The Barcelona-Catania-Paris-Madrid functional with a realistic effective mass
Baldo, M; Schuck, P; Viñas, X
2016-01-01
The Barcelona-Catania-Paris-Madrid (BCPM) functional recently proposed to describe nuclear structure properties of finite nuclei is generalized as to include a realistic effective mass. The resulting functional is as good as the previous one in describing binding energies, radii, deformation properties, etc and, in addition, the description of Giant Quadrupole Resonance energies is greatly improved.
Fission properties of the BCPM energy-density functional
Fission dynamics properties of the Barcelona-Catania-Paris-Madrid energy density functional are explored with mean-field techniques. Potential energy surfaces as well as collective inertia relevant in the fission process are computed for several nuclei where experimental data exist. Inner and outer barrier heights as well as fission isomer excitation energies are reproduced quite well in all the cases. The spontaneous fission half-lives tsf are also computed using the standard semiclassical approach and the results are compared with the experimental data. The experimental trend with mass number is reasonably well reproduced over a range of 27 orders of magnitude. However, the theoretical predictions suffer from large uncertainties when the quantities that enter the spontaneous fission half-life formula are varied. Modifications of only a few per cent in the pairing correlation strengths strongly modify the collective inertia with a large impact on the spontaneous fission lifetimes in all the nuclei considered. Encouraged by the quite satisfactory description of the trend of fission properties with mass number, we explore the fission properties of the even-even uranium isotope chain from 226U to 282U. Very large lifetimes are found beyond A = 256 with a peak at neutron number N = 184.
Vranjes, J.; Kono, M
2015-01-01
Inhomogeneous plasmas and fluids contain energy stored in inhomogeneity and they naturally tend to relax into lower energy states by developing instabilities or by diffusion. But the actual amount of energy in such inhomogeneities has remained unknown. In the present work the amount of energy stored in a density gradient is calculated for several specific density profiles in a cylindric configuration. This is of practical importance for drift wave instability in various plasmas, and in partic...
Unified equation of state for neutron stars on a microscopic basis
Sharma, B K; Vinas, X; Baldo, M; Burgio, G F
2015-01-01
We derive a new equation of state (EoS) for neutron stars (NS) from the outer crust to the core based on modern microscopic Brueckner-Hartree-Fock (BHF) calculations using the Argonne $v_{18}$ potential plus three-body forces computed with the Urbana model. To deal with the inhomogeneous structures of matter in the NS crust, we use the recent Barcelona-Catania-Paris-Madrid (BCPM) nuclear energy density functional that is directly based on the same microscopic BHF calculations, and which is able to reproduce the ground-state properties of nuclei along the periodic table. The EoS of the outer crust requires the masses of neutron-rich nuclei, which are obtained through Hartree-Fock-Bogoliubov calculations with the BCPM functional when they are unknown experimentally. To compute the inner crust, Thomas-Fermi calculations in Wigner-Seitz cells are performed with the same functional. Existence of nuclear pasta is predicted in a range of average baryon densities between $\\simeq$0.067 fm$^{-3}$ and $\\simeq$0.0825 fm$...
High Energy Density Capacitors Project
National Aeronautics and Space Administration — NASA?s future space science missions cannot be realized without the state of the art energy storage devices which require high energy density, high reliability, and...
High Energy Density Laboratory Astrophysics
Lebedev, Sergey V
2007-01-01
During the past decade, research teams around the world have developed astrophysics-relevant research utilizing high energy-density facilities such as intense lasers and z-pinches. Every two years, at the International conference on High Energy Density Laboratory Astrophysics, scientists interested in this emerging field discuss the progress in topics covering: - Stellar evolution, stellar envelopes, opacities, radiation transport - Planetary Interiors, high-pressure EOS, dense plasma atomic physics - Supernovae, gamma-ray bursts, exploding systems, strong shocks, turbulent mixing - Supernova remnants, shock processing, radiative shocks - Astrophysical jets, high-Mach-number flows, magnetized radiative jets, magnetic reconnection - Compact object accretion disks, x-ray photoionized plasmas - Ultrastrong fields, particle acceleration, collisionless shocks. These proceedings cover many of the invited and contributed papers presented at the 6th International Conference on High Energy Density Laboratory Astrophys...
The transverse energy, E/sub tau/ spectra for O16 and S32 incident for various elements at 200 GeVnucleon are shown. The target and projectile dependencies of the data are discussed. The energy density achieved is estimated. For O16 on Tungsten the multiplicity spectrum is also presented as well as the pseudorapidity spectra as a function of the transverse energy. The multiplicity cross section dσdN as measured in the backward hemisphere (0.9 < /eta/ < 2.9/ is found to be very similar in shape to the transverse energy distribution dσdE/tau/ reflecting the particular geometry of nucleus nucleus nucleus collisions. The dependence on the atomic mass of the target, A/sub tau/ and projectile A/sub p/ is not what one would expect from naive considerations
High-Energy-Density Capacitors
Slenes, Kirk
2003-01-01
Capacitors capable of storing energy at high densities are being developed for use in pulse-power circuits in such diverse systems as defibrillators, particle- beam accelerators, microwave sources, and weapons. Like typical previously developed energy-storage capacitors, these capacitors are made from pairs of metal/solid-dielectric laminated sheets that are wound and pressed into compact shapes to fit into cans, which are then filled with dielectric fluids. Indeed, these capacitors can be fabricated largely by conventional fabrication techniques. The main features that distinguish these capacitors from previously developed ones are improvements in (1) the selection of laminate materials, (2) the fabrication of the laminated sheets from these materials, and (3) the selection of dielectric fluids. In simplest terms, a high-performance laminated sheet of the type used in these capacitors is made by casting a dielectric polymer onto a sheet of aluminized kraft paper. The dielectric polymer is a siloxane polymer that has been modified with polar pendant groups to increase its permittivity and dielectric strength. Potentially, this polymer is capable of withstanding an energy density of 7.5 J/cm3, which is four times that of the previous state-of-the-art-capacitor dielectric film material. However, the full potential of this polymer cannot be realized at present because (1) at thicknesses needed for optimum performance (.8.0 m), the mechanical strength of a film of this polymer is insufficient for incorporation into a wound capacitor and (2) at greater thickness, the achievable energy density decreases because of a logarithmic decrease in dielectric strength with increasing thickness. The aluminized kraft paper provides the mechanical strength needed for processing of the laminate and fabrication of the capacitor, and the aluminum film serves as an electrode layer. Because part of the thickness of the dielectric is not occupied by the modified siloxane polymer, the
Energy Density in Quark-Gluon Plasma
马忠彪; 苗洪; 高崇寿
2003-01-01
We study the energy density in quark-gluon plasma. At the very high temperature, the quark matter is a hot and dense matter in the colour deconfinement condition, and quarks can coalescent diquarks. Energy density of this system is worked out and compared with the energy density in the other two kinds of situations. Possible energy density is about eo ≈ 2.4 GeV/fm3 according to our estimation for quark matter including diquarks,
Ultimate Energy Densities for Electromagnetic Pulses
Tsang, Mankei
2008-01-01
The ultimate electric and magnetic energy densities that can be attained by bandlimited electromagnetic pulses in free space are calculated using an ab initio quantized treatment, and the quantum states of electromagnetic fields that achieve the ultimate energy densities are derived. The ultimate energy densities also provide an experimentally accessible metric for the degree of localization of polychromatic photons.
Oxides having high energy densities
Ceder, Gerbrand; Kang, Kisuk
2013-09-10
Certain disclosed embodiments generally relate to oxide materials having relatively high energy and/or power densities. Various aspects of the embodiments are directed to oxide materials having a structure B.sub.i(M.sub.jY.sub.k)O.sub.2, for example, a structure Li.sub.j(Ni.sub.jY.sub.k)O.sub.2 such as Li(Ni.sub.0.5Mn.sub.0.5)O.sub.2. In this structure, Y represents one or more atoms, each independently selected from the group consisting of alkaline earth metals, transition metals, Group 14 elements, Group 15, or Group 16 elements. In some embodiments, such an oxide material may have an O3 crystal structure, and/or a layered structure such that the oxide comprises a plurality of first, repeating atomic planes comprising Li, and a plurality of second, repeating atomic planes comprising Ni and/or Y.
Energy density functional in nuclear physics
Iwata, Yoritaka; Maruhn, Joachim A.
2012-01-01
Fundamentals of energy density functional in nuclear physics are presented. Much attention is paid to a mathematically rigorous treatment of deriving the energy density functional. The specific features of the density functional used in studying many-nucleon systems, which is quite different from that used in many-electron systems, are also shown. The intended audience are physicists, chemists and mathematicians. In particular those who will start to study the density functional theory are in...
Vacuum energy density near fluctuating boundaries
The imposition of boundary conditions upon a quantized field can lead to singular energy densities on the boundary. We treat the boundaries as quantum mechanical objects with nonzero position uncertainty, and show that the singular energy density is removed. This treatment also resolves a long standing paradox concerning the total energy of the minimally coupled and conformally coupled scalar fields. (author)
Energy density bounds for black strings
Tomizawa, S
2005-01-01
The conserved charge called Y-ADM mass density associated with asymptotically translational Killing-Yano tensor gives us an appropriate physical meaning about the energy density of $p$ brane spacetimes or black strings. We investigated the positivity of energy density in black string spacetimes, using the spinorial technique introduced by Witten. Recently, the positivity of Y-ADM mass density in p brane spacetimes was discussed. In this paper, we will extend this discussion to the transversely asymptotically flat black string spacetimes containing an apparent horizon. We will give the sufficient conditions for the Y-ADM mass density to become positive in such spacetimes.
Nuclear energy density optimization: Shell structure
Kortelainen, M; Nazarewicz, W; Olsen, E; Reinhard, P -G; Sarich, J; Schunck, N; Wild, S M; Davesne, D; Erler, J; Pastore, A
2013-01-01
Nuclear density functional theory is the only microscopical theory that can be applied throughout the entire nuclear landscape. Its key ingredient is the energy density functional. In this work, we propose a new parameterization UNEDF2 of the local Skyrme energy density functional. The functional optimization is carried out using the POUNDerS optimization algorithm within the framework of the Skyrme Hartree-Fock-Bogoliubov theory. Compared to the previous parameterization UNEDF1, restrictions on the tensor term of the energy density have been lifted, yielding the most general form of the Skyrme energy density functional up to second order in derivatives of the one-body local density. In order to impose constraints on all the parameters of the functional, selected data on single-particle splittings in spherical doubly-magic nuclei have been included into the experimental dataset. The agreement with both bulk and spectroscopic nuclear properties achieved by the resulting UNEDF2 parameterization is comparable wi...
Energy density of marine pelagic fish eggs
Riis-Vestergaard, J.
2002-01-01
Analysis of the literature on pelagic fish eggs enabled generalizations to be made of their energy densities, because the property of being buoyant in sea water appears to constrain the proximate composition of the eggs and thus to minimize interspecific variation. An energy density of 1.34 J mul...
New aspects of high energy density plasma
The papers presented at the symposium on 'New aspects of high energy density plasma' held at National Institute for Fusion Science are collected in this proceedings. The papers reflect the present status and recent progress in the experiments and theoretical works on high energy density plasma produced by pulsed power technology. The 13 of the presented papers are indexed individually. (J.P.N.)
Nuclear energy density optimization: Shell structure
Kortelainen, M.; McDonnell, J.; W. Nazarewicz; Olsen, E; Reinhard, P. -G.; Sarich, J.; Schunck, N.; Wild, S. M.; Davesne, D.; Erler, J.; Pastore, A.
2013-01-01
Nuclear density functional theory is the only microscopical theory that can be applied throughout the entire nuclear landscape. Its key ingredient is the energy density functional. In this work, we propose a new parameterization UNEDF2 of the Skyrme energy density functional. The functional optimization is carried out using the POUNDerS optimization algorithm within the framework of the Skyrme Hartree-Fock-Bogoliubov theory. Compared to the previous parameterization UNEDF1, restrictions on th...
Low density behaviour of nuclear symmetry energy
The nuclear symmetry energy is a fundamental quantity important for studying the structure of systems as diverse as the atomic nucleus and the neutron star. Considerable efforts have been made to ascertain the symmetry energy and its dependence on nuclear density. The theoretical studies are in agreement in general but differences in detail e.g. at sub- and supra-saturation density. The density behavior of the symmetry energy with respect to charge asymmetric nuclear matter is studied within the density functional derived from Density-Dependent Relativistic Hadron field (DDRH) theory. We explored the genuine contribution of the isovector and isoscalar mesons to the symmetry energy and the isospin dynamics of nuclear matter. The results of our calculation for the isospin dependence of nuclear symmetry energy and the effective pairing interaction in comparison to phenomenological approaches are presented.
Energy density of marine pelagic fish eggs
Riis-Vestergaard, J.
2002-01-01
Analysis of the literature on pelagic fish eggs enabled generalizations to be made of their energy densities, because the property of being buoyant in sea water appears to constrain the proximate composition of the eggs and thus to minimize interspecific variation. An energy density of 1.34 J mul......(-1) of total egg volume is derived for most species spawning eggs without visible oil globules. The energy density of eggs with oil globules is predicted by (σ) over cap = 1.34 + 40.61 x (J mul(-1)) where x is the fractional volume of the oil globule. (C) 2002 The Fisheries Society of the British...
Nuclear Energy Density Functionals Constrained by Low-Energy QCD
Vretenar, Dario
2008-01-01
A microscopic framework of nuclear energy density functionals is reviewed, which establishes a direct relation between low-energy QCD and nuclear structure, synthesizing effective field theory methods and principles of density functional theory. Guided by two closely related features of QCD in the low-energy limit: a) in-medium changes of vacuum condensates, and b) spontaneous breaking of chiral symmetry; a relativistic energy density functional is developed and applied in studies of ground-s...
Density Estimation Trees in High Energy Physics
Anderlini, Lucio
2015-01-01
Density Estimation Trees can play an important role in exploratory data analysis for multidimensional, multi-modal data models of large samples. I briefly discuss the algorithm, a self-optimization technique based on kernel density estimation, and some applications in High Energy Physics.
Energy Density Fluctuations in Inflationary Cosmology
Muller, Harald F.; Schmid, Christoph
1994-01-01
We analyze the energy density fluctuations contributed by scalar fields $\\Phi$ with vanishing expectation values, $\\langle\\Phi\\rangle=0$, which are present in addition to the inflaton field. For simplicity we take $\\Phi$ to be non--interacting and minimally coupled to gravity. We use normal ordering to define the renormalized energy density operator $\\rho$, and we show that any normal ordering gives the same result for correlation functions of $\\rho$. We first consider massless fields and der...
Universal Nuclear Energy Density Functional
Carlson, Joseph; Furnstahl, Richard; Horoi, Mihai; Lusk, Rusty; Nazarewicz, Witold; Ng, Esmond; Thompson, Ian; Vary, James
2012-12-01
An understanding of the properties of atomic nuclei is crucial for a complete nuclear theory, for element formation, for properties of stars, and for present and future energy and defense applications. During the period of Dec. 1 2006 – Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. Until recently such an undertaking was hard to imagine, and even at the present time such an ambitious endeavor would be far beyond what a single researcher or a traditional research group could carry out.
Symmetry energy in nuclear density functional theory
W. Nazarewicz; Reinhard, P. -G.; Satula, W.; Vretenar, D.
2013-01-01
The nuclear symmetry energy represents a response to the neutron-proton asymmetry. In this survey we discuss various aspects of symmetry energy in the framework of nuclear density functional theory, considering both non-relativistic and relativistic self-consistent mean-field realizations side-by-side. Key observables pertaining to bulk nucleonic matter and finite nuclei are reviewed. Constraints on the symmetry energy and correlations between observables and symmetry-energy parameters, using...
Energy Density Functional Approach to Superfluid Nuclei
Yu, Yongle; Bulgac, Aurel
2002-01-01
We show that within the framework of a simple local nuclear energy density functional (EDF), one can describe accurately the one-- and two--nucleon separation energies of semi--magic nuclei. While for the normal part of the EDF we use previously suggested parameterizations, for the superfluid part of the EDF we use the simplest possible local form compatible with known nuclear symmetries.
Energy-momentum Density of Gravitational Waves
Abbassi, Amir M.; Mirshekari, Saeed
2009-01-01
In this paper, we elaborate the problem of energy-momentum in general relativity by energy-momentum prescriptions theory. Our aim is to calculate energy and momentum densities for the general form of gravitational waves. In this connection, we have extended the previous works by using the prescriptions of Bergmann and Tolman. It is shown that they are finite and reasonable. In addition, using Tolman prescription, exactly, leads to same results that have been obtained by Einstein and Papapetro...
Relativistic Nuclear Energy Density Functionals: adjusting parameters to binding energies
Niksic, T; Ring, P
2008-01-01
We study a particular class of relativistic nuclear energy density functionals in which only nucleon degrees of freedom are explicitly used in the construction of effective interaction terms. Short-distance (high-momentum) correlations, as well as intermediate and long-range dynamics, are encoded in the medium (nucleon density) dependence of the strength functionals of an effective interaction Lagrangian. Guided by the density dependence of microscopic nucleon self-energies in nuclear matter, a phenomenological ansatz for the density-dependent coupling functionals is accurately determined in self-consistent mean-field calculations of binding energies of a large set of axially deformed nuclei. The relationship between the nuclear matter volume, surface and symmetry energies, and the corresponding predictions for nuclear masses is analyzed in detail. The resulting best-fit parametrization of the nuclear energy density functional is further tested in calculations of properties of spherical and deformed medium-he...
Symmetry energy in nuclear density functional theory
The nuclear symmetry energy represents a response to the neutron-proton asymmetry. In this paper we discuss various aspects of symmetry energy in the framework of nuclear density functional theory, considering both non-relativistic and relativistic self-consistent mean-field realizations side by side. Key observables pertaining to bulk nucleonic matter and finite nuclei are reviewed. Constraints on the symmetry energy and correlations between observables and symmetry energy parameters, using statistical covariance analysis, are investigated. Perspectives for future work are outlined in the context of ongoing experimental efforts. (orig.)
Surface Symmetry Energy of Nuclear Energy Density Functionals
Nikolov, N.; Schunck, N.; W. Nazarewicz; Bender, M.; Pei, J.
2010-01-01
We study the bulk deformation properties of the Skyrme nuclear energy density functionals. Following simple arguments based on the leptodermous expansion and liquid drop model, we apply the nuclear density functional theory to assess the role of the surface symmetry energy in nuclei. To this end, we validate the commonly used functional parametrizations against the data on excitation energies of superdeformed band-heads in Hg and Pb isotopes, and fission isomers in actinide nuclei. After subt...
Nuclear energy density optimization: Large deformations
Kortelainen, M.; McDonnell, J.; W. Nazarewicz; Reinhard, P. -G.; Sarich, J.; Schunck, N.; Stoitsov, M. V.; Wild, S. M.
2011-01-01
A new Skyrme-like energy density suitable for studies of strongly elongated nuclei has been determined in the framework of the Hartree-Fock-Bogoliubov theory using the recently developed model-based, derivative-free optimization algorithm POUNDerS. A sensitivity analysis at the optimal solution has revealed the importance of states at large deformations in driving the parameterization of the functional. The good agreement with experimental data on masses and separation energies, achieved with...
Energy trapping from Hagedorn densities of states
Behan, Connor; Lashkari, Nima; Swingle, Brian; Van Raamsdonk, Mark
2013-01-01
In this note, we construct simple stochastic toy models for holographic gauge theories in which distributions of energy on a collection of sites evolve by a master equation with some specified transition rates. We build in only energy conservation, locality, and the standard thermodynamic requirement that all states with a given energy are equally likely in equilibrium. In these models, we investigate the qualitative behavior of the dynamics of the energy distributions for different choices of the density of states for the individual sites. For typical field theory densities of states (\\log(\\rho(E)) ~ E^{\\alpha<1}), the model gives diffusive behavior in which initially localized distributions of energy spread out relatively quickly. For large N gauge theories with gravitational duals, the density of states for a finite volume of field theory degrees of freedom typically includes a Hagedorn regime (\\log(\\rho(E)) ~ E). We find that this gives rise to a trapping of energy in subsets of degrees of freedom for ...
Strongly Interacting Matter at High Energy Density
McLerran,L.
2008-09-07
This lecture concerns the properties of strongly interacting matter (which is described by Quantum Chromodynamics) at very high energy density. I review the properties of matter at high temperature, discussing the deconfinement phase transition. At high baryon density and low temperature, large N{sub c} arguments are developed which suggest that high baryonic density matter is a third form of matter, Quarkyonic Matter, that is distinct from confined hadronic matter and deconfined matter. I finally discuss the Color Glass Condensate which controls the high energy limit of QCD, and forms the low x part of a hadron wavefunction. The Glasma is introduced as matter formed by the Color Glass Condensate which eventually thermalizes into a Quark Gluon Plasma.
Building a universal nuclear energy density functional
This talk describes a new project in SciDAC II in the area of low-energy nuclear physics. The motivation and goals of the SciDAC are presented as well as an outline of the theoretical and computational methodology that will be employed. An important motivation is to have more accurate and reliable predictions of nuclear properties including their binding energies and low-energy reaction rates. The theoretical basis is provided by density functional theory, which the only available theory that can be systematically applied to all nuclei. However, other methodologies based on wave function methods are needed to refine the functionals and to make applications to dynamic processes
Nonlocal kinetic-energy-density functionals
In this paper we present nonlocal kinetic-energy functionals T[n] within the average density approximation (ADA) framework, which do not require any extra input when applied to any electron system and recover the exact kinetic energy and the linear response function of a homogeneous system. In contrast with previous ADA functionals, these present good behavior of the long-range tail of the exact weight function. The averaging procedure for the kinetic functional (averaging the Fermi momentum of the electron gas, instead of averaging the electron density) leads to a functional without numerical difficulties in the calculation of extended systems, and it gives excellent results when applied to atoms and jellium surfaces. copyright 1996 The American Physical Society
Alternative Approaches to High Energy Density Fusion
Hammer, J.
2016-03-01
This paper explores selected approaches to High Energy Density (HED) fusion, beginning with discussion of ignition requirements at the National Ignition Facility (NIF). The needed improvements to achieve ignition are closely tied to the ability to concentrate energy in the implosion, manifested in the stagnation pressure, Pstag . The energy that must be assembled in the imploded state to ignite varies roughly as Pstag -2, so among other requirements, there is a premium on reaching higher Pstag to achieve ignition with the available laser energy. The U.S. inertial confinement fusion program (ICF) is pursuing higher Pstag on NIF through improvements to capsule stability and symmetry. One can argue that recent experiments place an approximate upper bound on the ultimate ignition energy requirement. Scaling the implosions consistently in spatial, temporal and energy scales shows that implosions of the demonstrated quality ignite robustly at 9-15 times the current energy of NIF. While lasers are unlikely to reach that bounding energy, it appears that pulsed-power sources could plausibly do so, giving a range of paths forward for ICF depending on success in improving energy concentration. In this paper, I show the scaling arguments then discuss topics from my own involvement in HED fusion. The recent Viewfactor experiments at NIF have shed light on both the observed capsule drive deficit and errors in the detailed modelling of hohlraums. The latter could be important factors in the inability to achieve the needed symmetry and energy concentration. The paper then recounts earlier work in Fast Ignition and the uses of pulsed- power for HED and fusion applications. It concludes with a description of a method for improving pulsed-power driven hohlraums that could potentially provide a factor of 10 in energy at NIF-like drive conditions and reach the energy bound for indirect drive ICF.
Inductor Geometry With Improved Energy Density
Cui, H; Ngo, KDT; Moss, J; Lim, MHF; Rey, E
2014-10-01
The "constant-flux" concept is leveraged to achieve high magnetic-energy density, leading to inductor geometries with height significantly lower than that of conventional products. Techniques to shape the core and to distribute the winding turns to shape a desirable field profile are described for the two basic classes of magnetic geometries: those with the winding enclosed by the core and those with the core enclosed by the winding. A relatively constant flux distribution is advantageous not only from the density standpoint, but also from the thermal standpoint via the reduction of hot spots, and from the reliability standpoint via the suppression of flux crowding. In this journal paper on a constant-flux inductor (CFI) with enclosed winding, the foci are operating principle, dc analysis, and basic design procedure. Prototype cores and windings were routed from powder-iron disks and copper sheets, respectively. The design of CFI was validated by the assembled inductor prototype.
Energy density functional for nuclei and neutron stars
Erler, J.; Horowitz, C. J.; W. Nazarewicz; Rafalski, M.; Reinhard, P. -G.
2012-01-01
We aim to develop a nuclear energy density functional that can be simultaneously applied to finite nuclei and neutron stars. We use the self-consistent nuclear density functional theory (DFT) with Skyrme energy density functionals and covariance analysis to assess correlations between observables for finite nuclei and neutron stars. In a first step two energy functionals -- a high density energy functional giving reasonable neutron properties, and a low density functional fitted to nuclear pr...
High energy density redox flow device
Chiang, Yet-Ming; Carter, W. Craig; Ho, Bryan Y; Duduta, Mihai; Limthongkul, Pimpa
2014-05-13
Redox flow devices are described in which at least one of the positive electrode or negative electrode-active materials is a semi-solid or is a condensed ion-storing electroactive material, and in which at least one of the electrode-active materials is transported to and from an assembly at which the electrochemical reaction occurs, producing electrical energy. The electronic conductivity of the semi-solid is increased by the addition of conductive particles to suspensions and/or via the surface modification of the solid in semi-solids (e.g., by coating the solid with a more electron conductive coating material to increase the power of the device). High energy density and high power redox flow devices are disclosed. The redox flow devices described herein can also include one or more inventive design features. In addition, inventive chemistries for use in redox flow devices are also described.
Diffuse Waves and Energy Densities Near Boundaries
Sanchez-Sesma, F. J.; Rodriguez-Castellanos, A.; Campillo, M.; Perton, M.; Luzon, F.; Perez-Ruiz, J. A.
2007-12-01
Green function can be retrieved from averaging cross correlations of motions within a diffuse field. In fact, it has been shown that for an elastic inhomogeneous, anisotropic medium under equipartitioned, isotropic illumination, the average cross correlations are proportional to the imaginary part of Green function. For instance coda waves are due to multiple scattering and their intensities follow diffusive regimes. Coda waves and the noise sample the medium and effectively carry information along their paths. In this work we explore the consequences of assuming both source and receiver at the same point. From the observable side, the autocorrelation is proportional to the energy density at a given point. On the other hand, the imaginary part of the Green function at the source itself is finite because the singularity of Green function is restricted to the real part. The energy density at a point is proportional with the trace of the imaginary part of Green function tensor at the source itself. The Green function availability may allow establishing the theoretical energy density of a seismic diffuse field generated by a background equipartitioned excitation. We study an elastic layer with free surface and overlaying a half space and compute the imaginary part of the Green function for various depths. We show that the resulting spectrum is indeed closely related to the layer dynamic response and the corresponding resonant frequencies are revealed. One implication of present findings lies in the fact that spatial variations may be useful in detecting the presence of a target by its signature in the distribution of diffuse energy. These results may be useful in assessing the seismic response of a given site if strong ground motions are scarce. It suffices having a reasonable illumination from micro earthquakes and noise. We consider that the imaginary part of Green function at the source is a spectral signature of the site. The relative importance of the peaks of
Mattsson, Ann Elisabet; Modine, Normand Arthur; Desjarlais, Michael Paul; Muller, Richard Partain; Sears, Mark P.; Wright, Alan Francis
2006-11-01
A finite temperature version of 'exact-exchange' density functional theory (EXX) has been implemented in Sandia's Socorro code. The method uses the optimized effective potential (OEP) formalism and an efficient gradient-based iterative minimization of the energy. The derivation of the gradient is based on the density matrix, simplifying the extension to finite temperatures. A stand-alone all-electron exact-exchange capability has been developed for testing exact exchange and compatible correlation functionals on small systems. Calculations of eigenvalues for the helium atom, beryllium atom, and the hydrogen molecule are reported, showing excellent agreement with highly converged quantumMonte Carlo calculations. Several approaches to the generation of pseudopotentials for use in EXX calculations have been examined and are discussed. The difficult problem of finding a correlation functional compatible with EXX has been studied and some initial findings are reported.
Effective theory for low-energy nuclear energy density functionals
Dobaczewski, J.; Bennaceur, K.; Raimondi, F.
2012-01-01
We introduce a new class of effective interactions to be used within the energy-density-functional approaches. They are based on regularized zero-range interactions and constitute a consistent application of the effective-theory methodology to low-energy phenomena in nuclei. They allow for defining the order of expansion in terms of the order of derivatives acting on the finite-range potential. Numerical calculations show a rapid convergence of the expansion and independence of results of the...
Density content of nuclear symmetry energy from nuclear observables
B K Agrawal
2014-11-01
The nuclear symmetry energy at a given density measures the energy transferred in converting symmetric nuclear matter into the pure neutron matter. The density content of nuclear symmetry energy remains poorly constrained. Our recent results for the density content of the nuclear symmetry energy, around the saturation density, extracted using experimental data for accurately known nuclear masses, giant resonances and neutron-skin thickness in heavy nuclei are summarized.
Quantum Inequality Restrictions on Negative Energy Densities in Curved Spacetimes
Pfenning, Michael John; Ford, L. H.
1998-01-01
In quantum field theory, there exist states in which the expectation value of the energy density for a quantized field is negative. These negative energy densities lead to many problems. Although quantum field theory introduces negative energies, it also provides constraints in the form of quantum inequalities (QI's). These uncertainty principle-type relations limit the magnitude and duration of any negative energy. We derive a general form of the QI on the energy density for both the quantiz...
The economics of obesity: dietary energy density and energy cost.
Drewnowski, Adam; Darmon, Nicole
2005-07-01
Highest rates of obesity and diabetes in the United States are found among the lower-income groups. The observed links between obesity and socioeconomic position may be related to dietary energy density and energy cost. Refined grains, added sugars, and added fats are among the lowest-cost sources of dietary energy. They are inexpensive, good tasting, and convenient. In contrast, the more nutrient-dense lean meats, fish, fresh vegetables, and fruit generally cost more. An inverse relationship between energy density of foods (kilojoules per gram) and their energy cost (dollars per megajoule) means that the more energy-dense diets are associated with lower daily food consumption costs and may be an effective way to save money. However, economic decisions affecting food choice may have physiologic consequences. Laboratory studies suggest that energy-dense foods and energy-dense diets have a lower satiating power and may result in passive overeating and therefore weight gain. Epidemiologic analyses suggest that the low-cost energy-dense diets also tend to be nutrient poor. If the rise in obesity rates is related to the growing price disparity between healthy and unhealthy foods, then the current strategies for obesity prevention may need to be revised. Encouraging low-income families to consume healthier but more costly foods to prevent future disease can be construed as an elitist approach to public health. Limiting access to inexpensive foods through taxes on frowned upon fats and sweets is a regressive measure. The broader problem may lie with growing disparities in incomes and wealth, declining value of the minimum wage, food imports, tariffs, and trade. Evidence is emerging that obesity in America is a largely economic issue. PMID:16002835
Nuclear symmetry energy at subnormal densities from measured nuclear masses
Min LIU; Wang, Ning; Li, Zhuxia; Zhang, Fengshou
2010-01-01
The symmetry energy coefficients for nuclei with mass number A=20~250 are extracted from more than 2000 measured nuclear masses. With the semi-empirical connection between the symmetry energy coefficients of finite nuclei and the nuclear symmetry energy at reference densities, we investigate the density dependence of symmetry energy of nuclear matter at subnormal densities. The obtained results are compared with those extracted from other methods.
Superintense ion beam with high energy density
Dudnikov, Vadim; Dudnikova, Galina
2008-04-01
The energy density of ion beam accumulated in a storage ring can be increased dramatically with using of space charge compensation as was demonstrated in experiments [1]. The intensity of said superintense beam can be far greater than a space charge limit without space charge compensation. The model of secondary plasma build up with secondary ion-electron emission as a source of delayed electrons has been presented and discussed. This model can be used for explanation of bunched beam instability with electron surviving after gap, for prediction of e-cloud generation in coasting and long bunches beam, and can be important for pressure rise in worm and cold sections of storage rings. A fast desorption by ion of physically adsorbed molecules can explain a ``first pulse Instability''. Application of this model for e-p instability selfstabilization and superintense circulating beam accumulation is considered. Importance of secondary plasma for high perveance ion beam stabilization in ion implantation will be considered. Preliminary results of simulation of electron and ion accumulation will be presented. [1]. Belchenko et al., Xth International Particle Accelerator Conference, Protvino, 1977, Vol. 2, p. 287.
Building a Universal Nuclear Energy Density Functional
Carlson, Joe A. [Michigan State University; Furnstahl, Dick; Horoi, Mihai; Lust, Rusty; Nazaewicc, Witek; Ng, Esmond; Thompson, Ian; Vary, James
2012-12-30
During the period of Dec. 1 2006 – Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. The long-term vision initiated with UNEDF is to arrive at a comprehensive, quantitative, and unified description of nuclei and their reactions, grounded in the fundamental interactions between the constituent nucleons. We seek to replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that delivers maximum predictive power with well-quantified uncertainties. Specifically, the mission of this project has been three-fold: First, to find an optimal energy density functional (EDF) using all our knowledge of the nucleonic Hamiltonian and basic nuclear properties; Second, to apply the EDF theory and its extensions to validate the functional using all the available relevant nuclear structure and reaction data; Third, to apply the validated theory to properties of interest that cannot be measured, in particular the properties needed for reaction theory.
Probing the density content of the nuclear symmetry energy
B K Agrawal; J N De; S K Samaddar
2014-05-01
The nature of equation of state for the neutron star matter is crucially governed by the density dependence of the nuclear symmetry energy. We attempt to probe the behaviour of the nuclear symmetry energy around the saturation density by exploiting the empirical values for volume and surface symmetry energy coefficients extracted from the precise data on the nuclear masses.
Theoretical study of atoms by the electronic kinetic energy density and stress tensor density
Nozaki, Hiroo; Tachibana, Akitomo
2016-01-01
We analyze the electronic structure of atoms in the first, second and third periods using the electronic kinetic energy density and stress tensor density, which are local quantities motivated by quantum field theoretic consideration, specifically the rigged quantum electrodynamics. We compute the zero surfaces of the electronic kinetic energy density, which we call the electronic interfaces, of the atoms. We find that their sizes exhibit clear periodicity and are comparable to the conventional atomic and ionic radii. We also compute the electronic stress tensor density and its divergence, tension density, of the atoms, and discuss how their electronic structures are characterized by them.
The mapping of electronic energy distributions using experimental electron density.
Tsirelson, Vladimir G
2002-08-01
It is demonstrated that the approximate kinetic energy density calculated using the second-order gradient expansion with parameters of the multipole model fitted to experimental structure factors reproduces the main features of this quantity in a molecular or crystal position space. The use of the local virial theorem provides an appropriate derivation of approximate potential energy density and electronic energy density from the experimental (model) electron density and its derivatives. Consideration of these functions is not restricted by the critical points in the electron density and provides a comprehensive characterization of bonding in molecules and crystals. PMID:12149553
On exact and approximate exchange-energy densities
Springborg, Michael; Dahl, Jens Peder
1999-01-01
Based on correspondence rules between quantum-mechanical operators and classical functions in phase space we construct exchange-energy densities in position space. Whereas these are not unique but depend on the chosen correspondence rule, the exchange potential is unique. We calculate this exchange......-energy density for 15 closed-shell atoms, and compare it with kinetic- and Coulomb-energy densities. It is found that it has a dominating local-density character, but electron-shell effects are recognizable. The approximate exchange-energy functionals that have been proposed so far are found to account only...
Chemically and Thermally Stable High Energy Density Silicone Composites Project
National Aeronautics and Space Administration — Thermal energy storage systems with 300 ? 1000 kJ/kg energy density through either phase changes or chemical heat absorption are sought by NASA. This proposed...
Nozaki, Hiroo; Ichikawa, Kazuhide; Watanabe, Taku; Aihara, Yuichi; Tachibana, Akitomo
2016-01-01
We analyze the electronic structure of lithium ionic conductors, ${\\rm Li_3PO_4}$ and ${\\rm Li_3PS_4}$, using the electronic stress tensor density and kinetic energy density with special focus on the ionic bonds among them. We find that, as long as we examine the pattern of the eigenvalues of the electronic stress tensor density, we cannot distinguish between the ionic bonds and bonds among metalloid atoms. We then show that they can be distinguished by looking at the morphology of the electronic interface, the zero surface of the electronic kinetic energy density.
Covariance analysis for Energy Density Functionals and instabilities
Roca-Maza, X; Colò, G
2014-01-01
We present the covariance analysis of two successful nuclear energy density functionals, (i) a non-relativistic Skyrme functional built from a zero-range effective interaction, and (ii) a relativistic nuclear energy density functional based on density dependent meson-nucleon couplings. Such a study is crucial for assessing the information content of an observable when predicted by a given model. The covariance analysis is a useful tool for understanding the limitations of a model, the correlations between observables and the statistical errors. We also provide a brief review, partly connected with the covariance analysis, of some instabilities displayed by several energy density functionals of current use in nuclear physics.
Energy density functional for nuclei and neutron stars
Erler, J; Nazarewicz, W; Rafalski, M; Reinhard, P -G
2012-01-01
We aim to develop a nuclear energy density functional that can be simultaneously applied to finite nuclei and neutron stars. We use the self-consistent nuclear density functional theory (DFT) with Skyrme energy density functionals and covariance analysis to assess correlations between observables for finite nuclei and neutron stars. In a first step two energy functionals -- a high density energy functional giving reasonable neutron properties, and a low density functional fitted to nuclear properties -- are matched. In a second step, we optimize a new functional using exactly the same protocol as in earlier studies pertaining to nuclei but now including neutron star data. This allows direct comparisons of performance of the new functional relative to the standard one. The new functional TOV-min yields results for nuclear bulk properties (energy, r.m.s. radius, diffraction radius, surface thickness) that are of the same quality as those obtained with the established Skyrme functionals, including SV-min. When c...
An exposition on Friedmann Cosmology with Negative Energy Densities
Nemiroff, Robert J; Patla, Bijunath R
2014-01-01
How would negative energy density affect a classic Friedmann cosmology? Although never measured and possibly unphysical, certain realizations of quantum field theories leaves the door open for such a possibility. In this paper we analyze the evolution of a universe comprising varying amounts of negative energy forms. Negative energy components have negative normalized energy densities, $\\Omega 1/3$. Assuming that such energy forms generate pressure like perfect fluids, the attractive or repulsive nature of negative energy components are reviewed. The Friedmann equation is satisfied only when negative energy forms are coupled to a greater magnitude of positive energy forms or positive curvature. We show that the solutions exhibit cyclic evolution with bounces and turnovers.The future and fate of such universes in terms of curvature, temperature, acceleration, and energy density are reviewed. The end states are dubbed Big Crunch, Big Void, or Big Rip and further qualified as "Warped", "Curved", or "Flat", "Hot...
Symmetry energy systematics and its high density behavior
Chen, Lie-Wen
2015-01-01
We explore the systematics of the density dependence of nuclear matter symmetry energy in the ambit of microscopic calculations with various energy density functionals, and find that the symmetry energy from subsaturation density to supra-saturation density can be well determined by three characteristic parameters of the symmetry energy at saturation density $\\rho_0 $, i.e., the magnitude $E_{\\text{sym}}({\\rho_0 })$, the density slope $L$ and the density curvature $K_{\\text{sym}}$. This finding opens a new window to constrain the supra-saturation density behavior of the symmetry energy from its (sub-)saturation density behavior. In particular, we obtain $L=46.7 \\pm 12.8$ MeV and $K_{\\text{sym}}=-166.9 \\pm 168.3$ MeV as well as $E_{\\text{sym}}({2\\rho _{0}}) \\approx 40.2 \\pm 12.8$ MeV and $L({2\\rho _{0}}) \\approx 8.9 \\pm 108.7$ MeV based on the present knowledge of $E_{\\text{sym}}({\\rho_{0}}) = 32.5 \\pm 0.5$ MeV, $E_{\\text{sym}}({\\rho_c}) = 26.65 \\pm 0.2$ MeV and $L({\\rho_c}) = 46.0 \\pm 4.5$ MeV at $\\rho_{\\rm{c...
Hybrid system for rechargeable magnesium battery with high energy density
Zheng Chang; Yaqiong Yang; Xiaowei Wang; Minxia Li; Zhengwen Fu; Yuping Wu; Rudolf Holze
2015-01-01
One of the main challenges of electrical energy storage (EES) is the development of environmentally friendly battery systems with high safety and high energy density. Rechargeable Mg batteries have been long considered as one highly promising system due to the use of low cost and dendrite-free magnesium metal. The bottleneck for traditional Mg batteries is to achieve high energy density since their output voltage is below 2.0 V. Here, we report a magnesium battery using Mg in Grignard reagent...
The gravitational field energy density for symmetrical and asymmetrical systems
Sosnovskiy, Roald
2006-01-01
The relativistic theory of gravitation has the considerable difficulties by description of the gravitational field energy. Pseudotensor t00 in the some cases cannot be interpreted as energy density of the gravitational field. In [1] the approach was proposed, which allow to express the energy density of such a field through the components of a metric tensor. This approach based on the consideration of the isothermal compression of the layer consisted of the incoherent matter. It was employ to...
Plasma photonic devices for high energy density science
Ultra-intense laser technologies are now opening a variety of attractive fields of science and technology such as astrophysics, high density nuclear science including medical applications and laser fusion. These applications are attributed to the control of intense light and the efficient generation of enormous energy-density particles such as MeV electrons with current densities as large as trillion amperes per square centimeter, which now depend only on the laser technology including conventional opticts. The invention of new devices that can control such intense light and pulsed energetic beams will revolutionize their applications. Here I propose a new systematization of plasmas to develop novel devices for the high energy density science, which is ''High Energy Plasma Photonics''. According to this concept, presented are novel plasma photonic devices consisting of transient plasmas to control the intense light and particle beams. As an example of the device, a plasma fiber coupled with a plasma collimator has been demonstrated for high-density MeV electrons in a manner akin to a light control by an optical fibre, enhancing the energy density by more than one order of magnitude and the creation of Giga-bar pressures. Such plasma devices hold rich promise for a range of applications using enormous energy-density particles and which can trigger a tremendous growth in high energy-density charged particles optics. (author)
Size effect of the surface energy density of nanoparticles
Yao, Yin; Wei, Yaochi; Chen, Shaohua
2015-06-01
The surface energy density of nanoparticles exhibits an obviously size-dependent behavior. However, how the surface energy density changes with the diameter of nanoparticles is still ambiguous. Based on a recently developed continuum theory considering the size effect in nanomaterials, theoretical analysis is carried out for various fcc metallic nanoparticles. Surface lattice contractions of nanoparticles are predicted and compared with the existing experimental data. As a result, the surface energy density decreases with the increase of nanoparticle diameter. Such a variation trend of surface energy density is contrary to the prediction of existing theoretical models but well consistent with the previously atomistic simulations and density functional calculations. The results in this paper provide a further understanding of the surface effect of nanoparticles, which should be helpful for the design of nanoscale devices or nanomaterials related to nanoparticles, such as NEMs and nanoparticle-reinforced composites.
Spin constraints on nuclear energy density functionals
Robledo, L. M.; Bernard, R. N.; Bertsch, G. F.
2013-01-01
The Gallagher-Moszkowski rule in the spectroscopy of odd-odd nuclei imposes a new spin constraint on the energy functionals for self-consistent mean field theory. The commonly used parameterization of the effective three-body interaction in the Gogny and Skyrme families of energy functionals is ill-suited to satisfy the spin constraint. In particular, the Gogny parameterization of the three-body interaction has the opposite spin dependence to that required by the observed spectra. The two-bod...
High-Energy-Density Electrolytic Capacitors
Yen, Shiao-Ping S.; Lewis, Carol R.
1993-01-01
Reductions in weight and volume make new application possible. Supercapacitors and improved ultracapacitors advanced electrolytic capacitors developed for use as electric-load-leveling devices in such applications as electric vehicle propulsion systems, portable power tools, and low-voltage pulsed power supplies. One primary advantage: offer power densities much higher than storage batteries. Capacitors used in pulse mode, with short charge and discharge times. Derived from commercially available ultracapacitors. Made of lightweight materials; incorporate electrode/electrolyte material systems capable of operation at voltages higher than previous electrode/electrolyte systems. By use of innovative designs and manufacturing processes, made in wide range of rated capacitances and in rated operating potentials ranging from few to several hundred volts.
Postmortem validation of breast density using dual-energy mammography
Molloi, Sabee, E-mail: symolloi@uci.edu; Ducote, Justin L.; Ding, Huanjun; Feig, Stephen A. [Department of Radiological Sciences, University of California, Irvine, California 92697 (United States)
2014-08-15
Purpose: Mammographic density has been shown to be an indicator of breast cancer risk and also reduces the sensitivity of screening mammography. Currently, there is no accepted standard for measuring breast density. Dual energy mammography has been proposed as a technique for accurate measurement of breast density. The purpose of this study is to validate its accuracy in postmortem breasts and compare it with other existing techniques. Methods: Forty postmortem breasts were imaged using a dual energy mammography system. Glandular and adipose equivalent phantoms of uniform thickness were used to calibrate a dual energy basis decomposition algorithm. Dual energy decomposition was applied after scatter correction to calculate breast density. Breast density was also estimated using radiologist reader assessment, standard histogram thresholding and a fuzzy C-mean algorithm. Chemical analysis was used as the reference standard to assess the accuracy of different techniques to measure breast composition. Results: Breast density measurements using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean algorithm, and dual energy were in good agreement with the measured fibroglandular volume fraction using chemical analysis. The standard error estimates using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean, and dual energy were 9.9%, 8.6%, 7.2%, and 4.7%, respectively. Conclusions: The results indicate that dual energy mammography can be used to accurately measure breast density. The variability in breast density estimation using dual energy mammography was lower than reader assessment rankings, standard histogram thresholding, and fuzzy C-mean algorithm. Improved quantification of breast density is expected to further enhance its utility as a risk factor for breast cancer.
Postmortem validation of breast density using dual-energy mammography
Purpose: Mammographic density has been shown to be an indicator of breast cancer risk and also reduces the sensitivity of screening mammography. Currently, there is no accepted standard for measuring breast density. Dual energy mammography has been proposed as a technique for accurate measurement of breast density. The purpose of this study is to validate its accuracy in postmortem breasts and compare it with other existing techniques. Methods: Forty postmortem breasts were imaged using a dual energy mammography system. Glandular and adipose equivalent phantoms of uniform thickness were used to calibrate a dual energy basis decomposition algorithm. Dual energy decomposition was applied after scatter correction to calculate breast density. Breast density was also estimated using radiologist reader assessment, standard histogram thresholding and a fuzzy C-mean algorithm. Chemical analysis was used as the reference standard to assess the accuracy of different techniques to measure breast composition. Results: Breast density measurements using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean algorithm, and dual energy were in good agreement with the measured fibroglandular volume fraction using chemical analysis. The standard error estimates using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean, and dual energy were 9.9%, 8.6%, 7.2%, and 4.7%, respectively. Conclusions: The results indicate that dual energy mammography can be used to accurately measure breast density. The variability in breast density estimation using dual energy mammography was lower than reader assessment rankings, standard histogram thresholding, and fuzzy C-mean algorithm. Improved quantification of breast density is expected to further enhance its utility as a risk factor for breast cancer
A phase space approach to energy densities in position space
The problem of defining appropriate one-electron energy densities for electronic states of atoms, molecules and solids is not straightforward, so the authors have suggested a new approach based on the phase space formulation of quantum mechanics. One of the advantages of the approach is the comprehensive picture it gives of the field--another is that it leads to energy densities with optimal properties. For the kinetic energy density the authors have illustrated this by focusing on the local virial theorum which is not satisfied for other definitions. For the exchange eneergy density the authors have shown that the definition connects this density with an averaged exchange potential in a natural way
Nuclear Level Density at High Spin and Excitation Energy
A.N. Behkami; Z. Kargar
2001-01-01
The intensive studies of equilibrium processes in heavy-ion reaction have produced a need for information on nuclear level densities at high energies and spins. The Fermi gas level density is often used in investigation of heavy-ion reaction studies. Some papers have claimed that nuclear level densities might deviate substantially from the Fermi gas predications at excitations related to heavy-ion reactions. The formulae of calculation of the nuclear level density based on the theory of superconductivity are presented, special attention is paid to the dependence of the level density on the angular momentum. The spin-dependent nuclear level density is evaluated using the pairing interaction. The resulting level density for an average spin of 52h is evaluated for 155Er and compared with experimental data. Excellent agreement between experiment and theory is obtained.``
Nuclear Energy Density Functionals: What do we really know?
Bulgac, Aurel; Jin, Shi
2015-01-01
We present the simplest nuclear energy density functional (NEDF) to date, determined by only 4 significant phenomenological parameters, yet capable of fitting measured nuclear masses with better accuracy than the Bethe-Weizs\\"acker mass formula, while also describing density structures (charge radii, neutron skins etc.) and time-dependent phenomena (induced fission, giant resonances, low energy nuclear collisions, etc.). The 4 significant parameters are necessary to describe bulk nuclear properties (binding energies and charge radii); an additional 2 to 3 parameters have little influence on the bulk nuclear properties, but allow independent control of the density dependence of the symmetry energy and isovector excitations, in particular the Thomas-Reiche-Kuhn sum rule. This Hohenberg-Kohn-style of density functional theory successfully realizes Weizs\\"acker's ideas and provides a computationally tractable model for a variety of static nuclear properties and dynamics, from finite nuclei to neutron stars, where...
Stored energies for electric and magnetic current densities
Jonsson, B L G
2016-01-01
Electric and magnetic current densities are an essential part of electromagnetic theory. The goal of the present paper is to define and investigate stored energies that are valid for structures that can support both electric and magnetic current densities. Stored energies normalized with the dissipated power give us the Q factor, or antenna Q, for the structure. Lower bounds of the Q factor provide information about the available bandwidth for passive antennas that can be realized in the structure. The definition that we propose is valid beyond the leading order small antenna limit. Our starting point is the energy density with subtracted far-field form which we obtain an explicit and numerically attractive current density representation. This representation gives us the insight to propose a coordinate independent stored energy. Furthermore, we find here that lower bounds on antenna Q for structures with e.g. electric dipole radiation can be formulated as convex optimization problems. We determine lower bound...
The creation of high energy densities with antimatter beams
The use of antiprotons (and antideuterons) for the study of the behavior of nuclear matter at high energy density is considered. It is shown that high temperatures and high energy densities can be achieved for small volumes. Also investigated is the strangeness production in antimatter annihilation. It is found that the high rate of Lambda production seen in a recent experiment is easily understood. The Lambda and K-short rapidity distributions are also reproduced by the model considered. 11 refs., 6 figs
The creation of high energy densities with antimatter beams
The use of antiprotons (and antideuterons) for the study of the behavior of nuclear matter at high energy density is considered. It is shown that high temperatures and high energy densities can be achieved for small volumes. Also investigated is the strangeness production in antimatter annihilation. It is found that the high rate of Λ-production seen in a recent experiment is easily understood. The Λ and Ks rapidity distributions are also reproduced by the model considered. (orig.)
Workshop on extremely high energy density plasmas and their diagnostics
Compiled are the papers presented at the workshop on 'Extremely High Energy Density Plasmas and Their Diagnostics' held at National Institute for Fusion Science. The papers cover physics and applications of extremely high-energy density plasmas such as dense z-pinch, plasma focus, and intense pulsed charged beams. Separate abstracts were presented for 7 of the papers in this report. The remaining 25 were considered outside the subject scope of INIS. (author)
Workshop on extremely high energy density plasmas and their diagnostics
Ishii, Shozo (ed.)
2001-09-01
Compiled are the papers presented at the workshop on 'Extremely High Energy Density Plasmas and Their Diagnostics' held at National Institute for Fusion Science. The papers cover physics and applications of extremely high-energy density plasmas such as dense z-pinch, plasma focus, and intense pulsed charged beams. Separate abstracts were presented for 7 of the papers in this report. The remaining 25 were considered outside the subject scope of INIS. (author)
Nuclear Energy Density Functionals: What do we really know?
Bulgac, Aurel; Forbes, Michael McNeil; Jin, Shi
2015-01-01
We present the simplest nuclear energy density functional (NEDF) to date, determined by only 4 significant phenomenological parameters, yet capable of fitting measured nuclear masses with better accuracy than the Bethe-Weizs\\"acker mass formula, while also describing density structures (charge radii, neutron skins etc.) and time-dependent phenomena (induced fission, giant resonances, low energy nuclear collisions, etc.). The 4 significant parameters are necessary to describe bulk nuclear prop...
Vacuum Casimir energy densities and field divergences at boundaries
We consider and review the emergence of singular field fluctuations or energy densities at sharp boundaries or point-like field sources in the vacuum. The presence of singular energy densities of a field may be relevant from a conceptual point of view, because they contribute to the self-energy of the system. They could also generate significant gravitational effects. We first consider the case of the interface between a metallic boundary and the vacuum, and obtain the structure of the singular electric and magnetic energy densities at the interface through an appropriate limit from a dielectric to an ideal conductor. Then, we consider the case of a nondispersive and nondissipative point-like source of the electromagnetic field, described by its polarizability, and show that also in this case the electric and magnetic energy densities show a singular structure at the source position. We discuss how, in both cases, these singularities give an essential contribution to the electromagnetic self-energy of the system; moreover, they solve an apparent inconsistency between the space integral of the field energy density and the average value of the field Hamiltonian. The singular behavior we find is softened, or even eliminated, for boundaries fluctuating in space and for extended field sources. We discuss in detail the case in which a reflecting boundary is not fixed in space but is allowed to move around an equilibrium position, under the effect of quantum fluctuations of its position. Specifically, we consider the simple case of a 1D massless scalar field in a cavity with one fixed and one mobile wall described quantum-mechanically. We investigate how the possible motion of the wall changes the vacuum fluctuations and the energy density of the field, compared with the fixed-wall case. Also, we explicitly show how the fluctuating motion of the wall smears out the singular behaviour of the field energy density at the boundary. (paper)
Evolution of energy density fluctuations in A + A collisions
Two-particle angular correlation for charged particles emitted in Au + Au collisions at the center of mass of 200 MeV measured at RHIC energies revealed novel structures commonly referred to as a near-side ridge. The ridge phenomenon in relativistic A + A collisions is rooted probably in the initial conditions of the thermal evolution of the system. In this study we analyze the evolution of the bumping transverse structure of the energy density distribution caused by fluctuations of the initial density distributions that could lead to the ridge structures. We suppose that at very initial stage of collisions, the typical one-event structure of the initial energy density profile can be presented as the set of longitudinal tubes, which are boost-invariant in some space-rapidity region and are rather thin. These tubes have very high energy density as compared to smooth background density distribution. The transverse velocity and energy density profiles at different times of the evolution till the chemical freeze-out (at the temperature T = 165 MeV), that will be reached by the system, are calculated for sundry initial scenarios
A high energy density relaxor antiferroelectric pulsed capacitor dielectric
Pulsed capacitors require high energy density and low loss, properties that can be realized through selection of composition. Ceramic (Pb0.88La0.08)(Zr0.91Ti0.09)O3 was found to be an ideal candidate. La3+ doping and excess PbO were used to produce relaxor antiferroelectric behavior with slim and slanted hysteresis loops to reduce the dielectric hysteresis loss, to increase the dielectric strength, and to increase the discharge energy density. The discharge energy density of this composition was found to be 3.04 J/cm3 with applied electric field of 170 kV/cm, and the energy efficiency, defined as the ratio of the discharge energy density to the charging energy density, was 0.920. This high efficiency reduces the heat generated under cyclic loading and improves the reliability. The properties were observed to degrade some with temperature increase above 80 °C. Repeated electric field cycles up to 10 000 cycles were applied to the specimen with no observed performance degradation
A high energy density relaxor antiferroelectric pulsed capacitor dielectric
Jo, Hwan Ryul; Lynch, Christopher S. [Department of Mechanical and Aerospace Engineering, University of California, Los Angeles (UCLA), Los Angeles, California 90095 (United States)
2016-01-14
Pulsed capacitors require high energy density and low loss, properties that can be realized through selection of composition. Ceramic (Pb{sub 0.88}La{sub 0.08})(Zr{sub 0.91}Ti{sub 0.09})O{sub 3} was found to be an ideal candidate. La{sup 3+} doping and excess PbO were used to produce relaxor antiferroelectric behavior with slim and slanted hysteresis loops to reduce the dielectric hysteresis loss, to increase the dielectric strength, and to increase the discharge energy density. The discharge energy density of this composition was found to be 3.04 J/cm{sup 3} with applied electric field of 170 kV/cm, and the energy efficiency, defined as the ratio of the discharge energy density to the charging energy density, was 0.920. This high efficiency reduces the heat generated under cyclic loading and improves the reliability. The properties were observed to degrade some with temperature increase above 80 °C. Repeated electric field cycles up to 10 000 cycles were applied to the specimen with no observed performance degradation.
The gravitational field energy density for symmetrical and asymmetrical systems
Sosnovskiy, R
2006-01-01
The relativistic theory of gravitation has the considerable difficulties by description of the gravitational field energy. Pseudotensor t00 in the some cases cannot be interpreted as energy density of the gravitational field. In [1] the approach was proposed, which allow to express the energy density of such a field through the components of a metric tensor. This approach based on the consideration of the isothermal compression of the layer consisted of the incoherent matter. It was employ to the cylindrically and spherically symmetrical static gravitational field. In presented paper the approach is developed.
High energy density interpenetrating networks from ionic networks and silicone
Yu, Liyun; Madsen, Frederikke Bahrt; Hvilsted, Søren;
2015-01-01
mode. One way to increase the energy density is to increase dielectric permittivity of the elastomer. A novel silicone elastomer system with high dielectric permittivity was prepared through the development of interpenetrating networks from ionically assembled silicone polymers and covalently......The energy density of dielectric elastomers (DEs) is sought increased for better exploitation of the DE technology since an increased energy density means that the driving voltage for a certain strain can be lowered in actuation mode or alternatively that more energy can be harvested in generator...... crosslinked silicones. The system has many degrees of freedom since the ionic network is formed from two polymers (amine and carboxylic acid functional, respectively) of which the chain lengths can be varied, as well as the covalent silicone elastomer with many degrees of freedom arising from amongst many the...
A study of the kinetic energy density functional for atoms
This paper studies the rigorous kinetic energy density functional at the level of the Hartree-Fock method for closed electron shell atoms. The behaviour of the kinetic energy and its components, is analysed as the atomic number N increases. It is shown that the increments of the specific energies for two consecutive closed electron shells atoms depend distinctly on the electron configuration of the last electron shell. 35 refs, 1 fig., 4 tabs
Internal wave pressure, velocity, and energy flux from density perturbations
Allshouse, Michael R.; Lee, Frank M.; Morrison, Philip J.; Swinney, Harry L.
2016-05-01
Determination of energy transport is crucial for understanding the energy budget and fluid circulation in density varying fluids such as the ocean and the atmosphere. However, it is rarely possible to determine the energy flux field J =p u , which requires simultaneous measurements of the pressure and velocity perturbation fields p and u , respectively. We present a method for obtaining the instantaneous J (x ,z ,t ) from density perturbations alone: A Green's function-based calculation yields p ; u is obtained by integrating the continuity equation and the incompressibility condition. We validate our method with results from Navier-Stokes simulations: The Green's function method is applied to the density perturbation field from the simulations and the result for J is found to agree typically to within 1% with J computed directly using p and u from the Navier-Stokes simulation. We also apply the Green's function method to density perturbation data from laboratory schlieren measurements of internal waves in a stratified fluid and the result for J agrees to within 6 % with results from Navier-Stokes simulations. Our method for determining the instantaneous velocity, pressure, and energy flux fields applies to any system described by a linear approximation of the density perturbation field, e.g., to small-amplitude lee waves and propagating vertical modes. The method can be applied using our matlab graphical user interface EnergyFlux.
Kinetic and Exchange Energy Densities near the Nucleus
Lucian A. Constantin
2016-04-01
Full Text Available We investigate the behavior of the kinetic and the exchange energy densities near the nuclear cusp of atomic systems. Considering hydrogenic orbitals, we derive analytical expressions near the nucleus, for single shells, as well as in the semiclassical limit of large non-relativistic neutral atoms. We show that a model based on the helium iso-electronic series is very accurate, as also confirmed by numerical calculations on real atoms up to two thousands electrons. Based on this model, we propose non-local density-dependent ingredients that are suitable for the description of the kinetic and exchange energy densities in the region close to the nucleus. These non-local ingredients are invariant under the uniform scaling of the density, and they can be used in the construction of non-local exchange-correlation and kinetic functionals.
High Energy Density Physics on LULI2000 Laser Facility
Koenig, M.; Benuzzi-Mounaix, A.; Ozaki, N.; Ravasio, A.; Vinci, T.; Lepape, S.; Tanaka, K.; Riley, D.
2006-07-01
We present here a summary of some High Density Energy Physics experiments performed on the new facility LULI 2000. First, different flyer plate targets scheme have been tested loading shock in fused-quartz plate. Temperature data along the Hugoniot curve have been obtained. Second, a strongly coupled and degenerated Aluminium plasma has been probed by X-ray Thomson scattering. Compton shift from electrons has been observed in various density conditions.
Nuclear energy density functional from chiral pion-nucleon dynamics
Kaiser, N.; Fritsch, S.; Weise, W.
2002-01-01
We calculate the nuclear energy density functional relevant for N=Z even-even nuclei in the systematic framework of chiral perturbation theory. The calculation includes the one-pion exchange Fock diagram and the iterated one-pion exchange Hartree and Fock diagrams. From these few leading order contributions in the small momentum expansion one obtains already a very good equation of state of isospin symmetric nuclear matter. We find that in the region below nuclear matter saturation density th...
Photospheric Magnetic Free Energy Density of Solar Active Regions
Zhang, Hongqi
2016-01-01
We present the photospheric energy density of magnetic fields in two solar active regions inferred from observational vector magnetograms, and compare it with the possible different defined energy parameters of magnetic fields in the photosphere. We analyze the magnetic fields in active region NOAA 6580-6619-6659 and 11158. It is noticed that the quantity 1/4pi Bn.Bp is an important energy parameter that reflects the contribution of magnetic shear on the difference between the potential magnetic field (Bp) and non-potential one (Bn), and also the contribution to the free magnetic energy near the magnetic neutral lines in the active regions. It is found that the photospheric mean magnetic energy density changes obviously before the powerful solar flares in the active region NOAA 11158, it is consistent with the change of magnetic fields in the lower atmosphere with flares.
Molecular partitioning based on the kinetic energy density
Noorizadeh, Siamak
2016-05-01
Molecular partitioning based on the kinetic energy density is performed to a number of chemical species, which show non-nuclear attractors (NNA) in their gradient maps of the electron density. It is found that NNAs are removed using this molecular partitioning and although the virial theorem is not valid for all of the basins obtained in the being used AIM, all of the atoms obtained using the new approach obey this theorem. A comparison is also made between some atomic topological parameters which are obtained from the new partitioning approach and those calculated based on the electron density partitioning.
Measures of cosmic-ray energy densities in galaxies
Persic, Massimo
2012-01-01
The energy density of cosmic-ray protons (CRp) in star-forming galaxies can be estimated from (i) neutral-pion--decay gamma-ray emission, (ii) synchrotron radio emission, and (iii) supernova rates. For most of the galaxies for which values of all these quantities are known, the three methods yield consistent CRp energy density estimates, ranging from O(0.1) eV/cm3 in galaxies with low star-formation rates, to O(100) eV/cm3 in galaxies with high star-formation rates. The only cases for which the methods do not agree are the composite starburst/Seyfert2 galaxy NGC1068, whose gamma-ray emission originates in black-hole accretion rather than star formation, and the Small Magellanic Cloud, where the discrepancy between measured and estimated CRp energy density may be due to a small CR confinement volume.
Isospin and density dependencies of nuclear matter symmetry energy coefficients
Symmetry energy coefficients of explicitly isospin asymmetric nuclear matter at variable densities (from 0.5ρ0 up to 2ρ0) are studied as generalized screening functions. An extended stability condition for asymmetric nuclear matter is proposed. We find the possibility of obtaining stable asymmetric nuclear matter even in some cases for which the symmetric nuclear matter limit is unstable. Skyrme-type forces are extensively used in analytical expressions of the symmetry energy coefficients derived as generalized screening functions in the four channels of the particle hole interaction producing alternative behaviors at different ρ and b (respectively, the density and the asymmetry coefficient). The spin and spin-isospin coefficients, with corrections to the usual Landau Migdal parameters, indicate the possibility of occurring instabilities with common features depending on the nuclear density and n–p asymmetry. Possible relevance for high energy heavy ions collisions and astrophysical objects is discussed. (author)
Theoretical Study on the High Energy Density Compound Hexanitrohexaazatricyclotetradecanedifuroxan
QIU Ling; XIAO He-Ming; ZHU Wei-Hua; JU Xue-Hai; GONG Xue-Dong
2006-01-01
Density functional theory (DFT) has been employed to study the molecular geometries, electronic structures,infrared (IR) spectra, and thermodynamic properties of the high energy density compound hexanitrohexaazatricyclotetradecanedifuroxan (HHTTD) at the B3LYP/6-31G** level of theory. The calculated results showthattherearefourconformationalisomers (a, β, γ and δ) for HHTTD, and the relative stabilities of four conformers were assessed based on the calculated total energies and the energy-gaps between the frontier molecular orbitals. The computed harmonic vibrational frequencies are in reasonable agreement with the available experimental data. Thermodynamic properties derived from the IR spectra on the basis of statistical thermodynamic principles are linearly correlated with the temperature. Detonation performances were evaluated by using the Kamlet-Jacobsequationsbasedonthecalculated densities and heats of formation. It was found that four HHTTD isomers with the predicted densities of ca. 2 g·cm-3, detonation velocities near 10 km·s-1, and detonation pressures over 45 Gpa, may be novel potential candidates of high energy density materials (HEDM). These results may provide basic information for the molecular designof HEDM.
Sensitivity of nuclear stopping towards density dependent symmetry energy
Vinayak, Karan Singh; Kumar, Suneel
2011-01-01
The effect of density dependent symmetry energy on nuclear-stopping is studied using isospin-dependent quantum molecular dynamics model(IQMD). We have used the reduced isospin-dependent cross-section with soft(S) equation of state for the systems having different isostopic content, to explore the various aspects of nuclear stopping. The aim is to pin down the nature of the nuclear stopping with density dependent symmetry energy. Nuclear stopping is found to be sensitive towards the various fo...
Global energy balance and density limit on CASTOR tokamak
Total radiative power losses were measured with a pyroelectric detector on the CASTOR tokamak in a broad range of plasma parameters. It was shown that while the most important channel of energy losses for the low density operation (average ne19 m-3) is thermal conductivity, the high density regimes are radiative dominant. Using a simple analytic energy balance model, the connection is discussed between such a high level of radiation and the shrinking of the current channel resulting in an enhanced MHD activity. (author)
Metal hydrides based high energy density thermal battery
Highlights: • The principle of the thermal battery using advanced metal hydrides was demonstrated. • The thermal battery used MgH2 and TiMnV as a working pair. • High energy density can be achieved by the use of MgH2 to store thermal energy. - Abstract: A concept of thermal battery based on advanced metal hydrides was studied for heating and cooling of cabins in electric vehicles. The system utilized a pair of thermodynamically matched metal hydrides as energy storage media. The pair of hydrides that was identified and developed was: (1) catalyzed MgH2 as the high temperature hydride material, due to its high energy density and enhanced kinetics; and (2) TiV0.62Mn1.5 alloy as the matching low temperature hydride. Further, a proof-of-concept prototype was built and tested, demonstrating the potential of the system as HVAC for transportation vehicles
Theoretically predicted Fox-7 based new high energy density molecules
Ghanta, Susanta
2016-08-01
Computational investigation of CHNO based high energy density molecules (HEDM) are designed with FOX-7 (1, 1-dinitro 2, 2-diamino ethylene) skeleton. We report structures, stability and detonation properties of these new molecules. A systematic analysis is presented for the crystal density, activation energy for nitro to nitrite isomerisation and the C-NO2 bond dissociation energy of these molecules. The Atoms in molecules (AIM) calculations have been performed to interpret the intra-molecular weak H-bonding interactions and the stability of C-NO2 bonds. The structure optimization, frequency and bond dissociation energy calculations have been performed at B3LYP level of theory by using G03 quantum chemistry package. Some of the designed molecules are found to be more promising HEDM than FOX-7 molecule, and are proposed to be candidate for synthetic purpose.
Relativistic Nuclear Energy Density Functionals: Mean-Field and Beyond
Niksic, Tamara; Vretenar, Dario; Ring, Peter, 1941-
2011-01-01
Relativistic energy density functionals (EDF) have become a standard tool for nuclear structure calculations, providing a complete and accurate, global description of nuclear ground states and collective excitations. Guided by the medium dependence of the microscopic nucleon self-energies in nuclear matter, semi-empirical functionals have been adjusted to the nuclear matter equation of state and to bulk properties of finite nuclei, and applied to studies of arbitrarily heavy nuclei, exotic nu...
High energy density fusing using the Compact Torus
My remarks are concerned with employing the Compact Torus magnetic field configuration to produce fusion energy. In particular, I would like to consider high energy density regimes where the pressures generated extend well beyond the strength of materials. Under such conditions, where nearby walls are vaporized and pushed aside each shot, the technological constraints are very different from usual magnetic fusion and may admit opportunities for an improved fusion reactor design. 5 refs., 3 figs
Sloppy nuclear energy density functionals: effective model reduction
Niksic, Tamara
2016-01-01
Concepts from information geometry are used to analyse parameter sensitivity for a nuclear energy density functional, representative of a class of semi-empirical functionals that start from a microscopically motivated ansatz for the density dependence of the energy of a system of protons and neutrons. It is shown that such functionals are sloppy, characterized by an exponential range of sensitivity to parameter variations. Responsive to only a few stiff parameter combinations, they exhibit an exponential decrease of sensitivity to variations of the remaining soft parameters. By interpreting the space of model predictions as a manifold embedded in the data space, with the parameters of the functional as coordinates on the manifold, it is also shown that the exponential distribution of model manifold widths corresponds to the distribution of parameter sensitivity. Using the Manifold Boundary Approximation Method, we illustrate how to systematically construct effective nuclear density functionals of successively...
Collapsing Bubble in Metal for High Energy Density Physics Study
Ng, S F; Barnard, J J; Leung, P T; Yu, S S
2011-04-13
This paper presents a new idea to produce matter in the high energy density physics (HEDP) regime in the laboratory using an intense ion beam. A gas bubble created inside a solid metal may collapse by driving it with an intense ion beam. The melted metal will compress the gas bubble and supply extra energy to it. Simulations show that the spherical implosion ratio can be about 5 and at the stagnation point, the maximum density, temperature and pressure inside the gas bubble can go up to nearly 2 times solid density, 10 eV and a few megabar (Mbar) respectively. The proposed experiment is the first to permit access into the Mbar regime with existing or near-term ion facilities, and opens up possibilities for new physics gained through careful comparisons of simulations with measurements of quantities like stagnation radius, peak temperature and peak pressure at the metal wall.
Distortional Lifshitz Vectors and Helicity in Nematic Free Energy Density
Sparavigna, Amelia Carolina
2013-01-01
Here we discuss the free energy of nematic liquid crystals using two vectors and the helicity, with the aim of having a compact form of its density. The two vectors are due to the splay and bend distortions of the director field. They have a polar nature, whereas the helicity is a pseudoscalar.
Quantum Chromodynamics and Nuclear Physics at Extreme Energy Density
The report describes research in theoretical quantum chromodynamics, including effective field theories of hadronic interactions, properties of strongly interacting matter at extreme energy density, phenomenology of relativistic heavy ion collisions, and algorithms and numerical simulations of lattice gauge theory and other many-body systems.
High energy density in matter produced by heavy ion beams
This annual report summarizes the results of research carried out in 1986 within the framework of the program 'High Energy Density in Matter Produced by Heavy Ion Beams' which is funded by the Federal Ministry for Research and Technology. Its initial motivation and its ultimate goal is the question whether inertial confinement can be achieved by intense beams of heavy ions. (orig./HSI)
Quantum Chromodynamics and Nuclear Physics at Extreme Energy Density
Mueller, B.; Bass, S.A.; Chandrasekharan, S.; Mehen, T.; Springer, R.P.
2005-11-07
The report describes research in theoretical quantum chromodynamics, including effective field theories of hadronic interactions, properties of strongly interacting matter at extreme energy density, phenomenology of relativistic heavy ion collisions, and algorithms and numerical simulations of lattice gauge theory and other many-body systems.
Kinetic-energy density functional: Atoms and shell structure
We present a nonlocal kinetic-energy functional which includes an anisotropic average of the density through a symmetrization procedure. This functional allows a better description of the nonlocal effects of the electron system. The main consequence of the symmetrization is the appearance of a clear shell structure in the atomic density profiles, obtained after the minimization of the total energy. Although previous results with some of the nonlocal kinetic functionals have given incipient structures for heavy atoms, only our functional shows a clear shell structure for most of the atoms. The atomic total energies have a good agreement with the exact calculations. Discussion of the chemical potential and the first ionization potential in atoms is included. The functional is also extended to spin-polarized systems. copyright 1996 The American Physical Society
Anti-Ferroelectric Ceramics for High Energy Density Capacitors
Aditya Chauhan
2015-11-01
Full Text Available With an ever increasing dependence on electrical energy for powering modern equipment and electronics, research is focused on the development of efficient methods for the generation, storage and distribution of electrical power. In this regard, the development of suitable dielectric based solid-state capacitors will play a key role in revolutionizing modern day electronic and electrical devices. Among the popular dielectric materials, anti-ferroelectrics (AFE display evidence of being a strong contender for future ceramic capacitors. AFE materials possess low dielectric loss, low coercive field, low remnant polarization, high energy density, high material efficiency, and fast discharge rates; all of these characteristics makes AFE materials a lucrative research direction. However, despite the evident advantages, there have only been limited attempts to develop this area. This article attempts to provide a focus to this area by presenting a timely review on the topic, on the relevant scientific advancements that have been made with respect to utilization and development of anti-ferroelectric materials for electric energy storage applications. The article begins with a general introduction discussing the need for high energy density capacitors, the present solutions being used to address this problem, and a brief discussion of various advantages of anti-ferroelectric materials for high energy storage applications. This is followed by a general description of anti-ferroelectricity and important anti-ferroelectric materials. The remainder of the paper is divided into two subsections, the first of which presents various physical routes for enhancing the energy storage density while the latter section describes chemical routes for enhanced storage density. This is followed by conclusions and future prospects and challenges which need to be addressed in this particular field.
Free energy methods for efficient exploration of mixture posterior densities
Chopin, Nicolas; Stoltz, Gabriel
2010-01-01
Because of their multimodality, mixture posterior densities are difficult to sample with standard Markov chain Monte Carlo (MCMC) methods. We propose a strategy to enhance the sampling of MCMC in this context, using a biasing procedure which originates from computational statistical physics. The principle is first to choose a "reaction coordinate", that is, a direction in which the target density is multimodal. In a second step, the marginal log-density of the reaction coordinate is estimated; this quantity is called "free energy" in the computational statistical physics literature. To this end, we use adaptive biasing Markov chain algorithms which adapt their invariant distribution on the fly, in order to overcome sampling barriers along the chosen reaction coordinate. Finally, we perform an importance sampling step in order to remove the bias and recover the true posterior. A crucial point is the choice of the reaction coordinate. We show that a convenient and efficient reaction coordinate is the hyper-para...
Nuclear energy density functional inspired by an effective field theory
Papakonstantinou, Panagiota; Lim, Yeunhwan; Hyun, Chang Ho
2016-01-01
Inspired by an effective field theory (EFT) for Fermi systems, we write the nuclear energy density functional (EDF) as an expansion in powers of the Fermi momentum $k_F$, or the cubic root of the density $\\rho^{1/3}$. With the help of pseudodata from microscopic calculations we fit the coefficients of the functional within a wide range of densities relevant for nuclei and neutron stars. The functional already at low order can reproduce known or adopted values of nuclear matter near saturation, a range of existing microscopic results on asymmetric matter, and a neutron-star mass-radius relation consistent with observations. Our approach leads to a transparent expansion of Skyrme-type EDFs and opens up many possibilities for future explorations in nuclei and homogeneous matter.
Linear response of homogeneous nuclear matter with energy density functionals
Response functions of infinite nuclear matter with arbitrary isospin asymmetry are studied in the framework of the random phase approximation. The residual interaction is derived from a general nuclear Skyrme energy density functional. Besides the usual central, spin–orbit and tensor terms it could also include other components as new density-dependent terms or three-body terms. Algebraic expressions for the response functions are obtained from the Bethe–Salpeter equation for the particle–hole propagator. Applications to symmetric nuclear matter, pure neutron matter and asymmetric nuclear matter are presented and discussed. Spin–isospin strength functions are analyzed for varying conditions of density, momentum transfer, isospin asymmetry, and temperature for some representative Skyrme functionals. Particular attention is paid to the discussion of instabilities, either real or unphysical, which could manifest in finite nuclei
Linear response of homogeneous nuclear matter with energy density functionals
Pastore, A; Navarro, J
2014-01-01
Response functions of infinite nuclear matter with arbitrary isospin asymmetry are studied in the framework of the random phase approximation. The residual interaction is derived from a general nuclear Skyrme energy density functional. Besides the usual central, spin-orbit and tensor terms it could also include other components as new density-dependent terms or three-body terms. Algebraic expressions for the response functions are obtained from the Bethe-Salpeter equation for the particle-hole propagator. Applications to symmetric nuclear matter, pure neutron matter and asymmetric nuclear matter are presented and discussed. Spin-isospin strength functions are analyzed for varying conditions of density, momentum transfer, isospin asymmetry, and temperature for some representative Skyrme functionals. Particular attention is paid to the discussion of instabilities, either real or unphysical, which could manifest in finite nuclei.
Relaxor-ferroelectric superlattices: high energy density capacitors.
Ortega, N; Kumar, A; Scott, J F; Chrisey, Douglas B; Tomazawa, M; Kumari, Shalini; Diestra, D G B; Katiyar, R S
2012-11-01
We report the breakdown electric field and energy density of laser ablated BaTiO(3)/Ba((1-x))Sr(x)TiO(3) (x = 0.7) (BT/BST) relaxor-ferroelectric superlattices (SLs) grown on (100) MgO single crystal substrates. The dielectric constant shows a frequency dispersion below the dielectric maximum temperature (T(m)) with a merger above T(m) behaving similarly to relaxors. It also follows the basic criteria of relaxor ferroelectrics such as low dielectric loss over wide temperature and frequency, and 50 K shift in T(m) with change in probe frequency; the loss peaks follow a similar trend to the dielectric constant except that they increase with increase in frequency (~40 kHz), and satisfy the nonlinear Vogel-Fulcher relation. Well-saturated ferroelectric hysteresis and 50-80% dielectric saturation are observed under high electric field (~1.65 MV cm(-1)). The superlattices demonstrate an 'in-built' field in as grown samples at low probe frequency (1 kHz) which rules out the effect of any space charge and interfacial polarization. The P-E loops show around 12.24 J cm(-3) energy density within the experimental limit, but extrapolation of this data suggests that the potential energy density could reach 46 J cm(-3). The current density versus applied electric field indicates an exceptionally high breakdown field (5.8-6.0 MV cm(-1)) and low current density (~10-25 mA cm(-2)) near the breakdown voltage. The current-voltage characteristics reveal that the space charge limited conduction mechanism prevails at very high voltage. PMID:23053172
High energy density capacitors for low cost applications
Iyore, Omokhodion David
Polyvinylidene fluoride (PVDF) and its copolymers with trifluoroethylene, hexafluoropropylene and chlorotrifluoroethylene are the most widely investigated ferroelectric polymers, due to their relatively high electromechanical properties and potential to achieve high energy density. [Bauer, 2010; Zhou et al., 2009] The research community has focused primarily on melt pressed or extruded films of PVDF-based polymers to obtain the highest performance with energy density up to 25 Jcm-3. [Zhou et al., 2009] Solution processing offers an inexpensive, low temperature alternative, which is also easily integrated with flexible electronics. This dissertation focuses on the fabrication of solution-based polyvinylidene fluoride-hexafluoropropylene metal-insulator-metal capacitors on flexible substrates using a photolithographic process. Capacitors were optimized for maximum energy density, high dielectric strength and low leakage current density. It is demonstrated that with the right choice of solvent, electrodes, spin-casting and annealing conditions, high energy density thin film capacitors can be fabricated repeatably and reproducibly. The high electric field dielectric constants were measured and the reliabilities of the polymer capacitors were also evaluated via time-zero breakdown and time-dependent breakdown techniques. Chapter 1 develops the motivation for this work and provides a theoretical overview of dielectric materials, polarization, leakage current and dielectric breakdown. Chapter 2 is a literature review of polymer-based high energy density dielectrics and covers ferroelectric polymers, highlighting PVDF and some of its derivatives. Chapter 3 summarizes some preliminary experimental work and presents materials and electrical characterization that support the rationale for materials selection and process development. Chapter 4 discusses the fabrication of solution-processed PVDF-HFP and modification of its properties by photo-crosslinking. It is followed by a
Lithium-Based High Energy Density Flow Batteries
Bugga, Ratnakumar V. (Inventor); West, William C. (Inventor); Kindler, Andrew (Inventor); Smart, Marshall C. (Inventor)
2014-01-01
Systems and methods in accordance with embodiments of the invention implement a lithium-based high energy density flow battery. In one embodiment, a lithium-based high energy density flow battery includes a first anodic conductive solution that includes a lithium polyaromatic hydrocarbon complex dissolved in a solvent, a second cathodic conductive solution that includes a cathodic complex dissolved in a solvent, a solid lithium ion conductor disposed so as to separate the first solution from the second solution, such that the first conductive solution, the second conductive solution, and the solid lithium ionic conductor define a circuit, where when the circuit is closed, lithium from the lithium polyaromatic hydrocarbon complex in the first conductive solution dissociates from the lithium polyaromatic hydrocarbon complex, migrates through the solid lithium ionic conductor, and associates with the cathodic complex of the second conductive solution, and a current is generated.
Vacuum energy density and pressure near a soft wall
Murray, S W; Fulling, S A; Wagner, Jef; Mera, F D; Carter, H B
2015-01-01
Perfectly conducting boundaries, and their Dirichlet counterparts for quantum scalar fields, predict nonintegrable energy densities. A more realistic model with a finite ultraviolet cutoff yields two inconsistent values for the force on a curved or edged boundary (the "pressure anomaly"). A still more realistic, but still easily calculable, model replaces the hard wall by a power-law potential; because it involves no a posteriori modification of the formulas calculated from the theory, this model should be anomaly-free. Here we first set up the formalism and notation for the quantization of a scalar field in the background of a planar soft wall, and we approximate the reduced Green function in perturbative and WKB limits (the latter being appropriate when either the mode frequency or the depth into the wall is sufficiently large). Then we display numerical calculations of energy density and pressure for the region outside the wall, which show that the pressure anomaly does not occur there. Calculations inside...
Extreme states of matter high energy density physics
Fortov, Vladimir E
2016-01-01
With its many beautiful colour pictures, this book gives fascinating insights into the unusual forms and behaviour of matter under extremely high pressures and temperatures. These extreme states are generated, among other things, by strong shock, detonation and electric explosion waves, dense laser beams,electron and ion beams, hypersonic entry of spacecraft into dense atmospheres of planets, and in many other situations characterized by extremely high pressures and temperatures.Written by one of the world's foremost experts on the topic, this book will inform and fascinate all scientists dealing with materials properties and physics, and also serve as an excellent introduction to plasma-, shock-wave and high-energy-density physics for students and newcomers seeking an overview. This second edition is thoroughly revised and expanded, in particular with new material on high energy-density physics, nuclear explosions and other nuclear transformation processes.
Frontiers for Discovery in High Energy Density Physics
The report is intended to identify the compelling research opportunities of high intellectual value in high energy density physics. The opportunities for discovery include the broad scope of this highly interdisciplinary field that spans a wide range of physics areas including plasma physics, laser and particle beam physics, nuclear physics, astrophysics, atomic and molecular physics, materials science and condensed matter physics, intense radiation-matter interaction physics, fluid dynamics, and magnetohydrodynamics
Frontiers for Discovery in High Energy Density Physics
Davidson, R. C.; Katsouleas, T.; Arons, J.; Baring, M.; Deeney, C.; Di Mauro, L.; Ditmire, T.; Falcone, R.; Hammer, D.; Hill, W.; Jacak, B.; Joshi, C.; Lamb, F.; Lee, R.; Logan, B. G.; Melissinos, A.; Meyerhofer, D.; Mori, W.; Murnane, M.; Remington, B.; Rosner, R.; Schneider, D.; Silvera, I.; Stone, J.; Wilde, B.; Zajc. W.
2004-07-20
The report is intended to identify the compelling research opportunities of high intellectual value in high energy density physics. The opportunities for discovery include the broad scope of this highly interdisciplinary field that spans a wide range of physics areas including plasma physics, laser and particle beam physics, nuclear physics, astrophysics, atomic and molecular physics, materials science and condensed matter physics, intense radiation-matter interaction physics, fluid dynamics, and magnetohydrodynamics
Natural Units For Nuclear Energy Density Functional Theory
Kortelainen, M.; Furnstahl, R. J.; W. Nazarewicz; Stoitsov, M. V.
2010-01-01
Naive dimensional analysis based on chiral effective theory, when adapted to nuclear energy density functionals, prescribes natural units and a hierarchy of contributions that could be used to constrain fits of generalized functionals. By applying these units, a large sample of Skyrme parametrizations is examined for naturalness, which is signaled by dimensionless coupling constants of order one. The bulk of the parameters are found to be natural, with an underlying scale consistent with othe...
High Density Thermal Energy Storage with Supercritical Fluids
Ganapathi, Gani B.; Wirz, Richard
2012-01-01
A novel approach to storing thermal energy with supercritical fluids is being investigated, which if successful, promises to transform the way thermal energy is captured and utilized. The use of supercritical fluids allows cost-affordable high-density storage with a combination of latent heat and sensible heat in the two-phase as well as the supercritical state. This technology will enhance penetration of several thermal power generation applications and high temperature water for commercial use if the overall cost of the technology can be demonstrated to be lower than the current state-of-the-art molten salt using sodium nitrate and potassium nitrate eutectic mixtures.
Sub-barrier Fusion Cross Sections with Energy Density Formalism
Zamrun, F. Muhammad; Hagino, K.; Takigawa, N.
2006-01-01
We discuss the applicability of the energy density formalism (EDF) for heavy-ion fusion reactions at sub-barrier energies. For this purpose, we calculate the fusion excitation function and the fusion barrier distribution for the reactions of $^{16}$O with $^{154,}$$^{144}$Sm,$^{186}$W and $^{208}$Pb with the coupled-channels method. We also discuss the effect of saturation property on the fusion cross section for the reaction between two $^{64}$Ni nuclei, in connection to the so called steep ...
High Energy Density Physics and Exotic Acceleration Schemes
Cowan, T.; /General Atomics, San Diego; Colby, E.; /SLAC
2005-09-27
The High Energy Density and Exotic Acceleration working group took as our goal to reach beyond the community of plasma accelerator research with its applications to high energy physics, to promote exchange with other disciplines which are challenged by related and demanding beam physics issues. The scope of the group was to cover particle acceleration and beam transport that, unlike other groups at AAC, are not mediated by plasmas or by electromagnetic structures. At this Workshop, we saw an impressive advancement from years past in the area of Vacuum Acceleration, for example with the LEAP experiment at Stanford. And we saw an influx of exciting new beam physics topics involving particle propagation inside of solid-density plasmas or at extremely high charge density, particularly in the areas of laser acceleration of ions, and extreme beams for fusion energy research, including Heavy-ion Inertial Fusion beam physics. One example of the importance and extreme nature of beam physics in HED research is the requirement in the Fast Ignitor scheme of inertial fusion to heat a compressed DT fusion pellet to keV temperatures by injection of laser-driven electron or ion beams of giga-Amp current. Even in modest experiments presently being performed on the laser-acceleration of ions from solids, mega-amp currents of MeV electrons must be transported through solid foils, requiring almost complete return current neutralization, and giving rise to a wide variety of beam-plasma instabilities. As keynote talks our group promoted Ion Acceleration (plenary talk by A. MacKinnon), which historically has grown out of inertial fusion research, and HIF Accelerator Research (invited talk by A. Friedman), which will require impressive advancements in space-charge-limited ion beam physics and in understanding the generation and transport of neutralized ion beams. A unifying aspect of High Energy Density applications was the physics of particle beams inside of solids, which is proving to
Conventional Quantum Chemical Correlation Energy versus Density-Functional Correlation Energy
Gross, E.K.U.; Petersilka, M.; Grabo, T.
1995-01-01
We analyze the difference between the correlation energy as defined within the conventional quantum chemistry framework and its namesake in density-functional theory. Both quantities are rigorously defined concepts; one finds that $E_c^{QC} \\geq E_c^{DFT}$. We give numerical and analytical arguments suggesting that the numerical difference between the two rigorous quantities is small. Finally, approximate density functional correlation energies resulting from some popular correlation energy f...
Highly Compressed Ion Beam for High Energy Density Science
The Heavy Ion Fusion Virtual National Laboratory is developing the intense ion beams needed to drive matter to the High Energy Density regimes required for Inertial Fusion Energy and other applications. An interim goal is a facility for Warm Dense Matter studies, wherein a target is heated volumetrically without being shocked, so that well-defined states of matter at 1 to 10 eV are generated within a diagnosable region. In the approach they are pursuing, low to medium mass ions with energies just above the Bragg peak are directed onto thin target ''foils,'' which may in fact be foams with mean densities 1% to 10% of solid. This approach complements that being pursued at GSI Darmstadt, wherein high-energy ion beams deposit a small fraction of their energy in a cylindrically target. They present the beam requirements for Warm Dense Matter experiments. The authors discuss neutralized drift compression and final focus experiments and modeling. They describe suitable accelerator architectures based on Drift-Tube Linac, RF, single-gap, Ionization-Front Accelerator, and Pulse-Line Ion Accelerator concepts. The last of these is being pursued experimentally. Finally, they discuss plans toward a user facility for target experiments
Highly Compressed Ion Beams for High Energy Density Science
Friedman, Alex; Briggs, Richard J; Callahan, Debra; Caporaso, George; Celata, C M; Davidson, Ronald C; Faltens, Andy; Grant-Logan, B; Grisham, Larry; Grote, D P; Henestroza, Enrique; Kaganovich, Igor D; Lee, Edward; Lee, Richard; Leitner, Matthaeus; Nelson, Scott D; Olson, Craig; Penn, Gregory; Reginato, Lou; Renk, Tim; Rose, David; Sessler, Andrew M; Staples, John W; Tabak, Max; Thoma, Carsten H; Waldron, William; Welch, Dale; Wurtele, Jonathan; Yu, Simon
2005-01-01
The Heavy Ion Fusion Virtual National Laboratory (HIF-VNL) is developing the intense ion beams needed to drive matter to the High Energy Density (HED) regimes required for Inertial Fusion Energy (IFE) and other applications. An interim goal is a facility for Warm Dense Matter (WDM) studies, wherein a target is heated volumetrically without being shocked, so that well-defined states of matter at 1 to 10 eV are generated within a diagnosable region. In the approach we are pursuing, low to medium mass ions with energies just above the Bragg peak are directed onto thin target "foils," which may in fact be foams or "steel wool" with mean densities 1% to 100% of solid. This approach complements that being pursued at GSI, wherein high-energy ion beams deposit a small fraction of their energy in a cylindrical target. We present the requirements for warm dense matter experiments, and describe suitable accelerator concepts, including novel broadband traveling wave pulse-line, drift-tube linac, RF, and single-gap approa...
Higher Ionization Energies of Atoms in Density Functional Theory
Argaman, Uri; Kraisler, Eli
2014-01-01
Density functional theory (DFT) is an exact alternative formulation of quantum mechanics, in which it is possible to calculate the total energy, the spin and the charge density of many-electron systems in the ground state. In practice, it is necessary to use uncontrolled approximations that can mainly be verified against experimental data. Atoms and ions are simple systems, where the approximations of DFT can be easily tested. We have calculated within DFT the total energies, spin and higher ionization energies of all the ions of elements with 1 $\\leq$ Z $\\leq$ 29. We find the calculations in close agreement with experiment, with an error of typically less than ca. 1% for 1 $\\leq$ Z $\\leq$ 29. Surprisingly, the error depends on the electronic configuration of the ion in both local spin density approximation (LSDA) and Perdew-Burke-Ernzerhof general gradient approximation (PBE-GGA) and independent of both self-interaction correction (SIC) and relativistic corrections. Larger errors are found for systems in whi...
Internal wave pressure, velocity, and energy flux from density perturbations
Allshouse, Michael R; Morrison, Philip J; Swinney, Harry L
2016-01-01
Determination of energy transport is crucial for understanding the energy budget and fluid circulation in density varying fluids such as the ocean and the atmosphere. However, it is rarely possible to determine the energy flux field $\\mathbf{J} = p \\mathbf{u}$, which requires simultaneous measurements of the pressure and velocity perturbation fields, $p$ and $\\mathbf{u}$. We present a method for obtaining the instantaneous $\\mathbf{J}(x,z,t)$ from density perturbations alone: a Green's function-based calculation yields $p$, and $\\mathbf{u}$ is obtained by integrating the continuity equation and the incompressibility condition. We validate our method with results from Navier-Stokes simulations: the Green's function method is applied to the density perturbation field from the simulations, and the result for $\\mathbf{J}$ is found to agree typically to within $1\\%$ with $\\mathbf{J}$ computed directly using $p$ and $ \\mathbf{u}$ from the Navier-Stokes simulation. We also apply the Green's function method to densit...
Metal hydrides based high energy density thermal battery
Fang, Zhigang Zak, E-mail: zak.fang@utah.edu [Department of Metallurgical Engineering, The University of Utah, 135 South 1460 East, Room 412, Salt Lake City, UT 84112-0114 (United States); Zhou, Chengshang; Fan, Peng [Department of Metallurgical Engineering, The University of Utah, 135 South 1460 East, Room 412, Salt Lake City, UT 84112-0114 (United States); Udell, Kent S. [Department of Metallurgical Engineering, The University of Utah, 50 S. Central Campus Dr., Room 2110, Salt Lake City, UT 84112-0114 (United States); Bowman, Robert C. [Department of Metallurgical Engineering, The University of Utah, 135 South 1460 East, Room 412, Salt Lake City, UT 84112-0114 (United States); Vajo, John J.; Purewal, Justin J. [HRL Laboratories, LLC, 3011 Malibu Canyon Road, Malibu, CA 90265 (United States); Kekelia, Bidzina [Department of Metallurgical Engineering, The University of Utah, 50 S. Central Campus Dr., Room 2110, Salt Lake City, UT 84112-0114 (United States)
2015-10-05
Highlights: • The principle of the thermal battery using advanced metal hydrides was demonstrated. • The thermal battery used MgH{sub 2} and TiMnV as a working pair. • High energy density can be achieved by the use of MgH{sub 2} to store thermal energy. - Abstract: A concept of thermal battery based on advanced metal hydrides was studied for heating and cooling of cabins in electric vehicles. The system utilized a pair of thermodynamically matched metal hydrides as energy storage media. The pair of hydrides that was identified and developed was: (1) catalyzed MgH{sub 2} as the high temperature hydride material, due to its high energy density and enhanced kinetics; and (2) TiV{sub 0.62}Mn{sub 1.5} alloy as the matching low temperature hydride. Further, a proof-of-concept prototype was built and tested, demonstrating the potential of the system as HVAC for transportation vehicles.
New potential high energy density compounds: Oxadiaziridine derivatives
Yang, Jing; Chi, Wei-Jie
2014-10-01
The -CN, -N3, -NF2, -NH2, -NHNO2, -NO2, and -ONO2 derivatives of oxadiaziridine were studied using B3LYP/6-311G** level of density functional theory. The gas phase heats of formation of oxadiaziridine derivatives were calculated by isodesmic reaction. All these compounds have high and positive heats of formation due to strain energies of small ring. Detonation properties were calculated via Kamlet-Jacobes equations and specific impulse. The effects of substituent groups on detonation performance were discussed. The impact sensitivity was estimated according to the "available free space per molecule in unit cell" and "energy gaps" methods. The similar conclusions were given by two different methods. The effects of substituents on impact sensitivity were discussed. According to the given estimations of detonation performance and sensitivity, some oxadiaziridine derivatives may be considered promising high energies materials.
Energy boost in laser wakefield accelerators using sharp density transitions
Döpp, A.; Guillaume, E.; Thaury, C.; Lifschitz, A.; Ta Phuoc, K.; Malka, V.
2016-05-01
The energy gain in laser wakefield accelerators is limited by dephasing between the driving laser pulse and the highly relativistic electrons in its wake. Since this phase depends on both the driver and the cavity length, the effects of dephasing can be mitigated with appropriate tailoring of the plasma density along propagation. Preceding studies have discussed the prospects of continuous phase-locking in the linear wakefield regime. However, most experiments are performed in the highly non-linear regime and rely on self-guiding of the laser pulse. Due to the complexity of the driver evolution in this regime, it is much more difficult to achieve phase locking. As an alternative, we study the scenario of rapid rephasing in sharp density transitions, as was recently demonstrated experimentally. Starting from a phenomenological model, we deduce expressions for the electron energy gain in such density profiles. The results are in accordance with particle-in-cell simulations, and we present gain estimations for single and multiple stages of rephasing.
Energy resolved electron momentum densities of graphite films
The results of (e,2e) studies of crystalline graphite films are reported. A non-coplanar asymmetric geometry was used with energies of the incident, scattered and ejected electrons of 20 keV, 18.8 keV and 1.2 keV respectively. Thin (∼ 150 Angstroms) films of highly oriented pyrolitic graphite were obtained by cleaving followed by plasma etching in an Ar/O2 mixture. The (e,2e) spectra were sensitive to oxygen contamination of the film due to the plasma etching. Clean, oxygen free graphite films were obtained by annealing in vacuum. Spectra of these films show distinct peaks in their momentum and energy distributions, but in between the peaks in the momentum distributions there is an additional contribution of unknown origin. The sharp peaks can be associated with the σ band electrons and modelled as an average of the basal plane momentum density of crystalline graphite. Good agreement in the electron dispersion was obtained. Quantitative tests of the momentum density were difficult because of the lack of a full understanding of the additional contributions, but qualitatively the calculated and measured momentum densities agree. A comparison is made with similar measurements of amorphous carbon films. An assessment of the potential of the (e,2e) technique as applied to solids is made. 19 refs., 9 figs
Electromagnetic potentials basis for energy density and power flux
Puthoff, H. E.
2016-09-01
In rounding out the education of students in advanced courses in applied electromagnetics it is incumbent on us as mentors to raise issues that encourage appreciation of certain subtle aspects that are often overlooked during first exposure to the field. One of these has to do with the interplay between fields and potentials, with the latter often seen as just a convenient mathematical artifice useful in solving Maxwell’s equations. Nonetheless, to those practiced in application it is well understood that various alternatives in the use of fields and potentials are available within electromagnetic (EM) theory for the definitions of energy density, momentum transfer, EM stress–energy tensor, and so forth. Although the various options are all compatible with the basic equations of electrodynamics (e.g., Maxwell’s equations, Lorentz force law, gauge invariance), nonetheless certain alternative formulations lend themselves to being seen as preferable to others with regard to the transparency of their application to physical problems of interest. Here we argue for the transparency of an energy density/power flux option based on the EM potentials alone.
High energy density supercapacitors using macroporous kitchen sponges
Chen, Wei
2012-01-01
Macroporous, low-cost and recyclable kitchen sponges are explored as effective electrode platforms for supercapacitor devices. A simple and scalable process has been developed to fabricate MnO 2-carbon nanotube (CNT)-sponge supercapacitor electrodes using ordinary kitchen sponges. Two organic electrolytes (1 M of tetraethylammonium tetrafluoroborate (Et 4NBF 4) in propylene carbonate (PC), 1 M of LiClO 4 in PC) are utilized with the sponge-based electrodes to improve the energy density of the symmetrical supercapacitors. Compared to aqueous electrolyte (1 M of Na 2SO 4 in H 2O), the energy density of supercapacitors tripled in Et 4NBF 4 electrolyte, and further increased by six times in LiClO 4 electrolyte. The long-term cycling performance in different electrolytes was examined and the morphology changes of the electrode materials were also studied. The good electrochemical performance in both aqueous and organic electrolytes indicates that the MnO 2-CNT-sponge is a promising low-cost electrode for energy storage systems. © 2012 The Royal Society of Chemistry.
Thermal Condensate Structure and Cosmological Energy Density of the Universe
Antonio Capolupo
2016-01-01
Full Text Available The aim of this paper is to study thermal vacuum condensate for scalar and fermion fields. We analyze the thermal states at the temperature of the cosmic microwave background (CMB and we show that the vacuum expectation value of the energy momentum tensor density of photon fields reproduces the energy density and pressure of the CMB. We perform the computations in the formal framework of the Thermo Field Dynamics. We also consider the case of neutrinos and thermal states at the temperature of the neutrino cosmic background. Consistency with the estimated lower bound of the sum of the active neutrino masses is verified. In the boson sector, nontrivial contribution to the energy of the universe is given by particles of masses of the order of 10−4 eV compatible with the ones of the axion-like particles. The fractal self-similar structure of the thermal radiation is also discussed and related to the coherent structure of the thermal vacuum.
Thermal condensate structure and cosmological energy density of the Universe
Capolupo, Antonio; Vitiello, Giuseppe
2016-01-01
The aim of this paper is the study of thermal vacuum condensate for scalar and fermion fields. We analyze the thermal states at the temperature of the cosmic microwave background (CMB) and we show that the vacuum expectation value of the energy momentum tensor density of photon fields reproduces the energy density and pressure of the CMB. We perform the computations in the formal framework of the thermo field dynamics. We also consider the case of neutrinos and thermal states at the temperature of the neutrino cosmic background. Consistency with the estimated lower bound of the sum of the active neutrino masses is verified. In the boson sector, non trivial contribution to the energy of the universe is given by particles of masses of the order of $10^{-4}eV$ compatible with the ones of the axion-like particles. The fractal self-similar structure of the thermal radiation is also discussed and related to the coherent structure of the thermal vacuum.
High energy density Z-pinch plasmas using flow stabilization
The ZaP Flow Z-Pinch research project[1] at the University of Washington investigates the effect of sheared flows on MHD instabilities. Axially flowing Z-pinch plasmas are produced that are 100 cm long with a 1 cm radius. The plasma remains quiescent for many radial Alfvén times and axial flow times. The quiescent periods are characterized by low magnetic mode activity measured at several locations along the plasma column and by stationary visible plasma emission. Plasma evolution is modeled with high-resolution simulation codes – Mach2, WARPX, NIMROD, and HiFi. Plasma flow profiles are experimentally measured with a multi-chord ion Doppler spectrometer. A sheared flow profile is observed to be coincident with the quiescent period, and is consistent with classical plasma viscosity. Equilibrium is determined by diagnostic measurements: interferometry for density; spectroscopy for ion temperature, plasma flow, and density[2]; Thomson scattering for electron temperature; Zeeman splitting for internal magnetic field measurements[3]; and fast framing photography for global structure. Wall stabilization has been investigated computationally and experimentally by removing 70% of the surrounding conducting wall to demonstrate no change in stability behavior.[4] Experimental evidence suggests that the plasma lifetime is only limited by plasma supply and current waveform. The flow Z-pinch concept provides an approach to achieve high energy density plasmas,[5] which are large, easy to diagnose, and persist for extended durations. A new experiment, ZaP-HD, has been built to investigate this approach by separating the flow Z-pinch formation from the radial compression using a triaxial-electrode configuration. This innovation allows more detailed investigations of the sheared flow stabilizing effect, and it allows compression to much higher densities than previously achieved on ZaP by reducing the linear density and increasing the pinch current. Experimental results and
High energy density Z-pinch plasmas using flow stabilization
Shumlak, U., E-mail: shumlak@uw.edu; Golingo, R. P., E-mail: shumlak@uw.edu; Nelson, B. A., E-mail: shumlak@uw.edu; Bowers, C. A., E-mail: shumlak@uw.edu; Doty, S. A., E-mail: shumlak@uw.edu; Forbes, E. G., E-mail: shumlak@uw.edu; Hughes, M. C., E-mail: shumlak@uw.edu; Kim, B., E-mail: shumlak@uw.edu; Knecht, S. D., E-mail: shumlak@uw.edu; Lambert, K. K., E-mail: shumlak@uw.edu; Lowrie, W., E-mail: shumlak@uw.edu; Ross, M. P., E-mail: shumlak@uw.edu; Weed, J. R., E-mail: shumlak@uw.edu [Aerospace and Energetics Research Program, University of Washington, Seattle, Washington, 98195-2250 (United States)
2014-12-15
The ZaP Flow Z-Pinch research project[1] at the University of Washington investigates the effect of sheared flows on MHD instabilities. Axially flowing Z-pinch plasmas are produced that are 100 cm long with a 1 cm radius. The plasma remains quiescent for many radial Alfvén times and axial flow times. The quiescent periods are characterized by low magnetic mode activity measured at several locations along the plasma column and by stationary visible plasma emission. Plasma evolution is modeled with high-resolution simulation codes – Mach2, WARPX, NIMROD, and HiFi. Plasma flow profiles are experimentally measured with a multi-chord ion Doppler spectrometer. A sheared flow profile is observed to be coincident with the quiescent period, and is consistent with classical plasma viscosity. Equilibrium is determined by diagnostic measurements: interferometry for density; spectroscopy for ion temperature, plasma flow, and density[2]; Thomson scattering for electron temperature; Zeeman splitting for internal magnetic field measurements[3]; and fast framing photography for global structure. Wall stabilization has been investigated computationally and experimentally by removing 70% of the surrounding conducting wall to demonstrate no change in stability behavior.[4] Experimental evidence suggests that the plasma lifetime is only limited by plasma supply and current waveform. The flow Z-pinch concept provides an approach to achieve high energy density plasmas,[5] which are large, easy to diagnose, and persist for extended durations. A new experiment, ZaP-HD, has been built to investigate this approach by separating the flow Z-pinch formation from the radial compression using a triaxial-electrode configuration. This innovation allows more detailed investigations of the sheared flow stabilizing effect, and it allows compression to much higher densities than previously achieved on ZaP by reducing the linear density and increasing the pinch current. Experimental results and
The papers presented at the symposium on ''Physics and application of high energy density plasmas, held December 20-21, 2001 at NIFS'' are collected in this proceedings. The topics covered in the meeting include dense z-pinches, plasma focus, intense charged particle beams, intense radiation sources, discharge pumped X-ray lasers, their diagnostics, and applications of them. The papers reflect the present status and trends in the research field of high energy density plasmas. (author)
High energy density capacitors using nano-structure multilayer technology
Barbee, T.W. Jr.; Johnson, G.W.; O`Brien, D.W.
1992-08-01
Today, many pulse power and industrial applications are limited by capacitor performance. While incremental improvements are anticipated from existing capacitor technologies, significant advances are needed in energy density to enable these applications for both the military and for American economic competitiveness. We propose a program to research and develop a novel technology for making high voltage, high energy density capacitors. Nano-structure multilayer technologies developed at LLNL may well provide a breakthrough in capacitor performance. Our controlled sputtering techniques are capable of laying down extraordinarily smooth sub-micron layers of dielectric and conductor materials. With this technology, high voltage capacitors with an order of magnitude improvement in energy density may be achievable. Well-understood dielectrics and new materials will be investigated for use with this technology. Capacitors developed by nano-structure multilayer technology are inherently solid state, exhibiting extraordinary mechanical and thermal properties. The conceptual design of a Notepad capacitor is discussed to illustrate capacitor and capacitor bank design and performance with this technology. We propose a two phase R&D program to address DNA`s capacitor needs for electro-thermal propulsion and similar pulse power programs. Phase 1 will prove the concept and further our understanding of dielectric materials and design tradeoffs with multilayers. Nano-structure multilayer capacitors will be developed and characterized. As our materials research and modeling prove successful, technology insertion in our capacitor designs will improve the possibility for dramatic performance improvements. In Phase 2, we will make Notepad capacitors, construct a capacitor bank and demonstrate its performance in a meaningful pulse power application. We will work with industrial partners to design full scale manufacturing and move this technology to industry for volume production.
Energy Continuity in Degenerate Density Functional Perturbation Theory
Palenik, Mark C
2016-01-01
Fractional occupation numbers can produce open-shell degeneracy in density functional theory. We develop the corresponding perturbation theory by requiring that a differentiable map connects the initial and perturbed states. The degenerate state connects to a single perturbed state which extremizes, but does not necessarily minimize or maximize, the energy with respect to occupation numbers. Using a system of three electrons in a harmonic oscillator potential, we relate the counterintuitive sign of first-order occupation numbers to eigenvalues of the electron-electron interaction Hessian.
Computational methods in high-energy-density physics
High-Energy-Density (HED) Physics involves experimental, theoretical and computational research in high pressure equation of state (EOS) of matter, opacity of materials in the plasma state, neutral and charged particle cross-section libraries, database for high explosives (HE), shock wave propagation, radiation and explosive driven hydrodynamics, particle transport theory, and modelling of complex experimental systems for inertial confinement fusion. These fields are intimately related to nuclear weapons research as well. Some of the typical computational methods used in HED physics are briefly covered in this talk. (author)
Dumping inflaton energy density out of this world
We argue that a brane-world with a warped, infinite extra dimension allows for the inflaton to decay into the bulk so that after inflation, the effective dark energy disappears from our brane. This is achieved by shifting away the decay products into the infinity of the 5th dimension. As a consequence, all matter and CMB density perturbations could have their origin in the decay of a MSSM flat direction rather than the inflaton. We also discuss a string theoretical model where reheating after inflation may not affect the observable brane
Nuclear clustering in the energy density functional approach
Nuclear Energy Density Functionals (EDFs) are a microscopic tool of choice extensively used over the whole chart to successfully describe the properties of atomic nuclei ensuing from their quantum liquid nature. In the last decade, they also have proved their ability to deal with the cluster phenomenon, shedding a new light on its fundamental understanding by treating on an equal footing both quantum liquid and cluster aspects of nuclei. Such a unified microscopic description based on nucleonic degrees of freedom enables to tackle the question pertaining to the origin of the cluster phenomenon and emphasizes intrinsic mechanisms leading to the emergence of clusters in nuclei
Nuclear clustering in the energy density functional approach
Ebran, J.-P., E-mail: jean-paul.ebran@cea.fr [CEA,DAM,DIF, F-91297 Arpajon (France); Khan, E. [Institut de Physique Nucléaire, Université Paris-Sud CEA, IN2P3 CNRS, F-91406 Orsay Cedex (France); Nikšić, T.; Vretenar, D. [Physics Department, Faculty of Science, University of Zagreb, 10000 Zagreb (Croatia)
2015-10-15
Nuclear Energy Density Functionals (EDFs) are a microscopic tool of choice extensively used over the whole chart to successfully describe the properties of atomic nuclei ensuing from their quantum liquid nature. In the last decade, they also have proved their ability to deal with the cluster phenomenon, shedding a new light on its fundamental understanding by treating on an equal footing both quantum liquid and cluster aspects of nuclei. Such a unified microscopic description based on nucleonic degrees of freedom enables to tackle the question pertaining to the origin of the cluster phenomenon and emphasizes intrinsic mechanisms leading to the emergence of clusters in nuclei.
Finiteness of the vacuum energy density in quantum electrodynamics
Manoukian, Edward B.
1983-03-01
Recent interest in the finiteness problem of the vacuum energy density (VED) in finite QED has motivated us to reexamine this problem in the light of an analysis we have carried out earlier. By a loopwise summation procedure, supplemented by a renormalization-group analysis, we study the finiteness of the VED with α, the renormalized fine-structure constant, fixed in the process as the (infinite order) zero of the eigenvalue condition F[1](x)|x=α=0∞, and with the electron mass totally dynamical of origin. We propose a possible finite solution for the VED in QED which may require only one additional eigenvalue condition for α.
Neutron stars as probes of extreme energy density matter
Madappa Prakash
2015-05-01
Neutron stars have long been regarded as extraterrestrial laboratories from which we can learn about extreme energy density matter at low temperatures. In this article, some of the recent advances made in astrophysical observations and related theory are highlighted. Although the focus is on the much needed information on masses and radii of several individual neutron stars, the need for additional knowledge about the many facets of neutron stars is stressed. The extent to which quark matter can be present in neutron stars is summarized with emphasis on the requirement of non-perturbative treatments. Some longstanding and new questions, answers to which will advance our current status of knowledge, are posed.
Poynting vector, energy density, and energy velocity in an anomalous dispersion medium
The Poynting vector, energy density, and energy velocity of light pulses propagating in an anomalous dispersion medium with two closely spaced gain lines are calculated. The results show that a negative energy density in the medium propagates along the opposite direction of incidence with a velocity similar to the negative group velocity vg while Poynting vector is in the same direction of incidence. In other words, one might say that a positive energy density in the medium would propagate along the positive direction with a speed |vg|. We further point out that neither energy velocity nor group velocity is a good concept to describe the propagation process of light pulse inside the medium in the Wang, Kuzmich, and Dogaiu [Nature (London) 406, 277 (2000)] experiment owing to the strong accumulation and dissipation effects
Causes of irregular energy density in f (R ,T ) gravity
Yousaf, Z.; Bamba, Kazuharu; Bhatti, M. Zaeem-ul-Haq
2016-06-01
We investigate irregularity factors for a self-gravitating spherical star evolving in the presence of an imperfect fluid. We explore the gravitational field equations and the dynamical equations with the systematic construction in f (R ,T ) gravity, where T is the trace of the energy-momentum tensor. Furthermore, we analyze two well-known differential equations (which occupy principal importance in the exploration of causes of energy density inhomogeneities) with the help of the Weyl tensor and the conservation laws. The irregularity factors for a spherical star are examined for particular cases of dust and isotropic and anisotropic fluids in dissipative and nondissipative regimes in the framework of f (R ,T ) gravity. It is found that, as the complexity of the matter with the anisotropic stresses increases, the inhomogeneity factor corresponds more closely to one of the structure scalars.
Formation energies of rutile metal dioxides using density functional theory
Martinez, Jose Ignacio; Hansen, Heine Anton; Rossmeisl, Jan;
2009-01-01
We apply standard density functional theory at the generalized gradient approximation (GGA) level to study the stability of rutile metal oxides. It is well known that standard GGA exchange and correlation in some cases is not sufficient to address reduction and oxidation reactions. Especially the...... and due to a more accurate description of exchange for this particular GGA functional compared to PBE. Furthermore, we would expect the self-interaction problem to be largest for the most localized d orbitals; that means the late 3d metals and since Co, Fe, Ni, and Cu do not form rutile oxides they...... are not included in this study. We show that the variations in formation energy can be understood in terms of a previously suggested model separating the formation energy into a metal deformation contribution and an oxygen binding contribution. The latter is found to scale with the filling of the d...
Dipole polarizability of 120Sn and nuclear energy density functionals
Hashimoto, T; Reinhard, P -G; Tamii, A; von Neumann-Cosel, P; Adachi, T; Aoi, N; Bertulani, C A; Fujita, H; Fujita, Y; Ganioǧlu, E; Hatanaka, K; Iwamoto, C; Kawabata, T; Khai, N T; Krugmann, A; Martin, D; Matsubara, H; Miki, K; Neveling, R; Okamura, H; Ong, H J; Poltoratska, I; Ponomarev, V Yu; Richter, A; Sakaguchi, H; Shimbara, Y; Shimizu, Y; Simonis, J; Smit, F D; Süsoy, G; Thies, J H; Suzuki, T; Yosoi, M; Zenihiro, J
2015-01-01
The electric dipole strength distribution in 120Sn between 5 and 22 MeV has been determined at RCNP Osaka from a polarization transfer analysis of proton inelastic scattering at E_0 = 295 MeV and forward angles including 0{\\deg}. Combined with photoabsorption data an electric dipole polarizability alpha_D(120Sn) = 8.93(36) fm^3 is extracted. The correlation of this value with alpha_D for 208Pb serves as a test of energy density functionals (EDFs). The majority of models based on Skyrme interactions can describe the data while relativistic approaches fail. The accuracy of the experimental results provides important constraints on the static isovector properties of EDFs used to predict symmetry energy parameters and the neutron skin thickness of nuclei.
Descriptions of carbon isotopes within the energy density functional theory
Within the energy density functional (EDF) theory, the structure properties of Carbon isotopes are systematically studied. The shell model calculations are done for both even-A and odd-A nuclei, to study the structure of rich-neutron Carbon isotopes. The EDF theory indicates the single-neutron halo structures in 15C, 17C and 19C, and the two-neutron halo structures in 16C and 22C nuclei. It is also found that close to the neutron drip-line, there exist amazing increase in the neutron radii and decrease on the binding energies BE, which are tightly related with the blocking effect and correspondingly the blocking effect plays a significant role in the shell model configurations
Descriptions of carbon isotopes within the energy density functional theory
Ismail, Atef [Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak, Malaysia and Department of Physics, Al-Azhar University, 71524 Assiut (Egypt); Cheong, Lee Yen; Yahya, Noorhana [Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Tammam, M. [Department of Physics, Al-Azhar University, 71524 Assiut (Egypt)
2014-10-24
Within the energy density functional (EDF) theory, the structure properties of Carbon isotopes are systematically studied. The shell model calculations are done for both even-A and odd-A nuclei, to study the structure of rich-neutron Carbon isotopes. The EDF theory indicates the single-neutron halo structures in {sup 15}C, {sup 17}C and {sup 19}C, and the two-neutron halo structures in {sup 16}C and {sup 22}C nuclei. It is also found that close to the neutron drip-line, there exist amazing increase in the neutron radii and decrease on the binding energies BE, which are tightly related with the blocking effect and correspondingly the blocking effect plays a significant role in the shell model configurations.
Vacuum energy density and pressure near a soft wall
Murray, S. W.; Whisler, C. M.; Fulling, S. A.; Wagner, Jef; Carter, H. B.; Lujan, David; Mera, F. D.; Settlemyre, T. E.
2016-05-01
Perfectly conducting boundaries, and their Dirichlet counterparts for quantum scalar fields, predict nonintegrable energy densities. A more realistic model with a finite ultraviolet cutoff yields two inconsistent values for the force on a curved or edged boundary (the "pressure anomaly"). A still more realistic, but still easily calculable, model replaces the hard wall by a power-law potential; because it involves no a posteriori modification of the formulas calculated from the theory, this model should be anomaly free. Here we first set up the formalism and notation for the quantization of a scalar field in the background of a planar soft wall, and we approximate the reduced Green function in perturbative and WKB limits (the latter being appropriate when either the mode frequency or the depth into the wall is sufficiently large). Then we display numerical calculations of the energy density and pressure for the region outside the wall, which show that the pressure anomaly does not occur there. Calculations inside the wall are postponed to later papers, which must tackle the regularization and renormalization of divergences induced by the potential in the bulk region.
Vacuum energy density and pressure of a massive scalar field
Mera, Fernando Daniel; Fulling, S. A.
2015-06-01
With a view toward application of the Pauli-Villars regularization method to the Casimir energy of boundaries, we calculate the expectation values of the components of the stress tensor of a confined massive field in 1+1 space-time dimensions. Previous papers by Hays and Fulling are bridged and generalized. The Green function for the time-independent Schrödinger equation is constructed from the Green function for the whole line by the method of images; equivalently, the one-dimensional system is solved exactly in terms of closed classical paths and periodic orbits. Terms in the energy density and in the eigenvalue density attributable to the two boundaries individually and those attributable to the confinement of the field to a finite interval are distinguished so that their physical origins are clear. Then the pressure is found similarly from the cylinder kernel, the Green function associated most directly with an exponential frequency cutoff of the Fourier mode expansion. Finally, we discuss how the theory could be rendered finite by the Pauli-Villars method.
Vacuum energy density and pressure of a massive scalar field
Mera, Fernando Daniel
2014-01-01
With a view toward application of the Pauli-Villars regularization method to the Casimir energy of boundaries, we calculate the expectation values of the components of the stress tensor of a confined massive field in 1+1 space-time dimensions. Previous papers by Hays and Fulling are bridged and generalized. The Green function for the time-independent Schrodinger equation is constructed from the Green function for the whole line by the method of images; equivalently, the one-dimensional system is solved exactly in terms of closed classical paths and periodic orbits. Terms in the energy density and in the eigenvalue density attributable to the two boundaries individually and those attributable to the confinement of the field to a finite interval are distinguished so that their physical origins are clear. Then the pressure is found similarly from the cylinder kernel, the Green function associated most directly with an exponential frequency cutoff of the Fourier mode expansion. Finally, we discuss how the theory ...
Strongly Interacting Matter at Very High Energy Density
McLerran, L.
2011-06-05
The authors discuss the study of matter at very high energy density. In particular: what are the scientific questions; what are the opportunities to makes significant progress in the study of such matter and what facilities are now or might be available in the future to answer the scientific questions? The theoretical and experimental study of new forms of high energy density matter is still very much a 'wild west' field. There is much freedom for developing new concepts which can have order one effects on the way we think about such matter. It is also a largely 'lawless' field, in that concepts and methods are being developed as new information is generated. There is also great possibility for new experimental discovery. Most of the exciting results from RHIC experiments were unanticipated. The methods used for studying various effects like flow, jet quenching, the ridge, two particle correlations etc. were developed as experiments evolved. I believe this will continue to be the case at LHC and as we use existing and proposed accelerators to turn theoretical conjecture into tangible reality. At some point this will no doubt evolve into a precision science, and that will make the field more respectable, but for my taste, the 'wild west' times are the most fun.
Applications of Skyrme energy-density functional to fusion reactions spanning the fusion barriers
Liu, Min; Wang, Ning; Li, Zhuxia; Wu, Xizhen; Zhao, Enguang
2005-01-01
The Skyrme energy density functional has been applied to the study of heavy-ion fusion reactions. The barriers for fusion reactions are calculated by the Skyrme energy density functional with proton and neutron density distributions determined by using restricted density variational (RDV) method within the same energy density functional together with semi-classical approach known as the extended semi-classical Thomas-Fermi method. Based on the fusion barrier obtained, we propose a parametriza...
High Energy Density Science at the Linac Coherent Light Source
Lee, R W
2007-10-19
High energy density science (HEDS), as a discipline that has developed in the United States from National Nuclear Security Agency (NNSA)-sponsored laboratory research programs, is, and will remain, a major component of the NNSA science and technology strategy. Its scientific borders are not restricted to NNSA. 'Frontiers in High Energy Density Physics: The X-Games of Contemporary Science' identified numerous exciting scientific opportunities in this field, while pointing to the need for a overarching interagency plan for its evolution. Meanwhile, construction of the first x-ray free-electron laser, the Office-of-Science-funded Linear Coherent Light Source-LCLS: the world's first free electron x-ray laser, with 100-fsec time resolution, tunable x-ray energies, a high rep rate, and a 10 order-of-magnitude increase in brightness over any other x-ray source--led to the realization that the scientific needs of NNSA and the broader scientific community could be well served by an LCLS HEDS endstation employing both short-pulse and high-energy optical lasers. Development of this concept has been well received in the community. NNSA requested a workshop on the applicability of LCLS to its needs. 'High Energy Density Science at the LCLS: NNSA Defense Programs Mission Need' was held in December 2006. The workshop provided strong support for the relevance of the endstation to NNSA strategic requirements. The range of science that was addressed covered a wide swath of the vast HEDS phase space. The unique possibilities provided by the LCLS in areas of intense interest to NNSA Defense Programs were discussed. The areas of focus included warm dense matter and equations of state, hot dense matter, and behavior of high-pressure materials under conditions of high strain-rate and extreme dynamic loading. Development of new and advanced diagnostic techniques was also addressed. This report lays out the relevant science, as brief summaries (Ch. II), expanded
High Energy Density Science at the Linac Coherent Light Source
High energy density science (HEDS), as a discipline that has developed in the United States from National Nuclear Security Agency (NNSA)-sponsored laboratory research programs, is, and will remain, a major component of the NNSA science and technology strategy. Its scientific borders are not restricted to NNSA. 'Frontiers in High Energy Density Physics: The X-Games of Contemporary Science' identified numerous exciting scientific opportunities in this field, while pointing to the need for a overarching interagency plan for its evolution. Meanwhile, construction of the first x-ray free-electron laser, the Office-of-Science-funded Linear Coherent Light Source-LCLS: the world's first free electron x-ray laser, with 100-fsec time resolution, tunable x-ray energies, a high rep rate, and a 10 order-of-magnitude increase in brightness over any other x-ray source--led to the realization that the scientific needs of NNSA and the broader scientific community could be well served by an LCLS HEDS endstation employing both short-pulse and high-energy optical lasers. Development of this concept has been well received in the community. NNSA requested a workshop on the applicability of LCLS to its needs. 'High Energy Density Science at the LCLS: NNSA Defense Programs Mission Need' was held in December 2006. The workshop provided strong support for the relevance of the endstation to NNSA strategic requirements. The range of science that was addressed covered a wide swath of the vast HEDS phase space. The unique possibilities provided by the LCLS in areas of intense interest to NNSA Defense Programs were discussed. The areas of focus included warm dense matter and equations of state, hot dense matter, and behavior of high-pressure materials under conditions of high strain-rate and extreme dynamic loading. Development of new and advanced diagnostic techniques was also addressed. This report lays out the relevant science, as brief summaries (Ch. II), expanded descriptions (Ch. V), and a
Khanchaitit, Paisan; Han, Kuo; Gadinski, Matthew R; Li, Qi; Wang, Qing
2013-01-01
Ferroelectric polymers are being actively explored as dielectric materials for electrical energy storage applications. However, their high dielectric constants and outstanding energy densities are accompanied by large dielectric loss due to ferroelectric hysteresis and electrical conduction, resulting in poor charge-discharge efficiencies under high electric fields. To address this long-standing problem, here we report the ferroelectric polymer networks exhibiting significantly reduced dielectric loss, superior polarization and greatly improved breakdown strength and reliability, while maintaining their fast discharge capability at a rate of microseconds. These concurrent improvements lead to unprecedented charge-discharge efficiencies and large values of the discharged energy density and also enable the operation of the ferroelectric polymers at elevated temperatures, which clearly outperforms the melt-extruded ferroelectric polymer films that represents the state of the art in dielectric polymers. The simplicity and scalability of the described method further suggest their potential for high energy density capacitors. PMID:24276519
In early work, Dawson and March [J. Chem. Phys. 81, 5850 (1984)] proposed a local energy method for treating both Hartree-Fock and correlated electron theory. Here, an exactly solvable model two-electron atom with pure harmonic interactions is treated in its ground state in the above context. A functional relation between the kinetic energy density t(r) at the origin r=0 and the electron density p(r) at the same point then emerges. The same approach is applied to the Hookean atom; in which the two electrons repel with Coulombic energy e2/r12, with r12 the interelectronic separation, but are still harmonically confined. Again the kinetic energy density t(r) is the focal point, but now generalization away from r=0 is also effected. Finally, brief comments are added about He-like atomic ions in the limit of large atomic number. (author)
舒维星; 吴普训; 余洪伟
2003-01-01
Negative energy density and the quantum inequality are examined for the Dirac field. A proof is given of the quantum inequality for negative energy densities in the massive Dirac field produced by the superposition of two single particle electron states.
Toulouse, Julien; Gori-Giorgi, Paola; Savin, Andreas
2006-01-01
International audience Decomposition of the Coulomb electron- electron interaction into a long-range and a short-range part is described within the framework of density functional theory, deriving some scaling relations and the corresponding virial theorem. We study the behavior of the local density approximation in the high-density limit for the long-range and the short-range functionals by carrying out a detailed analysis of the correlation energy of a uniform electron gas interacting vi...
A density functional for core-valence correlation energy
Ranasinghe, Duminda S.; Frisch, Michael J.; Petersson, George A.
2015-12-01
A density functional, ɛCV-DFT(ρc, ρv), describing the core-valence correlation energy has been constructed as a linear combination of ɛLY Pcorr(ρc), ɛV WN5corr(ρc, ρv), ɛPBEcorr(ρc, ρv), ɛSlaterex(ρc, ρv), ɛHCTHex(ρc, ρv), ɛHFex(ρc, ρv), and F CV -DFT (" separators=" N i , Z i ) , a function of the nuclear charges. This functional, with 6 adjustable parameters, reproduces (±0.27 kcal/mol rms error) a benchmark set of 194 chemical energy changes including 9 electron affinities, 18 ionization potentials, and 167 total atomization energies covering the first- and second-rows of the periodic table. This is almost twice the rms error (±0.16 kcal/mol) obtained with CCSD(T)/MTsmall calculations, but less than half the rms error (±0.65 kcal/mol) obtained with MP2/GTlargeXP calculations, and somewhat smaller than the rms error (±0.39 kcal/mol) obtained with CCSD/MTsmall calculations. The largest positive and negative errors from ɛCV-DFT(ρc, ρv) were 0.88 and -0.75 kcal/mol with the set of 194 core-valence energy changes ranging from +3.76 kcal/mol for the total atomization energy of propyne to -9.05 kcal/mol for the double ionization of Mg. Evaluation of the ɛCV-DFT(ρc, ρv) functional requires less time than a single SCF iteration, and the accuracy is adequate for any model chemistry based on the CCSD(T) level of theory.
A density functional for core-valence correlation energy.
Ranasinghe, Duminda S; Frisch, Michael J; Petersson, George A
2015-12-01
A density functional, εCV-DFT(ρc, ρv), describing the core-valence correlation energy has been constructed as a linear combination of εLY P (corr)(ρc), εV WN5 (corr)(ρc, ρv), εPBE (corr)(ρc, ρv), εSlater (ex)(ρc, ρv), εHCTH (ex)(ρc, ρv), εHF (ex)(ρc, ρv), and FCV-DFTNi,Zi, a function of the nuclear charges. This functional, with 6 adjustable parameters, reproduces (±0.27 kcal/mol rms error) a benchmark set of 194 chemical energy changes including 9 electron affinities, 18 ionization potentials, and 167 total atomization energies covering the first- and second-rows of the periodic table. This is almost twice the rms error (±0.16 kcal/mol) obtained with CCSD(T)/MTsmall calculations, but less than half the rms error (±0.65 kcal/mol) obtained with MP2/GTlargeXP calculations, and somewhat smaller than the rms error (±0.39 kcal/mol) obtained with CCSD/MTsmall calculations. The largest positive and negative errors from εCV-DFT(ρc, ρv) were 0.88 and -0.75 kcal/mol with the set of 194 core-valence energy changes ranging from +3.76 kcal/mol for the total atomization energy of propyne to -9.05 kcal/mol for the double ionization of Mg. Evaluation of the εCV-DFT(ρc, ρv) functional requires less time than a single SCF iteration, and the accuracy is adequate for any model chemistry based on the CCSD(T) level of theory. PMID:26646873
Stability of Magnetically Implode Liners for High Energy Density Experiments
Magnetically imploded cylindrical metal shells (z-pinch liners) are attractive drivers for a wide variety of hydrodynamics and material properties experiments. The ultimate utility of liners depends on the acceleration of near-solid density shells to velocities exceeding 20 km/sec with good azimuthal symmetry and axial uniformity. Two pulse power systems (Ranchero and Atlas) currently operational or under development at Los Alamos provide electrical energy adequate to accelerate approximately50 gr. liners to 1-2 MJ/cm kinetic energy. As in all z-pinches, the outer surface of a magnetically imploded liner is unstable to magneto-Rayleigh-Taylor (RT) modes during acceleration. Large-scale distortion in the liners from RT modes growing from glide plane interactions or initial imperfections could make liners unusable for man experiments. On the other hand, material strength in the liner should, from first principles, reduce the growth rate of RT modes - and can render some combinations of wavelength and amplitude analytically stable. The growth of instabilities in both soft aluminum liners and in high strength aluminum alloy liners has been studied analytically, computationally and experimentally at liner kinetic energies up to 100 KJ/cm on the Pegasus capacitor bank using driving currents up to 12 MA
Stoitsov, M.; Kortelainen, M.; Bogner, S. K.; Duguet, T.; Furnstahl, R. J.; Gebremariam, B.; Schunck, N.
2010-01-01
In a recent series of papers, Gebremariam, Bogner, and Duguet derived a microscopically based nuclear energy density functional by applying the Density Matrix Expansion (DME) to the Hartree-Fock energy obtained from chiral effective field theory (EFT) two- and three-nucleon interactions. Due to the structure of the chiral interactions, each coupling in the DME functional is given as the sum of a coupling constant arising from zero-range contact interactions and a coupling function of the dens...
The negative energy density for a three-single-electron state in the Dirac field
Shu Wei-Xing; Yu Hong-Wei; Wu Pu-Xun
2004-01-01
We examine the energy density produced by a state vector which is the superposition of three single electron states in the Dirac field in the four-dimensional Minkowski spacetime. We derive the conditions on which the energy density can be negative. We then show that the energy density satisfies two quantum inequalities in the ultrarelativistic limit.
BUILDING A UNIVERSAL NUCLEAR ENERGY DENSITY FUNCTIONAL (UNEDF)
Nazarewicz, Witold
2012-07-01
The long-term vision initiated with UNEDF is to arrive at a comprehensive, quantitative, and unified description of nuclei and their reactions, grounded in the fundamental interactions between the constituent nucleons. We seek to replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that delivers maximum predictive power with well-quantified uncertainties. Specifically, the mission of this project has been three-fold: First, to find an optimal energy density functional (EDF) using all our knowledge of the nucleonic Hamiltonian and basic nuclear properties. Second, to apply the EDF theory and its extensions to validate the functional using all the available relevant nuclear structure and reaction data. Third, to apply the validated theory to properties of interest that cannot be measured, in particular the properties needed for reaction theory.
Microelectromechanical inductors with high inductance density via mechanical energy storage
This paper reports the fabrication, characterization and modeling of microelectromechanical inductor (MEMI) devices, which employ electrodynamic coupling and mechanical energy storage to boost the apparent electrical inductance of electrical conductors. The microfabricated MEMI devices comprise an electrically conducting, mechanically suspended clamped–clamped copper beam that is placed in a transverse static magnetic field. Under an ac current excitation, the beam is forced to vibrate via the electrodynamic interactions between the electrical current and the static magnetic field. This electromechanical coupling results in a large apparent electrical inductance. The microfabrication and subsequent characterization of a variety of test structures is presented. The devices exhibit a peak quality factor up to 5.6 and net areal inductance densities of up to 3.5 µH mm−2. The experimentally observed behavior is compared against theoretical models using extracted system parameters. (paper)
5th International conference on High Energy Density Laboratory Astrophysics
Kyrala, G.A
2005-01-01
During the past several years, research teams around the world have developed astrophysics-relevant utilizing high energy-density facilities such as intense lasers and z-pinches. Research is underway in many areas, such as compressible hydrodynamic mixing, strong shock phenomena, radiation flow, radiative shocks and jets, complex opacities, equations o fstat, and relativistic plasmas. Beyond this current research and the papers it is producing, plans are being made for the application, to astrophysics-relevant research, of the 2 MJ National Ignition Facility (NIF) laser at Lawrence Livermore National Laboratory; the 600 kj Ligne d'Intergration Laser (LIL) and the 2 MJ Laser Megajoule (LMJ) in Bordeaux, France; petawatt-range lasers now under construction around the world; and current and future Z pinches. The goal of this conference and these proceedings is to continue focusing and attention on this emerging research area. The conference brought together different scientists interested in this emerging new fi...
Computational predictions of energy materials using density functional theory
Jain, Anubhav; Shin, Yongwoo; Persson, Kristin A.
2016-01-01
In the search for new functional materials, quantum mechanics is an exciting starting point. The fundamental laws that govern the behaviour of electrons have the possibility, at the other end of the scale, to predict the performance of a material for a targeted application. In some cases, this is achievable using density functional theory (DFT). In this Review, we highlight DFT studies predicting energy-related materials that were subsequently confirmed experimentally. The attributes and limitations of DFT for the computational design of materials for lithium-ion batteries, hydrogen production and storage materials, superconductors, photovoltaics and thermoelectric materials are discussed. In the future, we expect that the accuracy of DFT-based methods will continue to improve and that growth in computing power will enable millions of materials to be virtually screened for specific applications. Thus, these examples represent a first glimpse of what may become a routine and integral step in materials discovery.
CENTER FOR PULSED POWER DRIVEN HIGH ENERGY DENSITY PLASMA STUDIES
Professor Bruce R. Kusse; Professor David A. Hammer
2007-04-18
This annual report summarizes the activities of the Cornell Center for Pulsed-Power-Driven High-Energy-Density Plasma Studies, for the 12-month period October 1, 2005-September 30, 2006. This period corresponds to the first year of the two-year extension (awarded in October, 2005) to the original 3-year NNSA/DOE Cooperative Agreement with Cornell, DE-FC03-02NA00057. As such, the period covered in this report also corresponds to the fourth year of the (now) 5-year term of the Cooperative Agreement. The participants, in addition to Cornell University, include Imperial College, London (IC), the University of Nevada, Reno (UNR), the University of Rochester (UR), the Weizmann Institute of Science (WSI), and the P.N. Lebedev Physical Institute (LPI), Moscow. A listing of all faculty, technical staff and students, both graduate and undergraduate, who participated in Center research activities during the year in question is given in Appendix A.
Fabrication and demonstration of high energy density lithium ion microbatteries
Sun, Ke
density on a limited footprint area. In chapter 4, Li-ion batteries based on the LiMn2O4-TiP 2O7 couple are manufactured on flexible paper substrates; where the use of light-weight paper substrates significantly increase the gravimetric energy density of this electrode couple as compared to traditional metal current collectors. In chapter 5, a novel nanowire growth mechanism will be explored to grow interdigitated metal oxide nanowire micro battery electrodes. The growth kinetics of this mechanism is systematically studied to understand how to optimize the growth process to produce electrodes with improved electrochemical properties.
Non-empirical energy density functional for the nuclear structure
The energy density functional (EDF) formalism is the tool of choice for large-scale low-energy nuclear structure calculations both for stable experimentally known nuclei whose properties are accurately reproduced and systems that are only theoretically predicted. We highlight in the present dissertation the capability of EDF methods to tackle exotic phenomena appearing at the very limits of stability, that is the formation of nuclear halos. We devise a new quantitative and model-independent method that characterizes the existence and properties of halos in medium- to heavy-mass nuclei, and quantifies the impact of pairing correlations and the choice of the energy functional on the formation of such systems. These results are found to be limited by the predictive power of currently-used EDFs that rely on fitting to known experimental data. In the second part of this dissertation, we initiate the construction of non-empirical EDFs that make use of the new paradigm for vacuum nucleon-nucleon interactions set by so-called low-momentum interactions generated through the application of renormalization group techniques. These soft-core vacuum potentials are used as a step-stone of a long-term strategy which connects modern many-body techniques and EDF methods. We provide guidelines for designing several non-empirical models that include in-medium many-body effects at various levels of approximation, and can be handled in state-of-the art nuclear structure codes. In the present work, the first step is initiated through the adjustment of an operator representation of low-momentum vacuum interactions using a custom-designed parallel evolutionary algorithm. The first results highlight the possibility to grasp most of the relevant physics for low-energy nuclear structure using this numerically convenient Gaussian vertex. (author)
Horioka, Kazuhiko (ed.)
2002-06-01
The papers presented at the symposium on ''Physics and application of high energy density plasmas, held December 20-21, 2001 at NIFS'' are collected in this proceedings. The topics covered in the meeting include dense z-pinches, plasma focus, intense charged particle beams, intense radiation sources, discharge pumped X-ray lasers, their diagnostics, and applications of them. The papers reflect the present status and trends in the research field of high energy density plasmas. (author)
Thermal transport measurements in high-energy-density matter
Ping, Yuan
2015-11-01
Thermal conductivity is one of the most fundamental physical properties of matter. It determines the heat transport rate and has an enormous impact on a variety of mechanical, electrical, chemical, and nuclear systems. Thermal conduction is important in high energy density (HED) matter such as laboratory fusion plasmas, planetary cores, compact stars, and other celestial objects. Examples are in the ablation and instability growth in inertial confinement fusion (ICF) capsules, in energy loss from ICF hot spot, and in the evolution of Earth's core-mantle boundary. Despite the importance of thermal conductivity in HED systems, experimental measurements under relevant conditions are scarce and challenging. We have developed a method of differential heating for thermal conductivity measurements. In this talk, experimental designs will be described for four different platforms: optical laser heating, proton heating, laser-generated x-ray heating and XFEL heating. Data from various facilities will be presented and comparison with models will be discussed. This work was performed under DOE contract DE-AC52-07NA27344 with support from OFES Early Career program and LLNL LDRD program.
Frontiers in plasma science: a high energy density perspective
Remington, Bruce
2015-11-01
The potential for ground-breaking research in plasma physics in high energy density (HED) regimes is compelling. The combination of HED facilities around the world spanning microjoules to megajoules, with time scales ranging from femtoseconds to microseconds enables new regimes of plasma science to be experimentally probed. The ability to shock and ramp compress samples and simultaneously probe them allows dense, strongly coupled, Fermi degenerate plasmas relevant to planetary interiors to be studied. Shock driven hydrodynamic instabilities evolving into turbulent flows relevant to the dynamics of exploding stars are being probed. The physics and dynamics of magnetized plasmas relevant to astrophysics and inertial confinement fusion are also starting to be studied. High temperature, high velocity interacting flows are being probed for evidence of astrophysical collisionless shock formation. Turbulent, high magnetic Reynolds number flows are being experimentally generated to look for evidence of the turbulent magnetic dynamo effect. And new results from thermonuclear reactions in dense hot plasmas relevant to stellar interiors are starting to emerge. A selection of examples providing a compelling vision for frontier plasma science in the coming decade will be presented. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Negative energy densities in integrable quantum field theories at one-particle level
Bostelmann, Henning
2015-01-01
We study the phenomenon of negative energy densities in quantum field theories with self-interaction. Specifically, we consider a class of integrable models (including the sinh-Gordon model) in which we investigate the expectation value of the energy density in one-particle states. In this situation, we classify the possible form of the stress-energy tensor from first principles. We show that one-particle states with negative energy density generically exist in non-free situations, and we establish lower bounds for the energy density (quantum energy inequalities). Demanding that these inequalities hold reduces the ambiguity in the stress-energy tensor, in some situations fixing it uniquely. Numerical results for the lowest spectral value of the energy density allow us to demonstrate how negative energy densities depend on the coupling constant and on other model parameters.
High Energy Density Studies at the OMEGA laser facility
Boehly, Thomas
2015-06-01
The primary emphasis of the scientific program at the Laboratory for Laser Energetics is laser-driven inertial confinement fusion. We report on high-energy-density (HED) experiments that use the OMEGA laser to produce multi-megabar shocks in materials of interest to the national fusion effort and the associated HED sciences. We present measurements of the behavior of shocked diamond, in both the single-crystal and ultranano-crystalline forms used as an ablator material in fusion capsules. Using the impedance-matching technique both the Hugoniot and release behaviors are measured with respect to multiple reference materials. The release of shocked diamond into liquid deuterium is also measured. We present the results of sound-speed measurements in shocked quartz which is also used as a reference for sound speed measurements in CH and fused silica. This is done using an unsteady wave analysis that tracks the propagation of small perturbations in shock pressure as they traverse the shocked material from `piston' to shock front. The arrival times of these perturbations, as compared to the same in a reference material, provides the sound speed in the shock material. We also present results of optical and x-ray probing of shock waves in foam targets and solid targets, as well as the release plumes of shock material after shock breakout. The import of these measurements to the fusion program and basic HED science will be discussed and plans for future work presented. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-08NA28302.
Atlas Pulsed Power Facility for High Energy Density Physics Experiments
The Atlas facility, now under construction at Los Alamos National Laboratory (LANL), will provide a unique capability for performing high-energy-density experiments in support of weapon-physics and basic-research programs. It is intended to be an international user facility, providing opportunities for researchers from national laboratories and academic institutions around the world. Emphasizing institutions around the world. Emphasizing hydrodynamic experiments, Atlas will provide the capability for achieving steady shock pressures exceeding 10-Mbar in a volume of several cubic centimeters. In addition, the kinetic energy associated with solid liner implosion velocities exceeding 12 km/s is sufficient to drive dense, hydrodynamic targets into the ionized regime, permitting the study of complex issues associated with strongly-coupled plasmas. The primary element of Atlas is a 23-MJ capacitor bank, comprised of 96 separate Marx generators housed in 12 separate oil-filled tanks, surrounding a central target chamber. Each tank will house two, independently-removable maintenance units, with each maintenance unit consisting of four Marx modules. Each Marx module has four capacitors that can each be charged to a maximum of 60 kilovolts. When railgap switches are triggered, the marx modules erect to a maximum of 240 kV. The parallel discharge of these 96 Marx modules will deliver a 30-MA current pulse with a 4-5-micros risetime to a cylindrical, imploding liner via 24 vertical, tri-plate, oil-insulated transmission lines. An experimental program for testing and certifying all Marx and transmission line components has been completed. A complete maintenance module and its associated transmission line (the First Article) are now under construction and testing. The current Atlas schedule calls for construction of the machine to be complete by August, 2000. Acceptance testing is scheduled to begin in November, 2000, leading to initial operations in January, 2001
Zhao, Qian; Sun, Bao Yuan; Long, Wen Hui
2014-01-01
The isospin coupling-channel decomposition of the potential energy density functional is carried out within the covariant density functional theory, and their isospin and density dependence in particular the influence on the symmetry energy is studied. It is found that both isospin-singlet and isospin-triplet components of the potential energy play the dominant role in deciding the symmetry energy, especially when the Fock diagram is introduced. The results illustrate a quite different mechan...
Higher-order energy density functionals in nuclear self-consistent theory
Raimondi, Francesco
2011-01-01
In this thesis consisting of two publications and an overview part, a study of two aspects of energy density functionals has been performed. Firstly, we have linked the next-to-next-to-next-to-leading order nuclear energy density functional to a zero-range pseudopotential that includes all possible terms up to sixth order in derivatives. Within the Hartree-Fock approximation, the quasi-local nuclear Energy Density Functional (EDF) has been calculated as the average energy ob...
Exchange-correlation energy densities for two-dimensional systems from quantum dot ground-states
Wensauer, Andreas; Rössler, Ulrich
2003-01-01
In this paper we present a new approach how to extract polarization-dependent exchange-correlation energy densities for two-dimensional systems from reference densities and energies of quantum dots provided by exact diagonalization. Compared with results from literature we find systematic corrections for all polarizations in the regime of high densities.
Building A Universal Nuclear Energy Density Functional (UNEDF)
Carlson, Joe, Los Alamos National Laboratory, Los Alamos, NM; Furnstahl, Dick, Ohio State University, Columbus, OH; Horoi, Mihai, Central Michigan University, Mount Pleasant, MI; Lusk, Rusty, Argonne National Laboratory, Argonne, IL; Nazarewicz, Witek, University of Tennessee, Knoxville, TN; Ng, Esmond, Berkeley National Laboratory, Berkeley, CA; Thompson, Ian, Lawrence Livermore National Laboratory, Livermore, CA; Vary, James, Iowa State University, Ames, Iowa
2012-09-30
During the period of Dec. 1 2006 - Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. The long-term vision initiated with UNEDF is to arrive at a comprehensive, quantitative, and unified description of nuclei and their reactions, grounded in the fundamental interactions between the constituent nucleons. We seek to replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that delivers maximum predictive power with well-quantified uncertainties. Specifically, the mission of this project has been three-fold: first, to find an optimal energy density functional (EDF) using all our knowledge of the nucleonic Hamiltonian and basic nuclear properties; second, to apply the EDF theory and its extensions to validate the functional using all the available relevant nuclear structure and reaction data; third, to apply the validated theory to properties of interest that cannot be measured, in particular the properties needed for reaction theory. The main physics areas of UNEDF, defined at the beginning of the project, were: ab initio structure; ab initio functionals; DFT applications; DFT extensions; reactions.
Upgrading of biorenewables to high energy density fuels
Gordon, John C [Los Alamos National Laboratory; Batista, Enrique R [Los Alamos National Laboratory; Chen, Weizhong [Los Alamos National Laboratory; Currier, Robert P [Los Alamos National Laboratory; Dirmyer, Matthew R [Los Alamos National Laboratory; John, Kevin D [Los Alamos National Laboratory; Kim, Jin K [Los Alamos National Laboratory; Keith, Jason [Los Alamos National Laboratory; Martin, Richard L [Los Alamos National Laboratory; Pierpont, Aaron W [Los Alamos National Laboratory; Silks Ill, L. A. " " Pete [Los Alamos National Laboratory; Smythe, Mathan C [Los Alamos National Laboratory; Sutton, Andrew D [Los Alamos National Laboratory; Taw, Felicia L [Los Alamos National Laboratory; Trovitch, Ryan J [Los Alamos National Laboratory; Vasudevan, Kalyan V [Los Alamos National Laboratory; Waidmann, Christopher R [Los Alamos National Laboratory; Wu, Ruilian [Los Alamos National Laboratory; Baker, R. Thomas [UNIV OF OTTAWWA; Schlaf, Marcel [UNIV OF GUELPH
2010-12-07
According to a recent report, lignocellulose is the most abundant renewable biological resource on earth, with an annual production of {approx} 200 x 10{sup 9} tons. Conversion of lignocellulosics derived from wood, agricultural wastes, and woody grasses into liquid fuels and value-added chemical feedstocks is an active area of research that has seen an explosion of effort due to the need to replace petroleum based sources. The carbohydrates D-glucose (C{sub 6}), L-arabinose (C{sub 5}), and D-xylose (C{sub 5}) are readily obtained from the hydrolysis of lignocellulose and constitute the most abundant renewable organic carbon source on the planet. Because they are naturally produced on such a large scale, these sugars have the greatest potential to displace petrochemical derived transportation fuel. Recent efforts in our laboratories aimed towards the production of high energy density transportation fuels from carbohydrates have been structured around the parameters of selective carbohydrate carbon chain extension chemistries, low reaction temperatures, and the desired use of water or neat substrate as the solvent. Some of our efforts in this regard will be presented.
e-Science in high energy density science research
We present three achievements related to e-Science in high energy density science research. We have developed a test module of new data base system for nation-wide users of the high power lasers at Osaka University with web technology, flexible control system and XML-database, which provide efficient, accurate and flexible R and D processing. We also constructed a EUV-GRID portal system for integrated computer simulations of laser produced plasma-extreme ultraviolet (LPP-EUV) light source development, which provides flexible framework for automatic sequencing of workflow for the integrated simulations. A dynamical domain decomposition method in molecular dynamic (MD) simulations is required to obtain a good adaptive load balancing for heterogeneous computing environments such as grid. We have developed a new algorithm of the dynamical domain decomposition. We successfully performed large scale MD-message passing interface (MPI) simulations on cluster computers connected through Super-SINET using the National Research Grid Initiative (NAREGI GRID) grid middleware and the new algorithm
Effect of the Vacuum Energy Density on Graviton Propagation
Modanese, G; Modanese, Giovanni; Fontana, Giorgio
2004-01-01
It is known that the value L of the vacuum energy density affects the propagation equation for gravitons: A mass term appears in the propagation equation, such that m^2=-L. As a consequence, the polarization states of gravitons also change. This effect of the L-term has been confirmed by recent calculations in a curved background, which is the only proper setting, since solutions of the classical Einstein equations in the presence of a L-term represent a space with constant curvature. A real value for the mass (when L0) are still unclear; on general grounds, one can expect the onset of instabilities in this case. This is also confirmed by numerical simulations of quantum gravity which became recently available. These properties gain a special interest in consideration of the following. (1) The most recent cosmological data indicate that L is positive and of the order of 0.1 J/m^3. Is this value compatible with a stable propagation of gravitons? (2) The answer to the previous question lies perhaps in the scale...
This paper employs a framework of dynamic energy analysis to model the growth potential of alternative electricity supply infrastructures as constrained by innate physical energy balance and dynamic response limits. Coal-fired generation meets the criteria of longevity (abundance of energy source) and scalability (ability to expand to the multi-terawatt level) which are critical for a sustainable energy supply chain, but carries a very heavy carbon footprint. Renewables and nuclear power, on the other hand, meet both the longevity and environmental friendliness criteria. However, due to their substantially different energy densities and load factors, they vary in terms of their ability to deliver net excess energy and attain the scale needed for meeting the huge global energy demand. The low power density of renewable energy extraction and the intermittency of renewable flows limit their ability to achieve high rates of indigenous infrastructure growth. A significant global nuclear power deployment, on the other hand, could engender serious risks related to proliferation, safety, and waste disposal. Unlike renewable sources of energy, nuclear power is an unforgiving technology because human lapses and errors can have ecological and social impacts that are catastrophic and irreversible. Thus, the transition to a low carbon economy is likely to prove much more challenging than early optimists have claimed. - Highlights: → We model the growth potential of alternative electricity supply infrastructures. → Coal is scalable and abundant but carries a heavy carbon footprint. → Renewables and nuclear meet the longevity and environmental friendliness criteria. → The low power density and intermittency of renewables limit their growth potential. → Nuclear power continues to raise concerns about proliferation, safety, and waste.
Navazi, H. M.; Nokhbatolfoghahaei, A.; Ghobad, Y.; Haddadpour, H.
2016-08-01
In this paper, a new method and formulation is presented for experimental measurement of energy density of high frequency vibrations of a plate. By use of the new proposed method and eight accelerometers, both kinetic and potential energy densities are measured. Also, a computer program is developed based on energy finite element method to evaluate the proposed method. For several points, the results of the developed experimental formulation are compared with those of the energy finite element analysis results. It is observed that, there is a good agreement between experimental results and analyses. Finally, another test setup with reduced accelerometer spacing was prepared and based on the comparison between kinetic and potential results, it is concluded that, the kinetic and potential counterparts of the energy density are equal in high frequency bands. Based on this conclusion, the measurement procedure was upgraded to an efficient and very simple one for high frequency ranges. According to the new test procedure, another experimental measurement was performed and the results had a good agreement with the EFEA results.
Strain Energy Density in the Elastodynamics of the Spacetime Continuum and the Electromagnetic Field
Millette P. A.
2013-04-01
Full Text Available We investigate the strain energy density of the spacetime continuum in the Elasto- dynamics of the Spacetime Continuum by applying continuum m echanical results to strained spacetime. The strain energy density is a scalar. W e find that it is separated into two terms: the first one expresses the dilatation energy density (the “mass” longitu- dinal term while the second one expresses the distortion en ergy density (the “massless” transverse term. The quadratic structure of the energy rel ation of Special Relativity is found to be present in the theory. In addition, we find that the kinetic energy pc is car- ried by the distortion part of the deformation, while the dil atation part carries only the rest-mass energy. The strain energy density of the electrom agnetic energy-momentum stress tensor is calculated. The dilatation energy density (the rest-mass energy density of the photon is found to be 0 as expected. The transverse dis tortion energy density is found to include a longitudinal electromagnetic energy fl ux term, from the Poynting vector, that is massless as it is due to distortion, not dilatation, of the spacetime con- tinuum. However, because this energy flux is along the direct ion of propagation (i.e. longitudinal, it gives rise to the particle aspect of the el ectromagnetic field, the photon.
High Energy Density Li-Ion Batteries Designed for Low Temperature Applications Project
National Aeronautics and Space Administration — The state-of-the-art Li-ion batteries do not fully meet the energy density, power density and safety requirements specified by NASA for future exploration missions....
High energy density in matter produced by heavy ion beams
This Annual Report summarizes research activities carried out in 1988 in the framework of the government-funded program 'High Energy Density in Matter produced by Heavy Ion Beams'. It addresses fundamental problems of the generation of heavy ion beams and the investigation of hot dense plasmas produced by these beams. Its initial motivation and its long-term goal is the feasibility of inertial confinement fusion by intense heavy ion beams. Two outstanding events deserve to be mentioned explicity, the Heavy Ion Inertial Fusion Conference held in Darmstadt and organized by GSI end of June and the first heavy ion beam injected into the new SIS facility in November. The former event attracted more than hundred scientists for three days to the 4th Conference in this field. This symposium showed the impressive progress since the last conference in Washington two years ago. In particular the first beams in MBE-4 at LBL and results of beam plasma interaction experiments at GSI open new directions for future investigations. The ideas for non-Lionvillean injection into storage rings presented by Carlo Rubbia will bring the discussion of driver scenarios into a new stage. The latter event is a milestone for both machine and target experiments. It characterizes the beginning of the commissioning phase for the new SIS/ESR facility which will be ready for experiments at the end of this year. The commissioning of SIS is on schedule and first experiments can start at the beginning of 1990. A status report of the accelerator project is included. Theoretical activities were continued as in previous years, many of them providing guide lines for future experiments, in particular for the radiation transport aspects and for beam-plasma interaction. (orig.)
Monte Carlo dosimetric evaluation of high energy vs low energy photon beams in low density tissues
Background and purpose: Low megavoltage photon beams are often the treatment choice in radiotherapy when low density heterogeneities are involved, because higher energies show some undesirable dosimetric effects. This work is aimed at investigating the effects of different energy selection for low density tissues. Patients and methods: BEAMnrc was used to simulate simple treatment set-ups in a simple and a CT reconstructed lung phantom and an air-channel phantom. The dose distribution of 6, 15 and 20 MV photon beams was studied using single, AP/PA and three-field arrangements. Results: Our results showed no significant changes in the penumbra width in lung when a pair of opposed fields were used. The underdosage at the anterior/posterior tumor edge caused by the dose build-up at the lung-tumor interface reached 7% for a 5x5 cm AP/PA set-up. Shrinkage of the 90% isodose volume was noticed for the same set-up, which could be rectified by adding a lateral field. For the CT reconstructed phantom, the AP/PA set-up offered better tumor coverage when lower energies were used but for the three field set-up, higher energies resulted to better sparing of the lung tissue. For the air-channel set-up, adding an opposed field reduced the penumbra width. Using higher energies resulted in a 7% cold spot around the air-tissue interface for a 5x5 cm field. Conclusions: The choice of energy for treatment in the low density areas is not a straightforward decision but depends on a number of parameters such as the beam set-up and the dosimetric criteria. Updated calculation algorithms should be used in order to be confident for the choice of energy of treatment
The assessment of the global performance of the state-of-the-art covariant energy density functionals and related theoretical uncertainties in the description of ground state observables has recently been performed. Based on these results, the correlations between global description of binding energies and nuclear matter properties of covariant energy density functionals have been studied in this contribution
Afanasjev, A V
2015-01-01
The assessment of the global performance of the state-of-the-art covariant energy density functionals and related theoretical uncertainties in the description of ground state observables has recently been performed. Based on these results, the correlations between global description of binding energies and nuclear matter properties of covariant energy density functionals have been studied in this contribution.
Microphysical derivation of the Canham–Helfrich free-energy density
Seguin, Brian; Fried, Eliot
2013-01-01
The Canham--Helfrich free-energy density for a lipid bilayer has drawn considerable attention. Aside from the mean and Gaussian curvatures, this free-energy density involves a spontaneous mean-curvature that encompasses information regarding the preferred, natural shape of the lipid bilayer. We use a straightforward microphysical argument to derive the Canham--Helfrich free-energy density. Our derivation (i) provides a justification for the common assertion that spontaneous curvature originat...
An x-ray backlit Talbot-Lau deflectometer for high-energy-density electron density diagnostics
Valdivia, M. P.; Stutman, D.; Stoeckl, C.; Theobald, W.; Mileham, C.; Begishev, I. A.; Bromage, J.; Regan, S. P.
2016-02-01
X-ray phase-contrast techniques can measure electron density gradients in high-energy-density plasmas through refraction induced phase shifts. An 8 keV Talbot-Lau interferometer consisting of free standing ultrathin gratings was deployed at an ultra-short, high-intensity laser system using K-shell emission from a 1-30 J, 8 ps laser pulse focused on thin Cu foil targets. Grating survival was demonstrated for 30 J, 8 ps laser pulses. The first x-ray deflectometry images obtained under laser backlighting showed up to 25% image contrast and thus enabled detection of electron areal density gradients with a maximum value of 8.1 ± 0.5 × 1023 cm-3 in a low-Z millimeter sized sample. An electron density profile was obtained from refraction measurements with an error of x-ray source-size, similar to conventional radiography.
Wang, J. W.; Yu, W.; Yu, M. Y.; Xu, H.; Ju, J. J.; Luan, S. X.; Murakami, M.; Zepf, M.; Rykovanov, S.
2016-02-01
It is shown by particle-in-cell simulations that a narrow electron beam with high energy and charge density can be generated in a subcritical-density plasma by two consecutive laser pulses. Although the first laser pulse dissipates rapidly, the second pulse can propagate for a long distance in the thin wake channel created by the first pulse and can further accelerate the preaccelerated electrons therein. Given that the second pulse also self-focuses, the resulting electron beam has a narrow waist and high charge and energy densities. Such beams are useful for enhancing the target-back space-charge field in target normal sheath acceleration of ions and bremsstrahlung sources, among others.
High energy density in the collision of $N$ kinks in the $\\phi^4$ model
Marjaneh, Aliakbar M.; Saadatmand, Danial; Zhou, Kun; Dmitriev, Sergey V.; Zomorrodian, Mohammad E.
2016-01-01
Recently for the sine-Gordon equation it has been established that during collisions of $N$ slow kinks maximal energy density increases as $N^2$. In this numerical study, the same scaling rule is established for the non-integrable $\\phi^4$ model for $N\\le 5$. For odd (even) $N$ the maximal energy density is in the form of potential (kinetic) energy density. Maximal elastic strain is also calculated. In addition, the effect of the kink's internal modes on the maximal energy density is analysed...
Influence of Density on Compressive Properties and Energy Absorption of Foamed Aluminum Alloy
WEI Peng; LIU Lin
2007-01-01
The foamed aluminum alloys with different densities were fabricated by melt foaming technique. The compressive properties and energy absorption of the foamed aluminum alloy with different densities were analyzed. The results reveal that the compressive stress-strain curves follow the typical behavior of cellular foams with three deformation stages. Under the same strain, the energy absorption capability decreases with the decrease of density. However, with increasing the strain, the energy absorption efficiency of foamed metal increases initially and then decreases. The lower the density, the longer the plateau region, within the range of high strain, the energy absorption efficiency is always high.
Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery
Bin LI; Nie, Zimin; Vijayakumar, M.; Li, Guosheng; LIU Jun; Sprenkle, Vincent; Wang, Wei
2015-01-01
Redox flow batteries are receiving wide attention for electrochemical energy storage due to their unique architecture and advantages, but progress has so far been limited by their low energy density (~25 Wh l−1). Here we report a high-energy density aqueous zinc-polyiodide flow battery. Using the highly soluble iodide/triiodide redox couple, a discharge energy density of 167 Wh l−1 is demonstrated with a near-neutral 5.0 M ZnI2 electrolyte. Nuclear magnetic resonance study and density functio...
SHOCK IMPACT OF HIGH ENERGY/INTENSITY BEAMS WITH MATTER AND HIGH ENERGY DENSITY PHYSICS
Blanco Sancho, Juan; Schmidt, Rudiger
2010-01-01
The purpose of this study is to assess the damage caused to the equipment (beamdump, collimators etc) in case of an accident involving full impact of the LHC beam. First, the FLUKA code [1] is used to calculate the proton energy loss in solid carbon and this energy loss data is used as input to a two–dimensional hydrodynamic computer code, BIG2 [2] to study the thermodynamic and hydrodynamic response of the target. The BIG2 code is run for 5 μs and the density distribution at the end of this ...
High Density Behaviour of Nuclear Symmetry Energy and High Energy Heavy-Ion Collisions
Li, B A
2002-01-01
High energy heavy-ion collisions are proposed as a novel means to obtain information about the high density ({\\rm HD}) behaviour of nuclear symmetry energy. Within an isospin-dependent hadronic transport model using phenomenological equations of state ({\\rm EOS}) for dense neutron-rich matter, it is shown that the isospin asymmetry of the HD nuclear matter formed in high energy heavy-ion collisions is determined mainly by the HD behaviour of nuclear symmetry energy. Experimental signatures in several sensitive probes, i.e., $\\pi^-$ to $\\pi^+$ ratio, transverse collective flow and its excitation function as well as neutron-proton differential flow, are investigated. A precursor of the possible isospin separation instability in dense neutron-rich matter is predicted to appear as the local minima in the excitation functions of the transverse flow parameter for both neutrons and protons above the pion production threshold. Because of its {\\it qualitative} nature unlike other {\\it quantitative} observables, this p...
Probing the high-density behavior of nuclear symmetry energy with high-energy radioactive beams
Li, B A
2003-01-01
Central collisions induced by high energy radioactive beams can be used as a novel means to obtain crucial information about the high density ({\\rm HD}) behaviour of nuclear symmetry energy. This information is critical for understanding several key issues in astrophysics. Within an isospin-dependent hadronic transport model using phenomenological equations of state ({\\rm EOS}) for dense neutron-rich matter, we investigate several experimental probes of the HD behavior of nuclear symmetry energy, such as, the $\\pi^-$ to $\\pi^+$ ratio, neutron-proton differential flow and its excitation function. Measurements of these observables will provide the first terrestrial data to constrain stringently the HD behaviour of nuclear symmetry energy and thus also the {\\rm EOS} of dense neutron-rich matter.
Comparison of renewable fuels based on their land use using energy densities
Dijkman, T.J.; Benders, R.M.J. [Center for Energy and Environmental Studies IVEM, Nijenborgh 4, 9747 AG Groningen (Netherlands)
2010-12-15
In this article energy densities of selected renewable fuels are determined. Energy density is defined here as the annual energy production per hectare, taking energy inputs into account. Using 5 scenarios, consisting of 1 set focusing on technical differences and 1 set focusing on geographical variations, the range of energy densities currently obtained in Europe was determined for the following fuels: biodiesel from rapeseed; bioethanol from sugar beet; electricity from wood, wind and solar PV. The energy densities of the fuels produced from biomass were calculated by determining the energy contained in the energy carrier produced from the crop annually produced on 1 ha, from which the energy inputs for crop cultivation and conversion were subtracted. For wind and solar electricity, the energy density calculation was based on the energy production per turbine or cell and the number of turbines or cells per hectare after which the manufacturing energy was subtracted. Comparing the results shows that, for the average energy density scenarios, the ratio between the energy densities for wind, solar, and biomass is approximately 100:42:1, with wind electricity also having the highest energy output/input ratio. A case study was done in which the energy density was used to calculate the distance a vehicle can cover using the energy carrier annually produced per hectare. This was done for 3 regions, in Mid-Sweden, North-Netherlands, and South-East Spain. The results of the case show that wind electricity results in the largest distance covered, except in Spain, where solar electricity is the most favourable option. (author)
High Energy Density Lithium Air Batteries for Oxygen Concentrators Project
National Aeronautics and Space Administration — For NASA's Exploration Medical Capabilities mission, extremely high specific energy power sources, with specific energy over 2000 Wh/kg, are urgently sought after....
3D printed elastic honeycombs with graded density for tailorable energy absorption
Bates, Simon R. G.; Farrow, Ian R.; Trask, Richard S.
2016-04-01
This work describes the development and experimental analysis of hyperelastic honeycombs with graded densities, for the purpose of energy absorption. Hexagonal arrays are manufactured from thermoplastic polyurethane (TPU) via fused filament fabrication (FFF) 3D printing and the density graded by varying cell wall thickness though the structures. Manufactured samples are subject to static compression tests and their energy absorbing potential analysed via the formation of energy absorption diagrams. It is shown that by grading the density through the structure, the energy absorption profile of these structures can be manipulated such that a wide range of compression energies can be efficiently absorbed.
Equation satisfied by electron-electron mutual Coulomb repulsion energy density functional
Joubert, Daniel P.
2011-01-01
The electron-electron mutual Coulomb repulsion energy density functional satisfies an equation that links functionals and functional derivatives at N-electron and (N-1)-electron densities for densities determined from the same adiabatic scaled external potential for the N-electron system.
On the breaking and restoration of symmetries within the nuclear energy density functional formalism
We review the notion of symmetry breaking and restoration within the frame of nuclear energy density functional methods. We focus on key differences between wave-function- and energy-functional-based methods. In particular, we point to difficulties encountered within the energy functional framework and discuss new potential constraints on the underlying energy density functional that could make the restoration of broken symmetries better formulated within such a formalism. We refer to Ref.1 for details. (authors)
A Laplace-like formula for the energy dependence of the nuclear level density parameter
Canbula, Bora; Canbula, Deniz; Babacan, Halil
2014-01-01
Collective effects in the level density are not well understood, and including these effects as enhancement factors to the level density does not produce sufficiently consistent predictions of observables. Therefore, collective effects are investigated in the level density parameter instead of treating them as a final factor in the level density. A new Laplace-like formula is proposed for the energy dependence of the level density parameter, including collective effects. A significant improvement has been achieved in agreement between observed and predicted energy levels. This new model can also be used in both structure and reaction calculations of the nuclei far from stability, especially near the drip lines.
A Laplace-like formula for the energy dependence of the nuclear level density parameter
Collective effects in the level density are not well understood, and including these effects as enhancement factors to the level density does not produce sufficiently consistent predictions of observables. Therefore, collective effects are investigated in the level density parameter instead of treating them as a final factor in the level density. A new Laplace-like formula is proposed for the energy dependence of the level density parameter, including collective effects. A significant improvement has been achieved in agreement between observed and predicted energy levels. This new model can also be used in both structure and reaction calculations of the nuclei far from stability, especially near the drip lines
Density Functional Theory Based on the Electron Distribution on the Energy Coordinate
Takahashi, Hideaki
2016-01-01
We introduced a new electron density n({\\epsilon}) by projecting the spatial electron density n(r) onto the energy coordinate {\\epsilon} defined with the external potential \\upsion (r) of interest. Then, a density functional theory (DFT) was formulated, where n({\\epsilon}) serves as a fundamental variable for the electronic energy. It was demonstrated that the Kohn-Sham equation can also be adapted to the DFT that employs the density n({\\epsilon}) as an argument to the exchange energy functio...
Density Functional Theory Based on the Electron Distribution on the Energy Coordinate
Takahashi, Hideaki
2016-01-01
We introduced a new electron density n({\\epsilon}) by projecting the spatial electron density n(r) onto the energy coordinate {\\epsilon} defined with the external potential \\upsion (r) of interest. Then, a density functional theory (DFT) was formulated, where n({\\epsilon}) serves as a fundamental variable for the electronic energy. It was demonstrated that the Kohn-Sham equation can also be adapted to the DFT that employs the density n({\\epsilon}) as an argument to the exchange energy functional. An important attribute of the energy density is that it involves the spatially non-local population of the spin-adapted density n(r) at the bond dissociation. By taking advantage of this property we developed a prototype of the static correlation functional employing no empirical parameters, which realized a reasonable dissociation curve for H2 molecule.
Zhou, Nengjie; Lu, Zhenyu; Wu, Qin; Zhang, Yingkai
2014-01-01
We examine interatomic interactions for rare gas dimers using the density-based energy decomposition analysis (DEDA) in conjunction with computational results from CCSD(T) at the complete basis set (CBS) limit. The unique DEDA capability of separating frozen density interactions from density relaxation contributions is employed to yield clean interaction components, and the results are found to be consistent with the typical physical picture that density relaxations play a very minimal role i...
From dilute matter to the equilibrium point in the energy--density--functional theory
Yang, C. J.; M. Grasso; Lacroix, D.
2016-01-01
Due to the large value of the scattering length in nuclear systems, standard density--functional theories based on effective interactions usually fail to reproduce the nuclear Fermi liquid behavior both at very low densities and close to equilibrium. Guided on one side by the success of the Skyrme density functional and, on the other side, by resummation techniques used in Effective Field Theories for systems with large scattering lengths, a new energy--density functional is proposed. This fu...
Nuclear energy density functional from chiral pion-nucleon dynamics revisited
Kaiser, N.; Weise, W.
2009-01-01
We use a recently improved density-matrix expansion to calculate the nuclear energy density functional in the framework of in-medium chiral perturbation theory. Our calculation treats systematically the effects from $1\\pi$-exchange, iterated $1\\pi$-exchange, and irreducible $2\\pi$-exchange with intermediate $\\Delta$-isobar excitations, including Pauli-blocking corrections up to three-loop order. We find that the effective nucleon mass $M^*(\\rho)$ entering the energy density functional is iden...
Measurement of total sound energy density in enclosures at low frequencies
Jacobsen, Finn
2008-01-01
measurement of the total sound energy density (in air) has required an elaborate arrangement based on finite different approximations using at least four matched pressure microphones; therefore the method has never come into use. However, with the advent of a three-dimensional particle velocity transducer it...... sound energy density (potential and kinetic) is one third of the normalised spatial variance of the potential energy density (the mean square pressure) in a reverberant sound field above the Schroeder frequency. About ten years later this prediction was confirmed experimentally. However, until recently...... has become somewhat easier to measure total rather than only potential energy density in a sound field. This paper examines the spatial uniformity of potential, kinetic and total sound energy density in enclosures theoretically and experimentally with particular emphasis on the frequency range below...
Design of high energy density thermoelectric energy conversion unit by using FGM compliant pads
Kambe, M
1999-01-01
In order to provide increasingly large amounts of electrical power to space and terrestrial systems with a sufficiently high level of reliability at a reasonable cost, thermoelectric (TE) energy conversion system by using $9 functionally graded material (FGM) compliant pads has been focused. To achieve high thermal energy density in TE power conversion systems, conductively coupling the TE units to the hot and cold heat exchangers is the most effective $9 configuration. This is accomplished by two sets of FGM compliant pads. This design strategy provides (1) a high flux, direct conduction path to heat source and heat sink, (2) the structural flexibility to protect the cell from high $9 stress due to thermal expansion, (3) an extended durability by a simple FGM structure, and (4) manufacturing cost reduction by spark plasma sintering. High thermal energy density of ten times as much as conventional radioisotope $9 thermoelectric generator is expected. Manufacturing of Cu/Al/sub 2/O/sub 3//Cu symmetrical FGM co...
Chemical bonding in view of electron charge density and kinetic energy density descriptors.
Jacobsen, Heiko
2009-05-01
Stalke's dilemma, stating that different chemical interpretations are obtained when one and the same density is interpreted either by means of natural bond orbital (NBO) and subsequent natural resonance theory (NRT) application or by the quantum theory of atoms in molecules (QTAIM), is reinvestigated. It is shown that within the framework of QTAIM, the question as to whether for a given molecule two atoms are bonded or not is only meaningful in the context of a well-defined reference geometry. The localized-orbital-locator (LOL) is applied to map out patterns in covalent bonding interaction, and produces results that are consistent for a variety of reference geometries. Furthermore, LOL interpretations are in accord with NBO/NRT, and assist in an interpretation in terms of covalent bonding. PMID:19090572
Texture, energy density & learning : implications for food intake
Hogenkamp, P.S.
2012-01-01
Introduction
Food texture has been shown to be an important factor in the regulation of food (energy) intake. Liquid foods e.g. elicit weaker satiety responses than solid foods with a similar energy content, and texture affects satiation, i.e. ad libitum food intake. Whether theeffect of food
Pulsed power drivers for ICF and high energy density physics
This document presents the advantages of the use of nanosecond pulsed power for the generating of high energy and high power at a low cost and high efficiency. The Sandia National Laboratories Particle-beam Fusion program applies these pulse techniques to the Inertial Fusion Energy national goal. Pulsed power has also been used to generate intense, high-energy X-ray sources for application to X-ray laser and radiation effects science research. Results of experiments performed on the Saturn accelerator as well as a design concept for the proposed Jupiter facility are also presented. (TEC). 16 refs., 8 figs
High Power Density, Lightweight Thermoelectric Metamaterials for Energy Harvesting Project
National Aeronautics and Space Administration — The objective of this project is to precisely control the flow of thermal, electrical and thermoelectrical energy by advancing the development of a new class of...
High energy density rechargeable magnesium battery using earth-abundant and non-toxic elements
Orikasa, Yuki; Masese, Titus; Koyama, Yukinori; Mori, Takuya; Hattori, Masashi; Yamamoto, Kentaro; Okado, Tetsuya; Huang, Zhen-Dong; Minato, Taketoshi; Tassel, Cédric; Kim, Jungeun; Kobayashi, Yoji; Abe, Takeshi; Kageyama, Hiroshi; Uchimoto, Yoshiharu
2014-01-01
Rechargeable magnesium batteries are poised to be viable candidates for large-scale energy storage devices in smart grid communities and electric vehicles. However, the energy density of previously proposed rechargeable magnesium batteries is low, limited mainly by the cathode materials. Here, we present new design approaches for the cathode in order to realize a high-energy-density rechargeable magnesium battery system. Ion-exchanged MgFeSiO4 demonstrates a high reversible capacity exceeding...
Yang, Hao; Kannappan, Santhakumar; Pandian, Amaresh S.; Jang, Jae-Hyung; Lee, Yun Sung; Lu, Wu
2013-01-01
Supercapacitors, based on the fast ion transportation, are specialized to provide high power, long stability, and efficient energy storage with highly porous electrode materials. However, their low energy density and specific capacitance prevent them from many applications that require long duration. Using a scalable nanoporous graphene synthesis method involving a simple annealing process in hydrogen, here we show graphene supercapacitors capable of achieving a high energy density comparable...
Cosmic inventory of energy densities issues and concerns
Padmanabhan, T
2001-01-01
The dynamics of our universe is characterised by the density parameters for cosmological constant ($\\Omega_V$), nonbaryonic darkmatter($\\Omega_{\\rm wimp}$), radiation ($\\Omega_R$) and baryons ($\\Omega_B$). To these parameters -- which describe the smooth background universe -- one needs to add at least another dimensionless number ($\\sim 10^{-5}$) characterising the strength of primordial fluctuations in the gravitational potential, in order to ensure formation of structures by gravitational instability. I discuss several issues related to the description of the universe in terms of these numbers and argue that we do not yet have a fundamental understanding of these issues.
The study and development of an energy spectral density analyzer
A Fourier transformer has been designed and developed. This device computes the Fourier transform of a function, it's principal application is to compute in real time spectral densities by correlation function transformation. This transformation is performed on correlation functions of discrete values (for example 200 or 1000 points). A theoretical study including digital computer simulation is presented. Conclusions on the concept and the utilisation of the device are drawn, in particular it is demonstrated that a discrete treatment does not affect, in any respect, the precision of the computation. A detailed description of the operating characteristics of the instrument is given, together with many experimental results. (author)
Estimation of energy density of Li-S batteries with liquid and solid electrolytes
Li, Chunmei; Zhang, Heng; Otaegui, Laida; Singh, Gurpreet; Armand, Michel; Rodriguez-Martinez, Lide M.
2016-09-01
With the exponential growth of technology in mobile devices and the rapid expansion of electric vehicles into the market, it appears that the energy density of the state-of-the-art Li-ion batteries (LIBs) cannot satisfy the practical requirements. Sulfur has been one of the best cathode material choices due to its high charge storage (1675 mAh g-1), natural abundance and easy accessibility. In this paper, calculations are performed for different cell design parameters such as the active material loading, the amount/thickness of electrolyte, the sulfur utilization, etc. to predict the energy density of Li-S cells based on liquid, polymeric and ceramic electrolytes. It demonstrates that Li-S battery is most likely to be competitive in gravimetric energy density, but not volumetric energy density, with current technology, when comparing with LIBs. Furthermore, the cells with polymer and thin ceramic electrolytes show promising potential in terms of high gravimetric energy density, especially the cells with the polymer electrolyte. This estimation study of Li-S energy density can be used as a good guidance for controlling the key design parameters in order to get desirable energy density at cell-level.
High density behaviour of nuclear symmetry energy and high energy heavy-ion collisions
Li Bao An
2002-01-01
High energy heavy-ion collisions are proposed as a novel means to obtain information about the high density (HD) behaviour of nuclear symmetry energy. Within an isospin-dependent hadronic transport model using phenomenological equations of state (EOS) for dense neutron-rich matter, it is shown that the isospin asymmetry of the HD nuclear matter formed in high energy heavy-ion collisions is determined mainly by the HD behaviour of nuclear symmetry energy. Experimental signatures in several sensitive probes, i.e., pi sup - to pi sup + ratio, transverse collective flow and its excitation function as well as neutron-proton differential flow, are investigated. A precursor of the possible isospin separation instability in dense neutron-rich matter is predicted to appear as the local minima in the excitation functions of the transverse flow parameter for both neutrons and protons above the pion production threshold. Because of its qualitative nature unlike other quantitative observables, this precursor can be used a...
The energy-density landscape for soft spheres
For soft spheres the number of minima on the potential energy landscape is independent of the volume, and the shape of each basin in the potential energy landscape varies with volume in a predictable way. Two simple assumptions, (1) that the basins are harmonic and (2) that the distribution of basin depths is Gaussian, yield a model for the cold dense states of matter: crystals, glasses, the supercooled fluid and the glass transition. The model agrees with simulation data at temperatures below freezing but fails above the freezing temperature, where the harmonic approximation breaks down
Concavity for nuclear binding energies, thermodynamical functions and density functionals
Barrett, B. R.; Giraud, B. G.; Jennings, B. K.; Toberg, N. P.
2007-01-01
Sequences of experimental ground-state energies for both odd and even $A$ are mapped onto concave patterns cured from convexities due to pairing and/or shell effects. The same patterns, completed by a list of excitation energies, give numerical estimates of the grand potential $\\Omega(\\beta,\\mu)$ for a mixture of nuclei at low or moderate temperatures $T=\\beta^{-1}$ and at many chemical potentials $\\mu.$ The average nucleon number $(\\beta,\\mu)$ then becomes a continuous variable, allowing ext...
Advanced Intermediate Temperature Sodium-Nickel Chloride Batteries with Ultra-High Energy Density
Li, Guosheng; Lu, Xiaochuan; Kim, Jin Yong; Meinhardt, Kerry D.; Chang, Hee-Jung; Canfield, Nathan L.; Sprenkle, Vincent L.
2016-02-11
Here we demonstrate for the first time that planar Na-NiCl2 batteries can be operated at an intermediate temperature of 190°C with ultra-high energy density. A specific energy density of 350 Wh/kg, which is 3 times higher than that of conventional tubular Na-NiCl2 batteries operated at 280°C, was obtained for planar Na-NiCl2 batteries operated at 190°C over a long-term cell test (1000 cycles). The high energy density and superior cycle stability are attributed to the slower particle growth of the cathode materials (NaCl and Ni) at 190°C. The results reported in this work demonstrate that planar Na-NiCl2 batteries operated at an intermediate temperature could greatly benefit this traditional energy storage technology by improving battery energy density, cycle life and reducing material costs.
On the thermodynamic origin of the initial radiation energy density in warm inflation
Gim, Yongwan
2016-01-01
In warm inflation scenarios, radiation always exists, so that the radiation energy density is also assumed to be finite when inflation starts. To find out the origin of the non-vanishing initial radiation energy density, we revisit thermodynamic analysis for a warm inflation model and then derive an effective Stefan-Boltzmann law which is commensurate with the temperature-dependent effective potential by taking into account the non-vanishing trace of the total energy-momentum tensors. The effective Stefan-Boltzmann law shows that the zero energy density for radiation at the Grand Unification epoch increases until the inflation starts and it becomes eventually finite at the initial stage of warm inflation. By using the above effective Stefan-Boltzmann law, we also study the cosmological scalar perturbation, and obtain the sufficient radiation energy density in order for GUT baryogenesis at the end of inflation.
Antonov, A N; Sarriguren, P; de Guerra, E Moya
2016-01-01
The volume and surface components of the nuclear symmetry energy (NSE) and their ratio are calculated within the coherent density fluctuation model (CDFM). The estimations use the results of the model for the NSE in finite nuclei based on the Brueckner energy-density functional for nuclear matter. In addition, we present results for the NSE and its volume and surface contributions obtained by using the Skyrme energy-density functional. The CDFM weight function is obtained using the proton and neutron densities from the self-consistent HF+BCS method with Skyrme interactions. We present and discuss the values of the volume and surface contributions to the NSE and their ratio obtained for the Ni, Sn, and Pb isotopic chains studying their isotopic sensitivity. The results are compared with estimations of other approaches which have used available experimental data on binding energies, neutron-skin thicknesses, excitation energies to isobaric analog states (IAS) and also with results of other theoretical methods.
On energy densities reached in heavy-ion collisions at the CERN SPS
Pisút, J; Tomasik, Boris; Pisut, Jan; Pisutova, Neva; Tomasik, Boris
2003-01-01
We present a few estimates of energy densities reached in heavy-ion collisions at the CERN SPS. The estimates are based on data and models of proton-nucleus and nucleus-nucleus interactions. In all of these estimates the maximum energy density in central Pb+Pb interactions is larger than the critical energy density of about 0.7 GeV/fm^3 following from lattice gauge theory computations. In estimates which we consider as realistic the maximum energy density is about twice the critical value. In this way our analysis gives some support to claims that deconfined matter has been produced at the CERN SPS. Any definite statement requires a deeper understanding of formation times of partons and hadrons in nuclear collisions. We also compare our results with implicit energy estimates contained in earlier models of anomalous J/psi suppression in nuclear collisions.
Analytical formulas for carrier density and Fermi energy in semiconductors with a tight-binding band
Analytical formulas for evaluating the relation of carrier density and Fermi energy for semiconductors with a tight-binding band have been proposed. The series expansions for a carrier density with fast convergency have been obtained by means of a Bessel function. A simple and analytical formula for Fermi energy has been derived with the help of the Gauss integration method. The results of the proposed formulas are in good agreement with accurate numerical solutions. The formulas have been successfully used in the calculation of carrier density and Fermi energy in a miniband superlattice system. Their accuracy is in the order of 10−5. (paper)
Energy Density Bounds in Cubic Quasi-Topological Cosmology
dS, U Camara; Sotkov, G M
2013-01-01
We investigate the thermodynamical and causal consistency of cosmological models of the cubic Quasi-Topological Gravity (QTG) in four dimensions, as well as their phenomenological consequences. Specific restrictions on the maximal values of the matter densities are derived by requiring the apparent horizon's entropy to be a non-negative, non-decreasing function of time. The QTG counterpart of the Einstein-Hilbert (EH) gravity model of linear equation of state is studied in detail. An important feature of this particular QTG cosmological model is the new early-time acceleration period of the evolution of the Universe, together with the standard late-time acceleration present in the original EH model. The QTG correction to the causal diamond's volume is also calculated.
From dilute matter to the equilibrium point in the energy--density--functional theory
Yang, C J; Lacroix, D
2016-01-01
Due to the large value of the scattering length in nuclear systems, standard density--functional theories based on effective interactions usually fail to reproduce the nuclear Fermi liquid behavior both at very low densities and close to equilibrium. Guided on one side by the success of the Skyrme density functional and, on the other side, by resummation techniques used in Effective Field Theories for systems with large scattering lengths, a new energy--density functional is proposed. This functional, adjusted on microscopic calculations, reproduces the nuclear equations of state of neutron and symmetric matter at various densities. Furthermore, it provides reasonable saturation properties as well as an appropriate density dependence for the symmetry energy.
The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is a Nd:Glass laser facility capable of producing 1.8 MJ and 500 TW of ultraviolet light. This world's most energetic laser system is now operational with the goals of achieving thermonuclear burn in the laboratory and exploring the behavior of matter at extreme temperatures and energy densities. By concentrating the energy from its 192 extremely energetic laser beams into a mm3-sized target, NIF can produce temperatures above 100 million K, densities of 1,000 g/cm3, and pressures 100 billion times atmospheric pressure - conditions that have never been created in a laboratory and emulate those in the interiors of planetary and stellar environments. On September 29, 2010, NIF performed the first integrated ignition experiment which demonstrated the successful coordination of the laser, the cryogenic target system, the array of diagnostics and the infrastructure required for ignition. Many more experiments have been completed since. In light of this strong progress, the U.S. and the international communities are examining the implication of achieving ignition on NIF for inertial fusion energy (IFE). A laser-based IFE power plant will require a repetition rate of 10-20 Hz and a 10% electrical-optical efficiency laser, as well as further advances in large-scale target fabrication, target injection and tracking, and other supporting technologies. These capabilities could lead to a prototype IFE demonstration plant in 10- to 15-years. LLNL, in partnership with other institutions, is developing a Laser Inertial Fusion Energy (LIFE) baseline design and examining various technology choices for LIFE power plant This paper will describe the unprecedented experimental capabilities of the NIF, the results achieved so far on the path toward ignition, the start of fundamental science experiments and plans to transition NIF to an international user facility providing access
Anti-Ferroelectric Ceramics for High Energy Density Capacitors
Aditya Chauhan; Satyanarayan Patel; Rahul Vaish; Bowen, Chris R.
2015-01-01
With an ever increasing dependence on electrical energy for powering modern equipment and electronics, research is focused on the development of efficient methods for the generation, storage and distribution of electrical power. In this regard, the development of suitable dielectric based solid-state capacitors will play a key role in revolutionizing modern day electronic and electrical devices. Among the popular dielectric materials, anti-ferroelectrics (AFE) display evidence of being a stro...
From Brueckner approach to Skyrme-type energy density functional
A Skyrme-like effective interaction is built up from the equation of state of nuclear matter. The latter is calculated in the framework of the Brueckner-Hartree-Fock approximation with two- and three-body forces. A complete Skyrme parametrization requires a fit of the neutron and proton effective masses and the Landau parameters. The new parametrization is probed on the properties of a set of closed-shell and closed-subshell nuclei, including binding energies and charge radii
Neutron skin uncertainties of Skyrme energy density functionals
Kortelainen, M.; Erler, J.; W. Nazarewicz; Birge, N.; Y. Gao; Olsen, E
2013-01-01
Background: Neutron-skin thickness is an excellent indicator of isovector properties of atomic nuclei. As such, it correlates strongly with observables in finite nuclei that depend on neutron-to-proton imbalance and the nuclear symmetry energy that characterizes the equation of state of neutron-rich matter. A rich worldwide experimental program involving studies with rare isotopes, parity violating electron scattering, and astronomical observations is devoted to pinning down the isovector sec...
Wang, X B; Xu, F R
2010-01-01
The non-relativistic approximations of relativistic energy density functionals (such as the Relativistic Mean-Field and the Quark-Meson-Coupling models) have been deduced. The formulae are compared with the non-relativistic Skyrme-Hartree-Fock model. These models give quite different descriptions of nuclear matter as well as finite nuclei in the extreme cases of high isospin and high density. In the non-relativistic approximations, it is found that the difference is traced back to the isovector channel of the models and leads to significant effect on the density-dependent behavior of the nuclear symmetry energy. A new Skyrme effective interaction is obtained from the Quark-Meson-Coupling model.
Over the past several decades, significant and steady progress has been made in the development of fusion energy and its associated technology and in the understanding of the physics of high-temperature plasmas. While the demonstration of net fusion energy (fusion energy production exceeding that required to heat and confine the plasma) remains a task for the next millennia and while challenges remain, this progress has significantly increased confidence that the ultimate goal of societally acceptable (e.g. cost, safety, environmental considerations including waste disposal) central power production can be achieved. This progress has been shared by the two principal approaches to controlled thermonuclear fusion--magnetic confinement (MFE) and inertial confinement (ICF). ICF, the focus of this article, is complementary and symbiotic to MFE. As shown, ICF invokes spherical implosion of the fuel to achieve high density, pressures, and temperatures, inertially confining the plasma for times sufficient long (t ∼ 10-10 sec) that ∼ 30% of the fuel undergoes thermonuclear fusion
Determination of energy density threshold for laser ablation of bacteria. An in vitro study.
Coffelt, D W; Cobb, C M; MacNeill, S; Rapley, J W; Killoy, W J
1997-01-01
The Nd:YAG and CO2 lasers have been shown to be bactericidal at relative low energy densities. However, at energy densities exceeding 120 J/cm2 (CO2) and 200 J/cm2 (Nd:YAG), laser irradiation also causes irreparable root surface damage. The purpose of this study was to determine, in vitro, the energy density threshold at which microbial ablation could be achieved while inflicting the least amount of damage to the root surfaces of human teeth. Pairs of Escherichia coli colonies cultured on broth agar were treated with a CO2 laser using a pulsed waveform at approximate energy densities ranging from 3 to 110 J/cm2. One of each colony-pair was then examined by scanning electron microscopy (SEM) and the other subcultured for viable microbes. Roots of extracted teeth were lightly scaled and treated by CO2 laser, again with pulsed beam using approximate energy densities of 3 to 110 J/cm2: and examined by SEM. Regardless of the level of energy density, residual bacteria could be subcultured from all laser treated microbial colonies. The inability of the laser to completely obliterate microbial colonies was likely due to: depth of energy penetration, difficulty in precisely overlapping beam focal spots, irregular beam profile, and presence of microbes at the periphery of the beam focal spot. The threshold energy density for bacterial obliteration was determined to be 11 J/cm2 and that for root damage was 41 J/cm2. Root damage was evident by charring, crater formation, melt-down and resolidification surface mineral, and increasing surface porosity. The results of this in vitro study indicate that when used at an energy density between 11 and 41 J/cm2 the CO2 laser may destroy microbial colonies without inflicting undue damage to the tooth root surface. PMID:9049791
Energy Confinement of High-Density Pellet-Fueled Plasmas in the Alcator C Tokamak
Greenwald, M.; Gwinn, D.; Milora, S.; Parker, J.; Parker, R.; Wolfe, S.; Besen, M.; Camacho, F.; Fairfax, S.; Fiore, C.; Foord, M.; Gandy, R.; Gomez, C.; Granetz, R.; Labombard, B.; Lipschultz, B.; Lloyd, B.; Marmar, E.; McCool, S.; Pappas, D.; Petrasso, R.; Pribyl, P.; Rice, J.; Schuresko, D.; Takase, Y.; Terry, J.; Watterson, R.
1984-07-01
A series of pellet-fueling experiments has been carried out on the Alcator C tokamak. High-speed hydrogen pellets penetrate to within a few centimeters of the magnetic axis, raise the plasma density, and produce peaked density profiles. Energy confinement is observed to increase over similar discharges fueled only by gas puffing. In this manner record values of electron density, plasma pressure, and Lawson number (n τ) have been achieved.
Scaling and power density metrics of electromagnetic vibration energy harvesting devices
A review of the vibration energy harvesting literature has been undertaken with the goal of establishing scaling laws for experimentally demonstrated harvesting devices based on electromagnetic transduction. Power density metrics are examined with respect to scaling length, mass, frequency and drive acceleration. Continuous improvements in demonstrated power density of harvesting devices over the past decade are noted. Scaling laws are developed from observations that appear to suggest an upper limit to the power density achievable with current harvesting techniques. (topical review)
Dietary energy density was associated with diet quality in Brazilian adults and older adults.
Mendes, Aline; Pereira, Jaqueline Lopes; Fisberg, Regina Mara; Marchioni, Dirce Maria Lobo
2016-02-01
Cross-sectional and longitudinal studies present association of low dietary energy density with higher intake of vitamins, minerals and dietary fiber, lower intake of fat, and better balance of macronutrients. The objective of this study was to verify the relationship between dietary energy density and diet quality measured by an index of diet quality. This study used data from 496 adults and 445 older adults of cross-sectional population-based survey from São Paulo conducted in 2008-2009, Brazil. Dietary intake data was assessed by two 24-h dietary recalls. Dietary energy density values were calculated based on foods only method. Dietary energy density and revised Brazilian Health Eating Index and its components, were estimated by usual intake using Multiple Source Method. The relationship between dietary energy density and the total revised Brazilian Health Eating Index and its components were assessed by Gaussian family log-link model for each age group. The analyses showed an inverse association between dietary energy density and total revised Brazilian Health Eating Index in adults (T2:β = 0.96, p diet quality in Brazilian adults and older adults regardless of sex, per capita household income, body mass index, physical activity level, current smoking habits status, alcohol beverage drinking status and usual energy intake (kilocalories) from beverages. PMID:26626824
Quantification of breast density with dual energy mammography: An experimental feasibility study
Purpose: Breast density, the percentage of glandular breast tissue, has been shown to be a strong indicator of breast cancer risk. A quantitative method to measure breast density with dual energy mammography was investigated using physical phantoms. Methods: The dual energy mammography system used a tungsten anode x-ray tube with a 50 μm rhodium beam filter for low energy images and a 300 μm copper beam filter for high energy images. Glandular and adipose equivalent phantoms of uniform thickness were used to calibrate a dual energy basis decomposition algorithm. Four different phantom studies were used to evaluate the technique. The first study consisted of phantoms with thicknesses of 2.5-8.5 cm in 0.5 cm steps with variable densities centered at a mean of 28%. The second study consisted of phantoms at a fixed thickness of 4.0 cm, which ranged in densities from 0% to 100% in increments of 12.5%. The third study consisted of 4.0 cm thick phantoms at densities of 25%, 50% and 75% each imaged at three areal sizes, approximately 62.5, 125, and 250 cm2, in order to assess the effect of breast size on density measurement. The fourth study consisted of step phantoms designed to more closely mimic the shape of a female breast with maximal thicknesses from 3.0 to 7.0 cm at a fixed density of 50%. All images were corrected for x-ray scatter. Results: The RMS errors in breast density measurements were 0.44% for the variable thickness phantoms, 0.64% for the variable density phantoms, 2.87% for the phantoms of different areal sizes, and 4.63% for step phantoms designed to closely resemble the shape of a breast. Conclusions: The results of the phantom studies indicate that dual energy mammography can be used to measure breast density with an RMS error of approximately 5%.
Plasma guns for controlled fusion at megagauss energy-densities
Turchi, Peter J [Los Alamos National Laboratory; Roderick, Norman F [UNM; Degnan, James H [AFRL; Frese, Michael H [NUMEREX
2008-01-01
Electron cyclotron current drive (ECCD) at a low power level has been used on Tore Supra to induce local perturbations of the current density profile. Regimes with strong MHD activity have been analysed, and compared with similar stable discharges, in order to investigate the possible causes of their instability and relate the evolution of the discharge to the localization of EC power deposition. Both co- and counter-current drive pulses have been applied to dominantly or fully non-inductive discharges, sustained by a lower hybrid current drive. Detailed reconstructions by current diffusion calculations have been performed and the error bars evaluated. This method has proved valuable for shedding light on the complex interplay between the evolutions of temperature and safety factor profiles in steady-state tokamak plasmas. The crucial role of the dynamic evolution of rational surfaces has been identified. Moreover, we demonstrate that the operational domain in which ECCD can be employed must cope with the overall current profile characteristics, in particular the position where the safety factor has a minimum.
Plasma guns for controlled fussion at megagauss energy-densities
Electron cyclotron current drive (ECCD) at a low power level has been used on Tore Supra to induce local perturbations of the current density profile. Regimes with strong MHD activity have been analysed, and compared with similar stable discharges, in order to investigate the possible causes of their instability and relate the evolution of the discharge to the localization of EC power deposition. Both co- and counter-current drive pulses have been applied to dominantly or fully non-inductive discharges, sustained by a lower hybrid current drive. Detailed reconstructions by current diffusion calculations have been performed and the error bars evaluated. This method has proved valuable for shedding light on the complex interplay between the evolutions of temperature and safety factor profiles in steady-state tokamak plasmas. The crucial role of the dynamic evolution of rational surfaces has been identified. Moreover, we demonstrate that the operational domain in which ECCD can be employed must cope with the overall current profile characteristics, in particular the position where the safety factor has a minimum.
First principles prediction of an insensitive high energy density material.
Hirshberg, Barak; Denekamp, Chagit
2013-10-28
A new high performance yet insensitive explosive is proposed, based on an extensive computational study of tris(tetrazolyl)amine in the solid state and in the gas phase. The calculations for the solid state employ the PBE density functional with empirical dispersion correction while the gas phase calculations use the higher level of B3LYP and MP2. Two stable crystalline structures of tris(tertrazolyl)amine were located belonging to P1 and P21 space groups. The crystal structures obtained reveal that solid tris(tertrazolyl)amine is organized in layers with a very small interlayer spacing, due to π stacking, as well as significant inter and intra-molecular hydrogen bonding. Application of these results to the calculation of the detonation velocity and pressure indicate high performance for both phases, especially the P21 phase. At the same time the small value found for the interlayer spacing and the significant hydrogen bonding suggest relatively high stability. These results point to a promising new explosive material with a balance between high performance and insensitivity. PMID:24042364