#### Sample records for basic physical constraints

1. Basic physics for all

Kumar, B N

2012-01-01

This is a simple, concise book for both student and non-physics students, presenting basic facts in straightforward form and conveying fundamental principles and theories of physics. This book will be helpful as a supplement to class teaching and to aid those who have difficulty in mastering concepts and principles.

2. Basic plasma physics

Ghosh, Basudev

2014-01-01

Basic Plasma Physics is designed to serve as an introductory compact textbook for advanced undergraduate, postgraduate and research students taking plasma physics as one of their subject of study for the first time. It covers the current syllabus of plasma physics offered by the most universities and technical institutions. The book requires no background in plasma physics but only elementary knowledge of basic physics and mathematics. Emphasis has been given on the analytical approach. Topics are developed from first principle so that the students can learn through self-study. One chapter has been devoted to describe some practical aspects of plasma physics. Each chapter contains a good number of solved and unsolved problems and a variety of review questions, mostly taken from recent examination papers. Some classroom experiments described in the book will surely help students as well as instructors.

3. Basics of statistical physics

Müller-Kirsten, Harald J W

2013-01-01

Statistics links microscopic and macroscopic phenomena, and requires for this reason a large number of microscopic elements like atoms. The results are values of maximum probability or of averaging. This introduction to statistical physics concentrates on the basic principles, and attempts to explain these in simple terms supplemented by numerous examples. These basic principles include the difference between classical and quantum statistics, a priori probabilities as related to degeneracies, the vital aspect of indistinguishability as compared with distinguishability in classical physics, the differences between conserved and non-conserved elements, the different ways of counting arrangements in the three statistics (Maxwell-Boltzmann, Fermi-Dirac, Bose-Einstein), the difference between maximization of the number of arrangements of elements, and averaging in the Darwin-Fowler method. Significant applications to solids, radiation and electrons in metals are treated in separate chapters, as well as Bose-Eins...

4. The Basics of Physics

Myers, Richard L

2005-01-01

Students will be introduced to the science of physics, and its applications to everyday life, in this volume. Tracing its development from antiquity to the present, the author examines all aspects of physics including motion, work, energy, heat, matter, light, and electricity. Quantum & Nuclear physics are also included. The chapter with instructions for experiments in physics will assist students in projects for science fairs, and the chapter on physics as a career will help students to explore the various options for working in this field of science. A glossary, conversion table, and list of

5. Basic concepts in computational physics

Stickler, Benjamin A

2016-01-01

This new edition is a concise introduction to the basic methods of computational physics. Readers will discover the benefits of numerical methods for solving complex mathematical problems and for the direct simulation of physical processes. The book is divided into two main parts: Deterministic methods and stochastic methods in computational physics. Based on concrete problems, the first part discusses numerical differentiation and integration, as well as the treatment of ordinary differential equations. This is extended by a brief introduction to the numerics of partial differential equations. The second part deals with the generation of random numbers, summarizes the basics of stochastics, and subsequently introduces Monte-Carlo (MC) methods. Specific emphasis is on MARKOV chain MC algorithms. The final two chapters discuss data analysis and stochastic optimization. All this is again motivated and augmented by applications from physics. In addition, the book offers a number of appendices to provide the read...

6. Basic biology in health physics

This report describes the consequences of the interaction of ionizing radiation with living cells and tissues. The basic processes of living cells, which are relevant to an understanding of health physics problems, are outlined with particular reference to cell-death, cancer induction and genetic effects. (author)

7. Basic radiotherapy physics and biology

Chang, David S; Das, Indra J; Mendonca, Marc S; Dynlacht, Joseph R

2014-01-01

This book is a concise and well-illustrated review of the physics and biology of radiation therapy intended for radiation oncology residents, radiation therapists, dosimetrists, and physicists. It presents topics that are included on the Radiation Therapy Physics and Biology examinations and is designed with the intent of presenting information in an easily digestible format with maximum retention in mind. The inclusion of mnemonics, rules of thumb, and reader-friendly illustrations throughout the book help to make difficult concepts easier to grasp. Basic Radiotherapy Physics and Biology is a

8. Basic research in solar physics

Linsky, Jeffrey L.

1991-01-01

heated at a 'basal' rate that is also found in the centers of solar supergranules, and using the Doppler-imaging technique to measure the position, size, and brightness of stellar active regions. We are computing multi-component models for solar and stellar atmospheres, and models for coronal loops and for the transition-region down flows. The study of solar and stellar flares permits us to assess the role of turbulent energy transport, to pinpoint the mechanism behind Type I radio bursts, to determine whether plasma radiation or cyclotron maser is responsible for microwave flares on M dwarfs, and to extend our knowledge of the basic physics pertinent to cyclotron-maser processes operating on the Sun.

9. Flavor Constraints on New Physics

Ligeti, Zoltan

2016-01-01

This talk highlights, from a theoretical point of view, some recent exciting results in flavor physics, as well as future prospects. We discuss possible implications of a subset of the experimental results in tension with the standard model, such as the $4\\sigma$ deviation in the $B\\to D^{(*)}\\tau\\bar\ 10. Big Bang Nucleosynthesis constraints on new physics Primordial Nucleosynthesis provides a probe of the physics of the early Universe when the temperature and particle densities are high. The Cosmic Nuclear Reactor may, thereby, lead to constraints on new physics which may be inaccessible to current accelerators. Current Big Bang Nucleosynthesis (BBN) bounds to the existence and/or properties of new particles are reviewed and used to constrain physics 'beyond the standard model.' (orig.) 11. Quantum coding theory with realistic physical constraints Yoshida, Beni 2010-01-01 The following open problems, which concern a fundamental limit on coding properties of quantum codes with realistic physical constraints, are analyzed and partially answered here: (a) the upper bound on code distances of quantum error-correcting codes with geometrically local generators, (b) the feasibility of a self-correcting quantum memory. To investigate these problems, we study stabilizer codes supported by local interaction terms with translation and scale symmetries on a$D$-dimensional lattice. Our analysis uses the notion of topology emerging in geometric shapes of logical operators, which sheds a surprising new light on theory of quantum codes with physical constraints. 12. Main physics features driving design concept and physics design constraints Major physics design philosophies are described, which are essential bases for a plasma design and may have significant impacts on a reactor design concept. Those design philosophies are classified into two groups, physics design drivers and physics design constraints. The design drivers are featured by the fact that a designer is free to choose and the choice may be guided by his opinion, such as ignition, a pulse length, an operation scenario, etc.. The design constraints may follow a physical law, such as plasma confinement, β-limit, density limit, and so on. (author) 13. Basic physical data for neutron dosimetry Based on the results of a workshop on basic physical data for neutron dosimetry held in Rijswijk (The Netherlands) on 19-21 May 1976, this monograph reviews the current status in neutron dosimetry and the agreements that were reached on the use of some common basic physical parameters. As appendices are joint tables of kerma factors and a draft of a protocol for neutron dosimetry for radiobiological and medical applications. Main topic treated: source and field characteristics; cross sections and mass energy transfer coefficients; measurements and calculations; detector response, measurements and calculations; dose distributions in phantoms for a limited set of conditions; standardization, calibration and intercomparison 14. Basic physics of one-dimensional metals Largely nonmathematical qualitative lectures are given on the basic physics of nearly one-dimensional conductors. The main emphasis is placed on the properties of a purely one-dimensional electron gas. The effects of a real system having interchain coupling, impurities, a compressible lattice, lattice distortions and phonon anomalies are discussed 15. Basic Health Physics: Problems and Solutions Bevelacqua, Joseph John 1999-01-01 Radiation litigation, the cleanup and decommissioning of nuclear facilities, radon exposure, nuclear medicine, food irradiation, stricter regulatory climate--these are some of the reasons health physics and radiation protection professionals are increasingly called upon to upgrade their skills. Designed to prepare candidates for the American Board of Health Physics Comprehensive examination (Part I) and other certification examinations, Basic Health Physics: Problems and Solutions introduces professionals in the field to radiation protection principles and their practical application in routine and emergency situations. It features more than 650 worked examples illustrating concepts under discussion along with an in-depth coverage of sources of radiation, standards and regulations, biological effects of ionizing radiation, instrumentation, external and internal dosimetry, counting statistics, monitoring and interpretations, operational health physics, transportation and waste, nuclear emergencies, and more. Reflecting for the first time the true scope of health physics at an introductory level, Basic Health Physics: Problems and Solutions gives readers the tools to properly evaluate challenging situations in all areas of radiation protection, including the medical, university, power reactor, fuel cycle, research reactor, environmental, non-ionizing radiation, and accelerator health physics. 16. Particle-physics constraints on multifractal spacetimes Calcagni, Gianluca; Rodríguez-Fernández, David 2016-01-01 We study electroweak interactions in the multiscale theory with$q$-derivatives, a framework where spacetime has the typical features of a multifractal. In the simplest case with only one characteristic time, length and energy scale$t_*$,$\\ell_*$, and$E_*$, we consider (i) the muon decay rate and (ii) the Lamb shift in the hydrogen atom, and constrain the corrections to the ordinary results. We obtain the independent absolute upper bounds (i)$t_* 35\\,\\text{MeV}$. Under some mild theoretical assumptions, the Lamb shift alone yields the even tighter ranges$t_*450\\,\\text{GeV}$. To date, these are the first robust constraints on the scales at which the multifractal features of the geometry can become important in a physical process. 17. Colloidal Plasmas : Basic physics of colloidal plasmas C B Dwivedi 2000-11-01 Colloidal plasma is a distinct class of the impure plasmas with multispecies ionic composition. The distinction lies in the phase distribution of the impurity-ion species. The ability to tailor the electrostatic interactions between these colloidal particles provides a fertile ground for scientists to investigate the fundamental aspects of the Coulomb phase transition behavior. The present contribution will review the basic physics of the charging mechanism of the colloidal particles as well as the physics of the collective normal mode behavior of the general multi-ion species plasmas. Emphasis will be laid on the clariﬁcation of the prevailing confusing ideas about distinct qualities of the various acoustic modes, which are likely to exist in colloidal plasmas as well as in normal multi-ion species plasmas. Introductory ideas about the proposed physical models for the Coulomb phase transition in colloidal plasma will also be discussed. 18. Basic Physics for Nuclear Medicine. Chapter 1 The technologies used in nuclear medicine for diagnostic imaging have evolved over the last century, starting with Röntgen’s discovery of X rays and Becquerel’s discovery of natural radioactivity. Each decade has brought innovation in the form of new equipment, techniques, radiopharmaceuticals, advances in radionuclide production and, ultimately, better patient care. All such technologies have been developed and can only be practised safely with a clear understanding of the behaviour and principles of radiation sources and radiation detection. These central concepts of basic radiation physics and nuclear physics are described in this chapter and should provide the requisite knowledge for a more in depth understanding of the modern nuclear medicine technology discussed in subsequent chapters 19. Basic Data of Ionized Gas Physics An ionized gas can a priori contain the following types of particle: photons, electrons, atoms, diatomic or polyatomic molecules, atomic or molecular positive ions and atomic or molecular negative ions. A study of the properties of ionized gases must therefore be based on the fundamental data on the interactions between these particles, i.e. elastic or inelastic collision cross-sections and the probability of induced or spontaneous transitions. From these basic data it is possible to calculate theoretically certain elementary macroscopic properties such as ion and electron mobility, diffusion coefficients, Townsend's first coefficient, recombination and attachment coefficients. These results (cross-sections and elementary macroscopic properties) constitute as a body the basic data for the physics of ionized gases. The paper is devoted to these basic data, concentrating on cross-sections, mobilities and diffusion coefficients. Beginning with a brief review of the literature, it consists essentially of tables of suggested numerical values, which the author intends to be used as a basis for discussion. Experts in each of the phenomena are invited to indicate values which seem to them better than those selected, and to fill in, where possible, the gaps in this study. In this way it is hoped that by the next Conference a more precise and more complete collection of data will be available. (author) 20. Protein Folding: Search for Basic Physical Models Ivan Y. Torshin 2003-01-01 Full Text Available How a unique three-dimensional structure is rapidly formed from the linear sequence of a polypeptide is one of the important questions in contemporary science. Apart from biological context of in vivo protein folding (which has been studied only for a few proteins, the roles of the fundamental physical forces in the in vitro folding remain largely unstudied. Despite a degree of success in using descriptions based on statistical and/or thermodynamic approaches, few of the current models explicitly include more basic physical forces (such as electrostatics and Van Der Waals forces. Moreover, the present-day models rarely take into account that the protein folding is, essentially, a rapid process that produces a highly specific architecture. This review considers several physical models that may provide more direct links between sequence and tertiary structure in terms of the physical forces. In particular, elaboration of such simple models is likely to produce extremely effective computational techniques with value for modern genomics. 1. Donor Financing of Basic Education: Opportunities and Constraints Steer, Liesbet; Wathne, Cecilie 2010-01-01 Much progress has been made in improving access to basic education in recent years, but international support has been less than promised and the "funding gap" to achieve universal primary education remains stubbornly present. This article identifies six interrelated factors that constrain such donor financing. Prioritization of basic education,… 2. Numerical strategy for model correction using physical constraints He, Yanyan; Xiu, Dongbin 2016-05-01 In this paper we present a strategy for correcting model deficiency using observational data. We first present the model correction in a general form, involving both external correction and internal correction. The model correction problem is then parameterized and casted into an optimization problem, from which the parameters are determined. More importantly, we discuss the incorporation of physical constraints from the underlying physical problem. Several representative examples are presented, where the physical constraints take very different forms. Numerical tests demonstrate that the physics constrained model correction is an effective way to address model-form uncertainty. 3. AECL programs in basic physics research This report describes the CRNL program of research into the basic properties of atomic nuclei and condensed matter (liquids and solids). Brief descriptions are given of some of the current experimental programs done principally at the NRU reactor and MP tandem accelerator, the associated theoretical studies, and some highlights of past achievements 4. Constraints on New Physics from gamma and |V_ub| Ball, Patricia 2006-01-01 The SM unitarity triangle (UT) is completely determined by the parameters$\\gamma$and$|V_{ub}|$which can be extracted from tree-level processes and are assumed to be free of new physics. By comparison with other determinations of UT parameters one can impose constraints on new physics in loop processes, in particular$B$mixing. 5. Basic physics with ultra cold neutrons A short introduction to the physics of Ultra Cold Neutrons (UCN) is given. It covers different aspects from their discovery, their major properties as well as their using in the three experiments of fundamental physics: measurements of the neutron life time and of its electric dipole moment and studies of neutrons quantum states in the Earth's gravitational field. (author) 6. Basic radiation physics and chemistry of composites Composites are increasingly more important in the applied and fundamental polymer science, and the participation of radiation processing of these systems increase. In presented paper the newest achievements of radiation physics and chemistry of composites are reviewed. It is stressed, that although main experimental effort is directed towards the development of composites as such, and investigation of their specific properties, mechanical, physicochemical and physical, the radiation processing will enter the field on the wider scale, especially as concerns specialized plastics 7. Fundamental constraints on two-time physics Piceno, E; Sadurní, E 2015-01-01 We show that generalizations of classical and quantum dynamics with two times lead to fundamentally constrained evolution. At the level of classical physics, Newton's second law is extended and exactly integrated in$1+2$dimensional space, leading to effective single-time evolution for any initial condition. In the domain of quantum mechanics, we follow strictly the hypothesis of probability conservation by extending the Heisenberg picture to unitary evolution with two times. As a result, the observability of two temporal axes is constrained by a generalized uncertainty relation involving level spacings, total duration of the effect and Planck's constant. 8. Basic notions of dense matter physics: applications to astronomy Celebonovic, V. 2006-01-01 The aim of this paper is to present basic notions of dense matter physics and some of its applications to geophysics and astronomy.Topics covered in the paper include:basic observational data,fun- damental ideas of static high pressure experiments, notions of theoretical dense matter physics, and finally some details about theoretical work on dense matter physics and its astronomical applications in Serbia. 9. Net-Baryon Physics: Basic Mechanisms How does the fraction of energy carried by the net-baryon, B - anti-B , evolve as a function of the centre-of-mass collisional energy per nucleon, sqrt(s)? In order to answer this question we explore the net-baryon mechanism and it is propose a simple but consistent model for net-baryon production in high energy hadron-hadron, hadron-nucleus and nucleus-nucleus collisions. The model basic ingredients are: valence string formation based on standard PDFs with QCD evolution; and string fragmentation via the Schwinger mechanism. Our model shows that a good description of the main features of net-baryon data is possible in the framework of a simplistic model, with the advantage of making the fundamental production mechanisms manifest. We compare results both with data and existing models. (authors) 10. Net-Baryon Physics: Basic Mechanisms Alvarez-Muñiz, J; Dias de Deus, J; Santo, M C Espirito; Milhano, J G; Pimenta, M 2007-01-01 It is well known that, in nuclear collisions, a sizable fraction of the available energy is carried away by baryons. As the baryon number is conserved, the net-baryon$B-\\bar{B}$retains information on the energy-momentum carried by the incoming nuclei. A simple but consistent model for net-baryon production in high energy hadron-hadron, hadron-nucleus and nucleus-nucleus collisions is presented. The basic ingredients of the model are valence string formation based on standard PDFs with QCD evolution and string fragmentation via the Schwinger mechanism. The results of the model are presented and compared with both data and existing models. These results show that a good description of the main features of net-baryon data is possible on the framework of a simplistic model, with the advantage of making the fundamental production mechanisms manifest. 11. Basics of particle therapy I: physics. Park, Seo Hyun; Kang, Jin Oh 2011-09-01 With the advance of modern radiation therapy technique, radiation dose conformation and dose distribution have improved dramatically. However, the progress does not completely fulfill the goal of cancer treatment such as improved local control or survival. The discordances with the clinical results are from the biophysical nature of photon, which is the main source of radiation therapy in current field, with the lower linear energy transfer to the target. As part of a natural progression, there recently has been a resurgence of interest in particle therapy, specifically using heavy charged particles, because these kinds of radiations serve theoretical advantages in both biological and physical aspects. The Korean government is to set up a heavy charged particle facility in Korea Institute of Radiological & Medical Sciences. This review introduces some of the elementary physics of the various particles for the sake of Korean radiation oncologists' interest. PMID:22984664 12. The basic psychological needs in physical education scale in Filipino Cagas, Jonathan 2013-01-01 The Basic Psychological Needs in Physical Education Scale (BPNPE Scale: Vlachopoulos, Katarzi, & Kontou, 2011) is a short instrument grounded in Self-Determination Theory (Ryan & Deci, 2000; 2002), designed to measure fulfillment of students’ basic needs for competence, autonomy, and relatedness in physical education context. The Greek version of this instrument has been reported to have adequate factor structure and strong internal reliability. Instruments developed in other culture need t... 13. Basic Physics Questions Addressed by Astrophysics Mather, John C. 2009-01-01 Dark matter, dark energy, the Big Bang, testing relativity -- all are physics questions accessible to astrophysicists -- but all require new equipment. As Harwit's "Cosmic Discovery" pointed out, almost all great surprises in astronomy came from new equipment or new uses of equipment designed for other purposes, and many of those had military applications. I will outline prospects for new equipment and discuss how that equipment can be developed and built. Bigger and lighter mirrors, wavefront sensing and control, new detector technology, cryogenics -- each has its own social network, its own special possibilities, and its own funding sources outside science. I will discuss some examples drawn from real-life experience with the James Webb Space Telescope, a telescope that was said to have a "giggle factor" when it was proposed in 1995. Now each of the 10 major technologies has been brought to maturity, flight hardware is being built, and launch is planned for 2014. As an instrument builder all my life, I will speculate a little on what may be within our reach over the next few decades. 14. Physics constraints on double-pulse LIA engineering Ekdahl, Carl August Jr. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States) 2015-05-20 The options for advanced-radiography double-pulse linear induction accelerators (LIA) under consideration naturally fall into three categories that differ by the number of cells required. Since the two major physics issues, beam breakup (BBU) and corkscrew, are also dependent on the number of cells, it may be useful for the decision process to review the engineering consequences of beam physics constraints for each class. The LIAs can be categorized three different ways, and this report compares the different categories based upon the physics of their beams. 15. Expendable Launch Vehicles Briefing and Basic Rocketry Physics Delgado, Luis G. 2010-01-01 This slide presentation is composed of two parts. The first part shows pictures of launch vehicles and lift offs or in the case of the Pegasus launch vehicle separations. The second part discusses the basic physics of rocketry, starting with Newton's three physical laws that form the basis for classical mechanics. It includes a review of the basic equations that define the physics of rocket science, such as total impulse, specific impulse, effective exhaust velocity, mass ratio, propellant mass fraction, and the equations that combine to arrive at the thrust of the rocket. The effect of atmospheric pressure is reviewed, as is the effect of propellant mix on specific impulse. 16. Basic concepts in physics from the cosmos to quarks Chaichian, Masud; Tureanu, Anca 2014-01-01 "Basic Concepts in Physics: From the Cosmos to Quarks" is the outcome of the authors' long and varied teaching experience in different countries and for different audiences, and gives an accessible and eminently readable introduction to all the main ideas of modern physics. The book’s fresh approach, using a novel combination of historical and conceptual viewpoints, makes it ideal complementary reading to more standard textbooks. The first five chapters are devoted to classical physics, from planetary motion to special relativity, always keeping in mind its relevance to questions of contemporary interest. The next six chapters deal mainly with newer developments in physics, from quantum theory and general relativity to grand unified theories, and the book concludes by discussing the role of physics in living systems. A basic grounding in mathematics is required of the reader, but technicalities are avoided as far as possible; thus complex calculations are omitted so long as the essential ideas remain clear.... 17. Constraints on leisure time physical activity at a public university Kubilay Öcal 2014-09-01 Full Text Available This study focuses on understanding constraints on leisure time physical activity (LTPA on a university campus. The survey study was conducted with public university students (n=563 living in dormitories. The 38-item, 8-dimension Leisure Time Physical Activity Constraints (LTPA-C Scale was used to investigate factors limiting LTPA. Age, gender, working status (i.e. part-time, non-working, program type (i.e. morning education, evening education, relationship status (i.e. in a relationship, not in a relationship, monthly expenses and body mass index (BMI category (i.e. underweight, normal weight, overweight, obese are key variables believed to affect LTPA-C. An initial confirmatory factor analysis was conducted to validate the structure of the scale, and frequency analysis, Pearson’s Correlation and t-tests were conducted to analyze the survey responses. Results showed the hierarchy of constraints for males (from high to low to be as follows: society, income, time, facility, willpower, skill perception, family, body perception. The hierarchy was nearly identical for females, except ‘willpower’ was found to be a greater constraint than ‘facility’; moreover, the differences in the rates at which males and females perceived ‘facility’ and ‘willpower’ to be constraints were statistically significant.The study findings indicate that by taking steps to improve the infrastructure of university campus facilities and organize group activities, university management can provide motivation and social support that can help to increase university student participation in LTPA. 18. Complexities and constraints influencing learner performance in physical science Mavhungu Abel Mafukata 2016-01-01 Full Text Available This paper explores complexities and constraints affecting performance and output of physical science learners in Vhembe District, Limpopo Province, South Africa. The study was motivated by the desire of the researcher to establish, profile and characterise the complexities and constraints reminiscence of poor performance of learners in physical science as measured through end-of-year Grade 12 (final year of high school education examination results. Twenty six schools (n=26 were purposively selected from three circuits of education (n=3. From these schools, two learners were randomly selected (n=52 for interviews. In addition, two circuit managers (n=2 were conveniently selected as part of Key Informant Interviews (KII. For the Focus Group Discussions (FGDs, twelve (n=12 parents were randomly selected to form two groups of six members each. Multi-factor complexities and constraints impeding performance of learners were discovered. Intensive teacher in-service programme is recommended. Community engagement should be encouraged to educate parents on the value of involvement in the education of their children. Free access learner support structures such as Homework and Extra-lessons Assistance Centre (H&EACs should be established. 19. Physical constraints on nonstationary states and nonexponential decay For the understanding of irreversibility at the quantum level, the formation and decay of transient (unstable) states play a fundamental role. If the system is treated within Hermitian quantum mechanics, the resulting energy distribution of the resonance state, whose Fourier transform yields the time-dependent probability of decay, P(t), is real. The physical constraint of the lower bound in the energy spectrum introduces ''memory,'' and causes nonexponential decay (NED) to set in after t>>τ, where τ is the lifetime defined by exponential decay. The closer to threshold the decaying state is, the earlier NED appears. Apart from the constraint of E≥0, the constraint of t≥0 must be accounted for at the same time. It results from the discontinuity at t=0 of the solution of the time-dependent Schroedinger equation, which breaks the unitarity associated with the S matrix and gives rise to a complex energy distribution, as a manifestation of the non-Hermitian property of the decaying states. For a narrow isolated resonance state, for which the self-energy is essentially energy-independent, analytic results for PNED(t) obtained from semiclassical path-integral calculations agree with the quantum-mechanical ones when both physical constraints E>0 and t>0 are taken into account. As an example of the difference in the magnitude of the PNED(t) when using a real and a complex energy distribution, application is made to the decay of the unstable He22+1Σg+ ground molecular state 20. The Basic Psychological Needs in Physical Education Scale Vlachopoulos, Symeon P.; Katartzi, Ermioni S.; Kontou, Maria G. 2011-01-01 The present study reported on the modification of the Basic Psychological Needs in Exercise Scale (Vlachopoulos & Michailidou, 2006) to assess students' psychological need fulfillment in elementary school, middle school, and high school compulsory physical education classes. Data were collected from 817 5th and 6th grade students, 862 middle… 1. Basic concepts in physics. From the cosmos to quarks A clear, concise and beautifully written presentation of modern physics. Readers will not only learn physics, they will learn to enjoy it. Self-contained and comprehensive History, concepts and formal treatment go hand-in-hand. Suppresses mathematical technicalities in favor of a wide scope of topics. Suited for class use, e.g. as a textbook for the course ''Modern Physics'', but also ideal for ''lone explorers'' and other newcomers to physics. ''Basic Concepts in Physics: From the Cosmos to Quarks'' is the outcome of the authors' long and varied teaching experience in different countries and for different audiences, and gives an accessible and eminently readable introduction to all the main ideas of modern physics. The book's fresh approach, using a novel combination of historical and conceptual viewpoints, makes it ideal complementary reading to more standard textbooks. The first five chapters are devoted to classical physics, from planetary motion to special relativity, always keeping in mind its relevance to questions of contemporary interest. The next six chapters deal mainly with newer developments in physics, from quantum theory and general relativity to grand unified theories, and the book concludes by discussing the role of physics in living systems. A basic grounding in mathematics is required of the reader, but technicalities are avoided as far as possible; thus complex calculations are omitted so long as the essential ideas remain clear. The book is addressed to undergraduate and graduate students in physics and will also be appreciated by many professional physicists. It will likewise be of interest to students, researchers and teachers of other natural sciences, as well as to engineers, high-school teachers and the curious general reader, who will come to understand what physics is about and how it describes the different phenomena of Nature. Not only will readers of this book learn much about physics, they will also learn to love it. 2. Basic MRI Physics - A Visual Introduction for Laymen Hanson, Lars G. difficult to understand as often said [1]. In fact, the basic magnetic resonance phenomenon can be understood intuitively and even demonstrated with very simple means, including freely available software running directly in any browser [2]. A wide range of MRI techniques can be visualized [3] and understood...... in detail, certainly also by people who are not trained in physics [4]. The presentation is aimed at those new to MR, and those who will teach it. But can simple explanations based on classical mechanics be trusted? The basic magnetic resonance (MR) phenomenon is often said to rely on quantum... 3. Basic Physics: A Self-Teaching Guide, 2nd Edition Kuhn, Karl F. 1996-03-01 The fast, easy way to master the fundamentals of physics Here is the most practical, complete, and easy-to-use guide available for understanding physics and the physical world. Even if you don't consider yourself a "science" person, this book helps make learning key concepts a pleasure, not a chore. Whether you need help in a course, want to review the basics for an exam, or simply have always been curious about such physical phenomena as energy, sound, electricity, light, and color, you've come to the right place! This fully up-to-date edition of Basic Physics: Has been tested, rewritten, and retested to ensure that you can teach yourself all about physics Requires no math--mathematical treatments and applications are included in optional sections so that you can choose either a mathematical or nonmathematical approach Lets you work at your own pace with a helpful question-and-answer format Lists objectives for each chapter--you can skip ahead or find extra help if you need it Reinforces what you learn with end-of-chapter self-tests 4. Investigating correlation between legal and physical property: possibilities and constraints Dimopoulou, E.; Kitsakis, D.; Tsiliakou, E. 2015-06-01 Contemporary urban environment is characterized by complexity and mixed use of space, in which overlapping land parcels and different RRRs (Rights, Restrictions and Responsibilities) are frequent phenomena. Internationally, real property legislation either focuses on surface property or has introduced individual 3D real property units. The former approach merely accommodates issues related to subdivision, expropriation and transactions on part of the real property above or below surface, while the latter provides for defining and registering 3D real property units. National laws require two-dimensional real property descriptions and only a limited number of jurisdictions provide for threedimensional data presentation and recording. International awareness on 3D Cadastre may be apparent through the proposals for transition of existing cadastral systems to 3D along with legal amendments improving national 3D Cadastre legislation. Concurrently the use of appropriate data sources and the correct depiction of 3D property units' boundaries and spatial relationships need to be addressed. Spatial relations and constraints amongst real world objects could be modeled geometrically and topologically utilizing numerous modeling tools, e.g. CityGML, BIM and further sophisticated 3D software or by adapting international standards, e.g. LADM. A direct correlation between legal and physical property should be based on consistent geometry between physical and legal space, improving the accuracy that legal spaces' volumes or locations are defined. To address these issues, this paper investigates correlation possibilities and constraints between legal and physical space of typical 3D property cases. These cases comprise buildings or their interior spaces with mixed use, as well as complex structures described by explicit facade patterns, generated by procedural or by BIM ready 3D models. The 3D models presented are evaluated, regarding compliancy to physical or legal reality. 5. Squids: principles and basic applications in experimental physics The basic principles and the description of the technical aspects of SQUIDs (Superconducting Quantum Interference Devices) are described. The applications of SQUIDs in experimental researches and low temperature physics experiments are given. The concepts of fluxoid quantization in a superconductor and Josephson tunnelling are reviewed. The principles, the operation, the noise and the different configurations of r.f. and direct current bias SQUIDs are summarized. The principal characteristics of several SQUIDs are reported 6. Basic concepts in physics. From the cosmos to quarks Chaichian, M.; Tureanu, A. [Helsinki Univ. (Finland). Dept. of Physics; Perez Rojas, H. [ICIMAF, La Habana (Cuba). Dept. of Theoretical Physics 2014-08-01 A clear, concise and beautifully written presentation of modern physics. Readers will not only learn physics, they will learn to enjoy it. Self-contained and comprehensive History, concepts and formal treatment go hand-in-hand. Suppresses mathematical technicalities in favor of a wide scope of topics. Suited for class use, e.g. as a textbook for the course ''Modern Physics'', but also ideal for ''lone explorers'' and other newcomers to physics. ''Basic Concepts in Physics: From the Cosmos to Quarks'' is the outcome of the authors' long and varied teaching experience in different countries and for different audiences, and gives an accessible and eminently readable introduction to all the main ideas of modern physics. The book's fresh approach, using a novel combination of historical and conceptual viewpoints, makes it ideal complementary reading to more standard textbooks. The first five chapters are devoted to classical physics, from planetary motion to special relativity, always keeping in mind its relevance to questions of contemporary interest. The next six chapters deal mainly with newer developments in physics, from quantum theory and general relativity to grand unified theories, and the book concludes by discussing the role of physics in living systems. A basic grounding in mathematics is required of the reader, but technicalities are avoided as far as possible; thus complex calculations are omitted so long as the essential ideas remain clear. The book is addressed to undergraduate and graduate students in physics and will also be appreciated by many professional physicists. It will likewise be of interest to students, researchers and teachers of other natural sciences, as well as to engineers, high-school teachers and the curious general reader, who will come to understand what physics is about and how it describes the different phenomena of Nature. Not only will readers of this book learn 7. Physical role of topological constraints in localized magnetic relaxation Yeates, A. R.; Russell, A. J. B.; Hornig, G. 2015-06-01 Predicting the final state of turbulent plasma relaxation is an important challenge, both in astro-physical plasmas such as the Sun's corona and in controlled thermonuclear fusion. Recent numerical simulations of plasma relaxation with braided magnetic fields identified the possibility of a novel constraint, arising from the topological degree of the magnetic field-line mapping. This constraint implies that the final relaxed state is drastically different for an initial configuration with topological degree 1 (which allows a Taylor relaxation) and one with degree 2 (which does not reach a Taylor state). Here, we test this transition in numerical resistive-magnetohydrodynamic simulations, by embedding a braided magnetic field in a linear force-free background. Varying the background force-free field parameter generates a sequence of initial conditions with a transition between topological degree 1 and 2. For degree 1, the relaxation produces a single twisted flux tube, whereas for degree 2 we obtain two flux tubes. For predicting the exact point of transition, it is not the topological degree of the whole domain that is relevant, but only that of the turbulent region. 8. Bioinspired peptide nanotubes: deposition technology, basic physics and nanotechnology applications. Rosenman, G; Beker, P; Koren, I; Yevnin, M; Bank-Srour, B; Mishina, E; Semin, S 2011-02-01 Synthetic peptide monomers can self-assemble into PNM such as nanotubes, nanospheres, hydrogels, etc. which represent a novel class of nanomaterials. Molecular recognition processes lead to the formation of supramolecular PNM ensembles containing crystalline building blocks. Such low-dimensional highly ordered regions create a new physical situation and provide unique physical properties based on electron-hole QC phenomena. In the case of asymmetrical crystalline structure, basic physical phenomena such as linear electro-optic, piezoelectric, and nonlinear optical effects, described by tensors of the odd rank, should be explored. Some of the PNM crystalline structures permit the existence of spontaneous electrical polarization and observation of ferroelectricity. The PNM crystalline arrangement creates highly porous nanotubes when various residues are packed into structural network with specific wettability and electrochemical properties. We report in this review on a wide research of PNM intrinsic physical properties, their electronic and optical properties related to QC effect, unique SHG, piezoelectricity and ferroelectric spontaneous polarization observed in PNT due to their asymmetric structure. We also describe PNM wettability phenomenon based on their nanoporous structure and its influence on electrochemical properties in PNM. The new bottom-up large scale technology of PNT physical vapor deposition and patterning combined with found physical effects at nanoscale, developed by us, opens the avenue for emerging nanotechnology applications of PNM in novel fields of nanophotonics, nanopiezotronics and energy storage devices. PMID:21234978 9. [Physical activity in basic and primary prevention of cardiovascular disease]. Sobieszczańska, Małgorzata; Kałka, Dariusz; Pilecki, Witold; Adamus, Jerzy 2009-06-01 On account of the frequency of appearing and character of atherosclerosis cardiac vascular disease, one of the most crucial elements of effective fight against it is preparation of complex preventive programs including as vast number of population as possible. Consequently, Benjamin and Smitch suggested attaching the notion of basic prevention to the standard division into primary and secondary one. The basic prevention, carrying out in the general population, should concern genetic predisposition, psychosocial factors, keeping up proper body weight, healthy eating and physical activity. Especially high hopes are connected with high efficiency, simplicity and low money-consumption of preventive activities associated with physical activity modification, which has a crucial influence on reducing negative impact of atherosclerosis hazard. The results of numerous scientific research, carried out in many countries and on various, large groups, proved undoubtedly that at the healthy adult people of both sex the systematic physical activity of moderate intensification plays an essential part in preventing CVD and decreasing the death risk because of that reason as well. Moreover, systematic physical exercises show many other health-oriented actions, thanks to which they have an influence on decreasing premature and total death rate. The risk of incidence of civilization-related diseases such as diabetes type II, hypertension, obesity, osteoporosis, tumors (of large intestine, breast, prostatic gland) and depression has decreased significantly. Unequivocally positive influence has been proved at many observations dedicated to health recreational physical activity and physical activity connected with professional work based on aerobe effort. The positive effects have been also observed at children population and senior population which is more and more numerous and the most at risk. The beneficial action of physical activity is connected with direct effect on organism 10. Proceedings of the 9. Workshop on Nuclear Physics - Communications of basic nuclear physics The abstracts of researches on basic nuclear physics of 9. Workshop on Nuclear Physics in Brazil are presented. Mathematical models and experimental methods for nuclear phenomenon description, such as nuclear excitation and disintegration of several nuclei were discussed. (M.C.K.) 11. Hadron Physics and QCD: Just the Basic Facts Roberts, Craig D 2015-01-01 With discovery of the Higgs boson, the Standard Model of Particle Physics became complete. Its formulation is a remarkable story; and the process of verification is continuing, with the most important chapter being the least well understood. Quantum Chromodynamics (QCD) is that part of the Standard Model which is supposed to describe all of nuclear physics and yet, almost fifty years after the discovery of quarks, we are only just beginning to understand how QCD moulds the basic bricks for nuclei: pious, neutrons, protons. QCD is characterized by two emergent phenomena: confinement and dynamical chiral symmetry breaking (DCSB), whose implications are extraordinary. This contribution describes how DCSB, not the Higgs boson, generates more than 98% of the visible mass in the Universe, explains why confinement guarantees that condensates, those quantities that were commonly viewed as constant mass-scales that fill all spacetime, are instead wholly contained within hadrons, and elucidates a range of observable co... 12. Quantum physics. Vol. 1. From basics to symmetries and perturbations This two-volume set can be naturally divided into two semester courses, and contains a full modern graduate course in quantum physics. The idea is to teach graduate students how to practically use quantum physics and theory, presenting the fundamental knowledge, and gradually moving on to applications, including atomic, nuclear and solid state physics, as well as modern subfields, such as quantum chaos and quantum entanglement. The book starts with basic quantum problems, which do not require full quantum formalism but allow the student to gain the necessary experience and elements of quantum thinking. Only then does the fundamental Schrodinger equation appear. The author has included topics that are not usually covered in standard textbooks and has written the book in such a way that every topic contains varying layers of difficulty, so that the instructor can decide where to stop. Although supplementary sources are not required, ''Further reading'' is given for each chapter, including references to scientific journals and publications, and a glossary is also provided. Problems and solutions are integrated throughout the text. (orig.) 13. Evaluation of the physical structure of Basic Health Units Raimundo Nonato Silva Gomes 2015-11-01 Full Text Available Objective: to evaluate the infrastructure of basic health units, as the adaptation to the standards recommended by theMinistry of Health. Methods: descriptive study with a quantitative approach, carried in 18 basic health units. For datacollection, we used a checklist built based on Ministerial Decree 2,226/09. Data analysis was performed using the StatisticalPackage for Social Sciences and a scoring scale (0-10 was used for the classification of health facilities. Results: 16.6% of theanalyzed units received the average score of 3.5; 16.6% received 3.0; 5.5%, 2.5; 16.6% received grade 2.0; 11.1%, 1.5; 11.1%,1.0; and 22.2% received 0.5 and, therefore, all units had inadequate physical structure. Conclusion: the city does not offerthe public a service that addresses the ideals standards in its structure in most of the inspected units. 14. Teaching Australian Football in Physical Education: Constraints Theory in Practice Pill, Shane 2013-01-01 This article outlines a constraints-led process of exploring, modifying, experimenting, adapting, and developing game appreciation known as Game Sense (Australian Sports Commission, 1997; den Duyn, 1996, 1997) for the teaching of Australian football. The game acts as teacher in this constraints-led process. Rather than a linear system that… 15. Applications of nanosecond, kilojoule lasers to the basic physics of waves in plasmas Plasmas can sustain many normal modes of oscillation (waves), including both electromagnetic and electrostatic modes. These waves can interact by a wide variety of linear and nonlinear mechanisms, including mode coupling, mixing, and instabilities. Furthermore, such mechanisms compete, so that a given wave might be absorbed, might mode convert, or might decay by one of several instabilities, depending upon the specific circumstances in which it is produced. Moreover, such waves are important in many applications, including for example laser fusion, x-ray lasers, plasma accelerators, and ionospheric heating. Laser-produced plasmas can provide an effective medium for the studies of such waves and the related mechanisms. New opportunities will be made possible by the advent of comparatively inexpensive nanosecond, kilojoule lasers. One can now contemplate affordable experiments, not limited by programmatic constraints, that could study such the basic physics of the waves in such plasmas with unprecedented precision and in unprecedented detail 16. Tectonics of the lower mantle II: mineral physics constraints Dobson, David 2010-05-01 The last decade has seen significant advances in the seismological observation of the lowermost mantle, with our understanding of the D' region significantly increasing in complexity. At the same time mineral physics constraints on this region have vastly improved: (1) increases in computing power allow us to simulate the elastic, chemical and transport properties of geologically reasonable compositions of the major phases at finite temperature, (2) laser-heated diamond anvil cell experiments at the high-pressures and temperatures of the core-mantle-boundary have become standard, along with the increasing diversity of possible in situ measurements and (3) high-pressure rheological measurements are now possible. The discovery of the post-perovskite phase has gone a long way to explain much of the complexity of D'. The layered nature of the SiO6 units in post perovskite results in strongly anisotropic elastic properties as well as activating dominant slip on the (010) plane. This means that post-perovskite can match the observed seismic anisotropy in D' with a dominantly horizontal basal mantle flow. However, post-perovskite is a strange beast; while it might look like a layer structure for elastic properties, transport properties are decidedly not constrained by the SiO6 layers. Here I describe latest results on its mass transport properties. Experiments on analogue CaIrO3 suggest: (1) Textures developed during transformation under non-hydrostatic stress are similar to textures developed in the diamond cell in MgSiO3 and MgGeO3 and that subsequent deformation rotates this transformation textures into a [100]{010} deformation texture. (2) There is a weakening of 1 order of magnitude (or more) as perovskite transforms to post-perovskite and even after the transformation is complete post perovskite remains weak. Ab initio simulations on MgSiO3 show that the chemical diffusivity in post perovskite is highly anisotropic, with 8 orders of magnitude of anisotropy between 17. Effect of Physical Constraints on Load Frequency Control of Deregulated Hybrid Power System Integrated with DFIG Wind Turbine Aditi Gupta 2014-12-01 Full Text Available This paper presents a generalized model for load frequency control (LFC design in a hybrid multi-area deregulated power system including physical constraints. Renewable energy source named doubly fed induction generator (DFIG based wind energy source is integrated into the system that provides the modified emulating inertial control and reduces the deviations in frequency and tie-line power, following a transient load perturbation. In addition to this, the three basic physical constraints viz. generation rate constraints (GRC, speed governor dead band and communication or time delay have been imposed on the power system that affect the system’s security, reliability and integrity. To get the better performance of the various controllers in power system, their gains are optimized using integral square error (ISE technique. Present simulation studies reveal that the system’s performance becomes better by the inclusion of DFIG based wind turbine. It is also shown that the dynamic performance of the system becomes poorer by adding physical constraints but it is a more realistic approach. 18. W, F, and I : Three quantities basic to radiation physics The W value is an index of the mean number of ions produced in a gas subjected to ionizing radiation. Formally, it is defined as the radiation energy absorbed (usually expressed in units of eV) ''per ion pair of either sign produced'', or, in a simpler language, ''per electron liberated''. The basic knowledge up to 1961 is eloquently articulated in a classic essay by Platzman [1], which Professor Doke loves to cite. The theme of Platzman was to explain from the point of view of basic physics the magnitude and characteristics of the ratio W/I, where I is the (first) ionization threshold energy. In summary, major characteristics are as follows. (1) The W value for a given gas depends weakly on the properties of the radiation such as the mass and charge of particles or initial energies (provided they are sufficiently high). This makes the ionization measurement useful as a method of dosimetry, viz., the determination of the absorbed energy. (2) The ratio W/I is always greater than unity because a part of the absorbed energy must be used in nonionizing events such as discrete excitation or molecular dissociation into neutral fragments and also in producing subexcitation electrons, viz., electrons with kinetic energies too low to cause electronic excitation or ionization [2]. (3) The ratio W/I is 1.7-1.8 for rare gases, and 2.1-2.6 for gases of common molecules (depending on the electronic structure, going from ''hard'' to ''soft''). Calculation of the W value is possible from three approaches: (i) the energy balance of Platzman, heuristic for general understanding and appropriate for an estimate; (ii) the Fowler equation [3] for the direct evaluation of the mean number of ions produced; and (iii) the method of Spencer and Fano [4] through the degradation spectra (or the track length distributions) of charged particles, most importantly of electrons, present in the medium. The Fowler method is good for obtaining the mean number of ions or excited states resulting from 19. Social Constraints are Associated with Negative Psychological and Physical Adjustment in Bereavement. Juth, Vanessa; Smyth, Joshua M; Carey, Michael P; Lepore, Stephen J 2015-07-01 Losing a loved one is a normative life event, yet there is great variability in subsequent interpersonal experiences and adjustment. The Social-Cognitive Processing (SCP) model suggests that social constraints (i.e. limited opportunities to disclose thoughts and feelings in a supportive context) impede emotional and cognitive processing of stressful life events, which may lead to maladjustment. This study investigates personal and loss-related correlates of social constraints during bereavement, the links between social constraints and post-loss adjustment, and whether social constraints moderate the relations between loss-related intrusive thoughts and adjustment. A community sample of bereaved individuals (n = 238) provided demographic and loss-related information and reported on their social constraints, loss-related intrusions, and psychological and physical adjustment. Women, younger people, and those with greater financial concerns reported more social constraints. Social constraints were significantly associated with more depressive symptoms, perceived stress, somatic symptoms, and worse global health. Individuals with high social constraints and high loss-related intrusions had the highest depressive symptoms and perceived life stress. Consistent with the SCP model, loss-related social constraints are associated with poorer adjustment, especially psychological adjustment. In particular, experiencing social constraints in conjunction with loss-related intrusions may heighten the risk for poor psychological health. PMID:25708231 20. Focus on Freshman: Basic Instruction Programs Enhancing Physical Activity Curry, Jarred; Jenkins, Jayne M.; Weatherford, Jennifer 2015-01-01 Physical activity sharply decreases after different life stages, particularly high school graduation to beginning university education. The purpose of this study was to investigate the effect of a specifically designed university physical activity class, Exercise Planning for Freshman (EPF), on students' physical activity and group cohesion… 1. Gender Performativity in Physics: Affordances or Only Constraints? Danielsson, Anna T.; Lundin, Mattias 2014-01-01 In this forum we engage in a dialogue with Allison Gonsalves's paper '"Physics and the girly girl--there is a contradiction somewhere": Doctoral students' positioning around discourses of gender and competence in physics'. In her paper Gonsalves uses a sociocultural approach to examine women doctoral students'… 2. Update of the flavour-physics constraints in the NMSSM Domingo, Florian 2015-01-01 We consider the impact of several flavour-changing observables in the$B$- and the Kaon sectors on the parameter space of the NMSSM, in a minimal flavour violating version of this model. Our purpose consists in updating our previous results in arXiv:0710.3714 and designing an up-to-date flavour test for the public package NMSSMTools. We provide details concerning our implementation of the constraints in a series of brief reviews of the current status of the considered channels. Finally, we present a few consequences of these flavour constraints for the NMSSM, turning to two specific scenarios: one is characteristic of the MSSM-limit and illustrates the workings of charged-Higgs and genuinely supersymmetric contributions to flavour-changing processes; the second focus is a region where a light CP-odd Higgs is present. Strong limits are found whenever an enhancement factor - large$\\tan\\beta$, light$H^{\\pm}$, resonant pseudoscalar - comes into play. 3. Annual progress report of the physical chemistry department. Basic research 1987 Basic research for 1987 in physical chemistry of the French Atomic Energy Commission are reviewed. Topics include molecular chemistry, isotopic geochemistry, molecular photophysics, laser photochemistry, solid and surface physical chemistry. A list of publications and thesis is given 4. Self–reported constraints to physical activity participation among university students M. Dhurup; Garnett, A. 2011-01-01 Engagement in physical activity is recognised as an important factor contributing to positive health benefits. Despite the benefits associated with regular physical activity and its ability to improve health, there is little evidence to suggest that the prevalence of physical inactivity among university students is increasing. The objective of this study was to investigate students' participation in and constraints to participation in physical activity. The secondary objective of the study wa... 5. Biochemical Constraints in a Protobiotic Earth Devoid of Basic Amino Acids: The "BAA(-) World" McDonald, Gene D.; Storrie-Lombardi, Michael C. 2010-12-01 It has been hypothesized in this journal and elsewhere, based on surveys of published data from prebiotic synthesis experiments and carbonaceous meteorite analyses, that basic amino acids such as lysine and arginine were not abundant on prebiotic Earth. If the basic amino acids were incorporated only rarely into the first peptides formed in that environment, it is important to understand what protobiotic chemistry is possible in their absence. As an initial test of the hypothesis that basic amino acid negative [BAA(-)] proteins could have performed at least a subset of protobiotic chemistry, the current work reports on a survey of 13 archaeal and 13 bacterial genomes that has identified 61 modern gene sequences coding for known or putative proteins not containing arginine or lysine. Eleven of the sequences found code for proteins whose functions are well known and important in the biochemistry of modern microbial life: lysine biosynthesis protein LysW, arginine cluster proteins, copper ion binding proteins, bacterial flagellar proteins, and PE or PPE family proteins. These data indicate that the lack of basic amino acids does not prevent peptides or proteins from serving useful structural and biochemical functions. However, as would be predicted from fundamental physicochemical principles, we see no fossil evidence of prebiotic BAA(-) peptide sequences capable of interacting directly with nucleic acids. 6. Model-independent global constraints on new physics Using effective-Lagrangian techniques we perform a systematic survey of the lowest-dimension effective interactions through which heavy physics might manifest itself in present experiments. We do not restrict ourselves to special classes of effective interactions (such as ''oblique'' corrections). We compute the effects of these operators on all currently well-measured electroweak observables, both at low energies and at the Z resonance, and perform a global fit to their coefficients. Despite the fact that a great many operators arise in our survey, we find that most are quite strongly bounded by the current data. We use our survey to systematically identify those effective interactions which are not well bounded by the data---these could very well include large new-physics contributions. Our results may also be used to efficiently confront specific models for new physics with the data, as we illustrate with an example 7. Current and future constraints on neutrino physics from cosmology In recent years precision cosmology has become an increasingly powerful probe of particle physics. Perhaps the prime example of this is the very stringent cosmological upper bound on the neutrino mass. However, other aspects of neutrino physics, such as their decoupling history and possible non-standard interactions, can also be probed using observations of cosmic structure. Here, we review the current status of cosmological bounds on neutrino properties and discuss the potential of future observations, for example by the recently approved EUCLID mission, to precisely measure neutrino properties 8. Constraints on New Physics from Various Neutrino Experiments Pronin, Alexey 2008-01-01 In this thesis we consider a number of past, present, and future neutrino experiments designed to test physics beyond the Standard Model. First, we analyze potential new physics explanations of the NuTeV anomaly and check their compatibility with the most recent experimental data. The models we consider are: gauged Lmu-Ltau, gauged B-3Lmu, and S1, S3, V1, V3 leptoquarks. We find that only the triplet leptoquark models can explain NuTeV and be compatible with the data from other experiments a... 9. Chemical and physical basics of routine formaldehyde fixation Rooban Thavarajah 2012-01-01 Full Text Available Formaldehyde is the widely employed fixative that has been studied for decades. The chemistry of fixation has been studied widely since the early 20 th century. However, very few studies have been focused on the actual physics/chemistry aspect of process of this fixation. This article attempts to explain the chemistry of formaldehyde fixation and also to study the physical aspects involved in the fixation. The factors involved in the fixation process are discussed using well documented mathematical and physical formulae. The deeper understanding of these factors will enable pathologist to optimize the factors and use them in their favor. 10. Chemical and physical basics of routine formaldehyde fixation. Thavarajah, Rooban; Mudimbaimannar, Vidya Kazhiyur; Elizabeth, Joshua; Rao, Umadevi Krishnamohan; Ranganathan, Kannan 2012-09-01 Formaldehyde is the widely employed fixative that has been studied for decades. The chemistry of fixation has been studied widely since the early 20(th) century. However, very few studies have been focused on the actual physics/chemistry aspect of process of this fixation. This article attempts to explain the chemistry of formaldehyde fixation and also to study the physical aspects involved in the fixation. The factors involved in the fixation process are discussed using well documented mathematical and physical formulae. The deeper understanding of these factors will enable pathologist to optimize the factors and use them in their favor. PMID:23248474 11. Heisenberg uncertainty principle and economic analogues of basic physical quantities Vladimir Soloviev; Vladimir Saptsin 2011-01-01 From positions, attained by modern theoretical physics in understanding of the universe bases, the methodological and philosophical analysis of fundamental physical concepts and their formal and informal connections with the real economic measurings is carried out. Procedures for heterogeneous economic time determination, normalized economic coordinates and economic mass are offered, based on the analysis of time series, the concept of economic Plank's constant has been proposed. The theory h... 12. Physical culture is a basic instrument of culture of health Iermakov S.S.; Apanasenko G.L.; Bondarenko T.V.; Prasol S.D. 2010-01-01 The role of establishments of physical culture and health protection is considered in education and formation of culture of health of personality and society. It is pointed at the necessity of biological, psychological and world-view knowledge in becoming of culture of health. Valued guideline of social and physical adaptation of personality and society is marked to the social, economic and spiritual changes in the environment of dwelling. It is showed that the rational use of personality and... 13. Home experiment by physics education at basic schools ČERVENKA, Petr 2012-01-01 This diploma thesis deals with increase of motivation of primary school pupils for school subject ? physics, focusing on preparation for lessons of physics by means of experiments carried out at home. The target of this thesis is to produce a set of worksheets and supportive educational material as an instrument which might increase the interest of primary school pupils in this subject and which might become an important motivating element. In the process of production of the worksheets theor... 14. Model-Independent Global Constraints on New Physics Burgess, C. P.; Godfrey, S.; König, H.; London, D.; Maksymyk, I. 1993-01-01 Using effective-lagrangian techniques we perform a systematic survey of the lowest-dimension effective interactions through which heavy physics might manifest itself in present experiments. We do not restrict ourselves to special classes of effective interactions (such as oblique' corrections). We compute the effects of these operators on all currently well-measured electroweak observables, both at low energies and at the$Z$resonance, and perform a global fit to their coefficients. Despite... 15. Heisenberg uncertainty principle and economic analogues of basic physical quantities Soloviev, Vladimir 2011-01-01 From positions, attained by modern theoretical physics in understanding of the universe bases, the methodological and philosophical analysis of fundamental physical concepts and their formal and informal connections with the real economic measurings is carried out. Procedures for heterogeneous economic time determination, normalized economic coordinates and economic mass are offered, based on the analysis of time series, the concept of economic Plank's constant has been proposed. The theory has been approved on the real economic dynamic's time series, including stock indices, Forex and spot prices, the achieved results are open for discussion. 16. Constraints on New Physics from Long Baseline Neutrino Oscillation Experiments Honda, Minako; Kao, Yee; Okamura, Naotoshi; Pronin, Alexey; Takeuchi, Tatsu 2007-01-01 New physics beyond the Standard Model can lead to extra matter effects on neutrino oscillation if the new interactions distinguish among the three flavors of neutrino. In a previous paper, we argued that a long-baseline neutrino oscillation experiment in which the Fermilab-NUMI beam in its high-energy mode is aimed at the planned Hyper-Kamiokande detector would be capable of constraining the size of those extra effects, provided the vacuum value of \\sin^2 2\\theta_{23} is not too close to one.... 17. Constraints on new physics from radiative$B$decays Paul, Ayan 2016-01-01 A new phase for the measurements of radiative decay modes in$b \\to s$transitions has started with new measurements of exclusive modes by LHCb and with Belle-II showing distinctive promises in both inclusive and exclusive channels. After critically reviewing the hadronic uncertainties in exclusive radiative decays, we analyze the impact of recent measurements of the branching ratio and mass-eigenstate rate asymmetry in$B_s\\to\\phi\\gamma$and of the angular distribution of$B\\to K^*e^+e^-$at low$q^2$on new physics in the$b\\to s\\gamma\$ transition.

18. Synthesis of a spatial 3-RPS parallel manipulator based on physical constraints

Nalluri Mohan Rao

2010-12-01

The range of motion of the moving platform of a spatial 3-RPS parallel manipulator will be greatly inﬂuenced by the physical constraints such as limits on the lengths of the limbs and the range of motion of the spherical joints. Therefore, while synthesizing the parallel manipulator, the physical constraints have to be considered. Synthesis of the manipulator involves determination of the architectural parameters of the manipulator so that a point on the moving platform passes through a prescribed set of positions in space. This paper presents a synthesis procedure that determines location and direction of revolute joints and location of spherical joints along with orientation of sockets of spherical joints, considering the physical constraints. The synthesis procedure is demonstrated through a numerical example.

19. Introduction to the physics of matter basic atomic, molecular, and solid-state physics

Manini, Nicola

2014-01-01

This book offers an up-to-date, compact presentation of basic topics in the physics of matter, from atoms to molecules to solids, including elements of statistical mechanics. The adiabatic separation of the motion of electrons and nuclei in matter and its spectroscopic implications are outlined for molecules and recalled regularly in the study of the dynamics of gases and solids. Numerous experiments are described and more than 160 figures give a clear visual impression of the main concepts. Sufficient detail of mathematical derivations is provided to enable students to follow easily. The focus is on present-day understanding and especially on phenomena fitting various independent-particle models. The historical development of this understanding, and phenomena such as magnetism and superconductivity, where interparticle interactions and nonadiabatic effects play a crucial role, are mostly omitted. A final outlook section stimulates the curiosity of the reader to pursue the study of such advanced topics in gra...

20. Training Practical Instructors (Programmed Patients) to Teach Basic Physical Examinations

Frazer, Nat B.; Miller, Robert H.

1977-01-01

Practical instructors are used at Southern Illinois University School of Medicine to: serve as subjects on whom students practice prior to meeting with physicians; instruct students in the techniques of performing physical examinations; and evaluate students' performance both from objective predetermined criteria and from their subjective points…

1. Basic gymnastics as a basic component invariant component of the curriculum subject «Physical culture»

Alfiya Deyneko

2015-06-01

Full Text Available Purpose: the analysis of the program discipline «Physical education» for grades 1–9 students in the context of the use of basic gymnastics. Material and Methods: the primary means of gymnastics, studied by pupils of 1–9 forms, was investigated as a part of the curriculum «Physical education in school». The study examined the content of primary invariant of gymnastics lesson. Results: it is found that the formation of school culture movements (movements exploring their diversity, physical exercises, etc. is in elementary school; due to the introduction of the learning material secondary school pupils gymnastic movements increased complexity is creating a culture of performance and use of basic gymnastics exercises that are the basis of the general culture of motor activity. Conclusions: the main factor reducing the general level of motor culture of pupils identified as a lack of training programs for grades 5–11 clearly defined lines of content on the use of basic gymnastics.

2. Computer applications in physics with FORTRAN, BASIC and C

Chandra, Suresh

2014-01-01

Because of encouraging response for first two editions of the book and for taking into account valuable suggestion from teachers as well as students, the text for Interpolation, Differentiation, Integration, Roots of an Equation, Solution of Simultaneous Equations, Eigenvalues and Eigenvectors of Matrix, Solution of Differential Equations, Solution of Partial Differential Equations, Monte Carlo Method and Simulation, Computation of some Functions is improved throughout and presented in a more systematic manner by using simple language. These techniques have vast applications in Science, Engineering and Technology. The C language is becoming popular in universities, colleges and engineering institutions. Besides the C language, programs are written in FORTRAN and BASIC languages. Consequently, this book has rather wide scope for its use. Each of the topics are developed in a systematic manner; thus making this book useful for graduate, postgraduate and engineering students. KEY FEATURES: Each topic is self exp...

3. NMR - from basic physics to images of the human body

Nuclear magnetic resonance (NMR) is a remarkable phenomenon which involves the exchange of very weak radio frequency radiation between atomic nuclei and a sensitive detecting apparatus. It was originally regarded as a rather esoteric effect of great theoretical interest, but has since proved to have an amazing range of applications over many scientific disciplines, including nuclear physics, solid state physics, all branches of chemistry, biochemistry, physiology and most recently in medical diagnosis. In this Discourse the principles of NMR and trace briefly the history of its applications are examined and illustrated. Headings are: early history; nuclear resonance; relaxation time; the chemical shift; spin-spin coupling (NMR spectra); chemical shifts in biological tissue; NMR imaging; conclusions. (author)

4. Basic concept of common reactor physics code systems. Final report of working party on common reactor physics code systems (CCS)

A working party was organized for two years (2001-2002) on common reactor physics code systems under the Research Committee on Reactor Physics of JAERI. This final report is compilation of activity of the working party on common reactor physics code systems during two years. Objectives of the working party is to clarify basic concept of common reactor physics code systems to improve convenience of reactor physics code systems for reactor physics researchers in Japan on their various field of research and development activities. We have held four meetings during 2 years, investigated status of reactor physics code systems and innovative software technologies, and discussed basic concept of common reactor physics code systems. (author)

5. Ultra-high energy physics and standard basic principles

Gonzalez-Mestres Luis

2014-01-01

It has not yet been elucidated whether the observed flux suppression for ultra-high energy cosmic rays (UHECR) at energies above ≃ 4 x 1019 eV is a signature of the Greisen-Zatsepin-Kuzmin (GZK) cutoff or a consequence of other phenomena. In both cases, violations of the standard fundamental principles of Physics can be present and play a significant role. They can in particular modify cosmic-ray interactions, propagation or acceleration at very high energy. Thus, in a long-term program, UHEC...

6. Biochemical and physical constraints on the stratigraphic interpretation of coal

D.J. Large; J. Briggs; J.H.S. Macquaker; B. Spiro [University of Nottingham, Nottingham (United Kingdom). School of Chemical Environmental and Mining Engineering

2007-07-01

Holocene peat deposits thicker than 20 m are rare and this poses particular difficulties when interpreting the fundamental controls on thick seams of coal and lignite. Most studies of thick Cenozoic and Mesozoic coal seams tend to impose a sequence stratigraphic interpretation on their origin but this can lead to inconsistencies with the fundamental mechanisms (physics and biochemistry) that underpin peat formation. Based on recent ombrotrophic peat we propose that the following approach should applied to the interpretation of either thick lignite or coal seams. Thick coal and Holocene peat should be compared on the basis of long term rates of carbon accumulation, rather than on the basis of short term accumulation rates as the latter can lead to serious overestimates of carbon accumulation rates. If similar decay processes operate at high and low latitude then, given sufficient time, long term rates of accumulation will be determined by net primary productivity, photosynthetic efficiency and atmospheric CO{sub 2} concentrations. Boreal and tropical peat undergoes some decay at all depths so the rate of peat accumulation will decline with increasing time irrespective of subsidence, compaction and sea level rise. Peatland is therefore a self accommodating system and this should be taken into account when inferring large time gaps in thick coal deposits. The sequence stratigraphic assumption that the existence of peatland depends on relative sea level rise and concomitant rises in water tables should be treated with caution. Ombrotrophic peat depends on the supply of fresh water exceeding the rate at which water is removed by drainage and evapotranspiration. On its own sea level can neither provide an excess of fresh water, nor influence the long term rate of peat accumulation directly. The direct link between relative sea-level change and carbon accumulation in swamps is likely to have been overestimated. 7 refs., 2 figs.

7. Amphiphile nanoarchitectonics: from basic physical chemistry to advanced applications

Ramanathan, Nathan Muruganathan [ORNL; Shrestha, Lok Kumar [International Center for Materials Nanoarchitectonics (MANA); Mori, Taizo [International Center for Materials Nanoarchitectonics (MANA); Ji, Dr. Qingmin [National Institute for Materials Science, Tsukuba, Japan; Hill, Dr. Jonathan P [National Institute for Materials Science, Tsukuba, Japan; Ariga, Katsuhiko [National Institute for Materials Science, Tsukuba, Japan

2013-01-01

Amphiphiles, either synthetic or natural, are structurally simple molecules with the unprecedented capacity to self-assemble into complex, hierarchical geometries in nanospace. Effective self-assembly processes of amphiphiles are often used to mimic biological systems, such as, assembly of lipids and proteins, which has paved a way for bottom-up nanotechnology with bio-like advanced functions. Recent developments on nanostructure formation combine simple processes of assembly with the more advanced concept of nanoarchitectonics. In this pespective, we summarize research on self-assembly of amphiphilic molecules such as lipids, surfactants or block copolymers that are a focus of interest for many colloid, polymer, and materials scientists and which have become increasingly important in emerging nanotechnology. Because the fundamental science of amphiphiles was initially developed for their solution assembly then transferred to assemblies on surfaces as a development of nanotechnological technique, this perspective attempts to mirro this development by introducing solution systems and progressing to interfacial systems, which are roughly categorized as (i) basic properties of amphiphiles, (ii) self-assembly of amphiphiles in bulk phases, (iii) assembly on static surfaces, (iv) assembly at dynamic interfaces, and (v) advanced topics from simulation to application. This progression also represents the evolution of amphiphile science and technology from simple assemblies to advanced assemblies to nanoarchitectonics.

8. Ultra-high energy physics and standard basic principles

Gonzalez-Mestres Luis

2014-04-01

Full Text Available It has not yet been elucidated whether the observed flux suppression for ultra-high energy cosmic rays (UHECR at energies above ≃ 4 x 1019 eV is a signature of the Greisen-Zatsepin-Kuzmin (GZK cutoff or a consequence of other phenomena. In both cases, violations of the standard fundamental principles of Physics can be present and play a significant role. They can in particular modify cosmic-ray interactions, propagation or acceleration at very high energy. Thus, in a long-term program, UHECR data can hopefully be used to test relativity, quantum mechanics, energy and momentum conservation, vacuum properties... as well as the elementariness of standard particles. Data on cosmic rays at energies ≃ 1020 eV may also be sensitive to new physics generated well beyond Planck scale. A typical example is provided by the search for possible signatures of a Lorentz symmetry violation (LSV associated to a privileged local reference frame (the "vacuum rest frame", VRF. If a VRF exists, the internal structure of standard particles at ultra-high energy can undergo substantial modifications. Similarly, the conventional particle symmetries may cease to be valid at such energies instead of heading to a grand unification and the structure of vacuum may no longer be governed by standard quantum field theory. Then, the question whether the notion of Planck scale still makes sense clearly becomes relevant and the very grounds of Cosmology can undergo essential modifications. UHECR studies naturally interact with the interpretation of WMAP and Planck observations. Recent Planck data analyses tend to confirm the possible existence of a privileged space direction. If the observed phenomenon turns out to be a signature of the spinorial space-time (SST we suggested in 1996-97, then conventional Particle Physics may correspond to the local properties of standard matter at low enough energy and large enough distances. This would clearly strengthen the cosmological

9. The global electroweak fit and constraints on new physics with Gfitter

The thorough investigation of radiative corrections allows to gain information on physics processes at higher energy scales than those directly accessible by current experiments. As a consequence, using electroweak precision measurements in conjunction with state-of-the-art SM predictions allows e.g. the estimation of a preferred mass range for the SM Higgs boson mass. Physics beyond the Standard Model can modify the relations between electroweak observables and their theoretical predictions. Such effects can be parametrized in terms of effective, so-called oblique parameters. A global fit of the electroweak SM, as performed with the Gfitter package, allows the determination of the oblique parameters and to probe physics models and to set constraints on their free parameters. In this talk, the global electroweak fit including the most recent experimental results as well as the Gfitter results for the oblique parameters will be presented together with constraints on various new physics models, including extra dimension models and four generations.

10. Physical quantities in the Lagrangian and Hamiltonian formalisms for systems with constraints

The conditions a function must obey to be considered as a physical quantity are studied in the Lagrangian and Hamiltonian formalisms. A proof of the equivalence of these conditions is given for the systems having primary and secondary first-class Hamiltonian constraints

11. The Primary Student Teachers' Views about a Blended Learning Application in a Basic Physics Course

Taskin Ekici, Fatma; Kara, Izzet; Ekici, Erhan

2012-01-01

In this study we present an overview of the undergraduate blended Physics course that has been supported by the Moodle platform. The course that has been applied is a basic physics course for primary student teachers. The aim of Moodle is to create an online learning environment which helps students to have a virtual space where they can share…

12. Investigation of a Chaotic Double Pendulum in the Basic Level Physics Teaching Laboratory

Vanko, Peter

2007-01-01

First-year physics students at the Technical University of Budapest carry out a wide range of measurements in the Basic Level Physics Teaching Laboratory. One of the most exciting experiments is the investigation of a chaotic double pendulum by a V-scope, a powerful three-dimensional motion tracking system. After a brief introduction to the…

13. Constraints of unparticle physics parameters from K0-K-bar0 mixing

The neutral kaon meson mixing plays an important role in the test of the Standard Model (SM) and new physics beyond it. Scale invariant unparticle physics induces a flavor changing neutral current (FCNC) transition of K0-K-bar0 oscillation at the tree level. In this study, we investigate the scale invariant unparticle physics effects on the K0-K-bar0 mixing. Based on the current experimental data, we give constraints of K0-K-bar0 mixing on the unparticle parameters. (authors)

14. Constraints on cosmic opacity and beyond the standard model physics from cosmological distance measurements

We update constraints on cosmic opacity by combining recent SN Type Ia data with the latest measurements of the Hubble expansion at redshifts between 0 and 2. The new constraint on the parameter ε parametrising deviations from the luminosity-angular diameter distance relation (dL = dA(1+z)2+ε), is ε = −0.04−0.07+0.08 (2-σ). For the redshift range between 0.2 and 0.35 this corresponds to an opacity Δτ < 0.012 (95% C.L.), a factor of 2 stronger than the previous constraint. Various models of beyond the standard model physics that predict violation of photon number conservation contribute to the opacity and can be equally constrained. In this paper we put new limits on axion-like particles, including chameleons, and mini-charged particles

15. Constraints on cosmic opacity and beyond the standard model physics from cosmological distance measurements

Avgoustidis, Anastasios [DAMTP, CMS, Cambridge (United Kingdom). Centre for Theoretical Cosmology; Burrage, Clare [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Redondo, Javier [Max-Planck-Institut fuer Physik, Munich (Germany); Verde, Licia; Jimenez, Raul [Barcelona Univ., IEEC (ES). ICREA and Inst. for Sciences of the Cosmos (ICC)

2010-04-15

We update constraints on cosmic opacity by combining recent SN Type Ia data compilation with the latest measurements of the Hubble expansion at redshifts between 0 and 2. The new constraint on the parameter {epsilon} parametrising deviations from the luminosity-angular diameter distance relation (d{sub L}=d{sub A}(1+z){sup 2+{epsilon}}), is {epsilon}=-0.04{sub -0.07}{sup +0.08} (2-{sigma}). For the redshift range between 0.2 and 0.35 this corresponds to an opacity {delta}{tau}<0.012 (95% C.L.), a factor of 2 stronger than the previous constraint. Various models of beyond the standard model physics that predict violation of photon number conservation contribute to the opacity and can be equally constrained. In this paper we put new limits on axion-like particles, including chameleons, and minicharged particles. (orig.)

16. The galaxy correlation function as a constraint on galaxy formation physics

van Daalen, Marcel P.; Henriques, Bruno M. B.; Angulo, Raul E.; White, Simon D. M.

2016-05-01

We introduce methods which allow observed galaxy clustering to be used together with observed luminosity or stellar mass functions to constrain the physics of galaxy formation. We show how the projected two-point correlation function of galaxies in a large semi-analytic simulation can be estimated to better than ˜10 per cent using only a very small subsample of the subhalo merger trees. This allows measured correlations to be used as constraints in a Monte Carlo Markov Chain exploration of the astrophysical and cosmological parameter space. An important part of our scheme is an analytic profile which captures the simulated satellite distribution extremely well out to several halo virial radii. This is essential to reproduce the correlation properties of the full simulation at intermediate separations. As a first application, we use low-redshift clustering and abundance measurements to constrain a recent version of the Munich semi-analytic model. The preferred values of most parameters are consistent with those found previously, with significantly improved constraints and somewhat shifted best' values for parameters that primarily affect spatial distributions. Our methods allow multi-epoch data on galaxy clustering and abundance to be used as joint constraints on galaxy formation. This may lead to significant constraints on cosmological parameters even after marginalizing over galaxy formation physics.

17. Experimental constraints from flavour changing processes and physics beyond the standard model

Gersabeck, M.; Gligorov, V.V. [CERN, Geneva (Switzerland); Serra, N. [University of Zuerich (Switzerland)

2012-08-15

Flavour physics has a long tradition of paving the way for direct discoveries of new particles and interactions. Results over the last decade have placed stringent bounds on the parameter space of physics beyond the Standard Model. Early results from the LHC, and its dedicated flavour factory LHCb, have further tightened these constraints and reiterate the ongoing relevance of flavour studies. The experimental status of flavour observables in the charm and beauty sectors is reviewed in measurements of CP violation, neutral meson mixing, and measurements of rare decays. (orig.)

18. Physical constraints, fundamental limits, and optimal locus of operating points for an inverted pendulum based actuated dynamic walker.

Patnaik, Lalit; Umanand, Loganathan

2015-12-01

The inverted pendulum is a popular model for describing bipedal dynamic walking. The operating point of the walker can be specified by the combination of initial mid-stance velocity (v0) and step angle (φm) chosen for a given walk. In this paper, using basic mechanics, a framework of physical constraints that limit the choice of operating points is proposed. The constraint lines thus obtained delimit the allowable region of operation of the walker in the v0-φm plane. A given average forward velocity vx,avg can be achieved by several combinations of v0 and φm. Only one of these combinations results in the minimum mechanical power consumption and can be considered the optimum operating point for the given vx,avg. This paper proposes a method for obtaining this optimal operating point based on tangency of the power and velocity contours. Putting together all such operating points for various vx,avg, a family of optimum operating points, called the optimal locus, is obtained. For the energy loss and internal energy models chosen, the optimal locus obtained has a largely constant step angle with increasing speed but tapers off at non-dimensional speeds close to unity. PMID:26502096

19. EXAMINATION OF CONSTRAINTS ON PHYSICAL ACTIVITY PROGRAMS PARTICIPATION TO INDIVIDUALS WITH AUTISM

İsmail AYDIN

2014-07-01

Full Text Available The aim of this study was to examine perceptions of constraints on physical activity participation among people with autism. This qualitative study was conducted on 9 different family of people with autism who participating in physical activity program. The data were collected by using semi - structured interview form. The literature review was done with the purpose of preparing the interview questions and creating conceptual framework. A semi - structured form was developed that consists of 7 items and 7 themes. The data were collected by using face to face interview methods. The descriptive analyses were used to analyze the collected data. The analysis indicated that the most important co nstraints were the economical factors on physical activity participation. The most important reason for this occurring was the lack of such programs in the public schools or in institutions. In addition to, this services carried by only the private sector was the other important factor that affected this reason. Analysis also revealed that central government policies of individuals with autism was insufficient for the participation in such programs in the state (government contact and also does not meet t heir needs. As a result, economic difficulties of individuals with autism to participate in physical activity programs was considered the most important constraints. However, it can be concluded that state (government policies were inadequate that in the social life of individuals with autism use their potential in educational activities that support participation in physical activity programs .

20. Preliminary validation of a questionnaire to measure basic psychological needs in Physical Education

Pires, A; L. Cid; Borrego, C.; Alves, J.; Silva, C.

2010-01-01

The self-determination theory is a psychological approach to motivation that focuses on causes and consequences of human behavior regulation. According several authors, this theoretical framework could provide important information about the student’s motivational process to physical education class, however, in Portugal does not exists any instrument to measure the basic psychological needs in this domain. So, the main propose of this study is the preliminary adaptation to physical education...

1. Berimbau: A simple instrument for teaching basic concepts in the physics and psychoacoustics of music

Vilão, Rui C.; Melo, Santino L. S.

2014-12-01

We address the production of musical tones by a simple musical instrument of the Brazilian tradition: the berimbau-de-barriga. The vibration physics of the string and of the air mass inside the gourd are reviewed. Straightforward measurements of an actual berimbau, which illustrate the basic physical phenomena, are performed using a PC-based "soundcard oscilloscope." The inharmonicity of the string and the role of the gourd are discussed in the context of known results in the psychoacoustics of pitch definition.

2. Adaption and validation of the German version of the basic psychological needs in physical education scale

Heckmann, Philip

2013-01-01

It is important to understand students’ motivation regarding physical activity to investigate the global issue physical inactivity. Based on the self-determination theory (SDT: Ryan & Deci, 2002), which is one of the most important frameworks in explaining motivation, students need to be emotionally satisfied in order to put effort towards a certain goal. The Basic Psychological Needs Theory is one sub-theory of the self-determination theory, which explains that constructs of a...

3. Scholar-activating teaching materials for quantum physics. Pt. 2. Basic facts of quantum physics and heuristic methods

Traditionally in the center of interest on quantum physics referring to schools the question lies, whether electrons and photons are now particles or waves, a question, which is often characterized by the phrase ''wave-particle dualism'', which notoriously not exists in its original meaning. Against that by the author - basing on important preparatory works of Kueblbeck and Mueller - a new concept for the treatment of quantum physics for the school was proposed, which puts ''basic facts'' in the foreground, comparable with the Kueblbeck-Mueller ''characteristic features''. The ''basic facts'' are similar to axioms of quantum physics, by means of which a large number of experiments and phenomena can be ''explained'' at least qualitatively - in a heuristic way -. Instead of the so-called ''wave-particle dualism'' here uncertainty and complementarity are put in the foreground. The new concept is in the Internet under http://www.forphys.de extensively presented with many further materials. In the partial volumes of this publication manifold and carefully elaborated teaching materials are presented, by means of which scholars can get themselves the partial set of quantum physics referring to schools by different methods like learn at stations, short referates, Internet research, group puzzle, the query-sheet or the card-index method etc. In the present 2. part materials for the ''basic facts'' of quantum physics are prepared, by which also modern experiments can be interpreted. Here deals it with the getting of knowledge and application of the ''basic Facts''. This pursues also by real scholar experiments, simulations and analogy tests. The scholars obtain so more simply than generally a deeper insight in quantum physics.

4. Are there basic physical constraints on future anthropogenic emissions of carbon dioxide?

Garrett, Timothy J

2008-01-01

Global Climate Models (GCMs) provide forecasts of future climate warming using a wide variety of highly sophisticated anthropogenic CO2 emissions models as input, each based on the evolution of four emissions "drivers": population p, standard of living g, energy productivity (or efficiency) f and energy carbonization c. The range of scenarios considered is extremely broad, however, and this is a primary source of forecast uncertainty. Here, it is shown both theoretically and observationally how the evolution of the human system can be considered from a surprisingly simple thermodynamic perspective in which it is unnecessary to explicitly model two of the emissions drivers: population and standard of living. Specifically, the human system grows through a self-perpetuating feedback loop in which the consumption rate of primary energy resources stays tied to the historical accumulation of global economic production - or p times g - through a time-independent factor of 9.7 +/- 0.3 milliwatts per inflation-adjuste...

5. Evaluation of Games in Games and Physical Activity Course Curriculum in Terms of Common Basic Skills

Inan, Mehmet; Ozden, Bülent; Dervent, Fatih; Küçüktepe, Coskun

2016-01-01

The purpose of this study was to provide an overview of the games in the "I am Playing Games" (IPG) compilation booklet that was used in the Games and Physical Activity (GPA) curriculum. 257 games in IPG compilation booklet were coded whether they had elements that would enable development of common basic skills or not. Common basic…

6. Student Physical Education Teachers' Well-Being: Contribution of Basic Psychological Needs

Ciyin, Gülten; Erturan-Ilker, Gökçe

2014-01-01

This study adopted Self-Determination Theory tenets and aimed to explore whether student physical education (PE) teachers' satisfaction of the three basic psychological needs independently predicts well-being. 267 Turkish student PE teachers were recruited for the study. Two stepwise multiple regression analysis was performed in which each outcome…

7. Ferroelectric Thin Films Basic Properties and Device Physics for Memory Applications

Okuyama, Masanori

2005-01-01

Ferroelectric thin films continue to attract much attention due to their developing, diverse applications in memory devices, FeRAM, infrared sensors, piezoelectric sensors and actuators. This book, aimed at students, researchers and developers, gives detailed information about the basic properties of these materials and the associated device physics. All authors are acknowledged experts in the field.

8. The global electroweak fit at NNLO and constraints on new physics

Baak, Max; Haller, Johannes; Hoecker, Andreas; Kogler, Roman; Mönig, K; Peiffer, Thomas; Schott, Matthias; Stelzer, Jörg

2015-01-01

We present an update of the global electroweak fit using electroweak next-to-next-to-leading order (NNLO) calculations for all precision observables that enter the fit. The availability of NNLO corrections allows for the first time the inclusion of realistic estimates of theoretical uncertainties due to missing higher order calculations. The knowledge of the mass of the Higgs boson improves the precision of the predictions in the global electroweak fit considerably and the global fits are used as powerful tools to assess the validity of the Standard Model and to constrain scenarios for new physics. We present updated constraints in a model with modified Higgs couplings to bosons and fermions, and two Higgs doublet models. We show that in many cases the Higgs signal strength measurements give complementary information to constraints obtained from electroweak precison observables. Future measurements at the LHC and an expected electron-positron collider promise to improve the experimental precision of key obser...

9. Determining physical constraints in transcriptional initiation complexes using DNA sequence analysis.

Ryan K Shultzaberger

Full Text Available Eukaryotic gene expression is often under the control of cooperatively acting transcription factors whose binding is limited by structural constraints. By determining these structural constraints, we can understand the "rules" that define functional cooperativity. Conversely, by understanding the rules of binding, we can infer structural characteristics. We have developed an information theory based method for approximating the physical limitations of cooperative interactions by comparing sequence analysis to microarray expression data. When applied to the coordinated binding of the sulfur amino acid regulatory protein Met4 by Cbf1 and Met31, we were able to create a combinatorial model that can correctly identify Met4 regulated genes. Interestingly, we found that the major determinant of Met4 regulation was the sum of the strength of the Cbf1 and Met31 binding sites and that the energetic costs associated with spacing appeared to be minimal.

10. GENASIS   Basics: Object-oriented utilitarian functionality for large-scale physics simulations

Cardall, Christian Y.; Budiardja, Reuben D.

2015-11-01

Aside from numerical algorithms and problem setup, large-scale physics simulations on distributed-memory supercomputers require more basic utilitarian functionality, such as physical units and constants; display to the screen or standard output device; message passing; I/O to disk; and runtime parameter management and usage statistics. Here we describe and make available Fortran 2003 classes furnishing extensible object-oriented implementations of this sort of rudimentary functionality, along with individual 'unit test' programs and larger example problems demonstrating their use. These classes compose the Basics division of our developing astrophysics simulation code GENASIS  (General Astrophysical Simulation System), but their fundamental nature makes them useful for physics simulations in many fields.

11. GenASiS Basics: Object-oriented utilitarian functionality for large-scale physics simulations

Cardall, Christian Y

2015-01-01

Aside from numerical algorithms and problem setup, large-scale physics simulations on distributed-memory supercomputers require more basic utilitarian functionality, such as physical units and constants; display to the screen or standard output device; message passing; I/O to disk; and runtime parameter management and usage statistics. Here we describe and make available Fortran 2003 classes furnishing extensible object-oriented implementations of this sort of rudimentary functionality, along with individual unit test' programs and larger example problems demonstrating their use. These classes compose the Basics division of our developing astrophysics simulation code GenASiS (General Astrophysical Simulation System), but their fundamental nature makes them useful for physics simulations in many fields.

12. Tracking using motion estimation with physically motivated inter-region constraints

Arif, Omar

2014-09-01

We propose a method for tracking structures (e.g., ventricles and myocardium) in cardiac images (e.g., magnetic resonance) by propagating forward in time a previous estimate of the structures using a new physically motivated motion estimation scheme. Our method estimates motion by regularizing only within structures so that differing motions among different structures are not mixed. It simultaneously satisfies the physical constraints at the interface between a fluid and a medium that the normal component of the fluid\\'s motion must match the normal component of the medium\\'s motion and the No-Slip condition, which states that the tangential velocity approaches zero near the interface. We show that these conditions lead to partial differential equations with Robin boundary conditions at the interface, which couple the motion between structures. We show that propagating a segmentation across frames using our motion estimation scheme leads to more accurate segmentation than traditional motion estimation that does not use physical constraints. Our method is suited to interactive segmentation, prominently used in commercial applications for cardiac analysis, where segmentation propagation is used to predict a segmentation in the next frame. We show that our method leads to more accurate predictions than a popular and recent interactive method used in cardiac segmentation. © 2014 IEEE.

13. New Physics constraints from rare b → s + (γ, ℓ+ℓ− decays

Bobeth Christoph

2013-05-01

Full Text Available The experimental measurements of flavor-changing neutral-current B-meson decays governed by b → s + (γ, ℓ+ℓ− transitions have entered a new level of precision. Recent results by Belle, CDF, Babar, and LHCb on B → K(*ℓ+ℓ− and Bs → μ+μ− decays are used in model-(independent analyses to test the Standard Model predictions and to derive stronger constraints on nonstandard contributions. While in agreement with the Standard Model, they still leave sizable room for new physics.

14. The Effects of Multimedia Computer- Assisted Instruction on Learning Basic Ballet Skills with Physical Education Students

El-Moneim Doaa Abd

2014-09-01

Full Text Available Computer technology has become an integral part of physical education, yet there have been few studies exploring the use of multimedia technology in the instruction of Physical Education. The purpose of this study was to investigate if multimedia technology affected the learning of basic ballet skills. A total of 32 female students, mean age 18.1 years, studying at the Faculty of Physical Education Zagazig university were divided into two groups. The experimental group comprised 16 students. Participants in this group participated in a ballet class with multimedia technology for six weeks. Group two participated in the ballet class with the traditional method as the control group. Parameters assessed height, weight, age, and academic level. All participants were free of any disorders known to affect performance, such as bone fractures, osteoporosis, diabetes, or cardiovascular disease. Participants reported no use of anti-seizure drugs or alcohol. In addition, all participants were fully informed of the aims of the study, and gave their voluntary consent prior to participation. The measurement procedures were in accordance with ethical human experimentation. All statistical analyses were calculated with the SPSS statistical package. Results indicated significant differences between the two groups in learning the basic skills and levels of knowledge of ballet. Applying the proposed educational program meant using multimedia to teach basic ballet skills to second-year female students enrolled in the Faculty of Physical Education

15. Physical abuse in basic-education schools in Aden governorate, Yemen: a cross-sectional study.

Ba-Saddik, A S; Hattab, A S

2013-04-01

Physical abuse in school has lifelong consequences affecting child health and educational achievements. A study was designed to assess the prevalence of physical abuse experienced by pupils in basic-education schools in Aden, Yemen, and to examine the risk factors associated with it. A cross-sectional study covering 1066 pupils in 7th-9th grades from 8 schools in different districts of Aden governorate were randomly selected. Answering an anonymous self-administered questionnaire, 55.7% of pupils reported physical abuse at least once in their school lifetime (73.2% of males versus 26.6% of females). Teachers were the main perpetrators (45.4%). A statistically significant association was found between physical abuse and sex, age group, family type and father's education. Significant predictors of physical abuse on multivariate regression were male sex (OR=7.89) and extended family type (OR=1.36). Physical abuse in basic-education schools requires serious consideration by educational authorities, families and the community at large. PMID:23882958

16. Evolution of Fish-Shaped Reptiles (reptilia: Ichthyopterygia) in Their Physical Environments and Constraints

Motani, Ryosuke

2005-01-01

Ichthyosaurs were a group of Mesozoic marine reptiles that evolved fish-shaped body outlines. They are unique in several anatomical characters, including the possession of enormous eyeballs sometimes exceeding 25 cm and an enlarged manus with sometimes up to 20 bones in a single digit, or 10 digits per manus. They are also unique in that their biology has been studied from the perspective of physical constraints, which allowed estimation of such characteristics as optimal cruising speed, visual sensitivity, and even possible basal metabolic rate ranges. These functional inferences, although based on physical principles, obviously contain errors arising from the limitations of fossilized data, but are necessarily stronger than the commonly made inferences based on superficial correlations among quantities without mechanical or optical explanations for why such correlations exist.

17. Nordic congestion's arrangement as a model for Europe? Physical constraints vs. economic incentives

Congestion on power grids seems a physical reality, a 'hard' fact easy to check. Our paper models a different idea: congestion signal may be distorted by transmission system operators (TSOs). Indeed, congestion signals are not physical data but 'home made' conventions directly set by the TSOs in charge of the security of the system. These security norms are not stable and invariable because lines capacity limits are not constant. TSOs, therefore, define the congestion signal on a variable, complex and non-transparent constraint and may manipulate it for monetary purposes or for other personal agenda. In Nordic countries the coexistence of two congestion management methods in a 'Light Handed Regulation' framework makes this opportunistic behaviour even more likely. (author)

18. Introduction to the basic concepts of modern physics special relativity, quantum and statistical physics

Becchi, Carlo Maria

2016-01-01

This is the third edition of a well-received textbook on modern physics theory. This book provides an elementary but rigorous and self-contained presentation of the simplest theoretical framework that will meet the needs of undergraduate students. In addition, a number of examples of relevant applications and an appropriate list of solved problems are provided.Apart from a substantial extension of the proposed problems, the new edition provides more detailed discussion on Lorentz transformations and their group properties, a deeper treatment of quantum mechanics in a central potential, and a closer comparison of statistical mechanics in classical and in quantum physics. The first part of the book is devoted to special relativity, with a particular focus on space-time relativity and relativistic kinematics. The second part deals with Schrödinger's formulation of quantum mechanics. The presentation concerns mainly one-dimensional problems, but some three-dimensional examples are discussed in detail. The third...

19. Have quantum mechanical isolated systems a physical meaning. An essential approximation in basic quantum physics

An initial assumption in quantum mechanics is that particles (or subsystems) can be isolated from the physical world but still behave in a realistic fashion. This paper shows that the above assumption is not only naive but it has far reaching consequences. In particular, time-reversibility, microscopic reversibility and time-energy principles must be reinterpreted for real non-isolated systems. Moreover the new interpretation is far more consistent than that presently accepted for isolated systems. (author)

20. Computer literacy of future teacher of physical culture, as one of basic elements of professional development.

Dragnev Y. V.

2011-01-01

he problem of computer literacy of future teacher of physical culture is examined in the article, as one of basic elements of professional development. The necessity of introduction of multimedia technologies opens up for practice of athletic education, which enables to combine the didactics functions of computer, as teaching facilities, with possibilities of traditional methods of teaching and to renew an educational process information technologies etc Specified, that professional developme...

1. Cardiac Multidetector Computed Tomography: Basic Physics of Image Acquisition and Clinical Applications

Bardo, Dianna M.E; Brown, Paul

2008-01-01

Cardiac MDCT is here to stay. And, it is more than just imaging coronary arteries. Understanding the differences in and the benefits of one CT scanner from another will help you to optimize the capabilities of the scanner, but requires a basic understanding of the MDCT imaging physics. This review provides key information needed to understand the differences in the types of MDCT scanners, from 64 – 320 detectors, flat panels, single and dual source configurations, step and shoot prospective a...

2. Proposed curriculum for natural science education at the basic level with a physical approach

Lilia M. Ladino-Martínez; Yolanda I. Fonseca-Albarracín

2010-01-01

This document shows the general framework within which developed the research project "Design and implementation of a curriculum for the teaching of natural sciences at the basic level with a physical approach." In this project it is assumed the organization of the curriculum, the curriculum of science and its continuingrestructuring as an ongoing investigative work by the group of teachers of different levels of education, in a way such that recognize the problems around teaching and learnin...

3. Basic course theoretical physics 5/2. Quantum mechanics - methods and applications. 8. ed.

The basic course theoretical physics, quantum mechanics covers the following issues: quantum theory of angular momentum: orbital angular momentum, spin, relativistic theory of the electron, addition of momentum; central potential: fundamentals, coulomb potential, spherical symmetric potential well, the free particle; approximation procedures: variational method, time independent perturbation theory, time dependent (Dirac) perturbation theory, quasi-classical approximation (WKB method); many-particle systems: identical particles, second quantization, applications; scattering theory: fundamentals, partial waves method, integral equations for scattering problems, formal scattering theory.

4. Preliminary validation of a questionnaire to measure basic psychological needs in Physical Education

A. Pires

2010-01-01

Full Text Available The self-determination theory is a psychological approach to motivation that focuses on causes and consequences of human behavior regulation. According several authors, this theoretical framework could provide important information about the student’s motivational process to physical education class, however, in Portugal does not exists any instrument to measure the basic psychological needs in this domain. So, the main propose of this study is the preliminary adaptation to physical education contexts of Basic Psychological Needs Exercise Scale (Portuguese version: BPNESp, and determine their initial psychometrics properties through an exploratory factor analysis. This propose was accomplished with a sample of 150 students (n=150 from de 2nd and 3rd CEB, aged from 11 to 16 years (M = 13.39, SD = 1.44 with different levels of sports practice. Results revealed a factorial structure just like the original model (12 items grouped in 3 factors, with 4 items hitch factor and presents acceptable values of validity and reliability. Those findings allow us to conclude, that questionnaire can be used in future investigations to measure the basic psychological needs in physical education.

5. Selected works of basic research on the physics and technology of accelerator driven clean nuclear power system

38 theses are presented in this selected works of basic research on the physics and technology of accelerator driven clean nuclear power system. It includes reactor physics and experiment, accelerators physics and technology, nuclear physics, material research and partitioning. 13 abstracts, which has been presented on magazines home and abroad, are collected in the appendix

6. Introduction to the basic concepts of modern physics special relativity, quantum and statistical physics

Becchi, Carlo Maria

2007-01-01

These notes are designed as a text book for a course on the Modern Physics Theory for undergraduate students. The purpose is providing a rigorous and self-contained presentation of the simplest theoretical framework using elementary mathematical tools. A number of examples of relevant applications and an appropriate list of exercises and answered questions are also given. The first part is devoted to Special Relativity concerning in particular space-time relativity and relativistic kinematics. The second part deals with Schroedinger's formulation of quantum mechanics. The presentation concerns mainly one dimensional problems, in particular tunnel effect, discrete energy levels and band spectra. The third part concerns the application of Gibbs statistical methods to quantum systems and in particular to Bose and Fermi gasses.

7. Radiation protection and health physics, basic course. With numerous problems and solutions and a test example

Radiation protection aspects encompass environmental aspects. This textbook and basic course in radiation protection and health physics sets out the fundamental facts and principles from the angle of physics and biology, as well as the measuring methods applied for detection and identification of the radionuclides used in the fields of medicine, biology, physics, and engineering. In addition, the legal provisions relating to radiation protection are presented in a way easy to understand by readers not belonging to the legal community. Practical aspects of radiation protection are discussed and illustrated by numerous examples, including applications of modern, commercial instruments. The book is intended for students of medicine, biology, physics and the engineering sciences, or professionals dealing with radioactive materials or instruments for the generation of ionizing radiation. The presentation of physical and technical aspects has been designed for beginners' levels. The collection of problems and solutions relating to the practice of radiation protection and health physics in the nuclear or physical laboratory, or radiographic and nuclear medical establishments, will enable readers to check their learning progress. A comprehensive glossary, a useful subject index as well as some annexes presenting significant factual and numeric information round up the textbook. (orig./CB)

8. Theoretical problems of plasma physics basic stages in fundamental physics of collisionless plasma

A short historical fundamental plasma physics development review where the main periods where determined by the physicists enumerated in the title is given. 1. I. Langmuir, who was the first to study experimentally the properties of plasmas, has found the main characteristics of plasma and has determined the conditions of plasma state realization. 2. L.D. Landau was the first to understand the reason of why is gas approximation not applicable for plasma description, but he neglected the self-consistent field and has not achieved his goal. 3. A.A. Vlasov showed the important role of self-consistent field and was the first to obtain the correct equation describing the plasma and also has put the Langmuir experiments on the observation of plasma waves and their dispersion on theoretical basis. 4. N.N. Bogolyubov developed the general method for derivation of the dynamic equations for plasma and showed that in the first approximation with respect to Landau parameter Vlasov equation is correct and the second approximation results in Landau corrective in the Vlasov equation. 5. G.V. Gordeev was the first to show that the acoustic vibration branch differs from the sound in gases, the sound in plasma is isothermal and exists only in nonisothermal plasmas. 6. B.B. Kadomtsev and V.P. Silin showed that undamped modes of ion-acoustic vibrations can exist in plasma and were the first to build the theory of plasma turbulence on the undamped Vlasov modes

9. Computer literacy of future teacher of physical culture, as one of basic elements of professional development.

Dragnev Y.V.

2011-08-01

Full Text Available he problem of computer literacy of future teacher of physical culture is examined in the article, as one of basic elements of professional development. The necessity of introduction of multimedia technologies opens up for practice of athletic education, which enables to combine the didactics functions of computer, as teaching facilities, with possibilities of traditional methods of teaching and to renew an educational process information technologies etc Specified, that professional development of future teacher of physical culture must create a new specialist in the field of knowledge „Physical education, sport and health of man" which will be competitive on the European and World labour-markets in the conditions of informatization and computerization of higher education.

10. Novel constraints on light elementary particles and extra-dimensional physics from the Casimir effect

We present supplementary information on the recent indirect measurement of the Casimir pressure between two parallel plates using a micromachined oscillator. The equivalent pressure between the plates is obtained by means of the proximity force approximation after measuring the force gradient between a gold coated sphere and a gold coated plate. The data are compared with a new theoretical approach to the thermal Casimir force based on the use of the Lifshitz formula, combined with a generalized plasma-like dielectric permittivity that takes into account interband transitions of core electrons. The theoretical Casimir pressures calculated using the new approach are compared with those computed in the framework of the previously used impedance approach and also with the Drude model approach. The latter is shown to be excluded by the data at a 99.9% confidence level within the wide separation range from 210 to 620 nm. The level of agreement between the data and theoretical approaches based on the generalized plasma model, or the Leontovich surface impedance, is used to set stronger constraints on the Yukawa forces predicted from the exchange of light elementary particles and/or extra-dimensional physics. The resulting constraints are the strongest in the interaction region from 20 to 86 nm with a largest improvement by a factor of 4.4 at 26 nm. (orig.)

11. Eluding the Physical Constraints in a Nonlinear Interaction Sound Synthesis Model for Gesture Guidance

Etienne Thoret

2016-06-01

Full Text Available In this paper, a flexible control strategy for a synthesis model dedicated to nonlinear friction phenomena is proposed. This model enables to synthesize different types of sound sources, such as creaky doors, singing glasses, squeaking wet plates or bowed strings. Based on the perceptual stance that a sound is perceived as the result of an action on an object we propose a genuine source/filter synthesis approach that enables to elude physical constraints induced by the coupling between the interacting objects. This approach makes it possible to independently control and freely combine the action and the object. Different implementations and applications related to computer animation, gesture learning for rehabilitation and expert gestures are presented at the end of this paper.

12. The galaxy correlation function as a constraint on galaxy formation physics

van Daalen, Marcel P; Angulo, Raul E; White, Simon D M

2015-01-01

We introduce methods which allow observed galaxy clustering to be used together with observed luminosity or stellar mass functions to constrain the physics of galaxy formation. We show how the projected two-point correlation function of galaxies in a large semi-analytic simulation can be estimated to better than ~10% using only a very small subsample of the subhalo merger trees. This allows measured correlations to be used as constraints in a Monte Carlo Markov Chain exploration of the astrophysical and cosmological parameter space. An important part of our scheme is an analytic profile which captures the simulated satellite distribution extremely well out to several halo virial radii. This is essential to reproduce the correlation properties of the full simulation at intermediate separations. As a first application, we use low-redshift clustering and abundance measurements to constrain a recent version of the Munich semi-analytic model. The preferred values of most parameters are consistent with those found ...

13. Modeling of physical fitness of young karatyst on the pre basic training

Galimskyi V.A.

2014-05-01

Full Text Available Purpose : to develop a program of physical fitness for the correction of the pre basic training on the basis of model performance. Material: 57 young karate sportsmen of 9-11 years old took part in the research. Results : the level of general and special physical preparedness of young karate 9-11 years old was determined. Classes in the control group occurred in the existing program for yous sports school Muay Thai (Thailand boxing. For the experimental group has developed a program of selective development of general and special physical qualities of model-based training sessions. Special program contains 6 direction: 1. Development of static and dynamic balance; 2. Development of vestibular stability (precision movements after rotation; 3. Development rate movements; 4. The development of the capacity for rapid restructuring movements; 5. Development capabilities to differentiate power and spatial parameters of movement; 6. Development of the ability to perform jumping movements of rotation. Development of special physical qualities continued to work to improve engineering complex shock motions on the place and with movement. Conclusions : the use of selective development of special physical qualities based models of training sessions has a significant performance advantage over the control group.

14. Basic Physical Parameters of Nearby G and K Giants and Subgiants

Robinson, P. E.; Gray, R. O.

2002-12-01

As part of the Nearby Stars (NStars) Program at Appalachian State University, we are determining the basic physical parameters of G and K giants and subgiants within 40 parsecs of the Sun ( ≈ 170 stars). Stellar radii are being determined using the Infrared Flux Method (IRFM, Blackwell & Lynas-Gray, 1994). Combining the radii with luminosity and parallax data, we are determining the effective temperatures; surface gravity is determined by combining the calculated radii with mass estimates from evolutionary models. Metallicities [M/H] are then determined using the simplex method of Gray et al. (2001).

15. Basic quantum theory and measurement from the viewpoint of local quantum physics

Schroer, Bert [Freie Univ. Berlin (Germany). Inst. fuer Theoretische Physik

1999-04-01

Several aspects of the manifestation of the causality principle in LQP (local quantum physics) are reviewed or presented. Particular emphasis is given to those properties which are typical for LQP in the sense that they do go beyond the structure of general quantum theory and even escape the Lagrangian quantization methods of standard QFT. The most remarkable are those relating causality to the modular Tomita-Takesaki theory, since they bring in the basic concepts of antiparticles, charge superselections as well as internal and external (geometric and hidden) symmetries. (author)

16. The upgraded Large Plasma Device, a machine for studying frontier basic plasma physics

Gekelman, W.; Pribyl, P.; Lucky, Z.; Drandell, M.; Leneman, D.; Maggs, J.; Vincena, S.; Van Compernolle, B.; Tripathi, S. K. P.; Morales, G.; Carter, T. A.; Wang, Y.; DeHaas, T.

2016-02-01

In 1991 a manuscript describing an instrument for studying magnetized plasmas was published in this journal. The Large Plasma Device (LAPD) was upgraded in 2001 and has become a national user facility for the study of basic plasma physics. The upgrade as well as diagnostics introduced since then has significantly changed the capabilities of the device. All references to the machine still quote the original RSI paper, which at this time is not appropriate. In this work, the properties of the updated LAPD are presented. The strategy of the machine construction, the available diagnostics, the parameters available for experiments, as well as illustrations of several experiments are presented here.

17. Basic quantum theory and measurement from the viewpoint of local quantum physics

Several aspects of the manifestation of the causality principle in LQP (local quantum physics) are reviewed or presented. Particular emphasis is given to those properties which are typical for LQP in the sense that they do go beyond the structure of general quantum theory and even escape the Lagrangian quantization methods of standard QFT. The most remarkable are those relating causality to the modular Tomita-Takesaki theory, since they bring in the basic concepts of antiparticles, charge superselections as well as internal and external (geometric and hidden) symmetries. (author)

18. Semi-quantitative diagram about temporal evolution in basic physics learning: a study with engineering students

Talero, Paco; Organista, Orlando; Barbosa, Luis

2012-01-01

We show a new semi-quantitative technique of analysis about of temporal evolution of learning of basic physics concepts. In this technique we arrange a geometric diagram with the score and the homogeneity (H-S), in this diagram we have a quantitative and qualitative information about the learning of students and the effectiveness instruction. We applied this technique to study the temporal evolution of the graphical interpretation of motion in one dimension through tutorials in a introductory course physics with 20 students of engineering at the Universidad Central de Bogot\\'a Colombia for a period of 6 weeks. We found in the general diagram that (Smax,Hmax)=(0.75,0.75).

19. Ring-like reliable PON planning with physical constraints for a smart grid

Wang, Xin; Gu, Rentao; Ji, Yuefeng

2016-01-01

Due to the high reliability requirements in the communication networks of a smart grid, a ring-like reliable PON is an ideal choice to carry power distribution information. Economical network planning is also very important for the smart grid communication infrastructure. Although the ring-like reliable PON has been widely used in the real applications, as far as we know, little research has been done on the network optimization subject of the ring-like reliable PON. Most PON planning research studies only consider a star-like topology or cascaded PON network, which barely guarantees the reliability requirements of the smart grid. In this paper, we mainly investigate the economical network planning problem for the ring-like reliable PON of the smart grid. To address this issue, we built a mathematical model for the planning problem of the ring-like reliable PON, and the objective was to minimize the total deployment costs under physical constraints. The model is simplified such that all of the nodes have the same properties, except OLT, because each potential splitter site can be located in the same ONU position in power communication networks. The simplified model is used to construct an optimal main tree topology in the complete graph and a backup-protected tree topology in the residual graph. An efficient heuristic algorithm, called the Constraints and Minimal Weight Oriented Fast Searching Algorithm (CMW-FSA), is proposed. In CMW-FSA, a feasible solution can be obtained directly with oriented constraints and a few recursive search processes. From the simulation results, the proposed planning model and CMW-FSA are verified to be accurate (the error rates are less than 0.4%) and effective compared with the accurate solution (CAESA), especially in small and sparse scenarios. The CMW-FSA significantly reduces the computation time compared with the CAESA. The time complexity algorithm of the CMW-FSA is acceptable and calculated as T(n) = O(n3). After evaluating the

20. A first class constraint generates not a gauge transformation, but a bad physical change: The case of electromagnetism

Pitts, J. Brian, E-mail: jbp25@cam.ac.uk

2014-12-15

In Dirac–Bergmann constrained dynamics, a first-class constraint typically does not alone generate a gauge transformation. By direct calculation it is found that each first-class constraint in Maxwell’s theory generates a change in the electric field E{sup →} by an arbitrary gradient, spoiling Gauss’s law. The secondary first-class constraint p{sup i},{sub i}=0 still holds, but being a function of derivatives of momenta (mere auxiliary fields), it is not directly about the observable electric field (a function of derivatives of A{sub μ}), which couples to charge. Only a special combination of the two first-class constraints, the Anderson–Bergmann–Castellani gauge generator G, leaves E{sup →} unchanged. Likewise only that combination leaves the canonical action invariant—an argument independent of observables. If one uses a first-class constraint to generate instead a canonical transformation, one partly strips the canonical coordinates of physical meaning as electromagnetic potentials, vindicating the Anderson–Bergmann Lagrangian orientation of interesting canonical transformations. The need to keep gauge-invariant the relation q-dot −(δH)/(δp) =−E{sub i}−p{sup i}=0 supports using the gauge generator and primary Hamiltonian rather than the separate first-class constraints and the extended Hamiltonian. Partly paralleling Pons’s criticism, it is shown that Dirac’s proof that a first-class primary constraint generates a gauge transformation, by comparing evolutions from identical initial data, cancels out and hence fails to detect the alterations made to the initial state. It also neglects the arbitrary coordinates multiplying the secondary constraints inside the canonical Hamiltonian. Thus the gauge-generating property has been ascribed to the primaries alone, not the primary–secondary team G. Hence the Dirac conjecture about secondary first-class constraints as generating gauge transformations rests upon a false presupposition about

1. A first class constraint generates not a gauge transformation, but a bad physical change: The case of electromagnetism

In Dirac–Bergmann constrained dynamics, a first-class constraint typically does not alone generate a gauge transformation. By direct calculation it is found that each first-class constraint in Maxwell’s theory generates a change in the electric field E→ by an arbitrary gradient, spoiling Gauss’s law. The secondary first-class constraint pi,i=0 still holds, but being a function of derivatives of momenta (mere auxiliary fields), it is not directly about the observable electric field (a function of derivatives of Aμ), which couples to charge. Only a special combination of the two first-class constraints, the Anderson–Bergmann–Castellani gauge generator G, leaves E→ unchanged. Likewise only that combination leaves the canonical action invariant—an argument independent of observables. If one uses a first-class constraint to generate instead a canonical transformation, one partly strips the canonical coordinates of physical meaning as electromagnetic potentials, vindicating the Anderson–Bergmann Lagrangian orientation of interesting canonical transformations. The need to keep gauge-invariant the relation q-dot −(δH)/(δp) =−Ei−pi=0 supports using the gauge generator and primary Hamiltonian rather than the separate first-class constraints and the extended Hamiltonian. Partly paralleling Pons’s criticism, it is shown that Dirac’s proof that a first-class primary constraint generates a gauge transformation, by comparing evolutions from identical initial data, cancels out and hence fails to detect the alterations made to the initial state. It also neglects the arbitrary coordinates multiplying the secondary constraints inside the canonical Hamiltonian. Thus the gauge-generating property has been ascribed to the primaries alone, not the primary–secondary team G. Hence the Dirac conjecture about secondary first-class constraints as generating gauge transformations rests upon a false presupposition about primary first-class constraints. Clarity

2. Competence of matric physical science teachers in some basic problem-solving strategies

Mailoo Selvaratnam

2011-01-01

Full Text Available The National Curriculum Statement for matric physical science places strong emphasis on the development of critical thinking and reasoning abilities of pupils. The successful implementation of this curriculum therefore requires teachers who are competent in the cognitive (intellectual skills and strategies needed for learning science effectively. Testing of teachers’ competence in this aspect is therefore important. I therefore analysed teachers’ answers to questions that were carefully designed to test competence in some basic intellectual strategies that are important for problem solving in physical science courses. A total of 73 matric physical science teachers, from about 50 Dinaledi schools in the North West and KwaZulu-Natal provinces in South Africa, were tested in five intellectual strategies: clear representation of problems, identifying and focusing on the goal, identification and use of relevant principles, use of equations for deductions and proceeding step-by-step with the solution. The teachers’ competence was poor in all the intellectual strategies tested. About 60% (the average performance in all 13 questions used for testing of teachers tested were unable to solve the questions correctly. An important objective of the curriculum is the development of critical thinking, scientific reasoning and strategies of pupils. This study shows that the achievement of this objective will be seriously handicapped because of the lack of competence of many teachers in intellectual strategies. There is therefore a need to train teachers in order to increase their competence in this aspect.

3. Physical constraint as psychological holding: Mental-health treatment for difficult and violent adolescents in France.

Gansel, Yannis; Lézé, Samuel

2015-10-01

The phrase "Contraindre est thérapeutique"--constraining is therapeutic--underpins the principle of numerous interventions within the field of mental health in France, ranging from traditional psychiatric units to the courthouse to violence management and prevention of dangerousness. The treatment of violence in "difficult and violent adolescents" provides a paradigmatic and revealing example of this tendency. The aim of this article is to understand how the clinical category--contenir, or "to contain"--was formed and is used. The perspective taken is that of the political anthropology of mental health and the article combines a genealogical approach of the notion with a multisite ethnographical study (conducted between September 2008 and June 2012 in three facilities for adolescent care). This study will show how "psychological holding" is used to justify "physical constraint" in the treatment of adolescent crisis and violence. Furthermore, we will see how this "dirty work", delegated to front-line professionals (educators, social workers, nurses), is used within a moral economy of suffering that promotes care and control measures in a population largely from immigrant backgrounds, judged to be both potentially vulnerable and dangerous. PMID:26048583

4. Proceeding of the Scientific Meeting and Presentation on Basic Research in Nuclear Science and Technology. Part I : Physics, Reactor Physics and Nuclear Instrumentation

Scientific Meeting and Presentation on Basic Research in Nuclear Science and Technology is a routine activity was held by PPNY BATAN for monitoring the research Activity which achieved in BATAN. The Proceeding contains a proposal about basic which has physics; reactor physics and nuclear instrumentation. This proceedings is the first part from two part which published in series. There are 33 articles which have separated index

5. Does Physical Environment Contribute to Basic Psychological Needs? A Self-Determination Theory Perspective on Learning in the Chemistry Laboratory

Sjöblom, Kirsi; Mälkki, Kaisu; Sandström, Niclas; Lonka, Kirsti

2016-01-01

The role of motivation and emotions in learning has been extensively studied in recent years; however, research on the role of the physical environment still remains scarce. This study examined the role of the physical environment in the learning process from the perspective of basic psychological needs. Although self-determination theory stresses…

6. Freshman College Students’ Reasons for Enrolling in and Anticipated Benefits from a Basic College Physical Education Activity Course

Lackman, Jeremy; Smith, Matthew Lee; McNeill, Elisa Beth

2015-01-01

Background Given the rise in US obesity rates in adulthood, efforts are needed to assess physical activity engagement during the college years as a strategy to promote a lifetime of being physically active. This study identifies the reasons incoming college freshman enrolled in basic physical education activity courses (BPEAC) and the perceived benefits they anticipated receiving as a result of course participation. Methods Data collected from 302 college freshmen in September 2013 were analy...

7. A minimal set of invariants as a systematic approach to higher order gravity models: physical and cosmological constraints

Moldenhauer, Jacob; Ishak, Mustapha, E-mail: jam042100@utdallas.edu, E-mail: mishak@utdallas.edu [Department of Physics, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75083 (United States)

2009-12-01

We compare higher order gravity models to observational constraints from magnitude -redshift supernova data, distance to the last scattering surface of the CMB, and Baryon Acoustic Oscillations. We follow a recently proposed systematic approach to higher order gravity models based on minimal sets of curvature invariants, and select models that pass some physical acceptability conditions (free of ghost instabilities, real and positive propagation speeds, and free of separatrices). Models that satisfy these physical and observational constraints are found in this analysis and do provide fits to the data that are very close to those of the LCDM concordance model. However, we find in that the limitation of the models considered here comes from the presence of superluminal mode propagations for the constrained parameter space of the models.

8. A minimal set of invariants as a systematic approach to higher order gravity models: Physical and Cosmological Constraints

Moldenhauer, Jacob

2009-01-01

We compare higher order gravity models to observational constraints from magnitude-redshift supernova data, distance to the last scattering surface of the CMB, and Baryon Acoustic Oscillations. We follow a recently proposed systematic approach to higher order gravity models based on minimal sets of curvature invariants, and select models that pass some physical acceptability conditions (free of ghost instabilities, real and positive propagation speeds, and free of separatrices). Models that satisfy these physical and observational constraints are found in this analysis and do provide fits to the data that are very close to those of the LCDM concordance model. However, we find that the limitation of the models considered here comes from the presence of superluminal mode propagations for the constrained parameter space of the models.

9. Investigation of the relationship between aggression levels and basic psychological needs school of physical education and sports students

Mehmet Çağrı Çetin; Engin Gezer; Özer Yıldız; Mehtap Yıldız

2013-01-01

The search has been made for fixing if it varies or not regarding some variations aggressive levels and basic psychological needs of physical education and sports school students; and for if it has any relationship between aggression tendency and basic psychological need of the students. The research has been made in the year of 2010-2011 Education and Teaching. The students chosen by random sampling method (female students: 138, male students: 233 and totally: 371) participated to the search...

10. Physical and chemical basics of modification of poly(vinyl chloride) by means of polyisocyanate

Islamov, Anvar; Fakhrutdinova, Venera; Abdrakhmanova, Lyailya

2016-01-01

This research presents data relating to polyvinyl chloride (PVC) modification by means of reactive oligomer and measures technological, physical and mechanical properties of the modified composites. Polyisocyanate (PIC) has been chosen as the modifying reactive oligomer. It has been shown that insertion of the oligomer has a double effect on PVC. Primarily, PIC produces a plasticizing effect on PVC and in particular leads to an increase in thermal stability and melt flow index at the stage of processing. In addition, the molded PVC composites possess higher strength properties and lower deformability when exposed to temperature because of chemical transformations of PIC in polymer matrix and, as the result, the formation of cross-linked systems takes place. In this case, semi-interpenetrating structures are formed based on cross-linked products of PIC chemical transformations homogeneously distributed in the PVC matrix. It has been determined by means of IR-spectroscopy that the basic products of PIC curing are compounds with urea and biuret groups which leads to modifying effect on PVC especially: increase in strength, thermal and mechanical properties, and chemical resistance.

11. Bounds on the basic physical parameters for anisotropic compact general relativistic objects

Boehmer, C G [ASGBG/CIU, Department of Mathematics, Apartado Postal C-600, University of Zacatecas (UAZ), Zacatecas, Zac 98060 (Mexico); Harko, T [Department of Physics and Center for Theoretical and Computational Physics, University of Hong Kong, Pokfulam Road, Hong Kong (China)

2006-11-21

We derive the upper and lower limits for the basic physical parameters (mass-radius ratio, anisotropy, redshift and total energy) for arbitrary anisotropic general relativistic matter distributions in the presence of a cosmological constant. The values of these quantities are strongly dependent on the value of the anisotropy parameter (the difference between the tangential and radial pressure) at the surface of the star. In the presence of the cosmological constant, a minimum mass configuration with a given anisotropy does exist. Anisotropic compact stellar-type objects can be much more compact than the isotropic ones, and their radii may be close to their corresponding Schwarzschild radii. Upper bounds for the anisotropy parameter are also obtained from the analysis of the curvature invariants. General restrictions for the redshift and the total energy (including the gravitational contribution) for anisotropic stars are obtained in terms of the anisotropy parameter. Values of the surface redshift parameter greater than two could be the main observational signature for anisotropic stellar-type objects.

12. Bounds on the basic physical parameters for anisotropic compact general relativistic objects

We derive the upper and lower limits for the basic physical parameters (mass-radius ratio, anisotropy, redshift and total energy) for arbitrary anisotropic general relativistic matter distributions in the presence of a cosmological constant. The values of these quantities are strongly dependent on the value of the anisotropy parameter (the difference between the tangential and radial pressure) at the surface of the star. In the presence of the cosmological constant, a minimum mass configuration with a given anisotropy does exist. Anisotropic compact stellar-type objects can be much more compact than the isotropic ones, and their radii may be close to their corresponding Schwarzschild radii. Upper bounds for the anisotropy parameter are also obtained from the analysis of the curvature invariants. General restrictions for the redshift and the total energy (including the gravitational contribution) for anisotropic stars are obtained in terms of the anisotropy parameter. Values of the surface redshift parameter greater than two could be the main observational signature for anisotropic stellar-type objects

13. Issues in access to safe drinking water and basic hygiene for persons with physical disabilities in rural Cambodia.

MacLeod, Marin; Pann, Mala; Cantwell, Ray; Moore, Spencer

2014-12-01

An estimated 1.6 million people die from diarrheal diseases each year due to lack of access to safe water and sanitation, and persons with physical disabilities face additional barriers. In Cambodia, approximately 5% of the population is disabled, presenting substantial obstacles in accessing these basic services. The purpose of this study was twofold: first, to identify the challenges facing persons with physical disabilities in accessing safe household water and basic hygiene in rural Cambodia; and, second, to use these results to generate policy and practice recommendations for the water and sanitation hygiene sector implementing water treatment system interventions in rural settings. Fifteen field interviews were conducted with persons with physical disabilities. Thematic analysis was used to identify six main themes. The results indicated that environmental barriers to access were greater in the workplace than household settings and those persons with disabilities had greater awareness about safe drinking water compared to basic hygiene. Additionally, lack of physical strength, distance to water, and lack of financial means were noted as common access barriers. The findings support ongoing research and offer insight into the particular challenges facing persons with physical disabilities in rural areas in accessing safe drinking water and basic hygiene. PMID:25473998

14. A First Class Constraint Generates Not a Gauge Transformation, But a Bad Physical Change: The Case of Electromagnetism

Pitts, J Brian

2013-01-01

In constrained dynamics, a first-class constraint typically does not_alone_ generate a gauge transformation. Each first-class constraint in Maxwell's theory changes the electric field by an arbitrary gradient, spoiling Gauss's law. The secondary p^i,_i=0 still holds, but being a function of derivatives of momenta, it is not directly about E (a function of derivatives of A_\\mu). Only a special combination of first-class constraints, the Anderson-Bergmann-Castellani gauge generator G, leaves E unchanged. This problem is avoided if one uses a first-class constraint as the generator of a_canonical transformation_; but that partly strips the canonical coordinates of physical meaning as electromagnetic potentials. Keeping gauge-invariant \\dot{q}- dH/dp= -E -p =0 supports using the primary rather than the extended Hamiltonian. The results extend the Lagrangian-oriented reforms of Castellani, Sugano, Pons, Salisbury, Shepley, etc. by showing the inequivalence of the extended Hamiltonian to the primary Hamiltonian (an...

15. Correlation between basic physical fitness and pulmonary function in Korean children and adolescents: a cross-sectional survey

Bae, Ju Yong; Jang, Ki Sung; Kang, Sunghwun; Han, Don Hee; Yang, Wonho; Shin, Ki Ok

2015-01-01

[Purpose] The purpose of the present study was to determine whether there was a correlation between basic physical fitness and pulmonary function in Korean school students, to present an alternative method for improving their pulmonary function. [Subjects and Methods] Two hundred forty healthy students aged 6–17 years performed physical fitness tests of hand-grip strength, sit and reach, Sargent jump, single leg stance, and pulmonary function tests of forced vital capacity (FVC) and forced ex...

16. Situated Naive Physics: Task Constraints Decide What Children Know about Density

Kloos, Heidi; Fisher, Anna; Van Orden, Guy C.

2010-01-01

Children's understanding of density is riddled with misconceptions--or so it seems. Yet even preschoolers at times appear to understand density. This article seeks to reconcile these conflicting outcomes by investigating the nature of constraints available in different experimental protocols. Protocols that report misconceptions about density used…

17. Monitored course at distance Nuclear Medicine: Introduction of Basic Physics Aspects. Preliminary results

Full text: This project try to evaluated the use of specialized multimedia product for a monitored education at distance of personnel who start to be close related with Nuclear Medicine Techniques like nurse, surgeons, specialized physician, oncologist, etc. The multimedia product included two items: Introduction to Nuclear Medicine Techniques and Basic aspects of radiation physics. Each item contents an audio visual conference (Power Point) and a charter (PDF): with theoretic aspects, understand verification questions and self-evaluation activities. The product need only a PC compatible with window 98 (or more advanced version), and 130MBy of memory spaced for archive. In order to verify the effectiveness of the distance course, we tested its results in 4 specialists: 1 nurse, 1 radio-pharmacist, 1 cardiologist and 1 neurologist. After consult and clarify their doubts, a final test was applied in order to check the knowledge acquired. With 100 point of maximum score and 60-point minimum to pass, the test contented 2 types of questions: true or false choice (with 50 aspects to verify, 1.5 point/ correct answer) and many correct choices (5 questions, 5 point/correct answer). The average result was 91.5 points/ students (89.5- 94 points); the four students pass the test with very good degree of comprehension (1 very good and 3 excellent). The course was polled about the quality of the material and their comprehension degree, asking the student to make suggestions if were needed. The average evaluation was 94 points (91-95 points). The suggestions made were: increase the number of examples and practical sequences, the understand verification questions and include monitored practical exercise. Conclusion: the product can be useful for a monitored education at distance of personnel who start to be related with Nuclear Medicine Techniques. Recommendation: The program should be enrich with the suggested things and extend to other important items like: radiation protection

18. Coherent Teaching and Need-Based Learning in Science: An Approach to Teach Engineering Students in Basic Physics Courses

Kurki-Suonio, T.; Hakola, A.

2007-01-01

In the present paper, we propose an alternative, based on constructivism, to the conventional way of teaching basic physics courses at the university level. We call this approach "coherent teaching" and the underlying philosophy of teaching science and engineering "need-based learning". We have been applying this philosophy in practice in a basic…

19. Proceeding of the Scientific Meeting and Presentation on Basic Research of Nuclear Science and Technology: Book I. Physics, Reactor Physics and Nuclear Instrumentation

The proceeding contains papers presented on Scientific Meeting and Presentation on on Basic Research of Nuclear Science and Technology, held in Yogyakarta, 25-27 April 1995. This proceeding is part one from two books published for the meeting contains papers on Physics, Reactor Physics and Nuclear Instrumentation as results of research activities in National Atomic Energy Agency. There are 39 papers indexed individually. (ID)

20. The basics of coding a rehabilitation diagnosis in clinical practice for the physical therapist.

Romanyshyn M.J.

2012-01-01

Full Text Available Directions of the use international classification of functioning are considered, limitations of vital functions and health in clinical activity of physical physical therapist. Bases for the construction of rehabilitation diagnosis in clinical practice are shown. The analysis of publications of Worldwide organization of health protection and World confederation of physical therapy is presented. The necessity of the use of foregoing classification for clinical practice of physical therapist is set. The constituents of clinical activity of physical therapist are selected.

1. Investigation of the basic physics of high efficiency semiconductor hot carrier solar cell

Alfano, R. R.; Wang, W. B.; Mohaidat, J. M.; Cavicchia, M. A.; Raisky, O. Y.

1995-01-01

The main purpose of this research program is to investigate potential semiconductor materials and their multi-band-gap MQW (multiple quantum wells) structures for high efficiency solar cells for aerospace and commercial applications. The absorption and PL (photoluminescence) spectra, the carrier dynamics, and band structures have been investigated for semiconductors of InP, GaP, GaInP, and InGaAsP/InP MQW structures, and for semiconductors of GaAs and AlGaAs by previous measurements. The barrier potential design criteria for achieving maximum energy conversion efficiency, and the resonant tunneling time as a function of barrier width in high efficiency MQW solar cell structures have also been investigated in the first two years. Based on previous carrier dynamics measurements and the time-dependent short circuit current density calculations, an InAs/InGaAs - InGaAs/GaAs - GaAs/AlGaAs MQW solar cell structure with 15 bandgaps has been designed. The absorption and PL spectra in InGaAsP/InP bulk and MQW structures were measured at room temperature and 77 K with different pump wavelength and intensity, to search for resonant states that may affect the solar cell activities. Time-resolved IR absorption for InGaAsP/InP bulk and MQW structures has been measured by femtosecond visible-pump and IR-probe absorption spectroscopy. This, with the absorption and PL measurements, will be helpful to understand the basic physics and device performance in multi-bandgap InAs/InGaAs - InGaAs/InP - InP/InGaP MQW solar cells. In particular, the lifetime of the photoexcited hot electrons is an important parameter for the device operation of InGaAsP/InP MQW solar cells working in the resonant tunneling conditions. Lastly, time evolution of the hot electron relaxation in GaAs has been measured in the temperature range of 4 K through 288 K using femtosecond pump-IR-probe absorption technique. The temperature dependence of the hot electron relaxation time in the X valley has been measured.

2. Course for monitored education at distance: 'Introduction to basic aspects of radiation physics in NM'

Full text: Nuclear Medicine became a multimodality speciality, related with a lot of personnel not specialized in NM techniques: who have not training in radiation aspects. These projects try to evaluate the use of specialized multimedia product for a monitored education at distance of personnel who start to be related with Nuclear Medicine Techniques like nurses, surgeons, rheumatologists, etc. The multimedia product included two items: Introduction to Nuclear Medicine Techniques and Basic aspects of radiation physics. Each item contents an audio-visual conference (Power Point) and a charter (PDF): with theoretic aspects, understand verification questions and self-evaluation activities. The product need only a PC compatible with window 98 (or more advanced version), and 130MBy of memory spaced for archive. In order to verify the effectiveness of the distance course, we tested it in 10 students: 1 nurse, 1 radio-pharmacist, 1 cardiologist, 1 neurologist, 6 technologists. After consult and clarify their doubts, a final test was applied in order to check the knowledge acquired. With 100 point of maximum store and 60 point minimum to pass, the test contented 2 types of questions: true or false choice (with 50 aspects to verify 1.5 point/ correct answer) and many correct choices (5 questions, 5 point/correct answer). The average result was 85.6 points/ students: 6 -Excellent (90-100 points) , 3 -Very good (80-89 points) and 1 -Good (70-79 points). The course was polled about the quality of the material and their comprehension degree, asking the student to make suggestions if were needed. The average evaluation was 94 points (91-95 points). The suggestions made were: increase the number of examples and practical sequences, the understand verification questions and include monitored practical exercise. Conclusion: the product can be useful for a monitored education at distance of personnel who start to be related with Nuclear Medicine Techniques. Recommendation: The

3. Didactic games and their inclusion to physics teaching at basic school

NOVÁKOVÁ, Alena

2015-01-01

The diploma thesis Didactic games and their inclusion in physics education deals with its play in physics teaching at the second grade of primary school. It focuses primarily on electricity and magnetism and is complemented with the possibility of extracurricular activity and formation of positive attitude towards this area of physics and physics as a whole. The work is divided into a theoretical part, which engages in the theory of games, game didactic requirements and methods of its inclusi...

4. Submissions and future teachers’ association regarding the basic concepts of the sphere of physical culture and sports

Tomenko O.A.

2013-05-01

Full Text Available The aim of the work is to determine the characteristics of concepts and associations in relation to the basic concepts of the sphere of physical culture and sports in the future teachers of physical culture. In a questionnaire survey was conducted among 323 students (203 girls and 120 boys aged 17 to 23 years. The possibilities of the formation of students' motives for self-improvement and professional sports and recreational activities. Shows the structure of the students' ideas about the main sphere of physical culture and sports. It was determined that the structure of the students' characterized by a broad spectrum. Found that 14 - 22% of the students physical education is associated with the learning object. Indicator definitions of physical exercise as a form of organization of movements in students of all courses is increasing from 24.4% in the first year to 27.1% in the fourth. Almost half of the respondents believe that training - this kind of activity. Found that a significant number of students do not have a clear understanding of the basic concepts of the theory of physical education.

5. Evaluation of Cross-Sections Uncertainties using Physical Constraints 238U, 239Pu and others..

This presentation reports on nuclear data activities at CEA Cadarache, e.g. marginalization techniques to account for systematic uncertainties, use of Lagrange multipliers to impose simultaneous consistency constraints on several models, assimilation of integral data during the evaluation process, adjustment of nuclear reaction model parameters, evaluation of covariance matrices, etc. The CEA activities cover both differential and integral data and the possible synergies between SG39 and SG40-CIELO are highlighted. These two new subgroups have the potential to link evaluation and integral experiments beyond the traditional validation issues

6. Updated status of the global electroweak fit and constraints on new physics

Baak, M.; Hoecker, A.; Schott, M. [CERN, Geneva (Switzerland); Goebel, M.; Ludwig, D. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Hamburg Univ. (Germany). Inst. fuer Experimentalphysik; Haller, J. [Hamburg Univ. (Germany). Inst. fuer Experimentalphysik; Goettingen Univ. (Germany). II. Physikalisches Inst.; Moenig, K. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Stelzer, J. [Michigan State Univ., East Lansing, MI (United States). Dept. of Physics and Astronomy

2011-07-15

We present an update of the Standard Model fit to electroweak precision data. We include newest experimental results on the top quark mass, the W mass and width, and the Higgs boson mass bounds from LEP, Tevatron and the LHC. We also include a new determination of the electromagnetic coupling strength at the Z pole. We find for the Higgs boson mass 96{sub -24}{sup +31} GeV and 120{sub -5}{sup +12} GeV when not including and including the direct Higgs searches, respectively. From the latter fit we indirectly determine the W mass to be (80.362{+-} 0.013)GeV. We exploit the data to determine experimental constraints on the oblique vacuum polarisation parameters, and confront these with predictions from the Standard Model (SM) and selected SM extensions. By fitting the oblique parameters to the electroweak data we derive allowed regions in the BSM parameter spaces. We revisit and consistently update these constraints for a fourth fermion generation, two Higgs doublet, inert Higgs and littlest Higgs models, models with large, universal or warped extra dimensions and technicolour. In most of the models studied a heavy Higgs boson can be made compatible with the electroweak precision data. (orig.)

7. Treatment of traumatised refugees with basic body awareness therapy versus mixed physical activity as add-on treatment

Nordbrandt, Maja Sticker; Carlsson, Jessica; Lindberg, Laura Glahder;

2015-01-01

clinical studies, physical activity has shown a positive effect on psychiatric illnesses such as depression and anxiety and for patients with chronic pain. However, scientific knowledge about physical activity as part of the treatment for traumatised refugees is very limited and no guidelines exist on this......-based Cognitive Behavioural Therapy. The first group only receives treatment as usual while the second and the third groups receive either Basic-Body Awareness Therapy or mixed physical activity as add-on treatments. Each physical activity is provided for an individual 1-hour consultation per week, for the...... duration of 20 weeks. The study is being conducted at the Competence Centre for Transcultural Psychiatry, Mental Health Centre Ballerup in the Capital Region of Denmark. The primary endpoint of the study is symptoms of Post Traumatic Stress Disorder; the secondary endpoints are depression and anxiety as...

8. Testing satisfaction of basic psychological needs as a mediator of the relationship between socioeconomic status and physical and mental health.

González, Maynor G; Swanson, Dena P; Lynch, Martin; Williams, Geoffrey C

2016-06-01

This research applied self-determination theory to examine the degree to which satisfaction of basic psychological needs for autonomy, relatedness, and competence explained the association between socioeconomic status and physical and mental health outcomes, while controlling for age, exercise, and smoking status. This was a survey research study with 513 full-time employees in professions representative of a hierarchal organization. The results of the structural equation model verify that psychological need satisfaction mediates the inverse association between socioeconomic status and physical and mental health. Self-determination theory contributes to understanding the psychosocial roots of the uneven distribution of health across the socioeconomic gradient. PMID:25104782

9. Equations of Motion with Multiple Proper Time: A New Interpretation of Basic Quantum Physics

Chen, Xiaodong

2005-01-01

Equations of motion for single particle under two proper time model and three proper time model have been proposed and analyzed. The motions of particle are derived from pure classical method but they exhibit the same properties of quantum physics: the quantum wave equation, de Broglie equations, uncertainty relation, statistical result of quantum wave-function. This shows us a possible new way to interpret quantum physics. We will also prove that physics with multiple proper time does not ca...

10. Physical Activity in Prisons and the Basic Dimensions of Personality of Men Serving Prison Sentences

Anetta Jaworska

2015-01-01

This article concerns physical activity (PA) in penitentiary institutions, understood as non-rest energetic effort performed by prisoners in their free time. The aim of this study was to determine the personality correlates of PA men serving prison sentences. Questionnaire methods were applied in the studies. One group consisted of men incarcerated in penitentiary institutions (N = 121), who were physically active, and the comparison group were physically inactive pr...

11. Basic physics program for a low energy antiproton source in North America

We summarize much of the important science that could be learned at a North American low energy antiproton source. It is striking that there is such a diverse and multidisciplinary program that would be amenable to exploration. Spanning the range from high energy particle physics to nuclear physics, atomic physics, and condensed matter physics, the program promises to offer many new insights into these disparate branches of science. It is abundantly clear that the scientific case for rapidly proceeding towards such a capability in North America is both alluring and strong. 38 refs., 2 tabs

12. Multi-Dimensional Interacting Constraints on Physical Activity Behaviours in the Finnish Population.

Karjalainen, Aki; Liukkonen, Jarmo; Kokko, Sami; Jaakkola, Timo

2016-07-01

Finnish sports organisations, local and federal government, and healthcare organisations have widely adopted the World Health Organization and national recommendations for physical activity for different age groups. However, studies have indicated that only 46 % of 3-year-old preschool children, approximately 50 % of primary school students (7-12 years), 10-17 % of secondary school students (13-15 years) and 16 % of Finnish adults (20-54 years) attain those recommendations. In Finland there are 33,620 built sports facilities and over 9000 sport clubs, meaning there are many possibilities for physical activity, yet people are still rather inactive. In this paper we argue that availability of facilities, although an important element, is not enough to promote physical activity. It is possible that the current built physical environmental design does not fulfil people's needs regarding participation in physical activity. More emphasis should be placed on the design and operation of the facilities to develop new affordances for physical activity. PMID:27245059

13. Testing gravitation in the light of the basic issues of fundamental physics

Space allows genuine tests of the fundamental laws and principles on which is built the theory of gravity, general relativity. These tests will be discussed in connection with the basic questions discussed in the context of fundamental interactions and their role in the Universe

14. Using Video Games to Support Pre-Service Elementary Teachers Learning of Basic Physics Principles

Anderson, Janice; Barnett, Michael

2011-01-01

The purpose of this work is to share our findings in using video gaming technology to facilitate the understanding of basic electromagnetism with pre-service elementary teachers. To this end we explored the impact of using a game called "Supercharged!" on pre-service teachers' understanding of electromagnetic concepts compared to students who…

15. The Physics of Tsunami: Basic understanding of the Indian Ocean disaster

M. N.A. Halif

2005-01-01

Full Text Available This study gives a simple physics explanation behind the Indian Ocean earthquake, called December 26thâs Tsunami. The explanation based on physics energy conservation and wave properties have been used to understand this phenomenon.

16. Physical Activity in Prisons and the Basic Dimensions of Personality of Men Serving Prison Sentences

Anetta Jaworska

2015-06-01

Full Text Available This article concerns physical activity (PA in penitentiary institutions, understood as non-rest energetic effort performed by prisoners in their free time. The aim of this study was to determine the personality correlates of PA men serving prison sentences. Questionnaire methods were applied in the studies. One group consisted of men incarcerated in penitentiary institutions (N = 121, who were physically active, and the comparison group were physically inactive prisoners (N = 128 aged from 22 to 55 years old. The study results showed that prisoners regularly participating in programs in the field of physical culture and sports are characterized by higher emotional stability (p < 0.05 and a higher level of extraversion (p < 0.05. However, they do not differ in the level of psychoticism (p = 0.80. This paper is a fragment of larger studies on the psychological correlates of physical activity in penitentiary institutions.

17. A constraint algorithm for singular Lagrangians subjected to nonholonomic constraints

We construct a constraint algorithm for singular Lagrangian systems subjected to nonholonomic constraints which generalizes that of Dirac for constrained Hamiltonian systems. copyright 1997 American Institute of Physics

18. Quantum field theory I: Basics in mathematics and physics. A bridge between mathematicians and physicists

This is the first volume of a modern introduction to quantum field theory which addresses both mathematicians and physicists, at levels ranging from advanced undergraduate students to professional scientists. The book bridges the acknowledged gap between the different languages used by mathematicians and physicists. For students of mathematics the author shows that detailed knowledge of the physical background helps to motivate the mathematical subjects and to discover interesting interrelationships between quite different mathematical topics. For students of physics, fairly advanced mathematics is presented, which goes beyond the usual curriculum in physics. (orig.)

19. Access Constraints Experienced by Physically Disabled Students at a South African Higher Education Institution

Engelbrecht, L.; de Beer, J. J.

2014-01-01

Current developments in government law and policies have created the hope that people living with a disability will enjoy the same rights and privileges as the non-disabled. Unfortunately, only 2.8% of disabled persons have access to higher education. The aim of this study was to determine if a group of students, living with a physical disability,…

20. Research-Based Assessment Affordances and Constraints: Perceptions of Physics Faculty

Madsen, Adrian; McKagan, Sarah B.; Martinuk, Mathew Sandy; Bell, Alexander; Sayre, Eleanor C.

2016-01-01

To help faculty use research-based materials in a more significant way, we learn about their perceived needs and desires and use this information to suggest ways for the physics education research community to address these needs. When research-based resources are well aligned with the perceived needs of faculty, faculty members will more readily…

1. The basic paradoxes of statistical classical physics and the quantum mechanics

Kupervasser, Oleg

2009-01-01

Statistical classical mechanics and quantum mechanics are developed and well-known theories that represent a basis for modern physics. The two described theories are well known and have been well studied. As these theories contain numerous paradoxes, many scientists doubt their internal consistencies. However, these paradoxes can be resolved within the framework of the existing physics without the introduction of new laws. To clarify the paper for the inexperienced reader, we include certain ...

2. Physical and chemical constraints limit the habitat window for an endangered mussel

Campbell, Cara; Prestegaard, Karen L.

2016-01-01

Development of effective conservation and restoration strategies for freshwater pearly mussels requires identification of environmental constraints on the distributions of individual mussel species. We examined whether the spatial distribution of the endangered Alasmidonta heterodon in Flat Brook, a tributary of the upper Delaware River, was constrained by water chemistry (i.e., calcium availability), bed mobility, or both. Alasmidonta heterodon populations were bracketed between upstream reaches that were under-saturated with respect to aragonite and downstream reaches that were saturated for aragonite during summer baseflow but had steep channels with high bed mobility. Variability in bed mobility and water chemistry along the length of Flat Brook create a “habitat window” for A. heterodon defined by bed stability (mobility index ≤1) and aragonite saturation (saturation index ≥1). We suggest the species may exist in a narrow biogeochemical window that is seasonally near saturation. Alasmidonta heterodon populations may be susceptible to climate change or anthropogenic disturbances that increase discharge, decrease groundwater inflow or chemistry, and thus affect either bed mobility or aragonite saturation. Identifying the biogeochemical microhabitats and requirements of individual mussel species and incorporating this knowledge into management decisions should enhance the conservation and restoration of endangered mussel species.

3. The influence of basic physical properties of soil on its electrical resistivity value under loose and dense condition

Electrical resistivity technique has become a famous alternative tool in subsurface characterization. In the past, several interpretations of electrical resistivity results were unable to be delivered in a strong justification due to lack of appreciation of soil mechanics. Traditionally, interpreters will come out with different conclusion which commonly from qualitative point of view thus creating some uncertainty regarding the result reliability. Most engineers desire to apply any techniques in their project which are able to provide some clear justification with strong, reliable and meaningful results. In order to reduce the problem, this study presents the influence of basic physical properties of soil due to the electrical resistivity value under loose and dense condition. Two different conditions of soil embankment model were tested under electrical resistivity test and basic geotechnical test. It was found that the electrical resistivity value (ERV, ρ) was highly influenced by the variations of soil basic physical properties (BPP) with particular reference to moisture content (w), densities (ρbulk/dry), void ratio (e), porosity (η) and particle grain fraction (d) of soil. Strong relationship between ERV and BPP can be clearly presents such as ρ ∞ 1/w, ρ ∞ 1/ρbulk/dry, ρ ∞ e and ρ ∞ η. This study therefore contributes a means of ERV data interpretation using BPP in order to reduce ambiguity of ERV result and interpretation discussed among related persons such as geophysicist, engineers and geologist who applied these electrical resistivity techniques in subsurface profile assessment.

4. Constraints on Physical Properties of z~6 Galaxies Using Cosmological Hydrodynamic Simulations

Finlator, K; Oppenheimer, B

2006-01-01

We introduce SPOC, a new code for constraining the physical properties of observed galaxies through a Bayesian likelihood comparison with galaxies drawn from simulations. SPOC inputs an object's photometry and outputs probability distributions of stellar mass, star formation rate (SFR), age, metallicity, dust extinction, and redshift (if none is given) for that galaxy. We apply SPOC, employing model galaxies drawn from cosmological hydrodynamic simulations, to Abell 2218 KESR (z~6.7) and five other z>5.5 galaxies for which published rest-frame ultraviolet and optical measurements are available. We compare the outcome of using our simulated galaxies' star formation histories (SFHs) versus using simple one-parameter SFHs such as constant, exponentially-decaying, and rising (a new form we introduce motivated by typical SFHs seen in our simulated galaxies). We show that simulated galaxies match these observations at least as well as simple SFHs, with similar favored values obtained for the intrinsic physical para...

5. Multi-Dimensional Interacting Constraints on Physical Activity Behaviours in the Finnish Population

Karjalainen, Aki; Liukkonen, Jarmo; Kokko, Sami; Jaakkola, Timo

2016-01-01

Finnish sports organisations, local and federal government, and healthcare organisations have widely adopted the World Health Organization and national recommendations for physical activity for different age groups. However, studies have indicated that only 46 % of 3-year-old preschool children, approximately 50 % of primary school students (7–12 years), 10–17 % of secondary school students (13–15 years) and 16 % of Finnish adults (20–54 years) attain those recommendations. In Finland there a...

6. Aggregation Of Volcanic Particles: Physical Constraints Provided By Field And Numerical Investigations

Rossi, E.; Bagheri, G.; Bonadonna, C.

2014-12-01

The characterization and parameterization of both sedimentation and aggregation of volcanic particles is necessary for an accurate description of the sink term in numerical models of tephra dispersal used for the evaluation of tephra hazards. Nonetheless, our understanding of particle fallout in various eruptive and atmospheric conditions is still limited mostly due to the lack of direct observations. A comparative investigation of sedimentation and aggregation of volcanic particles is here presented based on field experiments and numerical simulations. Field experiments are based on detailed observations of particle fallout during Vulcanian explosions and ash emissions at Sakurajima volcano (Japan) on August 3, 2013. Column height was up to about 3 km above sea level and the cloud spread with average velocity of about 7 ms-1 toward southeast direction. Aggregates that fell at a distance of about 4 km from the vent were filmed with a high-speed and high-resolution camera before depositing on collection glasses. In order to preserve and analyze particle aggregates with the Scanning Electron Microscope, collecting glasses were covered with a special adhesive tape. Dedicated trays were also used to collect the depositing tephra at five-minute intervals to investigate both accumulation rate and particle size. CILAS grain size analysis showed that mode of particles deposited on the ground decreased with time from 550 μm to 250 μm at the reference location. Aggregate size ranged between 400 and 900 μm (based on video analysis) and they mostly consist of a single or multiple particles acting as nuclei with diameter between 200 and 800 μm coated with ash particles (clusters. Aggregation significantly affected particle residence time in the spreading cloud by changing the associated settling velocity. Based on numerical constraints, aggregates were thought to be formed within the rising plume or at the corner with the horizontal cloud and within 200 seconds of the onset

7. Research-based assessment affordances and constraints: Perceptions of physics faculty

Madsen, Adrian; McKagan, Sarah B.; Martinuk, Mathew Sandy; Bell, Alexander; Sayre, Eleanor C.

2016-06-01

[This paper is part of the Focused Collection on Preparing and Supporting University Physics Educators.] To help faculty use research-based materials in a more significant way, we learn about their perceived needs and desires and use this information to suggest ways for the physics education research community to address these needs. When research-based resources are well aligned with the perceived needs of faculty, faculty members will more readily take them up. We used phenomenographic interviews of ordinary physics faculty and department chairs to identify four families of issues that faculty have around research-based assessments (RBAs). First, many faculty are interested in using RBAs but need help with the practicalities of administering RBAs: how to find them, which ones there are, and how to administer them. Second, at the same time, many faculty think that RBAs are limited and do not measure many of the things they care about, or are not applicable in their classes. They want assessments to measure skills, perceptions, and specific concepts. Third, many faculty want to turn to communities of other faculty and experts to help them interpret their assessment results and suggest other ways to do assessment. They want to better understand their assessment results by comparing to others and interacting with faculty from other schools to learn about how they do assessment. Fourth, many faculty consider their courses in the broader contexts of accountability and their departments. They want help with assessment in these broader contexts. We also discuss how a faculty member's role in their department and type of institution influence their perceived wants and needs around assessment.

8. Some Aspects of Rubberlike Elasticity Useful in Teaching Basic Concepts in Physical Chemistry.

Mark, J. E.

2002-01-01

Explains the benefits of including polymer topics in both graduate and undergraduate physical chemistry courses. Provides examples of how to use rubberlike elasticity to demonstrate some of the general and thermodynamic concepts including equations of state, Carnot cycles and mechanochemistry, gel collapse, energy storage and hysteresis, and…

9. Strong physical constraints on sequence-specific target location by proteins on DNA molecules

Flyvbjerg, H.; Keatch, S.A.; Dryden, D.T.F

2006-01-01

Sequence-specific binding to DNA in the presence of competing non-sequence-specific ligands is a problem faced by proteins in all organisms. It is akin to the problem of parking a truck at a loading bay by the side of a road in the presence of cars parked at random along the road. Cars even...... required for function rather than the more commonly measured physical footprint. Assaying the complex type I restriction enzyme, EcoKI, gives an activity footprint of similar to 66 bp for ATP hydrolysis and 300 bp for the DNA cleavage function which is intimately linked with translocation of DNA by Eco...

10. Physical constraints for the Stoneham model for light-dependent magnetoreception

Espigulé-Pons, Jofre; Vaziri, Alipasha; Arndt, Markus

2014-01-01

A new biophysical model for magnetoreception in migratory birds has recently been proposed by Stoneham et al. In this photo-induced radical pair (RP) model the signal transduction mechanism was physical rather than chemical in nature, as otherwise generally assumed in the literature. The proposal contains a magnetosensor and a signal transduction mechanism. The sensor would be an electric dipole related to a long lived triplet state of an RP. This makes it sensitive to the geomagnetic field via the Zeeman interaction. The field of the electric dipole moment would then promote isomerization from cis-to-trans in the retinal of a nearby rhodopsin. This would trigger the neuronal signal. Here we gather several observations from different works that constrain the feasibility of this physical model. In particular we argue that the perturbation of rhodopsin by a local electric field from a nearby electric dipole (10^6 V/m) cannot modify the field in the binding pocket of rhodopsin (10^9 V/m) sufficiently to trigger ...

11. Research-based assessment affordances and constraints: Perceptions of physics faculty

2015-01-01

To help faculty use research-based materials in a more significant way, we learn about their perceived needs and desires and use this information to suggest ways for the Physics Education Research community to address these needs. When research-based resources are well aligned with the perceived needs of faculty, faculty members will more readily take them up. We used phenomenographic interviews of ordinary physics faculty and department chairs to identify four families of issues that faculty have around research-based assessments (RBA). First, many faculty are interested in using RBAs but have practical needs around how to do so: how to find them, which ones there are, and how to administer them. They want help addressing these needs. Second, at the same time, many faculty think that RBAs are limited and don't measure many of the things they care about, or aren't applicable in their classes. They want assessments to measure skills, perceptions, and specific concepts. Third, many faculty want to turn to commu...

12. The Physical Meanings of 5 Basic Parameters for an X-Ray Diffraction Peak and Their Application

周健; 王河锦

2003-01-01

This paper derives the physical meanings of peak position, peak width and height ofan X-ray diffraction peak from the analyses of the Bragg's equation, the Scherrer' s formula andthe principle of peak intensity calculation. The geometric characteristics of an asymmetric peakare clarified by means of experiment. The relationships between neak shape and domain size/lattice strain have been verified by geological events. Therefore this paper integrates the physicalmeanings of all 5 basic parameters for an X-ray diffraction peak. Applications of these 5 parame-ters are exemplified.

13. Physical properties of volcanic lightning: Constraints from magnetotelluric and video observations at Sakurajima volcano, Japan

Aizawa, Koki; Cimarelli, Corrado; Alatorre-Ibargüengoitia, Miguel A.; Yokoo, Akihiko; Dingwell, Donald B.; Iguchi, Masato

2016-06-01

The lightning generated by explosive volcanic eruptions is of interest not only as a promising technique for monitoring volcanic activity, but also for its broader implications and possible role in the origin of life on Earth, and its impact on the atmosphere and biosphere of the planet. However, at present the genetic mechanisms and physical properties of volcanic lightning remain poorly understood, as compared to our understanding of thundercloud lightning. Here, we present joint magnetotelluric (MT) data and video imagery that were used to investigate the physical properties of electrical discharges generated during explosive activity at Sakurajima volcano, Japan, and we compare these data with the characteristics of thundercloud lightning. Using two weeks of high-sensitivity, high-sample-rate MT data recorded in 2013, we detected weak electromagnetic signals radiated by volcanic lightning close to the crater. By carefully inspecting all MT waveforms that synchronized with visible flashes, and comparing with high-speed (3000 frame/s) and normal-speed (30 frame/s) videos, we identified two types of discharges. The first type consists of impulses (Type A) and is interpreted as cloud-to-ground (CG) lightning. The second type is characterized by weak electromagnetic variations with multiple peaks (Type B), and is interpreted as intra-cloud (IC) lightning. In addition, we observed a hybrid MT event wherein a continuous weak current accompanied Type A discharge. The observed features of volcanic lightning are similar to thunderstorm lightning, and the physical characteristics show that volcanic lightning can be treated as a miniature version of thunderstorm lightning in many respects. The overall duration, length, inter-stroke interval, peak current, and charge transfer all exhibit values 1-2 orders of magnitude smaller than those of thunderstorm lightning, thus suggesting a scaling relation between volcanic and thunderstorm lightning parameters that is independent of

14. New Progress Achieved by NSFC Project in Basic Research of Black Hole Physics

2008-01-01

@@ Supported by NSFC,Prof.Wu Shuangqing from Huazhong Normal University conducted independent research on gravitation theory,discovered the exact solutions for the five-dimensional G(o)del charged rota-ting black hole in the universe,and made important headway in the characteristic research of black hole so-lutions.Part of the research results has been published in international top journal Physical Review Letters 100,121301 (2008).

15. The Effects of Basic Gymnastics Training Integrated with Physical Education Courses on Selected Motor Performance Variables

Alpkaya, Ufuk

2013-01-01

The purpose of this study is to determine the influence of gymnastics training integrated with physical education courses on selected motor performance variables in seven year old girls. Subjects were divided into two groups: (1) control group (N=15, X=7.56 plus or minus 0.46 year old); (2) gymnastics group (N=16, X=7.60 plus or minus 0.50 year…

16. X-ray phase sensitive imaging methods: basic physical principles and potential medical applications

Chen, Guang-Hong; Zambelli, Joseph; Bevins, Nicholas; Qi, Zhihua; Li, Ke

2010-01-01

Phase sensitive imaging theoretically allows for a drastic reduction in x-ray dose while simultaneously achieving comparable or better spatial and contrast resolution compared to traditional x-ray absorption based imaging. Several techniques exist to extract the phase information from an x-ray signal, including x-ray interferometry, diffraction enhanced imaging, in-line holography, coded aperture x-ray imaging, and grating-based interferometry. The physics of each method is reviewed, along wi...

17. Benefits of physical exercise on basic visuo-motor functions across age

Marika eBerchicci

2014-03-01

Full Text Available Motor performance deficits of older adults are due to dysfunction at multiple levels. Age-related differences have been documented on executive functions; motor control becomes more reliant on cognitive control mechanisms, including the engagement of the prefrontal cortex (PFC, possibly compensating for age-related sensorimotor declines. Since at functional level the PFC showed the largest age-related differences during discriminative response task, we wonder whether those effects are mainly due to the cognitive difficulty in stimulus discrimination or they could be also detected in a much easier task. In the present study, we measured the association of physical exercise with the PFC activation and response times (RTs using a simple response task (SRT, in which the participants were asked to respond as quickly as possible by manual key-press to visual stimuli. Simultaneous behavioral (RTs and electroencephalographic (EEG recordings were performed on 84 healthy participants aged 19-86 years. The whole sample was divided into three cohorts (young, middle-aged and older; each cohort was further divided into two equal sub-cohorts (exercise and not-exercise based on a self-report questionnaire measuring physical exercise. The EEG signal was segmented in epochs starting 1100 prior to stimulus onset and lasting 2-s. Behavioral results showed age effects, indicating a slowing of RTs with increasing age. The EEG results showed a significant interaction between age and exercise on the activities recorded on the PFC. The results indicates that: a the brain of older adults needs the PFC engagement also to perform elementary task, such as the SRT, while this activity is not necessary in younger adults, b physical exercise could reduce this age-related reliance on extra cognitive control also during the performance of a SRT, and c the activity of the PFC is a sensitive index of the benefits of physical exercise on sensorimotor decline.

18. Indoor radon periodicities and their physical constraints: a study in the Coimbra region (Central Portugal)

Indoor radon activities were measured during a period of 6 months, as well as several physical environmental variables (temperature, pressure, humidity and rainfall). The location was a small room at an administrative building of the University of Coimbra, usually undisturbed by human activities and situated over bedrock of low-uranium Triassic red sandstones. A low average activity of radon was observed (36 Bq m-3), however showing a very well marked daily periodicity (10 ± 5 Bq m-3), with maximum values occurring more frequently between 9 and 10 a.m. Daily variations are shown to have no relation with earth tides, and their amplitudes exhibit a significant correlation with outdoor temperature; no dependence on barometric pressure was found. Rainfall disturbs the observed daily radon cycles through a strong reduction of their amplitude, but has no effect on the long-term variability of the gas concentration.

19. Basic physical and chemical information needed for development of Monte Carlo codes

It is important to view track structure analysis as an application of a branch of theoretical physics (i.e., statistical physics and physical kinetics in the language of the Landau school). Monte Carlo methods and transport equation methods represent two major approaches. In either approach, it is of paramount importance to use as input the cross section data that best represent the elementary microscopic processes. Transport analysis based on unrealistic input data must be viewed with caution, because results can be misleading. Work toward establishing the cross section data, which demands a wide scope of knowledge and expertise, is being carried out through extensive international collaborations. In track structure analysis for radiation biology, the need for cross sections for the interactions of electrons with DNA and neighboring protein molecules seems to be especially urgent. Finally, it is important to interpret results of Monte Carlo calculations fully and adequately. To this end, workers should document input data as thoroughly as possible and report their results in detail in many ways. Workers in analytic transport theory are then likely to contribute to the interpretation of the results

20. The physical properties of z > 2 Lyman limit systems: new constraints for feedback and accretion models

Fumagalli, Michele; O'Meara, John M.; Prochaska, J. Xavier

2016-02-01

We study the physical properties of a homogeneous sample of 157 optically thick absorption line systems at redshifts ˜1.8-4.4, selected from a high-dispersion spectroscopic survey of Lyman limit systems (LLSs). By means of multiple ionization models and Bayesian techniques, we derive the posterior probability distribution functions for the density, metallicity, temperature and dust content of the absorbing gas. We find that z > 2 LLSs are highly ionized with ionization parameters between -3 ≲ log U ≲ -2, depending on the H I column density. LLSs are characterized by low temperatures (T physical densities between nH ˜ 10- 3.5-10- 2 cm- 3 for the assumed UV background, but we caution that a degeneracy between the ionization parameter and the intensity of the radiation field prevents robust inference on the density and sizes of LLSs. Conversely, metallicity estimates are less sensitive to the assumptions behind ionization corrections. LLSs at z > 2 are characterized by a broad unimodal distribution over > 4 orders of magnitude, with a peak at log Z/Z⊙ ˜ -2. LLSs are metal poor, significantly less enriched than DLAs, with ˜70 per cent of the metallicity PDF below log Z/Z⊙ ≤ -1.5. The median metallicity of super LLSs with log N_{H I}≥ 19 rapidly evolves with redshift, with a 10-fold increase between z ˜ 2.1-3.6 (˜1.5 Gyr). Based on this sample, we find that LLSs at z = 2.5-3.5 account for ˜15 per cent of all the metals produced by UV-selected galaxies. The implications for theories of cold gas accretion and metal ejection from galaxies are also discussed.

1. The expansion of a plasma into a vacuum - Basic phenomena and processes and applications to space plasma physics

Wright, K. H., Jr.; Stone, N. H.; Samir, U.

1983-01-01

In this review attention is called to basic phenomena and physical processes involved in the expansion of a plasma into a vacuum, or the expansion of a plasma into a more tenuous plasma, in particular the fact that upon the expansion, ions are accelerated and reach energies well above their thermal energy. Also, in the process of the expansion a rarefaction wave propagates into the ambient plasma, an ion front moves into the expansion volume, and discontinuities in plasma parameters occur. The physical processes which cause the above phenomena are discussed, and their possible application is suggested for the case of the distribution of ions and electrons (hence plasma potential and electric fields) in the wake region behind artificial and natural obstacles moving supersonically in a rarefied space plasma. To illustrate this, some in situ results are reexamined. Directions for future work in this area via the utilization of the Space Shuttle and laboratory work are also mentioned.

2. High-energy cosmic rays and tests of basic principles of Physics

Gonzalez-Mestres L.

2014-04-01

Full Text Available With the present understanding of data, the observed flux suppression for ultra-high energy cosmic rays (UHECR at energies above 4.1019 eV can be a signature of the Greisen-Zatsepin-Kuzmin (GZK cutoff or be related to a similar mechanism. But it may also correspond, for instance, to the maximum energies available at the relevant sources. In both cases, violations of special relativity modifying cosmic-ray propagation or acceleration at very high energy can potentially play a role. Other violations of fundamental principles of standard particle physics (quantum mechanics, energy and momentum conservation, vacuum homogeneity and “static” properties, effective space dimensions, quark confinement… can also be relevant at these energies. In particular, UHECR data would in principle allow to set bounds on Lorentz symmetry violation (LSV in patterns incorporating a privileged local reference frame (the “vacuum rest frame”, VRF. But the precise analysis is far from trivial, and other effects can also be present. The effective parameters can be related to Planckscale physics, or even to physics beyond Planck scale, as well as to the dynamics and effective symmetries of LSV for nucleons, quarks, leptons and the photon. LSV can also be at the origin of GZK-like effects. In the presence of a VRF, and contrary to a “grand unification” view, LSV and other violations of standard principles can modify the internal structure of particles at very high energy and conventional symmetries may cease to be valid at energies close to the Planck scale. We present an updated discussion of these topics, including experimental prospects, new potentialities for high-energy cosmic ray phenomenology and the possible link with unconventional pre-Big Bang scenarios, superbradyon (superluminal preon patterns… The subject of a possible superluminal propagation of neutrinos at accelerator energies is also dealt with.

3. Ultra-high energy physics and standard basic principles : Do Planck units really make sense ?

Gonzalez-Mestres, Luis

2013-01-01

International audience It has not yet been elucidated whether the observed flux suppression for ultrahigh energy cosmic rays (UHECR) at energies above 4 x 10E19 eV is a signature of the Greisen-Zatsepin-Kuzmin (GZK) cutoff or a consequence of other phenomena. In both cases, violations of the standard fundamental principles of Physics can be present and play a significant role. They can in particular modify cosmic-ray interactions, propagation or acceleration at very high energy. Thus, in a...

4. Basic ideas and concepts in hot wire anemometry: an experimental approach for introductory physics students

El Abed, Mohamed

2016-01-01

The purpose of hot wire anemometry is to measure the speed of an air stream. The classical method is based on the measure of the value of a temperature dependant resistor inserted in a Wheatstone bridge (Lomas 1986 Fundamentals of Hot Wire Anemometry (Cambridge: Cambridge University Press)). In this paper we exhibit the physics behind this method and show that by using a wire whose resistance does not vary on the field of temperature explored (from 20 °C to 200 °C), it is however possible to make accurate measurements. Finally, limitations of the method are discussed.

5. The physical properties of z>2 Lyman limit systems: new constraints for feedback and accretion models

2015-01-01

We study the physical properties of a homogeneous sample of 157 optically-thick absorption line systems at redshifts ~1.8-4.4, selected from a high-dispersion spectroscopic survey of Lyman limit systems (LLSs). By means of multiple ionisation models and Bayesian techniques, we derive the posterior probability distribution functions for the density, metallicity, temperature, and dust content of the absorbing gas. We find that z>2 LLSs are highly ionised with ionisation parameters between -32 are characterised by a broad unimodal distribution over >4 orders of magnitude, with a peak at log Z/Zsun~-2. LLSs are metal poor, significantly less enriched than DLAs, with ~70% of the metallicity PDF below log Z/Zsun19 rapidly evolves with redshift, with a ten-fold increase between z~2.1-3.6 (~1.5 Gyr). Based on this sample, we find that LLSs at z=2.5-3.5 account for ~15% of all the metals produced by UV-selected galaxies. The implications for theories of cold gas accretion and metal ejection from galaxies are also disc...

6. The solar type protostar IRAS16293-2422: new constraints on the physical structure

Crimier, Nicolas; Maret, Sebastien; Bottinelli, Sandrine; Caux, Emmanuel; Kahane, Claudine; Lis, Dariusz C; Olofsson, Johan

2010-01-01

Context: The low mass protostar IRAS16293-2422 is a prototype Class 0 source with respect to the studies of the chemical structure during the initial phases of life of Solar type stars. Aims: In order to derive an accurate chemical structure, a precise determination of the source physical structure is required. The scope of the present work is the derivation of the structure of IRAS16293-2422. Methods: We have re-analyzed all available continuum data (single dish and interferometric, from millimeter to MIR) to derive accurate density and dust temperature profiles. Using ISO observations of water, we have also reconstructed the gas temperature profile. Results: Our analysis shows that the envelope surrounding IRAS16293-2422 is well described by the Shu "inside-out" collapsing envelope model or a single power-law density profile with index equal to 1.8. In contrast to some previous studies, our analysis does not show evidence of a large (>/- 800 AU in diameter) cavity. Conclusions: Although IRAS16293-2422 is a ...

7. New Ideas for the Extra Dimensions and for Deriving the Basic Laws of Physics

Al Rabeh R. H.

2010-01-01

Full Text Available As geometry is constructed from points and their separating distances, physics may be similarly constructed using identical material points and their separating distances with the additional requirement that all points have infinitesimal masses and move all the time at the speed of light. Pairs of such points can get locked together in circles to make doublet particles that can have any speed from zero to that of light, at which point the doublet disintegrates. Using this construct together with the rich mathematical properties of a 3D space, a mechanical definition of time, and simple symmetry rule for displacement, it is possible to derive many of the fundamental laws of physics such as the inverse square laws of gravitation and static electricity, many of the relativistic and quantum mechanical results such as the mass-energy conversion of Einstein and the quantized energy levels of Planck and Bohr. In addition, a better understanding of some illusive terms like inertia and force becomes possible. No arbitrary constants are needed in the process. Extra dimensions (variables that are not a distance are created as a result of this setup — but they are all found to be discrete. Mass, charge, spin, and time are some notable examples.

8. New Ideas for the Extra Dimensions and for Deriving the Basic Laws of Physics

Al Rabeh R. H.

2010-01-01

Full Text Available As geometry is constructed from points and their separating distances, physics may be similarly constructed using identical material points and their separating distances with the additional requirement that all points have infinitesimal masses and move all the time at the speed of light. Pairs of such points can get locked together in circles to make doublet particles that can have any speed from zero to that of light, at which point the doublet disintegrates. Using this construct together with the rich mathematical properties of a 3D space, a mechanical definition of time, and simple symmetry rule for displacement, it is possible to derive many of the fundamental laws of physics such as the inverse square laws of gravitation and static electricity, many of the relativistic and quantum mechanical results such as the mass-energy conversion of Einstein and the quantized energy levels of Planck and Bohr. In addition, a better understanding of some illusive terms like inertia and force becomes possible. No arbitrary constants are needed in the process. Extra dimensions (variables that are not a distance are created as a result of this setup --- but they are all found to be discrete. Mass, charge, spin, and time are some notable examples.

9. Ultra-high energy physics and standard basic principles. Do Planck units really make sense?

Gonzalez-Mestres, Luis

2014-04-01

It has not yet been elucidated whether the observed flux suppression for ultra-high energy cosmic rays (UHECR) at energies above ≃ 4 x 1019 eV is a signature of the Greisen-Zatsepin-Kuzmin (GZK) cutoff or a consequence of other phenomena. In both cases, violations of the standard fundamental principles of Physics can be present and play a significant role. They can in particular modify cosmic-ray interactions, propagation or acceleration at very high energy. Thus, in a long-term program, UHECR data can hopefully be used to test relativity, quantum mechanics, energy and momentum conservation, vacuum properties... as well as the elementariness of standard particles. Data on cosmic rays at energies ≃ 1020 eV may also be sensitive to new physics generated well beyond Planck scale. A typical example is provided by the search for possible signatures of a Lorentz symmetry violation (LSV) associated to a privileged local reference frame (the "vacuum rest frame", VRF). If a VRF exists, the internal structure of standard particles at ultra-high energy can undergo substantial modifications. Similarly, the conventional particle symmetries may cease to be valid at such energies instead of heading to a grand unification and the structure of vacuum may no longer be governed by standard quantum field theory. Then, the question whether the notion of Planck scale still makes sense clearly becomes relevant and the very grounds of Cosmology can undergo essential modifications. UHECR studies naturally interact with the interpretation of WMAP and Planck observations. Recent Planck data analyses tend to confirm the possible existence of a privileged space direction. If the observed phenomenon turns out to be a signature of the spinorial space-time (SST) we suggested in 1996-97, then conventional Particle Physics may correspond to the local properties of standard matter at low enough energy and large enough distances. This would clearly strengthen the cosmological relevance of UHECR

10. Using Video Games to Support Pre-Service Elementary Teachers Learning of Basic Physics Principles

Anderson, Janice; Barnett, Michael

2011-08-01

The purpose of this work is to share our findings in using video gaming technology to facilitate the understanding of basic electromagnetism with pre-service elementary teachers. To this end we explored the impact of using a game called Supercharged! on pre-service teachers' understanding of electromagnetic concepts compared to students who conducted a more traditional inquiry oriented investigation of the same concepts. This study was a part of a larger design experiment examining the pedagogical potential of Supercharged! the control group learned through a series of guided inquiry methods while the experimental group played Supercharged! during the laboratory sections of the science course. There was significant difference F(2,134) = 4.8, p effect size of d = 0.72. However, while students in the experimental group performed better than their control group peers, they rated their knowledge of the topic lower than the control group ( M post-control = 3.0, M post-experiment = 2.7), leading to further examination of their laboratory journals. Results of this study show that video games can lead to positive learning outcomes, as demonstrated by the increase in test scores from pre- to post-assessment. Additionally, this study also suggests that a complementary approach, in which video games and hands-on activities are integrated, with each activity informing the other, could be a very powerful technique for supporting student scientific understanding. Further, our findings suggest that video game designers should embed meta-cognitive activities such as reflective opportunities into educational video games to provide scaffolds for students and to reinforce that they are engaged in an educational learning experience.

11. Assessment of basic physical parameters of current Canadian-American National Hockey League (NHL ice hockey players

Martin Sigmund

2016-03-01

Full Text Available Background: Physical parameters represent an important part of the structure of sports performance and significantly contribute to the overall performance of an ice hockey player. Basic physical parameters are also an essential part of a comprehensive player assessment both during the initial NHL draft and further stages of a professional career. For an objective assessment it is desirable to know the current condition of development of monitored somatic parameters with regard to the sports discipline, performance level and gaming position. Objective: The aim of this study was to analyze and present the level of development of basic physical characteristics [Body Height (BH and Body Weight (BW] in current ice hockey players in the Canadian-American NHL, also with respect to various gaming positions. Another aim is to compare the results with relevant data of elite ice hockey players around the world. Methods: The data of 751 ice hockey players (age range: 18-43 years; 100% male from NHL (2014/2015 season are analyzed (goalkeepers, n = 67; defenders, n = 237; forwards, n = 447. Statistical data processing was performed using a single factor ANOVA and Fisher's (LSD post hoc test. The level of statistical significance was tested at a level of p ≤ .05; p ≤ .01. Effect size was expressed according to Cohen's d. Results: Current levels of monitored parameters of NHL players represent the values: BH = 186.0 ± 5.3 cm, BW = 91.7 ± 6.9 kg. Significant differences among positions were found for the BH (goalkeepers > defenders > forwards and BW (defenders > goalkeepers > forwards. Differences among forwards positions were also found for the BH (left wings > right wings > centers and BW (left wings > right wings > centers. Conclusion: The observed values represent the current level of basic physical parameters in professional ice hockey players in the NHL and can be considered

12. The basic paradoxes of statistical classical physics and the quantum mechanics

Kupervasser, Oleg

2013-01-01

The statistical classical mechanics and the quantum mechanics are two developed and well-known theories. The described two theories are known and well studied for a long time. Nevertheless, they contain a number of paradoxes. It forces many scientists to doubt internal consistency of these theories. However the given paradoxes can be resolved within the framework of the existing physics, without introduction of new laws .Further in the paper the paradoxes underlying thermodynamics and the quantum mechanics are discussed. The approaches to solution of these paradoxes are suggested. The first one relies on the influence of the external observer (environment), which disrupts the correlations in the system. The second one is based on the limits of self-knowledge of the system in case of both the external observer and the environment is included in the considered system. The concepts of Observable Dynamics, Ideal Dynamics, and Unpredictable dynamics are introduced. The phenomenon of complex (living) systems is con...

13. Phase equilibria constraints on the chemical and physical evolution of the campanian ignimbrite

Fowler, S.J.; Spera, F.J.; Bohrson, W.A.; Belkin, H.E.; de Vivo, B.

2007-01-01

The Campanian Ignimbrite is a > 200 km3 trachyte-phonolite pyroclastic deposit that erupted at 39.3 ?? 0.1 ka within the Campi Flegrei west of Naples, Italy. Here we test the hypothesis that Campanian Ignimbrite magma was derived by isobaric crystal fractionation of a parental basaltic trachyandesitic melt that reacted and came into local equilibrium with small amounts (5-10 wt%) of crustal rock (skarns and foid-syenites) during crystallization. Comparison of observed crystal and magma compositions with results of phase equilibria assimilation-fractionation simulations (MELTS) is generally very good. Oxygen fugacity was approximately buffered along QFM+1 (where QFM is the quartz-fayalite-magnetite buffer) during isobaric fractionation at 0.15 GPa (???6 km depth). The parental melt, reconstructed from melt inclusion and host clinopyroxene compositions, is found to be basaltic trachyandesite liquid (51.1 wt% SiO2, 9.3 wt% MgO, 3 wt% H2O). A significant feature of phase equilibria simulations is the existence of a pseudo-invariant temperature, ???883??C, at which the fraction of melt remaining in the system decreases abruptly from ???0.5 to < 0.1. Crystallization at the pseudo-invariant point leads to abrupt changes in the composition, properties (density, dissolved water content), and physical state (viscosity, volume fraction fluid) of melt and magma. A dramatic decrease in melt viscosity (from 1700 Pa s to ???200 Pa s), coupled with a change in the volume fraction of water in magma (from ??? 0.1 to 0.8) and a dramatic decrease in melt and magma density acted as a destabilizing eruption trigger. Thermal models suggest a timescale of ??? 200 kyr from the beginning of fractionation until eruption, leading to an apparent rate of evolved magma generation of about 10-3 km3/year. In situ crystallization and crystal settling in density-stratified regions, as well as in convectively mixed, less evolved subjacent magma, operate rapidly enough to match this apparent

14. Geographic-didactical games as interactive tools to test and improve student's basic knowledge in Physical Geography

Winkler, S.; Tintrup Gen. Suntrup, A.

2009-04-01

Due to an increasing disproportion between experienced teaching staff and student numbers at German universities, the time available for teaching the fundamental basic knowledge in Physical Geography was condensed during the past decade. Unfortunately, this mainly has been achieved at the expense of practical lessons of testing student's knowledge. The recent introduction of the Bachelor/Master degree has not solved this problem, but rather accelerated that tend. The "losers" of this tendency are those students enrolled in trainee teacher studies in Geography. In conjunction with the recent modifications of the study programs putting more focus on applied or specialized fields of Geography and its methodology, the trainee teacher students often express their critics and urgently demand opportunities to improve and test their basic knowledge (because it is especially that knowledge, they need at school and for their traditional examination). As the study program is quite dense, there is no room for special courses or seminars. By contrast, one has to use some free time slots available e.g. in the evenings of the usually quite long German excursions or of weekend seminars. However, after a day in the field or in the classroom, the teacher has to find a method owing enough excitement and clearly visible benefit for the students to achieve sufficient motivation. Interactive geographic-didactical games have been developed exclusively for this purpose and applied at different occasions. Those games had the goal of testing student's basic knowledge in a rather unconventional and "casual" style in order to motivate active participation. Most of the games could be played in small groups of students with the teacher only occasionally being involved as referee. Of course, the games had the general aim of improving the basic knowledge - or at least give the students the possibility to discover their own strength (or weakness) just before it is too late (as it e.g. would be

15. Prebreakdown phenomena in liquids: propagation ‘modes’ and basic physical properties

Lesaint, O.

2016-04-01

Prebreakdown phenomena in liquids (usually called ‘streamers’) were characterized experimentally in a wide range of experimental conditions, liquid nature and additives. The description of these phenomena leads to a complex and frequently confused situation, since their properties widely vary when parameters such as liquid nature or voltage are changed. In this review paper, we try to obtain a more comprehensive presentation of pre-breakdown phenomena in liquids by considering different propagation ‘modes’, which can be recognized in a wide range of liquid nature and experimental conditions. On the basis of experimental results either published previously or original, we will review the main parameters and features able to better characterize these modes, and show their general interest. ‘Positive’ streamers observed in point-plane geometry in non-polar liquids are mainly considered here. Some elements allowing a comparison with water, characterized by a much higher permittivity and conductivity are given. The text is concluded by considerations concerning the different physical processes involved in modes.

16. The basic physics of the binary black hole merger GW150914

Abbott, B P; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Bejger, M; Bell, A S; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Broida, J E; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Brunett, S; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Bustillo, J Calder'on; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Diaz, J Casanueva; Casentini, C; Caudill, S; Cavaglia, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Baiardi, L Cerboni; Cerretani, G; Cesarini, E; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P -F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J -P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Cripe, J; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Canton, T Dal; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Dasgupta, A; Costa, C F Da Silva; Dattilo, V; Dave, I; Davier, M; Davies, G S; Daw, E J; Day, R; De, S; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Del'eglise, S; Del Pozzo, W; Denker, T; Dent, T; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Devine, R C; Dhurandhar, S; D'iaz, M C; Di Fiore, L; Di Giovanni, M; Di Girolamo, T; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H -B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Fenyvesi, E; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fournier, J -D; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gaur, G; Gehrels, N; Gemme, G; Geng, P; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; Gonz'alez, G; Castro, J M Gonzalez; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Grado, A; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C -J; Haughian, K; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Henry, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hofman, D; Holt, K; Holz, D E; Hopkins, P; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J -M; Isi, M; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jian, L; Jim'enez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; K, Haris; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Kapadia, S J; Karki, S; Karvinen, K S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; K'ef'elian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Key, J S; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, Chi-Woong; Kim, Chunglee; Kim, J; Kim, K; Kim, N; Kim, W; Kim, Y -M; Kimbrell, S J; King, E J; King, P J; Kissel, J S; Klein, B; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Kr'olak, A; Krueger, C; Kuehn, G; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Laxen, M; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Lewis, J B; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Lombardi, A L; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; L"uck, H; Lundgren, A P; Lynch, R; Ma, Y; Machenschalk, B; MacInnis, M; Macleod, D M; Magana-Sandoval, F; Zertuche, L Magana; Magee, R M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; M'arka, S; M'arka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Mastrogiovanni, S; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McRae, T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mercer, R A; Merilh, E L; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Metzdorff, R; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, A L; Miller, A; Miller, B B; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Nedkova, K; Nelemans, G; Nelson, T J N; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Perri, L M; Phelps, M; Piccinni, O J; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poe, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Pratt, J; Predoi, V; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; P"urrer, M; Qi, H; Qin, J; Qiu, S; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rajan, C; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Rew, H; Reyes, S D; Ricci, F; Riles, K; Rizzo, M; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romanov, G; Romie, J H; Rosi'nska, D; Rowan, S; R"udiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Sakellariadou, M; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, J R; Sassolas, B; Saulson, P R; Sauter, O E S; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Sch"onbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Setyawati, Y; Shaddock, D A; Shaffer, T; Shahriar, M S; Shaltev, M; Shapiro, B; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sieniawska, M; Sigg, D; Silva, A D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sunil, S; Sutton, P J; Swinkels, B L; Szczepa'nczyk, M J; Tacca, M; Talukder, D; Tanner, D B; T'apai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Toland, K; Tomlinson, C; Tonelli, M; Tornasi, Z; Torres, C V; Torrie, C I; T"oyr"a, D; Travasso, F; Traylor, G; Trifiro, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; van Bakel, N; van Beuzekom, M; Brand, J F J van den; Broeck, C Van Den; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Vass, S; Vas'uth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Vicer'e, A; Vinciguerra, S; Vine, D J; Vinet, J -Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D V; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L -W; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Wessels, P; Westphal, T; Wette, K; Whelan, J T; Whiting, B F; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wiseman, A G; Wittel, H; Woan, G; Woehler, J; Worden, J; Wright, J L; Wu, D S; Wu, G; Yablon, J; Yam, W; Yamamoto, H; Yancey, C C; Yu, H; Yvert, M; zny, A Zadro; Zangrando, L; Zanolin, M; Zendri, J -P; Zevin, M; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J

2016-01-01

The first direct gravitational-wave detection was made by the Advanced Laser Interferometer Gravitational Wave Observatory on September 14, 2015. The GW150914 signal was strong enough to be apparent, without using any waveform model, in the filtered detector strain data. Here those features of the signal visible in these data are used, along with only such concepts from Newtonian and General Relativity as are accessible to anyone with a general physics background. The simple analysis presented here is consistent with the fully general-relativistic analyses published elsewhere, in showing that the signal was produced by the inspiral and subsequent merger of two black holes. The black holes were each of approximately 35 Msun, still orbited each other as close as 350 km apart and subsequently merged to form a single black hole. Similar reasoning, directly from the data, is used to roughly estimate how far these black holes were from the Earth, and the energy that they radiated in gravitational waves.

17. Effect of basic physical parameters to control plasma meniscus and beam halo formation in negative ion sources

Our previous study shows that the curvature of the plasma meniscus causes the beam halo in the negative ion sources: the negative ions extracted from the periphery of the meniscus are over-focused in the extractor due to the electrostatic lens effect, and consequently become the beam halo. In this article, the detail physics of the plasma meniscus and beam halo formation is investigated with two-dimensional particle-in-cell simulation. It is shown that the basic physical parameters such as the H− extraction voltage and the effective electron confinement time significantly affect the formation of the plasma meniscus and the resultant beam halo since the penetration of electric field for negative ion extraction depends on these physical parameters. Especially, the electron confinement time depends on the characteristic time of electron escape along the magnetic field as well as the characteristic time of electron diffusion across the magnetic field. The plasma meniscus penetrates deeply into the source plasma region when the effective electron confinement time is short. In this case, the curvature of the plasma meniscus becomes large, and consequently the fraction of the beam halo increases

18. Global Energy Development and Climate-Induced Water Scarcity—Physical Limits, Sectoral Constraints, and Policy Imperatives

Christopher A. Scott

2015-08-01

Full Text Available The current accelerated growth in demand for energy globally is confronted by water-resource limitations and hydrologic variability linked to climate change. The global spatial and temporal trends in water requirements for energy development and policy alternatives to address these constraints are poorly understood. This article analyzes national-level energy demand trends from U.S. Energy Information Administration data in relation to newly available assessments of water consumption and life-cycle impacts of thermoelectric generation and biofuel production, and freshwater availability and sectoral allocations from the U.N. Food and Agriculture Organization and the World Bank. Emerging, energy-related water scarcity flashpoints include the world’s largest, most diversified economies (Brazil, India, China, and USA among others, while physical water scarcity continues to pose limits to energy development in the Middle East and small-island states. Findings include the following: (a technological obstacles to alleviate water scarcity driven by energy demand are surmountable; (b resource conservation is inevitable, driven by financial limitations and efficiency gains; and (c institutional arrangements play a pivotal role in the virtuous water-energy-climate cycle. We conclude by making reference to coupled energy-water policy alternatives including water-conserving energy portfolios, intersectoral water transfers, virtual water for energy, hydropower tradeoffs, and use of impaired waters for energy development.

19. Measurement and Basic Physics Committee of the U.S. Cross-Section Evaluation Working Group annual report 1997

Smith, D.L. [ed.] [comp.] [Argonne National Lab., IL (United States); McLane, V. [ed.] [comp.] [Brookhaven National Lab., Upton, NY (United States)

1997-10-01

The Cross-Section Evaluation Working Group (CSEWG) is a long-standing committee charged with responsibility for organizing and overseeing the US cross-section evaluation effort. Its main product is the official US evaluated nuclear data file, ENDF. In 1992 CSEWG added the Measurements Committee to its list of standing committees and subcommittees. This action was based on a recognition of the importance of experimental data in the evaluation process as well as the realization that measurement activities in the US were declining at an alarming rate and needed considerable encouragement to avoid the loss of this resource. The mission of the Committee is to maintain contact with experimentalists in the Us and to encourage them to contribute to the national nuclear data effort. Improved communication and the facilitation of collaborative activities are among the tools employed in achieving this objective. In 1994 the Committee was given an additional mission, namely, to serve as an interface between the applied interests represented in CSEWG and the basic nuclear science community. Accordingly, its name was changed to the Measurement and Basic Physics Committee. The present annual report is the third such document issued by the Committee. It contains voluntary contributions from several laboratories in the US. Their contributions were submitted to the Chairman for compilation and editing.

20. AAPM/RSNA physics tutorial for residents. Topics in US: B-mode US: basic concepts and new technology.

Hangiandreou, Nicholas J

2003-01-01

Ultrasonography (US) has been used in medical imaging for over half a century. Current US scanners are based largely on the same basic principles used in the initial devices for human imaging. Modern equipment uses a pulse-echo approach with a brightness-mode (B-mode) display. Fundamental aspects of the B-mode imaging process include basic ultrasound physics, interactions of ultrasound with tissue, ultrasound pulse formation, scanning the ultrasound beam, and echo detection and signal processing. Recent technical innovations that have been developed to improve the performance of modern US equipment include the following: tissue harmonic imaging, spatial compound imaging, extended field of view imaging, coded pulse excitation, electronic section focusing, three-dimensional and four-dimensional imaging, and the general trend toward equipment miniaturization. US is a relatively inexpensive, portable, safe, and real-time modality, all of which make it one of the most widely used imaging modalities in medicine. Although B-mode US is sometimes referred to as a mature technology, this modality continues to experience a significant evolution in capability with even more exciting developments on the horizon. PMID:12853678

1. On Constraint Programming

Mathieu, Philippe; Keisu, Torbjörn

1990-01-01

This short note aims to present foundations for constraint logic programming. By logic programming, we understand in this paper the PROLOG paradigm. But it will be clear that we do reduce the problem to adding a new package to PROLOG. We argue that constraint logic programming should be defined as a new paradigm for programming: the LOGIC PROGRAMMING + SYMBOLIC COMPUTATION paradigm. Our system incorporates as a very basic, all the existing systems incorporating constraints i...

2. Correlation between basic physical fitness and pulmonary function in Korean children and adolescents: a cross-sectional survey.

Bae, Ju Yong; Jang, Ki Sung; Kang, Sunghwun; Han, Don Hee; Yang, Wonho; Shin, Ki Ok

2015-09-01

[Purpose] The purpose of the present study was to determine whether there was a correlation between basic physical fitness and pulmonary function in Korean school students, to present an alternative method for improving their pulmonary function. [Subjects and Methods] Two hundred forty healthy students aged 6-17 years performed physical fitness tests of hand-grip strength, sit and reach, Sargent jump, single leg stance, and pulmonary function tests of forced vital capacity (FVC) and forced expiratory volume in one second (FEV1) using a Quark PFT. [Results] Muscle strength and power of boys improved in the late period of elementary school and middle school. Muscle strength of girls improved in the late period of elementary school. Analysis of factors affecting pulmonary function revealed that height, weight, BMI, and body fat significantly correlated with spirometric parameters. Right hand-grip strength, left hand-grip strength, and Sargent jump also significantly correlated with FVC and FEV1. [Conclusion] In order to improve the pulmonary function of children and adolescents, aerobic exercise and an exercise program to increase muscle strength and power is needed, and it should start in the late period of elementary school when muscle strength and power are rapidly increasing. PMID:26504269

3. On the validity of constraints on light elementary particles and extra-dimensional physics from the Casimir effect

We discuss the constraints on the parameters of a Yukawa interaction obtained from the indirect measurements of the Casimir pressure between parallel plates using the sphere-plate configuration. Recently, it was claimed in the literature that the application of the proximity force approximation (PFA) to the calculation of a Yukawa interaction in the sphere-plate configuration could lead to a large error of order 100% in the constraints obtained. Here we re-calculate the constraints both exactly and using the PFA, and arrive at identical results. We elucidate the reasons why an incorrect conclusion was obtained suggesting that the PFA is inapplicable to calculate the Yukawa force. (orig.)

4. Development and evaluation of a basic Development and Evaluation of a Basic Physical and Sports Activity Program for Preschool Children in Nursery Schools in Iran: an Interventional Study

Ramin Kordi

2012-09-01

Full Text Available Objective: The objectives of this study were a to develop a physical activity program for nursery schools, and b to evaluate the effects of this program on fundamental movement skills of preschool age children in Iran.Methods: In this quasi-experimental study 147 children from five nursery schools in five different cities in Iran were enrolled. A physical activity program was developed for nursery children. Trained nursery physical activity instructors conducted the program for 10 weeks for all subjects. The levels of gross motor development of all subjects were measured before intervention and after 10 weeks physical activity program employing the Test of Gross Motor Development‐edition 2 (TGMD-2.Findings: The participants in this study had a mean (SD age of 4.95 (0.83 years. At the end of the study, scores of subjects at all components of TGMD-2 (including locomotor, object control, sum of standard scores and gross motor quotient were significantly improved compared to the baseline scores (P120 and after 10 weeks intervention this rate was increased to 49.7% of all subjects.Conclusion: It seems that the developed physical activity program conducted by trained nursery physical activity instructors could be an effective and practical way of increasing levels of fundamental movement skills of preschool children in Iran.

5. Measurement and basic physics committee of the U.S. cross-section evaluation working group, annual report 1997

The Cross-Section Evaluation Working Group (CSEWG) is a long-standing committee charged with responsibility for organizing and overseeing the US cross-section evaluation effort. Its main product is the official US evaluated nuclear data file, ENDF. The current version of this file is Version VI. All evaluations included in ENDF, as well as periodic modifications and updates to the file, are reviewed and approved by CSEWG and issued by the US Nuclear Data Center, Brookhaven National Laboratory. CSEWG is comprised of volunteers from the US nuclear data community who possess expertise in evaluation methodologies and who collectively have been responsible for producing most of the evaluations included in ENDF. In 1992 CSEWG added the Measurements Committee to its list of standing committees and subcommittees. This action was based on a recognition of the importance of experimental data in the evaluation process as well as the realization that measurement activities in the US were declining at an alarming rate and needed considerable encouragement to avoid the loss of this resource. The mission of the Committee is to maintain contact with experimentalists in the US and to encourage them to contribute to the national nuclear data effort. Improved communication and the facilitation of collaborative activities are among the tools employed in achieving this objective. In 1994 the Committee was given an additional mission, namely, to serve as an interface between the applied interests represented in CSEWG and the basic nuclear science community. Accordingly, its name was changed to the Measurement and Basic Physics Committee. The present annual report is the third such document issued by the Committee. It contains voluntary contributions from several laboratories in the US. Their contributions were submitted to the Chairman for compilation and editing

6. MEASUREMENT AND BASIC PHYSICS COMMITTEE OF THE U.S. CROSS-SECTION EVALUATION WORKING GROUP, ANNUAL REPORT 1997

SMITH,D.L.; MCLANE,V.

1998-10-20

The Cross-Section Evaluation Working Group (CSEWG) is a long-standing committee charged with responsibility for organizing and overseeing the US cross-section evaluation effort. Its main product is the official US evaluated nuclear data file, ENDF. The current version of this file is Version VI. All evaluations included in ENDF, as well as periodic modifications and updates to the file, are reviewed and approved by CSEWG and issued by the US Nuclear Data Center, Brookhaven National Laboratory. CSEWG is comprised of volunteers from the US nuclear data community who possess expertise in evaluation methodologies and who collectively have been responsible for producing most of the evaluations included in ENDF. In 1992 CSEWG added the Measurements Committee to its list of standing committees and subcommittees. This action was based on a recognition of the importance of experimental data in the evaluation process as well as the realization that measurement activities in the US were declining at an alarming rate and needed considerable encouragement to avoid the loss of this resource. The mission of the Committee is to maintain contact with experimentalists in the US and to encourage them to contribute to the national nuclear data effort. Improved communication and the facilitation of collaborative activities are among the tools employed in achieving this objective. In 1994 the Committee was given an additional mission, namely, to serve as an interface between the applied interests represented in CSEWG and the basic nuclear science community. Accordingly, its name was changed to the Measurement and Basic Physics Committee. The present annual report is the third such document issued by the Committee. It contains voluntary contributions from several laboratories in the US. Their contributions were submitted to the Chairman for compilation and editing.

7. Autonomy supportive environments and mastery as basic factors to motivate physical activity in children: a controlled laboratory study

Roemmich James N

2012-02-01

Full Text Available Abstract Background Choice promotes the experience of autonomy, which enhances intrinsic motivation. Providing a greater choice of traditional active toys may increase children's activity time. Mastery also increases intrinsic motivation and is designed into exergames, which may increase play time of a single exergame, reducing the need for choice to motivate activity compared to traditional active toys. Providing both choice and mastery could be most efficacious at increasing activity time. The energy expenditure (EE of an active play session is dependent on the duration of play and the rate of EE during play. The rate of EE of exergames and the same game played in traditional fashion is not known. The purpose was to test the basic parameters of choice and mastery on children's physical activity time, activity intensity, and energy expenditure. Methods 44 children were assigned to low (1 toy or high (3 toys choice groups. Children completed 60 min sessions with access to traditional active toys on one visit and exergame versions of the same active toys on another visit. Results Choice had a greater effect on increasing girls' (146% than boys' (23% activity time and on girls' (230% than boys' (minus 24% activity intensity. When provided choice, girls' activity time and intensity were no longer lower than boys' activity time and intensity. The combination of choice and mastery by providing access to 3 exergames produced greater increases in physical activity time (1 toy 22.5 min, 3 toys 41.4 min than choice alone via access to 3 traditional games (1 toy 13.6 min, 3 toys 19.5 min. Energy expenditure was 83% greater when engaging in traditional games than exergames. Conclusions Boys and girls differ in their behavioral responses to autonomy supportive environments. By providing girls with greater autonomy they can be motivated to engage in physical activity equal to boys. An environment that provides both autonomy and mastery is most efficacious at

8. Students' confidence in the ability to transfer basic math skills in introductory physics and chemistry courses at a community college

Quinn, Reginald

2013-01-01

The purpose of this study was to examine the confidence levels that community college students have in transferring basic math skills to science classes, as well as any factors that influence their confidence levels. This study was conducted with 196 students at a community college in central Mississippi. The study was conducted during the month of November after all of the students had taken their midterm exams and received midterm grades. The instrument used in this survey was developed and validated by the researcher. The instrument asks the students to rate how confident they were in working out specific math problems and how confident they were in working problems using those specific math skills in physics and chemistry. The instrument also provided an example problem for every confidence item. Results revealed that students' demographics were significant predictors in confidence scores. Students in the 18-22 year old range were less confident in solving math problems than others. Students who had retaken a math course were less confident than those who had not. Chemistry students were less confident in solving math problems than those in physics courses. Chemistry II students were less confident than those in Chemistry I and Principals of Chemistry. Students were least confident in solving problems involving logarithms and the most confident in solving algebra problems. In general, students felt that their math courses did not prepare them for the math problems encountered in science courses. There was no significant difference in confidence between students who had completed their math homework online and those who had completed their homework on paper. The researcher recommends that chemistry educators find ways of incorporating more mathematics in their courses especially logarithms and slope. Furthermore, math educators should incorporate more chemistry related applications to math class. Results of hypotheses testing, conclusions, discussions, and

9. All basic condensed matter physics phenomena and notions mirror in biology – A hypothesis, two examples and a novel prediction

2002-02-01

A few billion years of evolutionary time and the complex process of ‘selection’ has given biology an opportunity to explore a variety of condensed matter phenomena and situations, some of which have been discovered by humans in the laboratory, that too only in extreme non-biological conditions such as low temperatures, high purity, high pressure etc., in the last centuries. Biology, at some level, is a complex and self-regulated condensed matter system compared to the ‘inanimate’ condensed matter systems such as liquid 4He, liquid water or a piece of graphite. In this article I propose a hypothesis that ‘all basic condensed matter physics phenomena and notions (already known and ones yet to be discovered) mirror in biology’. I explain this hypothesis by considering the idea of ‘Bose condensation’ or ‘momentum space order’ and discuss two known example of quantum magnetism encountered in biology. I also provide some new and rather speculative possibility, from light harvesting in biological photosynthesis, of mesoscopic exciton condensation related phenomena at room temperature.

10. Science and scientific literacy vs science and scientific awareness through basic physics lectures: A study of wish and reality

Rusli, Aloysius

2012-06-01

Scientific literacy was already discussed in the 1950s, as a prerequisite for the general citizen in a world increasingly served and infused by science and technology: the so-called knowledge or learning society. This kind of literacy has been described in detail by Victor Showalter in 1975, expanded by others, and later defined succinctly by the OECD in 2003. As a complement, science literacy is described also by the National Science Digital Library (NSDL) as a content knowledge needed in setting up practical models for handling daily matters with science and engineering. These important and worthy aims were studied, and compared with reality and existing conditions. One hypothesis put forward and argued for is, that it is more realistic, considering existing trends, to aim for scientific and science awareness for the general student, while scientific and science literacy remain important and worthy aims for the common good of the global community, and important to be strived for by teachers, lecturers and intellectuals. The Basic Physics lectures can also lend themselves usefully for the more realistic aim, due to the science-based nature of the present knowledge society.

11. Constraints on energy release in solar flares from RHESSI and GOES X-ray observations. I. Physical parameters and scalings

Warmuth, A.; Mann, G.

2016-04-01

Aims: We constrain energy release and particle acceleration processes in solar flares by means of comprehensively characterizing the physical parameters of both the thermal plasma and the accelerated nonthermal particles using X-ray data. Our aim is to bridge the gap between detailed case studies and large statistical studies. Methods: We obtained time series of spectral fits and images for 24 flares ranging from GOES class C3.4 to X17.2 using RHESSI hard X-ray observations. These data were used to derive basic physical parameters for the thermal plasma (using the isothermal approximation) and the injected nonthermal electrons (assuming the thick-target model). For the thermal component, this was supplemented by GOES soft X-ray data. We derived the ranges and distributions of the various parameters, the scaling with flare importance, and the relation between thermal parameters derived from RHESSI and GOES. Finally, we investigated the relation between thermal and nonthermal parameters. Results: Temperature and emission measure of the thermal plasma are strongly correlated with the peak GOES X-ray flux. Higher emission measures result both from a larger source volume and a higher density, with the latter effect being more important. RHESSI consistently gives higher temperatures and lower emission measures than GOES does, which is a signature of a multithermal plasma. The discrepancy between RHESSI and GOES is particularly pronounced in the early flare phase, when the thermal X-ray sources tend to be large and located higher in the corona. The energy input rate by nonthermal electrons is correlated with temperature and with the increase rate of emission measure and thermal energy. Conclusions: The derived relations between RHESSI- and GOES-derived thermal parameters and the relation between thermal parameters and energy input by nonthermal electrons are consistent with a two-component model of the thermal flare plasma. Both RHESSI and GOES observe a cooler plasma

12. Exercise Motivation of College Students in Online, Face-to-Face, and Blended Basic Studies Physical Activity and Wellness Course Delivery Formats

Sidman, Cara Lynn; Fiala, Kelly Ann; D'Abundo, Michelle Lee

2011-01-01

Objective: The purpose of this study was to assess exercise motivation among college students self-selected into 4 online (OL) and face-to-face (F2F) basic studies' physical activity and wellness course delivery formats. Participants/Methods: Out of 1,037 enrolled students during the Spring 2009 semester, 602 responded online to demographic…

13. The Cognitive Outcome in the Physical Games at the College of Students of the Basic Science in the World Islamic Sciences and Education University

Salameh, Ibrahim A. M.; Al-Maharmeh, Yaseen A. M.; Oudat, Mo'een A.

2013-01-01

The study aimed at reconnoitering the cognitive outcome in the physical games at students of the college of basic science in the World Islamic Science and Education University. The descriptive method was employed, where the sample was randomly chosen, and amounted to (16) students (males & females) from the faculty. The sample discussed five…

Mally, Kristi K.

2006-01-01

Constraints are characteristics of the individual, the task, or the environment that mold and shape movement choices and performances. Constraints can be positive--encouraging proficient movements or negative--discouraging movement or promoting ineffective movements. Physical educators must analyze, evaluate, and determine the effect various…

15. Constraint-based scheduling applying constraint programming to scheduling problems

Baptiste, Philippe; Nuijten, Wim

2001-01-01

Constraint Programming is a problem-solving paradigm that establishes a clear distinction between two pivotal aspects of a problem: (1) a precise definition of the constraints that define the problem to be solved and (2) the algorithms and heuristics enabling the selection of decisions to solve the problem. It is because of these capabilities that Constraint Programming is increasingly being employed as a problem-solving tool to solve scheduling problems. Hence the development of Constraint-Based Scheduling as a field of study. The aim of this book is to provide an overview of the most widely used Constraint-Based Scheduling techniques. Following the principles of Constraint Programming, the book consists of three distinct parts: The first chapter introduces the basic principles of Constraint Programming and provides a model of the constraints that are the most often encountered in scheduling problems. Chapters 2, 3, 4, and 5 are focused on the propagation of resource constraints, which usually are responsibl...

16. PHYSICS

P. Sphicas

The CPT project came to an end in December 2006 and its original scope is now shared among three new areas, namely Computing, Offline and Physics. In the physics area the basic change with respect to the previous system (where the PRS groups were charged with detector and physics object reconstruction and physics analysis) was the split of the detector PRS groups (the old ECAL-egamma, HCAL-jetMET, Tracker-btau and Muons) into two groups each: a Detector Performance Group (DPG) and a Physics Object Group. The DPGs are now led by the Commissioning and Run Coordinator deputy (Darin Acosta) and will appear in the correspond¬ing column in CMS bulletins. On the physics side, the physics object groups are charged with the reconstruction of physics objects, the tuning of the simulation (in collaboration with the DPGs) to reproduce the data, the provision of code for the High-Level Trigger, the optimization of the algorithms involved for the different physics analyses (in collaboration with the analysis gr...

17. Temporal Concurrent Constraint Programming

Nielsen, Mogens; Valencia Posso, Frank Dan

2002-01-01

The ntcc calculus is a model of non-deterministic temporal concurrent constraint programming. In this paper we study behavioral notions for this calculus. In the underlying computational model, concurrent constraint processes are executed in discrete time intervals. The behavioral notions studied....... Furthermore, the expressive power of this fragment is illustrated by examples. Basic Research in Computer Science, Centre of the Danish National Research Foundation....

18. Global Energy Development and Climate-Induced Water Scarcity—Physical Limits, Sectoral Constraints, and Policy Imperatives

Scott, Christopher A.; Zachary P. Sugg

2015-01-01

The current accelerated growth in demand for energy globally is confronted by water-resource limitations and hydrologic variability linked to climate change. The global spatial and temporal trends in water requirements for energy development and policy alternatives to address these constraints are poorly understood. This article analyzes national-level energy demand trends from U.S. Energy Information Administration data in relation to newly available assessments of water consumption and life...

19. Global Energy Development and Climate-Induced Water Scarcityâ€”Physical Limits, Sectoral Constraints, and Policy Imperatives

Scott, Christopher A.; Zachary P. Sugg

2015-01-01

The current accelerated growth in demand for energy globally is confronted by water-resource limitations and hydrologic variability linked to climate change. The global spatial and temporal trends in water requirements for energy development and policy alternatives to address these constraints are poorly understood. This article analyzes national-level energy demand trends from U.S. Energy Information Administration data in relation to newly available assessments of water consumption and life...

20. Implementation of Complex Projects Using Constraint Programming

Miodrag Strak

2012-09-01

Full Text Available During the implementation of the complex projects, all planned activities and resources must be taken into account. In general, it is necessary to assign the resources to the activities, but to also avoid simultaneous engagement of resources for multiple activities. In order to solve these problems, various techniques and methods are used. Mathematic and integer programming, genetic algorithms, simulated annealing, or taboo search are just some of the techniques used for solving this problem. Constraint programming comes from artificial intelligence i.e. papers from this area that occurred in 1960s and 1970s. Constraints exist in every segment of human environment. They represent a natural medium for expressing relations that exist in the physical world. Fulfilment of constraints is used in many different areas. Problems such as scheduling, allocations etc. are typical examples of constraints problems, where the basic concept of constraint programming can be applied. This paper considered implementation of the Bor Regional Development Project. Development of constraint programming was followed by the development of appropriate tools. B-Prolog was used in this paper. Many systems, including B-Prolog, enable interface with classic object-oriented languages, such as C++ or Java. One of the greatest advantages is the possibility of simple modelling, even for beginners in planning and implementation of the project.

1. Constraint Differentiation

Mödersheim, Sebastian Alexander; Basin, David; Viganò, Luca

2010-01-01

We introduce constraint differentiation, a powerful technique for reducing search when model-checking security protocols using constraint-based methods. Constraint differentiation works by eliminating certain kinds of redundancies that arise in the search space when using constraints to represent...... experimentation. Our results show that constraint differentiation substantially reduces search and considerably improves the performance of OFMC, enabling its application to a wider class of problems....

2. Dynamics and causality constraints

The physical meaning and the geometrical interpretation of causality implementation in classical field theories are discussed. Causality in field theory are kinematical constraints dynamically implemented via solutions of the field equation, but in a limit of zero-distance from the field sources part of these constraints carries a dynamical content that explains old problems of classical electrodynamics away with deep implications to the nature of physicals interactions. (author)

3. Dynamics and causality constraints

De Souza, M M

2000-01-01

The physical meaning and the geometrical interpretation of causality implementation in classical field theories are discussed. Local causality are kinematical constraints dynamically implemented via solutions of the field equations, but in a limit of zero-distance from the field sources part of these constraints carries a dynamical content that explains old problems of classical electrodynamics away and implies on deep implications to the nature of physical interactions.

4. INFLUENCE OF THE DIFFERENT SYSTEMS OF BASIC TREATMENT CONDUCTED UNDER A SUNFLOWER ON PHYSICAL PROPERTIES OF SOIL

Makoveyev A. V.

2015-11-01

Full Text Available The article presents the results of researches of the different systems of basic treatment of soil under a sunflower on a closeness, aggregate composition, supplies of productive moisture on regular black soil of the Krasnodar region

5. The Correlation Study of Interest at Physics and Knowledge of Mathematics Basic Concepts towards the Ability to Solve Physics Problems of 7th Grade Students at Junior High School in Ambon Maluku Province, Indonesia

Izaak Hendrik Wenno

2015-01-01

Full Text Available The purpose of the study is to determine the relation between interest at Physics and knowledge of Mathematics basic concepts with the ability to solve Physics problems. The populations are all students in the 7th grade at the junior high school in Ambon, Maluku, Indonesia. The used sample schools are Junior High Schools 8, 9, and 10 during 2013/2014 academic year with 44 students per school. Two independent variables and one dependent variable are studied. The independent variables are the interest at Physics (X1 and the knowledge of Mathematics basic concepts (X2, while the dependent variable is the ability to solve Physics problems (Y. Data collection technique for X1 is an interview with questionnaire instrument, while for the X2 and Y is using the test technique with test items instrument. The obtained data from the measurements were analyzed with descriptive analysis and inferential analysis. The results show that there is a positive relation between interest at Physics and knowledge of Mathematics basic concepts with students’ ability to solve Physics problems.

6. Structure of "Ventilation and Warming" in Notes on Nursing Written by Florence Nightingale in 19th Century: Introduction of Basic Physics to Nursing Students

Ogoh, Kazutoshi

"Basic Natural Science" for freshmen at Miyazaki Prefectural Nursing University has a component including physics. Here students learn three principles of thermal transfer; conduction, radiation, and convection through a series of experiments. The purpose of these experiments is to understand the structure of a method for the caring of breathing and temperature of patients as written in "Ventilation and Warming", the first chapter of F. Nightingale's Notes on Nursing. Students can then apply this structure to retain fresh air in today's hospital rooms, and can then appreciate studying real physics incorporated into fundamental knowledge for nursing practice.

7. Basic and energy physics: the multiple faces of energy; Physique fondamentale et energetique: les multiples visages de l'energie

Balian, R. [Academie des Sciences, 75 - Paris (France)

2001-07-01

After an historical presentation of the elaboration of the energy concept, this document recalls, first, the basic physical principles linked with this concept: first and second principle of thermodynamics, dynamics of irreversible processes, hierarchy of elementary interactions. Then, their consequences on energy problems are examined by comparing the different common types of energy from different points of view: concentration, degradation, transport, storage, reserves and harmful effects. These comparisons rely on the characteristic values of the data involved. (J.S.)

8. Proceedings of the Scientific Meeting and Presentation on Basic Research in Nuclear Science and Technology part I: Physics, Nuclear Reactor and Instrumentation

Scientific Meeting and Presentation on Basic Research in Nuclear Scienceand Technology is an annual activity held by Centre for Research and Development of Advanced Technology, National Nuclear Energy Agency, for monitoring research activities achieved by the Agency. The papers presented in the meeting were collected into proceedings which were divided into two parts. These are the first part of the proceedings that contain 42 articles in the fields of physics, nuclear reactors, and instrumentation (PPIN).

9. Attitudes of The Basic Education School Students Grade 6, 7 and 8 Towards Subjects of The Physics in The Science Courses

Aykut Emre BOZDOĞAN

2005-06-01

Full Text Available This survey is aimed at determination of the attitude of the basic education school students, grade 6, 7 and 8 towards subjects of the physics. The questionnaire is composed of 33 items that were prepared separately for each subject in the physics of grade 6, 7 and 8 classes and it was applied to 337 students in May 2003, 172 of which are males and 165 of which are females. In the light of views of the survey experts, it was realized for 9 basic educationschools selected among the schools in the center of Kırşehir by taking into account the education and training opportunities and the number of the teachers and the students. Within the general framework of the survey, for the necessary statistical solutions of the data collected for the problems to be answered, SPSS (Statistical Packet for Social Sciences program was used and they were interpreted with frequency (f, percentage (% and One-WayAnalysis of Variance (One-Way ANOVA.The survey produced two important results. First of these, the attitude of the students in the physics experiments in the science courses in the basic education schools started to decrease along with the increase of the class level. The second result is that the attitudes of the students that were changing in the schools classified according to the different training-education and to the different number of the teacher-student.

10. Search for supersymmetry in {tau} final states at ATLAS and constraints on new physics using electroweak precision data

Kennedy, Doerthe

2012-08-15

In this thesis, various models beyond the Standard Model (SM) offering different solutions to some of the shortcomings of the SM are studied: Supersymmetry, the two Higgs doublet model, and models with warped extra dimensions. A search for events with large missing transverse momentum, jets, and at least two {tau} leptons using 2 fb{sup -1} of proton-proton collision data recorded at {radical}(s)=7 TeV with the ATLAS detector at the Large Hadron Collider is performed. No excess above the SM background expectation is observed and a 95% CL upper limit on the visible cross section for new phenomena is set. A 95% CL lower limit of 32 TeV is set on the Gauge Mediated Supersymmetry Breaking scale {Lambda} independent of the ratio of tan{beta}. These limits provide the most stringent tests to date in a large part of the considered parameter space. By using the results of the oblique vacuum polarization parameters from a fit to the electroweak precision data indirect constraints on model parameters are set. While in the two Higgs doublet model as well as in models with warped extra dimensions a heavy Higgs boson is compatible with the electroweak precision data, models with warped extra dimensions featuring custodial symmetry cannot accommodate a heavy Higgs.