WorldWideScience

Sample records for beam loss mechanism

  1. Beam Loss in Linacs

    CERN Document Server

    Plum, M.A.

    2016-01-01

    Beam loss is a critical issue in high-intensity accelerators, and much effort is expended during both the design and operation phases to minimize the loss and to keep it to manageable levels. As new accelerators become ever more powerful, beam loss becomes even more critical. Linacs for H- ion beams, such as the one at the Oak Ridge Spallation Neutron Source, have many more loss mechanisms compared to H+ (proton) linacs, such as the one being designed for the European Spallation Neutron Source. Interesting H- beam loss mechanisms include residual gas stripping, H+ capture and acceleration, field stripping, black-body radiation and the recently discovered intra-beam stripping mechanism. Beam halo formation, and ion source or RF turn on/off transients, are examples of beam loss mechanisms that are common for both H+ and H- accelerators. Machine protection systems play an important role in limiting the beam loss.

  2. Identification of LHC beam loss mechanism : a deterministic treatment of loss patterns

    CERN Document Server

    Marsili, Aurélien

    CERN's Large Hadron Collider (LHC) is the largest machine ever built, with a total circumference of 26.7 km; and it is the most powerful accelerator ever, both in beam energy and beam intensity. The main magnets are superconducting, keeping the particles into two counter circulating beams, which collide in four interaction points. CERN and the LHC will be described in chap. 1. The superconducting magnets of the LHC have to be protected against particle losses. Depending on the number of lost particles, the coils of the magnets will become normal conducting and/or will be damaged. To avoid these events a beam loss monitoring (BLM) system was installed to measure the particle loss rates. If the predefined safe thresholds of loss rates are exceeded, the beams are directed out of the accelerator ring towards the beam dump. The detectors of the BLM system are mainly ionization chambers located outside of the cryostats. In total, about 3500 ionisation chambers are installed. Further challenges include the high dyna...

  3. Identification of LHC beam loss mechanism: a deterministic treatment of loss patterns

    International Nuclear Information System (INIS)

    Marsili, A.

    2012-01-01

    The goal of this work was to identify patterns in the beam loss profiles, both in their spatial distribution and time evolution. CERN's Large Hadron Collider (LHC) is the largest device ever built, with a total circumference of 26.7 km; and it is the most powerful accelerator ever, both in beam energy and beam intensity. The main magnets are superconducting, and contain the particles into two counter circulating beams which collide in four interaction points. CERN and the LHC will be described in chapter 1. The superconducting magnets of the LHC have to be protected against particle losses. Depending on the number of lost particles, the coils of the magnets could become normal conducting and/or will be damaged. To avoid these events a beam loss monitoring (BLM) system was installed to measure the particle loss rates. If the predefined safe thresholds of loss rates are exceeded, the beams are directed out of the accelerator ring towards the beam dump. The detectors of the BLM system are mainly ionization chambers located outside of the cryostats. In total, about 3600 ionisation chambers are installed. Further challenges include the high dynamical range of losses (chamber currents ranging between 2 pA and 1 mA). The BLM system will be further described in chapter 2. The subject of this thesis is to study the loss patterns and nd the origin of the losses in a deterministic way, by comparing measured losses to well understood loss scenarios. This is done through a case study: different techniques were used on a restrained set of loss scenarios, as a proof of concept of the possibility to extract information from a loss profile. Finding the origin of the losses should allow acting in response. A justification of the doctoral work will be given at the end of chapter 2. This thesis will then focus on the theoretical understanding and the implementation of the decomposition of a measured loss profile as a linear combination of the reference scenarios; and the evaluation of

  4. Size modulated transition in the fluid–structure interaction losses in nano mechanical beam resonators

    Energy Technology Data Exchange (ETDEWEB)

    Vishwakarma, S. D.; Pratap, R., E-mail: pratap@mecheng.iisc.ernet.in [Center for Nano Science and Engineering, Indian Institute of Science, Bengaluru 560012 (India); Pandey, A. K., E-mail: ashok@iith.ac.in [Department of Mechanical and Aerospace Engineering, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy - 502285 (India); Parpia, J. M.; Craighead, H. G. [Center for Materials Research, Cornell University, Ithaca, New York 14853 (United States); Verbridge, S. S. [Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia 24061 (United States)

    2016-05-21

    An understanding of the dominant dissipative mechanisms is crucial for the design of a high-Q doubly clamped nanobeam resonator to be operated in air. We focus on quantifying analytically the viscous losses—the squeeze film damping and drag force damping—that limit the net quality factor of a beam resonator, vibrating in its flexural fundamental mode with the surrounding fluid as air at atmospheric pressure. Specifically, drag force damping dominates at smaller beam widths and squeeze film losses dominate at larger beam widths, with no significant contribution from structural losses and acoustic radiation losses. The combined viscous losses agree well with the experimentally measured Q of the resonator over a large range of beam widths, within the limits of thin beam theory. We propose an empirical relation between the maximum quality factor and the ratio of maximum beam width to the squeeze film air gap thickness.

  5. Characteristics of possible beam losses in superconducting cyclotron

    International Nuclear Information System (INIS)

    Pradhan, J.; Paul, Santanu; Debnath, Jayanta; Dutta, Atanu; Bhunia, Uttam; Naser, Md. Zamal Abdul; Singh, Vinay; Agrawal, Ankur; Dey, Malay Kanti

    2015-01-01

    In a compact superconducting cyclotron large coherent oscillation and off-centering of the beam may cause large amount of beam loss. The off-centered beam may hit the beam chamber wall prohibiting extraction of the beam. Or it may hit the RF liner surfaces due to vertical blow-up across various resonances during acceleration. The vertical shift of beam caused by the mis-alignment gradually moves the beam out of geometrical median plane eventually leading to internal beam losses. The loss of isochronisms results the reduction of beam intensity depending on the particle phase history. Small field perturbations generated by trim coils have been used to identify the beam loss mechanisms in the superconducting cyclotron at out centre. Besides, the beam loss due to interaction of accelerating ions with residual gases is also discussed. The beam profile obtained from differential and three finger probes gives a clear insight of the loss-mechanism. The paper describes different beam losses observed in the cyclotron with corresponding beam profiles under different field perturbations, Special emphasis is given on characteristics features of beam-current profile to identify the cause of beam loss. (author)

  6. Beam Dynamics and Beam Losses - Circular Machines

    CERN Document Server

    Kain, V

    2016-01-01

    A basic introduction to transverse and longitudinal beam dynamics as well as the most relevant beam loss mechanisms in circular machines will be presented in this lecture. This lecture is intended for physicists and engineers with little or no knowledge of this subject.

  7. Preservation of beam loss induced quenches, beam lifetime and beam loss measurements with the HERA-p beam-loss-monitor system

    International Nuclear Information System (INIS)

    Wittenburg, K.

    1994-01-01

    The beam-loss-monitors (BLMs) in the HERA-Proton-ring (HERAp) must fulfil the following requirements: They have to measure losses sensitive and fast enough to prevent the superconducting magnets from beam loss induced quenching; the dynamic range of the monitors must exceed several decades in order to measure losses during beam lifetimes of hundreds of hours as well as the much stronger losses that may quench superconducting magnets; they have to be insensitive to the synchrotron radiation of the adjacent electron-ring (HERAe); and their radiation hardness must allow a monitor-lifetime of a few years of HERA operation. These requirements are well satisfied by the HERAp-BLM-System. (orig.)

  8. PDX neutral-beam reionization losses

    International Nuclear Information System (INIS)

    Kugel, H.W.; Dylla, H.F.; Eubank, H.P.; Kozub, T.A.; Moore, R.; Schilling, G.; Stewart, L.D.; von Halle, A.; Williams, M.D.

    1982-02-01

    Reionization losses for 1.5 MW H 0 and 2 MW D 0 neutral beams injected into the PDX tokamak were studied using pressure gauges, photo-transistors, thermocouples, surface shielding, and surface sample analysis. Considerable outgassing of conventionally prepared 304SS ducts occurred during initial injections and gradually decreased with the cumulative absorption of beam power. Reionization power losses are presently about 5% in the ducts and about 12% total for a beamline including the duct. Present duct pressures are attributed primarily to gas from the ion source and neutralizer with much smaller contributions from residual wall desorption. Physical mechanisms for the observed duct outgassing are discussed

  9. Commissioning and operational scenarios of the LHC beam loss monitor system

    International Nuclear Information System (INIS)

    Holzer, E.B.

    2007-01-01

    One of the most critical elements for the protection of CERN's Large Hadron Collider (LHC) is its beam loss monitoring (BLM) system. It must prevent quenches in the super conducting magnets and damage of machine components due to beam losses. The contribution will discuss the commissioning procedures of the BLM system and envisaged operational scenarios. About 4000 monitors will be installed around the ring. When the loss rate exceeds a predefined threshold value, a beam abort is requested. Magnet quench and damage levels vary as a function of beam energy and loss duration. Consequently, the beam abort threshold values vary accordingly. By measuring the loss pattern, the BLM system helps to identify the loss mechanism. Furthermore, it will be an important tool for commissioning, machine setup and studies. Special monitors will be used for the setup and control of the collimators. (author)

  10. Beam Loss and Beam Shape at the LHC Collimators

    CERN Document Server

    Burkart, Florian

    In this master thesis the beam loss and the beam shape at the LHC collimators was measured, analysed, presented and discussed. Beginning with a short introduction of the LHC, the experiments, the supercon- ducting magnet system, the basics on linear beam dynamics and a describtion of the LHC collimation system are given. This is followed by the presentation of the performance of the LHC collimation sys- tem during 2011. A method to convert the Beam Loss Monitor signal in Gy/s to a proton beam loss rate will be introduced. Also the beam lifetime during the proton physics runs in 2011 will be presented and discussed. Finally, the shape of the LHC beams is analysed by using data obtained by scraping the beam at the LHC primary collimators.

  11. Detection of Equipment Faults Before Beam Loss

    CERN Document Server

    Galambos, J.

    2016-01-01

    High-power hadron accelerators have strict limits on fractional beam loss. In principle, once a high-quality beam is set up in an acceptable state, beam loss should remain steady. However, in practice, there are many trips in operational machines, owing to excessive beam loss. This paper deals with monitoring equipment health to identify precursor signals that indicate an issue with equipment that will lead to unacceptable beam loss. To this end, a variety of equipment and beam signal measurements are described. In particular, several operational examples from the Spallation Neutron Source (SNS) of deteriorating equipment functionality leading to beam loss are reported.

  12. Beam losses and beam halos in accelerators for new energy sources

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1995-01-01

    Large particle accelerators are proposed as drivers for new ways to produce electricity from nuclear fusion and fission reactions. The accelerators must be designed to deliver large particle beam currents to a target facility with very little beam spill along the accelerator itself, in order that accelerator maintenance can be accomplished without remote manipulators. Typically, particle loss is preceded by the formation of a tenuous halo of particles around the central beam core, caused by beam dynamics effects, often coupled with the slight imperfections inevitable in a practical design. If the halo becomes large enough, particles may be scraped off along the accelerator. The tolerance for beam spill in different applications is discussed, halo mechanisms and recent work to explore and understand their dynamics are reviewed, and possible directions for future investigation are outlined. 17 refs., 10 figs

  13. Overview of LHC Beam Loss Measurements

    CERN Document Server

    Dehning, B; Effinger, E; Emery, J; Fadakis, E; Holzer, E B; Jackson, S; Kruk, G; Kurfuerst, C; Marsili, A; Misiowiec, M; Nebot Del Busto, E; Nordt, A; Priebe, A; Roderick, C; Sapinski, M; Zamantzas, C; Grishin, V; Griesmayer, E

    2011-01-01

    The LHC beam loss monitoring system provides measurements with an update rate of 1 Hz and high time resolution data by event triggering. These informations are used for the initiation of beam aborts, fixed displays and the off line analysis. The analysis of fast and localized loss events resulted in the determination of its rate, duration, peak amplitudes, its scaling with intensity, number of bunches and beam energy. The calibration of the secondary shower beam loss signal in respect to the needed beam energy deposition to quench the magnet coil is addressed at 450GeV and 3.5T eV . The adjustment of collimators is checked my measuring the loss pattern and its variation in the collimation regions of the LHC. Loss pattern changes during a fill allow the observation of non typical fill parameters.

  14. Design of the Beam Loss Monitoring System for the LHC Ring

    CERN Document Server

    Holzer, E B; Effinger, E; Ferioli, G; González, J L; Gschwendtner, E; Guaglio, Gianluca; Hodgson, M; Prieto, V; Zamantzas, C

    2004-01-01

    The beam loss monitoring (BLM) system of the LHC is one of the most critical elements for the protection of the LHC. It must prevent the super conducting magnets from quenches and the machine components from damages, caused by beam losses. It helps in the identification of the loss mechanism by measuring the loss pattern. Special detectors will be used for the setup and control of the collimators. Furthermore, it will be an important tool during machine setup and studies. The specification requirements of the BLM system include a very high reliability.

  15. Basis for low beam loss in the high-current APT linac

    International Nuclear Information System (INIS)

    Wangler, T.P.; Gray, E.R.; Krawczyk, F.L.; Kurennoy, S.S.; Lawrence, G.P.; Ryne, R.D.; Crandall, K.R.

    1998-01-01

    The present evidence that the APT proton linac design will meet its goal of low beam loss operation. The conclusion has three main bases: (1) extrapolation from the understanding of the performance of the 800-MeV LANSCE proton linac at Los Alamos, (2) the theoretical understanding of the dominant halo-forming mechanism in the APT accelerator from physics models and multiparticle simulations, and (3) the conservative approach and key principles underlying the design of the APT linac, which are aimed at minimizing beam halo and providing large apertures to reduce beam loss to a very low value

  16. Luminosity Loss due to Beam Distortion and the Beam-Beam Instability

    CERN Document Server

    Wu, Juhao; Raubenheimer, Tor O; Seryi, Andrei; Sramek, Christopher K

    2005-01-01

    In a linear collider, sources of emittance dilution such as transverse wakefields or dispersive errors will couple the vertical phase space to the longitudinal position within the beam (the so-called ‘banana effect'). When the Intersection Point (IP) disruption parameter is large, these beam distortions will be amplified by a single bunch kink instability which will lead to luminosity loss. We study this phenomena both analytically using linear theory and via numerical simulation. In particular, we examine the dependence of the luminosity loss on the wavelength of the beam distortions and the disruption parameter. This analysis may prove useful when optimizing the vertical disruption parameter for luminosity operation with given beam distortions.

  17. Cryogenic Beam Loss Monitoring for the LHC

    CERN Document Server

    Kurfuerst, C; Sapinski, M

    A Beam Loss Monitoring (BLM) system was installed on the outside surface of the LHC magnet cryostats to protect the accelerator equipment from beam losses. The protection is achieved by extracting the beam from the ring in case thresholds imposed on measured radiation levels are exceeded. Close to the interaction regions of the LHC, the present BLM system is sensitive to particle showers generated in the interaction region of the two beams. In the future, with beams of higher energy and brightness resulting in higher luminosity, distinguishing between these interaction products and possible quench-provoking beam losses from the primary proton beams will be challenging. The particle showers measured by the present BLM configuration are partly shielded by the cryostat and the iron yoke of the magnets. The system can hence be optimised by locating beam loss monitors as close as possible to the protected element, i. e. the superconducting coils, inside the cold mass of the magnets in superfluid helium at 1.9 K. T...

  18. Beam size blow-up and current loss in the Fermilab Main Ring during storage

    International Nuclear Information System (INIS)

    Guignard, C.; Month, M.

    1977-01-01

    Observations at Fermilab during storage mode operation show characteristic forms of transverse beam size growth and current loss with time. There are three obvious mechanisms which can produce such blowup. The gas pressure is a source for immediate beam loss by direct nuclear scattering. Protons can also multiple scatter off the orbiting electrons of the gas atoms causing the trasnverse beam size to increase with time. A third mechanism not related to gas pressure is beam growth due to multiple crossing of betatron resonances arising from the synchrotron oscillations of the stored bunches. This simulates a random walk and causes the transverse beam size to grow. This is an attempt to describe the observations with direct nuclear scattering, multiple coulomb scattering, and multiple resonance crossing

  19. Booster gold beam injection efficiency and beam loss

    International Nuclear Information System (INIS)

    Zhang, S.Y.; Ahrens, L.A.

    1998-01-01

    The Relativistic Heavy Ion Collider (RHIC) at the BNL requires the AGS to provide Gold beam with the intensity of 10 9 ions per bunch. Over the years, the Tandem Van de Graaff has provided steadily increasing intensity of gold ion beams to the AGS Booster. However, the gold beam injection efficiency at the Booster has been found to decrease with the rising intensity of injected beams. As the result, for Tandem beams of the highest intensity, the Booster late intensity is lower than with slightly lower intensity Tandem beam. In this article, the authors present two experiments associated with the Booster injection efficiency and beam intensity. One experiment looks at the Booster injection efficiency by adjusting the Tandem beam intensity, and another looks at the beam life time while scraping the beam in the Booster. The studies suggest that the gold beam injection efficiency at the AGS Booster is related to the beam loss in the ring, rather than the intensity of injected beam or circulating beam. A close look at the effect of the lost gold ion at the Booster injection leads to the prediction that the lost gold ion creates large number of positive ions, and even larger number of electrons. The lost gold beam is also expected to create large numbers of neutral particles. In 1998 heavy ion run, the production of positive ions and electrons due to the lost gold beam has been observed. Also the high vacuum pressure due to the beam loss, presumably because of the neutral particles it created, has been measured. These results will be reported elsewhere

  20. Beam Loss Monitoring for LHC Machine Protection

    Science.gov (United States)

    Holzer, Eva Barbara; Dehning, Bernd; Effnger, Ewald; Emery, Jonathan; Grishin, Viatcheslav; Hajdu, Csaba; Jackson, Stephen; Kurfuerst, Christoph; Marsili, Aurelien; Misiowiec, Marek; Nagel, Markus; Busto, Eduardo Nebot Del; Nordt, Annika; Roderick, Chris; Sapinski, Mariusz; Zamantzas, Christos

    The energy stored in the nominal LHC beams is two times 362 MJ, 100 times the energy of the Tevatron. As little as 1 mJ/cm3 deposited energy quenches a magnet at 7 TeV and 1 J/cm3 causes magnet damage. The beam dumps are the only places to safely dispose of this beam. One of the key systems for machine protection is the beam loss monitoring (BLM) system. About 3600 ionization chambers are installed at likely or critical loss locations around the LHC ring. The losses are integrated in 12 time intervals ranging from 40 μs to 84 s and compared to threshold values defined in 32 energy ranges. A beam abort is requested when potentially dangerous losses are detected or when any of the numerous internal system validation tests fails. In addition, loss data are used for machine set-up and operational verifications. The collimation system for example uses the loss data for set-up and regular performance verification. Commissioning and operational experience of the BLM are presented: The machine protection functionality of the BLM system has been fully reliable; the LHC availability has not been compromised by false beam aborts.

  1. Beam losses in heavy ion drivers

    CERN Document Server

    Mustafin, E R; Hofmann, I; Spiller, P J

    2002-01-01

    While beam loss issues have hardly been considered in detail for heavy ion fusion scenarios, recent heavy ion machine developments in different labs (European Organization for Nuclear Research (CERN), Gesellschaft fur Schwerionenforschung (GSI), Institute for Theoretical and Experimental Physics (ITEP), Relativistic Heavy-Ion Collider (RHIC)) have shown the great importance of beam current limitations due to ion losses. Two aspects of beam losses in heavy ion accelerators are theoretically considered: (1) secondary neutron production due to lost ions, and (2) vacuum pressure instability due to charge exchange losses. Calculations are compared and found to be in good agreement with measured data. The application to a Heavy-Ion Driven Inertial Fusion (HIDIF) scenario is discussed. 12 Refs.

  2. RHIC beam loss monitor system design

    International Nuclear Information System (INIS)

    Witkover, R.; Zitvogel, E.; Michnoff, R.

    1997-01-01

    The Beam Loss Monitor (BLM) System is designed to prevent the quenching of RHIC magnets due to beam loss, provide quantitative loss data, and the loss history in the event of a beam abort. The system uses 400 ion chambers of a modified Tevatron design. To satisfy fast (single turn) and slow (100 msec) loss beam criteria and provide sensitivity for studies measurements, a range of over 8 decades is needed. An RC pre-integrator reduces the dynamic range for a low current amplifier. This is digitized for data logging. The output is also applied to an analog multiplier which compensates the energy dependence, extending the range of the abort comparators. High and low pass filters separate the signal to dual comparators with independent programmable trip levels. Up to 64 channels, on 8 VME boards, are controlled by a micro-controller based VME module, decoupling it from the front-end computer (FEC) for real-time operation. Results with the detectors in the RHIC Sextant Test and the electronics in the AGS-to-RHIC (AtR) transfer line will be presented

  3. Beam Losses and Lifetime of the LHC Beam in the SPS

    CERN Document Server

    Bohl, T; Shaposhnikova, Elena; Tückmantel, Joachim

    2006-01-01

    Studies of the LHC beam loss in the SPS started in 2003 [1], [2] and continued in 2004. The flat bottom losses strongly depend on the batch intensity and the RF voltage. For beam with the 75 ns spacing at the same bunch intensity they are smaller than for the 25 ns spaced bunches. Large voltage on the flat bottom together with some optimum voltage at injection helps to reduce losses. Analysis of data from 2003 has shown that observations are compatible with a diffusion like process on the flat bottom. Therefore significant time during 2004 was devoted to studies of possible RF noise sources. However the main improvement in beam lifetime on the flat bottom was observed after a change in the working point in the transverse plane (MD on 1.09.2004). In this Note we present measurements of beam loss and lifetime done during several dedicated SPS MDs for different conditions in the ring. Analysis of beam coasts will be presented separately.

  4. A Versatile Beam Loss Monitoring System for CLIC

    CERN Document Server

    Kastriotou, Maria; Farabolini, Wilfrid; Holzer, Eva Barbara; Nebot Del Busto, Eduardo; Tecker, Frank; Welsch, Carsten

    2016-01-01

    The design of a potential CLIC beam loss monitoring (BLM) system presents multiple challenges. To successfully cover the 48 km of beamline, ionisation chambers and optical fibre BLMs are under investigation. The former fulfils all CLIC requirements but would need more than 40000 monitors to protect the whole facility. For the latter, the capability of reconstructing the original loss position with a multi-bunch beam pulse and multiple loss locations still needs to be quantified. Two main sources of background for beam loss measurements are identified for CLIC. The two-beam accelerator scheme introduces so-called crosstalk, i.e. detection of losses originating in one beam line by the monitors protecting the other. Moreover, electrons emitted from the inner surface of RF cavities and boosted by the high RF gradients may produce signals in neighbouring BLMs, limiting their ability to detect real beam losses. This contribution presents the results of dedicated experiments performed in the CLIC Test Facility to qu...

  5. Mitigation of numerical noise for beam loss simulations

    CERN Document Server

    Kesting, Frederik

    2017-01-01

    Numerical noise emerges in self-consistent simulations of charged particles, and its mitigation is investigated since the first numerical studies in plasma physics. In accelerator physics, recent studies find an artificial diffusion of the particle beam due to numerical noise in particle-in-cell tracking, which is of particular importance for high intensity machines with a long storage time, as the SIS100 at FAIR or in context of the LIU upgrade at CERN. In beam loss simulations for these projects artificial effects must be distinguished from physical beam loss. Therefore, it is important to relate artificial diffusion to artificial beam loss, and to choose simulation parameters such that physical beam loss is well resolved. As a practical tool, we therefore suggest a scaling law to find optimal simulation parameters for a given maximum percentage of acceptable artificial beam loss.

  6. Diffraction measurements using the LHC Beam Loss Monitoring System

    Science.gov (United States)

    Kalliokoski, Matti

    2017-03-01

    The Beam Loss Monitoring (BLM) system of the Large Hadron Collider protects the machine from beam induced damage by measuring the absorbed dose rates of beam losses, and by triggering beam dump if the rates increase above the allowed threshold limits. Although the detection time scales are optimized for multi-turn losses, information on fast losses can be recovered from the loss data. In this paper, methods in using the BLM system in diffraction studies are discussed.

  7. RHIC Beam Loss Monitor System Initial Operation

    International Nuclear Information System (INIS)

    Witkover, R. L.; Michnoff, R. J.; Geller, J. M.

    1999-01-01

    The RHIC Beam Loss Monitor (BLM) System is designed to prevent beam loss quenching of the superconducting magnets, and acquire loss data. Four hundred ion chambers are located around the rings to detect losses. The required 8-decade range in signal current is compressed using an RC pre-integrator ahead of a low current amplifier. A beam abort may be triggered if fast or slow losses exceed programmable threshold levels. A micro-controller based VME module sets references and gains and reads trip status for up to 64 channels. Results obtained with the detectors in the RHIC Sextant Test and the prototype electronics in the AGS-to-RHIC (AtR) transfer line are presented along with the present status of the system

  8. Beam size blow-up and current loss in the Fermilab main ring during storage

    International Nuclear Information System (INIS)

    Guignard, G.; Month, M.

    1977-01-01

    Observations at Fermilab during the storage mode of operation show characteristic forms of transverse beam size growth and current loss with time. There are three obvious mechanisms which can produce such blowup. The gas pressure is a source for immediate beam loss by direct nuclear scattering. Protons can also multiple Coulomb scatter off the orbiting electrons of the gas atoms causing the transverse beam size to increase with time, t. This effect is therefore also proportional to the gas pressure. A third mechanism not related to the gas pressure is beam growth due to multiple crossing of betatron resonances arising from the synchrotron oscillations of the stored bunches. This simulates a random walk and causes the transverse beam size to grow with √t. An attempt is made to describe the observations with direct nuclear scattering, multiple coulomb scattering and multiple resonance crossing. In addition to the loss rate from direct nuclear scattering, the presence of betatron resonances also contribute to particle loss. In fact this latter effect becomes dominant after the beam size reaches a critical value. This critical size is referred to as the resonance aperture. It is the size at which ''fast'' resonance crossing is no longer valid. The stopband width becomes so large (due both to emittance growth as well as the increase in magnetic field distortions) that particles are locked into the resonance and are extracted to the physical aperture. The model is described in a phenomenological way, and the coefficients involved are estimated. Theoretical curves for transverse beam growth and loss rate are plotted and compared with some measured values. Finally, some general comments are given

  9. Accidental Beam Losses and Protection in the LHC

    Science.gov (United States)

    Schmidt, R.; Working Group On Machine Protection

    2005-06-01

    At top energy (proton momentum 7 TeV/c) with nominal beam parameters, each of the two LHC proton beams has a stored energy of 350 MJ threatening to damage accelerator equipment in case of accidental beam loss. It is essential that the beams are properly extracted onto the dump blocks in case of failure since these are the only elements that can withstand full beam impact. Although the energy stored in the beams at injection (450 GeV/c) is about 15 times smaller compared to top energy, the beams must still be properly extracted in case of large accidental beam losses. Failures must be detected at a sufficiently early stage and initiate a beam dump. Quenches and power converter failures will be detected by monitoring the correct functioning of the hardware systems. In addition, safe operation throughout the cycle requires the use of beam loss monitors, collimators and absorbers. Ideas of detection of fast beam current decay, monitoring of fast beam position changes and monitoring of fast magnet current changes are discussed, to provide the required redundancy for machine protection.

  10. Accidental Beam Losses and Protection in the LHC

    International Nuclear Information System (INIS)

    Schmidt, R.; Wenninger, J.

    2005-01-01

    At top energy (proton momentum 7 TeV/c) with nominal beam parameters, each of the two LHC proton beams has a stored energy of 350 MJ threatening to damage accelerator equipment in case of accidental beam loss. It is essential that the beams are properly extracted onto the dump blocks in case of failure since these are the only elements that can withstand full beam impact. Although the energy stored in the beams at injection (450 GeV/c) is about 15 times smaller compared to top energy, the beams must still be properly extracted in case of large accidental beam losses. Failures must be detected at a sufficiently early stage and initiate a beam dump. Quenches and power converter failures will be detected by monitoring the correct functioning of the hardware systems. In addition, safe operation throughout the cycle requires the use of beam loss monitors, collimators and absorbers. Ideas of detection of fast beam current decay, monitoring of fast beam position changes and monitoring of fast magnet current changes are discussed, to provide the required redundancy for machine protection

  11. Very Fast Losses of the Circulating LHC Beam, their Mitigation and Machine Protection

    CERN Document Server

    Baer, Tobias; Elsen, Eckhard

    The Large Hadron Collider (LHC) has a nominal energy of 362MJ stored in each of its two counter-rotating beams - over two orders of magnitude more than any previous accelerator and enough to melt 880kg of copper. Therefore, in case of abnormal conditions comprehensive machine protection systems extract the beams safely from the LHC within not more than three turns $\\approx$270$\\mu$s. The first years of LHC operation demonstrated a remarkable reliability of the major machine protection systems. However, they also showed that the LHC is vulnerable to losses of the circulating beams on very fast timescales, which are too fast to ensure an active protection. Very fast equipment failures, in particular of normal-conducting dipole magnets and the transverse damper can lead to such beam losses. Whereas these failures were already studied in the past, other unexpected beam loss mechanisms were observed after the LHC start-up: so-called (un)identified falling objects (UFOs), which are believed to be micrometer-sized m...

  12. AIP Diffraction measurements using the LHC Beam Loss Monitoring System

    CERN Document Server

    Kalliokoski, Matti

    2017-01-01

    The Beam Loss Monitoring (BLM) system of the Large Hadron Collider protects the machine from beam induced damage by measuring the absorbed dose rates of beam losses, and by triggering beam dump if the rates increase above the allowed threshold limits. Although the detection time scales are optimized for multi-turn losses, information on fast losses can be recovered from the loss data. In this paper, methods in using the BLM system in di ff raction studies are discussed.

  13. Beam Loss Detection at Radiation Source ELBE

    CERN Document Server

    Michel, P; Schurig, R; Langenhagen, H

    2003-01-01

    The Rossendorf superconducting Electron Linac of high Brilliance and low Emittance (ELBE) delivers an 40 MeV, 1 mA cw-beam for different applications such as bremsstrahlung production, electron channelling, free-electron lasers or secondary particle beam generation. In this energy region in case of collisions of the electron beam with the pipe nearly all beam power will be deposited into the pipe material. Therefore a reliable beam loss monitoring is essential for machine protection at ELBE. Different systems basing on photo multipliers, compton diodes and long ionization chambers were studied. The pros and cons of the different systems will be discussed. Ionization chambers based on air-isolated RF cables installed some cm away parallel to the beam line turned out to be the optimal solution. The beam shut-off threshold was adjusted to 1 μC integral charge loss during a 100 ms time interval. Due to the favourable geometry the monitor sensitivity varies less than ±50% along the beam line (di...

  14. DATA ACQUISITION FOR SNS BEAM LOSS MONITOR SYSTEM

    International Nuclear Information System (INIS)

    YENG, Y.; GASSNER, D.; HOFF, L.; WITKOVER, R.

    2003-01-01

    The Spallation Neutron Source (SNS) beam loss monitor system uses VME based electronics to measure the radiation produced by lost beam. Beam loss signals from cylindrical argon-filled ion chambers and neutron detectors will be conditioned in analog front-end (AFE) circuitry. These signals will be digitized and further processed in a dedicated VME crate. Fast beam inhibit and low-level, long-term loss warnings will be generated to provide machine protection. The fast loss data will have a bandwidth of 35kHz. While the low level, long-term loss data will have much higher sensitivity. This is further complicated by the 3 decade range of intensity as the Ring accumulates beam. Therefore a bandwidth of 100kHz and dynamic range larger than 21 bits data acquisition system will be required for this purpose. Based on the evaluation of several commercial ADC modules in preliminary design phase, a 24 bits Sigma-Delta data acquisition VME bus card was chosen as the SNS BLM digitizer. An associated vxworks driver and EPICS device support module also have been developed at BNL. Simulating test results showed this system is fully qualified for both fast loss and low-level, long-term loss application. The first prototype including data acquisition hardware setup and EPICS software (running database and OPI clients) will be used in SNS Drift Tube Linac (DTL) system commissioning

  15. Cherenkov Fibers for Beam Loss Monitoring at the CLIC Two Beam Module

    CERN Document Server

    van Hoorne, Jacobus Willem; Holzer, E B

    The Compact Linear Collider (CLIC) study is a feasibility study aiming at a nominal center of mass energy of 3TeV and is based on normal conducting travelling-wave accelerating structures, operating at very high field gradients of 100 MV/m. Such high fields require high peak power and hence a novel power source, the CLIC two beam system, has been developed, in which a high intensity, low energy drive beam (DB) supplies energy to a high energy, low intensity main beam (MB). At the Two Beam Modules (TBM), which compose the 2x21km long CLIC main linac, a protection against beam losses resulting from badly controlled beams is necessary and particularly challenging, since the beam power of both main beam (14 MW) and drive beam (70 MW) is impressive. To avoid operational downtimes and severe damages to machine components, a general Machine Protection System (MPS) scheme has been developed. The Beam Loss Monitoring (BLM) system is a key element of the CLIC machine protection system. Its main role will be to detect p...

  16. The Beam Loss Detection System of the LHC Ring

    CERN Document Server

    Gschwendtner, E; Ferioli, G; Friesenbichler, W; Kain, V

    2002-01-01

    At the Large Hadron Collider (LHC) a beam loss system will be installed in the arc, dispersion suppressor and the straight regions for a continuous surveillance of particle losses. These beam particles deposit their energy partially in the super-conducting coils leading to temperature increase, possible magnet quenches and damages. The primary and secondary halo of the beam is absorbed by the collimation system. The tertiary halo will be lost at aperture limits in the ring. Its loss distribution along the magnets has been studies. At the positions, where most of the beam losses are expected, simulations of the particle fluences outside the cryostat and induced by lost protons at the aperture have been performed with the Monte Carlo Code Geant 3.2.1. This allows determining the most suitable positions of the detectors, the needed number of monitors and the impact on the dynamic range of the detectors. The design of the beam loss monitor system is presented that meet the required sensitivity, dynamic range and ...

  17. Beam Loss Patterns at the LHC Collimators Measurements & Simulations

    CERN Document Server

    Böhlen, Till Tobias

    2008-01-01

    The Beam Loss Monitoring (BLM) system of the Large Hadron Collider (LHC) detects particle losses of circulating beams and initiates an emergency extraction of the beam in case that the BLM thresholds are exceeded. This protection is required as energy deposition in the accelerator equipment due to secondary shower particles can reach critical levels; causing damage to the beam-line components and quenches of superconducting magnets. Robust and movable beam line elements, so-called collimators, are the aperture limitations of the LHC. Consequently, they are exposed to the excess of lost beam particles and their showers. Proton loss patterns at LHC collimators have to be determined to interpret the signal of the BLM detectors and to set adequate BLM thresholds for the protection of collimators and other equipment in case of unacceptably increased loss rates. The first part of this work investigates the agreement of BLM detector measurements with simulations for an LHC-like collimation setup. The setup consists ...

  18. Application of diamond based beam loss monitors at LHC

    International Nuclear Information System (INIS)

    Hempel, Maria

    2013-04-01

    The Large Hadron Collider (LHC) was conceived in the 1980s and started the operation in 2008. It needed more than 20 years to plan and construct this accelerator and its experiments. Four main experiments are located around the ring, Compact Muon Solenoid (CMS), A Toroidal LHC Apparatus(ATLAS), A Large Ion Collider Experiment (ALICE) and LHC beauty (LHCb). Two beams that traveling in opposite direction in the LHC tunnel, collide in each of the experiments to study the questions: ''What is mass?'', ''What is the universe made of?'' and ''Why is there no antimatter?''. The four experiments take data of the collision products and try to answer the fundamental questions of physics. The two larger detectors, CMS and ATLAS, are looking for the Higgs boson to study the electroweak symmetry breaking. Both detectors were built with contrasting concepts to exclude potential error sources and to rea rm the results. The smaller experiment LHCb studies the matter-antimatter asymmetry with a focus of the beauty quark. Another smaller experiment is ALICE that studies the conditions right after the Big Bang by colliding heavy ions. The navigation of the beams is done by over 10000 magnets and each beam has a stored energy of 362MJ which correspond to the kinetic energy of a train like the TGV travelling of 150 km/h. Only a small percentage of that energy can damage the material in the LHC ring or the magnets. This would mean a repair time of months or years, without taking any data. To avoid such a scenario, it is important to monitor the beam condition and measure the amount of losses of the beam. Such losses can for example happen due to dust particles in the vacuum chambers or due to deviations of the beam parameters. Several systems called beam loss monitors (BLMs) can measure beam losses. This thesis concentrates on two of them, ionization chambers and diamond detectors. Over 3600 ionization chambers are installed in the LHC, especially near each quadrupole and next to

  19. Measuring beam losses in the THI project

    International Nuclear Information System (INIS)

    David, L.; Duneau, P.; Lecorche, E.; Lermine, P.; Lemaitre, E.; Ulrich, M.

    1997-01-01

    The goal of the THI project (High Intensity Transport) is to upgrade the GANIL facilities by increasing the beam by a factor of 15, at least for light ions. This higher intensity is required by the radioactive beam facility SPIRAL starting in September 1997, to generate the new nuclear species in the solid target-source (ISOL method). For the control system, the most important issues are now to tune the accelerators while minimizing the beam losses at each stage of acceleration and when not possible, to have a fast beam loss detection signal. This system is composed of probes which deliver a signal to stop the beam when there's too much intensity lost and when not, a logarithmic value of the beam intensity. These probes are linked to a front end VME crate on the network, and in the control room, on the workstations, a graphical user interface program displays the beam variations using logarithmic scales. This program is also used to center the beam while injecting in or ejecting from the main cyclotrons by tuning the steerers, the magnetic elements inside, and the electrostatic deflector to be able to separate and extract the last beam turn. (author)

  20. Application of diamond based beam loss monitors at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Hempel, Maria

    2013-04-15

    The Large Hadron Collider (LHC) was conceived in the 1980s and started the operation in 2008. It needed more than 20 years to plan and construct this accelerator and its experiments. Four main experiments are located around the ring, Compact Muon Solenoid (CMS), A Toroidal LHC Apparatus(ATLAS), A Large Ion Collider Experiment (ALICE) and LHC beauty (LHCb). Two beams that traveling in opposite direction in the LHC tunnel, collide in each of the experiments to study the questions: ''What is mass?'', ''What is the universe made of?'' and ''Why is there no antimatter?''. The four experiments take data of the collision products and try to answer the fundamental questions of physics. The two larger detectors, CMS and ATLAS, are looking for the Higgs boson to study the electroweak symmetry breaking. Both detectors were built with contrasting concepts to exclude potential error sources and to rea rm the results. The smaller experiment LHCb studies the matter-antimatter asymmetry with a focus of the beauty quark. Another smaller experiment is ALICE that studies the conditions right after the Big Bang by colliding heavy ions. The navigation of the beams is done by over 10000 magnets and each beam has a stored energy of 362MJ which correspond to the kinetic energy of a train like the TGV travelling of 150 km/h. Only a small percentage of that energy can damage the material in the LHC ring or the magnets. This would mean a repair time of months or years, without taking any data. To avoid such a scenario, it is important to monitor the beam condition and measure the amount of losses of the beam. Such losses can for example happen due to dust particles in the vacuum chambers or due to deviations of the beam parameters. Several systems called beam loss monitors (BLMs) can measure beam losses. This thesis concentrates on two of them, ionization chambers and diamond detectors. Over 3600 ionization chambers are installed in

  1. LHC Beam Instrumentation: Beam Loss and Tune Measurements (3/3)

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    The LHC is equipped with a full suite of sophisticated beam instrumentation which has been essential for rapid commissioning, the safe increase in total stored beam power and the understanding of machine optics and accelerator physics phenomena. These lectures will introduce these systems and comment on their contributions to the various stages of beam operation. They will include details on: the beam position system and its use for real-time global orbit feedback; the beam loss system and its role in machine protection; total and bunch by bunch intensity measurements; tune measurement and feedback; diagnostics for transverse beam size measurements, abort gap monitoring and longitudinal density measurements. Issues and problems encountered along the way will also be discussed together with the prospect for future upgrades.

  2. LHC Collimators with Embedded Beam Position Monitors: a New Adbanced Mechanical Design

    CERN Document Server

    Dallocchio, A; Boccard, C; Carra, F; Gasior, M; Gentini, L; Timmins, M

    2011-01-01

    The LHC collimation system, ensuring both functions of beam cleaning and machine protection, is potentially submitted to high-energy beam impacts. Currently the collimators setup is performed by monitoring beam losses generated by the collimator jaws when approaching the particle beam. This procedure is applied to all LHC collimators (almost one hundred), taking several hours, and needs to be repeated if beam settings change significantly. Furthermore, during the beam-based alignment, the LHC tertiary collimators are potentially exposed to abnormal losses entailing possible damage to their tungsten jaws. To improve the efficiency of the machine operation and better control the particle beam a new advanced design embedding Beam Position Monitors (BPM) into the movable collimator jaws has been developed. This paper describes the mechanical design of various types of future collimators with embedded BPMs. Experimental measurements performed on a simplified functional prototype installed in the CERN SPS showed th...

  3. LHC Collimators with Embedded Beam Position Monitors: A New Advanced Mechanical Design

    CERN Document Server

    Dallocchio, A; Boccard, C; Carra, F; Gasior, M; Gentini, L; Timmins, M A

    2011-01-01

    The LHC collimation system, ensuring both functions of beam cleaning and machine protection, is potentially submitted to high-energy beam impacts. Currently the collimators setup is performed by monitoring beam losses generated by the collimator jaws when approaching the particle beam. This procedure is applied to all LHC collimators (almost one hundred), taking several hours, and needs to be repeated if beam settings change significantly. Furthermore, during the beam-based alignment, the LHC tertiary collimators are potentially exposed to abnormal losses entailing possible damage to their tungsten jaws. To improve the efficiency of the machine operation and better control the particle beam a new advanced design embedding Beam Position Monitors (BPM) into the movable collimator jaws has been developed. This paper describes the mechanical design of various types of future collimators with embedded BPMs. Experimental measurements performed on a simplified functional prototype installed in the CERN SPS showed th...

  4. Anomolous, intensity dependent losses in Au(32+) beams

    International Nuclear Information System (INIS)

    Blaskiewicz, M.; Ahrens, L.; Calvani, H.

    1997-01-01

    The AGS Booster is a rapid cycling proton and heavy ion synchrotron. Anomolous, intensity dependent losses in Au(32+) beams have been observed in the AGS Booster. No collective signal is expected, or observed, but increasing the number of injected ions decreases the beam lifetime. The loss rates for Au(32+) are compared with those for Au(15+)

  5. Comparative study of beam losses and heat loads reduction methods in MITICA beam source

    Energy Technology Data Exchange (ETDEWEB)

    Sartori, E., E-mail: emanuele.sartori@igi.cnr.it; Agostinetti, P.; Dal Bello, S.; Marcuzzi, D.; Serianni, G.; Veltri, P. [Consorzio RFX, Euratom-ENEA association, C.so Stati Uniti 4, 35127 Padova (Italy); Sonato, P. [Consorzio RFX, Euratom-ENEA association, C.so Stati Uniti 4, 35127 Padova (Italy); Dipartimento di Ingegneria Elettrica, Padova University, Via Gradenigo 6/a, 35131 Padova (Italy)

    2014-02-15

    In negative ion electrostatic accelerators a considerable fraction of extracted ions is lost by collision processes causing efficiency loss and heat deposition over the components. Stripping is proportional to the local density of gas, which is steadily injected in the plasma source; its pumping from the extraction and acceleration stages is a key functionality for the prototype of the ITER Neutral Beam Injector, and it can be simulated with the 3D code AVOCADO. Different geometric solutions were tested aiming at the reduction of the gas density. The parameter space considered is limited by constraints given by optics, aiming, voltage holding, beam uniformity, and mechanical feasibility. The guidelines of the optimization process are presented together with the proposed solutions and the results of numerical simulations.

  6. Measurements of Beam Ion Loss from the Compact Helical System

    International Nuclear Information System (INIS)

    Darrow, D.S.; Isobe, M.; Kondo, Takashi; Sasao, M.

    2010-01-01

    Beam ion loss from the Compact Helical System (CHS) has been measured with a scintillator-type probe. The total loss to the probe, and the pitch angle and gyroradius distributions of that loss, have been measured as various plasma parameters were scanned. Three classes of beam ion loss were observed at the probe position: passing ions with pitch angles within 10o of those of transition orbits, ions on transition orbits, and ions on trapped orbits, typically 15o or more from transition orbits. Some orbit calculations in this geometry have been performed in order to understand the characteristics of the loss. Simulation of the detector signal based upon the following of orbits from realistic beam deposition profiles is not able to reproduce the pitch angle distribution of the losses measured. Consequently it is inferred that internal plasma processes, whether magnetohydrodynamic modes, radial electric fields, or plasma turbulence, move previously confined beam ions to transition orbits, resulting in their loss.

  7. Particle Rate and Host Accelerator Beam Loss on the MICE Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Dobbs, Adam James [Imperial College, London (United Kingdom)

    2011-10-01

    A study is presented of particle rates in the MICE Muon Beamline and their relationship to beam loss produced in ISIS. A brief overview of neutrino physics is presented, together with a discussion on the Neutrino Factory as a motivation for MICE. An overview of MICE itself is then presented, highlighting the need for a systematic understanding of the relationship between the MICE target parameters, ISIS beam loss, and MICE particle rate. The variation of beam loss with target depth is examined and observed to be non-linear. The variation of beam loss with respect to the target dip time in the ISIS cycle is examined and observed to be approximately linear for dip times between 11.1 ms and 12.6 ms after ISIS injection, before tailing at earlier dip times. The variation of beam loss with particle rate is also observed to follow an approximately linear relationship from 0.05 V.ms to 4.7 V.ms beam loss, with a further strong indication that this continues up to 7.1 V.ms. Particle identification using time-of-flight data is used to give an insight into the relative abundances of each particle species present in the MICE beam. Estimates of muon rate are then produced as a function of beam loss. At a level of 2 V.ms beam loss ~10.9 muons per spill for a 3.2 ms spill with negative π → μ optics, and ~31.1 muons per 1 ms spill with positive π → μ optics are observed. Simulations using the ORBIT particle tracking code of the beam loss distributions around the ISIS ring, caused by the MICE target, are also presented and the implications for MICE running discussed.

  8. Chlorine loss and mass loss from polyvinylchloride and polyvinylidenchloride under the electron beam

    International Nuclear Information System (INIS)

    Lindberg, K.A.H.; Bertilsson, H.E.

    1985-01-01

    The loss of chlorine during the irradiation of PVC and PVDC in the electron microscope has been measured by the decay of the X-ray chlorine Kα signal. A number of factors affecting the measured beam damage curves have been considered and the experimental errors reduced to +- 10%. The results show that the chlorine decay curves can be best described by the sum of two exponentials, corresponding to the two different chlorine decay processes, these being: the dehydrochlorination of the polymer molecules and the dehydrochlorination of the polyene structure formed by the beam damage. The higher initial chlorine content of PVDC compared to PVC will result in a larger amount of chlorine atoms reacting with the polyene structure, which is more stable in the electron beam than the undamaged polymer. The chlorine loss, measured by X-ray analysis, has been compared to the mass loss, measured by energy loss analysis, and also with the volume changes of isolated spherical PVC particles. It has been concluded that the mass loss is almost entirely due to chlorine loss and that the residual structure has a density similar to the undamaged PVC. (author)

  9. Ionization Chambers for the LHC Beam Loss Detection

    CERN Document Server

    Assmann, R W; Ferioli, G; Gschwendtner, E; Kain, V

    2003-01-01

    At the Large Hadron Collider (LHC) a beam loss system will be used to prevent and protect superconducting magnets against coil quenches and coil damages. Ionisation chambers will be mounted outside the cryostat to measure the secondary shower particles caused by lost beam particles. Since the stored particle beam intensity is eight orders of magnitude larger than the lowest quench level and the losses should be detected with a relative error of two, the design and the location of the detectors have to be optimised. For that purpose a two-fold simulation was carried out. The longitudinal loss locations of the tertiary halo is investigated by tracking the halo through several magnet elements. These loss distributions are combined with simulations of the particle fluence outside the cryostat, which is induced by lost protons at the vacuum pipe. The base-line ionisation chamber has been tested at the PS Booster in order to determine the detector response at the high end of the dynamic range.

  10. Simulation and Measurements of Beam Losses on LHC Collimators During Beam Abort Failures

    CERN Document Server

    Lari, L; Bruce, R; Goddard, B; Redaelli, S; Salvachua, B; Valentino, G; Faus-Golfe, A

    2013-01-01

    One of the main purposes of tracking simulations for collimation studies is to produce loss maps along the LHC ring, in order to identify the level of local beam losses during nominal and abnormal operation scenarios. The SixTrack program is the standard tracking tool used at CERN to perform these studies. Recently, it was expanded in order to evaluate the proton load on different collimators in case of fast beam failures. Simulations are compared with beam measurements at 4 TeV. Combined failures are assumed which provide worst-case scenarios of the load on tungsten tertiary collimators.

  11. Reliability of Beam Loss Monitor Systems for the Large Hadron Collider

    CERN Document Server

    Guaglio, Gianluca; Santoni, C

    2005-01-01

    The increase of beam energy and beam intensity, together with the use of super conducting magnets, opens new failure scenarios and brings new criticalities for the whole accelerator protection system. For the LHC beam loss protection system, the failure rate and the availability requirements have been evaluated using the Safety Integrity Level (SIL) approach. A downtime cost evaluation is used as input for the SIL approach. The most critical systems, which contribute to the final SIL value, are the dump system, the interlock system, the beam loss monitors system, and the energy monitor system. The Beam Loss Monitors System (BLMS) is critical for short and intense particles losses at 7 TeV and assisted by the Fast Beam Current Decay Monitors at 450 GeV. At medium and higher loss time it is assisted by other systems, such as the quench protection system and the cryogenic system. For BLMS, hardware and software have been evaluated in detail. The reliability input figures have been collected using historical data...

  12. Beam loss studies in high-intensity heavy-ion linacs

    International Nuclear Information System (INIS)

    Ostroumov, P.N.; Aseev, V.N.; Lessner, E.S.; Mustapha, B.

    2004-01-01

    A low beam-loss budget is an essential requirement for high-intensity machines and represents one of their major design challenges. In a high-intensity heavy-ion machine, losses are required to be below 1 W/m for hands-on-maintenance. The driver linac of the Rare Isotope Accelerator (RIA) is designed to accelerate beams of any ion to energies from 400 MeV per nucleon for uranium up to 950 MeV for protons with a beam power of up to 400 kW. The high intensity of the heaviest ions is achieved by acceleration of multiple-charge-state beams, which requires a careful beam dynamics optimization to minimize effective emittance growth and beam halo formation. For beam loss simulation purposes, large number of particles must be tracked through the linac. Therefore the computer code TRACK has been parallelized and calculations are being performed on the JAZZ cluster recently inaugurated at ANL. This paper discusses how this powerful tool is being used for simulations for the RIA project to help decide on the high-performance and cost-effective design of the driver linac

  13. Correlation of beam loss to residual activation in the AGS

    International Nuclear Information System (INIS)

    Brown, K.A.

    1991-01-01

    Studies of beam loss and activation at the AGS have provided a better understanding of measurements of beam loss and how they may be used to predict activation. Studies have been done in which first order correlations have been made between measured beam losses on the distributed ionization chamber system in the AGS and the health physics recorded residual activation. These studies have provided important insight into the ionization chamber system, its limitations, and its usefulness in the prediction of activation based on monitored beam loss. In recent years the AGS has run high intensity protons primarily for rare kaon decay experiments. In this mode of running the AGS typically accelerates beam from an injection momentum of 0.644 GeV/c up to a slow extracted beam (SEB) momentum of 24.2 GeV/c. The beam intensities are on the order of 4.5 x 10 13 protons per AGS cycle at injection to as high as 1.9 x 10 13 protons per AGS cycle at extraction. Residual activation varies around the AGS ring from the order of 5 mR/hour to levels of the order at 5 R/hour. The highest levels occur around the AGS beam catcher and the extraction equipment

  14. Cryogenic Beam Loss Monitors for the Superconducting Magnets of the LHC

    CERN Document Server

    Bartosik, MR; Sapinski, M; Kurfuerst, C; Griesmayer, E; Eremin, V; Verbitskaya, E

    2014-01-01

    The Beam Loss Monitor detectors close to the interaction points of the Large Hadron Collider are currently located outside the cryostat, far from the superconducting coils of the magnets. In addition to their sensitivity to lost beam particles, they also detect particles coming from the experimental collisions, which do not contribute significantly to the heat deposition in the superconducting coils. In the future, with beams of higher energy and brightness resulting in higher luminosity, distinguishing between these interaction products and dangerous quench-provoking beam losses from the primary proton beams will be challenging. The system can be optimised by locating beam loss monitors as close as possible to the superconducting coils, inside the cold mass in a superfluid helium environment, at 1.9 K. The dose then measured by such Cryogenic Beam Loss Monitors would more precisely correspond to the real dose deposited in the coil. The candidates under investigation for such detectors are based on p+-n-n+ si...

  15. Tolerable Beam Loss at High-Intensity Machines

    International Nuclear Information System (INIS)

    Krivosheev, Oleg E.; Mokhov, Nikolai V.

    2000-01-01

    Tolerable beam losses are estimated for high-intensity ring accelerators with proton energy of 3 to 16 GeV. Dependence on beam energy, lattice and magnet geometry is studied via full Monte Carlo MARS14 simulations in lattice elements, shielding, tunnel and surrounding dirt with realistic geometry, materials and magnetic fields

  16. RFQ Designs and Beam-Loss Distributions for IFMIF

    Energy Technology Data Exchange (ETDEWEB)

    Jameson, Robert A [ORNL

    2007-01-01

    The IFMIF 125 mA cw 40 MeV accelerators will set an intensity record. Minimization of particle loss along the accelerator is a top-level requirement and requires sophisticated design intimately relating the accelerated beam and the accelerator structure. Such design technique, based on the space-charge physics of linear accelerators (linacs), is used in this report in the development of conceptual designs for the Radio-Frequency-Quadrupole (RFQ) section of the IFMIF accelerators. Design comparisons are given for the IFMIF CDR Equipartitioned RFQ, a CDR Alternative RFQ, and new IFMIF Post-CDR Equipartitioned RFQ designs. Design strategies are illustrated for combining several desirable characteristics, prioritized as minimum beam loss at energies above ~ 1 MeV, low rf power, low peak field, short length, high percentage of accelerated particles. The CDR design has ~0.073% losses above 1 MeV, requires ~1.1 MW rf structure power, has KP factor 1.7,is 12.3 m long, and accelerates ~89.6% of the input beam. A new Post-CDR design has ~0.077% losses above 1 MeV, requires ~1.1 MW rf structure power, has KP factor 1.7 and ~8 m length, and accelerates ~97% of the input beam. A complete background for the designs is given, and comparisons are made. Beam-loss distributions are used as input for nuclear physics simulations of radioactivity effects in the IFMIF accelerator hall, to give information for shielding, radiation safety and maintenance design. Beam-loss distributions resulting from a ~1M particle input distribution representative of the IFMIF ECR ion source are presented. The simulations reported were performed with a consistent family of codes. Relevant comparison with other codes has not been possible as their source code is not available. Certain differences have been noted but are not consistent over a broad range of designs and parameter range. The exact transmission found by any of these codes should be treated as indicative, as each has various sensitivities in

  17. Beam Loss Calibration Studies for High Energy Proton Accelerators

    CERN Document Server

    Stockner, M

    2007-01-01

    CERN's Large Hadron Collider (LHC) is a proton collider with injection energy of 450 GeV and collision energy of 7 TeV. Superconducting magnets keep the particles circulating in two counter rotating beams, which cross each other at the Interaction Points (IP). Those complex magnets have been designed to contain both beams in one yoke within a cryostat. An unprecedented amount of energy will be stored in the circulating beams and in the magnet system. The LHC outperforms other existing accelerators in its maximum beam energy by a factor of 7 and in its beam intensity by a factor of 23. Even a loss of a small fraction of the beam particles may cause the transition from the superconducting to the normal conducting state of the coil or cause physical damage to machine components. The unique combination of these extreme beam parameters and the highly advanced superconducting technology has the consequence that the LHC needs a more efficient beam cleaning and beam loss measurement system than previous accelerators....

  18. Beam Loss Monitoring for Run 2 of the LHC

    CERN Document Server

    Kalliokoski, Matti; Dehning, Bernd; Domingues Sousa, Fernando; Effinger, Ewald; Emery, Jonathan; Grishin, Viatcheslav; Holzer, Eva Barbara; Jackson, Stephen; Kolad, Blazej; Nebot Del Busto, Eduardo; Picha, Ondrej; Roderick, Chris; Sapinski, Mariusz; Sobieszek, Marcin; Zamantzas, Christos

    2015-01-01

    The Beam Loss Monitoring (BLM) system of the LHC consists of over 3600 ionization chambers. The main task of the system is to prevent the superconducting magnets from quenching and protect the machine components from damage, as a result of critical beam losses. The BLM system therefore requests a beam abort when the measured dose in the chambers exceeds a threshold value. During Long Shutdown 1 (LS1) a series of modifications were made to the system. Based on the experience from Run 1 and from improved simulation models, all the threshold settings were revised, and modified where required. This was done to improve the machine safety at 7 TeV, and to reduce beam abort requests when neither a magnet quench or damage to machine components is expected. In addition to the updates of the threshold values, about 800 monitors were relocated. This improves the response to unforeseen beam losses in the millisecond time scale due to micron size dust particles present in the vacuum chamber. This contribution will discuss...

  19. Analog front end circuit design of CSNS beam loss monitor system

    International Nuclear Information System (INIS)

    Xiao Shuai; Guo Xian; Tian Jianmin; Zeng Lei; Xu Taoguang; Fu Shinian

    2013-01-01

    The China Spallation Neutron Source (CSNS) beam loss monitor system uses gas ionization chamber to detect beam losses. The output signals from ionization chamber need to be processed in the analog front end circuit, which has been designed and developed independently. The way of transimpedance amplifier was used to achieve current-voltage (I-V) conversion measurement of signal with low repetition rate, low duty cycle and low amplitude. The analog front end circuit also realized rapid response to the larger beam loss in order to protect the safe operation of the accelerator equipment. The testing results show that the analog front end circuit meets the requirements of beam loss monitor system. (authors)

  20. Beam loss control in the LINAC4 design

    CERN Document Server

    Stovall, J; Crandall, K

    2010-01-01

    The Linac4 DTL reference design has been modified to reduce the power consumption in tank 1 by modifying the accelerating field and phase law. In addition we have adopted an FFDD focusing lattice throughout to minimize expected losses resulting from alignment errors. We have observed, however, that this design suffers from decreasing transverse acceptance and a sensitivity to misalignments that causes any expected beam loss to occcur at the high energy end of the DTL. In this note we investigate two solutions to increase the acceptance, decrease its sensitivity to misalignments and eliminate the potential for a beam-loss “bottleneck” at 50 MeV.

  1. Mechanical beam isolator

    International Nuclear Information System (INIS)

    Post, R.F.; Vann, C.S.

    1996-10-01

    Back-reflections from a target, lenses, etc. can gain energy passing backwards through a laser just like the main beam gains energy passing forwards. Unless something blocks these back-reflections early in their path, they can seriously damage the laser. A Mechanical Beam Isolator is a device that blocks back-reflections early, relatively inexpensively, and without introducing aberrations to the laser beam

  2. Cryogenic beam loss monitoring for the LHC

    International Nuclear Information System (INIS)

    Kurfürst, C.

    2013-01-01

    A Beam Loss Monitoring (BLM) system was installed on the outside surface of the LHC magnet cryostats to protect the accelerator equipment from beam losses. The protection is achieved by extracting the beam from the ring in case thresholds imposed on measured radiation levels are exceeded. Close to the interaction regions of the LHC, the present BLM system is sensitive to particle showers generated in the interaction region of the two beams. In the future, with beams of higher energy and brightness resulting in higher luminosity, distinguishing between these interaction products and possible quench-provoking beam losses from the primary proton beams will be challenging. The particle showers measured by the present BLM configuration are partly shielded by the cryostat and the iron yoke of the magnets. The system can hence be optimised by locating beam loss monitors as close as possible to the protected element, i. e. the superconducting coils, inside the cold mass of the magnets in superfluid helium at 1.9 K. The advantage is that the dose measured by the Cryogenic Beam Loss Monitor (CryoBLM) would more precisely correspond to the dose deposited in the superconducting coil. The main challenges of this placement are the low temperature of 1.9 K and the integrated dose of 2 MGy in 20 years. Furthermore the CryoBLM should work in a magnetic field of 2 T and at a pressure of 1.1 bar, withstanding a fast pressure rise up to 20 bar in case of a magnet quench. The detector response should be linear between 0.1 and 10 mGy/s and faster than 1 ms. Once the detectors are installed in the LHC magnets, no access will be possible. Hence the detectors need to be available, reliable and stable for 20 years. Following intense research it became clear that no existing technology was proven to work in such conditions. The candidates under investigation in this work are diamond and silicon detectors and an ionisation chamber, using the liquid helium itself as particle detection medium

  3. PSR experience with beam losses, instabilities and space charge effects

    International Nuclear Information System (INIS)

    Macek, Robert J.

    1998-01-01

    Average current from the PSR has been limited to ∼70 μA at 20 Hz by beam losses of 0.4 to 0.5 μA which arise from two principal causes, production of H 0 excited states and stored-beam scattering in the stripper foil. To reduce beam losses, an upgrade from the two-step H 0 injection to direct H - injection is underway and will be completed in 1998. Peak intensity from the PSR is limited by a strong instability that available evidence indicates is the two-stream e-p instability. New evidence for the e-p hypothesis is presented. At operating intensities, the incoherent space charge tune shift depresses both horizontal and vertical tunes past the integer without additional beam loss although some intensity-dependent emittance growth is observed

  4. Beam loss detection system in the arcs of the LHC

    Science.gov (United States)

    Arauzo, A.; Bovet, C.

    2000-11-01

    Over the whole circumference of the LHC, Beam Loss Monitors (BLM) will be needed for a continuous surveillance of fast and slow beam losses. In this paper, the location of the BLMs set outside the magnet cryostats in the arcs is proposed. In order to know the number of protons lost on the beam screen, the sensitivity of each BLM has been computed using the program GEANT 3.21, which generates the shower inside the cryostat. The material and the magnetic fields have been described thoroughly in 3-D and the simulation results show the best locations for 6 BLMs needed around each quadrupole. The number of minimum ionizing particles received for each lost proton serves to define local thresholds to dump the beam when the losses are menacing to quench a magnet.

  5. Beam loss detection system in the arcs of the LHC

    International Nuclear Information System (INIS)

    Arauzo, A.; Bovet, C.

    2000-01-01

    Over the whole circumference of the LHC, Beam Loss Monitors (BLM) will be needed for a continuous surveillance of fast and slow beam losses. In this paper, the location of the BLMs set outside the magnet cryostats in the arcs is proposed. In order to know the number of protons lost on the beam screen, the sensitivity of each BLM has been computed using the program GEANT 3.21, which generates the shower inside the cryostat. The material and the magnetic fields have been described thoroughly in 3-D and the simulation results show the best locations for 6 BLMs needed around each quadrupole. The number of minimum ionizing particles received for each lost proton serves to define local thresholds to dump the beam when the losses are menacing to quench a magnet

  6. Reliability of Beam Loss Monitor Systems for the Large Hadron Collider

    International Nuclear Information System (INIS)

    Guaglio, G.; Dehning, B.; Santoni, C.

    2005-01-01

    The increase of beam energy and beam intensity, together with the use of super conducting magnets, opens new failure scenarios and brings new criticalities for the whole accelerator protection system. For the LHC beam loss protection system, the failure rate and the availability requirements have been evaluated using the Safety Integrity Level (SIL) approach. A downtime cost evaluation is used as input for the SIL approach. The most critical systems, which contribute to the final SIL value, are the dump system, the interlock system, the beam loss monitors system, and the energy monitor system. The Beam Loss Monitors System (BLMS) is critical for short and intense particles losses at 7 TeV and assisted by the Fast Beam Current Decay Monitors at 450 GeV. At medium and higher loss time it is assisted by other systems, such as the quench protection system and the cryogenic system. For BLMS, hardware and software have been evaluated in detail. The reliability input figures have been collected using historical data from the SPS, using temperature and radiation damage experimental data as well as using standard databases. All the data has been processed by reliability software (Isograph). The analysis spaces from the components data to the system configuration

  7. Reliability of Beam Loss Monitor Systems for the Large Hadron Collider

    Science.gov (United States)

    Guaglio, G.; Dehning, B.; Santoni, C.

    2005-06-01

    The increase of beam energy and beam intensity, together with the use of super conducting magnets, opens new failure scenarios and brings new criticalities for the whole accelerator protection system. For the LHC beam loss protection system, the failure rate and the availability requirements have been evaluated using the Safety Integrity Level (SIL) approach. A downtime cost evaluation is used as input for the SIL approach. The most critical systems, which contribute to the final SIL value, are the dump system, the interlock system, the beam loss monitors system, and the energy monitor system. The Beam Loss Monitors System (BLMS) is critical for short and intense particles losses at 7 TeV and assisted by the Fast Beam Current Decay Monitors at 450 GeV. At medium and higher loss time it is assisted by other systems, such as the quench protection system and the cryogenic system. For BLMS, hardware and software have been evaluated in detail. The reliability input figures have been collected using historical data from the SPS, using temperature and radiation damage experimental data as well as using standard databases. All the data has been processed by reliability software (Isograph). The analysis spaces from the components data to the system configuration.

  8. Radiative interaction of a focused relativistic electron beam in energy-loss spectroscopy of nanoscopic platelets

    International Nuclear Information System (INIS)

    Itskovsky, M. A.; Maniv, T.; Cohen, H.

    2008-01-01

    A quantum-mechanical scattering theory for relativistic, highly focused electron beams in the vacuum near nanoscopic platelets is presented, revealing an excitation mechanism due to the electron wave scattering from the platelet edges. Radiative electromagnetic excitations within the light cone are shown to arise, allowed by the breakdown of momentum conservation along the beam axis in the inelastic-scattering process. Calculated for metallic (silver and gold) and insulating (SiO 2 and MgO) nanoplatelets, radiative features are revealed above the main surface-plasmon-polariton peak, and dramatic enhancements in the electron-energy-loss probability at gaps of the 'classical' spectra are found. The corresponding radiation should be detectable in the vacuum far-field zone, with e beams exploited as sensitive 'tip detectors' of electronically excited nanostructures

  9. Beam loss monitor system for machine protection

    CERN Document Server

    Dehning, B

    2005-01-01

    Most beam loss monitoring systems are based on the detection of secondary shower particles which depose their energy in the accelerator equipment and finally also in the monitoring detector. To allow an efficient protection of the equipment, the likely loss locations have to be identified by tracking simulations or by using low intensity beams. If superconducting magnets are used for the beam guiding system, not only a damage protection is required but also quench preventions. The quench levels for high field magnets are several orders of magnitude below the damage levels. To keep the operational efficiency high under such circumstances, the calibration factor between the energy deposition in the coils and the energy deposition in the detectors has to be accurately known. To allow a reliable damage protection and quench prevention, the mean time between failures should be high. If in such failsafe system the number of monitors is numerous, the false dump probability has to be kept low to keep a high operation...

  10. Anomaly Detection for Beam Loss Maps in the Large Hadron Collider

    Science.gov (United States)

    Valentino, Gianluca; Bruce, Roderik; Redaelli, Stefano; Rossi, Roberto; Theodoropoulos, Panagiotis; Jaster-Merz, Sonja

    2017-07-01

    In the LHC, beam loss maps are used to validate collimator settings for cleaning and machine protection. This is done by monitoring the loss distribution in the ring during infrequent controlled loss map campaigns, as well as in standard operation. Due to the complexity of the system, consisting of more than 50 collimators per beam, it is difficult to identify small changes in the collimation hierarchy, which may be due to setting errors or beam orbit drifts with such methods. A technique based on Principal Component Analysis and Local Outlier Factor is presented to detect anomalies in the loss maps and therefore provide an automatic check of the collimation hierarchy.

  11. Anomaly Detection for Beam Loss Maps in the Large Hadron Collider

    International Nuclear Information System (INIS)

    Valentino, Gianluca; Bruce, Roderik; Redaelli, Stefano; Rossi, Roberto; Theodoropoulos, Panagiotis; Jaster-Merz, Sonja

    2017-01-01

    In the LHC, beam loss maps are used to validate collimator settings for cleaning and machine protection. This is done by monitoring the loss distribution in the ring during infrequent controlled loss map campaigns, as well as in standard operation. Due to the complexity of the system, consisting of more than 50 collimators per beam, it is difficult to identify small changes in the collimation hierarchy, which may be due to setting errors or beam orbit drifts with such methods. A technique based on Principal Component Analysis and Local Outlier Factor is presented to detect anomalies in the loss maps and therefore provide an automatic check of the collimation hierarchy. (paper)

  12. PSR experience with beam losses, instabilities and space charge effects

    International Nuclear Information System (INIS)

    Macek, R.J.

    1998-01-01

    Average current from the PSR has been limited to ∼70 μA at 20 Hz by beam losses of 0.4 to 0.5 μA which arise from two principal causes, production of H 0 excited states and stored-beam scattering in the stripper foil. To reduce beam losses, an upgrade from the two-step H 0 injection to direct H - injection is underway and will be completed in 1998. Peak intensity from the PSR is limited by a strong instability that available evidence indicates is the two-stream e-p instability. New evidence for the e-p hypothesis is presented. At operating intensities, the incoherent space charge tune shift depresses both horizontal and vertical tunes past the integer without additional beam loss although some intensity-dependent emittance growth is observed. copyright 1998 American Institute of Physics

  13. Configuration of the Beam Loss Monitors for the LHC arcs

    CERN Document Server

    Arauzo-Garcia, A

    2000-01-01

    A revised configuration for a beam loss detection system is given for the arcs of the LHC. The last modifications of the LHC arc layout have been taken into account, LHC optics version 6.2. A set of 6 Loss Detectors will be placed outside the cryostat around each short straight section. Quench alarm thresholds are estimated for each detector in all possible LHC arc layout configurations. Threshold values are proposed for top and injection energy beam loss.

  14. Modeling of neutral beam ion loss from CHS plasmas

    International Nuclear Information System (INIS)

    Darrow, D.S.; Isobe, Mitsutaka; Sasao, Mamiko; Kondo, T.

    2000-01-01

    Beam ion loss measurements from Compact Helical System (CHS) plasmas under a variety of conditions show a strong loss of ions in the range of pitch angles corresponding to transition orbits at the probe location. A numerical model has been developed which includes the beam ion orbits, and details of the detector, plasma, vessel, and neutral beam geometry. From this, the expected classical (i.e. collisionless single particle orbit) signal at the detector can be computed. Preliminary comparisons between the experimental data and model predictions indicate that the classical behavior of the orbits and the machine geometry are insufficient to explain the observations. (author)

  15. A Fast CVD Diamond Beam Loss Monitor for LHC

    CERN Document Server

    Griesmayer, E; Dobos, D; Effinger, E; Pernegger, H

    2011-01-01

    Chemical Vapour Deposition (CVD) diamond detectors were installed in the collimation area of the CERN LHC to study their feasibility as Fast Beam Loss Monitors in a high-radiation environment. The detectors were configured with a fast, radiation-hard pre-amplifier with a bandwidth of 2 GHz. The readout was via an oscilloscope with a bandwidth of 1 GHz and a sampling rate of 5 GSPS. Despite the 250 m cable run from the detectors to the oscilloscope, single MIPs were resolved with a 2 ns rise time, a pulse width of 10 ns and a time resolution of less than 1 ns. Two modes of operation were applied. For the analysis of unexpected beam aborts, the loss profile was recorded in a 1 ms buffer and, for nominal operation, the histogram of the time structure of the losses was recorded in synchronism with the LHC period of 89.2 μs. Measurements during the LHC start-up (February to December 2010) are presented. The Diamond Monitors gave an unprecedented insight into the time structure of the beam losses resolving the 400...

  16. The LEP RF Trip and Beam Loss Diagnostics System

    CERN Document Server

    Arnaudon, L; Beetham, G; Ciapala, Edmond; Juillard, J C; Olsen, R

    2002-01-01

    During the last years of operation the number of operationally independent RF stations distributed around LEP reached a total of 40. A serious difficulty when running at high energy and high beam intensities was to establish cause and effect in beam loss situations, where the trip of any single RF station would result in beam loss, rapidly producing further multiple RF station trips. For the last year of operation a fast post-mortem diagnostics system was developed to allow precise time-stamping of RF unit trips and beam intensity changes. The system was based on eight local DSP controlled fast acquisition and event recording units, one in each RF sector, connected to critical RF control signals and fast beam intensity monitors and synchronised by GPS. The acquisition units were armed and synchronised at the start of each fill. At the end of the fill the local time-stamped RF trip and beam intensity change history tables were recovered, events ordered and the results stored in a database for subsequent analys...

  17. The beam loss monitoring system for HLS storage ring

    CERN Document Server

    Li Yu Xiong; Li Wei; Li Jue Xin; Liu Zu Ping; Shao Bei Bei

    2001-01-01

    A beam loss monitoring system has been established at HLS. This paper gives its principle and scientific grounds. Study on the ring's TBA structure and utilization of Monte-Carlo calculation to the shower electrons is important in its design. The system composition and performance are also introduced. The detector BLMs, data acquisition devices and host PC are linked via CAN bus. This system is helpful to analyze beam loss distribution and regulate the machine operation parameters.

  18. Radiative interaction of a focused relativistic electron beam in energy-loss spectroscopy of nanoscopic platelets

    Science.gov (United States)

    Itskovsky, M. A.; Cohen, H.; Maniv, T.

    2008-07-01

    A quantum-mechanical scattering theory for relativistic, highly focused electron beams in the vacuum near nanoscopic platelets is presented, revealing an excitation mechanism due to the electron wave scattering from the platelet edges. Radiative electromagnetic excitations within the light cone are shown to arise, allowed by the breakdown of momentum conservation along the beam axis in the inelastic-scattering process. Calculated for metallic (silver and gold) and insulating ( SiO2 and MgO) nanoplatelets, radiative features are revealed above the main surface-plasmon-polariton peak, and dramatic enhancements in the electron-energy-loss probability at gaps of the “classical” spectra are found. The corresponding radiation should be detectable in the vacuum far-field zone, with e beams exploited as sensitive “tip detectors” of electronically excited nanostructures.

  19. Ionisation Chambers for the LHC Beam Loss Detection

    CERN Document Server

    Gschwendtner, E; Dehning, B; Ferioli, G; Kain, V

    2003-01-01

    At the Large Hadron Collider (LHC) a beam loss system will be used to prevent and protect superconducting magnets against coil quenches and coil damages. Since the stored particle beam intensity is 8 orders of magnitude larger than the lowest quench level value particular attention is paid to the design of the secondary particle shower detectors. The foreseen ionisation chambers are optimised in geometry simulating the probable loss distribution along the magnets and convoluting the loss distribution with the secondary particle shower distributions. To reach the appropriate coverage of a particle loss and to determine the quench levels with a relative accuracy of 2 the number of the detectors and their lengths is weighted against the particle intensity density variation. In addition attention is paid to the electrical ionisation chamber signal to minimise the ion tail extension. This optimisation is based on time resolved test measurements in the PS booster. A proposal for a new ionisation chamber will be pre...

  20. New results on the beam-loss criteria for heavy-ion accelerators

    International Nuclear Information System (INIS)

    Katrik, Peter; Hoffmann, Dieter H.H.; Mustafin, Edil; Strasik, Ivan; Pavlovic, Marius

    2015-01-01

    Activation of high-energy heavy-ion accelerators due to beam losses is a serious issue for accelerator parts like collimators, magnets, beam-lines, fragment separator targets, etc. The beam losses below 1 W/m are considered as tolerable for 'hands-on' maintenance in proton machines. In our previous studies, the FLUKA2008 code has been used for establishing a scaling law expanding the existing beam-loss tolerance for 1 GeV protons to heavy ions. This scaling law enabled specifying beam-loss criteria for projectile species from proton up to uranium at energies from 200 MeV/u up to 1 GeV/u. FLUKA2008 allowed nucleus-nucleus interactions down to 100 MeV/u only. In this work, we review our previous results and extend activation simulations to lower energies with the help of the new FLUKA version, namely FLUKA2011. It includes models for nucleus-nucleus interactions below 100 MeV/u. We also tried to expand the scaling law to lower energies. This, however, needs further studies, because the heavy-ion-induced nuclide composition starts deviating from the proton-induced nuclide composition at energies below 150 MeV/u. (authors)

  1. IFMIF-LIPAc Beam Diagnostics. Profiling and Loss Monitoring Systems

    International Nuclear Information System (INIS)

    Egberts, J.

    2012-01-01

    The IFMIF accelerator will accelerate two 125 mA continuous wave (cw) deuteron beams up to 40 MeV and blasts them onto a liquid lithium target to release neutrons. The very high beam power of 10 MW pose unprecedented challenges for the accelerator development. Therefore, it was decided to build a prototype accelerator, the Linear IFMIF Prototype Accelerator (LIPAc), which has the very same beam characteristic, but is limited to 9 MeV only. In the frame of this thesis, diagnostics devices for IFMIF and LIPAc have been developed. The diagnostics devices consist of beam loss monitors and interceptive as well as non-interceptive profile monitors. For the beam loss monitoring system, ionization chambers and diamond detectors have been tested and calibrated for neutron and γ radiation in the energy range expected at LIPAc. During these tests, for the first time, diamond detectors were successfully operated at cryogenic temperatures. For the interceptive profilers, thermal simulations were performed to ensure safe operation. For the non-interceptive profiler, Ionization Profile Monitors (IPMs) were developed. A prototype has been built and tested, and based on the findings, the final IPMs were designed and built. To overcome the space charge of accelerator beam, a software algorithm was written to reconstruct the actual beam profile. (author) [fr

  2. Protection against Accidental Beam Losses at the LHC

    CERN Document Server

    Wenninger, Jörg

    2005-01-01

    Protection of the LHC against uncontrolled beam losses is of prime importance due to the very high stored beam energy. For nominal beam intensities, each of the two 7 TeV/c proton beams has a stored energy of 360 MJ threatening to damage accelerator equipment. At injection a number of passive beam absorbers must be correctly positioned and specific procedures have been proposed to ensure safe injection of high intensity. The LHC beam dump block being the only LHC element that can safety absorb the full LHC beam, it is essential that the beams are extracted unto the dump block in case of emergency. The failure time constants extend from 100 microseconds to few seconds depending on the equipment. Failures must be detected at a sufficiently early stage and transmitted to the beam interlock system that triggers the beam dumping system. To ensure safe operation the machine protection system uses a variety of systems to detect such failures. The strategy for protection of the LHC will be illustrated, with emphasis ...

  3. Reliability of Beam Loss Monitors System for the Large Hadron Collider

    CERN Document Server

    Guaglio, Gianluca; Santoni, C

    2004-01-01

    The employment of superconducting magnets, in the high energies colliders, opens challenging failure scenarios and brings new criticalities for the whole system protection. For the LHC beam loss protection system, the failure rate and the availability requirements have been evaluated using the Safety Integrity Level (SIL) approach. A downtime cost evaluation is used as input for the SIL approach. The most critical systems, which contribute to the final SIL value, are the dump system, the interlock system, the beam loss monitors system and the energy monitor system. The Beam Loss Monitors System (BLMS) is critical for short and intense particles losses, while at medium and higher loss time it is assisted by other systems, such as the quench protection system and the cryogenic system. For BLMS, hardware and software have been evaluated in detail. The reliability input figures have been collected using historical data from the SPS, using temperature and radiation damage experimental data as well as using standar...

  4. Prestress Loss of CFL in a Prestressing Process for Strengthening RC Beams

    Directory of Open Access Journals (Sweden)

    Xinyan Guo

    2017-01-01

    Full Text Available A prestressing system was designed to strengthen reinforced concrete (RC beams with prestressed carbon fiber laminate (CFL. During different prestressing processes, prestress loss was measured using strain gauges attached on the surface of CFL along the length direction. The prestress loss was 50–68% of the whole prestress loss, which is typically associated with CFL slipping between the grip anchors. Approximately 20–27% of the prestress loss was caused by the elastic shortening of the RC beam. An analytical model using linear-elastic theory was constructed to calculate the prestress loss caused by CFL slipping between the anchors and the elastic shortening of the strengthened beams. The compared results showed that the analytical model of prestress loss can describe the experimental data well. Methods of reducing the prestress loss were also suggested. Compared to other experiments, the prestressing system proposed by this research group was effective because the maximum percentage of prestress loss was 14.9% and the average prestress loss was 12.5%.

  5. Studies of Limits on Uncontrolled Heavy Ion Beam Losses for Allowing Hands-On Maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Reginald M. Ronningen; Igor Remec

    2010-09-11

    Dose rates from accelerator components activated by 1 W/m beam losses are obtained semiempirically for a 1 GeV proton beam and by use of Monte Carlo transport codes for the proton beam and for 777 MeV/u 3He, 500 MeV/u 48Ca, 86Kr, 136Xe, and 400 MeV/u 238U ions. The dose rate obtained by the semi-empirical method, 0.99 mSv/h (99 mrem/h) at 30 cm, 4 h after 100 d irradiation by a 1-GeV proton beam, is consistent with studies at several accelerator facilities and with adopted hands-on maintenance dose rate limits. Monte Carlo simulations verify this result for protons and extend studies to heavy ion beam losses in drift-tube linac and superconducting linac accelerating structures. The studies indicate that the 1 W/m limit imposed on uncontrolled beam losses for high-energy proton beams might be relaxed for heavy ion beams. These studies further suggest that using the ratio of neutrons produced by a heavy ion beam to neutrons produced by a proton beam along with the dose rate from the proton beam (for thin-target scenarios) should allow an estimate of the dose rates expected from heavy ion beam losses.

  6. The AGS Booster beam loss monitor system

    International Nuclear Information System (INIS)

    Beadle, E.R.; Bennett, G.W.; Witkover, R.L.

    1991-01-01

    A beam loss monitor system has been developed for the Brookhaven National Laboratory Booster accelerator, and is designed for use with intensities of up to 1.5 x 10 13 protons and carbon to gold ions at 50-3 x 10 9 ions per pulse. This system is a significant advance over the present AGS system by improving the sensitivity, dynamic range, and data acquisition. In addition to the large dynamic range achievable, it is adaptively shifted when high losses are detected. The system uses up to 80 argon filled ion chambers as detectors, as well as newly designed electronics for processing and digitizing detector outputs. The hardware simultaneously integrates each detector output, interfaces to the beam interrupt systems, and digitizes all 80 channels to 21 bits at 170 KHz. This paper discuses the design, construction, and operation of the system. 4 refs., 2 figs

  7. Beam loss studies on silicon strip detector modules for the CMS experiment

    CERN Document Server

    Fahrer, Manuel

    2006-01-01

    The large beam energy of the LHC demands for a save beam abort system. Nevertheless, failures cannot be excluded with last assurance and are predicted to occur once per year. As the CMS experiment is placed in the neighboured LHC octant, it is affected by such events. The effect of an unsynchronized beam abort on the silicon strip modules of the CMS tracking detector has been investigated in this thesis by performing one accelerator and two lab experiments. The dynamical behaviour of operational parameters of modules and components has been recorded during simulated beam loss events to be able to disentangle the reasons of possible damages. The first study with high intensive proton bunches at the CERN PS ensured the robustness of the module design against beam losses. A further lab experiment with pulsed IR LEDs clarified the physical and electrical processes during such events. The silicon strip sensors on a module are protected against beam losses by a part of the module design that originally has not been...

  8. Reliability of Beam Loss Monitors System for the Large Hadron Collider

    Science.gov (United States)

    Guaglio, G.; Dehning, B.; Santoni, C.

    2004-11-01

    The employment of superconducting magnets in high energy colliders opens challenging failure scenarios and brings new criticalities for the whole system protection. For the LHC beam loss protection system, the failure rate and the availability requirements have been evaluated using the Safety Integrity Level (SIL) approach. A downtime cost evaluation is used as input for the SIL approach. The most critical systems, which contribute to the final SIL value, are the dump system, the interlock system, the beam loss monitors system and the energy monitor system. The Beam Loss Monitors System (BLMS) is critical for short and intense particle losses, while at medium and higher loss time it is assisted by other systems, such as the quench protection system and the cryogenic system. For BLMS, hardware and software have been evaluated in detail. The reliability input figures have been collected using historical data from the SPS, using temperature and radiation damage experimental data as well as using standard databases. All the data have been processed by reliability software (Isograph). The analysis ranges from the components data to the system configuration.

  9. Reliability of Beam Loss Monitors System for the Large Hadron Collider

    International Nuclear Information System (INIS)

    Guaglio, G.; Dehning, B.; Santoni, C.

    2004-01-01

    The employment of superconducting magnets in high energy colliders opens challenging failure scenarios and brings new criticalities for the whole system protection. For the LHC beam loss protection system, the failure rate and the availability requirements have been evaluated using the Safety Integrity Level (SIL) approach. A downtime cost evaluation is used as input for the SIL approach. The most critical systems, which contribute to the final SIL value, are the dump system, the interlock system, the beam loss monitors system and the energy monitor system. The Beam Loss Monitors System (BLMS) is critical for short and intense particle losses, while at medium and higher loss time it is assisted by other systems, such as the quench protection system and the cryogenic system. For BLMS, hardware and software have been evaluated in detail. The reliability input figures have been collected using historical data from the SPS, using temperature and radiation damage experimental data as well as using standard databases. All the data have been processed by reliability software (Isograph). The analysis ranges from the components data to the system configuration

  10. Beam losses monitor for superconducting accelerators

    International Nuclear Information System (INIS)

    Kurochkin, I.A.; Lapitskij, S.N.; Mokhov, N.V.; Seleznev, V.S.

    1991-01-01

    A special beam losses monitor (BLM) for SC accelerators -colliders as an integral part od SC magnet (quadrupole or/and corrector) design is proposed. The main BLM parameters calculated under the real UNK and SSC conditions are presented in comparison with the traditional BLM ones which is planned to be used at SSC now. 9 refs.; 4 figs.; 2 tabs

  11. Consideration of neutral beam prompt loss in the design of a tokamak helicon antenna

    International Nuclear Information System (INIS)

    Pace, D.C.; Van Zeeland, M.A.; Fishler, B.; Murphy, C.

    2016-01-01

    Highlights: • Neutral beam prompt losses place appreciable power on an in-vessel tokamak antenna. • Simulations predict prompt loss power and inform protective tile design. • Experiments confirm the validity of the prompt loss simulations. - Abstract: Neutral beam prompt losses (injected neutrals that ionize such that their first poloidal transit intersects with the wall) can put appreciable power on the outer wall of tokamaks, and this power may damage the wall or other internal components. These prompt losses are simulated including a protruding helicon antenna installation in the DIII-D tokamak and it is determined that 160 kW of power will impact the antenna during the injection of a particular neutral beam. Protective graphite tiles are designed in response to this modeling and the wall shape of the installed antenna is precisely measured to improve the accuracy of these calculations. Initial experiments confirm that the antenna component temperature increases according to the amount of neutral beam energy injected into the plasma. In this case, only injection of beams that are aimed counter to the plasma current produce an appreciable power load on the outer wall, suggesting that the effect is of little concern for tokamaks featuring only co-current neutral beam injection. Incorporating neutral beam prompt loss considerations into the design of this in-vessel component serves to ensure that adequate protection or cooling is provided.

  12. Consideration of neutral beam prompt loss in the design of a tokamak helicon antenna

    Energy Technology Data Exchange (ETDEWEB)

    Pace, D.C., E-mail: pacedc@fusion.gat.com; Van Zeeland, M.A.; Fishler, B.; Murphy, C.

    2016-11-15

    Highlights: • Neutral beam prompt losses place appreciable power on an in-vessel tokamak antenna. • Simulations predict prompt loss power and inform protective tile design. • Experiments confirm the validity of the prompt loss simulations. - Abstract: Neutral beam prompt losses (injected neutrals that ionize such that their first poloidal transit intersects with the wall) can put appreciable power on the outer wall of tokamaks, and this power may damage the wall or other internal components. These prompt losses are simulated including a protruding helicon antenna installation in the DIII-D tokamak and it is determined that 160 kW of power will impact the antenna during the injection of a particular neutral beam. Protective graphite tiles are designed in response to this modeling and the wall shape of the installed antenna is precisely measured to improve the accuracy of these calculations. Initial experiments confirm that the antenna component temperature increases according to the amount of neutral beam energy injected into the plasma. In this case, only injection of beams that are aimed counter to the plasma current produce an appreciable power load on the outer wall, suggesting that the effect is of little concern for tokamaks featuring only co-current neutral beam injection. Incorporating neutral beam prompt loss considerations into the design of this in-vessel component serves to ensure that adequate protection or cooling is provided.

  13. Beam losses due to abrupt crab cavity failures in the LHC

    International Nuclear Information System (INIS)

    Baer, T.; Barranco, J.; Calaga, R.; Tomas, R.; Wenninger, B.; Yee, B.; Zimmermann, F.

    2011-01-01

    A major concern for the implementation of crab crossing in a future High-Luminosity LHC (HL-LHC) is machine protection in an event of a fast crab-cavity failure. Certain types of abrupt crab-cavity amplitude and phase changes are simulated to characterize the effect of failures on the beam and the resulting particle-loss signatures. The time-dependent beam loss distributions around the ring and particle trajectories obtained from the simulations allow for a first assessment of the resulting beam impact on LHC collimators and on sensitive components around the ring. Results for the nominal LHC lattice is presented.

  14. SPS transverse beam scraping and LHC injection losses

    CERN Document Server

    Drosdal, L; Bartmann, W; Bracco, C; Cornelis, K; Goddard, B; Meddahi, M; Veyrunes, E

    2012-01-01

    Machine protection sets strict requirements for the quality of the injected beam, in particular in the transverse plane. Losses at aperture restrictions and protection elements have to be kept at a minimum. Particles in the beam tails are lost at the tight transfer line collimators and can trigger the LHC beam abort system. These particles have to be removed by scrapers in the vertical and horizontal plane in the SPS. Scraping has become vital for high intensity LHC operation. This paper shows the dependence of injection quality on the SPS scraping and discusses an improved scraper setting up strategy for better reproducibility with the current scraper system.

  15. Performance and perspectives of the diamond based Beam Condition Monitor for beam loss monitoring at CMS

    CERN Document Server

    AUTHOR|(CDS)2080862

    2015-01-01

    At CMS, a beam loss monitoring system is operated to protect the silicon detectors from high particle rates, arising from intense beam loss events. As detectors, poly-crystalline CVD diamond sensors are placed around the beam pipe at several locations inside CMS. In case of extremely high detector currents, the LHC beams are automatically extracted from the LHC rings.Diamond is the detector material of choice due to its radiation hardness. Predictions of the detector lifetime were made based on FLUKA monte-carlo simulations and irradiation test results from the RD42 collaboration, which attested no significant radiation damage over several years.During the LHC operational Run1 (2010 â?? 2013), the detector efficiencies were monitored. A signal decrease of about 50 times stronger than expectations was observed in the in-situ radiation environment. Electric field deformations due to charge carriers, trapped in radiation induced lattice defects, are responsible for this signal decrease. This so-called polarizat...

  16. Shielding NSLS-II light source: Importance of geometry for calculating radiation levels from beam losses [Shielding Synchrotron Light Sources: Importance of geometry for calculating radiation levels from beam losses

    International Nuclear Information System (INIS)

    Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.; Wahl, W.

    2016-01-01

    Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produces significantly higher neutron component dose to the experimental floor than a lower energy beam injection and ramped operations. Minimizing this dose will require adequate knowledge of where the miss-steered beam can occur and sufficient EM shielding close to the loss point, in order to attenuate the energy of the particles in the EM shower below the neutron production threshold (<10 MeV), which will spread the incident energy on the bulk shield walls and thereby the dose penetrating the shield walls. Designing supplemental shielding near the loss point using the analytic shielding model is shown to be inadequate because of its lack of geometry specification for the EM shower process. To predict the dose rates outside the tunnel requires detailed description of the geometry and materials that the beam losses will encounter inside the tunnel. Modern radiation shielding Monte-Carlo codes, like FLUKA, can handle this geometric description of the radiation transport process in sufficient detail, allowing accurate predictions of the dose rates expected and the ability to show weaknesses in the design before a high radiation incident occurs. The effort required to adequately define the accelerator geometry for these codes has been greatly reduced with the implementation of the graphical interface of FLAIR to FLUKA. This made the effective shielding process for NSLS-II quite accurate and reliable. Lastly, the principles used to provide

  17. Heat loss mechanisms in a measurement of specific heat capacity of graphite

    International Nuclear Information System (INIS)

    Shipley, D.R.; Duane, S.

    1996-01-01

    Absorbed dose to graphite in electron beams with nominal energies in the range 3-20 MeV is determined by measuring the temperature rise in the core of a primary standard graphite calorimeter. This temperature rise is related to absorbed dose by a separate measurement of the specific heat capacity of the graphite core. There is, however, a small but significant amount of heat loss from the sample in the determination of specific heat capacity and corrections for these losses are required. This report discusses the sources of heat loss in the measurements and, where possible, provides estimates for the magnitude of these losses. For those mechanisms which are significant, a more realistic model of the measurement system is analysed and corrections for the losses are provided. (UK)

  18. Experimental investigation of the trapping and energy loss mechanisms of intense relativistic electron rings in hydrogen gas and plasma

    International Nuclear Information System (INIS)

    Smith, A.C. Jr.

    1977-01-01

    The results of an experimental study on the trapping and energy loss mechanisms of intense, relativistic electron rings confined in Astron-like magnetic field geometries are presented. The work is subdivided into four sections: gas trapping; average ring electron energetics; plasma trapping, and hollow-beam cusp-injection into gas and plasma. The mechanisms by which the injected beam coalesces into a current ring in the existing Cornell RECE-Berta facility are considered. To investigate the nature of ring electron energy loss mechanisms following completion of the trapping process, a diagnostic was developed utilizing multi-foil X-ray absorption spectroscopy to analyze the Bremsstrahlung generated by the electrons as they impinge upon a thin tungsten wire target suspended in the circulating current. Finally, a set of preliminary experimental results is presented in which an annular electron beam was passed through a coaxial, non-adiabatic magnetic cusp located at one end of a magnetic mirror well

  19. Simulations and measurements of beam loss patterns at the CERN Large Hadron Collider

    CERN Document Server

    Bruce, R.; Boccone, V.; Bracco, C.; Brugger, M.; Cauchi, M.; Cerutti, F.; Deboy, D.; Ferrari, A.; Lari, L.; Marsili, A.; Mereghetti, A.; Mirarchi, D.; Quaranta, E.; Redaelli, S.; Robert-Demolaize, G.; Rossi, A.; Salvachua, B.; Skordis, E.; Tambasco, C.; Valentino, G.; Weiler, T.; Vlachoudis, V.; Wollmann, D.

    2014-08-21

    The CERN Large Hadron Collider (LHC) is designed to collide proton beams of unprecedented energy, in order to extend the frontiers of high-energy particle physics. During the first very successful running period in 2010--2013, the LHC was routinely storing protons at 3.5--4 TeV with a total beam energy of up to 146 MJ, and even higher stored energies are foreseen in the future. This puts extraordinary demands on the control of beam losses. An un-controlled loss of even a tiny fraction of the beam could cause a superconducting magnet to undergo a transition into a normal-conducting state, or in the worst case cause material damage. Hence a multi-stage collimation system has been installed in order to safely intercept high-amplitude beam protons before they are lost elsewhere. To guarantee adequate protection from the collimators, a detailed theoretical understanding is needed. This article presents results of numerical simulations of the distribution of beam losses around the LHC that have leaked out of the co...

  20. Beam loss due to the aperture limitation resulting from intrabeam scattering

    International Nuclear Information System (INIS)

    Lee, S.Y.

    1984-01-01

    Diffusion equation is used to evaluate the beam loss in the presence of aperture limitation resulting from the intrabeam scattering. We discuss the effect of different boundary conditions. Satisfactory beam intensity can be maintained within the proposed RHIC operation time

  1. The LCLS Undulator Beam Loss Monitor Readout System

    Energy Technology Data Exchange (ETDEWEB)

    Dusatko, John; Browne, M.; Fisher, A.S.; Kotturi, D.; Norum, S.; Olsen, J.; /SLAC

    2012-07-23

    The LCLS Undulator Beam Loss Monitor System is required to detect any loss radiation seen by the FEL undulators. The undulator segments consist of permanent magnets which are very sensitive to radiation damage. The operational goal is to keep demagnetization below 0.01% over the life of the LCLS. The BLM system is designed to help achieve this goal by detecting any loss radiation and indicating a fault condition if the radiation level exceeds a certain threshold. Upon reception of this fault signal, the LCLS Machine Protection System takes appropriate action by either halting or rate limiting the beam. The BLM detector consists of a PMT coupled to a Cherenkov radiator located near the upstream end of each undulator segment. There are 33 BLMs in the system, one per segment. The detectors are read out by a dedicated system that is integrated directly into the LCLS MPS. The BLM readout system provides monitoring of radiation levels, computation of integrated doses, detection of radiation excursions beyond set thresholds, fault reporting and control of BLM system functions. This paper describes the design, construction and operational performance of the BLM readout system.

  2. RF Trip and Beam Loss Diagnostics in LEP using GPS timing

    CERN Document Server

    Arnaudon, L; Beetham, G; Ciapala, Edmond; Juillard, J C; Olsen, R; CERN. Geneva. SPS and LEP Division

    2000-01-01

    A fast diagnostics system has been installed in LEP to allow precise time-stamping of RF unit trips. The system also monitors the fast decay of current when a beam loss occurs. From the information gathered it is now possible to determine which RF units have provoked a beam loss at high energy and which have tripped as a result. The system uses GPS equipment installed at all of the even points of LEP together with fast local DSP acquisition and event recording units in each RF sector. An overall control application driven by the LEPExec arms the system at the start of each fill, calculates and displays RF and trip beam loss events in sequence, then stores the results in a database. The system installation was completed in time for the LEP 2000 startup and initial problems were quickly resolved. Throughout the year it has proved invaluable for high energy running. The experience gained will also be very useful for similar diagnostics applications in LHC.

  3. Studies of Limits on Uncontrolled Heavy Ion Beam Losses for Allowing Hands-On Maintenance. Final report

    International Nuclear Information System (INIS)

    Ronningen, Reginald M.; Remec, Igor

    2010-01-01

    Dose rates from accelerator components activated by 1 W/m beam losses are obtained semiempirically for a 1 GeV proton beam and by use of Monte Carlo transport codes for the proton beam and for 777 MeV/u 3He, 500 MeV/u 48Ca, 86Kr, 136Xe, and 400 MeV/u 238U ions. The dose rate obtained by the semi-empirical method, 0.99 mSv/h (99 mrem/h) at 30 cm, 4 h after 100 d irradiation by a 1-GeV proton beam, is consistent with studies at several accelerator facilities and with adopted hands-on maintenance dose rate limits. Monte Carlo simulations verify this result for protons and extend studies to heavy ion beam losses in drift-tube linac and superconducting linac accelerating structures. The studies indicate that the 1 W/m limit imposed on uncontrolled beam losses for high-energy proton beams might be relaxed for heavy ion beams. These studies further suggest that using the ratio of neutrons produced by a heavy ion beam to neutrons produced by a proton beam along with the dose rate from the proton beam (for thin-target scenarios) should allow an estimate of the dose rates expected from heavy ion beam losses.

  4. Simulations and measurements of beam loss patterns at the CERN Large Hadron Collider

    Science.gov (United States)

    Bruce, R.; Assmann, R. W.; Boccone, V.; Bracco, C.; Brugger, M.; Cauchi, M.; Cerutti, F.; Deboy, D.; Ferrari, A.; Lari, L.; Marsili, A.; Mereghetti, A.; Mirarchi, D.; Quaranta, E.; Redaelli, S.; Robert-Demolaize, G.; Rossi, A.; Salvachua, B.; Skordis, E.; Tambasco, C.; Valentino, G.; Weiler, T.; Vlachoudis, V.; Wollmann, D.

    2014-08-01

    The CERN Large Hadron Collider (LHC) is designed to collide proton beams of unprecedented energy, in order to extend the frontiers of high-energy particle physics. During the first very successful running period in 2010-2013, the LHC was routinely storing protons at 3.5-4 TeV with a total beam energy of up to 146 MJ, and even higher stored energies are foreseen in the future. This puts extraordinary demands on the control of beam losses. An uncontrolled loss of even a tiny fraction of the beam could cause a superconducting magnet to undergo a transition into a normal-conducting state, or in the worst case cause material damage. Hence a multistage collimation system has been installed in order to safely intercept high-amplitude beam protons before they are lost elsewhere. To guarantee adequate protection from the collimators, a detailed theoretical understanding is needed. This article presents results of numerical simulations of the distribution of beam losses around the LHC that have leaked out of the collimation system. The studies include tracking of protons through the fields of more than 5000 magnets in the 27 km LHC ring over hundreds of revolutions, and Monte Carlo simulations of particle-matter interactions both in collimators and machine elements being hit by escaping particles. The simulation results agree typically within a factor 2 with measurements of beam loss distributions from the previous LHC run. Considering the complex simulation, which must account for a very large number of unknown imperfections, and in view of the total losses around the ring spanning over 7 orders of magnitude, we consider this an excellent agreement. Our results give confidence in the simulation tools, which are used also for the design of future accelerators.

  5. Simulations and measurements of beam loss patterns at the CERN Large Hadron Collider

    Directory of Open Access Journals (Sweden)

    R. Bruce

    2014-08-01

    Full Text Available The CERN Large Hadron Collider (LHC is designed to collide proton beams of unprecedented energy, in order to extend the frontiers of high-energy particle physics. During the first very successful running period in 2010–2013, the LHC was routinely storing protons at 3.5–4 TeV with a total beam energy of up to 146 MJ, and even higher stored energies are foreseen in the future. This puts extraordinary demands on the control of beam losses. An uncontrolled loss of even a tiny fraction of the beam could cause a superconducting magnet to undergo a transition into a normal-conducting state, or in the worst case cause material damage. Hence a multistage collimation system has been installed in order to safely intercept high-amplitude beam protons before they are lost elsewhere. To guarantee adequate protection from the collimators, a detailed theoretical understanding is needed. This article presents results of numerical simulations of the distribution of beam losses around the LHC that have leaked out of the collimation system. The studies include tracking of protons through the fields of more than 5000 magnets in the 27 km LHC ring over hundreds of revolutions, and Monte Carlo simulations of particle-matter interactions both in collimators and machine elements being hit by escaping particles. The simulation results agree typically within a factor 2 with measurements of beam loss distributions from the previous LHC run. Considering the complex simulation, which must account for a very large number of unknown imperfections, and in view of the total losses around the ring spanning over 7 orders of magnitude, we consider this an excellent agreement. Our results give confidence in the simulation tools, which are used also for the design of future accelerators.

  6. Long radiation detector system for beam loss monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Balsamo, J.; Fewell, N.M.; Klein, J.D.; Witkover, R.L.

    1977-01-01

    The Long Radiation Monitor (LRM) system installed at the 200 MeV linac at Brookhaven National Laboratory is described. This system allows observation of both the spatial and temporal character of the losses in the linac and its transport lines. An array of large diameter gas filled coaxial cables are used as extended ion chambers to detect the losses. The output signals are available as a histogram, video waveforms, and numerical data via the computer. A fast beam interrupt is also provided. The detector characteristics and details of the processing electronics are presented. Results of studies of longitudinal, steering and focusing losses are described.

  7. Long radiation detector system for beam loss monitoring

    International Nuclear Information System (INIS)

    Balsamo, J.; Fewell, N.M.; Klein, J.D.; Witkover, R.L.

    1977-01-01

    The Long Radiation Monitor (LRM) system installed at the 200 MeV linac at Brookhaven National Laboratory is described. This system allows observation of both the spatial and temporal character of the losses in the linac and its transport lines. An array of large diameter gas filled coaxial cables are used as extended ion chambers to detect the losses. The output signals are available as a histogram, video waveforms, and numerical data via the computer. A fast beam interrupt is also provided. The detector characteristics and details of the processing electronics are presented. Results of studies of longitudinal, steering and focusing losses are described

  8. Beam Cooling with ionisation losses

    CERN Document Server

    Rubbia, Carlo; Kadi, Y; Vlachoudis, V

    2006-01-01

    A novel type of particle "cooling", called Ionization Cooling, is applicable to slow (v of the order of 0.1c) ions stored in a small ring. The many traversals through a thin foil enhance the nuclear reaction probability, in a steady configuration in which ionisation losses are recovered at each turn by a RF-cavity. For a uniform target "foil" the longitudinal momentum spread diverges exponentially since faster (slower) particles ionise less (more) than the average. In order to "cool" also longitudinally, a chromaticity has to be introduced with a wedge shaped "foil". Multiple scattering and straggling are then "cooled" in all three dimensions, with a method similar to the one of synchrotron cooling, but valid for low energy ions. Particles then stably circulate in the beam indefinitely, until they undergo for instance nuclear processes in the thin target foil. This new method is under consideration for the nuclear production of a few MeV/A ion beams. Simple reactions, for instance Li 7 + D Li 8 + p, are more ...

  9. Beam loss caused by edge focusing of injection bump magnets and its mitigation in the 3-GeV rapid cycling synchrotron of the Japan Proton Accelerator Research Complex

    Directory of Open Access Journals (Sweden)

    H. Hotchi

    2016-01-01

    Full Text Available In the 3-GeV rapid cycling synchrotron of the Japan Proton Accelerator Research Complex, transverse injection painting is utilized not only to suppress space-charge induced beam loss in the low energy region but also to mitigate foil scattering beam loss during charge-exchange injection. The space-charge induced beam loss is well minimized by the combination of modest transverse painting and full longitudinal painting. But, for sufficiently mitigating the foil scattering part of beam loss, the transverse painting area has to be further expanded. However, such a wide-ranging transverse painting had not been realized until recently due to beta function beating caused by edge focusing of pulsed injection bump magnets during injection. This beta function beating additionally excites random betatron resonances through a distortion of the lattice superperiodicity, and its resultant deterioration of the betatron motion stability causes significant extra beam loss when expanding the transverse painting area. To solve this issue, we newly installed pulse-type quadrupole correctors to compensate the beta function beating. This paper presents recent experimental results on this correction scheme for suppressing the extra beam loss, while discussing the beam loss and its mitigation mechanisms with the corresponding numerical simulations.

  10. Measured and simulated heavy-ion beam loss patterns at the CERN Large Hadron Collider

    Science.gov (United States)

    Hermes, P. D.; Bruce, R.; Jowett, J. M.; Redaelli, S.; Salvachua Ferrando, B.; Valentino, G.; Wollmann, D.

    2016-05-01

    The Large Hadron Collider (LHC) at CERN pushes forward to new regimes in terms of beam energy and intensity. In view of the combination of very energetic and intense beams together with sensitive machine components, in particular the superconducting magnets, the LHC is equipped with a collimation system to provide protection and intercept uncontrolled beam losses. Beam losses could cause a superconducting magnet to quench, or in the worst case, damage the hardware. The collimation system, which is optimized to provide a good protection with proton beams, has shown a cleaning efficiency with heavy-ion beams which is worse by up to two orders of magnitude. The reason for this reduced cleaning efficiency is the fragmentation of heavy-ion beams into isotopes with a different mass to charge ratios because of the interaction with the collimator material. In order to ensure sufficient collimation performance in future ion runs, a detailed theoretical understanding of ion collimation is needed. The simulation of heavy-ion collimation must include processes in which 82 + 208Pb ions fragment into dozens of new isotopes. The ions and their fragments must be tracked inside the magnetic lattice of the LHC to determine their loss positions. This paper gives an overview of physical processes important for the description of heavy-ion loss patterns. Loss maps simulated by means of the two tools ICOSIM [1,2] and the newly developed STIER (SixTrack with Ion-Equivalent Rigidities) are compared with experimental data measured during LHC operation. The comparison shows that the tool STIER is in better agreement.

  11. Prestress Loss and Bending Capacity of Pre-cracked 40 Year-Old PC Beams Exposed to Marine Environment

    Directory of Open Access Journals (Sweden)

    Dasar Amry

    2016-01-01

    Full Text Available Six prestressed concrete beams (PC beam were used for evaluation, consist of four post-tension beams (PC-O and two pre-tension beams (PC-R. In order to investigate the effect of crack on prestress loss and bending capacity after long-term exposed, prestressed concrete beams were pre-crack and then exposed to marine environment. Experimental work was carried out to evaluate PC beams performance after long-term exposed. In addition, visual observations and load bearing capacity test was carried out. Furthermore, evaluation of prestress loss conducted using three-point loading bending test and the remaining tendon forces in the beam were determined using Crack Re-opening Method. The experimental results revealed that prestress loss was increased due to corrosion of strand/wire which affected by the pre-crack on the prestressed beams. Approximately a prestress loss around 26% and 30% was recorded for post-tension and pre-tension beams respectively.

  12. Measurement of Beam Loss at the Australian Synchrotron

    CERN Document Server

    Holzer, EB; Kastriotou, M; Boland, MJ; Jackson, PD; Rasool, RP; Schmidt, J; Welsch, CP

    2014-01-01

    The unprecedented requirements that new machines are setting on their diagnostic systems is leading to the development of new generation of devices with large dynamic range, sensitivity and time resolution. Beam loss detection is particularly challenging due to the large extension of new facilities that need to be covered with localized detector. Candidates to mitigate this problem consist of systems in which the sensitive part of the radiation detectors can be extended over long distance of beam lines. In this document we study the feasibility of a BLM system based on optical fiber as an active detector for an electron storage ring. The Australian Synchrotron (AS) comprises a 216m ring that stores electrons up to 3GeV. The Accelerator has recently claimed the world record ultra low transverse emittance (below pm rad) and its surroundings are rich in synchrotron radiation. Therefore, the AS provides beam conditions very similar to those expected in the CLIC/ILC damping rings. A qualitative benchmark of beam l...

  13. Angular scattering in electron capture and loss D- beam formation processes

    International Nuclear Information System (INIS)

    Coggiola, M.J.; Hodges, R.V.; Huestis, D.L.; Peterson, J.R.

    1980-01-01

    The development of high energy (> 150 keV) neutral beams for heating and fueling magnetic fusion devices depends on the ability to produce well-collimated negative ion beams. The double capture charge-exchange technique is a known, scalable method. In order to maximize the overall efficiency of the process and to achieve the desired beam characteristics, it is necessary to examine the optical qualities of the beams as well as the total efficiency of beam production. A combined modeling and experimental study of the angular scattering effects in negative ion formation and loss processes has therefore been undertaken

  14. Cooling equilibrium and beam loss with internal targets in high energy storage rings

    International Nuclear Information System (INIS)

    Boine-Frankenheim, O.; Hasse, R.; Hinterberger, F.; Lehrach, A.; Zenkevich, P.

    2006-01-01

    The beam cooling equilibrium with internal target interaction is analyzed for parameters relevant to the proposed High Energy Storage Ring (HESR). For the proposed experiments with anti-protons high luminosities together with low momentum spreads are required. Rate equations are used to predict the rms equilibrium beam parameters. The cooling and IBS rate coefficients are obtained from simplified models. Energy loss straggling in the target and the associated beam loss are analyzed analytically assuming a thin target. A longitudinal kinetic simulation code is used to study the evolution of the momentum distribution in coasting and bunched beams. Analytic expressions for the target induced momentum tail are found in good agreement with the simulation results

  15. Simulation of the ATLAS SCT barrel module response to LHC beam loss scenarios

    CERN Document Server

    Rose, P; The ATLAS collaboration; Fadeyev, V; Spencer, E; Wilder, M; Domingo, M

    2014-01-01

    In the event of beam loss at the LHC, ATLAS Inner Detector components nearest the beam line may be subjected to unusually large amounts of radiation. Understanding their behavior in such an event is important in determining whether they would still function properly. We built a SPICE model of the silicon strip module electrical system to determine the behavior of its elements during a realistic beam loss scenario. We found that the power supply and bias filter characteristics strongly affect the module response in such scenarios. In particular, the following self-limiting phenomena were observed: there is a finite amount of charge initially available on the bias filter capacitors for collection by the strips; the power supply current limit reduces the rate at which the bias filter capacitors' charge can be replenished; the reduced bias voltage leads to a smaller depletion depth in the sensors which results in less collected charge. These effects provide a larger measure of safety during beam loss events than ...

  16. Rheological and mechanical properties of polyamide 6 modified by electron-beam initiated mediation process

    International Nuclear Information System (INIS)

    Shin, Boo Young; Kim, Jae Hong

    2015-01-01

    Polyamide (PA6) has been modified by electron-beam initiated mediator process to improve drawbacks of PA6. Glycidyl methacrylate (GMA) was chosen as a reactive mediator for modification process of PA6. The mixture of the PA6 and GMA was prepared by using a twin-screw extruder, and then the mixture was exposed to electron-beam irradiation at various doses at room temperature. The modified PA6 were characterized by observing rheological and mechanical properties and compared virgin PA6. Thermal properties, water absorption, and gel fraction were also investigated. Tight gel was not found even when PA6 was irradiated at 200 kGy. Complex viscosity and storage modulus of PA6 were remarkably increased by electron-beam irradiation with medium of GMA. Maximum increase in complex viscosity was 75 times higher than virgin PA6 at 0.1 rad/s when it was irradiated at 200 kGy with the GMA. Mechanical properties were also improved without scarifying of processability. The reaction mechanisms for the mediation process with the reactive mediator of GMA were estimated to elucidate the cause of significantly enhanced rheological and mechanical properties without loss of thermoplasticity. - Highlights: • PA6 was modified by the electron-beam initiated mediation process. • Maximum increase in complex viscosity of modified PA6 was 75 times higher than virgin PA6 at 0.1 rad/s. • Mechanical properties were improved without scarifying of processability. • The GMA as a mediator played a key role in the electron-beam initiated mediation process

  17. Energy Deposition in Adjacent LHC Superconducting Magnets from Beam Loss at LHC Transfer Line Collimators

    CERN Document Server

    Beavan, S; Kain, V

    2006-01-01

    Injection intensities for the LHC are over an order of magnitude above the damage threshold. The collimation system in the two transfer lines is designed to dilute the beam sufficiently to avoid damage in case of accidental beam loss or mis-steered beam. To maximise the protection for the LHC most of the collimators are located in the last 300 m upstream of the injection point where the transfer lines approach the LHC machine. To study the issue of possible quenches following beam loss at the collimators part of the collimation section in one of the lines, TI 8, together with the adjacent part of the LHC has been modeled in FLUKA. The simulated energy deposition in the LHC for worst-case accidental losses and as well as for losses expected during a normal filling is presented.

  18. Evolution of radiation losses and importance of charge exchange between plasma impurities and injection beam neutrals in the W VII-A stellarator

    International Nuclear Information System (INIS)

    Smeulders, P.

    1981-01-01

    In certain discharges during Neutral Injection (N.I.) (84 0 CO-injection) in the 1 = 2, m = 5 WENDELSTEIN VII-A Stellarator impurity accumulation in the plasma center seems to occur as seen by bolometric, spectroscopic and ultra soft X-ray (USX) measurement. The time evolution of the radiation losses is shown. Three possible sources of the impurities which are responsible for the high central radiation losses are: - Beam injected impurities. - Plasma wall interaction. - Molybdenum protection plates. Possible mechanisms that can be responsible for the central impurity accumulations are: - An inward flow of the plasma or beam impurities. - An increased peaking of the depostion of the beam impurities. Various factors influencing the behaviour of the central radiation are mentioned. (orig./AH)

  19. Anomalous Beam-Ion Loss in TFTR Reversed Magnetic Shear Plasmas

    International Nuclear Information System (INIS)

    Ruskov, E.; Bell, M.; Budny, R.V.; McCune, D.C.; Medley, S.S.; Redi, M.H.; Scott, S.; Synakowski, E.J.; Goeler, S. von; White, R.B.; Zweben, S.J.

    1999-01-01

    Anomalous beam-ion loss has been observed in an experiment with short tritium beam pulses injected into deuterium-beam-heated Tokamak Fusion Test Reactor plasmas (P NBI =15 MW) with reversed magnetic shear (RS). Comparisons of the measured total 14thinspthinspMeV neutron emission, the neutron flux along eight radial locations, and the perpendicular plasma stored energy with predictions from an extensive set of TRANSP simulations suggest that about 40% beam power is lost on a time scale much shorter than the tritium beam pulse length Δt=70 ms. In contrast with recent results [K. Tobita et al., Nucl.Fusion 37, 1583 (1997)] from RS experiments at JT-60U, we were not able to show conclusively that magnetic field ripple is responsible for this anomaly. copyright 1999 The American Physical Society

  20. The upgraded data acquisition system for beam loss monitoring at the Fermilab Tevatron and Main Injector

    International Nuclear Information System (INIS)

    Baumbaugh, A.; Briegel, C.; Brown, B.C.; Capista, D.; Drennan, C.; Fellenz, B.; Knickerbocker, K.; Lewis, J.D.; Marchionni, A.; Needles, C.; Olson, M.

    2011-01-01

    A VME-based data acquisition system for beam-loss monitors has been developed and is in use in the Tevatron and Main Injector accelerators at the Fermilab complex. The need for enhanced beam-loss protection when the Tevatron is operating in collider-mode was the main driving force for the new design. Prior to the implementation of the present system, the beam-loss monitor system was disabled during collider operation and protection of the Tevatron magnets relied on the quench protection system. The new Beam-Loss Monitor system allows appropriate abort logic and thresholds to be set over the full set of collider operating conditions. The system also records a history of beam-loss data prior to a beam-abort event for post-abort analysis. Installation of the Main Injector system occurred in the fall of 2006 and the Tevatron system in the summer of 2007. Both systems were fully operation by the summer of 2008. In this paper we report on the overall system design, provide a description of its normal operation, and show a number of examples of its use in both the Main Injector and Tevatron.

  1. Beam energy loss to parasitic modes in SPEAR II

    International Nuclear Information System (INIS)

    Allen, M.A.; Paterson, J.M.; Rees, J.R.; Wilson, P.B.

    1975-01-01

    The energy loss due to the excitation of parasitic modes in the SPEAR II rf cavities and vacuum chamber components was measured by observing the shift in synchronous phase angle as a function of circulating beam current and accelerating cavity voltage. The resulting parasitic mode loss resistance is 5 M OMEGA at a bunch length of 6.5 cm. The loss resistance varies with bunch length sigma/sub z/ approximately as exp(-0.3 sigma/sub z/). If the measured result is compared with reasonable theoretical predictions, it may be inferred that the major portion of the parasitic loss takes place in ring vacuum components rather than in the rf cavities. (auth)

  2. Quantum mechanics of charged particle beam optics

    CERN Document Server

    Khan, Sameen Ahmed

    2018-01-01

    Theory of charged particle beam optics is basic to the design and working of charged particle beam devices from electron microscopes to accelerator machines. Traditionally, the optical elements of the devices are designed and operated based on classical mechanics and classical electromagnetism, and only certain specific quantum mechanical aspects are dealt with separately using quantum theory. This book provides a systematic approach to quantum theory of charged particle beam optics, particularly in the high energy cases such as accelerators or high energy electron microscopy.

  3. Beam Loss Monitors at LHC

    CERN Document Server

    Dehning, B.

    2016-01-01

    One of the main functions of the LHC beam loss measurement system is the protection of equipment against damage caused by impacting particles creating secondary showers and their energy dissipation in the matter. Reliability requirements are scaled according to the acceptable consequences and the frequency of particle impact events on equipment. Increasing reliability often leads to more complex systems. The downside of complexity is a reduction of availability; therefore, an optimum has to be found for these conflicting requirements. A detailed review of selected concepts and solutions for the LHC system will be given to show approaches used in various parts of the system from the sensors, signal processing, and software implementations to the requirements for operation and documentation.

  4. Design and performance of the beam loss monitor system for the Advanced Photon Source

    International Nuclear Information System (INIS)

    Patterson, D.

    1994-01-01

    The design of the beam loss monitor system for the Argonne National Laboratory Advanced Photon Source is based on using a number of air dielectric coaxial cables as long ionization chambers. The coaxial cables are multiplexed into a high sensitivity DC current-to-voltage converter, which provides an output proportional to the average loss rate over the length of the multiplexed cable. Losses of sufficient amplitude generate measurable voltage pulses on the coaxial cable at a location near the loss point. Multiplexed pulse timing circuits determine the location of the losses by measuring the time at which these voltage pulses arrive at the beginning of the coaxial cable. The loss monitor system has been tested on the SPEAR accelerator at SSRL and was demonstrated to be as sensitive as the DCCT. Preliminary performance data from the APS injector show that the sensitivities of the current-to-voltage, converter circuit are about ten picoamperes of loss monitor signal per picocoulomb per second beam loss rate. The corresponding pulse sensitivity is about 28 μV pulse amplitude in the coaxial cable per picocoulomb of loss. Both these sensitivities are at 300-MeV beam energies. The loss monitor has proven useful in initial commissioning of the injector. Further data will be available as accelerator construction and commissioning continue

  5. Shielding NSLS-II light source: Importance of geometry for calculating radiation levels from beam losses

    Science.gov (United States)

    Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.; Wahl, W.

    2016-11-01

    Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produces significantly higher neutron component dose to the experimental floor than a lower energy beam injection and ramped operations. Minimizing this dose will require adequate knowledge of where the miss-steered beam can occur and sufficient EM shielding close to the loss point, in order to attenuate the energy of the particles in the EM shower below the neutron production threshold (weaknesses in the design before a high radiation incident occurs. The effort required to adequately define the accelerator geometry for these codes has been greatly reduced with the implementation of the graphical interface of FLAIR to FLUKA. This made the effective shielding process for NSLS-II quite accurate and reliable. The principles used to provide supplemental shielding to the NSLS-II accelerators and the lessons learned from this process are presented.

  6. Comparative test results of various beam loss monitors in preparation for LHC

    OpenAIRE

    Bosser, Jacques; Ferioli, G

    1999-01-01

    Beam loss detectors will play an important role in the protection of the superconducting LHC magnets. Different types of detectors have been tested in the SPS ring and secondary beam lines with a view to their possible use for this application. This paper describes the measurements made with: microcalorimeters at cryogenic temperatures, PIN diodes, ionisation chambers, scintillators, and ACEMs. Measurements made using proton beams showing their relative sensitivities, linearities in counting ...

  7. Capture from pair production as a beam loss mechanism for heavy ions at RHIC

    International Nuclear Information System (INIS)

    Feinberg, B.; Belkacem, A.; Claytor, N.; Dinneen, T.; Gould, H.

    1997-05-01

    Electron capture from electron-positron pair production is predicted to be a major source of beam loss for the heaviest ions at RHIC. Achieving the highest luminosity thus requires an understanding of the capture process. The authors report measurements of this process at Brookhaven National Laboratory's AGS using 10.8 GeV/nucleon Au 79+ projectiles on Au targets. Capture from pair production is a process in which the very high electromagnetic field involved in the collision of two relativistic heavy ions results in the production of an electron-positron pair with the capture of the electron by one of the ions. There are many theoretical papers published on capture from pair production with discrepancies between predicted cross sections. The experimental results are compared to theory and to previous experiments at 1 GeV/nucleon. The implications of extrapolations to RHIC energies are presented

  8. Secondary Electron Emission Beam Loss Monitor for LHC

    CERN Document Server

    Dehning, B; Holzer, E B; Kramer, Daniel

    2008-01-01

    Beam Loss Monitoring (BLM) system is a vital part of the active protection of the LHC accelerators' elements. It should provide the number of particles lost from the primary hadron beam by measuring the radiation field induced by their interaction with matter surrounding the beam pipe. The LHC BLM system will use ionization chambers as standard detectors but in the areas where very high dose rates are expected, the Secondary Emission Monitor (SEM) chambers will be employed because of their high linearity, low sensitivity and fast response. The SEM needs a high vacuum for proper operation and has to be functional for up to 20 years, therefore all the components were designed according to the UHV requirements and a getter pump was included. The SEM electrodes are made of Ti because of its Secondary Emission Yield (SEY) stability. The sensitivity of the SEM was modeled in Geant4 via the Photo-Absorption Ionization module together with custom parameterization of the very low energy secondary electron production. ...

  9. Loss of balance during balance beam walking elicits a multifocal theta band electrocortical response.

    Science.gov (United States)

    Sipp, Amy R; Gwin, Joseph T; Makeig, Scott; Ferris, Daniel P

    2013-11-01

    Determining the neural correlates of loss of balance during walking could lead to improved clinical assessment and treatment for individuals predisposed to falls. We used high-density electroencephalography (EEG) combined with independent component analysis (ICA) to study loss of balance during human walking. We examined 26 healthy young subjects performing heel-to-toe walking on a treadmill-mounted balance beam as well as walking on the treadmill belt (both at 0.22 m/s). ICA identified clusters of electrocortical EEG sources located in or near anterior cingulate, anterior parietal, superior dorsolateral-prefrontal, and medial sensorimotor cortex that exhibited significantly larger mean spectral power in the theta band (4-7 Hz) during walking on the balance beam compared with treadmill walking. Left and right sensorimotor cortex clusters produced significantly less power in the beta band (12-30 Hz) during walking on the balance beam compared with treadmill walking. For each source cluster, we also computed a normalized mean time/frequency spectrogram time locked to the gait cycle during loss of balance (i.e., when subjects stepped off the balance beam). All clusters except the medial sensorimotor cluster exhibited a transient increase in theta band power during loss of balance. Cluster spectrograms demonstrated that the first electrocortical indication of impending loss of balance occurred in the left sensorimotor cortex at the transition from single support to double support prior to stepping off the beam. These findings provide new insight into the neural correlates of walking balance control and could aid future studies on elderly individuals and others with balance impairments.

  10. Beam loss reduction by magnetic shielding using beam pipes and bellows of soft magnetic materials

    Science.gov (United States)

    Kamiya, J.; Ogiwara, N.; Hotchi, H.; Hayashi, N.; Kinsho, M.

    2014-11-01

    One of the main sources of beam loss in high power accelerators is unwanted stray magnetic fields from magnets near the beam line, which can distort the beam orbit. The most effective way to shield such magnetic fields is to perfectly surround the beam region without any gaps with a soft magnetic high permeability material. This leads to the manufacture of vacuum chambers (beam pipes and bellows) with soft magnetic materials. A Ni-Fe alloy (permalloy) was selected for the material of the pipe parts and outer bellows parts, while a ferritic stainless steel was selected for the flanges. An austenitic stainless steel, which is non-magnetic material, was used for the inner bellows for vacuum tightness. To achieve good magnetic shielding and vacuum performances, a heat treatment under high vacuum was applied during the manufacturing process of the vacuum chambers. Using this heat treatment, the ratio of the integrated magnetic flux density along the beam orbit between the inside and outside of the beam pipe and bellows became small enough to suppress beam orbit distortion. The outgassing rate of the materials with this heat treatment was reduced by one order magnitude compared to that without heat treatment. By installing the beam pipes and bellows of soft magnetic materials as part of the Japan Proton Accelerator Research Complex 3 GeV rapid cycling synchrotron beam line, the closed orbit distortion (COD) was reduced by more than 80%. In addition, a 95.5% beam survival ratio was achieved by this COD improvement.

  11. 2014 Joint International Accelerator School: Beam Loss and Accelerator Protection

    CERN Document Server

    JAS - Joint US-CERN-Japan-Russia Accelerator School

    2016-01-01

    Many particle accelerators operate with very high beam power and very high energy stored in particle beams as well as in magnet systems. In the future, the beam power in high intensity accelerators will further increase. The protection of the accelerator equipment from the consequences of uncontrolled release of the energy is essential. This was the motivation for organizing a first school on beam losses and accelerator protection (in general referred to as machine protection). During the school the methods and technologies to identify, mitigate, monitor and manage the technical risks associated with the operation of accelerators with high-power beams or subsystems with large stored energy were presented. At the completion of the school the participants should have been able to understand the physical phenomena that can damage machine subsystems or interrupt operations and to analyze an accelerator facility to produce a register of technical risks and the corresponding risk mitigation and management strategie...

  12. Simulation of the ATLAS SCT Barrel Module Response to LHC Beam Loss Scenarios

    CERN Document Server

    Rose, P; The ATLAS collaboration; Fadeyev, V; Spencer, E; Wilder, M; Domingo, M

    2013-01-01

    In the event of beam loss at the LHC, ATLAS Inner Detector components nearest the beamline may be subjected to unusually large amounts of radiation. Understanding their behavior in such an event is important in determining whether they would still function properly. We built a SPICE model of the silicon strip module electrical system to determine the behavior of its elements during a realistic beam loss scenario. We found that the power supply and bias filter characteristics strongly affect the module response in such scenarios. In particular, the following self-limiting phenomena were observed: there is a finite amount of charge initially available on the bias filter capacitors for collection by the strips; the power supply current limit reduces the rate at which the bias filter capacitors' charge can be replenished; the reduced bias voltage leads to a smaller depletion depth which results in less collected charge. These effects provide a larger measure of safety during beam loss events than we have previous...

  13. The LHC beam loss monitoring system's real-time data analysis card

    CERN Document Server

    Dehning, B; Ferioli, G; Guaglio, G; Leitner, R; Zamantzas, C

    2005-01-01

    The BLM (Beam Loss Monitoring) system has to prevent the superconducting magnets from being quenched and protect the machine components against damages making it one of the most critical elements for the protection of the LHC. The complete system consists of 3600 detectors, placed at various locations around the ring, tunnel electronics, which are responsible for acquiring, digitizing, and transmitting the data, and surface electronics, which receive the data via 2km optical data links, process, analyze, store, and issue warning and abort triggers. At those surface units, named BLMTCs, the backbone on each of them is an FPGA (field programmable gate array) which treats the loss signals collected from 16 detectors. It takes into account the beam energy and keeps 192 running sums giving loss durations of up to the last 84 seconds before it compares them with thresholds uniquely programmable for each detector. In this paper, the BLMTC's design is explored giving emphasis to the strategies followed in combining t...

  14. Prompt loss of beam ions in KSTAR plasmas

    Directory of Open Access Journals (Sweden)

    Jun Young Kim

    2016-10-01

    Full Text Available For a toroidal plasma facility to realize fusion energy, researching the transport of fast ions is important not only due to its close relation to the heating and current drive efficiencies but also to determine the heat load on the plasma-facing components. We present a theoretical analysis and orbit simulation for the origin of lost fast-ions during neutral beam injection (NBI heating in Korea Superconducting Tokamak Advanced Research (KSTAR device. We adopted a two-dimensional phase diagram of the toroidal momentum and magnetic moment and describe detectable momentums at the fast-ion loss detector (FILD position as a quadratic line. This simple method was used to model birth ions deposited by NBI and drawn as points in the momentum phase space. A Lorentz orbit code was used to calculate the fast-ion orbits and present the prompt loss characteristics of the KSTAR NBI. The scrape-off layer deposition of fast ions produces a significant prompt loss, and the model and experimental results closely agreed on the pitch-angle range of the NBI prompt loss. Our approach can provide wall load information from the fast ion loss.

  15. Perturbation of the energy loss spectra for an accelerated electron beam due to the photo injector exit

    CERN Document Server

    Salah, W

    2003-01-01

    The influence of the photo-injector exit hall on the energy loss for an accelerated electron beam is investigated, by calculating the total energy transferred from the electrons to the wakefields, which are driven by the beam. The obtained energy loss is compared to those previously obtained for a 'pill-box' cavity. This comparison shows that the influence of this hall, in terms of energy loss, varies over the beam length. It is strongest in the middle of the beam and decreases towards both ends. In consequence of this perturbation, the center of the beam is displaced from its initial position during the first phase (t < 200 ps) where the exit aperture has no effect to a new equilibrium position which takes place at 200 < t < 250 ps. (author)

  16. Intra-beam Scattering Theory and RHIC Experiments

    International Nuclear Information System (INIS)

    Wei, J.; Fedotov, A.; Fischer, W.; Malitsky, N.; Parzen, G.; Qiang, J.

    2005-01-01

    Intra-beam scattering is the leading mechanism limiting the luminosity in heavy-ion storage rings like the Relativistic Heavy Ion Collider (RHIC). The multiple Coulomb scattering among the charged particles causes transverse emittance growth and longitudinal beam de-bunching and beam loss, compromising machine performance during collision. Theoretically, the original theories developed by Piwinski, Bjorken, and Mtingwa only describe the rms beam size growth of an unbounded Gaussian distribution. Equations based on the Fokker-Planck approach are developed to further describe the beam density profile evolution and beam loss. During the 2004 RHIC heavy-ion operation, dedicated IBS experiments were performed to bench-mark the rms beam size growth, beam loss, and profile evolution both for a Gaussian-like and a longitudinal hollow beam. This paper summarizes the IBS theory and discusses the experimental bench-marking results

  17. Beam-beam observations in the Relativistic Heavy Ion Collider

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Y. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Fischer, W. [Brookhaven National Laboratory (BNL), Upton, NY (United States); White, S. [Brookhaven National Laboratory (BNL), Upton, NY (United States)

    2015-06-24

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory has been operating since 2000. Over the past decade, thanks to the continuously increased bunch intensity and reduced β*s at the interaction points, the maximum peak luminosity in the polarized proton operation has been increased by more than two orders of magnitude. In this article, we first present the beam-beam observations in the previous RHIC polarized proton runs. Then we analyze the mechanisms for the beam loss and emittance growth in the presence of beam-beam interaction. The operational challenges and limitations imposed by beam-beam interaction and their remedies are also presented. In the end, we briefly introduce head-on beam-beam compensation with electron lenses in RHIC.

  18. On the dynamics of Airy beams in nonlinear media with nonlinear losses.

    Science.gov (United States)

    Ruiz-Jiménez, Carlos; Nóbrega, K Z; Porras, Miguel A

    2015-04-06

    We investigate on the nonlinear dynamics of Airy beams in a regime where nonlinear losses due to multi-photon absorption are significant. We identify the nonlinear Airy beam (NAB) that preserves the amplitude of the inward Hänkel component as an attractor of the dynamics. This attractor governs also the dynamics of finite-power (apodized) Airy beams, irrespective of the location of the entrance plane in the medium with respect to the Airy waist plane. A soft (linear) input long before the waist, however, strongly speeds up NAB formation and its persistence as a quasi-stationary beam in comparison to an abrupt input at the Airy waist plane, and promotes the formation of a new type of highly dissipative, fully nonlinear Airy beam not described so far.

  19. The derivation of a bistable criterion for double V-beam mechanisms

    International Nuclear Information System (INIS)

    Wu, Cho-Chun; Chen, Rongshun; Lin, Meng-Ju

    2013-01-01

    This study presents the theoretical derivation of the discriminant D as a structural and material criterion for determining whether bistability can occur in micromechanically bistable mechanisms. When D < 0, the mechanism displays bistable behavior if an appropriate force is applied to push the bistable mechanism, whereas when D > 0, bistable behavior cannot occur. The proposed V-beam bistable mechanism was successfully fabricated with various beam lengths and tilted angles. The experiments conducted in this study validated the theoretical study of bistability. A comparison of the theoretical solutions and experimental results shows good agreement. Results further show that to design a bistable V-beam mechanism, the tilted angle should be larger for the same beam length, whereas the beam length should be longer for the same tilted angle. The developed discriminant D can be used to predict if a bistable mechanism can achieve bistable behavior based on structural sizes and material properties. Consequently, researchers can reduce trial-and-error experiments when designing a bistable mechanism. A V-beam with a larger tilted angle of up to 5° was successfully fabricated to act as a bistable mechanism, compared to a 3.5° tilted angle in existing studies. Consequently, the proposed method has the advantages of shorter beam lengths and smaller device areas. (paper)

  20. Towards identifying the mechanisms underlying field-aligned edge-loss of HHFW power on NSTX

    International Nuclear Information System (INIS)

    Perkins, R. J.; Bell, R. E.; Bertelli, N.; Diallo, A.; Gerhardt, S.; Hosea, J. C.; Jaworski, M. A.; LeBlanc, B. P.; Kramer, G. J.; Maingi, R.; Phillips, C. K.; Podestà, M.; Roquemore, L.; Scotti, F.; Taylor, G.; Wilson, J. R.; Ahn, J-W.; Gray, T. K.; Green, D. L.; McLean, A.

    2014-01-01

    Fast-wave heating will be a major heating scheme on ITER, as it can heat ions directly and is relatively unaffected by the large machine size unlike neutral beams. However, fast-wave interactions with the plasma edge can lead to deleterious effects such as, in the case of the high-harmonic fast-wave (HHFW) system on NSTX, large losses of fast-wave power in the scrape off layer (SOL) under certain conditions. In such scenarios, a large fraction of the lost HHFW power is deposited on the upper and lower divertors in bright spiral shapes. The responsible mechanism(s) has not yet been identified but may include fast-wave propagation in the scrape off layer, parametric decay instability, and RF currents driven by the antenna reactive fields. Understanding and mitigating these losses is important not only for improving the heating and current-drive on NSTX-Upgrade but also for understanding fast-wave propagation across the SOL in any fast-wave system. This talk summarizes experimental results demonstrating that the flow of lost HHFW power to the divertor regions largely follows the open SOL magnetic field lines. This lost power flux is relatively large close to both the antenna and the last closed flux surface with a reduced level in between, so the loss mechanism cannot be localized to the antenna. At the same time, significant losses also occur along field lines connected to the inboard edge of the bottom antenna plate. The power lost within the spirals is roughly estimated, showing that these field-aligned losses to the divertor are significant but may not account for the total HHFW loss. To elucidate the role of the onset layer for perpendicular fast-wave propagation with regards to fast-wave propagation in the SOL, a cylindrical cold-plasma model is being developed. This model, in addition to advanced RF codes such as TORIC and AORSA, is aimed at identifying the underlying mechanism(s) behind these SOL losses, to minimize their effects in NSTX-U, and to predict

  1. Towards identifying the mechanisms underlying field-aligned edge-loss of HHFW power on NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, R. J.; Bell, R. E.; Bertelli, N.; Diallo, A.; Gerhardt, S.; Hosea, J. C.; Jaworski, M. A.; LeBlanc, B. P.; Kramer, G. J.; Maingi, R.; Phillips, C. K.; Podestà, M.; Roquemore, L.; Scotti, F.; Taylor, G.; Wilson, J. R. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Ahn, J-W.; Gray, T. K.; Green, D. L.; McLean, A. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); and others

    2014-02-12

    Fast-wave heating will be a major heating scheme on ITER, as it can heat ions directly and is relatively unaffected by the large machine size unlike neutral beams. However, fast-wave interactions with the plasma edge can lead to deleterious effects such as, in the case of the high-harmonic fast-wave (HHFW) system on NSTX, large losses of fast-wave power in the scrape off layer (SOL) under certain conditions. In such scenarios, a large fraction of the lost HHFW power is deposited on the upper and lower divertors in bright spiral shapes. The responsible mechanism(s) has not yet been identified but may include fast-wave propagation in the scrape off layer, parametric decay instability, and RF currents driven by the antenna reactive fields. Understanding and mitigating these losses is important not only for improving the heating and current-drive on NSTX-Upgrade but also for understanding fast-wave propagation across the SOL in any fast-wave system. This talk summarizes experimental results demonstrating that the flow of lost HHFW power to the divertor regions largely follows the open SOL magnetic field lines. This lost power flux is relatively large close to both the antenna and the last closed flux surface with a reduced level in between, so the loss mechanism cannot be localized to the antenna. At the same time, significant losses also occur along field lines connected to the inboard edge of the bottom antenna plate. The power lost within the spirals is roughly estimated, showing that these field-aligned losses to the divertor are significant but may not account for the total HHFW loss. To elucidate the role of the onset layer for perpendicular fast-wave propagation with regards to fast-wave propagation in the SOL, a cylindrical cold-plasma model is being developed. This model, in addition to advanced RF codes such as TORIC and AORSA, is aimed at identifying the underlying mechanism(s) behind these SOL losses, to minimize their effects in NSTX-U, and to predict

  2. Energy loss of a high charge bunched electron beam in plasma: Simulations, scaling, and accelerating wakefields

    Directory of Open Access Journals (Sweden)

    J. B. Rosenzweig

    2004-06-01

    Full Text Available The energy loss and gain of a beam in the nonlinear, “blowout” regime of the plasma wakefield accelerator, which features ultrahigh accelerating fields, linear transverse focusing forces, and nonlinear plasma motion, has been asserted, through previous observations in simulations, to scale linearly with beam charge. Additionally, from a recent analysis by Barov et al., it has been concluded that for an infinitesimally short beam, the energy loss is indeed predicted to scale linearly with beam charge for arbitrarily large beam charge. This scaling is predicted to hold despite the onset of a relativistic, nonlinear response by the plasma, when the number of beam particles occupying a cubic plasma skin depth exceeds that of plasma electrons within the same volume. This paper is intended to explore the deviations from linear energy loss using 2D particle-in-cell simulations that arise in the case of experimentally relevant finite length beams. The peak accelerating field in the plasma wave excited behind the finite-length beam is also examined, with the artifact of wave spiking adding to the apparent persistence of linear scaling of the peak field amplitude into the nonlinear regime. At large enough normalized charge, the linear scaling of both decelerating and accelerating fields collapses, with serious consequences for plasma wave excitation efficiency. Using the results of parametric particle-in-cell studies, the implications of these results for observing severe deviations from linear scaling in present and planned experiments are discussed.

  3. 2014 CERN Accelerator Schools: Beam Loss and Accelerator Protection

    CERN Multimedia

    2014-01-01

    The US-CERN-JAPAN-RUSSIA Joint International Accelerator School is organising a course on Beam Loss and Accelerator Protection to be held in Newport Beach, California, USA from 5-14 November, 2014.    This school is intended for physicists and engineers who are or may be engaged in the design, construction, and/or operation of accelerators with high power photon or particle beams and/or accelerator sub-systems with large stored energy. Application deadlines are 15 August and 4 September. Further information on this Joint School can be found at: http://cas.web.cern.ch/cas/JAS/Newport%20Beach%202014/NPBadvert.html http://indico.cern.ch/event/287647/ http://uspas.fnal.gov/programs/JAS/JAS14.shtml

  4. Luminosity, Beamstrahlung energy loss and beam-beam deflections for e+e- and e-e- collisions at the ILC with 500 GeV and varying transverse beam sizes

    International Nuclear Information System (INIS)

    Alabau Pons, M.; Bambade, P.; Faus-Golfe, A.

    2006-01-01

    At the interaction point of the International Linear Collider, beam-beam effects due to the strong electromagnetic fields that the bunches experience during collisions cause a mutual focusing, called pinch effect, which enhances the luminosity in the case of e + e - collisions. The opposite is true for e - e - collisions. In this case the luminosity is reduced by mutual defocusing, or anti-pinching. The resulting Beamstrahlung energy loss and beam-beam deflection angles as function of the vertical transverse offset are also different for both modes of operation. The dependence of these quantities with transverse beam sizes are presented for the case of e - e - collisions

  5. Reliability of the Beam Loss Monitors System for the Large Hadron Collider at CERN

    CERN Document Server

    Guaglio, G; Santoni, C

    2005-01-01

    The energy stored in the Large Hadron Collider is unprecedented. The impact of the beam particles can cause severe damage on the superconductive magnets, resulting in significant downtime for repairing. The Beam Loss Monitors System (BLMS) detects the secondary particles shower of the lost beam particles and initiates the extraction of the beam before any serious damage to the equipment can occur. This thesis defines the BLMS specifications in term of reliability. The main goal is the design of a system minimizing both the probability to not detect a dangerous loss and the number of false alarms generated. The reliability theory and techniques utilized are described. The prediction of the hazard rates, the testing procedures, the Failure Modes Effects and Criticalities Analysis and the Fault Tree Analysis have been used to provide an estimation of the probability to damage a magnet, of the number of false alarms and of the number of generated warnings. The weakest components in the BLMS have been pointed out....

  6. Simulation study on beam loss in the alpha bucket regime during SIS-100 proton operation

    Science.gov (United States)

    Sorge, S.

    2018-02-01

    Crossing the transition energy γt in synchrotrons for high intensity proton beams requires well tuned jump schemes and is usually accompanied by longitudinal emittance growth. In order to avoid γt crossing during proton operation in the projected SIS-100 synchrotron special high-γt lattice settings have been developed, in order to keep γt above the beam extraction energy. A further advantage of this scheme is the formation of alpha buckets which naturally lead to short proton bunches, required for the foreseen production and storage of antiprotons for the FAIR facility. Special attention is turned on the imperfections of the superconducting SIS-100 magnets because together with the high-γt lattice settings, they could potentially lead to enhanced beam loss. The aim of the present work is to estimate the beam loss by means of particle tracking simulations.

  7. FESA class for off-momentum lossmaps and decomposition of beam losses at LHC

    CERN Document Server

    Wyszynski, Michal Jakub; Pojer, Mirko; Salvachua Ferrando, Belen Maria; Valentino, Gianluca; CERN. Geneva. ATS Department

    2016-01-01

    The project consisted of two main parts. The first part was to build a FESA class which would serve as lossmap feedback controller for off-momentum lossmaps, capable of handling 100 Hz BLM data, contrary to existing controller. Thanks to the efficient management RF frequency, beam dumps during this procedure would be avoided and machine availability would improve by shortening the duration of machine validation after technical stops. The second part concerned identification of beam losses at the LHC. It was a continuation of author’s work done as Summer Student project. The aim was to identify issues with the existing losses decomposition matrix for flat top, apply necessary corrections and construct analogous matrix for injection.

  8. Accidental beam loss in superconducting accelerators: Simulations, consequences of accidents and protective measures

    International Nuclear Information System (INIS)

    Drozhdin, A.; Mokhov, N.; Parker, B.

    1994-02-01

    The consequences of an accidental beam loss in superconducting accelerators and colliders of the next generation range from the mundane to rather dramatic, i.e., from superconducting magnet quench, to overheating of critical components, to a total destruction of some units via explosion. Specific measures are required to minimize and eliminate such events as much as practical. In this paper we study such accidents taking the Superconducting Supercollider complex as an example. Particle tracking, beam loss and energy deposition calculations were done using the realistic machine simulation with the Monte-Carlo codes MARS 12 and STRUCT. Protective measures for minimizing the damaging effects of prefire and misfire of injection and extraction kicker magnets are proposed here

  9. Duration of memory loss due to electron beam exposure. Final report Jan-May 1983

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, T.G.; Tilton, B.M.

    1983-08-01

    Electron beam exposure has been shown to produce retrograde amnesia (RA). The objective of this study was to determine the duration of memory loss upon electron beam exposure. It is important to know if exposure produces a memory loss of the events which occurred in the preceding 1 sec or memory loss of the preceding minute's events. The task was a single-trial avoidance paradigm. The animal was placed in a small aversive chamber. After a 90-sec adaptation period, a door opened that provided access to a large, dark, preferred chamber. The time required for the animal to enter the preferred chamber was the measure of interest (T). Once inside the preferred chamber, a 1-sec footshock was delivered. Following the footshock by some preset delay (delta T), the animal was exposed to a 10-microsec, 10-rad electron beam (or X-ray). A second trial on the task was run 2 hr postexposure. The second trial consisted of placing the animal in the aversive chamber and monitoring the time (T') required to enter the preferred chamber. If the electron beam exposure interfered with the animal's ability to recall the shock, T' would be greatly reduced as compared with the sham controls. The exposure delay times used were delta T = 1, 3, 5, and 10 sec.

  10. Mechanisms and mechanics of shape loss during supersolidus liquid-phase sintering

    Science.gov (United States)

    Lal, Anand

    Rapid sinter densification of relatively coarse prealloyed powders is possible by exceeding the solidus temperature in an approach termed supersolidus liquid phase sintering (SLPS). However, narrow processing windows for densification without distortion often limit this process. The liquid films at the grain boundaries that are responsible for densification also reduce the structural rigidity of components. Hence, components tend to slump under their own weight. Thus, the present study investigates shape loss during SLPS and rationalizes the processing and material factors with regard to separating densification from distortion. Experiments are performed on various prealloyed powders, including bronze, 316L stainless steel, and T15 tool steel. Differential thermal analysis, dilatometry, and in situ video imaging of sintering compacts are used to follow melting, densification, and distortion, respectively. Further, density and dimensional measurements are performed on sintered compacts. Results indicate a dependence of distortion on the sintering temperature and time, compact size, and melting behavior of the alloy. It is shown that the sintering temperature window, where high-density, precise components are obtained, can be widened for 316L stainless steel by boron addition. For the first time, a beam bending technique is used to measure the macroscopic apparent viscosity of semisolid bronze. The viscosity drops with temperature above the solidus and lies in the range of 108 to 106 Pa-s. Additionally, the in situ transverse rupture strength of bronze is measured to demonstrate the softening above the solidus temperature. Further, microstructural measurements are performed to enable correlation with the slumping behavior and viscosity. A model combining the deformation mechanisms, driving forces, and microstructural characteristics is developed to predict the conditions for densification and distortion onset. The microstructure is also correlated with the magnitude

  11. FLUKA Monte Carlo simulations and benchmark measurements for the LHC beam loss monitors

    International Nuclear Information System (INIS)

    Sarchiapone, L.; Brugger, M.; Dehning, B.; Kramer, D.; Stockner, M.; Vlachoudis, V.

    2007-01-01

    One of the crucial elements in terms of machine protection for CERN's Large Hadron Collider (LHC) is its beam loss monitoring (BLM) system. On-line loss measurements must prevent the superconducting magnets from quenching and protect the machine components from damages due to unforeseen critical beam losses. In order to ensure the BLM's design quality, in the final design phase of the LHC detailed FLUKA Monte Carlo simulations were performed for the betatron collimation insertion. In addition, benchmark measurements were carried out with LHC type BLMs installed at the CERN-EU high-energy Reference Field facility (CERF). This paper presents results of FLUKA calculations performed for BLMs installed in the collimation region, compares the results of the CERF measurement with FLUKA simulations and evaluates related uncertainties. This, together with the fact that the CERF source spectra at the respective BLM locations are comparable with those at the LHC, allows assessing the sensitivity of the performed LHC design studies

  12. FLUKA Monte Carlo simulations and benchmark measurements for the LHC beam loss monitors

    Science.gov (United States)

    Sarchiapone, L.; Brugger, M.; Dehning, B.; Kramer, D.; Stockner, M.; Vlachoudis, V.

    2007-10-01

    One of the crucial elements in terms of machine protection for CERN's Large Hadron Collider (LHC) is its beam loss monitoring (BLM) system. On-line loss measurements must prevent the superconducting magnets from quenching and protect the machine components from damages due to unforeseen critical beam losses. In order to ensure the BLM's design quality, in the final design phase of the LHC detailed FLUKA Monte Carlo simulations were performed for the betatron collimation insertion. In addition, benchmark measurements were carried out with LHC type BLMs installed at the CERN-EU high-energy Reference Field facility (CERF). This paper presents results of FLUKA calculations performed for BLMs installed in the collimation region, compares the results of the CERF measurement with FLUKA simulations and evaluates related uncertainties. This, together with the fact that the CERF source spectra at the respective BLM locations are comparable with those at the LHC, allows assessing the sensitivity of the performed LHC design studies.

  13. Mechanical losses in thin fused silica fibres

    International Nuclear Information System (INIS)

    Bilenko, I A; Braginsky, V B; Lourie, S L

    2004-01-01

    Intracavity topology of the readout system for LIGO III project and table-top QND mechanical measurements under development require the use of small probe masses and suspensions with a very low level of internal losses. A good choice is to use thin fused silica fibres similar to LIGO II mirrors suspensions. Mechanical losses of silica fibres are investigated in this work through the study of quality factor dependence on diameter for pendulum and violin modes of oscillations with diameters ranging from 1.5 to 40 μm. The estimated values of effective mechanical loss angle show noticeably greater growth with lower diameters than might be expected while extrapolating known results of research done for thicker fibres

  14. Mechanical losses in thin fused silica fibres

    Energy Technology Data Exchange (ETDEWEB)

    Bilenko, I A; Braginsky, V B; Lourie, S L [Department of Oscillatory Physics, Physics Faculty, Moscow State University (Russian Federation)

    2004-03-07

    Intracavity topology of the readout system for LIGO III project and table-top QND mechanical measurements under development require the use of small probe masses and suspensions with a very low level of internal losses. A good choice is to use thin fused silica fibres similar to LIGO II mirrors suspensions. Mechanical losses of silica fibres are investigated in this work through the study of quality factor dependence on diameter for pendulum and violin modes of oscillations with diameters ranging from 1.5 to 40 {mu}m. The estimated values of effective mechanical loss angle show noticeably greater growth with lower diameters than might be expected while extrapolating known results of research done for thicker fibres.

  15. Beam loss reduction by injection painting in the 3-GeV rapid cycling synchrotron of the Japan Proton Accelerator Research Complex

    Directory of Open Access Journals (Sweden)

    H. Hotchi

    2012-04-01

    Full Text Available The 3-GeV rapid cycling synchrotron (RCS of the Japan Proton Accelerator Research Complex was commissioned in October 2007. Via the initial beam tuning and a series of underlying beam studies with low-intensity beams, since December 2009, we have intermittently been performing beam tuning experiments with higher-intensity beams including the injection painting technique. By optimizing the injection painting parameters, we have successfully achieved a 420 kW-equivalent output intensity at a low-level intensity loss of less than 1%. Also the corresponding numerical simulation well reproduced the observed painting parameter dependence on the beam loss, and captured a characteristic behavior of the high-intensity beam in the injection painting process. In this paper, we present the experimental results obtained in the course of the RCS beam power ramp-up, especially on the beam loss reduction achieved by employing the injection painting, together with the numerical simulation results.

  16. Study of Acquisition Electronics with a High Dynamic Range for a Beam Loss Measurement System

    CERN Document Server

    Venturini, G; Dehning, B; Effinger, E

    2010-01-01

    The particles accelerated in CERN accelerator chain reach high energies, topped by the particle energy at collision in the LHC, 7 GeV. During the operation, an amount of particles is inevitably lost from the beam. Depending on the extent of the losses, physical damage to machine components may be caused and the shower of secondary emission particles deposits energy in the surrounding equipment constituting the accelerator. The hadronic cascade also activates their materials, representing a hazard to the workers at CERN. In the LHC, the superconducting magnets that constitute the synchrotron lattice are kept at an operating temperature of 1:9K through a cryogenic facility employing superliquid helium, the increase in their temperature potentially initiates a quench. In the SPS, the damage due to a lost beam is also visible. The Beam Loss Monitoring (BLM) system has been developed to reliably protect the machines composing CERN’s accelerator chain and additionally provide information about the beam status: th...

  17. Refractive waveguide non-mechanical beam steering (NMBS) in the MWIR

    Science.gov (United States)

    Myers, Jason D.; Frantz, Jesse A.; Spillmann, Christopher M.; Bekele, Robel Y.; Kolacz, Jakub; Gotjen, Henry; Naciri, Jawad; Shaw, Brandon; Sanghera, Jas S.

    2018-02-01

    Beam steering is a crucial technology for a number of applications, including chemical sensing/mapping and light detection and ranging (LIDAR). Traditional beam steering approaches rely on mechanical movement, such as the realignment of mirrors in gimbal mounts. The mechanical approach to steering has several drawbacks, including large size, weight and power usage (SWAP), and frequent mechanical failures. Recently, alternative non-mechanical approaches have been proposed and developed, but these technologies do not meet the demanding requirements for many beam steering applications. Here, we highlight the development efforts into a particular non-mechanical beam steering (NMBS) approach, refractive waveguides, for application in the MWIR. These waveguides are based on an Ulrich-coupled slab waveguide with a liquid crystal (LC) top cladding; by selectively applying an electric field across the liquid crystal through a prismatic electrode, steering is achieved by creating refraction at prismatic interfaces as light propagates through the device. For applications in the MWIR, we describe a versatile waveguide architecture based on chalcogenide glasses that have a wide range of refractive indices, transmission windows, and dispersion properties. We have further developed robust shadow-masking methods to taper the subcladding layers in the coupling region. We have demonstrated devices with >10° of steering in the MWIR and a number of advantageous properties for beam steering applications, including low-power operation, compact size, and fast point-to-point steering.

  18. Evaluation of Beam Loss and Energy Depositions for a Possible Phase II Design for LHC Collimation

    International Nuclear Information System (INIS)

    Lari, L.; Assmann, R.; Bracco, C.; Brugger, M.; Cerutti, F.; Doyle, E.; Ferrari, A.; Keller, L.; Lundgren, S.; Markiewicz, Thomas W.; Mauri, M.; Redaelli, S.; Sarchiapone, L.; Smith, J.; Vlachoudis, V.; Weiler, T.

    2011-01-01

    The LHC beams are designed to have high stability and to be stored for many hours. The nominal beam intensity lifetime is expected to be of the order of 20h. The Phase II collimation system has to be able to handle particle losses in stable physics conditions at 7 TeV in order to avoid beam aborts and to allow correction of parameters and restoration to nominal conditions. Monte Carlo simulations are needed in order to evaluate the behavior of metallic high-Z collimators during operation scenarios using a realistic distribution of losses, which is a mix of the three limiting halo cases. Moreover, the consequences in the IR7 insertion of the worst (case) abnormal beam loss are evaluated. The case refers to a spontaneous trigger of the horizontal extraction kicker at top energy, when Phase II collimators are used. These studies are an important input for engineering design of the collimation Phase II system and for the evaluation of their effect on adjacent components. The goal is to build collimators that can survive the expected conditions during LHC stable physics runs, in order to avoid quenches of the SC magnets and to protect other LHC equipments.

  19. A robust single-beam optical trap for a gram-scale mechanical oscillator.

    Science.gov (United States)

    Altin, P A; Nguyen, T T-H; Slagmolen, B J J; Ward, R L; Shaddock, D A; McClelland, D E

    2017-11-06

    Precise optical control of microscopic particles has been mastered over the past three decades, with atoms, molecules and nano-particles now routinely trapped and cooled with extraordinary precision, enabling rapid progress in the study of quantum phenomena. Achieving the same level of control over macroscopic objects is expected to bring further advances in precision measurement, quantum information processing and fundamental tests of quantum mechanics. However, cavity optomechanical systems dominated by radiation pressure - so-called 'optical springs' - are inherently unstable due to the delayed dynamical response of the cavity. Here we demonstrate a fully stable, single-beam optical trap for a gram-scale mechanical oscillator. The interaction of radiation pressure with thermo-optic feedback generates damping that exceeds the mechanical loss by four orders of magnitude. The stability of the resultant spring is robust to changes in laser power and detuning, and allows purely passive self-locking of the cavity. Our results open up a new way of trapping and cooling macroscopic objects for optomechanical experiments.

  20. Comparison of measured and computed loss to parasitic modes in cylindrical cavities with beam ports

    International Nuclear Information System (INIS)

    Wilson, P.B.; Styles, J.B.; Bane, K.L.F.

    1977-03-01

    Good agreement was obtained between computed values and results from a bench measurement technique for the total loss to parasitic modes in several cylindrical cavities with beam ports. The measurement of loss as a function of time within the current pulse also gives results which are in good agreement with computed functions, especially considering the fact that there are questionable points concerning both the theory and the measurement technique. Within measurement errors, there is also agreement in a few cases where a comparison is possible between a bench measurement result and the heating produced directly in a component by the SPEAR beam

  1. Effect of flexural crack on plain concrete beam failure mechanism A numerical simulation

    Directory of Open Access Journals (Sweden)

    Abdoullah Namdar

    2016-03-01

    Full Text Available The flexural failure of plain concrete beam occurs along with development of flexural crack on beam. In this paper by using ABAQUS, mechanism failure of plain concrete beam under three steps have been simulated. The cracking moment has been analytically calculated and applied on the both sides of the fixed beam, and flexural crack has been simulated on beam. Displacement, von Mises, load reaction, displacementcrack length, von Mises-crack length and von Mises-displacement of beams have been graphical depicted. Results indicated that, the flexural crack governs beam mechanism failure and its effects on beam resistance failure. It has been found that the flexural crack in initial stage it developed slowly and changes to be fast at the final stage of collapsing beam due to reduction of the flexural resistance of beam. Increasing mechanical properties of concrete, collapse displacement is reduced.

  2. Interaction between corrosion crack width and steel loss in RC beams corroded under load

    International Nuclear Information System (INIS)

    Malumbela, Goitseone; Alexander, Mark; Moyo, Pilate

    2010-01-01

    This paper presents results and discussions on an experimental study conducted to relate the rate of widening of corrosion cracks with the pattern of corrosion cracks as well as the level of steel corrosion for RC beams (153 x 254 x 3000 mm) that were corroded whilst subjected to varying levels of sustained loads. Steel corrosion was limited to the tensile reinforcement and to a length of 700 mm at the centre of the beams. The rate of widening of corrosion cracks as well as strains on uncracked faces of RC beams was constantly monitored during the corrosion process, along the corrosion region and along other potential cracking faces of beams using a demec gauge. The distribution of the gravimetric mass loss of steel along the corrosion region was measured at the end of the corrosion process. The results obtained showed that: the rate of widening of each corrosion crack is dependent on the overall pattern of the cracks whilst the rate of corrosion is independent of the pattern of corrosion cracks. A mass loss of steel of 1% was found to induce a corrosion crack width of about 0.04 mm.

  3. Severe signal loss in diamond beam loss monitors in high particle rate environments by charge trapping in radiation-induced defects

    CERN Document Server

    Kassel, Florian; Dabrowski, Anne; de Boer, Wim

    2016-01-01

    The beam condition monitoring leakage (BCML) system is a beam monitoring device in the compact muon solenoid (CMS) experiment at the large hadron collider (LHC). As detectors 32 poly-crystalline (pCVD) diamond sensors are positioned in rings around the beam pipe. Here, high particle rates occur from the colliding beams scattering particles outside the beam pipe. These particles cause defects, which act as traps for the ionization, thus reducing the charge collection efficiency (CCE). However, the loss in CCE was much more severe than expected from low rate laboratory measurements and simulations, especially in single-crystalline (sCVD) diamonds, which have a low initial concentration of defects. The reason why in real experiments the CCE is much worse than in laboratory experiments is related to the ionization rate. At high particle rates the trapping rate of the ionization is so high compared with the detrapping rate, that space charge builds up. This space charge reduces locally the internal electric field,...

  4. The thermal and mechanical properties of electron beam-irradiated polylactide

    International Nuclear Information System (INIS)

    Kuk, In Seol; Jung, Chan Hee; Hwang, In Tae; Choi, Jae Hak; Nho, Young Chang

    2010-01-01

    The effect of electron beam irradiation on the thermal and mechanical properties of polylactide (PLA) was investigated in this research. PLA films were irradiated by electron beams at different absorption doses ranging from 20 to 200 kGy. The thermal and mechanical properties of the irradiated PLA films were investigated by means of differential scanning calorimeter, thermogravimetric analyzer, universal testing machine, dynamic mechanical analyzer, and thermal mechanical analyzer. The results revealed that the chain scission of the PLA predominated over the crosslinking during the irradiation, which considerably deteriorated the thermal and mechanical properties of the PLA

  5. A mechanical model for FRP-strengthened beams in bending

    Directory of Open Access Journals (Sweden)

    P. S. Valvo

    2012-10-01

    Full Text Available We analyse the problem of a simply supported beam, strengthened with a fibre-reinforced polymer (FRP strip bonded to its intrados and subjected to bending couples applied to its end sections. A mechanical model is proposed, whereby the beam and FRP strip are modelled according to classical beam theory, while the adhesive and its neighbouring layers are modelled as an interface having a piecewise linear constitutive law defined over three intervals (elastic response – softening response – debonding. The model is described by a set of differential equations with appropriate boundary conditions. An analytical solution to the problem is determined, including explicit expressions for the internal forces, displacements and interfacial stresses. The model predicts an overall non-linear mechanical response for the strengthened beam, ranging over several stages: from linearly elastic behaviour to damage, until the complete detachment of the FRP reinforcement.

  6. On scaling and optimization of high-intensity, low-beam-loss RF linacs for neutron source drivers

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1992-01-01

    RF linacs providing cw proton beams of 30--250 mA at 800--1600 MeV, and cw deuteron beams of 100--250 mA at 35--40 MeV, are needed as drivers for factory neutron sources applied to radioactive waste transmutation, advanced energy production, materials testing facilities, and spallation neutron sources. The maintenance goals require very low beam loss along the linac. Optimization of such systems is complex; status of beam dynamics aspects presently being investigated is outlined

  7. Mechanical loss in tantala/silica dielectric mirror coatings

    International Nuclear Information System (INIS)

    Penn, Steven D; Sneddon, Peter H; Armandula, Helena; Betzwieser, Joseph C; Cagnoli, Gianpietro; Camp, Jordan; Crooks, D R M; Fejer, Martin M; Gretarsson, Andri M; Harry, Gregory M; Hough, Jim; Kittelberger, Scott E; Mortonson, Michael J; Route, Roger; Rowan, Sheila; Vassiliou, Christophoros C

    2003-01-01

    Current interferometric gravitational wave detectors use test masses with mirror coatings formed from multiple layers of dielectric materials, most commonly alternating layers of SiO 2 (silica) and Ta 2 O 5 (tantala). However, mechanical loss in the Ta 2 O 5 /SiO 2 coatings may limit the design sensitivity for advanced detectors. We have investigated sources of mechanical loss in the Ta 2 O 5 /SiO 2 coatings, including loss associated with the coating-substrate interface, with the coating-layer interfaces and with the coating materials. Our results indicate that the loss is associated with the coating materials and that the loss of Ta 2 O 5 is substantially larger than that of SiO 2

  8. OPERATIONAL EXPERIENCE WITH FAST FIBER-OPTIC BEAM LOSS MONITORS FOR THE ADVANCED PHOTON SOURCE STORAGE RING SUPERCONDUCTING UNDULATORS

    Energy Technology Data Exchange (ETDEWEB)

    Dooling, J.; Harkay, K.; Sajaev, V.; Shang, H.

    2017-06-25

    Fast fiber-optic (FFO) beam loss monitors (BLMs) installed with the first two superconducting undulators (SCUs) in the Advanced Photon Source storage ring have proven to be a useful diagnostic for measuring deposited charge (energy) during rapid beam loss events. The first set of FFOBLMs were installed outside the cryostat of the short SCU, a 0.33-m long device, above and below the beam centerline. The second set are mounted with the first 1.1-mlong SCU within the cryostat, on the outboard and inboard sides of the vacuum chamber. The next 1.1-m-long SCU is scheduled to replace the short SCU later in 2016 and will be fitted with FFOBLMs in a manner similar to original 1.1-m device. The FFOBLMs were employed to set timing and voltage for the abort kicker (AK) system. The AK helps to prevent quenching of the SCUs during beam dumps [1] by directing the beam away from the SC magnet windings. The AK is triggered by the Machine Protection System (MPS). In cases when the AK fails to prevent quenching, the FFOBLMs show that losses often begin before detection by the MPS.

  9. Evaluation of Beam Losses And Energy Deposition for a Possible Phase II Design for LHC Collimation

    International Nuclear Information System (INIS)

    Lari, L.; Bracco, C.; Assmann, R.W.; Brugger, M.; Cerutti, F.; Ferrari, A.; Mauri, M.; Redaelli, S.; Sarchiapone, L.; Vlachoudis, V.; Weiler, T.; Doyle, J.E.; Keller, L.; Lundgren, S.A.; Markiewicz, T.W.; Smith, J.C.

    2011-01-01

    The Large Hadron Collider (LHC) beams are designed to have high stability and to be stored for many hours. The nominal beam intensity lifetime is expected to be of the order of 20h. The Phase II collimation system has to be able to handle particle losses in stable physics conditions at 7 TeV in order to avoid beam aborts and to allow correction of parameters and restoration to nominal conditions. Monte Carlo simulations are needed in order to evaluate the behavior of metallic high-Z collimators during operation scenarios using a realistic distribution of losses, which is a mix of the three limiting halo cases. Moreover, the consequences in the IR7 insertion of the worst (case) abnormal beam loss are evaluated. The case refers to a spontaneous trigger of the horizontal extraction kicker at top energy, when Phase II collimators are used. These studies are an important input for engineering design of the collimation Phase II system and for the evaluation of their effect on adjacent components. The goal is to build collimators that can survive the expected conditions during LHC stable physics runs, in order to avoid quenches of the SC magnets and to protect other LHC equipments.

  10. The toroidicity-induced Alfven eigenmode structure in DIII-D: Implications of soft x-ray and beam-ion loss data

    International Nuclear Information System (INIS)

    Carolipio, E. M.; Heidbrink, W. W.; Cheng, C. Z.; Chu, M. S.; Fu, G. Y.; Jaun, A.; Spong, D. A.; Turnbull, A. D.; White, R. B.

    2001-01-01

    The internal structure of the toroidicity-induced Alfven eigenmode (TAE) is studied by comparing soft x-ray profile and beam ion loss data taken during TAE activity in the DIII-D tokamak [W. W. Heidbrink , Nucl. Fusion 37, 1411 (1997)] with predictions from theories based on ideal magnetohydrodynamic (MHD), gyrofluid, and gyrokinetic models. The soft x-ray measurements indicate a centrally peaked eigenfunction, a feature which is closest to the gyrokinetic model's prediction. The beam ion losses are simulated using a guiding center code. In the simulations, the TAE eigenfunction calculated using the ideal MHD model acts as a perturbation to the equilibrium field. The predicted beam ion losses are an order of magnitude less than the observed ∼6%--8% losses at the peak experimental amplitude of {delta}B r /B 0 ≅2--5 x 10 -4

  11. Mechanical engineering problems in the TFTR neutral beam system

    International Nuclear Information System (INIS)

    Cannon, D.D.; Bryant, E.H.; Johnson, R.L.; Kim, J.; Queen, C.C.; Schilling, G.

    1975-01-01

    A conceptual design of a prototype beam line for the TFTR Neutral Beam System has been developed. The basic components have been defined, cost estimates prepared, and the necessary development programs identified. Four major mechanical engineering problems, potential solutions and the required development programs are discussed

  12. Modification of mechanical properties of Si crystal irradiated by Kr-beam

    International Nuclear Information System (INIS)

    Guo, Xiaowei; Momota, Sadao; Nitta, Noriko; Yamaguchi, Takaharu; Sato, Noriyuki; Tokaji, Hideto

    2015-01-01

    Graphical abstract: - Highlights: • Modification of mechanical properties of silicon crystal irradiated by Kr-beam was observed by means of continuous measurements of nano-indentation technique. • Modified mechanical properties show fluence-dependence. • Young's modulus is more sensitive to crystal to amorphous phase transition while hardness is more sensitive to damage induced by ion beam irradiation. • The depth profile of modified mechanical properties have a potential application of determining the longitudinal size of phase transition region induced by nanoindentation. - Abstract: The application of ion-beam irradiation in fabrication of structures with micro-/nanometer scale has achieved striking improvement. However, an inevitable damage results in the change of mechanical properties in irradiated materials. To investigate the relation between mechanical properties and ion-irradiation damages, nanoindentation was performed on crystalline silicon irradiated by Kr-beam with an energy of 240 keV. Modified Young's modulus and nanohardness, provided from the indentation, indicated fluence dependence. Stopping and range of ions in matter (SRIM) calculation, transmission electron microscopy (TEM) observation, and Rutherford backscattering-channeling (RBS-C) measurement were utilized to understand the irradiation effect on mechanical properties. In addition, the longitudinal size of the phase transition region induced by indentation was firstly evaluated based on the depth profile of modified nanohardness

  13. Continuum Mechanics of Beam and Plate Flexure

    DEFF Research Database (Denmark)

    Jönsson, Jeppe

    This text has been written and used during the spring of 1995 for a course on flexural mechanics of beams and plates at Aalborg University. The idea has been to concentrate on basic principles of the theories, which are of importance to the modern structural engineer. Today's structural engineer...... must be acquainted with the classic beam and plate theories, when reading manuals and using modern software tools such as the finite element method. Each chapter includes supplementary theory and derivations enabling consultation of the notes also at a later stage of study. A preliminary chapter...... introduces the modern notation used in textbooks and in research today. It further gives an introduction to three-dimensional continuum mechanics of elastic bodies and the related principles of virtual work. The ideas to give the students a basic understanding of the stresses and strains, the equilibrium...

  14. Design and Development of a Diagnostics Client for a Beam Loss Measurement System at CERN

    CERN Document Server

    Angelogiannopoulos, Emmanouil; Jackson, Stephen

    The European Organization for Nuclear Research, known as CERN, is one of the biggest research centers in the field of particle physics. Its main function is to provide particle accelerators and other infrastructure needed for high energy physics research. Particles are accelerated through a complex of accelerators and are brought into collision, in order to study the fundamental elements of matter and the forces acting between them. Of course, such complex and expensive machines need control and protection. For that purpose, a variety of different systems -hardware and/or software- is needed. One such system is the Beam Loss Monitoring (BLM) system of an accelerator. This kind of system is designed for measuring beam losses around an accelerator. An appropriate design of the BLM system and an appropriate location of the monitors enable a wide field of very useful beam diagnostics and machine protection possibilities. This thesis focuses on the design and development of a client application, which is realized ...

  15. Luminosity, Beamstrahlung energy loss and beam-beam deflections for e{sup +}e{sup -} and e{sup -}e{sup -} collisions at the ILC with 500 GeV and varying transverse beam sizes

    Energy Technology Data Exchange (ETDEWEB)

    Alabau Pons, M. [Laboratoire de l' Accelerateur Lineaire, IN2P3-CNRS et Universite de Paris-Sud XI, Bat. 200, B.P. 34, 91898 Orsay Cedex (France)]|[IFIC, Edificio Institutos de Paterna, Aptdo. 22085, 46071 Valencia (Spain); Bambade, P. [Laboratoire de l' Accelerateur Lineaire, IN2P3-CNRS et Universite de Paris-Sud XI, Bat. 200, B.P. 34, 91898 Orsay Cedex (France); Faus-Golfe, A. [IFIC, Edificio Institutos de Paterna, Aptdo. 22085, 46071 Valencia (Spain)

    2006-01-15

    At the interaction point of the International Linear Collider, beam-beam effects due to the strong electromagnetic fields that the bunches experience during collisions cause a mutual focusing, called pinch effect, which enhances the luminosity in the case of e{sup +}e{sup -} collisions. The opposite is true for e{sup -}e{sup -} collisions. In this case the luminosity is reduced by mutual defocusing, or anti-pinching. The resulting Beamstrahlung energy loss and beam-beam deflection angles as function of the vertical transverse offset are also different for both modes of operation. The dependence of these quantities with transverse beam sizes are presented for the case of e{sup -}e{sup -} collisions.

  16. New high power linacs and beam physics

    International Nuclear Information System (INIS)

    Wangler, T.P.; Gray, E.R.; Nath, S.; Crandall, K.R.; Hasegawa, K.

    1997-01-01

    New high-power proton linacs must be designed to control beam loss, which can lead to radioactivation of the accelerator. The threat of beam loss is increased significantly by the formation of beam halo. Numerical simulation studies have identified the space-charge interactions, especially those that occur in rms mismatched beams, as a major concern for halo growth. The maximum-amplitude predictions of the simulation codes must be subjected to independent tests to confirm the validity of the results. Consequently, the authors compare predictions from the particle-core halo models with computer simulations to test their understanding of the halo mechanisms that are incorporated in the computer codes. They present and discuss scaling laws that provide guidance for high-power linac design

  17. A novel digitization scheme with FPGA-base TDC for beam loss monitors operating at cryogenic temperature

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jinyuan; Warner, Arden; /Fermilab

    2011-11-01

    Recycling integrators are common current-to-frequency converting circuits for measurements of low current such as that produced by Fermilab's cryogenic ionization chambers. In typical digitization/readout schemes, a counter is utilized to accumulate the number of pulses generated by the recycling integrator to adequately digitize the total charge. In order to calculate current with reasonable resolution (e.g., 7-8 bits), hundreds of pulses must be accumulated which corresponds to a long sampling period, i.e., a very low sampling rate. In our new scheme, an FPGA-based Time-to-Digital Convertor (TDC) is utilized to measure the time intervals between the pulses output from the recycling integrator. Using this method, a sample point of the current can be made with good resolution (>10 bits) for each pulse. This effectively increases the sampling rates by hundreds of times for the same recycling integrator front-end electronics. This scheme provides a fast response to the beams loss and is potentially suitable for accelerator protection applications. Moreover, the method is also self-zero-suppressed, i.e., it produces more data when the beam loss is high while it produces significantly less data when the beam loss is low.

  18. Evaluation of support loss in micro-beam resonators: A revisit

    Science.gov (United States)

    Chen, S. Y.; Liu, J. Z.; Guo, F. L.

    2017-12-01

    This paper presents an analytical study on evaluation of support loss in micromechanical resonators undergoing in-plane flexural vibrations. Two-dimensional elastic wave theory is used to determine the energy transmission from the vibrating resonator to the support. Fourier transform and Green's function technique are adopted to solve the problem of wave motions on the surface of the support excited by the forces transmitted by the resonator onto the support. Analytical expressions of support loss in terms of quality factor, taking into account distributed normal stress and shear stress in the attachment region, and coupling between the normal stress and shear stress as well as material disparity between the support and the resonator, have been derived. Effects of geometry of micro-beam resonators, and material dissimilarity between support and resonator on support loss are examined. Numerical results show that 'harder resonator' and 'softer support' combination leads to larger support loss. In addition, the Perfectly Matched Layer (PML) numerical simulation technique is employed for validation of the proposed analytical model. Comparing with results of quality factor obtained by PML technique, we find that the present model agrees well with the results of PML technique and the pure-shear model overestimates support loss noticeably, especially for resonators with small aspect ratio and large material dissimilarity between the support and resonator.

  19. Reliability of the beam loss monitors system for the large hadron collider at CERN

    International Nuclear Information System (INIS)

    Guaglio, G.

    2005-12-01

    The energy stored in the Large Hadron Collider is unprecedented. The impact of the beam particles can cause severe damage on the superconductive magnets, resulting in significant downtime for repairing. The Beam Loss Monitors System (BLMS) detects the secondary particles shower of the lost beam particles and initiates the extraction of the beam before any serious damage to the equipment can occur. This thesis defines the BLMS specifications in term of reliability. The main goal is the design of a system minimizing both the probability to not detect a dangerous loss and the number of false alarms generated. The reliability theory and techniques utilized are described. The prediction of the hazard rates, the testing procedures, the Failure Modes Effects and Criticalities Analysis and the Fault Tree Analysis have been used to provide an estimation of the probability to damage a magnet, of the number of false alarms and of the number of generated warnings. The weakest components in the BLMS have been pointed out. The reliability figures of the BLMS have been calculated using a commercial software package (Isograph.). The effect of the variation of the parameters on the obtained results has been evaluated with a sensitivity analysis. The reliability model has been extended by the results of radiation tests. Design improvements, like redundant optical transmission, have been implemented in an iterative process. The proposed system is compliant with the reliability requirements. The model uncertainties are given by the limited knowledge of the thresholds levels of the superconductive magnets and of the locations of the losses along the ring. The implemented model allows modifications of the system, following the measuring of the hazard rates during the LHC life. It can also provide reference numbers to other accelerators which will implement similar technologies. (author)

  20. Parametric Design and Mechanical Analysis of Beams based on SINOVATION

    Science.gov (United States)

    Xu, Z. G.; Shen, W. D.; Yang, D. Y.; Liu, W. M.

    2017-07-01

    In engineering practice, engineer needs to carry out complicated calculation when the loads on the beam are complex. The processes of analysis and calculation take a lot of time and the results are unreliable. So VS2005 and ADK are used to develop a software for beams design based on the 3D CAD software SINOVATION with C ++ programming language. The software can realize the mechanical analysis and parameterized design of various types of beams and output the report of design in HTML format. Efficiency and reliability of design of beams are improved.

  1. Energy loss of heavy ion beams in plasma

    Energy Technology Data Exchange (ETDEWEB)

    Okada, T; Hotta, T [Tokyo Univ. of Agriculture and Technology, Koganei (Japan). Faculty of Technology

    1997-12-31

    The energy loss of heavy-ion beams (HIB) is studied by means of Vlasov theory and Particle-in-Cell (PIC) simulations in a plasma. The interaction of HIB with a plasma is of central importance for inertial confinement fusion (ICF). A number of studies on the HIB interaction with target plasma have been published. It is important for heavy-ion stopping that the effects of the non-linear interaction of HIB within the Vlasov theory are included. Reported are results of a numerical study of nonlinear effects to the stopping power for HIB in plasma. It is shown that the PIC simulations of collective effects of the stopping power are in a good agreement with the Vlasov theory. (author). 2 tabs., 1 fig., 5 refs.

  2. Detailed mechanical design of the LIPAc beam dump radiological shielding

    Energy Technology Data Exchange (ETDEWEB)

    Nomen, Oriol, E-mail: onomen@irec.cat [IREC, Barcelona, Catalonia (Spain); CDEI-UPC, Barcelona, Catalonia (Spain); Martínez, José I.; Arranz, Fernando; Iglesias, Daniel; Barrera, Germán; Brañas, Beatriz [CIEMAT, Madrid (Spain); Ogando, Francisco [UNED, Madrid (Spain); Molla, Joaquín [CIEMAT, Madrid (Spain); Sanmartí, Manel [IREC, Barcelona, Catalonia (Spain)

    2013-10-15

    Highlights: ► Mechanical design of the IFMIF LIPAc beam dump shielding has been performed. ► Lead shutter design performed to shield radiation from beam dump when LIPAc is off. ► External loads, working and dismantling conditions, included as design constraints. -- Abstract: The LIPAc is a 9 MeV, D{sup +} linear prototype accelerator for the validation of the IFMIF accelerator design. The high intensity, 125 mA CW beam is stopped in a copper cone involving a high production of neutrons and gamma radiation and activation of its surface. The beam stopper is surrounded by a shielding to attenuate the resulting radiation so that dose rate values comply with the limits at the different zones of the installation. The shielding includes for that purpose polyethylene rings, water tanks and gray cast iron rings. A lead shutter has also been designed to shield the gamma radiation that comes through the beam tube when the linear accelerator is not in operation, in order to allow access inside the building for maintenance tasks. The present work summarizes the detailed mechanical design of the beam dump shielding and the lead shutter taking into account the design constraints, such as working conditions and other external loads, as well as including provisions for dismantling.

  3. On the mechanical friction losses occurring in automotive differential gearboxes.

    Science.gov (United States)

    Antoni, Grégory

    2014-01-01

    In the automobile industry, the mechanical losses resulting from friction are largely responsible for various kinds of surface damage, such as the scuffing occurring in some mechanical assemblies. These scuffing processes seem to be due to a local loss of lubrication between certain mechanical elements of the same assembly, leading to a sharp increase in the friction, which can lead to a surface and volume damage in some of them, and even can cause, in the worst case, the whole destruction of the mechanical system if it has continued to operate. Predicting and checking the occurrence of this kind of undesirable phenomena, especially in some principal systems of the vehicle, represents nowadays, a crucial challenge in terms of automobile reliability and safety. This study focuses on the mechanical friction losses liable to occur in differential automobile gearboxes, which can lead in the long term to the scuffing of these mechanical systems. The friction losses involved were modeled, using a simple analytical approach, which is presented and discussed.

  4. Observations of neutral beam and ICRF tail ion losses due to Alfven modes in TFTR

    International Nuclear Information System (INIS)

    Darrow, D.S.; Zweben, S.J.; Chang, Z.

    1996-04-01

    Fast ion losses resulting from MHD modes at the Alfven frequency, such as the TAE, have been observed in TFTR. The modes have been driven both by neutral beam ions, at low B T , and by H-minority ICRF tail ions at higher B T . The measurements indicate that the loss rate varies linearly with the mode amplitude, and that the fast ion losses during the mode activity can be significant, e.g. up to 10% of the input power is lost in the worst case

  5. Loss of balance during balance beam walking elicits a multifocal theta band electrocortical response

    OpenAIRE

    Sipp, Amy R.; Gwin, Joseph T.; Makeig, Scott; Ferris, Daniel P.

    2013-01-01

    Determining the neural correlates of loss of balance during walking could lead to improved clinical assessment and treatment for individuals predisposed to falls. We used high-density electroencephalography (EEG) combined with independent component analysis (ICA) to study loss of balance during human walking. We examined 26 healthy young subjects performing heel-to-toe walking on a treadmill-mounted balance beam as well as walking on the treadmill belt (both at 0.22 m/s). ICA identified clust...

  6. Time evolution of the characteristic electron energy losses spectra of the electrons scattered on polycrystal samples of Al mechanically cleaned in vacuum

    International Nuclear Information System (INIS)

    Szczesny, R.; Baranowski, A.; Beliczynski, J.

    1982-01-01

    Measurements by the reflection technique of characteristic electron energy losses (CEEL) with a primary electron beam of energy E 0 =1 keV have been carried out on polycrystal samples of Al. The sample surfaces have been mechanically cleaned in a dinamical vacuum of the order 10 -6 Tr before each measurement. The CEEL spectra have been corrected for the resolving power of the apparatus by the deconvolution method. We have ascertained that the measuring technique and elaboration data method are useful for quickly obtaining the plasmon energy loss spectrum for an investigated material. (author)

  7. Precessed electron beam electron energy loss spectroscopy of graphene: Beyond channelling effects

    Energy Technology Data Exchange (ETDEWEB)

    Yedra, Ll.; Estradé, S., E-mail: sestrade@ub.edu [LENS, MIND-IN2UB, Departament d' Electrònica, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain); TEM-MAT, CCiT, Universitat de Barcelona, Solé i Sabarís 1, 08028 Barcelona (Spain); Torruella, P.; Eljarrat, A.; Peiró, F. [LENS, MIND-IN2UB, Departament d' Electrònica, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain); Darbal, A. D. [AppFive LLC, 1095 W Rio Salado Pkway, Suite 110, Tempe, Arizona 85281 (United States); Weiss, J. K. [AppFive LLC, 1095 W Rio Salado Pkway, Suite 110, Tempe, Arizona 85281 (United States); NanoMEGAS SPRL, Blvd. Edmond Machtens 79, B-1080 Brussels (Belgium)

    2014-08-04

    The effects of beam precession on the Electron Energy Loss Spectroscopy (EELS) signal of the carbon K edge in a 2 monolayer graphene sheet are studied. In a previous work, we demonstrated the use of precession to compensate for the channeling-induced reduction of EELS signal when in zone axis. In the case of graphene, no enhancement of EELS signal is found in the usual experimental conditions, as graphene is not thick enough to present channeling effects. Interestingly, though it is found that precession makes it possible to increase the collection angle, and, thus, the overall signal, without a loss of signal-to-background ratio.

  8. Beam-Induced Damage Mechanisms and their Calculation

    CERN Document Server

    Bertarelli, A

    2016-01-01

    The rapid interaction of highly energetic particle beams with matter induces dynamic responses in the impacted component. If the beam pulse is sufficiently intense, extreme conditions can be reached, such as very high pressures, changes of material density, phase transitions, intense stress waves, material fragmentation and explosions. Even at lower intensities and longer time-scales, significant effects may be induced, such as vibrations, large oscillations, and permanent deformation of the impacted components. These lectures provide an introduction to the mechanisms that govern the thermomechanical phenomena induced by the interaction between particle beams and solids and to the analytical and numerical methods that are available for assessing the response of impacted components. An overview of the design principles of such devices is also provided, along with descriptions of material selection guidelines and the experimental tests that are required to validate materials and components exposed to interactio...

  9. Mechanical properties of micro-sized copper bending beams machined by the focused ion beam technique

    International Nuclear Information System (INIS)

    Motz, C.; Schoeberl, T.; Pippan, R.

    2005-01-01

    Micro-sized bending beams with thicknesses, t, from 7.5 down to 1.0 μm were fabricated with the focused ion beam technique from a copper single crystal with an {1 1 1} orientation. The beams were loaded with a nano-indenter and the force vs. displacement curves were recorded. A strong size effect was found where the flow stress reaches almost 1 GPa for the thinnest beams. A common strain gradient plasticity approach was used to explain the size effect. However, the strong t -1.14 dependence of the flow stress could not be explained by this model. Additionally, the combination of two other dislocation mechanisms is discussed: the limitation of available dislocation sources and a dislocation pile-up at the beam centre. The contribution of the pile-up stress to the flow stress gives a t -1 dependence, which is in good agreement with the experimental results

  10. Ion confinement and radiation losses in the Advanced Toroidal Facility

    International Nuclear Information System (INIS)

    Isler, R.C.; Colchin, R.J.; Wade, M.R.; Lyon, J.F.; Fowler, R.H.; Rome, J.A.; Hiroe, S.; Baylor, L.R.; England, A.; Ma, C.H.; Rasmussen, D.A.; Ochando, M.; Paul, S.

    1991-01-01

    Collapses of stored energy are typically observed in low-density (anti n e ∼ 10 13 cm -3 ) extensively gettered ATF plasmas when the electron density rises to the ECH cutoff point, and the central heating is supplied only by neutral- beam-injection (NBI). However, the decline of stored energy can be avoided if the density is raised rapidly to about 5 x 10 13 cm -3 . Three mechanisms have been proposed to explain the collapses: (1) impurity radiation, (2) excitation of an electron instability driven by the neutral beams, or (3) poor coupling of the beam ions to the thermal plasmas. Detailed spectroscopic studies of plasma cleanliness as a function of the gettering procedure have shown that radiation is an unlikely candidate for initiating collapses, although it may become an important loss mechanism once the electron temperature has fallen to a low level. No specific electron instability has yet been identified with injection, but recent experimental and computational work indicates that losses by shinethrough and charge exchange strongly influence the evolution of low-density plasmas. This report discusses the beam particle losses, thermal ions, and the evolution of radiation profiles

  11. Mechanisms of Weight Regain following Weight Loss.

    Science.gov (United States)

    Blomain, Erik Scott; Dirhan, Dara Anne; Valentino, Michael Anthony; Kim, Gilbert Won; Waldman, Scott Arthur

    2013-01-01

    Obesity is a world-wide pandemic and its incidence is on the rise along with associated comorbidities. Currently, there are few effective therapies to combat obesity. The use of lifestyle modification therapy, namely, improvements in diet and exercise, is preferable over bariatric surgery or pharmacotherapy due to surgical risks and issues with drug efficacy and safety. Although they are initially successful in producing weight loss, such lifestyle intervention strategies are generally unsuccessful in achieving long-term weight maintenance, with the vast majority of obese patients regaining their lost weight during followup. Recently, various compensatory mechanisms have been elucidated by which the body may oppose new weight loss, and this compensation may result in weight regain back to the obese baseline. The present review summarizes the available evidence on these compensatory mechanisms, with a focus on weight loss-induced changes in energy expenditure, neuroendocrine pathways, nutrient metabolism, and gut physiology. These findings have added a major focus to the field of antiobesity research. In addition to investigating pathways that induce weight loss, the present work also focuses on pathways that may instead prevent weight regain. Such strategies will be necessary for improving long-term weight loss maintenance and outcomes for patients who struggle with obesity.

  12. Electron beam inactivation of Tulane virus on fresh produce, and mechanism of inactivation of human norovirus surrogates by electron beam irradiation.

    Science.gov (United States)

    Predmore, Ashley; Sanglay, Gabriel C; DiCaprio, Erin; Li, Jianrong; Uribe, R M; Lee, Ken

    2015-04-02

    Ionizing radiation, whether by electron beams or gamma rays, is a non-thermal processing technique used to improve the microbial safety and shelf-life of many different food products. This technology is highly effective against bacterial pathogens, but data on its effect against foodborne viruses is limited. A mechanism of viral inactivation has been proposed with gamma irradiation, but no published study discloses a mechanism for electron beam (e-beam). This study had three distinct goals: 1) evaluate the sensitivity of a human norovirus surrogate, Tulane virus (TV), to e-beam irradiation in foods, 2) compare the difference in sensitivity of TV and murine norovirus (MNV-1) to e-beam irradiation, and 3) determine the mechanism of inactivation of these two viruses by e-beam irradiation. TV was reduced from 7 log10 units to undetectable levels at target doses of 16 kGy or higher in two food matrices (strawberries and lettuce). MNV-1 was more resistant to e-beam treatment than TV. At target doses of 4 kGy, e-beam provided a 1.6 and 1.2 log reduction of MNV-1 in phosphate buffered saline (PBS) and Dulbecco's Modified Eagle Medium (DMEM), compared to a 1.5 and 1.8 log reduction of TV in PBS and Opti-MEM, respectively. Transmission electron microscopy revealed that increased e-beam doses negatively affected the structure of both viruses. Analysis of viral proteins by SDS-PAGE found that irradiation also degraded viral proteins. Using RT-PCR, irradiation was shown to degrade viral genomic RNA. This suggests that the mechanism of inactivation of e-beam was likely the same as gamma irradiation as the damage to viral constituents led to inactivation. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Mechanically reinforced glass beams

    DEFF Research Database (Denmark)

    Nielsen, Jens Henrik; Olesen, John Forbes

    2007-01-01

    laminated float glass beam is constructed and tested in four-point bending. The beam consist of 4 layers of glass laminated together with a slack steel band glued onto the bottom face of the beam. The glass parts of the tested beams are \\SI{1700}{mm} long and \\SI{100}{mm} high, and the total width of one...

  14. Beam energy reduction in an acceleration gap

    International Nuclear Information System (INIS)

    Rhee, M.J.

    1990-01-01

    The subject of high-current accelerators has recently attracted considerable attention. The high-current beam accompanies a substantial amount of field energy in the space between the beam and the drift tube wall, as it propagates through a conducting drift tube of accelerator system. While such a beam is being accelerated in a gap, this field energy is subject to leak through the opening of the gap. The amount of energy lost in the gap is replenished by the beam at the expense of its kinetic energy. In this paper, the authors present a simple analysis of field energy loss in an acceleration gap for a relativistic beam for which beam particle velocity equals to c. It is found that the energy loss, which in turn reduces the beam kinetic energy, is ΔV = IZ 0 : the beam current times the characteristic impedance of the acceleration gap. As a result, the apparent acceleration voltage of the gap is reduced from the applied voltage by ΔV. This effect, especially for generation of high-current beam accelerated by a multigap accelerator, appears to be an important design consideration. The energy reduction mechanism and a few examples are presented

  15. Beam loss in HIRFL-CSR due to collisions with residual gas in vacuum

    International Nuclear Information System (INIS)

    Tang Jingyu; Lei Wen; Wang Yifang

    1998-01-01

    The author discusses the collision of heavy ions with residual gas atoms in the vacuum and the cross-sections of the collision processes. The method calculating beam transmission efficiency in vacuum is presented taking HIRFL and CSR machine as examples. Based on rich experimental data, a series of empirical formulae of calculating the cross-section of charge changing process is given. The transmission efficiency curves of different sections in HIRFL and CSR are also calculated, and thus the reasonable requirements for HIRFL and CSR vacuum systems are given. The calculation method has been checked by the measurements of vacuum and beam loss in HIRFL

  16. Improved crystallinity and dynamic mechanical properties of reclaimed waste tire rubber/EVA blends under the influence of electron beam irradiation

    Science.gov (United States)

    Ramarad, Suganti; Ratnam, Chantara T.; Khalid, Mohammad; Chuah, Abdullah Luqman; Hanson, Svenja

    2017-01-01

    Dependence on automobiles has led to a huge amount of waste tires produced annually around the globe. In this study, the feasibility of recycling these waste tires by blending reclaimed waste tire rubber (RTR) with poly(ethylene-co-vinyl acetate) (EVA) and electron beam irradiation was studied. The RTR/EVA blends containing 100-0 wt% of RTR were prepared in the internal mixer followed by electron beam (EB) irradiation with doses ranging from 50 to 200 kGy. The processing torques, calorimetric and dynamic mechanical properties of the blends were studied. Blends were found to have lower processing torque indicating easier processability of RTR/EVA blends compared to EVA. RTR domains were found to be dispersed in EVA matrix, whereas, irradiation improved the dispersion of RTR into smaller domains in EVA matrix. Results showed the addition of EVA improves the efficiency of irradiation induced crosslink formation and dynamic mechanical properties of the blends at the expense of the calorimetric properties. Storage and loss modulus of 50 wt% RTR blend was higher than RTR and EVA, suggesting partial miscibility of the blend. Whereas, electron beam irradiation improved the calorimetric properties and dynamic mechanical properties of the blends through redistribution of RTR in smaller domain sizes within EVA.

  17. Mechanical model for ductility loss

    International Nuclear Information System (INIS)

    Hu, W.L.

    1980-01-01

    A mechanical model was constructed to probe into the mechanism of ductility loss. Fracture criterion based on critical localized deformation was undertaken. Two microstructure variables were considered in the model. Namely, the strength ratio of grain boundary affected area to the matrix, Ω, and the linear fraction, x, of grain boundary affected area. A parametrical study was carried out. The study shows that the ductility is very sensitive to those microstructure parameters. The functional dependence of ductility to temperature as well as strain-rate, suggested by the model, is demonstrated to be consistent with the observation

  18. Application of the extreme value theory to beam loss estimates in the SPIRAL2 linac based on large scale Monte Carlo computations

    Directory of Open Access Journals (Sweden)

    R. Duperrier

    2006-04-01

    Full Text Available The influence of random perturbations of high intensity accelerator elements on the beam losses is considered. This paper presents the error sensitivity study which has been performed for the SPIRAL2 linac in order to define the tolerances for the construction. The proposed driver aims to accelerate a 5 mA deuteron beam up to 20   A MeV and a 1 mA ion beam for q/A=1/3 up to 14.5 A MeV. It is a continuous wave regime linac, designed for a maximum efficiency in the transmission of intense beams and a tunable energy. It consists in an injector (two   ECRs   sources+LEBTs with the possibility to inject from several sources+radio frequency quadrupole followed by a superconducting section based on an array of independently phased cavities where the transverse focalization is performed with warm quadrupoles. The correction scheme and the expected losses are described. The extreme value theory is used to estimate the expected beam losses. The described method couples large scale computations to obtain probability distribution functions. The bootstrap technique is used to provide confidence intervals associated to the beam loss predictions. With such a method, it is possible to measure the risk to loose a few watts in this high power linac (up to 200 kW.

  19. Observations of beam-beam effects in the LHC 2011

    International Nuclear Information System (INIS)

    Herr, W.; Alemany, R.; Buffat, X.; Calaga, R.; Giachino, R.; Papotti, G.; Pieloni, T.; Trad, G.; Schaumann, M.

    2012-01-01

    We have reported on the first studies of beam-beam effects in the LHC with high intensity, high brightness beams and can summarize the results as follows. The effect of the beam-beam interaction on the beam dynamics is clearly established. The LHC allows very large head-on tune shifts above nominal. The effect of long range interactions on the beam lifetime and losses (dynamic aperture) is clearly visible. The number of head-on and/or long range interactions important for losses and all predicted PACMAN effects have been observed. All observations are in good agreement with the expectations

  20. Allotropic effects on the energy loss of swift H+ and He+ ion beams through thin foils

    International Nuclear Information System (INIS)

    Garcia-Molina, Rafael; Abril, Isabel; Denton, Cristian D.; Heredia-Avalos, Santiago

    2006-01-01

    We have developed a theoretical treatment and a simulation code to study the energy loss of swift H + and He + ion beams interacting with thin foils of different carbon allotropes. The former is based on the dielectric formalism, and the latter combines Monte Carlo with the numerical solution of the motion equation for each projectile to describe its trajectory and interactions through the target. The capabilities of both methods are assessed by the reasonably good agreement between their predictions and the experimental results, for a wide range of projectile energies and target characteristics. Firstly, we apply the theoretical procedure to calculate the stopping cross sections for H + and He + beams in foils of different allotropic forms of carbon (such as diamond, graphite, amorphous carbon, glassy carbon and C 60 -fullerite), as a function of the projectile energy. We take into account the electronic structure of the projectile, as well as the different charge states it can acquire, the energy loss associated to the electronic capture and loss processes, the polarization of the projectile, and a realistic description of the target. On the other hand, the simulation code is used to evaluate the energy distributions of swift H + and He + ion beams when traversing several foils of the above mentioned allotropic forms of carbon, in order to analyze the influence of the chemical and physical state of the target in the projectile energy loss. These allotropic effects are found to become more important around the maximum of the stopping cross-section

  1. Controlled Transverse Blow-up of Highenergy Proton Beams for Aperture Measurements and Loss Maps

    CERN Document Server

    Hӧfle, W; Redaelli, S; Schmidt, R; Valuch, D; Wollmann, D; Zerlauth, M

    2012-01-01

    A technique was developed to blow-up transversely in a controlled way high energy proton beams in the LHC. The technique is based on band limited white noise excitation that is injected into the transverse damper feedback loop. The injected signal can be gated to selectively blow-up individual trains of bunches. The speed of transverse blow-up can be precisely controlled. This opens the possibility to perform safely and efficiently aperture measurements and loss maps with high intensity bunch trains well above stored beam energies that are considered to be safe. In particular, lengthy procedures for measurements at top energy, otherwise requiring multiple fills of individual bunches, can be avoided. In this paper, the method is presented and results from beam measurements are discussed and compared with alternative blowup methods.

  2. Low loss power splitter for antenna beam forming networks using probes in a waveguide

    DEFF Research Database (Denmark)

    Dich, Mikael; Mortensen, Mette Dahl

    1994-01-01

    The design of a low loss one-to-four power splitter suitable for beam forming networks in antenna arrays is presented. The power splitter is constructed of a shorted waveguide in which five coaxial probes are inserted. Methods for the design of the power splitter are presented together...

  3. Low-beam-loss design of a compact, high-current deuteron radio frequency quadrupole accelerator

    Directory of Open Access Journals (Sweden)

    C. Zhang

    2004-10-01

    Full Text Available A 201.5 MHz, 50 mA, 2.0 MeV deuteron radio frequency quadrupole accelerator is proposed as the neutron generator for the neutron experiment facility project at Peking University, China. Based on better understanding of beam losses, some new optimization procedures concerning both longitudinal and transverse dynamics are adopted. Accordingly, the beam transmission efficiency is improved from 91.2% to 98.3% and the electrode length is shortened from 2.91 to 2.71 m. The fundamental physical analyses are performed to look inside the new design recipe and explain why it works.

  4. Beam Dynamics Challenges for Future Circular Colliders

    CERN Multimedia

    Zimmermann, Frank

    2004-01-01

    The luminosity of hadron colliders rises with the beam intensity, until some limit is encountered, mostly due to head-on and long-range beam-beam interaction, due to electron cloud, or due to conventional impedance sources. Also beam losses caused by various mechanisms may affect the performance. The limitations can be alleviated, if not overcome, by a proper choice of beam parameters and by dedicated compensation schemes. Examples include alternating crossing at several interaction points, electromagnetic wires, super-bunches, electron lenses, clearing electrodes, and nonlinear collimation. I discuss such mitigating measures and related research efforts, with special emphasis on the LHC and its upgrade.

  5. An FPGA Based Implementation for Real-Time Processing of the LHC Beam Loss Monitoring System's Data

    CERN Document Server

    Dehning, B; Emery, J; Ferioli, G; Zamantzas, C

    2006-01-01

    The strategy for machine protection and quench prevention of the Large Hadron Collider (LHC) at the European Organisation for Nuclear Research (CERN) is mainly based on the Beam Loss Monitoring (BLM) system. At each turn, there will be several thousands of data to record and process in order to decide if the beams should be permitted to continue circulating or their safe extraction is necessary to be triggered. The processing involves a proper analysis of the loss pattern in time and for the decision the energy of the beam needs to be accounted. This complexity needs to be minimized by all means to maximize the reliability of the BLM system and allow a feasible implementation. In this paper, a field programmable gate array (FPGA) based implementation is explored for the real-time processing of the LHC BLM data. It gives emphasis on the highly efficient Successive Running Sums (SRS) technique used that allows many and long integration periods to be maintained for each detector's data with relatively small leng...

  6. Metallurgical Mechanisms Controlling Mechanical Properties of Aluminum Alloy 2219 Produced By Electron Beam Freeform Fabrication

    Science.gov (United States)

    Domack, Marcia S.; Taminger, Karen M. B.; Begley, Matthew

    2006-01-01

    The electron beam freeform fabrication (EBF3) layer-additive manufacturing process has been developed to directly fabricate complex geometry components. EBF3 introduces metal wire into a molten pool created on the surface of a substrate by a focused electron beam. Part geometry is achieved by translating the substrate with respect to the beam to build the part one layer at a time. Tensile properties have been demonstrated for electron beam deposited aluminum and titanium alloys that are comparable to wrought products, although the microstructures of the deposits exhibit features more typical of cast material. Understanding the metallurgical mechanisms controlling mechanical properties is essential to maximizing application of the EBF3 process. In the current study, mechanical properties and resulting microstructures were examined for aluminum alloy 2219 fabricated over a range of EBF3 process variables. Material performance was evaluated based on tensile properties and results were compared with properties of Al 2219 wrought products. Unique microstructures were observed within the deposited layers and at interlayer boundaries, which varied within the deposit height due to microstructural evolution associated with the complex thermal history experienced during subsequent layer deposition. Microstructures exhibited irregularly shaped grains, typically with interior dendritic structures, which were described based on overall grain size, morphology, distribution, and dendrite spacing, and were correlated with deposition parameters. Fracture features were compared with microstructural elements to define fracture paths and aid in definition of basic processing-microstructure-property correlations.

  7. Mechanical and tribological properties of ion beam-processed surfaces

    International Nuclear Information System (INIS)

    Kodali, P.

    1998-01-01

    The intent of this work was to broaden the applications of well-established surface modification techniques and to elucidate the various wear mechanisms that occur in sliding contact of ion-beam processed surfaces. The investigation included characterization and evaluation of coatings and modified surfaces synthesized by three surface engineering methods; namely, beam-line ion implantation, plasma-source ion implantation, and DC magnetron sputtering. Correlation among measured properties such as surface hardness, fracture toughness, and wear behavior was also examined. This dissertation focused on the following areas of research: (1) investigating the mechanical and tribological properties of mixed implantation of carbon and nitrogen into single crystal silicon by beam-line implantation; (2) characterizing the mechanical and tribological properties of diamond-like carbon (DLC) coatings processed by plasma source ion implantation; and (3) developing and evaluating metastable boron-carbon-nitrogen (BCN) compound coatings for mechanical and tribological properties. The surface hardness of a mixed carbon-nitrogen implant sample improved significantly compared to the unimplanted sample. However, the enhancement in the wear factor of this sample was found to be less significant than carbon-implanted samples. The presence of nitrogen might be responsible for the degraded wear behavior since nitrogen-implantation alone resulted in no improvement in the wear factor. DLC coatings have low friction, low wear factor, and high hardness. The fracture toughness of DLC coatings has been estimated for the first time. The wear mechanism in DLC coatings investigated with a ruby slider under a contact stress of 1 GPa was determined to be plastic deformation. The preliminary data on metastable BCN compound coatings indicated high friction, low wear factor, and high hardness

  8. Beam loading effects for two-beam ring

    International Nuclear Information System (INIS)

    Wang Lanfa; Lin Yuzheng; Tong Dechun

    1999-01-01

    An analytic treatment of multi-bunch potential well distortion for a two-beam storage ring is presented. The longitudinal wake effects are separated into: the mode loss, the synchrotron tune shift (both due to potential well distortion) and the coherent multi-bunch coupling. Here, only the first two effects are studied. Resulting simple analytic formulas describe the mode loss and the synchrotron tune shift experienced by a given bunch within the two-beam, as a function of the high order mode's parameters. One can get immediately a simple quantitative answer in term of the mode loss and the synchrotron tune shift experienced by each bunch from these formulas, so the authors can know how to modify the existing configuration of parasitic cavity resonance (via frequency tuning) so that the resulting potential well distortion effects are minimized. When the RF cavities are symmetrically distributed about the interaction points, the two beams will have same beam loading effects, so the authors can compensate the phase shift of the two beam using the same method as in one beam case

  9. Simulation of equivalent dose due to accidental electron beam loss in Indus-1 and Indus-2 synchrotron radiation sources using FLUKA code

    International Nuclear Information System (INIS)

    Sahani, P.K.; Dev, Vipin; Singh, Gurnam; Haridas, G.; Thakkar, K.K.; Sarkar, P.K.; Sharma, D.N.

    2008-01-01

    Indus-1 and Indus-2 are two Synchrotron radiation sources at Raja Ramanna Centre for Advanced Technology (RRCAT), India. Stored electron energy in Indus-1 and Indus-2 are 450MeV and 2.5GeV respectively. During operation of storage ring, accidental electron beam loss may occur in addition to normal beam losses. The Bremsstrahlung radiation produced due to the beam losses creates a major radiation hazard in these high energy electron accelerators. FLUKA, the Monte Carlo radiation transport code is used to simulate the accidental beam loss. The simulation was carried out to estimate the equivalent dose likely to be received by a trapped person closer to the storage ring. Depth dose profile in water phantom for 450MeV and 2.5GeV electron beam is generated, from which percentage energy absorbed in 30cm water phantom (analogous to human body) is calculated. The simulation showed the percentage energy deposition in the phantom is about 19% for 450MeV electron and 4.3% for 2.5GeV electron. The dose build up factor in 30cm water phantom for 450MeV and 2.5GeV electron beam are found to be 1.85 and 2.94 respectively. Based on the depth dose profile, dose equivalent index of 0.026Sv and 1.08Sv are likely to be received by the trapped person near the storage ring in Indus-1 and Indus-2 respectively. (author)

  10. Loss of beam ions to the inside of the PDX [Poloidal Divertor Experiment] tokamak during the fishbone instability

    International Nuclear Information System (INIS)

    Heidbrink, W.W.; Beiersdorfer, P.

    1986-11-01

    Using data from two vertical charge-exchange detectors on the Poloidal Divertor Experiment (PDX), we have identified a set of conditions for which loss of beam ions inward in major radius is observed during the fishbone instability. Previously, it was reported that beam ions were lost only to the outside of the PDX tokamak

  11. Mechanical and Thermal Analysis of Classical Functionally Graded Coated Beam

    Directory of Open Access Journals (Sweden)

    Toudehdehghan Abdolreza

    2018-01-01

    Full Text Available The governing equation of a classical rectangular coated beam made of two layers subjected to thermal and uniformly distributed mechanical loads are derived by using the principle of virtual displacements and based on Euler-Bernoulli deformation beam theory (EBT. The aim of this paper was to analyze the static behavior of clamped-clamped thin coated beam under thermo-mechanical load using MATLAB. Two models were considered for composite coated. The first model was consisting of ceramic layer as a coated and substrate which was metal (HC model. The second model was consisting of Functionally Graded Material (FGM as a coated layer and metal substrate (FGC model. From the result it was apparent that the superiority of the FGC composite against conventional coated composite has been demonstrated. From the analysis, the stress level throughout the thickness at the interface of the coated beam for the FGC was reduced. Yet, the deflection in return was observed to increase. Therefore, this could cater to various new engineering applications where warrant the utilization of material that has properties that are well-beyond the capabilities of the conventional or yesteryears materials.

  12. Low loss power splitter for antenna beam forming networks using probes in a waveguide

    OpenAIRE

    Dich, Mikael; Mortensen, Mette Dahl

    1994-01-01

    The design of a low loss one-to-four power splitter suitable for beam forming networks in antenna arrays is presented. The power splitter is constructed of a shorted waveguide in which five coaxial probes are inserted. Methods for the design of the power splitter are presented together with an experimental verification

  13. Wave-optics description of self-healing mechanism in Bessel beams.

    Science.gov (United States)

    Aiello, Andrea; Agarwal, Girish S

    2014-12-15

    Bessel beams' great importance in optics lies in that these propagate without spreading and can reconstruct themselves behind an obstruction placed across their path. However, a rigorous wave-optics explanation of the latter property is missing. In this work, we study the reconstruction mechanism by means of a wave-optics description. We obtain expressions for the minimum distance beyond the obstruction at which the beam reconstructs itself, which are in close agreement with the traditional one determined from geometrical optics. Our results show that the physics underlying the self-healing mechanism can be entirely explained in terms of the propagation of plane waves with radial wave vectors lying on a ring.

  14. Contact force and mechanical loss of multistage cable under tension and bending

    Science.gov (United States)

    Ru, Yanyun; Yong, Huadong; Zhou, Youhe

    2016-10-01

    A theoretical model for calculating the stress and strain states of cabling structures with different loadings has been developed in this paper. We solve the problem for the first- and second-stage cable with tensile or bending strain. The contact and friction forces between the strands are presented by two-dimensional contact model. Several theoretical models have been proposed to verify the results when the triplet subjected to the tensile strain, including contact force, contact stresses, and mechanical loss. It is found that loadings will affect the friction force and the mechanical loss of the triplet. The results show that the contact force and mechanical loss are dependent on the twist pitch. A shorter twist pitch can lead to higher contact force, while the trend of mechanical loss with twist pitch is complicated. The mechanical loss may be reduced by adjusting the twist pitch reasonably. The present model provides a simple analysis method to investigate the mechanical behaviors in multistage-structures under different loads.

  15. Power balance and loss mechanism analysis in RF transmit coil arrays.

    Science.gov (United States)

    Kuehne, Andre; Goluch, Sigrun; Waxmann, Patrick; Seifert, Frank; Ittermann, Bernd; Moser, Ewald; Laistler, Elmar

    2015-10-01

    To establish a framework for transmit array power balance calculations based on power correlation matrices to accurately quantify the loss contributions from different mechanisms such as coupling, lumped components, and radiation. Starting from Poynting's theorem, power correlation matrices are derived for all terms in the power balance, which is formulated as a matrix equation. Finite-difference time-domain simulations of two 7 T eight-channel head array coils at 297.2 MHz are used to verify the theoretical considerations and demonstrate their application. Care is taken to accurately incorporate all loss mechanisms. The power balance for static B1 phase shims as well as two-dimensional spatially selective transmit SENSE pulses is shown. The simulated power balance shows an excellent agreement with theory, with a maximum power imbalance of less than 0.11%. Power loss contributions from the different loss mechanisms vary significantly between the investigated setups, and depending on the excitation mode imposed on the coil. The presented approach enables a straightforward loss evaluation for an arbitrary excitation of transmit coil arrays. Worst-case power imbalance and losses are calculated in a straightforward manner. This allows for deeper insight into transmit array loss mechanisms, incorporation of radiated power components in specific absorption rate calculations and verification of electromagnetic simulations. © 2014 Wiley Periodicals, Inc.

  16. Synthesis of Pt nanoparticles and their burrowing into Si due to synergistic effects of ion beam energy losses

    Directory of Open Access Journals (Sweden)

    Pravin Kumar

    2014-10-01

    Full Text Available We report the synthesis of Pt nanoparticles and their burrowing into silicon upon irradiation of a Pt–Si thin film with medium-energy neon ions at constant fluence (1.0 × 1017 ions/cm2. Several values of medium-energy neon ions were chosen in order to vary the ratio of the electronic energy loss to the nuclear energy loss (Se/Sn from 1 to 10. The irradiated films were characterized using Rutherford backscattering spectroscopy (RBS, atomic force microscopy (AFM, scanning electron microscopy (SEM, X-ray diffraction (XRD and high resolution transmission electron microscopy (HRTEM. A TEM image of a cross section of the film irradiated with Se/Sn = 1 shows ≈5 nm Pt NPs were buried up to ≈240 nm into the silicon. No silicide phase was detected in the XRD pattern of the film irradiated at the highest value of Se/Sn. The synergistic effect of the energy losses of the ion beam (molten zones are produced by Se, and sputtering and local defects are produced by Sn leading to the synthesis and burrowing of Pt NPs is evidenced. The Pt NP synthesis mechanism and their burrowing into the silicon is discussed in detail.

  17. Far-field interaction of focused relativistic electron beams in electron energy loss spectroscopy of nanoscopic platelets

    OpenAIRE

    Itskovsky, M. A.; Cohen, H.; Maniv, T.

    2008-01-01

    A quantum mechanical scattering theory for relativistic, highly focused electron beams near nanoscopic platelets is presented, revealing a new excitation mechanism due to the electron wave scattering from the platelet edges. Radiative electromagnetic excitations within the light cone are shown to arise, allowed by the breakdown of momentum conservation along the beam axis in the inelastic scattering process. Calculated for metallic (silver and gold) and insulating (SiO2 and MgO) nanoplatelets...

  18. Insulating materials resistance in intense radiation beams

    International Nuclear Information System (INIS)

    Oproiu, Constantin; Martin, Diana; Scarlat, Florin; Timus, Dan; Brasoveanu, Mirela; Nemtanu, Monica

    2002-01-01

    The paper emphasizes the main changes of the mechanical and electrical properties of some organic insulating materials exposed to accelerated electron beams. These materials are liable to be used in nuclear plants and particle accelerators. The principal mechanical and electrical properties analyzed were: tensile strength, fracture strength, tearing on fracture, dielectric strength, electrical resistivity, dielectric constant and tangent angle of dielectric losses. (authors)

  19. Beam backgrounds in the ATLAS detector during LHC loss map tests at beta*=40cm and beta*=80cm at Ebeam=6.5 TeV

    CERN Document Server

    The ATLAS collaboration

    2017-01-01

    In this note the beam-background measurements with the ATLAS detector during lossmap tests of the LHC are described. Loss maps taken at beta*=40 cm and the normal 2015 setting of beta*=80 cm are compared. In the first case several collimator settings were explored, resulting in significant changes of beam backgrounds in ATLAS. Besides the studies of the dependence of background on collimation, which are important for optimisation of the LHC performance, these tests provide a clean environment to study the relative importance of beam halo losses on the experiment. The results show that the halo-related component of beam background in ATLAS decreases exponentially with increasing aperture of the tertiary collimators, the slope in terms of nominal sigma being about -0.5. From the data it is also shown that in normal operation conditions of LHC run 2 the beam halo losses contribute at most at the percent level to the total background, the dominant part coming from beam-gas interactions. The data are also used to ...

  20. Mechanical frequency selectivity of an artificial basilar membrane using a beam array with narrow supports

    International Nuclear Information System (INIS)

    Kim, Sangwon; Jang, Jongmoon; Choi, Hongsoo; Song, Won Joon; Jang, Jeong Hun

    2013-01-01

    The study presented in this paper assessed the frequency selectivity of an artificial basilar membrane (ABM) constructed using a piezoelectric beam array with narrow supports. Three ABM samples were constructed. Each ABM contained 16 beams with various lengths in a one-dimensional array. To experimentally assess the frequency selectivity of the ABM, mechanical vibration induced either by an electrical or an acoustic stimulus was measured with a scanning laser-Doppler vibrometer. The electro-mechanical and acousto-mechanical transfer functions were defined for the same purpose. The tonotopy of each beam array was visualized by post-processing the experimental results. Finite element analyses were conducted to numerically compute the resonance frequencies, identify the associated vibrational modes, and evaluate the harmonic responses of the beams. The influence of the residual stresses existing in the beams was reflected in the geometric models by introducing three different levels of arc-shaped lateral deformations in the beams. The harmonic analyses revealed that each beam of the ABM samples presented independent band-pass characteristics. The experiments and simulations commonly showed a frequency selectivity of the fabricated ABMs in the range of 2–20 kHz. Therefore, the device is suitable for development of a totally implantable artificial cochlea, implementing a mechanical frequency analyzer. This work is part of research to develop a prototype of a totally implantable artificial cochlea. (paper)

  1. Changes in mechanical and chemical wood properties by electron beam irradiation

    International Nuclear Information System (INIS)

    Schnabel, Thomas; Huber, Hermann; Grünewald, Tilman A.; Petutschnigg, Alexander

    2015-01-01

    Highlights: • Changes in wood due to electron beam irradiations (EBI) were evaluated. • Wood components undergo different altering mechanisms due to the irradiation. • Chemical reactions in wood lead to better surface hardness of low irradiated wood. - Abstract: This study deals with the influence of various electron beam irradiation (EBI) dosages on the Brinell hardness of Norway spruce. The results of the hardness measurements and the FT-IR spectroscopic analysis show different effects of the EBI at dosages of 25, 50, 100 and 200 kGy. It was assumed that the lignin and carbohydrates undergo different altering mechanisms due to the EBI treatment. New cleavage products and condensation reactions of lignin and carbohydrates lead to better surface hardness of low irradiated wood samples. These results provide a useful basis for further investigations on the changes in wood chemistry and material properties due to electron beam irradiations

  2. Changes in mechanical and chemical wood properties by electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Schnabel, Thomas, E-mail: thomas.schnabel@fh-salzburg.ac.at [Salzburg University of Applied Sciences, Department of Forest Products Technology and Wood Constructions, Marktstraße 136a, 5431 Kuchl (Austria); Huber, Hermann [Salzburg University of Applied Sciences, Department of Forest Products Technology and Wood Constructions, Marktstraße 136a, 5431 Kuchl (Austria); Grünewald, Tilman A. [BOKU University of Natural Resources and Life Sciences, Institute of Physics and Materials Science, Peter Jordan Straße 82, 1190 Vienna (Austria); Petutschnigg, Alexander [Salzburg University of Applied Sciences, Department of Forest Products Technology and Wood Constructions, Marktstraße 136a, 5431 Kuchl (Austria); BOKU University of Natural Resources and Life Sciences, Konrad Lorenzstraße 24, 3430 Tulln (Austria)

    2015-03-30

    Highlights: • Changes in wood due to electron beam irradiations (EBI) were evaluated. • Wood components undergo different altering mechanisms due to the irradiation. • Chemical reactions in wood lead to better surface hardness of low irradiated wood. - Abstract: This study deals with the influence of various electron beam irradiation (EBI) dosages on the Brinell hardness of Norway spruce. The results of the hardness measurements and the FT-IR spectroscopic analysis show different effects of the EBI at dosages of 25, 50, 100 and 200 kGy. It was assumed that the lignin and carbohydrates undergo different altering mechanisms due to the EBI treatment. New cleavage products and condensation reactions of lignin and carbohydrates lead to better surface hardness of low irradiated wood samples. These results provide a useful basis for further investigations on the changes in wood chemistry and material properties due to electron beam irradiations.

  3. MD 2197: Experimental studies of Landau damping by means of Beam Transfer Function measurements in the presence of beam-beam interactions and diffusive mechanisms

    CERN Document Server

    Tambasco, Claudia; Barranco Garcia, Javier; Boccardi, Andrea; Buffat, Xavier; Bruce, Roderik; Gasior, Marek; Hostettler, Michi; Lefevre, Thibaut; Louro Alves, Diogo Miguel; Metral, Elias; Persson, Tobias Hakan Bjorn; Pieloni, Tatiana; Pojer, Mirko; Salvachua Ferrando, Belen Maria; Solfaroli Camillocci, Matteo; CERN. Geneva. ATS Department

    2018-01-01

    Beam Transfer Function (BTF) measurements are direct measurement of the stability diagrams that define the stability threshold of coherent beam instabilities driven by the impedance. At the LHC, some coherent instabilities at flat top energy are still not fully understood and the BTF measurements provide a method to experimentally probe the Landau damping of the proton beams. The BTF response is sensitive to the particle distribution changes and contain information about the transverse tune spread in the beams. The BTF system has been installed in the LHC in the 2015 in order to investigate the Landau damping at different stages of the operational cycle, machine configurations (different octupole currents, crossing angles, tunes etc...) and in presence of beam-beam excited resonances that may provoke diffusion mechanisms with a consequence change of Landau damping. Past MDs showed some difficulties for the reconstruction of the stability diagram from BTF measurements and several improvements on the BTF sy...

  4. Electro-mechanical coupling of rotating 3D beams

    Directory of Open Access Journals (Sweden)

    Stoykov S.

    2016-01-01

    Full Text Available A rotating thin-walled beam with piezoelectric element is analysed. The beam is considered to vibrate in space, hence the longitudinal, transverse and torsional deformations are taken into account. The bending deformations of the beam are modelled by assuming Timoshenko's theory. Torsion is included by considering that the cross section rotates as a rigid body but can deform in longitudinal direction due to warping. The warping function is computed preliminary by the finite element method. The equation of motion is derived by the principle of virtual work and discretized in space by the Ritz method. Electro-mechanical coupling is included in the model by considering the internal electrical energy and the electric charge output. The piezo-electric constitutive relations are used in reduced form. The beam is assumed to rotate about a fixed axis with constant speed. The equation of motion is derived in rotating coordinate system, but the influence of the rotation of the coordinate system is taken into account through the inertia forces. Results in time domain are presented for different speeds of rotation and frequencies of vibration. The influence of the speed of rotation and of the frequency of vibration on the electrical output is presented and analysed.

  5. Real-Time System Supervision for the LHC Beam Loss Monitoring System at CERN

    CERN Document Server

    Zamantzas, C; Effinger, E; Emery, J; Jackson, S

    2014-01-01

    The strategy for machine protection and quench prevention of the Large Hadron Collider (LHC) at the European Organisation for Nuclear Research (CERN) is mainly based on the Beam Loss Monitoring (BLM) system. The LHC BLM system is one of the most complex and large instrumentation systems deployed in the LHC. In addition to protecting the collider, the system also needs to provide a means of diagnosing machine faults and deliver feedback of the losses to the control room as well as to several systems for their setup and analysis. In order to augment the dependability of the system several layers of supervision has been implemented internally and externally to the system. This paper describes the different methods employed to achieve the expected availability and system fault detection.

  6. Cellular mechanisms of noise-induced hearing loss.

    Science.gov (United States)

    Kurabi, Arwa; Keithley, Elizabeth M; Housley, Gary D; Ryan, Allen F; Wong, Ann C-Y

    2017-06-01

    Exposure to intense sound or noise can result in purely temporary threshold shift (TTS), or leave a residual permanent threshold shift (PTS) along with alterations in growth functions of auditory nerve output. Recent research has revealed a number of mechanisms that contribute to noise-induced hearing loss (NIHL). The principle cause of NIHL is damage to cochlear hair cells and associated synaptopathy. Contributions to TTS include reversible damage to hair cell (HC) stereocilia or synapses, while moderate TTS reflects protective purinergic hearing adaptation. PTS represents permanent damage to or loss of HCs and synapses. While the substrates of HC damage are complex, they include the accumulation of reactive oxygen species and the active stimulation of intracellular stress pathways, leading to programmed and/or necrotic cell death. Permanent damage to cochlear neurons can also contribute to the effects of NIHL, in addition to HC damage. These mechanisms have translational potential for pharmacological intervention and provide multiple opportunities to prevent HC damage or to rescue HCs and spiral ganglion neurons that have suffered injury. This paper reviews advances in our understanding of cellular mechanisms that contribute to NIHL and their potential for therapeutic manipulation. Published by Elsevier B.V.

  7. A Compliant Bistable Mechanism Design Incorporating Elastica Buckling Beam Theory and Pseudo-Rigid-Body Model

    DEFF Research Database (Denmark)

    Sönmez, Ümit; Tutum, Cem Celal

    2008-01-01

    In this work, a new compliant bistable mechanism design is introduced. The combined use of pseudo-rigid-body model (PRBM) and the Elastica buckling theory is presented for the first time to analyze the new design. This mechanism consists of the large deflecting straight beams, buckling beams...... and the buckling Elastica solution for an original compliant mechanism kinematic analysis. New compliant mechanism designs are presented to highlight where such combined kinematic analysis is required....

  8. Mechanical and Thermal Design of the CEBAF Hall A Beam Calorimeter

    CERN Document Server

    Bevins, Michael E; Degtiarenko, Pavel; Dillon-Townes, Lawrence A; Freyberger, Arne; Gilman, Ronald; Saha, Arun; Slachtouski, Stephanie

    2005-01-01

    A calorimeter has been proposed to provide 0.5% - 1.0% absolute measurements of beam current in the Hall A end station of the Thomas Jefferson National Accelerator Facility (JLab) CEBAF machine. Silver and copper calorimeters built in the 1960's achieved precisions of about 1%. Modern powder metallurgy processes have produced high density, high thermal conductivity tungsten-copper composite materials that will minimize beam loss while maintaining a rapid thermal response time. Heat leaks will be minimized by mounting the mass in vacuum on glass ceramic mounts. A conduction cooling scheme utilizes an advanced carbon fiber compliant thermal interface material. Transient finite difference and finite element models were developed to estimate heat leaks and thermal response times.

  9. Electron beam induced modifications in flexible biaxially oriented polyethylene terephthalate sheets: Improved mechanical and electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhary, N. [Accelerator & Pulse Power Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Koiry, S.P. [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Singh, A., E-mail: asb_barc@yahoo.com [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Tillu, A.R. [Accelerator & Pulse Power Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Jha, P.; Samanta, S.; Debnath, A.K. [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Aswal, D.K., E-mail: dkaswal@yahoo.com [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Mondal, R.K. [Radiation Technology Development Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Acharya, S.; Mittal, K.C. [Accelerator & Pulse Power Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India)

    2017-03-01

    In the present work, we have studied the effects of electron beam irradiation (with dose ranging from 2 to 32 kGy) on mechanical and electrical properties of biaxially oriented polyethylene terephthalate (BOPET) sheets. The sol-gel analysis, Fourier transformation infra-red (FTIR), X-ray photoelectron spectroscopy (XPS) characterizations of the irradiated BOPET sheets suggest partial cross-linking of PET chains through the diethylene glycol (DEG). The mechanical properties of BOPET, such as, tensile strength, Young's modulus and electrical resistivity shows improvement with increasing dose and saturate for doses >10 kGy. The improved mechanical properties and high electrical resistivity of electron beam modified BOPET sheets may have additional advantages in applications, such as, packaging materials for food irradiation, medical product sterilization and electronic industries. - Graphical abstract: Irradiation of BOPET by electron beam leads to the formation of diethylene glycol that crosslink's the PET chains, resulting in improved mechanical properties and enhanced electrical resistivity. - Highlights: • BOPET exhibit improved tensile strength/Young's modulus after e-beam exposure. • Electrical resistivity of BOPET increases after e-beam exposure. • Cross-linking of PET chains through diethylene glycol was observed after e-beam exposure.

  10. BATMAN beam properties characterization by the beam emission spectroscopy diagnostic

    International Nuclear Information System (INIS)

    Bonomo, F.; Ruf, B.; Schiesko, L.; Fantz, U.; Franzen, P.; Riedl, R.; Wünderlich, D.; Barbisan, M.; Pasqualotto, R.; Serianni, G.; Cristofaro, S.

    2015-01-01

    The ITER neutral beam heating systems are based on the production and acceleration of negative ions (H/D) up to 1 MV. The requirements for the beam properties are strict: a low core beam divergence (< 0.4 °) together with a low source pressure (≤ 0.3 Pa) would permit to reduce the ion losses along the beamline, keeping the stripping particle losses below 30%. However, the attainment of such beam properties is not straightforward. At IPP, the negative ion source testbed BATMAN (BAvarian Test MAchine for Negative ions) allows for deepening the knowledge of the determination of the beam properties. One of the diagnostics routinely used to this purpose is the Beam Emission Spectroscopy (BES): the H α light emitted in the beam is detected and the corresponding spectra are evaluated to estimate the beam divergence and the stripping losses. The BES number of lines of sight in BATMAN has been recently increased: five horizontal lines of sight providing a vertical profile of the beam permit to characterize the negative ion beam properties in relation to the source parameters. Different methods of H α spectra analysis are here taken into account and compared for the estimation of the beam divergence and the amount of stripping. In particular, to thoroughly study the effect of the space charge compensation on the beam divergence, an additional hydrogen injection line has been added in the tank, which allows for setting different background pressure values (one order of magnitude, from about 0.04 Pa up to the source pressure) in the beam drift region

  11. Interaction of the CERN Large Hadron Collider (LHC) Beam with Carbon Collimators

    CERN Document Server

    Schmidt, R; Hoffmann, Dieter H H; Kadi, Y; Shutov, A; Piriz, AR

    2006-01-01

    The LHC will operate at an energy of 7 TeV with a luminosity of 1034cm-2s-1. This requires two beams, each with 2808 bunches. The energy stored in each beam of 362 MJ. In a previous paper the mechanisms causing equipment damage in case of a failure of the machine protection system was discussed, assuming that the entire beam is deflected into a copper target [1, 2]. Another failure scenario is the deflection of beam into carbon material. Carbon collimators and beam absorbers are installed in many locations around the LHC to diffuse or absorb beam losses. Since the collimator jaws are close to the beam, it is very likely that they are hit first when the beam is accidentally deflected. Here we present the results of two-dimensional hydrodynamic simulations of the heating of a solid carbon cylinder irradiated by the LHC beam with nominal parameters, carried out using the BIG-2 computer code [3] while the energy loss of the 7 TeV protons in carbon is calculated using the well known FLUKA code [4]. Our calculation...

  12. Effect of reduction of mechanical losses in AC superconducting coils having various FRP bobbins

    International Nuclear Information System (INIS)

    Sekine, N.; Tada, S.; Higuchi, T.; Takao, T.; Yamanaka, A.; Fukui, S.

    2004-01-01

    We have demonstrated in our previous works that a use of the particular structural material for superconducting coils was effective to mechanical-loss reduction under AC operation. In this study, we measured losses to investigate influence of the mechanical losses in the coils having various fiber reinforced plastics (FRPs) with different thermal expansion coefficients. The losses were small in the coils whose winding tension at coil-operating temperature were strong, on the contrary, the losses of the coil having the weak winding tension were large. The coil having the strongest winding tension at liquid helium temperature showed the smallest loss in all coils, and the loss agreed with a value from the Norris's analysis. We think that the mechanical loss becomes almost zero in this coil since the strong tension can prevent the periodic vibration of the superconducting wire. The dependence of the loss on the difference in surface conditions of the materials of the superconducting coil's bobbins was not observed, however, the mechanical losses in AC coils strongly depended on the winding tensions at cryogenic temperature

  13. Knowing When to Stop: The Brain Mechanisms of Chasing Losses

    DEFF Research Database (Denmark)

    Campbell-Meiklejohn, Daniel; Woolrich, Mark; Passingham, Dick

    2008-01-01

    adult participants decided to chase losses or decided to quit gambling to prevent further losses.ResultsChasing losses was associated with increased activity in cortical areas linked to incentive-motivation and an expectation of reward. By contrast, quitting was associated with decreased activity...... in pathological gambling might involve a failure to appropriately balance activity within neural systems coding conflicting motivational states. Similar mechanisms might underlie the loss-of-control over appetitive behaviors in other impulse control disorders....

  14. Loss of Energy Concentration in Nonlinear Evolution Beam Equations

    Science.gov (United States)

    Garrione, Maurizio; Gazzola, Filippo

    2017-12-01

    Motivated by the oscillations that were seen at the Tacoma Narrows Bridge, we introduce the notion of solutions with a prevailing mode for the nonlinear evolution beam equation u_{tt} + u_{xxxx} + f(u)= g(x, t) in bounded space-time intervals. We give a new definition of instability for these particular solutions, based on the loss of energy concentration on their prevailing mode. We distinguish between two different forms of energy transfer, one physiological (unavoidable and depending on the nonlinearity) and one due to the insurgence of instability. We then prove a theoretical result allowing to reduce the study of this kind of infinite-dimensional stability to that of a finite-dimensional approximation. With this background, we study the occurrence of instability for three different kinds of nonlinearities f and for some forcing terms g, highlighting some of their structural properties and performing some numerical simulations.

  15. Investigations of the mechanical loss of tantala films between 5 and 300 K

    Energy Technology Data Exchange (ETDEWEB)

    Hudl, Matthias; Nawrodt, Ronny; Zimmer, Anja; Nietzsche, Sandor; Vodel, Wolfgang; Seidel, Paul [Friedrich Schiller University (Germany); Tuennermann, Andreas [Institute of Solid-State Physics, Helmholtzweg 5, D-07743 Jena (Germany),; Friedrich Schiller University-Institute of Applied Physics, Jena (Germany)

    2007-07-01

    Mechanical losses in dielectric mirror coatings of interferometric gravitational wave detectors are a main issue for the proposed advanced generation of gravitational wave detectors. Recent investigations have shown that the mechanical loss of the dielectric mirror coatings (tantala/silica stacks) is probably the main contribution to the detector noise. There are indications that among both coating materials tantala gives the major contribute to mechanical loss. Experimental details of a measuring setup and investigations of the temperature dependency of the mechanical dissipation in thin tantala films on different substrates are presented.

  16. Beam-Loss Induced Pressure Rise of LHC Collimator Materials Irradiated with 158 GeV/u $In^{49+}$ Ions at the CERN SPS

    CERN Document Server

    Mahner, Edgar; Hansen, Jan; Page, Eric; Vincke, Helmut H

    2004-01-01

    During heavy ion operation, large pressure rises, up to a few orders of magnitude, were observed at CERN, GSI, and BNL. The dynamic pressure rises were triggered by lost beam ions that impacted onto the vacuum chamber walls and desorbed about 1044 to 107 molecules per ion. The deterioration of the dynamic vacuum conditions can enhance charge-exchange beam losses and can lead to beam instabilities or even to beam abortion triggered by vacuum interlocks. Consequently, a dedicated measure-ment of heavy-ion induced molecular desorption in the GeV/u energy range is important for LHC ion operation. In 2003, a desorption experiment was installed at the SPS to measure the beam-loss induced pressure rise of potential LHC collimator materials. Samples of bare graphite, sputter coated (Cu, TiZrV) graphite, and 316 LN stainless steel, were irradiated under grazing angle with 158 GeV/u indium ions. After a description of the new experimental set-up, the results of the pressure rise measurements are presented, and the deri...

  17. Thermal, mechanical and fluid flow aspects of the high power beam dump for FRIB

    Energy Technology Data Exchange (ETDEWEB)

    Avilov, Mikhail [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Aaron, Adam [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States); Amroussia, Aida [Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824 (United States); Bergez, Wladimir [Institut de Mecanique des Fluides de Toulouse, Toulouse University, CNRS, Allée Camille Soula, 31400 Toulouse (France); Boehlert, Carl [Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824 (United States); Burgess, Thomas; Carroll, Adam [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States); Colin, Catherine [Institut de Mecanique des Fluides de Toulouse, Toulouse University, CNRS, Allée Camille Soula, 31400 Toulouse (France); Durantel, Florent [Centre des recherches sur les Ions, les Materiaux et la Photonique (CIMAP) CEA-CNRS-ENSICAEN-UCN, BP 5133, 14070 CAEN CEDEX 5 (France); Ferrante, Paride; Fourmeau, Tiffany [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Graves, Van [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States); Grygiel, Clara [Centre des recherches sur les Ions, les Materiaux et la Photonique (CIMAP) CEA-CNRS-ENSICAEN-UCN, BP 5133, 14070 CAEN CEDEX 5 (France); Kramer, Jacob [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Mittig, Wolfgang [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Monnet, Isabelle [Centre des recherches sur les Ions, les Materiaux et la Photonique (CIMAP) CEA-CNRS-ENSICAEN-UCN, BP 5133, 14070 CAEN CEDEX 5 (France); Patel, Harsh [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); and others

    2016-06-01

    The Facility for Rare Isotope Beams (FRIB) under construction at Michigan State University is based on a 400 kW heavy ion accelerator and uses in-flight production and separation to generate rare isotope beams. The first section of the fragment separator houses the rare isotope production target, and the primary beam dump to stop the unreacted primary beam. The experimental program will use 400 kW ion beams from {sup 16}O to {sup 238}U. After interaction with the production target, over 300 kW in remaining beam power must be absorbed by the beam dump. A rotating water-cooled thin-shell metal drum was chosen as the basic concept for the beam dump. Extensive thermal, mechanical and fluid flow analyses were performed to evaluate the effects of the high power density in the beam dump shell and in the water. Many properties were optimized simultaneously, such as shell temperature, mechanical strength, fatigue strength, and radiation resistance. Results of the analyses of the beam dump performance with different design options will be discussed. For example, it was found that a design modification to the initial water flow pattern resulted in a substantial increase in the wall heat transfer coefficient. A detailed evaluation of materials for the shell is in progress. The widely used titanium alloy, Ti–6Al–4V (wt%), is presently considered as the best candidate, and is the subject of specific tests, such as studies of performance under heavy ion irradiation.

  18. Preliminary design of the beam loss monitor system for the Advanced Photon Source

    International Nuclear Information System (INIS)

    Patterson, D.R.

    1992-01-01

    The preliminary design of the beam loss monitor for the ANL Advanced Photon Source is based on the use of an air dielectric coaxial cable as a long ionization chamber. Each coaxial cable section uses a high sensitivity DC current-to-voltage converter with both linear and integrating ranges. Pulse timing circuits determine the positions of individual losses by measuring the time at which the resulting voltage pulses arrive at the beginning of the coaxial ionization chamber. A possible timing ambiguity can be removed by correlating the particle bunch timing with the resulting voltage pulse timing. Measurements have shown that pulse rise times less than 15 nanoseconds can be obtained, so that determining loss locations to better than 7 feet may be possible. Best performance may be obtained when 500 VDC is applied to a 50-ohm, 7/8-inch air dielectric coaxial cable filled with approximately 8 psig of a 95% argon, 5% carbon dioxide gas mixture. Cable lengths will be between 100 and 300 feet long, depending on the part of the accelerator being monitored

  19. Improvement of the thermo-mechanical position stability of the beam position monitor in the PLS-II

    Science.gov (United States)

    Ha, Taekyun; Hong, Mansu; Kwon, Hyuckchae; Han, Hongsik; Park, Chongdo

    2016-09-01

    In the storage ring of the Pohang Light Source-II (PLS-II), we reduced the mechanical displacement of the electron-beam position monitors (e-BPMs) that is caused by heating during e-beam storage. The BPM pickup itself must be kept stable to sub-micrometer precision in order for a stable photon beam to be provided to beamlines because the orbit feedback system is programmed to make the electron beam pass through the center of the BPM. Thermal deformation of the vacuum chambers on which the BPM pickups are mounted is inevitable when the electron beam current is changed by an unintended beam abort. We reduced this deformation by improving the vacuum chamber support and by enhancing the water cooling. We report a thermo-mechanical analysis and displacement measurements for the BPM pickups after improvements.

  20. Recent advances in biological effect and molecular mechanism of arabidopsis thaliana irradiated by ion beams

    International Nuclear Information System (INIS)

    Wu Dali; Hou Suiwen; Li Wenjian

    2008-01-01

    Newly research progresses were summarized in effect of ion beams on seed surface, biological effect, growth, development, gravitropism and so on. Furthermore, mutation molecular mechanism of Arabidopsis thaliana was discussed, for example, alteration of DNA bases, DNA damage, chromosomal recombination, characteristics of mutant transmissibility, etc. Meanwhile, the achievements of transfer- ring extraneous gene to Arabidopsis thaliana by ion beams were reviewed in the paper. At last, the future prospective are also discussed here in mutation molecular mechanism and the potential application of biological effect of heavy ion beams. (authors)

  1. Determining the mechanism and parameters of hydrate formation and loss in glucose.

    Science.gov (United States)

    Scholl, Sarah K; Schmidt, Shelly J

    2014-11-01

    Water-solid interactions are known to play a major role in the chemical and physical stability of food materials. Despite its extensive use throughout the food industry, the mechanism and parameters of hydrate formation and loss in glucose are not well characterized. Hydrate formation in alpha-anhydrous glucose (α-AG) and hydrate loss in glucose monohydrate (GM) were studied under equilibrium conditions at various relative humidity (RH) values using saturated salt slurries for 1 y. The mechanism of hydrate formation and hydrate loss were determined through mathematical modeling of Dynamic Vapor Sorption data and Raman spectroscopy was used to confirm the mechanisms. The critical temperature for hydrate loss in GM was determined using thermogravimetric analysis (TGA). The moisture sorption profiles of α-AG and GM were also studied under dynamic conditions using an AquaSorp Isotherm Generator. Hydrate formation was observed at and above 68% RH at 25 °C and the conversion of α-AG to GM can best be described as following a nucleation mechanism, however, diffusion and/or geometric contraction mechanisms were also observed by Raman spectroscopy subsequent to the coalescence of initial nucleation sites. Hydrate loss was observed to occur at and below 11% RH at 25 °C during RH storage and at 70 °C during TGA. The conversion of GM to α-AG follows nucleation and diffusion mechanisms. Hydrate formation was evident under dynamic conditions in α-AG and GM prior to deliquescence. This research is the first to report hydrate formation and loss parameters for crystalline α-AG and GM during extended storage at 25 ˚C. © 2014 Institute of Food Technologists®

  2. Mechanical and thermal properties of commercial multilayer PET/PP film irradiated with electron-beam

    International Nuclear Information System (INIS)

    Ortiz, Angel V.; Nogueira, Beatriz R.; Oliveira, Vitor M.; Moura, Esperidiana A.B.

    2009-01-01

    The effects of electron-beam irradiation on mechanical and thermal properties, for one commercial flexible food packaging multilayer structure, were studied. The laminated poly(ethylene terephthalate) (PET)/ polypropylene (PP) structure was irradiated up to 60 kGy, using a 1.5 MeV electron beam accelerator, at room temperature in the presence of air. Mechanical properties showed significant changes (p < 0.05). In addition, the DSC analysis, after treatment, showed that the fusion enthalpy and crystallinity of the PET/PP structure components presented significant changes (p < 0.05) with the electron-beam radiation doses applied. It was observed an increase in PP crystallinity while the PET crystallinity decreases. Such decrease in PET crystallinity indicates the predominance of a cross-linking process on the irradiated PET layer; responsible for the increase in some mechanical properties of the studied film. (author)

  3. Calculation of abort thresholds for the Beam Loss Monitoring System of the Large Hadron Collider at CERN

    CERN Document Server

    Nemcic, Martin; Dehning, Bernd

    The Beam Loss Monitoring (BLM) System is one of the most critical machine protection systems for the Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN), Switzerland. Its main purpose is to protect the superconducting magnets from quenches and other equipment from damage by requesting a beam abort when the measured losses exceed any of the predefined threshold levels. The system consist of circa 4000 ionization chambers which are installed around the 27 kilometres ring (LHC). This study aims to choose a technical platform and produce a system that addresses all of the limitations with the current system that is used for the calculation of the LHC BLM abort threshold values. To achieve this, a comparison and benchmarking of the Java and .NET technical platforms is performed in order to establish the most suitable solution. To establish which technical platform is a successful replacement of the current abort threshold calculator, comparable prototype systems in Java and .NET we...

  4. LHC Beam Loss Monitoring System Verification Applications

    CERN Document Server

    Dehning, B; Zamantzas, C; Jackson, S

    2011-01-01

    The LHC Beam Loss Mon­i­tor­ing (BLM) sys­tem is one of the most com­plex in­stru­men­ta­tion sys­tems de­ployed in the LHC. In ad­di­tion to protecting the col­lid­er, the sys­tem also needs to pro­vide a means of di­ag­nos­ing ma­chine faults and de­liv­er a feed­back of loss­es to the control room as well as to sev­er­al sys­tems for their setup and analysis. It has to trans­mit and pro­cess sig­nals from al­most 4’000 mon­i­tors, and has near­ly 3 mil­lion con­fig­urable pa­ram­e­ters. The system was de­signed with re­li­a­bil­i­ty and avail­abil­i­ty in mind. The spec­i­fied op­er­a­tion and the fail-safe­ty stan­dards must be guar­an­teed for the sys­tem to per­form its func­tion in pre­vent­ing su­per­con­duc­tive mag­net de­struc­tion caused by par­ti­cle flux. Main­tain­ing the ex­pect­ed re­li­a­bil­i­ty re­quires ex­ten­sive test­ing and ver­i­fi­ca­tion. In this paper we re­port our most re­cent ad­di­t...

  5. Transient Thermo-Mechanical Analysis of the TPSG4 Beam Diluter

    CERN Document Server

    Goddard, B; Herrera-Martínez, A; Kadi, Y; Marque, S

    2002-01-01

    A new extraction channel is being built in the Super Proton Synchrotron (SPS) Long Straight Section 4 (LSS4) to transfer proton beams to the Large Hadron Collider (LHC) and also to the CERN Neutrino to Gran Sasso (CNGS) target. The beam is extracted in a fast mode during a single turn. For this purpose a protection of the MSE copper septum coil, in the form of a beam diluting element placed upstream, will be required to cope with the new failure modes associated with the fast extraction operation. The present analysis focuses on the thermo-mechanical behavior of the proposed TPSG4 diluter element irradiated by a fast extracted beam (up to 4.9 x 10^13 protons per 7.2 mus pulse) from the SPS. The deposited energy densities, estimated from primary and secondary particle simulations using the high-energy particle transport code FLUKA, were converted to internal heat generation rates taken as a thermal load input for the finite-element engineering analyses code ANSYS. According to the time dependence of the extrac...

  6. Mechanical characterization and structural analysis of recycled fiber-reinforced-polymer resin-transfer-molded beams

    Science.gov (United States)

    Tan, Eugene Wie Loon

    1999-09-01

    The present investigation was focussed on the mechanical characterization and structural analysis of resin-transfer-molded beams containing recycled fiber-reinforced polymers. The beams were structurally reinforced with continuous unidirectional glass fibers. The reinforcing filler materials consisted entirely of recycled fiber-reinforced polymer wastes (trim and overspray). The principal resin was a 100-percent dicyclo-pentadiene unsaturated polyester specially formulated with very low viscosity for resin transfer molding. Variations of the resin transfer molding technique were employed to produce specimens for material characterization. The basic materials that constituted the structural beams, continuous-glass-fiber-reinforced, recycled-trim-filled and recycled-overspray-filled unsaturated polyesters, were fully characterized in axial and transverse compression and tension, and inplane and interlaminar shear, to ascertain their strengths, ultimate strains, elastic moduli and Poisson's ratios. Experimentally determined mechanical properties of the recycled-trim-filled and recycled-overspray-filled materials from the present investigation were superior to those of unsaturated polyester polymer concretes and Portland cement concretes. Mechanical testing and finite element analyses of flexure (1 x 1 x 20 in) and beam (2 x 4 x 40 in) specimens were conducted. These structurally-reinforced specimens were tested and analyzed in four-point, third-point flexure to determine their ultimate loads, maximum fiber stresses and mid-span deflections. The experimentally determined load capacities of these specimens were compared to those of equivalent steel-reinforced Portland cement concrete beams computed using reinforced concrete theory. Mechanics of materials beam theory was utilized to predict the ultimate loads and mid-span deflections of the flexure and beam specimens. However, these predictions proved to be severely inadequate. Finite element (fracture propagation

  7. Resisting force characteristics of a mechanical snubber and its restraint effect on beam deformation

    International Nuclear Information System (INIS)

    Ohmata, Kenichiro

    1987-01-01

    A mechanical snubber is used to restrain piping systems in nuclear power plants during an earthquake. It has nonlinearities in both load (or exciting amplitude) and frequency response, so it will be very difficult to analyze the resisting force characteristics of the mechanical snubber theoretically. In this report, the equation of motion of the mechanical snubber is derived and digital simulations of snubber dynamic characteristics over a frequency range are carried out using the Continuous System Simulation Language (CSSL). Also, the restraint effect of the mechanical snubber applied to a simple beam is discussed both numerically and experimentally. The beam is replaced by a lumped mass system and CSSL is used to perform the digital simulations. (author)

  8. Study of tapered glass capillary focusing MeV ion beam

    International Nuclear Information System (INIS)

    Gong Zhiyu; Yan Sha; Ma Hongji; Nie Rui; Xue Jianming; Wang Yugang

    2012-01-01

    In recent years, tapered glass capillary ion beam focusing is developing rapidly. It is attractive for simple, compact, low cost and easy use. However, the focusing mechanism for MeV ion beams is still indistinct. We present several experimental results of focusing 2 MeV He + beam. Ion beams were focused by tapered glass capillaries with various outlet inner diameters from several micron to hundred micron. The current densities, angle divergences and energy spectra of the transmitted ion beams are measured. The results proved that 2 MeV He + ions can focused and guided by our capillaries. The energy spectra show that a great part of transmitted ions experienced obvious energy loss, which is different from results of others research groups. We discussed the reason and charged it to the larger incident angle. Considered the incident ions with larger incident angle, the charge will distribute in a layer of micro meter depth in the capillary’s inner wall, but not the surface. The energy loss and many other spectra characters can be explained in this way.

  9. Modeling of Low Frequency MHD Induced Beam Ion Transport In NSTX

    International Nuclear Information System (INIS)

    Gorelenkov, N.N.; Medley, S.S.

    2004-01-01

    Beam ion transport in the presence of low frequency MHD activity in National Spherical Tokamak Experiment (NSTX) plasma is modeled numerically and analyzed theoretically in order to understand basic underlying physical mechanisms responsible for the observed fast ion redistribution and losses. Numerical modeling of the beam ions flux into the NPA in NSTX shows that after the onset of low frequency MHD activity high energy part of beam ion distribution, E b > 40keV, is redistributed radially due to stochastic diffusion. Such diffusion is caused by high order harmonics of the transit frequency resonance overlap in the phase space. Large drift orbit radial width induces such high order resonances. Characteristic confinement time is deduced from the measured NPA energy spectrum and is typically ∼ 4msec. Considered MHD activity may induce losses on the order of 10% at the internal magnetic field perturbation (delta)B/B = Ο (10 -3 ), which is comparable to the prompt orbit losses

  10. Optical and mechanical design of beam-target coupling sensor

    International Nuclear Information System (INIS)

    Wang Liquan; Li Tian'en; Feng Bin; Xiang Yong; Li Keyu; Zhong Wei; Liu Guodong

    2012-01-01

    A sensor based on conjugate principle has been designed for matching the light beams and the target in inertial confinement fusion. It can avoid the direct illumination of the simulation collimating light on the target under test in targeting processes. This paper introduces the optical and mechanical design of the sensor, according to its design functions and working principle. The resolution of the optical images obtained in experiments reaches 6 μm and the beam-target matching accuracy is 8.8 μm. The sensor has been successfully applied to the Shenguang-Ⅲ facility. Statistical analyses of the four-hole CH target images derived with pinhole camera shows that the targeting accuracy of the facility is better than 25 μm, satisfying the design requirements. (authors)

  11. Introduction to the Mechanics of Deformable Solids Bars and Beams

    CERN Document Server

    H Allen, David

    2013-01-01

    Introduction to the Mechanics of Deformable Solids: Bars and Beams introduces the theory of beams and bars, including axial, torsion, and bending loading and analysis of bars that are subjected to combined loadings, including resulting complex stress states using Mohr’s circle. The book  provides failure analysis based on maximum stress criteria and introduces design using models developed in the text. Throughout the book, the author emphasizes fundamentals, including consistent mathematical notation. The author also presents the fundamentals of the mechanics of solids in such a way that the beginning student is able to progress directly to a follow-up course that utilizes two- and three-dimensional finite element codes imbedded within modern software packages for structural design purposes. As such, excessive details included in the previous generation of textbooks on the subject are obviated due to their obsolescence with the availability of today’s finite element software packages. This book also:...

  12. Rapid plasma heating by collective interactions, using strong turbulence and relativistic electron beams

    International Nuclear Information System (INIS)

    Wharton, C.B.

    1977-01-01

    A multi-kilovolt, moderate density plasma was generated in a magnetic mirror confinement system by two methods: turbulent heating and relativistic electron beam. Extensive diagnostic development permitted the measurement of important plasma characteristics, leading to interesting and novel conclusions regarding heating and loss mechanisms. Electron and ion heating mechanisms were categorized, and parameter studies made to establish ranges of importance. Nonthermal ion and electron energy distributions were measured. Beam propagation and energy deposition studies yielded the spatial dependence of plasma heating

  13. Monte Carlo modelling for neutron guide losses

    International Nuclear Information System (INIS)

    Cser, L.; Rosta, L.; Toeroek, Gy.

    1989-09-01

    In modern research reactors, neutron guides are commonly used for beam conducting. The neutron guide is a well polished or equivalently smooth glass tube covered inside by sputtered or evaporated film of natural Ni or 58 Ni isotope where the neutrons are totally reflected. A Monte Carlo calculation was carried out to establish the real efficiency and the spectral as well as spatial distribution of the neutron beam at the end of a glass mirror guide. The losses caused by mechanical inaccuracy and mirror quality were considered and the effects due to the geometrical arrangement were analyzed. (author) 2 refs.; 2 figs

  14. Vapor plume oscillation mechanisms in transient keyhole during tandem dual beam fiber laser welding

    Science.gov (United States)

    Chen, Xin; Zhang, Xiaosi; Pang, Shengyong; Hu, Renzhi; Xiao, Jianzhong

    2018-01-01

    Vapor plume oscillations are common physical phenomena that have an important influence on the welding process in dual beam laser welding. However, until now, the oscillation mechanisms of vapor plumes remain unclear. This is primarily because mesoscale vapor plume dynamics inside a millimeter-scale, invisible, and time-dependent keyhole are difficult to quantitatively observe. In this paper, based on a developed three-dimensional (3D) comprehensive model, the vapor plume evolutions in a dynamical keyhole are directly simulated in tandem dual beam, short-wavelength laser welding. Combined with the vapor plume behaviors outside the keyhole observed by high-speed imaging, the vapor plume oscillations in dynamical keyholes at different inter-beam distances are the first, to our knowledge, to be quantitatively analyzed. It is found that vapor plume oscillations outside the keyhole mainly result from vapor plume instabilities inside the keyhole. The ejection velocity at the keyhole opening and dynamical behaviors outside the keyhole of a vapor plume both violently oscillate with the same order of magnitude of high frequency (several kHz). Furthermore, the ejection speed at the keyhole opening and ejection area outside the keyhole both decrease as the beam distance increases, while the degree of vapor plume instability first decreases and then increases with increasing beam distance from 0.6 to 1.0 mm. Moreover, the oscillation mechanisms of a vapor plume inside the dynamical keyhole irradiated by dual laser beams are investigated by thoroughly analyzing the vapor plume occurrence and flow process. The vapor plume oscillations in the dynamical keyhole are found to mainly result from violent local evaporations and severe keyhole geometry variations. In short, the quantitative method and these findings can serve as a reference for further understanding of the physical mechanisms in dual beam laser welding and of processing optimizations in industrial applications.

  15. Beam Loss Simulation Studies for ALS Top-Off Operation

    CERN Document Server

    Nishimura, Hiroshi; Robin, David; Steier, Christoph

    2005-01-01

    The ALS is planning to operate with top-off injection at higher beam currents and smaller vertical beam size. As part of a radiation safety study for top-off, we carried out two kinds of tracking studies: (1) to confirm that the injected beam cannot go into users' photon beam lines, and (2) to control the location of beam dump when the storage ring RF is tripped. (1) is done by tracking electrons from a photon beam line to the injection sector inversely by including the magnetic field profiles, varying the field strength with geometric aperture limits to conclude that it is impossible. (2) is done by tracking an electron with radiation in the 6-dim space for different combinations of vertical scrapers for the realistic lattice with errors.

  16. Electron beam exposure mechanisms in hydrogen silsesquioxane investigated by vibrational spectroscopy and in-situ electron beam induced desorption

    Energy Technology Data Exchange (ETDEWEB)

    Olynick, D.L.; Cord, B.; Schipotinin, A.; Ogletree, D.F.; Schuck, P.J.

    2009-11-13

    Hydrogen Silsesquioxane (HSQ) is used as a high-resolution resist with resolution down below 10nm half-pitch. This material or materials with related functionalities could have widespread impact in nanolithography and nanoscience applications if the exposure mechanism was understood and instabilities controlled. Here we have directly investigated the exposure mechanism using vibrational spectroscopy (both Raman and Fourier transform Infrared) and electron beam desorption spectrocscopy (EBDS). In the non-networked HSQ system, silicon atoms sit at the corners of a cubic structure. Each silicon is bonded to a hydrogen atom and bridges 3 oxygen atoms (formula: HSiO3/2). For the first time, we have shown, via changes in the Si-H2 peak at ~;;2200 cm -1 in the Raman spectra and the release of SiHx products in EBID, that electron-bam exposed materials crosslinks via a redistribution reaction. In addition, we observe the release of significantly more H2 than SiH2 during EBID, which is indicative of additional reaction mechanisms. Additionally, we compare the behavior of HSQ in response to both thermal and electron-beam induced reactions.

  17. Phase shifter for antenna beam steering

    Energy Technology Data Exchange (ETDEWEB)

    Jindal, Ravi, E-mail: rjindal21@gmail.com [Master’s(MS) in System Electronics and General Electrical, Ecole Polytechnique of university of Nantes France, IETR, Nantes (France); Razban, Tchanguiz, E-mail: tchanguiz.razban-haghighi@univ-nantes.fr [Electronics and Telecommunication Institute of Rennes (IETR-UMR 6164), Ecole Polytechnique of university of Nantes France, IETR, Nantes (France)

    2016-03-09

    Wide band Array Antenna operates in Ku-band (10.7-12.7 GHz) frequency composed of N×N radiating elements. This antenna aims at the reception of television satellite signals. The goal of this research is to provide better possibility of electronic beam control instead of manual or mechanical control, and design compact and low cost phase shifters to be inserted in the feeding network of this antenna. The electronic control of the phase shifter will allow the control of beam steering. The emphasis of this project will be done at the beginning on the design of a good phase shifter in Ku band. The aim of this research is to define, simulate, release and measure a continuous phase shifter. Better reflection loss, low transmission loss, low Cost of array antennas, large range of phase-shifter, phase flatness and bandwidth will be achieved by providing better gain.

  18. Phase shifter for antenna beam steering

    International Nuclear Information System (INIS)

    Jindal, Ravi; Razban, Tchanguiz

    2016-01-01

    Wide band Array Antenna operates in Ku-band (10.7-12.7 GHz) frequency composed of N×N radiating elements. This antenna aims at the reception of television satellite signals. The goal of this research is to provide better possibility of electronic beam control instead of manual or mechanical control, and design compact and low cost phase shifters to be inserted in the feeding network of this antenna. The electronic control of the phase shifter will allow the control of beam steering. The emphasis of this project will be done at the beginning on the design of a good phase shifter in Ku band. The aim of this research is to define, simulate, release and measure a continuous phase shifter. Better reflection loss, low transmission loss, low Cost of array antennas, large range of phase-shifter, phase flatness and bandwidth will be achieved by providing better gain.

  19. Numerical Simulation and Mechanical Design for TPS Electron Beam Position Monitors

    Science.gov (United States)

    Hsueh, H. P.; Kuan, C. K.; Ueng, T. S.; Hsiung, G. Y.; Chen, J. R.

    2007-01-01

    Comprehensive study on the mechanical design and numerical simulation for the high resolution electron beam position monitors are key steps to build the newly proposed 3rd generation synchrotron radiation research facility, Taiwan Photon Source (TPS). With more advanced electromagnetic simulation tool like MAFIA tailored specifically for particle accelerator, the design for the high resolution electron beam position monitors can be tested in such environment before they are experimentally tested. The design goal of our high resolution electron beam position monitors is to get the best resolution through sensitivity and signal optimization. The definitions and differences between resolution and sensitivity of electron beam position monitors will be explained. The design consideration is also explained. Prototype deign has been carried out and the related simulations were also carried out with MAFIA. The results are presented here. Sensitivity as high as 200 in x direction has been achieved in x direction at 500 MHz.

  20. Numerical Simulation and Mechanical Design for TPS Electron Beam Position Monitors

    International Nuclear Information System (INIS)

    Hsueh, H. P.; Kuan, C. K.; Ueng, T. S.; Hsiung, G. Y.; Chen, J. R.

    2007-01-01

    Comprehensive study on the mechanical design and numerical simulation for the high resolution electron beam position monitors are key steps to build the newly proposed 3rd generation synchrotron radiation research facility, Taiwan Photon Source (TPS). With more advanced electromagnetic simulation tool like MAFIA tailored specifically for particle accelerator, the design for the high resolution electron beam position monitors can be tested in such environment before they are experimentally tested. The design goal of our high resolution electron beam position monitors is to get the best resolution through sensitivity and signal optimization. The definitions and differences between resolution and sensitivity of electron beam position monitors will be explained. The design consideration is also explained. Prototype deign has been carried out and the related simulations were also carried out with MAFIA. The results are presented here. Sensitivity as high as 200 in x direction has been achieved in x direction at 500 MHz

  1. Electro-mechanical control of an on-chip optical beam splitter containing an embedded quantum emitter

    Science.gov (United States)

    Bishop, Z. K.; Foster, A. P.; Royall, B.; Bentham, C.; Clarke, E.; Skolnick, M. S.; Wilson, L. R.

    2018-05-01

    We demonstrate electro-mechanical control of an on-chip GaAs optical beam splitter containing a quantum dot single-photon source. The beam splitter consists of two nanobeam waveguides, which form a directional coupler (DC). The splitting ratio of the DC is controlled by varying the out-of-plane separation of the two waveguides using electro-mechanical actuation. We reversibly tune the beam splitter between an initial state, with emission into both output arms, and a final state with photons emitted into a single output arm. The device represents a compact and scalable tuning approach for use in III-V semiconductor integrated quantum optical circuits.

  2. First Beam Based Aperture Measurements in the Arcs of the CERN Large Hadron Collider

    CERN Document Server

    Redaelli, S; Calaga, R; Dehning, B; Giovannozzi, M; Roncarolo, F; Tomás, R

    2010-01-01

    The LHC injection tests performed in August and early September 2008 in preparation for the circulating beam operation provided the first opportunity to measure with beam the mechanical aperture in two LHC sectors (2-3 and 7- 8). The aperture was probed by exciting free oscillations and local orbit bumps of the injected beam trajectories. Intensities of a few 109 protons were used to remain safely below the quench limit of superconductingmagnets in case of beam losses. The methods used to measure the mechanical aperture, the available on-line tools, and beam measurements for both sectors are presented. Detailed comparisons with the expected results from the as-built aperture models are also presented. It is shown that the measurements results are in good agreement with the LHC design aperture.

  3. Thermo-mechanical simulation and parameters optimization for beam blank continuous casting

    International Nuclear Information System (INIS)

    Chen, W.; Zhang, Y.Z.; Zhang, C.J.; Zhu, L.G.; Lu, W.G.; Wang, B.X.; Ma, J.H.

    2009-01-01

    The objective of this work is to optimize the process parameters of beam blank continuous casting in order to ensure high quality and productivity. A transient thermo-mechanical finite element model is developed to compute the temperature and stress profile in beam blank continuous casting. By comparing the calculated data with the metallurgical constraints, the key factors causing defects of beam blank can be found out. Then based on the subproblem approximation method, an optimization program is developed to search out the optimum cooling parameters. Those optimum parameters can make it possible to run the caster at its maximum productivity, minimum cost and to reduce the defects. Now, online verifying of this optimization project has been put in practice, which can prove that it is very useful to control the actual production

  4. Mechanical nonlinearity elimination with a micromechanical clamped-free semicircular beams resonator

    Science.gov (United States)

    Chen, Dongyang; Chen, Xuying; Wang, Yong; Liu, Xinxin; Guan, Yangyang; Xie, Jin

    2018-04-01

    This paper reports a micro-machined clamped-free semicircular beam resonator aiming to eliminate the nonlinearity that widely exists in traditional mechanical resonators. Cubic coefficients over vibration displacement due to axial extension of the beams are analyzed through theoretical modelling, and the corresponding frequency effect is demonstrated. With the device working in the elastic vibration mode, the cubic coefficients are eliminated by using a free end to release the nonlinear extension of beams and thus the inside axial stress. The amplitude-frequency (A-f) effect is overcome in a large region of source power, and the coefficient of frequency softening is linearized in a large region of polarization voltage. As a result, the resonator can be driven at larger vibration amplitude to achieve a high signal to noise ratio and power handling performance.

  5. Development, Production and Testing of 4500 Beam Loss Monitors

    CERN Document Server

    Holzer, E B; Dehning, B; Ferioli, G; Grishin, V; Jimenez, T M; Koshelev, A; Kramer, Daniel; Larionov, A; Taborelli, M; Seleznev, V; Sleptsov, M; Sytin, A; Wevers, I

    2008-01-01

    Beam-loss monitoring (BLM) [1] is a key element in the LHC machine protection. 4250 nitrogen filled ionization chambers (IC) and 350 secondary emission monitors (SEM) have been manufactured and tested at the Institute for High Energy Physics (IHEP) in Protvino, Russia, following their development at CERN. Signal speed and robustness against aging were the main design criteria. Each monitor is permanently sealed inside a stainless-steel cylinder. The quality of the welding was a critical aspect during production. The SEMs are requested to hold a vacuum of $10^{-7}$ bar. Impurity levels from thermal and radiationinduced desorption should remain in the range of parts per million in the ICs. To avoid radiation aging (up to $2·10^{8}$ Gy in 20 years) production of the chambers followed strict UHV requirements. IHEP designed and built the UHV production stand. Due to the required dynamic range of $10^{8}$, the leakage current of the monitors has to stay below 2 pA. Several tests during and after production were ...

  6. Study of beam-beam long range compensation with octupoles

    CERN Document Server

    AUTHOR|(CDS)2068329; Pieloni, Tatiana; Buffat, Xavier; Tambasco, Claudia

    2017-01-01

    Long range beam-beam effects are responsible for particle losses and define fundamental operational parameters of colliders (i.e. crossing angles, intensities, emittances, ${\\beta}$${^∗}$). In this study we propose octuple magnets as a possible scheme to efficiently compensate long-range beam-beam interactions with a global correction scheme. The impact and improvements on the dynamic aperture of colliding beams together with estimates of the luminosity potentials are dis- cussed for the HL-LHC upgrade and extrapolations made for the FCC project.

  7. Oceans and continents: Similarities and differences in the mechanisms of heat loss

    International Nuclear Information System (INIS)

    Sclater, J.G.; Parsons, B.; Jaupart, C.

    1981-01-01

    The principal objective of this paper is to present a simple and self-consistent review of the basic physical processes controlling heat loss from the earth. To accomplish this objective, we give a short summary of the oceanic and continental data and compare and contrast the respective mechanisms of heat loss . In the oceans we concentrate on the effect of hydrothermal circulation, and on the continents we consider in some detail a model relating surface heat flow to varying depth scales for the distribution of potassium, thorium, and uranium. From this comparison we conclude that the range in possible geotherms at depths below 100 to 150 km under continents and oceans overlaps and the thermal structure beneath an old stable continent is indistinguishable from that beneath an ocean were it at equilibrium. Oceans and continents are part of the same thermal system. Both have an upper rigid mechanical layer where heat loss is by conduction and a lower thermal boundary layer where convection is dominant. The simple conductive definition of the plate thickness is an oversimplification. The observed distribution of area versus age in the ocean allows us to investigate the dominant mechanism of heat loss which is plate creation. This distribution and an understanding of the heat flow through oceans and continents can be used to calculate the heat loss of the earth. This heat loss is 10 13 cal/s (4.2 x 10 13 W) of which more than 60% results from the creation of oceanic plate. The relation between area and age of the oceans is coupled to the ridge and subducting slab forces that contribute to the driving mechanism for plate motions. These forces are self-regulating and maintain the rate of plate generation required to achieve a balance between heat loss and heat generation

  8. Structural activation calculations due to proton beam loss in the APT accelerator design

    International Nuclear Information System (INIS)

    Lee, S. K.; Beard, C. A.; Wilson, W. B.; Daemen, L. L.; Liska, D. J.; Waters, L. S.; Adams, M. L.

    1995-01-01

    For the new, high-power accelerators currently being designed, the amount of activation of the accelerator structure has become an important issue. To quantify this activation, a methodology was utilized that coupled transport and depletion codes to obtain dose rate estimates at several locations near the accelerator. This research focused on the 20 and 100 MeV sections of the Bridge-Coupled Drift Tube Linear Accelerator. The peak dose rate was found to be approximately 6 mR/hr in the 100 MeV section near the quadrupoles at a 25-cm radius for an assumed beam loss of 1 nA/m. It was determined that the activation was dominated by the proton interactions and subsequent spallation product generation, as opposed to the presence of the generated neutrons. The worst contributors were the spallation products created by proton bombardment of iron, and the worst component was the beam pipe, which consists mostly of iron. No definitive conclusions about the feasibility of hands-on maintenance can be determined, as the design is still not finalized

  9. Structural activation calculations due to proton beam loss in the APT accelerator design

    International Nuclear Information System (INIS)

    Lee, S.K.; Beard, C.A.; Wilson, W.B.; Daemen, L.L.; Liska, D.J.; Waters, L.S.; Adams, M.L.

    1994-01-01

    For the new, high-power accelerators currently being designed, the amount of activation of the accelerator structure has become an important issue. To quantify this activation, a methodology was utilized that coupled transport and depletion codes to obtain dose rate estimates at several locations near the accelerator. This research focused on the 20 and 100 MeV sections of the Bridge-Coupled Drift Tube Linear Accelerator. The peak dose rate was found to be approximately 6 mR/hr in the 100 MeV section near the quadrupoles at a 25-cm radius for an assumed beam loss of 1 nA/m. It was determined that the activation was dominated by the proton interactions and subsequent spallation product generation, as opposed to the presence of the generated neutrons. The worst contributors were the spallation products created by proton bombardment of iron, and the worst component was the beam pipe, which consists mostly of iron. No definitive conclusions about the feasibility of hands-on maintenance can be determined, as the design is still not finalized

  10. Propagation Properties of Airy Beam through Periodic Slab System with Negative Index Materials

    Directory of Open Access Journals (Sweden)

    Long Jin

    2018-01-01

    Full Text Available Based on light transfer matrix and electric field vector equation, the evolution of Airy beam propagating in periodic slab system with three negative index materials (NIMs and its transmission mechanism are investigated. The intensity profiles on emergent surface of periodic slab system and side view of Airy beam propagating in each right handed material (RHM and double negative material (DNM unit including lossless and losses DNMs are discussed. It is revealed that the self-recovery Airy beam can be achieved in long distance by using lossless periodic slab system as long as the negative refractive index nl=-nr and each unit length L=Z. As to losses slab system contained DNMs, the smaller the collision frequencies are, the better the Airy beam quality is formed. It is expected that the proposed manner of beam transmission and corresponding conclusions can be useful for extension applications of optical control, especially for optical communication and optical encryption technique.

  11. Initial commissioning results from the APS loss monitor system

    International Nuclear Information System (INIS)

    Patterson, D.R.

    1996-01-01

    The design of the beam loss monitor system for the Argonne National Laboratory Advanced Photon Source is based on using a number of air dielectric coaxial cables as long ionization chambers. Results to date show that the loss monitor is useful in helping to determine the cause of injection losses and losses large enough to limit circulating currents in the storage ring to short lifetimes. Sensitivities ranging from 13 to 240 pC of charge collected in the injector BTS (booster-to-storage-ring) loss monitor per picocoulomb of loss have been measured, depending on the loss location. These results have been used to predict that the storage ring loss monitor leakage current limit of 10 pA per cable should allow detection of losses resulting in beam lifetimes of 100 hours or less with 100 mA stored beam. Significant DC bias levels associated with the presence of stored beam have been observed. These large bias levels are most likely caused by the loss monitor responding to hard x-ray synchrotron radiation. No such response to synchrotron radiation was observed during earlier tests at SSRL. However, the loss monitor response to average stored beam current in APS has provided a reasonable alternative to the DC current transformer (DCCT) for measuring beam lifetimes

  12. ADT fast losses MD

    CERN Document Server

    Priebe, A; Dehning, B; Redaelli, S; Salvachua Ferrando, BM; Sapinski, M; Solfaroli Camillocci, M; Valuch, D

    2013-01-01

    The fast beam losses in the order of 1 ms are expected to be a potential major luminosity limitation for higher beam energies after the LHC long shutdown (LS1). Therefore a Quench Test is planned in the winter 2013 to estimate the quench limit in this timescale and revise the current models. This experiment was devoted to determination the LHC Transverse Damper (ADT) as a system for fast losses induction. A non-standard operation of the ADT was used to develop the beam oscillation instead of suppressing them. The sign flip method had allowed us to create the fast losses within several LHC turns at 450 GeV during the previous test (26th March 2012). Thus, the ADT could be potentially used for the studies of the UFO ("Unidentied Falling Object") impact on the cold magnets. Verification of the system capability and investigations of the disturbed beam properties were the main objectives of this MD. During the experiment, the pilot bunches of proton beam were excited independently in the horizontal and vertical ...

  13. Nonlinear beam mechanics

    NARCIS (Netherlands)

    Westra, H.J.R.

    2012-01-01

    In this Thesis, nonlinear dynamics and nonlinear interactions are studied from a micromechanical point of view. Single and doubly clamped beams are used as model systems where nonlinearity plays an important role. The nonlinearity also gives rise to rich dynamic behavior with phenomena like

  14. Development of silicon detectors for Beam Loss Monitoring at HL-LHC

    Science.gov (United States)

    Verbitskaya, E.; Eremin, V.; Zabrodskii, A.; Bogdanov, A.; Shepelev, A.; Dehning, B.; Bartosik, M. R.; Alexopoulos, A.; Glaser, M.; Ravotti, F.; Sapinski, M.; Härkönen, J.; Egorov, N.; Galkin, A.

    2017-03-01

    Silicon detectors were proposed as novel Beam Loss Monitors (BLM) for the control of the radiation environment in the vicinity of the superconductive magnets of the High-Luminosity Large Hadron Collider. The present work is aimed at enhancing the BLM sensitivity and therefore the capability of triggering the beam abort system before a critical radiation load hits the superconductive coils. We report here the results of three in situ irradiation tests of Si detectors carried out at the CERN PS at 1.9-4.2 K. The main experimental result is that all silicon detectors survived irradiation up to 1.22× 1016 p/cm2. The third test, focused on the detailed characterization of the detectors with standard (300 μm) and reduced (100 μm) thicknesses, showed only a marginal difference in the sensitivity of thinned detectors in the entire fluence range and a smaller rate of signal degradation that promotes their use as BLMs. The irradiation campaigns produced new information on radiation damage and carrier transport in Si detectors irradiated at the temperatures of 1.9-4.2 K. The results were encouraging and permitted to initiate the production of the first BLM prototype modules which were installed at the end of the vessel containing the superconductive coil of a LHC magnet immersed in superfluid helium to be able to test the silicon detectors in real operational conditions.

  15. Dynamic analysis of composite beam with piezoelectric layers under thermo-mechanical load

    Science.gov (United States)

    Toudehdehghan, A.; Rahman, M. M.; Nagi, Farrukh

    2017-10-01

    In this paper, the control of composite beam vibrations with sensor and actuator connected layers is considered with consideration of the effect of thermal environment. The coupling relation between electrical field and mechanical deformation with uncoupled thermal impact are used. The mathematical model of shear deformation (Timoshenko’s theory) has been applied and basic equations for piezoelectric sensors and actuators have been proposed. The equation of motion for the beam structure is obtained by the Hamilton principle and analyzed by finite element method. The control algorithm is based on proportional velocity control. Hence, the purpose of this article is to investigate the direct and inverse effects of piezoelectric on control of simply supported beam vibration under uniform temperature.

  16. Mechanical design of the two dimensional beam emission spectroscopy diagnostics on mast

    Energy Technology Data Exchange (ETDEWEB)

    Kiss, Istvan Gabor, E-mail: kiss.istvan.gabor@rmki.kfki.hu [Association EURATOM, KFKI-RMKI, P.O. Box 49, H-1525 Budapest (Hungary); Meszaros, Botond; Dunai, Daniel; Zoletnik, Sandor; Krizsanoczi, Tibor [Association EURATOM, KFKI-RMKI, P.O. Box 49, H-1525 Budapest (Hungary); Field, Anthony R.; Gaffka, Rob [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom)

    2011-10-15

    A two dimensional beam emission spectroscopy (BES) system optimized for density turbulence measurements has recently been installed on the MAST tokamak. This system observes the emission of a Deuterium heating beam using a rotatable mirror to view from the plasma centre to the outboard edge (0.7-1.5 m), although the optics is optimized for core region (1.2 m). The beam is imaged onto a 4x8 pixel Avalanche Photodiode (APD) array detector, enabling measurements with 1 MHz bandwidth at photon-flux level of few times 10{sup 11} photons/s. This article will present the mechanical design of MAST BES equipment with special emphasis on its in-vessel components.

  17. Energy loss mechanism for suspended micro- and nanoresonators due to the Casimir force

    OpenAIRE

    Gusso, André

    2011-01-01

    A so far not considered energy loss mechanism in suspended micro- and nanoresonators due to noncontact acoustical energy loss is investigated theoretically. The mechanism consists on the conversion of the mechanical energy from the vibratory motion of the resonator into acoustic waves on large nearby structures, such as the substrate, due to the coupling between the resonator and those structures resulting from the Casimir force acting over the separation gaps. Analytical expressions for the ...

  18. LHC beam dump system : analysis of beam commissioning, performance and the consequences of abnormal operation

    International Nuclear Information System (INIS)

    Kramer, T.

    2011-01-01

    , misalignments, mechanical apertures and tolerances) as well as different collimator settings for the TCDQ protection system in lR6 can be done in parallel, considering time dependent kicks as applied for the fast MKD and MKB magnets with a 5 ns resolution. The developed architecture allows simulating on the basis of realistic machine settings and allowed to verify in a first step some safety relevant LBDS design parameters already before the actual beam commissioning started. The results obtained show that the LBDS is very well designed, with sufficient margin to accept the failure cases which are expected to happen during its operation. Eventual partial beam losses during abnormal operation parameters are discussed. The future precise validation of simulation results will allow to use such techniques to evaluate safety and operation parameter settings for higher energy levels. This is particularly interesting as machine development and measurement at top energy is time consuming due to long beam generation cycles as well as it is a concern of machine safety. Hence simulations can give useful starting points to minimize the measurement effort. (author) [de

  19. Observed Orbit Effects during Long Range Beam-Beam Studies

    CERN Document Server

    Alemany, R; Buffat, X; Calaga, R; Fitterer, M; Giachino, R; Hemelsoet, GH; Herr, W; Papotti, G; Pieloni, T; Poyer, M; Schaumann, M; Trad, G; Wollmann, D

    2012-01-01

    Possible limitations due to long range beam-beam effects at the LHC have been studied and are presented in this note. With a larger number of bunches and collisions in all interaction points, the crossing angles were reduced to enhance long range beam-beam effects. The analysis of the effects on the dynamic aperture and losses are documented in [1]. This note concentrates on the bunch-by-bunch orbit effects observed during the experiment.

  20. A machine protection beam position monitor system

    International Nuclear Information System (INIS)

    Medvedko, E.; Smith, S.; Fisher, A.

    1998-01-01

    Loss of the stored beam in an uncontrolled manner can cause damage to the PEP-II B Factory. We describe here a device which detects large beam position excursions or unexpected beam loss and triggers the beam abort system to extract the stored beam safely. The bad-orbit abort trigger beam position monitor (BOAT BPM) generates a trigger when the beam orbit is far off the center (>20 mm), or rapid beam current loss (dI/dT) is detected. The BOAT BPM averages the input signal over one turn (136 kHz). AM demodulation is used to convert input signals at 476 MHz to baseband voltages. The detected signal goes to a filter section for suppression of the revolution frequency, then on to amplifiers, dividers, and comparators for position and current measurements and triggering. The derived current signal goes to a special filter, designed to perform dI/dT monitoring at fast, medium, and slow current loss rates. The BOAT BPM prototype test results confirm the design concepts. copyright 1998 American Institute of Physics

  1. Possible impact of multi-electron loss events on the average beam charge state in an HIF target chamber and a neutral beam approach

    Science.gov (United States)

    Grisham, L. R.

    2001-05-01

    Experiments were carried out during the early 1980s to assess the obtainable atomic neutralization of energetic beams of negative ions ranging from lithium to silicon. The experiments found (Grisham et al. Rev. Sci. Instrum. 53 (1982) 281; Princeton Plasma Physics Laboratory Report PPPL-1857, 1981) that, for higher atomic number elements than lithium, it appeared that a substantial fraction of the time more than one electron was being lost in a single collision. This result was inferred from the existence of more than one ionization state in the product beam for even the thinnest line densities at which any electron removal took place. Because of accelerator limitations, these experiments were limited to maximum energies of 7 MeV. However, based upon these results, it is possible that multi-electron loss events may also play a significant role in determining the average ion charge state of the much higher Z and more energetic beams traversing the medium in an heavy ion fusion chamber. This could result in the beam charge state being considerably higher than previously anticipated, and might require designers to consider harder vacuum ballistic focusing approaches, or the development of additional space charge neutralization schemes. This paper discusses the measurements that gave rise for these concerns, as well as a description of further measurements that are proposed to be carried out for atomic numbers and energies per amu which would be closer to those required for heavy ion fusion drivers. With a very low current beam of a massive, but low charge state energetic ion, the charge state distribution emerging from a target gas cell could be measured as a function of line density and medium composition. Varying the line density would allow one to simulate the charge state evolution of the beam as a function of distance into the target chamber. This paper also briefly discusses a possible alternative driver approach using photodetachment-neutralized atomic beams

  2. Limitations due to strong head-on beam-beam interactions (MD 1434)

    CERN Document Server

    Buffat, Xavier; Iadarola, Giovanni; Papadopoulou, Parthena Stefania; Papaphilippou, Yannis; Pellegrini, Dario; Pojer, Mirko; Crockford, Guy; Salvachua Ferrando, Belen Maria; Trad, Georges; Barranco Garcia, Javier; Pieloni, Tatiana; Tambasco, Claudia; CERN. Geneva. ATS Department

    2017-01-01

    The results of an experiment aiming at probing the limitations due to strong head on beam-beam interactions are reported. It is shown that the loss rates significantly increase when moving the working point up and down the diagonal, possibly due to effects of the 10th and/or 14th order resonances. Those limitations are tighter for bunches with larger beam-beam parameters, a maximum total beam-beam tune shift just below 0.02 could be reached.

  3. Prompt Loss of Energetic Ions during Early Neutral Beam Injection in the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Medley, S.S.; Darrow, D.S.; Liu, D.; Roquemore, A.L.

    2005-01-01

    Early neutral-beam injection is used in the National Spherical Torus Experiment (NSTX) to heat the electrons and slow current penetration which keeps q(0) elevated to avoid deleterious MHD activity and at the same time reduces Ohmic flux consumption, all of which aids long-pulse operation. However, the low plasma current (I p ∼ 0.5 MA) and electron density (n e ∼ 1 x 10 13 cm -3 ) attending early injection lead to elevated orbit and shine through losses. The inherent orbit losses are aggravated by large excursions in the outer gap width during current ramp-up. An investigation of this behavior using various energetic particle diagnostics on NSTX and TRANSP code analysis is presented

  4. Three-beam double stimulated Raman scatterings: Cascading configuration

    Science.gov (United States)

    Rao, B. Jayachander; Cho, Minhaeng

    2018-03-01

    Two-beam stimulated Raman scattering (SRS) has been used in diverse label-free spectroscopy and imaging applications of live cells, biological tissues, and functional materials. Recently, we developed a theoretical framework for the three-beam double SRS processes that involve pump, Stokes, and depletion beams, where the pump-Stokes and pump-depletion SRS processes compete with each other. It was shown that the net Stokes gain signal can be suppressed by increasing the depletion beam intensity. The theoretical prediction has been experimentally confirmed recently. In the previous scheme for a selective suppression of one SRS by making it compete with another SRS, the two SRS processes occur in a parallel manner. However, there is another possibility of three-beam double SRS scheme that can be of use to suppress either Raman gain of the Stokes beam or Raman loss of the pump beam by depleting the Stokes photons with yet another SRS process induced by the pair of Stokes and another (second) Stokes beam. This three-beam double SRS process resembles a cascading energy transfer process from the pump beam to the first Stokes beam (SRS-1) and subsequently from the first Stokes beam to the second Stokes beam (SRS-2). Here, the two stimulated Raman gain-loss processes are associated with two different Raman-active vibrational modes of solute molecule. In the present theory, both the radiation and the molecules are treated quantum mechanically. We then show that the cascading-type three-beam double SRS can be described by coupled differential equations for the photon numbers of the pump and Stokes beams. From the approximate solutions as well as exact numerical calculation results for the coupled differential equations, a possibility of efficiently suppressing the stimulated Raman loss of the pump beam by increasing the second Stokes beam intensity is shown and discussed. To further prove a potential use of this scheme for developing a super-resolution SRS microscopy, we

  5. Recovery effects due to the interaction between nuclear and electronic energy losses in SiC irradiated with a dual-ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Thomé, Lionel, E-mail: thome@csnsm.in2p3.fr; Debelle, Aurélien; Garrido, Frédérico; Sattonnay, Gaël; Mylonas, Stamatis [Centre de Sciences Nucléaires et de Sciences de la Matière, CNRS-IN2P3-Université Paris-Sud, Bât. 108, F-91405 Orsay (France); Velisa, Gihan [CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); Horia Hulubei National Institute for Physics and Nuclear Engineering, P.O.B. MG-6, 077125 Magurele (Romania); Miro, Sandrine; Trocellier, Patrick; Serruys, Yves [CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France)

    2015-03-14

    Single and dual-beam ion irradiations of silicon carbide (SiC) were performed to study possible Synergetic effects between Nuclear (S{sub n}) and Electronic (S{sub e}) Energy Losses. Results obtained combining Rutherford backscattering in channeling conditions, Raman spectroscopy, and transmission electron microscopy techniques show that dual-beam irradiation of SiC induces a dramatic change in the final sample microstructure with a substantial decrease of radiation damage as compared to single-beam irradiation. Actually, a defective layer containing dislocations is formed upon dual-beam irradiation (S{sub n} and S{sub e}), whereas single low-energy irradiation (S{sub n} alone) or even sequential (S{sub n} + S{sub e}) irradiations lead to full amorphization. The healing process is ascribed to the electronic excitation arising from the electronic energy loss of swift ions. These results shed new light on the long-standing puzzling problem of the existence of a possible synergy between S{sub n} and S{sub e} in ion-irradiation experiments. This work is interesting for both fundamental understanding of the ion-solid interactions and technological applications in the nuclear industry where recovery S{sub n}/S{sub e} effects may preserve the integrity of nuclear devices.

  6. Absolute beam-charge measurement for single-bunch electron beams

    International Nuclear Information System (INIS)

    Suwada, Tsuyoshi; Ohsawa, Satoshi; Furukawa, Kazuro; Akasaka, Nobumasa

    2000-01-01

    The absolute beam charge of a single-bunch electron beam with a pulse width of 10 ps and that of a short-pulsed electron beam with a pulse width of 1 ns were measured with a Faraday cup in a beam test for the KEK B-Factory (KEKB) injector linac. It is strongly desired to obtain a precise beam-injection rate to the KEKB rings, and to estimate the amount of beam loss. A wall-current monitor was also recalibrated within an error of ±2%. This report describes the new results for an absolute beam-charge measurement for single-bunch and short-pulsed electron beams, and recalibration of the wall-current monitors in detail. (author)

  7. LHC Report: Freshly squeezed beams!

    CERN Multimedia

    Mike Lamont for the LHC Team

    2011-01-01

    After careful validation of  new machine settings, the LHC was ready for higher luminosity operation. New luminosity records have been set, but the operations team continues to wrestle with machine availability issues.   The commissioning of the squeeze to a ß* of 1 m in ATLAS and CMS described in the last Bulletin took until Wednesday, 7 September to complete. In order to validate the new set-up, beam losses were provoked in a controlled way with low intensity beams. The distribution of beam loss around the machine in these tests is known as a loss map. The loss maps showed that the collimation system is catching the large majority of beam losses as it should, and that the machine was ready for us to ramp the number of bunches back up and go to physics production. The ramp-up of the number of bunches went smoothly with fills at 264, 480, and 912 bunches on the way back to the machine’s previous record of 1380 bunches (first fill on Friday, 9 Se...

  8. Beam Instrumentation for the Spallation Neutron Source Ring

    International Nuclear Information System (INIS)

    Witkover, R. L.; Cameron, P. R.; Shea, T. J.; Connolly, R. C.; Kesselman, M.

    1999-01-01

    The Spallation Neutron Source (SNS) will be constructed by a multi-laboratory collaboration with BNL responsible for the transfer lines and ring. The 1 MW beam power necessitates careful monitoring to minimize un-controlled loss. This high beam power will influence the design of the monitors in the high energy beam transport line (HEBT) from linac to ring, in the ring, and in the ring-to-target transfer line (RTBT). The ring instrumentation must cover a 3-decade range of beam intensity during accumulation. Beam loss monitoring will be especially critical since un-controlled beam loss must be kept below 10 -4 . A Beam-In-Gap (BIG) monitor is being designed to assure out-of-bucket beam will not be lost in the ring

  9. Mechanisms of hearing loss in neurofibromatosis type 2.

    Directory of Open Access Journals (Sweden)

    Ashok R Asthagiri

    Full Text Available Patients with neurofibromatosis type 2 (NF2 develop bilateral cochleovestibular schwannomas (CVSs that cause binaural deafness in most individuals. Hearing loss occurs in an unpredictable manner and the underlying mechanisms are not known. To gain insight into the pathophysiologic basis for hearing loss in NF2, we performed a prospective cross-sectional study of untreated ears in NF2 patients.One hundred consecutive NF2 patients in a prospective natural history study were included. Clinical and audiometric data were analyzed for treatment naïve ears. In addition to standard MR-imaging sequences, alterations in intralabyrinthine protein content were determined utilizing high resolution FLAIR, the presence of cochlear aperture obstruction was determined by examining 3D T2 sequences, and endolymphatic hydrops was identified on delayed post-contrast FLAIR sequences.Eighty-nine ears harboring 84 untreated CVSs in 56 consecutive NF2 patients (age 30 ± 16 years were analyzed. Thirty-four (38% ears had varying degrees of hearing loss. Elevated intralabyrinthine protein was identified in 70 (75% ears by FLAIR MR-imaging and was strongly associated with the presence of hearing loss (32/34 hearing loss ears; 94%(Fisher's exact test; P= .005. Elevated intralabyrinthine protein was associated with the presence of CVS-associated cochlear aperture obstruction (64 of 67 ears with elevated protein; 96%(Fisher's exact test; P<0.0001 in both normal and hearing loss ears. Elevated intralabyrinthine protein was not identified in ears without CVS (5 ears. While larger tumor size was associated with hearing loss (P=0.006, 16 hearing loss ears (47% harbored CVSs less than 0.5 cm(3, including 14 ears (88% with block of the cochlear aperture and elevated protein.These findings are consistent with a model in which hearing loss develops as a result of cochlear aperture obstruction and accumulation of intralabyrinthine protein. MRI based identification of elevated

  10. Mechanical properties of hybrid kenaf/glass reinforced epoxy composite for passenger car bumper beam

    International Nuclear Information System (INIS)

    Davoodi, M.M.; Sapuan, S.M.; Ahmad, D.; Ali, Aidy; Khalina, A.; Jonoobi, Mehdi

    2010-01-01

    It is estimated that the annual world car production rate will reach 76 million vehicles per year by 2020. New regulations such as the EU End of Life Vehicles (ELV) regulations are forcing car manufacturers to consider the environmental impact of their production and possibly shift from the use of synthetic materials to the use of agro-based materials. Poor mechanical properties and certain manufacturing limitations currently limit the use of agro-based materials to non-structural and semi-structural automotive components. The hybridization of natural fiber with glass fiber provides a method to improve the mechanical properties over natural fibers alone. This research is focused on a hybrid of kenaf/glass fiber to enhance the desired mechanical properties for car bumper beams as automotive structural components with modified sheet molding compound (SMC). A specimen without any modifier is tested and compared with a typical bumper beam material called glass mat thermoplastic (GMT). The results indicate that some mechanical properties such as tensile strength, Young's modulus, flexural strength and flexural modulus are similar to GMT, but impact strength is still low, and shows the potential for utilization of hybrid natural fiber in some car structural components such as bumper beams.

  11. Determination of both mechanical and electronic shifts in cone beam SPECT

    International Nuclear Information System (INIS)

    Jianying Li; Jaszczak, R.J.; Huili Wang; Greer, K.L.; Coleman, R.E.

    1993-01-01

    The difference between the displacement of the centre of rotation (mechanical shift, MS) and the electronic centring misalignment (electronic shift, ES) in cone beam SPECT is evaluated. A method is proposed to determine both MS and ES using the centroid of a projected point source sampled over 360 o C and the Marquardt non-linear fitting algorithm. Both shifts are characterized by two orthogonal components. This method is verified using Monte Carlo simulated point source data with different combinations of mechanical and electronic shifts. Both shifts can be determined correctly. The proposed method was also applied to the authors' cone beam SPECT system to determine both shifts as well as the focal length. The determined ES parameters are then used to correct the projections and the MS parameters are incorporated into a reconstruction algorithm. The point source image are reconstructed and the image resolutions with and without the shift corrections are measured. (Author)

  12. Challenges of arbitrary waveform signal detection by Silicon Photomultipliers as readout for Cherenkov fibre based beam loss monitoring systems

    CERN Document Server

    Vinogradov, Sergey; Nebot del Busto, Eduardo; Kastriotou, Maria; Welsch, Carsten P

    2016-01-01

    Silicon Photomultipliers (SiPMs) are well recognised as very competitive photodetectors due to their exceptional photon number and time resolution, room-temperature low-voltage operation, insensitivity to magnetic fields, compactness, and robustness. Detection of weak light pulses of nanosecond time scale appears to be the best area for SiPM applications because in this case most of the SiPM drawbacks have a rather limited effect on its performance. In contrast to the more typical scintillation and Cherenkov detection applications, which demand information on the number of photons and/or the arrival time of the light pulse only, beam loss monitoring (BLM) systems utilising Cherenkov fibres with photodetector readout have to precisely reconstruct the temporal profile of the light pulse. This is a rather challenging task for any photon detector especially taking into account the high dynamic range of incident signals (100K – 1M) from a few photons to a few percents of destructive losses in a beam line and pre...

  13. Comparison of three different concepts of high dynamic range and dependability optimised current measurement digitisers for beam loss systems

    CERN Document Server

    Viganò, W; Effinger, E; Venturini, G G; Zamantzas, C

    2012-01-01

    Three Different Concepts of High Dynamic Range and Dependability Optimised Current Measurement Digitisers for Beam Loss Systems will be compared on this paper. The first concept is based on Current to Frequency Conversion, enhanced with an ADC for extending the dynamic range and decreasing the response time. A summary of 3 years’ worth of operational experience with such a system for LHC beam loss monitoring will be given. The second principle is based on an Adaptive Current to Frequency Converter implemented in an ASIC. The basic parameters of the circuit are discussed and compared with measurements. Several measures are taken to harden both circuits against single event effects and to make them tolerant for operation in radioactive environments. The third circuit is based on a Fully Differential Integrator for enhanced dynamic range, where laboratory and test installation measurements will be presented. All circuits are designed to avoid any dead time in the acquisition and have reliability and fail safe...

  14. Beam-beam collisions and crossing angles in RHIC

    International Nuclear Information System (INIS)

    Peggs, S.

    1999-01-01

    This paper evaluates the strength of head on and parasitic beam-beam collisions in RHIC when the crossing angle is zero. A non-zero crossing angle is not required in normal operation with 120 bunches, thanks to the early separation of the two beams. The RHIC lattice is shown to easily accommodate even conservatively large crossing angles, for example in beam dynamics studies, or in future operational upgrades to as many as 360 bunches per ring. A modest loss in luminosity is incurred when gold ions collide at an angle after 10 hours of storage

  15. In situ radiation test of silicon and diamond detectors operating in superfluid helium and developed for beam loss monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kurfürst, C.; Dehning, B.; Sapinski, M.; Bartosik, M.R.; Eisel, T.; Fabjan, C.; Rementeria, C.A. [CERN, Geneva (Switzerland); Griesmayer, E. [CIVIDEC Instrumentation, GmbH, Vienna (Austria); Eremin, V. [Ioffe Institute, St. Petersburg (Russian Federation); Verbitskaya, E., E-mail: elena.verbitskaya@cern.ch [Ioffe Institute, St. Petersburg (Russian Federation); Zabrodskii, A.; Fadeeva, N.; Tuboltsev, Y.; Eremin, I. [Ioffe Institute, St. Petersburg (Russian Federation); Egorov, N. [Research Institute of Material Science and Technology, Zelenograd, Moscow (Russian Federation); Härkönen, J.; Luukka, P.; Tuominen, E. [Helsinki Institute of Physics, Helsinki (Finland)

    2015-05-11

    As a result of the foreseen increase in the luminosity of the Large Hadron Collider, the discrimination between the collision products and possible magnet quench-provoking beam losses of the primary proton beams is becoming more critical for safe accelerator operation. We report the results of ongoing research efforts targeting the upgrading of the monitoring system by exploiting Beam Loss Monitor detectors based on semiconductors located as close as possible to the superconducting coils of the triplet magnets. In practice, this means that the detectors will have to be immersed in superfluid helium inside the cold mass and operate at 1.9 K. Additionally, the monitoring system is expected to survive 20 years of LHC operation, resulting in an estimated radiation fluence of 1×10{sup 16} proton/cm{sup 2}, which corresponds to a dose of about 2 MGy. In this study, we monitored the signal degradation during the in situ irradiation when silicon and single-crystal diamond detectors were situated in the liquid/superfluid helium and the dependences of the collected charge on fluence and bias voltage were obtained. It is shown that diamond and silicon detectors can operate at 1.9 K after 1×10{sup 16} p/cm{sup 2} irradiation required for application as BLMs, while the rate of the signal degradation was larger in silicon detectors than in the diamond ones. For Si detectors this rate was controlled mainly by the operational mode, being larger at forward bias voltage. - Highlights: • Silicon and diamond detectors are proposed for beam loss monitoring at LHC. • The first in situ radiation test of Si and diamond detectors at 1.9 K is described. • Both diamond and silicon detectors survived after 1×10{sup 16} p/cm{sup 2} irradiation at 1.9 K. • The rate of Si detectors degradation depends on bias polarity and is larger at V{sub forw}. • Sensitivity of Si detectors irradiated to 1×10{sup 16} p/cm{sup 2} is independent on resistivity.

  16. Severe signal loss in diamond beam loss monitors in high particle rate environments by charge trapping in radiation-induced defects

    Energy Technology Data Exchange (ETDEWEB)

    Kassel, Florian; Boer, Wim de [Institute for Experimental Nuclear Physics (IEKP), KIT, Karlsruhe (Germany); Guthoff, Moritz; Dabrowski, Anne [CERN, Meyrin (Switzerland)

    2016-10-15

    The beam condition monitoring leakage (BCML) system is a beam monitoring device in the compact muon solenoid (CMS) experiment at the large hadron collider (LHC). As detectors 32 poly-crystalline (pCVD) diamond sensors are positioned in rings around the beam pipe. Here, high particle rates occur from the colliding beams scattering particles outside the beam pipe. These particles cause defects, which act as traps for the ionization, thus reducing the charge collection efficiency (CCE). However, the loss in CCE was much more severe than expected from low rate laboratory measurements and simulations, especially in single-crystalline (sCVD) diamonds, which have a low initial concentration of defects. After an integrated luminosity of a few fb{sup -1} corresponding to a few weeks of LHC operation, the CCE of the sCVD diamonds dropped by a factor of five or more and quickly approached the poor CCE of pCVD diamonds. The reason why in real experiments the CCE is much worse than in laboratory experiments is related to the ionization rate. At high particle rates the trapping rate of the ionization is so high compared with the detrapping rate, that space charge builds up. This space charge reduces locally the internal electric field, which in turn increases the trapping rate and recombination and hence reduces the CCE in a strongly non-linear way. A diamond irradiation campaign was started to investigate the rate-dependent electrical field deformation with respect to the radiation damage. Besides the electrical field measurements via the transient current technique (TCT), the CCE was measured. The experimental results were used to create an effective deep trap model that takes the radiation damage into account. Using this trap model, the rate-dependent electrical field deformation and the CCE were simulated with the software SILVACO TCAD. The simulation, tuned to rate-dependent measurements from a strong radioactive source, was able to predict the non-linear decrease of the

  17. Severe signal loss in diamond beam loss monitors in high particle rate environments by charge trapping in radiation-induced defects

    International Nuclear Information System (INIS)

    Kassel, Florian; Boer, Wim de; Guthoff, Moritz; Dabrowski, Anne

    2016-01-01

    The beam condition monitoring leakage (BCML) system is a beam monitoring device in the compact muon solenoid (CMS) experiment at the large hadron collider (LHC). As detectors 32 poly-crystalline (pCVD) diamond sensors are positioned in rings around the beam pipe. Here, high particle rates occur from the colliding beams scattering particles outside the beam pipe. These particles cause defects, which act as traps for the ionization, thus reducing the charge collection efficiency (CCE). However, the loss in CCE was much more severe than expected from low rate laboratory measurements and simulations, especially in single-crystalline (sCVD) diamonds, which have a low initial concentration of defects. After an integrated luminosity of a few fb -1 corresponding to a few weeks of LHC operation, the CCE of the sCVD diamonds dropped by a factor of five or more and quickly approached the poor CCE of pCVD diamonds. The reason why in real experiments the CCE is much worse than in laboratory experiments is related to the ionization rate. At high particle rates the trapping rate of the ionization is so high compared with the detrapping rate, that space charge builds up. This space charge reduces locally the internal electric field, which in turn increases the trapping rate and recombination and hence reduces the CCE in a strongly non-linear way. A diamond irradiation campaign was started to investigate the rate-dependent electrical field deformation with respect to the radiation damage. Besides the electrical field measurements via the transient current technique (TCT), the CCE was measured. The experimental results were used to create an effective deep trap model that takes the radiation damage into account. Using this trap model, the rate-dependent electrical field deformation and the CCE were simulated with the software SILVACO TCAD. The simulation, tuned to rate-dependent measurements from a strong radioactive source, was able to predict the non-linear decrease of the CCE in

  18. Self-sensing CF-GFRP rods as mechanical reinforcement and sensors of concrete beams

    Science.gov (United States)

    Nanni, F.; Auricchio, F.; Sarchi, F.; Forte, G.; Gusmano, G.

    2006-02-01

    In this paper testing carried out on concrete beams reinforced with self-sensing composite rods is presented. Such concrete beams, whose peculiarity is to be reinforced by self-sensing materials able to generate an alarm signal when fixed loads are reached, were designed, manufactured and tested. The reinforcing rods were manufactured by pultrusion and consisted of self-sensing hybrid composites containing both glass and carbon fibres in an epoxy resin. The experimentation was carried out by performing simultaneously mechanical tests on the reinforced beams and electrical measurements on the composite rods. The results showed that the developed system reached the target proposed, giving an alarm signal.

  19. Simulator for beam-based LHC collimator alignment

    Science.gov (United States)

    Valentino, Gianluca; Aßmann, Ralph; Redaelli, Stefano; Sammut, Nicholas

    2014-02-01

    In the CERN Large Hadron Collider, collimators need to be set up to form a multistage hierarchy to ensure efficient multiturn cleaning of halo particles. Automatic algorithms were introduced during the first run to reduce the beam time required for beam-based setup, improve the alignment accuracy, and reduce the risk of human errors. Simulating the alignment procedure would allow for off-line tests of alignment policies and algorithms. A simulator was developed based on a diffusion beam model to generate the characteristic beam loss signal spike and decay produced when a collimator jaw touches the beam, which is observed in a beam loss monitor (BLM). Empirical models derived from the available measurement data are used to simulate the steady-state beam loss and crosstalk between multiple BLMs. The simulator design is presented, together with simulation results and comparison to measurement data.

  20. Carrier loss mechanisms in textured crystalline Si-based solar cells

    OpenAIRE

    Nakane, Akihiro; Fujimoto, Shohei; Fujiwara, Hiroyuki

    2017-01-01

    A quite general device analysis method that allows the direct evaluation of optical and recombination losses in crystalline silicon (c-Si)-based solar cells has been developed. By applying this technique, the optical and physical limiting factors of the state-of-the-art solar cells with ~20% efficiencies have been revealed. In the established method, the carrier loss mechanisms are characterized from the external quantum efficiency (EQE) analysis with very low computational cost. In particula...

  1. MAcro-Electro-Mechanical Systems (MÆMS) based concept for microwave beam steering in reflectarray antennas

    Energy Technology Data Exchange (ETDEWEB)

    Momeni Hasan Abadi, Seyed Mohamad Amin, E-mail: momenihasana@wisc.edu; Booske, John H., E-mail: jhbooske@wisc.edu; Behdad, Nader, E-mail: behdad@wisc.edu [Department of Electrical and Computer Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706 (United States)

    2016-08-07

    We present a new approach to perform beam steering in reflecting type apertures such as reflectarray antennas. The proposed technique exploits macro-scale mechanical movements of parts of the structure to achieve two-dimensional microwave beam steering without using any solid-state devices or phase shifters integrated within the aperture of the antenna. The principles of operation of this microwave beam steering technique are demonstrated in an aperture occupied by ground-plane-backed, sub-wavelength capacitive patches with identical dimensions. We demonstrate that by tilting the ground plane underneath the entire patch array layer, a phase shift gradient can be created over the aperture of the reflectarray that determines the direction of the radiated beam. Changing the direction and slope of this phase shift gradient on the aperture allows for performing beam steering in two dimensions using only one control parameter (i.e., tilt vector of the ground plane). A proof-of-concept prototype of the structure operating at X-band is designed, fabricated, and experimentally characterized. Experiments demonstrate that small mechanical movements of the ground plane (in the order of 0.05λ{sub 0}) can be used to steer the beam direction in the ±10° in two dimensions. It is also demonstrated that this beam scanning range can be greatly enhanced to ±30° by applying this concept to the same structure when its ground plane is segmented.

  2. Low-resistance strip sensors for beam-loss event protection

    International Nuclear Information System (INIS)

    Ullán, M.; Benítez, V.; Quirion, D.; Zabala, M.; Pellegrini, G.; Lozano, M.; Lacasta, C.; Soldevila, U.; García, C.; Fadeyev, V.; Wortman, J.; DeFilippis, J.; Shumko, M.; Grillo, A.A; Sadrozinski, H.F.-W.

    2014-01-01

    AC-coupled silicon strip sensors can be damaged in case of a beam loss due to the possibility of a large charge accumulation in the bulk, developing very high voltages across the coupling capacitors which can destroy them. Punch-through structures are currently used to avoid this problem helping to evacuate the accumulated charge as large voltages are developing. Nevertheless, previous experiments, performed with laser pulses, have shown that these structures can become ineffective in relatively long strips. The large value of the implant resistance can effectively isolate the “far” end of the strip from the punch-through structure leading to large voltages. We present here our developments to fabricate low-resistance strip sensors to avoid this problem. The deposition of a conducting material in contact with the implants drastically reduces the strip resistance, assuring the effectiveness of the punch-through structures. First devices have been fabricated with this new technology. Initial results with laser tests show the expected reduction in peak voltages on the low resistivity implants. Other aspects of the sensor performance, including the signal formation, are not affected by the new technology

  3. Low temperature mechanical dissipation of an ion-beam sputtered silica film

    International Nuclear Information System (INIS)

    Martin, I W; Craig, K; Bassiri, R; Hough, J; Robie, R; Rowan, S; Nawrodt, R; Schwarz, C; Harry, G; Penn, S; Reid, S

    2014-01-01

    Thermal noise arising from mechanical dissipation in oxide mirror coatings is an important limit to the sensitivity of future gravitational wave detectors, optical atomic clocks and other precision measurement systems. Here, we present measurements of the temperature dependence of the mechanical dissipation of an ion-beam sputtered silica film between 10 and 300 K. A dissipation peak was observed at 20 K and the low temperature dissipation was found to have significantly different characteristics than observed for bulk silica and silica films deposited by alternative techniques. These results are important for better understanding the underlying mechanisms of mechanical dissipation, and thus thermal noise, in the most commonly-used reflective coatings for precision measurements. (paper)

  4. The renal concentrating mechanism and the clinical consequences of its loss

    Science.gov (United States)

    Agaba, Emmanuel I.; Rohrscheib, Mark; Tzamaloukas, Antonios H.

    2012-01-01

    The integrity of the renal concentrating mechanism is maintained by the anatomical and functional arrangements of the renal transport mechanisms for solute (sodium, potassium, urea, etc) and water and by the function of the regulatory hormone for renal concentration, vasopressin. The discovery of aquaporins (water channels) in the cell membranes of the renal tubular epithelial cells has elucidated the mechanisms of renal actions of vasopressin. Loss of the concentrating mechanism results in uncontrolled polyuria with low urine osmolality and, if the patient is unable to consume (appropriately) large volumes of water, hypernatremia with dire neurological consequences. Loss of concentrating mechanism can be the consequence of defective secretion of vasopressin from the posterior pituitary gland (congenital or acquired central diabetes insipidus) or poor response of the target organ to vasopressin (congenital or nephrogenic diabetes insipidus). The differentiation between the three major states producing polyuria with low urine osmolality (central diabetes insipidus, nephrogenic diabetes insipidus and primary polydipsia) is done by a standardized water deprivation test. Proper diagnosis is essential for the management, which differs between these three conditions. PMID:23293407

  5. Beam-loss induced pressure rise of Large Hadron Collider collimator materials irradiated with 158 GeV/u $In^{49+}$ ions at the CERN Super Proton Synchrotron

    CERN Document Server

    Mahner, Edgar; Hansen, Jan; Page, Eric; Vincke, H

    2004-01-01

    During heavy ion operation, large pressure rises, up to a few orders of magnitude, were observed at CERN, GSI, and BNL. The dynamic pressure rises were triggered by lost beam ions that impacted onto the vacuum chamber walls and desorbed about 10/sup 4/ to 10/sup 7/ molecules per ion. The deterioration of the dynamic vacuum conditions can enhance charge-exchange beam losses and can lead to beam instabilities or even to beam abortion triggered by vacuum interlocks. Consequently, a dedicated measurement of heavy-ion induced molecular desorption in the GeV/u energy range is important for Large Hadron Collider (LHC) ion operation. In 2003, a desorption experiment was installed at the super proton synchrotron to measure the beam-loss induced pressure rise of potential LHC collimator materials. Samples of bare graphite, sputter coated (Cu, TiZrV) graphite, and 316 LN (low carbon with nitrogen) stainless steel were irradiated under grazing angle with 158 GeV/u indium ions. After a description of the new experimental ...

  6. LHC Beam Instrumentation: Beam Profile Measurements (2/3)

    CERN Document Server

    CERN. Geneva

    2014-01-01

    The LHC is equipped with a full suite of sophisticated beam instrumentation which has been essential for rapid commissioning, the safe increase in total stored beam power and the understanding of machine optics and accelerator physics phenomena. These lectures will introduce these systems and comment on their contributions to the various stages of beam operation. They will include details on: the beam position system and its use for real-time global orbit feedback; the beam loss system and its role in machine protection; total and bunch by bunch intensity measurements; tune measurement and feedback; diagnostics for transverse beam size measurements, abort gap monitoring and longitudinal density measurements. Issues and problems encountered along the way will also be discussed together with the prospect for future upgrades.

  7. Fast loss analysis with LHC diamond detectors in 2017

    CERN Document Server

    Gorzawski, Arkadiusz; Fuster Martinez, Nuria; Garcia Morales, Hector; Mereghetti, Alessio; Cai, Xu; Valentino, Gianluca; Appleby, Robert Barrie; CERN. Geneva. ATS Department

    2018-01-01

    We presented some applications of the diamond BLM system installed in the LHC betatron collimation insertion. A selection of results illustrates the potential of this measurement system to understand better the losses at the LHC. Measurements range from the bunch-by-bunch analysis in different phases of the operational cycle, to the frequency analysis of fast losses. This work will continue in 2018, in collaboration with the various teams at CERN. New hardware is planned to improve the system. The addition of one monitor per beam will allow distinguishing the horizontal and vertical contents of losses at primary collimators, thus opening the possibility for a better understanding of loss mechanisms and for further study of correlation with other bunch-by-bunch measurements.

  8. Characterization of a wide dynamic-range, radiation-tolerant charge-digitizer asic for monitoring of Beam losses

    CERN Document Server

    Guido Venturini, G G; Dehning, B; Kayal, M

    2012-01-01

    An Application Specific Integrated Circuit (ASIC) has been designed and fabricated to provide a compact solution to digitize current signals from ionization chambers and diamond detectors, employed as beam loss monitors at CERN and several other high energy physics facilities. The circuit topology has been devised to accept positive and negative currents, to have a wide dynamic range (above 120 dB), withstand radiation levels over 10 Mrad and offer different modes of operation, covering a broad range of applications. Furthermore, an internal conversion reference is employed in the digitization, to provide an accurate absolute measurement. This paper discusses the detailed characterization of the first prototype: linearity, radiation tolerance and temperature dependence of the conversion, as well as implications and system-level considerations regarding its use for beam instrumentation applications in a high energy physics facility.

  9. Massive weight loss-induced mechanical plasticity in obese gait

    NARCIS (Netherlands)

    Hortobagyi, Tibor; Herring, Cortney; Pories, Walter J.; Rider, Patrick; DeVita, Paul

    2011-01-01

    Hortobagyi T, Herring C, Pories WJ, Rider P, DeVita P. Massive weight loss-induced mechanical plasticity in obese gait. J Appl Physiol 111: 1391-1399, 2011. First published August 18, 2011; doi:10.1152/japplphysiol.00291.2011.-We examined the hypothesis that metabolic surgery-induced massive weight

  10. Mechanical Design of a Heavy Ion Beam Dump for the RIA Fragmentation Line

    CERN Document Server

    Stein, Werner; Conner, David L

    2005-01-01

    The RIA fragmentation line requires a beam stop for the primary beam downstream of the first dipole magnet. The beam may consist of U, Ca, Sn, Kr, or O ions. with a variety of power densities. The configuration with highest power density is for the U beam, with a spot size of 3 cm x 3 cm and a total power of up to 300 kW. The mechanical design of the dump that meets these criteria consists of a 50 cm diameter aluminum wheel with water coolant channels. A hollow drive shaft supplies the coolant water and connects the wheel to an electrical motor located in an air space in the floor above the dump. The beam strikes the wheel along the outer perimeter and passes through a thin window of aluminum where 10% of its power is absorbed and the remainder of the beam is absorbed in flowing water behind the window. Rotation of the wheel at 400 RPM results in maximum aluminum temperatures below 100 C and acceptably low thermal stresses of 5 ksi. Rotating the wheel also results in low radiation damage levels by spreading t...

  11. Beam Collimation Studies for the ILC Positron Source

    Energy Technology Data Exchange (ETDEWEB)

    Drozhdin, A.; /Fermilab; Nosochkov, Y.; Zhou, F.; /SLAC

    2008-06-26

    Results of the collimation studies for the ILC positron source beam line are presented. The calculations of primary positron beam loss are done using the ELEGANT code. The secondary positron and electron beam loss, the synchrotron radiation along the beam line and the bremsstrahlung radiation in the collimators are simulated using the STRUCT code. The first part of the collimation system, located right after the positron source target (0.125 GeV), is used for protection of the RF Linac sections from heating and radiation. The second part of the system is used for final collimation before the beam injection into the Damping Ring at 5 GeV. The calculated power loss in the collimation region is within 100 W/m, with the loss in the collimators of 0.2-5 kW. The beam transfer efficiency from the target to the Damping Ring is 13.5%.

  12. Mechanical properties of weldings by electron beams on alloy 8090 (CP 271)

    International Nuclear Information System (INIS)

    Le Poac, P.; Nomine, A.M.; Miannay, D.

    1987-06-01

    Weldings by electron beams got on rings in alloy 8090 in the T4 and T6 state are mechanically tested in traction in the original state of welding or after a thermal processing of 12 hours at 210 0 C [fr

  13. Study of the Thermo-Mechanical Behavior of the CLIC Two-Beam Modules

    CERN Document Server

    Rossi, F; Riddone, G; Österberg, K; Kossyvakis, I; Gudkov, D; Samochkine, A

    2013-01-01

    The final luminosity target of the Compact LInear Collider (CLIC) imposes a micron-level stability requirement on the two-meter repetitive two-beam modules constituting the main linacs. Two-beam prototype modules are being assembled to extensively study their thermo-mechanical behaviour under different operation modes. The power dissipation occurring in the modules will be reproduced and the efficiency of the corresponding cooling systems validated. At the same time, the real environmental conditions present in the CLIC tunnel will be studied. Air conditioning and ventilation systems have been installed in the dedicated laboratory. The air temperature will be changed from 20 to 40°C, while the air flow rate will be varied up to 0.8 m/s. During all experimental tests, the alignment of the RF structures will be monitored to investigate the influence of power dissipation and air temperature on the overall thermo-mechanical behaviour. \

  14. Quench Tests of LHC Magnets with Beam: Studies on Beam Loss development and determination of Quench levels

    CERN Document Server

    Priebe, A; Sapinski, M

    The application of superconducting materials in the field of high energy accelerator physics not only opens the doors to the generation of the magnetic fields unattainable to normal conductors but also demands facing new challenges. A transition fromthe superconducting state, which is characterized by a resistance-free flow of the electric current, to the normal conducting state is called quenching. This process might be extremely dangerous and even lead to destruction of amagnet superconducting coil if no protecting actions are taken. Therefore, the knowledge of a magnet quench level, i.e. amount of energy which causes the transition to the resistive state, is crucial for the safety and operational efficiency of the accelerator. Regarding that, specific thresholds are incorporated to dedicated quench prevention systems in order to suppress the origin of detected energy perturbation, for example beam losses, or mitigate the consequences of the quenching process by dissipating the energy stored in the magnetic...

  15. Beam diagnostics for low energy beams

    Directory of Open Access Journals (Sweden)

    J. Harasimowicz

    2012-12-01

    Full Text Available Low-energetic ion and antimatter beams are very attractive for a number of fundamental studies. The diagnostics of such beams, however, is a challenge due to low currents down to only a few thousands of particles per second and significant fraction of energy loss in matter at keV beam energies. A modular set of particle detectors has been developed to suit the particular beam diagnostic needs of the ultralow-energy storage ring (USR at the future facility for low-energy antiproton and ion research, accommodating very low beam intensities at energies down to 20 keV. The detectors include beam-profile monitors based on scintillating screens and secondary electron emission, sensitive Faraday cups for absolute intensity measurements, and capacitive pickups for beam position monitoring. In this paper, the design of all detectors is presented in detail and results from beam measurements are shown. The resolution limits of all detectors are described and options for further improvement summarized. Whilst initially developed for the USR, the instrumentation described in this paper is also well suited for use in other low-intensity, low-energy accelerators, storage rings, and beam lines.

  16. Effect of elevated substrate temperature deposition on the mechanical losses in tantala thin film coatings

    Science.gov (United States)

    Vajente, G.; Birney, R.; Ananyeva, A.; Angelova, S.; Asselin, R.; Baloukas, B.; Bassiri, R.; Billingsley, G.; Fejer, M. M.; Gibson, D.; Godbout, L. J.; Gustafson, E.; Heptonstall, A.; Hough, J.; MacFoy, S.; Markosyan, A.; Martin, I. W.; Martinu, L.; Murray, P. G.; Penn, S.; Roorda, S.; Rowan, S.; Schiettekatte, F.; Shink, R.; Torrie, C.; Vine, D.; Reid, S.; Adhikari, R. X.

    2018-04-01

    Brownian thermal noise in dielectric multilayer coatings limits the sensitivity of current and future interferometric gravitational wave detectors. In this work we explore the possibility of improving the mechanical losses of tantala, often used as the high refractive index material, by depositing it on a substrate held at elevated temperature. Promising results have been previously obtained with this technique when applied to amorphous silicon. We show that depositing tantala on a hot substrate reduced the mechanical losses of the as-deposited coating, but subsequent thermal treatments had a larger impact, as they reduced the losses to levels previously reported in the literature. We also show that the reduction in mechanical loss correlates with increased medium range order in the atomic structure of the coatings using x-ray diffraction and Raman spectroscopy. Finally, a discussion is included on our results, which shows that the elevated temperature deposition of pure tantala coatings does not appear to reduce mechanical loss in a similar way to that reported in the literature for amorphous silicon; and we suggest possible future research directions.

  17. X-ray Radiation Mechanisms and the Beaming Effect of Hot Spots ...

    Indian Academy of Sciences (India)

    Astr. (2011) 32, 193–196 c Indian Academy of Sciences. X-ray Radiation Mechanisms and the Beaming Effect of Hot Spots and Knots in AGN Jets. Jin Zhang1,∗. , Jin-Ming Bai2, Liang Chen2 & Enwei Liang3. 1College of Physics and Electronic Engineering, Guangxi Teachers Education University,. Nanning 530001, China.

  18. TCDQ-TCT retraction and losses during asynchronous beam dump

    CERN Document Server

    Bracco, Chiara; Quaranta, Elena; CERN. Geneva. ATS Department

    2016-01-01

    The protection provided by the TCDQs in case of asynchronous beam dump depends strongly on their correct setup. They have to respect the strict hierarchy of the full collimation system and shield the tertiary collimators in the experimental regions. This MD aimed at performing asynchronous beam dump tests with different configurations, in order to assess the minimum allowed retraction between TCTs and TCDQs and, as a consequence, on the The protection provided by the TCDQs in case of asynchronous beam dump depends strongly on their correct setup. They have to respect the strict hierarchy of the full collimation system and shield the tertiary collimators in the experimental regions. This MD aimed at performing asynchronous beam dump tests with different configurations, in order to assess the minimum allowed retraction between TCTs and TCDQs and, as a consequence, on the β* reach.

  19. Simulations of beam ion transport during tearing modes in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Carolipio, E.M.; Heidbrink, W.W.; Forest, C.B.; White, R.B.

    2002-01-01

    Large coherent MHD modes are observed to reduce the neutral beam current drive efficiency and 2.5 MeV neutron emission in DIII-D by as much as ∼65%. These modes result in large (width w or approx. 40 keV become stochastic at island widths comparable to those in the experiment. A Hamiltonian guiding centre code is used to follow energetic particle trajectories with the tearing mode modelled as a radially extended, single helicity perturbation. In the simulations, the lost neutral beam current drive and neutron emission are 35% and 40%, respectively, which is consistent with the measured reductions of 40±14% and 40±10%. Several features of the lost particle distribution indicate that orbit stochasticity is the loss mechanism in the simulations and strongly suggest that the same mechanism is responsible for the losses observed in the experiment. (author)

  20. Long-term degradation of chemical structures and mechanical properties in polyethylene induced by ion-beam irradiation

    International Nuclear Information System (INIS)

    Oka, T.; Hama, Y.

    2004-01-01

    The long-term degradation in polyethylene irradiated with ion beams was studied. We found the changes of the chemical structures and the mechanical properties with time storage. S-PE has a good resistance to ion-beam irradiation because the crystallinity and density were very low. (author)

  1. Beam-induced quench test of LHC main quadrupole

    CERN Document Server

    Priebe, A; Dehning, B; Effinger, E; Emery, J; Holzer, E B; Kurfuerst, C; Nebot Del Busto, E; Nordt, A; Sapinski, M; Steckert, J; Verweij, A; Zamantzas, C

    2011-01-01

    Unexpected beam loss might lead to a transition of the accelerator superconducting magnet to a normal conducting state. The LHC beam loss monitoring (BLM) system is designed to abort the beam before the energy deposited in the magnet coils reach a quench-provoking level. In order to verify the threshold settings generated by simulation, a series of beam-induced quench tests at various beam energies has been performed. The beam losses are generated by means of an orbital bump peaked in one of main quadrupole magnets (MQ). The analysis includes not only BLM data but also the quench protection system (QPS) and cryogenics data. The measurements are compared to Geant4 simulations of energy deposition inside the coils and corresponding BLM signal outside the cryostat.

  2. A Real-Time FPGA based Algorithm for the combination of Beam Loss Acquisition Methods used for Measurement Dynamic Range expansion

    CERN Document Server

    Kwiatkowski, M; Alsdorf, M; Dehning, B; Vigano, W

    2012-01-01

    The aim of the Beam Loss Monitoring Dual Polarity (BLEDP) module under development at the European Organisation for Nuclear Research (CERN) is to measure and digitise with high precision the current produced by several types of beam loss detectors. The BLEDP module consists of eight analogue channels each with a fully differential integrator and an accompanying 16 bit ADC at the output of each analogue integrator. The on-board FPGA device controls the integral periods, instructs the ADC devices to perform measurements at the end of each period and collects the measurements. In the next stage it combines the number of charge and discharge cycles accounted in the last interval together with the cycle fractions observed using the ADC samples to produce a digitised high precision value of the charges collected. This paper describes briefly the principle of the fully differential integrator and focuses on the algorithm employed to process the digital data.

  3. Nano/micro particle beam for ceramic deposition and mechanical etching

    International Nuclear Information System (INIS)

    Chun, Doo-Man; Kim, Min-Saeng; Kim, Min-Hyeng; Ahn, Sung-Hoon; Yeo, Jun-Cheol; Lee, Caroline Sunyong

    2010-01-01

    Nano/micro particle beam (NPB) is a newly developed ceramic deposition and mechanical etching process. Additive (deposition) and subtractive (mechanical etching) processes can be realized in one manufacturing process using ceramic nano/micro particles. Nano- or micro-sized powders are sprayed through the supersonic nozzle at room temperature and low vacuum conditions. According to the process conditions, the ceramic powder can be deposited on metal substrates without thermal damage, and mechanical etching can be conducted in the same process with a simple change of process conditions and powders. In the present work, ceramic aluminum oxide (Al 2 O 3 ) thin films were deposited on metal substrates. In addition, the glass substrate was etched using a mask to make small channels. Deposited and mechanically etched surface morphology, coating thickness and channel depth were investigated. The test results showed that the NPB provides a feasible additive and subtractive process using ceramic powders.

  4. Performance potential of mechanical ventilation systems with minimized pressure loss

    DEFF Research Database (Denmark)

    Terkildsen, Søren; Svendsen, Svend

    2013-01-01

    simulations that quantify fan power consumption, heating demand and indoor environmental conditions. The system was designed with minimal pressure loss in the duct system and heat exchanger. Also, it uses state-of-the-art components such as electrostatic precipitators, diffuse ceiling inlets and demand......In many locations mechanical ventilation has been the most widely used principle of ventilation over the last 50 years but the conventional system design must be revised to comply with future energy requirements. This paper examines the options and describes a concept for the design of mechanical...... ventilation systems with minimal pressure loss and minimal energy use. This can provide comfort ventilation and avoid overheating through increased ventilation and night cooling. Based on this concept, a test system was designed for a fictive office building and its performance was documented using building...

  5. Fast ion loss diagnostic plans for NSTX

    International Nuclear Information System (INIS)

    Darrow, D. S.; Bell, R.; Johnson, R.; Kugel, H.; Wilson, J. R.; Cecil, F. E.; Maingi, R.; Krasilnikov, A.; Alekseyev, A.

    2000-01-01

    The prompt loss of neutral beam ions from the National Spherical Torus Experiment (NSTX) is expected to be between 12% and 42% of the total 5 MW of beam power. There may, in addition, be losses of fast ions arising from high harmonic fast wave (HHFW) heating. Most of the lost ions will strike the HHFW antenna or the neutral beam dump. To measure these losses in the 2000 experimental campaign, thermocouples in the antenna, several infrared camera views, and a Faraday cup lost ion probe will be employed. The probe will measure loss of fast ions with E > 1 keV at three radial locations, giving the scrape-off length of the fast ions

  6. Cure and mechanical behaviors of cycloaliphatic/DGEBA epoxy blend system using electron-beam technique

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.R.; Heo, G.Y.; Park, S.J. [Korea Research Institute of Chemical Technology, Taejeon (Korea)

    2002-05-01

    4-Vinyl-1- cyclohexene diepoxide (VCE)/ diglycidyl ether of bisphenol -A(DGEBA) epoxy blends with benzylquinoxalinium hexafluoroanti-monate were cured using an electron-beam technique. the effect of DGEBA content to VCE on cure behavior, thermal stabilities, and mechanical properties was investigated. The composition of VCE/DGEBA blend system varied within 100:0, 80:20, 60:40. 40:60 20:80, and 0:100wt%. The cure behavior and thermal stability of the cured specimens was monited by near-infrared spectroscopy and thermogravimetric analysis, respectively. Also, the critical stress intensity factor (K{sub 1C}) test of the cured specimens was performed to study the mechanical interfacial properties. As a result, the decreases of short side-chide structure and chain scission were observed in NIR measurements as the DGEBA content increases, resulting in varying the hydroxyl and carbonyl groups. And, the initial decomposition temperature (IDT), temperature of maximum weight loss (T{sub max}), and decomposition activation energy (E{sub d}) as thermal stability factors were increased with increasing the DGEBA content. These results could be explained by mean of decreasing viscosity, stable aromatic ring structure, and grafted interpenetrating polymer network with increasing of DGEBA content. Also, the maximum K{sub 1C} value showed at mixing ratio of 40:60 wt% in this blend system. (author). 22 refs., 2 tabs., 6 figs.

  7. CONTINOUS EXTRACTED BEAM IN THE AGS FAST EXTERNAL BEAM LINE

    International Nuclear Information System (INIS)

    GLENN, J.W.; TSOUPAS, N.; BROWN, K.A.; BIRYUKOV, V.M.

    2001-01-01

    A method to split off a few percent of the 6 x 10 13 AGS beam delivered to the Slow External Beam (SEB) lines and send it down the Fast External Beam line (FEB) has been developed. The mission is to feed a counter experiment off the FEB that directly measures the neutrino mass using the muon storage ring. The use of normal thin septum splitters would have an excessive loss overhead and been optically difficult. The AGS Slow Extraction uses a third integer resonance with sextuple strength so the resonance width is a few percent of the beam width. This results in a low density tail which will be clipped by a bent crystal and deflected into the FEB channel. This clipping off of the tail should reduce losses in the SEB transport line. Details of modeled orbits, particle distribution and extraction trajectories into and out off the crystal will be given

  8. Electron-beam-induced reduction of Fe3+ in iron phosphate dihydrate, ferrihydrite, haemosiderin and ferritin as revealed by electron energy-loss spectroscopy

    International Nuclear Information System (INIS)

    Pan, Ying-Hsi; Vaughan, Gareth; Brydson, Rik; Bleloch, Andrew; Gass, Mhairi; Sader, Kasim; Brown, Andy

    2010-01-01

    The effect of high-energy electron irradiation on ferritin/haemosiderin cores (in an iron-overloaded human liver biopsy), its mineral analogue; six-line ferrihydrite (6LFh), and iron phosphate dihydrate (which has similar octahedral ferric iron to oxygen coordination to that in ferrihydrite and ferritin/haemosiderin cores) has been investigated using electron energy-loss spectroscopy (EELS). Fe L 2,3 -ionisation edges were recorded on two types of electron microscope: a 200 keV transmission electron microscope (TEM) and a 100 keV scanning transmission electron microscope (STEM), in order to investigate the damage mechanisms in operation and to establish a methodology for minimum specimen alteration during analytical electron microscopic characterisation. A specimen damage mechanism dominated by radiolysis that results in the preferential loss of iron co-ordinating ligands (O, OH and H 2 O) is discussed. The net result of irradiation is structural re-organisation and reduction of iron within the iron hydroxides. At sufficiently low electron fluence and particularly in the lower incident energy, finer probe diameter STEM, the alteration is shown to be minimal. All the materials examined exhibit damage which as a function of cumulative fluence is best fitted by an inverse power-law, implying that several chemical and structural changes occur in response to the electron beam and we suggest that these are governed by secondary processes arising from the primary ionisation event. This work affirms that electron fluence and current density should be considered when measuring mixed valence ratios with EELS.

  9. Mechanical Design of a Heavy Ion Beam Dump for the RIA Fragmentation Line

    Energy Technology Data Exchange (ETDEWEB)

    Stein, W; Ahle, L E; Conner, D L

    2005-04-28

    The RIA fragmentation line requires a beam stop for the primary beam downstream of the first dipole magnet. The beam may consist of U, Ca, Sn, Kr, or O ions. with a variety of power densities. The configuration with highest power density is for the U beam, with a spot size of 3 cm x 3 cm and a total power of up to 300 kW. The mechanical design of the dump that meets these criteria consists of a 70 cm diameter aluminum wheel with water coolant channels. A hollow drive shaft supplies the coolant water and connects the wheel to an electrical motor located in an adjacent air space. The beam strikes the wheel along the outer perimeter and passes through a thin window of aluminum where 15% of its power is absorbed and the remainder of the beam is absorbed in flowing water behind the window. Rotation of the wheel at 400 RPM results in maximum aluminum temperatures below 100 C and acceptably low thermal stresses of 3 ksi. Rotating the wheel also results in low radiation damage levels by spreading the damage out over the whole perimeter of the wheel. For some of the other beams, a stationary dump consisting of a thin aluminum window with water acting as a coolant and absorber appears to be feasible.

  10. First-Principles Vibrational Electron Energy Loss Spectroscopy of β -Guanine

    Science.gov (United States)

    Radtke, G.; Taverna, D.; Lazzeri, M.; Balan, E.

    2017-07-01

    A general approach to model vibrational electron energy loss spectra obtained using an electron beam positioned away from the specimen is presented. The energy-loss probability of the fast electron is evaluated using first-principles quantum mechanical calculations (density functional theory) of the dielectric response of the specimen. The validity of the method is assessed using recently measured anhydrous β -guanine, an important molecular solid used by animals to produce structural colors. The good agreement between theory and experiments lays the basis for a quantitative interpretation of this spectroscopy in complex systems.

  11. Collider and Detector Protection at Beam Accidents

    Science.gov (United States)

    Rakhno, I. L.; Mokhov, N. V.; Drozhdin, A. I.

    2003-12-01

    Dealing with beam loss due to abort kicker prefire is considered for hadron colliders. The prefires occured at Tevatron (Fermilab) during Run I and Run II are analyzed and a protection system implemented is described. The effect of accidental beam loss in the Large Hadron Collider (LHC) at CERN on machine and detector components is studied via realistic Monte Carlo calculations. The simulations show that beam loss at an unsynchronized beam abort would result in severe heating of conventional and superconducting magnets and possible damage to the collider detector elements. A proposed set of collimators would reduce energy deposition effects to acceptable levels. Special attention is paid to reducing peak temperature rise within the septum magnet and minimizing quench region length downstream of the LHC beam abort straight section.

  12. Collider and Detector Protection at Beam Accidents

    International Nuclear Information System (INIS)

    Rakhno, I.L.; Mokhov, N.V.; Drozhdin, A.I.

    2003-01-01

    Dealing with beam loss due to abort kicker prefire is considered for hadron colliders. The prefires occurred at Tevatron (Fermilab) during Run I and Run II are analyzed and a protection system implemented is described. The effect of accidental beam loss in the Large Hadron Collider (LHC) at CERN on machine and detector components is studied via realistic Monte Carlo calculations. The simulations show that beam loss at an unsynchronized beam abort would result in severe heating of conventional and superconducting magnets and possible damage to the collider detector elements. A proposed set of collimators would reduce energy deposition effects to acceptable levels. Special attention is paid to reducing peak temperature rise within the septum magnet and minimizing quench region length downstream of the LHC beam abort straight section

  13. Collider and detector protection at beam accidents

    International Nuclear Information System (INIS)

    Rakhno, I.L.; Mokhov, N.V.; Drozhdin, A.I.

    2003-01-01

    Dealing with beam loss due to abort kicker prefire is considered for hadron colliders. The prefires occurred at Tevatron (Fermilab) during Run I and Run II are analyzed and a protection system implemented is described. The effect of accidental beam loss in the Large Hadron Collider (LHC) at CERN on machine and detector components is studied via realistic Monte Carlo calculations. The simulations show that beam loss at an unsynchronized beam abort would result in severe heating of conventional and superconducting magnets and possible damage to the collider detector elements. A proposed set of collimators would reduce energy deposition effects to acceptable levels. Special attention is paid to reducing peak temperature rise within the septum magnet and minimizing quench region length downstream of the LHC beam abort straight section

  14. Analysis of fast losses in the LHC with the BLM system

    CERN Document Server

    Nebot, E; Holzer, E; Dehning, B; Nordt, A; Sapinski, M; Emery, J; Zamantzas, C; Effinger, E; Marsili, A; Wenninger, J; Baer, T; Schmidt, R; Yang, Z; Zimmerman, F; Fuster, N

    2011-01-01

    About 3600 Ionization Chambers are located around the LHC ring to detect beam losses that could damage the equipment or quench superconducting magnets. The Beam Loss Monitors (BLMs) integrate the losses in 12 different time intervals (from 40 us to 83.8 s) allowing for different abort thresholds depending on the duration of the loss and the beam energy. The signals are also recorded in a database at 1 Hz for offline analysis. During the 2010 run, a limiting factor in the machine availability were sudden losses appearing around the ring on the ms time scale and detected exclusively by the BLM system. It is believed that such losses originate from dust particles falling into the beam, or being attracted by its strong electromagnetic field. This document describes some of the properties of these ”Unidentified Falling Objects” (UFOs) putting special emphasis on their dependence on beam parameters (energy, intensity, etc). The subsequent modification of the BLM beam abort thresholds for the 2011 run that were ...

  15. Nonlinear finite element analysis of a test on the mechanical mechanism of the half-steel-concrete composite beam in HTR-PM

    International Nuclear Information System (INIS)

    Sun Feng; Pan Rong

    2014-01-01

    According to a large-span half-steel-concrete (HSC) composited beam in the composited roof in the HTR-PM, a 1:3 scale specimen is investigated by the static load test. By analyzing the loading, deflection, strain and fracture development of the specimen in the process, studying the mechanical characteristics and failure pattern of such components. The ANSYS finite element software is utilized in this paper to analyze the nonlinearity behavior of the HSC beam specimen, and through comparing the experimental results and the numerical simulation, it can be illustrated that the finite element model can simulate the HSC beam accurately. From the test results, it can be concluded that by means of appropriate shear connection and anchorage length, steel plate and concrete can work together very well and the HSC beam has good load carrying capacity and ductility. These conclusions can serve as a preliminary design reference for the large span half-steel-concrete composite beam in NPP. (author)

  16. Doppler-shifted neutral beam line shape and beam transmission

    International Nuclear Information System (INIS)

    Kamperschroer, J.H.; Grisham, L.R.; Kokatnur, N.; Lagin, L.J.; Newman, R.A.; O'Connor, T.E.; Stevenson, T.N.; von Halle, A.

    1994-04-01

    Analysis of Doppler-shifted Balmer-α line emission from the TFTR neutral beam injection systems has revealed that the line shape is well approximated by the sum of two Gaussians, or, alternatively, by a Lorentzian. For the sum of two Gaussians, the broad portion of the distribution contains 40% of the beam power and has a divergence five times that of the narrow part. Assuming a narrow 1/e- divergence of 1.3 degrees (based on fits to the beam shape on the calorimeter), the broad part has a divergence of 6.9 degrees. The entire line shape is also well approximated by a Lorentzian with a half-maximum divergence of 0.9 degrees. Up to now, fusion neutral beam modelers have assumed a single Gaussian velocity distribution, at the extraction plane, in each direction perpendicular to beam propagation. This predicts a beam transmission efficiency from the ion source to the calorimeter of 97%. Waterflow calorimetry data, however, yield a transmission efficiency of ∼75%, a value in rough agreement with predictions of the Gaussian or Lorentzian models presented here. The broad wing of the two Gaussian distribution also accurately predicts the loss in the neutralizer. An average angle of incidence for beam loss at the exit of the neutralizer is 2.2 degrees, rather than the 4.95 degrees subtended by the center of the ion source. This average angle of incidence, which is used in computing power densities on collimators, is shown to be a function of beam divergence

  17. Thermomechanical response of Large Hadron Collider collimators to proton and ion beam impacts

    Directory of Open Access Journals (Sweden)

    Marija Cauchi

    2015-04-01

    Full Text Available The CERN Large Hadron Collider (LHC is designed to accelerate and bring into collision high-energy protons as well as heavy ions. Accidents involving direct beam impacts on collimators can happen in both cases. The LHC collimation system is designed to handle the demanding requirements of high-intensity proton beams. Although proton beams have 100 times higher beam power than the nominal LHC lead ion beams, specific problems might arise in case of ion losses due to different particle-collimator interaction mechanisms when compared to protons. This paper investigates and compares direct ion and proton beam impacts on collimators, in particular tertiary collimators (TCTs, made of the tungsten heavy alloy INERMET® 180. Recent measurements of the mechanical behavior of this alloy under static and dynamic loading conditions at different temperatures have been done and used for realistic estimates of the collimator response to beam impact. Using these new measurements, a numerical finite element method (FEM approach is presented in this paper. Sequential fast-transient thermostructural analyses are performed in the elastic-plastic domain in order to evaluate and compare the thermomechanical response of TCTs in case of critical beam load cases involving proton and heavy ion beam impacts.

  18. Analysis of sub-bandgap losses in TiO2 coating deposited via single and dual ion beam deposition

    Czech Academy of Sciences Publication Activity Database

    Žídek, Karel; Hlubuček, Jiří; Horodyská, Petra; Budasz, Jiří; Václavík, Jan

    2017-01-01

    Roč. 626, March (2017), s. 60-65 ISSN 0040-6090 R&D Projects: GA MŠk(CZ) LO1206 Institutional support: RVO:61389021 Keywords : Ion beam deposition * Titanium dioxide * Optical coating * Sub-bandgap losses * Urbach tail Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 1.879, year: 2016 http://www.sciencedirect.com/science/article/pii/S0040609017301256

  19. Short vegetal-fiber reinforced HDPE—A study of electron-beam radiation treatment effects on mechanical and morphological properties

    International Nuclear Information System (INIS)

    Ferreira, Maiara S.; Sartori, Mariana N.; Oliveira, Rene R.; Guven, Olgun; Moura, Esperidiana A.B.

    2014-01-01

    Graphical abstract: - Highlights: • HDPE reinforced with short piassava fiber composites were prepared by melt-mixing processing. • Glycidyl methacrylate (GMA) was tested as a radiation cross-linking agent. • The materials were irradiated with 100 and 200 kGy using a 1.5 MeV electron beam accelerator, at room temperature in presence of air. • The better interfacial adhesion between fiber and HDPE matrix was observed for composites with GMA addition irradiated with radiation dose of 200 kGy. - Abstract: The effects of electron-beam radiation treatment on fiber-matrix adhesion and mechanical properties of short piassava fibers reinforced high density polyethylene (HDPE) matrix were studied. Glycidyl methacrylate (GMA) was added at 2.5% and 5.0% (on piassava fiber wt) as a cross-linking agent and the effects upon the properties of the resulting composites treated by electron-beam radiation were also examined. HDPE reinforced with short piassava fiber composites was prepared by melt-mixing processing, using a twin screw extruder machine. The materials were irradiated with 100 and 200 kGy using a 1.5 MeV electron beam accelerator, at room temperature in presence of air. Material samples were submitted to mechanical and thermo-mechanical tests and SEM analyses. Correlation between properties was discussed. The comparison of mechanical and thermo-mechanical properties of the composites showed that electron-beam radiation treatment produced a significant improvement in mechanical properties, when compared with the non-irradiated composite sample and neat HDPE. Scanning electron microscopy (SEM) studies of the composite failure surfaces indicated that there was an improved adhesion between fiber and matrix. Examination of the failure surfaces indicated dependence of the interfacial adhesion upon the radiation dose and GMA content. Better interfacial adhesion between fiber and HDPE matrix was observed for composites with 5.0% GMA addition and treated with electron-beam

  20. Short vegetal-fiber reinforced HDPE—A study of electron-beam radiation treatment effects on mechanical and morphological properties

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Maiara S.; Sartori, Mariana N.; Oliveira, Rene R. [Nuclear and Energy Research Institute, IPEN-CNEN/SP, Av. Prof. Lineu Prestes 2242, zip code 05508-000 São Paulo, SP (Brazil); Guven, Olgun [Hacettepe University, Department of Chemistry, Polymer Chemistry Division, Beytepe, zip code 06800 Ankara (Turkey); Moura, Esperidiana A.B., E-mail: eabmoura@ipen.br [Nuclear and Energy Research Institute, IPEN-CNEN/SP, Av. Prof. Lineu Prestes 2242, zip code 05508-000 São Paulo, SP (Brazil)

    2014-08-15

    Graphical abstract: - Highlights: • HDPE reinforced with short piassava fiber composites were prepared by melt-mixing processing. • Glycidyl methacrylate (GMA) was tested as a radiation cross-linking agent. • The materials were irradiated with 100 and 200 kGy using a 1.5 MeV electron beam accelerator, at room temperature in presence of air. • The better interfacial adhesion between fiber and HDPE matrix was observed for composites with GMA addition irradiated with radiation dose of 200 kGy. - Abstract: The effects of electron-beam radiation treatment on fiber-matrix adhesion and mechanical properties of short piassava fibers reinforced high density polyethylene (HDPE) matrix were studied. Glycidyl methacrylate (GMA) was added at 2.5% and 5.0% (on piassava fiber wt) as a cross-linking agent and the effects upon the properties of the resulting composites treated by electron-beam radiation were also examined. HDPE reinforced with short piassava fiber composites was prepared by melt-mixing processing, using a twin screw extruder machine. The materials were irradiated with 100 and 200 kGy using a 1.5 MeV electron beam accelerator, at room temperature in presence of air. Material samples were submitted to mechanical and thermo-mechanical tests and SEM analyses. Correlation between properties was discussed. The comparison of mechanical and thermo-mechanical properties of the composites showed that electron-beam radiation treatment produced a significant improvement in mechanical properties, when compared with the non-irradiated composite sample and neat HDPE. Scanning electron microscopy (SEM) studies of the composite failure surfaces indicated that there was an improved adhesion between fiber and matrix. Examination of the failure surfaces indicated dependence of the interfacial adhesion upon the radiation dose and GMA content. Better interfacial adhesion between fiber and HDPE matrix was observed for composites with 5.0% GMA addition and treated with electron-beam

  1. Online diagnoses of high current-density beams

    International Nuclear Information System (INIS)

    Gilpatrick, J.D.

    1994-01-01

    Los Alamos National Laboratory has proposed several CW-proton-beam facilities for production of tritium or transmutation of nuclear waste with beam-current densities greater than 5 mA/mm 2 . The primary beam-diagnostics-instrumentation requirement for these facilities is provision of sufficient beam information to understand and minimize beam-loss. To accomplish this task, the beam-diagnostics instrumentation must measure beam parameters such as the centroids and profiles, total integrated current, and particle loss. Noninterceptive techniques must be used for diagnosis of high-intensity CW beam at low energies due to the large quantity of power deposited in an interceptive diagnostic device by the beam. Transverse and longitudinal centroid measurements have been developed for bunched beams by measuring and processing image currents on the accelerator walls. Transverse beam-profile measurement-techniques have also been developed using the interaction of the particle beam with the background gases near the beam region. This paper will discuss these noninterceptive diagnostic Techniques

  2. Development of small scale mechanical testing techniques on ion beam irradiated 304 SS

    International Nuclear Information System (INIS)

    Reichardt, A.; Abad, M.D.; Hosemann, P.; Lupinacci, A.; Kacher, J.; Minor, A.; Jiao, Z; Chou, P.

    2015-01-01

    Austenitic stainless steels are widely used for structural components in light water reactors, however uncertainty in their susceptibility to irradiation assisted stress corrosion cracking (IASCC) has made long term performance predictions difficult. In addition, the testing of reactor irradiated materials has proven challenging due to the long irradiation times required, limited sample availability, and unwanted activation. To address these problems, we apply recently developed techniques in nano-indentation and micro-compression testing to small volume samples of 10 dpa proton-beam irradiated 304 stainless steel. Cross sectional nano-indentation was performed on both proton beam irradiated and non-irradiated samples at temperatures ranging from 22 to 300 C. degrees to determine the effects of irradiation and operating temperature on hardening. Micro-compression tests using 2 μm x 2 μm x 5 μm focused-ion beam milled pillars were then performed in situ in an electron microscope to allow for a more accurate look at stress-strain behavior along with real-time observations of localized mechanical deformation. Large sudden slip events and significant increase in yield strength are observed in irradiated micro-compression samples at room temperature. Elevated temperature nano-indentation results reveal the possibility of thermally-activated changes in deformation mechanism for irradiated specimens. Since the deformation mechanism information provided by micro-compression testing can provide valuable information about IASCC susceptibility, future work will involve ex situ micro-compression tests at reactor operating temperature

  3. Fast Estimation of Strains for Cross-Beams Six-Axis Force/Torque Sensors by Mechanical Modeling

    Directory of Open Access Journals (Sweden)

    Junqing Ma

    2013-05-01

    Full Text Available Strain distributions are crucial criteria of cross-beams six-axis force/torque sensors. The conventional method for calculating the criteria is to utilize Finite Element Analysis (FEA to get numerical solutions. This paper aims to obtain analytical solutions of strains under the effect of external force/torque in each dimension. Genetic mechanical models for cross-beams six-axis force/torque sensors are proposed, in which deformable cross elastic beams and compliant beams are modeled as quasi-static Timoshenko beam. A detailed description of model assumptions, model idealizations, application scope and model establishment is presented. The results are validated by both numerical FEA simulations and calibration experiments, and test results are found to be compatible with each other for a wide range of geometric properties. The proposed analytical solutions are demonstrated to be an accurate estimation algorithm with higher efficiency.

  4. In situ radiation test of silicon and diamond detectors operating in superfluid helium and developed for beam loss monitoring

    Science.gov (United States)

    Kurfürst, C.; Dehning, B.; Sapinski, M.; Bartosik, M. R.; Eisel, T.; Fabjan, C.; Rementeria, C. A.; Griesmayer, E.; Eremin, V.; Verbitskaya, E.; Zabrodskii, A.; Fadeeva, N.; Tuboltsev, Y.; Eremin, I.; Egorov, N.; Härkönen, J.; Luukka, P.; Tuominen, E.

    2015-05-01

    As a result of the foreseen increase in the luminosity of the Large Hadron Collider, the discrimination between the collision products and possible magnet quench-provoking beam losses of the primary proton beams is becoming more critical for safe accelerator operation. We report the results of ongoing research efforts targeting the upgrading of the monitoring system by exploiting Beam Loss Monitor detectors based on semiconductors located as close as possible to the superconducting coils of the triplet magnets. In practice, this means that the detectors will have to be immersed in superfluid helium inside the cold mass and operate at 1.9 K. Additionally, the monitoring system is expected to survive 20 years of LHC operation, resulting in an estimated radiation fluence of 1×1016 proton/cm2, which corresponds to a dose of about 2 MGy. In this study, we monitored the signal degradation during the in situ irradiation when silicon and single-crystal diamond detectors were situated in the liquid/superfluid helium and the dependences of the collected charge on fluence and bias voltage were obtained. It is shown that diamond and silicon detectors can operate at 1.9 K after 1×1016 p/cm2 irradiation required for application as BLMs, while the rate of the signal degradation was larger in silicon detectors than in the diamond ones. For Si detectors this rate was controlled mainly by the operational mode, being larger at forward bias voltage.

  5. Specialized beam diagnostic measurements for an ADTT accelerator funnel

    Energy Technology Data Exchange (ETDEWEB)

    Gilpatrick, J.D.

    1995-10-01

    Los Alamos National Laboratory has proposed several CW-proton-beam facilities for accelerator-driven transmutation technologies (ADTT) with beam-current densities greater than 5 mA/mm{sup 2}. The primary beam-diagnostics-instrumentation requirement for these facilities is to provide sufficient beam information to understand and minimize beam-loss. To accomplish this task, the beam diagnostics instrumentation must measure beam parameters such as the projected centroids and profiles, total integrated current, and particle loss. Because of the high specific energy loss in materials at beam energies less than 20 MeV, interceptive measurements such as wire scanners or fluors cannot be used to determine beam profiles or centroids. Therefore, noninterceptive techniques must be used for on-line diagnosis of high-intensity CW beam at low energies. The beam funnel area of these proposed accelerator facilities provide a particular interesting beam measurement challenge. In this area of the accelerator, beam measurements must also sense how well the two funnel-input-beams are matched to each other in phase space. This paper will discuss some of the measurement requirements for these proposed accelerator facilities and the various noninterceptive techniques to measure dual-beam funnel operation.

  6. Mechanical Design of a High Energy Beam Absorber for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Baffes, C.; Church, M.; Leibfritz, J.; Oplt, S.; Rakhno, I.; /Fermilab

    2012-05-10

    A high energy beam absorber has been built for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab. In the facility's initial configuration, an electron beam will be accelerated through 3 TTF-type or ILC-type SRF cryomodules to an energy of 750MeV. The electron beam will be directed to one of multiple downstream experimental and diagnostic beam lines and then deposited in one of two beam absorbers. The facility is designed to accommodate up to 6 cryomodules, which would produce a 75kW beam at 1.5GeV; this is the driving design condition for the beam absorbers. The beam absorbers consist of water-cooled graphite, aluminum and copper layers contained in a helium-filled enclosure. This paper describes the mechanical implementation of the beam absorbers, with a focus on thermal design and analysis. The potential for radiation-induced degradation of the graphite is discussed.

  7. The MICE Muon Beam on ISIS and the beam-line instrumentation of the Muon Ionization Cooling Experiment

    CERN Document Server

    Bogomilov, M.; Kolev, D.; Russinov, I.; Tsenov, R.; Vankova-Kirilova, G.; Wang, L.; Xu, F.Y.; Zheng, S.X.; Bertoni, R.; Bonesini, M.; Ferri, F.; Lucchini, G.; Mazza, R.; Paleari, F.; Strati, F.; Palladino, V.; Cecchet, G.; de Bari, A.; Capponi, M.; Cirillo, A.; Iaciofano, A.; Manfredini, A.; Parisi, M.; Orestano, D.; Pastore, F.; Tonazzo, A.; Tortora, L.; Mori, Y.; Kuno, Y.; Sakamoto, H.; Sato, A.; Yano, T.; Yoshida, M.; Ishimoto, S.; Suzuki, S.; Yoshimura, K.; Filthaut, F.; Garoby, R.; Gilardoni, S.; Gruber, P.; Hanke, K.; Haseroth, H.; Janot, P.; Lombardi, A.; Ramberger, S.; Vretenar, M.; Bene, P.; Blondel, A.; Cadoux, F.; Graulich, J.S.; Grichine, V.; Gschwendtner, E.; Masciocchi, F.; Sandstrom, R.; Verguilov, V.; Wisting, H.; Petitjean, C.; Seviour, R.; Alexander, J.; Charnley, G.; Collomb, N.; Griffiths, S.; Martlew, B.; Moss, A.; Mullacrane, I.; Oates, A.; Owens, P.; White, C.; York, S.; Adams, D.; Apsimon, R.; Barclay, P.; Baynham, D.E.; Bradshaw, T.W.; Courthold, M.; Drumm, P.; Edgecock, R.; Hayler, T.; Hills, M.; Ivaniouchenkov, Y.; Jones, A.; Lintern, A.; MacWaters, C.; Nelson, C.; Nichols, A.; Preece, R.; Ricciardi, S.; Rochford, J.H.; Rogers, C.; Spensley, W.; Tarrant, J.; Tilley, K.; Watson, S.; Wilson, A.; Forrest, D.; Soler, F.J.P.; Walaron, K.; Cooke, P.; Gamet, R.; Alekou, A.; Apollonio, M.; Barber, G.; Clark, D.; Clark, I.; Dobbs, A.; Dornan, P.; Fish, A.; Hare, R.; Greenwood, S.; Jamdagni, A.; Kasey, V.; Khaleeq, M.; Leaver, J.; Long, K.; McKigney, E.; Matsushita, T.; Pasternak, J.; Sashalmi, T.; Savidge, T.; Takahashi, M.; Blackmore, V.; Carlisle, T.; Cobb, J.H.; Lau, W.; Rayner, M.; Tunnell, C.D.; Witte, H.; Yang, S.; Booth, C.N.; Hodgson, P.; Howlett, L.; Nicholson, R.; Overton, E.; Robinson, M.; Smith, P.; Adey, D.; Back, J.; Boyd, S.; Harrison, P.; Ellis, M.; Kyberd, P.; Littlefield, M.; Nebrensky, J.J.; Bross, A.D.; Geer, S.; Neuffer, D.; Moretti, A.; Popovic, M.; Cummings, M.A.C.; Roberts, T.J.; DeMello, A.; Green, M.A.; Li, D.; Virostek, S.; Zisman, M.S.; Freemire, B.; Hanlet, P.; Huang, D.; Kafka, G.; Kaplan, D.M.; Snopok, P.; Torun, Y.; Blot, S.; Kim, Y.K.; Bravar, U.; Onel, Y.; Cline, D.; Fukui, Y.; Lee, K.; Yang, X.; Rimmer, R.A.; Cremaldi, L.M.; Gregoire, G.; Hart, T.L.; Sanders, D.A.; Summers, D.J.; Coney, L.; Fletcher, R.; Hanson, G.G.; Heidt, C.; Gallardo, J.; Kahn, S.; Kirk, H.; Palmer, R.B.

    2012-01-01

    The international Muon Ionization Cooling Experiment (MICE), which is under construction at the Rutherford Appleton Laboratory (RAL), will demonstrate the principle of ionization cooling as a technique for the reduction of the phase-space volume occupied by a muon beam. Ionization cooling channels are required for the Neutrino Factory and the Muon Collider. MICE will evaluate in detail the performance of a single lattice cell of the Feasibility Study 2 cooling channel. The MICE Muon Beam has been constructed at the ISIS synchrotron at RAL, and in MICE Step I, it has been characterized using the MICE beam-instrumentation system. In this paper, the MICE Muon Beam and beam-line instrumentation are described. The muon rate is presented as a function of the beam loss generated by the MICE target dipping into the ISIS proton beam. For a 1 V signal from the ISIS beam-loss monitors downstream of our target we obtain a 30 KHz muon rate, with a neglible pion contamination in the beam.

  8. The MICE Muon Beam on ISIS and the beam-line instrumentation of the Muon Ionization Cooling Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bogomilov, M. [University of Sofia (Bulgaria); et al.

    2012-05-01

    The international Muon Ionization Cooling Experiment (MICE), which is under construction at the Rutherford Appleton Laboratory (RAL), will demonstrate the principle of ionization cooling as a technique for the reduction of the phase-space volume occupied by a muon beam. Ionization cooling channels are required for the Neutrino Factory and the Muon Collider. MICE will evaluate in detail the performance of a single lattice cell of the Feasibility Study 2 cooling channel. The MICE Muon Beam has been constructed at the ISIS synchrotron at RAL, and in MICE Step I, it has been characterized using the MICE beam-instrumentation system. In this paper, the MICE Muon Beam and beam-line instrumentation are described. The muon rate is presented as a function of the beam loss generated by the MICE target dipping into the ISIS proton beam. For a 1 V signal from the ISIS beam-loss monitors downstream of our target we obtain a 30 KHz instantaneous muon rate, with a neglible pion contamination in the beam.

  9. Simulation studies of macroparticles falling into the LHC Proton Beam

    CERN Document Server

    Fuster Martinez, N; Zimmermann, F; Baer, T; Giovannozzi, M; Holzer, E B; Nebot Del Busto, E; Nordt, A; Sapinski, M; Yang, Z

    2011-01-01

    We report updated simulations on the interaction of macroparticles falling from the top of the vacuum chamber into the circulating LHC proton beam. The path and charge state of micron size micro-particles are computed together with the resulting beam losses, which — if high enough — can lead to the local quench of superconducting (SC) magnets. The simulated time evolution of the beam loss is compared with observations in order to constrain some macroparticle parameters. We also discuss the possibility of a “multiple crossing” by the same macroparticle, the effect of a strong dipole field, and the dependence of peak loss rate and loss duration on beam current and on beam size.

  10. Methods and apparatus for laser beam scanners with different actuating mechanisms

    Science.gov (United States)

    Chen, Si-hai; Xiang, Si-hua; Wu, Xin; Dong, Shan; Xiao, Ding; Zheng, Xia-wei

    2009-07-01

    In this paper, 3 types of laser beam scanner are introduced. One is transmissive beam scanner, which is composed of convex and concave microlens arrays (MLAs). By moving the concave lens in the plane vertical to the optical axis, the incident beam can be deflected in two dimensions. Those two kinds of MLAs are fabricated by thermal reflow and replication process. A set of mechanical scanner frame is fabricated with the two MLAs assembling in it. The testing result shown that the beam deflection angles are 9.5° and 9.6°, in the 2 dimension(2D) with the scanning frequency of 2 HZ and 8 HZ, respectively. The second type of laser beam scanner is actuated by voice coil actuators (VCAs). Based on ANSOFT MAXWELL software, we have designed VCAs with small size and large force which have optimized properties. The model of VCAs is built using AutoCAD and is analyzed by Ansoft maxwell. According to the simulation results, high performance VCAs are fabricated and tested. The result is that the force of the VCAs is 6.39N/A, and the displacement is +/-2.5mm. A set up of beam scanner is fabricated and actuated by the designed VCAs. The testing result shown that the two dimensional scanning angle is 15° and 10° respectively at the frequency of 60HZ. The two dimensional scanning angle is 8.3° and 6° respectively at the frequency of 100HZ. The third type of scanner is actuated by amplified piezoelectric actuators (APAs). The scanning mirror is actuated by the piezoelectric (PZ) actuators with the scanning frequency of 700HZ, 250HZ and 87HZ respectively. The optical scanning angle is +/-0.5° at the three frequencies.

  11. Electrical properties of irradiated PVA film by using ion/electron beam

    Science.gov (United States)

    Abdelrahman, M. M.; Osman, M.; Hashhash, A.

    2016-02-01

    Ion/electron beam bombardment has shown great potential for improving the surface properties of polymers. Low-energy charged (ion/electron) beam irradiation of polymers is a good technique to modify properties such as electrical conductivity, structural behavior, and their mechanical properties. This paper reports on the effect of nitrogen and electron beam irradiation on the electrical properties of polyvinyl alcohol (PVA) films. PVA films of 4 mm were exposed to a charged (ion/electron) beam for different treatment times (15, 30, and 60 minutes); the beam was produced from a dual beam source using nitrogen gas with the other ion/electron source parameters optimized. The dielectric loss tangent tan δ , electrical conductivity σ , and dielectric constant ɛ ^' } in the frequency range 100 Hz-100 kHz were measured at room temperature. The variation of dielectric constant and loss tangent as a function of frequency was also studied at room temperature. The dielectric constant was found to be strongly dependent on frequency for both ion and electron beam irradiation doses. The real (ɛ ^' }) and imaginary (ɛ ^' ' }) parts of the dielectric constant decreased with frequency for all irradiated and non-irradiated samples. The AC conductivity showed an increase with frequency for all samples under the influence of both ion and electron irradiation for different times. Photoluminescence (PL) spectral changes were also studied. The formation of clusters and defects (which serve as non-radiative centers on the polymer surface) is confirmed by the decrease in the PL intensity.

  12. Microstructure and mechanical properties of electron beam welded dissimilar steel to Fe–Al alloy joints

    Energy Technology Data Exchange (ETDEWEB)

    Dinda, Soumitra Kumar; Basiruddin Sk, Md.; Roy, Gour Gopal [Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur (India); Srirangam, Prakash, E-mail: p.srirangam@warwick.ac.uk [Warwick Manufacturing Group (WMG), University of Warwick, Coventry CV4 7AL (United Kingdom)

    2016-11-20

    Electron beam welding (EBW) technique was used to perform dissimilar joining of plain carbon steel to Fe–7%Al alloy under three different weld conditions such as with beam oscillation, without beam oscillation and at higher welding speed. The effect of weld parameters on the microstructure and mechanical properties of dissimilar joints was studied using optical microscopy, SEM, EBSD, hardness, tensile and erichsen cup tests. Microstructure results show that the application of beam oscillation resulted in uniform and homogeneous microstructure compared to without beam oscillations and higher welding speed. Further, it was observed that weld microstructure changes from equiaxed to columnar grains depending on the weld speed. High weld speed results in columnar grain structure in the weld joint. Erichsen cup test results show that the application of beam oscillation results in excellent formability as compared to high weld speed. Tensile test results show no significant difference in strength properties in all three weld conditions, but the ductility was found to be highest for joints obtained with the application of weld beam oscillation as compared to without beam oscillation and high weld speed. This study shows that the application of beam oscillations plays an important role in improving the weld quality and performance of EBW dissimilar steel to Fe–Al joints.

  13. Effect of electron beam irradiation on thermal and mechanical properties of aluminum based epoxy composites

    Science.gov (United States)

    Visakh, P. M.; Nazarenko, O. B.; Sarath Chandran, C.; Melnikova, T. V.; Nazarenko, S. Yu.; Kim, J.-C.

    2017-07-01

    The epoxy resins are widely used in nuclear and aerospace industries. The certain properties of epoxy resins as well as the resistance to radiation can be improved by the incorporation of different fillers. This study examines the effect of electron beam irradiation on the thermal and mechanical properties of the epoxy composites filled with aluminum nanoparticles at percentage of 0.35 wt%. The epoxy composites were exposed to the irradiation doses of 30, 100 and 300 kGy using electron beam generated by the linear electron accelerator ELU-4. The effects of the doses on thermal and mechanical properties of the aluminum based epoxy composites were investigated by the methods of thermal gravimetric analysis, tensile test, and dynamic mechanical analysis. The results revealed that the studied epoxy composites showed good radiation resistance. The thermal and mechanical properties of the aluminum based epoxy composites increased with increasing the irradiation dose up to 100 kGy and decreased with further increasing the dose.

  14. Non-Mechanical Beam Steering in Free-Space Optical Communication Transceivers

    Science.gov (United States)

    Shortt, Kevin

    Free-space optical communications systems are a rapidly growing field as they carry many of the advantages of traditional fibre-based communications systems without the added investment of installing complex infrastructure. Moreover, these systems are finding key niches in mobile platforms in order to take advantage of the increased bandwidth over traditional RF systems. Of course, the inevitable problem of tracking arises when dealing with mobile stations. To compound the problem in the case of communications to low Earth or geosynchronous orbits, FSOC systems typically operate with tightly confined beams over great distances often requiring pointing accuracies on the order of micro-radians or smaller. Mechanisms such as gimbal mounts and fine-steering mirrors are the usual candidates for platform stabilization, however, these clearly have substantial power requirements and inflate the mass of the system. Spatial light modulators (also known as optical phased arrays), on the other hand, offer a suitable alternative for beam-pointing stabilization. Some of the advantages of spatial light modulators over fine-steering mirrors include programmable multiple simultaneous beams, dynamic focus/defocus and moderate to excellent optical power handling capability. This thesis serves as an investigation into the implementation of spatial light modulators as a replacement for traditional fine-steering mirrors in the fine-pointing subsystem. In particular, pointing accuracy and scanning ability will be highlighted as performance metrics in the context of a variety of communication scenarios. Keywords: Free-space optical communications, beam steering, fine-steering mirror, spatial light modulator, optical phased array.

  15. Beam-beam phenomenology

    International Nuclear Information System (INIS)

    Teng, L.C.

    1980-01-01

    In colliding beam storage rings the beam collision regions are generally so short that the beam-beam interaction can be considered as a series of evenly spaced non-linear kicks superimposed on otherwise stable linear oscillations. Most of the numerical studies on computers were carried out in just this manner. But for some reason this model has not been extensively employed in analytical studies. This is perhaps because all analytical work has so far been done by mathematicians pursuing general transcendental features of non-linear mechanics for whom this specific model of the specific system of colliding beams is too parochial and too repugnantly physical. Be that as it may, this model is of direct interest to accelerator physicists and is amenable to (1) further simplification, (2) physical approximation, and (3) solution by analogy to known phenomena

  16. Fast Beam Current Change Monitor for the LHC

    CERN Document Server

    Kral, Jan

    Stringent demands on the LHC safety and protection systems require improved methods of detecting fast beam losses. The Fast Beam Current Transformer (FBCT) is a measurement instrument, providing information about bunch-to-bunch intensity of the accelerated beam. This thesis describes the development of a new protection system based on the FBCT signal measurements. This system, the Fast Beam Current Change Monitor (FBCCM), measures the FBCT signal in a narrow frequency band and computes time derivation of the beam signal magnitude. This derivation is proportional to the beam losses. When the losses exceed a certain level, the FBCCM requests a beam dump in order to protect the LHC. The LHC protection will be ensured by four FBCCMs which will be installed into the LHC in July 2014. Six FBCCMs have been already constructed and their characteristics were measured with satisfactory results. The FBCCMs were tested by a laboratory simulation of the real LHC environment.

  17. Calf Strength Loss During Mechanical Unloading: Does It Matter?

    Science.gov (United States)

    English, K. L.; Mulavara, A.; Bloomberg, J.; Ploutz-Snyder, LL

    2016-01-01

    During the mechanical unloading of spaceflight and its ground-based analogs, muscle mass and muscle strength of the calf are difficult to preserve despite exercise countermeasures that effectively protect these parameters in the thigh. It is unclear what effects these local losses have on balance and whole body function which will be essential for successful performance of demanding tasks during future exploration missions.

  18. Properties of the TRIUMF cyclotron beam

    International Nuclear Information System (INIS)

    Craddock, M.K.; Blackmore, E.W.; Dutto, G.; Kost, C.J.; Mackenzie, G.H.; Richardson, J.R.; Root, L.W.; Schmor, P.

    1975-08-01

    Eight percent of the 300 keV d.c. beam from the ion source can be transmitted to 500 MeV in the TRIUMF cyclotron, without using the buncher. The beam losses are entirely accounted for; there are no significant losses due to orbit dynamic problems during 1500 turns of acceleration. The phase history is in good agreement with predictions based on the magnetic field survey. The effect of the harmonic coils and injection parameters on beam quality has been investigated. (author)

  19. Electrolyte loss mechanism of molten carbonate fuel cells. 1; Yoyu tansan`engata nenryo denchi ni okeru denkaishitsu loss kiko ni tsuite. 1

    Energy Technology Data Exchange (ETDEWEB)

    Sonai, A; Murata, K [Toshiba Research and Development Center, Kawasaki (Japan)

    1993-11-01

    During a single-cell disassembly test of molten carbonate fuel cells having been operated for 90 hours to 5500 hours, correlativity was discovered between decrease in the retained amount of electrolyte due to decrease in pore capacity of electrodes and electrolyte plates and the electrolyte loss. The electrolyte loss amount cannot be explained with the conventional mechanisms, thereby a new model was proposed. The cathode has shown very little change in the capacity change in pores with diameters smaller than 2 {mu}m per unit area. The anode has remained almost constant after 1000 hours, but the electrolyte plates have shown remarkable decrease. Therefore, it is possible to estimate that the electrolyte plates should have been the major cause for the electrolyte loss. The result of measuring the electrolyte loss amount agreed well with that estimated using pore capacity curves. This fact suggests that the electrolyte loss can be explained by a new mechanism that hypothesizes the existence of a largest size of retaining pores that can support carbonates and defines that the electrolyte loss is generated from decrease in the pore capacity. 7 refs., 8 figs., 1 tab.

  20. Effect of electron beam irradiation on the properties of crosslinked rubbers

    Science.gov (United States)

    Banik, Indranil; Bhowmick, Anil K.

    2000-05-01

    Influence of electron beam (EB) irradiation on the mechanical and dynamic mechanical properties of crosslinked fluorocarbon (FKM) rubber, natural rubber (NR), ethylene propylene diene monomer (EPDM) rubber and nitrile rubber (NBR) has been investigated. The modulus, gel fraction, glass transition temperature ( Tg) and storage modulus increased, while the elongation at the break and the loss tangent (tan δ) Tg decreased. FKM and NBR vulcanizates have been shown to have EB radiation resistance up to 1500 kGy.

  1. Retrograde amnesia produced by electron beam exposure: causal parameters and duration of memory loss

    International Nuclear Information System (INIS)

    Wheeler, T.G.; Hardy, K.A.

    1985-01-01

    The production of retrograde amnesia (RA) upon electron beam exposure has been investigated. RA production was evaluated using a single-trial avoidance task across a 10 4 dose range for 10-, 1-, and 0.1-μsec pulsed exposures. The dose-response curve obtained at each pulse duration showed significant RA production. The most effective dose range was 0.1-10 rad at a dose rate of 10 6 rad/sec. By employing a 10 rad (10 6 rad/sec) pulse, a memory loss of the events occurring in the previous 4 sec was demonstrated. The conclusion was that the RA effect might be due to sensory activation which provided a novel stimulus that masked previous stimuli

  2. LHC Beam Instrumentation: Beam Position and Intensity Measurements (1/3)

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    The LHC is equipped with a full suite of sophisticated beam instrumentation which has been essential for rapid commissioning, the safe increase in total stored beam power and the understanding of machine optics and accelerator physics phenomena. These lectures will introduce these systems and comment on their contributions to the various stages of beam operation. They will include details on: the beam position system and its use for real-time global orbit feedback; the beam loss system and its role in machine protection; total and bunch by bunch intensity measurements; tune measurement and feedback; diagnostics for transverse beam size measurements, abort gap monitoring and longitudinal density measurements. Issues and problems encountered along the way will also be discussed together with the prospect for future upgrades.

  3. Safe LHC beam commissioning

    International Nuclear Information System (INIS)

    Uythoven, J.; Schmidt, R.

    2007-01-01

    Due to the large amount of energy stored in magnets and beams, safety operation of the LHC is essential. The commissioning of the LHC machine protection system will be an integral part of the general LHC commissioning program. A brief overview of the LHC Machine Protection System will be given, identifying the main components: the Beam Interlock System, the Beam Dumping System, the Collimation System, the Beam Loss Monitoring System and the Quench Protection System. An outline is given of the commissioning strategy of these systems during the different commissioning phases of the LHC: without beam, injection and the different phases with stored beam depending on beam intensity and energy. (author)

  4. The fracture mechanics of steam turbine electron beam welded rotors

    International Nuclear Information System (INIS)

    Coulon, P.A.

    1987-01-01

    Increased steam turbine unit ratings presupposes that steelmakers are capable of manufacturing larger and larger rotor components. However, there are few steelmakers in the world capable of manufacturing monobloc rotors for high rated turbines, which limits the choice of supplier. Most nuclear turbine rotors have a composite arrangement and are made either by shrinking discs on a shaft or using elements welded together. Those in favour of welding have applied a classical socalled ''submerged'' method using a filler metal. However welding can also be performed by using an Electron Beam in a vacuum room without a filler metal. This technique has many advantages: mechanical characteristics of the joint are identical to those of the base material after tempering without heat affected zones. Moreover, parts are only very slightly deformed during welding. Two steam turbine rotors have been produced in this way. This paper described the destructive tests carried out in the four Electron Beam (EB) welds (two on each rotor)

  5. Contribution of mechanical unloading to trabecular bone loss following non-invasive knee injury in mice.

    Science.gov (United States)

    Anderson, Matthew J; Diko, Sindi; Baehr, Leslie M; Baar, Keith; Bodine, Sue C; Christiansen, Blaine A

    2016-10-01

    Development of osteoarthritis commonly involves degeneration of epiphyseal trabecular bone. In previous studies, we observed 30-44% loss of epiphyseal trabecular bone (BV/TV) from the distal femur within 1 week following non-invasive knee injury in mice. Mechanical unloading (disuse) may contribute to this bone loss; however, it is unclear to what extent the injured limb is unloaded following injury, and whether disuse can fully account for the observed magnitude of bone loss. In this study, we investigated the contribution of mechanical unloading to trabecular bone changes observed following non-invasive knee injury in mice (female C57BL/6N). We investigated changes in gait during treadmill walking, and changes in voluntary activity level using Open Field analysis at 4, 14, 28, and 42 days post-injury. We also quantified epiphyseal trabecular bone using μCT and weighed lower-limb muscles to quantify atrophy following knee injury in both ground control and hindlimb unloaded (HLU) mice. Gait analysis revealed a slightly altered stride pattern in the injured limb, with a decreased stance phase and increased swing phase. However, Open Field analysis revealed no differences in voluntary movement between injured and sham mice at any time point. Both knee injury and HLU resulted in comparable magnitudes of trabecular bone loss; however, HLU resulted in considerably more muscle loss than knee injury, suggesting another mechanism contributing to bone loss following injury. Altogether, these data suggest that mechanical unloading likely contributes to trabecular bone loss following non-invasive knee injury, but the magnitude of this bone loss cannot be fully explained by disuse. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1680-1687, 2016. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  6. Relative Contributions of Various Cellular Mechanisms to Loss of Algae during Cnidarian Bleaching.

    Science.gov (United States)

    Bieri, Tamaki; Onishi, Masayuki; Xiang, Tingting; Grossman, Arthur R; Pringle, John R

    2016-01-01

    When exposed to stress such as high seawater temperature, corals and other cnidarians can bleach due to loss of symbiotic algae from the host tissue and/or loss of pigments from the algae. Although the environmental conditions that trigger bleaching are reasonably well known, its cellular and molecular mechanisms are not well understood. Previous studies have reported the occurrence of at least four different cellular mechanisms for the loss of symbiotic algae from the host tissue: in situ degradation of algae, exocytic release of algae from the host, detachment of host cells containing algae, and death of host cells containing algae. The relative contributions of these several mechanisms to bleaching remain unclear, and it is also not known whether these relative contributions change in animals subjected to different types and/or durations of stresses. In this study, we used a clonal population of the small sea anemone Aiptasia, exposed individuals to various precisely controlled stress conditions, and quantitatively assessed the several possible bleaching mechanisms in parallel. Under all stress conditions tested, except for acute cold shock at 4°C, expulsion of intact algae from the host cells appeared to be by far the predominant mechanism of bleaching. During acute cold shock, in situ degradation of algae and host-cell detachment also became quantitatively significant, and the algae released under these conditions appeared to be severely damaged.

  7. Relative Contributions of Various Cellular Mechanisms to Loss of Algae during Cnidarian Bleaching

    Science.gov (United States)

    Bieri, Tamaki; Onishi, Masayuki; Xiang, Tingting; Grossman, Arthur R.; Pringle, John R

    2016-01-01

    When exposed to stress such as high seawater temperature, corals and other cnidarians can bleach due to loss of symbiotic algae from the host tissue and/or loss of pigments from the algae. Although the environmental conditions that trigger bleaching are reasonably well known, its cellular and molecular mechanisms are not well understood. Previous studies have reported the occurrence of at least four different cellular mechanisms for the loss of symbiotic algae from the host tissue: in situ degradation of algae, exocytic release of algae from the host, detachment of host cells containing algae, and death of host cells containing algae. The relative contributions of these several mechanisms to bleaching remain unclear, and it is also not known whether these relative contributions change in animals subjected to different types and/or durations of stresses. In this study, we used a clonal population of the small sea anemone Aiptasia, exposed individuals to various precisely controlled stress conditions, and quantitatively assessed the several possible bleaching mechanisms in parallel. Under all stress conditions tested, except for acute cold shock at 4°C, expulsion of intact algae from the host cells appeared to be by far the predominant mechanism of bleaching. During acute cold shock, in situ degradation of algae and host-cell detachment also became quantitatively significant, and the algae released under these conditions appeared to be severely damaged. PMID:27119147

  8. Orbital rotation without orbital angular momentum: mechanical action of the spin part of the internal energy flow in light beams

    DEFF Research Database (Denmark)

    Angelsky, O. V.; Bekshaev, A. Ya; Maksimyak, P. P.

    2012-01-01

    flow upon tight focusing of the beam, usually applied for energy flow detection by means of the mechanical action upon probe particles. We propose a two-beam interference technique that results in an appreciable level of spin flow in moderately focused beams and detection of the orbital motion of probe...... particles within a field where the transverse energy circulation is associated exclusively with the spin flow. This result can be treated as the first demonstration of mechanical action of the spin flow of a light field....

  9. Inspection Mechanism and Experimental Study of Prestressed Reverse Tension Method under PC Beam Bridge Anchorage

    Science.gov (United States)

    Peng, Zhang

    2018-03-01

    the prestress under anchorage is directly related to the structural security and performance of PC beam bridge. The reverse tension method is a kind of inspection which confirms the prestress by exerting reversed tension load on the exposed prestressing tendon of beam bridge anchoring system. The thesis elaborately expounds the inspection mechanism and mechanical effect of reverse tension method, theoretically analyzes the influential elements of inspection like tool anchorage deformation, compression of conjuncture, device glide, friction of anchorage loop mouth and elastic compression of concrete, and then presents the following formula to calculate prestress under anchorage. On the basis of model experiment, the thesis systematically studies some key issues during the reverse tension process of PC beam bridge anchorage system like the formation of stress-elongation curve, influential factors, judgment method of prestress under anchorage, variation trend and compensation scale, verifies the accuracy of mechanism analysis and demonstrates: the prestress under anchorage is less than or equal to 75% of the ultimate strength of prestressing tendon, the error of inspect result is less than 1%, which can meet with the demands of construction. The research result has provided theoretical basis and technical foundation for the promotion and application of reverse tension in bridge construction.

  10. Limitations on plasma acceleration due to synchrotron losses

    International Nuclear Information System (INIS)

    Barletta, W.A.; Lee, E.P.; Bonifacio, R.; De Salvo, L.

    1999-01-01

    In this letter we consider the effect of synchrotron radiation losses due to the betatron motion of the electron beam in its self-induced magnetic field in a plasma accelerator taking into account the charge neutralization factor. The most favorable case is where the plasma density is smaller than the beam density. The contrary regime is strongly disfavored by the synchrotron radiation loss for beams with characteristics for TeV energies. In both cases we find that upon increasing the plasma density the synchrotron losses kill the acceleration process, so that there are limitations on the maximum allowable plasma density

  11. Characterisation Of The Beam Plasma In High Current, Low Energy Ion Beams For Implanters

    International Nuclear Information System (INIS)

    Fiala, J.; Armour, D. G.; Berg, J. A. van der; Holmes, A. J. T.; Goldberg, R. D.; Collart, E. H. J.

    2006-01-01

    The effective transport of high current, positive ion beams at low energies in ion implanters requires the a high level of space charge compensation. The self-induced or forced introduction of electrons is known to result in the creation of a so-called beam plasma through which the beam propagates. Despite the ability of beams at energies above about 3-5 keV to create their own neutralising plasmas and the development of highly effective, plasma based neutralising systems for low energy beams, very little is known about the nature of beam plasmas and how their characteristics and capabilities depend on beam current, beam energy and beamline pressure. These issues have been addressed in a detailed scanning Langmuir probe study of the plasmas created in beams passing through the post-analysis section of a commercial, high current ion implanter. Combined with Faraday cup measurements of the rate of loss of beam current in the same region due to charge exchange and scattering collisions, the probe data have provided a valuable insight into the nature of the slow ion and electron production and loss processes. Two distinct electron energy distribution functions are observed with electron temperatures ≥ 25 V and around 1 eV. The fast electrons observed must be produced in their energetic state. By studying the properties of the beam plasma as a function of the beam and beamline parameters, information on the ways in which the plasma and the beam interact to reduce beam blow-up and retain a stable plasma has been obtained

  12. Electro-mechanical control of an on-chip optical beam splitter containing an embedded quantum emitter.

    Science.gov (United States)

    Bishop, Z K; Foster, A P; Royall, B; Bentham, C; Clarke, E; Skolnick, M S; Wilson, L R

    2018-05-01

    We demonstrate electro-mechanical control of an on-chip GaAs optical beam splitter containing a quantum dot single-photon source. The beam splitter consists of two nanobeam waveguides, which form a directional coupler (DC). The splitting ratio of the DC is controlled by varying the out-of-plane separation of the two waveguides using electromechanical actuation. We reversibly tune the beam splitter between an initial state, with emission into both output arms, and a final state with photons emitted into a single output arm. The device represents a compact and scalable tuning approach for use in III-V semiconductor integrated quantum optical circuits.

  13. Observations of discrete energy loss effects in spectra of positrons reflected from solid surfaces

    International Nuclear Information System (INIS)

    Dale, J.M.; Hulett, L.D.; Pendyala, S.

    1980-01-01

    Surfaces of tungsten and silicon have been bombarded with monoenergetic beams of positrons and electrons. Spectra of reflected particles show energy loss tails with discrete peaks at kinetic energies about 15 eV lower than that of the elastic peaks. In the higher energy loss range for tungsten, positron spectra show fine structure that is not apparent in the electron spectra. This suggests that the positrons are losing energy through mechanisms different from that of the electrons

  14. Modal loss mechanism of micro-structured VCSELs studied using full vector FDTD method.

    Science.gov (United States)

    Jo, Du-Ho; Vu, Ngoc Hai; Kim, Jin-Tae; Hwang, In-Kag

    2011-09-12

    Modal properties of vertical cavity surface-emitting lasers (VCSELs) with holey structures are studied using a finite difference time domain (FDTD) method. We investigate loss behavior with respect to the variation of structural parameters, and explain the loss mechanism of VCSELs. We also propose an effective method to estimate the modal loss based on mode profiles obtained using FDTD simulation. Our results could provide an important guideline for optimization of the microstructures of high-power single-mode VCSELs.

  15. Mechanical design criteria for continuously operating neutral beams

    International Nuclear Information System (INIS)

    Vosen, S.R.; Bender, D.J.; Fink, J.H.; Lee, J.D.

    1977-01-01

    A schematic of a neutral beam injector is shown. Neutral gas is injected into the ion source, where a discharge ionizes the gas. The ions are drawn from the source by an extractor grid and then accelerated to full energy by the accel grids. After acceleration the ions pass through the neutralizer cell. Once through the neutralizer cell, the beam consists of neutrals and ions. The ions traveling with the beam are space charge neutralized by background electrons. The grid which precedes the direct converter is negatively charged and acts to separate the electrons from the rest of the beam. As a result of the beam's uncompensated space charge the remaining ions spread out from the beam to be collected at the direct converter. This paper presents a generalized analysis which will be useful in determining effects of energy and particle fluxes on the long-term performance of the grids

  16. Chapter 6 Quantum Mechanical Methods for Loss-Excitation and Loss-Ionization in Fast Ion-Atom Collisions

    Science.gov (United States)

    Belkic, Dzevad

    quantum mechanical perturbation theories applied to electron loss collisions involving two hydrogen-like atoms. Both the one- and two-electron transitions (target unaffected by collision, as well as loss-ionization) are thoroughly examined in various intervals of impact energies varying from the threshold via the Massey peak to the Bethe asymptotic region. Systematics are established for the fast, simple, and accurate computations of cross sections for loss-excitation and loss-ionization accounting for the entire spectra of all four particles, including two free electrons and two free protons. The expounded algorithmic strategy of quantum mechanical methodologies is of great importance for wide applications to particle transport physics, especially in fusion research and hadron radiotherapy. This should advantageously replace the current overwhelming tendency in these fields for using phenomenological modeling with artificial functions extracted from fitting the existing experimental/theoretical data bases for cross sections.

  17. Applications of electron lenses: scraping of high-power beams, beam-beam compensation, and nonlinear optics

    Energy Technology Data Exchange (ETDEWEB)

    Stancari, Giulio

    2014-09-11

    Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam. Electron lenses were used in the Fermilab Tevatron collider for bunch-by-bunch compensation of long-range beam-beam tune shifts, for removal of uncaptured particles in the abort gap, for preliminary experiments on head-on beam-beam compensation, and for the demonstration of halo scraping with hollow electron beams. Electron lenses for beam-beam compensation are being commissioned in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). Hollow electron beam collimation and halo control were studied as an option to complement the collimation system for the upgrades of the Large Hadron Collider (LHC) at CERN; a conceptual design was recently completed. Because of their electric charge and the absence of materials close to the proton beam, electron lenses may also provide an alternative to wires for long-range beam-beam compensation in LHC luminosity upgrade scenarios with small crossing angles. At Fermilab, we are planning to install an electron lens in the Integrable Optics Test Accelerator (IOTA, a 40-m ring for 150-MeV electrons) as one of the proof-of-principle implementations of nonlinear integrable optics to achieve large tune spreads and more stable beams without loss of dynamic aperture.

  18. Effect of electron beam irradiation on the properties of crosslinked rubbers

    Energy Technology Data Exchange (ETDEWEB)

    Banik, Indranil; Bhowmick, Anil K. E-mail: anilkb@rtc.iitkgp.ernet.in

    2000-05-01

    Influence of electron beam (EB) irradiation on the mechanical and dynamic mechanical properties of crosslinked fluorocarbon (FKM) rubber, natural rubber (NR), ethylene propylene diene monomer (EPDM) rubber and nitrile rubber (NBR) has been investigated. The modulus, gel fraction, glass transition temperature (T{sub g}) and storage modulus increased, while the elongation at the break and the loss tangent (tan {delta}){sub T{sub g}} decreased. FKM and NBR vulcanizates have been shown to have EB radiation resistance up to 1500 kGy. (author)

  19. Effect of electron beam irradiation on the properties of crosslinked rubbers

    International Nuclear Information System (INIS)

    Banik, Indranil; Bhowmick, Anil K.

    2000-01-01

    Influence of electron beam (EB) irradiation on the mechanical and dynamic mechanical properties of crosslinked fluorocarbon (FKM) rubber, natural rubber (NR), ethylene propylene diene monomer (EPDM) rubber and nitrile rubber (NBR) has been investigated. The modulus, gel fraction, glass transition temperature (T g ) and storage modulus increased, while the elongation at the break and the loss tangent (tan δ) T g decreased. FKM and NBR vulcanizates have been shown to have EB radiation resistance up to 1500 kGy. (author)

  20. Investigation of Generation, Acceleration, Transport and Final Focusing of High-Intensity Heavy Ion Beams from Sources to Targets

    International Nuclear Information System (INIS)

    Chiping Chen

    2006-01-01

    Under the auspices of the research grant, the Intense Beam Theoretical Research Group at Massachusetts Institute of Technology's Plasma Science and Fusion Center made significant contributions in a number of important areas in the HIF and HEDP research, including: (a) Derivation of rms envelope equations and study of rms envelope dynamics for high-intensity heavy ion beams in a small-aperture AG focusing transport systems; (b) Identification of a new mechanism for chaotic particle motion, halo formation, and beam loss in high-intensity heavy ion beams in a small-aperture AG focusing systems; (c) Development of elliptic beam theory; and (d) Study of Physics Issues in the Neutralization Transport Experiment (NTX)

  1. Investigation of Generation, Acceleration, Transport and Final Focusing of High-Intensity Heavy Ion Beams from Sources to Targets

    Energy Technology Data Exchange (ETDEWEB)

    Chiping Chen

    2006-10-26

    Under the auspices of the research grant, the Intense Beam Theoretical Research Goup at Massachusetts Institute of Technology's Plasma Science and Fusion Center made significant contributions in a number of important areas in the HIF and HEDP research, including: (a) Derivation of rms envelope equations and study of rms envelope dynamics for high-intensity heavy ion beams in a small-aperture AG focusing transport systems; (b) Identification of a new mechanism for chaotic particle motion, halo formation, and beam loss in high-intensity heavy ion beams in a small-aperture AG focusing systems; Development of elliptic beam theory; (d) Study of Physics Issues in the Neutralization Transport Experiment (NTX).

  2. Beam-Beam Simulation of Crab Cavity White Noise for LHC Upgrade

    CERN Document Server

    Qiang, J; Pieloni, Tatiana; Ohmi, Kazuhito

    2015-01-01

    High luminosity LHC upgrade will improve the luminosity of the current LHC operation by an order of magnitude. Crab cavity as a critical component for compensating luminosity loss from large crossing angle collision and also providing luminosity leveling for the LHC upgrade is being actively pursued. In this paper, we will report on the study of potential effects of the crab cavity white noise errors on the beam luminosity lifetime based on strong-strong beam-beam simulations.

  3. Simple method for calculation of heat loss through floor/beam-wall intersections according to ISO 9164

    International Nuclear Information System (INIS)

    Dilmac, Sukran; Guner, Abdurrahman; Senkal, Filiz; Kartal, Semiha

    2007-01-01

    The international standards for calculation of energy consumption for heating are ISO 9164 and EN 832. Although they are based on similar principles, there are significant differences in the calculation procedure of transmission heat loss coefficient, H T , especially in the evaluation of thermal bridges. The calculation of H T and the way thermal bridges are to be taken into consideration are explained in detail in EN 832 and in a series of other linked standards. In ISO 9164, the parameters used in the relevant equations are cited, but there is a lack of explanation about how they will be determined or calculated. Although in ISO 6946-2, the earlier version of the same standard, the calculation methods of these quantities were explained for column-wall intersections; in the revised ISO 6946, these explanations have been removed. On the other hand, these parameters had never been defined for floor/beam-wall intersections. In this paper, a new method is proposed for calculation of the parameters cited in ISO 9164 for floor/beam-wall intersections. The results obtained by the proposed method for typical floor with beam sections are compared with the results obtained by the methods stated in EN 832/EN 13789/EN ISO 14683 and the results obtained from 2D analysis. Different methods are evaluated as to their simplicity and agreement

  4. Simple computer model for the nonlinear beam--beam interaction in ISABELLE

    International Nuclear Information System (INIS)

    Herrera, J.C.; Month, M.; Peierls, R.F.

    1979-03-01

    The beam--beam interaction for two counter-rotating continuous proton beams crossing at an angle can be simulated by a 1-dimensional nonlinear force. The model is applicable to ISABELLE as well as to the ISR. Since the interaction length is short compared with the length of the beam orbit, the interaction region is taken to be a point. The problem is then treated as a mapping with the remainder of the system taken to be a rotation of phase given by the betatron tune of the storage ring. The evolution of the mean square amplitude of a given distribution of particles is shown for different beam--beam strengths. The effect of round-off error with resulting loss of accuracy for particle trajectories is discussed. 3 figures

  5. Beam-loss induced pressure rise of Large Hadron Collider collimator materials irradiated with 158  GeV/u In^{49+} ions at the CERN Super Proton Synchrotron

    Directory of Open Access Journals (Sweden)

    E. Mahner

    2004-10-01

    Full Text Available During heavy ion operation, large pressure rises, up to a few orders of magnitude, were observed at CERN, GSI, and BNL. The dynamic pressure rises were triggered by lost beam ions that impacted onto the vacuum chamber walls and desorbed about 10^{4} to 10^{7} molecules per ion. The deterioration of the dynamic vacuum conditions can enhance charge-exchange beam losses and can lead to beam instabilities or even to beam abortion triggered by vacuum interlocks. Consequently, a dedicated measurement of heavy-ion induced molecular desorption in the GeV/u energy range is important for Large Hadron Collider (LHC ion operation. In 2003, a desorption experiment was installed at the Super Proton Synchrotron to measure the beam-loss induced pressure rise of potential LHC collimator materials. Samples of bare graphite, sputter coated (Cu, TiZrV graphite, and 316 LN (low carbon with nitrogen stainless steel were irradiated under grazing angle with 158  GeV/u indium ions. After a description of the new experimental setup, the results of the pressure rise measurements are presented, and the derived desorption yields are compared with data from other experiments.

  6. Threshold stoichiometry for beam induced nitrogen depletion of SiN

    International Nuclear Information System (INIS)

    Timmers, H.; Weijers, T.D.M.; Elliman, R.G.; Uribasterra, J.; Whitlow, H.J.; Sarwe, E.-L.

    2002-01-01

    Measurements of the stoichiometry of silicon nitride films as a function of the number of incident ions using heavy ion elastic recoil detection (ERD) show that beam-induced nitrogen depletion depends on the projectile species, the beam energy, and the initial stoichiometry. A threshold stoichiometry exists in the range 1.3>N/Si≥1, below which the films are stable against nitrogen depletion. Above this threshold, depletion is essentially linear with incident fluence. The depletion rate correlates non-linearly with the electronic energy loss of the projectile ion in the film. Sufficiently long exposure of nitrogen-rich films renders the mechanism, which prevents depletion of nitrogen-poor films, ineffective. Compromising depth-resolution, nitrogen depletion from SiN films during ERD analysis can be reduced significantly by using projectile beams with low atomic numbers

  7. A Beam Quality Monitor for LHC Beams in the SPS

    CERN Document Server

    Papotti, G

    2008-01-01

    The SPS Beam Quality Monitor (BQM) system monitors the longitudinal parameters of the beam before extraction to the LHC to prevent losses and degradation of the LHC luminosity by the injection of low quality beams. It is implemented in two priority levels. At the highest level the SPS-LHC synchronization and global beam structure are verified. If the specifications are not met, the beam should be dumped in the SPS before extraction. On the second level, individual bunch position, length and stability are checked for beam quality assessment. Tolerances are adapted to the mode of operation and extraction to the LHC can also be inhibited. Beam parameters are accessed by acquiring bunch profiles with a longitudinal pick up and fast digital oscilloscope. The beam is monitored for instabilities during the acceleration cycle and thoroughly checked a few ms before extraction for a final decision on extraction interlock. Dedicated hardware and software components implementing fast algorithms are required. In this pape...

  8. Material characterisation and preliminary mechanical design for the HL-LHC shielded beam screens operating at cryogenic temperatures

    CERN Document Server

    Garion, C; Koettig, T; Machiocha, W; Morrone, M

    2015-01-01

    The High Luminosity LHC project (HL-LHC) aims at increasing the luminosity (rate of collisions) in the Large Hadron Collider (LHC) experiments by a factor of 10 beyond the original design value (from 300 to 3000 fb-1). It relies on new superconducting magnets, installed close to the interaction points, equipped with new beam screen. This component has to ensure the vacuum performance together with shielding the cold mass from physics debris and screening the cold bore cryogenic system from beam induced heating. The beam screen operates in the range 40-60 K whereas the magnet cold bore temperature is 1.9 K. A tungsten-based material is used to absorb the energy of particles. In this paper, measurements of the mechanical and physical properties of such tungsten material are shown at room and cryogenic temperature. In addition, the design and the thermal mechanical behaviour of the beam screen assembly are presented also. They include the heat transfer from the tungsten absorbers to the cooling pipes and the sup...

  9. Production and loss of H- and D- in the volume of a plasma

    International Nuclear Information System (INIS)

    Hamilton, G.W.; Bacal, M.

    1981-01-01

    The study of the production and loss of negative ions, H - and D - , in the volume of a plasma has received considerable attention since the measurement of anomalously high densities of H - in 1977. The most probable mechanism for production is dissociative attachment (DA) to vibrationally highly-excited hydrogen molecules. New diagnostics developed for this purpose are photodetachment and the extension of coherent anti-Stokes Raman scattering (CARS) systems to the sensitivity required for low-pressure gases. Measurements and calculations indicate that the important loss mechanisms are diffusion to the walls at low densities and collisional destruction of several types at plasma densities above 10 10 cm -3 . Production mechanisms must be highly efficient to compete with the losses. It appears to be straightforward to extrapolate measurements and theory to the densities above 10 12 cm -3 that are required for an intense source of D - for neutral beam injection into magnetically-confined fusion devices

  10. Mechanisms of material removal and mass transport in focused ion beam nanopore formation

    Energy Technology Data Exchange (ETDEWEB)

    Das, Kallol, E-mail: das7@illinois.edu; Johnson, Harley T., E-mail: htj@illinois.edu [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 West Green Street, MC-244, Urbana, Illinois 61801 (United States); Freund, Jonathan B., E-mail: jbfreund@illinois.edu [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 West Green Street, MC-244, Urbana, Illinois 61801 (United States); Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, 306 Talbot Laboratory, MC-236, 104 South Wright Street Urbana, Illinois 61801 (United States)

    2015-02-28

    Despite the widespread use of focused ion beam (FIB) processing as a material removal method for applications ranging from electron microscope sample preparation to nanopore processing for DNA sequencing, the basic material removal mechanisms of FIB processing are not well understood. We present the first complete atomistic simulation of high-flux FIB using large-scale parallel molecular dynamics (MD) simulations of nanopore fabrication in freestanding thin films. We focus on the root mechanisms of material removal and rearrangement and describe the role of explosive boiling in forming nanopores. FIB nanopore fabrication is typically understood to occur via sputter erosion. This can be shown to be the case in low flux systems, where individual ion impacts are sufficiently separated in time that they may be considered as independent events. But our detailed MD simulations show that in high flux FIB processing, above a threshold level at which thermal effects become significant, the primary mechanism of material removal changes to a significantly accelerated, thermally dominated process. Under these conditions, the target is heated by the ion beam faster than heat is conducted away by the material, leading quickly to melting, and then continued heating to nearly the material critical temperature. This leads to explosive boiling of the target material with spontaneous bubble formation and coalescence. Mass is rapidly rearranged at the atomistic scale, and material removal occurs orders of magnitude faster than would occur by simple sputtering. While the phenomenology is demonstrated computationally in silicon, it can be expected to occur at lower beam fluxes in other cases where thermal conduction is suppressed due to material properties, geometry, or ambient thermal conditions.

  11. Mechanisms of telomere loss and their consequences for chromosome instability

    International Nuclear Information System (INIS)

    Muraki, Keiko; Nyhan, Kristine; Han, Limei; Murnane, John P.

    2012-01-01

    The ends of chromosomes in mammals, called telomeres, are composed of a 6-bp repeat sequence, TTAGGG, which is added on by the enzyme telomerase. In combination with a protein complex called shelterin, these telomeric repeat sequences form a cap that protects the ends of chromosomes. Due to insufficient telomerase expression, telomeres shorten gradually with each cell division in human somatic cells, which limits the number of times they can divide. The extensive cell division involved in cancer cell progression therefore requires that cancer cells must acquire the ability to maintain telomeres, either through expression of telomerase, or through an alternative mechanism involving recombination. It is commonly thought that the source of many chromosome rearrangements in cancer cells is a result of the extensive telomere shortening that occurs prior to the expression of telomerase. However, despite the expression of telomerase, tumor cells can continue to show chromosome instability due to telomere loss. Dysfunctional telomeres in cancer cells can result from oncogene-induced replication stress, which results in double-strand breaks (DSBs) at fragile sites, including telomeres. DSBs near telomeres are especially prone to chromosome rearrangements, because telomeric regions are deficient in DSB repair. The deficiency in DSB repair near telomeres is also an important mechanism for ionizing radiation-induced replicative senescence in normal human cells. In addition, DSBs near telomeres can result in chromosome instability in mouse embryonic stem cells, suggesting that telomere loss can contribute to heritable chromosome rearrangements. Consistent with this possibility, telomeric regions in humans are highly heterogeneous, and chromosome rearrangements near telomeres are commonly involved in human genetic disease. Understanding the mechanisms of telomere loss will therefore provide important insights into both human cancer and genetic disease.

  12. Mechanisms of telomere loss and their consequences for chromosome instability

    Directory of Open Access Journals (Sweden)

    Keiko eMuraki

    2012-10-01

    Full Text Available The ends of chromosomes in mammals, called telomeres, are composed of a 6 base pair repeat sequence, TTAGGG, which is added on by the enzyme telomerase. In combination with a protein complex called shelterin, these telomeric repeat sequences form a cap that protects the ends of chromosomes. Due to insufficient telomerase expression, telomeres shorten gradually with each cell division in human somatic cells, which limits the number of times they can divide. The extensive cell division involved in cancer cell progression therefore requires that cancer cells must acquire the ability to maintain telomeres, either through expression of telomerase, or through an alternative mechanism involving recombination. It is commonly thought that the source of many chromosome rearrangements in cancer cells is a result of the extensive telomere shortening that occurs prior to the expression of telomerase. However, despite the expression of telomerase, tumor cells can continue to show chromosome instability due to telomere loss. Dysfunctional telomeres in cancer cells can result from oncogene-induced replication stress, which results in double-strand breaks (DSBs at fragile sites, including telomeres. DSBs near telomeres are especially prone to chromosome rearrangements, because telomeric regions are deficient in DSB repair. The deficiency in DSB repair near telomeres is also an important mechanism for ionizing radiation-induced replicative senescence in normal human cells. In addition, DSBs near telomeres can result in chromosome instability in mouse embryonic stem cells, suggesting that telomere loss can contribute to heritable chromosome rearrangements. Consistent with this possibility, telomeric regions in humans are highly heterogeneous, and chromosome rearrangements near telomeres are commonly involved in human genetic disease. Understanding the mechanisms of telomere loss will therefore provide important insights into both human cancer and genetic disease.

  13. Mechanisms of telomere loss and their consequences for chromosome instability

    Energy Technology Data Exchange (ETDEWEB)

    Muraki, Keiko; Nyhan, Kristine; Han, Limei; Murnane, John P., E-mail: jmurnane@radonc.ucsf.edu [Department of Radiation Oncology, University of California at San Francisco, San Francisco, CA (United States)

    2012-10-04

    The ends of chromosomes in mammals, called telomeres, are composed of a 6-bp repeat sequence, TTAGGG, which is added on by the enzyme telomerase. In combination with a protein complex called shelterin, these telomeric repeat sequences form a cap that protects the ends of chromosomes. Due to insufficient telomerase expression, telomeres shorten gradually with each cell division in human somatic cells, which limits the number of times they can divide. The extensive cell division involved in cancer cell progression therefore requires that cancer cells must acquire the ability to maintain telomeres, either through expression of telomerase, or through an alternative mechanism involving recombination. It is commonly thought that the source of many chromosome rearrangements in cancer cells is a result of the extensive telomere shortening that occurs prior to the expression of telomerase. However, despite the expression of telomerase, tumor cells can continue to show chromosome instability due to telomere loss. Dysfunctional telomeres in cancer cells can result from oncogene-induced replication stress, which results in double-strand breaks (DSBs) at fragile sites, including telomeres. DSBs near telomeres are especially prone to chromosome rearrangements, because telomeric regions are deficient in DSB repair. The deficiency in DSB repair near telomeres is also an important mechanism for ionizing radiation-induced replicative senescence in normal human cells. In addition, DSBs near telomeres can result in chromosome instability in mouse embryonic stem cells, suggesting that telomere loss can contribute to heritable chromosome rearrangements. Consistent with this possibility, telomeric regions in humans are highly heterogeneous, and chromosome rearrangements near telomeres are commonly involved in human genetic disease. Understanding the mechanisms of telomere loss will therefore provide important insights into both human cancer and genetic disease.

  14. IMPACT simulation and the SNS linac beam

    International Nuclear Information System (INIS)

    Zhang, Y.; Qiang, J.

    2008-01-01

    Multi-particle tracking simulations for the SNS linac beam dynamics studies are performed with the IMPACT code. Beam measurement results are compared with the computer simulations, including beam longitudinal halo and beam losses in the superconducting linac, transverse beam Courant-Snyder parameters and the longitudinal beam emittance in the linac. In most cases, the simulations show good agreement with the measured results

  15. E-beam heated linear solenoid reactors

    International Nuclear Information System (INIS)

    Benford, J.; Bailey, V.; Oliver, D.

    1976-01-01

    A conceptual design and system analysis shows that electron beam heated linear solenoidal reactors are attractive for near term applications which can use low gain fusion sources. Complete plant designs have been generated for fusion based breeders of fissile fuel over a wide range of component parameters (e.g., magnetic fields, reactor lengths, plasma densities) and design options (e.g., various radial and axial loss mechanisms). It appears possible that a reactor of 100 to 300 meters length operating at power levels of 1000 MWt can economically produce 2000 to 8000 kg/yr of 233 U to supply light water reactor fuel needs beyond 2000 A.D. Pure fusion reactors of 300 to 500 meter lengths are possible. Physics and operational features of reactors are described. Beam heating by classical and anomalous energy deposition is reviewed. The technology of the required beams has been developed to MJ/pulse levels, within a factor of 20 of that needed for full scale production reactors. The required repetitive pulsing appears practical

  16. Determining plasma-fueling sources with an end-loss ion spectrometer

    International Nuclear Information System (INIS)

    Grubb, D.P.; Foote, J.H.

    1986-01-01

    To help identify the major sources of fueling gas in Tandem Mirror Experiment-Upgrade (TMX-U), we mounted a mass-sensitive, E parallel to B, end-loss ion spectrometer (ELIS) near the machine's centerline. We set the electric field in the ELIS to simultaneously measure the axial loss currents of both hydrogen and deuterium. We then initiated plasma discharges, where we injected either hydrogen or deuterium gas into the central cell. We also selected and deselected the central-cell neutral beams that were fueled with hydrogen gas. The end-cell neutral beams were always selected and fueled with deuterium. By taking the ratio of the hydrogen end-loss current to the deuterium end-loss current (with a known deuterium-gas feed rate), we were able to infer the effective fueling rates that were due to wall reflux, central-cell beams, and end-cell beams. The results were the following: wall reflux, 6 Torr.l/s; central-cell beams, 15 Torr.l/s; and end-cell beams 1 Torr.l/s. 3 refs., 3 figs., 1 tab

  17. Transmission of the Neutral Beam Heating Beams at TJ-II

    International Nuclear Information System (INIS)

    Fuentes Lopez, C.

    2007-01-01

    Neutral beam injection heating has been development for the TJ-II stellarator. The beam has a port-through power between 700-1500 kW and injection energy 40 keV. The sensibility of the injection system to the changes of several parameters is analysed. Beam transmission is limited by losses processes since beam is born into the ions source until is coming into the fusion machine. For the beam transmission optimization several beam diagnostics have been developed. A carbon fiber composite (CFC) target calorimeter has been installed at TJ-II to study in situ the power density distribution of the neutral beams. The thermographic print of the beam can be recorded and analysed in a reliable way due to the highly anisotropic thermal conductivity of the target material. With the combined thermographic and calorimetric measurements it has been possible to determine the power density distribution of the beam. It has been found that a large beam halo is present, which can be explained by the extreme misalignment of the grids. This kind of halo has a deleterious effect on beam transport and must be minimized in order to improve the plasma heating capability of the beams. (Author) 155 refs

  18. Thermo-mechanical analysis of an acceleration grid for the international thermonuclear experimental reactor-neutral beam injection system

    International Nuclear Information System (INIS)

    Fujiwara, Yukio; Hanada, Masaya; Okumura, Yoshikazu; Suzuki, Satoshi; Watanabe, Kazuhiro

    2001-01-01

    In the engineering design of a negative-ion beam source for a high-power neutral beam injection (NBI) system, one of the most important issues is thermo-mechanical design of acceleration grids for producing several tens of MW ion beams. An acceleration grid for the international thermonuclear experimental reactor-neutral beam injection (ITER-NBI) system will be subjected to the heat loading as high as 1.5 MW. In the present paper, thermo-mechanical characteristics of the acceleration grid for the ITER-NBI system were analyzed. Numerical simulation indicated that maximum aperture-axis displacement of the acceleration grid due to thermal expansion would be about 0.7 mm for the heat loading of 1.5 MW. From the thin lens theory of beam optics, beamlet deflection angle by the aperture-axis displacement was estimated to be about 2 mrad, which is within the requirement of the engineering design of the ITER-NBI system. Numerical simulation also indicated that no melting on the acceleration grid would occur for a heat loading of 1.5 MW, while local plastic deformation would happen. To avoid the plastic deformation, it is necessary to reduce the heat loading onto the acceleration grid to less than 1 MW

  19. Influence of some crosslinking agents on thermal and mechanical properties of electron beam irradiated polylactide

    Energy Technology Data Exchange (ETDEWEB)

    Rytlewski, Piotr, E-mail: prytlewski@ukw.edu.p [Department of Materials Engineering, Kazimierz Wielki University, ul. Chodkiewicza 30, 85-064 Bydgoszcz (Poland); Malinowski, RafaL [Institute for Engineering of Polymer Materials and Dyes, ul. M. SkLodowskiej-Curie 55, 87-100 Torun (Poland); Moraczewski, Krzysztof [Department of Materials Engineering, Kazimierz Wielki University, ul. Chodkiewicza 30, 85-064 Bydgoszcz (Poland); Zenkiewicz, Marian [Institute for Engineering of Polymer Materials and Dyes, ul. M. SkLodowskiej-Curie 55, 87-100 Torun (Poland)

    2010-10-15

    The aim of this article was to determine and compare the influence of trimethylopropane trimethacylate (TMPTA) and trially isocyanurate (TAIC) crosslinking agents on thermal and mechanical properties of electron beam irradiated polylactide (PLA). The blends were made of PLA mixed with 3 wt% of TMPTA (PLA/TMPTA), and PLA mixed with 3 wt% of TAIC (PLA/TAIC). Injection moulded samples were irradiated with the use of high energy (10 MeV) electron beam at various radiation doses to crosslinking PLA macromolecules. Thermal and mechanical properties were investigated by means of differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), tensile strength, and impact strength measurements. The samples were also characterized by Fourier transform infrared spectroscopy (FTIR). It was found that under the influence of electron irradiation PLA/TMPTA samples underwent degradation while PLA/TAIC samples became crosslinked. Tensile and impact strengths of PLA/TMPTA samples decreased with increasing radiation dose while an enhancement of these properties for PLA/TAIC samples was observed.

  20. Influence of some crosslinking agents on thermal and mechanical properties of electron beam irradiated polylactide

    International Nuclear Information System (INIS)

    Rytlewski, Piotr; Malinowski, RafaL; Moraczewski, Krzysztof; Zenkiewicz, Marian

    2010-01-01

    The aim of this article was to determine and compare the influence of trimethylopropane trimethacylate (TMPTA) and trially isocyanurate (TAIC) crosslinking agents on thermal and mechanical properties of electron beam irradiated polylactide (PLA). The blends were made of PLA mixed with 3 wt% of TMPTA (PLA/TMPTA), and PLA mixed with 3 wt% of TAIC (PLA/TAIC). Injection moulded samples were irradiated with the use of high energy (10 MeV) electron beam at various radiation doses to crosslinking PLA macromolecules. Thermal and mechanical properties were investigated by means of differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), tensile strength, and impact strength measurements. The samples were also characterized by Fourier transform infrared spectroscopy (FTIR). It was found that under the influence of electron irradiation PLA/TMPTA samples underwent degradation while PLA/TAIC samples became crosslinked. Tensile and impact strengths of PLA/TMPTA samples decreased with increasing radiation dose while an enhancement of these properties for PLA/TAIC samples was observed.

  1. Progress with Long-Range Beam-Beam Compensation Studies for High Luminosity LHC

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Adriana; et al.

    2017-05-01

    Long-range beam-beam (LRBB) interactions can be a source of emittance growth and beam losses in the LHC during physics and will become even more relevant with the smaller '* and higher bunch intensities foreseen for the High Luminosity LHC upgrade (HL-LHC), in particular if operated without crab cavities. Both beam losses and emittance growth could be mitigated by compensat-ing the non-linear LRBB kick with a correctly placed current carrying wire. Such a compensation scheme is currently being studied in the LHC through a demonstration test using current-bearing wires embedded into col-limator jaws, installed either side of the high luminosity interaction regions. For HL-LHC two options are considered, a current-bearing wire as for the demonstrator, or electron lenses, as the ideal distance between the particle beam and compensating current may be too small to allow the use of solid materials. This paper reports on the ongoing activities for both options, covering the progress of the wire-in-jaw collimators, the foreseen LRBB experiments at the LHC, and first considerations for the design of the electron lenses to ultimately replace material wires for HL-LHC.

  2. Vacuum-to-air interface for the advanced test accelerator beam director

    International Nuclear Information System (INIS)

    Cruz, G.E.; Edwards, W.F.; Kavanagh, D.P.; Addis, R.B.; Weiss, W.C.; Livenspargar, C.M.

    1986-01-01

    A vacuum-to-air transition was created to facilitate the Lawrence Livermore National Laboratory's Advanced Test Accelerator (ATA) electron beam 1-Hz pulse rate. It is necessary that a pulsed particle beam go from a region at 10 -6 torr through a 1-cm-diam maximum aperture into a region at 760 torr. This must be accomplished without the use of windows or solid barriers. Two tests will be conducted on the vacuum-to-air interface. The first determines pressure profiles through 1.0-mm- and 10.0-mm-diam orifices. The second test employs an expendable foil and foil advancement mechanism. In this paper, the experimental results of the orifice test are presented and the analytical results are compared with the empirical results. The foil advancement test will be documented after the test is completed. The mechanism serves both as an orifice and as a fast-acting vacuum valve. In operation, the electron beam penetrates the thin foil, thereby creating an aperture of minimum geometry. During the balance of the pulse cycle, after the beam duration, the foil is advanced to seal the opening and recover the almost negligible loss in vacuum

  3. Mechanical alignment based on beam diagnostics

    International Nuclear Information System (INIS)

    Farvacque, L.; Martin, D.; Nagaoka, R.

    1999-01-01

    This article studies the consequences of misalignment of the different components on the displacement of the beam. 3 types of motion have been investigated: quadrupole vertical displacement, quadrupole tilt and sextupole vertical displacement. For each shift a response matrix has been designed and from this formulation, aligning quadrupoles means inverting this matrix. The strategy for correction depends on the accuracy of the response matrix and on the quality of the beam position measurements. A modelling of the corrections is proposed. (A.C.)

  4. A new soft dielectric silicone elastomer matrix with high mechanical integrity and low losses

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Yu, Liyun; Daugaard, Anders Egede

    2015-01-01

    Though dielectric elastomers (DEs) have many favourable properties, the issue of high driving voltages limits the commercial viability of the technology. Driving voltage can be lowered by decreasing the Young's modulus and increasing the dielectric permittivity of silicone elastomers. A decrease...... in Young's modulus, however, is often accompanied by the loss of mechanical stability and thereby the lifetime of the DE. A new soft elastomer matrix, with no loss of mechanical stability and high dielectric permittivity, was prepared through the use of alkyl chloride-functional siloxane copolymers...

  5. Nucleation mechanisms in high energy ion beam induced dewetting

    Energy Technology Data Exchange (ETDEWEB)

    Haag, Michael; Garmatter, Daniel; Ferhati, Redi; Amirthapandian, Sankarakumar; Bolse, Wolfgang [Institut fuer Halbleiteroptik und Funktionelle Grenzflaechen, Universitaet Stuttgart (Germany)

    2011-07-01

    Solid coatings, when heated above their melting points, often break up by forming small round holes, which then grow, coalesce and finally turn the initially contiguous film into a pattern of isolated droplets. Such dewetting has been intensively studied using thin polymer films on Si. Three different hole nucleation mechanisms were discovered: homogeneous (spontaneous) nucleation, heterogeneous nucleation at defects, and spinodal dewetting by self-amplifying capillary waves. We have recently found that swift heavy ion (SHI) irradiation of thin oxide films on Si results in similar dewetting patterns, even though the films were kept far below their melting points. Using our new in-situ SEM at the UNILAC accelerator of GSI, we were now able to identify the mechanisms behind this SHI induced dewetting phenomenon. By varying the film thickness and introducing defects at the interface, we can directly address the hole nucleation processes. Besides homogeneous and heterogeneous nucleation, we also found a process, which very much resembles the spinodal mechanism found for liquid polymers, although in the present case the instable wavy surface is not generated by capillary waves, but by ion beam induced stresses.

  6. Ions for LHC Beam Physics and Engineering Challenges

    CERN Document Server

    Maury, Stephan; Baggiolini, Vito; Beuret, Andre; Blas, Alfred; Borburgh, Jan; Braun, Hans Heinrich; Carli, Christian; Chanel, Michel; Fowler, Tony; Gilardoni, S S; Gourber-Pace, Marine; Hancock, Steven; Hill, Charles E; Hourican, Michael; Jowett, John M; Kahle, Karsten; Kuchler, Detlef; Mahner, Edgar; Manglunki, Django; Martini, Michel; Paoluzzi, Mauro M; Pasternak, Jaroslaw; Pedersen, Flemming; Raich, Uli; Rossi, Carlo; Royer, Jean Pierre; Schindl, Karlheinz; Scrivens, Richard; Sermeus, Luc; Shaposhnikova, Elena; Tranquille, Gerard; Vretenar, Maurizio; Zickler, Thomas

    2005-01-01

    The first phase of the heavy ion physics program at the LHC aims to provide lead-lead collisions at energies of 5.5 TeV per colliding nucleon pair and ion-ion luminosity of 1027 cm-2s-1. The transformation of CERN’s ion injector complex (Linac3-LEIR-PS-SPS) presents a number of beam physics and engineering challenges, which are described in this paper. In the LHC itself, there are fundamental performance limitations due to various beam loss mechanisms. To study these without risk of damage there will be an initial period of operation with a reduced number of nominal intensity bunches. While reducing the work required to commission the LHC with ions in 2008, this will still enable early physics discoveries.

  7. Electron-beam-induced reduction of Fe{sup 3+} in iron phosphate dihydrate, ferrihydrite, haemosiderin and ferritin as revealed by electron energy-loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Ying-Hsi; Vaughan, Gareth; Brydson, Rik [Institute for Materials Research, SPEME, University of Leeds, Leeds LS2 9JT (United Kingdom); Bleloch, Andrew; Gass, Mhairi [SuperSTEM, Daresbury Laboratories, Warrington WA4 4AD (United Kingdom); Sader, Kasim [Institute for Materials Research, SPEME, University of Leeds, Leeds LS2 9JT (United Kingdom); SuperSTEM, Daresbury Laboratories, Warrington WA4 4AD (United Kingdom); Brown, Andy, E-mail: a.p.brown@leeds.ac.uk [Institute for Materials Research, SPEME, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2010-07-15

    The effect of high-energy electron irradiation on ferritin/haemosiderin cores (in an iron-overloaded human liver biopsy), its mineral analogue; six-line ferrihydrite (6LFh), and iron phosphate dihydrate (which has similar octahedral ferric iron to oxygen coordination to that in ferrihydrite and ferritin/haemosiderin cores) has been investigated using electron energy-loss spectroscopy (EELS). Fe L{sub 2,3}-ionisation edges were recorded on two types of electron microscope: a 200 keV transmission electron microscope (TEM) and a 100 keV scanning transmission electron microscope (STEM), in order to investigate the damage mechanisms in operation and to establish a methodology for minimum specimen alteration during analytical electron microscopic characterisation. A specimen damage mechanism dominated by radiolysis that results in the preferential loss of iron co-ordinating ligands (O, OH and H{sub 2}O) is discussed. The net result of irradiation is structural re-organisation and reduction of iron within the iron hydroxides. At sufficiently low electron fluence and particularly in the lower incident energy, finer probe diameter STEM, the alteration is shown to be minimal. All the materials examined exhibit damage which as a function of cumulative fluence is best fitted by an inverse power-law, implying that several chemical and structural changes occur in response to the electron beam and we suggest that these are governed by secondary processes arising from the primary ionisation event. This work affirms that electron fluence and current density should be considered when measuring mixed valence ratios with EELS.

  8. Electroproduction of pairs at beam-beam collision

    International Nuclear Information System (INIS)

    Bajer, V.N.; Katkov, V.M.; Strakhovenko, V.M.

    1989-01-01

    Charged particle pair production at beam-beam collision in electron-positron linear colliders has been discussed taking into account a finite size of the beams (both longitudinal and transverse) and end effects. Contributions of the main acting mechanisms are singled out which depend on the energy of initial particles and the masses of created particles. A spectral distribution of produced particles is presented. 15 refs

  9. OPERATIONAL EXPERIENCE WITH BEAM ABORT SYSTEM FOR SUPERCONDUCTING UNDULATOR QUENCH MITIGATION*

    Energy Technology Data Exchange (ETDEWEB)

    Harkay, Katherine C.; Dooling, Jeffrey C.; Sajaev, Vadim; Wang, Ju

    2017-06-25

    A beam abort system has been implemented in the Advanced Photon Source storage ring. The abort system works in tandem with the existing machine protection system (MPS), and its purpose is to control the beam loss location and, thereby, minimize beam loss-induced quenches at the two superconducting undulators (SCUs). The abort system consists of a dedicated horizontal kicker designed to kick out all the bunches in a few turns after being triggered by MPS. The abort system concept was developed on the basis of single- and multi-particle tracking simulations using elegant and bench measurements of the kicker pulse. Performance of the abort system—kick amplitudes and loss distributions of all bunches—was analyzed using beam position monitor (BPM) turn histories, and agrees reasonably well with the model. Beam loss locations indicated by the BPMs are consistent with the fast fiber-optic beam loss monitor (BLM) diagnostics described elsewhere [1,2]. Operational experience with the abort system, various issues that were encountered, limitations of the system, and quench statistics are described.

  10. An electro-mechanical impedance model of a cracked composite beam with adhesively bonded piezoelectric patches

    Science.gov (United States)

    Yan, Wei; Cai, J. B.; Chen, W. Q.

    2011-01-01

    A model of a laminated composite beam including multiple non-propagating part-through surface cracks as well as installed PZT transducers is presented based on the method of reverberation-ray matrix (MRRM) in this paper. Toward determining the local flexibility characteristics induced by the individual cracks, the concept of the massless rotational spring is applied. A Timoshenko beam theory is then used to simulate the behavior of the composite beam with open cracks. As a result, transverse shear and rotatory inertia effects are included in the model. Only one-dimensional axial vibration of the PZT wafer is considered and the imperfect interfacial bonding between PZT patches and the host beam is further investigated based on a Kelvin-type viscoelastic model. Then, an accurate electro-mechanical impedance (EMI) model can be established for crack detection in laminated beams. In this model, the effects of various parameters such as the ply-angle, fibre volume fraction, crack depth and position on the EMI signatures are highlighted. Furthermore, comparison with existent numerical results is presented to validate the present analysis.

  11. Effects of electron beam radiation on mechanical properties and on the resistance to punctures caused by Plodia interpunctella in cereal bar packaging

    International Nuclear Information System (INIS)

    Alves, Juliana N.; Moura, Esperidiana A.B.; Oliveira, Vitor M.; Potenza, Marcos R.; Arthur, Valter

    2009-01-01

    Plodia interpunctella is an important pest in stored products in the tropical and subtropical regions, infesting grains and flours. The adult of P. interpunctella is a small butterfly with about 15 - 20mm of spread and the female places separately of 100 the 400 eggs in groups on the grains whose hard incubation some days. This insect infesting diverse types of food packaging, depreciating the products and causing economic losses. It is therefore critical for these products a packaging that presents, in addition to good mechanical, barrier and machinability properties, a good resistance to puncture by insects, in order to prevent the contact and spread of pests in the packaged food. This study evaluates the changes on mechanical properties and puncture resistance by P. interpunctella in BOPPmet/BOPP structure, used commercially as cereal bar packaging, after electron beam irradiation. The material samples were irradiated up to 120 kGy using a 1.5 MeV electrostatic accelerator, at room temperature, in air, dose rate 11.22 kGy/s. Irradiation doses were measured using cellulose triacetate film dosimeters 'CTA-FTR-125' from Fuji Photo Film Co. Ltd. After irradiation the BOPPmet/BOPP samples were subjected to tests of puncture resistance by P. interpunctella, tensile tests and penetration resistance. The results showed significant decreases (p<0.05) in the original mechanical properties of the structures according to the radiation doses applied and effective resistance against punctures by P. interpunctella for irradiated and nonirradiated BOPPmet/BOPP samples. These results indicate that non-irradiated and irradiated BOPPmet/BOPP structure presents puncture resistance against P. interpunctella and that electron-beam irradiation, in conditions studied in this work, may turn the structure inappropriate for cereal bar packaging, due to high reduction its mechanical properties after irradiation. (author)

  12. Stochastic cooling and intra-beam scattering in RHIC

    International Nuclear Information System (INIS)

    Wei, J.

    1993-01-01

    During the storage of the heavy ion beam in the Relativistic Heavy Ion Collider (RHIC), the luminosity deterioration due to beam growth and particle loss caused by intra-beam scattering (IBS) is of primary concern. In this paper, the authors study compensation methods using bunched beam stochastic cooling. With longitudinal and transverse stochastic cooling of 4--8 GHz bandwidth, the longitudinal beam loss resulting from the inadequacy of the rf voltage can be eliminated, and the transverse normalized beam emittance can be confined to about 30π mm·mrad. With such an emittance, the β* at the crossing point can be lowered under 1 meter without exceeding the transverse aperture limit at the focusing triplets. The achievable luminosity can thus be significantly improved

  13. Thermo-mechanical behavior of retro-reflector and resulting parallelism error of laser beams for Wendelstein 7-X interferometer

    International Nuclear Information System (INIS)

    Peng, X.B.; Hirsch, M.; Köppen, M.; Fellinger, J.; Bykov, V.; Schauer, F.; Vliegenthart, W.

    2014-01-01

    Highlights: • The criterion for thermo-mechanical design of W7-X interferometer retro-reflector. • Thermo-mechanical analysis of retro-reflector with two different methods. • The most flexible part in the retro-reflector is spring washer. • Calculation of parallelism error between the incoming and reflected laser beams. • The parallelism error is much lower than the design limit 28 arcs. - Abstract: A 10 channels interferometer will be used in the Wendelstein 7-X (W7-X) for plasma density control and density profile tracking with laser beams passing through the plasma. Due to complex shape of non-planar modular coils and divertor structure, there are no large poloidally opposite ports on the plasma vessel (PV). Therefore 10 in-vessel Corner Cube Retro-reflectors (CCRs) will be used. The CCRs are integrated in the water cooled heat shield and exposed directly to thermal loads from plasma radiation. Thermo-mechanical issues are very important for the design of the CCR because deformation and flatness as well as mutual angles of the three reflecting surfaces would affect the parallelism of the laser beams and the functionality of the interferometer. Intensive work has been done to explore a suitable design for the CCR concerning thermo-mechanical behavior. Previous studies Ye et al. (2008, 2009) and Köppen et al. (2011) focused on structural optimization to decrease thermal stress in the reflecting plates under the thermal loads, and on computation and check of curvature radii of the deformed reflecting surfaces with the design criterion that the curvature radius must be bigger than 200 m. The paper presents detailed thermo-mechanical analysis of the current improved CCR under thermal loads and bolt preloads. The results of the thermo-mechanical analysis were used for the study of the resulting parallelism error of the laser beams with newly developed and more reasonable design criterion

  14. Thermo-mechanical behavior of retro-reflector and resulting parallelism error of laser beams for Wendelstein 7-X interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Peng, X.B., E-mail: pengxb@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, 230031 Hefei Anhui (China); Max Planck Institute for Plasma Physics, EURATOM Association, Wendelsteinstr. 1, 17491 Greifswald (Germany); Hirsch, M.; Köppen, M.; Fellinger, J.; Bykov, V.; Schauer, F. [Max Planck Institute for Plasma Physics, EURATOM Association, Wendelsteinstr. 1, 17491 Greifswald (Germany); Vliegenthart, W. [TNO, Stieltjesweg 1, P.O. Box 2600, 2628 CK Delft (Netherlands)

    2014-04-15

    Highlights: • The criterion for thermo-mechanical design of W7-X interferometer retro-reflector. • Thermo-mechanical analysis of retro-reflector with two different methods. • The most flexible part in the retro-reflector is spring washer. • Calculation of parallelism error between the incoming and reflected laser beams. • The parallelism error is much lower than the design limit 28 arcs. - Abstract: A 10 channels interferometer will be used in the Wendelstein 7-X (W7-X) for plasma density control and density profile tracking with laser beams passing through the plasma. Due to complex shape of non-planar modular coils and divertor structure, there are no large poloidally opposite ports on the plasma vessel (PV). Therefore 10 in-vessel Corner Cube Retro-reflectors (CCRs) will be used. The CCRs are integrated in the water cooled heat shield and exposed directly to thermal loads from plasma radiation. Thermo-mechanical issues are very important for the design of the CCR because deformation and flatness as well as mutual angles of the three reflecting surfaces would affect the parallelism of the laser beams and the functionality of the interferometer. Intensive work has been done to explore a suitable design for the CCR concerning thermo-mechanical behavior. Previous studies Ye et al. (2008, 2009) and Köppen et al. (2011) focused on structural optimization to decrease thermal stress in the reflecting plates under the thermal loads, and on computation and check of curvature radii of the deformed reflecting surfaces with the design criterion that the curvature radius must be bigger than 200 m. The paper presents detailed thermo-mechanical analysis of the current improved CCR under thermal loads and bolt preloads. The results of the thermo-mechanical analysis were used for the study of the resulting parallelism error of the laser beams with newly developed and more reasonable design criterion.

  15. SRF cavity alignment detection method using beam-induced HOM with curved beam orbit

    Science.gov (United States)

    Hattori, Ayaka; Hayano, Hitoshi

    2017-09-01

    We have developed a method to obtain mechanical centers of nine cell superconducting radio frequency (SRF) cavities from localized dipole modes, that is one of the higher order modes (HOM) induced by low-energy beams. It is to be noted that low-energy beams, which are used as alignment probes, are easy to bend in fringe fields of accelerator cavities. The estimation of the beam passing orbit is important because only information about the beam positions measured by beam position monitors outside the cavities is available. In this case, the alignment information about the cavities can be obtained by optimizing the parameters of the acceleration components over the beam orbit simulation to consistently represent the position of the beam position monitors measured at every beam sweep. We discuss details of the orbit estimation method, and estimate the mechanical center of the localized modes through experiments performed at the STF accelerator. The mechanical center is determined as (x , y) =(0 . 44 ± 0 . 56 mm , - 1 . 95 ± 0 . 40 mm) . We also discuss the error and the applicable range of this method.

  16. Mechanical analysis of non-uniform bi-directional functionally graded intelligent micro-beams using modified couple stress theory

    Science.gov (United States)

    Bakhshi Khaniki, Hossein; Rajasekaran, Sundaramoorthy

    2018-05-01

    This study develops a comprehensive investigation on mechanical behavior of non-uniform bi-directional functionally graded beam sensors in the framework of modified couple stress theory. Material variation is modelled through both length and thickness directions using power-law, sigmoid and exponential functions. Moreover, beam is assumed with linear, exponential and parabolic cross-section variation through the length using power-law and sigmoid varying functions. Using these assumptions, a general model for microbeams is presented and formulated by employing Hamilton’s principle. Governing equations are solved using a mixed finite element method with Lagrangian interpolation technique, Gaussian quadrature method and Wilson’s Lagrangian multiplier method. It is shown that by using bi-directional functionally graded materials in nonuniform microbeams, mechanical behavior of such structures could be affected noticeably and scale parameter has a significant effect in changing the rigidity of nonuniform bi-directional functionally graded beams.

  17. Cellular mechanisms of cyclophosphamide-induced taste loss in mice.

    Science.gov (United States)

    Mukherjee, Nabanita; Pal Choudhuri, Shreoshi; Delay, Rona J; Delay, Eugene R

    2017-01-01

    Many commonly prescribed chemotherapy drugs such as cyclophosphamide (CYP) have adverse side effects including disruptions in taste which can result in loss of appetite, malnutrition, poorer recovery and reduced quality of life. Previous studies in mice found evidence that CYP has a two-phase disturbance in taste behavior: a disturbance immediately following drug administration and a second which emerges several days later. In this study, we examined the processes by which CYP disturbs the taste system by examining the effects of the drug on taste buds and cells responsible for taste cell renewal using immunohistochemical assays. Data reported here suggest CYP has direct cytotoxic effects on lingual epithelium immediately following administration, causing an early loss of taste sensory cells. Types II and III cells in fungiform taste buds appear to be more susceptible to this effect than circumvallate cells. In addition, CYP disrupts the population of rapidly dividing cells in the basal layer of taste epithelium responsible for taste cell renewal, manifesting a disturbance days later. The loss of these cells temporarily retards the system's capacity to replace Type II and Type III taste sensory cells that survived the cytotoxic effects of CYP and died at the end of their natural lifespan. The timing of an immediate, direct loss of taste cells and a delayed, indirect loss without replacement of taste sensory cells are broadly congruent with previously published behavioral data reporting two periods of elevated detection thresholds for umami and sucrose stimuli. These findings suggest that chemotherapeutic disturbances in the peripheral mechanisms of the taste system may cause dietary challenges at a time when the cancer patient has significant need for well balanced, high energy nutritional intake.

  18. Mechanical Design

    International Nuclear Information System (INIS)

    2010-01-01

    The particle beam of the SXR (soft x-ray) beam line in the LCLS (Linac Coherent Light Source) has a high intensity in order to penetrate through samples at the atomic level. However, the intensity is so high that many experiments fail because of severe damage. To correct this issue, attenuators are put into the beam line to reduce this intensity to a level suitable for experimentation. Attenuation is defined as 'the gradual loss in intensity of any flux through a medium' by (1). It is found that Beryllium and Boron Carbide can survive the intensity of the beam. At very thin films, both of these materials work very well as filters for reducing the beam intensity. Using a total of 12 filters, the first 9 being made of Beryllium and the rest made of Boron Carbide, the beam's energy range of photons can be attenuated between 800 eV and 9000 eV. The design of the filters allows attenuation for different beam intensities so that experiments can obtain different intensities from the beam if desired. The step of attenuation varies, but is relative to the thickness of the filter as a power function of 2. A relationship for this is f(n) = x 0 2 n where n is the step of attenuation desired and x 0 is the initial thickness of the material. To allow for this desired variation, a mechanism must be designed within the test chamber. This is visualized using a 3D computer aided design modeling tool known as Solid Edge.

  19. Electron beams in radiation therapy

    International Nuclear Information System (INIS)

    Bruinvis, I.A.D.

    1987-01-01

    Clinical electron beams in interaction with beam flattening and collimating devices are studied, in order to obtain the means for adequate electron therapy. A treatment planning method for arbitrary field shapes is developed that takes the properties of the collimated electron beams into account. An electron multiple-scattering model is extended to incorporate a model for the loss of electrons with depth, in order to improve electron beam dose planning. A study of ionisation measurements in two different phantom materials yields correction factors for electron beam dosimetry. (Auth.)

  20. Low-energy beam transport studies supporting the spallation neutron source 1-MW beam operation.

    Science.gov (United States)

    Han, B X; Kalvas, T; Tarvainen, O; Welton, R F; Murray, S N; Pennisi, T R; Santana, M; Stockli, M P

    2012-02-01

    The H(-) injector consisting of a cesium enhanced RF-driven ion source and a 2-lens electrostatic low-energy beam transport (LEBT) system supports the spallation neutron source 1 MW beam operation with ∼38 mA beam current in the linac at 60 Hz with a pulse length of up to ∼1.0 ms. In this work, two important issues associated with the low-energy beam transport are discussed: (1) inconsistent dependence of the post-radio frequency quadrupole accelerator beam current on the ion source tilt angle and (2) high power beam losses on the LEBT electrodes under some off-nominal conditions compromising their reliability.

  1. Material characterisation and preliminary mechanical design for the HL-LHC shielded beam screens operating at cryogenic temperatures.

    Science.gov (United States)

    Garion, C.; Dufay-Chanat, L.; Koettig, T.; Machiocha, W.; Morrone, M.

    2015-12-01

    The High Luminosity LHC project (HL-LHC) aims at increasing the luminosity (rate of collisions) in the Large Hadron Collider (LHC) experiments by a factor of 10 beyond the original design value (from 300 to 3000 fb-1). It relies on new superconducting magnets, installed close to the interaction points, equipped with new beam screen. This component has to ensure the vacuum performance together with shielding the cold mass from physics debris and screening the cold bore cryogenic system from beam induced heating. The beam screen operates in the range 40-60 K whereas the magnet cold bore temperature is 1.9 K. A tungsten-based material is used to absorb the energy of particles. In this paper, measurements of the mechanical and physical properties of such tungsten material are shown at room and cryogenic temperature. In addition, the design and the thermal mechanical behaviour of the beam screen assembly are presented also. They include the heat transfer from the tungsten absorbers to the cooling pipes and the supporting system that has to minimise the heat inleak into the cold mass. The behaviour during a magnet quench is also presented.

  2. Material characterisation and preliminary mechanical design for the HL-LHC shielded beam screens operating at cryogenic temperatures

    International Nuclear Information System (INIS)

    Garion, C; Dufay-Chanat, L; Koettig, T; Machiocha, W; Morrone, M

    2015-01-01

    The High Luminosity LHC project (HL-LHC) aims at increasing the luminosity (rate of collisions) in the Large Hadron Collider (LHC) experiments by a factor of 10 beyond the original design value (from 300 to 3000 fb -1 ). It relies on new superconducting magnets, installed close to the interaction points, equipped with new beam screen. This component has to ensure the vacuum performance together with shielding the cold mass from physics debris and screening the cold bore cryogenic system from beam induced heating. The beam screen operates in the range 40-60 K whereas the magnet cold bore temperature is 1.9 K. A tungsten-based material is used to absorb the energy of particles. In this paper, measurements of the mechanical and physical properties of such tungsten material are shown at room and cryogenic temperature. In addition, the design and the thermal mechanical behaviour of the beam screen assembly are presented also. They include the heat transfer from the tungsten absorbers to the cooling pipes and the supporting system that has to minimise the heat inleak into the cold mass. The behaviour during a magnet quench is also presented. (paper)

  3. BATMAN beam properties characterization by the beam emission spectroscopy diagnostic

    Science.gov (United States)

    Bonomo, F.; Ruf, B.; Barbisan, M.; Cristofaro, S.; Schiesko, L.; Fantz, U.; Franzen, P.; Pasqualotto, R.; Riedl, R.; Serianni, G.; Wünderlich, D.

    2015-04-01

    The ITER neutral beam heating systems are based on the production and acceleration of negative ions (H/D) up to 1 MV. The requirements for the beam properties are strict: a low core beam divergence (BATMAN (BAvarian Test MAchine for Negative ions) allows for deepening the knowledge of the determination of the beam properties. One of the diagnostics routinely used to this purpose is the Beam Emission Spectroscopy (BES): the Hα light emitted in the beam is detected and the corresponding spectra are evaluated to estimate the beam divergence and the stripping losses. The BES number of lines of sight in BATMAN has been recently increased: five horizontal lines of sight providing a vertical profile of the beam permit to characterize the negative ion beam properties in relation to the source parameters. Different methods of Hα spectra analysis are here taken into account and compared for the estimation of the beam divergence and the amount of stripping. In particular, to thoroughly study the effect of the space charge compensation on the beam divergence, an additional hydrogen injection line has been added in the tank, which allows for setting different background pressure values (one order of magnitude, from about 0.04 Pa up to the source pressure) in the beam drift region.

  4. Computational Fluid Dynamic Investigation of Loss Mechanisms in a Pulse-Tube Refrigerator

    International Nuclear Information System (INIS)

    Martin, K; Esguerra, J; Dodson, C; Razani, A

    2015-01-01

    In predicting Pulse-Tube Cryocooler (PTC) performance, One-Dimensional (1-D) PTR design and analysis tools such as Gedeon Associates SAGE® typically include models for performance degradation due to thermodynamically irreversible processes. SAGE®, in particular, accounts for convective loss, turbulent conductive loss and numerical diffusion “loss” via correlation functions based on analysis and empirical testing.In this study, we compare CFD and SAGE® estimates of PTR refrigeration performance for four distinct pulse-tube lengths. Performance predictions from PTR CFD models are compared to SAGE® predictions for all four cases. Then, to further demonstrate the benefits of higher-fidelity and multidimensional CFD simulation, the PTR loss mechanisms are characterized in terms of their spatial and temporal locations. (paper)

  5. Beam dynamics issues for linear colliders

    International Nuclear Information System (INIS)

    Ruth, R.D.

    1987-09-01

    In this paper we discuss various beam dynamics issues for linear colliders. The emphasis is to explore beam dynamics effects which lead to an effective dilution of the emittance of the beam and thus to a loss of luminosity. These considerations lead to various tolerances which are evaluated for a particular parameter set

  6. Beam Cleaning in Experimental IRs in HL-LHC for the Incoming Beam

    CERN Document Server

    Garcia-Morales, H; Bruce, Roderik; Redaelli, Stefano

    2015-01-01

    The HL-LHC will store 675 MJ of energy per beam, about 300 MJ more than the nominal LHC. Due to the increase in stored energy and a different interaction region (IR) optics layout, the collimation system for the incoming beam must be revisited in order to avoid dangerous losses that could cause quenches or machine damage. This paper studies the effectiveness of the current LHC collimation system in intercepting cleaning losses close to the experiments in the HL-LHC. The study reveals that additional tertiary collimators would be beneficial in order to protect not only the final focusing triplets but also the two quadrupoles further upstream.

  7. Beam cleaning of the incoming beam in experimental IRs in HL-LHC

    CERN Document Server

    Garcia Morales, Hector; Redaelli, Stefano; De Maria, Riccardo; CERN. Geneva. ATS Department

    2017-01-01

    The HL-LHC will store 675 MJ of energy per beam, about 300 MJ more than the nominal LHC. Due to the increase in stored energy and a different interaction region (IR) layout and optics design, the collimation system for the incoming beam must be revisited in order to avoid dangerous losses that could cause quenches and machine damage. This paper studies the effectiveness of the current LHC collimation system in intercepting cleaning losses close to the experiments in the HL-LHC. The study reveals that in addition to the triplet also the Q4 needs local protection, which could be provided by an additional pair of TCTs.

  8. Beam Instrumentation Global Network [BIGNET]: a common web portal for Beam instrumentalists

    CERN Document Server

    Gras, J-J

    2012-01-01

    This document will present an initiative launched during the International Particle Accelerator Conference (IPAC11) to define and produce a common web portal for Beam Instrumentation, with the aim of allowing any beam instrumentalist to easily and efficiently: - find the laboratories with machines using beams of similar characteristics (particle type, total beam intensity, bunch intensity, frequency, energy) - find the person who is working there on the beam observable concerned (i.e. beam position, loss, intensity, transverse or longitudinal profile, tune) and how to contact him/her - create discussion forums with the right audience on hot beam instrumentation topics or issues - advertise topical events and workshop - provide links towards documents describing system designs and performance assessments... This document will cover the status and prospects of the project with the aim to invite and welcome new laboratories to join the adventure.

  9. The development of MEMS device packaging technology using proton beam

    International Nuclear Information System (INIS)

    Hyeon, J. W.; Kong, Y. J.; Kim, E. H.; Kim, H. S.; No, S. J.

    2006-05-01

    Wafer-bonding techniques are key issues for the commercialization of MEMS(MicroElectroMechanical Systems) devices. The anodic bonding method and the wafer direct-bonding method are well-known major techniques for wafer bonding. Due to the anodic bonding method includes high voltage processes above 1.5 kV, the MEMS devices can be damaged during the bonding process or malfunctioned while long-term operation. On the other hand, since the wafer direct-bonding method includes a high temperature processes above 1000 .deg. C, temperature-sensitive materials and integrated circuits will be damaged or degraded during the bonding processes. Therefore, high-temperature bonding processes are not applicable for fabricating or packaging devices where temperature-sensitive materials exist. During the past few years, much effort has been undertaken to find a reliable bonding process that can be conducted at a low temperature. Unfortunately, these new bonding processes depend highly on the bonding material, surface treatment and surface flatness. In this research, a new packaging method using proton beam irradiation is proposed. While the energy loss caused in an irradiated material by X-rays or electron beams decreases with the surface distance, the energy loss caused by proton beams has a maximum value at the Bragg peak. Thus, the localized energy produced at the Bragg peak of the proton beams can be used to bond pyrex glass on a silicon wafer, so the MEMS damage is expected to be minimized. The localized heating caused by as well as the penetration depth, or the proton beam has been investigated. The energy absorbed in a stack of pyrex glass/silicon wafers due to proton-beam irradiation was numerically calculated for various proton energies by using the SRIM program. The energy loss was shown to be sufficiently localized at the interface between the pyrex glass and the silicon wafer. Proton beam irradiation was performed in the common environment of room temperature and

  10. Coherent instabilities of a relativistic bunched beam

    International Nuclear Information System (INIS)

    Chao, A.W.

    1982-06-01

    A charge-particle beam contained in an accelerator vacuum chamber interacts electromagnetically with its environment to create a wake field. This field than acts back on the beam, perturbing the particle motion. If the beam intensity is high enough, this beam-environment interaction may lead to an instability and to subsequent beam loss. The beam and its environment form a dynamical system, and it is this system that will be studied. 84 references

  11. Coherent instabilities of a relativistic bunched beam

    Energy Technology Data Exchange (ETDEWEB)

    Chao, A.W.

    1982-06-01

    A charge-particle beam contained in an accelerator vacuum chamber interacts electromagnetically with its environment to create a wake field. This field than acts back on the beam, perturbing the particle motion. If the beam intensity is high enough, this beam-environment interaction may lead to an instability and to subsequent beam loss. The beam and its environment form a dynamical system, and it is this system that will be studied. 84 references.

  12. Brain mechanisms for loss of awareness of thought and movement

    Science.gov (United States)

    Oakley, David A.; Halligan, Peter W.; Mehta, Mitul A.; Deeley, Quinton

    2017-01-01

    Abstract Loss or reduction of awareness is common in neuropsychiatric disorders and culturally influenced dissociative phenomena but the underlying brain mechanisms are poorly understood. fMRI was combined with suggestions for automatic writing in 18 healthy highly hypnotically suggestible individuals in a within-subjects design to determine whether clinical alterations in awareness of thought and movement can be experimentally modelled and studied independently of illness. Subjective ratings of control, ownership, and awareness of thought and movement, and fMRI data were collected following suggestions for thought insertion and alien control of writing movement, with and without loss of awareness. Subjective ratings confirmed that suggestions were effective. At the neural level, our main findings indicated that loss of awareness for both thought and movement during automatic writing was associated with reduced activation in a predominantly left-sided posterior cortical network including BA 7 (superior parietal lobule and precuneus), and posterior cingulate cortex, involved in self-related processing and awareness of the body in space. Reduced activity in posterior parietal cortices may underlie specific clinical and cultural alterations in awareness of thought and movement. Clinically, these findings may assist development of imaging assessments for loss of awareness of psychological origin, and interventions such as neurofeedback. PMID:28338742

  13. Beam Scraping in the SPS for LHC Injection Efficiency and Robustness Studies

    CERN Document Server

    Letnes, Paul/LPA; Myrheim, Jan

    2008-01-01

    The Large Hadron Collider (LHC) at CERN will be the world's most powerful accelerator when it is commissioned in fall 2008. Operation of the LHC will require injection of very high intensity beams. Fast transverse beam scrapers have been installed in the Super Proton Synchrotron (SPS) injector to detect and, if necessary, remove transverse beam tails. This will help to both diagnose and prevent beam quenches in the LHC. Scraping of a high intensity beam at top energy can potentially damage the scraper jaws. This has been studied with Monte Carlo simulations to find energy deposition and limits for hardware damage. Loss maps from scraping have been generated both with machine studies and tracking simulations. Time dependent Beam Loss Monitor (BLM) measurements have shown several interesting details about the beam. An analytical model of time dependent losses is compared with beam measurements and demonstrates that beam scraping can be used to estimate the beam size. Energy deposition simulations also give the ...

  14. Electron-beam irradiation effects on mechanical properties of PEEK/CF composite

    International Nuclear Information System (INIS)

    Sasuga, Tsuneo; Seguchi, Tadao

    1989-01-01

    Carbon fibre-reinforced composite (PEEK/CF) using polyarylether-ether-ketone (PEEK) as a matrix material was prepared and electron-beam irradiation effects on the mechanical properties at low and high temperatures were studied. The flexural strength and modulus of the unirradiated PEEK/CF were almost the same as those of carbon fibre-reinforced composites with epoxide resin. The mechanical properties at room temperature were little affected by irradiation up to 180 MGy, but in the test at 77K the strength of the specimens irradiated over 100 MGy was slightly decreased. The mechanical properties of the unirradiated specimen decreased with increasing testing temperature, but the high-temperature properties were improved by irradiation, i.e. the strength measured at 413K for the specimen irradiated with 120 MGy almost reached the value for the unirradiated specimen measured at room temperature. It was apparent from the viscoelastic measurement that the improvement of mechanical properties at high temperature resulted from the high-temperature shift of the glass transition of the matrix PEEK caused by radiation-induced cross-linking. (author)

  15. The Role of Mechanical Stimulation in Recovery of Bone Loss-High versus Low Magnitude and Frequency of Force.

    Science.gov (United States)

    Nagaraja, Mamta Patel; Jo, Hanjoong

    2014-04-02

    Musculoskeletal pathologies associated with decreased bone mass, including osteoporosis and disuse-induced bone loss, affect millions of Americans annually. Microgravity-induced bone loss presents a similar concern for astronauts during space missions. Many pharmaceutical treatments have slowed osteoporosis, and recent data shows promise for countermeasures for bone loss observed in astronauts. Additionally, high magnitude and low frequency impact such as running has been recognized to increase bone and muscle mass under normal but not microgravity conditions. However, a low magnitude and high frequency (LMHF) mechanical load experienced in activities such as postural control, has also been shown to be anabolic to bone. While several clinical trials have demonstrated that LMHF mechanical loading normalizes bone loss in vivo, the target tissues and cells of the mechanical load and underlying mechanisms mediating the responses are unknown. In this review, we provide an overview of bone adaptation under a variety of loading profiles and the potential for a low magnitude loading as a way to counteract bone loss as experienced by astronauts.

  16. Study of beam optics and beam halo by integrated modeling of negative ion beams from plasma meniscus formation to beam acceleration

    International Nuclear Information System (INIS)

    Miyamoto, K.; Okuda, S.; Hatayama, A.; Hanada, M.; Kojima, A.

    2013-01-01

    To understand the physical mechanism of the beam halo formation in negative ion beams, a two-dimensional particle-in-cell code for simulating the trajectories of negative ions created via surface production has been developed. The simulation code reproduces a beam halo observed in an actual negative ion beam. The negative ions extracted from the periphery of the plasma meniscus (an electro-static lens in a source plasma) are over-focused in the extractor due to large curvature of the meniscus.

  17. Study of beam optics and beam halo by integrated modeling of negative ion beams from plasma meniscus formation to beam acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Okuda, S.; Hatayama, A. [Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Hanada, M.; Kojima, A. [Japan Atomic Energy Agency, 801-1 Mukouyama, Naka 319-0913 (Japan)

    2013-01-14

    To understand the physical mechanism of the beam halo formation in negative ion beams, a two-dimensional particle-in-cell code for simulating the trajectories of negative ions created via surface production has been developed. The simulation code reproduces a beam halo observed in an actual negative ion beam. The negative ions extracted from the periphery of the plasma meniscus (an electro-static lens in a source plasma) are over-focused in the extractor due to large curvature of the meniscus.

  18. Investigation of fullerene ions in crossed-beams experiments

    International Nuclear Information System (INIS)

    Hathiramani, D.; Scheier, P.; Braeuning, H.; Trassl, R.; Salzborn, E.; Presnyakov, L.P.; Narits, A.A.; Uskov, D.B.

    2003-01-01

    Employing the crossed-beams technique, we have studied the interaction of fullerene ions both with electrons and He 2+ -ions. Electron-impact ionization cross sections for C 60 q+ (q=1,2,3) have been measured at electron energies up to 1000 eV. Unusual features in shape and charge state dependence have been found, which are not observed for atomic ions. The evaporative loss of neutral C 2 fragments in collisions with electrons indicates the presence of two different mechanisms. In a first-ever ion-ion crossed-beams experiment involving fullerene ions a cross section of (1.05 ± 0.06) x 10 -15 cm 2 for charge transfer in the collision C 60 + + He 2+ at 117.2 keV center-of-mass energy has been obtained

  19. Cellular mechanisms of cyclophosphamide-induced taste loss in mice

    Science.gov (United States)

    Mukherjee, Nabanita; Pal Choudhuri, Shreoshi; Delay, Rona J.

    2017-01-01

    Many commonly prescribed chemotherapy drugs such as cyclophosphamide (CYP) have adverse side effects including disruptions in taste which can result in loss of appetite, malnutrition, poorer recovery and reduced quality of life. Previous studies in mice found evidence that CYP has a two-phase disturbance in taste behavior: a disturbance immediately following drug administration and a second which emerges several days later. In this study, we examined the processes by which CYP disturbs the taste system by examining the effects of the drug on taste buds and cells responsible for taste cell renewal using immunohistochemical assays. Data reported here suggest CYP has direct cytotoxic effects on lingual epithelium immediately following administration, causing an early loss of taste sensory cells. Types II and III cells in fungiform taste buds appear to be more susceptible to this effect than circumvallate cells. In addition, CYP disrupts the population of rapidly dividing cells in the basal layer of taste epithelium responsible for taste cell renewal, manifesting a disturbance days later. The loss of these cells temporarily retards the system’s capacity to replace Type II and Type III taste sensory cells that survived the cytotoxic effects of CYP and died at the end of their natural lifespan. The timing of an immediate, direct loss of taste cells and a delayed, indirect loss without replacement of taste sensory cells are broadly congruent with previously published behavioral data reporting two periods of elevated detection thresholds for umami and sucrose stimuli. These findings suggest that chemotherapeutic disturbances in the peripheral mechanisms of the taste system may cause dietary challenges at a time when the cancer patient has significant need for well balanced, high energy nutritional intake. PMID:28950008

  20. Cellular mechanisms of cyclophosphamide-induced taste loss in mice.

    Directory of Open Access Journals (Sweden)

    Nabanita Mukherjee

    Full Text Available Many commonly prescribed chemotherapy drugs such as cyclophosphamide (CYP have adverse side effects including disruptions in taste which can result in loss of appetite, malnutrition, poorer recovery and reduced quality of life. Previous studies in mice found evidence that CYP has a two-phase disturbance in taste behavior: a disturbance immediately following drug administration and a second which emerges several days later. In this study, we examined the processes by which CYP disturbs the taste system by examining the effects of the drug on taste buds and cells responsible for taste cell renewal using immunohistochemical assays. Data reported here suggest CYP has direct cytotoxic effects on lingual epithelium immediately following administration, causing an early loss of taste sensory cells. Types II and III cells in fungiform taste buds appear to be more susceptible to this effect than circumvallate cells. In addition, CYP disrupts the population of rapidly dividing cells in the basal layer of taste epithelium responsible for taste cell renewal, manifesting a disturbance days later. The loss of these cells temporarily retards the system's capacity to replace Type II and Type III taste sensory cells that survived the cytotoxic effects of CYP and died at the end of their natural lifespan. The timing of an immediate, direct loss of taste cells and a delayed, indirect loss without replacement of taste sensory cells are broadly congruent with previously published behavioral data reporting two periods of elevated detection thresholds for umami and sucrose stimuli. These findings suggest that chemotherapeutic disturbances in the peripheral mechanisms of the taste system may cause dietary challenges at a time when the cancer patient has significant need for well balanced, high energy nutritional intake.

  1. Microstructure and mechanical performance of autogenously fibre laser beam welded Ti-6242 butt joints

    Energy Technology Data Exchange (ETDEWEB)

    Kashaev, Nikolai, E-mail: nikolai.kashaev@hzg.de; Pugachev, Dmitry; Ventzke, Volker; Fomin, Fedor; Burkhardt, Irmela; Enz, Josephin; Riekehr, Stefan

    2017-05-10

    This work deals with the effects of laser beam power, focus position and advance speed on the geometry, microstructure and mechanical properties such as the tensile strength and microhardness of autogenously fibre laser beam welded Ti-6Al-2Sn-4Zr-2Mo (denoted as Ti-6242) butt joints used for high temperature applications. The Ti-6242 sheet employed here is characterized by a globular (α+β) microstructure. Laser beam welded butt joints consisted of a martensitic fusion zone, inhomogeneous heat affected zones and equiaxed base materials. The microhardness increased from 330 HV 0.3 in base material to 430 HV 0.3 in fusion zone due to the martensitic transformation. Butt joints showed the base material level of strength in tensile test. The local increase in microhardness provided a shielding effect that protected the Ti-6242 butt joint against mechanical damage during the static tensile load test. The predicted critical total underfill depth that does not reduce the tensile strength of the weld was determined to be 25% of the specimen thickness. - Highlights: • Autogenous fibre LBW of Ti-6242 was successfully achieved. • Butt joints showed low levels of porosity and an appropriate seam geometry. • Base material level of strength achieved for tensile strength. • Predicted critical underfill depth is 25% of the specimen thickness.

  2. Mechanical Behavior of Steel Fiber-Reinforced Concrete Beams Bonded with External Carbon Fiber Sheets.

    Science.gov (United States)

    Gribniak, Viktor; Tamulenas, Vytautas; Ng, Pui-Lam; Arnautov, Aleksandr K; Gudonis, Eugenijus; Misiunaite, Ieva

    2017-06-17

    This study investigates the mechanical behavior of steel fiber-reinforced concrete (SFRC) beams internally reinforced with steel bars and externally bonded with carbon fiber-reinforced polymer (CFRP) sheets fixed by adhesive and hybrid jointing techniques. In particular, attention is paid to the load resistance and failure modes of composite beams. The steel fibers were used to avoiding the rip-off failure of the concrete cover. The CFRP sheets were fixed to the concrete surface by epoxy adhesive as well as combined with various configurations of small-diameter steel pins for mechanical fastening to form a hybrid connection. Such hybrid jointing techniques were found to be particularly advantageous in avoiding brittle debonding failure, by promoting progressive failure within the hybrid joints. The use of CFRP sheets was also effective in suppressing the localization of the discrete cracks. The development of the crack pattern was monitored using the digital image correlation method. As revealed from the image analyses, with an appropriate layout of the steel pins, brittle failure of the concrete-carbon fiber interface could be effectively prevented. Inverse analysis of the moment-curvature diagrams was conducted, and it was found that a simplified tension-stiffening model with a constant residual stress level at 90% of the strength of the SFRC is adequate for numerically simulating the deformation behavior of beams up to the debonding of the CFRP sheets.

  3. Modelling of the Thermo-Mechanical Behavior of the Two-Beam Module for the Compact Linear Collider

    CERN Document Server

    Raatikainen, Riku; Österberg, K; Lehtovaara, A; Pajunen, S

    2011-01-01

    To fulfil the mechanical requirements set by the luminosity goals of the compact linear collider, the 2-m long two-beam modules, the shortest repetitive elements in the main linear accelerator, have to be controlled at micrometer level. At the same time these modules are exposed to high power dissipation that varies while the accelerator is ramped up to nominal power and when the mode of the accelerator operation is modified. These variations will give rise to inevitable temperature transients driving mechanical distortions in and between different module components. Therefore, the thermo-mechanical behaviour of the module is of a high importance. This thesis describes a finite element method model for the two-beam compact linear collider module. The components are described in detail compared to earlier models, which should result in a realistic description of the module. Due to the complexity of the modules, the modelling is divided into several phases from geometrical simplification and modification to the...

  4. High Q diamond hemispherical resonators: fabrication and energy loss mechanisms

    International Nuclear Information System (INIS)

    Bernstein, Jonathan J; Bancu, Mirela G; Bauer, Joseph M; Cook, Eugene H; Kumar, Parshant; Nyinjee, Tenzin; Perlin, Gayatri E; Ricker, Joseph A; Teynor, William A; Weinberg, Marc S; Newton, Eric

    2015-01-01

    We have fabricated polycrystalline diamond hemispheres by hot-filament CVD (HFCVD) in spherical cavities wet-etched into a high temperature glass substrate CTE matched to silicon. Hemispherical resonators 1.4 mm in diameter have a Q of up to 143 000 in the fundamental wineglass mode, for a ringdown time of 2.4 s. Without trimming, resonators have the two degenerate wineglass modes frequency matched as close as 2 Hz, or 0.013% of the resonant frequency (∼16 kHz). Laser trimming was used to match resonant modes on hemispheres to 0.3 Hz. Experimental and FEA energy loss studies on cantilevers and hemispheres examine various energy loss mechanisms, showing that surface related losses are dominant. Diamond cantilevers with a Q of 400 000 and a ringdown time of 15.4 s were measured, showing the potential of polycrystalline diamond films for high Q resonators. These resonators show great promise for use as hemispherical resonant gyroscopes (HRGs) on a chip. (paper)

  5. Retrograde amnesia produced by electron beam exposure: causal parameters and duration of memory loss. [Rats

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, T.G.; Hardy, K.A.

    1985-01-01

    The production of retrograde amnesia (RA) upon electron beam exposure has been investigated. RA production was evaluated using a single-trial avoidance task across a 10/sup 4/ dose range for 10-, 1-, and 0.1-..mu..sec pulsed exposures. The dose-response curve obtained at each pulse duration showed significant RA production. The most effective dose range was 0.1-10 rad at a dose rate of 10/sup 6/ rad/sec. By employing a 10 rad (10/sup 6/ rad/sec) pulse, a memory loss of the events occurring in the previous 4 sec was demonstrated. The conclusion was that the RA effect might be due to sensory activation which provided a novel stimulus that masked previous stimuli.

  6. Thermo-Mechanical tests for the CLIC two-beam module study

    CERN Document Server

    Xydou, A; Riddone, G; Daskalaki, E

    2014-01-01

    The luminosity goal of CLIC requires micron level precision with respect to the alignment of the components on its two-meter long modules, composing the two main linacs. The power dissipated inside the module components introduces mechanical deformations affecting their alignment and therefore the resulting machine performance. Several two-beam prototype modules must be assembled to extensively measure their thermo-mechanical behavior under different operation modes. In parallel, the real environmental conditions present in the CLIC tunnel should be studied. The air conditioning and ventilation system providing specified air temperature and flow has been installed in the dedicated laboratory. The power dissipation occurring in the modules is being reproduced by the electrical heaters inserted inside the RF structure mock-ups and the quadrupoles. The efficiency of the cooling systems is being verified and the alignment of module components is monitored. The measurement results will be compared to finite elemen...

  7. Present and future colliding beam facilities at SLAC

    International Nuclear Information System (INIS)

    Wiedemann, H.

    1977-01-01

    Present state of the 4.1 GeV electron-positron storage ring SPEAR is described. The most important limitations on performance in SPEAR, such as synchrotron-betatron resonances, higher-order mode losses are outlined. Active bunch lengthener was outstalled in SPEAR to reduce the losses. Experiments on the bunch lengthening observed in SPEAR showed that the lengthening mechanism results from bunch instabilities due to the bunch interaction with the environment. SPEAR performance experience provided with effective prototype for directing the design of PEP-the 18 GeV positron-electron storage ring with designed luminosity of 10 32 cm -2 s -1 . Procurements and construction of PEP components are in full swing. The first beam is expeted to go around in the storage ring by October 1979

  8. Fast determination of the current loss mechanisms in textured crystalline Si-based solar cells

    Science.gov (United States)

    Nakane, Akihiro; Fujimoto, Shohei; Fujiwara, Hiroyuki

    2017-11-01

    A quite general device analysis method that allows the direct evaluation of optical and recombination losses in crystalline silicon (c-Si)-based solar cells has been developed. By applying this technique, the current loss mechanisms of the state-of-the-art solar cells with ˜20% efficiencies have been revealed. In the established method, the optical and electrical losses are characterized from the analysis of an experimental external quantum efficiency (EQE) spectrum with very low computational cost. In particular, we have performed the EQE analyses of textured c-Si solar cells by employing the experimental reflectance spectra obtained directly from the actual devices while using flat optical models without any fitting parameters. We find that the developed method provides almost perfect fitting to EQE spectra reported for various textured c-Si solar cells, including c-Si heterojunction solar cells, a dopant-free c-Si solar cell with a MoOx layer, and an n-type passivated emitter with rear locally diffused solar cell. The modeling of the recombination loss further allows the extraction of the minority carrier diffusion length and surface recombination velocity from the EQE analysis. Based on the EQE analysis results, the current loss mechanisms in different types of c-Si solar cells are discussed.

  9. Microstructural Characteristics and Mechanical Properties of an Electron Beam-Welded Ti/Cu/Ni Joint

    Science.gov (United States)

    Zhang, Feng; Wang, Ting; Jiang, Siyuan; Zhang, Binggang; Feng, Jicai

    2018-05-01

    Electron beam welding experiments of TA15 titanium alloy to GH600 nickel superalloy with and without a copper sheet interlayer were carried out. Surface appearance, microstructure and phase constitution of the joint were examined by optical microscopy, scanning electron microscopy and x-ray diffraction analysis. Mechanical properties of Ti/Ni and Ti/Cu/Ni joint were evaluated based on tensile strength and microhardness tests. The results showed that cracking occurred in Ti/Ni electron beam weldment for the formation of brittle Ni-Ti intermetallics, while a crack-free electron beam-welded Ti/Ni joint can be obtained by using a copper sheet as filler metal. The addition of copper into the weld affected the welding metallurgical process of the electron beam-welded Ti/Ni joint significantly and was helpful for restraining the formation of Ti-Ni intermetallics in Ti/Ni joint. The microstructure of the weld was mainly characterized by a copper-based solid solution and Ti-Cu interfacial intermetallic compounds. Ti-Ni intermetallic compounds were almost entirely suppressed. The hardness of the weld zone was significantly lower than that of Ti/Ni joint, and the tensile strength of the joint can be up to 282 MPa.

  10. Opto-mechanical devices for the Antares automatic beam alignment system

    International Nuclear Information System (INIS)

    Swann, T.; Combs, C.; Witt, J.

    1981-01-01

    Antares is a 24-beam CO 2 laser system for controlled fusion research, under construction at Los Alamos National Laboratory. Rapid automatic alignment of this system is required prior to each experimental shot. Unique opto-mechanical alignment devices, which have been developed specifically for this automatic alignment system, are discussed. A variable focus alignment telescope views point light sources. A beam expander/spatial filter processes both a visible Krypton Ion and a 10.6 μm CO 2 alignment laser. The periscope/carousel device provides the means by which the alignment telescope can sequentially view each of twelve optical trains in each power amplifier. The polyhedron alignment device projects a point-light source for both centering and pointing alignment at the polyhedron mirror. The rotating wedge alignment device provides a sequencing point-light source and also compensates for dispersion between visible and 10.6 μm radiation. The back reflector flip in remotely positions point-light sources at the back reflector mirrors. A light source box illuminates optic fibers with high intensity white light which is distributed to the various point-light sources in the system

  11. The investigation of the stochastization mechanisms of the beam generators using the method of functional map

    International Nuclear Information System (INIS)

    Bliokh, Yu.P.; Fajnberg, Ya.B.; Lyubarskij, M.G.; Podobinskij, V.O.

    1994-01-01

    Certain distributed dynamical systems describing the well-known beam generators of UHF oscillations are organized very simple: the nonlinear functional, which determines the current state of the system with respect to its behaviour in the past, is represented as a composition of the linear functional and the nonlinear finite-dimensional map. This property made it possible to find the mechanisms of auto modulation and stochastization of the signals from beam generators and to define corresponding range of parameters values. 12 refs., 6 figs

  12. Mechanical Loading Attenuates Radiation-Induced Bone Loss in Bone Marrow Transplanted Mice

    Science.gov (United States)

    Govey, Peter M.; Zhang, Yue; Donahue, Henry J.

    2016-01-01

    Exposure of bone to ionizing radiation, as occurs during radiotherapy for some localized malignancies and blood or bone marrow cancers, as well as during space travel, incites dose-dependent bone morbidity and increased fracture risk. Rapid trabecular and endosteal bone loss reflects acutely increased osteoclastic resorption as well as decreased bone formation due to depletion of osteoprogenitors. Because of this dysregulation of bone turnover, bone’s capacity to respond to a mechanical loading stimulus in the aftermath of irradiation is unknown. We employed a mouse model of total body irradiation and bone marrow transplantation simulating treatment of hematologic cancers, hypothesizing that compression loading would attenuate bone loss. Furthermore, we hypothesized that loading would upregulate donor cell presence in loaded tibias due to increased engraftment and proliferation. We lethally irradiated 16 female C57Bl/6J mice at age 16 wks with 10.75 Gy, then IV-injected 20 million GFP(+) total bone marrow cells. That same day, we initiated 3 wks compression loading (1200 cycles 5x/wk, 10 N) in the right tibia of 10 of these mice while 6 mice were irradiated, non-mechanically-loaded controls. As anticipated, before-and-after microCT scans demonstrated loss of trabecular bone (-48.2% Tb.BV/TV) and cortical thickness (-8.3%) at 3 wks following irradiation. However, loaded bones lost 31% less Tb.BV/TV and 8% less cortical thickness (both pbones also had significant increases in trabecular thickness and tissue mineral densities from baseline. Mechanical loading did not affect donor cell engraftment. Importantly, these results demonstrate that both cortical and trabecular bone exposed to high-dose therapeutic radiation remain capable of an anabolic response to mechanical loading. These findings inform our management of bone health in cases of radiation exposure. PMID:27936104

  13. MD 1407 - Landau Damping: Beam Transfer Functions and diffusion mechanisms

    CERN Document Server

    Tambasco, Claudia; Boccardi, Andrea; Buffat, Xavier; Gasior, Marek; Lefevre, Thibaut; Levens, Tom; Pojer, Mirko; Salvachua Ferrando, Belen Maria; Solfaroli Camillocci, Matteo; Pieloni, Tatiana; Crouch, Matthew Paul; CERN. Geneva. ATS Department

    2017-01-01

    In the 2012, 2015 and 2016 run several instabilities were developing at flat-top, during and at the end of the betatron squeeze where beam-beam interactions are present. The tune spread in the beams is therefore modified by the beam-beam long-range interactions and by other sources of spread. Studies of the stability area computed by evaluating the dispersion integral for different tune spreads couldn’t explain the observed instabilities during the squeeze and stable beams. The size of the stability area given by the computed dispersion integral depends on the transverse tune spread but its shape is defined by the particle distribution in the beams. Therefore any change of the particle distribution can lead to a deterioration of the Landau stability area. The Beam Transfer Functions (BTF) are direct measurements of the Stability Diagrams (SD). They are sensitive to particle distributions and contain information about the transverse tune spread in the beams. In this note are summarized the results of the BTF...

  14. Mechanics and analysis of beams, columns and cables. A modern introduction to the classic theories

    DEFF Research Database (Denmark)

    Krenk, Steen

    The book illustrates the use of simple mathematical analysis techniques within the area of basic structural mechanics, in particular the elementary theories of beams, columns and cables. The focus is on: i) Identification of the physical background of the theories and their particular mathematical...... properties. ii) Demonstration of mathematical techniques for analysis of simple problems in structural mechanics, and identification of the relevant parameters and properties of the solution. iii) Derivation of the solutions to a number of basic problems of structural mechanics in a form suitable for later...

  15. Mechanical Design

    Energy Technology Data Exchange (ETDEWEB)

    Shook, Richard; /Marquette U. /SLAC

    2010-08-25

    The particle beam of the SXR (soft x-ray) beam line in the LCLS (Linac Coherent Light Source) has a high intensity in order to penetrate through samples at the atomic level. However, the intensity is so high that many experiments fail because of severe damage. To correct this issue, attenuators are put into the beam line to reduce this intensity to a level suitable for experimentation. Attenuation is defined as 'the gradual loss in intensity of any flux through a medium' by [1]. It is found that Beryllium and Boron Carbide can survive the intensity of the beam. At very thin films, both of these materials work very well as filters for reducing the beam intensity. Using a total of 12 filters, the first 9 being made of Beryllium and the rest made of Boron Carbide, the beam's energy range of photons can be attenuated between 800 eV and 9000 eV. The design of the filters allows attenuation for different beam intensities so that experiments can obtain different intensities from the beam if desired. The step of attenuation varies, but is relative to the thickness of the filter as a power function of 2. A relationship for this is f(n) = x{sub 0}2{sup n} where n is the step of attenuation desired and x{sub 0} is the initial thickness of the material. To allow for this desired variation, a mechanism must be designed within the test chamber. This is visualized using a 3D computer aided design modeling tool known as Solid Edge.

  16. Microstructure and mechanical properties of Al-Fe-V-Si aluminum alloy produced by electron beam melting

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Shaobo; Zheng, Lijing, E-mail: zhenglijing@buaa.edu.cn; Peng, Hui; Zhang, Hu

    2016-04-06

    Atomized, pre-alloyed Al-8.5Fe-1.3V-1.7Si (wt%) powder was used to fabricate solid components by electron beam melting (EBM). The residual porosity, chemical composition, microstructure and mechanical properties have been investigated. Results show that the relative density of as-built alloy under the optimized processing parameters was 98.2%. Compare to the initial alloy powder, the EBM parts demonstrated a restricted aluminum loss (~1 wt%) and a quite low oxygen pickup. The microstructure of the deposits was non-uniform. The fusion zone and heat affected zone exhibited a large number of fine spherical Al{sub 12}(Fe,V){sub 3}Si particles (30–110 nm) distributed uniformly in the α-Al matrix. Some coarser Fe- and V-riched rectangle-like Al{sub m}Fe phase (m=4.0–4.4) with 100–400 nm in size was precipitated in the melting boundary zone. The microhardness of the EBM samples was 153 HV in average. The average ultimate tensile strength (UTS) reached 438 MPa with the elongation of 12%. A ductile fracture mode of the tensile specimens was also revealed.

  17. LHC Beam Diagnostics - the Users Point of View

    CERN Document Server

    Wenninger, J

    2011-01-01

    The LHC started up with beam in November 2009, and within less then on year its luminosity reached 2·1032 cm-2s−1 at 3.5 TeV in October 2010. A few weeks later, in November 2010, lead ion collisions were established within little over 2 days. The fast progress and successes of the LHC commissioning and early operation would not have been possible without the excellent performance of its beam instrumentation. All essential instruments worked from the first day or were commissioned in a very short time, providing rapid diagnostics for the beam parameters. Tune and orbit feedbacks that rely on high quality measurements were used early on to achieve smooth operation with minimal beam losses. This presentation will address the performance of the LHC beam instrumentation, in particular the very large beam position and beam loss monitoring systems, both composed of many thousand channels. Present limitations and future improvements will also be discussed.

  18. Electron beam dynamics in the LIU-30/250 accelerator

    International Nuclear Information System (INIS)

    Vakhrushin, Yu.P.; Kuznetsov, V.S.; Tikhomirov, A.S.

    1989-01-01

    Results of numerical simulation of coherent oscillations of electron beam in the LIU-30/250 accelerating system are presented. Transport systems both with continuous field and the discrete ones are considered. The following conclusions are made: amplitude of coherent oscillations inevitably grows in the real transport channel; the presence of correctors can lead to sufficient losses of beam pulse duration; discrete system is the optimal system for beam transport without sufficient losses. 7 refs.; 3 figs

  19. Polarized proton beams

    International Nuclear Information System (INIS)

    Roser, T.

    1995-01-01

    The acceleration of polarized proton beams in circular accelerators is complicated by the presence of numerous depolarizing spin resonances. Careful and tedious minimization of polarization loss at each of these resonances allowed acceleration of polarized proton beams up to 22 GeV. It has been the hope that Siberian Snakes, which are local spin rotators inserted into ring accelerators, would eliminate these resonances and allow acceleration of polarized beams with the same ease and efficiency that is now routine for unpolarized beams. First tests at IUCF with a full Siberian Snake showed that the spin dynamics with a Snake can be understood in detail. The author now has results of the first tests of a partial Siberian Snake at the AGS, accelerating polarized protons to an energy of about 25 GeV. These successful tests of storage and acceleration of polarized proton beams open up new possibilities such as stored polarized beams for internal target experiments and high energy polarized proton colliders

  20. Investigation of dominant loss mechanisms in low-temperature polymer electrolyte membrane fuel cells

    OpenAIRE

    Gerteisen, D.

    2010-01-01

    This thesis deals with the analysis of dominant loss mechanisms in direct methanol fuel cells (DMFC) and hydrogen fed polymer electrolyte membrane fuel cells (PEFC) by means of experimental characterization and modeling work.

  1. Recycler Electron Cooling Project: Mechanical vibrations in the Pelletron and their effect on the beam

    International Nuclear Information System (INIS)

    Kazakevich, Grigory M.; Burov, A.; Boffo, C.; Joireman, P.; Saewert, G.; Schmidt, C.W.; Shemyakin, A.; Fermilab

    2005-01-01

    The Fermilab's Recycler ring will employ an electron cooler to cool stored 8.9 GeV antiprotons [1]. The cooler is based on an electrostatic accelerator, Pelletron [2], working in an energy-recovery regime. A full-scale prototype of the cooler has been assembled and commissioned in a separate building [3]. The main goal of the experiments with the prototype was to demonstrate stable operation with a 3.5 MeV, 0.5 A DC electron beam while preserving a high beam quality in the cooling section. The quality is characterized, first of all, by a spread of electron velocities in the cooling section, which may be significantly affected by mechanical vibration of the Pelletron elements. This paper describes the results of vibration measurements in the Pelletron terminal and correlates them with the beam motion in the cooling section

  2. Propagation of Gaussian Beams through Active GRIN Materials

    International Nuclear Information System (INIS)

    Gomez-Varela, A I; Flores-Arias, M T; Bao-Varela, C; Gomez-Reino, C; De la Fuente, X

    2011-01-01

    We discussed light propagation through an active GRIN material that exhibits loss or gain. Effects of gain or loss in GRIN materials can be phenomenologically taken into account by using a complex refractive index in the wave equation. This work examines the implication of using a complex refractive index on light propagation in an active GRIN material illuminated by a non-uniform monochromatic wave described by a Gaussian beam. We analyze how a Gaussian beam is propagated through the active material in order to characterize it by the beam parameters and the transverse irradiance distribution.

  3. Measurements of beam-ion confinement during tangential beam-driven instabilities in PBX [Princeton Beta Experiment

    International Nuclear Information System (INIS)

    Heidbrink, W.W.; Kaita, R.; Takahashi, H.; Gammel, G.; Hammett, G.W.; Kaye, S.

    1987-01-01

    During tangential injection of neutral beams into low density tokamak plasmas with β > 1% in the Princeton Beta Experiment (PBX), instabilities are observed that degrade the confinement of beam ions. Neutron, charge-exchange, and diamagnetic loop measurements are examined in order to identify the mechanism or mechanisms responsible for the beam-ion transport. The data suggest a resonant interaction between the instabilities and the parallel energetic beam ions. Evidence for some nonresonant transport also exists

  4. Beam loading in high-energy storage rings

    International Nuclear Information System (INIS)

    Wilson, P.B.

    1974-06-01

    The analysis of beam loading in the RF systems of high-energy storage rings (for example, the PEP e/sup /minus//e/sup +/ ring) is complicated by the fact that the time, T/sub b/, between the passage of successive bunches is comparable to the cavity filling time, T/sub b/. In this paper, beam loading expressions are first summarized for the usual case in which T/sub b/ /much lt/ T/sub f/. The theory of phase oscillations in the heavily-beam-loaded case is considered, and the dependence of the synchrotron frequency and damping constant for the oscillations on beam current and cavity tuning is calculated. Expressions for beam loading are then derived which are valid for any value of the ratio T/sub b//T/sub f/. It is shown that, for the proposed PEP e/sup /minus//e/sup +/ ring parameters, the klystron power required is increased by about 3% over that calculated using the standard beam loading expressions. Finally, the analysis is extended to take into account the additional losses associated with the excitation of higher-order cavity modes. A rough numerical estimate is made of the loss enhancement to be expected for PEP RF system. It is concluded that this loss enhancement might be substantial unless appropriate measures are taken in the design and tuning of the accelerating structure

  5. RC Beams Strengthened with Mechanically Fastened Composites: Experimental Results and Numerical Modeling

    Directory of Open Access Journals (Sweden)

    Enzo Martinelli

    2014-03-01

    Full Text Available The use of mechanically-fastened fiber-reinforced polymer (MF-FRP systems has recently emerged as a competitive solution for the flexural strengthening of reinforced concrete (RC beams and slabs. An overview of the experimental research has proven the effectiveness and the potentiality of the MF-FRP technique which is particularly suitable for emergency repairs or when the speed of installation and immediacy of use are imperative. A finite-element (FE model has been recently developed by the authors with the aim to simulate the behavior of RC beams strengthened in bending by MF-FRP laminates; such a model has also been validated by using a wide experimental database collected from the literature. By following the previous study, the FE model and the assembled database are considered herein with the aim of better exploring the influence of some specific aspects on the structural response of MF-FRP strengthened members, such as the bearing stress-slip relationship assumed for the FRP-concrete interface, the stress-strain law considered for reinforcing steel rebars and the cracking process in RC members resulting in the well-known tension stiffening effect. The considerations drawn from this study will be useful to researchers for the calibration of criteria and design rules for strengthening RC beams through MF-FRP laminates.

  6. Beam catcher/dump

    International Nuclear Information System (INIS)

    Makdisi, Y.; Rodger, E.; Glenn, J.W.; Brown, K.

    1985-01-01

    A simple, low cost aperture limiting device with an absorber block has been developed and installed in the AGS ring at Brookhaven National Laboratory. The device intercepts injection tails, transition losses, and the inward spiraling beam of an aborted acceleration or extraction cycle. The resultant consolidation of losses at one point reduces activation of components around the ring and radiation exposure to personnel. 3 refs., 6 figs

  7. Recent DIII-D neutral beam calibration results

    International Nuclear Information System (INIS)

    Wight, J.; Hong, R.M.; Phillips, J.

    1991-10-01

    Injected DIII-D neutral beam power is estimated based on three principle quantities: the fraction of ion beam that is neutralized in the neutralizer gas cell, the beamline transmission efficiency, and the fraction of beam reionized in the drift duct. System changes in the past few years have included a new gradient grid voltage operating point, ion source arc regulation, routine deuterium operations and new neutralizer gas flow controllers. Additionally, beam diagnostics have been improved and better calibrated. To properly characterize the beams the principle quantities have been re-measured. Two diagnostics are primarily used to measure the quantities. The beamline waterflow calorimetry system measures the neutralization efficiency and the beamline transmission efficiency, and the target tile thermocouples measure the reionization loss. An additional diagnostic, the target tile pyrometer, confirmed the reionization loss measurement. Descriptions and results of these measurements will be presented. 4 refs., 5 figs., 2 tabs

  8. AC loss performance of cable-in-conduit conductor. Influence of cable mechanical property on coupling loss reduction

    International Nuclear Information System (INIS)

    Matsui, Kunihiro; Koizumi, Norikiyo; Isono, Takaaki; Hamada, Kazuya; Nunoya, Yoshihiko

    2003-01-01

    The ITER Central Solenoid (CS) model coil, CS Insert and Nb 3 Al Insert were developed and tested from 2000 to 2002. The AC loss performances of these coils were investigated in various experiments. In addition, the AC losses of the CS and Nb 3 Al Insert conductors were measured using short CS and Nb 3 Al Insert conductors before the coil tests. The coupling time constants of these conductors were estimated to be 30 and 120 ms, respectively. On the other hand, the test results of the CS and Nb 3 Al Inserts show that the coupling currents induced in these conductors had multiple decay time constants. In fact, the existence of the coupling currents with long decay time constants, the order of which was in the thousands of seconds, was directly observed with hall sensors and voltage taps. Moreover, the AC loss test results show that electromagnetic force decreases coupling losses with exponential decay constants. This is because the weak sinter among the strands, which originated during heat treatment, was broken due to the electromagnetic force, and then the contact resistance among strands increased. It was found that this exponential decay constant was the function of a gap (i.e., a mechanical property of the cable) created between the cable and conduit due to electromagnetic force. The gap can be estimated by pressure drop, measured under the electromagnetic force. The pressure drop can easily be measured at an initial trial charge, and then it is possible to estimate the exponential decay constant before normal coil operation. Accordingly, it is possible to predict promptly how many times the trial operations are necessary to decrease the coupling losses to the designed value by measuring the coupling losses and the pressure drop during the initial coil operation trial. (author)

  9. Plasma losses from a magnetic well

    International Nuclear Information System (INIS)

    Kutbi, I.I.; Valfells, A.

    1981-01-01

    The particle losses from a magnetic well having an octahedral symmetry are considered. The cusp, classical diffusion, and Bohm diffusion losses are computed. Results show that: Cusp losses can be compensated for by ion beam in the Hershkowitz equation prevails. Otherwise, the losses will have to be diminished by some other means; Classical diffusion losses are relatively small; and Bohm diffusion losses are very large, should it prevail, but that is unlikely to be the case in the configuration under consideration

  10. Reliability Analysis of the new Link between the Beam Interlock System and the LHC Beam Dumping System Zuverlässigkeitsanalyse der neuen Verbindung zwischen dem Beam Interlock System und dem LHC Beam Dumping System

    CERN Document Server

    Vatansever, Volkan

    The nominal stored energy in each LHC beam is 360 MJ, surpassing the beam energy of other accelerators by orders of magnitude. This energy threatens to damage accelerator components in case of uncontrolled beam losses To avoid damage of accelerator equipment due to impacting beam, the controlled removal of the LHC beams from the collider rings towards the dump block must be guaranteed at all times. Therefore, the LHC Beam Dumping System was built according to high reliability standards. To further reduce the risk of incapability to dump the beams in case of correlated failures in the redundant system, a new direct link from the LHC Beam Interlock System to the Re-triggering Lines of the LHC Beam Dumping System will be implemented for the startup with beam in 2015. This link represents a diverse redundancy to the current implementation, which should neither significantly increase the risk for so-called Asynchronous Beam Dumps nor compromise machine availability. Therefore, a reliability analysis down to the co...

  11. Mechanism of Selenium Loss in Copper Slag

    Science.gov (United States)

    Desai, Bhavin; Tathavadkar, Vilas; Basu, Somnath

    2018-03-01

    During smelting of copper sulfide concentrate, selenium is distributed between silica-saturated iron-silicate slag and copper-iron sulfide matte. The recovery coefficients of selenium between slag and matte were determined as a function of the initial concentration of selenium at 1523 K (1250 °C) under an inert atmosphere in a vertical tubular furnace. The initial concentration of selenium was varied by the addition of metallic selenium as well as selenium dioxide to the mixture of slag and matte. Analysis of the results indicated high affinity of selenium for matte. The apparent loss of selenium with the slag was attributed to the presence of selenium-enriched matte particles entrapped in the slag, rather than dissolved SeO2. The mechanisms proposed by previous investigators were discussed and also compared with the results of the present investigation.

  12. Mechanism of Selenium Loss in Copper Slag

    Science.gov (United States)

    Desai, Bhavin; Tathavadkar, Vilas; Basu, Somnath

    2018-06-01

    During smelting of copper sulfide concentrate, selenium is distributed between silica-saturated iron-silicate slag and copper-iron sulfide matte. The recovery coefficients of selenium between slag and matte were determined as a function of the initial concentration of selenium at 1523 K (1250 °C) under an inert atmosphere in a vertical tubular furnace. The initial concentration of selenium was varied by the addition of metallic selenium as well as selenium dioxide to the mixture of slag and matte. Analysis of the results indicated high affinity of selenium for matte. The apparent loss of selenium with the slag was attributed to the presence of selenium-enriched matte particles entrapped in the slag, rather than dissolved SeO2. The mechanisms proposed by previous investigators were discussed and also compared with the results of the present investigation.

  13. Impact of neutron irradiation on mechanical performance of FeCrAl alloy laser-beam weldments

    Science.gov (United States)

    Gussev, M. N.; Cakmak, E.; Field, K. G.

    2018-06-01

    Oxidation-resistant iron-chromium-aluminum (FeCrAl) alloys demonstrate better performance in Loss-of-Coolant Accidents, compared with austenitic- and zirconium-based alloys. However, further deployment of FeCrAl-based materials requires detailed characterization of their performance under irradiation; moreover, since welding is one of the key operations in fabrication of light water reactor fuel cladding, FeCrAl alloy weldment performance and properties also should be determined prior to and after irradiation. Here, advanced C35M alloy (Fe-13%Cr-5%Al) and variants with aluminum (+2%) or titanium carbide (+1%) additions were characterized after neutron irradiation in Oak Ridge National Laboratory's High Flux Isotope Reactor at 1.8-1.9 dpa in a temperature range of 195-559 °C. Specimen sets included as-received (AR) materials and specimens after controlled laser-beam welding. Tensile tests with digital image correlation (DIC), scanning electron microscopy-electron back scatter diffraction analysis, fractography, and x-ray tomography analysis were performed. DIC allowed for investigating local yield stress in the weldments, deformation hardening behavior, and plastic anisotropy. Both AR and welded material revealed a high degree of radiation-induced hardening for low-temperature irradiation; however, irradiation at high-temperatures (i.e., 559 °C) had little overall effect on the mechanical performance.

  14. Low energy beam transport system developments

    Energy Technology Data Exchange (ETDEWEB)

    Dudnikov, V., E-mail: vadim@muonsinc.com [Muons, Inc., Batavia, IL 60510 (United States); Han, B.; Stockli, M.; Welton, R. [ORNL, Oak Ridge, TN 37831 (United States); Dudnikova, G. [University of Maryland, College Park, MD 3261 (United States); Institute of Computational Technologies SBRAS, Novosibirsk (Russian Federation)

    2015-04-08

    For high brightness beam production it is important to preserve the brightness in the low energy beam transport system (LEBT) used to transport and match the ion beams to the next stage of acceleration, usually an RFQ. While electrostatic focusing can be problematic for high current beam transport, reliable electrostatic LEBT operation has been demonstrated with H{sup −} beams up to 60 mA. Now, however, it is commonly accepted that an optimal LEBT for high current accelerator applications consists of focusing solenoids with space charge compensation. Two-solenoid LEBTs are successfully used for high current (>100 mA) proton beam transport. Preservation of low emittances (~0.15 π mm-mrad) requires the addition of a heavy gas (Xe, Kr), which causes ~5% of proton loss in a 1 m long LEBT. Similar Xe densities would be required to preserve low emittances of H{sup −} beams, but such gas densities cause unacceptably high H{sup −} beam losses. A short LEBT with only one short solenoid, movable for RFQ matching, can be used for reduced negative ion stripping. A strong electrostatic-focusing LEBT has been successfully adopted for transport of high current H{sup −} beams in the SNS Front End. Some modifications of such electrostatic LEBTs are expected to improve the reliable transport of intense positive and negative ion beams without greatly degrading their low emittances. We concentrate on processes that determine the beam brightness degradation and on their prevention. Proposed improvements to the SNS electrostatic LEBT are discussed.

  15. Development of a two-dimensional simulation code (koad) including atomic processes for beam direct energy conversion

    International Nuclear Information System (INIS)

    Yamamoto, Y.; Yoshikawa, K.; Hattori, Y.

    1987-01-01

    A two-dimensional simulation code for the beam direct energy conversion called KVAD (Kyoto University Advanced DART) including various loss mechanisms has been developed, and shown excellent agreement with the authors' experiments using the He + beams. The beam direct energy converter (BDC) is the device to recover the kinetic energy of unneutralized ions in the neutral beam injection (NBI) system directly into electricity. The BDC is very important and essential not only to the improvements of NBI system efficiency, but also to the relaxation of high heat flux problems on the beam dump with increase of injection energies. So far no simulation code could have successfully predicted BDC experimental results. The KUAD code applies, an optimized algorithm for vector processing, the finite element method (FEM) for potential calculation, and a semi-automatic method for spatial segmentations. Since particle trajectories in the KVAD code are analytically solved, very high speed tracings of the particle could be achieved by introducing an adjacent element matrix to identify the neighboring triangle elements and electrodes. Ion space charges are also analytically calculated by the Cloud in Cell (CIC) method, as well as electron space charges. Power losses due to atomic processes can be also evaluated in the KUAD code

  16. Emittance growth and halo formation in charge-dominated beams

    Energy Technology Data Exchange (ETDEWEB)

    Bondarev, B.I.; Durkin, A.P.; Murin, B.P. [Moscow Radiotechnical Institute (Russian Federation)] [and others

    1995-10-01

    The optimization of high-current high-energy linacs against the low beam loss requirement is not straightforward or well-codified. Outlying particle losses at the 10{sup {minus}5} up to 10{sup {minus}8} level might have only a small effect on the rms properties of the beam, and thus the total beam size must be constantly kept under observation. RMS-physics has gained wide-spread acceptance as a necessary design tool, but its sufficiency is an issue for ATW/ABC accelerators.

  17. Pumping slots: impedances and power losses

    Energy Technology Data Exchange (ETDEWEB)

    Kurennoy, S [Maryland Univ., College Park, MD (United States). Dept. of Physics

    1996-08-01

    Contributions of pumping slots to the beam coupling impedances and power losses in a B-factory ring are considered. While their leading contribution is to the inductive impedance, for high-intensity machines with short bunches like e{sup +}e{sup -} B-factories the real part of the impedance and related loss factors are also important. Using an analytical approach we calculate the coupling impedances and loss factors due to slots in a ring with an arbitrary cross section of the vacuum chamber. Effects of the slot tilt on the beam impedance are also considered, and restrictions on the tilt angle are derived from limitations on the impedance increase. The power leakage through the slots is discussed briefly. The results are applied to the KEK B-factory. (author)

  18. Non-mechanical optical path switching and its application to dual beam spectroscopy including gas filter correlation radiometry

    Science.gov (United States)

    Sachse, Glen W. (Inventor); Wang, Liang-Guo (Inventor)

    1992-01-01

    A non-mechanical optical switch is developed for alternately switching a monochromatic or quasi-monochromatic light beam along two optical paths. A polarizer polarizes light into a single, e.g., vertical component which is then rapidly modulated into vertical and horizontal components by a polarization modulator. A polarization beam splitter then reflects one of these components along one path and transmits the other along the second path. In the specific application of gas filter correlation radiometry, one path is directed through a vacuum cell and one path is directed through a gas correlation cell containing a desired gas. Reflecting mirrors cause these two paths to intersect at a second polarization beam splitter which reflects one component and transmits the other to recombine them into a polarization modulated beam which can be detected by an appropriate single sensor.

  19. Beam losses from ultraperipheral nuclear collisions between ^{208}Pb^{82+} ions in the Large Hadron Collider and their alleviation

    Directory of Open Access Journals (Sweden)

    R. Bruce

    2009-07-01

    Full Text Available Electromagnetic interactions between colliding heavy ions at the Large Hadron Collider (LHC at CERN will give rise to localized beam losses that may quench superconducting magnets, apart from contributing significantly to the luminosity decay. To quantify their impact on the operation of the collider, we have used a three-step simulation approach, which consists of optical tracking, a Monte Carlo shower simulation, and a thermal network model of the heat flow inside a magnet. We present simulation results for the case of ^{208}Pb^{82+} ion operation in the LHC, with focus on the ALICE interaction region, and show that the expected heat load during nominal ^{208}Pb^{82+} operation is 40% above the quench level. This limits the maximum achievable luminosity. Furthermore, we discuss methods of monitoring the losses and possible ways to alleviate their effect.

  20. Shear design and assessment of reinforced and prestressed concrete beams based on a mechanical model

    OpenAIRE

    Marí Bernat, Antonio Ricardo; Bairán García, Jesús Miguel; Cladera Bohigas, Antoni; Oller Ibars, Eva

    2016-01-01

    Safe and economical design and assessment of reinforced (RC) and prestressed concrete (PC) beams requires the availability of accurate but simple formulations which adequately capture the structural response. In this paper, a mechanical model for the prediction of the shear-flexural strength of PC and RC members with rectangular, I, or T sections, with and without shear reinforcement, is presented. The model is based on the principles of concrete mechanics and on assumptions supported by the ...

  1. Contribution of mechanical unloading to trabecular bone loss following non-invasive knee injury in mice

    OpenAIRE

    Anderson, Matthew J.; Diko, Sindi; Baehr, Leslie M.; Baar, Keith; Bodine, Sue C.; Christiansen, Blaine A.

    2016-01-01

    Development of osteoarthritis commonly involves degeneration of epiphyseal trabecular bone. In previous studies, we observed 30–44% loss of epiphyseal trabecular bone (BV/TV) from the distal femur within one week following non-invasive knee injury in mice. Mechanical unloading (disuse) may contribute to this bone loss, however it is unclear to what extent the injured limb is unloaded following injury, and whether disuse can fully account for the observed magnitude of bone loss. In this study,...

  2. Longitudinal impedance of a step-in for a round beam at arbitrary beam energy

    Energy Technology Data Exchange (ETDEWEB)

    Al-Khateeb, A.M., E-mail: a.alkhateeb@gsi.d [FAIR-Accelerator Theory Group, GSI Darmstadt, Planckstr. 1, D-64291 Darmstadt (Germany); Boine-Frankenheim, O.; Plotnikov, A. [FAIR-Accelerator Theory Group, GSI Darmstadt, Planckstr. 1, D-64291 Darmstadt (Germany); Shim, S.Y. [FAIR Division, Magnettechnik/Kryotechnik, GSI Darmstadt, Planckstr. 1, D-64291 Darmstadt (Germany); Haenichen, L. [Technische Universitaet Darmstadt, Institut fuer Theorie elektromagnetischer Felder, TEMF, Schlossgartenstr. 8, D-64289 Darmstadt (Germany)

    2011-01-21

    Contribution of step-in geometric discontinuity to the longitudinal coupling impedance has been obtained analytically using exact field matching. We assumed a perfectly conducting beam-pipe wall of two different radii connected coaxially at z=0 so that the contribution to the longitudinal coupling impedance is purely due to the beam-pipe geometric discontinuity. We also obtained the longitudinal loss factor for a Gaussian beam as a function of beam energy and bunch length. Results have been analyzed numerically for some representative parameters close to real machine parameters. Analytical results have also been compared with numerical simulation from CST at relativistic beam energies. We found a very good agreement between theory and simulation.

  3. VIVITRON beam transport

    International Nuclear Information System (INIS)

    Nadji, A.

    1989-07-01

    The VIVITRON is a new 35 MV particle accelerator which presents a great number of innovations. One of the major problem is the beam transport in this electrostatic machine of 50 m length for ions with masses between 1 and 200. Our work consisted in the study of various experimental and theoretical aspects of the beam transport in Tandem accelerators from the ion source to the analysing magnet. Calculations of the beam optics were performed with a Strasbourg version of the computer code Transport. They allowed us to optimize the beam transport parameters of the VIVITRON elements. Special attention has been focused on the design of the charge state selector to be installed in the terminal of the new machine. Beam transmission measurements were carried out in the Strasbourg MP 10 Tandem accelerator for ions beams of masses between 1 and 127 and for terminal voltages from 9 to 15 MV. Partial and total transmissions were obtained and explanations of the beam losses were proposed in terms of the vacuum pressure and/or the optics of the beam accelerator system. The results have been extrapolated to the VIVITRON for which the best working conditions are now clearly defined [fr

  4. Flexural behavior of bonded post-tensioned concrete beams under strand corrosion

    International Nuclear Information System (INIS)

    Zhang, Xuhui; Wang, Lei; Zhang, Jianren; Ma, Yafei; Liu, Yongming

    2017-01-01

    Highlights: • Flexural behavior of bonded PT beams with strand corrosion is experimental tested. • Cracking, stiffness, ultimate strength, failure & ductility of beams are clarified. • A coefficient is proposed to measure incompatible strain between strand & concrete. - Abstract: An experimental test is performed to investigate the flexural behavior of bonded post-tensioned concrete beams under strand corrosion. Eight beams are designed and subjected to accelerated method to different corrosion levels. The initial stiffness of beams is observed by cyclic loading-unloading test during the corrosion procedure. Corrosion effects on concrete cracking, post-cracking stiffness, ultimate strength, failure mode and ductility are then clarified by the flexural test. And, a coefficient is introduced to quantify the incompatible strain between corroded strand and concrete. Results show that the prestress force loss of strand has almost the linear relation with corrosion loss. Strand corrosion affects slightly the initial stiffness of beam before flexural cracking, but degrades significantly the post-cracking stiffness of beam as the corrosion loss exceeds 27.0%. Slight corrosion of strand has little effects on beams flexural behavior. The severe corrosion, however, decreases the number of crack, changes the failure mode form the concrete crushing to strand rupture, degrades the ductility and the ultimate strength of beams, and leads to the incompatible strain between strand and concrete. In the present test, the incompatible strain decreases about 20% of the flexural strength as the corrosion loss exceeds 27.0%.

  5. Flexural behavior of bonded post-tensioned concrete beams under strand corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xuhui [College of Civil Engineering and Mechanics, Xiangtan University, 411105 Xiangtan (China); School of Civil Engineering and Architecture, Changsha University of Science & Technology, 410114 Changsha (China); Industry Key Laboratory of Traffic Infrastructure Security Risk Management (CSUST), 410114 Changsha (China); Wang, Lei, E-mail: leiwlei@hotmail.com [School of Civil Engineering and Architecture, Changsha University of Science & Technology, 410114 Changsha (China); Industry Key Laboratory of Traffic Infrastructure Security Risk Management (CSUST), 410114 Changsha (China); Zhang, Jianren; Ma, Yafei [School of Civil Engineering and Architecture, Changsha University of Science & Technology, 410114 Changsha (China); Industry Key Laboratory of Traffic Infrastructure Security Risk Management (CSUST), 410114 Changsha (China); Liu, Yongming [School for Engineering of Matter, Transport and Energy, Arizona State University, 85281 Tempe, AZ (United States)

    2017-03-15

    Highlights: • Flexural behavior of bonded PT beams with strand corrosion is experimental tested. • Cracking, stiffness, ultimate strength, failure & ductility of beams are clarified. • A coefficient is proposed to measure incompatible strain between strand & concrete. - Abstract: An experimental test is performed to investigate the flexural behavior of bonded post-tensioned concrete beams under strand corrosion. Eight beams are designed and subjected to accelerated method to different corrosion levels. The initial stiffness of beams is observed by cyclic loading-unloading test during the corrosion procedure. Corrosion effects on concrete cracking, post-cracking stiffness, ultimate strength, failure mode and ductility are then clarified by the flexural test. And, a coefficient is introduced to quantify the incompatible strain between corroded strand and concrete. Results show that the prestress force loss of strand has almost the linear relation with corrosion loss. Strand corrosion affects slightly the initial stiffness of beam before flexural cracking, but degrades significantly the post-cracking stiffness of beam as the corrosion loss exceeds 27.0%. Slight corrosion of strand has little effects on beams flexural behavior. The severe corrosion, however, decreases the number of crack, changes the failure mode form the concrete crushing to strand rupture, degrades the ductility and the ultimate strength of beams, and leads to the incompatible strain between strand and concrete. In the present test, the incompatible strain decreases about 20% of the flexural strength as the corrosion loss exceeds 27.0%.

  6. Beam diffusion measurements using collimator scans in the LHC

    CERN Document Server

    Valentino, Gianluca; Bruce, Roderik; Burkart, Florian; Previtali, Valentina; Redaelli, Stefano; Salvachua, Belen; Stancari, Giuliov; Valishev, Alexander

    2013-01-01

    The time evolution of beam losses during a collimator scan provides information on halo diffusion and population. This is an essential input for machine performance characterization and for the design of collimation systems. Beam halo measurements in the CERN Large Hadron Collider were conducted through collimator scrapings in a dedicated beam study for the first time at 4 TeV. Four scans were performed with two collimators, in the vertical plane for beam 1 and horizontally for beam 2, before and after bringing the beams into collisions. Inward and outward steps were performed. A diffusion model was used to interpret the observed loss rate evolution in response to the collimator steps. With this technique, diffusion coefficients were estimated as a function of betatron oscillation amplitude from approximately 3 to 7 standard deviations of the transverse beam distribution. A comparison of halo diffusion and core emittance growth rates is also presented.

  7. Energy loss to parasitic modes of accelerating cavities

    International Nuclear Information System (INIS)

    Sands, M.

    1974-01-01

    At the maximum stored current, each circulating beam in PEP will consist of three bunches, each about 10 cm long containing 1.5 /times/ 10 12 particles. The large electric charge carried by such a bunch (2.5 /times/ 10/sup /minus/7/ coulomb) will, because of its short length, give rise to a large transient excitation of hundreds of parasitic modes in the accelerating cavities. The energy loss of the stored beam to the cavities from this process may be comparable to the loss to synchrotron radiation, and may, therefore, require a significant increase in power from the accelerating rf system. In this note I considered three aspects of this effect. First, an attempt is made to estimate the magnitude of the energy loss of a bunch in a single passage through the accelerating cavities. Then, I consider the effects of the periodic passages of the bunches in a single stored beam. And finally, I look at the consequences of storing two counter-rotating beams. The general conclusions are that the magnitude energy loss to the parasitic modes is serious, though probably not disastrous; and that, in general, the separate stored bunches will act incoherently. 2 refs., 7 figs

  8. The Mechanics of a Cantilever Beam with an Embedded Horizontal Crack Subjected to an End Transverse Force, Part A: Modelling

    Directory of Open Access Journals (Sweden)

    Panos G. Charalambides

    2016-05-01

    Full Text Available This study addresses the mechanics of a cracked cantilever beam subjected to a transverse force applied at it’s free end. In this Part A of a two Part series of papers, emphasis is placed on the development of a four-beam model for a beam with a fully embedded horizontal sharp crack. The beam aspect ratio, crack length and crack centre location appear as general model parameters. Rotary springs are introduced at the crack tip cross sections as needed to account for the changes in the structural compliance due to the presence of the sharp crack and augmented load transfer through the near-tip transition regions. Guided by recent finite element findings reported elsewhere, the four-beam model is advanced by recognizing two key observations, (a the free surface and neutral axis curvatures of the cracked beam at the crack center location match the curvature of a healthy beam (an identical beam without a crack under the same loading conditions, (b the neutral axis rotations (slope of the cracked beam in the region between the applied load and the nearest crack tip matches the corresponding slope of the healthy beam. The above observations led to the development of close form solutions for the resultant forces (axial and shear and moment acting in the beams above and below the crack. Axial force and bending moment predictions are found to be in excellent agreement with 2D finite element results for all normalized crack depths considered. Shear force estimates dominating the beams above and below the crack as well as transition region length estimates are also obtained. The model developed in this study is then used along with 2D finite elements in conducting parametric studies aimed at both validating the model and establishing the mechanics of the cracked system under consideration. The latter studies are reported in the companion paper Part B-Results and Discussion.

  9. Applications of energy loss contrast STIM

    International Nuclear Information System (INIS)

    Bench, G.; Saint, A.; Legge, G.J.F.; Cholewa, M.

    1992-01-01

    Scanning Transmission Ion Microscopy (STIM) with energy loss contrast is a quantitative imaging technique. A focussed MeV ion microbeam is scanned over the sample and measured energy losses of residual ions at each beam location are used to provide the contrast in the image. The technique is highly efficient as almost every ion carries useful information from which quantitative data can be obtained. The high efficiency of data collection at present necessitates the use of small beam currents. Therefore small apertures can be used and fine spatial resolution can be achieved. High efficiency also makes it possible to collect large data sets for high definition imaging with a small radiation dose. Owing to the simple relationship between energy loss and areal density, STIM with energy loss contrast can provide a quantitative image that can be used to obtain areal density information on the sample. These areal density maps can be used not only to provide a high resolution image of the sample but also to normalise Particle Induced Xray Emission (PIXE) data. The small radiation dose required to form these areal density maps also allows one to use STIM with energy loss contrast to quantitatively monitor ion beam induced specimen changes caused by higher doses and dose rates used in other microanalytical techniques. STIM with energy loss contrast also provides the possibility of stereo imaging and ion microtomography. STIM has also been used in conjunction with channeling to explore transmission channeling in thin crystals. This paper will discuss these applications of STIM with energy loss contrast and look at further developments from them

  10. The comparative analysis of the different mechanisms of toroidal rotation in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Sabot, R [Association Euratom-CEA, Centre d` Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Parail, V [Kurchatov Institute, Moscow (Russian Federation)

    1994-07-01

    The toroidal plasma rotation appears as one the possible mechanism for suppression of plasma turbulence. Several mechanisms are believed to contribute to the toroidal plasma rotation. The results of numerical simulation of the toroidal rotation on JET are presented, where are taken into consideration the following effects: the neoclassical viscosity due to banana and ripple trapped particles, the anomalous viscosity due to plasma turbulence, the momentum input by NBI (neutron beam injection) and ion momentum loss near the separatrix due to prompt ion losses. The NBI appeared to be the principal source of toroidal plasma rotation. 6 refs., 2 figs.

  11. Surface Resistance Measurements and Estimate of the Beam-Induced Resistive Wall Heating of the LHC Dipole Beam Screen

    CERN Document Server

    Caspers, Friedhelm; Ruggiero, F; Tan, J

    1999-01-01

    An estimate of the resistive losses in the LHC beam screen is given from cold surface resistance measurements using the shielded pair technique, with particular emphasis on the effect of a high magnetic field. Two different copper coating methods, namely electro-deposition and co-lamination, have been evaluated. Experimental data are compared with theories including the anomalous skin effect and the magneto-resistance effect. It is shown whether the theory underestimates or not the losses depends strongly on the RRR value, on the magnetic field and on the surface characteristics. In the pessimistic case and for nominal machine parameters, the estimated beam-induced resistive wall heating can be as large as 260 mW/m for two circulating beams.

  12. Beam losses from ultra-peripheral nuclear collisions between $^{208}$Pb$^{82+}$ ions in the Large Hadron Collider and their alleviation

    CERN Document Server

    Bruce, R.; Jowett, J.M.; Bocian, D.; CERN. Geneva. BE Department

    2009-01-01

    Electromagnetic interactions between colliding heavy ions at the Large Hadron Collider (LHC) at CERN will give rise to localized beam losses that may quench superconducting magnets, apart from contributing significantly to the luminosity decay. To quantify their impact on the operation of the collider, we have used a three-step simulation approach, which consists of optical tracking, a Monte-Carlo shower simulation and a thermal network model of the heat flow inside a magnet. We present simulation results for the case of Pb ion operation in the LHC, with focus on the ALICE interaction region, and show that the expected heat load during nominal Pb operation is 40% above the quench level. This limits the maximum achievable luminosity. Furthermore, we discuss methods of monitoring the losses and possible ways to alleviate their effect.

  13. Beam-induced heating / bunch length / RF and lessons for 2012

    International Nuclear Information System (INIS)

    Metral, E.

    2012-01-01

    Beam-induced heating has been observed here and there during the 2011 run when the bunch/beam intensity was increased and/or the bunch length was reduced. These observations are first reviewed before mentioning the recent news/work performed during the shutdown. In fact, several possible sources of heating exist and only the RF heating (i.e. coming from the real part of the longitudinal impedance of the machine components) is discussed in some detail in the present paper: 1) comparing the case of a Broad-Band (BB) vs. a Narrow-Band (NB) impedance; 2) discussing the beam spectrum; 3) reminding the usual solutions to avoid/minimize the RF heating; 4) reviewing the different heat transfer mechanisms; 5) mentioning that the synchronous phase shift is a measurement of the power loss and effective impedance. The three current 'hot' topics for the LHC performance, which are the VMTSA, TDI and MKI, are then analyzed in detail and some lessons for 2012 (and after) are finally drawn

  14. Low loss depressed cladding waveguide inscribed in YAG:Nd single crystal by femtosecond laser pulses.

    Science.gov (United States)

    Okhrimchuk, Andrey; Mezentsev, Vladimir; Shestakov, Alexander; Bennion, Ian

    2012-02-13

    A depressed cladding waveguide with record low loss of 0.12 dB/cm is inscribed in YAG:Nd(0.3at.%) crystal by femtosecond laser pulses with an elliptical beam waist. The waveguide is formed by a set of parallel tracks which constitute the depressed cladding. It is a key element for compact and efficient CW waveguide laser operating at 1064 nm and pumped by a multimode laser diode. Special attention is paid to mechanical stress resulting from the inscription process. Numerical calculation of mode distribution and propagation loss with the elasto-optical effect taken into account leads to the conclusion that the depressed cladding is a dominating factor in waveguide mode formation, while the mechanical stress only slightly distorts waveguide modes.

  15. Studies of beam dynamics in relativistic klystron two-beam accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Lidia, Steven M.

    1999-11-01

    Two-beam accelerators (TBAs) based upon free-electron lasers (FELs) or relativistic klystrons (RK-TBAs) have been proposed as efficient power sources for next generation high-energy linear colliders. Studies have demonstrated the possibility of building TBAs from X-band (~8-12 GHz) through Ka band (~ 30-35 GHz) frequency regions. Provided that further prototyping shows stable beam propagation with minimal current loss and production of good quality, high-power rf fields, this technology is compatible with current schemes for electron-positron colliders in the multi-TeV center-of-mass scale. A new method of simulating the beam dynamics in accelerators of this type has been developed in this dissertation. There are three main components to this simulation. The first is a tracking algorithm to generate nonlinear transfer maps for pushing noninteracting particles through the external fields. The second component is a 3D Particle-In-Cell (PIC) algorithm that solves a set of Helmholtz equations for the self-fields, including the conducting boundary condition, and generates impulses that are interleaved with the nonlinear maps by means of a split-operation algorithm. The Helmholtz equations are solved by a multi-grid algorithm. The third component is an equivalent circuit equation solver that advances the modal rf cavity fields in time due to excitation by the modulated beam. The RTA project is described, and the simulation code is used to design the latter portions of the experiment. Detailed calculations of the beam dynamics and of the rf cavity output are presented and discussed. A beamline design is presented that will generate nearly 1.2 GW of power from 40 input, gain, and output rv cavities over a 10 m distance. The simulations show that beam current losses are acceptable, and that longitudinal and transverse focusing techniques are sufficient capable of maintaining a high degree of beam quality along the entire beamline. Additional experimental efforts are also

  16. Numerical simulations of fast ion loss measurements induced by magnetic islands in the ASDEX Upgrade tokamak

    International Nuclear Information System (INIS)

    Gobbin, M.; Marrelli, L.; Martin, P.; Fahrbach, H.U.; Garcia-Munoz, M.; Guenter, S.; White, R.B.

    2009-01-01

    A test particle approach, implemented with the Hamiltonian code ORBIT, is used to simulate measurements of fast ion losses induced by magnetic islands in the ASDEX Upgrade tokamak. In particular, the numerical simulations reproduce the toroidal localization of losses and the lost ions pitch angle and energy distribution experimentally measured with the fast ion losses detector (FILD) in the presence of a neoclassical tearing mode (NTM). The simulated NTM induced losses occurring on time scales longer than 100 μs are composed of mainly trapped or barely passing particles, consistently with the slow decay of the experimental signal from one FILD channel after the beam switch-off. The numerical simulations have been performed by taking into account the D-shaped plasma geometry, the collision mechanisms, the losses due to ripple effects and the rotation of the mode. The radial profile of the magnetic perturbation is adjusted in order to match ECE measurements. While statistical properties of FILD measurements are rather well reproduced, the simulated total amount of losses is found to be significantly affected by edge details of the magnetic perturbation as it determines the loss mechanism.

  17. Energy Loss of Coasting Gold Ions and Deuterons in RHIC

    CERN Document Server

    Abreu, N P; Brown, K; Burkhardt, H; Butler, J; Fischer, W; Harvey, M; Tepikian, S

    2008-01-01

    The total energy loss of coasting gold ion beams at two different energies and deuterons at one energy were measured at RHIC, corresponding to a gamma of 75.2, 107.4 and 108.7 respectively. We describe the experiment and observations and compare the measured total energy loss with expectations from ionization losses at the residual gas, the energy loss due to impedance and synchrotron radiation. We find that the measured energy losses are below what is expected from free space synchrotron radiation. We believe that this shows evidence for suppression of synchrotron radiation which is cut off at long wavelength by the presence of the conducting beam pipe.

  18. Earthquake responses of a beam supported by a mechanical snubber

    International Nuclear Information System (INIS)

    Ohmata, Kenichiro; Ishizu, Seiji.

    1989-01-01

    The mechanical snubber is an earthquakeproof device for piping systems under particular circumstances such as high temperature and radioactivity. It has nonlinearities in both load and frequency response. In this report, the resisting force characteristics of the snubber and earthquake responses of piping (a simply supported beam) which is supported by the snubber are simulated using Continuous System Simulation Language (CSSL). Digital simulations are carried out for various kinds of physical properties of the snubber. The restraint effect and the maximum resisting force of the snubber during earthquakes are discussed and compared with the case of an oil damper. The earthquake waves used here are E1 Centro N-S and Akita Harbour N-S (Nihonkai-Chubu earthquake). (author)

  19. TRACK The New Beam Dynamics Code

    CERN Document Server

    Mustapha, Brahim; Ostroumov, Peter; Schnirman-Lessner, Eliane

    2005-01-01

    The new ray-tracing code TRACK was developed* to fulfill the special requirements of the RIA accelerator systems. The RIA lattice includes an ECR ion source, a LEBT containing a MHB and a RFQ followed by three SC linac sections separated by two stripping stations with appropriate magnetic transport systems. No available beam dynamics code meet all the necessary requirements for an end-to-end simulation of the RIA driver linac. The latest version of TRACK was used for end-to-end simulations of the RIA driver including errors and beam loss analysis.** In addition to the standard capabilities, the code includes the following new features: i) multiple charge states ii) realistic stripper model; ii) static and dynamic errors iii) automatic steering to correct for misalignments iv) detailed beam-loss analysis; v) parallel computing to perform large scale simulations. Although primarily developed for simulations of the RIA machine, TRACK is a general beam dynamics code. Currently it is being used for the design and ...

  20. Microstructural and Mechanical Characterization of Electron Beam Welded Joints of High Strength S960QL and Weldox 1300 Steel Grades

    Directory of Open Access Journals (Sweden)

    Błacha S.

    2017-06-01

    Full Text Available The paper shows the results of metallographic examination and mechanical properties of electron beam welded joints of quenched and tempered S960QL and Weldox 1300 steel grades. The aim of this study was to examine the feasibility of producing good quality electron beam welded joints without filler material.