Sample records for batch culture growth

  1. A novel approach for estimating growth phases and parameters of bacterial population in batch culture


    Using mathematical analysis, a new method has been developed for studying the growth kinetics of bacterial populations in batch culture. First, sampling data were smoothed with the spline interpolation method. Second, the instantaneous rates were derived by numerical differential techniques and finally, the derived data were fitted with the Gaussian function to obtain growth parameters. We named this the Spline-Numerical-Gaussian or SNG method. This method yielded more accurate estimates of the growth rates of bacterial populations and new parameters. It was possible to divide the growth curve into four different but continuous phases based on changes in the instantaneous rates. The four phases are the accelerating growth phase, the constant growth phase, the decelerating growth phase and the declining phase. Total DNA content was measured by flow cytometry and varied depending on the growth phase. The SNG system provides a very powerful tool for describing the kinetics of bacterial population growth. The SNG method avoids the unrealistic assumptions generally used in the traditional growth equations.

  2. Recovery of an oscillatory mode of batch yeast growth in water for a pure culture.

    Vadasz, A S; Vadasz, P; Abashar, M E; Gupthar, A S


    New experiments that we conducted show an oscillatory mode of batch yeast growth in water, for a pure culture of the T206 strain of Saccharomyces cerevisiae. The oscillations are damped over time, allowing the cell concentration to stabilize at the stationary equilibrium. A new proposed model that includes the complete cell growth dynamics is introduced and showed to recover the experimental oscillatory results. In addition the proposed model recovers effects that are frequently encountered in experiments such as a "Lag Phase" as well as an inflection point in the "ln curve" of the cell concentration. The proposed model recovers also the Logistic Growth Curve as a special case. For purposes of providing some interesting contrast we present additional experimental as well as computational results for the growth of the VIN7 strain of S. cerevisiae in a 5% grape juice medium. The latter indicates even stronger oscillations during the growth process. In order to capture experimentally the oscillatory growth behavior, very frequent readings are required (every 15-30 min) and the measurement process needs to be extended to longer than usual periods (over 250 h). PMID:11789940

  3. Growth and toxin production of Azadinium spinosum in batch and continuous culture

    Jauffrais, Thierry; Sechet, Veronique; Herrenknecht, Christine; Tillmann, Urban; Krock, Bernd; Amzil, Zouher; Hess, Philipp


    Azaspiracids are lipophilic marine biotoxins causing gastrointestinal symptoms similar to DSP toxins. Since 1995, azaspiracids have been encountered in Europe, Africa and more recently in North and South America and Japan. The biological primary producer remained undiscovered during many years and has now been identified as Azadinium spinosum. The organism was grown using K modified medium, at 18°C with a PFD of 200 μmol.m-2.s-1 and a photoperiod of 16L/8D. Batch cultures were carried out usi...

  4. Metabolism of Aromatic Amino Acids during the Growth Cycle of Batch Suspension Cultures of Catharanthus roseus

    Nagaoka, Noriko; ASHIHARA, Hiroshi


    Profiles of the levels and metabolism of aromatic compounds in suspension-cultured cells of Catharanthus roseus during the growth cycle were determined. The level of total protein-amino acids, i.e., sum of the amounts of amino acids in hydrolyzates of proteins, and the level of total phenolic acids increased after transfer of the cells in the stationary phase to fresh Murashige-Skoog medium. The maximum levels of the proteinamino acids and those of the phenolic acids were observed on days 3-5...

  5. On the dynamics and constraints of batch culture growth of the cyanobacterium Cyanothece sp. ATCC 51142

    Sinětova, Maria A.; Červený, Jan; Zavřel, Tomáš; Nedbal, Ladislav


    Roč. 162, č. 1 (2012), s. 148-155. ISSN 0168-1656 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073 Keywords : growth limitation * photoprotection * oscillations * Nitrogen fixation * microbial communication Subject RIV: EH - Ecology, Behaviour Impact factor: 3.183, year: 2012

  6. Effect of ionophores and pH on growth of Streptococcus bovis in batch and continuous culture.

    Chow, J. M.; Russell, J B


    Batch cultures (pH 6.7) of Streptococcus bovis JB1 were severely inhibited by 1.25 and 5 microM lasalocid and monensin, respectively, even though large amounts of glucose remained in the medium. However, continuous cultures tolerated as much as 10 and 20 microM, respectively, and used virtually all of the glucose. Although continuous cultures grew with high concentrations of ionophore, the yield of bacterial protein decreased approximately 10-fold. When pH was decreased from 6.7 to 5.7, the p...

  7. Translational arrest due to cytoplasmic redox stress delays adaptation to growth on methanol and heterologous protein expression in a typical fed-batch culture of Pichia pastoris.

    Bryn Edwards-Jones

    Full Text Available We have followed a typical fed-batch induction regime for heterologous protein production under the control of the AOX1 promoter using both microarray and metabolomic analysis. The genetic constructs involved 1 and 3 copies of the TRY1 gene, encoding human trypsinogen. In small-scale laboratory cultures, expression of the 3 copy-number construct induced the unfolded protein response (UPR sufficiently that titres of extracellular trypsinogen were lower in the 3-copy construct than with the 1-copy construct. In the fed-batch-culture, a similar pattern was observed, with higher expression from the 1-copy construct, but in this case there was no significant induction of UPR with the 3-copy strain. Analysis of the microarray and metabolomic information indicates that the 3-copy strain was undergoing cytoplasmic redox stress at the point of induction with methanol. In this Crabtree-negative yeast, this redox stress appeared to delay the adaptation to growth on methanol and supressed heterologous protein production, probably due to a block in translation.Although redox imbalance as a result of artificially imposed hypoxia has previously been described, this is the first time that it has been characterised as a result of a transient metabolic imbalance and shown to involve a stress response which can lead to translational arrest. Without detailed analysis of the underlying processes it could easily have been mis-interpreted as secretion stress, transmitted through the UPR.

  8. Recombinant production of biologically active giant grouper (Epinephelus lanceolatus) growth hormone from inclusion bodies of Escherichia coli by fed-batch culture.

    Chung, Wen-Jen; Huang, Chi-Lung; Gong, Hong-Yi; Ou, Tsung-Yin; Hsu, Jue-Liang; Hu, Shao-Yang


    Growth hormone (GH) performs important roles in regulating somatic growth, reproduction, osmoregulation, metabolism and immunity in teleosts, and thus, it has attracted substantial attention in the field of aquaculture application. Herein, giant grouper GH (ggGH) cDNA was cloned into the pET28a vector and expressed in Shuffle® T7 Competent Escherichia coli. Recombinant N-terminal 6× His-tagged ggGH was produced mainly in insoluble inclusion bodies; the recombinant ggGH content reached 20% of total protein. For large-scale ggGH production, high-cell density E. coli culture was achieved via fed-batch culture with pH-stat. After 30h of cultivation, a cell concentration of 41.1g/l dry cell weight with over 95% plasmid stability was reached. Maximal ggGH production (4.0g/l; 22% total protein) was achieved via mid-log phase induction. Various centrifugal forces, buffer pHs and urea concentrations were optimized for isolation and solubilization of ggGH from inclusion bodies. Hydrophobic interactions and ionic interactions were the major forces in ggGH inclusion body formation. Complete ggGH inclusion body solubilization was obtained in PBS buffer at pH 12 containing 3M urea. Through a simple purification process including Ni-NTA affinity chromatography and refolding, 5.7mg of ggGH was obtained from 10ml of fed-batch culture (45% recovery). The sequence and secondary structure of the purified ggGH were confirmed by LC-MS/MS mass spectrometry and circular dichroism analysis. The cell proliferation-promoting activity was confirmed in HepG2, ZFL and GF-1 cells with the WST-1 colorimetric bioassay. PMID:25703054

  9. Two parametric cell cycle analyses of plant cell suspension cultures with fragile, isolated nuclei to investigate heterogeneity in growth of batch cultivations.

    Haas, Christiane; Hegner, Richard; Helbig, Karsten; Bartels, Kristin; Bley, Thomas; Weber, Jost


    Plant cell suspensions are frequently considered to be heterogeneous with respect to growth in terms of progression of the cells through the cell cycle and biomass accumulation. Thus, segregated data of fractions in different cycle phases during cultivation is needed to develop robust production processes. Bromodeoxyuridine (BrdU) incorporation and BrdU-antibodies or 5-ethynyl-2'-deoxyuridine (EdU) click-it chemistry are frequently used to acquire such information. However, their use requires centrifugation steps that cannot be readily applied to sensitive cells, particularly if nuclei have to be extracted from the protective cellular milieu and envelopes for DNA analysis. Therefore, we have established a BrdU-Hoechst stain quenching protocol for analyzing nuclei directly isolated from delicate plant cell suspension cultures. After adding BrdU to test Harpagophytum procumbens cell suspension cultures the cell cycle distribution could be adequately resolved using its incorporation for the following 72 h (after which BrdU slowed biomass accumulation). Despite this limitation, the protocol allows resolution of the cell cycle distribution of cultures that cannot be analyzed using commonly applied methods due to the cells' fragility. The presented protocol enabled analysis of cycling heterogeneities in H. procumbens batch cultivations, and thus should facilitate process control of secondary metabolite production from fragile plant in vitro cultures. Biotechnol. Bioeng. 2016;113: 1244-1250. © 2015 Wiley Periodicals, Inc. PMID:26614913

  10. Effect of physico-chemical parameters on biohydrogen production and growth characteristics by batch culture of Rhodobacter sphaeroides CIP 60.6

    In this paper, Rhodobacter sphaeroides CIP 60.6 strain was newly used for the biohydrogen production in a perfectly shaken column photobioreactor, grown in batch culture under anaerobic and illumination conditions, to investigate the effects of some physico-chemical parameters in microbial hydrogen photofermentation. Luedeking-Piret model was considered for the data fitting to find out the mode of hydrogen generation and the relationship between the cell growth and hydrogen production. The results show that, both growth cells and resting cells can produce hydrogen at light intensities greater or equal to 2500 lux, however, at the weak intensities hydrogen is a metabolite associated to growth. Growth rate and hydrogen production rate increase with the increasing of light intensity. Moreover, hydrogen production rate become higher in stationary phase than that in logarithmic phase, with the enhancement of light intensity. Maximum hydrogen production rate obtained was 39.88 ± 0.14 ml/l/h, at the optimal conditions (4500-8500 lux). Modified Gompertz equation was applied for the data fitting to verify the accuracy and the agreement of the model with experimental results. It is revealed that, in the modified Gompertz equation, the lag time represents time for which hydrogen production becomes maximal, not the beginning time of hydrogen production. The stop of stirring reduced hydrogen production rate and created unstable hydrogen production in reactor. The pH ranges of 7.5 ± 0.1 were the favorable pH for hydrogen production.

  11. In Vitro Growth of Curcuma longa L. in Response to Five Mineral Elements and Plant Density in Fed-Batch Culture Systems

    El-Hawaz, Rabia F.; Bridges, William C.; Adelberg, Jeffrey W.


    Plant density was varied with P, Ca, Mg, and KNO3 in a multifactor experiment to improve Curcuma longa L. micropropagation, biomass and microrhizome development in fed-batch liquid culture. The experiment had two paired D-optimal designs, testing sucrose fed-batch and nutrient sucrose fed-batch techniques. When sucrose became depleted, volume was restored to 5% m/v sucrose in 200 ml of modified liquid MS medium by adding sucrose solutions. Similarly, nutrient sucrose fed-batch was restored to set points with double concentration of treatments’ macronutrient and MS micronutrient solutions, along with sucrose solutions. Changes in the amounts of water and sucrose supplementations were driven by the interaction of P and KNO3 concentrations. Increasing P from 1.25 to 6.25 mM increased both multiplication and biomass. The multiplication ratio was greatest in the nutrient sucrose fed-batch technique with the highest level of P, 6 buds/vessel, and the lowest level of Ca and KNO3. The highest density (18 buds/vessel) produced the highest fresh biomass at the highest concentrations of KNO3 and P with nutrient sucrose fed-batch, and moderate Ca and Mg concentrations. However, maximal rhizome dry biomass required highest P, sucrose fed-batch, and a moderate plant density. Different media formulations and fed-batch techniques were identified to maximize the propagation and storage organ responses. A single experimental design was used to optimize these dual purposes. PMID:25830292

  12. [Kinetics model for batch culture of white rot fungus].

    Xiong, Xiao-ping; Wen, Xiang-hua; Xu, Kang-ning; Bian, Bing-hui


    In order to understand ligninolytic enzymes production process during culture of white rot fungus, accordingly to direct the design of fermentation process, a kinetics model was built for the batch culture of Phanerochaete chrysosporium. The parameters in the model were calibrated based on the experimental data from free and immobilized culture separately. The difference between each variable's values calculated based on kinetics model and experimental data is within 15%. Comparing parameters for the free and the immobilized culture, it is found that maximum biomass concentrations are both 1.78 g/L; growth rate ratio of immobilized culture (0.6683 d(-1)) is larger than that of free culture (0.5144 d(-1)); very little glucose is consumed for biomass growth in free culture while in immobilized culture much glucose is used and ammonium nitrogen is consumed at a greater rate. Ligninolytic enzymes production process is non-growth related; fungal pellets can produce MnP (231 U/L) in free culture with a production rate of 115.8 U x (g x d)(-1) before peak and 26.1 U x (g x d)(-1) after peak, thus fed-batch is a possible mode to improve MnP production and fermentation efficiency. MnP (410 U/L) and LiP (721 U/L) can be produced in immobilized culture, but MnP and LiP production rate decrease from 80.1 U x (g x d)(-1) and 248.9 U x (g x d)(-1) to 6.04 U x (g x d)(-1) and 0 U x (g x d)(-1), respectively, indicating a proper feed moment is before the enzymes peak during fed-batch culture. PMID:18613526

  13. Enhanced growth and recombinant protein production of Escherichia coli by a perfluorinated oxygen carrier in miniaturized fed-batch cultures

    Neubauer Peter


    Full Text Available Abstract Background Liquid perfluorochemicals (PFCs are interesting oxygen carriers in medicine and biotechnology with a high solubility for oxygen. They have been repeatedly used for improving oxygen transfer into prokaryotic and eukaryotic cell cultures, however their application is still limited. Here we show the great benefit of air/oxygen saturated perfluorodecalin (PFD for high cell density cultivation of Escherichia coli in microwell plates and their positive effect on the soluble production of a correctly folded heterologously expressed alcohol dehydrogenase. Results In EnBase® cultivations the best effect was seen with PFD saturated with oxygen enriched air (appr. 10 μM oxygen per ml when PFD was added at the time of induction. In contrast the effect of PFD was negligible when it was added already at the time of inoculation. Optimisation of addition time and content of loaded oxygen into the PFD resulted in an increased the cell density by 40% compared to control cultures, and correspondingly also the product yield increased, demonstrated at the example of a recombinant alcohol dehydrogenase. Conclusions PFCs are a valuable additive in miniaturized cell culture formats. For production of recombinant proteins in low cell density shaken cultures the addition of oxygen-enriched PFD makes the process more robust, i.e. a high product yield is not any more limited to a very narrow cell density window during which the induction has to be done. The positive effect of PFD was even more obvious when it was added during high cell density cultures. The effect of the PFD phase depends on the amount of oxygen which is loaded into the PFD and which thus is a matter of optimisation.


    Interpretations of chlorophyll a fluorescence data are based largely on application with green algae and higher plants. This study evaluated the interpretation of fluorescence data for a unicellular marine diatom. Chaetoceros sp. was grown in 4-liter batch cultures on a 16:8, L:D...

  15. Regulation of Autotrophic and Heterotrophic Metabolism in Pseudomonas oxalaticus OX1. Growth on Fructose and on Mixtures of Fructose and Formate in Batch and Continuous Cultures

    Dijkhuizen, L.; Harder, W.


    In Pseudomonas oxalaticus the synthesis of enzymes involved in autotrophic CO2 fixation via the Calvin cycle is regulated by repression/derepression. During growth of the organism on fructose alone, the synthesis of ribulosebisphosphate carboxylase (RuBPCase) remained fully repressed, both in batch

  16. Influence of batch or fed-batch growth on Staphylococcus epidermidis biofilm formation

    Cerca, Nuno; Pier, Gerald B.; Vilanova, Manuel; Oliveira, Rosário; Azeredo, Joana


    Aims: To make a quantitative evaluation of the differences in biofilm formation by Staphylococcus epidermidis using batch and fed-batch growth systems and to correlate this with production of the major biofilm polysaccharide, poly-N-acetyl glucosamine (PNAG). Methods and Results: Dry weight measurements of biofilms formed in batch and fed-batch conditions were compared with haemagglutination titres, which measure the amount of PNAG produced. Strains grown in batch systems devel...

  17. [Analysis of the transcriptional profiling of cell cycle regulatory networks of recombinant Chinese hamster ovary cells in batch and fed-batch cultures].

    Liu, Xingmao; Ye, Lingling; Liu, Hong; Li, Shichong; Wang, Qiwei; Wu, Benchuan; Chen, Zhaolie


    In the light of Chinese hamster ovary (CHO) cell line 11G-S expressing human recombinant pro-urokinase, the differences of gene expression levels of the cells in different growth phases in both batch and fed-batch cultures were revealed by using gene chip technology. Then, based on the known cell cycle regulatory networks, the transcriptional profiling of the cell cycle regulatory networks of the cells in batch and fed-batch cultures was analyzed by using Genmapp software. Among the approximate 19 191 target genes in gene chip, the number of down-regulated genes was more than those of up-regulated genes of the cells in both batch and fed-batch cultures. The number of down-regulated genes of the cells in the recession phase in fed-batch culture was much more than that of the cells in batch culture. Comparative transcriptional analysis of the key cell cycle regulatory genes of the cells in both culture modes indicated that the cell proliferation and cell viability of the cells in both batch and fed-batch cultures were mainly regulated through down-regulating Cdk6, Cdk2, Cdc2a, Ccne1, Ccne2 genes of CDKs, Cyclin and CKI family and up-regulating Smad4 gene. PMID:22097809

  18. Batch and Pulsed Fed-Batch Cultures of Aspergillus flavipes FP-500 Growing on Lemon Peel at Stirred Tank Reactor.

    Wolf-Márquez, V E; García-García, E; García-Rivero, M; Aguilar-Osorio, G; Martínez Trujillo, M A


    Aspergillus flavipes FP-500 grew up on submerged cultures using lemon peel as the only carbon source, developing several batch and pulsed fed-batch trials on a stirred tank reactor. The effect of carbon source concentration, reducing sugar presence and initial pH on exopectinase and endopectinase production, was analyzed on batch cultures. From this, we observed that the highest substrate concentration favored biomass (X max) but had not influence on the corresponding specific production (q p) of both pectinases; the most acid condition provoked higher endopectinase-specific productions but had not a significant effect on those corresponding to exopectinases; and reducing sugar concentrations higher than 1.5 g/L retarded pectinase production. On the other hand, by employing the pulsed fed-batch operation mode, we observed a prolonged growth phase, and an increase of about twofold on endopectinase production without a significant raise on biomass concentration. So, pulsed fed-batch seems to be a good alternative for obtaining higher endopectinase titers by using high lemon peel quantities without having mixing and repression problems to the system. The usefulness of unstructured kinetic models for explaining, under a theoretic level, the behavior of the fungus along the batch culture with regard to pectinase production was evident. PMID:26304128

  19. Batch variation between branchial cell cultures: An analysis of variance

    Hansen, Heinz Johs. Max; Grosell, M.; Kristensen, L.


    We present in detail how a statistical analysis of variance (ANOVA) is used to sort out the effect of an unexpected batch-to-batch variation between cell cultures. Two separate cultures of rainbow trout branchial cells were grown on permeable filtersupports ("inserts"). They were supposed to be...

  20. [Metabolic characteristics and kinetic model of recombinant CHO cells in serum-free suspension batch culture].

    Liu, Xingmao; Liu, Hong; Ye, Lingling; Li, Shichong; Wu, Benchuan; Wang, Haitao; Xie, Jing; Chen, Zhaolie


    By using the cell density, cell viability, Pro-UK activity, specific consumption rate of glucose (q(glc)), specific production rate of lactate (q(lac)), yield of lactate to glucose (Y(lac/glc)) and as the evaluation indexes, the growth and metabolism characteristics of pro-urokinase (Pro-UK) expressing CHO cells in serum-free suspension batch culture were examined and compared to those in serum-containing suspension batch culture. We observed hardly differences in growth and metabolism characteristics between the CHO cell populations grown in serum-free suspension batch culture and serum-containing suspension batch culture. The optimal mathematical model parameters for the CHO cells grown in suspension batch culture were obtained by non-linear programming of data representing the growth, substrate consumption and product formation of the CHO cells during logarithmic growth phase using MATLAB software, and the kinetic model of the cell growth and metabolism in serum-free culture were established. PMID:20353097

  1. The use of date waste for lactic acid production by a fed-batch culture using Lactobacillus casei subsp. rhamnosus

    Aicha Nancib; Nabil Nancib; Abdelhafid Boubendir; Joseph Boudrant


    The production of lactic acid from date juice by Lactobacillus caseisubsp. rhamnosus in batch and fed-batch cultures has been investigated. The fed-batch culture system gave better results for lactic acid production and volumetric productivity. The aim of this work is to determine the effects of the feeding rate and the concentration of the feeding medium containing date juice glucose on the cell growth, the consumption of glucose and the lactic acid production by Lactobacillus casei subsp. r...

  2. Kinetic Analyses of Desulfurization of Dibenzothiophene by Rhodococcus erythropolis in Batch and Fed-Batch Cultures

    P. Wang; Krawiec, S.


    The DbtS(sup+) phenotype (which confers the ability to oxidize selectively the sulfur atom of dibenzothiophene [DBT] or dibenzothiophene sulfone [DBTO(inf2)]) of Rhodococcus erythropolis N1-36 was quantitatively characterized in batch and fed-batch cultures. In flask cultures, production of the desulfurization product, monohydroxybiphenyl (OH-BP), was maximal at pH 6.0, while specific productivity (OH-BP cell(sup-1)) was maximal at pH 5.5. Quantitative measurements in fermentors (in both batc...

  3. Xylitol production by Candida parapsilosis under fed-batch culture

    Furlan Sandra A.; Castro Heizir F. de


    Xylitol production by Candida parapsilosis was investigated under fed-batch cultivation, using single (xylose) or mixed (xylose and glucose) sugars as substrates. The presence of glucose in the medium induced the production of ethanol as secondary metabolite and improved specific rates of growth, xylitol formation and substrate consumption. Fractionated supply of the feed medium at constant sugar concentration did not promote any increase on the productivity compared to the single batch culti...

  4. Stochastic growth logistic model with aftereffect for batch fermentation process

    Rosli, Norhayati; Ayoubi, Tawfiqullah [Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Pahang (Malaysia); Bahar, Arifah; Rahman, Haliza Abdul [Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Salleh, Madihah Md [Department of Biotechnology Industry, Faculty of Biosciences and Bioengineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia)


    In this paper, the stochastic growth logistic model with aftereffect for the cell growth of C. acetobutylicum P262 and Luedeking-Piret equations for solvent production in batch fermentation system is introduced. The parameters values of the mathematical models are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic models numerically. The effciency of mathematical models is measured by comparing the simulated result and the experimental data of the microbial growth and solvent production in batch system. Low values of Root Mean-Square Error (RMSE) of stochastic models with aftereffect indicate good fits.

  5. Stochastic growth logistic model with aftereffect for batch fermentation process

    In this paper, the stochastic growth logistic model with aftereffect for the cell growth of C. acetobutylicum P262 and Luedeking-Piret equations for solvent production in batch fermentation system is introduced. The parameters values of the mathematical models are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic models numerically. The effciency of mathematical models is measured by comparing the simulated result and the experimental data of the microbial growth and solvent production in batch system. Low values of Root Mean-Square Error (RMSE) of stochastic models with aftereffect indicate good fits

  6. Modelling of Escherichia coli Cultivations: Acetate Inhibition in a Fed-batch Culture

    Stoyan Tzonkov; Olympia Roeva


    A set of three competing, unstructured models has been proposed to model biomass growth, glucose utilization, acetate formation, dissolved oxygen consumption and carbon dioxide accumulation of a fed-batch cultivation process of Escherichia coli. The inhibiting effect of acetate on growth of E. coli cultures is included in the considered models. The model identification is carried out using experimental data from the cultivation process. Genetic algorithms are used for parameter estimation. Th...

  7. Biodegradation of phenanthrene in an anaerobic batch reactor: growth kinetics

    H.S. Nasrollahzadeh


    Full Text Available The purpose of the present research was to demonstrate the ability of mixed consortia of microorganisms to degrade high concentrations of phenanthrene (PHE as the sole carbon source. Batch experiments were carried out by the induction of mineral salt medium containing PHE to the seed culture and monitoring PHE biodegradation. The microbial propagation was conducted using PHE concentrations in the range of 20 to 100 mg/l. The microbial growth on PHE was defined based on Monod and modified Logistic rate models. The kinetic studies revealed that maximum specific growth rates (μm for PHE concentrations of 20, 50 and 100 mg/l were 0.12, 0.23 and 0.035 h-1, respectively. The doubling times for microbial population in PHE concentrations of 20, 50 and 100 mg/l were 13, 15 and 17.5 h, respectively. Also, maximum cell dry weight (xm of 54.23 mg/l was achieved, while the inhibition coefficient was 0.023 h-1. It was observed that the experimental data were well represented by the proposed models. It was also found that the biodegradation of PHE was successfully performed by the isolated strains.

  8. Oxygen availability strongly affects chronological lifespan and thermotolerance in batch cultures of Saccharomyces cerevisiae

    Markus M.M. Bisschops


    Full Text Available Stationary-phase (SP batch cultures of Saccharomyces cerevisiae, in which growth has been arrested by carbon-source depletion, are widely applied to study chronological lifespan, quiescence and SP-associated robustness. Based on this type of experiments, typically performed under aerobic conditions, several roles of oxygen in aging have been proposed. However, SP in anaerobic yeast cultures has not been investigated in detail. Here, we use the unique capability of S. cerevisiae to grow in the complete absence of oxygen to directly compare SP in aerobic and anaerobic bioreactor cultures. This comparison revealed strong positive effects of oxygen availability on adenylate energy charge, longevity and thermotolerance during SP. A low thermotolerance of anaerobic batch cultures was already evident during the exponential growth phase and, in contrast to the situation in aerobic cultures, was not substantially increased during transition into SP. A combination of physiological and transcriptome analysis showed that the slow post-diauxic growth phase on ethanol, which precedes SP in aerobic, but not in anaerobic cultures, endowed cells with the time and resources needed for inducing longevity and thermotolerance. When combined with literature data on acquisition of longevity and thermotolerance in retentostat cultures, the present study indicates that the fast transition from glucose excess to SP in anaerobic cultures precludes acquisition of longevity and thermotolerance. Moreover, this study demonstrates the importance of a preceding, calorie-restricted conditioning phase in the acquisition of longevity and stress tolerance in SP yeast cultures, irrespective of oxygen availability.


    Photosystem II reaction centers per cell decreased as the cultures began to decline. The degree of inactivation increased daily as the cell numbers continued to decrease. The concentration of chlorophyll a per cell and the ratio of the major accessory pigments to chlorophyll a (e...

  10. Cultural heritage and growth

    Faria, João Ricardo; León-Ledesma, Miguel,


    In an attempt to measure the impact of cultural heritage on growth, this paper matches the definition of culture as a stock with the cultural heritage list provided by UNESCO, as it is a variable that changes at a very low pace. We test the hypothesis on whether the existence of a strong cultural heritage, that is, where culture has had a large impact on people's life, leads to higher growth. We find evidence that the impact of cultural heritage on growth is positive and it is smaller for cou...

  11. Modeling of Fusarium redolens Dzf2 mycelial growth kinetics and optimal fed-batch fermentation for beauvericin production.

    Xu, Li-Jian; Liu, Yuan-Shuai; Zhou, Li-Gang; Wu, Jian-Yong


    Beauvericin (BEA) is a cyclic hexadepsipeptide mycotoxin with notable phytotoxic and insecticidal activities. Fusarium redolens Dzf2 is a highly BEA-producing fungus isolated from a medicinal plant. The aim of the current study was to develop a simple and valid kinetic model for F. redolens Dzf2 mycelial growth and the optimal fed-batch operation for efficient BEA production. A modified Monod model with substrate (glucose) and product (BEA) inhibition was constructed based on the culture characteristics of F. redolens Dzf2 mycelia in a liquid medium. Model parameters were derived by simulation of the experimental data from batch culture. The model fitted closely with the experimental data over 20-50 g l(-1) glucose concentration range in batch fermentation. The kinetic model together with the stoichiometric relationships for biomass, substrate and product was applied to predict the optimal feeding scheme for fed-batch fermentation, leading to 54% higher BEA yield (299 mg l(-1)) than in the batch culture (194 mg l(-1)). The modified Monod model incorporating substrate and product inhibition was proven adequate for describing the growth kinetics of F. redolens Dzf2 mycelial culture at suitable but not excessive initial glucose levels in batch and fed-batch cultures. PMID:21082211

  12. Xylitol production by Candida parapsilosis under fed-batch culture

    Sandra A. Furlan


    Full Text Available Xylitol production by Candida parapsilosis was investigated under fed-batch cultivation, using single (xylose or mixed (xylose and glucose sugars as substrates. The presence of glucose in the medium induced the production of ethanol as secondary metabolite and improved specific rates of growth, xylitol formation and substrate consumption. Fractionated supply of the feed medium at constant sugar concentration did not promote any increase on the productivity compared to the single batch cultivation.A produção de xylitol por Candida parapsilosis foi investigada em regime de batelada alimentada, usando substratos açucarados de composição simples (xilose ou composta (xilose e glicose. A presença de glicose no meio induziu a formação de etanol como metabólito secundário. A suplementação fracionada do meio de alimentação numa concentração fixa de açúcar não resultou em aumento da produtividade em relação àquela alcançada em batelada simples.


    Leonard D. Holmes; Inman III, Floyd L.; Sivanadane Mandjiny; Rinu Kooliyottil; Devang Upadhyay


    The present study deals with the batch and fed-batch mass production of Steinernema carpocapsae. S. carpocapsae is an entomoparasitic nematode that is used as a biological control agent of soil-borne crop insect pests. The ability and efficiency of fed-batch culture process was successful through the utilization of the nematode’s bacterial symbiont Xenorhabdus nematophila. Results from the fed-batch process were compared to those obtain from the standard batch process. The fed-batch process s...

  14. Algae for controlled ecological life support system diet characterization of cyanobacteria 'spirulina' in batch cultures

    Tadros, M. G.


    Spirulina sp. is a bioregenerative photosynthetic and edible alga for space craft crews in a Closed Ecological Life Support System (CLESS). It was characterized for growth rate and biomass yield in batch cultures, under various environmental conditions. The cell characteristics were identified for one strain of Spirulina: S. maxima. Fast growth rate and high yield were obtained. The partitioning of the assimulatory products (proteins, carbohydrates, lipids) were manipulated by varying the environmental conditions. Experiments with Spirulina demonstrated that under stress conditions carbohydrate increased at the expense of protein. In other experiments, where the growth media were sufficient in nutrients and incubated under optimum growth conditions, the total proteins were increased up to almost 70 percent of the organic weight. In other words, the nutritional quality of the alga could be manipulated by growth conditions. These results support the feasibility of considering Spirulina as a subsystem in CELSS because of the ease with which its nutrient content can be manipulated.

  15. Growth physiology and dimorphism of Mucor circinelloides (syn. racemosus) during submerged batch cultivation

    Mcintyre, Mhairi; Breum, J.; Arnau, J.; Nielsen, Jens


    each form have been defined. Pure cultures of the multi-polar budding yeast form could be obtained under anaerobic conditions (with 70% N-2/30% CO2 or 100% N-2 as the sparge gas and without aeration). The highest maximum specific growth rate (0.30 h(-1)) was obtained in anaerobic cultivation; the yield...... filamentous fungi under similar growth conditions. High levels of ethanol were observed with all growth conditions. The overriding effector of morphological development was found to be oxygen. In batch cultures it was therefore possible to induce the dimorphic shift by controlling the influent gas atmosphere....... A specific growth rate of 0.19 h(-1) was maintained during the shift from the yeast to the filamentous form....

  16. Amino acid and glucose metabolism in fed-batch CHO cell culture affects antibody production and glycosylation

    Fan, Yuzhou; Jimenez Del Val, Ioscani; Müller, Christian;


    Fed-batch Chinese hamster ovary (CHO) cell culture is the most commonly used process for IgG production in the biopharmaceutical industry. Amino acid and glucose consumption, cell growth, metabolism, antibody titer, and N-glycosylation patterns are always the major concerns during upstream proces...


    Leonard D. Holmes


    Full Text Available The present study deals with the batch and fed-batch mass production of Steinernema carpocapsae. S. carpocapsae is an entomoparasitic nematode that is used as a biological control agent of soil-borne crop insect pests. The ability and efficiency of fed-batch culture process was successful through the utilization of the nematode’s bacterial symbiont Xenorhabdus nematophila. Results from the fed-batch process were compared to those obtain from the standard batch process. The fed-batch process successively improved the mass production process of S. carpocapsae employing liquid medium technology. Within the first week of the fed-batch process (day six, the nematode density obtained was 202,000 nematodes mL−1; whereas on day six, batch culture mode resulted in a nematode density of 23,000 nematodes mL−1. The fed-batch process was superior to that of batch production with a yield approximately 8.8-fold higher. In fed-batch process, the nematode yield was improved 88.6 % higher within a short amount of time compared to the batch process. Fed-batch seems to make the process more efficient and possibly economically viable.

  18. Efficient flotation of yeast cells grown in batch culture.

    Palmieri, M C; Greenhalf, W; Laluce, C


    A fast flotation assay was used to select new floating yeast strains. The flotation ability did not seem to be directly correlated to total extracellular protein concentration of the culture. However, the hydrophobicity of the cell was definitely correlated to the flotation capacity. The Saccharomyces strains (FLT strains) were highly hydrophobic and showed an excellent flotation performance in batch cultures without additives (flotation agents) and with no need for a special flotation chamber or flotation column. A stable and well-organized structure was evident in the dried foam as shown by scanning electron microscopy which revealed its unique structure showing mummified cells (dehydrated) attached to each other. The attachment among the cells and the high protein concentration of the foams indicated that proteins might be involved in the foam formation. The floating strains (strains FLT) which were not flocculent and showed no tendency to aggregate, were capable of growing and producing ethanol in a synthetic medium containing high glucose concentration as a carbon source. The phenomenon responsible for flotation seems to be quite different from the flocculation phenomenon. PMID:18626952

  19. Lipid production in batch and fed-batch cultures of Rhodosporidium toruloides from 5 and 6 carbon carbohydrates

    Wiebe Marilyn G


    Full Text Available Abstract Background Microbial lipids are a potential source of bio- or renewable diesel and the red yeast Rhodosporidium toruloides is interesting not only because it can accumulate over 50% of its dry biomass as lipid, but also because it utilises both five and six carbon carbohydrates, which are present in plant biomass hydrolysates. Methods R. toruloides was grown in batch and fed-batch cultures in 0.5 L bioreactors at pH 4 in chemically defined, nitrogen restricted (C/N 40 to 100 media containing glucose, xylose, arabinose, or all three carbohydrates as carbon source. Lipid was extracted from the biomass using chloroform-methanol, measured gravimetrically and analysed by GC. Results Lipid production was most efficient with glucose (up to 25 g lipid L−1, 48 to 75% lipid in the biomass, at up to 0.21 g lipid L−1 h−1 as the sole carbon source, but high lipid concentrations were also produced from xylose (36 to 45% lipid in biomass. Lipid production was low (15–19% lipid in biomass with arabinose as sole carbon source and was lower than expected (30% lipid in biomass when glucose, xylose and arabinose were provided simultaneously. The presence of arabinose and/or xylose in the medium increased the proportion of palmitic and linoleic acid and reduced the proportion of oleic acid in the fatty acids, compared to glucose-grown cells. High cell densities were obtained in both batch (37 g L−1, with 49% lipid in the biomass and fed-batch (35 to 47 g L−1, with 50 to 75% lipid in the biomass cultures. The highest proportion of lipid in the biomass was observed in cultures given nitrogen during the batch phase but none with the feed. However, carbohydrate consumption was incomplete when the feed did not contain nitrogen and the highest total lipid and best substrate consumption were observed in cultures which received a constant low nitrogen supply. Conclusions Lipid production in R. toruloides was lower from arabinose and mixed

  20. Macroscopic modelling of bioethanol production from potato peel wastes in batch cultures supplemented with inorganic nitrogen.

    Richelle, A; Ben Tahar, I; Hassouna, M; Bogaerts, Ph


    Inorganic nitrogen supplementation is commonly used to boost fermentation metabolism in yeast cultures. However, an excessive addition can induce an opposite effect. Hence, it is important to ensure that the ammonia supplemented to the culture leads to an improvement of the ethanol production while avoiding undesirable inhibition effects. To this end, a macroscopic model describing the influence of ammonia addition on Saccharomyces cerevisiae metabolism during bioethanol production from potato peel wastes has been developed. The model parameters are obtained by a simplified identification methodology in five steps. It is validated with experimental data and successfully predicts the dynamics of growth, substrate consumption (ammonia and fermentable sugar sources) and bioethanol production, even in cross validation. The model is used to determine the optimal quantity of supplemented ammonia required for maximizing bioethanol production from potato peel wastes in batch cultures. PMID:26059818

  1. Modelling of Escherichia coli Cultivations: Acetate Inhibition in a Fed-batch Culture

    Stoyan Tzonkov


    Full Text Available A set of three competing, unstructured models has been proposed to model biomass growth, glucose utilization, acetate formation, dissolved oxygen consumption and carbon dioxide accumulation of a fed-batch cultivation process of Escherichia coli. The inhibiting effect of acetate on growth of E. coli cultures is included in the considered models. The model identification is carried out using experimental data from the cultivation process. Genetic algorithms are used for parameter estimation. The model discrimination is based on the four criteria, namely sum of square errors, Fisher criterion, Akaike information criterion and minimum description length criterion. The most suitable model is identified that reflects the state variables curves adequately by considering acetate inhibited growth according to the Jerusalimsky approach.

  2. Production of beta-glucosidase using immobilised Piromyces sp. KSX1 and Orpinomyces sp. 478P1 in repeat-batch culture.

    McCabe, Bernadette K; Kuek, Clem; Gordon, Geoffrey L R; Phillips, Michael W


    Two anaerobic fungi, one a monocentric strain ( Piromyces sp. KSX1) and the other a polycentric strain ( Orpinomyces sp. 478P1), were immobilised in calcium alginate beads and cultured in sequential batches where spent medium (containing 0.25% cellobiose) was repeatedly drained and replaced. beta-Glucosidase production with KSX1 was maintained for 45 days over six repeated batch cultures yielding a maximum level of 107 mIU/ml. For 478P1, beta-glucosidase production was maintained for 30 days over four repeated batches yielding a maximum level of 34 mIU/ml. Although repeat-batch cultures of KSX1 produced more beta-glucosidase than strain 478P1, the maximum specific beta-glucosidase produced from these immobilised cultures was similar. The immobilised polycentric strain proved to be operationally superior to strain KSX1, as strain 478P1 did not produce any growth in the culture liquor. PMID:12687490

  3. Substrate inhibition kinetics of Saccharomyces cerevisiae in fed-batch cultures operated at constant glucose and maltose concentration levels.

    Papagianni, M; Boonpooh, Y; Mattey, M; Kristiansen, B


    Fed-batch culture is the mode of operation of choice in industrial baker's yeast fermentation. The particular mode of culture, operated at stable glucose and maltose concentration levels, was employed in this work in order to estimate important kinetic parameters in a process mostly described in the literature as batch or continuous culture. This way, the effects of a continuously falling sugar level during a batch process were avoided and therefore the effects of various (stable) sugar levels on growth kinetics were evaluated. Comparing the kinetics of growth and the inhibition by the substrate in cultures grown on glucose, which is the preferential sugar source for Saccharomyces cerevisiae, and maltose, the most common sugar source in industrial media for baker's yeast production, a milder inhibition effect by the substrate in maltose-grown cells was observed, as well as a higher yield coefficient. The observed sugar inhibition effect in glucostat cultures was taken into account in modeling substrate inhibition kinetics. The inhibition coefficient Ki increased with increasing sugar concentration levels, but it appeared to be unaffected by the type of substrate and almost equal for both substrates at elevated concentration levels. PMID:17211636

  4. Time-dependent radiation characteristics of Nannochloropsis oculata during batch culture

    This paper reports the temporal evolution of the scattering and absorbing cross-sections of marine eustigmatophycease Nannochloropsis oculata grown in a flat-plate photobioreactor (PBR). The PBR was operated in batch mode under constant irradiance of 7500 or 10,000 lux provided by red LEDs emitting at 630 nm. The radiation characteristics between 400 and 750 nm and pigment concentrations of N. oculata were measured systematically every 24 h for up to 18 days. They were found to vary significantly with time in response to changes in light and nutrients availability. The results were interpreted in terms of up- and down-regulations of pigments and other intracellular components. Finally, this study demonstrates that the light transfer in the PBR could be predicted using constant radiation characteristics measured during the exponential growth phase with reasonable accuracy provided that the cultures were not nitrogen limited. During nitrogen starvation, pigment concentrations decreased and radiation characteristics evolved rapidly. These results will be useful in the design and operation of PBRs for biofuel production at both small and large scales. - Highlights: • N. oculata cultures were grown in batch mode under two different irradiances. • Temporal evolution of their absorption and scattering cross-sections was reported. • The effects of photoacclimation and nitrogen starvation were quantified. • Results were interpreted in terms of regulation of cell constituents

  5. Investigating Nitrosomonas europaea stress biomarkers in batch, continuous culture, and biofilm reactors.

    Radniecki, Tyler S; Lauchnor, Ellen G


    The understanding of nitrification inhibition in ammonia oxidizing bacteria (AOB) by priority pollutants and emerging contaminants is critical in managing the nitrogen cycle to preserve current water supplies, one of the National Academy of Engineers Grand Challenges in Engineering for the twenty-first century. Nitrosomonas europaea is an excellent model AOB for nitrification inhibition experimentation due to its well-defined NH(3) metabolism and the availability of a wide range of physiological and transcriptional tools that can characterize the mechanism of nitrification inhibition and probe N. europaea's response to the inhibitor. This chapter is a compilation of the physiological and transcriptional methods that have been used to characterize nitrification inhibition of N. europaea under a wide variety of growth conditions including batch, continuously cultured, and in biofilms. The protocols presented here can be applied to other AOB, and may be readily adapted for other autotrophic bacteria (e.g., nitrite oxidizing bacteria). PMID:21514466

  6. Developing strategies to increase plasmid DNA production in Escherichia coli DH5α using batch culture.

    Islas-Lugo, Fabiola; Vega-Estrada, Jesús; Alvis, Christian Ariel; Ortega-López, Jaime; Del Carmen Montes-Horcasitas, María


    Plasmid DNA (pDNA) production has recently increased as a result of advances in DNA vaccines. The practical development of pDNA vaccines requires high yield and productivity of supercoiled plasmid DNA (sc-pDNA). The yield and productivity are influenced by the host strain, the plasmid, the production process, and especially by growth conditions, such as the culture type and medium. We evaluated different strategies to increase pDNA production by Escherichia coli DH5α in batch culture. The strategies were driven by the development of a four single-factor experimental design and were based on the change of culture media composition in terms of carbon and nitrogen and the modification of the pH control by using NaOH or NH4OH. The results revealed the carbon (50g/L of glycerol) and nitrogen (8.34g/L of YESP) concentration in the culture medium and starting pH control with NH4OH when most of the organic nitrogen was consumed. Under these conditions, we obtained a volumetric yield of 213mg pDNA/L, a specific yield of 10mg pDNA/g DCW (dry cell weight), 92% of sc-pDNA and a productivity of 17.6mg pDNA/(Lh). The pDNA productivities reached were 42% higher than the productivities reported by other authors applying similar conditions. PMID:27374404

  7. Comparison of growth, acetate production, and acetate inhibition of Escherichia coli strains in batch and fed-batch fermentations.

    Luli, G W; Strohl, W R


    The growth characteristics and acetate production of several Escherichia coli strains were compared by using shake flasks, batch fermentations, and glucose-feedback-controlled fed-batch fermentations to assess the potential of each strain to grow at high cell densities. Of the E. coli strains tested, including JM105, B, W3110, W3100, HB101, DH1, CSH50, MC1060, JRG1046, and JRG1061, strains JM105 and B were found to have the greatest relative biomass accumulation, strain MC1060 accumulated the highest concentrations of acetic acid, and strain B had the highest growth rates under the conditions tested. In glucose-feedback-controlled fed-batch fermentations, strains B and JM105 produced only 2 g of acetate.liter-1 while accumulating up to 30 g of biomass.liter-1. Under identical conditions, strains HB101 and MC1060 accumulated less than 10 g of biomass.liter-1 and strain MC1060 produced 8 g of acetate.liter-1. The addition of various concentrations of sodium acetate to the growth medium resulted in a logarithmic decrease, with respect to acetate concentration, in the growth rates of E. coli JM105, JM105(pOS4201), and JRG1061. These data indicated that the growth of the E. coli strains was likely to be inhibited by the acetate they produced when grown on media containing glucose. A model for the inhibition of growth of E. coli by acetate was derived from these experiments to explain the inhibition of acetate on E. coli strains at neutral pH. PMID:2187400

  8. Characterization of algal and microbial community growth in a wastewater treating batch photo-bioreactor inoculated with lake water

    Krustok, Ivo; Odlare, Monica; M.A., Shabiimam; Truu, Jaak; Truu, Marika; Ligi, Teele; Nehrenheim, Emma


    Microalgae grown in photo-bioreactors can be a valuable source of biomass, especially when combined with wastewater treatment. While most published research has studied pure cultures, the consortia of algae and bacteria from wastewater have more complex community dynamics which affect both the biomass production and pollutant removal. In this paper we investigate the dynamics of algal and bacterial growth in wastewater treating batch photo-bioreactors. The photo-bioreactors were inoculated wi...

  9. Influence of Carbon Source on Nitrate Removal by Nitrate-Tolerant Klebsiella oxytoca CECT 4460 in Batch and Chemostat Cultures

    Piñar, Guadalupe; Kovárová, Karin; Egli, Thomas; Ramos, Juan L.


    The nitrate-tolerant organism Klebsiella oxytoca CECT 4460 tolerates nitrate at concentrations up to 1 M and is used to treat wastewater with high nitrate loads in industrial wastewater treatment plants. We studied the influence of the C source (glycerol or sucrose or both) on the growth rate and the efficiency of nitrate removal under laboratory conditions. With sucrose as the sole C source the maximum specific growth rate was 0.3 h−1, whereas with glycerol it was 0.45 h−1. In batch cultures...


    A. C. L. Horta


    Full Text Available Abstract The performance of an in-situ capacitance sensor for on-line monitoring of biomass concentration was evaluated for some of the most important microorganisms in the biotechnology industry: Escherichia coli, Saccharomyces cerevisiae, Pichia pastoris and Bacillus megaterium. A total of 33 batch and fed-batch cultures were carried out in a bench-scale bioreactor and biomass formation trends were followed by dielectric measurements during the growth phase as well as the induction phase, for 5 recombinant E. coli strains. Permittivity measurements and viable cellular concentrations presented a linear correlation for all the studied conditions. In addition, the permittivity signal was further used for inference of the cellular growth rate. The estimated specific growth rates mirrored the main trends of the metabolic states of the different cells and they can be further used for setting-up control strategies in fed-batch cultures.

  11. Cultural Globalization and Economic Growth

    Nuno Carlos Leitão


    This article investigates the relationship between cultural globalization and economic growth for the Portuguese experience for the period 1995-2011. In this research we apply a static and dynamic panel data. The initial GDP per capita is negatively correlated with economic growth. This result is according to theoretical and empirical studies. This paper shows that international trade and cultural globalization promote the economic growth. As we expected the inflation has a negative impact o...

  12. Acquisition of data from on-line laser turbidimeter and calculation of some kinetic variables in computer-coupled automated fed-batch culture

    Output signals of a commercially available on-line laser turbidimeter exhibit fluctuations due to air and/or CO2 bubbles. A simple data processing algorithm and a personal computer software have been developed to smooth the noisy turbidity data acquired, and to utilize them for the on-line calculations of some kinetic variables involved in batch and fed-batch cultures of uniformly dispersed microorganisms. With this software, about 103 instantaneous turbidity data acquired over 55 s are averaged and convert it to dry cell concentration, X, every minute. Also, volume of the culture broth, V, is estimated from the averaged output data of weight loss of feed solution reservoir, W, using an electronic balance on which the reservoir is placed. Then, the computer software is used to perform linear regression analyses over the past 30 min of the total biomass, VX, the natural logarithm of the total biomass, ln(VX), and the weight loss, W, in order to calculate volumetric growth rate, d(VX)/dt, specific growth rate, μ [ = dln(VX)/dt] and the rate of W, dW/dt, every minute in a fed-batch culture. The software used to perform the first-order regression analyses of VX, ln(VX) and W was applied to batch or fed-batch cultures of Escherichia coli on minimum synthetic or natural complex media. Sample determination coefficients of the three different variables (VX, ln(VX) and W) were close to unity, indicating that the calculations are accurate. Furthermore, growth yield, Yx/s, and specific substrate consumption rate, qsc, were approximately estimated from the data, dW/dt and in a ‘balanced’ fed-batch culture of E. coli on the minimum synthetic medium where the computer-aided substrate-feeding system automatically matches well with the cell growth. (author)

  13. Influence of carbon source on nitrate removal by nitrate-tolerant Klebsiella oxytoca CECT 4460 in batch and chemostat cultures

    Pinar, G.; Ramos, J.L. [Consejo Superior de Investigaciones Cientificas, Granada (Spain); Kovarova, K.; Egli, T. [Swiss Federal Inst. for Environmental Science and Technology, Duebendorf (Switzerland). Dept. of Microbiology


    The nitrate-tolerant organism Klebsiella oxytoca CECT-4460 tolerates nitrate at concentrations up to 1 M and is used to treat wastewater with high nitrate loads in industrial wastewater treatment plants. The authors studied the influence of the C source (glycerol or sucrose or both) on the growth rate and the efficiency of nitrate removal under laboratory conditions. With sucrose as the sole C source the maximum specific growth rate was 0.3 h{sup {minus}1}, whereas with glycerol it was 0.45 h{sup {minus}1}. In batch cultures K. oxytoca cells grown on sucrose or glycerol were able to immediately use sucrose as a sole C source, suggesting that sucrose uptake and metabolism were constitutive. In contrast, glycerol uptake occurred preferentially in glycerol-grown cells. Independent of the preculture conditions, when sucrose and glycerol were added simultaneously to batch cultures, the sucrose was used first, and once the supply of sucrose was exhausted, the glycerol was consumed. Utilization of nitrate as an N source occurred without nitrite of ammonium accumulation when glycerol was used, but nitrite accumulated when sucrose was used. In chemostat cultures K. oxytoca CECT 4460 efficiently removed nitrate without accumulation of nitrite or ammonium when sucrose, glycerol, or mixtures of these two C sources were used. The growth yields and the efficiencies of C and N utilization were determined at different growth rates in chemostat cultures. Regardless of the C source, yield carbon (Y{sub C}) ranged between 1.3 and 1.0 g (dry weight) per g of sucrose C or glycerol C consumed. Regardless of the specific growth rate and the C source, yield nitrogen (Y{sub N}) ranged from 17.2 to 12.5 g (dry weight) per g of nitrate N consumed.

  14. Effects of herbs and essential oils on in vitro batch culture ruminal fermentation

    Medicinal herbs and essential oils were evaluated in a batch culture in vitro screening experiment as potential anti-methanogenic additives for ruminant diets. A total of 88 essential oils and 14 herbs were tested. Rumen inoculum enriched with particle-associated microorganisms was collected from ...

  15. Modelling and pathway identification involving the transport mechanism of a complex metabolic system in batch culture

    Yuan, Jinlong; Zhang, Xu; Zhu, Xi; Feng, Enmin; Yin, Hongchao; Xiu, Zhilong


    The bio-dissimilation of glycerol to 1,3-propanediol (1,3-PD) by Klebsiella pneumoniae (K. pneumoniae) can be characterized by a complex metabolic system of interactions among biochemical fluxes, metabolic compounds, key enzymes and genetic regulation. In this paper, in consideration of the fact that the transport ways of 1,3-PD and glycerol with different weights across cell membrane are still unclear in batch culture, we consider 121 possible metabolic pathways and establish a novel mathematical model which is represented by a complex metabolic system. Taking into account the difficulty in accurately measuring the concentration of intracellular substances and the absence of equilibrium point for the metabolic system of batch culture, the novel approach used here is to define quantitatively biological robustness of the intracellular substance concentrations for the overall process of batch culture. To determine the most possible metabolic pathway, we take the defined biological robustness as cost function and establish an identification model, in which 1452 system parameters and 484 pathway parameters are involved. Simultaneously, the identification model is subject to the metabolic system, continuous state constraints and parameter constraints. As such, solving the identification model by a serial program is a very complicated task. We propose a parallel migration particle swarm optimization algorithm (MPSO) capable of solving the identification model in conjunction with the constraint transcription and smoothing approximation techniques. Numerical results show that the most possible metabolic pathway and the corresponding metabolic system can reasonably describe the process of batch culture.

  16. A comparative study on growth performance and biochemical composition of mixed culture of Isochrysis galbana and Chaetoceros calcitrans with monocultures

    Phatarpekar, P.V.; Sreepada, R.A.; Pednekar, C.; Achuthankutty, C.T.

    The growth performance, biochemical composition and nutritive value of the mixed culture of Isochrysis galbana and Chaetoceros calcitrans, grown in batch cultures under laboratory conditions was compared with those in monoculture conditions...

  17. Benzoate-induced stress enhances xylitol yield in aerobic fed-batch culture of Candida mogii TISTR 5892.

    Wannawilai, Siwaporn; Sirisansaneeyakul, Sarote; Chisti, Yusuf


    Production of the natural sweetener xylitol from xylose via the yeast Candida mogii TISTR 5892 was compared with and without the growth inhibitor sodium benzoate in the culture medium. Sodium benzoate proved to be an uncompetitive inhibitor in relatively poorly oxygenated shake flask aerobic cultures. In a better controlled aerobic environment of a bioreactor, the role of sodium benzoate could equally well be described as competitive, uncompetitive or noncompetitive inhibitor of growth. In intermittent fed-batch fermentations under highly aerobic conditions, the presence of sodium benzoate at 0.15gL(-1) clearly enhanced the xylitol titer relative to the control culture without the sodium benzoate. The final xylitol concentration and the average xylitol yield on xylose were nearly 50gL(-1) and 0.57gg(-1), respectively, in the presence of sodium benzoate. Both these values were substantially higher than reported for the same fermentation under microaerobic conditions. Therefore, a fed-batch aerobic fermentation in the presence of sodium benzoate is promising for xylitol production using C. mogii. PMID:25499077

  18. A multi-pronged investigation into the effect of glucose starvation and culture duration on fed-batch CHO cell culture

    Fan, Yuzhou; Jimenez Del Val, Ioscani; Müller, Christian;


    analysis of cells was conducted to observe differences in protein abundance between early growth and early stationary phases. Generally higher expression of proteins involved in regulating cellular metabolism, extracellular matrix, apoptosis, protein secretion and glycosylation was found in early...... phase of the fed-batch culture. Higher degree of glucose starvation reduced intracellular concentrations of UDP-GlcNAc and UDP-GalNAc, but increased the levels of UDP-Glc and UDP-Gal. Increased GlcNAc and Gal occupancy correlated well with increased degree of glucose starvation, which can be attributed...

  19. Monitoring and robust adaptive control of fed-batch cultures of microorganisms exhibiting overflow metabolism [abstract

    Vande Wouwer, A.


    Full Text Available Overflow metabolism characterizes cells strains that are likely to produce inhibiting by-products resulting from an excess of substrate feeding and a saturated respiratory capacity. The critical substrate level separating the two different metabolic pathways is generally not well defined. Monitoring of this kind of cultures, going from model identification to state estimation, is first discussed. Then, a review of control techniques which all aim at maximizing the cell productivity of fed-batch fermentations is presented. Two main adaptive control strategies, one using an estimation of the critical substrate level as set-point and another regulating the by-product concentration, are proposed. Finally, experimental investigations of an adaptive RST control scheme using the observer polynomial for the regulation of the ethanol concentration in Saccharomyces cerevisiae fed-batch cultures ranging from laboratory to industrial scales, are also presented.

  20. Nonlinear impulsive system of fed-batch culture in fermentative production and its properties

    In this study, the nonlinear dynamical system of fed-batch fermentation is investigated in the process of bio-dissimilation of glycerol to 1,3-propanediol by Klebsiella pneumoniae. Considering the abrupt increase of glycerol in fed-batch culture, this paper proposes a nonlinear impulsive system of the culture process, which is fit for formulating the factual fermentation better than the continuous models in being. We study the questions of existence and properties of mild solutions for the system and the continuous dependence of solutions on initial values and the controllable variable. Finally, the numerical simulations show that the errors between experimental and computational values using the impulsive system are less than those using the previous continuous system

  1. Recombinant Erwinia carotovora l-asparaginase II production in Escherichia coli fed-batch cultures

    G. Roth


    Full Text Available Asparaginases are the cornerstone therapy of many successful combination regimens for the treatment of acute lymphoblastic leukemia (ALL, the most common malignancy in children and adolescents. The aim of this work was to produce recombinant Erwinia carotovora L-asparaginase II in Escherichia coli fed-batch cultures. Using a robust fed-batch technique with pre-determined exponential feeding rates, our bioreactor culture system yielded 30.7 grams of dry cell weight and 0.9 grams of soluble rErAII protein per liter of culture broth. The homogeneous rErAII activity was determined by isothermal titration calorimetry (ITC. The enzyme Km values for the main substrates L-Asn and L-Gln were 33x10-6 M and 10x10-3 M, respectively. Our work shows that it is possible to produce an active homogeneous rErAII enzyme in the soluble cell fraction through IPTG-induced E. coli fed-batch cultivation.

  2. Specific growth rate regulation in a simulated fed-batch E. coli fermentation

    Rocha, I.; Ferreira, E. C.


    The specific growth rate is one of the most important process variables characterizing the state of microorganisms during fermentations mainly because the biosynthesis of many products of interest is often related with the values assumed by this parameter. In the particular case of the fed-batch operation of Escherichia coli for the production of recombinant proteins, it is often argued that both pre- and the post-induction specific growth rates should be closely controlled in ...

  3. Cultural diversity and economic growth

    Ager, Philipp; Brückner, Markus


    We exploit the large inflow of immigrants to the US during the 1870–1920 period to examine the effects that within-county changes in the cultural composition of the US population had on output growth. We construct measures of fractionalization and polarization to distinguish between the different...

  4. Analysis of kinetic, stoichiometry and regulation of glucose and glutamine metabolism in hybridoma batch cultures using logistic equations

    Acosta, María Lourdes; Sánchez, Asterio; García, Francisco; Contreras, Antonio; Molina, Emilio


    Batch cultures were carried out to study the kinetic, stoichiometry, and regulation of glucose and glutamine metabolism of a murine hybridoma line. Asymmetric logistic equations (ALEs) were used to fit total and viable cell density, and nutrient and metabolite/product concentrations. Since these equations were analytically differentiable, specific rates and yield coefficients were readily calculated. Asymmetric logistic equations described satisfactorily uncontrolled batch cultures, including...

  5. Effect of batch and fed-batch growth modes on biofilm formation by Listeria monocytogenes at different temperatures

    Rodrigues, Diana Alexandra Ferreira; Almeida, Marta A. S.; Teixeira, P.; Oliveira, Rosário; Azeredo, Joana


    The influence of Listeria monocytogenes (L. monocytogenes) biofilm formation feeding conditions (batch and fed-batch) at different temperatures on biofilm biomass and activity was determined. Biofilm biomass and cellular metabolic activity were assessed by Crystal Violet (CV) staining and 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide inner salt (XTT) colorimetric method, respectively. Live/Dead staining was also performed in order to get microscopic visualization of ...

  6. Inferring mixed-culture growth from total biomass data in a wavelet approach

    Ibarra-Junquera, V; Murguia-Ibarra, J S; Rosu, H C


    It is shown that the presence of mixed-culture growth in batch fermentation processes can be very accurately inferred from total biomass data by means of the wavelet analysis for singularity detection. This is accomplished by considering simple phenomenological models for the mixed growth. The main quantity provided by the wavelet analysis is the Holder exponent of the singularity that we determine for our illustrative examples. The numerical results point to the possibility that Holder exponents can be employed to characterize the nature of the mixed-culture growth in batch fermentation processes with potential industrial applications

  7. Cold-walled UHV/CVD batch reactor for the growth of Si1_x/Gex layers

    Thomsen, Erik Vilain; Christensen, Carsten; Andersen, C.R.;


    A novel cold-walled, lamp-heated, ultrahigh vacuum chemical vapor deposition (UHV/CVD) batch system for the growth of SiGe layers is presented. This system combines the batch capability of the standard UHV/CVD furnace with the temperature processing available in rapid thermal processing (Rm...

  8. Concentrated fed-batch cell culture increases manufacturing capacity without additional volumetric capacity.

    Yang, William C; Minkler, Daniel F; Kshirsagar, Rashmi; Ryll, Thomas; Huang, Yao-Ming


    Biomanufacturing factories of the future are transitioning from large, single-product facilities toward smaller, multi-product, flexible facilities. Flexible capacity allows companies to adapt to ever-changing pipeline and market demands. Concentrated fed-batch (CFB) cell culture enables flexible manufacturing capacity with limited volumetric capacity; it intensifies cell culture titers such that the output of a smaller facility can rival that of a larger facility. We tested this hypothesis at bench scale by developing a feeding strategy for CFB and applying it to two cell lines. CFB improved cell line A output by 105% and cell line B output by 70% compared to traditional fed-batch (TFB) processes. CFB did not greatly change cell line A product quality, but it improved cell line B charge heterogeneity, suggesting that CFB has both process and product quality benefits. We projected CFB output gains in the context of a 2000-L small-scale facility, but the output was lower than that of a 15,000-L large-scale TFB facility. CFB's high cell mass also complicated operations, eroded volumetric productivity, and showed our current processes require significant improvements in specific productivity in order to realize their full potential and savings in manufacturing. Thus, improving specific productivity can resolve CFB's cost, scale-up, and operability challenges. PMID:26521697

  9. Kinetics of High Cell Density Fed-batch Culture of Recombinant Escherichia coli Producing Human-like Collagen%重组大肠杆菌分批-补料高密度发酵生产类人胶原蛋白的动力学

    花秀夫; 范代娣; 骆艳娥; 张兮; 施惠娟; 米钰; 马晓轩; 尚龙安; 赵桂仿


    The kinetics of batch and fed-batch cultures of recombinant Escherichia coli producing human-like collagen was investigated. In the batch culture, a kinetic model of a simple growth-association system was concluded without consideration of cell endogeneous metabolism. The cell lag time, the maximum specific growth rate and growth rates were set at (0.15, 0.2, 0.25h-1) by the method of pseudo-exponential feeding, and the expressions for the specific rate of substrate consumption, the growth kinetics and the product formation kinetics of each phase spectively. The model predictions are in good agreement with the experimental data.

  10. Human growth hormone radioiodination using different batches of 125I of various ages

    The reproducibility and the influence of the batch and decay level of Na125I on the radioiodination of human growth hormone (hGH) were examined by a polyacrylamide gel electrophoresis (PAGE) technique. The between-day coefficient of variation (CV) exhibited a value of 11.9% for labelling yields and 14.3% for antibody specific binding. The within-day variation for different shipments and isotope decay-levels was similar to that for the control experiment, carried out under the same conditions, using Na125I from a single lot. The results indicate that the decay-level and batch do not significantly influence either the yields or the immunological properties of the labelled product. The suitability of this PAGE technique as a control test for radioiodinated proteins is established by comparison with gel chromatography on Sephadex G-100. (Auth.)

  11. Optimization of glutathione production in batch and fed-batch cultures by the wild-type and recombinant strains of the methylotrophic yeast Hansenula polymorpha DL-1

    Malyshev Alexander Y


    Full Text Available Abstract Background Tripeptide glutathione (gamma-glutamyl-L-cysteinyl-glycine is the most abundant non-protein thiol that protects cells from metabolic and oxidative stresses and is widely used as medicine, food additives and in cosmetic industry. The methylotrophic yeast Hansenula polymorpha is regarded as a rich source of glutathione due to the role of this thiol in detoxifications of key intermediates of methanol metabolism. Cellular and extracellular glutathione production of H. polymorpha DL-1 in the wild type and recombinant strains which overexpress genes of glutathione biosynthesis (GSH2 and its precursor cysteine (MET4 was studied. Results Glutathione producing capacity of H. polymorpha DL-1 depending on parameters of cultivation (dissolved oxygen tension, pH, stirrer speed, carbon substrate (glucose, methanol and type of overexpressed genes of glutathione and its precursor biosynthesis during batch and fed-batch fermentations were studied. Under optimized conditions of glucose fed-batch cultivation, the glutathione productivity of the engineered strains was increased from ~900 up to ~ 2300 mg of Total Intracellular Glutathione (TIG or GSH+GSSGin, per liter of culture medium. Meantime, methanol fed-batch cultivation of one of the recombinant strains allowed achieving the extracellular glutathione productivity up to 250 mg of Total Extracellular Glutathione (TEG or GSH+GSSGex, per liter of the culture medium. Conclusions H. polymorpha is an competitive glutathione producer as compared to other known yeast and bacteria strains (Saccharomyces cerevisiae, Candida utilis, Escherichia coli, Lactococcus lactis etc. with good perspectives for further improvement especially for production of extracellular form of glutathione.

  12. Dependence of morphology on agitation intensity in fed-batch cultures of Aspergillus oryzae and its implications for recombinant protein production.

    Amanullah, A; Christensen, L H; Hansen, K; Nienow, A W; Thomas, C R


    We previously reported that, although agitation conditions strongly affected mycelial morphology, such changes did not lead to different levels of recombinant protein production in chemostat cultures of Aspergillus oryzae (Amanullah et al., 1999). To extend this finding to another set of operating conditions, fed-batch fermentations of A. oryzae were conducted at biomass concentrations up to 34 g dry cell weight/L and three agitation speeds (525, 675, and 825 rpm) to give specific power inputs between 1 and 5 kWm(-3). Gas blending was used to control the dissolved oxygen level at 50% of air saturation except at the lowest speed where it fell below 40% after 60-65 h. The effects of agitation intensity on growth, mycelial morphology, hyphal tip activity, and recombinant protein (amyloglucosidase) production in fed-batch cultures were investigated. In the batch phase of the fermentations, biomass concentration, and AMG secretion increased with increasing agitation intensity. If in a run, dissolved oxygen fell below approximately 40% because of inadequate oxygen transfer associated with enhanced viscosity, AMG production ceased. As with the chemostat cultures, even though mycelial morphology was significantly affected by changes in agitation intensity, enzyme titers (AGU/L) under conditions of substrate limited growth and controlled dissolved oxygen of >50% did not follow these changes. Although the measurement of active tips within mycelial clumps was not considered, a dependency of the specific AMG productivity (AGU/g biomass/h) on the percentage of extending tips was found, suggesting that protein secretion may be a bottle-neck in this strain during fed-batch fermentations. PMID:11835142

  13. Induction and repression of alpha-amylase production in batch and continuous cultures of Aspergillus oryzae.

    Mørkeberg, R; Carlsen, M; Nielsen, J


    The intra- and extracellular concentrations of alpha-amylase in Aspergillus oryzae have been measured during batch culture of a wild-type strain and two recombinant strains. The mean intracellular level for the two recombinant strains was about four to five times the level of the wild-type strain. The recombinant strains also had a higher alpha-amylase productivity, whereas the residence time of the intracellular alpha-amylase pool was approximately the same for the three strains. At high glucose concentrations there was a low constitutive synthesis of alpha-amylase, whereas at low glucose concentrations derepression resulted in an increased production rate. Shifts from a glucose- to a maltose-limited chemostat showed that maltose induces both the production and secretion of alpha-amylase. Finally, from immunoblots, both a glycosylated and an unglycosylated alpha-amylase have been detected. PMID:7582005

  14. Effect of chito-oligosaccharides over human faecal microbiota during fermentation in batch cultures.

    Mateos-Aparicio, Inmaculada; Mengíbar, Marian; Heras, Angeles


    Chitosan with high number of deacetylated units, its reacetylated derivative and COS obtained through an enzymatic treatment with chitosanase were tested in pH controlled batch cultures to investigate the ability of the human faecal microbiota to utilise them. Chitosan derivatives with high number of deacetylated units decreased the bacterial populations: Bifidobacterium spp., Eubacterium rectale/Clostridium coccoides, C. Histolyticum and Bacteroides/Prevotella. On the other hand, chitosan derivatives with high content of acetylated residues maintained the tested bacterial groups and could increase Lactobacillus/Enterococcus. Regarding short chain fatty acids (SCFA), only low Mw COS increased the production in similar levels than fructo-oligossacharides (FOS). The acetylated chitosans and their COS do not appear as potential prebiotics but did not affect negatively the faecal microbiota, while derivatives with high number of deacetylated units could induce a colonic microbiota imbalance. PMID:26686171

  15. Isomaltulose production using free cells: optimisation of a culture medium containing agricultural wastes and conversion in repeated-batch processes.

    Kawaguti, Haroldo Y; Buzzato, Michele F; Sato, Hélia H


    The enzyme glucosyltransferase is an industrially important enzyme since it produces non-cariogenic isomaltulose (6-O-alpha-D-glucopyronosyl-1-6-D-fructofuranose) from sucrose by intramolecular transglucosylation. The experimental designs and response surface methodology (RSM) were applied for the optimisation of the nutrient concentrations in the culture medium for the production of glucosyltransferase by Erwinia sp. D12 in shaken flasks at 200 rpm and 30 degrees C. A statistical analysis of the results showed that, in the range studied, the factors had a significant effect (P sugar cane molasses (150 g l(-1)), corn steep liquor (20 g l(-1)), yeast extract Prodex Lac SD (15 g l(-1)) and K2HPO4 (0.5 g l(-1)) after 8 h at 30 degrees C. The production of cell biomass by the strain of Erwinia sp. D12 was carried out in a 6.6-l fermenter with a mixing rate of 200 rpm and an aeration rate of 1 vvm. Fermentation time, cellular growth, medium pH and glucosyltransferase production were observed. The greatest glucosyltransferase activity was 22.49 U/ml, obtained after 8 h of fermentation. The isomaltulose production from sucrose was performed using free Erwinia sp. D12 cells in a batch process using an orbital shaker. The influence of the parameters sucrose concentration, temperature, pH, and cell concentration on the conversion of sucrose into isomaltulose was studied. The free cells showed a high conversion rate of sucrose into isomaltulose using batch fermentation, obtaining an isomaltulose yield of 72.11% from sucrose solution 35% at 35 degrees C. PMID:17186209

  16. Lactic acid production from potato peel waste by anaerobic sequencing batch fermentation using undefined mixed culture.

    Liang, Shaobo; McDonald, Armando G; Coats, Erik R


    Lactic acid (LA) is a necessary industrial feedstock for producing the bioplastic, polylactic acid (PLA), which is currently produced by pure culture fermentation of food carbohydrates. This work presents an alternative to produce LA from potato peel waste (PPW) by anaerobic fermentation in a sequencing batch reactor (SBR) inoculated with undefined mixed culture from a municipal wastewater treatment plant. A statistical design of experiments approach was employed using set of 0.8L SBRs using gelatinized PPW at a solids content range from 30 to 50 g L(-1), solids retention time of 2-4 days for yield and productivity optimization. The maximum LA production yield of 0.25 g g(-1) PPW and highest productivity of 125 mg g(-1) d(-1) were achieved. A scale-up SBR trial using neat gelatinized PPW (at 80 g L(-1) solids content) at the 3 L scale was employed and the highest LA yield of 0.14 g g(-1) PPW and a productivity of 138 mg g(-1) d(-1) were achieved with a 1 d SRT. PMID:25708409

  17. The Impact of Cultural Globalization on Growth

    Nuno Carlos Leitão


    This paper investigates the relationship between cultural globalization and economic growthin case of Portuguese over the period of 1995-2008 uisng panel data. Our emoirical eivdence reveals that the initial GDP per capita is negatively correlated with economic growth. This paper shows that international trade and cultural globalization promote economic growth.


    Klasing, Mariko J.; Milionis, Petros


    To what extent does the cultural composition of a society impose a constraint on its long-run growth potential? We study this question in the context of an innovation-based model of growth where cultural attitudes are endogenously transmitted from one generation to the next. Focusing on attitudes re

  19. Utilisation of single added fatty acids by consortia of digester sludge in batch culture

    Inocula derived from an anaerobic digester were used to study (i) their potential for methane production and (ii) the utilisation rates of different short chain fatty acids (SCFAs) by the microbial community in defined media with mono-carbon sources (formic-, acetetic-, propionic-, butyric acid) in batch culture. It could be demonstrated that the microbial reactor population could be transferred successfully to the lab, and its ability to build up methane was present even with deteriorating biogas plant performance. Therefore, this reduction in performance of the biogas plant was not due to a decrease in abundance, but due to an inactivity of the microbial community. Generally, the physico-chemical properties of the biogas plant seemed to favour hydrogenotrophic methanogens, as seen by the high metabolisation rates of formate compared with all other carbon sources. In contrast, acetoclastic methanogenesis could be shown to play a minor role in the methane production of the investigated biogas plant, although the origin of up to 66% of methane is generally suggested to be generated through acetoclastic pathway.

  20. The induction time, interfacial energy and growth mechanism of maltitol in batch cooling crystallization

    Hou, J.; Wu, S.; Li, R. [State Research Center for Industrialization of Crystallization Technology, School of Chemical, Engineering and Technology, Tianjin University (China); Dong, W.; Gong, J. [State Research Center for Industrialization of Crystallization Technology, School of Chemical, Engineering and Technology, Tianjin University (China); Tianjin Key Laboratory Modern Drug Delivery and High-Efficiency, Tianjin University (China)


    Maltitol is crystallized with seeds by cooling mode in industry, often with large amount of fine crystals and wide crystal size distribution. To eliminate the fine nucleation, it's necessary to understand the nucleation kinetics. In this work, the solubility of maltitol in water was measured by the gravimetric method, the nucleation kinetics of maltitol in batch cooling crystallization was investigated using focus beam reflectance measurement (FBRM), and a novel method was proposed to determine the induction time from the trend of the crystal median chord given by FBRM. Based on the relationship between the induction time and the supersaturation, the nucleation mechanism was obtained, including homogenous nucleation at high supersaturation and heterogenous nucleation at low supersaturation. Additionally, combining the classical nucleation theory (CNT) and Arrhenius' principle, the crystal-solution interfacial energy and the energy barrier of homogenous nucleation were calculated. From the scanning electron microscope (SEM) images, the growth mechanism of maltitol was identified as surface nucleation growth and the surface entropy factor calculated from the kinetic analyses of t{sub ind} data corroborated this growth mechanism. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Biosintesis Vitamin C Dari Substrat D-Sorbitol Oleh Acetobacter Xylinum Dengan Metode Fermentasi Sistem Batch Culture Teraduk Kontinu



    The research of biosynthesis vitamin C from D-sorbitol substrate by Acetobacter xylinum with fermentation method of batch culture continuous mixing system is done. In this research, I used D-sorbitol as substrate and food supply for Acetobacter xylinum. The determination quantity of vitamin C using Polarimetri method, Iodometri Titration, Spectrophotometri UV-Visible and for accounting quantity of bacteria using Plate Count method. By using Polarimetri method ; Iodometri Titration and Spectro...

  2. Macroscopic modelling of hybridoma cell fed-batch cultures with overflow metabolism: model-based optimization and state estimation

    Amribt, Zakaria


    Monoclonal antibodies (MAbs) have an expanding market for use in diagnostic and therapeutic applications. Industrial production of these biopharmaceuticals is usually achieved based on fed-batch cultures of mammalian cells in bioreactors (Chinese hamster ovary (CHO) and Hybridoma cells), which can express different kinds of recombinant proteins. In order to reach high cell densities in these bioreactors, it is necessary to carry out an optimization of their production processes. Hence, macros...

  3. Brunovsky Normal Form of Monod Kinetics Models and Growth Rate Control of a Fed-batch Cultivation Process

    Pavlov Y.


    Full Text Available A mathematical methodology that gives assistance to design of fed-batch stabilization and control is presented. The methodology is based both on Utility theory and optimal Control theory. The Utility theory deals with the expressed subjective preferences and allows for the expert preferences to be taken in consideration in complex biotechnological systems as criteria for control and optimization. The Control theory is used for parameters stabilization of a fed-batch cultivation process. The control is written based on information of the growth rate. The simulations show good efficiency of the control laws.

  4. Batch By Batch Longitudinal Emittance Blowup MD

    Mastoridis, T; Butterworth, A; Jaussi, M; Molendijk, J


    The transverse bunch emittance increases significantly at 450 GeV from the time of injection till the ramp due to IBS. By selectively blowing up the longitudinal emittance of the incoming batch at each injection, it should be possible to reduce the transverse emittance growth rates due to IBS. An MD was conducted on April 22nd 2012 to test the feasibility and performance of the batch-by-batch longitudinal emittance blowup. There were three main goals during the MD. First, to test the developed hardware, firmware, and software for the batch-by-batch blowup. Then, to measure the transverse emittance growth rates of blown-up and "witness" batches to quantify any improvement, and finally to test the ALLInjectSequencer class, which deals with the complicated gymnastics of introducing or masking the new batch to various RF loops.

  5. Conversion of a CHO cell culture process from perfusion to fed-batch technology without altering product quality.

    Meuwly, F; Weber, U; Ziegler, T; Gervais, A; Mastrangeli, R; Crisci, C; Rossi, M; Bernard, A; von Stockar, U; Kadouri, A


    During the development of a new drug product, it is a common strategy to develop a first-generation process with the aim to rapidly produce material for pre-clinical and early stage clinical trials. At a later stage of the development, a second-generation process is then introduced with the aim to supply late-stage clinical trials as well as market needs. This work was aimed at comparing the performance of two different CHO cell culture processes (perfusion and fed-batch) used for the production of a therapeutically active recombinant glycoprotein at industrial pilot-scale. The first-generation process was based on the Fibra-Cel packed-bed perfusion technology. It appeared during the development of the candidate drug that high therapeutic doses were required (>100mg per dose), and that future market demand would exceed 100 kg per year. This exceeded by far the production capacity of the first-generation process, and triggered a change of technology from a packed-bed perfusion process with limited scale-up capabilities to a fed-batch process with scale-up potential to typical bioreactor sizes of 15m(3) or more. The productivity per bioreactor unit volume (in product m(-3)year(-1)) of the fed-batch process was about 70% of the level reached with the first-generation perfusion process. However, since the packed-bed perfusion system was limited in scale (0.6m(3) maximum) compared to the volumes reached in suspension cultures (15m(3)), the fed-batch was selected as second-generation process. In fact, the overall process performance (in product year(-1)) was about 18-fold higher for the fed-batch compared to the perfusion mode. Data from perfusion and fed-batch harvests samples indicated that comparable product quality (relative abundance of monomers dimers and aggregates; N-glycan sialylation level; isoforms distribution) was obtained in both processes. To further confirm this observation, purification to homogeneity of the harvest material from both processes, followed

  6. Effect of nitrogen limitation on the ergosterol production by fed-batch culture of Saccharomyces cerevisiae.

    Shang, Fei; Wen, Shaohong; Wang, Xi; Tan, Tianwei


    The diversity and content of available nitrogen sources in the growth medium both are very important in the accumulation of ergosterol in the yeast cell membrane. Growth on the good nitrogen sources such as ammonia can harvest more yeast cells than on poor ones, but ergosterol content in those yeast cells is relatively lower. Ergosterol content, one of the most variable parameters in ergosterol production by yeast cultivation, is greatly influenced by nitrogen limitation. The aim of our work was to study how the nitrogen sources affected the membrane ergosterol content and increase the total ergosterol yield. On the premise of keeping high ergosterol content in yeast cell, the ergosterol yield was enhanced by increasing the yeast biomass. Direct feed back control of glucose using an on-line ethanol concentration monitor was introduced to achieve high cell density. Ammonia, which acted as nitrogen source, was added to adjust pH during fermentation process, but its addition needed careful control. Cultivation in 5 L bioreactor was carried out under following conditions: culture temperature 30+/-1 degrees C, pH 5.5+/-0.1, agitation speed 600 rpm, controlling ethanol concentration below 1% and controlling ammonium ion concentration below 0.1 mol/L. Under these conditions the yeast dry weight reached 95.0+/-2.6 g/L and the ergosterol yield reached 1981+/-34 mg/L. PMID:16488499

  7. Autotrophic growth and lipid production of Chlorella sorokiniana in lab batch and BIOCOIL photobioreactors: Experiments and modeling.

    Concas, Alessandro; Malavasi, Veronica; Costelli, Cristina; Fadda, Paolo; Pisu, Massimo; Cao, Giacomo


    A novel mathematical model for the quantitative assessment of the effect of dissolved nitrogen on the autotrophic batch-growth and lipid accumulation of Chlorella sorokiniana, is proposed in this work. Model results have been validated through comparison with suitable experimental data performed in lab photobioreactors. Further experiments have been then performed using the BIOCOIL photobioreactor operated in fed-batch mode. The experimental results, which show that a maximum growth rate of 0.52day(-1) and a lipid content equal to 25%wt can be achieved with the BIOICOIL, have been successfully predicted through the proposed model. Therefore, the model might represent a first step toward the development of a tool for the scale-up and optimization of the operating conditions of BIOCOIL photobioreactors. Finally, the fatty acid methyl esters obtained by trans-esterification of lipids extracted from C. sorokiniana, have been analyzed in view of the assessment of their usability for producing biodiesel. PMID:27030952

  8. Modelling and properties of a nonlinear autonomous switching system in fed-batch culture of glycerol

    Wang, Juan; Sun, Qingying; Feng, Enmin


    A nonlinear autonomous switching system is proposed to describe the coupled fed-batch fermentation with the pH as the feedback parameter. We prove the non-Zeno behaviors of the switching system and some basic properties of its solution, including the existence, uniqueness, boundedness and regularity. Numerical simulation is also carried out, which reveals that the proposed system can describe the factual fermentation process properly.

  9. Microbial lipid production by oleaginous yeast Cryptococcus sp. in the batch cultures using corncob hydrolysate as carbon source

    To realize the feasibility of biodiesel production from high-lipid cell culture, microbial lipid production by the oleaginous yeasts was studied using glucose and sucrose as carbon source. Among the tested strains, Cryptococcus sp. SM5S05 accumulated the highest levels of intracellular lipids. The crude lipid contents of Cryptococcus sp. cultured in yeast malt agar reached 30% on a dry weight basis. The accumulation of lipids strongly depended on carbon/nitrogen ratio and nitrogen concentration. The highest content of lipids, measured at a carbon/nitrogen ratio of 60–90 and at a nitrogen concentration of 0.2%, was 60–57% lipids in the dry biomass. Batch cultures using corncob hydrolysate demonstrated that there was minimal inhibitory effect with a reducing sugar concentration of 60 g l−1 or higher. Batch cultures of Cryptococcus sp. SM5S05 in the corncob hydrolysate medium with 60 g l−1 glucose resulted in a dry biomass, lipid yields, and content of 12.6 g l−1, 7.6 g l−1, and 60.2%, respectively. The lipids contained mainly long-chain saturated and unsaturated fatty acids with 16 and 18 carbon atoms. The fatty acid profile of Cryptococcus oils was quite similar to that of conventional vegetable oil. The cost of lipid production could be further reduced with corncob hydrolysate being utilized as the raw material for the oleaginous yeast. The results showed that the microbial lipid from Cryptococcus sp. was a potential alternative resource for biodiesel production. - Highlights: • Microbial oil production from oleaginous yeast Cryptococcus sp. was studied. • Accumulation of lipid strongly depended on C/N ratio and nitrogen concentration. • Cultures in hydrolysate medium with 60 g/l glucose resulted in maximum lipid yields. • Maximal lipid content in the Cryptococcus sp. were 60.2% on dried weight basis

  10. A novel fed-batch based cultivation method provides high cell-density and improves yield of soluble recombinant proteins in shaken cultures

    Glumoff Tuomo


    Full Text Available Abstract Background Cultivations for recombinant protein production in shake flasks should provide high cell densities, high protein productivity per cell and good protein quality. The methods described in laboratory handbooks often fail to reach these goals due to oxygen depletion, lack of pH control and the necessity to use low induction cell densities. In this article we describe the impact of a novel enzymatically controlled fed-batch cultivation technology on recombinant protein production in Escherichia coli in simple shaken cultures. Results The enzymatic glucose release system together with a well-balanced combination of mineral salts and complex medium additives provided high cell densities, high protein yields and a considerably improved proportion of soluble proteins in harvested cells. The cultivation method consists of three steps: 1 controlled growth by glucose-limited fed-batch to OD600 ~10, 2 addition of growth boosters together with an inducer providing efficient protein synthesis within a 3 to 6 hours period, and 3 a slow growth period (16 to 21 hours during which the recombinant protein is slowly synthesized and folded. Cell densities corresponding to 10 to 15 g l-1 cell dry weight could be achieved with the developed technique. In comparison to standard cultures in LB, Terrific Broth and mineral salt medium, we typically achieved over 10-fold higher volumetric yields of soluble recombinant proteins. Conclusions We have demonstrated that by applying the novel EnBase® Flo cultivation system in shaken cultures high cell densities can be obtained without impairing the productivity per cell. Especially the yield of soluble (correctly folded proteins was significantly improved in comparison to commonly used LB, Terrific Broth or mineral salt media. This improvement is thought to result from a well controlled physiological state during the whole process. The higher volumetric yields enable the use of lower culture volumes and can

  11. Substrate inhibition in Pseudomonas oxalaticus OX1 : a kinetic study of growth inhibition by oxalate and formate using extended cultures

    Dijkhuizen, L.; Harder, W.


    Pseudomonas oxalaticus OX1 has been grown in a mineral salts medium with oxalate or formate as the sole source of carbon and energy. At concentrations of these substrates above 50 mM inhibition of growth was indicated by a long and variable lag phase in batch culture. This inhibition was further stu

  12. Efficacy of a commercial probiotic relative to oxytetracycline as Gram-negative bacterial control agents in a rotifer (Brachionus plicatilis) batch culture

    Two trials were conducted to evaluate two gram-negative bacterial control strategies in batch cultures of the rotifer Brachionus plicatilis. In the first trial, rotifers at an initial density of 47/mL were cultured for 5 d and dosed with a 10-mg/L solution of either oxytetracycline or a commercial p...

  13. Dynamic model-based analysis of furfural and HMF detoxification by pure and mixed batch cultures of S. cerevisiae and S. stipitis.

    Hanly, Timothy J; Henson, Michael A


    Inhibitory compounds that result from biomass hydrolysis are an obstacle to the efficient production of second-generation biofuels. Fermentative microorganisms can reduce compounds such as furfural and 5-hydroxymethyl furfural (HMF), but detoxification is accompanied by reduced growth rates and ethanol yields. In this study, we assess the effects of these furan aldehydes on pure and mixed yeast cultures consisting of a respiratory deficient mutant of Saccharomyces cerevisiae and wild-type Scheffersomyces stipitis using dynamic flux balance analysis. Uptake kinetics and stoichiometric equations for the intracellular reduction reactions associated with each inhibitor were added to genome-scale metabolic reconstructions of the two yeasts. Further modification of the S. cerevisiae metabolic network was necessary to satisfactorily predict the amount of acetate synthesized during HMF reduction. Inhibitory terms that captured the adverse effects of the furan aldehydes and their corresponding alcohols on cell growth and ethanol production were added to attain qualitative agreement with batch experiments conducted for model development and validation. When the two yeasts were co-cultured in the presence of the furan aldehydes, inoculums that reduced the synthesis of highly toxic acetate produced by S. cerevisiae yielded the highest ethanol productivities. The model described here can be used to generate optimal fermentation strategies for the simultaneous detoxification and fermentation of lignocellulosic hydrolysates by S. cerevisiae and/or S. stipitis. PMID:23983023

  14. Ammonium nitrogen removal in batch cultures treating digested piggery wastewater with microalgae Oedogonium sp.

    Wang, Haiping; Hu, Zhiquan; Xiao, Bo; Cheng, Qunpeng; Li, Fanghua


    Due to the nutrient characteristics of the high concentration of available ammonium in digested piggery wastewater (DPW), microalgae can be used to treat DPW before its final discharge. Four green microalgae (Hydrodictyaceae reticulatum Lag, Scenedesmus obliquus, Oedogonium sp. and Chlorella pyrenoidosa) and three blue-green algae (Anabaena flos-aquae, Oscillatoria amoena Gom and Spirulina platensis) were used to remove the nutrients (N, P, C), especially ammonium nitrogen (NH4(+)-N), from diluted DPW with 300 mg/L algae density in batch tests. The microalgae with the best NH4(+)-N nutrient removal was then selected for further optimization of the variables to improve NH4(+)-N removal efficiency using a central composite design (CCD) experiment. Taking into account the nutrient removal efficiency, Oedogonium sp. showed the best performance (reduction of 95.9% NH4(+)-N, 92.9% total phosphorus (TP) and 62.5% chemical oxygen demand (COD)) based on the results of the batch tests. The CCD results suggested that the optimal values of variables were initial Oedogonium sp. density of 399.2 mg/L and DPW diluted by 16.3, while the predicted value of NH4(+)-N removal efficiency obtained was 97.0%. PMID:23863416

  15. Cell mass energetic yields of fed-batch culture by Lipomyces starkeyi.

    Anschau, Andréia; Franco, Telma Teixeira


    Estimation of the energy capacity of a microbial cell mass on the basis of its lipid content and elemental composition can be used for the comparative evaluation of different microbial sources of biodiesel. Lipomyces starkeyi cell mass concentration reached 94.6 g/L with 37.4% of lipids in a fed-batch process using xylose and urea as substrates. The fatty acid composition of the yeast oil was quite similar to that of palm oil. L. starkeyi converted more than 80% of the energy contained in xylose into cell mass energy yield. The approach used in this study makes it possible to determine the energy of a cell mass by its elemental composition. A heat of combustion (Q c) of 25.7 (kJ/g) was obtained for the cell mass after 142 h of fed-batch cultivation, which represents approximately 56% of the energy content of diesel oil (45.4 kJ/g). The Q c of the triacylglycerols produced was 48.9 (kJ/g), indicating the potential of this oleaginous yeast for biodiesel production. Our work developed here provides a simple and efficient tool for characterization of this cell mass to further our understanding of its use as a feedstock for bioenergy production. PMID:25832790

  16. Microbial succession in response to pollutants in batch-enrichment culture.

    Jiao, Shuo; Chen, Weimin; Wang, Entao; Wang, Junman; Liu, Zhenshan; Li, Yining; Wei, Gehong


    As a global problem, environmental pollution is an important factor to shape the microbial communities. The elucidation of the succession of microbial communities in response to pollutants is essential for developing bioremediation procedures. In the present study, ten batches of soil-enrichment subcultures were subjected to four treatments: phenanthrene, n-octadecane, phenanthrene + n-octadecane, or phenanthrene + n-octadecane + CdCl2. Forty pollutant-degrading consortia, corresponding to each batch of the four treatments were obtained. High-throughput sequencing of the 16S rRNA gene revealed that the diversity, richness and evenness of the consortia decreased throughout the subculturing procedure. The well-known hydrocarbon degraders Acinetobacter, Gordonia, Sphingobium, Sphingopyxis, and Castellaniella and several other genera, including Niabella and Naxibacter, were detected in the enriched consortia. The predominant microbes varied and the microbial community in the consortia gradually changed during the successive subculturing depending on the treatment, indicating that the pollutants influenced the microbial successions. Comparison of the networks in the treatments indicated that organic pollutants and CdCl2 affected the co-occurrence patterns in enriched consortia. In conclusion, single environmental factors, such as the addition of nutrients or selection pressure, can shape microbial communities and partially explain the extensive differences in microbial community structures among diverse environments. PMID:26905741

  17. Simulation and prediction of protein production in fed-batch E. coli cultures: An engineering approach.

    Calleja, Daniel; Kavanagh, John; de Mas, Carles; López-Santín, Josep


    An overall model describing the dynamic behavior of fed-batch E. coli processes for protein production has been built, calibrated and validated. Using a macroscopic approach, the model consists of three interconnected blocks allowing simulation of biomass, inducer and protein concentration profiles with time. The model incorporates calculation of the extra and intracellular inducer concentration, as well as repressor-inducer dynamics leading to a successful prediction of the product concentration. The parameters of the model were estimated using experimental data of a rhamnulose-1-phosphate aldolase-producer strain, grown under a wide range of experimental conditions. After validation, the model has successfully predicted the behavior of different strains producing two different proteins: fructose-6-phosphate aldolase and ω-transaminase. In summary, the presented approach represents a powerful tool for E. coli production process simulation and control. Biotechnol. Bioeng. 2016;113: 772-782. © 2015 Wiley Periodicals, Inc. PMID:26416399

  18. Fed-batch strategy for enhancing cell growth and C-phycocyanin production of Arthrospira (Spirulina) platensis under phototrophic cultivation.

    Xie, Youping; Jin, Yiwen; Zeng, Xianhai; Chen, Jianfeng; Lu, Yinghua; Jing, Keju


    The C-phycocyanin generated in blue-green algae Arthrospira platensis is gaining commercial interest due to its nutrition and healthcare value. In this study, the light intensity and initial biomass concentration were manipulated to improve cell growth and C-phycocyanin production of A.platensis in batch cultivation. The results show that low light intensity and high initial biomass concentration led to increased C-phycocyanin accumulation. The best C-phycocyanin productivity occurred when light intensity and initial biomass concentration were 300μmol/m(2)/s and 0.24g/L, respectively. The fed-batch cultivation proved to be an effective strategy to further enhance C-phycocyanin production of A.platensis. The results indicate that C-phycocyanin accumulation not only requires nitrogen-sufficient condition, but also needs other nutrients. The highest C-phycocyanin content (16.1%), production (1034mg/L) and productivity (94.8mg/L/d) were obtained when using fed-batch strategy with 5mM medium feeding. PMID:25618497

  19. Fingerprint detection and process prediction by multivariate analysis of fed-batch monoclonal antibody cell culture data.

    Sokolov, Michael; Soos, Miroslav; Neunstoecklin, Benjamin; Morbidelli, Massimo; Butté, Alessandro; Leardi, Riccardo; Solacroup, Thomas; Stettler, Matthieu; Broly, Hervé


    This work presents a sequential data analysis path, which was successfully applied to identify important patterns (fingerprints) in mammalian cell culture process data regarding process variables, time evolution and process response. The data set incorporates 116 fed-batch cultivation experiments for the production of a Fc-Fusion protein. Having precharacterized the evolutions of the investigated variables and manipulated parameters with univariate analysis, principal component analysis (PCA) and partial least squares regression (PLSR) are used for further investigation. The first major objective is to capture and understand the interaction structure and dynamic behavior of the process variables and the titer (process response) using different models. The second major objective is to evaluate those models regarding their capability to characterize and predict the titer production. Moreover, the effects of data unfolding, imputation of missing data, phase separation, and variable transformation on the performance of the models are evaluated. PMID:26399784

  20. Batch fermentative hydrogen production by enriched mixed culture: Combination strategy and their microbial composition.

    Sivagurunathan, Periyasamy; Sen, Biswarup; Lin, Chiu-Yue


    The effect of individual and combined mixed culture on dark fermentative hydrogen production performance was investigated. Mixed cultures from cow dung (C1), sewage sludge (C2), and pig slurry (C3) were enriched under strict anaerobic conditions at 37°C with glucose as the sole carbon source. Biochemical hydrogen production test in peptone-yeast-glucose (PYG) and basal medium was performed for individual mixed cultures (C1, C2 and C3) and their combinations (C1-C2, C2-C3, C1-C3 and C1-C2-C3) at a glucose concentration of 10 g/L, 37°C and initial pH 7. Maximum hydrogen yields (HY) of 2.0 and 1.86 [Formula: see text] by C2, and 1.98 and 1.95 mol(H2)/mol(glucose) by C2-C3 were obtained in PYG and basal medium, respectively. Butyrate and acetate were the major soluble metabolites produced by all the cultures, and the ratio of butyrate to acetate was ∼2 fold higher in basal medium than PYG medium, indicating strong influence of media formulation on glucose catabolism. The major hydrogen-producing bacterial strains, observed in all mixed cultures, belonged to Clostridium butyricum, C. saccharobutylicum, C. tertium and C. perfringens. The hydrogen production performance of the combined mixed culture (C2-C3) was further evaluated on beverage wastewater (10 g/L) at pH 7 and 37°C. The results showed an HY of 1.92 mol(H2)/mol(glucose-equivalent). Experimental evidence suggests that hydrogen fermentation by mixed culture combination could be a novel strategy to improve the HY from industrial wastewater. PMID:24095211

  1. Advanced control of dissolved oxygen concentration in fed batch cultures during recombinant protein production.

    Kuprijanov, A; Gnoth, S; Simutis, R; Lübbert, A


    Design and experimental validation of advanced pO(2) controllers for fermentation processes operated in the fed-batch mode are described. In most situations, the presented controllers are able to keep the pO(2) in fermentations for recombinant protein productions exactly on the desired value. The controllers are based on the gain-scheduling approach to parameter-adaptive proportional-integral controllers. In order to cope with the most often appearing distortions, the basic gain-scheduling feedback controller was complemented with a feedforward control component. This feedforward/feedback controller significantly improved pO(2) control. By means of numerical simulations, the controller behavior was tested and its parameters were determined. Validation runs were performed with three Escherichia coli strains producing different recombinant proteins. It is finally shown that the new controller leads to significant improvements in the signal-to-noise ratio of other key process variables and, thus, to a higher process quality. PMID:19005652

  2. Calcification and transparent exopolymer particles (TEP) production in batch cultures of Emiliania huxleyi exposed to different pCO2

    De Bodt, Caroline; d'Hoop, Quentin; Harlay, Jérôme; Chou, Lei


    Ehux growth, calcification and related processes are sensitive to changes in initial pCO2. Our results show that the development of the Ehux cultures is delayed with increasing initial pCO2. TEP accumulate until the end of the experiment and are enhanced after nutrient exhaustion. TEP contribute significantly to POC concentrations after the exponential growth phase. The very good correlation between TEP and calcite concentrations suggests that the calcification acts as a potential source of T...

  3. PH Control of Monoraphidium Minutum Grown in a Batch Culture Environment

    Stephen M. LaConte; Zeiler, Kathryn G.


    Research at the National Renewable Energy Laboratory (NREL) is being conducted to develop low-cost technology for coupling the exhaust from fossil fuel-fired power plants to the growth of microalgae for the dual purpose of recycling carbon dioxide emissions and producing a renewable fuel source. Microalgae are unicellular photosynthesizers with tremendous potential for rapid division (growth) and high lipid production. The carbon assimilated into lipids provides a renewable source for biodies...


    Weldy, C.S.; Huesemann, M.


    Atmospheric carbon dioxide (CO2) concentrations are increasing and may cause unknown deleterious environmental effects if left unchecked. The Intergovernmental Panel on Climate Change (IPCC) has predicted in its latest report a 2°C to 4°C increase in global temperatures even with the strictest CO2 mitigation practices. Global warming can be attributed in large part to the burning of carbon-based fossil fuels, as the concentration of atmospheric CO2 is directly related to the burning of fossil fuels. Biofuels which do not add CO2 to the atmosphere are presently generated primarily from terrestrial plants, i.e., ethanol from corn grain and biodiesel from soybean oil. The production of biofuels from terrestrial plants is severely limited by the availability of fertile land. Lipid production from microalgae and its corresponding biodiesel production have been studied since the late 1970s but large scale production has remained economically infeasible due to the large costs of sterile growing conditions required for many algal species. This study focuses on the potential of the halophilic microalgae species Dunaliella salina as a source of lipids and subsequent biodiesel production. The lipid production rates under high light and low light as well as nitrogen suffi cient and nitrogen defi cient culture conditions were compared for D. salina cultured in replicate photobioreactors. The results show (a) cellular lipid content ranging from 16 to 44% (wt), (b) a maximum culture lipid concentration of 450mg lipid/L, and (c) a maximum integrated lipid production rate of 46mg lipid/L culture*day. The high amount of lipids produced suggests that D. salina, which can be mass-cultured in non-sterile outdoor ponds, has strong potential to be an economically valuable source for renewable oil and biodiesel production.

  5. On-line monitoring of important organoleptic methyl-branched aldehydes during batch fermentation of starter culture Staphylococcus xylosus reveal new insight into their production in a model fermentation

    de Vos Petersen, Christian; Beck, Hans Christian; Lauritsen, Frants R


    A small fermentor (55 mL) was directly interfaced to a membrane inlet mass spectrometer for continuous on-line monitoring of oxygen and volatile metabolites during batch fermentations of the starter culture Staphylococcus xylosus. Using this technique, we were able to correlate production of the...... a longer aerobic growth period. Growing S. xylosus under conditions resembling those in a fermented sausage revealed that NaCl (5%) increased aldehyde production considerably, whereas KNO(3) (0.03%) or NaNO(2) (0.03%) had little effect. A lowering of pH from 7.2 to 6.0 reduced cell density, but had...

  6. Production of functional killer protein in batch cultures upon a shift from aerobic to anaerobic conditions

    Gildo Almeida da Silva


    Full Text Available The aim of this work was to study the production of functional protein in yeast culture. The cells of Saccharomyces cerevisiae Embrapa 1B (K+R+ killed a strain of Saccharomyces cerevisiae Embrapa 26B (K-R-in grape must and YEPD media. The lethal effect of toxin-containing supernatant and the effect of aeration upon functional killer production and the correlation between the products of anaerobic metabolism and the functional toxin formation were evaluated. The results showed that at low sugar concentration, the toxin of the killer strain of Sacch. cerevisiae was only produced under anaerobic conditions . The system of killer protein production showed to be regulated by Pasteur and Crabtree effects. As soon as the ethanol was formed, the functional killer toxin was produced. The synthesis of the active killer toxin seemed to be somewhat associated with the switch to fermentation process and with concomitant alcohol dehydrogenase (ADH activity.

  7. A new bioenergetic and thermodynamic approach to batch photoautotrophic growth of Arthrospira (Spirulina) platensis in different photobioreactors and under different light conditions.

    da Silva, Milena Fernandes; Casazza, Alessandro Alberto; Ferrari, Pier Francesco; Perego, Patrizia; Bezerra, Raquel Pedrosa; Converti, Attilio; Porto, Ana Lucia Figueiredo


    Photobioreactor configuration, mode of operation and light intensity are known to strongly impact on cyanobacteria growth. To shed light on these issues, kinetic, bioenergetic and thermodynamic parameters of batch Arthrospira platensis cultures were estimated along the time at photosynthetic photon flux density (PPFD) of 70μmolm(-2)s(-1) in different photobioreactors with different surface/volume ratio (S/V), namely open pond (0.25cm(-1)), shaken flask (0.48cm(-1)), horizontal photobioreactor (HoP) (1.94cm(-1)) and helicoidal photobioreactor (HeP) (3.88cm(-1)). Maximum biomass concentration and productivity remarkably increased with S/V up to 1.94cm(-1). HoP was shown to be the best-performing system throughout the whole runs, while HeP behaved better only at the start. Runs carried out in HoP increasing PPFD from 40 to 100μmolm(-2)s(-1) revealed a progressive enhancement of bioenergetics and thermodynamics likely because of favorable light distribution. HoP appeared to be a promising configuration to perform high-yield indoor cyanobacterial cultures. PMID:26890797

  8. Induction of secondary metabolism of Aspergillus terreus ATCC 20542 in the batch bioreactor cultures.

    Boruta, Tomasz; Bizukojc, Marcin


    Cultivation of Aspergillus terreus ATCC 20542 in a stirred tank bioreactor was performed to induce the biosynthesis of secondary metabolites and provide the bioprocess-related insights into the metabolic capabilities of the investigated strain. The activation of biosynthetic routes was attempted by the diversification of process conditions and growth media. Several strategies were tested, including the addition of rapeseed oil or inulin, changing the concentration of nitrogen source, reduction of chlorine supply, cultivation under saline conditions, and using various aeration schemes. Fifteen secondary metabolites were identified in the course of the study by using ultra-high performance liquid chromatography coupled with mass spectrometry, namely mevinolinic acid, 4a,5-dihydromevinolinic acid, 3α-hydroxy-3,5-dihydromonacolin L acid, terrein, aspulvinone E, dihydroisoflavipucine, (+)-geodin, (+)-bisdechlorogeodin, (+)-erdin, asterric acid, butyrolactone I, desmethylsulochrin, questin, sulochrin, and demethylasterric acid. The study also presents the collection of mass spectra that can serve as a resource for future experiments. The growth in a salt-rich environment turned out to be strongly inhibitory for secondary metabolism and the formation of dense and compact pellets was observed. Generally, the addition of inulin, reducing the oxygen supply, and increasing the content of nitrogen source did not enhance the production of examined molecules. The most successful strategy involved the addition of rapeseed oil to the chlorine-deficient medium. Under these conditions, the highest levels of butyrolactone I, asterric acid, and mevinolinic acid were achieved and the presence of desmethylsulochrin and (+)-bisdechlorogeodin was detected in the broth. The constant and relatively high aeration rate in the idiophase was shown to be beneficial for terrein and (+)-geodin biosynthesis. PMID:26603760

  9. Quantitative Characterization of the Growth of Deinococcus geothermalis DSM-11302: Effect of Inoculum Size, Growth Medium and Culture Conditions

    Julie Bornot


    Full Text Available Due to their remarkable resistance to extreme conditions, Deinococcaceae strains are of great interest to biotechnological prospects. However, the physiology of the extremophile strain Deinococcus geothermalis has scarcely been studied and is not well understood. The physiological behaviour was then studied in well-controlled conditions in flask and bioreactor cultures. The growth of D. geothermalis type strains was compared. Among the strains tested, the strain from the German Collection of Microorganisms (Deutsche Sammlung von Mikroorganismen DSM DSM-11302 was found to give the highest biomass concentration and growth rate: in a complex medium with glucose, the growth rate reached 0.75 h−1 at 45 °C. Yeast extract concentration in the medium had significant constitutive and catalytic effects. Furthermore, the results showed that the physiological descriptors were not affected by the inoculum preparation steps. A batch culture of D. geothermalis DSM-11302 on defined medium was carried out: cells grew exponentially with a maximal growth rate of 0.28 h−1 and D. geothermalis DSM-11302 biomass reached 1.4 g·L−1 in 20 h. Then, 1.4 gDryCellWeight of biomass (X was obtained from 5.6 g glucose (Glc consumed as carbon source, corresponding to a yield of 0.3 CmolX·CmolGlc−1; cell specific oxygen uptake and carbon dioxide production rates reached 216 and 226 mmol.CmolX−1·h−1, respectively, and the respiratory quotient (QR value varied from 1.1 to 1.7. This is the first time that kinetic parameters and yields are reported for D. geothermalis DSM-11302 grown on a mineral medium in well-controlled batch culture.

  10. Fractionation and characterization of polysaccharides from cyanobacterium Spirulina (Arthrospira) maxima in nitrogen-limited batch culture


    By a sequentially selective extraction procedure, polysaccharides (PS) from cyanobacterium Spirulina (Arthrospira) maxima that can be bio-functionally healthy components were fractionated in four parts including the culture medium (PSCM), the external layers of the cell (PSEL), the cell wall (PSCW) and storage granules (PSSG). The four fractionated parts of polysaccharides were characterized by gas-liquid chromatography (GLC) equipped with FID and fused-silica capillary column (15 m×0.53 mm i. d.). The contents of PSCM, PSEL, PSCW and PSSG were about 2.0%, 2.6%, 10.0% and 52.0% to cell dry matter, respectively. Glucose was almost the only monosaccharide in PSSG and PSCW and most predominant in PSEL, while in PSCM, xylose, rhamnose and glucose were the main ones. Two uronic acids represented by glucuronic acid and galacturoic acid, six neutral monosaccharides including fucose, rhamnose, xylose, mannose, galactose and glucose, and two possible unidentified sugars were found in PSEL and PSCM. These data are valuable for the selective productions of high-added value sugars from Spirulina.

  11. Use of a novel air separation system in a fed-batch fermentative culture of Escherichia coli.

    Fass, R; Clem, T R; Shiloach, J


    A novel air separation system based on permeable membrane gas separation technology was used to cultivate Escherichia coli. The system fulfilled the dissolved oxygen requirements of a culture of E. coli grown on a glucose synthetic medium at a high and constant growth rate of 0.55 h-1. A biomass yield of 45 g (dry weight) per liter was achieved, and no by-product inhibition by acetate or CO2 was observed.


    C. Cruz-Martínez


    Full Text Available AbstractNH4NO3 simultaneously provides a readily assimilable nitrogen source (ammonia and a reserve of nitrogen (nitrate, allowing for an increase in Arthrospira platensis biomass production while reducing the cost of the cultivation medium. In this study, a 22plus star central composite experimental design combined with response surface methodology was employed to analyze the influence of light intensity (I and the total amount of added NH4NO3 (Mt on a bench-scale tubular photobioreactor for fed-batch cultures. The maximum cell concentration (Xm, cell productivity (PX and biomass yield on nitrogen (YX/N were evaluated, as were the protein and lipid contents. Under optimized conditions (I = 148 μmol·photons·m-2·s-1 and Mt = 9.7 mM NH4NO3, Xm = 4710 ±34.4 mg·L-1, PX = 478.9 ±3.8 mg·L-1·d-1 and YX/N = 15.87 ±0.13 mg·mg-1 were obtained. The best conditions for protein content in the biomass (63.2% were not the same as those that maximized cell growth (I = 180 μmol·photons·m-2·s-1 and Mt = 22.5 mM NH4NO3. Based on these results, it is possible to conclude that ammonium nitrate is an interesting alternate nitrogen source for the cultivation of A. platensisin a fed-batch process and could be used for other photosynthetic microorganisms.

  13. Calcium transcriptionally regulates the biofilm machinery of Xylella fastidiosa to promote continued biofilm development in batch cultures.

    Parker, Jennifer K; Chen, Hongyu; McCarty, Sara E; Liu, Lawrence Y; De La Fuente, Leonardo


    The functions of calcium (Ca) in bacteria are less characterized than in eukaryotes, where its role has been studied extensively. The plant-pathogenic bacterium Xylella fastidiosa has several virulence features that are enhanced by increased Ca concentrations, including biofilm formation. However, the specific mechanisms driving modulation of this feature are unclear. Characterization of biofilm formation over time showed that 4 mM Ca supplementation produced denser biofilms that were still developing at 96 h, while biofilm in non-supplemented media had reached the dispersal stage by 72 h. To identify changes in global gene expression in X. fastidiosa grown in supplemental Ca, RNA-Seq of batch culture biofilm cells was conducted at three 24-h time intervals. Results indicate that a variety of genes are differentially expressed in response to Ca, including genes related to attachment, motility, exopolysaccharide synthesis, biofilm formation, peptidoglycan synthesis, regulatory functions, iron homeostasis, and phages. Collectively, results demonstrate that Ca supplementation induces a transcriptional response that promotes continued biofilm development, while biofilm cells in nonsupplemented media are driven towards dispersion of cells from the biofilm structure. These results have important implications for disease progression in planta, where xylem sap is the source of Ca and other nutrients for X. fastidiosa. PMID:26913481

  14. Genetic Algorithmic Optimization of PHB Production by a Mixed Culture in an Optimally Dispersed Fed-batch Bioreactor

    Pratap R. Patnaik


    Full Text Available Poly-β-hydroxybutyrate (PHB is an energy-storage polymer whose properties are similar to those of chemical polymers such as polyethylene and polypropylene. Moreover, PHB is biodegradable, absorbed by human tissues and less energy-consuming than synthetic polymers. Although Ralstonia eutropha is widely used to synthesize PHB, it is inefficient in utilizing glucose and similar sugars. Therefore a co-culture of R. eutropha and Lactobacillus delbrueckii is preferred since the latter can convert glucose to lactate, which R. eutropha can metabolize easily. Tohyama et al. [24] maximized PHB production in a well-mixed fed-batch bioreactor with glucose and (NH42SO4 as the primary substrates. Since production-scale bioreactors often deviate from ideal laboratory-scale reactors, a large bioreactor was simulated by means of a dispersion model with the kinetics determined by Tohyama et al. [24] and dispersion set at an optimum Peclet number of 20 [32]. The time-dependent feed rates of the two substrates were determined through a genetic algorithm (GA to maximize PHB production. This bioreactor produced 22.2% more PHB per liter and 12.8% more cell mass than achieved by Tohyama et al. [24]. These results, and similar observations with other fermentations, indicate the feasibility of enhancing the efficiency of large nonideal bioreactors through GA optimizations.

  15. Impact of dilution on microbial community structure and functional potential: comparison of numerical simulations and batch culture experiments

    Franklin, R. B.; Garland, J. L.; Bolster, C. H.; Mills, A. L.


    A series of microcosm experiments was performed using serial dilutions of a sewage microbial community to inoculate a set of batch cultures in sterile sewage. After inoculation, the dilution-defined communities were allowed to regrow for several days and a number of community attributes were measured in the regrown assemblages. Based upon a set of numerical simulations, community structure was expected to differ along the dilution gradient; the greatest differences in structure were anticipated between the undiluted-low-dilution communities and the communities regrown from the very dilute (more than 10(-4)) inocula. Furthermore, some differences were expected among the lower-dilution treatments (e.g., between undiluted and 10(-1)) depending upon the evenness of the original community. In general, each of the procedures used to examine the experimental community structures separated the communities into at least two, often three, distinct groups. The groupings were consistent with the simulated dilution of a mixture of organisms with a very uneven distribution. Significant differences in community structure were detected with genetic (amplified fragment length polymorphism and terminal restriction fragment length polymorphism), physiological (community level physiological profiling), and culture-based (colony morphology on R2A agar) measurements. Along with differences in community structure, differences in community size (acridine orange direct counting), composition (ratio of sewage medium counts to R2A counts, monitoring of each colony morphology across the treatments), and metabolic redundancy (i.e., generalist versus specialist) were also observed, suggesting that the differences in structure and diversity of communities maintained in the same environment can be manifested as differences in community organization and function.

  16. Modelling of Batch Process Operations

    Abdul Samad, Noor Asma Fazli; Cameron, Ian; Gani, Rafiqul

    Here a batch cooling crystalliser is modelled and simulated as is a batch distillation system. In the batch crystalliser four operational modes of the crystalliser are considered, namely: initial cooling, nucleation, crystal growth and product removal. A model generation procedure is shown that s...

  17. Stochastic modelling of Listeria monocytogenes single cell growth in cottage cheese with mesophilic lactic acid bacteria from aroma producing cultures

    Østergaard, Nina Bjerre; Christiansen, Lasse Engbo; Dalgaard, Paw


    A stochastic model was developed for simultaneous growth of low numbers of Listeria monocytogenes and populations of lactic acid bacteria from the aroma producing cultures applied in cottage cheese. During more than two years, different batches of cottage cheese with aroma culture were analysed for...... pH, lactic acid concentration and initial concentration of lactic acid bacteria. These data and bootstrap sampling were used to represent product variability in the stochastic model. Lag time data were estimated from observed growth data (lactic acid bacteria) and from literature on L. monocytogenes....... 2014. Modelling the effect of lactic acid bacteria from starter- and aroma culture on growth of Listeria monocytogenes in cottage cheese. International Journal of Food Microbiology. 188, 15-25]. Growth of L. monocytogenes single cells, using lag time distributions corresponding to three different...

  18. Microarray-based MALDI-TOF mass spectrometry enables monitoring of monoclonal antibody production in batch and perfusion cell cultures.

    Steinhoff, Robert F; Karst, Daniel J; Steinebach, Fabian; Kopp, Marie R G; Schmidt, Gregor W; Stettler, Alexander; Krismer, Jasmin; Soos, Miroslav; Pabst, Martin; Hierlemann, Andreas; Morbidelli, Massimo; Zenobi, Renato


    Cell culture process monitoring in monoclonal antibody (mAb) production is essential for efficient process development and process optimization. Currently employed online, at line and offline methods for monitoring productivity as well as process reproducibility have their individual strengths and limitations. Here, we describe a matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS)-based on a microarray for mass spectrometry (MAMS) technology to rapidly monitor a broad panel of analytes, including metabolites and proteins directly from the unpurified cell supernatant or from host cell culture lysates. The antibody titer is determined from the intact antibody mass spectra signal intensity relative to an internal protein standard spiked into the supernatant. The method allows a semi-quantitative determination of light and heavy chains. Intracellular mass profiles for metabolites and proteins can be used to track cellular growth and cell productivity. PMID:26707204

  19. Robust optimization for nonlinear time-delay dynamical system of dha regulon with cost sensitivity constraint in batch culture

    Yuan, Jinlong; Zhang, Xu; Liu, Chongyang; Chang, Liang; Xie, Jun; Feng, Enmin; Yin, Hongchao; Xiu, Zhilong


    Time-delay dynamical systems, which depend on both the current state of the system and the state at delayed times, have been an active area of research in many real-world applications. In this paper, we consider a nonlinear time-delay dynamical system of dha-regulonwith unknown time-delays in batch culture of glycerol bioconversion to 1,3-propanediol induced by Klebsiella pneumonia. Some important properties and strong positive invariance are discussed. Because of the difficulty in accurately measuring the concentrations of intracellular substances and the absence of equilibrium points for the time-delay system, a quantitative biological robustness for the concentrations of intracellular substances is defined by penalizing a weighted sum of the expectation and variance of the relative deviation between system outputs before and after the time-delays are perturbed. Our goal is to determine optimal values of the time-delays. To this end, we formulate an optimization problem in which the time delays are decision variables and the cost function is to minimize the biological robustness. This optimization problem is subject to the time-delay system, parameter constraints, continuous state inequality constraints for ensuring that the concentrations of extracellular and intracellular substances lie within specified limits, a quality constraint to reflect operational requirements and a cost sensitivity constraint for ensuring that an acceptable level of the system performance is achieved. It is approximated as a sequence of nonlinear programming sub-problems through the application of constraint transcription and local smoothing approximation techniques. Due to the highly complex nature of this optimization problem, the computational cost is high. Thus, a parallel algorithm is proposed to solve these nonlinear programming sub-problems based on the filled function method. Finally, it is observed that the obtained optimal estimates for the time-delays are highly satisfactory

  20. Determination of some significant batch culture conditions affecting acetyl-xylan esterase production by Penicillium notatum NRRL-1249

    Akhtar MN


    Full Text Available Abstract Background Acetyl-xylan esterase (AXE, EC hydrolyses acetate group from the linear chain of xylopyranose residues bound by β-1,4-linkage. The enzyme finds commercial applications in bio-bleaching of wood pulp, treating animal feed to increase digestibility, processing food to increase clarification and converting lignocellulosics to feedstock and fuel. In the present study, we report on the production of an extracellular AXE from Penicillium notatum NRRL-1249 by solid state fermentation (SSF. Results Wheat bran at a level of 10 g (with 4 cm bed height was optimized as the basal substrate for AXE production. An increase in enzyme activity was observed when 7.5 ml of mineral salt solution (MSS containing 0.1% KH2PO4, 0.05% KCl, 0.05% MgSO4.7H2O, 0.3% NaNO3, 0.001% FeSO4.2H2O and 0.1% (v/w Tween-80 as an initial moisture content was used. Various nitrogen sources including ammonium sulphate, urea, peptone and yeast extract were compared for enzyme production. Maximal enzyme activity of 760 U/g was accomplished which was found to be highly significant (p ≤ 0.05. A noticeable enhancement in enzyme activity was observed when the process parameters including incubation period (48 h, initial pH (5, 0.2% (w/w urea as nitrogen source and 0.5% (v/w Tween-80 as a stimulator were further optimized using a 2-factorial Plackett-Burman design. Conclusion From the results it is clear that an overall improvement of more than 35% in terms of net enzyme activity was achieved compared to previously reported studies. This is perhaps the first report dealing with the use of P. notatum for AXE production under batch culture SSF. The Plackett-Burman model terms were found highly significant (HS, suggesting the potential commercial utility of the culture used (df = 3, LSD = 0.126.

  1. Acid protease and formation of multiple forms of glucoamylase in batch and continuous cultures of Aspergillus niger

    Aalbæk, Thomas; Reeslev, Morten; Jensen, Bo; Eriksen, Susanne Havn


    In order to identify factors responsible for production of multiple forms of glucoamylase (GA) by Aspergillus niger Bo-1, the fungus was cultured in both complex and defined media in pH-controlled batch fermenters and chemostats. At all culture conditions three forms of GA were produced with...... extracellular profile of the multiple forms of GA by degradation of GAI to GAII, whereas no proteolytic processing of the GA profile was observed in the defined medium. In vitro experiments confirmed that the pH-induced modifications of the GA multiple-form profile were caused by proteolytic and not spontaneous...

  2. Culturing soles on ragworms: growth and feeding behaviour

    Ende, S.S.W.


    Ende, S.S.W. (2015). Culturing soles on ragworms: Growth and feeding behaviour. PhD thesis, Wageningen University, The Netherlands. Despite the high market demand and intensive research efforts since the 1960s commercial culture of common sole (Solea solea L.) has been unsuccessful. Problems related to availability and price of suitable raw materials (invertebrates) and the low tolerance to crowding have hampered the development of intensive sole culture. Alternative extensive pond cultures s...

  3. Identification of critical cell concentrations with in-situ and ex-situ characterization of physico-chemical properties of broth during oxidative axenic cultures of Yarrowia lipolytica in fed-batch mode

    Kraiem, Hazar; Manon, Yannick; Anne-Archard, Dominique; Fillaudeau, Luc


    Identification of critical cell concentrations with in-situ and ex-situ characterization of physico-chemical properties of broth during oxidative axenic cultures of Yarrowia lipolytica in fed-batch mode

  4. Culturally Risk Averse? – A Model of Economic Growth with Endogenous Culture

    Mariko Klasing


    This research studies the dynamic interplay between the evolution of cultural traits and the process of economic development. In particular, this paper shows how cultural attitudes, in this case differences in risk attitudes, influence economic decision making while at the same time illustrating how these attitudes endogenously change over time. In order to study this joint evolution of cultural and economic variables, an endogenous growth model is integrated with a cultural transmission mech...

  5. Growth and Plating of Cell Suspension Cultures of Datura Innoxia

    Engvild, Kjeld Christensen


    ammonium malate) or on NO3−-N alone. Dry weight yield was proportional to the amount of nitrate-N added (47 mg/mg N). Filtered suspension cultures containing single cells (plating cultures) could be grown in agar in petri dishes when NAA or 2,4-D were used as growth substances. Cells grew at densities...

  6. Evaluation of batch and semi-continuous culture of Porphyridium purpureum in a photobioreactor in high latitudes using Fourier Transform Infrared spectroscopy for monitoring biomass composition and metabolites production.

    Fuentes-Grünewald, C; Bayliss, C; Zanain, M; Pooley, C; Scolamacchia, M; Silkina, A


    The culture strategy (batch or semi-continuous) was evaluated for biomass and metabolite formation in Porphyridium purpureum cultures in higher latitudes (>50° N). FTIR was used technology to characterise macromolecule biomass composition and the quality of the metabolites produced. Semi-continuous culture was found to be the most feasible strategy to develop microalgal biomass production facilities in higher latitudes, due to their average results in terms of growth rate (0.27 day(-1)), duplication time (2.5-4 days), maximum cell density achieved (1.43*10(7) cells m L(-1)), biomass productivity of 47.04 mg L(-1) day(-1) and an exopolysaccharides production of 2.1 g L(-1). FTIR technology applied to microalgal production is a valuable and reliable tool to determine on a daily basis not just the evolution of macromolecules composition (lipids, carbohydrates and proteins) but also for the characterisation of the metabolites produced such as phycoerythrin or exopolysaccharides in P. purpureum cultures. PMID:25913882

  7. The rules on suspension cell batch culture of Hedyotis diffusa%白花蛇舌草悬浮细胞分批培养规律的研究

    于瑞莲; 许金国; 顾晓娟


    rate of [ NO3- ] is far higher than [ NH4+ ] ,to 7. 14 μg/( mL ? d) ,cell growth/and the polysaccharide production were non-coupled and the polysaccharide was generated in the late culture stage. Conclusion It was found that the rules on suspension cell batch culture of Hedyotis diffusa with the time is helpful for later culture technique.

  8. Reaction Rate Estimators Of Fed-Batch Process For Poly-Beta-Hydroxybutyrate (PHB) Production by Mixed Culture

    Lyubenova, V.; Ignatova, M.; Novák, Miroslav; Patarinska, T.

    Polodiv: University of Food Technologies, 2006, s. 1-8. [International Scientific Conference “Food Science, Techniques and Technologies 2006”. Plovdiv (BG), 27.10.2006-28.10.2006] Grant ostatní: Bulgarian Academy of Science(BG) TH 1509/2005 Institutional research plan: CEZ:AV0Z10750506 Keywords : Fed-Batch Process * Poly-b-Hydroxybutyrate * Bio-process control Subject RIV: BC - Control Systems Theory

  9. Quantitative image analysis as a tool for Yarrowia lipolytica dimorphic growth evaluation in different culture media.

    Braga, A; Mesquita, D P; Amaral, A L; Ferreira, E C; Belo, I


    Yarrowia lipolytica, a yeast strain with a huge biotechnological potential, capable to produce metabolites such as γ-decalactone, citric acid, intracellular lipids and enzymes, possesses the ability to change its morphology in response to environmental conditions. In the present study, a quantitative image analysis (QIA) procedure was developed for the identification and quantification of Y. lipolytica W29 and MTLY40-2P strains dimorphic growth, cultivated in batch cultures on hydrophilic (glucose and N-acetylglucosamine (GlcNAc) and hydrophobic (olive oil and castor oil) media. The morphological characterization of yeast cells by QIA techniques revealed that hydrophobic carbon sources, namely castor oil, should be preferred for both strains growth in the yeast single cell morphotype. On the other hand, hydrophilic sugars, namely glucose and GlcNAc caused a dimorphic transition growth towards the hyphae morphotype. Experiments for γ-decalactone production with MTLY40-2P strain in two distinct morphotypes (yeast single cells and hyphae cells) were also performed. The obtained results showed the adequacy of the proposed morphology monitoring tool in relation to each morphotype on the aroma production ability. The present work allowed establishing that QIA techniques can be a valuable tool for the identification of the best culture conditions for industrial processes implementation. PMID:26546055

  10. Response coefficient analysis of a fed-batch bioreactor to dissolved oxygen perturbation in complementary cultures during PHB production

    Patnaik Pratap R


    Full Text Available Abstract Background Although the production of poly-β-hydroxybutyrate (PHB has many biological, energetic and environmental advantages over chemically synthesized polymers, synthetic polymers continue to be produced industrially since the productivities of fermentation processes fr PHB are not yet economically competitive. Improvement of a PHB fermentation requires good understanding and optimization under the realistic conditions of large bioreactors. Laboratory-scale studies have shown that co-cultures of Ralstonia eutropha and Lactobacillus delbrueckii generate better fermentation efficiencies than R. eutropha alone. In large bioreactors, incomplete dispersioin and perturbations in the dissolved oxygen (DO concentration, both of which affect the fermentation, have to be considered. This study analyzes the effect of DO fluctuations on bioreactor performance for both ideal and optimally dispersed broths. Results Response coefficient analysis was employed to obtain quantitative information on the effect of DO perturbations on different variables. Three values of the Peclet number (Pe cheracterized three levels of dispersion: Pe = 0.01 for nearly complete dispersion, Pe = 20 for optimum dispersion and Pe = 60 for insufficient dispersion. The response coefficients (RCs of the pairs of bacterial concentrations and the main substrates, glucose and ammonium chloride, showed contrasting variations with time. Lactate, a critical intermediate, and PHB had similar RC profiles but those of lactate were one to two orders of magnitude larger than other RCs. Significantly, the optimum Pe also resulted in the largest RCs, suggesting a balance between productivity and reactor stability. Conclusion Since R. eutropha requires oxygen for its growth whereas L. delbrueckii does not, fluctuations in the DO concentartion have a strong influence on the fermentation. Apart from this, the mechanism of PHB biosynthesis indicates that control of lactate is a critical

  11. Modelling of Batch Process Operations

    Abdul Samad, Noor Asma Fazli; Cameron, Ian; Gani, Rafiqul

    Here a batch cooling crystalliser is modelled and simulated as is a batch distillation system. In the batch crystalliser four operational modes of the crystalliser are considered, namely: initial cooling, nucleation, crystal growth and product removal. A model generation procedure is shown that...... Freedom (DoF) analysis, choice of variables to satisfy DoF and solution strategy. The batch distillation model for setting up and testing an operating sequence is developed and simulated. This looks at such operating policies as constant reflux ratio or set concentration of specific compound in the...

  12. Milk stimulates growth of prostate cancer cells in culture.

    Tate, Patricia L; Bibb, Robert; Larcom, Lyndon L


    Concern has been expressed about the fact that cows' milk contains estrogens and could stimulate the growth of hormone-sensitive tumors. In this study, organic cows' milk and two commercial substitutes were digested in vitro and tested for their effects on the growth of cultures of prostate and breast cancer cells. Cows' milk stimulated the growth of LNCaP prostate cancer cells in each of 14 separate experiments, producing an average increase in growth rate of over 30%. In contrast, almond milk suppressed the growth of these cells by over 30%. Neither cows' milk nor almond milk affected the growth of MCF-7 breast cancer cells or AsPC-1 pancreatic cancer cells significantly. Soy milk increased the growth rate of the breast cancer cells. These data indicate that prostate and breast cancer patients should be cautioned about the possible promotional effects of commercial dairy products and their substitutes. PMID:22043817

  13. Mixing Intensity Effects of Attached Growth on Enriched Anammox Cultures

    Pongsak Noophan


    Full Text Available Anaerobic ammonium oxidation (anammox is a promising new technology for the treatment of wastewater with high ammonium and low carbon concentrations. Earlier work suggests that optimal processing would be realized within a sequencing batch reactor (SBR. However, the relatively slow growth of anammox bacteria inhibits the rates of nitrogen removal and biomass yielding. Improved anammox performance has been demonstrated when the bacteria are in granular form or attached to a growth medium. Little has been reported concerning the effect of mixing rate on nitrogen (N removal with attached anammox bacteria. This work subjected anammox bacteria attached to polystyrene sponge in SBR to various intensities of impeller mixing and studied the effect on NH4+ and NO2- removal. Nitrogen processing was virtually the same with velocity gradient values between 13.5 and 222 s-1. More vigorous mixing at 407 and 666 s-1 values significantly inhibited N removal, likely due to detachment of bacteria from the growth medium. Following the poor N removal at the two higher mixing intensities, agitation was reduced to 24.8 s-1 velocity gradient value. Recovery of N removal rates required 2-3 weeks, the slow time attributed to slow reattachment to the growth medium. Denaturing gradient gel electrophoresis (DGGE analysis identified the prominent anammox species in the experimental study as Candidatus Brocadia anammoxidans and Candidatus Kuenenia stuttgartiensis.

  14. Hormonal regulation of wheat growth during hydroponic culture

    Wetherell, Donald


    Hormonal control of root growth has been explored as one means to alleviate the crowding of plant root systems experienced in prototype hydroponic biomass production chambers being developed by the CELSS Breadboard Project. Four plant hormones, or their chemical analogs, which have been reported to selectively inhibit root growth, were tested by adding them to the nutrient solutions on day 10 of a 25 day growth test using spring wheat in hydroponic cultures. Growth and morphological changes is both shoot and root systems were evaluated. In no case was it possible to inhibit root growth without a comparable inhibition of shoot growth. It was concluded that this approach is unlikely to prove useful for wheat.

  15. Microspectroscopic investigation of the membrane clogging during the sterile filtration of the growth media for mammalian cell culture.

    Cao, Xiaolin; Loussaert, James A; Wen, Zai-qing


    Growth media for mammalian cell culture are very complex mixtures of several dozens of ingredients, and thus the preparation of qualified media is critical to viable cell density and final product titers. For liquid media prepared from powdered ingredients, sterile filtration is required prior to use to safeguard the cell culture process. Recently one batch of our prepared media failed to pass through the sterile filtration due to the membrane clogging. In this study, we report the root cause analysis of the failed sterile filtration based on the investigations of both the fouling media and the clogged membranes with multiple microspectroscopic techniques. Cellular particles or fragments were identified in the fouling media and on the surfaces of the clogged membranes, which were presumably introduced to the media from the bacterial contamination. This study demonstrated that microspectroscopic techniques may be used to rapidly identify both microbial particles and inorganic precipitates in the cell culture media. PMID:26637950

  16. Culture, Gender and Growth. Policy Insights, No. 15

    Jutting, Johannes; Morrisson, Christian


    While the overall picture for gender equality is still gloomy, recent changes in family institutions in some countries provide an enlightening example. Developing countries are starting to reform cultural barriers to gender equality that limit their growth prospects. Morocco, Algeria, Egypt and some states of India are some examples of countries…

  17. Improvement of Growth and Periplocin Yield of Periploca sepium Adventitious Root Cultures by Altering Nitrogen Source Supply

    ZHANG Jian; GAO Wen-yuan; WANG Juan; LI Xing-lin; XIAO Pei-gen


    Objective To increase the ultimate yield of periplocin in Periploca sepium adventitious root cultures by a two-stage culture based on nitrogen source.Methods Firstly,the effects of nitrogen source(NH-NO-)at different ratios and different total initial nitrogen amounts on the accumulation of biomass and secondary metabolites in adventitious root cultures of P sepium were investigated,and growth and production media for the two-stage culture based on the above results were established.Results The highest biomass and periplocin content were obtained in the culture medium of 15 mmol/L total nitrogen amount with NH-NO(1:2)and 30 mmol/L total nitrogen amount with nitrate as the sole nitrogen source.By adopting a fed-batch cultivation strategy,the dry weight adventitious root,periplocin content and yield were increased by 136%,108%,and 389%,respectively when compared with those of the control,reaching up to 8.13 g/L,157.15 μg/g,and 1277.63 μg/L,respectively.Furthermore,it was found that in the process of two-stage culture,the adventitious roots grew thicker significantly after they were transferred into production medium directly.Conclusion The ultimate yield of periplocin in P.sepium adventitious root cultures could be significantly increased by a two-stage culture based on nitrogen source.

  18. Effect of fibrolytic enzymes added to a Andropogon gayanus grass silage-concentrate diet on rumen fermentation in batch cultures and the artificial rumen (Rusitec).

    Ribeiro, G O; Gonçalves, L C; Pereira, L G R; Chaves, A V; Wang, Y; Beauchemin, K A; McAllister, T A


    In vitro batch cultures were used to screen four fibrolytic enzyme mixtures at two dosages added to a 60 : 40 silage : concentrate diet containing the C(4) tropical grass Andropogon gayanus grass ensiled at two maturities - vegetative stage (VS) and flowering stage (FS). Based on these studies, one enzyme mixture was selected to treat the same diets and evaluate its impact on fermentation using an artificial rumen (Rusitec). In vitro batch cultures were conducted as a completely randomized design with two runs, four replicates per run and 12 treatments in a factorial arrangement (four enzyme mixtures×three doses). Enzyme additives (E1, E2, E3 and E4) were commercial products and contained a range of endoglucanase, exoglucanase and xylanase activities. Enzymes were added to the complete diet 2 h before incubation at 0, 2 and 4 μl/g of dry matter (DM). Gas production (GP) was measured after 3, 6, 12, 24 and 48 h of incubation. Disappearance of DM (DMD), NDF (NDFD) and ADF (ADFD) were determined after 24 and 48 h. For all four enzyme mixtures, a dosage effect (P>0.05) DM, N, NDF or ADF disappearance after 48 h of incubation nor daily ammonia-N, volatile fatty acids or CH(4) production. However, enzyme application increased (Psilage feed particle-bound (firmly associated) fractions. With A. gayanus silage diets, degradation may not be limited by microbial colonization, but rather by the ability of fibrolytic enzymes to degrade plant cell walls within this recalcitrant forage. PMID:25697879

  19. Stochastic modelling of Listeria monocytogenes single cell growth in cottage cheese with mesophilic lactic acid bacteria from aroma producing cultures.

    Østergaard, Nina Bjerre; Christiansen, Lasse Engbo; Dalgaard, Paw


    A stochastic model was developed for simultaneous growth of low numbers of Listeria monocytogenes and populations of lactic acid bacteria from the aroma producing cultures applied in cottage cheese. During more than two years, different batches of cottage cheese with aroma culture were analysed for pH, lactic acid concentration and initial concentration of lactic acid bacteria. These data and bootstrap sampling were used to represent product variability in the stochastic model. Lag time data were estimated from observed growth data (lactic acid bacteria) and from literature on L. monocytogenes single cells. These lag time data were expressed as relative lag times and included in growth models. A stochastic model was developed from an existing deterministic growth model including the effect of five environmental factors and inter-bacterial interaction [Østergaard, N.B, Eklöw, A and Dalgaard, P. 2014. Modelling the effect of lactic acid bacteria from starter- and aroma culture on growth of Listeria monocytogenes in cottage cheese. International Journal of Food Microbiology. 188, 15-25]. Growth of L. monocytogenes single cells, using lag time distributions corresponding to three different stress levels, was simulated. The simulated growth was subsequently compared to growth of low concentrations (0.4-1.0 CFU/g) of L. monocytogenes in cottage cheese, exposed to similar stresses, and in general a good agreement was observed. In addition, growth simulations were performed using population relative lag time distributions for L. monocytogenes as reported in literature. Comparably good predictions were obtained as for the simulations performed using lag time data for individual cells of L. monocytogenes. Therefore, when lag time data for individual cells are not available, it was suggested that relative lag time distributions for L. monocytogenes can be used as a qualified default assumption when simulating growth of low concentrations of L. monocytogenes. PMID:25847186

  20. Microalgal TAG production strategies: why batch beats repeated-batch

    Benvenuti, G.; Lamers, P.P.; Breuer, G.; Bosma, R.; Cerar, Ana; Wijffels, R.H.; Barbosa, M. J.


    Background For a commercially feasible microalgal triglyceride (TAG) production, high TAG productivities are required. The operational strategy affects TAG productivity but a systematic comparison between different strategies is lacking. For this, physiological responses of Nannochloropsis sp. to nitrogen (N) starvation and N-rich medium replenishment were studied in lab-scale batch and repeated-batch (part of the culture is periodically harvested and N-rich medium is re-supplied) cultivation...

  1. Key Process Conditions for Production of C4 Dicarboxylic Acids in Bioreactor Batch Cultures of an Engineered Saccharomyces cerevisiae Strain

    Zelle, R.M.; De Hulster, E.; Kloezen, W.; Pronk, J.T.; Van Maris, A.J.A.


    A recent effort to improve malic acid production by Saccharomyces cerevisiae by means of metabolic engineering resulted in a strain that produced up to 59 g liter−1 of malate at a yield of 0.42 mol (mol glucose)−1 in calcium carbonate-buffered shake flask cultures. With shake flasks, process paramet

  2. Key Process Conditions for Production of C4 Dicarboxylic Acids in Bioreactor Batch Cultures of an Engineered Saccharomyces cerevisiae Strain

    Zelle, R.M.; De Hulster, E.; Kloezen, W.; Pronk, J.T.; Van Maris, A.J.A.


    A recent effort to improve malic acid production by Saccharomyces cerevisiae by means of metabolic engineering resulted in a strain that produced up to 59 g liter(-1) of malate at a yield of 0.42 mol (mol glucose)(-1) in calcium carbonate-buffered shake flask cultures. With shake flasks, process par

  3. Growth of microbial mixed cultures under anaerobic, alkaline conditions

    Cement and concrete are the most important engineered barrier materials in a repository for low- and intermediate-level waste and thus represent the most significant component of the total disposal inventory. Based on the chemical composition of the concrete used in the repository and the groundwater fluxes in the modelled host rock, it is to be expected that the pH in the near vicinity of the repository could exceed a value of 10.5 for more than a million years. The groundwater in the repository environment also has a limited carbon concentration. Since microorganisms will be present in a repository and can even find suitable living conditions within the waste itself, investigations were carried out in order to establish the extent to which microbial activity is possible under the extreme conditions of the repository near-field. For the investigations, alkalophilic cultures were enriched from samples from alkaline habitats and from Valanginian Marl. Anaerobic bacteria with fermentative, sulfate-reducing and methanogenic metabolism were selected. The growth and activity of the mixed cultures were studied under alkaline conditions and the dependence on pH and carbon concentration determined. All the mixed cultures investigated are alkalophilic. The optimum growth range for the cultures is between pH 9.0 and pH 10.0. The activity limit for the fermentative mixed culture is at pH 12, for the sulfate-reducers at pH 11 and for the methanogens at pH 10.5. Given the limited supply of carbon, the mixed cultures can only grow under slightly alkaline conditions. Only the fermentative cultures are capable of surviving with limited carbon supply at pH 13. (author) 24 figs., 18 tabs., 101 refs

  4. Production of Gymnemic Acid Depends on Medium, Explants, PGRs, Color Lights, Temperature, Photoperiod, and Sucrose Sources in Batch Culture of Gymnema sylvestre

    A. Bakrudeen Ali Ahmed


    Full Text Available Gymnema sylvestre (R.Br. is an important diabetic medicinal plant which yields pharmaceutically active compounds called gymnemic acid (GA. The present study describes callus induction and the subsequent batch culture optimization and GA quantification determined by linearity, precision, accuracy, and recovery. Best callus induction of GA was noticed in MS medium combined with 2,4-D (1.5 mg/L and KN (0.5 mg/L. Evaluation and isolation of GA from the calluses derived from different plant parts, namely, leaf, stem and petioles have been done in the present case for the first time. Factors such as light, temperature, sucrose, and photoperiod were studied to observe their effect on GA production. Temperature conditions completely inhibited GA production. Out of the different sucrose concentrations tested, the highest yield (35.4 mg/g d.w was found at 5% sucrose followed by 12 h photoperiod (26.86 mg/g d.w. Maximum GA production (58.28 mg/g d.w was observed in blue light. The results showed that physical and chemical factors greatly influence the production of GA in callus cultures of G. sylvestre. The factors optimized for in vitro production of GA during the present study can successfully be employed for their large-scale production in bioreactors.

  5. Batch culture fermentation of Penicillium chrysogenum and a report on the isolation, purification, identification and antibiotic activity of citrinin

    PrabhaDevi; DeSouza, L.; Kamat, T.; Rodrigues, C.; Naik, C.G.

    ) plates. Repeated chromatographic separation (column and TLC) yielded pure citrinin. Analytical methods Thin Layer Chromatography (TLC) TLC was performed on aluminium sheets precoated with silica gel 60 F254 (Merk KgaA, Damstadt, Germany, Cat No. 1... enhancement using filamentous fungi lies in their production of secondary metabolites. Thus, optimization of growth conditions accompanied by optimum secondary metabolite production go hand in hand. A time course of biomass accumulation and citrinin...

  6. Evaluation on prebiotic properties of β-glucan and oligo-β-glucan from mushrooms by human fecal microbiota in fecal batch culture

    Chiraphon Chaikliang


    Full Text Available Background: β-glucan is dietary fiber, a structural polysaccharide, β-linked linear chains of D-glucose polymers with variable frequency of branches. β-glucan is isolated from different sources such as cell walls of baker’s yeast (Saccharomyces cerevisiae, cereals (oat and barley and various species of mushrooms. Among 8 mushrooms in the study, Schizophylum commune Fr and Auricularia auricula Judae had the highest in β-glucan contents and the cheapest cost of mushroom per content of β-glucan, respectively. Even the function of β-glucan on immune modulation has been known however no report on interaction between β-glucan and human gut microbiota. Gut microbiota is thought to have health effects by interaction with non-digestible component particular fermentable dietary fiber. It is important to correlate the specific groups of the microbial communities associated with β-glucan fermentation and the consequential SCFA profiles. β-glucan from mushroom may has potential prebiotic function similar to those from commercial yeast (Saccharomyces cerevisiae β-glucan. Objective: To evaluate on prebiotic properties of soluble β-glucans and oligo-β-glucans from Schizophylum commune Fr and Auricularia auricula Judae by fecal fermentation in batch culture. Methods: In vitro fecal fermentation in anaerobic batch cultures under simulated conditions similar to human colon with human faecal samples from three donors were performed. Comparison on 3 β-glucans and 2 oligo-β-glucans have been studied. Sample was taken at 0 h, 24 h and 48 h to analyze the numbers of bacterial changes by fluorescent in situ hybridization (FISH technique. Short chain fatty acids (SCFA were analyzed by HPLC. The prebiotic index (PI was calculated according to the change of 5 specific bacterial genus within 48 h fermentation. Results: Soluble β-glucan from Auricularia auricula Judae increased numbers of bifidobacteria and lactobacillus significantly (P<0.05. The PI of

  7. Detection of Sialic Acid-Utilising Bacteria in a Caecal Community Batch Culture Using RNA-Based Stable Isotope Probing

    Wayne Young


    Full Text Available Sialic acids are monosaccharides typically found on cell surfaces and attached to soluble proteins, or as essential components of ganglioside structures that play a critical role in brain development and neural transmission. Human milk also contains sialic acid conjugated to oligosaccharides, glycolipids, and glycoproteins. These nutrients can reach the large bowel where they may be metabolised by the microbiota. However, little is known about the members of the microbiota involved in this function. To identify intestinal bacteria that utilise sialic acid within a complex intestinal community, we cultured the caecal microbiota from piglets in the presence of 13C-labelled sialic acid. Using RNA-based stable isotope probing, we identified bacteria that consumed 13C-sialic acid by fractionating total RNA in isopycnic buoyant density gradients followed by 16S rRNA gene analysis. Addition of sialic acid caused significant microbial community changes. A relative rise in Prevotella and Lactobacillus species was accompanied by a corresponding reduction in the genera Escherichia/Shigella, Ruminococcus and Eubacterium. Inspection of isotopically labelled RNA sequences suggests that the labelled sialic acid was consumed by a wide range of bacteria. However, species affiliated with the genus Prevotella were clearly identified as the most prolific users, as solely their RNA showed significantly higher relative shares among the most labelled RNA species. Given the relevance of sialic acid in nutrition, this study contributes to a better understanding of their microbial transformation in the intestinal tract with potential implications for human health.

  8. Industrial textile effluent decolourization in stirred and static batch cultures of a new fungal strain Chaetomium globosum IMA1 KJ472923.

    Manai, Imène; Miladi, Baligh; El Mselmi, Abdellatif; Smaali, Issam; Ben Hassen, Aida; Hamdi, Moktar; Bouallagui, Hassib


    The treatment of an industrial textile effluent (ITE) was investigated by using a mono-culture of a novel fungal strain Chaetomium globosum IMA1. This filamentous fungus was selected based on its capacity for dye removal via the biodegradation mechanism. The respirometric analysis showed that C. globosum IMA1 was resistant to an indigo concentration up to 700 mg equivalent COD/L. The decolourization of the ITE by C. globosum was performed in static and stirred batch systems. The better lignin peroxidase (LiP), laccase and the manganese peroxidase (MnP) productions were 829.9 U/L, 83 U/L and 247.8 U/L, respectively since 3-5 days under a stirred condition. Therefore, the chemical oxygen demand (COD) and colors (OD620) removal yields reached 88.4% and 99.8%, respectively. Fourier transforms infrared spectroscopy (FTIR) analysis of the treated effluent showed that the decolourization was due to the degradation and the transformation of dye molecules. However, spectrophotometric examination showed that the complete dye removal was through fungal adsorption (8%), followed by degradation (92%). PMID:26775156

  9. Differential Effect of Culture Temperature and Specific Growth Rate on CHO Cell Behavior in Chemostat Culture

    Vergara, Mauricio; Becerra, Silvana; Berrios, Julio; Osses, Nelson; Reyes, Juan; Rodríguez-Moyá, María; Gonzalez, Ramon; Altamirano, Claudia


    Mild hypothermia condition in mammalian cell culture technology has been one of the main focuses of research for the development of breeding strategies to maximize productivity of these production systems. Despite the large number of studies that show positive effects of mild hypothermia on specific productivity of r-proteins, no experimental approach has addressed the indirect effect of lower temperatures on specific cell growth rate, nor how this condition possibly affects less specific pro...

  10. Increasing cell culture population doublings for long-term growth of finite life span human cell cultures

    Stampfer, Martha R; Garbe, James C


    Cell culture media formulations for culturing human epithelial cells are herein described. Also described are methods of increasing population doublings in a cell culture of finite life span human epithelial cells and prolonging the life span of human cell cultures. Using the cell culture media disclosed alone and in combination with addition to the cell culture of a compound associated with anti-stress activity achieves extended growth of pre-stasis cells and increased population doublings and life span in human epithelial cell cultures.

  11. Increasing cell culture population doublings for long-term growth of finite life span human cell cultures

    Stampfer, Martha R.; Garbe, James C.


    Cell culture media formulations for culturing human epithelial cells are herein described. Also described are methods of increasing population doublings in a cell culture of finite life span human epithelial cells and prolonging the life span of human cell cultures. Using the cell culture media disclosed alone and in combination with addition to the cell culture of a compound associated with anti-stress activity achieves extended growth of pre-stasis cells and increased population doublings and life span in human epithelial cell cultures.

  12. Fed-batch fermentation of GM-CSF-producing glycoengineered Pichia pastoris under controlled specific growth rate

    Haustraete Jurgen; Festjens Nele; Inan Mehmet; Jacobs Pieter P; Van Hecke Annelies; Contreras Roland; Meagher Michael M; Callewaert Nico


    Abstract Background Yeast expression systems with altered N-glycosylation are now available to produce glycoproteins with homogenous, defined N-glycans. However, data on the behaviour of these strains in high cell density cultivation are scarce. Results Here, we report on cultivations under controlled specific growth rate of a GlycoSwitch-Man5 Pichia pastoris strain producing Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) at high levels (hundreds of milligrams per liter). We demons...

  13. Influence of extracellular pH on growth, viability, cell size, acidification activity, and intracellular pH of Lactococcus lactis in batch fermentations.

    Hansen, Gunda; Johansen, Claus Lindvald; Marten, Gunvor; Wilmes, Jacqueline; Jespersen, Lene; Arneborg, Nils


    In this study, we investigated the influence of three extracellular pH (pHex) values (i.e., 5.5, 6.5, and 7.5) on the growth, viability, cell size, acidification activity in milk, and intracellular pH (pHi) of Lactococcus lactis subsp. lactis DGCC1212 during pH-controlled batch fermentations. A universal parameter (e.g., linked to pHi) for the description or prediction of viability, specific acidification activity, or growth behavior at a given pHex was not identified. We found viability as determined by flow cytometry to remain high during all growth phases and irrespectively of the pH set point. Furthermore, regardless of the pHex, the acidification activity per cell decreased over time which seemed to be linked to cell shrinkage. Flow cytometric pHi determination demonstrated an increase of the averaged pHi level for higher pH set points, while the pH gradient (pHi-pHex) and the extent of pHi heterogeneity decreased. Cells maintained positive pH gradients at a low pHex of 5.5 and even during substrate limitation at the more widely used pHex 6.5. Moreover, the strain proved able to grow despite small negative or even absent pH gradients at a high pHex of 7.5. The larger pHi heterogeneity at pHex 5.5 and 6.5 was associated with more stressful conditions resulting, e.g., from higher concentrations of non-dissociated lactic acid, while the low pHi heterogeneity at pHex 7.5 most probably corresponded to lower concentrations of non-dissociated lactic acid which facilitated the cells to reach the highest maximum active cell counts of the three pH set points. PMID:27020293

  14. In vitro zygotic embryo culture of Pinus peuce Gris.: Optimization of culture conditions affecting germination and early seedling growth

    Stojičić Dragana


    Full Text Available This study reports a protocol for the germination and early seedling growth of Pinus peuce Gris. using zygotic embryo culture. In order to overcome seed dormancy and optimize organogenesis, the effect of nutritional, plant growth regulatory and physical factors on in vitro germination and growth of isolated mature zygotic embryos of P. peuce were investigated.

  15. In vitro zygotic embryo culture of Pinus peuce Gris.: Optimization of culture conditions affecting germination and early seedling growth

    Stojičić Dragana; Janošević Dušica; Uzelac Branka; Čokeša V.; Budimir Snežana


    This study reports a protocol for the germination and early seedling growth of Pinus peuce Gris. using zygotic embryo culture. In order to overcome seed dormancy and optimize organogenesis, the effect of nutritional, plant growth regulatory and physical factors on in vitro germination and growth of isolated mature zygotic embryos of P. peuce were investigated.

  16. Batch and Fed-Batch Fermentation System on Ethanol Production from Whey using Kluyveromyces marxianus

    H Hadiyanto


    Full Text Available Nowadays reserve of fossil fuel has gradually depleted. This condition forces many researchers to  find energy alternatives which is renewable and sustainable in the future. Ethanol derived from cheese industrial waste (whey using fermentation process can be a new perspective in order to secure both energy and environment. The aim of this study was  to compare the operation modes (batch and fed-batch of fermentation system on ethanol production from whey using Kluyveromyces marxianus. The result showed that the fermentation process for ethanol production by fed-batch system was higher at some point of parameters compared with batch system. Growth rate and ethanol yield (YP/S of fed-batch fermentation were 0.122/h and 0.21 gP/gS respectively; growth rate and ethanol yield (YP/S of batch fermentation were 0.107/h, and 0.12 g ethanol/g substrate, respectively. Based on the data of biomass and ethanol concentrations, the fermentation process for ethanol production by fed-batch system were higher at some point of parameters compared to batch system. Periodic substrate addition performed on fed-batch system leads the yeast growth in low substrate concentrations and consequently  increasing their activity and ethanol productivity. Keywords: batch; ethanol; fed-batch; fermentation;Kluyveromyces marxianus, whey

  17. Fish Growth in Marine Culture Systems: A Challenge for Biotechnology.



    : Aquaculture production is constrained largely by the growth efficiency of the species being produced. Nutritional approaches have played an important part in improving this situation, but, it is argued, the room for further improvement using such established techniques is limited. Alternative ways of improving fish production by utilizing recent biotechnological advances are explored and assessed as to their potential for commercialization in the near future. Transgenic technologies promise a revolution in aquaculture, but it is considered that consumer resistance may delay the use of transgenic fish for food production. An alternative approach could be the breeding of transgenic fodder plants without the amino acid deficiencies of existing alternatives to fish meal in aquaculture diets. The use of probiotics could reduce antibiotic use on fish farms while they might also provide the basis for "smart" diets, tailored to specific purposes by the inclusion of microorganisms. The selection and genetic engineering of nitrifying and denitrifying bacteria could also pave the way for fully enclosed, recirculating marine culture systems, which would allow control of the environmental variables that currently restrain marine fish culture. PMID:10489415

  18. Comparison of Transcriptional Heterogeneity of Eight Genes between Batch Desulfovibrio vulgaris Biofilm and Planktonic Culture at a Single-Cell Level

    Qi, Zhenhua; Chen, Lei; Zhang, Weiwen


    Sulfate-reducing bacteria (SRB) biofilm formed on metal surfaces can change the physicochemical properties of metals and cause metal corrosion. To enhance understanding of differential gene expression in Desulfovibrio vulgaris under planktonic and biofilm growth modes, a single-cell based RT-qPCR approach was applied to determine gene expression levels of 8 selected target genes in four sets of the 31 individual cells isolated from each growth condition (i.e., biofilm formed on a mild steel (SS) and planktonic cultures, exponential and stationary phases). The results showed obvious gene-expression heterogeneity for the target genes among D. vulgaris single cells of both biofilm and planktonic cultures. In addition, an increased gene-expression heterogeneity in the D. vulgaris biofilm when compared with the planktonic culture was also observed for seven out of eight selected genes at exponential phase, and six out of eight selected genes at stationary phase, respectively, which may be contributing to the increased complexity in terms of structures and morphology in the biofilm. Moreover, the results showed up-regulation of DVU0281 gene encoding exopolysaccharide biosynthesis protein, and down-regulation of genes involved in energy metabolism (i.e., DVU0434 and DVU0588), stress responses (i.e., DVU2410) and response regulator (i.e., DVU3062) in the D. vulgaris biofilm cells. Finally, the gene (DVU2571) involved in iron transportation was found down-regulated, and two genes (DVU1340 and DVU1397) involved in ferric uptake repressor and iron storage were up-regulated in D. vulgaris biofilm, suggesting their possible roles in maintaining normal metabolism of the D. vulgaris biofilm under environments of high concentration of iron. This study showed that the single-cell based analysis could be a useful approach in deciphering metabolism of microbial biofilms. PMID:27199927

  19. Comparison of transcriptional heterogeneity of eight genes between batch Desulfovibrio vulgaris biofilm and planktonic culture at a single-cell level

    Zhenhua eQi


    Full Text Available Sulfate-reducing bacteria (SRB biofilm formed on metal surfaces can change the physicochemical properties of metals and cause metal corrosion. To enhance understanding of differential gene expression in Desulfovibrio vulgaris under planktonic and biofilm growth modes, a single-cell based RT-qPCR approach was applied to determine gene expression levels of 8 selected target genes in four sets of the 31 individual cells isolated from each growth condition (i.e., biofilm formed on a stainless steel (SS) and planktonic cultures, exponential and stationary phases. The results showed obvious gene-expression heterogeneity for the target genes among D. vulgaris single cells of both biofilm and planktonic cultures. In addition, an increased gene-expression heterogeneity in the D. vulgaris biofilm when compared with the planktonic culture was also observed for seven out of eight selected genes, which may be contributing to the increased complexity in terms of structures and morphology in the biofilm. Moreover, the results showed up-regulation of DVU0281 gene encoding exopolysaccharide biosynthesis protein, and down-regulation of genes involved in energy metabolism (i.e., DVU0434 and DVU0588, stress responses (i.e., DVU2410 and response regulator (i.e., DVU3062 in the D. vulgaris biofilm cells. Finally, the gene (DVU2571 involved in iron transportation was found down-regulated, and two genes (DVU1340 and DVU1397 involved in ferric uptake repressor and iron storage were up-regulated in D. vulgaris biofilm, suggesting their possible roles in maintaining normal metabolism of the D. vulgaris biofilm under environments of high concentration of iron. This study showed that the single-cell based analysis could be a useful approach in deciphering metabolism of microbial biofilms.

  20. Rapid Evolution of Culture-Impaired Bacteria During Adaptation to Biofilm Growth

    Jon Penterman; Dao Nguyen; Erin Anderson; Benjamin J. Staudinger; Everett P. Greenberg; Joseph S. Lam; Pradeep K. Singh


    Biofilm growth increases the fitness of bacteria in harsh conditions. However, bacteria from clinical and environmental biofilms can exhibit impaired growth in culture, even when the species involved are readily culturable and permissive conditions are used. Here, we show that culture-impaired variants of Pseudomonas aeruginosa arise rapidly and become abundant in laboratory biofilms. The culture-impaired phenotype is caused by mutations that alter the outer-membrane lipopolysaccharide struct...

  1. Kinetics of D-lactic acid production by Sporolactobacillus sp. strain CASD using repeated batch fermentation.

    Zhao, Bo; Wang, Limin; Li, Fengsong; Hua, Dongliang; Ma, Cuiqing; Ma, Yanhe; Xu, Ping


    D-lactic acid was produced by Sporolactobacillus sp. strain CASD in repeated batch fermentation with one- and two-reactor systems. The strain showed relatively high energy consumption in its growth-related metabolism in comparison with other lactic acid producers. When the fermentation was repeated with 10% (v/v) of previous culture to start a new batch, D-lactic acid production shifted from being cell-maintenance-dependent to cell-growth-dependent. In comparison with the one-reactor system, D-lactic acid production increased approximately 9% in the fourth batch of the two-reactor system. Strain CASD is an efficient D-lactic acid producer with increased growth rate at the early stage of repeated cycles, which explains the strain's physiological adaptation to repeated batch culture and improved performance in the two-reactor fermentation system. From a kinetic point of view, two-reactor fermentation system was shown to be an alternative for conventional one-reactor repeated batch operation. PMID:20374976

  2. Pro Spring Batch

    Minella, Michael T


    Since its release, Spring Framework has transformed virtually every aspect of Java development including web applications, security, aspect-oriented programming, persistence, and messaging. Spring Batch, one of its newer additions, now brings the same familiar Spring idioms to batch processing. Spring Batch addresses the needs of any batch process, from the complex calculations performed in the biggest financial institutions to simple data migrations that occur with many software development projects. Pro Spring Batch is intended to answer three questions: *What? What is batch processing? What

  3. Benchmarking of commercially available CHO cell culture media for antibody production

    Reinhart, David; Damjanovic, Lukas; Kaisermayer, Christian; Kunert, Renate


    In this study, eight commercially available, chemically defined Chinese hamster ovary (CHO) cell culture media from different vendors were evaluated in batch culture using an IgG-producing CHO DG44 cell line as a model. Medium adaptation revealed that the occurrence of even small aggregates might be a good indicator of cell growth performance in subsequent high cell density cultures. Batch experiments confirmed that the culture medium has a significant impact on bioprocess performance, but hi...

  4. Development of Fed-Batch Cultivation Strategy for Efficient Oxytetracycline Production by Streptomyces rimosus at Semi-Industrial Scale

    Elsayed Ahmed Elsayed


    Full Text Available ABSTRACTOxytetracycline (OTC production byStreptomyces rimosus was studied in batch and fed-batch cultures in shake flask and bioreactor levels using semi-defined medium. First, the effect of glucose concentration on OTC production and growth kinetics was studied intensively. The optimal glucose concentration in the medium was 15 g/L. Higher glucose concentrations supported higher biomass production by less volumetric and specific antibiotic production. Based on these data, cultivations were carried out at semi-industrial scale 15 L bioreactor in batch culture. At bioreactor level, cell growth and OTC production were higher compared to the shake flask culture by about 18 and 38%, respectively. During the bioreactor cultivation, glucose was totally consumed after only 48 h. Thus, the fed-batch experiment was designed for mono-glucose feeding and complete medium feeding to increase the OTC production by overcoming carbon limitations. The results showed that the fed-batch culture using constant glucose feeding strategy with rate of 0.33 g/L/h produced 1072 mg/L. On the other hand, feeding with complete medium resulted in 45% higher biomass but less OTC production by about 26% compared to mono-glucose fed culture. A further improvement in this process was achieved in by keeping the dissolved oxygen (DO value at 60% saturation by cascading the glucose feeding pump with the DO controller. The later feeding strategy resulted in higher antibiotic production, reaching 1414 mg/L after 108 h.

  5. Cultivo mixotrófico da microalga Spirulina platensis em batelada alimentada Mixotrophic growth of Spirulina platensis in fed-batch mode

    Adriana Muliterno


    Full Text Available A Spirulina platensis tem sido estudada devido a seu alto valor protéico, digestibilidade e por apresentar quantidades significativas de ácidos graxos poliinsaturados, vitaminas, fenólicos e ficocianina, podendo ser utilizada na alimentação humana. A utilização de nutrientes de baixo custo é um fator importante na produção da cianobactéria por possibilitar a redução de custos de processo. Objetivou-se com este trabalho estudar o cultivo mixotrófico da S. platensis por meio da adição de uma fonte orgânica de carbono (glicose em modo bateladaalimentada. Foi utilizado um Planejamento Fatorial Completo 2³ para o cultivo e as variáveis de estudo foram a concentração de glicose (0,5 gL-1 e 1,0 gL-1, a diluição do meio Zarrouk (50% e 75% e a iluminância (1800 lux e 3000 lux. A concentração celular máxima obtida foi de 5,38 gL-1 com uma velocidade específica máxima de crescimento de 0,0063 h-1, nas condições de 0,5 gL-1 de glicose, diluição do meio de 75% e iluminância de 3000 lux.The cyanobacterium Spirulina platensis has been studied due to its high content (~65% of highly digestible protein as well as significant amounts of polyunsaturated fatty acids, phenolics, vitamins, minerals and phycocyanin which could be useful in the human nutrition. The use of nutrients of low costs in the cyanobacterium growth could reduce the costs of production. We studied the fed-batch mixotrophic growth of the S. platensis in Zarrouk's medium with glucose (0.5 gL-1 and 1.0 gL-1 as carbon source and also investigated the effects of dilution (50% and 75%, with water and illumination (1,800 lux and 3,000 lux using a 2³ factorial design. The maximum celular concentration of 5.38 gL-1 and maximum specific growth rate of 0.0063 h-1 were obtained with a glucose concentration of 0.5 gL-1, 50% dilution and 1800 lux of illuminance.

  6. Effect of photoperiod on growth and hydrocarbon content of Botryococcus braunii cultured in effluent from seafood processing plant.

    Tansakul, P.


    Full Text Available The hydrocarbon-rich alga, Botryococcus braunii was cultivated in Modified Chu13 medium at pH 6.7. Growth of B. braunii was studied by using batch culture in 2L conical flasks with an initial algal density of 0.75 g dry weight/l under air-lift condition (air-1% CO2, rate of 7 l/min. The alga was incubated at the temperature of 25ºC, with light intensity of 120 μE/m2/s and diurnal illumination cycles under 12 hours of light / 12 hours of dark; 16 hours of light / 8 hour of dark and continuous illumination (24 hours. The best growth of this alga was achieved under continuous illumination with a dry weight of 11.97 g/l on day 14 cultivation. The highest specific growth rate was 3.6 per day and significantly higher than that of the culture under diurnal light cycles (P<0.05. Moreover, cultivation of Botryococcus braunii in effluent (nitrate 78 mg/l from seafood processing plant and adjusting effluent to a three-fold reduction in nitrate (nitrate 26 mg/l compared with synthetic medium (Modified Chu13 under continuous illumination were investigated. The highest algal growth was obtained in effluent with a dry weight of 13.61 g/l. B. braunii could reduce nitrate, phosphate and ammonia-nitrogen concentrations in the effluent by 73%, 74% and 79%, respectively. In addition, the hydrocarbon synthesis by the alga B. braunii was 34% of its dry weight.

  7. Growth and biomass production with enhanced {beta}-glucan and dietary fibre contents of Ganoderma australe ATHUM 4345 in a batch-stirred tank bioreactor

    Papaspyridi, Lefki-Maria; Christakopoulos, Paul [BIOtechMASS Unit, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens (Greece); Katapodis, Petros [BIOtechMASS Unit, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens (Greece); Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, Ioannina (Greece); Gonou-Zagou, Zacharoula; Kapsanaki-Gotsi, Evangelia [Department of Ecology and Systematics, Faculty of Biology, National and Kapodistrian University of Athens, Athens (Greece)


    In this study we maximized biomass production by the basidiomycete Ganoderma australe ATHUM 4345, a species of pharmaceutical interest as it is a valuable source of nutraceuticals, including dietary fibers and glucans. We used the Biolog FF MicroPlate to screen 95 different carbon sources for growth monitoring. The pattern of substrate catabolism forms a substrate assimilation fingerprint, which is useful in selecting components for media optimization of maximum biomass production. Response surface methodology, based on the central composite design was applied to explore the optimum concentrations of carbon and nitrogen sources of culture medium in shake flask cultures. When the improved culture medium was tested in a 20-L stirred tank bioreactor, using 13.7 g/L glucose and 30.0 g/L yeast extract, high biomass yields (10.1{+-}0.4 g/L) and productivity of 0.09 g L{sup -1} h{sup -1} were obtained. The yield coefficients for total glucan and dietary fibers on biomass formed were 94.82{+-}6 and 341.15{+-}12.3 mg/g mycelium dry weight, respectively. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Dipeptidase Activity and Growth of Heat-Treated Commercial Dairy Starter Culture

    Garbowska, Monika; Pluta, Antoni; Berthold-Pluta, Anna


    Growing expectations of consumers of fermented dairy products urge the search for novel solutions that would improve their organoleptic properties and in the case of rennet cheeses-that would also accelerate their ripening process. The aim of this study was to determine the peptidolytic activities and growth of heat-treated commercial culture of lactic acid bacteria. The analyzed culture was characterized by a relatively high peptidolytic activity. The growth of bacterial culture subjected to...

  9. Effect of nitrogen salts on the growth of Ceratonia siliqua L. Shoot cultures

    Vinterhalter Branka; Ninković Slavica; Zdravković-Korać Snežana; Subotić Angelina; Vinterhalter D.


    Effects of reduced nitrogen salt nutriton on the growth, lenticel hypertrophy and anthocyanin accumulation of carob (Ceratonia siliqua L.) shoot cultures were investigated in conditions of light and darkness. Growth of shoot cultures was not significantly affected until nitrogen salts were reduced to less than ¼ of full-strength MS (Murashige and Skoog, 1962) values. Cultures in darkness were less affected and their main shoots even increased in length. Appearance of hypertrophied lenticels i...

  10. Public and Private Cultural Expenditure on the Economic Growth in Iran

    Maysam Musai; Mohsen Mehrara; Rabab Aalami; Shiva Parvaei Haredasht


    This paper try to find the effect of public and private cultural expenditure on the economic growth in Iran and determine the most important factor. Statical analysis and econometrics was performed for investigation of public and private cultural expenditure roles on economic growth using Kab-Daglus productional function and calculated according to Statistical Center of Iran and Central Bank of the Islamic Republic of Iran data. The results showed that labours, capital and cultural expenditur...

  11. Minimal requirements for exponential growth of Lactococcus lactis

    Jensen, Peter Ruhdal; Hammer, Karin


    A minimal growth medium containing glucose, acetate, vitamins, and eight amino acids allowed for growth of Lactococcus lactis subsp. lactis, with a specific growth rate in batch culture of mu = 0.3 h-1. With 19 amino acids added, the growth rate increased to mu = 0.7 h-1 and the exponential growt...

  12. Cultural Diversity and Economic Growth: Evidence from the US during the Age of Mass Migration

    Philipp Ager; Markus Bruckner


    We exploit the large inflow of immigrants to the US during the 1870-1920 period to examine the effects that changes in the cultural composition of the population of US counties had on output growth. We construct measures of fractionalization and polarization to distinguish between the different effects of cultural diversity. Our main finding is that increases in cultural fractionalization significantly increased output, while increases in cultural polarization significantly decreased output. ...

  13. Effects of glucose concentration, medium osmotic pressure and light intensity on the growth of Marchantia paleacea var. diptera cells in photomixotrophic culture; Hikari kongo eiyo baiyo ni okeru futaba zenigoke saibo no zoshoku ni oyobosu glucose nodo, baichi shintoatsu to hikari kyodo no koka

    Kinooka, M.; Miyaoka, M.; Taya, M.; Tone, S. [Osaka University, Osaka (Japan); Ono, K. [Kumamoto University, Kumamoto (Japan)


    Batch cultures of photomixotrophic cells of Marchantia paleacea var. diptera were conducted at 25degC under the initial conditions of glucose concentration of 20 or 40 kg/m{sup 3}, medium osmotic pressure of 520 or 830 kPa and mean incident light intensity of 0, 13 or 28 W/m{sup 2}. The glucose concentration, osmotic pressure and mean light intensity in medium declined with increasing cell mass concentration, so that they became limiting factors against the cell growth during the cultures. A kinetic expression for the cell growth was presented by considering the effects of three limiting factors, and applied to the data obtained from the batch cultures. The calculation results fitted closely with the experimental data in the cultures. 8 refs., 2 tabs., 1 tab.




    One of the main issues reflected in this paper is that of the relationship between organizational culture, organizational change and the strategy of the organization. Besides this, another underlined aspect is that there is a strong connection between organizational culture and the community and environment the organization presides in. Also, by understanding the organizational culture we take a step forward in improving the performance of the organizations. Another fact to be taken into acco...

  15. Recurrent Batch Normalization

    Cooijmans, Tim; Ballas, Nicolas; Laurent, César; Gülçehre, Çağlar; Courville, Aaron


    We propose a reparameterization of LSTM that brings the benefits of batch normalization to recurrent neural networks. Whereas previous works only apply batch normalization to the input-to-hidden transformation of RNNs, we demonstrate that it is both possible and beneficial to batch-normalize the hidden-to-hidden transition, thereby reducing internal covariate shift between time steps. We evaluate our proposal on various sequential problems such as sequence classification, language modeling an...

  16. Mixed-culture transcriptome analysis reveals the molecular basis of mixed-culture growth in Streptococcus thermophilus and Lactobacillus bulgaricus

    Sieuwerts, S.; Molenaar, D; Hijum, van, S.A.F.T.; Beerthuyzen, M.; Stevens, M.J.A.; Janssen, P.W.; Ingham, C J; Bok, de, F.A.M.; Vos, de, W.M.; Hylckama Vlieg, van, J.E.T.


    Many food fermentations are performed using mixed cultures of lactic acid bacteria. Interactions between strains are of key importance for the performance of these fermentations. Yogurt fermentation by Streptococcus thermophilus and Lactobacillus bulgaricus (basonym, Lactobacillus delbrueckii subsp. bulgaricus) is one of the best-described mixed-culture fermentations. These species are believed to stimulate each other's growth by the exchange of metabolites such as folic acid and carbon dioxi...

  17. Growth of cultured porcine retinal pigment epithelial cells

    Wiencke, A.K.; Kiilgaard, Jens Folke; Nicolini, Jair;


    To establish and characterize cultures of porcine retinal pigment epithelial (pRPE) cells in order to produce confluent monolayers of cells for transplantation.......To establish and characterize cultures of porcine retinal pigment epithelial (pRPE) cells in order to produce confluent monolayers of cells for transplantation....

  18. The use of fed batch approaches to maximise yields in bacterial fermentation and protein expression

    A fermentation facility for the scale up of bacterial and yeast fermentations has been set up at the University of Queensland under the auspices of the ARC Special Research Centre for Functional and Applied Genomics. A major application is the production of recombinant proteins for determination of tertiary structures by X-ray crystallography or nuclear magnetic resonance. For this purpose, large amounts of protein arc needed and the yield from a single fermentation run is crucial to success within constrained laboratory budgets. To achieve maximal yields we are optimising fed batch approaches in bacterial fermentation. Fed batch offers many advantages over batch cultures. Coupled with the ability to monitor online the internal conditions of the fermentation including pH and dissolved oxygen and stirrer cascading functions it is possible to ensure that the nutritional environment of the microorganism is optimised for its growth and or for optimal protein expression. The poster will describe some of our experience in setting up fed batch fermentations and successful applications of fed batches to increasing protein yield. It will also outline services that are available to academic groups outside the University of Queensland For structure determination and functional studies, the production of radiolabelled proteins can also be an advantage. We will describe initial experiments aimed at coupling the principles of fed batch fermentation to the introduction of carbon or nitrogen isotopes into the recombinant protein

  19. Enhancing product quantity by controlling the specific growth rate of Pichia pastoris expressing human serum albumin

    Hama, Adel; Eyer, Kurt


    Establish a fed-batch process to culture a Pichia pastoris strain producing a recombinant protein (hSA), highlighting the relationship between the specific growth rate and the protein quality, as well as seeking for enhanced productivity.

  20. Anaerobic Removal of Ammonia Nitrogen by an Autotrophic Reactor with Fixed Film Opering in a Sequential Batch

    Murilo C. Lucas; José H. A. Vasconcelos; Francisco Javier Cuba Téran; Carla Eloísa Diniz dos Santos


    This study presents results of ammonia nitrogen oxidation in absence of molecular oxygen. They were obtained after the operation of a sequential batch anaerobic reactor with fixed film. After the inoculation with sludge from an anaerobic stabilization pond of a slaughterhouse wastewater treatment plant, the reactor was fed with a synthetic culture media, as described by Martins (2007), in order to establish ideal conditions for growth and development of Anammox culture. The duration of the ba...

  1. Spring batch essentials

    Rao, P Raja Malleswara


    If you are a Java developer with basic knowledge of Spring and some experience in the development of enterprise applications, and want to learn about batch application development in detail, then this book is ideal for you. This book will be perfect as your next step towards building simple yet powerful batch applications on a Java-based platform.

  2. Method To Estimate Growth of Trichoderma reesei and Aspergillus wentii in Mixed Culture on Cellulosic Substrates

    Panda, T.; Bisaria, V. S.; Ghose, T. K.


    A simple differential method based on measurement of an intracellular pigment of Aspergillus wentii was developed for estimation of the individual growths of two fungi, Trichoderma reesei and A. wentii, in mixed-culture fermentation of an insoluble cellulosic substrate.

  3. 6-Gingerol inhibits hair shaft growth in cultured human hair follicles and modulates hair growth in mice.

    Yong Miao

    Full Text Available Ginger (Zingiber officinale has been traditionally used to check hair loss and stimulate hair growth in East Asia. Several companies produce shampoo containing an extract of ginger claimed to have anti-hair loss and hair growth promotion properties. However, there is no scientific evidence to back up these claims. This study was undertaken to measure 6-gingerol, the main active component of ginger, on hair shaft elongation in vitro and hair growth in vivo, and to investigate its effect on human dermal papilla cells (DPCs in vivo and in vitro. 6-Gingerol suppressed hair growth in hair follicles in culture and the proliferation of cultured DPCs. The growth inhibition of DPCs by 6-gingerol in vitro may reflect a decrease in the Bcl-2/Bax ratio. Similar results were obtained in vivo. The results of this study showed that 6-gingerol does not have the ability to promote hair growth, on the contrary, can suppress human hair growth via its inhibitory and pro-apoptotic effects on DPCs in vitro, and can cause prolongation of telogen phase in vivo. Thus, 6-gingerol rather than being a hair growth stimulating drug, it is a potential hair growth suppressive drug; i.e. for hair removal.

  4. Binding of 125I-human growth hormone to specific receptors in human cultured lymphocytes

    The interaction of human growth hormone with human lymphocytes from an established culture (IM-9) was studied using 125I- human growth hormone. The binding of 125I-human growth hormone was rapid; with human growth hormone at 0.1 nM a steady state was observed in 90 min at 300. Bound labeled human growth hormone was dissociated rapidly by addition of excess unlabeled human growth hormone. Binding of 125I-human growth hormone to cultured lymphocytes was relatively insensitive to alterations in the pH and in the concentrations of Ca2+, Mg2+, EDTA. At 800 there was very little degradation of labeled human growth hormone or of the specific receptor sites. Tryptic digestion destroyed the capacity of cells to bind human growth hormone. The IM-9 cells bound all human growth hormone preparations but not unrelated hormones or nonprimate growth hormones. The binding of 125I-human growth hormone was inhibited 10 to 14 percent with 1 to 2 ng per ml of unlabeled human growth hormone and 50 percent with 30 to 40 ng per ml, well within the range of hormone concentrations in vivo. Analysis of steady state data revealed a single order of binding sites with an affinity constant of 1.3 x 109 M-1 and about 4000 binding sites per cell. Numerous human growth hormone preparations were assayed by use of this receptor system as well as by immunoassay and by bioassay in vivo. The po

  5. Religious Orders and Growth through Cultural Change in Pre-Industrial England

    Andersen, Thomas Barnebeck; Bentzen, Jeanet; Dalgaard, Carl-Johan;

    We advance the hypothesis that cultural values such as high work ethic and thrift, “the Protestant ethic” according to Max Weber, may have been diffused long before the Reformation, thereby importantly affecting the pre-industrial growth record. The source of pre-Reformation Protestant ethic, acc......-industrial development of England may thus have been propelled by a process of growth through cultural change....

  6. Methyl Jasmonate Represses Growth and Affects Cell Cycle Progression in Cultured Taxus Cells

    Patil, Rohan A.; Lenka, Sangram K.; Normanly, Jennifer; Walker, Elsbeth L.; Roberts, Susan C.


    Methyl jasmonate (MeJA) elicitation is an effective strategy to induce and enhance synthesis of the anticancer agent paclitaxel (Taxol®) in Taxus cell suspension cultures; however, concurrent decreases in growth are often observed, which is problematic for large scale bioprocessing. Here, increased accumulation of paclitaxel in Taxus cuspidata suspension cultures with MeJA elicitation was accompanied by a concomitant decrease in cell growth, evident within the first three days post-elicitatio...

  7. Growth of cultured human glioma tumour cells can be regulated with histamine and histamine antagonists.

    Van der Ven, L. T.; Prinsen, I. M.; Jansen, G H; Roholl, P.J.; Defferrari, R.; Slater, R.; DEN OTTER;, W.


    The 50% survival time for low grade astrocytomas is 50 months and for high grade astrocytomas it is 13 months, underlining the need for new therapies. Several reports show that in vivo histamine antagonists cause retardation of tumour growth in some animal models and prolonged survival in cancer patients. Therefore we have tested the growth modulating effects of histamine and histamine antagonists on human glioma cultures. Twelve freshly excised human gliomas were cultured and tested for thei...

  8. Product formation from thiophene by a mixed bacterial culture. Influence of benzene as growth substrate

    Rivas, Isabelle Marie; Mosbæk, Hans; Arvin, Erik


    The influence of benzene as a growth substrate on the cometabolic conversion of thiophene was investigated in batch systems with microorganisms originating from an creosote contaminated site. Benzene was shown to stimulate the conversion of thiophene with a first-order rate, during the initial...... phase of transformation. The microorganisms were able to transform thiophene in the absence of benzene at a zero-order rate. Thiophene was converted to five oxidation products, regardless of the presence of benzene. Benzene had no influence on the distribution of these oxidation products. The main...

  9. Effects of different Helicobacter pylori culture filtrates on growth of gastric epithelial cells

    Yan-Guo Yan; Gang Zhao; Jin-Ping Ma; Shi-Rong Cai; Wen-Hua Zhan


    AIM: To study the effects of different Helicobacter pylori (H py/orl) culture filtrates on growth of gastric epithelial cells.METHODS: Broth culture filtrates of H pylori were prepared. Gastric epithelial cells were treated with the filtrates, and cell growth was determined by growth curve and flow cytometry. DNA damage of gastric epithelial cells was measured by single-cell microgel electrophoresis.RESULTS: Gastric epithelial cells proliferated actively when treated by CagA-gene-positive broth culture filtrates, and colony formation reached 40%. The number of cells in S phase increased compared to controls. Comet assay showed 41.2% comet cells in GES-1 cells treated with CagA-positive filtrates (P<0.05).CONCLUSION: CagA-positive filtrates enhance the changes in morphology and growth characteristics of human gastric epithelial tumor cells. DNA damage maybe one of the mechanisms involved in the growth changes.

  10. Effect of applied currents to growth in oil palm (Elaeis guineensis Jacq. tissue cultures

    Panote Thavarungkul


    Full Text Available External currents of ± 2 μA were applied to the calluses of oil palm in three different culture medium recipes containing different growth substances and the effects of the current were investigated. The three media were medium for callus growth, embryogenetic medium, and organogenetic medium. The stimulation of callus growth was found for both directions of current in one unit of experiments where the embryogenetic culture medium contained NAA. In other cases the use of current seemed to have no significant stimulation effect. The mechanism by which the current may cause the alignment of the cells to promote polar transport of NAA which then increase growth and the relationship of these findings to earlier reports of the stimulation of growth in tobacco callus cultures is discussed.

  11. The development from kinetic coefficients of a predictive model for the growth of Eichhomia crassipes in the field. I. Generating kinetic coefficients for the model in greenhouse culture

    C. F. Musil


    Full Text Available The kinetics of N- and P- limited growth of Eichhornia crassipes (Mart . Solms were investigated in greenhouse culture with the object of developing a model for predicting population sizes, yields, growth rates and frequencies and amounts of harvest, under varying conditions of nutrient loading and climate, to control both nutrient inputs and excessive growth in eutrophied aquatic systems. The kinetic coefficients, maximum specific growth rate (Umax, half saturation coefficient (Ks and yield coefficient (Yc were measured under N and P limitation in replicated batch culture experiments. Umax values and Ks concentrations derived under N limitation ranged from 5,37 to 8,86% d + and from 400 to 1 506 µg  N ℓ1respectively. Those derived under P limitation ranged from 4,51 to 10,89% d 1 and from 41 to 162 fig P ℓ1 respectively. Yc values (fresh mass basis determined ranged from 1 660 to 1 981 (87 to 98 dry mass basis for N and from 16 431 to 18 671 (867 to 980 dry mass basis for P. The reciprocals of Yc values (dry mass basis, expressed as percentages, adequately estimated the minimum limiting concentrations of N and P {% dry mass in the plant tissues. Kinetic coefficients determined are compared with those reported for algae. The experimental method used and results obtained are critically assessed.

  12. Single-walled carbon nanotubes: a nano-specific enhancer of cellular growth in LB culture

    We conducted a study to characterize the antimicrobial properties of SWNTs to B.subtilis in a saline solution or in a LB culture. Dimensions and the antibacterial ability of SWNTs in a saline solution were different from those in a LB culture. Transmission and scanning electron microscopes were used to characterize the SWNTs structure with and without LB culture. The antibacterial ability of SWNTs was affected by the environment of bacterial growth. The antibacterial mechanism of SWNTs was studied,too. (authors)

  13. Fish Culture Data - Characterization of Sexual Growth Dimorphism in Sablefish

    National Oceanic and Atmospheric Administration, Department of Commerce — Sexual growth dimorphism (SGD) is a common phenomenon in nature. Numerous marine fishes exhibit SGD, with females often growing faster and attaining larger sizes...

  14. Induction of growth in kidney epithelial cells in culture by Na+.

    Toback, F G


    The role of Na+ in the regulation of cell growth was examined in quiescent, high-density cultures of kidney epithelial cells of the BSC-1 line. The addition of NaCl to the medium increased the number of cells initiating DNA synthesis in a concentration-dependent manner after serum stimulation. In the presence of added NaCl, cells in confluent cultures grew to high density at an increased rate, whereas growth in sparse cultures was retarded. These results suggest that, in the presence of serum...

  15. Public and Private Cultural Expenditure on the Economic Growth in Iran

    Maysam Musai


    Full Text Available This paper try to find the effect of public and private cultural expenditure on the economic growth in Iran and determine the most important factor. Statical analysis and econometrics was performed for investigation of public and private cultural expenditure roles on economic growth using Kab-Daglus productional function and calculated according to Statistical Center of Iran and Central Bank of the Islamic Republic of Iran data. The results showed that labours, capital and cultural expenditure has positive effect on economic develoment, however the production tendency of labours has fist ranking between entities, it means that manpower is the most effective factor on the economic growth. Capital is the second factor and the cultural expenditure is the last effective factor. In fact, the production tendecy of Public and private sectors of culture is less than production tendecy of capital and labours. And the production tendecy of private sector is larger than public one. It means the effect of cultur expenditure of families on economic growth is more than the government cultural expenditure.

  16. Prediction of microbial growth in mixed culture with a competition model.

    Fujikawa, Hiroshi; Sakha, Mohammad Z


    Prediction of microbial growth in mixed culture was studied with a competition model that we had developed recently. The model, which is composed of the new logistic model and the Lotka-Volterra model, is shown to successfully describe the microbial growth of two species in mixed culture using Staphylococcus aureus, Escherichia coli, and Salmonella. With the parameter values of the model obtained from the experimental data on monoculture and mixed culture with two species, it then succeeded in predicting the simultaneous growth of the three species in mixed culture inoculated with various cell concentrations. To our knowledge, it is the first time for a prediction model for multiple (three) microbial species to be reported. The model, which is not built on any premise for specific microorganisms, may become a basic competition model for microorganisms in food and food materials. PMID:24975413

  17. Opioid-dependent growth of glial cultures: Suppression of astrocyte DNA synthesis by met-enkephalin

    Stiene-Martin, A.; Hauser, K.F. (Univ. of Kentucky, Lexington (USA))


    The action of met-enkephalin on the growth of astrocytes in mixed-glial cultures was examined. Primary, mixed-glial cultures were isolated from 1 day-old mouse cerebral hemispheres and continuously treated with either basal growth media, 1 {mu}M met-enkephalin, 1 {mu}M met-enkephalin plus the opioid antagonist naloxone, or naloxone alone. Absolute numbers of neural cells were counted in unstained preparations, while combined ({sup 3}H)-thymidine autoradiography and glial fibrillary acid protein (GFAP) immunocytochemistry was performed to identify specific changes in astrocytes. When compared to control and naloxone treated cultures, met-enkephalin caused a significant decrease in both total cell numbers, and in ({sup 3}H)-thymidine incorporation by GFAP-positive cells with flat morphology. These results indicate that met-enkephalin suppresses astrocyte growth in culture.

  18. Opioid-dependent growth of glial cultures: Suppression of astrocyte DNA synthesis by met-enkephalin

    The action of met-enkephalin on the growth of astrocytes in mixed-glial cultures was examined. Primary, mixed-glial cultures were isolated from 1 day-old mouse cerebral hemispheres and continuously treated with either basal growth media, 1 μM met-enkephalin, 1 μM met-enkephalin plus the opioid antagonist naloxone, or naloxone alone. Absolute numbers of neural cells were counted in unstained preparations, while combined [3H]-thymidine autoradiography and glial fibrillary acid protein (GFAP) immunocytochemistry was performed to identify specific changes in astrocytes. When compared to control and naloxone treated cultures, met-enkephalin caused a significant decrease in both total cell numbers, and in [3H]-thymidine incorporation by GFAP-positive cells with flat morphology. These results indicate that met-enkephalin suppresses astrocyte growth in culture

  19. Trophic action of epidermal growth factor on human duodenal mucosa cultured in vitro.

    Challacombe, D N; Wheeler, E. E.


    The action of epidermal growth factor on the human duodenal mucosa has been studied by estimating the crypt cell production rate in cultured explants, using a stathmokinetic technique with crypt microdissection. The addition of epidermal growth factor (400 ng/ml) to paired explants from five patients caused an almost fivefold increase in the crypt cell production rate, showing that epidermal growth factor has a trophic action on the human duodenal mucosa in vitro.

  20. Cocos nucifersa's Watery endosperm as a potential culture medium for fungal growth

    F. M. M. T. Marikar


    Full Text Available An alternative culture medium to grow Colletotrichum gloeosporioides on coconut watery endosperm agar and broth was developed. The medium is based upon the watery endosperm from Cocos nucifera, which contains nutrients promoting mycelial growth and sporulation. Sucrose (40% further enhanced fungal growth in the broth. Dilution of watery endosperm reduced mycelial growth rate by 50%. The coconut watery endosperm is cheaper and more easily available than commercial potato dextrose agar medium in tropical regions.

  1. Prediction of competitive microbial growth in mixed culture at dynamic temperature patterns.

    Fujikawa, Hiroshi; Sakha, Mohammad Z


    A novel competition model developed with the new logistic model and the Lotka-Volterra model successfully predicted the growth of bacteria in mixed culture using the mesophiles Staphylococcus aureus, Escherichia coli, and Salmonella at a constant temperature in our previous studies. In this study, we further studied the prediction of the growth of those bacteria in mixed culture at dynamic temperatures with various initial populations with the competition model. First, we studied the growth kinetics of the species in a monoculture at various constant temperatures ranging from 16℃ to 32℃. With the analyzed data in the monoculture, we then examined the prediction of bacterial growth in mixed culture with two and three species. The growth of the bacteria in the mixed culture at dynamic temperatures was successfully predicted with the model. The residuals between the observed and predicted populations at the data points were <0.5 log at most points, being 83.3% and 84.2% for the two-species mixture and the three-species mixture, respectively. The present study showed that the model could be applied to the competitive growth in mixed culture at dynamic temperature patterns. PMID:25252643

  2. Dipeptidase activity and growth of heat-treated commercial dairy starter culture.

    Garbowska, Monika; Pluta, Antoni; Berthold-Pluta, Anna


    Growing expectations of consumers of fermented dairy products urge the search for novel solutions that would improve their organoleptic properties and in the case of rennet cheeses-that would also accelerate their ripening process. The aim of this study was to determine the peptidolytic activities and growth of heat-treated commercial culture of lactic acid bacteria. The analyzed culture was characterized by a relatively high peptidolytic activity. The growth of bacterial culture subjected to heat treatment at 50-80 °C for 15 s, 10 and 3 min was delayed by a few or 10-20 h compared to the control culture. Based on the results achieved, it may be concluded that in the production of rennet cheeses, the application of additional, fermentation-impaired starter cultures (via heating for ten or so minutes) may serve to accelerate their ripening and to improve their sensory attributes. PMID:25542242

  3. Some growth factors stimulate cultured adult rabbit ventricular myocyte hypertrophy in the absence of mechanical loading

    Decker, R. S.; Cook, M. G.; Behnke-Barclay, M.; Decker, M. L.


    Cultured adult rabbit cardiac myocytes treated with recombinant growth factors display enhanced rates of protein accumulation (ie, growth) in response to insulin and insulin-like growth factors (IGFs), but epidermal growth factor, acidic or basic fibroblast growth factor, and platelet-derived growth factor failed to increase contractile protein synthesis or growth of the heart cells. Insulin and IGF-1 increased growth rates by stimulating anabolic while simultaneously inhibiting catabolic pathways, whereas IGF-2 elevated growth modestly by apparently inhibiting lysosomal proteolysis. Neutralizing antibodies directed against either IGF-1 or IGF-2 or IGF binding protein 3 blocked protein accumulation. A monoclonal antibody directed against the IGF-1 receptor also inhibited changes in protein turnover provoked by recombinant human IGF-1 but not IGF-2. Of the other growth factors tested, only transforming growth factor-beta 1 increased the fractional rate of myosin heavy chain (MHC) synthesis, with beta-MHC synthesis being elevated and alpha-MHC synthesis being suppressed. However, the other growth factors were able to modestly stimulate the rate of DNA synthesis in this preparation. Bromodeoxyuridine labeling revealed that these growth factors increased DNA synthesis in myocytes and nonmyocytes alike, but the heart cells displayed neither karyokinesis or cytokinesis. In contrast, cocultures of cardiac myocytes and nonmyocytes and nonmyocyte-conditioned culture medium failed to enhance the rate of cardiac MHC synthesis or its accumulation, implying that quiescent heart cells do not respond to "conditioning" by cardiac nonmyocytes. These findings demonstrated that insulin and the IGFs promote passively loaded cultured adult rabbit heart cells to hypertrophy but suggest that other growth factors tested may be limited in this regard.

  4. Development of a competition model for microbial growth in mixed culture.

    Fujikawa, Hiroshi; Munakata, Kanako; Sakha, Mohammad Z


    A novel competition model for describing bacterial growth in mixed culture was developed in this study. Several model candidates were made with our logistic growth model that precisely describes the growth of a monoculture of bacteria. These candidates were then evaluated for the usefulness in describing growth of two competing species in mixed culture using Staphylococcus aureus, Escherichia coli, and Salmonella. Bacterial cells of two species grew at initial doses of 10(3), 10(4), and 10(5) CFU/g at 28ºC. Among the candidates, a model where the Lotka-Volterra model, a general competition model in ecology, was incorporated as a new term in our growth model was the best for describing all types of growth of two competitors in mixed culture. Moreover, the values for the competition coefficient in the model were stable at various combinations of the initial populations of the species. The Baranyi model could also successfully describe the above types of growth in mixed culture when it was coupled with the Gimenez and Dalgaard model. However, the values for the competition coefficients in the competition model varied with the conditions. The present study suggested that our model could be a basic model for describing microbial competition. PMID:24975409

  5. Growth and Cultural Characteristics of Ophiocordyceps longissima Collected in Korea

    Sung, Gi-Ho; Shrestha, Bhushan; Han, Sang-Kuk; Sung, Jae-Mo


    We investigated the effect of nutritional and environmental factors on Ophiocordyceps longissima mycelial growth. The longest colony diameter was observed on Schizophyllum (mushroom) genetics complete medium plus yeast extract, Schizophyllum (mushroom) genetics minimal medium, and Sabouraud dextrose agar (SDA); however, malt-extract yeast-extract agar, SDA plus yeast extract, yeast-extract malt-extract peptone dextrose agar, SDA, oatmeal agar, and potato dextrose agar showed higher mycelia de...

  6. Batch-to-batch model improvement for cooling crystallization

    Forgione, Marco; Birpoutsoukis, Georgios; Bombois, Xavier; Mesbah, Ali; Daudey, Peter; Van Den Hof, Paul


    © 2015 Elsevier Ltd. Two batch-to-batch model update strategies for model-based control of batch cooling crystallization are presented. In Iterative Learning Control, a nominal process model is adjusted by a non-parametric, additive correction term which depends on the difference between the measured output and the model prediction in the previous batch. In Iterative Identification Control, the uncertain model parameters are iteratively estimated using the measured batch data. Due to the diff...

  7. Batch-to-batch uniformity of bacterial community succession and flavor formation in the fermentation of Zhenjiang aromatic vinegar.

    Wang, Zong-Min; Lu, Zhen-Ming; Yu, Yong-Jian; Li, Guo-Quan; Shi, Jin-Song; Xu, Zheng-Hong


    Solid-state fermentation of traditional Chinese vinegar is a mixed-culture refreshment process that proceeds for many centuries without spoilage. Here, we investigated bacterial community succession and flavor formation in three batches of Zhenjiang aromatic vinegar using pyrosequencing and metabolomics approaches. Temporal patterns of bacterial succession in the Pei (solid-state vinegar culture) showed no significant difference (P > 0.05) among three batches of fermentation. In all the batches investigated, the average number of community operational taxonomic units (OTUs) decreased dramatically from 119 ± 11 on day 1 to 48 ± 16 on day 3, and then maintained in the range of 61 ± 9 from day 5 to the end of fermentation. We confirmed that, within a batch of fermentation process, the patterns of bacterial diversity between the starter (took from the last batch of vinegar culture on day 7) and the Pei on day 7 were similar (90%). The relative abundance dynamics of two dominant members, Lactobacillus and Acetobacter, showed high correlation (coefficient as 0.90 and 0.98 respectively) among different batches. Furthermore, statistical analysis revealed dynamics of 16 main flavor metabolites were stable among different batches. The findings validate the batch-to-batch uniformity of bacterial community succession and flavor formation accounts for the quality of Zhenjiang aromatic vinegar. Based on our understanding, this is the first study helps to explain the rationality of age-old artistry from a scientific perspective. PMID:25998816

  8. Biochemical composition of Rhodomonas baltica as a function of the dilution rate during steady rate of growth

    Le, Hoang Bao Chau


    The algae Rhodomonas baltica, Karsten was cultured in Guillard f-medium with the phosphate concentration reduced to 5 µmol/L. The cultures were diluted at seven different dilution rates corresponding approximately to growth rates of 40, 50, 60, 70, 80, 90 and 100% of µmax measured in batch culture. The biochemical composition of the algae was measured for variable specific growth rate in cultures maintained in steady state of growth. The main objective of the thesis was to study the...

  9. Effect of liquid media culture systems on yam plant growth (Dioscorea alata L. 'Pacala Duclos'

    Jova, MC.


    Full Text Available The culture system type in liquid media influences yam plant growth ('Pacala Duclos' clone. In culture systems with forced renewal of internal atmosphere in culture flasks, Temporary Immersion System (TIS and Constant Immersion System (CIS with aeration through continuous bubbling in culture medium, higher results were obtained in morphological and physiological plant indicators in comparison with plants obtained in culture systems with passive renewal of internal atmosphere in culture flasks or Static Liquid System (SLS. In Temporary Immersion System, the best results were obtained after six weeks of culture in relation to total length (20.8 cm, axillary bud number (8.6, fresh weight (2.1 g and dry weight (0.18 g per plant, as well as photosynthetic pigment content (chlorophyll a, b, and total, net photosynthesis (15.3 μmol C02.m-2.s-1, total transpiration (5.97 mmol H2O.m-2.s-1, stomatal conductance (457 μmol H2O.m-2.s-1 and leaf starch content (45.77 mg.gMF-1. Reducing sugar in culture medium with Temporary Immersion System was completely depleted, and mineral nutrients of lower contents (phosphorus, nitrogen, magnesium, calcium, iron, and manganese in culture medium from this culture system could be related with plant growing. The results of this work could contribute to develop protocol for in vitro plant propagation of this yam clone.

  10. Enhanced growth medium and method for culturing human mammary epithelial cells

    Stampfer, Martha R. (7290 Sayre Dr., Oakland, CA 94611); Smith, Helene S. (5693 Cabot Dr., Oakland, CA 94611); Hackett, Adeline J. (82 Evergreen Dr., Orinda, CA 94563)


    Methods are disclosed for isolating and culturing human mammary epithelial cells of both normal and malignant origin. Tissue samples are digested with a mixture including the enzymes collagenase and hyaluronidase to produce clumps of cells substantially free from stroma and other undesired cellular material. Growing the clumps of cells in mass culture in an enriched medium containing particular growth factors allows for active cell proliferation and subculture. Clonal culture having plating efficiencies of up to 40% or greater may be obtained using individual cells derived from the mass culture by plating the cells on appropriate substrates in the enriched media. The clonal growth of cells so obtained is suitable for a quantitative assessment of the cytotoxicity of particular treatment. An exemplary assay for assessing the cytotoxicity of the drug adriamycin is presented.

  11. Quantitative modeling of viable cell density, cell size, intracellular conductivity, and membrane capacitance in batch and fed-batch CHO processes using dielectric spectroscopy.

    Opel, Cary F; Li, Jincai; Amanullah, Ashraf


    Dielectric spectroscopy was used to analyze typical batch and fed-batch CHO cell culture processes. Three methods of analysis (linear modeling, Cole-Cole modeling, and partial least squares regression), were used to correlate the spectroscopic data with routine biomass measurements [viable packed cell volume, viable cell concentration (VCC), cell size, and oxygen uptake rate (OUR)]. All three models predicted offline biomass measurements accurately during the growth phase of the cultures. However, during the stationary and decline phases of the cultures, the models decreased in accuracy to varying degrees. Offline cell radius measurements were unsuccessfully used to correct for the deviations from the linear model, indicating that physiological changes affecting permittivity were occurring. The beta-dispersion was analyzed using the Cole-Cole distribution parameters Deltaepsilon (magnitude of the permittivity drop), f(c) (critical frequency), and alpha (Cole-Cole parameter). Furthermore, the dielectric parameters static internal conductivity (sigma(i)) and membrane capacitance per area (C(m)) were calculated for the cultures. Finally, the relationship between permittivity, OUR, and VCC was examined, demonstrating how the definition of viability is critical when analyzing biomass online. The results indicate that the common assumptions of constant size and dielectric properties used in dielectric analysis are not always valid during later phases of cell culture processes. The findings also demonstrate that dielectric spectroscopy, while not a substitute for VCC, is a complementary measurement of viable biomass, providing useful auxiliary information about the physiological state of a culture. PMID:20730773

  12. Modeling and parameters identification of 2-keto-L-gulonic acid fed-batch fermentation.

    Wang, Tao; Sun, Jibin; Yuan, Jingqi


    This article presents a modeling approach for industrial 2-keto-L-gulonic acid (2-KGA) fed-batch fermentation by the mixed culture of Ketogulonicigenium vulgare (K. vulgare) and Bacillus megaterium (B. megaterium). A macrokinetic model of K. vulgare is constructed based on the simplified metabolic pathways. The reaction rates obtained from the macrokinetic model are then coupled into a bioreactor model such that the relationship between substrate feeding rates and the main state variables, e.g., the concentrations of the biomass, substrate and product, is constructed. A differential evolution algorithm using the Lozi map as the random number generator is utilized to perform the model parameters identification, with the industrial data of 2-KGA fed-batch fermentation. Validation results demonstrate that the model simulations of substrate and product concentrations are well in coincidence with the measurements. Furthermore, the model simulations of biomass concentrations reflect principally the growth kinetics of the two microbes in the mixed culture. PMID:25348654


    Dagmara Kullačová


    Full Text Available Orobanchaceae family includes parasitic plants that attack many important food crops. Genus Phelipanche, belonging to this family is considered to cause high negative impact on food production. Developing Phelipanche plant must establish connection with the root of host plant, from which it receives all resources needed for further development. Nowadays big effort is directed to finding a reliable strategy to control parasitic plants. In vitro cultures of P. ramosa can be genetically manipulated and used for study of genes involved in host-parasite interactions. We established in vitro cultures of parasitic species Phelipanche ramosa on solid and liquid media in parallel. The obtained results point out that development of P. ramosa calli was origin specific. We tested the effect of antibiotic kanamycin on in vitro cultures of Phelipanche ramosa with aim to develop system for its genetic manipulation and selection of transgenic tissue using kanamycin- resistance approach. The selection pressure of kanamycin was stronger in liquid grown cultures. However, concentrations of kanamycin tested (up to 250 mg.l-1 did not ensured elimination of kanamycine non-resistant tissue. Tests of other candidate selection markers are currently in progress.

  14. Effects of Yeast Polysaccharide on Growth and Flavonoid Accumulation in Fagopyrum tataricum Sprout Cultures

    Gang Zhao; Jianglin Zhao; Lianxin Peng; Liang Zou; Jingbo Wang; Lingyun Zhong; Dabing Xiang


    The purpose of this study was to investigate the effects of yeast polysaccharide (YPS) on growth and flavonoid accumulation in sprout cultures of Fagopyrum tataricum (tartary buckwheat). Without obvious change in the appearance of the sprouts, the exogenous YPS notably stimulated the production of functional metabolites in F. tataricum sprouts, and the stimulation effect was concentration-dependent. With 400 mg/L of YPS applied to the sprout cultures ...

  15. Growth and enzymatic responses of phytopathogenic fungi to glucose in culture media and soil

    Costa, Beatriz de Oliveira; Nahas, Ely


    The effect of inoculation of Aspergillus flavus , Fusarium verticillioides , and Penicillium sp. in Dystrophic Red Latosol (DRL) and Eutroferric Red Latosol (ERL) soils with or without glucose on the total carbohydrate content and the dehydrogenase and amylase activities was studied. The fungal growth and spore production in culture medium with and without glucose were also evaluated. A completely randomized design with factorial arrangement was used. The addition of glucose in the culture me...

  16. Growth and enzymatic responses of phytopathogenic fungi to glucose in culture media and soil

    Beatriz de Oliveira Costa; Ely Nahas


    The effect of inoculation of Aspergillus flavus, Fusarium verticillioides, and Penicillium sp. in Dystrophic Red Latosol (DRL) and Eutroferric Red Latosol (ERL) soils with or without glucose on the total carbohydrate content and the dehydrogenase and amylase activities was studied. The fungal growth and spore production in culture medium with and without glucose were also evaluated. A completely randomized design with factorial arrangement was used. The addition of glucose in the culture medi...

  17. Associated bacterial flora, growth, and toxicity of cultured benthic dinoflagellates Ostreopsis lenticularis and Gambierdiscus toxicus.

    Tosteson, T. R.; Ballantine, D L; Tosteson, C G; Hensley, V; Bardales, A T


    The growth, toxicity, and associated bacterial flora of 10 clonal cultures of the toxic benthic dinoflagellates Ostreopsis lenticularis and Gambierdiscus toxicus isolated from the coastal waters of southwest Puerto Rico have been examined. Clonal cultures of O. lenticularis grew more rapidly and at broader temperature ranges than those of G. toxicus. All five Ostreopsis clones were toxic, while only one of the five Gambierdiscus clones was poisonous. The degree of toxicity among poisonous clo...

  18. Bioprocess development for the production of mouse-human chimeric anti-epidermal growth factor receptor vIII antibody C12 by suspension culture of recombinant Chinese hamster ovary cells

    Hu, Suwen; Deng, Lei; Wang, Huamao; Zhuang, Yingping; Chu, Ju; Zhang, Siliang; Li, Zhonghai; Guo, Meijin


    The mouse-human chimeric anti-epidermal growth factor receptor vIII (EGFRvIII) antibody C12 is a promising candidate for the diagnosis of hepatocellular carcinoma (HCC). In this study, 3 processes were successfully developed to produce C12 by cultivation of recombinant Chinese hamster ovary (CHO-DG44) cells in serum-free medium. The effect of inoculum density was evaluated in batch cultures of shaker flasks to obtain the optimal inoculum density of 5 × 105 cells/mL. Then, the basic metabolic ...

  19. Transplacental effect of methylcobalamin on growth of mouse embryonic kidney tissue in organ culture

    This paper gives the results of a study of the transplacental action of methylcobalamin (MC) on growth of embryonic tissues during organ culture. An organ culture of embryonic mouse kidney tissue, sensitive to the transplacental action of biologically active substances, including vitamins and hormones, and also of chemical carcinogens, was used as the experimental model. 3H-thymidine was added to the nutrient medium before fixation of the explants. The stimulating effect of MC on growth of mouse kidney tissue in the prenatal period as revealed in this investigation, is said by the authors to be an important mechanism modifying the transplacental action of chemical carcinogens

  20. Growth of Crassostrea gasar cultured in marine and estuary environments in Brazilian waters

    Gustavo Ruschel Lopes; Carlos Henrique Araujo de Miranda Gomes; Cláudio Rudolfo Tureck; Claudio Manuel Rodrigues de Melo


    The objective of this work was to evaluate the growth of the mangrove oyster Crassostrea gasar cultured in marine and estuarine environments. Oysters were cultured for 11 months in a longline system in two study sites - São Francisco do Sul and Florianópolis -, in the state of Santa Catarina, Southern Brazil. Water chlorophyll-α concentration, temperature, and salinity were measured weekly. The oysters were measured monthly (shell size and weight gain) to assess growth. At the end of the cult...

  1. New approaches for growth improvement in pejerrey Odontesthes bonariensis (Valenciennes, 1835 culture (Atherinomorpha: Atherinopsidae

    Patricio J. Solimano


    Full Text Available The pejerrey is the most important recreational species in shallow temperate lakes and reservoirs of Argentina and the attempts to develop its culture have started a century ago. A common constraint of pejerrey aquaculture is its poor growth under traditional intensive rearing techniques. The aim of this study was to evaluate the possibility to achieve and maintain high growth rates of pejerrey throughout the rearing process by semi-intensive culture method . Four floating cages were installed in La Salada de Monasterio Lake and each one was stocked with 300 juveniles (10.22 ±0.38cm; 6.52 ±0.82g. From January through March all fish were exposed to natural zooplankton as food source, whereas from April to September two cages were supplied daily with artificial food. The fish exposed to artificial supplementary diets exhibited significantly higher growth (17.5 ±0.98cm; 41.05 ±8.55g than those in the control cages (15.02 ±0cm ; 23.5 ±0.84g, and exceeded the known values in pejerrey culture. The results suggest that the species potential growth is not fully achieved by common intensive methods and it can be improved by semi-intensive techniques. Accordingly a better understanding of the species nutritional requirements is needed to improve growth rates and enhance pejerrey culture.

  2. Mycelial Biomass Exchange in Different Growth Stage Cultures of Flammulina velutipes

    YU Changxia; CHEN Jianhua; CAO Hui; CHEN Mingjie; WANG Hong; WANG Yan


    Mycelial DNA was used as the parameter to determine fungal biomass in the cultivation substrate during the growth of Flammulina velutipes,strain FV.Substrate DNA levels,their effect on mycelial DNA extraction,and mycelial biomass in bottle cultures,were determined using a standard curve relating mycelial biomass with DNA content.Determination of mycelial biomass in samples collected from the upper,middle and lower layers of bottle cultures at different growth stages indicated a positive correlation between biomass and the ‘age’of the mycelium (i.e.growth period from inoculation and sample testing),and that biomass levels continually increased for a certain period after the substrate had been fully colonized.Mycelial biomass in the cultivation substrate decreased during fruit body growth,and occurred earlier and more rapidly in the upper layer compared with the middle and lower layers.

  3. Growth factor regulation of sugar uptake in cultured cells

    Mouse EGF stimulates the uptake of 2-deoxygluclose (dGIc), a non-metabolized glucose analogue, into cultured mouse 3T3 fibroblasts (Clone 1) 2 to 4 fold, and EGF dependent Balb/MK-1 epidermal kerotinocytes, 5 to 8 fold. Initial stimulation is detected at 15 minutes. Maximal effects are seen at 2 hours with 10 ng/ml EGF. Binding of 125I-labeled EGF to cells is rapid and complete by 2 hours at 370C. Antibodies which specifically inhibit 125I-labeled EGF binding to cells inhibit EGF stimulation as much as 85%. Human platelet derived TGF-β stimulates dGlc uptake up to 5 fold. Maximum effects are seen with 1 ng/ml TGF-β within 2 hours and stimulation is detected 30 minutes after exposure to 0.1 ng/ml, the minimum effective concentration. TGF-β, like EGF, stimulates sugar transport into Balb/MK-1 cells without additional factors. However, neither stimulates uptake in a 3T3 variant, NR-6, which is EGF-receptor negative. The co-addition of EGF and/or PDGF enhances TGF-β stimulation. Binding of 125I-labeled TGF-β is nearly complete by 1 hour at 370C, but continues to increase for as long as 4 hours after addition. Antibodies which inhibit EGF binding have no effect on TGF-β binding, but they block TGF-β stimulation of hexose uptake. It is concluded from these results that the TGF-β receptor is distinct from the EGF receptor, and that although TGF-β stimulation of dGLc uptake does not require exogenously added EGF, it does require an active or available EGF receptor kinase system

  4. Assessment of Growth Factor Treatment on Fibrochondrocyte and Chondrocyte Co-Cultures for TMJ Fibrocartilage Engineering

    Kalpakci, Kerem N.; Kim, Eric J.; Athanasiou, Kyriacos A.


    Treatments for patients suffering from severe temporomandibular joint (TMJ) dysfunction are limited, motivating the development of strategies for tissue regeneration. In this study, co-cultures of fibrochondrocytes (FC) and articular chondrocytes (AC) were seeded in agarose wells, and supplemented with growth factors, to engineer tissue with biomechanical properties and ECM composition similar to native TMJ fibrocartilage. In the first phase, growth factors were applied alone and in combinati...

  5. Foliar fertilizations with boron and growth regulators on lettuce (Lactuca sativa L.) cv floresta culture

    The experiment was realized to verify the possibility of applying Boron as foliar fertilization with growth regulators: indol acetic acid, giberellic acid, ethephon and cycocel. The other objective was to compare the foliar and soil fertilization, with Boron, on the lettuce culture. The results showed that there wasn't difference of production between the treatments. Meanwhile the application of growth regulator modified the Boron grade in the leaves. (author)

  6. Associated bacterial flora, growth, and toxicity of cultured benthic dinoflagellates Ostreopsis lenticularis and Gambierdiscus toxicus.

    Tosteson, T R; Ballantine, D L; Tosteson, C G; Hensley, V; Bardales, A T


    The growth, toxicity, and associated bacterial flora of 10 clonal cultures of the toxic benthic dinoflagellates Ostreopsis lenticularis and Gambierdiscus toxicus isolated from the coastal waters of southwest Puerto Rico have been examined. Clonal cultures of O. lenticularis grew more rapidly and at broader temperature ranges than those of G. toxicus. All five Ostreopsis clones were toxic, while only one of the five Gambierdiscus clones was poisonous. The degree of toxicity among poisonous clones was highly variable. The number of associated bacterial genera and their frequency of occurrence were quite variable among clones of both dinoflagellate genera. Bacterial isolates represented six genera (Nocardia, Pseudomonas, Vibrio, Aeromonas, Flavobacterium, and Moraxella) in addition to coryneform bacteria. Extracts of dinoflagellate-associated bacteria grown in pure culture were not toxic. Gambierdiscus clones were characterized by the frequent presence of Pseudomonas spp. (four of five clones) and the absence of coryneforms. In O. lenticularis, only one of five clones showed the presence of Pseudomonas spp., and Moraxella sp. was absent altogether. Detailed analyses of toxicity and associated microflora in a selected Ostreopsis clone, repeatedly cultivated (four times) over a period of 160 days, showed that peak cell toxicities developed in the late static and early negative culture growth phases. Peak Ostreopsis cell toxicities in the stationary phase of culture growth were correlated with significant increases in the percent total bacteria directly associated with these cells. Changes in the quantity of bacteria directly associated with microalgal cell surfaces and extracellular matrices during culture growth may be related to variability and degree of toxicity in these laboratory-cultured benthic dinoflagellates. PMID:2705766

  7. Human skin in organ culture. Elaboration of proteolytic enzymes in the presence and absence of exogenous growth factors.

    Varani, J.; Perone, P.; Inman, D. R.; Burmeister, W.; Schollenberger, S. B.; Fligiel, S. E.; Sitrin, R G; Johnson, K.J.


    Proteinase levels were assessed in organ culture fluids from human neonatal foreskin maintained under growth factor-free conditions and in the presence of a combination of growth factors (ie, epidermal growth factor, insulin, hydrocortisone, pituitary extract, and all-trans-retinoic acid). Analysis of culture fluids by gelatin zymography revealed the presence of 92-kd and 72-kd gelatinases. There was a greater amount of 92-kd gelatinase activity in the presence of growth factors whereas the l...

  8. Growth of Crassostrea gasar cultured in marine and estuary environments in Brazilian waters

    Gustavo Ruschel Lopes


    Full Text Available The objective of this work was to evaluate the growth of the mangrove oyster Crassostrea gasar cultured in marine and estuarine environments. Oysters were cultured for 11 months in a longline system in two study sites - São Francisco do Sul and Florianópolis -, in the state of Santa Catarina, Southern Brazil. Water chlorophyll-α concentration, temperature, and salinity were measured weekly. The oysters were measured monthly (shell size and weight gain to assess growth. At the end of the culture period, the average wet flesh weight, dry flesh weight, and shell weight were determined, as well as the distribution of oysters per size class. Six nonlinear models (logistic, exponential, Gompertz, Brody, Richards, and Von Bertalanffy were adjusted to the oyster growth data set. Final mean shell sizes were higher in São Francisco do Sul than in Florianópolis. In addition, oysters cultured in São Francisco do Sul were more uniformly distributed in the four size classes than those cultured in Florianópolis. The highest average values of wet flesh weight and shell weight were observed in São Francisco do Sul, whereas dry flesh weight did not differ between the sites. The estuary environment is more promising for the cultivation of oysters.

  9. Serum obtained from rats after partial hepatectomy enhances growth of cultured colon carcinoma cells

    de Jong, KP; Brouwers, MAM; van Veen, ML; Brinker, M; de Vries, EGE; Daemen, T; Scherphof, GL; Slooff, MJH


    Tumour-bearing rats were randomized to a 70% partial hepatectomy or a sham operation. At days 1, 3 or 14, portal and systemic serum was obtained and colon carcinoma cells were cultured in the presence of 5, 10, 20 or 50% serum. Proliferation and epidermal growth factor receptor (EGFr) expression was

  10. Radiosensitivity of different tissues from carrot root at different phases of growth in culture

    The present work compares the effect of γ-radiation dose and time in culture on the growth of cambium and phloem carrot (Daucus carota) root explants. It was found that the phloem is more radiosensitive than the cambium and that both tissues were more radiosensitive when irradiated on excision at the G1 phase rather than at the end of the lag phase on the ninth day of growth in culture when cells were predominantly at the G2 phase. The nuclear volumes of cells from both tissues were similar but were larger at the end of the more radioresistant lag phase than those of the G1 phase on excision. However, nuclear volume could not account for the differences in radiosensitivity between either the tissues or irradiation times in culture

  11. Optimal Control of Fed-Batch Fermenters

    Valentinotti, S.; Cannizzaro, C; Rhiel, M.; Holmberg, U.; von Stockar, U; Bonvin, D.


    Optimal control of fed-batch fermenters S. Valentinotti† C. Cannizzaro‡ M.Rhiel‡ U. Holmberg† U. von Stockar‡ D. Bonvin† †Institut d’Automatique, EPFL, 1015 Lausanne, Switzerland ‡Institut de Genie Chimique, EPFL, 1015 Lausanne, Switzerland Fermentors are often run in a fed-batch manner to avoid the formation of overflow metabolites. At a high growth rate, the most efficient metabolic pathway(s) of certain microorganisms become saturated resulting in overflow metabolite production. These byprodu...

  12. Effects of outdoor cultures on the growth and lipid production of Phaeodactylum tricornutum using closed photobioreactors.

    Santos-Ballardo, David U; Rendón-Unceta, María Del Carmen; Rossi, Sergio; Vázquez-Gómez, Rosa; Hernández-Verdugo, Sergio; Valdez-Ortiz, Angel


    One of the principal challenges for large scale production of microalgae is the high costs of biomass production. Aiming for minimize this problem, microalgal biodiesel production should focus on outdoors cultures, using available solar light and allowing lower energy cost process. Testing species that proved to be common and easy to culture may be a good approach in this process. The present work reports indoor-outdoor cultures of Phaeodactylum tricornutum using different bioreactors types, using cell growth, biochemical composition, and the profiles of the fatty acids produced as the parameters to test the optimization processes. The results show that the use of outdoor cultures is a good choice to obtain P. tricornutum biomass with a good potential for biodiesel production. The microalgae produced reached better growth efficiency, major lipid content and showed an increment in the percentage of saturated fatty acids (required on the biodiesel production) respect indoor cultures. These results are important to show the relevance of using outdoor cultures as a way to improve the efficiency and the energetic balance of the biodiesel production with P. tricornutum algae. PMID:27339309

  13. Effects of transgenic soybean on growth and phosphorus acquisition in mixed culture system

    Jianna Xie; Jia Zhou; Xiurong Wang; Hong Liao


    Transgenic soybean plants overexpressing the Arabidopsis purple acid phosphatase gene AtPAP15 (OXp) or the soybean expansin gene GmEXPB2 (OXe) can improve phosphorous (P) efficiency in pure culture by increasing Apase secretion or changing root morphology. In this study, soybean‐soybean mixed cultures were employed to il uminate P acquisition among plants in mixed stands of transgenic and wild‐type soybean. Our results showed that transgenic soybean plants were much more competitive, and had greater growth and P uptake than wild‐type soybean in mixed culture in both low P calcareous and acid soils. Furthermore, OXe plants had an advantage in calcareous soils when mixed with OXp, whereas the latter performed much better in acid soils. In soybean‐maize mixed culture, transgenic soybean had no impact on maize growth compared to controls in both acid and calcareous soils with different P conditions. As for soybean in mixed culture, OXp plants had no significant advantages regardless of P availability or soil type, while P efficiency improved in OXe in calcareous soils compared to controls. These results imply that physiological traits could be easily affected by the mixed maize. Transgenic soybean plants with enhanced root traits had more competitive advantages than those with improved root physiology in mixed culture.

  14. Growth kinetics and physiological behavior of co-cultures of Saccharomyces cerevisiae and Kluyveromyces lactis, fermenting carob sugars extracted with whey.

    Rodrigues, B; Lima-Costa, M E; Constantino, A; Raposo, S; Felizardo, C; Gonçalves, D; Fernandes, T; Dionísio, L; Peinado, J M


    Alcoholic fermentation of carob waste sugars (sucrose, glucose and fructose) extracted with cheese whey, by co-cultures of Saccharomyces cerevisiae and Kluyveromyces lactis has been analyzed. Growth and fermentation of S. cerevisiae in the carob-whey medium showed an inhibition of about 30% in comparison with water-extracted carob. The inhibition of K. lactis on carob-whey was greater (70%) when compared with the whey medium alone, due to osmolarity problems. Oxygen availability was a very important factor for K. lactis, influencing its fermentation performance. When K. lactis was grown alone on carob-whey medium, lactose was always consumed first, and glucose and fructose were consumed afterwards, only at high aeration conditions. In co-culture with S. cerevisiae, K. lactis was completely inhibited and, at low aeration, died after 3 days; at high aeration this culture could survive but growth and lactose fermentation were only recovered after S. cerevisiae became stationary. To overcome the osmolarity and K. lactis' oxygen problems, the medium had to be diluted and a sequential fermentative process was designed in a STR-3l reactor. K. lactis was inoculated first and, with low aeration (0.13vvm), consumed all the lactose in 48h. Then S. cerevisiae was inoculated, consuming the total of the carob sugars, and producing ethanol in a fed-batch regime. The established co-culture with K. lactis increased S. cerevisiae ethanol tolerance. This fermentation process produced ethanol with good efficiency (80g/l final concentration and a conversion factor of 0.4g ethanol/g sugar), eliminating all the sugars of the mixed waste. These efficient fermentative results pointed to a new joint treatment of agro-industrial wastes which may be implemented successfully, with economic and environmental sustainability for a bioethanol industrial proposal. PMID:27542743

  15. Batch and fed-batch production of butyric acid by Clostridium butyricum ZJUCB

    HE Guo-qing; KONG Qing; CHEN Qi-he; RUAN Hui


    The production of butyric acid by Clostridium butyricum ZJUCB at various pH values was investigated. In order to study the effect of pH on cell growth, butyric acid biosynthesis and reducing sugar consumption, different cultivation pH values ranging from 6.0 to 7.5 were evaluated in 5-L bioreactor. In controlled pH batch fermentation, the optimum pH for cell growth and butyric acid production was 6.5 with a cell yield of 3.65 g/L and butyric acid yield of 12.25 g/L. Based on these results, this study then compared batch and fed-batch fermentation of butyric acid production at pH 6.5. Maximum value (16.74 g/L) of butyric acid concentration was obtained in fed-batch fermentation compared to 12.25 g/L in batch fermentation. It was concluded that cultivation under fed-batch fermentation mode could enhance butyric acid production significantly (P<0.01) by C. butyricum ZJUCB.

  16. Insulin growth factors regulate the mitotic cycle in cultured rat sympathetic neuroblasts

    While neuronal mitosis is uniquely restricted to early development, the underlying regulation remains to be defined. The authors have now developed a dissociated, embryonic sympathetic neuron culture system that uses fully defined medium in which cells enter the mitotic cycle. The cultured cells expressed two neuronal traits, tyrosine hydroxylase and the neuron-specific 160-kDa neurofilament subunit protein, but were devoid of glial fibrillary acidic protein, a marker for non-myelin-forming Schwann cells in ganglia. Approximately one-third of the tyrosine hydroxylase-positive cells synthesized DNA in culture, specifically incorporating [3H]thymidine into their nuclei. They used this system to define factors regulating the mitotic cycle in sympathetic neuroblasts. Members of the insulin family of growth factors, including insulin and insulin-like growth factors I and II, regulated DNA synthesis in the presumptive neuroblasts. Insulin more than doubled the proportion of tyrosine hydroxylase-positive cells entering the mitotic cycle, as indicated by autoradiography of [3H]thymidine incorporation into nuclei. Scintillation spectrometry was an even more sensitive index of DNA synthesis. In contrast, the trophic protein nerve growth factor exhibited no mitogenic effect, suggesting that the mitogenic action of insulin growth factors is highly specific. The observations are discussed in the context of the detection of insulin growth factors and receptors in the developing brain

  17. Measurements of prolactin and growth hormone synthesis and secretion by rat pituitary cells in culture.

    Gautvik, K M; Kriz, M


    A specific and sensitive immunoprecipitation method for measurements of biosynthesized radioactive prolactin and growth hormone is described. Antisera to rat prolactin and growth hormone were developed in the rabbit and monkey, respectively. The specificity of the immune sera was assessed by polyacylamide gel electrophoresis of the dissolved immunoprecipitates. The two antisera showed cross-reactions with the nonhomologous hormone of less than 1%. Separation of tritium-labelled prolactin and growth hormone by immunoprecipitation, followed by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate was shown to be 95-57% complete. When both hormones were measured in the same microsample by sequential immunoprecipitation, the reaction was 97% complete for determination of intra- and extracellular prolactin and extracellular growth hormone, but 85% complete for determination of intracellular growth hormone. This method has been used to characterize the basal synthesis and secretion of prolactin and growth hormone in three different but related, pituitary cell strains. Radioactive prolactin and growth hormone was obtained from monolayer cultures when the cells were grown in the presence of [3H]L-leucine. The rate of prolactin synthesis and extracellular accumulation was higher than that of growth hormone in a cell strain which produced both hormones. In these cells prolactin synthesis represents 1-5%, and growth hormone 0.1-0.6% of total protein synthesis. PMID:942913

  18. The absence of CD47 promotes nerve fiber growth from cultured ventral mesencephalic dopamine neurons.

    Franziska Marschinke

    Full Text Available In ventral mesencephalic organotypic tissue cultures, two timely separated sequences of nerve fiber growth have been observed. The first appearing nerve fiber pattern is a long-distance outgrowth that occurs before astrocytes start to proliferate and migrate to form an astrocytic monolayer that finally surrounds the tissue slice. These long-distance growing nerve fibers are retracted as the astrocytes migrate, and are followed by a secondary outgrowth. The secondary outgrowth is persistent in time but reaches short distances, comparable with outgrowth seen from a dopaminergic graft implanted to the brain. The present study was focused on the interaction between the astrocytes and the long-distance growing non-glial associated nerve fibers. Cross talk between astroglia and neurite formation might occur through the integrin-associated protein CD47. CD47 serves as a ligand for signal regulatory protein (SIRP α and as a receptor for the extracellular matrix protein thrombospondin-1 (TSP-1. Embryonic day 14 ventral mesencephalic tissue from CD47(+/+ and CD47(-/- mice was used to investigate astrocytic migration and the tyrosine hydroxylase (TH -positive outgrowth that occurred remote from the astrocytes. TH-immunohistochemistry demonstrated that the non-glial-associated nerve fiber outgrowth in CD47(-/- cultures reached significantly longer distances and higher density compared to nerve fibers formed in CD47(+/+ cultures at 14 days in vitro. These nerve fibers often had a dotted appearance in CD47(+/+ cultures. No difference in the astrocytic migration was observed. Further investigations revealed that the presence of CD47 in control culture did neither hamper non-glial-associated growth through SIRPα nor through TSP-1 since similar outgrowth was found in SIRPα mutant cultures and in CD47(+/+ cultures treated with blocking antibodies against the TSP-1, respectively, as in the control cultures. In conclusion, long-distance growing nerve fiber

  19. Biochemical and morphological changes during the growth kinetics of Araucaria angustifolia suspension cultures

    André Luis Wendt dos Santos


    Full Text Available Embryogenic cultures of Araucaria angustifolia were established in a BM liquid medium supplemented with 2 µM 2,4-dichlorophenoxyacetic acid, 1 µM 6-benzylaminopurine and 1 µM kinetin (BM2 and in a BM medium free of growth regulators (BM0. During 42 days in culture, the cell growth pattern of both cultures was similar. The pH of the culture medium of both BM0 and BM2 underwent progressive reduction during culture time. For both the embryogenic cultures a preferential uptake of glucose in the late stages of cell growth kinetics was observed. The extracellular protein content was similar for both the embryogenic cultures. Acetocarmine and Evan's blue double stain showed major differences for early somatic embryo organisation, in which only the embryogenic culture grown in a liquid culture medium free of plant growth regulators showed the presence of bipolar somatic pro-embryos.Culturas embriogênicas de Araucaria angustifolia foram estabelecidas em meio de cultura líquido BM suplementado com 2 µM Ácido 2,4 Diclorofenoxiacético, 1 µM 6-Benzilaminopurina e 1 µM Cinetina (BM2 e em meio BM isento de reguladores de crescimento (BM0. Durante 42 dias de cultivo, o padrão de crescimento celular em ambas as culturas foi similar. O pH do meio de cultura BM0 e BM2 sofreu uma progressiva redução durante o período de cultivo. Em ambas as culturas embriogênicas foram observadas um consumo preferencial de glicose no período final da curva de crescimento celular. O nível de proteínas extracelulares foi similar para ambas as culturas embriogênicas. A dupla coloração com carmin acético e azul de Evans revelou diferenças na organização das linhagens celulares embriogênicas, sendo que a presença de proembriões somáticos bipolares foi apenas evidenciada nas culturas embriogênicas mantidas em meio de cultura líquido sem reguladores de crescimento.

  20. Effects of Wnt-10b on hair shaft growth in hair follicle cultures

    Wnts are deeply involved in the proliferation and differentiation of skin epithelial cells. We previously reported the differentiation of cultured primary skin epithelial cells toward hair shaft and inner root sheath (IRS) of the hair follicle via β-catenin stabilization caused by Wnt-10b, however, the effects of Wnt-10b on cultured hair follicles have not been reported. In the present study, we examined the effects of Wnt-10b on shaft growth using organ cultures of whisker hair follicles in serum-free conditions. No hair shaft growth was observed in the absence of Wnt-10b, whereas its addition to the culture promoted elongation of the hair shaft, intensive incorporation of BrdU in matrix cells flanking the dermal papilla (DP), and β-catenin stabilization in DP and IRS cells. These results suggest a promoting effect of Wnt-10b on hair shaft growth that is involved with stimulation of the DP via Wnt-10b/β-catenin signalling, proliferation of matrix cells next to the DP, and differentiation of IRS cells by Wnt-10b

  1. Cracking Streptococcus thermophilus to stimulate the growth of the probiotic Lactobacillus casei in co-culture.

    Ma, Chengjie; Ma, Aimin; Gong, Guangyu; Liu, Zhenmin; Wu, Zhengjun; Guo, Benheng; Chen, Zhengjun


    Lactobacillus casei, a probiotic, and Streptococcus thermophilus, a fast acidifying lactic acid bacterial strain, are both used in the food industry. The aim of this study was to investigate the interaction between L. casei and S. thermophilus in the presence or absence of S. thermophilus-specific bacteriophage during milk fermentation. The acidification capability of L. casei co-cultured with S. thermophilus was significantly higher than that observed for L. casei or S. thermophilus cultured alone. However, the probiotic content (i.e., L. casei cell viability) was low. The fastest acidification and the highest viable L. casei cell count were observed in co-cultures of L. casei and S. thermophilus with S. thermophilus phage. In these co-cultures, S. thermophilus compensated for the slow acid production of L. casei in the early exponential growth phase. Thereafter, phage-induced lysis of the S. thermophilus cells eliminated the competition for nutrients, allowing L. casei to grow well. Additionally, the ruptured S. thermophilus cells released intracellular factors, which further promoted the growth and function of the probiotic bacteria. Crude cellular extract isolated from S. thermophilus also significantly accelerated the growth and propagation of L. casei, supporting the stimulatory role of the phage on this micro-ecosystem. PMID:26093989

  2. Polling with batch service

    Boxma, O.; Van der Wal; Yechiali, U.


    This article considers a batch service polling system. We first study the case in which the server visits the queues cyclically, considering three different service regimes: gated, exhaustive, and globally gated. We subsequently analyze the case (the so-called "Israeli Queue") in which the server first visits the queue with the "oldest" customer. In both cases, queue lengths and waiting times are the main performance measures under consideration.

  3. Gas-permeable lifecell tissue culture flasks give improved growth of Helicobacter pylori in a liquid medium.

    Secker, D A; Tompkins, D S; Alderson, G


    Experiments were conducted to investigate the microaerobic culture of Helicobacter pylori in a liquid medium by using gas-permeable Lifecell tissue culture flasks. Growth in Lifecell tissue culture flasks was 1.2 to 1.6 log units greater than that in glass control bottles. These results were comparable to those reported by the use of gyrated media.

  4. Comparative effects of contraction and angiotensin II on growth of adult feline cardiocytes in primary culture

    Wada, H.; Zile, M. R.; Ivester, C. T.; Cooper, G. 4th; McDermott, P. J.


    The purposes of this study were 1) to determine whether angiotensin II causes growth of adult feline cardiocytes in long-term culture, 2) to compare the growth effects of angiotensin II with those resulting from electrically stimulated contraction, and 3) to determine whether the anabolic effects of contraction are exerted via the angiotensin type 1 receptor. Adult feline cardiocytes were cultured on laminin-coated trays in a serum-free medium. Cardiocytes were either electrically stimulated to contract (1 Hz, 5-ms pulse duration, alternating polarity) or were nonstimulated and quiescent. Quiescent cells were studied as controls and after treatment with angiotensin II (10(-8) M), losartan (10(-6) M; an angiotensin type 1-receptor antagonist), or angiotensin II plus losartan. Contracting cells were studied in the presence and absence of angiotensin II or losartan. In quiescent cardiocytes, angiotensin II treatment on day 7 significantly increased protein synthesis rates by 22% and protein content per cell by 17%. The effects of angiotensin II were completely blocked by losartan. Electrically stimulated contraction on days 4 and 7 in culture significantly increased protein synthesis rate by 18 and 38% and protein content per cell by 19 and 46%, respectively. Angiotensin II treatment did not further increase protein synthesis rate or protein content in contracting cardiocytes. Furthermore, losartan did not block the anabolic effects of contraction on protein synthesis rates or protein content. In conclusion, angiotensin II can exert a modest anabolic effect on adult feline cardiocytes in culture. In contracting feline cardiocytes, angiotensin II has no effect on growth. Growth caused by electrically stimulated contraction occurs more rapidly and is greater in magnitude than that caused by angiotensin II. Growth of contracting adult feline cardiocytes is not dependent on activation of the angiotensin receptor.

  5. Effects of low-dose irradiation on the growth changes in culture cells by iron

    We investigated the influence of Fe3+-NTA on H226b cell growth, degeneration and p53 point mutations, as well as evaluating the influence of low-dose X-ray irradiation. In the result, growth of H226b cells was unsatisfactory when cultured in a higher concentration of Fe3+-NTA (above 6μg/ml). In contrast, growth of H226b cells was satisfactory when cultured in a Fe3+-NTA concentration of 2 μg/ml. In addition, growth of H226b cells cultured in a Fe3+-NTA concentration of 4 μg/ml was accelerated by irradiating with 0.25 Gy X-ray. Therefore, it was found that cell growth was synergistically accelerated when H226b cells were supplemented with a low concentration of Fe3+-NTA, which produced small amounts of active oxygen, and irradiated with low-dose X-ray. It was also found that the release of LDH in the medium was inhibited by irradiating with 0.25 Gy X-ray when the culture medium was not supplemented with Fe3+-NTA. Moreover, it was confirmed that the point mutation of the p53 gene was induced along with transformation of H226b cells to H226br cells. Therefore, using this phenomenon, the presence or absence of a p53 point mutation was evaluated. When the human p53 gene exon 7 was used as the primer, a p53 point mutation was not detected. Therefore, it was confirmed that H226b cells did not transform to H226br cells. (author)

  6. Expression of Transforming Growth Factor-β in Cultured Normal Human Lens Epithelia Cells

    黄渝侃; 魏厚仁


    Summary: In order to investigate whether cultured normal human lens epithelial cells (LEC) express transforming growth factor β (TGF-β), reverse transcriptase polymerase chain reaction (RTPCR) and immunohistochemical methods were used for detection of TGF-β mRNA and protein in cultured normal human LEC. The results showed that a single RT-PCR amplified product about 310bp was obtained, and the sequence was homologous to the known sequence. TGF-β immunostain was positive in the plasma of LEC. It was suggested that normal human LEC could produce TGF-β, and LEC could be affected by TGF-β through autocrine action.

  7. Effect of Sodium Chloride on Growth of Staphylococcus aureus in Synthetic Tissue Culture Medium

    出来尾, 哲; 地土井, 襄爾


    Staphylococcus aureus Smith was cultured in a synthetic tissue culture medium containing various concentrations of sodium chloride. The growth was at a higher level in the media containing sodium chloride of concentrations of 2.0 and 4.0% than in those of less than 2.0% and more than 4.0%. The result suggests that the bacteria grow more vigorously in the fairly high concentrations of sodium chloride than in the physiological concentration of it, in the synthetic medium. It may be considered t...

  8. Influence of culture conditions on mycelial growth and bioluminescence of Gerronema viridilucens.

    Mendes, Luiz F; Bastos, Erick L; Desjardin, Dennis E; Stevani, Cassius V


    Herein we describe a procedure for measuring the total light emission of the naturally bioluminescent tropical fungus Gerronema viridilucens and the optimization of culture conditions using multivariate factorial anova. Cultures growing on an agar surface in 35 mm Petri dishes at 90% humidity show optimal bioluminescence emission at 25 degrees C in the presence of 1.0% sugar cane molasses, 0.10% yeast extract and pH 6.0 (nonbuffered). Temperature and pH are the most important factors for both mycelial growth and bioluminescence. PMID:18355288

  9. Morphologically structured model for antitumoral retamycin production during batch and fed-batch cultivations of Streptomyces olindensis.

    Giudici, Reinaldo; Pamboukian, Celso R D; Facciotti, Maria Cândida R


    A morphologically structured model is proposed to describe trends in biomass growth, substrate consumption, and antitumoral retamycin production during batch and fed-batch cultivations of Streptomyces olindensis. Filamentous biomass is structured into three morphological compartments (apical, subapical, and hyphal), and the production of retamycin, a secondary metabolite, is assumed to take place in the subapical cell compartment. Model accounts for the effect of glucose as well as complex nitrogen source on both the biomass growth and retamycin production. Laboratory data from bench-scale batch and fed-batch fermentations were used to estimate some model parameters by nonlinear regression. The predictive capability of the model was then tested for additional fed-batch and continuous experiments not used in the previous fitting procedure. The model predictions show fair agreement to the experimental data. The proposed model can be useful for further studies on process optimization and control. PMID:15112294

  10. Inhibitory Activity of Yokukansankachimpihange against Nerve Growth Factor-Induced Neurite Growth in Cultured Rat Dorsal Root Ganglion Neurons.

    Murayama, Chiaki; Watanabe, Shimpei; Nakamura, Motokazu; Norimoto, Hisayoshi


    Chronic pruritus is a major and distressing symptom of many cutaneous diseases, however, the treatment remains a challenge in the clinic. The traditional Chinese-Japanese medicine (Kampo medicine) is a conservative and increasingly popular approach to treat chronic pruritus for both patients and medical providers. Yokukansankachimpihange (YKH), a Kampo formula has been demonstrated to be effective in the treatment of itching of atopic dermatitis in Japan although its pharmacological mechanism is unknown clearly. In an attempt to clarify its pharmacological actions, in this study, we focused on the inhibitory activity of YKH against neurite growth induced with nerve growth factor (NGF) in cultured rat dorsal root ganglion (DRG) neurons because epidermal hyperinnervation is deeply related to itch sensitization. YKH showed approximately 200-fold inhibitory activity against NGF-induced neurite growth than that of neurotropin (positive control), a drug used clinically for treatment of chronic pruritus. Moreover, it also found that Uncaria hook, Bupleurum root and their chemical constituents rhynchophylline, hirsutine, and saikosaponin a, d showed inhibitory activities against NGF-induced neurite growth, suggesting they should mainly contribute to the inhibitory activity of YKH. Further study on the effects of YKH against epidermal nerve density in "itch-scratch" animal models is under investigation. PMID:26287150