental topic in astrophysical, space and laboratory plasmas. Very high energy particles are commonly found in the astrophysical and planetary shocks, and in the energy releases of solar flares and terrestrial substorms. Evidence for relativistic particle production during such phenomena has attracted much attention concerning collisionless shock waves and magnetic reconnection, respectively, as ultimate plasma energization mechanisms. While the energy conversion proceeds macroscopically, and therefore the energy mostly flows to ions, plasma kinetic instabilities excited in a localized region have been considered to be the main electron heating and acceleration mechanisms. We present that efficient electron energization can occur in a much larger area during turbulent magnetic reconnection from the intrinsic nature of a strong collisionless shock wave. Supercomputer simulations have revealed a multiscale shock structure comprising current sheets created via an ion-scale Weibel instability and resulting energy dissipation through magnetic reconnection. A part of the upstream electrons undergoes first-order Fermi acceleration by colliding with reconnection jets and magnetic islands, giving rise to a nonthermal relativistic population downstream. The dynamics has shed new light on magnetic reconnection as an agent of energy dissipation and particle acceleration in strong shock waves.
Characterising the acceleration phase of blast wave formation
Intensely heated, localised regions in uniform fluids will rapidly expand and generate an outwardly propagating blast wave. The Sedov-Taylor self-similar solution for such blast waves has long been studied and applied to a variety of scenarios. A characteristic time for their formation has also long been identified using dimensional analysis, which by its very nature, can offer several interpretations. We propose that, rather than simply being a characteristic time, it may be interpreted as the definitive time taken for a blast wave resulting from an intense explosion in a uniform media to contain its maximum kinetic energy. A scaling relation for this measure of the acceleration phase, preceding the establishment of the blast wave, is presented and confirmed using a 1D planar hydrodynamic model
Popp, Antonia
2011-12-16
The experiments presented in this thesis study several aspects of electron acceleration in a laser-driven plasma wave. High-intensity lasers can efficiently drive a plasma wave that sustains electric fields on the order of 100 GV/m. Electrons that are trapped in this plasma wave can be accelerated to GeV-scale energies. As the accelerating fields in this scheme are 3-4 orders of magnitude higher than in conventional radio-frequency accelerators, the necessary acceleration distance can be reduced by the same factor, turning laser-wakefield acceleration (LWFA) into a promising compact, and potentially cheaper, alternative. However, laser-accelerated electron bunches have not yet reached the parameter standards of conventional accelerators. This work will help to gain better insight into the acceleration process and to optimize the electron bunch properties. The 25 fs, 1.8 J-pulses of the ATLAS laser at the Max-Planck-Institute of Quantum Optics were focused into a steady-state flow gas cell. This very reproducible and turbulence-free gas target allows for stable acceleration of electron bunches. Thus the sensitivity of electron parameters to subtle changes of the experimental setup could be determined with meaningful statistics. At optimized experimental parameters, electron bunches of {approx}50 pC total charge were accelerated to energies up to 450 MeV with a divergence of {approx}2 mrad FWHM. As, in a new design of the gas cell, its length can be varied from 2 to 14 mm, the electron bunch energy could be evaluated after different acceleration distances, at two different electron densities. From this evolution important acceleration parameters could be extracted. At an electron density of 6.43. 10{sup 18} cm{sup -3} the maximum electric field strength in the plasma wave was determined to be {approx}160 GV/m. The length after which the relativistic electrons outrun the accelerating phase of the electric field and are decelerated again, the so-called dephasing length
The experiments presented in this thesis study several aspects of electron acceleration in a laser-driven plasma wave. High-intensity lasers can efficiently drive a plasma wave that sustains electric fields on the order of 100 GV/m. Electrons that are trapped in this plasma wave can be accelerated to GeV-scale energies. As the accelerating fields in this scheme are 3-4 orders of magnitude higher than in conventional radio-frequency accelerators, the necessary acceleration distance can be reduced by the same factor, turning laser-wakefield acceleration (LWFA) into a promising compact, and potentially cheaper, alternative. However, laser-accelerated electron bunches have not yet reached the parameter standards of conventional accelerators. This work will help to gain better insight into the acceleration process and to optimize the electron bunch properties. The 25 fs, 1.8 J-pulses of the ATLAS laser at the Max-Planck-Institute of Quantum Optics were focused into a steady-state flow gas cell. This very reproducible and turbulence-free gas target allows for stable acceleration of electron bunches. Thus the sensitivity of electron parameters to subtle changes of the experimental setup could be determined with meaningful statistics. At optimized experimental parameters, electron bunches of ∼50 pC total charge were accelerated to energies up to 450 MeV with a divergence of ∼2 mrad FWHM. As, in a new design of the gas cell, its length can be varied from 2 to 14 mm, the electron bunch energy could be evaluated after different acceleration distances, at two different electron densities. From this evolution important acceleration parameters could be extracted. At an electron density of 6.43. 1018 cm-3 the maximum electric field strength in the plasma wave was determined to be ∼160 GV/m. The length after which the relativistic electrons outrun the accelerating phase of the electric field and are decelerated again, the so-called dephasing length, was found to be 4.9 mm
Dupré, Patrick
2015-11-01
By analyzing the decaying intensity, leaking out a high-finesse cavity previously "filled" by a cw laser source (using the cavity ring-down spectroscopy technique), we observed frequency beating between what we think are two orthogonal eigenpolarization states of the intracavity electromagnetic field. The time decay (ring down) is analyzed by varying the angle of the polarization analyzer located in front of the detector. A full modeling of the observed signal is proposed. It is based on the Jones matrix formalism required for modeling the cavity behavior following a rotated phase shifter. The full transfer function is first established in the frequency domain, and then Fourier transformed to recover the temporal response. The same optical cavity, i.e., constituted of the same set of mirrors, is used at two different wavelengths (˜800 and ˜880 nm). It demonstrates the differences in behavior between a high-finesse cavity (˜400 000 ) and a lower finesse cavity (˜50 000 ). Beating frequency, characteristics time, and beat amplitude are mainly discussed versus the analyzer angle. A cavity birefringence of ˜1.6 ×10-5 rad, resulting from the mirror birefringence is suggested. If the current analysis is in agreement with pulsed CRDS experiments (polarimetry) obtained in an isotropic moderate-finesse cavity, it differs from a recent work report on a high-finesse cavity associated with a source mode locking [Phys. Rev. A 85, 013837 (2012), 10.1103/PhysRevA.85.013837].
Chirped standing wave acceleration of ions with intense lasers
Mackenroth, Felix; Marklund, Mattias
2016-01-01
We propose a novel mechanism for ion acceleration based on the guided motion of electrons from a thin target. The electron motion is locked to the moving nodes of a standing wave formed by a chirped laser pulse reflected from a mirror behind the target. This provides a stable longitudinal field of charge separation, thus giving rise to chirped standing wave acceleration (CSWA) of the residual ions of the layer. We demonstrate, both analytically and numerically, that quasi-monoenergetic ion beams with energies of the order 100 MeV are feasible for realistic pulse energies of 10 J. Moreover, a scaling law for higher laser intensities and layer densities is presented, indicating stable GeV-level energy gains of dense ion bunches, for soon-to-be available laser intensities.
Large Cosmic Shock Waves as Sites for Particle Acceleration
Miniati, F; Kang, H; Jones, T W; Miniati, Francesco; Ryu, Dongsu; Kang, Hyesung
1999-01-01
The properties of cosmic shock waves are studied through numerical simulations in two cosmological scenarios (SCDM and LCDM). The scaling relations for the average radius and velocity associated with the accretion shocks are somewhat different, yet qualitatively similar to the self similar solutions for a flat Omega_M=1 universe. The energy supplied by infalling gas at accretion shock waves is large enough to sustain production of abundant cosmic ray populations if a viable acceleration mechanism can take place there. Finally, in addition to shocks created by the encounter of the merging ICMs of two clusters of galaxies, accretion shocks associated with the merging clusters generate strong ``relic'' shocks which propagate through the ICM producing additional heating of the ICM, and associated CR acceleration.
Electromagnetic field measurements on a mm-wave linear accelerator
Field strength measurements for the determination of the R/Q of a mm-wave, 50-MeV electron linear accelerator using perturbational techniques are described. The perturbation is achieved using optical fibers coated with a thin metallic film to form a hollow cylinder. The perturbational form factors for such a geometry are approximated using several simple analytical expressions which are compared to a finite difference calculation as well as experimental results on a known cavity
Sørensen, Bent
2009-01-01
Two of the founding members of the Beat Generation of the 1950s wrote dream books with almost identical titles: Jack Kerouac's Book of Dreams (1961) and William Burroughs' My Education: A Book of Dreams (1995). This paper queries the function of such dream books, both from a perspective of seeing...... dream writing as a confessional genre, and from the perspective of didacticism implicit in sharing one's dream life with one's readers. What role does memory, politics, fantasies and reality play in communicating with and via dreams?...
Resonance control for a cw [continuous wave] accelerator
A resonance-control technique is described that has been successfully applied to several cw accelerating structures built by the Los Alamos National Laboratory for the National Bureau of Standards and for the University of Illinois. The technique involves sensing the rf fields in an accelerating structure as well as the rf power feeding into the cavity and, then, using the measurement to control the resonant frequency of the structure by altering the temperature of the structure. The temperature of the structure is altered by adjusting the temperature of the circulating cooling water. The technique has been applied to continuous wave (cw) side-coupled cavities only but should have applications with most high-average-power accelerator structures. Some additional effort would be required for pulsed systems
Design and construction of standing wave accelerating structures at TUE
Two standing wave accelerating structures have been built for the operation of two AVF racetrack microtrons (RTM). For the first RTM a 3 cell 1.3 GHz on axis coupled standing wave structure has been designed to accelerate a 50 A peak current beam in 9 steps from the injection energy of 6 MeV to a final energy of 25 MeV. The beam will be used as drive beam for the free electron laser TEUFEL. The second structure accelerates a 7.5 mA beam in 13 steps from the injection energy of 10 MeV, to a maximum energy of 75 MeV. This 9 cell on-axis coupled structure operates at 3 GHz and was designed with a relatively large aperture radius (8 mm) in order to avoid limitations on the RTM's acceptance. Design, fabrication and testing of the structures have been done in house. For the design of the structures the combination of the codes Superfish and Mafia has been used. Low and high power tests proved that the structures live up to the demands. With the experiences gained a design for the accelerating structure of the H- linac of the ESS project has been made. The design of the cells as well as a novel type of single cell bridge coupler will be presented. (author)
Improved ion acceleration via laser surface plasma waves excitation
Bigongiari, A. [CEA/DSM/LSI, CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France); TIPS/LULI, Université Paris 6, CNRS, CEA, Ecole Polytechnique, 3, rue Galilée, 94200 Ivry-sur-Seine (France); Raynaud, M. [CEA/DSM/LSI, CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France); Riconda, C. [TIPS/LULI, Université Paris 6, CNRS, CEA, Ecole Polytechnique, 3, rue Galilée, 94200 Ivry-sur-Seine (France); Héron, A. [CPHT, CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France)
2013-05-15
The possibility of enhancing the emission of the ions accelerated in the interaction of a high intensity ultra-short (<100 fs) laser pulse with a thin target (<10λ{sub 0}), via surface plasma wave excitation is investigated. Two-dimensional particle-in-cell simulations are performed for laser intensities ranging from 10{sup 19} to 10{sup 20} Wcm{sup −2}μm{sup 2}. The surface wave is resonantly excited by the laser via the coupling with a modulation at the target surface. In the cases where the surface wave is excited, we find an enhancement of the maximum ion energy of a factor ∼2 compared to the cases where the target surface is flat.
Low power RF measurements of travelling wave type linear accelerator
RRCAT is engaged in the development of travelling wave (TW) type linear accelerator for irradiation of industrial and agricultural products. TW accelerator designed for 2π/3 mode to operate at frequency of 2856 MHz. It consists of input coupler, buncher cells, regular cells and output coupler. Low power measurement of this structure includes measurement of resonant frequency of the cells for different resonant modes and quality factor, tuning of input-output coupler and measurement of phase advance per cell and electric field in the structure. Steele's non-resonant perturbation technique has been used for measurement of phase advance per cell and electric field in the structure. Kyhl's method has been used for the tuning of input-output coupler. Computer based automated bead pull set-up has been developed for measurement of phase advance per cell and electric field profile in the structure. All the codes are written in Python for interfacing of Vector Network Analyzer (VNA) , stepper motor with computer. These codes also automate the measurement process. This paper describes the test set- up for measurement and results of measurement of travelling wave type linear accelerating structure. (author)
Optimal ciliary beating patterns
Vilfan, Andrej; Osterman, Natan
2011-11-01
We introduce a measure for energetic efficiency of single or collective biological cilia. We define the efficiency of a single cilium as Q2 / P , where Q is the volume flow rate of the pumped fluid and P is the dissipated power. For ciliary arrays, we define it as (ρQ) 2 / (ρP) , with ρ denoting the surface density of cilia. We then numerically determine the optimal beating patterns according to this criterion. For a single cilium optimization leads to curly, somewhat counterintuitive patterns. But when looking at a densely ciliated surface, the optimal patterns become remarkably similar to what is observed in microorganisms like Paramecium. The optimal beating pattern then consists of a fast effective stroke and a slow sweeping recovery stroke. Metachronal waves lead to a significantly higher efficiency than synchronous beating. Efficiency also increases with an increasing density of cilia up to the point where crowding becomes a problem. We finally relate the pumping efficiency of cilia to the swimming efficiency of a spherical microorganism and show that the experimentally estimated efficiency of Paramecium is surprisingly close to the theoretically possible optimum.
Particle Acceleration at Relativistic and Ultra-Relativistic Shock Waves
Meli, A.
We perform Monte Carlo simulations using diffusive shock acceleration at relativistic and ultra-relativistic shock waves. High upstream flow gamma factors are used, Γ=(1-uup2/c2)-0.5, which are relevant to models of ultra-relativistic particle shock acceleration in the central engines and relativistic jets of Active Galactic Nuclei (AGN) and in Gamma-Ray Burst (GRB) fireballs. Numerical investigations are carried out on acceleration properties in the relativistic and ultra-relativistic flow regime (Γ ˜ 10-1000) concerning angular distributions, acceleration time scales, particle energy gain versus number of crossings and spectral shapes. We perform calculations for both parallel and oblique sub-luminal and super-luminal shocks. For parallel and oblique sub-luminal shocks, the spectra depend on whether or not the scattering is represented by pitch angle diffusion or by large angle scattering. The large angle case exhibits a distinctive structure in the basic power-law spectrum not nearly so obvious for small angle scattering. However, both cases yield a significant 'speed-up' of acceleration rate when compared with the conventional, non-relativistic expression, tacc=[c/(uup-udown)] (λup/uup+λdown/udown). An energization by a factor Γ2 for the first crossing cycle and a large energy gains for subsequent crossings as well as the high 'speed-up' factors found, are important in supporting past works, especially the models developed by Vietri and Waxman on ultra-high energy cosmic ray, neutrino and gamma-ray production in GRB. For oblique super-luminal shocks, we calculate the energy gain and spectral shape for a number of different inclinations. For this case the acceleration of particles is 'pictured' by a shock drift mechanism. We use high gamma flows with Lorentz factors in the range 10-40 which are relevant to ultra-relativistic shocks in AGN accretion disks and jets. In all investigations we closely follow the particle's trajectory along the magnetic field
A tuning method for nonuniform traveling-wave accelerating structures
The tuning method of uniform traveling-wave structures based on non-resonant perturbation field distribution measurement has been widely used in tuning both constant-impedance and constant-gradient structures. In this paper, the method of tuning nonuniform structures is proposed on the basis of the above theory. The internal reflection coefficient of each cell is obtained from analyzing the normalized voltage distribution. A numerical simulation of tuning process according to the coupled cavity chain theory has been done and the result shows each cell is in right phase advance after tuning. The method will be used in the tuning of a disk-loaded traveling-wave structure being developed at the Accelerator Laboratory, Tsinghua University. (authors)
Waves and particles in the Fermi accelerator model. Numerical simulation
This thesis is devoted to a numerical study of the quantum dynamics of the Fermi accelerator which is classically chaotic: it is particle in a one dimensional box with a oscillating wall. First, we study the classical dynamics: we show that the time of impact of the particle with the moving wall and its energy in the wall frame are conjugated variables and that Poincare surface of sections in these variables are more understandable than the usual stroboscopic sections. Then, the quantum dynamics of this systems is studied by the means of two numerical methods. The first one is a generalization of the KKR method in the space-time; it is enough to solve an integral equation on the boundary of a space-time billiard. The second method is faster and is based on successive free propagations and kicks of potential. This allows us to obtain Floquet states which we can on one hand, compare to the classical dynamics with the help of Husimi distributions and on the other hand, study as a function of parameters of the system. This study leads us to nice illustrations of phenomenons such as spatial localizations of a wave packet in a vibrating well or tunnel effects. In the adiabatic situation, we give a formula for quasi-energies which exhibits a phase term independent of states. In this regime, there exist some particular situations where the quasi-energy spectrum presents a total quasi-degeneracy. Then, the wave packet energy can increase significantly. This phenomenon is quite surprising for smooth motion of the wall. The third part deals with the evolution of a classical wave in the Fermi accelerator. Using generalized KKR method, we show a surprising phenomenon: in most of situations (so long as the wall motion is periodic), a wave is localized exponentially in the well and its energy increases in a geometric way. (author). 107 refs., 66 figs., 5 tabs. 2 appends
Cosmic ray acceleration at blast waves from type Ia supernovae
Kang, H
2007-01-01
We have calculated the cosmic ray (CR) acceleration at young remnants from Type Ia supernovae expanding into a uniform interstellar medium (ISM). Adopting quasi-parallel magnetic fields, gasdynamic equations and the diffusion convection equation for the particle distribution function are solved in a comoving spherical grid which expands with the shock. Bohm-type diffusion due to self-excited Alfven waves, drift and dissipation of these waves in the precursor and thermal leakage injection were included. With magnetic fields amplified by the CR streaming instability, the particle energy can reach up to 10^{16}Z eV at young supernova remnants (SNRs) of several thousand years old. The fraction of the explosion energy transferred to the CR component asymptotes to 40-50 % by that time. For a typical SNR in a warm ISM, the accelerated CR energy spectrum should exhibit a concave curvature with the power-law slope flattening from 2 to 1.6 at E>0.1 TeV.
Yamsa-Ard, Traisak; Wongsawat, Yodchanan
2015-08-01
Traditional buddhist meditation method maybe easy for someone with high experience. However, for the beginner, it is very difficult to keep mental concentration with the tradition way for more than 5 minutes. This research aims to observe effect of the new method for meditation in various analysis methods. A piano music mixed with a 5 Hz (theta band enhancement) binaural beat frequency was used to modulate the brain signals continuously for 7 days. Male of the average age of 33.5±3.84 and female of the average age of 28.6±2.49 were participated. All participants were acquired EEGs twice, before the experiment and seven days after the experiment. We also proposed the observations on the changes of absolute powers, relative powers and brain connectivity (coherence) of the participants. After seven days of training, the absolute power, relative power, and coherence were clearly closer to the normative database. We can initially say that the recommended meditation method can efficiently mimic the effect of having the traditional buddhist meditation on enhancing the delta and theta powers in the brain. PMID:26737822
Shock drift acceleration in the presence of waves
Decker, R. B.; Vlahos, L.
1985-01-01
Attention is given to the initial results of a model designed to study the modification of the scatter-free, shock drift acceleration of energetic test particles by wave activity in the vicinity of a quasi-perpendicular, fast-mode MHD shock. It is emphasized that the concept of magnetic moment conservation is a valid approximation only in the perpendicular and nearly perpendicular regimes, when the angle theta-Bn between the shock normal and the upstream magnetic field vector is in the range from 70 deg to 90 deg. The present investigation is concerned with one step in a program which is being developed to combine the shock drift and diffusive processes at a shock of arbitrary theta-Bn.
High energy plasma accelerators
Colinear intense laser beams ω0, kappa0 and ω1, kappa1 shone on a plasma with frequency separation equal to the electron plasma frequency ω/sub pe/ are capable of creating a coherent large longitudinal electric field E/sub L/ = mc ω/sub pe//e of the order of 1GeV/cm for a plasma density of 1018 cm-3 through the laser beat excitation of plasma oscillations. Accompanying favorable and deleterious physical effects using this process for a high energy beat-wave accelerator are discussed: the longitudinal dephasing, pump depletion, the transverse laser diffraction, plasma turbulence effects, self-steepening, self-focusing, etc. The basic equation, the driven nonlinear Schroedinger equation, is derived to describe this system. Advanced accelerator concepts to overcome some of these problems are proposed, including the plasma fiber accelerator of various variations. An advanced laser architecture suitable for the beat-wave accelerator is suggested. Accelerator physics issues such as the luminosity are discussed. Applications of the present process to the current drive in a plasma and to the excitation of collective oscillations within nuclei are also discussed
laser interaction and plasma based accelerator
Plasma is an attractive medium for particle acceleration because of the high electric field can be sustained by Plasma. Our objective in this thesis concentrate mainly to study the physics of particle acceleration by different methods like microwave radiation propagates in the waveguides and also like beating two intense lasers in plasma based accelerators. So, it has been of great interest to consider the following subjects:1-The dynamics of an electron in the fields associated with transverse magnetic (TM) wave propagating inside rectangular waveguide is studied analytically. We have solved exactly the relativistic momentum and energy equations of a single electron which injected initially along the propagation of microwave. Expressions for the acceleration gradient and deflection angle are obtained.2-The dynamics of an electron in the fields associated with TE-electromagnetic wave propagating inside a circular waveguide is analytically studied. The motion of this electron along the axis of the waveguide is investigated in the existence of a helical magnet (in which the field is perpendicular to the axis of waveguide and rotating as a function of position along the magnet).3-The study of the beat wave plasma accelerator due to the interaction of two linearly polarized Bessel laser beams is investigated. The electron acceleration which driven by the generated longitudinal plasma waves with phase velocities near the speed of the light is studied. The wave equation descried the fields of this beat wave is obtained.
Singh, Nagendra; Khazanov, George; Mukhter, Ali
2007-01-01
We present results here from 2.5-D particle-in-cell simulations showing that the electrostatic (ES) components of broadband extremely low frequency (BBELF) waves could possibly be generated by cross-field plasma instabilities driven by the relative drifts between the heavy and light ion species in the electromagnetic (EM) Alfvenic component of the BBELF waves in a multi-ion plasma. The ES components consist of ion cyclotron as well as lower hybrid modes. We also demonstrate that the ES wave generation is directly involved in the transverse acceleration of ions (TAI) as commonly measured with the BBELF wave events. The heating is affected by ion cyclotron resonance in the cyclotron modes and Landau resonance in the lower hybrid waves. In the simulation we drive the plasma by the transverse electric field, E(sub y), of the EM waves; the frequency of E(sub y), omega(sub d), is varied from a frequency below the heavy ion cyclotron frequency, OMEGA(sub h), to below the light ion cyclotron frequency, OMEGA(sub i). We have also performed simulations for E(sub y) having a continuous spectrum given by a power law, namely, |Ey| approx. omega(sub d) (exp -alpha), where the exponent alpha = _, 1, and 2 in three different simulations. The driving electric field generates polarization and ExB drifts of the ions and electrons. When the interspecies relative drifts are sufficiently large, they drive electrostatic waves, which cause perpendicular heating of both light and heavy ions. The transverse ion heating found here is discussed in relation to observations from Cluster, FAST and Freja.
Attention has been paid to lightweight, cost-effective frequency-modulated continuous wave (FMCW) synthetic aperture radar (SAR) in recent years. Though FMCW SAR can operate at high altitude, it is still impracticable for wide swath or high Doppler bandwidth remote sensing because of the dramatic losses of range resolution and processing gain. Moreover, the system sampling rate is too high for real-time processing. All these restrictions caused by the bandwidth loss of the dechirp operation can be relieved by expanding the system sweep cycle. However, the broadening of the sweep cycle decreases the system pulse repetition frequency with azimuth ambiguity, which can be suppressed by exploiting the spatial diversity of multi-input multi-output (MIMO) systems. This paper reports a MIMO-FMCW SAR system using beat-frequency division waveforms. There is a small frequency interval and a large overlap (in frequency) between the orthogonal waveforms. As the frequency interval is much smaller than the signal bandwidth, the echoes that come from different transmitters can be separated by bandpass filtering with little intrapulse interference. Consequently, the applications of FMCW SAR systems can be extended for wider swath or higher Doppler bandwidth remote sensing. Theoretical analysis and simulation results illustrate the feasibility of this system. (paper)
Quantum-beat Auger spectroscopy
Zhang, Song Bin
2015-01-01
The concept of nonlinear quantum-beat pump-probe Auger spectroscopy is introduced by discussing a relatively simple four-level model system. We consider a coherent wave packet involving two low-lying states that was prepared by an appropriate pump pulse. This wave packet is subsequently probed by a weak, time-delayed probe pulse with nearly resonant coupling to a core-excited state of the atomic or molecular system. The resonant Auger spectra are then studied as a function of the duration of the probe pulse and the time delay. With a bandwidth of the probe pulse approaching the energy spread of the wave packet, the Auger yields and spectra show quantum beats as a function of pump-probe delay. An analytic theory for the quantum-beat Auger spectroscopy will be presented, which allows for the reconstruction of the wave packet by analyzing the delaydependent Auger spectra. The possibility of extending this method to a more complex manifold of electronic and vibrational energy levels is also discussed.
Acceleration of charged particles in ion excitation waves in the solar corona
A possibility of charged particle acceleration in a shock wave of isothermal compression in the transition region between the lower corona and the upper chromosphere is considered. The shock wave motion is accompanied with emission in spectral lines of multicharged ions and helium. It follows from the results of the paper that in the bursts conditioned by the motion of shock wave fronts electrons and protons are accelerated with an equal probability approximately. The times of acceleration and particle output from the region behind the front are of the same order and independent of the particle energy, but depend only on characteristic lengths of inhomogeneities in the wave front and on its velocity
Silicon woodpile photonic crystals provide a base structure that can be used to build a three-dimensional dielectric waveguide system for high-gradient laser driven acceleration. A new woodpile waveguide design that hosts a phase synchronous, centrally confined accelerating mode is proposed. Comparing with previously discovered silicon woodpile accelerating modes, this mode shows advantages in terms of better electron beam loading and higher achievable acceleration gradient. Several traveling-wave coupler design schemes developed for multi-cell RF cavity accelerators are adapted to the woodpile power coupler design for this new accelerating mode. Design of a forward coupled, highly efficient silicon woodpile accelerator is achieved. Simulation shows high efficiency of over 75% of the drive laser power coupled to this fundamental accelerating mode, with less than 15% backward wave scattering. The estimated acceleration gradient, when the coupler structure is driven at the damage threshold fluence of silicon at its operating 1.506 μm wavelength, can reach 185 MV/m. Lastly, a 17-layer woodpile waveguide structure was successfully fabricated, and the measured bandgap is in excellent agreement with simulation
Simple Scalings for Various Regimes of Electron Acceleration in Surface Plasma Waves
Riconda, C; Raynaud, M.; Vialis, T.; Grech, M.
2015-01-01
International audience Different electron acceleration regimes in the evanescent field of a surface plasma wave are studied by considering the interaction of a test electron with the high-frequency electromagnetic field of a surface wave. The non-relativistic and relativistic limits are investigated. Simple scalings are founddemonstrating the possibility to achieve an efficient conversion of the surface wave field energy into electron kinetic energy. This mechanism of electron acceleration...
Visualizing acoustical beats with a smartphones
Giménez, Marcos H; Castro-Palacio, Juan C; Gómez-Tejedor, José A; Monsoriu, Juan A
2016-01-01
In this work, a new Physics laboratory experiment on Acoustics beats is presented. We have designed a simple experimental setup to study superposition of sound waves of slightly different frequencies (acoustic beat). The microphone of a smartphone is used to capture the sound waves emitted by two equidistant speakers from the mobile which are at the same time connected to two AC generators. The smartphone is used as a measuring instrument. By means of a simple and free AndroidTM application, the sound level (in dB) as a function of time is measured and exported to a .csv format file. Applying common graphing analysis and a fitting procedure, the frequency of the beat is obtained. The beat frequencies as obtained from the smartphone data are compared with the difference of the frequencies set at the AC generator. A very good agreement is obtained being the percentage discrepancies within 1 %.
A Korteweg--de Vries equation that is applicable to both the nonlinear magnetosonic fast and slow waves is derived from a two-fluid model with finite ion and electron pressures. As in the cold plasma theory, the fast wave has a critical angle theta/sub c/. For propagation angles greater than theta/sub c/ (quasiperpendicular propagation), the fast wave has a positive soliton, whereas for angles smaller than theta/sub c/, it has a negative soliton. Finite β effects decrease the value of theta/sub c/. The slow wave has a positive soliton for all angles of propagation. The magnitude of resonant ion acceleration (the v/sub p/ x B acceleration) by the nonlinear fast and slow waves is evaluated. In the fast wave, the electron pressure makes the acceleration stronger for all propagation angles. The decrease in theta/sub c/ resulting from finite β effects results in broadening of the region of strong acceleration. It is also found that fairly strong ion acceleration can occur in the nonlinear slow wave in high β plasmas. The possibility of unlimited acceleration of ions by quasiperpendicular magnetosonic fast waves is discussed
无
2002-01-01
The equivalent damage calculation formulae of fatigue crack formation and growth are established. In order tocompile the fatigue crack formation and growth accelerated load spectra, the main wave shapes and load sequence of theactual load spectrum are kept constant, and the carrier waves are cut off. And secondary waves are put together into newsecondary waves to shorten the test time according to the equivalent damage calculation formulae respectively. Then bythe fatigue cumulative damage calculation of the fatigue crack formation and growth accelerated load spectra, the onecorresponding to the bigger damage is determined as the fatigue accelerated test load spectrum. Therefore in the test pro-cess, the fatigue accelerated test spectrum may be applied till fatigue failure, the engineering fatigue crack length of full-scale structure need not be inspected, and the fatigue crack formation accelerated load spectrum need not be transferredinto the fatigue crack growth accelerated load spectrum. Finally, it is verified by tests of two kinds of specimens that thedamages of the specimens caused by the accelerated load spectra are near to those by the actual load spectra; namely, thetested life of actual load spectra is similar to that of accelerated load spectra. But the test time of accelerated load spectrais shortened by about three-quarters that of actual load spectra. From these tests, it is also found that the fatigue accelerat-ed test spectrum has an advantage over FALSTAFF spectra.
Enhancement of wave and acceleration of electron in plasma in the external field
2008-01-01
This paper investigates the enhancement of Langmuir and ion-acoustic wave and the acceleration of the electron in collisionless plasma.in the presence of an external transverse field.Based on hydrodynamic equations,an equation formulizing the parametric instability was derived.Furthermore,the formula for ponderomotive force and the expression that describes the electron acceleration were obtained.The results show that Langmuir and ion-acoustic wave are enhanced and the charged particles can be accelerated by the coupling of wave-wave.In addition,it can be concluded that ponderomotive force,due to the coupling of the external field(pump)to the Langmuir wave(ion-acoustic wave),is the driving force to excite the parametric instability and comprises the high- and low-frequency components.
Continuous Wavelet Transform Analysis of Acceleration Signals Measured from a Wave Buoy
Laurence Zsu-Hsin Chuang
2013-08-01
Full Text Available Accelerometers, which can be installed inside a floating platform on the sea, are among the most commonly used sensors for operational ocean wave measurements. To examine the non-stationary features of ocean waves, this study was conducted to derive a wavelet spectrum of ocean waves and to synthesize sea surface elevations from vertical acceleration signals of a wave buoy through the continuous wavelet transform theory. The short-time wave features can be revealed by simultaneously examining the wavelet spectrum and the synthetic sea surface elevations. The in situ wave signals were applied to verify the practicality of the wavelet-based algorithm. We confirm that the spectral leakage and the noise at very-low-frequency bins influenced the accuracies of the estimated wavelet spectrum and the synthetic sea surface elevations. The appropriate thresholds of these two factors were explored. To study the short-time wave features from the wave records, the acceleration signals recorded from an accelerometer inside a discus wave buoy are analysed. The results from the wavelet spectrum show the evidence of short-time nonlinear wave events. Our study also reveals that more surface profiles with higher vertical asymmetry can be found from short-time nonlinear wave with stronger harmonic spectral peak. Finally, we conclude that the algorithms of continuous wavelet transform are practical for revealing the short-time wave features of the buoy acceleration signals.
Continuous wavelet transform analysis of acceleration signals measured from a wave buoy.
Chuang, Laurence Zsu-Hsin; Wu, Li-Chung; Wang, Jong-Hao
2013-01-01
Accelerometers, which can be installed inside a floating platform on the sea, are among the most commonly used sensors for operational ocean wave measurements. To examine the non-stationary features of ocean waves, this study was conducted to derive a wavelet spectrum of ocean waves and to synthesize sea surface elevations from vertical acceleration signals of a wave buoy through the continuous wavelet transform theory. The short-time wave features can be revealed by simultaneously examining the wavelet spectrum and the synthetic sea surface elevations. The in situ wave signals were applied to verify the practicality of the wavelet-based algorithm. We confirm that the spectral leakage and the noise at very-low-frequency bins influenced the accuracies of the estimated wavelet spectrum and the synthetic sea surface elevations. The appropriate thresholds of these two factors were explored. To study the short-time wave features from the wave records, the acceleration signals recorded from an accelerometer inside a discus wave buoy are analysed. The results from the wavelet spectrum show the evidence of short-time nonlinear wave events. Our study also reveals that more surface profiles with higher vertical asymmetry can be found from short-time nonlinear wave with stronger harmonic spectral peak. Finally, we conclude that the algorithms of continuous wavelet transform are practical for revealing the short-time wave features of the buoy acceleration signals. PMID:23966188
This report discusses the suitability of four novel particle acceleration technologies for multi-TeV particle physics machines: laser driven linear accelerators (linac), plasma beat-wave devices, plasma wakefield devices, and switched power and cavity wakefield linacs. The report begins with the derivation of beam parameters practical for multi-TeV devices. Electromagnetic field breakdown of materials is reviewed. The two-beam accelerator scheme for using a free electron laser as the driver is discussed. The options recommended and the conclusions reached reflect the importance of cost. We recommend that more effort be invested in achieving a self-consistent range of TeV accelerator design parameters. Beat-wave devices have promise for 1-100 GeV applications and, while not directly scalable to TeV designs, the current generation of ideas are encouraging for the TeV regime. In particular, surfatrons, finite-angle optical mixing devices, plasma grating accelerator, and the Raman forward cascade schemes all deserve more complete analysis. The exploitation of standard linac geometry operated in an unconventional mode is in a phase of rapid evolution. While conceptual projects abound, there are no complete designs. We recommend that a fraction of sponsored research be devoted to this approach. Wakefield devices offer a great deal of potential; trades among their benefits and constraints are derived and discussed herein. The study of field limitation processes has received inadequate attention; this limits experiment designers. The costs of future experiments are such that investment in understanding these processes is prudent. 34 refs., 12 figs., 3 tabs
The alpha particles in a fusion reactor play a key role in the sustaining the fusion reaction. It is the heating provided by the alpha particles that help a fusion reactor operating in the ignition regime. It is, therefore, essential to understand the behavior of the alpha population both in real space and velocity space in order to design the optimal confinement device for fusion application. Moreover, the alphas represent a strong source of free energy that may generate plasma instabilities. Theoretical studies has identified the Toroidal Alfven Eigenmode (TAE) as an instability that can be excited by the alpha population in a toroidal device. Since the alpha has an energy of 3.5 MeV, a good confinement device will retain it in the interior of the plasma. Therefore, alpha measurement system need to probe the interior of a high density plasma. Due to the conducting nature of a plasma, wave with frequencies below the plasma frequency can not penetrate into the interior of the plasma where the alphas reside. This project uses a wave that can interact with the perpendicular motion of the alphas to probe its characteristics. However, this wave (the lower hybrid wave) is below the plasma frequency and can not be directly launched from the plasma edge. This project was designed to non-linearly excite the lower hybrid in the interior of a magnetized plasma and measure its interaction with a fast ion population
Electron trapping and acceleration by kinetic Alfvén waves in solar flares
Artemyev, A. V.; Zimovets, I. V.; Rankin, R.
2016-05-01
Context. Theoretical models and spacecraft observations of solar flares highlight the role of wave-particle interaction for non-local electron acceleration. In one scenario, the acceleration of a large electron population up to high energies is due to the transport of electromagnetic energy from the loop-top region down to the footpoints, which is then followed by the energy being released in dense plasma in the lower atmosphere. Aims: We consider one particular mechanism of non-linear electron acceleration by kinetic Alfvén waves. Here, waves are generated by plasma flows in the energy release region near the loop top. We estimate the efficiency of this mechanism and the energies of accelerated electrons. Methods: We use analytical estimates and test-particle modelling to investigate the effects of electron trapping and acceleration by kinetic Alfvén waves in the inhomogeneous plasma of the solar corona. Results: We demonstrate that, for realistic wave amplitudes, electrons can be accelerated up to 10-1000 keV during their propagation along magnetic field lines. Here the electric field that is parallel to the direction of the background magnetic field is about 10 to 103 times the amplitude of the Dreicer electric field. The acceleration mechanism strongly depends on electron scattering which is due to collisions that only take place near the loop footpoints. Conclusions: The non-linear wave-particle interaction can play an important role in the generation of relativistic electrons within flare loops. Electron trapping and coherent acceleration by kinetic Alfvén waves represent the energy cascade from large-scale plasma flows that originate at the loop-top region down to the electron scale. The non-diffusive character of the non-linear electron acceleration may be responsible for the fast generation of high-energy particles.
Simple Scalings for Various Regimes of Electron Acceleration in Surface Plasma Waves
Riconda, C; Vialis, T; Grech, M
2015-01-01
Different electron acceleration regimes in the evanescent field of a surface plasma wave are studied by considering the interaction of a test electron with the high-frequency electromagnetic field of a surface wave. The non-relativistic and relativistic limits are investigated. Simple scalings are found demonstrating the possibility to achieve an efficient conversion of the surface wave field energy into electron kinetic energy. This mechanism of electron acceleration can provide a high-frequency pulsed source of relativistic electrons with a well defined energy. In the relativistic limit, the most energetic electrons are obtained in the so-called electromagnetic regime for surface waves. In this regime the particles are accelerated to velocities larger than the wave phase velocity, mainly in the direction parallel to the plasma-vacuum interface.
Simple scalings for various regimes of electron acceleration in surface plasma waves
Riconda, C.; Vialis, T. [LULI, Sorbonne Université, Université Pierre et Marie Curie, Ecole Polytechnique, CNRS UMR 7605, CEA, Paris 75005 (France); Raynaud, M. [Laboratoire des Solides Irradiés, CNRS UMR 7642, CEA-DSM-IRAMIS, Ecole Polytechnique, Université Paris-Saclay, 91128 Palaiseau (France); Grech, M. [LULI, CNRS UMR 7605, Université Pierre et Marie Curie, Ecole Polytechnique, CEA, 91128 Palaiseau (France)
2015-07-15
Different electron acceleration regimes in the evanescent field of a surface plasma wave are studied by considering the interaction of a test electron with the high-frequency electromagnetic field of a surface wave. The non-relativistic and relativistic limits are investigated. Simple scalings are found demonstrating the possibility to achieve an efficient conversion of the surface wave field energy into electron kinetic energy. This mechanism of electron acceleration can provide a high-frequency pulsed source of relativistic electrons with a well defined energy. In the relativistic limit, the most energetic electrons are obtained in the so-called electromagnetic regime for surface waves. In this regime, the particles are accelerated to velocities larger than the wave phase velocity, mainly in the direction parallel to the plasma-vacuum interface.
Plasma acceleration by the interaction of parallel propagating Alfv\\'en waves
Mottez, Fabrice
2014-01-01
It is shown that two circularly polarised Alfv\\'en waves that propagate along the ambient magnetic field in an uniform plasma trigger non oscillating electromagnetic field components when they cross each other. The non-oscilliating field components can accelerate ions and electrons with great efficiency. This work is based on particle-in-cell (PIC) numerical simulations and on analytical non-linear computations. The analytical computations are done for two counter-propagating monochromatic waves. The simulations are done with monochromatic waves and with wave packets. The simulations show parallel electromagnetic fields consistent with the theory, and they show that the particle acceleration result in plasma cavities and, if the waves amplitudes are high enough, in ion beams. These acceleration processes could be relevant in space plasmas. For instance, they could be at work in the auroral zone and in the radiation belts of the Earth magnetosphere. In particular, they may explain the origin of the deep plasma...
Simple scalings for various regimes of electron acceleration in surface plasma waves
Different electron acceleration regimes in the evanescent field of a surface plasma wave are studied by considering the interaction of a test electron with the high-frequency electromagnetic field of a surface wave. The non-relativistic and relativistic limits are investigated. Simple scalings are found demonstrating the possibility to achieve an efficient conversion of the surface wave field energy into electron kinetic energy. This mechanism of electron acceleration can provide a high-frequency pulsed source of relativistic electrons with a well defined energy. In the relativistic limit, the most energetic electrons are obtained in the so-called electromagnetic regime for surface waves. In this regime, the particles are accelerated to velocities larger than the wave phase velocity, mainly in the direction parallel to the plasma-vacuum interface
Nonlinear theory of diffusive acceleration of particles by shock waves
Among the various acceleration mechanisms which have been suggested as responsible for the nonthermal particle spectra and associated radiation observed in many astrophysical and space physics environments, diffusive shock acceleration appears to be the most successful. We review the current theoretical understanding of this process, from the basic ideas of how a shock energizes a few reactionless particles to the advanced nonlinear approaches treating the shock and accelerated particles as a symbiotic self-organizing system. By means of direct solution of the nonlinear problem we set the limit to the test-particle approximation and demonstrate the fundamental role of nonlinearity in shocks of astrophysical size and lifetime. We study the bifurcation of this system, proceeding from the hydrodynamic to kinetic description under a realistic condition of Bohm diffusivity. We emphasize the importance of collective plasma phenomena for the global flow structure and acceleration efficiency by considering the injection process, an initial stage of acceleration and, the related aspects of the physics of collisionless shocks. We calculate the injection rate for different shock parameters and different species. This, together with differential acceleration resulting from nonlinear large-scale modification, determines the chemical composition of accelerated particles. The review concentrates on theoretical and analytical aspects but our strategic goal is to link the fundamental theoretical ideas with the rapidly growing wealth of observational data. (author)
A charged particle trapped in an electrostatic wave is accelerated in the plane perpendicular to the wave vector k. It is found that there is an optimum angle theta = theta/sub m/ at which the particle gains a maximum energy which is about four times larger than that at theta = π/2, theta being the angle between k and the magnetic field
Travelling wave accelerating structure design for TESLA positron injector linac
Jin, K; Zhou, F; Flöttmann, K
2000-01-01
A modified cup-like TW accelerating structure for TESLA Positron Pre-Accelerator (PPA) is designed by optimizing the structure geometry and by changing the iris thickness cell by cell in a section . This structure has high shunt-impedance and a large iris radius to meet with the requirements of high gradient and large transverse acceptance. The beam dynamics in the structure with the optimum solenoid focus field are studied. A satisfactory positron beam transmission and the beam performance at the PPA output have been obtained. In this paper the accelerating structure design is described in detail and the results are presented.
Acceleration of cosmic rays in SNR shock waves
The time dependence of the energy density of cosmic rays accelerated in the outer shock of a supernova is studied in simple nonlinear models. The solutions are classified in their dependence on the parameters of the system. (orig.)
The first accelerators were designed as a tool in high-energy particle physics. Their development has given rise to numerous applications in industry, such as materials processing, sterilization, food preservation, and radiopharmaceutical product generation (Barbalat, 1994). Modern day linear accelerators for particle physics accelerate multiple bunches of electrons and positrons up to 50 GeV. Accelerators of the next generation, such as the Next Linear Collider (NLC), aim to accelerate the bunches initially to a center of mass of 500GeV and later to 1.5 TeV (Decking 2001, Miyamoto 2002, Phinney 2002). The NLC will operate under gradient fields on the order of 70 MV/m (Phinney, 2002). For all accelerators, two issues are fundamental for their construction: maximizing the efficiency of acceleration while, at the same time, preserving the luminosity of the beam. These issues are critically important in the design of the NLC. A linear accelerator operates as follows: An electron gun fires electrons into a structure that bunches the electrons and tightly focuses the beam. At the same time, a radiofrequency wave is fed into the accelerating structure. The electron bunches enter the accelerating structure in phase with the crest of the radiofrequency wave in order to achieve maximum energy. There are two principal types of accelerating structures: traveling wave (TW) and standing wave (SW). The electromagnetic wave in a TW structure travels in one direction; the electromagnetic wave in a SW structure travels in two directions. Many TW structures have been designed for the NLC, but recent experiments indicate that TW structures suffer from electrical breakdown at high gradients (Miller et. al., 2001). To address this problem, SW structures are being considered as the alternative for the NLC (Jones and Miller et. al., 2002). The input power required for an accelerating cavity increases with the length of the cavity (Miller et. al., 2001). Since SW structures can be made
Nonlinear Energy Balance Model of Particle Acceleration by Parallel Shock Waves
Shevchenko, V. I.; Galinsky, V. L.
2007-12-01
A new theoretical/numerical model of particles acceleration by quasi-parallel shocks is developed and results of numerical analysis are discussed. The model assumes that resonant wave--particle interaction is the most important physical mechanisms relevant to motion and acceleration of particles as well as to excitation and dumping of waves. The treatment of plasma and waves is self-consistent and time dependent. The model uses conservation laws and resonance conditions to find where waves will be generated or dumped and hence particles will be pitch--angle scattered. Since the total distribution function (for bulk plasma and high energy tail) is included in the model, no any special bootstrap or termination assumptions are required (neither introduction of separate population of seed particles nor some ad-hoc escape rate of accelerated particles are needed). The preliminary results show not only remarkable agreement with diffusive shock acceleration (DSA) models in prediction of power spectra for accelerated particles in upstream region but also reveal presence of spectral break in high energy part of the spectra. The role of the second order Fermi acceleration at the initial stage of acceleration is discussed.
Characteristics of a standing wave accelerating structure for common-series medical electron linacs
Calculated and experimental RF-parameters of the accelerating structure of the LUEhR-40 linear electron accelerator designed for radiotherapy application are presented. A standing wave accelerating structure with a two-fold beam aceleration in opposite directions is used in the accelerator. The accelerating structure length makes up 1.6 m. At 2.5 MW SHF-power at the structure inlet and 20 keV electron injection energy the accelerated electron energy obtained made up 16.2 MeV at 20 μA current which agrees with the calculated values within the limits of measurement accuracy. Electron beam diameter after a one-turn acceleration did not exceed 2 mm
Measuring test mass acceleration noise in space-based gravitational wave astronomy
Congedo, Giuseppe
2014-01-01
The basic constituent of interferometric gravitational wave detectors -- the test mass to test mass interferometric link -- behaves as a differential dynamometer measuring effective differential forces, comprising an integrated measure of gravity curvature, inertial effects, as well as non-gravitational spurious forces. This last contribution is going to be characterised by the LISA Pathfinder mission, a technology precursor of future space-borne detectors like eLISA. Changing the perspective from displacement to acceleration can benefit the data analysis of LISA Pathfinder and future detectors. The response in differential acceleration to gravitational waves is derived for a space-based detector's interferometric link. The acceleration formalism can also be integrated into time delay interferometry by building up the unequal-arm Michelson differential acceleration combination. The differential acceleration is nominally insensitive to the system free evolution dominating the slow displacement dynamics of low-...
Design and fabrication of a continuous wave electron accelerating structure
The Physics Institute of Sao Paulo University, SP, Brazil is fabricating a 31 MeV cw racetrack microtron (RTM) designed for nuclear physics research. This is a two-stage microtron that includes a 1.93 MeV injector linac feeding a five-turn microtron booster. After 28 turns, the main microtron delivers a 31 MeV continuous electron beam. The objective of this work is the development and fabrication of an advanced, beta=l, cw accelerating structure for the main microtron. The accelerating structure will be a side-coupled structure (SCS). We have chosen this kind of cavity, because it presents good vacuum properties, allows operation at higher accelerating electric fields and has a shunt impedance better than 81 MQ/m, with a high coupling factor ( 3 - 5%). The engineering design is the Los Alamos one. There will be two tuning plungers placed at both ends of the accelerating structure. They automatically and quickly compensate for the variation in the resonance frequency caused by changes in the structure temperature. Our design represents an advanced accelerating structure with the optimum SCS properties coexisting with the plunger's good tuning properties. (author)
Plasma-based and novel accelerators
This publication is a collection of papers presented at Workshop on Plasma-Based and Novel Accelerators held at National Institute for Fusion Science, Nagoya, on December 19-20, 1991. Plasma-based accelerators are attracting considerable attention in these days a new, exciting field of plasma applications. The study gives rise to and spurs study of other unique accelerators like laser-based accelerators. The talks in the Workshop encompassed beat-wave accelerator (BWA), plasma wake field accelerator (PWFA), Vp x B accelerator, laser-based accelerators and some novel methods of acceleration. They also covered the topics such as FEL, cluster acceleration and plasma lens. Small scale experiments as those in universities have exhibited brilliant results while larger scale experiments like BWA in Institute of Laser Engineering, Osaka University, and PWFA in KEK start showing significant results as well. (J.P.N.)
Heavy ion acceleration by nonlinear magnetosonic waves in a two-ion-species plasma
The ion dynamics in perpendicular nonlinear magnetosonic waves in a plasma containing two ion species is studied through theory and simulation using a one dimension, electromagnetic particle code with full ion and electron dynamics; in the simulations the density of heavier ions was set to be 10% of that of lighter ions. As in a single-ion-species plasma, some of the light ions can be accelerated by the longitudinal electric field formed in a wave. It is found that the bulk of heavy ions are accelerated by the transverse electric field. For a large-amplitude wave, the maximum speed of heavy ions is about the wave propagation speed, which exceeds the Alfven speed. Theoretical estimates of maximum speeds are given for small- and large- amplitude waves. They are in good agreement with the simulation results. (author)
Shock-wave proton acceleration from a hydrogen gas jet
Cook, Nathan; Pogorelsky, Igor; Polyanskiy, Mikhail; Babzien, Marcus; Tresca, Olivier; Maharjan, Chakra; Shkolnikov, Peter; Yakimenko, Vitaly
2013-04-01
Typical laser acceleration experiments probe the interaction of intense linearly-polarized solid state laser pulses with dense metal targets. This interaction generates strong electric fields via Transverse Normal Sheath Acceleration and can accelerate protons to high peak energies but with a large thermal spectrum. Recently, the advancement of high pressure amplified CO2 laser technology has allowed for the creation of intense (10^16 Wcm^2) pulses at λ˜10 μm. These pulses may interact with reproducible, high rep. rate gas jet targets and still produce plasmas of critical density (nc˜10^19 cm-3), leading to the transference of laser energy via radiation pressure. This acceleration mode has the advantage of producing narrow energy spectra while scaling well with pulse intensity. We observe the interaction of an intense CO2 laser pulse with an overdense hydrogen gas jet. Using two pulse optical probing in conjunction with interferometry, we are able to obtain density profiles of the plasma. Proton energy spectra are obtained using a magnetic spectrometer and scintillating screen.
Wave transport in stellar radiation zone influenced by the Coriolis acceleration
Internal gravity waves constitute an efficient process for angular momentum transport over large distances. They are now seen as an important ingredient in understanding the evolution of rotation, and could explain the Sun's quasi-flat rotation profile. Because the Sun's rotation frequency is of the same order as that of the waves, it is necessary to refine our description of wave propagation and to take into account the action of the Coriolis acceleration in a coherent way. To achieve this aim, we adopt the Traditional Approximation which is verified in stellar radiation zones. We present the modified transport equations and their numerical evaluation in a parameter range that is significant for the Sun. The effectiveness of gravity waves, which become gravito-inertial waves, is reduced while new type of waves, namely the Rossby, the Yanai and the Kelvin waves appear with their associated transport.
A Nonlinear Energy Balance Model of Particle Acceleration by Collisionless Parallel Shock Waves
Galinsky, V. L.; Shevchenko, V. I.
2007-11-01
We describe in this Letter a new way to model processes of particle acceleration in quasi-parallel shocks and report some promising preliminary results of numerical analysis. The treatment of plasma and waves is self-consistent and time-dependent but nevertheless relatively simple from a physical point of view. The model assumes that resonant wave-particle interaction is the most important mechanism for both shock formation and particle acceleration but does not use the diffusion-convection approach for the interaction. Instead it uses conservation laws and resonance conditions to find where waves will be generated or dumped and hence particles pitch-angle scattered. Because the distribution function for bulk plasma and not just the high-energy tail is included in the model, no special bootstrap or termination assumptions are required (neither the introduction of a separate population of seed particles nor some ad hoc escape rate of accelerated particles is needed). In spite of all the simplicity, the preliminary results not only show remarkable agreement with diffusive shock acceleration models in the prediction of power spectra for accelerated particles in the upstream region but also reveal the presence of a spectral break in the high-energy part of the spectra. The results also confirm that acceleration can start from the thermal particles and confirm the importance of second-order Fermi acceleration.
Analysis and measurement of focusing effects in a traveling wave linear accelerator
For a recent precise linear accelerator, such as the x-ray free electron laser facility, SACLA, the beam orbit and the beam envelop should be properly calculated from the beam dynamics model of a traveling wave accelerating structure (TWA). Therefore, we compared a predicted beam orbit by a TWA model with a measured orbit by rf cavity beam position monitors. Although the beam orbit in the crest acceleration part was appropriately reproduced, that of the off-crest acceleration part did not agree with the prediction. We found out that the discrepancy came from a quadrupole field in the coupler cell of the TWA. The strength of the quadrupole field was estimated by using 3-dimensional rf simulation and the TWA model was modified by the addition of the quadrupole focusing effect. By using the modified model, the beam orbit was properly reproduced in both the crest acceleration part and the off-crest acceleration part. (author)
Spurious acceleration noise in spaceborne gravitational wave interferometers
An important source of noise in the Laser Interferometer Space Antenna (LISA) is residual acceleration on the proof masses at the heart of the interferometer system. Two proof masses are carried by each sciencecraft in the LISA constellation, oriented along each of two laser links that are maintained between the distant partners in the constellation. Any change in the local mass distribution will create spurious forces on the individual proof masses which will have to be understood as part of the data analysis reduction. This paper considers the general case of accelerations on the individual proof masses in three dimensions for perturbing masses passing by a LISA sciencecraft with arbitrary velocity vectors and impact parameters. Encounters of this kind are impulsive, occurring over short time scales and appearing in the data record as bursts. The formalism is then applied in a few sample cases, including a meteor fly-by and a thruster maneuver
Ionizing wave via high-power HF acceleration
Mishin, Evgeny
2010-01-01
Recent ionospheric modification experiments with the 3.6 MW transmitter at the High Frequency Active Auroral Research Program (HAARP) facility in Alaska led to discovery of artificial ionization descending from the nominal interaction altitude in the background F-region ionosphere by ~60 km. This paper presents a physical model of an ionizing wavefront created by suprathermal electrons accelerated by the HF-excited plasma turbulence.
Accelerated gravitational-wave parameter estimation with reduced order modeling
Canizares, Priscilla; Gair, Jonathan; Raymond, Vivien; Smith, Rory; Tiglio, Manuel
2014-01-01
Inferring the astrophysical parameters of coalescing compact binaries is a key science goal of the upcoming advanced LIGO-Virgo gravitational-wave detector network and, more generally, gravitational-wave astronomy. However, current parameter estimation approaches for such scenarios can lead to computationally intractable problems in practice. Therefore there is a pressing need for new, fast and accurate Bayesian inference techniques. In this letter we demonstrate that a reduced order modeling approach enables rapid parameter estimation studies. By implementing a reduced order quadrature scheme within the LIGO Algorithm Library, we show that Bayesian inference on the 9-dimensional parameter space of non-spinning binary neutron star inspirals can be sped up by a factor of 30 for the early advanced detectors' configurations. This speed-up will increase to about $150$ as the detectors improve their low-frequency limit to 10Hz, reducing to hours analyses which would otherwise take months to complete. Although thes...
The use of transverse electric (TE) waves has proved to be a powerful, noninvasive method for estimating the densities of electron clouds formed in particle accelerators. Results from the plasma simulation program VSim have served as a useful guide for experimental studies related to this method, which have been performed at various accelerator facilities. This paper provides results of the simulation and modeling work done in conjunction with experimental efforts carried out at the Cornell electron storage ring “Test Accelerator” (CESRTA). This paper begins with a discussion of the phase shift induced by electron clouds in the transmission of RF waves, followed by the effect of reflections along the beam pipe, simulation of the resonant standing wave frequency shifts and finally the effects of external magnetic fields, namely dipoles and wigglers. A derivation of the dispersion relationship of wave propagation for arbitrary geometries in field free regions with a cold, uniform cloud density is also provided
Sonnad, Kiran G; Schwartz, Robert; Veitzer, Seth
2013-01-01
The use of transverse electric (TE) waves has proved to be a powerful, noninvasive method for estimating the densities of electron clouds formed in particle accelerators. Results from the plasma simulation program VORPAL have been a useful guide for experimental studies related to this method, which have been performed at various accelerator facilities. This paper provides results of the simulation and modeling work done in conjunction with experimental efforts carried out at CesrTA. The discussion starts from the phase shift induced by electron clouds in the transmission of the wave, followed by the effect of reflections along the beam-pipe, the simulation of the resonant wave method and the effects of external magnetic fields, namely dipoles and wigglers. A derivation of the dispersion relationship of wave propagation for arbitrary geometries in field free regions with a uniform cloud density is also provided.
An electromagnetic railgun accelerator: a generator of strong shock waves in channels
Bobashev, S. V.; Zhukov, B. G.; Kurakin, R. O.; Ponyaev, S. A.; Reznikov, B. I.
2014-11-01
Processes that accompany the generation of strong shock waves during the acceleration of a free plasma piston (PP) in the electromagnetic railgun channel have been experimentally studied. The formation of shock waves in the railgun channel and the motion of a shock-wave-compressed layer proceed (in contrast to the case of a classical shock tube) in a rather strong electric field (up to 300 V/cm). The experiments were performed at the initial gas pressures in the channel ranging from 25 to 500 Torr. At 25 Torr, the shock-wave Mach numbers reached 32 in argon and 16 in helium. At high concentrations of charged particles behind the shock wave, the electric field causes the passage of a part of the discharge current through the volume of the shock-wave-compressed layer, which induces intense glow comparable with that of the PP glow.
Transient beam loading compensation in traveling wave linear accelerators
For normal conducting linear colliders the transient beam loading in the accelerating structures is typically of the order of 20-30%. This results in a multibunch energy spread of the same magnitude if no remedy is taken into account. On the other hand, in a linear collider the transient energy spread has to be controlled down to a few tenth of a percent. Two possible methods, assuming two different setups, e.g. klystron plus structure and klystron plus SLED cavity plus structure, are investigated. A description of the whole rf system and the resulting energy spread is presented especially for the case of the S-Band linear collider study. (orig.)
Electron acceleration by young supernova remnant blast waves
Blandford, R. D.
1992-01-01
Some general considerations regarding relativistic particle acceleration by young supernova remnants are reviewed. Recent radio observations of supernova remnants apparently locate the bounding shock and exhibit large electron density gradients which verify the presence of strong particle scattering. The radio 'rim' in Tycho's remnant has been found to contain a predominantly radial magnetic field. This may be attributable to an instability of the shock surface and a progress report on an investigation of the stability of strong shocks in partially ionized media is presented.
E. E. Woodfield
2013-10-01
Full Text Available Jupiter has the most intense radiation belts of all the outer planets. It is not yet known how electrons can be accelerated to energies of 10 MeV or more. It has been suggested that cyclotron-resonant wave-particle interactions by chorus waves could accelerate electrons to a few MeV near the orbit of Io. Here we use the chorus wave intensities observed by the Galileo spacecraft to calculate the changes in electron flux as a result of pitch angle and energy diffusion. We show that, when the bandwidth of the waves and its variation with L are taken into account, pitch angle and energy diffusion due to chorus waves is a factor of 8 larger at L-shells greater than 10 than previously shown. We have used the latitudinal wave intensity profile from Galileo data to model the time evolution of the electron flux using the British Antarctic Survey Radiation Belt (BAS model. This profile confines intense chorus waves near the magnetic equator with a peak intensity at ∼5° latitude. Electron fluxes in the BAS model increase by an order of magnitude for energies around 3 MeV. Extending our results to L = 14 shows that cyclotron-resonant interactions with chorus waves are equally important for electron acceleration beyond L = 10. These results suggest that there is significant electron acceleration by cyclotron-resonant interactions at Jupiter contributing to the creation of Jupiter's radiation belts and also increasing the range of L-shells over which this mechanism should be considered.
Burattini, L; Zareba, W
1999-01-01
There is growing evidence that beat-to-beat changes in ventricular repolarization contribute to increased vulnerability to ventricular arrhythmias. Beat-to-beat repolarization variability is usually measured in the electrocardiogram (ECG) by tracking consecutive QT or RT intervals. However, these measurements strongly depend on the accurate identification of T-wave endpoints, and they do not reflect changes in repolarization morphology. In this article, we propose a new computerized time-domain method to measure beat-to-beat variability of repolarization morphology without the need to identify T-wave endpoints. The repolarization correlation index (RCI) is computed for each beat to determine the difference between the morphology of repolarization within a heart-rate dependent repolarization window compared to a template (median) repolarization morphology. The repolarization variability index (RVI) describes the mean value of repolarization correlation in a studied ECG recording. To validate our method, we analyzed repolarization variability in 128-beat segments from Holter ECG recordings of 42 ischemic cardiomyopathy (ICM) patients compared to 36 healthy subjects. The ICM patients had significantly higher values of RVI than healthy subjects (in lead X: 0.045 +/- 0.035 vs. 0.024 +/- 0.010, respectively; P 0.044). No significant correlation was found between the RVI values and the magnitude of heart rate, heart rate variability, QTc interval duration, or ejection fraction in studied ICM patients. In conclusion, our time-domain method, based on computation of repolarization correlation indices for consecutive beats, provides a new approach to quantify beat-to-beat variability of repolarization morphology without the need to identify T-wave endpoints. PMID:10688321
A traveling wave accelerator with HOM outcouplers for FEL's
Electron beam brightness is a key issue in building efficient free electron lasers (FEL's), particularly for optical and shorter wavelengths. The application to FEL's of RF electron gun's with laser driven photo-cathodes has opened the door to developing efficient optical FEL's. The next task is to develop accelerator structures which can transport such beams with a minimum of beam degradation. A low cost approach to this is suggested in this paper. Four 1.26 meter constant gradient (CG) TW sections driven in parallel by a SLAC 5045 klystron. By using CG sections the higher order modes are incoherent due to the linearly decreasing group velocity along the structure. Together with incorporating higher order mode (HOM) outcouplers, this system is predicted to accelerate 1 nC per micropulse, 0.4 Amps per macropulse to 75 MeV from an injection energy of 5 MeV. Emittance growth is predicted to be 5 mm-mr. Rocketdyne is currently procuring these sections for testing
Particle acceleration in ultra-relativistic parallel shock waves
Meli, A
2003-01-01
Monte-Carlo computations for highly relativistic parallel shock particle acceleration are presented for upstream flow gamma factors, $\\Gamma=(1-V_{1}^{2}/c^{2})^{-0.5}$ with values between 5 and $10^{3}$. The results show that the spectral shape at the shock depends on whether or not the particle scattering is small angle with $\\delta \\theta 2r_{g} \\Gamma^{2}$ where $\\lambda$ is the scattering mean free path along the field line and $r_{g}$ the gyroradius, these quantities being measured in the plasma flow frame. The large angle scattering case exhibits distinctive structure superimposed on the basic power-law spectrum, largely absent in the pitch angle case. Also, both cases yield an acceleration rate faster than estimated by the conventional, non-relativistic expression, $t_{acc}=[c/(V_{1}-V_{2})] [\\lambda_{1}/V_{1}+\\lambda_{2}/V_{2}]$ where '1' and '2' refer to upstream and downstream and $\\lambda$ is the mean free path. A $\\Gamma^{2}$ energy enhancement factor in the first shock crossing cycle and a sign...
Modification of the beam transfer model of travelling wave accelerator structures at SACLA
In order to perform efficient beam tuning at SACLA, we had developed a beam transfer model to calculate the beam transverse envelope in a linear accelerator using linear symplectic matrices. However the measured beam orbit responses were not consistent with the calculated orbit. In order to investigate the error source, we modify the transfer matrix of an accelerator structure so that the matrix model reproduces the measured orbit response. In this paper, we report detail of the error source and how the beam transfer model of a travelling wave accelerator structure is modified. (author)
Cold test results of a side-coupled standing-wave electron-accelerating structure
Song, Ki Baek; Li, Yonggui; Lee, Sanghyun; Lee, Byeong-No; Park, Hyung Dal; Cha, Sung-Su; Lee, Byung Cheol
2013-07-01
The radio-frequency (RF) cavity for the dual-energy S-band electron linear accelerator (LINAC) is designed for a cargo inspection system (CIS) at the Korea Atomic Energy Research Institute (KAERI). The cold test results of the electron accelerator structure, which has a side-coupled standing-wave interlaced-pulse dual-energy mode, are described. The design concept, basic structure, microwave-tuning method, and cold-test procedure are described as well. The measured dispersion curve, spectrum characteristics, ρ-f relation of the power coupler, and axial field distribution of the accelerating gradient are provided.
Electromagnetic waves and bursty electron acceleration: implications from Freja
L. Andersson
Full Text Available Dispersive Alfvén wave activity is identified in four dayside auroral oval events measured by the Freja satellite. The events are characterized by ion injection, bursty electron precipitation below about 1 keV, transverse ion heating and broadband extremely low frequency (ELF emissions below the lower hybrid cutoff frequency (a few kHz. Large-scale density depletions/cavities, as determined by the Langmuir probe measurements, and strong electrostatic emissions are often observed simultaneously. A correlation study has been carried out between the E and B field fluctuations below 64 Hz and 10 Hz, respectively, (the DC instruments upper threshold and the characteristics of the precipitating electrons. This study revealed that the energisation of electrons is indeed related to the broadband ELF emissions and that the electrostatic component plays a predominant role during very active magnetospheric conditions. Furthermore, the effect of the ELF electromagnetic emissions on the larger scale field-aligned current systems has been investigated, and it is found that such an effect cannot be detected. Instead, the Alfvénic activity creates a local region of field-aligned currents. It is suggested that dispersive Alfvén waves set up these local field-aligned current regions and, in turn, trigger more electrostatic emissions during certain conditions. In these regions, ions are transversely heated, and large-scale density depletions/cavities may be created during especially active periods.
Key words. Ionosphere (particle acceleraton; wave-particle interactions Magnetospheric physics (auroral phenomena
Relationship between Alfvén Wave and Quasi-Static Acceleration in Earth's Auroral Zone
Mottez, Fabrice
2016-02-01
There are two main categories of acceleration processes in the Earth's auroral zone: those based on quasi-static structures, and those based on Alfvén wave (AW). AWs play a nonnegligible role in the global energy budget of the plasma surrounding the Earth because they participate in auroral acceleration, and because auroral acceleration conveys a large portion of the energy flux across the magnetosphere. Acceleration events by double layers (DLs) and by AW have mostly been investigated separately, but many studies cited in this chapter show that they are not independent: these processes can occur simultaneously, and one process can be the cause of the other. The quasi-simultaneous occurrences of acceleration by AW and by quasi-static structures have been observed predominantly at the polar cap boundary of auroral arc systems, where often new bright arcs develop or intensify.
Accelerating Wave Function Convergence in Interactive Quantum Chemical Reactivity Studies
Mühlbach, Adrian H; Reiher, Markus
2015-01-01
The inherently high computational cost of iterative self-consistent-field (SCF) methods proves to be a critical issue delaying visual and haptic feedback in real-time quantum chemistry. In this work, we introduce two schemes for SCF acceleration. They provide a guess for the initial density matrix of the SCF procedure generated by extrapolation techniques. SCF optimizations then converge in fewer iterations, which decreases the execution time of the SCF optimization procedure. To benchmark the proposed propagation schemes, we developed a test bed for performing quantum chemical calculations on sequences of molecular structures mimicking real-time quantum chemical explorations. Explorations of a set of six model reactions employing the semi-empirical methods PM6 and DFTB3 in this testing environment showed that the proposed propagation schemes achieved speedups of up to thirty percent as a consequence of a reduced number of SCF iterations.
Accelerating Wave Function Convergence in Interactive Quantum Chemical Reactivity Studies.
Mühlbach, Adrian H; Vaucher, Alain C; Reiher, Markus
2016-03-01
The inherently high computational cost of iterative self-consistent field (SCF) methods proves to be a critical issue delaying visual and haptic feedback in real-time quantum chemistry. In this work, we introduce two schemes for SCF acceleration. They provide a guess for the initial density matrix of the SCF procedure generated by extrapolation techniques. SCF optimizations then converge in fewer iterations, which decreases the execution time of the SCF optimization procedure. To benchmark the proposed propagation schemes, we developed a test bed for performing quantum chemical calculations on sequences of molecular structures mimicking real-time quantum chemical explorations. Explorations of a set of six model reactions employing the semi-empirical methods PM6 and DFTB3 in this testing environment showed that the proposed propagation schemes achieved speedups of up to 30% as a consequence of a reduced number of SCF iterations. PMID:26788887
Prospects for all-optical ultrafast muon acceleration
Peano, F; Mulas, R; Coppa, G; Bingham, R; Silva, L O
2008-01-01
A scheme for fast, compact, and controllable acceleration of heavy particles in vacuum has been recently proposed [F. Peano et al., New J. Phys. 10 033028 (2008)], wherein two counterpropagating laser beams with variable frequencies drive a beat-wave structure with variable phase velocity, leading to particle trapping and acceleration. The technique allows for fine control over the energy distribution and the total charge of the accelerated beam, to be obtained via tuning of the frequency variation. Here, the theoretical bases of the acceleration scheme are described, and the possibility of applications to ultrafast muon acceleration and to the prompt extraction of cold-muon beams is discussed.
Prospects for all-optical ultrafast muon acceleration
Peano, F; Vieira, J; Silva, L O [GoLP/Institudo de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, 1049-001 Lisboa (Portugal); Mulas, R; Coppa, G [Dipartimento di Energetica, Politecnico di Torino, 10129 Torino (Italy); Bingham, R [Space Science and Technology Department, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxon, OX11 0QX (United Kingdom)], E-mail: fabio.peano@ist.utl.pt, E-mail: luis.silva@ist.utl.pt
2009-02-15
A scheme for fast, compact and controllable acceleration of heavy particles in vacuum has been recently proposed (Peano F et al 2008 New J. Phys. 10 033028), wherein two counterpropagating laser beams with variable frequencies drive a beat-wave structure with variable phase velocity, leading to particle trapping and acceleration. The technique allows for fine control over the energy distribution and the total charge of the accelerated beam to be obtained via tuning of the frequency variation. Here, the theoretical bases of the acceleration scheme are described, and the possibility of applications to ultrafast muon acceleration and to the prompt extraction of cold-muon beams is discussed.
PARTICLE ACCELERATION IN THE EXPANDING BLAST WAVE OF η CARINA'S GREAT ERUPTION OF 1843
Non-thermal hard X-ray and high-energy (HE; 1 MeV ≤ E ≤ 100 GeV) γ-ray emission in the direction of η Carina has been recently detected using the INTEGRAL, AGILE, and Fermi satellites. So far this emission has been interpreted in the framework of particle acceleration in the colliding wind region between the two massive stars. However, the existence of a very fast moving blast wave which originates in the historical 1843 'Great Eruption' provides an alternative particle acceleration site in this system. Here, we explore an alternate scenario and find that inverse Compton emission from electrons accelerated in the blast wave can naturally explain both the flux and spectral shape of the measured hard X-ray and HE γ-ray emission. This scenario is further supported by the lack of significant variability in the INTEGRAL and Fermi measured fluxes.
Wearable Beat to Beat Blood Pressure Monitor Project
National Aeronautics and Space Administration — A key component of NASA's human exploration programs is a system that monitors the health of the crew during space missions. The wearable beat-to-beat blood...
Measuring test mass acceleration noise in space-based gravitational wave astronomy
Congedo, Giuseppe
2015-03-01
The basic constituent of interferometric gravitational wave detectors—the test-mass-to-test-mass interferometric link—behaves as a differential dynamometer measuring effective differential forces, comprising an integrated measure of gravity curvature, inertial effects, as well as nongravitational spurious forces. This last contribution is going to be characterized by the LISA Pathfinder mission, a technology precursor of future space-borne detectors like eLISA. Changing the perspective from displacement to acceleration can benefit the data analysis of LISA Pathfinder and future detectors. The response in differential acceleration to gravitational waves is derived for a space-based detector's interferometric link. The acceleration formalism can also be integrated into time delay interferometry by building up the unequal-arm Michelson differential acceleration combination. The differential acceleration is nominally insensitive to the system's free evolution dominating the slow displacement dynamics of low-frequency detectors. Working with acceleration also provides an effective way to subtract measured signals acting as systematics, including the actuation forces. Because of the strong similarity with the equations of motion, the optimal subtraction of systematic signals, known within some amplitude and time shift, with the focus on measuring the noise provides an effective way to solve the problem and marginalize over nuisance parameters. The F statistic, in widespread use throughout the gravitation waves community, is included in the method and suitably generalized to marginalize over linear parameters and noise at the same time. The method is applied to LPF simulator data and, thanks to its generality, can also be applied to the data reduction and analysis of future gravitational wave detectors.
Laboratory Measurements of Linear Electron Acceleration by Inertial Alfvén Waves
Schroeder, J. W. R.
2015-11-01
Alfvén waves occur in conjunction with a significant fraction of auroral electron acceleration. Inertial mode Alfvén waves (vA >vte) in the auroral magnetosphere (2 - 4RE) with perpendicular scales on the order of the electron skin depth (c /ωpe) have a parallel electric field that, according to theory, is capable of nonlinearly accelerating suprathermal electrons to auroral energies. Unfortunately, due to space-time ambiguities of rocket and satellite measurements, it has not yet been possible to fully verify how Alfvén waves contribute to the production of accelerated electrons. To overcome the limitations of in situ spacecraft data, laboratory experiments have been carried out using the Large Plasma Device (LaPD), an NSF/DOE user facility at UCLA. An Electron Cyclotron Absorption (ECA) diagnostic has been developed to record the suprathermal parallel electron distribution function with 0.1% precision. The diagnostic records the electron distribution while inertial Alfvén waves simultaneously propagate through the plasma. Recent measurements have isolated oscillations of suprathermal electrons at the Alfvén wave frequency. Despite complications from boundary effects and the finite size of the experiment, a linear kinetic model has been produced that describes the experimental results. To our knowledge this is the first quantitative agreement between the measured and modeled linear response of suprathermal electrons to an inertial Alfvén wave. This verification of the linear physics is a necessary step before the nonlinear acceleration process can be isolated in future experiments. Presently, nonlinear effects cannot be detected because of limited Alfvén wave amplitudes. Ongoing work is focused on designing a higher-power antenna capable of efficiently launching larger-amplitude Alfvén waves with tunable perpendicular wavenumber and developing a theoretical understanding of the nonlinear acceleration process in LaPD plasma conditions. This material is
J.H. Hoogstad; B. Stougaard Pedersen
2013-01-01
Off Beat: Pluralizing Rhythm draws attention to rhythm as a tool for analyzing various cultural objects. In fields as diverse as music, culture, nature, and economy, rhythm can be seen as a phenomenon that both connects and divides. It suggests a certain measure with which people, practices, and cul
Heavy-ion Acceleration and Self-generated Waves in Coronal Shocks
Battarbee, Markus; Vainio, Rami; 10.1051/0004-6361/201117507
2013-01-01
Context: Acceleration in coronal mass ejection driven shocks is currently considered the primary source of large solar energetic particle events. Aims: The solar wind, which feeds shock-accelerated particles, includes numerous ion populations, which offer much insight into acceleration processes. We present first simulations of shock-accelerated minor ions, in order to explore trapping dynamics and acceleration timescales in detail. Methods: We have simulated diffusive shock acceleration of minor ions (3He2+, 4He2+, 16O6+ and 56Fe14+) and protons using a Monte Carlo method, where self-generated Alfv\\'enic turbulence allows for repeated shock crossings and acceleration to high energies. Results: We present the effect of minor ions on wave generation, especially at low wavenumbers, and show that it is significant. We find that maximum ion energy is determined by the competing effects of particle escape due to focusing in an expanding flux tube and trapping due to the amplified turbulence. We show the dependence...
Mixture of Fluids involving Entropy Gradients and Acceleration Waves in Interfacial Layers
Gouin, Henri
2008-01-01
Through an Hamiltonian action we write down the system of equations of motions for a mixture of thermocapillary fluids under the assumption that the internal energy is a function not only of the gradient of the densities but also of the gradient of the entropies of each component. A Lagrangian associated with the kinetic energy and the internal energy allows to obtain the equations of momentum for each component and for the barycentric motion of the mixture. We obtain also the balance of energy and we prove that the equations are compatible with the second law of thermodynamics. Though the system is of parabolic type, we prove that there exist two tangential acceleration waves that characterize the interfacial motion. The dependence of the internal energy of the entropy gradients is mandatory for the existence of this kind of waves. The differential system is non-linear but the waves propagate without distortion due to the fact that they are linearly degenerate (exceptional waves).
Electron acceleration in an ion channel by a magnetized plasma wave
A. Kargarian
2014-04-01
Full Text Available In this paper, the acceleration of an electron in the interaction with a plasma wave and a magnetized ion-channel is analyzed. The electron dynamics is studied treated employing complete three-dimensional Lorentz force equations. A relativistic three dimensional single particle code is used to obtain the electron-trajectories. The results of numerical calculation show that the electrons can be accelerated in the magnetized channel. Furthermore, the electron energy gain with axial magnetic field is compared to that without axial magnetic field.
Spectral-element Seismic Wave Propagation on CUDA/OpenCL Hardware Accelerators
Peter, D. B.; Videau, B.; Pouget, K.; Komatitsch, D.
2015-12-01
Seismic wave propagation codes are essential tools to investigate a variety of wave phenomena in the Earth. Furthermore, they can now be used for seismic full-waveform inversions in regional- and global-scale adjoint tomography. Although these seismic wave propagation solvers are crucial ingredients to improve the resolution of tomographic images to answer important questions about the nature of Earth's internal processes and subsurface structure, their practical application is often limited due to high computational costs. They thus need high-performance computing (HPC) facilities to improving the current state of knowledge. At present, numerous large HPC systems embed many-core architectures such as graphics processing units (GPUs) to enhance numerical performance. Such hardware accelerators can be programmed using either the CUDA programming environment or the OpenCL language standard. CUDA software development targets NVIDIA graphic cards while OpenCL was adopted by additional hardware accelerators, like e.g. AMD graphic cards, ARM-based processors as well as Intel Xeon Phi coprocessors. For seismic wave propagation simulations using the open-source spectral-element code package SPECFEM3D_GLOBE, we incorporated an automatic source-to-source code generation tool (BOAST) which allows us to use meta-programming of all computational kernels for forward and adjoint runs. Using our BOAST kernels, we generate optimized source code for both CUDA and OpenCL languages within the source code package. Thus, seismic wave simulations are able now to fully utilize CUDA and OpenCL hardware accelerators. We show benchmarks of forward seismic wave propagation simulations using SPECFEM3D_GLOBE on CUDA/OpenCL GPUs, validating results and comparing performances for different simulations and hardware usages.
Contribution to the study of standing wave bi-periodical accelerating structures for electrons
Experimental results on bi-periodic standing wave accelerating structures are presented. These structures which are characterized by a high effective shunt impedance, are designed for standing wave, high duty cycle electron accelerators. Two types of structures are studied: the on-axis coupled structure and the coaxial coupled structure. The expressions for the dispersion relation, coupling coefficients, phase and group velocity are derived from a coupled resonator model. An experimental method to eliminate the stop-band is put forward. The influence of the coupling slots on the dispersion curves is studied experimentally. The effective shunt impedance and the transit time factor are measured by the field perturbation techniques. Measured parameters are compared with SUPERFISH theoretical calculations. The field perturbation technique is also applied to measure the transverse shunt impedance of the dipole modes which are responsible for the beam breakup phenomenon. (author)
Pressure increase in two-phase media behind air shock waves and by shock wave accelerated pistons
Patz, G.; Smeets, G.
Results are summarized from experimental and theoretical studies of the effects of a shock wave on a two-phase medium (TPM) and the compression of a TPM by a piston accelerated by the pressure behind a reflected shock. Attention is also given to the use of foam as the TPM and actions of the changing pressure as the shock moves to the end of the shock tube and returns. The situation is extended to the situation where the returning wave drives a piston into the foam. Analysis of the pressure variations in the foam shows that the peak pressure will depend only on the piston pressure. No shocks formed in the TMP, either in the model predictions or in an experimental validation, because the piston speed was always well below the sonic velocity in the lather.
Wave packet analysis and break-up length calculations for an accelerating planar liquid jet
This paper examines the process of transition to turbulence within an accelerating planar liquid jet. By calculating the propagation and spatial evolution of disturbance wave packets generated at a nozzle where the jet emerges, we are able to estimate break-up lengths and break-up times for different magnitudes of acceleration and different liquid to air density ratios. This study uses a basic jet velocity profile that has shear layers in both air and the liquid either side of the fluid interface. The shear layers are constructed as functions of velocity which behave in line with our CFD simulations of injecting diesel jets. The non-dimensional velocity of the jet along the jet centre-line axis is assumed to take the form V (t) = tanh(at), where the parameter a determines the magnitude of the acceleration. We compare the fully unsteady results obtained by solving the unsteady Rayleigh equation to those of a quasi-steady jet to determine when the unsteady effects are significant and whether the jet can be regarded as quasi-steady in typical operating conditions for diesel engines. For a heavy fluid injecting into a lighter fluid (density ratio ρair/ρjet = q < 1), it is found that unsteady effects are mainly significant at early injection times where the jet velocity profile is changing fastest. When the shear layers in the jet thin with time, the unsteady effects cause the growth rate of the wave packet to be smaller than the corresponding quasi-steady jet, whereas for thickening shear layers the unsteady growth rate is larger than that of the quasi-steady jet. For large accelerations (large a), the unsteady effect remains at later times but its effect on the growth rate of the wave packet decreases as the time after injection increases. As the rate of acceleration is reduced, the range of velocity values for which the jet can be considered as quasi-steady increases until eventually the whole jet can be considered quasi-steady. For a homogeneous jet (q = 1), the
Plasma acceleration by the interaction of parallel propagating Alfv\\'en waves
Mottez, Fabrice
2014-01-01
It is shown that two circularly polarised Alfv\\'en waves that propagate along the ambient magnetic field in an uniform plasma trigger non oscillating electromagnetic field components when they cross each other. The non-oscilliating field components can accelerate ions and electrons with great efficiency. This work is based on particle-in-cell (PIC) numerical simulations and on analytical non-linear computations. The analytical computations are done for two counter-propagating monochromatic wa...
Peter, Daniel; Videau, Brice; Pouget, Kevin; Komatitsch, Dimitri
2015-04-01
Improving the resolution of tomographic images is crucial to answer important questions on the nature of Earth's subsurface structure and internal processes. Seismic tomography is the most prominent approach where seismic signals from ground-motion records are used to infer physical properties of internal structures such as compressional- and shear-wave speeds, anisotropy and attenuation. Recent advances in regional- and global-scale seismic inversions move towards full-waveform inversions which require accurate simulations of seismic wave propagation in complex 3D media, providing access to the full 3D seismic wavefields. However, these numerical simulations are computationally very expensive and need high-performance computing (HPC) facilities for further improving the current state of knowledge. During recent years, many-core architectures such as graphics processing units (GPUs) have been added to available large HPC systems. Such GPU-accelerated computing together with advances in multi-core central processing units (CPUs) can greatly accelerate scientific applications. There are mainly two possible choices of language support for GPU cards, the CUDA programming environment and OpenCL language standard. CUDA software development targets NVIDIA graphic cards while OpenCL was adopted mainly by AMD graphic cards. In order to employ such hardware accelerators for seismic wave propagation simulations, we incorporated a code generation tool BOAST into an existing spectral-element code package SPECFEM3D_GLOBE. This allows us to use meta-programming of computational kernels and generate optimized source code for both CUDA and OpenCL languages, running simulations on either CUDA or OpenCL hardware accelerators. We show here applications of forward and adjoint seismic wave propagation on CUDA/OpenCL GPUs, validating results and comparing performances for different simulations and hardware usages.
Observational and Theoretical Challenges to Wave or Turbulence Accelerations of the Fast Solar Wind
Roberts, D. Aaron
2008-01-01
We use both observations and theoretical considerations to show that hydromagnetic waves or turbulence cannot produce the acceleration of the fast solar wind and the related heating of the open solar corona. Waves do exist as shown by Hinode and other observations, and can play a role in the differential heating and acceleration of minor ions but their amplitudes are not sufficient to power the wind, as demonstrated by extrapolation of magnetic spectra from Helios and Ulysses observations. Dissipation mechanisms invoked to circumvent this conclusion cannot be effective for a variety of reasons. In particular, turbulence does not play a strong role in the corona as shown by both eclipse observations of coronal striations and theoretical considerations of line-tying to a nonturbulent photosphere, nonlocality of interactions, and the nature of kinetic dissipation. In the absence of wave heating and acceleration, the chromosphere and transition region become the natural source of open coronal energization. We suggest a variant of the velocity filtration approach in which the emergence and complex churning of the magnetic flux in the chromosphere and transition region continuously and ubiquitously produces the nonthermal distributions required. These particles are then released by magnetic carpet reconnection at a wide range of scales and produce the wind as described in kinetic approaches. Since the carpet reconnection is not the main source of the energization of the plasma, there is no expectation of an observable release of energy in nanoflares.
Design and beam test of a high intensity continuous wave RFQ accelerator
Zhang, Zhouli, E-mail: zhangzhouli@impcas.ac.cn; Sun, Liepeng; Jia, Huan; He, Yuan; Shi, Aimin; Du, Xiaonan; Wang, Jing; Jin, Xiaofeng; Pan, Gang; Xu, Xianbo; Li, Chenxing; Shi, Longbo; Lu, Liang; Zhang, Zimin; Wu, Junxia; Wang, Haoning; Zhu, Tieming; Wang, Xianwu; Guo, Yuhui; Liu, Yong; and others
2014-11-01
A four-vane continuous wave (CW) RFQ has been designed for the injector II LINAC of China ADS project. To acquire the experience of a CW RFQ on design, tuning, conditioning, running, etc., a 1-m-long RFQ accelerator prototype has been built. Working at 162.5 MHz, the RFQ prototype accelerates protons of 10 mA from 20 keV to 560 keV in one meter length with a low inter-vane voltage of 65 kV and a safe Kilpatric factor of 1.3. Conditioning and beam test of the accelerator prototype have been completed, and it shows the transmission efficiency can reach 90% with a 10 mA CW proton beam. Design, fabrication and tests of the RFQ prototype will be presented in detail in the paper.
吕浙
2005-01-01
beat a dead horse的字面意思为“鞭打死马”。“鞭打死马”有什么作用？毫无疑问，一点意义也没有。因此，该习语的意思相当于中文的“徒劳，白费力气，白费口舌”。如：
Untangling the Effect of Head Acceleration on Brain Responses to Blast Waves.
Mao, Haojie; Unnikrishnan, Ginu; Rakesh, Vineet; Reifman, Jaques
2015-12-01
Multiple injury-causing mechanisms, such as wave propagation, skull flexure, cavitation, and head acceleration, have been proposed to explain blast-induced traumatic brain injury (bTBI). An accurate, quantitative description of the individual contribution of each of these mechanisms may be necessary to develop preventive strategies against bTBI. However, to date, despite numerous experimental and computational studies of bTBI, this question remains elusive. In this study, using a two-dimensional (2D) rat head model, we quantified the contribution of head acceleration to the biomechanical response of brain tissues when exposed to blast waves in a shock tube. We compared brain pressure at the coup, middle, and contre-coup regions between a 2D rat head model capable of simulating all mechanisms (i.e., the all-effects model) and an acceleration-only model. From our simulations, we determined that head acceleration contributed 36-45% of the maximum brain pressure at the coup region, had a negligible effect on the pressure at the middle region, and was responsible for the low pressure at the contre-coup region. Our findings also demonstrate that the current practice of measuring rat brain pressures close to the center of the brain would record only two-thirds of the maximum pressure observed at the coup region. Therefore, to accurately capture the effects of acceleration in experiments, we recommend placing a pressure sensor near the coup region, especially when investigating the acceleration mechanism using different experimental setups. PMID:26458125
A 3D MPI-Parallel GPU-accelerated framework for simulating ocean wave energy converters
Pathak, Ashish; Raessi, Mehdi
2015-11-01
We present an MPI-parallel GPU-accelerated computational framework for studying the interaction between ocean waves and wave energy converters (WECs). The computational framework captures the viscous effects, nonlinear fluid-structure interaction (FSI), and breaking of waves around the structure, which cannot be captured in many potential flow solvers commonly used for WEC simulations. The full Navier-Stokes equations are solved using the two-step projection method, which is accelerated by porting the pressure Poisson equation to GPUs. The FSI is captured using the numerically stable fictitious domain method. A novel three-phase interface reconstruction algorithm is used to resolve three phases in a VOF-PLIC context. A consistent mass and momentum transport approach enables simulations at high density ratios. The accuracy of the overall framework is demonstrated via an array of test cases. Numerical simulations of the interaction between ocean waves and WECs are presented. Funding from the National Science Foundation CBET-1236462 grant is gratefully acknowledged.
Lecz, Zs. [ELI-ALPS, ELI-HU Nkft., Szeged (Hungary); Andreev, A. [ELI-ALPS, ELI-HU Nkft., Szeged (Hungary); Max-Born Institute, Berlin (Germany)
2015-04-15
The acceleration of protons, triggered by solitary waves in expanded solid targets is investigated using particle-in-cell simulations. The near-critical density plasma is irradiated by ultrashort high power laser pulses, which generate the solitary wave. The transformation of this soliton into a shock wave during propagation in plasma with exponentially decreasing density profile is described analytically, which allows to obtain a scaling law for the proton energy. The high quality proton bunch with small energy spread is produced by reflection from the shock-front. According to the 2D simulations, the mechanism is stable only if the laser pulse duration is shorter than the characteristic development time of the parasitic Weibel instability.
Stochastic Ion Heating by the Lower-Hybrid Waves
Khazanov, G.; Tel'nikhin, A.; Krotov, A.
2011-01-01
The resonance lower-hybrid wave-ion interaction is described by a group (differentiable map) of transformations of phase space of the system. All solutions to the map belong to a strange attractor, and chaotic motion of the attractor manifests itself in a number of macroscopic effects, such as the energy spectrum and particle heating. The applicability of the model to the problem of ion heating by waves at the front of collisionless shock as well as ion acceleration by a spectrum of waves is discussed. Keywords: plasma; ion-cyclotron heating; shocks; beat-wave accelerator.
A theoretical study on the propagation of a pressure wave in a diphasic medium, when compared to the onset mechanism of pulmonary lesions in subjects exposed to strong shock waves, shows an increase in the incident overpressure at the interface level. Using hydrophones, intracorporal pressure was measured in pigs. The authors recorded the costal wall acceleration on the side directly exposed to the shock wave and calculated the displacement of the costal wall after a shock wave passed by. These experiments were conducted for shock waves in a free field, at an overpressure peak level ranging from 26 kFPa to 380 kPa and for a first positive phase lasting 2 ms. Sensors placed in an intracorporal position detected no increase of the overpressure level for any value of the incident pressure. A comparison of the costal wall displacement, measured experimentally, relative to the theoretical displacement of the entire animal mass indicates that the largest relative displacement of the costal wall could be the origin of the pulmonary lesions found. 5 refs., 13 figs
Li, Jinxing; Bortnik, Jacob; Thorne, Richard M.; Li, Wen; Ma, Qianli; Baker, Daniel N.; Reeves, Geoffrey D.; Fennell, Joseph F.; Spence, Harlan E.; Kletzing, Craig A.; Kurth, William S.; Hospodarsky, George B.; Angelopoulos, Vassilis; Blake, J. Bernard.
2016-04-01
The Van Allen Probe observations during the recovery phase of a large storm that occurred on 17 March 2015 showed that the ultrarelativistic electrons at the inner boundary of the outer radiation belt (L* = 2.6-3.7) exhibited butterfly pitch angle distributions, while the inner belt and the slot region also showed evidence of sub-MeV electron butterfly distributions. Strong magnetosonic waves were observed in the same regions and at the same time periods as these butterfly distributions. Moreover, when these magnetosonic waves extended to higher altitudes (L* = 4.1), the butterfly distributions also extended to the same region. Combining test particle calculations and Fokker-Planck diffusion simulations, we successfully reproduced the formation of the ultrarelativistic electron butterfly distributions, which primarily result from parallel acceleration caused by Landau resonance with magnetosonic waves. The coexistence of ultrarelativistic electron butterfly distributions with magnetosonic waves was also observed in the 24 June 2015 storm, providing further support that the magnetosonic waves play a key role in forming butterfly distributions.
Pakdaman, S. A.; Garcia, M.; Teh, E.; Lincoln, D.; Trivedi, M.; Alves, M.; Johansen, C.
2016-03-01
Shock wave formation and acceleration in a high-aspect ratio cross section shock tube were studied experimentally and numerically. The relative importance of geometric effects and diaphragm opening time on shock formation are assessed. The diaphragm opening time was controlled through the use of slit-type (fast opening time) and petal-type (slow opening time) diaphragms. A novel method of fabricating the petal-type diaphragms, which results in a consistent burst pressure and symmetric opening without fragmentation, is presented. High-speed schlieren photography was used to visualize the unsteady propagation of the lead shock wave and trailing gas dynamic structures. Surface-mounted pressure sensors were used to capture the spatial and temporal development of the pressure field. Unsteady Reynolds-Averaged Navier-Stokes simulation predictions using the shear-stress-transport turbulence model are compared to the experimental data. Simulation results are used to explain the presence of high-frequency pressure oscillations observed experimentally in the driver section as well as the cause of the initial acceleration and subsequent rapid decay of shock velocity measured along the top and bottom channel surfaces. A one-dimensional theoretical model predicting the effect of the finite opening time of the diaphragm on the rate of driver depressurization and shock acceleration is proposed. The model removes the large amount of empiricism that accompanies existing models published in the literature. Model accuracy is assessed through comparisons with experiments and simulations. Limitations of and potential improvements in the model are discussed.
Modeling of Nonlinear Beat Signals of TAE's
Zhang, Bo; Berk, Herbert; Breizman, Boris; Zheng, Linjin
2012-03-01
Experiments on Alcator C-Mod reveal Toroidal Alfven Eigenmodes (TAE) together with signals at various beat frequencies, including those at twice the mode frequency. The beat frequencies are sidebands driven by quadratic nonlinear terms in the MHD equations. These nonlinear sidebands have not yet been quantified by any existing codes. We extend the AEGIS code to capture nonlinear effects by treating the nonlinear terms as a driving source in the linear MHD solver. Our goal is to compute the spatial structure of the sidebands for realistic geometry and q-profile, which can be directly compared with experiment in order to interpret the phase contrast imaging diagnostic measurements and to enable the quantitative determination of the Alfven wave amplitude in the plasma core
One investigates into effect of random phase disturbances on particle dynamics at extraction of UHF power from two-beam accelerator driver with accompanying wave. Paper presents the simulation results of beam dynamics in the driver depending on the value of phase disturbances. One determines tolerances for spread in values of amplitude and phase of wave in driver power extractors
The implementation and performance of a surface acoustic wave (SAW)-based acceleration sensor is described. The sensor was composed of a flexible ST-X quartz cantilever beam with a relatively substantial proof mass at the undamped end, a pattern of a two-port SAW resonator deposited directly on the surface of the beam adjacent to the clamped end for maximum strain sensitivity and a SAW resonator affixed on the metal package base for temperature compensation. The acceleration was directed to the proof mass flex of the cantilever, inducing relative changes in the acoustic propagation characteristics of the SAW traveling along the beams. The frequency signal from the differential oscillation structure utilizing the SAW resonators as the feedback element varies as a function of acceleration. The sensor response mechanism was analyzed theoretically, with the aim of determining the optimized dimension of the cantilever beam. The coupling of modes (COM) model was used to simulate the synchronous SAW resonator prior to fabrication. The oscillator frequency stability was improved using the phase modulation approach; the obtained typical short-term frequency stability ranged up to 1 Hz s−1. The performance of the developed acceleration sensor was evaluated using the precise vibration table and was also evaluated in comparison to the theoretical calculation. A high frequency sensitivity of 29.7 kHz g−1, good linearity and a lower detection limit (∼1 × 10−4 g) were achieved in the measured results. (paper)
Underwood, Thomas; Loebner, Keith; Cappelli, Mark
2015-11-01
Detailed measurements of the thermodynamic and electrodynamic plasma state variables within the plume of a pulsed plasma accelerator are presented. A quadruple Langmuir probe operating in current-saturation mode is used to obtain time resolved measurements of the plasma density, temperature, potential, and velocity along the central axis of the accelerator. This data is used in conjunction with a fast-framing, intensified CCD camera to develop and validate a model predicting the existence of two distinct types of ionization waves corresponding to the upper and lower solution branches of the Hugoniot curve. A deviation of less than 8% is observed between the quasi-steady, one-dimensional theoretical model and the experimentally measured plume velocity. This work is supported by the U.S. Department of Energy Stewardship Science Academic Program in addition to the National Defense Science Engineering Graduate Fellowship.
Modulation of attosecond beating in resonant two-photon ionization
Galán, Álvaro J; Martín, Fernando
2014-01-01
We present a theoretical study of the photoelectron attosecond beating at the basis of RABBIT (Reconstruction of Attosecond Beating By Interference of Two-photon transitions) in the presence of autoionizing states. We show that, as a harmonic traverses a resonance, its sidebands exhibit a peaked phase shift as well as a modulation of the beating frequency itself. Furthermore, the beating between two resonant paths persists even when the pump and the probe pulses do not overlap, thus providing a sensitive non-holographic interferometric means to reconstruct coherent metastable wave packets. We characterize these phenomena quantitatively with a general finite-pulse analytical model that accounts for the effect of both intermediate and final resonances on two-photon processes, at a negligible computational cost. The model predictions are in excellent agreement with those of accurate ab initio calculations for the helium atom in the region of the N=2 doubly excited states.
Suzuki, T. K.
2008-01-01
We review our recent results of global one-dimensional (1-D) MHD simulations for the acceleration of solar and stellar winds. We impose transverse photospheric motions corresponding to the granulations, which generate outgoing Alfvén waves. We treat the propagation and dissipation of the Alfvén waves and consequent heating from the photosphere by dynamical simulations in a self-consistent manner. Nonlinear dissipation of Alfven waves becomes quite effective owing to the stratification of the ...
Beam characterization of a new continuous wave radio frequency quadrupole accelerator
A new Continuous Wave (CW) Radio Frequency Quadrupole (RFQ) for the ATLAS (Argonne Tandem Linac Accelerator System) Intensity Upgrade was developed, built and tested at Argonne National Laboratory. We present here a characterization of the RFQ output beam in the longitudinal phase space, as well as a measurement of the transverse beam halo. Measurement results are compared to simulations performed using the beam dynamics code TRACK. -- Highlights: • Beam commissioning of a new CW RFQ has been performed at Argonne National Laboratory. • Energy spread and bunch shape measurements were conducted. • The formation of a beam halo in the transverse phase space was studied
Kar, Satyabrata
2015-11-01
All-optical approaches to particle acceleration are currently attracting a significant research effort internationally. Where intense laser driven proton beams, mainly by the so called Target Normal Sheath Acceleration mechanism, have attractive properties such as brightness, laminarity and burst duration, overcoming some of the inherent shortcomings, such as large divergence, broad spectrum and slow ion energy scaling poses significant scientific and technological challenges. High power lasers are capable of generating kiloampere current pulses with unprecedented short duration (10s of picoseconds). The large electric field from such localized charge pulses can be harnessed in a traveling wave particle accelerator arrangement. By directing the ultra-short charge pulse along a helical path surrounding a laser-accelerated ion beams, one can achieve simultaneous beam shaping and re-acceleration of a selected portion of the beam by the components of the associated electric field within the helix. In a proof-of-principle experiment on a 200 TW university-scale laser, we demonstrated post-acceleration of ~108 protons by ~5 MeV over less than a cm of propagation - i.e. an accelerating gradient ~0.5 GeV/m, already beyond what can be sustained by conventional accelerator technologies, with dynamic beam collimation and energy selection. These results open up new opportunities for the development of extremely compact and cost-effective ion accelerators for both established and innovative applications.
LIGA fabrication of mm-wave accelerating cavity structures at the Advanced Photon Source (APS)
Recent microfabrication technologies based on the LIGA (German acronym for Lithographe, Galvanoformung, und Abformung) process have been applied to build high-aspect-ratio, metallic or dielectric planar structures suitable for high-frequency rf cavity structures. The cavity structures would be used as parts of linear accelerators, microwave undulators, and mm-wave amplifiers. The microfabrication process includes manufacture of precision x-ray masks, exposure of positive resist x-rays through the mask, resist development, and electroforming of the final microstructure. Prototypes of a 32-cell, 108-GHz constant-impedance cavity and a 66-cell, 94-GHz constant-gradient cavity were fabricated with the synchrotron radiation sources at APS and NSLS. This paper will present an overview of the new technology and details of the mm-wave cavity fabrication
Modulational instability of Langmuir wave excited by HF pumping in a collisionless plasma is studied. It is shown that, in case of a sufficiently powerful external source, time of instability development doubles as pumping increases. A threshold (for this effect) pumping level is determined. Situations are considered when the pumping represents a homogeneous HF field or HF electric current whose amplitudes are maintained stable via external sources. The case is assessed when HF current is generated and maintained through beats of strong electromagnetic waves. Conditions which will suppress modulational instability of fast Langmuir wave in a laser accelerator on beats are presented
The invention claims equipment for stabilizing the position of the front covers of the accelerator chamber in cyclic accelerators which significantly increases accelerator reliability. For stabilizing, it uses hydraulic cushions placed between the electromagnet pole pieces and the front chamber covers. The top and the bottom cushions are hydraulically connected. The cushions are disconnected and removed from the hydraulic line using valves. (J.P.)
The authors use EGS4 code, a generally known Monte Carlo computer simulation package, to carry out the simulation analysis of the radiation dose distribution around the head shielding system and inside the accelerator hall of the 9 MeV travelling wave linear electron accelerator. The accelerator is used for the large container inspecting system. The comparison of experience formulae evaluation and practical data was made. The results show that, at the main reference points in the accelerator hall, the dose calculated by EEG's is well coincided with the results measured. It serves as a good example for flexible application of EGS4
RF-thermal-structural-RF coupled analysis on a travelling wave disk-loaded accelerating structure
The travelling wave (TW) disk-loaded accelerating structure is one of the key components in normal conducting (NC) linear accelerators, and has been studied for many years. In the design process, usually after the dimensions of each cell and the two couplers are finalized, the structure is fabricated and tuned, and then the whole structure RF characteristics are measured by using a vector network analyzer. Before fabrication, the whole structure characteristics (including RF, thermal and structural ones) are less simulated due to the limited capability of currently available computers. In this paper, we described a method for performing RF-thermal-structural-RF coupled analysis on a TW disk-loaded structure using only one PC. In order to validate our method, we first analyzed and compared our RF simulation results on the 3 m long BEPC Ⅱ structure with the corresponding experimental results, which shows very good consistency. Finally, the RF-thermal-structure-RF coupled analysis results on the 1.35 m long NSC KIPT linac accelerating structure are presented. (authors)
Shock waves and cosmic ray acceleration in the outskirts of galaxy clusters
The outskirts of galaxy clusters are continuously disturbed by mergers and gas infall along filaments, which in turn induce turbulent flow motions and shock waves. We examine the properties of shocks that form within r 200 in sample galaxy clusters from structure formation simulations. While most of these shocks are weak and inefficient accelerators of cosmic rays (CRs), there are a number of strong, energetic shocks which can produce large amounts of CR protons via diffusive shock acceleration. We show that the energetic shocks reside mostly in the outskirts and a substantial fraction of them are induced by infall of the warm-hot intergalactic medium from filaments. As a result, the radial profile of the CR pressure in the intracluster medium is expected to be broad, dropping off more slowly than that of the gas pressure, and might be even temporarily inverted, peaking in the outskirts. The volume-integrated momentum spectrum of CR protons inside r 200 has the power-law slope of 4.25-4.5, indicating that the average Mach number of the shocks of main CR production is in the range of
Kato, Tsunehiko N
2014-01-01
We herein investigate shock formation and particle acceleration processes for both protons and electrons in a quasi-parallel high-Mach-number collisionless shock through a long-term, large-scale particle-in-cell simulation. We show that both protons and electrons are accelerated in the shock and that these accelerated particles generate large-amplitude Alfv\\'{e}nic waves in the upstream region of the shock. After the upstream waves have grown sufficiently, the local structure of the collisionless shock becomes substantially similar to that of a quasi-perpendicular shock due to the large transverse magnetic field of the waves. A fraction of protons are accelerated in the shock with a power-law-like energy distribution. The rate of proton injection to the acceleration process is approximately constant, and in the injection process, the phase-trapping mechanism for the protons by the upstream waves can play an important role. The dominant acceleration process is a Fermi-like process through repeated shock crossi...
Liu, S; Mason, G M; Liu, Siming; Petrosian, Vah\\'{e}; Mason, Glenn M.
2005-01-01
We study the acceleration in solar flares of $^3$He and $^4$He from a thermal background by parallel propagating plasma waves with a general broken power-law spectrum that takes into account the turbulence generation processes at large scales and the thermal damping effects at small scales. The exact dispersion relation for a cold plasma is used to describe the relevant wave modes. Because low-energy $\\alpha$-particles only interact with small scale waves in the $^4$He-cyclotron branch, where the wave frequencies are below the $\\alpha$-particle gyro-frequency, their pitch angle averaged acceleration time is at least one order of magnitude longer than that of $^3$He ions, which mostly resonate with relatively higher frequency waves in the proton-cyclotron (PC) branch. The $\\alpha$-particle acceleration rate starts to approach that of $^3$He beyond a few tens of keV nucleon$^{-1}$, where $\\alpha$-particles can also interact with long wavelength waves in the PC branch. However, the $^4$He acceleration rate is al...
High intensity laser-plasma grating interaction: surface wave excitation and particle acceleration
Surface waves in solids were first observed by Wood in 1902 as an anomaly in the diffraction of a continuous light source from a metal grating: the diffracted spectrum presented dark lines corresponding to certain wavelengths, which were later explained (Fano, 1941) in terms of the excitation of a surface wave sustained by the grating. Similarly to the metal grating case, a surface plasma wave (SPW) can be resonantly excited by a laser pulse at the surface of a laser-produced over-dense plasma, if the correct matching conditions are provided. SPWs propagate along the plasma-vacuum interface and are characterized by a localized, high frequency, resonant electric field. In the present work we describe numerically the dynamics of the plasma and the field distribution associated to SPW excitation, using two-dimensional particle-in-cell (PIC) simulations, where the plasma surface is initially pre-formed so that the SPW excitation conditions are fulfilled. We examine the surface wave excitation for a large range of laser intensities (Iλ02 =1015 - 1020 Wcm-2μm2) in order to study the transition from the non-relativistic to the relativistic regime. The simulations in which the wave is resonantly excited are compared to cases in which the resonant conditions are not provided and the coupling of the laser with the target is analyzed. We have considered the following aspects of the laser-plasma interaction, for different laser and target parameters: i) the laser absorption and the electric field at the surface ii) the generation of a quasi-static magnetic field iii) the electron heating and iiii) the ion acceleration. The possibility to excite a surface plasma wave on a structured target for a large range of laser energies has been demonstrated. In the cases where the surface wave is excited the electric field component normal to the target is amplified at the surface by a factor ranging from 3.2 to 7.2 with respect to the laser field. The absorption is also increased for
Hung, R. J.; Shyu, K. L.
1992-01-01
The objective of the cryogenic fluid management of the spacecraft propulsion system is to develop the technology necessary for acquisition or positioning of liquid and vapor within a tank in reduced gravity to enable liquid outflow or vapor venting. The requirement to settle or to position liquid fuel over the outlet end of the spacecraft propellant tank prior to main engine restart poses a microgravity fluid behavior problem. The purpose of the present study is to investigate the stability of the most efficient technique for propellant resettling through the minimization of propellant usage and weight penalties. In this study slosh wave excitation induced by the resettling flow field activated by 0.1 Hz low frequency, impulsive reverse gravity acceleration, during reorientation with the initiation of geyser for liquid fill levels of 30, 50, 65, 70 and 80 percent, have been studied. Characteristics of slosh waves with various frequencies excited are discussed. Slosh wave excitation shift the fluid mass distribution in the container which impose time dependent variations in spacecraft moment of inertia. This information is important for the spacecraft control during the course of liquid reorientation.
Erokhin, A. N., E-mail: nerokhin@mx.iki.rssi.ru [People’s Friendship University of Russia (Russian Federation); Zol’nikova, N. N. [Russian Academy of Sciences, Space Research Institute (Russian Federation); Erokhin, N. S. [People’s Friendship University of Russia (Russian Federation)
2016-01-15
Based on the numerical solution of the nonlinear nonstationary second-order equation for the wave phase on the particle trajectory, the dynamics of surfatron acceleration of electrons by an electromagnetic wave propagating across the external magnetic field in space plasma is analyzed as a function of the electron momentum along the wave front. Numerical calculations show that, for strongly relativistic initial values of the electron momentum component along the wave front g{sub y}(0) (the other parameters of the problem being the same), electrons are trapped into the regime of ultrarelativistic surfatron acceleration within a certain interval of the initial wave phase Ψ(0) on the particle trajectory. It is assumed in the calculations that vertical bar Ψ(0) vertical bar ≤ π. For strongly relativistic values of g{sub y}(0), electrons are immediately trapped by the wave for 19% of the initial values of the phase Ψ(0) (favorable phases). For the rest of the values of Ψ(0), trapping does not occur even at long times. This circumstance substantially simplifies estimations of the wave damping due to particle acceleration in subsequent calculations. The dynamics of the relativistic factor and the components of the electron velocity and momentum under surfatron acceleration is also analyzed. The obtained results are of interest for the development of modern concepts of possible mechanisms of generation of ultrarelativistic particle fluxes in relatively calm space plasma, as well as for correct interpretation of observational data on the fluxes of such particles and explanation of possible reasons for the deviation of ultrarelativistic particle spectra detected in the heliosphere from the standard power-law scalings and the relation of these variations to space weather and large-scale atmospheric processes similar to tropical cyclones.
Based on the numerical solution of the nonlinear nonstationary second-order equation for the wave phase on the particle trajectory, the dynamics of surfatron acceleration of electrons by an electromagnetic wave propagating across the external magnetic field in space plasma is analyzed as a function of the electron momentum along the wave front. Numerical calculations show that, for strongly relativistic initial values of the electron momentum component along the wave front gy(0) (the other parameters of the problem being the same), electrons are trapped into the regime of ultrarelativistic surfatron acceleration within a certain interval of the initial wave phase Ψ(0) on the particle trajectory. It is assumed in the calculations that vertical bar Ψ(0) vertical bar ≤ π. For strongly relativistic values of gy(0), electrons are immediately trapped by the wave for 19% of the initial values of the phase Ψ(0) (favorable phases). For the rest of the values of Ψ(0), trapping does not occur even at long times. This circumstance substantially simplifies estimations of the wave damping due to particle acceleration in subsequent calculations. The dynamics of the relativistic factor and the components of the electron velocity and momentum under surfatron acceleration is also analyzed. The obtained results are of interest for the development of modern concepts of possible mechanisms of generation of ultrarelativistic particle fluxes in relatively calm space plasma, as well as for correct interpretation of observational data on the fluxes of such particles and explanation of possible reasons for the deviation of ultrarelativistic particle spectra detected in the heliosphere from the standard power-law scalings and the relation of these variations to space weather and large-scale atmospheric processes similar to tropical cyclones
Driben, Rodislav
2012-01-01
Soliton fusion is a fascinating and delicate phenomenon that manifests itself in optical fibers in case of interaction between co-propagating solitons with small temporal and wavelengths separation. We show that the mechanism of acceleration of trailing soliton by dispersive waves radiated from the preceding one provides necessary conditions for soliton fusion at the advanced stage of supercontinuum generation in photonic crystal fibers. As a result of fusion large intensity robust light structures arise and propagate over significant distances. In presence of small random noise the delicate condition for the effective fusion between solitons can easily be broken, making the fusion induced giant waves a rare statistical event. Thus oblong-shaped giant accelerated waves become excellent candidates for optical rogue waves.
Willingale, L.; Krushelnick, K.; Thomas, A. G. R.; Maksimchuk, A.; Zulick, C.; Nilson, P. M.; Craxton, R. S.; Stoeckl, C.; Sangster, T. C.; Chen, H.; Cobble, J.; Norreys, P. A.; Scott, R. H. H.
2011-10-01
Experiments performed on the Omega EP laser facility (750 J of energy in 8.4 ps or 55 J - 300 J of energy in 0.9 ps), provide extreme conditions relevant to fast ignition studies. A CH plasma plume is used as the underdense target and the interaction of the laser pulse channeling through the plasma is imaged using proton radiography. Early time expansion, channel evolution, filamentation and self-correction is measured on a single shot via this method. Structures observed along the channel walls are interpreted as having developed from surface waves, and are a likely injection mechanism of electrons into the cavitated channel for acceleration. High-energy electron and proton spectra are measured and compared for the different pulse lengths from the experiment. Two dimensional particle-in-cell simulations give good agreement to these phenomenon. This work was supported by the National Laser Users' Facility (NLUF) and the DOE (Grant No. DE-NA000874).
Shimada, Nobue; Amano, Takanobu; 10.1063/1.3322828
2010-01-01
A new rapid energization process within a supernova shock transition region (STR) is reported by utilizing numerical simulation. Although the scale of a STR as a main dissipation region is only several hundreds of thousands km, several interesting structures are found relating to generation of a root of the energetic particles. The nonlinear evolution of plasma instabilities lead to a dynamical change in the ion phase space distribution which associates with change of the field properties. As a result, different types of large-amplitude field structures appear. One is the leading wave packet and another is a series of magnetic solitary humps. Each field structure has a microscopic scale (~ the ion inertia length). Through the multiple nonlinear scattering between these large-amplitude field structures, electrons are accelerated directly. Within a STR, quick thermalization realizes energy equipartition between the ion and electron, hot electrons play an important role in keeping these large-amplitude field str...
Particle Diffusion and Acceleration by Shock Wave in Magnetized Filamentary Turbulence
Honda, M; Honda, Mitsuru; Honda, Yasuko S.
2005-01-01
We expand the off-resonant scattering theory for particle diffusion in magnetized current filaments that can be typically compared to astrophysical jets, including active galactic nucleus jets. In a high plasma beta region where the directional bulk flow is a free-energy source for establishing turbulent magnetic fields via current filamentation instabilities, a novel version of quasi-linear theory to describe the diffusion of test particles is proposed. The theory relies on the proviso that the injected energetic particles are not trapped in the small-scale structure of magnetic fields wrapping around and permeating a filament but deflected by the filaments, to open a new regime of the energy hierarchy mediated by a transition compared to the particle injection. The diffusion coefficient derived from a quasi-linear type equation is applied to estimating the timescale for the stochastic acceleration of particles by the shock wave propagating through the jet. The generic scalings of the achievable highest ener...
Understanding the dynamics of laser-produced plasma is essentially important for increasing available thrust force in a gas-driven laser propulsion system such as laser-driven in-tube accelerator. A computer code is developed to explore the formation of expanding nonequilibrium plasma produced by laser irradiation. Various properties of the blast wave driven by the nonequilibrium plasma are examined. It is found that the blast wave propagation is substantially affected by radiative cooling effect for lower density case
PROPERTIES OF A CORONAL SHOCK WAVE AS A DRIVER OF EARLY SEP ACCELERATION
Kozarev, K. A. [Smithsonian Astrophysical Observatory, Cambridge, MA 02138 (United States); Raymond, J. C. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Lobzin, V. V. [Learmonth Solar Observatory, Exmouth, WA 6707 (Australia); Hammer, M., E-mail: kkozarev@cfa.harvard.edu [Department of Physics, Cornell University, 109 Clark Hall, Ithaca, NY 14853 (United States)
2015-02-01
Coronal mass ejectmons (CMEs) are thought to drive collisionless shocks in the solar corona, which in turn have been shown to be capable of accelerating solar energetic particles (SEPs) in minutes. It has been notoriously difficult to extract information about energetic particle spectra in the corona, owing to a lack of in situ measurements. It is possible, however, to combine remote observations with data-driven models in order to deduce coronal shock properties relevant to the local acceleration of SEPs and their heliospheric connectivity to near-Earth space. We present such novel analysis applied to the 2011 May 11 CME event on the western solar limb, focusing on the evolution of the eruption-driven, dome-like shock wave observed by the Atmospheric Imaging Assembly (AIA) EUV telescopes on board the Solar Dynamics Observatory spacecraft. We analyze the shock evolution and estimate its strength using emission measure modeling. We apply a new method combining a geometric model of the shock front with a potential field source surface model to estimate time-dependent field-to-shock angles and heliospheric connectivity during shock passage in the low corona. We find that the shock was weak, with an initial speed of ∼450 km s{sup –1}. It was initially mostly quasi-parallel, but a significant portion of it turned quasi-perpendicular later in the event. There was good magnetic connectivity to near-Earth space toward the end of the event as observed by the AIA instrument. The methods used in this analysis hold a significant potential for early characterization of coronal shock waves and forecasting of SEP spectra based on remote observations.
Jacobian-free Newton-Krylov methods with GPU acceleration for computing nonlinear ship wave patterns
Pethiyagoda, Ravindra; Moroney, Timothy J; Back, Julian M
2014-01-01
The nonlinear problem of steady free-surface flow past a submerged source is considered as a case study for three-dimensional ship wave problems. Of particular interest is the distinctive wedge-shaped wave pattern that forms on the surface of the fluid. By reformulating the governing equations with a standard boundary-integral method, we derive a system of nonlinear algebraic equations that enforce a singular integro-differential equation at each midpoint on a two-dimensional mesh. Our contribution is to solve the system of equations with a Jacobian-free Newton-Krylov method together with a banded preconditioner that is carefully constructed with entries taken from the Jacobian of the linearised problem. Further, we are able to utilise graphics processing unit acceleration to significantly increase the grid refinement and decrease the run-time of our solutions in comparison to schemes that are presently employed in the literature. Our approach provides opportunities to explore the nonlinear features of three-...
The load-response of the flagellar beat
Klindt, Gary S; Wanger, Christian; Friedrich, Benjamin M
2016-01-01
Cilia and flagella exhibit regular bending waves that perform mechanical work on the surrounding fluid, to propel cellular swimmers and pump fluids inside organisms. Here, we quantify a force-velocity relationship of the beating flagellum, by exposing flagellated \\emph{Chlamydomonas} cells to controlled microfluidic flows. A simple theory of flagellar limit-cycle oscillations, calibrated by measurements in the absence of flow, reproduces this relationship quantitatively. We derive a link between the chemo-mechanical efficiency of the flagellar beat and its ability to synchronize to oscillatory flows.
Numerical modeling of surf beat generated by moving breakpoint
无
2009-01-01
As an important hydrodynamic phenomenon in the nearshore zone, the cross-shore surf beat is numerically studied in this paper with a fully nonlinear Boussinesq-type model, which resolves the primary wave motion as well as the long waves. Compared with the classical Boussinesq equations, the equations adopted here allow for improved linear dispersion characteristics. Wave breaking and run-up in the swash zone are included in the numerical model. Mutual interactions between short waves and long waves are inherent in the model. The numerical study of long waves is based on bichromatic wave groups with a wide range of mean frequencies, group frequencies and modulation rates. The cross-shore variation in the amplitudes of short waves and long waves is investigated. The model results are compared with laboratory experiments from the literature and good agreement is found.
Problems relevant to a continuous wave free electron laser (FEL) in the centimeter-millimeter region are investigated. The ideas are applied to the FEL experiment in progress at the Legnaro (Padova) INFN laboratory. The accelerator characteristics and laser parameters are discussed. The laser could sweep the centimeter-millimeter region until 2.5 mm with a power around 15 kW
Beat Subterranean: Tactics of Assemblage and Worldmaking in Beat Generation Writing
Fazzino, Jimmy Michael
2012-01-01
My dissertation argues that the core beat trope of the subterranean can be developed as a productive means of literary analysis. I show that beat writers conceive of themselves and their work as existing within vast "underground" networks of radical and avant-garde art and literature, and by locating the beats within such assemblages, the subterranean offers, above all, a model for reconceptualizing beat geography. While the Beat Generation has been regarded as quintessentially American, beat...
Pfaff, Hans Uwe
2014-01-01
Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Psicología, Departamento de Psicología Biológica y de la Salud. Fecha de lectura: 25-06-2014 Binaural beats are an acoustical illusion of the perception of a “virtual” third tone, fluctuating (i.e. beating) in its volume evoked by two carrier–sinusoids of same amplitudes, but slightly different frequencies f1 and f2, presented by stereo-headphones. Although this illusion was discovered as early as 1839 ...
An S-band (2856 MHz) 5 MeV, 3 kW traveling wave linear accelerator is currently under design and development at Raja Ramanna Centre for Advanced Technology, Indore. The accelerating structure is a 2π/3 mode constant impedance traveling wave structure, designed to accelerates the 50 keV electron beam from the electron gun to 5 MeV. It comprises of traveling wave buncher cells followed by regular accelerating cells. This paper presents the details of electromagnetic design simulations to fix the mechanical dimensions and tolerances, as well as heat loss calculations in the structure. Comparison of the results obtained from detailed numerical simulations with those obtained from approximate analytical calculations is described in the paper. The beam dynamics simulation from beginning to end of the linac is also performed and the required magnetic field profile for keeping the beam focused in the linac has been evaluated. The aim has been to maximize the capture efficiency with reduced energy spread in a short and compact structure. (author)
Erokhin, Nikolay; Loznikov, Vladimir; Shkevov, Rumen; Zolnikova, Nadezhda; Mikhailovskaya, Ludmila
2016-07-01
The analysis of experimental data on the spectra of cosmic rays (CR) has shown their variability on time scales of a few years, in particular, CR variations observed in E / Z range from TeV to 10000 TeV, where E is the energy of the particle, Z is its charge number. Consequently, the source of these variations must be located at a distance of no more than 1 parsec from the sun in the closest local interstellar clouds. As a mechanism of such variations appearance it is considered the surfatron acceleration of CR particles by electromagnetic wave in a relatively quiet space plasma. On the basis of developed model the numerical calculations were performed for particle capture dynamics (electrons, protons, helium and iron nuclei) in the wave effective potential well with a following growth their energy by 3-6 orders of magnitude. Optimal conditions for the implementation of charged particles surfatron acceleration in space plasma, the rate of trapped particles energy growth, the dynamics of wave phase on the captured particle trajectory, a temporal dynamics of components for charge impulse momentum and speed were studied. It is indicated that the capture of a small fraction of particles by wave for energies about TeV and less followed by their surfatron acceleration to an energy of about 10000 TeV will lead to a significant increase in the CR flux at such high energies. Thus CL flow variations are conditioned by changes in the space weather parameters
Diffusive cosmic ray acceleration at relativistic shock waves with magnetostatic turbulence
Schlickeiser, Reinhard
2015-01-01
The analytical theory of diffusive cosmic ray acceleration at parallel stationary shock waves with magnetostatic turbulence is generalized to arbitrary shock speeds $V_s=\\beta_1c$, including in particular relativistic speeds. This is achieved by applying the diffusion approximation to the relevant Fokker-Planck particle transport equation formulated in the mixed comoving coordinate system. In this coordinate system the particle's momentum coordinates $p$ and $\\mu =p_{\\parallel }/p$ are taken in the rest frame of the streaming plasma, whereas the time and space coordinates are taken in the observer's system. For magnetostatic slab turbulence the diffusion-convection transport equation for the isotropic (in the rest frame of the streaming plasma) part of the particle's phase space density is derived. For a step-wise shock velocity profile the steady-state diffusion-convection transport equation is solved. For a symmetric pitch-angle scattering Fokker-Planck coefficient $D_{\\mu \\mu }(-\\mu )=D_{\\mu \\mu }(\\mu )$ t...
Pongkitiwanichakul, Peera [Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Chandran, Benjamin D. G., E-mail: peera@oddjob.uchicago.edu [Space Science Center and Department of Physics, University of New Hampshire, Durham, NH 03824 (United States)
2014-11-20
We develop a model for stochastic acceleration of electrons in solar flares. As in several previous models, the electrons are accelerated by turbulent fast magnetosonic waves ({sup f}ast waves{sup )} via transit-time-damping (TTD) interactions. (In TTD interactions, fast waves act like moving magnetic mirrors that push the electrons parallel or anti-parallel to the magnetic field). We also include the effects of Coulomb collisions and the waves' parallel electric fields. Unlike previous models, our model is two-dimensional in both momentum space and wavenumber space and takes into account the anisotropy of the wave power spectrum F{sub k} and electron distribution function f {sub e}. We use weak turbulence theory and quasilinear theory to obtain a set of equations that describes the coupled evolution of F{sub k} and f {sub e}. We solve these equations numerically and find that the electron distribution function develops a power-law-like non-thermal tail within a restricted range of energies E in (E {sub nt}, E {sub max}). We obtain approximate analytic expressions for E {sub nt} and E {sub max}, which describe how these minimum and maximum energies depend upon parameters such as the electron number density and the rate at which fast-wave energy is injected into the acceleration region at large scales. We contrast our results with previous studies that assume that F{sub k} and f {sub e} are isotropic, and we compare one of our numerical calculations with the time-dependent hard-X-ray spectrum observed during the 1980 June 27 flare. In our numerical calculations, the electron energy spectra are softer (steeper) than in models with isotropic F{sub k} and f {sub e} and closer to the values inferred from observations of solar flares.
Doppler Beats or Interference Fringes?
Kelly, Paul S.
1979-01-01
Discusses the following: another version of Doppler beats; alternate proof of spin-1 sin-1/2 problems; some mechanisms related to Dirac's strings; Doppler redshift in oblique approach of source and observer; undergraduate experiment on noise thermometry; use of the time evolution operator; resolution of an entropy maximization controversy;…
Direct visualization of mechanical beats by means of an oscillating smartphone
Giménez, Marcos H; Monsoriu, Juan A
2016-01-01
The resonance phenomenon is widely known from Physics courses. Qualitatively speaking, it takes place in a driven oscillating system whenever the driven frequency approaches the natural frequency. It is when the amplitude of the oscillations become maximal. Very closely related to this phenomenon, there is another which is very surprising too. It takes place when the driven and natural frequencies of the system are slightly different and interfere constructively and destructively, forming the so called beats. The frequency of the beats is just the difference of the interfering waves frequencies. Beats are very noticeable in acoustic systems. We all have probably perceived them in the form of periodic ups and downs in the sound intensity volume. There are several works in this journal on visualizing the beats in acoustic systems. For instance, the microphone and the speaker of two mobile devices were used in previous work to analyze the acoustic beat produced by two signals of close frequencies. The formation ...
Nonlinear amplitude dynamics in flagellar beating
Oriola, David; Casademunt, Jaume
2016-01-01
The physical basis of flagellar and ciliary beating is a major problem in biology which is still far from completely understood. The fundamental cytoskeleton structure of cilia and flagella is the axoneme, a cylindrical array of microtubule doublets connected by passive crosslinkers and dynein motor proteins. The complex interplay of these elements leads to the generation of self-organized bending waves. Although many mathematical models have been proposed to understand this process, few attempts have been made to assess the role of dyneins on the nonlinear nature of the axoneme. Here, we investigate the nonlinear dynamics of flagella by considering an axonemal sliding control mechanism for dynein activity. This approach unveils the nonlinear selection of the oscillation amplitudes, which are typically either missed or prescribed in mathematical models. The explicit set of nonlinear equations are derived and solved numerically. Our analysis reveals the spatiotemporal dynamics of dynein populations and flagell...
Musicians' Perception of Beat in Monotonic Stimuli.
Duke, Robert A.
1989-01-01
Assesses musicians' perceptions of beat in monotonic stimuli and attempts to define empirically the range of perceived beat tempo in music. Subjects performed a metric pulse in response to periodic stimulus tones. Results indicate a relatively narrow range within which beats are perceived by trained musicians. (LS)
Fang, F; Clayton, C E; Marsh, K A; Pak, A E; Ralph, J E; Joshi, C [Department of Electrical Engineering, University of California, Los Angeles, CA 90095 (United States); Lopes, N C [Grupo de Lasers e Plasmas, Instituto Superior Tecnico, Lisbon (Portugal)], E-mail: cclayton@ucla.edu
2009-02-15
In a forced laser-wakefield accelerator experiment (Malka et al 2002 Science 298 1596) where the length of the pump laser pulse is a few plasma periods long, the leading edge of the laser pulse undergoes frequency downshifting and head erosion as the laser energy is transferred to the wake. Therefore, after some propagation distance, the group velocity of the leading edge of the pump pulse-and thus of the driven electron plasma wave-will slow down. This can have implications for the dephasing length of the accelerated electrons and therefore needs to be understood experimentally. We have carried out an experimental investigation where we have measured the velocity v{sub f} of the 'wave-front' of the plasma wave driven by a nominally 50 fs (full width half maximum), intense (a{sub 0} {approx_equal} 1), 0.815 {mu}m laser pulse. To determine the speed of the wave front, time- and space-resolved refractometry, interferometry and Thomson scattering were used. Although a laser pulse propagating through a relatively low-density plasma (n{sub e} = 1.3 x 10{sup 19} cm{sup -3}) showed no measurable changes in v{sub f} over 1.3 mm (and no accelerated electrons), a high-density plasma (n{sub e} = 5 x 10{sup 19} cm{sup -3}) generated accelerated electrons and showed a continuous change in v{sub f} as the laser pulse propagated through the plasma. Possible causes and consequences of the observed v{sub f} evolution are discussed.
Morlino, G.; P. Blasi(INAF Arcetri); Vietri, M.
2007-01-01
A mathematical approach to investigate particle acceleration at shock waves moving at arbitrary speed in a medium with arbitrary scattering properties was first discussed in (Vietri 2003) and (Blasi & Vietri 2005}. We use this method and somewhat extend it in order to include the effect of a large scale magnetic field in the upstream plasma, with arbitrary orientation with respect to the direction of motion of the shock. We also use this approach to investigate the effects of anisotropic scat...
The possibility of the acceleration and deceleration of neutrons undergoing diffraction at a moving grating is discussed. It is shown that, in contrast to phase π gratings used at the present time, which form a discrete spectrum featuring a large number of lines, a grating that has a special profile may shift, under certain conditions, the entire spectrum of diffracted neutrons. A blazing grating of this type may be used in efficiently accelerating and decelerating neutrons. As the scale of the structure becomes larger, a description based on the idea of neutron-wave refraction at its elements becomes valid, a system of moving prims forming a “neutron turbine,” which is also able to accelerate or decelerate neutrons, being a classical limit of this enlargement.
Electrical Brain Responses to Beat Irregularities in Two Cases of Beat Deafness
Mathias, Brian; Lidji, Pascale; Honing, Henkjan; Palmer, Caroline; Peretz, Isabelle
2016-01-01
Beat deafness, a recently documented form of congenital amusia, provides a unique window into functional specialization of neural circuitry for the processing of musical stimuli: Beat-deaf individuals exhibit deficits that are specific to the detection of a regular beat in music and the ability to move along with a beat. Studies on the neural underpinnings of beat processing in the general population suggest that the auditory system is capable of pre-attentively generating a predictive model ...