WorldWideScience

Sample records for bacteria geobacillus stearothermophilus

  1. Cadmium Ion Biosorption by the Thermophilic Bacteria Geobacillus stearothermophilus and G. thermocatenulatus

    OpenAIRE

    Hetzer, Adrian; Daughney, Christopher J.; Morgan, Hugh W.

    2006-01-01

    This study reports surface complexation models (SCMs) for quantifying metal ion adsorption by thermophilic microorganisms. In initial cadmium ion toxicity tests, members of the genus Geobacillus displayed the highest tolerance to CdCl2 (as high as 400 to 3,200 ?M). The thermophilic, gram-positive bacteria Geobacillus stearothermophilus and G. thermocatenulatus were selected for further electrophoretic mobility, potentiometric titration, and Cd2+ adsorption experiments to characterize Cd2+ com...

  2. Expression and Characterization of Geobacillus stearothermophilus SR74 Recombinant ?-Amylase in Pichia pastoris

    OpenAIRE

    Gandhi, Sivasangkary; Salleh, Abu Bakar; Rahman, Raja Noor Zaliha Raja Abd; Chor Leow, Thean; Oslan, Siti Nurbaya

    2015-01-01

    Geobacillus stearothermophilus SR74 is a locally isolated thermophilic bacteria producing thermostable and thermoactive ?-amylase. Increased production and commercialization of thermostable ?-amylase strongly warrant the need of a suitable expression system. In this study, the gene encoding the thermostable ?-amylase in G. stearothermophilus SR74 was amplified, sequenced, and subcloned into P. pastoris GS115 strain under the control of a methanol inducible promoter, alcohol oxidase (AOX). Met...

  3. Biosynthesis of omega-alicyclic fatty acids induced by cyclic precursors and change of membrane fluidity in thermophilic bacteria Geobacillus stearothermophilus and Meiothermus ruber.

    Czech Academy of Sciences Publication Activity Database

    Si?iš?ová, L.; Luhový, R.; Sigler, Karel; ?ezanka, Tomáš

    2011-01-01

    Ro?. 15, ?. 3 (2011), 423-429. ISSN 1431-0651 Institutional research plan: CEZ:AV0Z50200510 Keywords : Thermophilic bacteria * Geobacillus * Meiothermus Subject RIV: EE - Microbiology, Virology Impact factor: 2.941, year: 2011

  4. Draft Genome Sequences of Three Strains of Geobacillus stearothermophilus Isolated from a Milk Powder Manufacturing Plant

    Science.gov (United States)

    Burgess, Sara A.; Cox, Murray P.; Flint, Steve H.; Lindsay, Denise

    2015-01-01

    Three strains of Geobacillus stearothermophilus (designated A1, P3, and D1) were isolated from a New Zealand milk powder manufacturing plant. Here, we describe their draft genome sequences. This information provided the first genomic insights into the nature of G. stearothermophilus strains present in the milk powder manufacturing environment. PMID:26472822

  5. Expression and Characterization of Geobacillus stearothermophilus SR74 Recombinant ?-Amylase in Pichia pastoris.

    Science.gov (United States)

    Gandhi, Sivasangkary; Salleh, Abu Bakar; Rahman, Raja Noor Zaliha Raja Abd; Chor Leow, Thean; Oslan, Siti Nurbaya

    2015-01-01

    Geobacillus stearothermophilus SR74 is a locally isolated thermophilic bacteria producing thermostable and thermoactive ?-amylase. Increased production and commercialization of thermostable ?-amylase strongly warrant the need of a suitable expression system. In this study, the gene encoding the thermostable ?-amylase in G. stearothermophilus SR74 was amplified, sequenced, and subcloned into P. pastoris GS115 strain under the control of a methanol inducible promoter, alcohol oxidase (AOX). Methanol induced recombinant expression and secretion of the protein resulted in high levels of extracellular amylase production. YPTM medium supplemented with methanol (1% v/v) was the best medium and once optimized, the maximum recombinant ?-amylase SR74 achieved in shake flask was 28.6?U?mL(-1) at 120?h after induction. The recombinant 59?kDa ?-amylase SR74 was purified 1.9-fold using affinity chromatography with a product yield of 52.6% and a specific activity of 151.8?U?mg(-1). The optimum pH of ?-amylase SR74 was 7.0 and the enzyme was stable between pH 6.0-8.0. The purified enzyme was thermostable and thermoactive, exhibiting maximum activity at 65°C with a half-life (t?/?) of 88?min at 60°C. In conclusion, thermostable ?-amylase SR74 from G. stearothermophilus SR74 would be beneficial for industrial applications, especially in liquefying saccrification. PMID:26090417

  6. Isolation of Lipase Gene of the Thermophilic Geobacillus stearothermophilus Strain-5

    Directory of Open Access Journals (Sweden)

    M. Sifour

    2010-01-01

    Full Text Available In earlier study a new thermophilic strain Geobacillus stearothermophilus strain-5 producing thermostable lipase was isolated and identified based on 16S rRNA sequencing. Phylogenetic analysis revealed its closeness to geobacilli especially the thermophilic Geobacillus stearothermophilus with optimal growth and lipolytic enzyme activity at 60°C and pH 7.0. In this study thermostable lipase gene from this bacterium was isolated by PCR using degenerate primers. The DNA fragment coding for lipase gene was cloned in the pCR 4-TOPO plasmid and the ligation products were transformed into Escherichia coli XL1-blue cells. Partial sequencing of the gene was carried out (accession number DQ923401. Analysis by BLAST program showed some sequence similarity to that, of several lipase genes from thermophilic Geobacillus and Bacillus submitted to Genbank.

  7. Isolation of Glucocardiolipins from Geobacillus stearothermophilus NRS 2004/3a

    Science.gov (United States)

    Schäffer, Christina; Beckedorf, Anke I.; Scheberl, Andrea; Zayni, Sonja; Peter-Katalini?, Jasna; Messner, Paul

    2002-01-01

    Glucose-substituted cardiolipins account for about 4 mol% of total phospholipid extracted from exponentially grown cells of Geobacillus stearothermophilus NRS 2004/3a. Individual glucocardiolipin species exhibited differences in fatty acid substitution, with iso-C15:0 and anteiso-C17:0 prevailing. The compounds were purified to homogeneity by a novel protocol and precharacterized by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. PMID:12426359

  8. Thermal adaptation of dihydrofolate reductase from the moderate thermophile Geobacillus stearothermophilus.

    Science.gov (United States)

    Guo, Jiannan; Luk, Louis Y P; Loveridge, E Joel; Allemann, Rudolf K

    2014-05-01

    The thermal melting temperature of dihydrofolate reductase from Geobacillus stearothermophilus (BsDHFR) is ~30 °C higher than that of its homologue from the psychrophile Moritella profunda. Additional proline residues in the loop regions of BsDHFR have been proposed to enhance the thermostability of BsDHFR, but site-directed mutagenesis studies reveal that these proline residues contribute only minimally. Instead, the high thermal stability of BsDHFR is partly due to removal of water-accessible thermolabile residues such as glutamine and methionine, which are prone to hydrolysis or oxidation at high temperatures. The extra thermostability of BsDHFR can be obtained by ligand binding, or in the presence of salts or cosolvents such as glycerol and sucrose. The sum of all these incremental factors allows BsDHFR to function efficiently in the natural habitat of G. stearothermophilus, which is characterized by temperatures that can reach 75 °C. PMID:24730604

  9. Keratinous waste decomposition and peptide production by keratinase from Geobacillus stearothermophilus AD-11.

    Science.gov (United States)

    Gegeckas, Audrius; Gudiukait?, Renata; Debski, Janusz; Citavicius, Donaldas

    2015-04-01

    A keratinolytic proteinase was cloned from thermophilic bacterium Geobacillus stearothermophilus AD-11 and was expressed in Escherichia coli BL21(DE3). Recombinant keratinolytic proteinase (RecGEOker) with an estimated molecular weight of 57 kDa was purified and keratinase activity was measured. RecGEOker showed optimal activity at pH 9 and 60 °C. Recombinant keratinolytic proteinase showed the highest substrate specificity toward keratin from wool > collagen > sodium caseinate > gelatin > and BSA in descending order. RecGEOker is applicable for efficient keratin waste biodegradation and can replace conventional non-biological hydrolysis processes. High-value small peptides obtained from enzymatic biodegradation by RecGEOker are suitable for industrial application in white and/or green biotechnology for use as major additives in various products. PMID:25625783

  10. Crystallization and preliminary crystallographic analysis of Abp, a GH27 ?-l-arabinopyranosidase from Geobacillus stearothermophilus

    International Nuclear Information System (INIS)

    A GH27 arabinopyranosidase from G. stearothermophilus (Abp) has been crystallized in the primitive orthorhombic space group P212121. Full diffraction data sets have been measured for the wild-type enzyme and its D197A catalytic mutant to maximal resolutions of 2.28 and 2.30 Å, respectively, for use in a detailed three-dimensional structural analysis of the Abp protein. Geobacillus stearothermophilus T-6 is a thermophilic soil bacterium that possesses an extensive system for the utilization of hemicellulose. The bacterium produces a small number of endo-acting extracellular enzymes that cleave high-molecular-weight hemicellulolytic polymers into short decorated oligosaccharides, which are further hydrolysed into the respective sugar monomers by a battery of intracellular glycoside hydrolases. One of these intracellular processing enzymes is ?-l-arabinopyranosidase (Abp), which is capable of removing ?-l-arabinopyranose residues from naturally occurring arabino-polysaccharides. As arabino-polymers constitute a significant part of the hemicellulolytic content of plant biomass, their efficient enzymatic degradation presents an important challenge for many potential biotechnological applications. This aspect has led to an increasing interest in the biochemical characterization and structural analysis of this and related hemicellulases. Abp from G. stearothermophilus T-6 has recently been cloned, overexpressed, purified, biochemically characterized and crystallized in our laboratory, as part of its complete structure–function study. The best crystals obtained for this enzyme belonged to the primitive orthorhombic space group P212121, with average unit-cell parameters a = 107.7, b = 202.2, c = 287.3 Å. Full diffraction data sets to 2.3 Å resolution have been collected for both the wild-type enzyme and its D197A catalytic mutant from flash-cooled crystals at 100 K, using synchrotron radiation. These data are currently being used for a high-resolution three-dimensional structure determination of Abp

  11. Purification and characterization of cloned alkaline protease gene of Geobacillus stearothermophilus.

    Science.gov (United States)

    Iqbal, Irfana; Aftab, Muhammad Nauman; Afzal, Mohammed; Ur-Rehman, Asad; Aftab, Saima; Zafar, Asma; Ud-Din, Zia; Khuharo, Ateeque Rahman; Iqbal, Jawad; Ul-Haq, Ikram

    2015-02-01

    Thermostable alkaline serine protease gene of Geobacillus stearothermophilus B-1172 was cloned and expressed in Escherichia coli BL21 (DE3) using pET-22b(+), as an expression vector. The growth conditions were optimized for maximal production of the protease using variable fermentation parameters, i.e., pH, temperature, and addition of an inducer. Protease, thus produced, was purified by ammonium sulfate precipitation followed by ion exchange chromatography with 13.7-fold purification, with specific activity of 97.5?U?mg(-1) , and a recovery of 23.6%. Molecular weight of the purified protease, 39?kDa, was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The enzyme was stable at 90?°C at pH 9. The enzyme activity was steady in the presence of EDTA indicating that the protease was not a metalloprotease. No significant change in the activity of protease after addition of various metal ions further strengthened this fact. However, an addition of 1% Triton X-100 or SDS surfactants constrained the enzyme specific activity to 34 and 19%, respectively. Among organic solvents, an addition of 1-butanol (20%) augmented the enzyme activity by 29% of the original activity. With casein as a substrate, the enzyme activity under optimized conditions was found to be 73.8?U?mg(-1) . The effect of protease expression on the host cells growth was also studied and found to negatively affect E. coli cells to certain extent. Catalytic domains of serine proteases from eight important thermostable organisms were analyzed through WebLogo and found to be conserved in all serine protease sequences suggesting that protease of G. stearothermophilus could be beneficially used as a biocontrol agent and in many industries including detergent industry. PMID:25224381

  12. Inactivation of Geobacillus stearothermophilus spores by alkaline hydrolysis applied to medical waste treatment.

    Science.gov (United States)

    Pinho, Sílvia C; Nunes, Olga C; Lobo-da-Cunha, Alexandre; Almeida, Manuel F

    2015-09-15

    Although alkaline hydrolysis treatment emerges as an alternative disinfection/sterilization method for medical waste, information on its effects on the inactivation of biological indicators is scarce. The effects of alkaline treatment on the resistance of Geobacillus stearothermophilus spores were investigated and the influence of temperature (80 °C, 100 °C and 110 °C) and NaOH concentration was evaluated. In addition, spore inactivation in the presence of animal tissues and discarded medical components, used as surrogate of medical waste, was also assessed. The effectiveness of the alkaline treatment was carried out by determination of survival curves and D-values. No significant differences were seen in D-values obtained at 80 °C and 100 °C for NaOH concentrations of 0.5 M and 0.75 M. The D-values obtained at 110 °C (2.3-0.5 min) were approximately 3 times lower than those at 100 °C (8.8-1.6 min). Independent of the presence of animal tissues and discarded medical components, 6 log10 reduction times varied between 66 and 5 min at 100 °C-0.1 M NaOH and 110 °C-1 M NaOH, respectively. The alkaline treatment may be used in future as a disinfection or sterilization alternative method for contaminated waste. PMID:26150372

  13. Enzyme-substrate complex structures of a GH39 beta-xylosidase from Geobacillus stearothermophilus.

    Science.gov (United States)

    Czjzek, Mirjam; Ben David, Alon; Bravman, Tsafrir; Shoham, Gil; Henrissat, Bernard; Shoham, Yuval

    2005-11-01

    Beta-D-Xylosidases are glycoside hydrolases that catalyse the release of xylose units from short xylooligosaccharides and are engaged in the final breakdown of plant cell-wall hemicelluloses. beta-D-Xylosidases are found in glycoside hydrolase families 3, 39, 43, 52 and 54. The first crystal structure of a GH39 beta-xylosidase revealed a multi-domain organization with the catalytic domain having the canonical (beta/alpha)8 barrel fold. Here, we report the crystal structure of the GH39 Geobacillus stearothermophilus beta-D-xylosidase, inactivated by a point mutation of the general acid-base residue E160A, in complex with the chromogenic substrate molecule 2,5-dinitrophenyl-beta-D-xyloside. Surprisingly, six of the eight active sites present in the crystallographic asymmetric unit contain the trapped covalent glycosyl-enzyme intermediate, while two of them still contain the uncleaved substrate. The structural characterization of these two critical species along the reaction coordinate of this enzyme identifies the residues forming its xyloside-binding pocket as well as those essential for its aglycone recognition. PMID:16212978

  14. Crystallization and preliminary crystallographic analysis of Axe2, an acetylxylan esterase from Geobacillus stearothermophilus

    International Nuclear Information System (INIS)

    The serine acetylxylan esterase from G. stearothermophilus (Axe2) has been crystallized in the tetragonal space group I422. Complete diffraction data sets have been measured for the selenomethionine derivative (SAD data, 1.70 Å resolution) and the wild-type enzyme (1.85 Å resolution) to be used for a full three-dimensional structural analysis of the Axe2 protein. Acetylxylan esterases are part of the hemi-cellulolytic system of many microorganisms which utilize plant biomass for growth. Xylans, which are polymeric sugars that constitute a significant part of the plant biomass, are usually substituted with acetyl side groups attached at position 2 or 3 of the xylose backbone units. Acetylxylan esterases hydrolyse the ester linkages of the xylan acetyl groups and thus improve the ability of main-chain hydrolysing enzymes to break down the sugar backbone units. As such, these enzymes play an important part in the hemi-cellulolytic utilization system of many microorganisms that use plant biomass for growth. Interest in the biochemical characterization and structural analysis of these enzymes stems from their numerous potential biotechnological applications. An acetylxylan esterase (Axe2) of this type from Geobacillus stearothermophilus T-6 has recently been cloned, overexpressed, purified, biochemically characterized and crystallized. One of the crystal forms obtained (RB1) belonged to the tetragonal space group I422, with unit-cell parameters a = b = 110.2, c = 213.1 Å. A full diffraction data set was collected to 1.85 Å resolution from flash-cooled crystals of the wild-type enzyme at 100 K using synchrotron radiation. A selenomethionine derivative of Axe2 has also been prepared and crystallized for single-wavelength anomalous diffraction experiments. The crystals of the selenomethionine-derivatized Axe2 appeared to be isomorphous to those of the wild-type enzyme and enabled the measurement of a full 1.85 Å resolution diffraction data set at the selenium absorption edge and a full 1.70 Å resolution data set at a remote wavelength. These data are currently being used for three-dimensional structure determination of the Axe2 protein

  15. Detailed kinetic analysis of a family 52 glycoside hydrolase: a beta-xylosidase from Geobacillus stearothermophilus.

    Science.gov (United States)

    Bravman, Tsafrir; Zolotnitsky, Gennady; Belakhov, Valery; Shoham, Gil; Henrissat, Bernard; Baasov, Timor; Shoham, Yuval

    2003-09-01

    Geobacillus stearothermophilus T-6 encodes for a beta-xylosidase (XynB2) from family 52 of glycoside hydrolases that was previously shown to hydrolyze its substrate with net retention of the anomeric configuration. XynB2 significantly prefers substrates with xylose as the glycone moiety and exhibits a typical bell-shaped pH dependence curve. Binding properties of xylobiose and xylotriose to the active site were measured using isothermal titration calorimetry (ITC). Binding reactions were enthalpy driven with xylobiose binding more tightly than xylotriose to the active site. The kinetic constants of XynB2 were measured for the hydrolysis of a variety of aryl beta-D-xylopyranoside substrates bearing different leaving groups. The Brønsted plot of log k(cat) versus the pK(a) value of the aglycon leaving group reveals a biphasic relationship, consistent with a double-displacement mechanism as expected for retaining glycoside hydrolases. Hydrolysis rates for substrates with poor leaving groups (pK(a) > 8) vary widely with the aglycon reactivity, indicating that, for these substrates, the bond cleavage is rate limiting. However, no such dependence is observed for more reactive substrates (pK(a) < 8), indicating that in this case hydrolysis of the xylosyl-enzyme intermediate is rate limiting. Secondary kinetic isotope effects suggest that the intermediate breakdown proceeds with modest oxocarbenium ion character at the transition state, and bond cleavage proceeds with even lower oxocarbenium ion character. Inhibition studies with several gluco analogue inhibitors could be measured since XynB2 has low, yet sufficient, activity toward 4-nitrophenyl beta-D-glucopyranose. As expected, inhibitors mimicking the proposed transition state structure, such as 1-deoxynojirimycin, bind with much higher affinity to XynB2 than ground state inhibitors. PMID:12950180

  16. Crystallization and preliminary X-ray analysis of family 39 beta-D-xylosidase from Geobacillus stearothermophilus T-6.

    Science.gov (United States)

    Czjzek, Mirjam; Bravman, Tsafrir; Henrissat, Bernard; Shoham, Yuval

    2004-03-01

    beta-D-Xylosidases (EC 3.2.1.37) are hemicellulases that hydrolyze short xylooligosaccharides into single xylose units. In this study, the crystallization and preliminary X-ray analysis of the beta-D-xylosidase (XynB1) from Geobacillus stearothermophilus T-6, a family 39 glycoside hydrolase, are described. XynB1 is a tetrameric protein consisting of four identical subunits of 503 amino acids and with a calculated molecular weight of 58 001 Da. Both the native and the selenomethionine-containing XynB1 were crystallized by the hanging-drop vapour-diffusion method and the crystals were found to belong to space group P2(1)2(1)2(1), with unit-cell parameters a = 92.7, b = 165.7, c = 311.0 A. The native crystals diffracted X-rays to a resolution of 2.1 A. PMID:14993701

  17. Crystallization and preliminary crystallographic analysis of a thermostable family 52 beta-D-xylosidase from Geobacillus stearothermophilus T-6.

    Science.gov (United States)

    Czjzek, Mirjam; Bravman, Tsafrir; Henrissat, Bernard; Shoham, Yuval

    2004-08-01

    Beta-D-xylosidases (EC 3.2.1.37) are hemicellulases that hydrolyze short xylooligosaccharides into single xylose units. In this study, the first crystallization and preliminary X-ray analysis of a family 52 glycoside hydrolase, the beta-D-xylosidase (XynB2) from Geobacillus stearothermophilus T-6, is described. XynB2 is a dimeric protein consisting of two identical subunits of 705 amino acids with a calculated molecular weight of 79 894 Da. XynB2 was crystallized by the hanging-drop vapour-diffusion method and the crystals were found to belong to space group P1, with unit-cell parameters a = 80.6, b = 97.5, c = 107.2 A, alpha = 107.4, beta = 98.2, gamma = 106.6 degrees. The native crystals diffracted X-rays to a resolution of 2.0 A. PMID:15272177

  18. Cloning of araA Gene Encoding L-Arabinose Isomerase from Marine Geobacillus stearothermophilus Isolated from Tanjung Api, Poso, Indonesia

    OpenAIRE

    DEWI FITRIANI; BUDI SAKSONO

    2010-01-01

    L-arabinose isomerase is an enzyme converting D-galactose to D-tagatose. D-tagatose is a potential sweetener-sucrose substitute which has low calorie. This research was to clone and sequence araA gene from marine bacterial strain Geobacillus stearothermophilus isolated from Tanjung Api Poso Indonesia. The amplified araA gene consisted of 1494 bp nucleotides encoding 497 amino acids. DNA alignment analysis showed that the gene had high homology with that of G. stearothermophilus T6. The enzyme...

  19. The structure of DinB from Geobacillus stearothermophilus: a representative of a unique four-helix-bundle superfamily

    International Nuclear Information System (INIS)

    The structure of DinB from G. stearothermophilus is described and compared with a number of recently reported structures of this unusual fold. Structural similarities are revealed that unite several distant protein families. The crystal structure of the dinB gene product from Geobacillus stearothermophilus (GsDinB) is reported at 2.5 Å resolution. The dinB gene is one of the DNA-damage-induced genes and the corresponding protein, DinB, is the founding member of a Pfam family with no known function. The protein contains a four-helix up–down–down–up bundle that has previously been described in the literature in three disparate proteins: the enzyme MDMPI (mycothiol-dependent maleylpyruvate isomerase), YfiT and TTHA0303, a member of a small DUF (domain of unknown function). However, a search of the DALI structural database revealed similarities to a further 11 new unpublished structures contributed by structural genomics centers. The sequences of these proteins are quite divergent and represent several Pfam families, yet their structures are quite similar and most (but not all) seem to have the ability to coordinate a metal ion using a conserved histidine-triad motif. The structural similarities of these diverse proteins suggest that a new Pfam clan encompassing the families that share this fold should be created. The proteins that share this fold exhibit four different quaternary structures: monomeric and three different dimeric forms

  20. Identification of the catalytic residues in family 52 glycoside hydrolase, a beta-xylosidase from Geobacillus stearothermophilus T-6.

    Science.gov (United States)

    Bravman, Tsafrir; Belakhov, Valery; Solomon, Dmitry; Shoham, Gil; Henrissat, Bernard; Baasov, Timor; Shoham, Yuval

    2003-07-18

    beta-d-Xylosidases (EC 3.2.1.37) are exo-type glycoside hydrolases that hydrolyze short xylooligosaccharides to xylose units. The enzymatic hydrolysis of the glycosidic bond involves two carboxylic acid residues, and their identification, together with the stereochemistry of the reaction, provides crucial information on the catalytic mechanism. Two catalytic mutants of a beta-xylosidase from Geobacillus stearothermophilus T-6 were subjected to detailed kinetic analysis to verify their role in catalysis. The activity of the E335G mutant decreased approximately 106-fold, and this activity was enhanced 103-fold in the presence of external nucleophiles such as formate and azide, resulting in a xylosyl-azide product with an opposite anomeric configuration. These results are consistent with Glu335 as the nucleophile in this retaining enzyme. The D495G mutant was subjected to detailed kinetic analysis using substrates bearing different leaving groups (pKa). The mutant exhibited 103-fold reduction in activity, and the Brønsted plot of log(kcat) versus pKa revealed that deglycosylation is the rate-limiting step, indicating that this step was reduced by 103-fold. The rates of the glycosylation step, as reflected by the specificity constant (kcat/Km), were similar to those of the wild type enzyme for hydrolysis of substrates requiring little protonic assistance (low pKa) but decreased 102-fold for those that require strong acid catalysis (high pKa). Furthermore, the pH dependence profile of the mutant enzyme revealed that acid catalysis is absent. Finally, the presence of azide significantly enhanced the mutant activity accompanied with the generation of a xylosyl-azide product with retained anomeric configuration. These results are consistent with Asp495 acting as the acid-base in XynB2. PMID:12738774

  1. Biochemical characterization and identification of the catalytic residues of a family 43 beta-D-xylosidase from Geobacillus stearothermophilus T-6.

    Science.gov (United States)

    Shallom, Dalia; Leon, Maya; Bravman, Tsafrir; Ben-David, Alon; Zaide, Galia; Belakhov, Valery; Shoham, Gil; Schomburg, Dietmar; Baasov, Timor; Shoham, Yuval

    2005-01-11

    Beta-D-xylosidases are hemilcellulases that hydrolyze short xylooligosaccharides into xylose units. Here, we describe the characterization and kinetic analysis of a family 43 beta-xylosidase from Geobacillus stearothermophilus T-6 (XynB3). Enzymes in this family use an inverting single-displacement mechanism with two conserved carboxylic acids, a general acid, and a general base. XynB3 was most active at 65 degrees C and pH 6.5, with clear preference to xylose-based substrates. Products analysis indicated that XynB3 is an exoglycosidase that cleaves single xylose units from the nonreducing end of xylooligomers. On the basis of sequence homology, amino acids Asp15 and Glu187 were suggested to act as the general-base and general-acid catalytic residues, respectively. Kinetic analysis with substrates bearing different leaving groups showed that, for the wild-type enzyme, the k(cat) and k(cat)/K(m) values were only marginally affected by the leaving-group reactivity, whereas for the E187G mutant, both values exhibited significantly greater dependency on the pK(a) of the leaving group. The pH-dependence activity profile of the putative general-acid mutant (E187G) revealed that the protonated catalytic residue was removed. Addition of the exogenous nucleophile azide did not affect the activities of the wild type or the E187G mutant but rescued the activity of the D15G mutant. On the basis of thin-layer chromatography and (1)H NMR analyses, xylose and not xylose azide was the only product of the accelerated reaction, suggesting that the azide ion does not attack the anomeric carbon directly but presumably activates a water molecule. Together, these results confirm the suggested catalytic role of Glu187 and Asp15 in XynB3 and provide the first unequivocal evidence regarding the exact roles of the catalytic residues in an inverting GH43 glycosidase. PMID:15628881

  2. Study of the combined effect of electro-activated solutions and heat treatment on the destruction of spores of Clostridium sporogenes and Geobacillus stearothermophilus in model solution and vegetable puree.

    Science.gov (United States)

    Liato, Viacheslav; Labrie, Steve; Viel, Catherine; Benali, Marzouk; Aïder, Mohammed

    2015-10-01

    The combined effect of heat treatment and electro-activated solution (EAS) on the heat resistance of spores of Clostridium sporogenes and Geobacillus stearothermophilus was assessed under various heating and exposure time combinations. The acid and neutral EAS showed the highest inhibitory activity, indicating that these solutions may be considered as strong sporicidal disinfectants. These EAS were able to cause a reduction of ?6 log of spores of C. sporogenes at 60 °C in only 1 min of exposition. For G. stearothermophilus spores, a reduction of 4.5 log was observed at 60 °C in 1 min, while in 5 min, ?7 log CFU/ml reduction was observed. Inoculated puree of pea and corn were used as a food matrix for the determination of the heat resistance of these spores during the treatments in glass capillaries. The inactivation kinetics of the spores was studied in an oil bath. Combined treatment by EAS and temperature demonstrated a significant decrease in the heat resistance of C. sporogenes. The D100°C in pea puree with NaCl solution was 66.86 min while with acid and neutral EAS it was reduced down to 3.97 and 2.19 min, respectively. The spore of G. stearothermophilus displayed higher heat resistance as confirmed by other similar studies. Its D130°C in pea puree showed a decrease from 1.45 min in NaCl solution down to 1.30 and 0.93 min for acid and neutral EAS, respectively. The differences between the spores of these species are attributable to their different sensitivities with respect to pH, Redox potential and oxygen. PMID:26103452

  3. HIV-1 Gag p17 presented as virus-like particles on the E2 scaffold from Geobacillus stearothermophilus induces sustained humoral and cellular immune responses in the absence of IFN? production by CD4+ T cells

    International Nuclear Information System (INIS)

    We have constructed stable virus-like particles displaying the HIV-1 Gag(p17) protein as an N-terminal fusion with an engineered protein domain from the Geobacillus stearothermophilus pyruvate dehydrogenase subunit E2. Mice immunized with the Gag(p17)-E2 60-mer scaffold particles mounted a strong and sustained antibody response. Antibodies directed to Gag(p17) were boosted significantly with additional immunizations, while anti-E2 responses reached a plateau. The isotype of the induced antibodies was biased towards IgG1, and the E2-primed CD4+ T cells did not secrete IFN?. Using transgenic mouse model systems, we demonstrated that CD8+ T cells primed with E2 particles were able to exert lytic activity and produce IFN?. These results show that the E2 scaffold represents a powerful vaccine delivery system for whole antigenic proteins or polyepitope engineered proteins, evoking antibody production and antigen specific CTL activity even in the absence of IFN?-producing CD4+ T cells.

  4. ISOLATION AND CHARACTERIZATION OF MANNANOLYTIC THERMOPHILIC BACTERIA FROM PALM OIL SHELL AND THEIR MANNANASE ENZYME PRODUCTION PROPERTIES

    OpenAIRE

    T RESNAWATI P URWADARIA; ANTONIUS SUWANTO; SUMARDI; MAGGY T HENAWIDJAJA

    2005-01-01

    A mannanolytic thermophilic bacterium (L-07) was isolated from palm oil shell after 2 days of enrichment in liquid medium supplemented with 1% palm kernel meal as mannan source. Sequence analysis of 16S-rRNA indicated that L-07 was similar (98%) to Geobacillus stearothermophilus, a species of thermophilic aerobi c bacteria. We found that G. stearothermophilus L-07 produced extracellular ? -1,4-mannanases, but no ? -manosidase and ? -galactosidase activities. The growth of L-07 reached its m...

  5. Glycosynthase activity of Geobacillus stearothermophilus GH52 beta-xylosidase: efficient synthesis of xylooligosaccharides from alpha-D-xylopyranosyl fluoride through a conjugated reaction.

    Science.gov (United States)

    Ben-David, Alon; Bravman, Tsafrir; Balazs, Yael S; Czjzek, Mirjam; Schomburg, Dietmar; Shoham, Gil; Shoham, Yuval

    2007-11-23

    Glycosynthases are mutant glycosidases in which the acidic nucleophile is replaced by a small inert residue. In the presence of glycosyl fluorides of the opposite anomeric configuration (to that of their natural substrates), these enzymes can catalyze glycosidic bond formation with various acceptors. In this study we demonstrate that XynB2E335G, a nucleophile-deficient mutant of a glycoside hydrolase family 52 beta-xylosidase from G. stearothermophilus, can function as an efficient glycosynthase, using alpha-D-xylopyranosyl fluoride as a donor and various aryl sugars as acceptors. The mutant enzyme can also catalyze the self-condensation reaction of alpha-D-xylopyranosyl fluoride, providing mainly alpha-D-xylobiosyl fluoride. The self-condensation kinetics exhibited apparent classical Michaelis-Menten behavior, with kinetic constants of 1.3 s(-1) and 2.2 mM for k(cat) and K(M(acceptor)), respectively, and a k(cat)/K(M(acceptor)) value of 0.59 s(-1) mM(-1). When the beta-xylosidase E335G mutant was combined with a glycoside hydrolase family 10 glycosynthase, high-molecular-weight xylooligomers were readily obtained from the affordable alpha-D-xylopyranosyl fluoride as the sole substrate. PMID:17955483

  6. Genetic engineering of Geobacillus spp.

    Science.gov (United States)

    Kananavi?i?t?, R?ta; ?itavi?ius, Donaldas

    2015-04-01

    Members of the genus Geobacillus are thermophiles that are of great biotechnological importance, since they are sources of many thermostable enzymes. Because of their metabolic versatility, geobacilli can be used as whole-cell catalysts in processes such as bioconversion and bioremediation. The effective employment of Geobacillus spp. requires the development of reliable methods for genetic engineering of these bacteria. Currently, genetic manipulation tools and protocols are under rapid development. However, there are several convenient cloning vectors, some of which replicate autonomously, while others are suitable for the genetic modification of chromosomal genes. Gene expression systems are also intensively studied. Combining these tools together with proper techniques for DNA transfer, some Geobacillus strains were shown to be valuable producers of recombinant proteins and industrially important biochemicals, such as ethanol or isobutanol. This review encompasses the progress made in the genetic engineering of Geobacillus spp. and surveys the vectors and transformation methods that are available for this genus. PMID:25659824

  7. Effect of mercaptoethylamine on DNA degradation in thermophilic bacteria Bac. stearothermophilus exposed to ?-, UV-radiation or methylnitrosourea

    International Nuclear Information System (INIS)

    The effect of mercaptoethylamine (MEA) on degradation of DNA in thermophilic bacteria Bac. stear. exposed to ?-, UV-rays or methylnitrosourea (MNU) was studied. Using centrifugation on alkaline and neutral sucrose gradients, it was shown that MEA inhibits the accumulation of breaks in the DNA of Bac. stear. It also lowers the level of DNA degradation in toluene-treated cells of Bac. stear. under the action of the intrinsic nuclease, reduces the activity of the endonuclease specific for apurinic DNA, as well as that of S1-nuclease and DNase-I in vitro. The inhibition in the accumulation of DNA breaks is assumed to be due to a decrease of the endonuclease activity in the cells of thermophilic bacteria. (orig.)

  8. Crystallization and preliminary X-ray study of alpha-glucosidase from Geobacillus sp strain HTA-462, one of the deepest sea bacteria.

    Science.gov (United States)

    Shirai, Tsuyoshi; Hung, Vo Si; Akita, Masatake; Hatada, Yuji; Ito, Susumu; Horikoshi, Koki

    2003-07-01

    An alpha-glucosidase (EC 3.2.1.20) was purified from Geobacillus sp. strain HTA-462 cells and crystallized using the hanging-drop vapour-diffusion technique. The Geobacillus strain is a thermophilic and high-pressure-resistant bacterium found at the bottom of the Challenger Deep in the Mariana Trench. The crystal was characterized by X-ray diffraction and belongs to space group C2, with unit-cell parameters a = 104.0, b = 91.5, c = 72.9 A, beta = 109.4 degrees. Diffraction data to 2.5 A resolution were collected and processed. PMID:12832785

  9. Influence of temperature and organic load on chemical disinfection of Geobacillus steareothermophilus spores, a surrogate for Bacillus anthracis

    OpenAIRE

    Guan, Jiewen; Chan, Maria; Brooks, Brian W.; Rohonczy, Liz

    2013-01-01

    This study evaluated the influence of temperature and organic load on the effectiveness of domestic bleach (DB), Surface Decontamination Foam (SDF), and Virkon in inactivating Geobacillus stearothermophilus spores, which are a surrogate for Bacillus anthracis spores. The spores were suspended in light or heavy organic preparations and the suspension was applied to stainless steel carrier disks. The dried spore inoculum was covered with the disinfectants and the disks were then incubated at va...

  10. Large Fragment of DNA Polymerase I from Geobacillus sp. 777: Cloning and Comparison with DNA Polymerases I in Practical Applications.

    Science.gov (United States)

    Oscorbin, Igor P; Boyarskikh, Ulyana A; Filipenko, Maksim L

    2015-10-01

    A truncated gene of DNA polymerase I from the thermophilic bacteria Geobacillus sp. 777 encoding a large fragment of enzyme (LF Gss pol) was cloned and sequenced. The resulting sequence is 1776-bp long and encodes a 592 aa protein with a predicted molecular mass of 69.8 kDa. Enzyme was overexpressed in E. coli, purified by metal-chelate chromatography, and biochemically characterized. The specific activity of LF Gss pol is 104,000 U/mg (one unit of enzyme was defined as the amount of enzyme that incorporated 10 nmol of dNTP into acid insoluble material in 30 min at 65 °C). The properties of LF Gss pol were compared to commercially available large fragments of DNA polymerase I from G. stearothermophilus (LF Bst pol) and Bacillus smithii (LF Bsm pol). Studied enzymes showed maximum activity at similar pH and concentrations of monovalent/divalent ions, whereas LF Gss pol and LF Bst pol were more thermostable than LF Bsm pol. LF Gss pol is more resistant to enzyme inhibitors (SYBR Green I, heparin, ethanol, urea, blood plasma) in comparison with LF Bst pol and LF Bsm pol. LF Gss pol is also suitable for loop-mediated isothermal amplification and whole genome amplification of human genomic DNA. PMID:26289299

  11. Modelling of the acid base properties of two thermophilic bacteria at different growth times

    Science.gov (United States)

    Heinrich, Hannah T. M.; Bremer, Phil J.; McQuillan, A. James; Daughney, Christopher J.

    2008-09-01

    Acid-base titrations and electrophoretic mobility measurements were conducted on the thermophilic bacteria Anoxybacillus flavithermus and Geobacillus stearothermophilus at two different growth times corresponding to exponential and stationary/death phase. The data showed significant differences between the two investigated growth times for both bacterial species. In stationary/death phase samples, cells were disrupted and their buffering capacity was lower than that of exponential phase cells. For G. stearothermophilus the electrophoretic mobility profiles changed dramatically. Chemical equilibrium models were developed to simultaneously describe the data from the titrations and the electrophoretic mobility measurements. A simple approach was developed to determine confidence intervals for the overall variance between the model and the experimental data, in order to identify statistically significant changes in model fit and thereby select the simplest model that was able to adequately describe each data set. Exponential phase cells of the investigated thermophiles had a higher total site concentration than the average found for mesophilic bacteria (based on a previously published generalised model for the acid-base behaviour of mesophiles), whereas the opposite was true for cells in stationary/death phase. The results of this study indicate that growth phase is an important parameter that can affect ion binding by bacteria, that growth phase should be considered when developing or employing chemical models for bacteria-bearing systems.

  12. Genomic characterization of thermophilic Geobacillus species isolated from the deepest sea mud of the Mariana Trench.

    Science.gov (United States)

    Takami, Hideto; Nishi, Shinro; Lu, Jei; Shimamura, Shigeru; Takaki, Yoshihiro

    2004-10-01

    The thermophilic strains HTA426 and HTA462 isolated from the Mariana Trench were identified as Geobacillus kaustophilus and G. stearothermophilus, respectively, based on physiologic and phylogenetic analyses using 16S rDNA sequences and DNA-DNA relatedness. The genome size of HTA426 and HTA462 was estimated at 3.23-3.49 Mb and 3.7-4.49 Mb, respectively. The nucleotide sequences of three independent lambda-phage inserts of G. stearothermophilus HTA462 have been determined. The organization of protein coding sequences (CDSs) in the two lambda-phage inserts was found to differ from that in the contigs corresponding to each lambda insert assembled by the shotgun clones of the G. kaustophilus HTA426 genome, although the CDS organization in another lambda insert is identical to that in the HTA426 genome. PMID:15168170

  13. ISOLATION AND CHARACTERIZATION OF MANNANOLYTIC THERMOPHILIC BACTERIA FROM PALM OIL SHELL AND THEIR MANNANASE ENZYME PRODUCTION PROPERTIES

    Directory of Open Access Journals (Sweden)

    T RESNAWATI P URWADARIA

    2005-01-01

    Full Text Available A mannanolytic thermophilic bacterium (L-07 was isolated from palm oil shell after 2 days of enrichment in liquid medium supplemented with 1% palm kernel meal as mannan source. Sequence analysis of 16S-rRNA indicated that L-07 was similar (98% to Geobacillus stearothermophilus, a species of thermophilic aerobi c bacteria. We found that G. stearothermophilus L-07 produced extracellular ? -1,4-mannanases, but no ? -manosidase and ? -galactosidase activities. The growth of L-07 reached its maximum (3.0 x 106 cell/ml at 12-20 hours, while the highest ? -mannanase activity (0.52 U/ml was observed in culture medium after 36 hours of cultivation at 60oC. The medium containing locust bean gum was the best for producing extracellular ? -1,4-mannanases compared with kolang kaling , konjak , and palm kernel meal. SDS-PAGE and zymogram analysis demonstrated that crude mannanase complex of L-07 from locust bean gum containing medium comprised three active bands with molecular weight of 85, 73 and 50 kDa.

  14. Isolation and Characterization of a Bacteriocin-Like Substance Produced by Geobacillus toebii Strain HBB-247

    OpenAIRE

    Ba?bülbül Özdemir, Gamze; Biyik, Haci Halil

    2011-01-01

    A total of 201 thermophilic bacteria isolated from various thermal spring, mud and soil were tested for their antibacterial activity. Among the mostly active isolates, Geobacillus toebii HBB-247 was further examined. Bacteriocin-like inhibitory substance (BLIS) produced by strain HBB-247 was found to be stable up to 60°C, sensitive to proteolytic enzymes and effective against Enterococcus faecalis, Listeria sp., E. avium, Clostridium pasteurianum, Cellulomonas fimi and some thermophilic strai...

  15. Extraction of Copper from Malanjkhand Low-Grade Ore by Bacillus stearothermophilus

    OpenAIRE

    Singh, Sradhanjali; Sukla, Lala Behari; Mishra, Baroda Kanta

    2011-01-01

    Thermophilic bacteria are actively prevalent in hot water springs. Their potential to grow and sustain at higher temperatures makes them exceptional compare to other microorganism. The present study was initiated to isolate, identify and determine the feasibility of extraction of copper using thermophilic heterotrophic bacterial strain. Bacillus stearothermophilus is a thermophilic heterotrophic bacterium isolated from hot water spring, Atri, Orissa, India. This bacterium was adapted to low-g...

  16. Isolation of the phe-operon from G. stearothermophilus comprising the phenol degradative meta-pathway genes and a novel transcriptional regulator

    Directory of Open Access Journals (Sweden)

    Reiss Monika

    2008-11-01

    Full Text Available Abstract Background Geobacillus stearothermophilus is able to utilize phenol as a sole carbon source. A DNA fragment encoding a phenol hydroxylase catalyzing the first step in the meta-pathway has been isolated previously. Based on these findings a PCR-based DNA walk was performed initially to isolate a catechol 2,3-dioxygenase for biosensoric applications but was continued to elucidate the organisation of the genes encoding the proteins for the metabolization of phenol. Results A 20.2 kb DNA fragment was isolated as a result of the DNA walk. Fifteen open reading frames residing on a low-copy megaplasmid were identified. Eleven genes are co-transcribed in one polycistronic mRNA as shown by reverse transcription-PCR. Ten genes encode proteins, that are directly linked with the meta-cleavage pathway. The deduced amino acid sequences display similarities to a two-component phenol hydroxylase, a catechol 2,3-dioxygenase, a 4-oxalocrotonate tautomerase, a 2-oxopent-4-dienoate hydratase, a 4-oxalocrotonate decarboxylase, a 4-hydroxy-2-oxovalerate aldolase, an acetaldehyde dehydrogenase, a plant-type ferredoxin involved in the reactivation of extradiol dioxygenases and a novel regulatory protein. The only enzymes missing for the complete mineralization of phenol are a 2-hydroxymuconic acid-6-semialdehyde hydrolase and/or 2-hydroxymuconic acid-6-semialdehyde dehydrogenase. Conclusion Research on the bacterial degradation of aromatic compounds on a sub-cellular level has been more intensively studied in gram-negative organisms than in gram-positive bacteria. Especially regulatory mechanisms in gram-positive (thermophilic prokaryotes remain mostly unknown. We isolated the first complete sequence of an operon from a thermophilic bacterium encoding the meta-pathway genes and analyzed the genetic organization. Moreover, the first transcriptional regulator of the phenol metabolism in gram-positive bacteria was identified. This is a first step to elucidate regulatory mechanisms that are likely to be distinct from modes described for gram-negative bacteria.

  17. Genetic map of the Bacillus stearothermophilus NUB36 chromosome.

    OpenAIRE

    Vallier, H; Welker, N E

    1990-01-01

    A circular genetic map of Bacillus stearothermophilus NUB36 was constructed by transduction with bacteriophage TP-42C and protoplast fusion. Sixty-four genes were tentatively assigned a cognate Bacillus subtilis gene based on growth response to intermediates or end products of metabolism, cross-feeding, accumulation of intermediates, or their relative order in a linkage group. Although the relative position of many genes on the Bacillus stearothermophilus and Bacillus subtilis genetic map app...

  18. 21 CFR 184.1012 - ?-Amylase enzyme preparation from Bacillus stearothermophilus.

    Science.gov (United States)

    2010-04-01

    ... § 184.1012 ?-Amylase enzyme preparation from Bacillus stearothermophilus. (a) ?-Amylase enzyme preparation is obtained from...results from a pure culture fermentation of a nonpathogenic and nontoxicogenic...stearothermophilus. Its characterizing enzyme activity is ?-amylase...

  19. Preliminary Characterization of the Probiotic Properties of Candida Famata and Geobacillus Thermoleovorans

    Directory of Open Access Journals (Sweden)

    A Bakhrouf

    2011-12-01

    Full Text Available Background and Objective: Probiotics are live microbial feed supplements which beneficially affect the host animal by improving its intestinal microbial balance, producing metabolites which inhibit the colonization or growth of other microorganisms or by competing with them for resources such as nutrients or space. The aim of this study was to investigate the probiotic properties of Candida famata and Geobacillus thermoleovorans.Material and Methods: In this study, yeast and bacterial strains isolated from pure oil waste were identified using Api 50 CHB and Api Candida Systems and their probiotic properties were studied through antimicrobial activity, biofilm production, adherence assay and enzymatic characterization.Results and Conclusion: According to biochemical analyses, these strains corresponded to Geobacillus thermoleovorans and Candida famata. Antagonism assay results showed that the tested strains have an inhibitory effect against tested pathogenic bacteria. The yeast Candida famata was unable to produce biofilm on Congo Red Agar (CRA, while the bacterial strain was a slime producer. Adherence assays to abiotic surfaces revealed that the investigated strains were fairly adhesive to polystyrene with values ranging from 0.18 to 0.34 at 595 nm. The enzymatic characterization revealed that the tested strains expressed enzymes such as phosphatase alkaline, esterase lipase (C8, amylase, lipase, lecitenase and caseinase. The obtained results may allow the isolated strains to be considered as having the potential to be candidate probiotics.

  20. Thermostable, Raw-Starch-Digesting Amylase from Bacillus stearothermophilus

    OpenAIRE

    Kim, Jaeyoung; Nanmori, Takashi; Shinke, Ryu

    1989-01-01

    An endospore-forming thermophilic bacterium, which produced amylase and was identified as Bacillus stearothermophilus, was isolated from soil. The amylase had an optimum temperature of 70°C and strongly degraded wheat starch granules (93%) and potato starch granules (80%) at 60°C.

  1. Organophosphonate Utilization by the Thermophile Geobacillus caldoxylosilyticus T20

    OpenAIRE

    Obojska, Agnieszka; Ternan, Nigel G.; Lejczak, Barbara; Kafarski, Pawel; McMullan, Geoff

    2002-01-01

    A strain of Geobacillus caldoxylosilyticus from central heating system water could utilize a number of organophosphonates as the sole phosphorus source for growth at 60°C. During growth on glyphosate, aminomethylphosphonate release to the medium was observed, and in cell extracts, a glyphosate oxidoreductase-type activity, producing stoichiometric amounts of aminomethylphosphonate and glyoxylate from glyphosate, was detectable.

  2. Culture Conditions for Production of Thermostable Amylase by Bacillus stearothermophilus

    OpenAIRE

    Srivastava, R. A. K.; Baruah, J N

    1986-01-01

    Bacillus stearothermophilus grew better on complex and semisynthetic medium than on synthetic medium supplemented with amino acids. Amylase production on the complex medium containing beef extract or corn steep liquor was higher than on semisynthetic medium containing peptone (0.4%). The synthetic medium, however, did not provide a good yield of extracellular amylase. Among the carbohydrates which favored the production of amylase are, in order starch > dextrin > glycogen > cellobiose > malto...

  3. Effect of Essential Oils on Germination and Growth of Some Pathogenic and Spoilage Spore-Forming Bacteria.

    Science.gov (United States)

    Voundi, Stève Olugu; Nyegue, Maximilienne; Lazar, Iuliana; Raducanu, Dumitra; Ndoye, Florentine Foe; Marius, Stamate; Etoa, François-Xavier

    2015-06-01

    The use of essential oils as a food preservative has increased due to their capacity to inhibit vegetative growth of some bacteria. However, only limited data are available on their effect on bacterial spores. The aim of the present study was to evaluate the effect of some essential oils on the growth and germination of three Bacillus species and Geobacillus stearothermophilus. Essential oils were chemically analyzed using gas chromatography and gas chromatography coupled to mass spectrometry. The minimal inhibitory and bactericidal concentrations of vegetative growth and spore germination were assessed using the macrodilution method. Germination inhibitory effect of treated spores with essential oils was evaluated on solid medium, while kinetic growth was followed using spectrophotometry in the presence of essential oils. Essential oil from Drypetes gossweileri mainly composed of benzyl isothiocyanate (86.7%) was the most potent, with minimal inhibitory concentrations ranging from 0.0048 to 0.0097?mg/mL on vegetative cells and 0.001 to 0.002?mg/mL on spore germination. Furthermore, essential oil from D. gossweileri reduced 50% of spore germination after treatment at 1.25?mg/mL, and its combination with other oils improved both bacteriostatic and bactericidal activities with additive or synergistic effects. Concerning the other essential oils, the minimal inhibitory concentration ranged from 5 to 0.63?mg/mL on vegetative growth and from 0.75 to 0.09?mg/mL on the germination of spores. Spectrophotometric evaluation showed an inhibitory effect of essential oils on both germination and outgrowth. From these results, it is concluded that some of the essential oils tested might be a valuable tool for bacteriological control in food industries. Therefore, further research regarding their use as food preservatives should be carried out. PMID:25884442

  4. Influence of temperature and organic load on chemical disinfection of Geobacillus steareothermophilus spores, a surrogate for Bacillus anthracis.

    Science.gov (United States)

    Guan, Jiewen; Chan, Maria; Brooks, Brian W; Rohonczy, Liz

    2013-04-01

    This study evaluated the influence of temperature and organic load on the effectiveness of domestic bleach (DB), Surface Decontamination Foam (SDF), and Virkon in inactivating Geobacillus stearothermophilus spores, which are a surrogate for Bacillus anthracis spores. The spores were suspended in light or heavy organic preparations and the suspension was applied to stainless steel carrier disks. The dried spore inoculum was covered with the disinfectants and the disks were then incubated at various temperatures. At -20°C, the 3 disinfectants caused less than a 2.0 log10 reduction of spores in both organic preparations during a 24-h test period. At 4°C, the DB caused a 4.4 log10 reduction of spores in light organic preparations within 2 h, which was about 3 log10 higher than what was achieved with SDF or Virkon. In heavy organic preparations, after 24 h at 4°C the SDF had reduced the spore count by 4.5 log10, which was about 2 log10 higher than for DB or Virkon. In general, the disinfectants were most effective at 23°C but a 24-h contact time was required for SDF and Virkon to reduce spore counts in both organic preparations by at least 5.5 log10. Comparable disinfecting activity with DB only occurred with the light organic load. In summary, at temperatures as low as 4°C, DB was the most effective disinfectant, inactivating spores within 2 h on surfaces with a light organic load, whereas SDF produced the greatest reduction of spores within 24 h on surfaces with a heavy organic load. PMID:24082400

  5. PRODUCTION AND CHARACTERIZATION OF AN ALKALOTHERMOSTABLE, ORGANIC SOLVENT TOLERANT AND SURFACTANT TOLERANT ESTERASE PRODUCED BY A THERMOPHILIC BACTERIUM GEOBACILLUS SP. AGP-04, ISOLATED FROM BAKRESHWAR HOT SPRING, INDIA

    Directory of Open Access Journals (Sweden)

    Amit Ghati

    2013-10-01

    Full Text Available A thermophilic bacteria, Geobacillus sp. AGP-04, isolated from Surya Kund hot spring, Bakreshwar, West Bengal, India was studied in terms of capability of tributyrin hydrolysis and characterization of its thermostable esterase activity using p-nitrophenyl butyrate (PNPB as substrate. The extracellular crude preparation was characterized in terms of pH and temperature optima and stability, organic solvent tolerance capacity and stability, substrate specificity, surfactant tolerance capacity, kinetic parameters and activation/inhibition behavior towards some metal ions and chemicals. Tributyrin agar assay exhibited that Geobacillus sp. AGP-04 secretes an extracellular esterase. The Vmax and Km values of the esterase were found to be 5099 U/Land 103.5µM, respectively in the presence of PNPB as substrate. The optimum temperature and pH, for Geobacillus sp. AGP-04 esterase was 60oC and 8.0, respectively. Although the enzyme activity was not significantly altered by incubating crude extract solution at 20-70oC for 1 hour, the enzyme activity was fully lost at 90oC for same incubation period. The pH stability profile showed that original crude esterase activity is stable at a broad range (pH 5.0-10.0. Moreover, the enzyme was highly organic solvent and surfactant tolerant. The effect of some chemical on crude esterase activity indicated that Geobacillus sp. AGP-04 produce an esterase which contains a serine residue in active site and for its activity -SH groups are essential. Besides, enzyme production was highly induced if fermentation medium contain polysaccharides and oil as carbon source.

  6. Draft Genome Sequence of Thermophilic Geobacillus sp. Strain Sah69, Isolated from Saharan Soil, Southeast Algeria

    Science.gov (United States)

    Bezuidt, Oliver K. I.; Makhalanyane, Thulani P.; Gomri, Mohamed A.; Kharroub, Karima

    2015-01-01

    Geobacillus spp. are potential sources of novel enzymes, such as those involved in the degradation of recalcitrant polymers. Here, we report a Geobacillus genome that may help reveal genomic differences between this strain and publicly available representatives of the same genus from diverse niches. PMID:26679578

  7. Complete genome sequence of Geobacillus thermoglucosidasius C56-YS93, a novel biomass degrader isolated from obsidian hot spring in Yellowstone National Park.

    Science.gov (United States)

    Brumm, Phillip J; Land, Miriam L; Mead, David A

    2015-01-01

    Geobacillus thermoglucosidasius C56-YS93 was one of several thermophilic organisms isolated from Obsidian Hot Spring, Yellowstone National Park, Montana, USA under permit from the National Park Service. Comparison of 16 S rRNA sequences confirmed the classification of the strain as a G. thermoglucosidasius species. The genome was sequenced, assembled, and annotated by the DOE Joint Genome Institute and deposited at the NCBI in December 2011 (CP002835). The genome of G. thermoglucosidasius C56-YS93 consists of one circular chromosome of 3,893,306 bp and two circular plasmids of 80,849 and 19,638 bp and an average G?+?C content of 43.93 %. G. thermoglucosidasius C56-YS93 possesses a xylan degradation cluster not found in the other G. thermoglucosidasius sequenced strains. This cluster appears to be related to the xylan degradation cluster found in G. stearothermophilus. G. thermoglucosidasius C56-YS93 possesses two plasmids not found in the other two strains. One plasmid contains a novel gene cluster coding for proteins involved in proline degradation and metabolism, the other contains a collection of mostly hypothetical proteins. PMID:26442136

  8. Genetic analysis of Bacillus stearothermophilus by protoplast fusion.

    OpenAIRE

    Chen, Z. F.; Wojcik, S F; Welker, N E

    1986-01-01

    Efficient and reliable protoplasting, regeneration, and fusion techniques were established for the prototrophic strain Bacillus stearothermophilus NUB36. Auxotrophic mutants were isolated, and protoplast fusion was used to construct isogenic mutant strains and for chromosomal mapping. Markers were mapped using two-, three-, and four-factor crosses. The order of the markers was hom-1-thr-1-his-1-(gly-1 or gly-2)-pur-1-pur-2. These markers may be analogous to hom, thrA, hisA, glyC, and purA mar...

  9. A commensal symbiotic interrelationship for the growth of Symbiobacterium toebii with its partner bacterium, Geobacillus toebii

    Directory of Open Access Journals (Sweden)

    Masui Ryoji

    2011-10-01

    Full Text Available Abstract Background Symbiobacterium toebii is a commensal symbiotic thermophile that absolutely requires its partner bacterium Geobacillus toebii for growth. Despite development of an independent cultivation method using cell-free extracts, the growth of Symbiobacterium remains unknown due to our poor understanding of the symbiotic relationship with its partner bacterium. Here, we investigated the interrelationship between these two bacteria for growth of S. toebii using different cell-free extracts of G. toebii. Results Symbiobacterium toebii growth-supporting factors were constitutively produced through almost all growth phases and under different oxygen tensions in G. toebii, indicating that the factor may be essential components for growth of G. toebii as well as S. toebii. The growing conditions of G. toebii under different oxygen tension dramatically affected to the initial growth of S. toebii and the retarded lag phase was completely shortened by reducing agent, L-cysteine indicating an evidence of commensal interaction of microaerobic and anaerobic bacterium S. toebii with a facultative aerobic bacterium G. toebii. In addition, the growth curve of S. toebii showed a dependency on the protein concentration of cell-free extracts of G. toebii, demonstrating that the G. toebii-derived factors have nutrient-like characters but not quorum-sensing characters. Conclusions Not only the consistent existence of the factor in G. toebii during all growth stages and under different oxygen tensions but also the concentration dependency of the factor for proliferation and optimal growth of S. toebii, suggests that an important biosynthetic machinery lacks in S. toebii during evolution. The commensal symbiotic bacterium, S. toebii uptakes certain ubiquitous and essential compound for its growth from environment or neighboring bacteria that shares the equivalent compounds. Moreover, G. toebii grown under aerobic condition shortened the lag phase of S. toebii under anaerobic and microaerobic conditions, suggests a possible commensal interaction that G. toebii scavengers ROS/RNS species and helps the initial growth of S. toebii.

  10. Geobacillus zalihae sp. nov., a thermophilic lipolytic bacterium isolated from palm oil mill effluent in Malaysia

    Directory of Open Access Journals (Sweden)

    Salleh Abu

    2007-08-01

    Full Text Available Abstract Background Thermophilic Bacillus strains of phylogenetic Bacillus rRNA group 5 were described as a new genus Geobacillus. Their geographical distribution included oilfields, hay compost, hydrothermal vent or soils. The members from the genus Geobacillus have a growth temperatures ranging from 35 to 78°C and contained iso-branched saturated fatty acids (iso-15:0, iso-16:0 and iso-17:0 as the major fatty acids. The members of Geobacillus have similarity in their 16S rRNA gene sequences (96.5–99.2%. Thermophiles harboring intrinsically stable enzymes are suitable for industrial applications. The quest for intrinsically thermostable lipases from thermophiles is a prominent task due to the laborious processes via genetic modification. Results Twenty-nine putative lipase producers were screened and isolated from palm oil mill effluent in Malaysia. Of these, isolate T1T was chosen for further study as relatively higher lipase activity was detected quantitatively. The crude T1 lipase showed high optimum temperature of 70°C and was also stable up to 60°C without significant loss of crude enzyme activity. Strain T1T was a Gram-positive, rod-shaped, endospore forming bacterium. On the basic of 16S rDNA analysis, strain T1T was shown to belong to the Bacillus rRNA group 5 related to Geobacillus thermoleovorans (DSM 5366T and Geobacillus kaustophilus (DSM 7263T. Chemotaxonomic data of cellular fatty acids supported the affiliation of strain T1T to the genus Geobacillus. The results of physiological and biochemical tests, DNA/DNA hybridization, RiboPrint analysis, the length of lipase gene and protein pattern allowed genotypic and phenotypic differentiation of strain T1T from its validly published closest phylogenetic neighbors. Strain T1T therefore represents a novel species, for which the name Geobacillus zalihae sp. nov. is proposed, with the type strain T1T (=DSM 18318T; NBRC 101842T. Conclusion Strain T1T was able to secrete extracellular thermostable lipase into culture medium. The strain T1T was identified as Geobacillus zalihae T1T as it differs from its type strains Geobacillus kaustophilus (DSM 7263T and Geobacillus thermoleovorans (DSM 5366T on some physiological studies, cellular fatty acids composition, RiboPrint analysis, length of lipase gene and protein profile.

  11. Enzymatic and cryoreduction EPR studies of the hydroxylation of methylated N(?)-hydroxy-L-arginine analogues by nitric oxide synthase from Geobacillus stearothermophilus.

    Science.gov (United States)

    Davydov, Roman; Labby, Kristin Jansen; Chobot, Sarah E; Lukoyanov, Dmitriy A; Crane, Brian R; Silverman, Richard B; Hoffman, Brian M

    2014-10-21

    Nitric oxide synthase (NOS) catalyzes the conversion of L-arginine to L-citrulline and NO in a two-step process involving the intermediate N(?)-hydroxy-L-arginine (NHA). It was shown that Cpd I is the oxygenating species for L-arginine; the hydroperoxo ferric intermediate is the reactive intermediate with NHA. Methylation of the N(?)-OH and N(?)-H of NHA significantly inhibits the conversion of NHA into NO and L-citrulline by mammalian NOS. Kinetic studies now show that N(?)-methylation of NHA has a qualitatively similar effect on H?O?-dependent catalysis by bacterial gsNOS. To elucidate the effect of methylating N(?)-hydroxy L-arginine on the properties and reactivity of the one-electron-reduced oxy-heme center of NOS, we have applied cryoreduction/annealing/EPR/ENDOR techniques. Measurements of solvent kinetic isotope effects during 160 K cryoannealing cryoreduced oxy-gsNOS/NHA confirm the hydroperoxo ferric intermediate as the catalytically active species of step two. Product analysis for cryoreduced samples with methylated NHA's, NHMA, NMOA, and NMMA, annealed to 273 K, show a correlation of yields of L-citrulline with the intensity of the g 2.26 EPR signal of the peroxo ferric species trapped at 77 K, which converts to the reactive hydroperoxo ferric state. There is also a correlation between the yield of L-citrulline in these experiments and k(obs) for the H?O?-dependent conversion of the substrates by gsNOS. Correspondingly, no detectable amount of cyanoornithine, formed when Cpd I is the reactive species, was found in the samples. Methylation of the NHA guanidinium N(?)-OH and N(?)-H inhibits the second NO-producing reaction by favoring protonation of the ferric-peroxo to form unreactive conformers of the ferric-hydroperoxo state. It is suggested that this is caused by modification of the distal-pocket hydrogen-bonding network of oxy gsNOS and introduction of an ordered water molecule that facilitates delivery of the proton(s) to the one-electron-reduced oxy-heme moiety. These results illustrate how variations in the properties of the substrate can modulate the reactivity of a monooxygenase. PMID:25251261

  12. Effects of iron-reducing bacteria on carbon steel corrosion induced by thermophilic sulfate-reducing consortia.

    Science.gov (United States)

    Valencia-Cantero, Eduardo; Peña-Cabriales, Juan José

    2014-02-28

    Four thermophilic bacterial species, including the iron-reducing bacterium Geobacillus sp. G2 and the sulfate-reducing bacterium Desulfotomaculum sp. SRB-M, were employed to integrate a bacterial consortium. A second consortium was integrated with the same bacteria, except for Geobacillus sp. G2. Carbon steel coupons were subjected to batch cultures of both consortia. The corrosion induced by the complete consortium was 10 times higher than that induced by the second consortium, and the ferrous ion concentration was consistently higher in iron-reducing consortia. Scanning electronic microscopy analysis of the carbon steel surface showed mineral films colonized by bacteria. The complete consortium caused profuse fracturing of the mineral film, whereas the non-iron-reducing consortium did not generate fractures. These data show that the iron-reducing activity of Geobacillus sp. G2 promotes fracturing of mineral films, thereby increasing steel corrosion. PMID:24225375

  13. Influence of N- and/or C-terminal regions on activity, expression, characteristics and structure of lipase from Geobacillus sp. 95.

    Science.gov (United States)

    Gudiukait?, Renata; Gegeckas, Audrius; Kazlauskas, Darius; Citavicius, Donaldas

    2014-01-01

    GD-95 lipase from Geobacillus sp. strain 95 and its modified variants lacking N-terminal signal peptide and/or 10 or 20 C-terminal amino acids were successfully cloned, expressed and purified. To our knowledge, GD-95 lipase precursor (Pre-GD-95) is the first Geobacillus lipase possessing more than 80% lipolytic activity at 5 °C. It has maximum activity at 55 °C and displays a broad pH activity range. GD-95 lipase was shown to hydrolyze p-NP dodecanoate, tricaprylin and canola oil better than other analyzed substrates. Structural and sequence alignments of bacterial lipases and GD-95 lipase revealed that the C-terminus forms an ? helix, which is a conserved structure in lipases from Pseudomonas, Clostridium or Staphylococcus bacteria. This work demonstrates that 10 and 20 C-terminal amino acids of GD-95 lipase significantly affect stability and other physicochemical properties of this enzyme, which has never been reported before and can help create lipases with more specific properties for industrial application. GD-95 lipase and its modified variants GD-95-10 can be successfully applied to biofuel production, in leather and pulp industries, for the production of cosmetics or perfumes. These lipases are potential biocatalysts in processes, which require extreme conditions: low or high temperature, strongly acidic or alkaline environment and various organic solvents. PMID:24287927

  14. 1H, 13C, and 15N backbone and side chain resonance assignments of thermophilic Geobacillus kaustophilus cyclophilin-A

    Energy Technology Data Exchange (ETDEWEB)

    Holliday, Michael; Zhang, Fengli; Isern, Nancy G.; Armstrong, Geoffrey S.; Eisenmesser, Elan Z.

    2014-04-01

    Cyclophilins catalyze the reversible peptidyl-prolyl isomerization of their substrates and are present across all kingdoms of life from humans to bacteria. Although numerous biological roles have now been discovered for cyclophilins, their function was initially ascribed to their chaperone-like activity in protein folding where they catalyze the often rate-limiting step of proline isomerization. This chaperone-like activity may be especially important under extreme conditions where cyclophilins are often over expressed, such as in tumors for human cyclophilins {Lee, 2010 #1167}, but also in organisms that thrive under extreme conditions, such as theromophilic bacteria. Moreover, the reversible nature of the peptidyl-prolyl isomerization reaction catalyzed by cyclophilins has allowed these enzymes to serve as model systems for probing the role of conformational changes during catalytic turnover {Eisenmesser, 2002 #20;Eisenmesser, 2005 #203}. Thus, we present here the resonance assignments of a thermophilic cyclophilin from Geobacillus kaustophilus derived from deep-sea sediment {Takami, 2004 #1384}. This thermophilic cyclophilin may now be studied at a variety of temperatures to provide insight into the comparative structure, dynamics, and catalytic mechanism of cyclophilins.

  15. Catalytic Biomineralization of Fluorescent Calcite by the Thermophilic Bacterium Geobacillus thermoglucosidasius?

    Science.gov (United States)

    Yoshida, Naoto; Higashimura, Eiji; Saeki, Yuichi

    2010-01-01

    The thermophilic Geobacillus bacterium catalyzed the formation of 100-?m hexagonal crystals at 60°C in a hydrogel containing sodium acetate, calcium chloride, and magnesium sulfate. Under fluorescence microscopy, crystals fluoresced upon excitation at 365 ± 5, 480 ± 20, or 545 ± 15 nm. X-ray diffraction indicated that the crystals were magnesium-calcite in calcite-type calcium carbonate. PMID:20851984

  16. Catalytic Biomineralization of Fluorescent Calcite by the Thermophilic Bacterium Geobacillus thermoglucosidasius?

    OpenAIRE

    Yoshida, Naoto; Higashimura, Eiji; Saeki, Yuichi

    2010-01-01

    The thermophilic Geobacillus bacterium catalyzed the formation of 100-?m hexagonal crystals at 60°C in a hydrogel containing sodium acetate, calcium chloride, and magnesium sulfate. Under fluorescence microscopy, crystals fluoresced upon excitation at 365 ± 5, 480 ± 20, or 545 ± 15 nm. X-ray diffraction indicated that the crystals were magnesium-calcite in calcite-type calcium carbonate.

  17. Isolation of phenol-degrading Bacillus stearothermophilus and partial characterization of the phenol hydroxylase.

    OpenAIRE

    Gurujeyalakshmi, G; Oriel, P.

    1989-01-01

    Bacillus stearothermophilus BR219, isolated from river sediment, degraded phenol at levels to 15 mM at a rate of 0.85 mumol/h (4 x 10(6) cells). The solubilized phenol hydroxylase was NADH dependent, exhibited a 55 degrees C temperature optimum for activity, and was not inhibited by 0.5 mM phenol.

  18. Crystallization and preliminary X-ray analysis of pyruvate kinase from Bacillus stearothermophilus

    OpenAIRE

    Suzuki, Kenichiro; Ito, Sohei; Shimizu-Ibuka, Akiko; Sakai, Hiroshi

    2005-01-01

    This report describes the crystallization and X-ray diffraction data collection of three types (wild-type, W416F/V435W and C9S/C268S) of B. stearothermophilus. Crystals of C9S/C268S belonged to space group P6222 and diffracted to a resolution of 2.4?Å.

  19. alpha-Glucosidase from a strain of deep-sea Geobacillus: a potential enzyme for the biosynthesis of complex carbohydrates.

    Science.gov (United States)

    Hung, Vo Si; Hatada, Yuji; Goda, Saori; Lu, Jie; Hidaka, Yuko; Li, Zhijun; Akita, Masatake; Ohta, Yukari; Watanabe, Kenji; Matsui, Hirokazu; Ito, Susumu; Horikoshi, Koki

    2005-10-01

    An alpha-glucosidase from Geobacillus sp. strain HTA-462, one of the deepest sea bacteria isolated from the sediment of the Mariana Trench, was purified to homogeneity and estimated to be a 65-kDa protein by SDS-PAGE. At low ion strength, the enzyme exists in the homodimeric form (130 kDa). It is a thermo- and alkaline-stable enzyme with a half-life of 13.4 h and a maximum hydrolytic activity at 60 degrees C and pH 9.0 in 15 mM glycine-NaOH buffer. The enzyme exclusively hydrolyzed alpha-1,4-glycosidic linkages of oligosaccharides in an exo-type manner. The enzyme had an overwhelming transglycosylation activity and glycosylated various non-sugar molecules when maltose was used as a sugar donor. It converted maltose to isomaltose. The gene encoding the enzyme was cloned and sequenced. The recombinant enzyme could be extracellularly overproduced by Bacillus subtilis harboring its gene and preserved the primary properties of the native enzyme. Site-directed mutagenesis experiments showed that Asp98 is essential for the enzyme activity in addition to Asp199, Asp326, and Glu256. PMID:15940457

  20. Preliminary Characterization of the Probiotic Properties of Candida Famata and Geobacillus Thermoleovorans

    OpenAIRE

    A Bakhrouf; Behi, A; Hmila, Z; A Mahdhi

    2011-01-01

    Background and Objective: Probiotics are live microbial feed supplements which beneficially affect the host animal by improving its intestinal microbial balance, producing metabolites which inhibit the colonization or growth of other microorganisms or by competing with them for resources such as nutrients or space. The aim of this study was to investigate the probiotic properties of Candida famata and Geobacillus thermoleovorans.Material and Methods: In this study, yeast and bacterial strains...

  1. Properties and active center of the thermostable branching enzyme from Bacillus stearothermophilus.

    OpenAIRE

    Takata, H; Takaha, T; Kuriki, T; Okada, S.; Takagi, M.; Imanaka, T

    1994-01-01

    Although the branching enzyme (EC 2.4.1.18) is a member of the alpha-amylase family, the characteristics are not understood. The thermostable branching enzyme gene from Bacillus stearothermophilus TRBE14 was cloned and expressed in Escherichia coli. The branching enzyme was purified to homogeneity, and various enzymatic properties were analyzed by our improved assay method. About 80% of activity was retained when the enzyme was heated at 60 degrees C for 30 min, and the optimum temperature fo...

  2. Sequence and secondary structure of the colicin fragment of Bacillus stearothermophilus 16S ribosomal RNA.

    OpenAIRE

    Van Charldorp, R; Van Kimmenade, A M; Van Knippenberg, P H

    1981-01-01

    The sequence and the position of post-transcriptionally modified residues of the 3' -terminal end of Bacillus stearothermophilus 16S ribosomal RNA have been determined from the fragment that is cleaved off by bacteriocin treatment. The fragment contains 52 nucleotides, as compared to the 49 nucleotides of the corresponding fragment from E. coli ribosomes, The additional nucleotides are present in the sequence UCU very next to the 3' -terminus as was published earlier (1). The remainder of the...

  3. Influence of Bacillus Stearothermophilus generations in the production of its spores

    Directory of Open Access Journals (Sweden)

    Heron Oliveira dos Santos Lima

    2011-04-01

    Full Text Available The validation of sterilization processes in food and pharmaceutical industries is a major tool for quality assurance, making the products safe, effective and reliable. Biological indicators, formed by spores of Bacillus stearothermophilus microorganisms considered at higher thermal resistance, are used to evaluate and monitor the physical parameters of a cycle of steam sterilization. In this way this study aimed to cultivate and characterize the microorganism Bacillus stearothermophilus generations, assessing the influence of these generations in the parameters of resistance, formation and concentration of its spores to be used in the production of biological indicators. The experiments were conducted cultivating the 1st, 2nd and 3rd generations of B. stearothermophilus in suitable culture media for sporulation, in Roux bottles, for a period of 15 days of incubation. During these 15 days, the sporulation process was evaluated by microscopy, according to Wirtz-Conklin's method, every 24 hours of incubation. The results showed that the generations do influence the sporulation process, indicating that the 3rd generation is the most suitable for the production of formed spores, in concentration and thermal resistance appropriate characteristics to the needs of a biological indicator to efficiently validate and monitor steam sterilization cycles.

  4. Structure based protein engineering of Bacillus stearothermophilus ?-amylase: toward a new substrate specificity

    International Nuclear Information System (INIS)

    Full text. Structural similarity is observed in all members of ?-amylase family but different products are generated during hydrolysis of starch due to different affinities for intermediate dextrins. In order to understand the structural determinants for this property and to introduce different specificity to ?-amylase of Bacillus stearothermophilus we intend to solve the three dimensional structure by X-ray crystallography of the native protein by using synchrotron radiation at Brazilian National Synchrotron Light Laboratory (LNLS). Protein was over expressed in E. coli, purified and crystallization experiments were carried out by using sparse matrix Crystal Screen and Crystal Screen II from Hampton Research (Laguna Hills, CA, USA). Several condition have produced crystals with some defined characteristic: MDP seems to be important to the crystallization: the preferential pH is around 7.5 with organic buffer (HEPES); organic solvent as 2-propanol seems to be also important for the crystallization. On those condition crystals appeared as cluster of needles or small crystals with high number of nucleation. New conditions are being prepared to improve the site and quality of crystals. Data collection of native of Bacillus stearothermophilus ?-amylase will e done at Protein Crystallography Station at LNLS. Crystal structure of mutated ?-amylase bu site direct mutagenesis of residues suggested by the native crystal structure will be obtained. Co-crystallization of Bacillus stearothermophilus ?-amylase and oligosaccharide will be carried out to identify residues involved in the binding site to plan new mutation. In another series of mutation the putative binding site residues, once identified, will be mutated to residues observed in TAKA amylase to confer different specificity to ?-amylase. Based on the available TAKA amylase structure, in the primary sequence homology and in the three dimensional model of Bacillus stearothermophilus ?-amylase (using Bacillus licheniformis crystal structure as initial model) it seems that Bacillus stearothermophilus ?-amylase binding site is more complex with and insertion of 40 residues. Therefore the three dimensional structure is crucial to understand the specificity of the substrate of this enzyme which will be used to drive the design of mutation to introduce new properties for industrial purpose. (author)

  5. Cloning, expression, purification, crystallization and preliminary X-ray crystallographic study of DHNA synthetase from Geobacillus kaustophilus.

    Science.gov (United States)

    Kanaujia, Shankar Prasad; Ranjani, Chellamuthu Vasuki; Jeyakanthan, Jeyaraman; Baba, Seiki; Kuroishi, Chizu; Ebihara, Akio; Shinkai, Akeo; Kuramitsu, Seiki; Shiro, Yoshitsugu; Sekar, Kanagaraj; Yokoyama, Shigeyuki

    2007-02-01

    The aerobic Gram-positive bacterium Geobacillus kaustophilus is a bacillus species that was isolated from deep-sea sediment from the Mariana Trench. 1,4-Dihydroxy-2-naphthoate (DHNA) synthetase plays a vital role in the biosynthesis of menaquinone (vitamin K(2)) in this bacterium. DHNA synthetase from Geobacillus kaustophilus was crystallized in the orthorhombic space group C222(1), with unit-cell parameters a = 77.01, b = 130.66, c = 131.69 A. The crystal diffracted to a resolution of 2.2 A. Preliminary studies and molecular-replacement calculations reveal the presence of three monomers in the asymmetric unit. PMID:17277450

  6. Draft Genome Sequence of Geobacillus sp. Isolate T6, a Thermophilic Bacterium Collected from a Thermal Spring in Argentina

    Science.gov (United States)

    Ortiz, Elio M.; Berretta, Marcelo F.; Benintende, Graciela B.; Amadio, Ariel F.; Zandomeni, Rubén O.

    2015-01-01

    Geobacillus sp. isolate T6 was collected from a thermal spring in Salta, Argentina. The draft genome sequence (3,767,773 bp) of this isolate is represented by one major scaffold of 3,46 Mbp, a second one of 207 kbp, and 20 scaffolds of <13 kbp. The assembled sequences revealed 3,919 protein-coding genes. PMID:26184933

  7. Crystallization and preliminary X-ray analysis of pyruvate kinase from Bacillus stearothermophilus

    International Nuclear Information System (INIS)

    This report describes the crystallization and X-ray diffraction data collection of three types (wild-type, W416F/V435W and C9S/C268S) of B. stearothermophilus. Crystals of C9S/C268S belonged to space group P6222 and diffracted to a resolution of 2.4 Å. Pyruvate kinase (PK) from a moderate thermophile, Bacillus stearothermophilus (BstPK), is an allosteric enzyme activated by AMP and ribose 5-phosphate but not by fructose 1,6-bisphosphate (FBP). However, almost all other PKs are activated by FBP. The wild-type and W416F/V435W mutant BstPKs were crystallized by the hanging-drop vapour-diffusion method. However, they were unsuitable for structural analysis because their data sets exhibited low completeness. A crystal suitable for structural analysis was obtained using C9S/C268S enzyme. The crystal belonged to space group P6222, with unit-cell parameters a = b = 145.97, c = 118.03 Å

  8. Effect of ionization and nisin on the Bacillus strains and Salmonella Enteritidis inoculated Stearothermophilus

    International Nuclear Information System (INIS)

    The antimicrobial effect of nisin (at 1000UI/g), and irradiation (at 1, 3 and 5kGy), against the growth of Salmonella enteritidis (106 ufc/ml) and Bacillus Stearothermophilus (106 ufc/ml), inoculated in turkey salami, was studied during storage at 4 degree for 21 days. Treatment of turkey salami with nisin at 1000UI/g did not show any antimicrobial activity against S. Enteritidis with 6.7 pour cent and 0.8 pour cent of reduction after 0 and 21 days of storage respectively, and seems to be insufficient to inhibit B. Stearothermophilus with 23 pour cent and 21 pour cent of reduction after 0 and 21 days of storage respectively. Antimicrobial activities of irradiation were better and proportional to irradiation doses; it shows a reduction of 27 pour cent, 55 pour cent and 67 pour cent by D1, D2 and D3 respectively. The combination of nisin with irradiation at 5kGy showed stronger antimicrobial activities than those obtained by its combination with the first and the second irradiation dose.

  9. Overexpression and characterization of dimeric and tetrameric forms of recombinant serine hydroxymethyltransferase from Bacillus stearothermophilus

    Indian Academy of Sciences (India)

    Venkatakrishna R Jala; V Prakash; N Appaji Rao; H S Savithri

    2002-06-01

    Serine hydroxymethyltransferase (SHMT), a pyridoxal-5?-phosphate (PLP) dependent enzyme catalyzes the interconversion of L-Ser and Gly using tetrahydrofolate as a substrate. The gene encoding for SHMT was amplified by PCR from genomic DNA of Bacillus stearothermophilus and the PCR product was cloned and overexpressed in Escherichia coli. The purified recombinant enzyme was isolated as a mixture of dimer (90%) and tetramer (10%). This is the first report demonstrating the existence of SHMT as a dimer and tetramer in the same organism. The specific activities at 37°C of the dimeric and tetrameric forms were 6.7 U/mg and 4.1 U/mg, respectively. The purified dimer was extremely thermostable with a m of 85°C in the presence of PLP and L-Ser. The temperature optimum of the dimer was 80°C with a specific activity of 32.4 U/mg at this temperature. The enzyme catalyzed tetrahydrofolate-independent reactions at a slower rate compared to the tetrahydrofolate-dependent retro-aldol cleavage of L-Ser. The interaction with substrates and their analogues indicated that the orientation of PLP ring of B. stearothermophilus SHMT was probably different from sheep liver cytosolic recombinant SHMT (scSHMT).

  10. Characterization of a thermostable raw-starch hydrolyzing ?-amylase from deep-sea thermophile Geobacillus sp.

    Science.gov (United States)

    Jiang, Tao; Cai, Menghao; Huang, Mengmeng; He, Hao; Lu, Jian; Zhou, Xiangshan; Zhang, Yuanxing

    2015-10-01

    A deep-sea thermophile, Geobacillus sp. 4j, was identified to grow on starch and produce thermostable amylase. N-terminally truncated form of Geobacillus sp. 4j ?-amylase (Gs4j-amyA) was fused at its N-terminal end with the signal peptide of outer membrane protein A (OmpA) of Escherichia coli. The enzyme was over-expressed in E. coli BL21 with a maximum extracellular production of 130U/ml in shake flask. The yield of the transformant increased 22-fold as compared with that of the wild strain. The recombinant enzyme purified to apparent homogeneity by metal-affinity chromatography, exhibited a molecular mass of 62kDa. It displayed the maximal activity at 60-65°C and pH 5.5. Its half-life (t1/2) at 80°C was 4.25h with a temperature deactivation energy of 166.3kJ/mol. Compared to three commonly used commercial ?-amylases, the Gs4j-amyA exhibited similar thermostable performance to BLA but better than BAA and BSA. It also showed a universally efficient raw starch hydrolysis performance superior to commercial ?-amylases at an acidic pH approaching nature of starch slurry. As a new acidic-resistant thermostable ?-amylase, it has the potential to bypass the industrial gelatinization step in raw starch hydrolysis. PMID:26073094

  11. Homologi Gen Seleno Metiltransferase (smt pada Geobacillus sp. 20k dengan smt Astragalus bisulcatus

    Directory of Open Access Journals (Sweden)

    Evi Triana

    2010-09-01

    Full Text Available Methylselenocysteine (MSC is the most effective form of selenium against cancer. The synthesis of MSC is catalyzed by seleno methyltransferase (smt through selenium methylation as its detoxification mechanism. Gene of smt has been characterized in selenium rich plant, Astragalus bisulcatus. This experimental laboratoric study was done on Geobacillus sp. 20k. at Lembaga Ilmu Pengetahuan Indonesia (LIPI, Cibinong, Bogor, November 2008–June 2009.Target gene was detected by polymerase chain reaction and sequencing. DNA sequence was analyzed by the basic local alignment search tool (BLAST. The results showed that smt gene and its homolog were generally found on selenium rich plants, such as A. bisulcatus, C. sinensis, and A. thaliana, with similarity more than 85%. Designed primers for amplification of smt are CAAGCCACCATTCAAGGTTT and CCCTACTGATCCCGCAATTA. Amplification of DNA fragments obtained at approximately 190 base pair. DNA sequence and its protein translation were identified as part of the thermophilic enzyme and smt of A. bisulcatus, with 83% similarity for smt genes and 88–90% for protein. In conclusion, Geobacillus sp. 20k have smt genes similar with that of A. bisulcatus, therefore further development of this isolate as a non toxic selenium source for cancer therapy could be taken into consideration.

  12. Molecular cloning and characterization of a new and highly thermostable esterase from Geobacillus sp. JM6.

    Science.gov (United States)

    Zhu, Yanbing; Zheng, Wenguang; Ni, Hui; Liu, Han; Xiao, Anfeng; Cai, Huinong

    2015-10-01

    A new lipolytic enzyme gene was cloned from a thermophile Geobacillus sp. JM6. The gene contained 750 bp and encoded a 249-amino acid protein. The recombinant enzyme was expressed and purified from Escherichia coli BL21 (DE3) with a molecular mass of 33.6?kDa. Enzyme assays using p-nitrophenyl esters with different acyl chain lengths as the substrates confirmed its esterase activity, yielding the highest activity with p-nitrophenyl butyrate. When p-nitrophenyl butyrate was used as a substrate, the optimum reaction temperature and pH for the enzyme were 60?°C and pH 7.5, respectively. Geobacillus sp. JM6 esterase showed excellent thermostability with 68% residual activity after incubation at 100?°C for 18?h. A theoretical structural model of strain JM6 esterase was developed with a monoacylglycerol lipase from Bacillus sp. H-257 as a template. The predicted core structure exhibits an ?/? hydrolase fold, and a putative catalytic triad (Ser97, Asp196, and His226) was identified. Inhibition assays with PMSF indicated that serine residue is involved in the catalytic activity of strain JM6 esterase. The recombinant esterase showed a relatively good tolerance to the detected detergents and denaturants, such as SDS, Chaps, Tween 20, Tween 80, Triton X-100, sodium deoxycholate, urea, and guanidine hydrochloride. PMID:26175347

  13. Determination of thermobacteriological parameters and size of Bacillus stearothermophilus ATCC 7953 spores / Determinação dos parâmetros de destruição térmica e dimensões de esporos de Bacillus stearothermophilus ATCC 7953

    Scientific Electronic Library Online (English)

    Marcos, Fraiha; Antonio Carlos de Oliveira, Ferraz; João Domingos, Biagi.

    2010-12-01

    Full Text Available Este experimento objetivou determinar os parâmetros de destruição térmica de esporos de Bacillus stearothermophilus ATCC 7953 e a estimativa de suas dimensões. Os esporos foram suspensos em solução salina e em mistura de grãos de milho e soja moídos, distribuídos em tubos TDT, e submetidos ao calor [...] por tempo variável, seguido de incubação e contagem direta. Determinou-se o valor D (tempo necessário para redução da viabilidade do micro-organismo em 1 ciclo logarítmico sob determinada temperatura) e o valor z (intervalo de temperatura que ocasiona variação de 10 vezes no valor D). Os esporos suspensos em solução salina foram observados em microscópio eletrônico de varredura, para estimativa das dimensões. Os valores de D121,1 ºC e z para os esporos suspensos em solução salina foram 8,8 minutos e 12,8 ºC, respectivamente. Para aqueles suspensos em mistura milho e soja, D121,1 ºC e z foram 14,2 minutos e 23,7 ºC, respectivamente. As micrografias indicaram que os esporos apresentam-se como bastonetes, homogêneos em forma e dimensão, com comprimento e diâmetro estimados em 2 e 1 µm, respectivamente. Os resultados confirmam a elevada resistência térmica do esporo e indicam que este é um bom indicador biológico para avaliação do processo de extrusão como esterilizante de alimentos. Abstract in english In order to determine thermobacteriological parameters for B. stearothermophilus spores, they were diluted in a saline solution medium and in ground corn-soybean mix, distributed in TDT tube, and submitted to heat for a specific period of time. The D value (time to reduce 1 log cycle of microbial co [...] unt under a certain temperature) and z value (variation of temperature to cause 10-fold change in D value) were estimated. To estimate their dimensions, the spores were visualized by using a scanning electron microscope. D121.1 ºC and z values for these spores, as determined in the saline solution, were 8.8 minutes and 12.8 ºC, respectively. D121,1 ºC and z values determined in the corn-soy mix were 14.2 minutes and 23.7 ºC, respectively. The micrographs indicated that the spores have homogeneous shape and size, with length and diameter of 2 and 1 µm, respectively. These results confirm that the spore is highly thermal-resistant, and it is a good biological indicator to evaluate the extrusion process as a feed sterilizer.

  14. Use of a Mixture of Surrogates for Infectious Bioagents in a Standard Approach to Assessing Disinfection of Environmental Surfaces ?

    OpenAIRE

    Sabbah, Safaa; Springthorpe, Susan; Sattar, Syed A.

    2010-01-01

    We used a mixture of surrogates (Acinetobacter baumannii, Mycobacterium terrae, hepatitis A virus, and spores of Geobacillus stearothermophilus) for bioagents in a standardized approach to test environmental surface disinfectants. Each carrier containing 10 ?l of mixture received 50 ?l of a test chemical or saline at 22 ± 2°C. Disinfectant efficacy criteria were ?6 log10 reduction for the bacteria and the spores and ?3 log10 reduction for the virus. Peracetic acid (1,000 ppm) was effective in...

  15. Cloning, expression, purification, crystallization and preliminary X-ray crystallographic study of DHNA synthetase from Geobacillus kaustophilus

    Energy Technology Data Exchange (ETDEWEB)

    Kanaujia, Shankar Prasad; Ranjani, Chellamuthu Vasuki [Bioinformatics Centre (Centre of Excellence in Structural Biology and Biocomputing), Indian Institute of Science, Bangalore 560 012 (India); Jeyakanthan, Jeyaraman [RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan); Baba, Seiki [RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan); Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Kuroishi, Chizu; Ebihara, Akio; Shinkai, Akeo [RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan); Kuramitsu, Seiki [RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan); Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Shiro, Yoshitsugu [RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan); Sekar, Kanagaraj, E-mail: sekar@serc.iisc.ernet.in [Bioinformatics Centre (Centre of Excellence in Structural Biology and Biocomputing), Indian Institute of Science, Bangalore 560 012 (India); Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore 560 012 (India); Yokoyama, Shigeyuki, E-mail: sekar@serc.iisc.ernet.in [RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan); RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045 (Japan); Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Bioinformatics Centre (Centre of Excellence in Structural Biology and Biocomputing), Indian Institute of Science, Bangalore 560 012 (India)

    2007-02-01

    DHNA synthetase from G. kaustophilus has been cloned, expressed, purified and crystallized. The aerobic Gram-positive bacterium Geobacillus kaustophilus is a bacillus species that was isolated from deep-sea sediment from the Mariana Trench. 1,4-Dihydroxy-2-naphthoate (DHNA) synthetase plays a vital role in the biosynthesis of menaquinone (vitamin K{sub 2}) in this bacterium. DHNA synthetase from Geobacillus kaustophilus was crystallized in the orthorhombic space group C222{sub 1}, with unit-cell parameters a = 77.01, b = 130.66, c = 131.69 Å. The crystal diffracted to a resolution of 2.2 Å. Preliminary studies and molecular-replacement calculations reveal the presence of three monomers in the asymmetric unit.

  16. Cloning, expression, purification, crystallization and preliminary X-ray crystallographic study of DHNA synthetase from Geobacillus kaustophilus

    International Nuclear Information System (INIS)

    DHNA synthetase from G. kaustophilus has been cloned, expressed, purified and crystallized. The aerobic Gram-positive bacterium Geobacillus kaustophilus is a bacillus species that was isolated from deep-sea sediment from the Mariana Trench. 1,4-Dihydroxy-2-naphthoate (DHNA) synthetase plays a vital role in the biosynthesis of menaquinone (vitamin K2) in this bacterium. DHNA synthetase from Geobacillus kaustophilus was crystallized in the orthorhombic space group C2221, with unit-cell parameters a = 77.01, b = 130.66, c = 131.69 Å. The crystal diffracted to a resolution of 2.2 Å. Preliminary studies and molecular-replacement calculations reveal the presence of three monomers in the asymmetric unit

  17. Purification and characterization of thermostable beta-N-acetylhexosaminidase of Bacillus stearothermophilus CH-4 isolated from chitin-containing compost.

    OpenAIRE

    Sakai, K.; Narihara, M; Kasama, Y.; Wakayama, M; Moriguchi, M

    1994-01-01

    Thermostable exochitinase was purified to homogeneity from the culture fluid of Bacillus stearothermophilus CH-4, which was isolated from agricultural compost containing shrimp and crabs. The enzyme was a single polypeptide with a molecular mass of 74 kDa, and the N-terminal amino acid sequence was WDKVGVTDLI ISLNIPEADAVVVGMTLQLQALHLY. The enzyme specifically hydrolyzed C-4 beta-anomeric bonding of N-acetylchitooligosaccharides, as well as their p-nitrophenyl (pNP) derivatives. The enzyme als...

  18. Complete genome sequences of Geobacillus sp. Y412MC52, a xylan-degrading strain isolated from obsidian hot spring in Yellowstone National Park.

    Science.gov (United States)

    Brumm, Phillip; Land, Miriam L; Hauser, Loren J; Jeffries, Cynthia D; Chang, Yun-Juan; Mead, David A

    2015-01-01

    Geobacillus sp. Y412MC52 was isolated from Obsidian Hot Spring, Yellowstone National Park, Montana, USA under permit from the National Park Service. The genome was sequenced, assembled, and annotated by the DOE Joint Genome Institute and deposited at the NCBI in December 2011 (CP002835). Based on 16S rRNA genes and average nucleotide identity, Geobacillus sp. Y412MC52 and the related Geobacillus sp. Y412MC61 appear to be members of a new species of Geobacillus. The genome of Geobacillus sp. Y412MC52 consists of one circular chromosome of 3,628,883 bp, an average G?+?C content of 52 % and one circular plasmid of 45,057 bp and an average G?+?C content of 45 %. Y412MC52 possesses arabinan, arabinoglucuronoxylan, and aromatic acid degradation clusters for degradation of hemicellulose from biomass. Transport and utilization clusters are also present for other carbohydrates including starch, cellobiose, and ?- and ?-galactooligosaccharides. PMID:26500717

  19. Repair of hydrolytic DNA deamination damage in thermophilic bacteria: cloning and characterization of a Vsr endonuclease homolog from Bacillus stearothermophilus.

    OpenAIRE

    Laging, Martin; Lindner, Eric; Fritz, Hans-Joachim; Kramer, Wilfried

    2003-01-01

    Hydrolytic deamination of 5-methyl cytosine in double stranded DNA results in formation of a T/G mismatch that—if left unrepaired—leads to a C->T transition mutation in half of the progeny. In addition to several mismatch-specific glycosylases that have been found in both pro- and eukaryotes to channel this lesion into base excision repair by removing the T from the mismatch, Vsr endonuclease from Escherichia coli has been described which initiates repair by an endonucleolytic strand incision...

  20. Thermophilic fermentation of acetoin and 2,3-butanediol by a novel Geobacillus strain

    Directory of Open Access Journals (Sweden)

    Xiao Zijun

    2012-12-01

    Full Text Available Abstract Background Acetoin and 2,3-butanediol are two important biorefinery platform chemicals. They are currently fermented below 40°C using mesophilic strains, but the processes often suffer from bacterial contamination. Results This work reports the isolation and identification of a novel aerobic Geobacillus strain XT15 capable of producing both of these chemicals under elevated temperatures, thus reducing the risk of bacterial contamination. The optimum growth temperature was found to be between 45 and 55°C and the medium initial pH to be 8.0. In addition to glucose, galactose, mannitol, arabionose, and xylose were all acceptable substrates, enabling the potential use of cellulosic biomass as the feedstock. XT15 preferred organic nitrogen sources including corn steep liquor powder, a cheap by-product from corn wet-milling. At 55°C, 7.7?g/L of acetoin and 14.5?g/L of 2,3-butanediol could be obtained using corn steep liquor powder as a nitrogen source. Thirteen volatile products from the cultivation broth of XT15 were identified by gas chromatography–mass spectrometry. Acetoin, 2,3-butanediol, and their derivatives including a novel metabolite 2,3-dihydroxy-3-methylheptan-4-one, accounted for a total of about 96% of all the volatile products. In contrast, organic acids and other products were minor by-products. ?-Acetolactate decarboxylase and acetoin:2,6-dichlorophenolindophenol oxidoreductase in XT15, the two key enzymes in acetoin metabolic pathway, were found to be both moderately thermophilic with the identical optimum temperature of 45°C. Conclusions Geobacillus sp. XT15 is the first naturally occurring thermophile excreting acetoin and/or 2,3-butanediol. This work has demonstrated the attractive prospect of developing it as an industrial strain in the thermophilic fermentation of acetoin and 2,3-butanediol with improved anti-contamination performance. The novel metabolites and enzymes identified in XT15 also indicated its strong promise as a precious biological resource. Thermophilic fermentation also offers great prospect for improving its yields and efficiencies. This remains a core aim for future work.

  1. A pulse-radiolysis study of the manganese-containing superoxide dismutase from Bacillus stearothermophilus

    International Nuclear Information System (INIS)

    The mechanism of catalysis of the manganese-containing superoxide dismutase from Bacillus stearothermophilus has been shown to involve a 'fast cycle' and a 'slow cycle' (McAdam, M.E., Fox, R.A., Lavelle, F., and Fielden, E.M., Biochem. J.; 165:71 (1977)). Further properties of the enzyme are now considered. Pulse-radiolysis studies, under conditions of low substrate concentration to enzyme concentration (i.e. when the fast cycle predominates), showed that enzyme activity decreases as pH increases (6.5 to 10.2). Activity was unaffected by the addition of H2O2 or NaN3 but slightly decreased by KCN. Both H2O2 and the reducing radical anion CO2sup(-.) caused a decrease in A480 of the native enzyme. The rate of the fast catalytic cycle was independent of temperature (5 to 550C), and as temperature increased the slow catalytic cycle became relatively more important. Arrhenius parameters of the rate constants were estimated. The possible identity of the various forms of the enzyme is considered. (author)

  2. A pulse-radiolysis study of the manganese-containing superoxide dismutase from Bacillus stearothermophilus

    International Nuclear Information System (INIS)

    The enzymic reaction mechanism of a manganese-containing superoxide dismutase from Bacillus stearothermophilus was studied by using pulse radiolysis. During catalysis (pH 8.9; 250C), changes occurring in the kinetics of substrate disappearance and in the visible absorption of the enzyme at 480 nm established that the simple two-step mechanism found for copper- and iron-containing superoxide dismutases was not involved. At a low ratio (2sup(-.) was close to exponential, whereas at much higher ratios (> 100) the observed decay was predominantly zero-order. The simplest interpretation of the results invokes a rapid one-electron oxidation-reduction cycle ('the fast cycle') and, concurrently, a slower reaction giving a form of the enzyme that is essentially unreactive towards O2sup(-.) but which undergoes a first-order decay to yield fully active native enzyme ('the slow cycle'). The fast cycle involved the native enzyme Esub(A) and a form of the enzyme Esub(B) which could be obtained also be treating the form Esub(A) with H2O2. Computer calculations made with such a simple model predicted behaviour in excellent agreement with the observed results. (author)

  3. Enhanced maltose production through mutagenesis of acceptor binding subsite +2 in Bacillus stearothermophilus maltogenic amylase.

    Science.gov (United States)

    Sun, Yecheng; Duan, Xuguo; Wang, Lei; Wu, Jing

    2016-01-10

    Maltogenic amylases are used to decrease the maltotriose content of high maltose syrups. However, due to the interplay between the hydrolysis and transglycosylation activities of maltogenic amylases, the maltotriose contents of these syrups are still greater than that necessary for pure maltose preparation. In this study, the maltogenic amylase from Bacillus stearothermophilus was engineered to decrease its transglycosylation activity with the expectation that this would enhance maltose production. Site-directed mutagenesis was used to generate Trp 177 variants W177F, W177Y, W177L, W177N, and W177S. The transglycosylation activities of the mutant enzymes decreased as the hydrophilicity of the residue at position 177 increased. The mutant enzymes exhibited notable enhancements in maltose production, with a minimum of maltotriose contents of 0.2%, compared with 3.2% for the wild-type enzyme. Detailed characterization of the mutant enzymes suggests that the best of them, W177S, will deliver performance superior to that of the wild-type under industrial conditions. PMID:26597712

  4. Racemization of alanine by the alanine racemases from Salmonella typhimurium and Bacillus stearothermophilus: energetic reaction profiles

    International Nuclear Information System (INIS)

    Alanine racemases are bacterial pyridoxal 5'-phosphate (PLP) dependent enzymes providing D-alanine as an essential building block for biosynthesis of the peptidoglycan layer of the cell wall. Two isozymic alanine racemases, encoded by the dadB gene and the alr gene, from the Gram-negative mesophilic Salmonella typhimurium and one from the Gram-positive thermophilic Bacillus stearothermophilus have been examined for the racemization mechanism. Substrate deuterium isotope effects and solvent deuterium isotope effects have been measured in both L ? D and D? L directions for all three enzymes to assess the degree to which abstraction of the ?-proton or protonation of substrate PLP carbanion is limiting in catalysis. Additionally, experiments measuring internal return of ?-3H from substrate to product and solvent exchange/substrate conversion experiments in 3H2O have been used with each enzyme to examine the partitioning of substrate PLP carbanion intermediates and to obtain the relative heights of kinetically significant energy barriers in alanine racemase catalysis

  5. Characteristics of thermostable amylopullulanase of Geobacillus thermoleovorans and its truncated variants.

    Science.gov (United States)

    Nisha, M; Satyanarayana, T

    2015-05-01

    The far-UV CD spectroscopic analysis of the secondary structure in the temperature range between 30 and 90°C revealed a compact and thermally stable structure of C-terminal truncated amylopullulanase of Geobacillus thermoleovorans NP33 (gt-apu?C) with a higher melting temperature [58°C] than G. thermoleovorans NP33 amylopullulanase (gt-apu) [50°C] and the N-terminal truncated amylopullulanase from G. thermoleovorans NP33 (gt-apu?N) [55°C]. A significant decline in random coils in gt-apu?C and gt-apu?N suggested an improvement in conformational stability, and thus, an enhancement in their thermal stability. The improvement in the thermostability of gt-apu?C was corroborated by the thermodynamic parameters for enzyme inactivation. The Trp fluorescence emission (335 nm) and the acrylamide quenching constant (22.69 M(-1)) of gt-apu?C indicated that the C-terminal truncation increases the conformational stability of the protein with the deeply buried tryptophan residues. The 8-Anilino Naphthalene Sulfonic acid (ANS) fluorescence experiments indicated the unfolding of gt-apu to expose its hydrophobic surface to a greater extent than the gt-apu?C and gt-apu?N. PMID:25748845

  6. Substrate preference of a Geobacillus maltogenic amylase: a kinetic and thermodynamic analysis.

    Science.gov (United States)

    Nasrollahi, Samira; Golalizadeh, Leila; Sajedi, Reza H; Taghdir, Majid; Asghari, S Mohsen; Rassa, Mehdi

    2013-09-01

    The gene encoding a maltogenic amylase (MAase) from a newly isolated strain of thermophilic Geobacillus has been isolated, cloned and expressed. Following purification, biochemical and structural characterization have been performed. The enzyme exhibited maximal activity at a broad temperature range between 55 and 65 °C, clearly higher than that of other dimeric MAses. The optimum pH was 6.0 and catalytic activity increased by of Li(+) and K(+). A noticeable preference was demonstrated for ?-, ?- and ?-cyclodextrin (CD) compared to polymeric substrates (amylose, amylopectin, glycogen and starch) possibly due to steric interference. The affinity for CD substrates increased in the order of ?-CD>?-CD>?-CD, but k(cat)/K(m) increased as ?-CD>?-CD>?-CD, implying that increased substrate specificities are mainly attribute to kcat. Thermodynamic analysis of the activation process showed that improved activity (decrease in ?G(#)) is accompanied by increases in activation entropy (?S(#)) for aforementioned substrates. Molecular docking on the binding interactions between substrates and active site residues revealed a considerably higher accessible surface area for the active site residues in the presence of ?-CD than ?-CD, indicating that interactions in the transition state are stronger in the presence of ?-CD. This result explains the increased ?H(#) of the activation process and increased K(m) of the enzyme in the presence of ?-CD, compared to that of ?-CD. This study, which presents the first detailed comparative analysis on the substrate preference of dimeric MAases for different substrates, may shed some lights into the molecular mechanism of these enzymes. PMID:23639697

  7. Taguchi's experimental design for optimizing the production of novel thermostable polypeptide antibiotic from Geobacillus pallidus SAT4.

    Science.gov (United States)

    Muhammad, Syed Aun; Ahmed, Safia; Ismail, Tariq; Hameed, Abdul

    2014-01-01

    Polypeptide antimicrobials used against topical infections are reported to obtain from mesophilic bacterial species. A thermophilic Geobacillus pallidus SAT4 was isolated from hot climate of Sindh Dessert, Pakistan and found it active against Micrococcus luteus ATCC 10240, Staphylococcus aureus ATCC 6538, Bacillus subtilis NCTC 10400 and Pseudomonas aeruginosa ATCC 49189. The current experiment was designed to optimize the production of novel thermostable polypeptide by applying the Taguchi statistical approach at various conditions including the time of incubation, temperature, pH, aeration rate, nitrogen, and carbon concentrations. There were two most important factors that affect the production of antibiotic including time of incubation and nitrogen concentration and two interactions including the time of incubation/pH and time of incubation/nitrogen concentration. Activity was evaluated by well diffusion assay. The antimicrobial produced was stable and active even at 55°C. Ammonium sulphate (AS) was used for antibiotic recovery and it was desalted by dialysis techniques. The resulted protein was evaluated through SDS-PAGE. It was concluded that novel thermostable protein produced by Geobacillus pallidus SAT4 is stable at higher temperature and its production level can be improved statistically at optimum values of pH, time of incubation and nitrogen concentration the most important factors for antibiotic production. PMID:24374431

  8. Big bacteria

    DEFF Research Database (Denmark)

    Schulz, HN; Jørgensen, BB

    2001-01-01

    A small number of prokaryotic species have a unique physiology or ecology related to their development of unusually large size. The biomass of bacteria varies over more than 10 orders of magnitude, from the 0.2 mum wide nanobacteria to the largest cells of the colorless sulfur bacteria, Thiomargarita namibiensis, with a diameter of 750 mum. All bacteria, including those that swim around in the environment, obtain their food molecules by molecular diffusion. Only the fastest and largest swimmers ...

  9. Methanotrophic bacteria.

    OpenAIRE

    Hanson, R. S.; Hanson, T E

    1996-01-01

    Methane-utilizing bacteria (methanotrophs) are a diverse group of gram-negative bacteria that are related to other members of the Proteobacteria. These bacteria are classified into three groups based on the pathways used for assimilation of formaldehyde, the major source of cell carbon, and other physiological and morphological features. The type I and type X methanotrophs are found within the gamma subdivision of the Proteobacteria and employ the ribulose monophosphate pathway for formaldehy...

  10. Geobacillus thermodenitrificans YjbH recognizes the C-terminal end of Bacillus subtilis Spx to accelerate Spx proteolysis by ClpXP

    Science.gov (United States)

    Chan, Chio Mui; Garg, Saurabh; Lin, Ann A.

    2012-01-01

    Proteolytic control can govern the levels of specific regulatory factors, such as Spx, a transcriptional regulator of the oxidative stress response in Gram-positive bacteria. Under oxidative stress, Spx concentration is elevated and upregulates transcription of genes that function in the stress response. When stress is alleviated, proteolysis of Spx catalysed by ClpXP reduces Spx concentration. Proteolysis is enhanced by the substrate recognition factor YjbH, which possesses a His–Cys-rich region at its N terminus. However, mutations that generate H12A, C13A, H14A, H16A and C31/34A residue substitutions in the N terminus of Bacillus subtilis YjbH (BsYjbH) do not affect functionality in Spx proteolytic control in vivo and in vitro. Because of difficulties in obtaining soluble BsYjbH, the Geobacillus thermodenitrificans yjbH gene was cloned, which yielded soluble GtYjbH protein. Despite its lack of a His–Cys-rich region, GtYjbH complements a B. subtilis yjbH null mutant, and shows high activity in vitro when combined with ClpXP and Spx in an approximately 30?:?1 (ClpXP/Spx?:?GtYjbH) molar ratio. In vitro interaction experiments showed that Spx and the protease-resistant SpxDD (in which the last two residues of Spx are replaced with two Asp residues) bind to GtYjbH, but deletion of 12 residues from the Spx C terminus (Spx?C) significantly diminished interaction and proteolytic degradation, indicating that the C terminus of Spx is important for YjbH recognition. These experiments also showed that Spx, but not GtYjbH, interacts with ClpX. Kinetic measurements for Spx proteolysis by ClpXP in the presence and absence of GtYjbH suggest that YjbH overcomes non-productive Spx–ClpX interaction, resulting in rapid degradation. PMID:22343351

  11. Characterization of a Novel Thermostable Oligopeptidase from Geobacillus thermoleovorans DSM 15325.

    Science.gov (United States)

    Jasilionis, Andrius; Kuisiene, Nomeda

    2015-07-01

    A gene (GT-SM3B) encoding a thermostable secreted oligoendopeptidase (GT-SM3B) was cloned from the thermophile Geobacillus thermoleovorans DSM 15325. GT-SM3B is 1,857 bp in length and encodes a single-domain protein of 618 amino acids with a 23-residue signal peptide having a calculated mass of 67.7 kDa after signal cleavage. The deduced amino acid sequence of GT-SM3B contains a conservative zinc metallopeptidase motif (His(400)-Glu(401)-X-XHis (404)). The described oligopeptidase belongs to the M3B subfamily of metallopeptidases and displays the highest amino acid sequence identity (40.3%) to the oligopeptidase PepFBa from mesophilic Bacillus amyloliquefaciens 23-7A among the characterized oligopeptidases. Secretory production of GT-SM3B was used, exploiting successful oligopeptidase signal peptide recognition by Escherichia coli BL21 (DE3). The recombinant enzyme was purified from the culture fluid. Homodimerization of GT-SM3B was determined by SDS-PAGE. Both the homodimer and monomer were catalytically active within a pH range of 5.0-8.0, at pH 7.3 and 40°C, showing the Km, Vmax, and kcat values for carbobenzoxy-Gly-Pro-Gly-Gly-Pro-Ala-OH peptidolysis to be 2.17 ± 0.04 × 10(-6) M, 2.65 ± 0.03 × 10(-3) micrometer/min, and 5.99 ± 0.07 s(-1), respectively. Peptidase remained stable at a broad pH range of 5.0-8.0. GT-SM3B was thermoactive, demonstrating 84% and 64% of maximum activity at 50°C and 60°C, respectively. The recombinant oligopeptidase is one of the most thermostable M3B peptidase, retaining 71% residual activity after incubation at 60°C for 1 h. GT-SM3B was shown to hydrolyze a collagenous peptide mixture derived from various types of collagen, but less preferentially than synthetic hexapeptide. This study is the first report on an extracellular thermostable metallo-oligopeptidase. PMID:25791847

  12. Stereochemistry of family 52 glycosyl hydrolases: a beta-xylosidase from Bacillus stearothermophilus T-6 is a retaining enzyme.

    Science.gov (United States)

    Bravman, T; Zolotnitsky, G; Shulami, S; Belakhov, V; Solomon, D; Baasov, T; Shoham, G; Shoham, Y

    2001-04-20

    A beta-xylosidase from Bacillus stearothermophilus T-6 assigned to the uncharacterized glycosyl hydrolase family 52 was cloned, overexpressed in Escherichia coli and purified. The enzyme showed maximum activity at 65 degrees C and pH 5.6-6.3. The stereochemistry of the hydrolysis of p-nitrophenyl beta-D-xylopyranoside was followed by 1H-nuclear magnetic resonance. Time dependent spectrum analysis showed that the configuration of the anomeric carbon was retained, indicating that a retaining mechanism prevails in family 52 glycosyl hydrolases. Sequence alignment and site-directed mutagenesis enabled the identification of functionally important amino acid residues of which Glu337 and Glu413 are likely to be the two key catalytic residues involved in enzyme catalysis. PMID:11322943

  13. Big bacteria

    DEFF Research Database (Denmark)

    Schulz, HN; JØrgensen, BB

    2001-01-01

    A small number of prokaryotic species have a unique physiology or ecology related to their development of unusually large size. The biomass of bacteria varies over more than 10 orders of magnitude, from the 0.2 mum wide nanobacteria to the largest cells of the colorless sulfur bacteria, Thiomargarita namibiensis, with a diameter of 750 mum. All bacteria, including those that swim around in the environment, obtain their food molecules by molecular diffusion. Only the fastest and largest swimmers known, Thiovulum majus, are able to significantly increase their food supply by motility and by actively creating an advective flow through the entire population. Diffusion limitation generally restricts the maximal size of prokaryotic cells and provides a selective advantage for mum-sized cells at the normally low substrate concentrations in the environment. The largest heterotrophic bacteria, the 80 x 600 mum large Epulopiscium sp. from the gut of tropical fish, are presumably living in a very nutrient-rich medium. Many large bacteria contain numerous inclusions in the cells that reduce the volume of active cytoplasm. The most striking examples of competitive advantage from large cell size are found among the colorless sulfur bacteria that oxidize hydrogen sulfide to sulfate with oxygen or nitrate. The several-cm-long filamentous species can penetrate up through the ca 500-mum-thick diffusive boundary layer and may thereby reach into water containing their electron acceptor, oxygen or nitrate. By their ability to store vast quantities of both nitrate and elemental sulfur in the cells, these bacteria have become independent of the coexistence of their substrates. In fact, a close relative, T. namibiensis, can probably respire in the sulfidic mud for several months before again filling up their large vacuoles with nitrate.

  14. An emission pattern of a thermophilic bacteria attached to or imbedded in porous supports.

    Science.gov (United States)

    Yoo, Jin-Ah; Chen, Xiao Dong

    2002-02-25

    There are many problems with thermophilic bacteria contamination of milk in the dairy industry. This is, in part, a result of fouling by milk components on stainless steel surfaces, which provide good harboring facilities for these bacteria to attach, imbed and grow. The interactions between milk fouling and bacteria deposited in or on the fouling deposit therefore become important issues. There have been a number of previous studies on the biofilm development in dairy processing plants. Here, a different approach to investigate the bacteria emission from a porous layer has been taken. In this approach, various process fluids were flushed over the top of a model milk foulant layer that contains high percentages of milk proteins, fat and some bacteria cells, in order to investigate the behavior of the 'resident' microorganisms and how they are 'released' into the flushing liquids. Definitive results were obtained, which have created sufficient interest for a different approach taken later, where fabric layers were used as the support for the bacteria cells to explore the 'generic' behavior of the porous layer-bacteria system. This study has shown that Bacillus stearothermophilus could multiply on or within a porous layer and 'migrate' from the layer into the fluid during processing. This "migration" is somewhat peculiar in terms of its time-responses but these are reproducible in all the tests performed. The phenomena observed may have an impact on future microbial safety practice in food factories. PMID:11883671

  15. Isolation and Characterization of Thermophilic Cellulase-Producing Bacteria from Empty Fruit Bunches-Palm Oil Mill Effluent Compost

    Directory of Open Access Journals (Sweden)

    Azhari S. Baharuddin

    2010-01-01

    Full Text Available Problems statement: Lack of information on locally isolated cellulase-producing bacterium in thermophilic compost using a mixture of Empty Fruit Bunch (EFB and Palm Oil Mill Effluent (POME as composting materials. Approach: The isolation of microbes from compost heap was conducted at day 7 of composting process where the mixture of composting materials consisted of 45.8% cellulose, 17.1% hemicellulose and 28.3% lignin content. The temperature, pH and moisture content of the composting pile at day 7 treatment were 58.3, 8.1 and 65.5°C, respectively. The morphological analysis of the isolated microbes was conducted using Scanning Electron Microscope (SEM and Gram stain method. The congo red test was conducted in order to detect 1% CMC agar degradation activities. Total genomic DNAs were extracted from approximately 1.0 g of mixed compost and amplified by using PCR primers. The PCR product was sequent to identify the nearest relatives of 16S rRNA genes. The localization of bacteria chromosomes was determined by Fluorescence In Situ Hybridization (FISH analysis. Results: Single isolated bacteria species was successfully isolated from Empty Fruit Bunch (EFB-Palm Oil Mill Effluent (POME compost at thermophilic stage. Restriction fragment length polymorphism profiles of the DNAs coding for the 16S rRNAs with the phylogenetic analysis showed that the isolated bacteria from EFB-POME thermophilic compost gave the highest homology (99% with similarity to Geobacillus pallidus. The strain was spore forming bacteria and able to grow at 60°C with pH 7. Conclusion: Thermophilic bacteria strain, Geobacillus pallidus was successfully isolated from Empty Fruit Bunch (EFB and Palm Oil Mil Effluent (POME compost and characterized.

  16. Analysis of r-protein and RNA conformation of 30S subunit intermediates in bacteria.

    Science.gov (United States)

    Napper, Nathan; Culver, Gloria M

    2015-07-01

    The ribosome is a large macromolecular complex that must be assembled efficiently and accurately for the viability of all organisms. In bacteria, this process must be robust and tunable to support life in diverse conditions from the ice of arctic glaciers to thermal hot springs. Assembly of the Small ribosomal SUbunit (SSU) of Escherichia coli has been extensively studied and is highly temperature-dependent. However, a lack of data on SSU assembly for other bacteria is problematic given the importance of the ribosome in bacterial physiology. To broaden the understanding of how optimal growth temperature may affect SSU assembly, in vitro SSU assembly of two thermophilic bacteria, Geobacillus kaustophilus and Thermus thermophilus, was compared with that of E. coli. Using these phylogenetically, morphologically, and environmentally diverse bacteria, we show that SSU assembly is highly temperature-dependent and efficient SSU assembly occurs at different temperatures for each organism. Surprisingly, the assembly landscape is characterized by at least two distinct intermediate populations in the organisms tested. This novel, second intermediate, is formed in the presence of the full complement of r-proteins, unlike the previously observed RI* particle formed in the absence of late-binding r-proteins in E. coli. This work reveals multiple distinct intermediate populations are present during SSU assembly in vitro for several bacteria, yielding insights into RNP formation and possible antimicrobial development toward this common SSU target. PMID:25999315

  17. [The suitability of commercial bioindicators with spores of B. stearothermophilus for the testing of formaldehyde gas sterilizers].

    Science.gov (United States)

    Mecke, P; Christiansen, B; Pirk, A

    1991-09-01

    Commercially available biological indicators with spores of B. stearothermophilus were investigated by the Hygiene-Institutes of Kiel and Lubeck. The objective was to find out if those indicators to which sheep blood was added subsequently correspond to the formaldehyde resistance required by. DIN 58948, part 14 (DIN 58948, part 13). Both working groups determined unanimously that the indicators of one producer showed a resistance too low compared to the remaining biological indicators showing a much higher resistance than required. Even biological indicators manufactured strictly in accordance to the testing standard were more resistant than demanded. This also corresponded to the commercially available untreated spores. On the other hand, practice showed that the biological indicators investigated within this study can be easily killed by formaldehyde sterilizers if they respond to the technical standard. In order to realize the testing of these sterilizers with indicators of a generally accepted resistance we propose either to demand for an equivalently higher formaldehyde resistance or to set up a killing period for the spore resistance from 150 to 240 min until experimentally important data are available. Concerning the blood containing indicators the results of both working groups differed considerably within the limits of formaldehyde efficiency whereas this was not the case with untested commercially available spores. As the addition of thinned blood did not cause an increase in resistance we recommend, in the interest of standardized investigative conditions, not to use it. PMID:1953931

  18. Rumen bacteria

    International Nuclear Information System (INIS)

    The rumen is the most extensively studied gut community and is characterized by its high population density, wide diversity and complexity of interactions. This complex, mixed microbial culture is comprised of prokaryote organisms including methane-producing archaebacteria, eukaryote organisms, such as ciliate and flagellate protozoa, anaerobic phycomycete fungi and bacteriophage. Bacteria are predominant (up to 1011 viable cells per g comprising 200 species) but a variety of ciliate protozoa occur widely (104-106/g distributed over 25 genera). The anaerobic fungi are also widely distributed (zoospore population densities of 102-104/g distributed over 5 genera). The occurrence of bacteriophage is well documented (107-109 particles/g). This section focuses primarily on the widely used methods for the cultivation and the enumeration of rumen microbes, especially bacteria, which grow under anaerobic conditions. Methods that can be used to measure hydrolytic enzymes (cellulases, xylanases, amylases and proteinases) are also described, along with cell harvesting and fractionation procedures. Brief reference is also made to fungi and protozoa, but detailed explanations for culturing and enumerating these microbes is presented in Chapters 2.4 and 2.5

  19. The S-Layer Proteins of Two Bacillus stearothermophilus Wild-Type Strains Are Bound via Their N-Terminal Region to a Secondary Cell Wall Polymer of Identical Chemical Composition

    Science.gov (United States)

    Egelseer, Eva Maria; Leitner, Karl; Jarosch, Marina; Hotzy, Christoph; Zayni, Sonja; Sleytr, Uwe B.; Sára, Margit

    1998-01-01

    Two Bacillus stearothermophilus wild-type strains were investigated regarding a common recognition and binding mechanism between the S-layer protein and the underlying cell envelope layer. The S-layer protein from B. stearothermophilus PV72/p6 has a molecular weight of 130,000 and assembles into a hexagonally ordered lattice. The S-layer from B. stearothermophilus ATCC 12980 shows oblique lattice symmetry and is composed of subunits with a molecular weight of 122,000. Immunoblotting, peptide mapping, N-terminal sequencing of the whole S-layer protein from B. stearothermophilus ATCC 12980 and of proteolytic cleavage fragments, and comparison with the S-layer protein from B. stearothermophilus PV72/p6 revealed that the two S-layer proteins have identical N-terminal regions but no other extended structurally homologous domains. In contrast to the heterogeneity observed for the S-layer proteins, the secondary cell wall polymer isolated from peptidoglycan-containing sacculi of the different strains showed identical chemical compositions and comparable molecular weights. The S-layer proteins could bind and recrystallize into the appropriate lattice type on native peptidoglycan-containing sacculi from both organisms but not on those extracted with hydrofluoric acid, leading to peptidoglycan of the A1? chemotype. Affinity studies showed that only proteolytic cleavage fragments possessing the complete N terminus of the mature S-layer proteins recognized native peptidoglycan-containing sacculi as binding sites or could associate with the isolated secondary cell wall polymer, while proteolytic cleavage fragments missing the N-terminal region remained unbound. From the results obtained in this study, it can be concluded that S-layer proteins from B. stearothermophilus wild-type strains possess an identical N-terminal region which is responsible for anchoring the S-layer subunits to a secondary cell wall polymer of identical chemical composition. PMID:9515918

  20. Higher-order structure in the 3'-terminal domain VI of the 23 S ribosomal RNAs from Escherichia coli and Bacillus stearothermophilus

    DEFF Research Database (Denmark)

    Garrett, R A; Christensen, A; Douthwaite, S

    1984-01-01

    An experimental approach was used to determine, and compare, the higher-order structure within domain VI of the 23 S ribosomal RNAs from Escherichia coli and Bacillus stearothermophilus. This domain, which encompasses approximately 300 nucleotides at the 3' end of the RNAs, consists of two large subdomains. The 5' subdomain has been conserved during evolution and appears to be functionally important for the binding of the EF-1 X GTP X aminoacyl-tRNA complex in eukaryotes. The 3' subdomain has di...

  1. Cloning and sequencing of the gene coding for alcohol dehydrogenase of Bacillus stearothermophilus and rational shift of the optimum pH.

    OpenAIRE

    Sakoda, H; Imanaka, T.

    1992-01-01

    Using Bacillus subtilis as a host and pTB524 as a vector plasmid, we cloned the thermostable alcohol dehydrogenase (ADH-T) gene (adhT) from Bacillus stearothermophilus NCA1503 and determined its nucleotide sequence. The deduced amino acid sequence (337 amino acids) was compared with the sequences of ADHs from four different origins. The amino acid residues responsible for the catalytic activity of horse liver ADH had been clarified on the basis of three-dimensional structure. Since those cata...

  2. Glutamic acid 160 is the acid-base catalyst of beta-xylosidase from Bacillus stearothermophilus T-6: a family 39 glycoside hydrolase.

    Science.gov (United States)

    Bravman, T; Mechaly, A; Shulami, S; Belakhov, V; Baasov, T; Shoham, G; Shoham, Y

    2001-04-20

    A beta-xylosidase from Bacillus stearothermophilus T-6 was cloned, overexpressed in Escherichia coli and purified to homogeneity. Based on sequence alignment, the enzyme belongs to family 39 glycoside hydrolases, which itself forms part of the wider GH-A clan. The conserved Glu160 was proposed as the acid-base catalyst. An E160A mutant was constructed and subjected to steady state and pre-steady state kinetic analysis together with azide rescue and pH activity profiles. The observed results support the assignment of Glu160 as the acid-base catalytic residue. PMID:11322958

  3. Analysis of Metabolic Pathways and Fluxes in a Newly Discovered Thermophilic and Ethanol-Tolerant Geobacillus Strain

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yinjie J.; Sapra, Rajat; Joyner, Dominique; Hazen, Terry C.; Myers, Samuel; Reichmuth, David; Blanch, Harvey; Keasling, Jay D.

    2009-01-20

    A recently discovered thermophilic bacterium, Geobacillus thermoglucosidasius M10EXG, ferments a range of C5 (e.g., xylose) and C6 sugars (e.g., glucose) and istolerant to high ethanol concentrations (10percent, v/v). We have investigated the central metabolism of this bacterium using both in vitro enzyme assays and 13C-based flux analysis to provide insights into the physiological properties of this extremophile and explore its metabolism for bio-ethanol or other bioprocess applications. Our findings show that glucose metabolism in G. thermoglucosidasius M10EXG proceeds via glycolysis, the pentose phosphate pathway, and the TCA cycle; the Entner?Doudoroff pathway and transhydrogenase activity were not detected. Anaplerotic reactions (including the glyoxylate shunt, pyruvate carboxylase, and phosphoenolpyruvate carboxykinase) were active, but fluxes through those pathways could not be accuratelydetermined using amino acid labeling. When growth conditions were switched from aerobic to micro-aerobic conditions, fluxes (based on a normalized glucose uptake rate of 100 units (g DCW)-1 h-1) through the TCA cycle and oxidative pentose phosphate pathway were reduced from 64+-3 to 25+-2 and from 30+-2 to 19+-2, respectively. The carbon flux under micro-aerobic growth was directed formate. Under fully anerobic conditions, G. thermoglucosidasius M10EXG used a mixed acid fermentation process and exhibited a maximum ethanol yield of 0.38+-0.07 mol mol-1 glucose. In silico flux balance modeling demonstrates that lactate and acetate production from G. thermoglucosidasius M10EXG reduces the maximum ethanol yieldby approximately threefold, thus indicating that both pathways should be modified to maximize ethanol production.

  4. Properties of an alkali-thermo stable xylanase from Geobacillus thermodenitrificans A333 and applicability in xylooligosaccharides generation.

    Science.gov (United States)

    Marcolongo, Loredana; La Cara, Francesco; Morana, Alessandra; Di Salle, Anna; Del Monaco, Giovanni; Paixão, Susana M; Alves, Luis; Ionata, Elena

    2015-04-01

    An extracellular thermo-alkali-stable and cellulase-free xylanase from Geobacillus thermodenitrificans A333 was purified to homogeneity by ion exchange and size exclusion chromatography. Its molecular mass was 44 kDa as estimated in native and denaturing conditions by gel filtration and SDS-PAGE analysis, respectively. The xylanase (GtXyn) exhibited maximum activity at 70 °C and pH 7.5. It was stable over broad ranges of temperature and pH retaining 88 % of activity at 60 °C and up to 97 % in the pH range 7.5-10.0 after 24 h. Moreover, the enzyme was active up to 3.0 M sodium chloride concentration, exhibiting at that value 70 % residual activity after 1 h. The presence of other metal ions did not affect the activity with the sole exceptions of K(+) that showed a stimulating effect, and Fe(2+), Co(2+) and Hg(2+), which inhibited the enzyme. The xylanase was activated by non-ionic surfactants and was stable in organic solvents remaining fully active over 24 h of incubation in 40 % ethanol at 25 °C. Furthermore, the enzyme was resistant to most of the neutral and alkaline proteases tested. The enzyme was active only on xylan, showing no marked preference towards xylans from different origins. The hydrolysis of beechwood xylan and agriculture-based biomass materials yielded xylooligosaccharides with a polymerization degree ranging from 2 to 6 units and xylobiose and xylotriose as main products. These properties indicate G. thermodenitrificans A333 xylanase as a promising candidate for several biotechnological applications, such as xylooligosaccharides preparation. PMID:25687227

  5. Biological indicators for low temperature steam and formaldehyde sterilization: the effect of defined media on sporulation, growth index and formaldehyde resistance of spores of Bacillus stearothermophilus strains.

    Science.gov (United States)

    Wright, A M; Hoxey, E V; Soper, C J; Davies, D J

    1995-10-01

    Preliminary screening was carried out on spores of 29 strains of Bacillus stearothermophilus to determine their potential as biological indicator organisms for low temperature steam and formaldehyde sterilization. Each strain was sporulated on four chemically defined media. Fourteen strains produced satisfactory sporulation on one or more of the media but there was considerable variation in the extent of sporulation. The growth index of the spores, which was dependent on both the strain of organism and the sporulation medium, ranged from 1% to 90%. The spores were appraised on the basis of their resistance to inactivation by 0.5% w/v formaldehyde in aqueous solution at 70 degrees C. The survivor curves obtained could be characterized into five types on the basis of the shape of the curve. Only five strains of Bacillus stearothermophilus produced spores with the characteristics of high resistance, linear semi-logarithmic survivor curve and high growth index that would be required of a potential biological indicator organism. PMID:7592136

  6. Use of extremophilic bacteria for second generation bioethanol production

    DEFF Research Database (Denmark)

    Tomás, Ana Faria; Karakashev, Dimitar Borisov

    The pursuit of ways to obtain viable alternatives to fossil fuels has been one of the main subjects in microbial biotechnology research in the last decade. Of all the possible fuel candidates, bioethanol is one of the most relevant, especially when considered for the transport sector. Its production from food crops, such as corn (starch) or sugar cane (sucrose) is already an established process, with the USA and Brazil supplying 86% of the market. The major challenge remains in the use of different waste sources – agricultural, forestry, animal and household waste - as a feedstock. The recalcitrance of these materials and their diverse sugar composition make the industrial yeast strains currently used unsuitable for a second generation bioethanol production process. One of the alternative strategies is the use of extreme thermophilic microorganisms. Currently, selected members from the genera Clostridium, Thermoanaerobacter, Geobacillus and Thermoanaerobacterium are among the best candidates. A new strain of Thermoanaerobacter, closely related to T. italicus and T. mathranii, has achieved 0.43 gethanol/gxylose, which is 83% of the theoretical yield of ethanol based on xylose and the highest value for a wild type strain reported so far. However, productivity and titer values comparable to a first generation process are yet to be achieved. Metabolic engineering to redirect the metabolism from mixed-product fermentation to ethanol production is one of the solutions proposed to improve the performance of extreme thermophilic bacteria.

  7. BseSI, a restriction endonuclease from Bacillus stearothermophilus Jo 10-553, which recognizes the novel hexanucleotide sequence 5'-G(G/T)GC(A/C)C-3'.

    OpenAIRE

    Steponaviciene, D; Maneliene, Z; Petrusyte, M; Janulaitis, A.

    1999-01-01

    A new restriction endonuclease Bse SI has been isolated from Bacillus stearothermophilus Jo10-553. Bse SI recognizes a degenerate hexanucleotide sequence 5'-G(G/T)GC(A/C)C-3' and cleaves DNA to produce 3[prime]-protruding tetranucleotide ends.

  8. A mixed-species microarray for identification of food spoilage bacilli

    OpenAIRE

    Caspers, M.P.M.; Schuren, F.H.J.; Zuijlen, A.C.M., van; Brul, S; Montijn, R.C.; Abee, T.; Kort, R. de

    2011-01-01

    Failure of food preservation is frequently caused by thermostable spores of members of the Bacillaceae family, which show a wide spectrum of resistance to cleaning and preservation treatments. We constructed and validated a mixed-species genotyping array for 6 Bacillus species, including Bacillus subtilis, Bacillus licheniformis, Bacillus pumilus, Bacillus sporothermodurans, Bacillus cereus and Bacillus coagulans, and 4 Geobacillus species, including Geobacillus stearothermophilus, Geobacillu...

  9. Biological indicators for low temperature steam and formaldehyde sterilization: investigation of the effect of change in temperature and formaldehyde concentration on spores of Bacillus stearothermophilus NCIMB 8224.

    Science.gov (United States)

    Wright, A M; Hoxey, E V; Soper, C J; Davies, D J

    1996-03-01

    Five strains of Bacillus stearothermophilus have been studied to identify a spore strain to be used as a biological indicator organism for low temperature steam and formaldehyde sterilization. Three strains gave poor reproducibility of batch size and growth index and were discarded. The other two strains gave good reproducibility with a high growth index and gave rise to linear survivor curves when exposed to 5% aqueous formaldehyde. However, only NCIMB 8224 sporulates on a simpler medium and as it was the most resistant to formaldehyde, it was further studied. Tests were carried out in a modified miniclave and factors studied included temperature of the steam and formaldehyde concentration. All studies confirmed the suitability of this strain as a biological indicator organism. PMID:8852673

  10. Cellular viability of Saccharomyces cerevisiae cultivated in association with contaminates bacteria of alcoholic fermentation

    International Nuclear Information System (INIS)

    The aim of this work was to study the influence of the bacteria Bacillus and Lactobacillus, as well as their metabolic products, in reduction of cellular viability of Saccharomyces cerevisiae, when in mixed culture of yeast and active and treated bacteria. Also was to evaluated an alternative medium (MCC) for the cultivation of bacteria and yeast, constituted of sugarcane juice diluted to 5 deg Brix and supplemented with yeast extract and peptone. The bacteria Bacillus subtilis, Bacillus coagulans, Bacillus stearothermophilus, Lactobacillus fermentum and Lactobacillus plantarum were cultivated in association with yeast Saccharomyces cerevisiae (strain Y-904) for 72 h on 32 deg C, under agitation. The cellular viability, budding rate and population of S. cerevisiae, the total acidity, volatile acidity and pH of culture were determined from 0, 24, 48 e 72 h of mixed culture. Also were determined the initial and final of microorganism population across the pour plate method, in traditional culture medium (PCA for Bacillus, MRS-agar for Lactobacillus and YEPD-agar for yeast S. cerevisiae) and in medium constituted of sugarcane juice. The bacteria cultures were treated by heat sterilization (120 deg C for 20 minutes), antibacterial agent (Kamoran HJ in concentration 3,0 ppm) or irradiation (radiation gamma, with doses of 5,0 kGy for Lactobacillus and 15,0 kGy for Bacillus). The results of the present research showed that just the culture mediums more acids (with higher concentrations of total and volatile acidity, and smaller values of pH), contaminated with active bacteria L. fermentum and B. subtilis, caused reduction on yeast cellular viability. Except the bacteria B. subtilis treated with radiation, the others bacteria treated by different procedures (heat, radiation e antibacterial) did not cause reduction on yeast cellular viability and population, indicating that the isolated presence of the cellular metabolic of theses bacteria was not enough to reduce the percentage of the yeast live cells and a density population. For all microorganisms, the counts obtained with the cultivation medium constituted of sugarcane juice were similar obtained in traditional mediums, probably because the alternative medium simulate the composition of sugarcane must, that the bacteria were isolated in industrial process of ethanol yield. However, the culture medium constituted of sugarcane juice could be replacing traditional culture mediums of yeast and bacteria tested in this work. (author)

  11. Evaluation of peracetic acid sanitizers efficiency against spores isolated from spoiled cans in suspension and on stainless steel surfaces.

    Science.gov (United States)

    André, S; Hédin, S; Remize, F; Zuber, F

    2012-02-01

    The aim of this study was to determine the inactivation effect of industrial formulations of peracetic acid biocides on bacterial spores adhering to stainless steel surfaces. A standardized protocol was used to validate biocide activity against spores in suspension. To validate sporicidal activity under practical conditions, we developed an additional protocol to simulate industrial sanitization of stainless steel surfaces with a foam sanitizer. Spores of three spore-forming bacteria, Clostridium sporogenes PA3679, Geobacillus stearothermophilus, and Moorella thermoacetica/thermoautotrophica, were sprayed onto stainless steel as bioaerosols. Sporicidal activity was high against the C. sporogenes spore suspension, with more than 5 log CFU ml(-1) destroyed at all liquid biocide contact times. Sporicidal activity also was high against G. stearothermophilus and M. thermoacetica/thermoautotrophica spores after 30 min of contact, but we found no population reduction at the 5-min contact time for the highest sporicide concentration tested. The foam biocide effectively inactivated C. sporogenes spores adhered to stainless steel but had a reduced decontamination effect on other species. For G. stearothermophilus spores, sanitization with the foam sporicide was more efficient on horizontal steel than on vertical steel, but foam sanitization was ineffective against M. thermoacetica/thermoautotrophica whatever the position. These results highlight that decontamination efficiency may differ depending on whether spores are suspended in an aqueous solution or adhered to a stainless steel surface. Biocide efficiency must be validated using relevant protocols and bacteria representative of the microbiological challenges and issues affecting each food industry. PMID:22289600

  12. Identificación de genes codificantes de enzimas de interés industrial en una cepa de bacteria termofílica aislada de aguas termales de Salta (Argentina)

    Scientific Electronic Library Online (English)

    L.E, Navas; A.F, Amadío; I, Fuxan; R.O, Zandomeni.

    2014-04-01

    Full Text Available Se aislaron dos bacterias termofílicas a partir de aguas termales de la provincia de Salta, Argentina. Estudios filogenéticos permitieron caracterizar los aislamientos como pertenecientes a los géneros Thermus y Geobacillus. Se determinó la secuencia nucleotídica parcial del genoma de Thermus sp. 2. [...] 9 con un equipo de secuenciación masiva de ADN de tecnología Roche 454. Se generaron 215.557 lecturas que proveen una cobertura aproximada de 40 veces el tamaño del genoma. Se realizó un análisis preliminar de las secuencias obtenidas para la identificación de regiones codificantes. Mediante el mismo se identificaron y caracterizaron genes que codifican enzimas utilizadas en procesos de transformación de alimentos y relacionadas con la degradación de polímeros, tales como xilanasas, proteasas, esterasas, lipasas, catalasas y galactosidasas. Este primer paso indica que este microorganismo es un potencial productor de enzimas termofílicas que podrían ser aplicadas en la industria alimentaria. Abstract in english Two thermophilic bacteria were isolated from a hot spring in Salta, northwest Argentina. Phylogenic analysis indicates that the isolates belong to the Thermus and Geobacillus genera. We have undertaken the DNA sequencing of the complete genome from the isolate Thermus sp. 2.9 using Roche 454 technol [...] ogy. Two hundred and fifteen thousand readings were obtained providing approximately 40 fold coverage of the genome. A first round of analysis of the contigs was made to identify proteins coded in the genome. We report the identification and characterization of several genes coding for enzymes related to the degradation of polymers such as xylanases, proteases, esterases, lipases, catalase and galactosidases. These enzymes may be useful in processes to transform commodities from agriculture and valuable tools in the food industry.

  13. Darwin y las bacterias / Darwin and bacteria

    Scientific Electronic Library Online (English)

    Walter, Ledermann D.

    2009-02-01

    Full Text Available Con motivo de cumplirse 200 años del natalicio de Darwin y 150 desde la publicación de El Origen de las Especies, se revisa su obra buscando alguna mención de las bacterias, a las cuales el gran naturalista parece, o bien no haber conocido, algo muy difícil en un momento en que causaban sensación en [...] el mundo científico, o bien haber ignorado deliberadamente, porque no encontraba para ellas lugar en su teoría de la evolución. Las bacterias, por su parte, afectaron malamente su vida familiar, falleciendo uno de sus hijos de escarlatina y su hija favorita, Arme, de una tuberculosis agravada por el mismo mal que mató a su hermano. El propio Darwin, desde el regreso del Beagle afectado por una enfermedad crónica hasta ahora no dilucidada, podría haber sufrido de la enfermedad de Chagas, cuyo agente etiológico, si bien no es una bacteria, tiene un similar nivel en la escala evolutiva. Abstract in english As in 2009 the scientific world celebrates two hundreds years from the birthday of Charles Darwin and one hundred and fifty from the publication of The Origin of Species, an analysis of his complete work is performed, looking for any mention of bacteria. But it seems that the great naturahst never t [...] ook knowledge about its existence, something rather improbable in a time when the discovery of bacteria shook the medical world, or he deliberately ignored them, not finding a place for such microscopic beings into his theory of evolution. But the bacteria badly affected his familiar life, killing scarlet fever one of his children and worsening to death the evolution of tuberculosis of his favourite Annie. Darwin himself could suffer the sickness of Chagas, whose etiological agent has a similar level to bacteria in the scale of evolution.

  14. Darwin y las bacterias Darwin and bacteria

    Directory of Open Access Journals (Sweden)

    Walter Ledermann D

    2009-02-01

    Full Text Available Con motivo de cumplirse 200 años del natalicio de Darwin y 150 desde la publicación de El Origen de las Especies, se revisa su obra buscando alguna mención de las bacterias, a las cuales el gran naturalista parece, o bien no haber conocido, algo muy difícil en un momento en que causaban sensación en el mundo científico, o bien haber ignorado deliberadamente, porque no encontraba para ellas lugar en su teoría de la evolución. Las bacterias, por su parte, afectaron malamente su vida familiar, falleciendo uno de sus hijos de escarlatina y su hija favorita, Arme, de una tuberculosis agravada por el mismo mal que mató a su hermano. El propio Darwin, desde el regreso del Beagle afectado por una enfermedad crónica hasta ahora no dilucidada, podría haber sufrido de la enfermedad de Chagas, cuyo agente etiológico, si bien no es una bacteria, tiene un similar nivel en la escala evolutiva.As in 2009 the scientific world celebrates two hundreds years from the birthday of Charles Darwin and one hundred and fifty from the publication of The Origin of Species, an analysis of his complete work is performed, looking for any mention of bacteria. But it seems that the great naturahst never took knowledge about its existence, something rather improbable in a time when the discovery of bacteria shook the medical world, or he deliberately ignored them, not finding a place for such microscopic beings into his theory of evolution. But the bacteria badly affected his familiar life, killing scarlet fever one of his children and worsening to death the evolution of tuberculosis of his favourite Annie. Darwin himself could suffer the sickness of Chagas, whose etiological agent has a similar level to bacteria in the scale of evolution.

  15. Viabilidade celular de Saccharomyces cerevisiae cultivada em associação com bactérias contaminantes da fermentação alcoólica / Cellular viability of Saccharomyces cerevisiae cultivated in association with contaminant bacteria of alcoholic fermentation

    Scientific Electronic Library Online (English)

    Thais de Paula, Nobre; Jorge, Horii; André Ricardo, Alcarde.

    2007-03-01

    Full Text Available O objetivo deste trabalho foi estudar a influência de bactérias dos gêneros Bacillus e Lactobacillus, bem como de seus produtos metabólicos, na redução da viabilidade celular de leveduras Saccharomyces cerevisiae. As bactérias Bacillus subtilis, Bacillus coagulans, Bacillus stearothermophilus, Lacto [...] bacillus fermentum e Lactobacillus plantarum foram cultivadas em associação com a levedura S. cerevisiae (cepa Y-904) por 72 horas a 32 °C, sob agitação. A viabilidade celular, a taxa de brotamento e a população de células de S. cerevisiae e a acidez total, a acidez volátil e o pH dos meios de cultivos foram determinados às 0, 24, 48 e 72 horas do cultivo misto. As culturas de bactérias foram tratadas através do calor, de agente antimicrobiano e de irradiação. Os resultados mostraram que apenas os meios de cultivo mais acidificados, contaminados com as bactérias ativas L. fermentum e B. subtilis, provocaram redução na viabilidade celular de S. cerevisiae. Excetuando a bactéria B. subtilis tratada com radiação gama, as demais bactérias tratadas pelos diferentes processos (calor, irradiação e antimicrobiano) não causaram diminuição da viabilidade celular e da população de S. cerevisiae, indicando que a presença isolada dos metabólitos celulares dessas bactérias não foi suficiente para reduzir a porcentagem de células vivas de S. cerevisiae. Abstract in english The aim of this project was to study the influence of the bacteria Bacillus and Lactobacillus, as well as their metabolic products to decrease the cellular viability of the yeast Saccharomyces cerevisiae. The bacteria Bacillus subtilis, Bacillus coagulans, Bacillus stearothermophilus, Lactobacillus [...] fermentum and Lactobacillus plantarum were cultivated in association with yeast S. cerevisiae (strain Y-904) for 72 hours at 32 ºC under agitation. The cellular viability, budding rate and population of S. Cerevisiae and the total acidity, volatile acidity and pH of culture medium were determined at 0, 24, 48 and 72 hours of incubation of the mixed culture. The bacteria cultures were treated by heat sterilization, antibacterial agent and irradiation. The results showed that only the more acidified culture medium, contaminated with active bacteria L. fermentum and B. subtilis, caused a reduction in the yeast cellular viability. Except for the bacteria B. subtilis treated for radiation, the other bacteria treated by the different procedures (heat, radiation and antibacterial) did not cause a reduction in the cellular viability of S. cerevisiae, indicating that the isolated presence of the cellular metabolic of these bacteria was not enough to reduce the percentage of the living yeast cells.

  16. Interspecies communication in bacteria

    OpenAIRE

    Federle, Michael J.; Bonnie L Bassler

    2003-01-01

    Until recently, bacteria were considered to live rather asocial, reclusive lives. New research shows that, in fact, bacteria have elaborate chemical signaling systems that enable them to communicate within and between species. One signal, termed AI-2, appears to be universal and facilitates interspecies communication. Many processes, including virulence factor production, biofilm formation, and motility, are controlled by AI-2. Strategies that interfere with communication in bacteria are bein...

  17. Species Numbers in Bacteria

    OpenAIRE

    Dykhuizen, Daniel

    2005-01-01

    A modified biological species definition (BSD), i.e., that bacteria exchange genes within a species, but not usually between species, is shown to apply to bacteria. The formal definition of bacterial species, which is more conservative than the modified BSD, is framed in terms of DNA hybridization. From this I estimate there are a million species of bacteria in 30 grams of rich forest topsoil and propose that there will be at least a billion species worldwide.

  18. 1H, 13C, and 15N backbone and side chain resonance assignments of thermophilic Geobacillus kaustophilus cyclophilin-A

    OpenAIRE

    Holliday, Michael J; Zhang, Fengli; Isern, Nancy G.; Armstrong, Geoffrey S.; Eisenmesser, Elan Z

    2012-01-01

    Cyclophilins catalyze the reversible peptidyl-prolyl isomerization of their substrates and are present across all kingdoms of life from humans to bacteria. Although numerous biological roles have now been discovered for cyclophilins, their function was initially ascribed to their chaperone-like activity in protein folding where they catalyze the often rate-limiting step of proline isomerization. This chaperone-like activity may be especially important under extreme conditions where cyclophili...

  19. Bacteria-Antagonists

    International Science & Technology Center (ISTC)

    Development of Biological Control Agents Through Use of Recombinant Antagonistic Bacteria Possessing Variable Mechanisms of Antagonisms, High Colonizing Capacity and Marker Traits for their Monitoring in Nature

  20. Safety evaluation of 1,4-alpha-glucan branching enzymes from Bacillus stearothermophilus and Aquifex aeolicus expressed in Bacillus subtilis.

    Science.gov (United States)

    Choi, S S H; Danielewska-Nikiel, B; Kojima, I; Takata, H

    2009-08-01

    1,4-alpha-Glucan branching enzyme (BE; EC 2.4.1.18) is a key biocatalyst in the synthesis of polysaccharides, and is therefore useful in the production of food ingredients. The BEs evaluated in this study (BE-01 and BE-02) are obtained by fermentation of Bacillus subtilis expressing the BE gene from either Bacillus stearothermophilus strain TRBE14 or Aquifex aeolicus strain VF5. The safety of BE-01 and BE-02 have not been previously evaluated, and therefore, both were subjected to standard toxicological testing. In a battery of standard Salmonella typhimurium strains (TA98, TA100, TA1535, and TA1537) and in Escherichia coli WP2uvrA, both with and without metabolic activation, neither BE-01 nor BE-02 exhibited mutagenic activity. Similarly, neither was associated with clastogenic properties in Chinese hamster ovary cells in an in vitro chromosomal aberration assay. In rats, oral administration of BE-01 or BE-02 at doses of up to 15 mL/kg body weight/day (approximately 870 and 900 mg/kg body weight/day, respectively) for 13 weeks did not produce compound-related clinical signs or toxicity, changes in body weight gain, food consumption, hematology, clinical chemistry, urinalysis, organ weights, or in any gross and microscopic findings. The results of this study support the safety of BE-01 and BE-02 in food production. PMID:19470400

  1. The role of N1 domain on the activity, stability, substrate specificity and raw starch binding of amylopullulanase of the extreme thermophile Geobacillus thermoleovorans.

    Science.gov (United States)

    Nisha, M; Satyanarayana, T

    2015-07-01

    In order to understand the role of N1 domain (1-257 aa) in the amylopullulanase (gt-apu) of the extremely thermophilic bacterium Geobacillus thermoleovorans NP33, N1 deletion construct (gt-apu?N) has been generated and expressed in Escherichia coli. The truncated amylopullulanase (gt-apu?N) exhibits similar pH and temperature optima like gt-apu, but enhanced thermostability. The gt-apu?N has greater hydrolytic action and specific activity on pullulan than gt-apu. The k cat (starch and pullulan) and K m (starch) values of gt-apu?N increased, while K m (pullulan) decreased. The enzyme upon N1 deletion hydrolyzed maltotetraose as the smallest substrate in contrast to maltopentaose of gt-apu. The role of N1 domain of gt-apu in raw starch binding has been confirmed, for the first time, based on deletion and Langmuir-Hinshelwood kinetics. Furthermore, N1 domain appears to exert a negative influence on the thermostability of gt-apu because N1 truncation significantly improves thermostability. PMID:25573470

  2. Characterization of recombinant amylopullulanase (gt-apu) and truncated amylopullulanase (gt-apuT) of the extreme thermophile Geobacillus thermoleovorans NP33 and their action in starch saccharification.

    Science.gov (United States)

    Nisha, M; Satyanarayana, T

    2013-07-01

    A gene encoding amylopullulanase (gt-apu) of the extremely thermophilic Geobacillus thermoleovorans NP33 was cloned and expressed in Escherichia coli. The gene has an open reading frame of 4,965 bp that encodes a protein of 1,655 amino acids with molecular mass of 182 kDa. The six conserved regions, characteristic of GH13 family, have been detected in gt-apu. The recombinant enzyme has only one active site for ?-amylase and pullulanase activities based on the enzyme kinetic analyses in a system that contains starch as well as pullulan as competing substrates and response to inhibitors. The end-product analysis confirmed that this is an endoacting enzyme. The specific enzyme activities for ?-amylase and pullulanase of the truncated amylopullulanase (gt-apuT) are higher than gt-apu. Both enzymes exhibited similar temperature (60 °C) and pH (7.0) optima, although gt-apuT possessed a higher thermostability than gt-apu. The overall catalytic efficiency (K(cat)/K(m)) of gt-apuT is greater than that of gt-apu, with almost similar substrate specificities. The C-terminal region of gt-apu appeared to be non-essential, and furthermore, it negatively affects the substrate binding and stability of the enzyme. PMID:23132347

  3. Improving production of hyperthermostable and high maltose-forming alpha-amylase by an extreme thermophile Geobacillus thermoleovorans using response surface methodology and its applications.

    Science.gov (United States)

    Uma Maheswar Rao, J L; Satyanarayana, T

    2007-01-01

    By cultivating Geobacillus thermoleovorans in shake flasks containing cane molasses medium at 70 degrees C, the fermentation variables were optimized by 'one variable at a time' approach followed by response surface methodology (RSM). The statistical model was obtained by central composite design (CCD) using three variables (cane-molasses, urea and inoculum density). An overall 1.6- and 2.1-fold increase in enzyme production was achieved in the optimized medium in shake flasks and fermenter, respectively. The alpha-amylase titre increased significantly in cane-molasses medium (60 U ml(-1)) as compared to that in the synthetic medium (26 U ml(-1)). Thus the cost of enzyme produced in cane molasses medium (0.823 euros per million U) was much lower than that produced in the synthetic starch-yeast extract-tryptone medium (18.52 euros per million U). The shelf life of bread was improved by supplementing dough with alpha-amylase, and thus, the enzyme was found to be useful in preventing the staling of bread. Reducing sugars liberated from 20% and 30% raw pearl millet starch were fermented to ethanol; ethanol production levels attained were 35.40 and 28.0 g l(-1), respectively. PMID:16473003

  4. Purification, crystallization and preliminary X-ray analysis of a thermostable glycoside hydrolase family 43 ?-xylosidase from Geobacillus thermoleovorans IT-08

    International Nuclear Information System (INIS)

    The ?-xylosidase was crystallized using PEG 6000 as precipitant. 5% PEG 6000 yielded bipyramid-shaped tetragonal crystals diffracting to 1.55 Å resolution, and 13% PEG 6000 gave rectangular monoclinic crystals diffracting to 1.80 Å resolution. The main enzymes involved in xylan-backbone hydrolysis are endo-1,4-?-xylanase and ?-xylosidase. ?-Xylosidase converts the xylo-oligosaccharides produced by endo-1,4-?-xylanase into xylose monomers. The ?-xylosidase from the thermophilic Geobacillus thermoleovorans IT-08, a member of glycoside hydrolase family 43, was crystallized at room temperature using the hanging-drop vapour-diffusion method. Two crystal forms were observed. Bipyramid-shaped crystals belonging to space group P43212, with unit-cell parameters a = b = 62.53, c = 277.4 Å diffracted to 1.55 Å resolution. The rectangular crystals belonged to space group P21, with unit-cell parameters a = 57.94, b = 142.1, c = 153.9 Å, ? = 90.5°, and diffracted to 1.80 Å resolution

  5. Cellular viability of Saccharomyces cerevisiae cultivated in association with contaminates bacteria of alcoholic fermentation;Viabilidade celular de Saccharomyces cerevisiae cultivada em associacao com bacterias contaminantes da fermentacao alcoolica

    Energy Technology Data Exchange (ETDEWEB)

    Nobre, Thais de Paula

    2005-07-01

    The aim of this work was to study the influence of the bacteria Bacillus and Lactobacillus, as well as their metabolic products, in reduction of cellular viability of Saccharomyces cerevisiae, when in mixed culture of yeast and active and treated bacteria. Also was to evaluated an alternative medium (MCC) for the cultivation of bacteria and yeast, constituted of sugarcane juice diluted to 5 deg Brix and supplemented with yeast extract and peptone. The bacteria Bacillus subtilis, Bacillus coagulans, Bacillus stearothermophilus, Lactobacillus fermentum and Lactobacillus plantarum were cultivated in association with yeast Saccharomyces cerevisiae (strain Y-904) for 72 h on 32 deg C, under agitation. The cellular viability, budding rate and population of S. cerevisiae, the total acidity, volatile acidity and pH of culture were determined from 0, 24, 48 e 72 h of mixed culture. Also were determined the initial and final of microorganism population across the pour plate method, in traditional culture medium (PCA for Bacillus, MRS-agar for Lactobacillus and YEPD-agar for yeast S. cerevisiae) and in medium constituted of sugarcane juice. The bacteria cultures were treated by heat sterilization (120 deg C for 20 minutes), antibacterial agent (Kamoran HJ in concentration 3,0 ppm) or irradiation (radiation gamma, with doses of 5,0 kGy for Lactobacillus and 15,0 kGy for Bacillus). The results of the present research showed that just the culture mediums more acids (with higher concentrations of total and volatile acidity, and smaller values of pH), contaminated with active bacteria L. fermentum and B. subtilis, caused reduction on yeast cellular viability. Except the bacteria B. subtilis treated with radiation, the others bacteria treated by different procedures (heat, radiation e antibacterial) did not cause reduction on yeast cellular viability and population, indicating that the isolated presence of the cellular metabolic of theses bacteria was not enough to reduce the percentage of the yeast live cells and a density population. For all microorganisms, the counts obtained with the cultivation medium constituted of sugarcane juice were similar obtained in traditional mediums, probably because the alternative medium simulate the composition of sugarcane must, that the bacteria were isolated in industrial process of ethanol yield. However, the culture medium constituted of sugarcane juice could be replacing traditional culture mediums of yeast and bacteria tested in this work. (author)

  6. Presence and potential role of thermophilic bacteria in temperate terrestrial environments

    Science.gov (United States)

    Portillo, M. C.; Santana, M.; Gonzalez, J. M.

    2012-01-01

    Organic sulfur and nitrogen are major reservoirs of these elements in terrestrial systems, although their cycling remains to be fully understood. Both sulfur and nitrogen mineralization are directly related to microbial metabolism. Mesophiles and thermophiles were isolated from temperate environments. Thermophilic isolates were classified within the Firmicutes, belonging to the Geobacillus, Brevibacillus, and Ureibacillus genera, and showed optimum growth temperatures between 50°C and 60°C. Sulfate and ammonium produced were higher during growth of thermophiles both for isolated strains and natural bacterial assemblages. They were positively related to organic nutrient load. Temperature also affected the release of sulfate and ammonium by thermophiles. Quantitative, real-time reverse-transcription polymerase chain reaction on environmental samples indicated that the examined thermophilic Firmicutes represented up to 3.4% of the total bacterial community RNA. Temperature measurements during summer days showed values above 40°C for more than 10 h a day in soils from southern Spain. These results support a potential role of thermophilic bacteria in temperate terrestrial environments by mineralizing organic sulfur and nitrogen ruled by the existence and length of warm periods.

  7. Inactivation of biofilm bacteria.

    OpenAIRE

    LeChevallier, M. W.; Cawthon, C D; Lee, R G

    1988-01-01

    The current project was developed to examine inactivation of biofilm bacteria and to characterize the interaction of biocides with pipe surfaces. Unattached bacteria were quite susceptible to the variety of disinfectants tested. Viable bacterial counts were reduced 99% by exposure to 0.08 mg of hypochlorous acid (pH 7.0) per liter (1 to 2 degrees C) for 1 min. For monochloramine, 94 mg/liter was required to kill 99% of the bacteria within 1 min. These results were consistent with those found ...

  8. Identification of Two Binding Domains, One for Peptidoglycan and Another for a Secondary Cell Wall Polymer, on the N-Terminal Part of the S-Layer Protein SbsB from Bacillus stearothermophilus PV72/p2

    Science.gov (United States)

    Sára, Margit; Egelseer, Eva M.; Dekitsch, Christine; Sleytr, Uwe B.

    1998-01-01

    First studies on the structure-function relationship of the S-layer protein from B. stearothermophilus PV72/p2 revealed the coexistence of two binding domains on its N-terminal part, one for peptidoglycan and another for a secondary cell wall polymer (SCWP). The peptidoglycan binding domain is located between amino acids 1 to 138 of the mature S-layer protein comprising a typical S-layer homologous domain. The SCWP binding domain lies between amino acids 240 to 331 and possesses a high serine plus glycine content. PMID:9852032

  9. Gut bacteria and cancer.

    Science.gov (United States)

    Erdman, Susan E; Poutahidis, Theofilos

    2015-08-01

    Microbiota on the mucosal surfaces of the gastrointestinal (GI) tract greatly outnumbers the cells in the human body. Effects of antibiotics indicate that GI tract bacteria may be determining the fate of distal cancers. Recent data implicate dysregulated host responses to enteric bacteria leading to cancers in extra-intestinal sites. Together these findings point to novel anti-cancer strategies aimed at promoting GI tract homeostasis. PMID:26050963

  10. Improvement of Thermal Stability via Outer-Loop Ion Pair Interaction of Mutated T1 Lipase from Geobacillus zalihae Strain T1

    Directory of Open Access Journals (Sweden)

    Mahiran Basri

    2012-01-01

    Full Text Available Mutant D311E and K344R were constructed using site-directed mutagenesis to introduce an additional ion pair at the inter-loop and the intra-loop, respectively, to determine the effect of ion pairs on the stability of T1 lipase isolated from Geobacillus zalihae. A series of purification steps was applied, and the pure lipases of T1, D311E and K344R were obtained. The wild-type and mutant lipases were analyzed using circular dichroism. The Tm for T1 lipase, D311E lipase and K344R lipase were approximately 68.52 °C, 70.59 °C and 68.54 °C, respectively. Mutation at D311 increases the stability of T1 lipase and exhibited higher Tm as compared to the wild-type and K344R. Based on the above, D311E lipase was chosen for further study. D311E lipase was successfully crystallized using the sitting drop vapor diffusion method. The crystal was diffracted at 2.1 Å using an in-house X-ray beam and belonged to the monoclinic space group C2 with the unit cell parameters a = 117.32 Å, b = 81.16 Å and c = 100.14 Å. Structural analysis showed the existence of an additional ion pair around E311 in the structure of D311E. The additional ion pair in D311E may regulate the stability of this mutant lipase at high temperatures as predicted in silico and spectroscopically.

  11. Purification, crystallization and preliminary X-ray diffraction studies of the ATP-binding subunit of an ABC transporter from Geobacillus kaustophilus

    International Nuclear Information System (INIS)

    An ABC transporter from G. kaustophilus has been crystallized in space group I222. X-ray diffraction data have been collected to 1.60 Å resolution. ATP-binding cassette (ABC) transporters, also known as traffic ATPases, form a large family of integral membrane proteins responsible for the translocation of a variety of chemically diverse substrates across the lipid bilayers of cellular membranes of both prokaryotes and eukaryotes by the hydrolysis of ATP. The ATP-binding subunit of an ABC transporter from Geobacillus kaustophilus, a homodimeric enzyme, was overexpressed in Escherichia coli and purified. Crystals were obtained using the microbatch-under-oil method at 291 K. X-ray diffraction data to 1.6 Å resolution were collected on SPring-8 beamline BL26B1. The crystals belonged to the orthorhombic space group I222, with unit-cell parameters a = 54.94, b = 78.63, c = 112.96 Å. Assuming the presence of a dimer in the asymmetric unit gave a crystal volume per protein weight (VM) of 2.32 Å3 Da?1 and a solvent content of 47%; this was consistent with the results of a dynamic light-scattering experiment, which showed a dimeric state of the protein in solution. Molecular-replacement trials using the crystal structure of HisP from the Salmonella typhimurium ATP-binding subunit of an ABC transporter as a search model did not provide a satisfactory solution, indicating that the two ATP-binding subunits of ABC transporters have substantially different structures

  12. Ionizing radiation resistant bacteria

    International Nuclear Information System (INIS)

    The living being are not equal face to ionizing radiations. The palm of resistance goes to some bacteria. The champion at any category, the Deinococcus radiodurans, tolerates radiations doses whom one thousandth would kill a man. Two reasons to this fact: after irradiation, the DNA replication is stopped in order that the bacteria can use a repair process called multiple recombination. It cuts intact pieces of a injured chromosome and recombines them with other intact pieces, reconstituting a functional chromosome. It has also an ability to endure the extended action of oxygen, large source of damages for DNA. (N.C.)

  13. Immunity to Intracellular Bacteria.

    OpenAIRE

    Kaufmann, Stefan H. E.; Follows, George A.; Martin E. Munik

    2012-01-01

    Immunity to intracellular bacteria including Mycobacterium tuberculosis. Mycobacterium leprae, and Listeria monocytogenes depends on specific T cells. Evidence to be described suggests that CD4 (alpha/beta)T cells which interact with each other and with macrophages contribute to acquired resistence against as well as pathogenesis of intracellular bacterial infections.

  14. Influence of the Secondary Cell Wall Polymer on the Reassembly, Recrystallization, and Stability Properties of the S-Layer Protein from Bacillus stearothermophilus PV72/p2

    Science.gov (United States)

    Sára, Margit; Dekitsch, Christine; Mayer, Harald F.; Egelseer, Eva M.; Sleytr, Uwe B.

    1998-01-01

    The high-molecular-weight secondary cell wall polymer (SCWP) from Bacillus stearothermophilus PV72/p2 is mainly composed of N-acetylglucosamine (GlcNAc) and N-acetylmannosamine (ManNAc) and is involved in anchoring the S-layer protein via its N-terminal region to the rigid cell wall layer. In addition to this binding function, the SCWP was found to inhibit the formation of self-assembly products during dialysis of the guanidine hydrochloride (GHCl)-extracted S-layer protein. The degree of assembly (DA; percent assembled from total S-layer protein) that could be achieved strongly depended on the amount of SCWP added to the GHCl-extracted S-layer protein and decreased from 90 to 10% when the concentration of the SCWP was increased from 10 to 120 ?g/mg of S-layer protein. The SCWP kept the S-layer protein in the water-soluble state and favored its recrystallization on solid supports such as poly-l-lysine-coated electron microscopy grids. Derived from the orientation of the base vectors of the oblique S-layer lattice, the subunits had bound with their charge-neutral outer face, leaving the N-terminal region with the polymer binding domain exposed to the ambient environment. From cell wall fragments about half of the S-layer protein could be extracted with 1 M GlcNAc, indicating that the linkage type between the S-layer protein and the SCWP could be related to that of the lectin-polysaccharide type. Interestingly, GlcNAc had an effect on the in vitro self-assembly and recrystallization properties of the S-layer protein that was similar to that of the isolated SCWP. The SCWP generally enhanced the stability of the S-layer protein against endoproteinase Glu-C attack and specifically protected a potential cleavage site in position 138 of the mature S-layer protein. PMID:9696762

  15. Mobility of NH bonds in DNA-binding protein HU of shape Bacillus stearothermophilus from reduced spectral density mapping analysis at multiple NMR fields

    International Nuclear Information System (INIS)

    The dynamics of the backbone NH bonds of protein HU from Bacillus stearothermophilus (HUBst) have been characterized using measurements of cross-relaxation, longitudinal and transverse relaxation rates(RN(Hz?Nz), RN(Nz) and RN(Nx,y)) at 11.7, 14.1 and 17.6 T. Linear regression of the values2RN(Nx,y)-RN(NZ) with the squared Larmor frequency ?N2 has revealed global exchange processes, which contributed on the order of 0.5-5.0 s-1to the transverse relaxation rate. Subsequently, the experimental valuesRN(Nx,y) were corrected for these exchange contributions. A reduced spectral density mapping procedure has been employed with the experimental relaxation rates and seven values of the spectral density function J(?) have been extracted. These spectral densities have been fitted within the framework of the model-free approach. The densities agree well with an axially symmetric rotational diffusion tensor with a diffusion anisotropy D-parallel /D-perpendicular of 1.15, indicating that the flexible arms of HUBst do not significantly contribute to the rotational diffusion. The overall correlation time is 8.9 ± 0.6 ns/rad. The fast internal motions of most of the NH bonds in the core display order parameters ranging between 0.74 and 0.83 and internal correlation times between 1 and 20 ps. For the residues in the DNA-binding ?-arms, an extended version of the model function has been used. The slow internal motions show correlation times of 1-2 ns. The concomitant order parameters (0.3-0.6) are lower than those observed on the fast time scale, indicating that the flexibility of the ?-arms is mainly determined by the slower internal motions. A substantial decrease of the generalized order parameters in the ?-arms starting at residues Arg55 and Ser74, opposite on both strands of the ?-ribbon arms, has been explained as a 'hinge' motion. A comparison of the order parameters for free and DNA-bound protein has demonstrated that the slow hinge motions largely disappear when HU binds DNA

  16. A modeling study by response surface methodology and artificial neural network on culture parameters optimization for thermostable lipase production from a newly isolated thermophilic Geobacillus sp. strain ARM

    Directory of Open Access Journals (Sweden)

    Basri Mahiran

    2008-12-01

    Full Text Available Abstract Background Thermostable bacterial lipases occupy a place of prominence among biocatalysts owing to their novel, multifold applications and resistance to high temperature and other operational conditions. The capability of lipases to catalyze a variety of novel reactions in both aqueous and nonaqueous media presents a fascinating field for research, creating interest to isolate novel lipase producers and optimize lipase production. The most important stages in a biological process are modeling and optimization to improve a system and increase the efficiency of the process without increasing the cost. Results Different production media were tested for lipase production by a newly isolated thermophilic Geobacillus sp. strain ARM (DSM 21496 = NCIMB 41583. The maximum production was obtained in the presence of peptone and yeast extract as organic nitrogen sources, olive oil as carbon source and lipase production inducer, sodium and calcium as metal ions, and gum arabic as emulsifier and lipase production inducer. The best models for optimization of culture parameters were achieved by multilayer full feedforward incremental back propagation network and modified response surface model using backward elimination, where the optimum condition was: growth temperature (52.3°C, medium volume (50 ml, inoculum size (1%, agitation rate (static condition, incubation period (24 h and initial pH (5.8. The experimental lipase activity was 0.47 Uml-1 at optimum condition (4.7-fold increase, which compared well to the maximum predicted values by ANN (0.47 Uml-1 and RSM (0.476 Uml-1, whereas R2 and AAD were determined as 0.989 and 0.059% for ANN, and 0.95 and 0.078% for RSM respectively. Conclusion Lipase production is the result of a synergistic combination of effective parameters interactions. These parameters are in equilibrium and the change of one parameter can be compensated by changes of other parameters to give the same results. Though both RSM and ANN models provided good quality predictions in this study, yet the ANN showed a clear superiority over RSM for both data fitting and estimation capabilities. On the other hand, ANN has the disadvantage of requiring large amounts of training data in comparison with RSM. This problem was solved by using statistical experimental design, to reduce the number of experiments.

  17. Can bacteria save the planet?

    OpenAIRE

    Hunter, Philip

    2010-01-01

    Bacteria might just hold the key to preserving the environment for our great grandchildren. Philip Hunter explores some of the novel ways in which systems biology and biotechnology are harnessing bacteria to produce renewable energy and clean up pollution.

  18. Cable Bacteria in Freshwater Sediments

    DEFF Research Database (Denmark)

    Risgaard-Petersen, Nils; Kristiansen, Michael; Frederiksen, Rasmus; Lindequist Dittmer, Anders; Bjerg, Jesper Jensen; Trojan, Daniela; Schreiber, Lars; Damgaard, Lars Riis; Schramm, Andreas; Nielsen, Lars Peter

    2015-01-01

    In marine sediments cathodic oxygen reduction at the sediment surface can be coupled to anodic sulfide oxidation in deeper anoxic layers through electrical currents mediated by filamentous, multicellular bacteria of the Desulfobulbaceae family, the so-called cable bacteria. Until now, cable bacteria have only been reported from marine environments. In this study, we demonstrate that cable bacteria also occur in freshwater sediments. In a first step, homogenized sediment collected from the freshw...

  19. Manufacture of Probiotic Bacteria

    Science.gov (United States)

    Muller, J. A.; Ross, R. P.; Fitzgerald, G. F.; Stanton, C.

    Lactic acid bacteria (LAB) have been used for many years as natural biopreservatives in fermented foods. A small group of LAB are also believed to have beneficial health effects on the host, so called probiotic bacteria. Probiotics have emerged from the niche industry from Asia into European and American markets. Functional foods are one of the fastest growing markets today, with estimated growth to 20 billion dollars worldwide by 2010 (GIA, 2008). The increasing demand for probiotics and the new food markets where probiotics are introduced, challenges the industry to produce high quantities of probiotic cultures in a viable and stable form. Dried concentrated probiotic cultures are the most convenient form for incorporation into functional foods, given the ease of storage, handling and transport, especially for shelf-stable functional products. This chapter will discuss various aspects of the challenges associated with the manufacturing of probiotic cultures.

  20. Exopolysaccharides from marine bacteria

    Science.gov (United States)

    Chi, Zhenming; Fang, Yan

    2005-01-01

    Microbial polysaccharides represent a class of important products of growing interest for many sectors of industry. In recent years, there has been a growing interest in isolating new exopolysaccharides (EPSs)-producing bacteria from marine environments, particularly from various extreme marine environments. Many new marine microbial EPSs with novel chemical compositions, properties and structures have been found to have potential applications in fields such as adhesives, textiles, Pharmaceuticals and medicine for anti-cancer, food additives, oil recovery and metal removal in mining and industrial waste treatments, etc This paper gives a brief summary of the information about the EPSs produced by marine bacteria, including their chemical compositions, properties and structures, together with their potential applications in industry.

  1. Extracellular communication in bacteria

    DEFF Research Database (Denmark)

    Chhabra, S.R.; Philipp, B.; Eberl, L.; Givskov, Michael Christian; Williams, P.; Camara, M.

    2005-01-01

    Populations of bacterial cells often coordinate their responses to changes in their local environmental conditions through "quorum sensing", a cell-to-cell communication system employing small diffusible signal molecules. While there is considerable diversity in the chemistry of such signal molecules, in different Gram-positive and Gram-negative bacteria they control pathogenicity, secondary metabolite production, biofilm differentiation, DNA transfer and bioluminescence. The development of bios...

  2. Synbiobacther : engineering ???therapeutic??? bacteria

    OpenAIRE

    Rodrigues, L. R.; Rodrigues, Joana L??cia; Machado, C. D.; Kluskens, Leon; M. Mota; Rocha, I.; Ferreira, E.C.

    2012-01-01

    SYNBIOBACTHER ??? Engineering ???therapeutic??? bacteria Rodrigues LR, Rodrigues JL, Machado CD, Kluskens L, Mota M, Rocha I, Ferreira EC IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal Statistics show that over 1.3 million persons will be diagnosed with breast cancer worldwide this year, hence this is an enormously important health risk, and progress leading to enhanced survival...

  3. Pepsin homologues in bacteria

    Directory of Open Access Journals (Sweden)

    Bateman Alex

    2009-09-01

    Full Text Available Abstract Background Peptidase family A1, to which pepsin belongs, had been assumed to be restricted to eukaryotes. The tertiary structure of pepsin shows two lobes with similar folds and it has been suggested that the gene has arisen from an ancient duplication and fusion event. The only sequence similarity between the lobes is restricted to the motif around the active site aspartate and a hydrophobic-hydrophobic-Gly motif. Together, these contribute to an essential structural feature known as a psi-loop. There is one such psi-loop in each lobe, and so each lobe presents an active Asp. The human immunodeficiency virus peptidase, retropepsin, from peptidase family A2 also has a similar fold but consists of one lobe only and has to dimerize to be active. All known members of family A1 show the bilobed structure, but it is unclear if the ancestor of family A1 was similar to an A2 peptidase, or if the ancestral retropepsin was derived from a half-pepsin gene. The presence of a pepsin homologue in a prokaryote might give insights into the evolution of the pepsin family. Results Homologues of the aspartic peptidase pepsin have been found in the completed genomic sequences from seven species of bacteria. The bacterial homologues, unlike those from eukaryotes, do not possess signal peptides, and would therefore be intracellular acting at neutral pH. The bacterial homologues have Thr218 replaced by Asp, a change which in renin has been shown to confer activity at neutral pH. No pepsin homologues could be detected in any archaean genome. Conclusion The peptidase family A1 is found in some species of bacteria as well as eukaryotes. The bacterial homologues fall into two groups, one from oceanic bacteria and one from plant symbionts. The bacterial homologues are all predicted to be intracellular proteins, unlike the eukaryotic enzymes. The bacterial homologues are bilobed like pepsin, implying that if no horizontal gene transfer has occurred the duplication and fusion event might be very ancient indeed, preceding the divergence of bacteria and eukaryotes. It is unclear whether all the bacterial homologues are derived from horizontal gene transfer, but those from the plant symbionts probably are. The homologues from oceanic bacteria are most closely related to memapsins (or BACE-1 and BACE-2, but are so divergent that they are close to the root of the phylogenetic tree and to the division of the A1 family into two subfamilies.

  4. Bacteria in solitary confinement.

    Science.gov (United States)

    Mullineaux, Conrad W

    2015-02-15

    Even in clonal bacterial cultures, individual bacteria can show substantial stochastic variation, leading to pitfalls in the interpretation of data derived from millions of cells in a culture. In this issue of the Journal of Bacteriology, as part of their study on osmoadaptation in a cyanobacterium, Nanatani et al. describe employing an ingenious microfluidic device that gently cages individual cells (J Bacteriol 197:676-687, 2015, http://dx.doi.org/10.1128/JB.02276-14). The device is a welcome addition to the toolkit available to probe the responses of individual cells to environmental cues. PMID:25488297

  5. Bacteria in Solitary Confinement

    OpenAIRE

    Mullineaux, Conrad W

    2014-01-01

    Even in clonal bacterial cultures, individual bacteria can show substantial stochastic variation, leading to pitfalls in the interpretation of data derived from millions of cells in a culture. In this issue of the Journal of Bacteriology, as part of their study on osmoadaptation in a cyanobacterium, Nanatani et al. describe employing an ingenious microfluidic device that gently cages individual cells (J Bacteriol 197:676–687, 2015, http://dx.doi.org/10.1128/JB.02276-14). The device is a welco...

  6. Comparative study on disinfection potency of spore forming bacteria by electron-beam irradiation and gamma-ray irradiation

    International Nuclear Information System (INIS)

    Along with gamma-ray irradiation, electron-beam irradiation (EB) is a method to disinfect microorganisms which cause food decomposition and food-poisoning. The present study was undertaken to compare sterilization efficacy of EB and gamma-ray irradiation on bacterial spores and vegetative cells under various conditions. Spores of Bacillus pumilus, a marker strain for irradiation study, and Bacillus stearothermophilus known as a thermophilic bacteria were irradiated by electron-beam and gamma-ray separately at irradiation dose of 0 to 10 kGy on combination of wet/dry and aerobic/anaerobic conditions. Sterilization effect of irradiation on spores was evaluated by colony counting on agar plates. Results showed that both EB and gamma-ray irradiation gave sufficient sterilization effect on spores, and the sterilization effect increased exponentially with irradiation dose. The sterilization effect of gamma-ray irradiation was higher than that of EB in all cases. Higher disinfection effect was observed under aerobic condition. The present study suggests that oxygen supply in EB is more important than gamma-ray irradiation. No results suggesting that chlorine ion at 0.1 ppm (as available chlorine concentration) enhanced the sterilization efficacy of either EB or gamma-ray irradiation was obtained under any conditions examined. (author)

  7. Interactions between Diatoms and Bacteria

    OpenAIRE

    Amin, Shady A.; Parker, Micaela S; Armbrust, E Virginia

    2012-01-01

    Summary: Diatoms and bacteria have cooccurred in common habitats for hundreds of millions of years, thus fostering specific associations and interactions with global biogeochemical consequences. Diatoms are responsible for one-fifth of the photosynthesis on Earth, while bacteria remineralize a large portion of this fixed carbon in the oceans. Through their coexistence, diatoms and bacteria cycle nutrients between oxidized and reduced states, impacting bioavailability and ultimately feeding hi...

  8. Trail following by gliding bacteria.

    OpenAIRE

    Burchard, R P

    1982-01-01

    Slime trails, which are deposited on surfaces by gliding bacteria and which serve as preferential pathways for gliding motility, were tested for the species specificity of their support of movement. Among the pairs of bacteria tested, a variety of gliding bacteria and a flagellated bacterium moved along trails of unrelated species. Thus, the trails did not serve as pheromones. Rather, they may have guided gliding elasticotactically. Some biological implications of this finding are considered.

  9. Active skeleton for bacteria modeling

    OpenAIRE

    Jacob, Jean-Pascal; Dimiccoli, Mariella; Moisan, Lionel

    2015-01-01

    The investigation of spatio-temporal dynamics of bacterial cells and their molecular components requires automated image analysis tools to track cell shape properties and molecular component locations inside the cells. In the study of bacteria aging, the molecular components of interest are protein aggregates accumulated near bacteria boundaries. This particular location makes very ambiguous the correspondence between aggregates and cells, since computing accurately bacteria...

  10. Bacteria transport under unsaturated conditions

    OpenAIRE

    Gargiulo, G

    2006-01-01

    The aim of this work was to study the bacteria transport behaviour in different conditions using an unsaturated porous media. A column based system able to keep the unsaturated conditions was designed and developed to perform the experiments. Two bacteria strains Deinococcus radiodurans and Rhodococcus rhodochrous strongly different in hydrophobicity were employed. During the experiments the bacteria concentration in the outflow was continuously on-line measured and after the experiment the c...

  11. Engineered bacteria as therapeutic agents.

    Science.gov (United States)

    Piñero-Lambea, Carlos; Ruano-Gallego, David; Fernández, Luis Ángel

    2015-12-01

    Although bacteria are generally regarded as the causative agents of infectious diseases, most bacteria inhabiting the human body are non-pathogenic and some of them can be turned, after proper engineering, into 'smart' living therapeutics of defined properties for the treatment of different illnesses. This review focuses on recent developments to engineer bacteria for the treatment of diverse human pathologies, including inflammatory bowel diseases, autoimmune disorders, cancer, metabolic diseases and obesity, as well as to combat bacterial and viral infections. We discuss significant advances provided by synthetic biology to fully reprogram bacteria as human therapeutics, including novel measures for strict biocontainment. PMID:26070111

  12. Extracellular communication in bacteria

    DEFF Research Database (Denmark)

    Chhabra, S.R.; Philipp, B.

    2005-01-01

    Populations of bacterial cells often coordinate their responses to changes in their local environmental conditions through "quorum sensing", a cell-to-cell communication system employing small diffusible signal molecules. While there is considerable diversity in the chemistry of such signal molecules, in different Gram-positive and Gram-negative bacteria they control pathogenicity, secondary metabolite production, biofilm differentiation, DNA transfer and bioluminescence. The development of biosensors for the detection of these signal molecules has greatly facilitated their subsequent chemical analysis which in turn has resulted in significant progress in understanding the molecular basis of quorum sensing-dependent gene expression. Consequently, the discovery and characterisation of natural molecules which antagonize quorum sensing-mediated responses has created new opportunities for the design of novel anti-infective agents which control infection through the attenuation of bacterial virulence.

  13. Interactions between diatoms and bacteria.

    Science.gov (United States)

    Amin, Shady A; Parker, Micaela S; Armbrust, E Virginia

    2012-09-01

    Diatoms and bacteria have cooccurred in common habitats for hundreds of millions of years, thus fostering specific associations and interactions with global biogeochemical consequences. Diatoms are responsible for one-fifth of the photosynthesis on Earth, while bacteria remineralize a large portion of this fixed carbon in the oceans. Through their coexistence, diatoms and bacteria cycle nutrients between oxidized and reduced states, impacting bioavailability and ultimately feeding higher trophic levels. Here we present an overview of how diatoms and bacteria interact and the implications of these interactions. We emphasize that heterotrophic bacteria in the oceans that are consistently associated with diatoms are confined to two phyla. These consistent bacterial associations result from encounter mechanisms that occur within a microscale environment surrounding a diatom cell. We review signaling mechanisms that occur in this microenvironment to pave the way for specific interactions. Finally, we discuss known interactions between diatoms and bacteria and exciting new directions and research opportunities in this field. Throughout the review, we emphasize new technological advances that will help in the discovery of new interactions. Deciphering the languages of diatoms and bacteria and how they interact will inform our understanding of the role these organisms have in shaping the ocean and how these interactions may change in future oceans. PMID:22933565

  14. Interactions between Diatoms and Bacteria

    Science.gov (United States)

    Amin, Shady A.; Parker, Micaela S.

    2012-01-01

    Summary: Diatoms and bacteria have cooccurred in common habitats for hundreds of millions of years, thus fostering specific associations and interactions with global biogeochemical consequences. Diatoms are responsible for one-fifth of the photosynthesis on Earth, while bacteria remineralize a large portion of this fixed carbon in the oceans. Through their coexistence, diatoms and bacteria cycle nutrients between oxidized and reduced states, impacting bioavailability and ultimately feeding higher trophic levels. Here we present an overview of how diatoms and bacteria interact and the implications of these interactions. We emphasize that heterotrophic bacteria in the oceans that are consistently associated with diatoms are confined to two phyla. These consistent bacterial associations result from encounter mechanisms that occur within a microscale environment surrounding a diatom cell. We review signaling mechanisms that occur in this microenvironment to pave the way for specific interactions. Finally, we discuss known interactions between diatoms and bacteria and exciting new directions and research opportunities in this field. Throughout the review, we emphasize new technological advances that will help in the discovery of new interactions. Deciphering the languages of diatoms and bacteria and how they interact will inform our understanding of the role these organisms have in shaping the ocean and how these interactions may change in future oceans. PMID:22933565

  15. Geobacillus thermodenitrificans YjbH recognizes the C-terminal end of Bacillus subtilis Spx to accelerate Spx proteolysis by ClpXP

    OpenAIRE

    Chan, Chio Mui; Garg, Saurabh; Lin, Ann A.; Zuber, Peter

    2012-01-01

    Proteolytic control can govern the levels of specific regulatory factors, such as Spx, a transcriptional regulator of the oxidative stress response in Gram-positive bacteria. Under oxidative stress, Spx concentration is elevated and upregulates transcription of genes that function in the stress response. When stress is alleviated, proteolysis of Spx catalysed by ClpXP reduces Spx concentration. Proteolysis is enhanced by the substrate recognition factor YjbH, which possesses a His–Cys-rich re...

  16. Superoxide dismutase in ruminal bacteria.

    OpenAIRE

    Fulghum, R S; Worthington, J M

    1984-01-01

    Of 13 species of anaerobic ruminal bacteria examined, 11 were found to contain measurable levels of superoxide dismutase activity. Four of five other strict anaerobic species studied for comparison were found to contain superoxide dismutase activity.

  17. Chitin Degradation In Marine Bacteria

    DEFF Research Database (Denmark)

    Paulsen, Sara; Machado, Henrique; Gram, Lone

    2015-01-01

    Introduction: Chitin is the most abundant polymer in the marine environment and the second most abundant in nature. Chitin does not accumulate on the ocean floor, because of microbial breakdown. Chitin degrading bacteria could have potential in the utilization of chitin as a renewable carbon and nitrogen source in the fermentation industry.Methods: Here, whole genome sequenced marine bacteria were screened for chitin degradation using phenotypic and in silico analyses.Results: The in silico anal...

  18. Thymidine kinase diversity in bacteria

    DEFF Research Database (Denmark)

    Sandrini, Michael; Clausen, A.R.; Munch-Petersen, B.; Piskur, Jure

    2006-01-01

    Thymidine kinases (TKs) appear to be almost ubiquitous and are found in nearly all prokaryotes, eukaryotes, and several viruses. They are the key enzymes in thymidine salvage and activation of several anti-cancer and antiviral drugs. We show that bacterial TKs can be subdivided into 2 groups. The TKs from Gram-positive bacteria are more closely related to the eukaryotic TK1 enzymes than are TKs from Gram-negative bacteria.

  19. Immunomodulatory properties of probiotic bacteria

    DEFF Research Database (Denmark)

    Fink, Lisbeth Nielsen

    2007-01-01

    Certain lactic acid bacteria (LAB) are part of the commensal intestinal flora and considered beneficial for health, as they compete with pathogens for adhesion sites in the intestine and ferment otherwise indigestible compounds. Another important property of these so-called probiotic bacteria is the ability to modulate the immune response. This thesis describes the immunomodulatory properties of gut-derived bacterial strains on different antigen-presenting cells, and the effector cell responses ...

  20. Money and transmission of bacteria

    OpenAIRE

    Gedik, Habip; Voss, Timothy A; Voss, Andreas

    2013-01-01

    Money is one of the most frequently passed items in the world. The aim of this study was to ascertain the survival status of bacteria including Staphylococcus aureus, Escherichia coli, and Vancomycin- Resistant Enterococci (VRE) on banknotes from different countries and the transmission of bacteria to people who come in contact with the banknotes. The survival rate was highest for the Romanian Leu yielding all three microorganisms used after both three and six hours of drying. Furthermore, th...

  1. The mechanical world of bacteria.

    Science.gov (United States)

    Persat, Alexandre; Nadell, Carey D; Kim, Minyoung Kevin; Ingremeau, Francois; Siryaporn, Albert; Drescher, Knut; Wingreen, Ned S; Bassler, Bonnie L; Gitai, Zemer; Stone, Howard A

    2015-05-21

    In the wild, bacteria are predominantly associated with surfaces as opposed to existing as free-swimming, isolated organisms. They are thus subject to surface-specific mechanics, including hydrodynamic forces, adhesive forces, the rheology of their surroundings, and transport rules that define their encounters with nutrients and signaling molecules. Here, we highlight the effects of mechanics on bacterial behaviors on surfaces at multiple length scales, from single bacteria to the development of multicellular bacterial communities such as biofilms. PMID:26000479

  2. Cable Bacteria in Freshwater Sediments

    DEFF Research Database (Denmark)

    Risgaard-Petersen, Nils; Kristiansen, Michael

    2015-01-01

    In marine sediments cathodic oxygen reduction at the sediment surface can be coupled to anodic sulfide oxidation in deeper anoxic layers through electrical currents mediated by filamentous, multicellular bacteria of the Desulfobulbaceae family, the so-called cable bacteria. Until now, cable bacteria have only been reported from marine environments. In this study, we demonstrate that cable bacteria also occur in freshwater sediments. In a first step, homogenized sediment collected from the freshwater stream Giber Å, Denmark, was incubated in the laboratory. After 2 weeks, pH signatures and electric fields indicated electron transfer between vertically separated anodic and cathodic half-reactions. Fluorescence in situ hybridization revealed the presence of Desulfobulbaceae filaments. In addition, in situ measurements of oxygen, pH, and electric potential distributions in the waterlogged banks of Giber Å demonstrated the presence of distant electric redox coupling in naturally occurring freshwater sediment. At the same site, filamentous Desulfobulbaceae with cable bacterium morphology were found to be present. Their 16S rRNA gene sequence placed them as a distinct sister group to the known marine cable bacteria, with the genus Desulfobulbus as the closest cultured lineage. The results of the present study indicate that electric currents mediated by cable bacteria could be important for the biogeochemistry in many more environments than anticipated thus far and suggest a common evolutionary origin of the cable phenotype within Desulfobulbaceae with subsequent diversification into a freshwater and a marine lineage.

  3. Filtrating forms of soil bacteria

    Science.gov (United States)

    Van'kova, A. A.; Ivanov, P. I.; Emtsev, V. T.

    2013-03-01

    Filtrating (ultramicroscopic) forms (FF) of bacteria were studied in a soddy-podzolic soil and the root zone of alfalfa plants as part of populations of the most widespread physiological groups of soil bacteria. FF were obtained by filtering soil solutions through membrane filters with a pore diameter of 0.22 ?m. It was established that the greater part of the bacteria in the soil and in the root zone of the plants has an ultramicroscopic size: the average diameter of the cells is 0.3 ?m, and their length is 0.6 ?m, which is significantly less than the cell size of banal bacteria. The number of FF varies within a wide range depending on the physicochemical conditions of the habitat. The FF number's dynamics in the soil is of a seasonal nature; i.e., the number of bacteria found increases in the summer and fall and decreases in the winter-spring period. In the rhizosphere of the alfalfa, over the vegetation period, the number of FF and their fraction in the total mass of the bacteria increase. A reverse tendency is observed in the rhizoplane. The morphological particularities (identified by an electron microscopy) and the nature of the FF indicate their physiological activity.

  4. Cable Bacteria in Freshwater Sediments.

    Science.gov (United States)

    Risgaard-Petersen, Nils; Kristiansen, Michael; Frederiksen, Rasmus B; Dittmer, Anders Lindequist; Bjerg, Jesper Tataru; Trojan, Daniela; Schreiber, Lars; Damgaard, Lars Riis; Schramm, Andreas; Nielsen, Lars Peter

    2015-09-01

    In marine sediments cathodic oxygen reduction at the sediment surface can be coupled to anodic sulfide oxidation in deeper anoxic layers through electrical currents mediated by filamentous, multicellular bacteria of the Desulfobulbaceae family, the so-called cable bacteria. Until now, cable bacteria have only been reported from marine environments. In this study, we demonstrate that cable bacteria also occur in freshwater sediments. In a first step, homogenized sediment collected from the freshwater stream Giber Å, Denmark, was incubated in the laboratory. After 2 weeks, pH signatures and electric fields indicated electron transfer between vertically separated anodic and cathodic half-reactions. Fluorescence in situ hybridization revealed the presence of Desulfobulbaceae filaments. In addition, in situ measurements of oxygen, pH, and electric potential distributions in the waterlogged banks of Giber Å demonstrated the presence of distant electric redox coupling in naturally occurring freshwater sediment. At the same site, filamentous Desulfobulbaceae with cable bacterium morphology were found to be present. Their 16S rRNA gene sequence placed them as a distinct sister group to the known marine cable bacteria, with the genus Desulfobulbus as the closest cultured lineage. The results of the present study indicate that electric currents mediated by cable bacteria could be important for the biogeochemistry in many more environments than anticipated thus far and suggest a common evolutionary origin of the cable phenotype within Desulfobulbaceae with subsequent diversification into a freshwater and a marine lineage. PMID:26116678

  5. Bioreporter bacteria for landmine detection

    Energy Technology Data Exchange (ETDEWEB)

    Burlage, R.S. [Oak Ridge National Lab., TN (United States); Youngblood, T. [Frisby Technologies, Aiken, SC (United States); Lamothe, D. [American Technologies, Inc., Huntsville, AL (United States). Ordnance/Explosives Environmental Services Div.

    1998-04-01

    Landmines (and other UXO) gradually leak explosive chemicals into the soil at significant concentrations. Bacteria, which have adapted to scavenge low concentrations of nutrients, can detect these explosive chemicals. Uptake of these chemicals results in the triggering of specific bacterial genes. The authors have created genetically recombinant bioreporter bacteria that detect small concentrations of energetic chemicals. These bacteria are genetically engineered to produce a bioluminescent signal when they contact specific explosives. A gene for a brightly fluorescent compound can be substituted for increased sensitivity. By finding the fluorescent bacteria, you find the landmine. Detection might be accomplished using stand-off illumination of the minefield and GPS technology, which would result in greatly reduced risk to the deminers. Bioreporter technology has been proven at the laboratory scale, and will be tested under field conditions in the near future. They have created a bacterial strain that detects sub-micromolar concentrations of o- and p-nitrotoluene. Related bacterial strains were produced using standard laboratory protocols, and bioreporters of dinitrotoluene and trinitrotoluene were produced, screening for activity with the explosive compounds. Response time is dependent on the growth rate of the bacteria. Although frill signal production may require several hours, the bacteria can be applied over vast areas and scanned quickly, producing an equivalent detection speed that is very fast. This technology may be applicable to other needs, such as locating buried explosives at military and ordnance/explosive manufacturing facilities.

  6. PTS-Mediated Regulation of the Transcription Activator MtlR from Different Species: Surprising Differences despite Strong Sequence Conservation.

    Science.gov (United States)

    Joyet, Philippe; Derkaoui, Meriem; Bouraoui, Houda; Deutscher, Josef

    2015-01-01

    The hexitol D-mannitol is transported by many bacteria via a phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS). In most Firmicutes, the transcription activator MtlR controls the expression of the genes encoding the D-mannitol-specific PTS components and D-mannitol-1-P dehydrogenase. MtlR contains an N-terminal helix-turn-helix motif followed by an Mga-like domain, two PTS regulation domains (PRDs), an EIIB(Gat)- and an EIIA(Mtl)-like domain. The four regulatory domains are the target of phosphorylation by PTS components. Despite strong sequence conservation, the mechanisms controlling the activity of MtlR from Lactobacillus casei, Bacillus subtilis and Geobacillus stearothermophilus are quite different. Owing to the presence of a tyrosine in place of the second conserved histidine (His) in PRD2, L. casei MtlR is not phosphorylated by Enzyme I (EI) and HPr. When the corresponding His in PRD2 of MtlR from B. subtilis and G. stearothermophilus was replaced with alanine, the transcription regulator was no longer phosphorylated and remained inactive. Surprisingly, L. casei MtlR functions without phosphorylation in PRD2 because in a ptsI (EI) mutant MtlR is constitutively active. EI inactivation prevents not only phosphorylation of HPr, but also of the PTS(Mtl) components, which inactivate MtlR by phosphorylating its EIIB(Gat)- or EIIA(Mtl)-like domain. This explains the constitutive phenotype of the ptsI mutant. The absence of EIIB(Mtl)-mediated phosphorylation leads to induction of the L. caseimtl operon. This mechanism resembles mtlARFD induction in G. stearothermophilus, but differs from EIIA(Mtl)-mediated induction in B. subtilis. In contrast to B. subtilis MtlR, L. casei MtlR activation does not require sequestration to the membrane via the unphosphorylated EIIB(Mtl) domain. PMID:26159071

  7. IDENTIFICATION OF BACTERIA IN LATEX PAINTS

    Directory of Open Access Journals (Sweden)

    Rojas, J.

    2008-01-01

    Full Text Available The bacteria are prokaryote organisms with a high capacity to colonize many types of habits. This research was developed with the object to identify extremophiles bacteria presents in latex paint. The bacteria were cultivated in culture mediums TSA, Blood Agar, Mc Conkey and finally the biochemical proof API-NF® for bacteria's isolation and identification, respectively. Characterization showed bacterial profile of Pasteurella sp. Hypothesis that could be found extremophiles bacteria in latex paint were demonstrated.

  8. [Genetic resources of nodule bacteria].

    Science.gov (United States)

    Rumiantseva, M L

    2009-09-01

    Nodule bacteria (rhizobia) form highly specific symbiosis with leguminous plants. The efficiency of accumulation of biological nitrogen depends on molecular-genetic interaction between the host plant and rhizobia. Genetic characteristics of microsymbiotic strains are crucial in developing highly productive and stress-resistant symbiotic pairs: rhizobium strain-host plant cultivar (species). The present review considers the issue of studying genetic resources of nodule bacteria to identify genes and their blocks, responsible for the ability of rhizobia to form highly effective symbiosis in various agroecological conditions. The main approaches to investigation of intraspecific and interspecific genetic and genomic diversity of nodule bacteria are considered, from MLEE analysis to the recent methods of genomic DNA analysis using biochips. The data are presented showing that gene centers of host plants are centers of genetic diversification of nodule bacteria, because the intraspecific polymorphism of genetic markers of the core and the accessory rhizobial genomes is extremely high in them. Genotypic features of trapped and nodule subpopulations of alfalfa nodule bacteria are discussed. A survey of literature showed that the genomes of natural strains in alfalfa gene centers exhibit significant differences in genes involved in control of metabolism, replication, recombination, and the formation of defense response (hsd genes). Natural populations of rhizobia are regarded as a huge gene pool serving as a source of evolutionary innovations. PMID:19824536

  9. Deodorant bacteria; Des bacteries desodorisantes

    Energy Technology Data Exchange (ETDEWEB)

    Fanlo, J.L. [Ecole Nationale Superieure des Mines, 30 - Ales (France)

    1998-02-01

    Purifying bacteria: if this concept is not new, its application to gases cleansing has only been developed recently. This method allows to eliminate the volatile organic compounds and the gaseous effluents odors which come from industrial sites. Three bioreactors types exist at the present time. Their principles are explained. (O.M.) 6 refs.

  10. Fuzzy species among recombinogenic bacteria

    Directory of Open Access Journals (Sweden)

    Fraser Christophe

    2005-03-01

    Full Text Available Abstract Background It is a matter of ongoing debate whether a universal species concept is possible for bacteria. Indeed, it is not clear whether closely related isolates of bacteria typically form discrete genotypic clusters that can be assigned as species. The most challenging test of whether species can be clearly delineated is provided by analysis of large populations of closely-related, highly recombinogenic, bacteria that colonise the same body site. We have used concatenated sequences of seven house-keeping loci from 770 strains of 11 named Neisseria species, and phylogenetic trees, to investigate whether genotypic clusters can be resolved among these recombinogenic bacteria and, if so, the extent to which they correspond to named species. Results Alleles at individual loci were widely distributed among the named species but this distorting effect of recombination was largely buffered by using concatenated sequences, which resolved clusters corresponding to the three species most numerous in the sample, N. meningitidis, N. lactamica and N. gonorrhoeae. A few isolates arose from the branch that separated N. meningitidis from N. lactamica leading us to describe these species as 'fuzzy'. Conclusion A multilocus approach using large samples of closely related isolates delineates species even in the highly recombinogenic human Neisseria where individual loci are inadequate for the task. This approach should be applied by taxonomists to large samples of other groups of closely-related bacteria, and especially to those where species delineation has historically been difficult, to determine whether genotypic clusters can be delineated, and to guide the definition of species.

  11. Antagonism of Lactic Acid Bacteria against Phytopathogenic Bacteria

    OpenAIRE

    Visser, Ronèl; Holzapfel, Wilhelm H.; Bezuidenhout, Johannes J; Kotzé, Johannes M.

    1986-01-01

    A variety of lactic acid bacteria, isolated from plant surfaces and plant-associated products, were found to be antagonistic to test strains of the phytopathogens Xanthomonas campestris, Erwinia carotovora, and Pseudomonas syringae. Effective “in vitro” inhibition was found both on agar plates and in broth cultures. In pot trials, treatment of bean plants with a Lactobacillus plantarum strain before inoculation with P. syringae caused a significant reduction of the disease incidence.

  12. Sulfur metabolism in phototrophic sulfur bacteria

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Dahl, Christiane

    2008-01-01

    Phototrophic sulfur bacteria are characterized by oxidizing various inorganic sulfur compounds for use as electron donors in carbon dioxide fixation during anoxygenic photosynthetic growth. These bacteria are divided into the purple sulfur bacteria (PSB) and the green sulfur bacteria (GSB). They utilize various combinations of sulfide, elemental sulfur, and thiosulfate and sometimes also ferrous iron and hydrogen as electron donors. This review focuses on the dissimilatory and assimilatory metab...

  13. Coryneform bacteria associated with canine otitis externa

    DEFF Research Database (Denmark)

    Aalbæk, Bent; Bemis, David A.; Schjærff, Mette; Kania, Stephen A.; Frank, Linda A.; Guardabassi, Luca

    2010-01-01

    This study aims to investigate the occurrence of coryneform bacteria in canine otitis externa. A combined case series and case-control study was carried out to improve the current knowledge on frequency and clinical significance of coryneform bacteria in samples from canine otitis externa. A total of 16 cases of otitis externa with involvement of coryneform bacteria were recorded at two referral veterinary hospitals in Denmark and the US, respectively. Coryneform bacteria were identified by part...

  14. Re-engineering bacteria for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Yomano, Lorraine P; York, Sean W; Zhou, Shengde; Shanmugam, Keelnatham; Ingram, Lonnie O

    2014-05-06

    The invention provides recombinant bacteria, which comprise a full complement of heterologous ethanol production genes. Expression of the full complement of heterologous ethanol production genes causes the recombinant bacteria to produce ethanol as the primary fermentation product when grown in mineral salts medium, without the addition of complex nutrients. Methods for producing the recombinant bacteria and methods for producing ethanol using the recombinant bacteria are also disclosed.

  15. Magnetotactic bacteria at the geomagnetic equator

    International Nuclear Information System (INIS)

    Magnetotatic bacteria are observed in freshwater and marine sediments of Fortaleza, Brazil, situated close to the geomagnetic equator. Both South-seeking and North-seeking bacteria are present in roughly equal numbers in the same samples. This observation is consistent with the hypothesis that the vertical component of the geomagnetic field selects the predominant polarity type among magnetotactic bacteria in natural environments. (Author)

  16. Dissipative Shocks behind Bacteria Gliding

    CERN Document Server

    Virga, Epifanio G

    2014-01-01

    Gliding is a means of locomotion on rigid substrates utilized by a number of bacteria includingmyxobacteria and cyanobacteria. One of the hypotheses advanced to explain this motility mechanism hinges on the role played by the slime filaments continuously extruded from gliding bacteria. This paper solves in full a non-linear mechanical theory that treats as dissipative shocks both the point where the extruded slime filament comes in contact with the substrate, called the filament's foot, and the pore on the bacterium outer surface from where the filament is ejected. We prove that kinematic compatibility for shock propagation requires that the bacterium uniform gliding velocity (relative to the substrate) and the slime ejecting velocity (relative to the bacterium) must be equal, a coincidence that seems to have already been observed.

  17. Aggregation Patterns in Stressed Bacteria

    CERN Document Server

    Tsimring, L S; Aranson, I S; Ben-Jacob, E; Cohen, I; Shochet, O; Tsimring, Lev; Levine, Herbert; Aranson, Igor; Ben-Jacob, Eshel; Cohen, Inon; Shochet, Ofer

    1995-01-01

    We study the formation of spot patterns seen in a variety of bacterial species when the bacteria are subjected to oxidative stress due to hazardous byproducts of respiration. Our approach consists of coupling the cell density field to a chemoattractant concentration as well as to nutrient and waste fields. The latter serves as a triggering field for emission of chemoattractant. Important elements in the proposed model include the propagation of a front of motile bacteria radially outward form an initial site, a Turing instability of the uniformly dense state and a reduction of motility for cells sufficiently far behind the front. The wide variety of patterns seen in the experiments is explained as being due the variation of the details of the initiation of the chemoattractant emission as well as the transition to a non-motile phase.

  18. Swimming bacteria power microscopic gears

    Energy Technology Data Exchange (ETDEWEB)

    Sokolov, Andrey; Apodaca, Mario M.; Grzybowski, Bartosz A.; Aranson, Igor S.

    2010-01-19

    Whereas the laws of thermodynamics prohibit extraction of useful work from the Brownian motion of particles in equilibrium, these motions can be “rectified” under nonequilibrium conditions, for example, in the presence of asymmetric geometrical obstacles. Here, we describe a class of systems in which aerobic bacteria Bacillus subtilis moving randomly in a fluid film power submillimeter gears and primitive systems of gears decorated with asymmetric teeth. The directional rotation is observed only in the regime of collective bacterial swimming and the gears’ angular velocities depend on and can be controlled by the amount of oxygen available to the bacteria. The ability to harness and control the power of collective motions appears an important requirement for further development of mechanical systems driven by microorganisms.

  19. Swimming bacteria power microscopic gears.

    Energy Technology Data Exchange (ETDEWEB)

    Sokolov, A.; Apodaca, M. M.; Grzybowski, B. A.; Aranson, I. S.; Materials Science Division; Princeton Univ.; Northwestern Univ.

    2010-01-19

    Whereas the laws of thermodynamics prohibit extraction of useful work from the Brownian motion of particles in equilibrium, these motions can be 'rectified' under nonequilibrium conditions, for example, in the presence of asymmetric geometrical obstacles. Here, we describe a class of systems in which aerobic bacteria Bacillus subtilis moving randomly in a fluid film power submillimeter gears and primitive systems of gears decorated with asymmetric teeth. The directional rotation is observed only in the regime of collective bacterial swimming and the gears angular velocities depend on and can be controlled by the amount of oxygen available to the bacteria. The ability to harness and control the power of collective motions appears an important requirement for further development of mechanical systems driven by microorganisms.

  20. Synergetic effect in bacteria radiobiology

    International Nuclear Information System (INIS)

    Synergetic effect in bacteria radiobiology is considered on the example of combined thermoradiation and magneto-radiation effect. When considering leading mechanisms of synergetic effects the main role is played by the violation of DNA repair processes. The formation of complex non-repair genome damages proceeds under conditions of inhibition of fermentative complexes providing stability of genetic cell information. In the case of combined radiation effect and other bactericide factors additional damages of membranes and energy supply systems of cells are very important in the formation of the final radiobiologic effect. An important role in the synergetic intensification of bacteria death is played by violations in the balance of DNA and protein synthesis reducing the effectiveness of processes of cell restoration

  1. Assessing Chronological Aging in Bacteria

    OpenAIRE

    Gonidakis, Stavros; Valter D. Longo

    2013-01-01

    Bacteria, which are often considered as avid reproductive organisms under constant selective pressure to utilize available nutrients to proliferate, might seem an inappropriate model to study aging. However, environmental conditions are rarely supporting the exponential growth that is most often studied in laboratories. In the wild, Escherichia coli inhabits environments of relative nutritional paucity. Not surprisingly, under such circumstances, members of an E. coli population age and progr...

  2. Programmed survival of soil bacteria

    DEFF Research Database (Denmark)

    Jensen, Lars Bogø; Molin, Søren; Sternberg, Claus; Ramos, J.L.

    1992-01-01

    Biological containment systems have been developed for Pseudomonas putida and related soil bacteria. The systems are based on combinations of lethal genes and regulated gene expression. Two types of killing function have been employed: 1) A membrane protein interfering with the membrane potential (geJ). and 2) a nuclease attacking nucleic acids intracellularly. The efficacy of these lethal genes has been assessed in model constructions with a synthetic lac promoter. By combination with the regul...

  3. High Pressure Inactivation of Bacteria

    OpenAIRE

    Kilimann, Klaus Valentin

    2006-01-01

    The aim of this thesis was to study the effect of temperature-co-solvent or combined pressure-temperature-co-solvent induced inactivation behaviour of bacteria. Therefore, the focus was set on the fermentative organism Lactococcus lactis ssp. cremoris MG 1363, which should be characterised on its physiological behaviour under extreme conditions. In addition, previously measured data sets were used (Molina-Höppner, 2002) to the pressure-temperature-co-solvent dependent inactivation kinetics th...

  4. Swimming bacteria power microscopic gears

    OpenAIRE

    Sokolov, Andrey; Apodaca, Mario M.; Grzybowski, Bartosz A.; Aranson, Igor S.

    2009-01-01

    Whereas the laws of thermodynamics prohibit extraction of useful work from the Brownian motion of particles in equilibrium, these motions can be “rectified” under nonequilibrium conditions, for example, in the presence of asymmetric geometrical obstacles. Here, we describe a class of systems in which aerobic bacteria Bacillus subtilis moving randomly in a fluid film power submillimeter gears and primitive systems of gears decorated with asymmetric teeth. The directional rotation is observed o...

  5. Box-shaped halophilic bacteria.

    OpenAIRE

    Javor, B; Requadt, C; Stoeckenius, W.

    1982-01-01

    Three morphologically similar strains of halophilic, box-shaped procaryotes have been isolated from brines collected in the Sinai, Baja California (Mexico), and southern California (United States). Although the isolates in their morphology resemble Walsby's square bacteria, which are a dominant morphological type in the Red Sea and Baja California brines, they are probably not identical to them. The cells show the general characteristics of extreme halophiles and archaebacteria. They contain ...

  6. Taxonomy of Bacteria Nodulating Legumes

    OpenAIRE

    Raúl Rivas; Paula García-Fraile; Encarna Velázquez

    2009-01-01

    Over the years, the term “rhizobia” has come to be used for all the bacteria that are capable of nodulation and nitrogen fixation in association with legumes but the taxonomy of rhizobia has changed considerably over the last 30 year. Recently, several non- rhizobial species belonging to alpha and beta subgroup of Proteobacteria have been identified as nitrogen-fixing legume symbionts. Here we provide an overview of the history of the rhizobia and the widespread phylogenetic diversity of nitr...

  7. Antibiotic resistance in probiotic bacteria

    OpenAIRE

    Gueimonde, Miguel; Sánchez, Borja; G. de los Reyes-Gavilán, Clara; Margolles, Abelardo

    2013-01-01

    Probiotics are live microorganisms which when administered in adequate amounts confer a health benefit on the host. The main probiotic bacteria are strains belonging to the genera Lactobacillus and Bifidobacterium, although other representatives, such as Bacillus or Escherichia coli strains, have also been used. Lactobacillus and Bifidobacterium are two common inhabitants of the human intestinal microbiota. Also, some species are used in food fermentation processes as starters, or as adjunct ...

  8. Potential role of bacteria packaging by protozoa in the persistence and transmission of pathogenic bacteria

    OpenAIRE

    SteveJCharette

    2014-01-01

    Many pathogenic bacteria live in close association with protozoa. These unicellular eukaryotic microorganisms are ubiquitous in various environments. A number of protozoa such as amoebae and ciliates ingest pathogenic bacteria, package them usually in membrane structures, and then release them into the environment. Packaged bacteria are more resistant to various stresses and are more apt to survive than free bacteria. New evidence indicates that protozoa and not bacteria control the packaging...

  9. Stop the Spread of Superbugs: Help Fight Drug Resistant Bacteria

    Science.gov (United States)

    ... disclaimer . Subscribe Stop the Spread of Superbugs Help Fight Drug-Resistant Bacteria For nearly a century, bacteria- ... the “good” bacteria that help you digest food, fight infection, and stay healthy. Bacteria that are tough ...

  10. Bacteria and vampirism in cinema.

    Science.gov (United States)

    Castel, O; Bourry, A; Thévenot, S; Burucoa, C

    2013-09-01

    A vampire is a non-dead and non-alive chimerical creature, which, according to various folklores and popular superstitions, feeds on blood of the living to draw vital force. Vampires do not reproduce by copulation, but by bite. Vampirism is thus similar to a contagious disease contracted by intravascular inoculation with a suspected microbial origin. In several vampire films, two real bacteria were staged, better integrated than others in popular imagination: Yersinia pestis and Treponema pallidum. Bacillus vampiris was created for science-fiction. These films are attempts to better define humans through one of their greatest fears: infectious disease. PMID:23916557

  11. Thermophilic spore-forming bacteria isolated from spoiled canned food and their heat resistance. Results of a French ten-year survey.

    Science.gov (United States)

    André, S; Zuber, F; Remize, F

    2013-07-15

    Thermal processing of Low Acid Canned Foods (LACF), which are safe and shelf-stable at ambient temperature for several years, results in heat inactivation of all vegetative microorganisms and the partial or total inactivation of spores. Good Manufacturing Hygienic Practices include stability tests for managing the pathogen risk related to surviving mesophilic bacterial spores. LACF are also often submitted to additional incubation conditions, typically 55 °C for 7 days, to monitor spoilage by thermophiles. In this study we identified the bacterial species responsible for non-stability after prolonged at 55 °C of incubation of LACF from 455 samples collected from 122 French canneries over 10 years. Bacteria were identified by microsequencing or a recent developed tool for group-specific PCR detection (SporeTraQ™). A single species was identified for 93% of examined samples. Three genera were responsible for more than 80% of all non-stability cases: mostly Moorella (36%) and Geobacillus (35%), and less frequently Thermoanaerobacterium (10%). The other most frequent bacterial genera identified were Bacillus, Thermoanaerobacter, Caldanaerobius, Anoxybacillus, Paenibacillus and Clostridium. Species frequency was dependent on food category, i.e. vegetables, ready-made meals containing meat, seafood or other recipes, products containing fatty duck, and related to the intensity of the thermal treatment applied in these food categories. The spore heat resistance parameters (D or ? and z values) from 36 strains isolated in this study were determined. Taken together, our results single out the species most suitable for use as indicators for thermal process settings. This extensively-documented survey of the species that cause non-stability at 55 °C in LACF will help canneries to improve the management of microbial contamination. PMID:23728430

  12. Money and transmission of bacteria.

    Science.gov (United States)

    Gedik, Habip; Voss, Timothy A; Voss, Andreas

    2013-01-01

    Money is one of the most frequently passed items in the world. The aim of this study was to ascertain the survival status of bacteria including Staphylococcus aureus, Escherichia coli, and Vancomycin- Resistant Enterococci (VRE) on banknotes from different countries and the transmission of bacteria to people who come in contact with the banknotes. The survival rate was highest for the Romanian Leu yielding all three microorganisms used after both three and six hours of drying. Furthermore, the Leu was the only banknote to yield VRE after one day of drying. Other currencies either enabled the survival of Extended-Spectrum Beta-Lactamases (ESBL) and VRE (e.g. Euro), but not of MRSA, or the other way round (e.g. US Dollar). While a variety of factors such as community hygiene levels, people's behaviour, and antimicrobial resistance rates at community level obviously have influence on the transmission of resistant microorganisms, the type of banknote-paper may be an additional variable to consider. PMID:23985137

  13. The Microworld of Marine-Bacteria

    DEFF Research Database (Denmark)

    JØRGENSEN, BB

    1995-01-01

    Microsensor studies show that the marine environment in the size scale of bacteria is physically and chemically very different from the macroenvironment. The microbial world of the sediment-water interface is thus dominated by water viscosity and steep diffusion gradients. Because of the diverse metabolism types, bacteria in the mostly anoxic sea floor play an important role in the major element cycles of the ocean. The communities of giant, filamentous sulfur bacteria that live in the deep-sea ...

  14. Beneficial interactions between insects and gut bacteria

    OpenAIRE

    R Rajagopal

    2009-01-01

    Insects are amongst the most successful of animals, both in terms of diversity and in colonizing all ecological niches. Recent studies have highlighted the benefi ciary roles that bacteria play in the success and establishment of insects. By adopting techniques like 16S rRNA sequencing we are now in a position to understand the diversity of bacteria present in insect guts. It has been shown that some of these bacteria, like Wolbachia and Cardinium are involved in manipulating insect populatio...

  15. Quorum sensing in gram-negative bacteria

    DEFF Research Database (Denmark)

    Wu, H.; Song, Z.J.; Høiby, N.; Givskov, Michael Christian

    2004-01-01

    Bacteria can communicate with each other by means of signal molecules to coordinate the behavior of the entire community, and the mechanism is referred to as quorum sensing (QS). Signal systems enable bacteria to sense the size of their densities by monitoring the concentration of the signal molecules. Among Gram-negative bacteria N-acyl-L-homoserine lactone (acyl-HSL)-dependent quorum sensing systems are particularly widespread. These systems are used to coordinate expression of phenotypes that...

  16. Hydrodynamic Interactions between Two Swimming Bacteria

    OpenAIRE

    Ishikawa, T; Sekiya, G.; Imai, Y.; T. Yamaguchi

    2007-01-01

    This article evaluates the hydrodynamic interactions between two swimming bacteria precisely. We assume that each bacterium is force free and torque free, with a Stokes flow field around it. The geometry of each bacterium is modeled as a spherical or spheroidal body with a single helical flagellum. The movements of two interacting bacteria in an infinite fluid otherwise at rest are computed using a boundary element method, and the trajectories of the two interacting bacteria and the stresslet...

  17. PRESENCE OF BACTERIA IN DENTINAL TUBULES

    OpenAIRE

    José Ricardo Kina; Juliana Kina; Eunice Fumico Umeda Kina; Mônica Kina; Ana Maria Pires Soubhia

    2008-01-01

    This study demonstrated that a significant number of bacteria is present in the radicular dentinal tubules of periodontally diseased human teeth. Ten periodontally diseased teeth were prepared and stained by Brown and Brenn technique for histological examination. Bacteria were detected in all teeth. It is suggested that bacteria may invade dentinal tubules exposed to periodontal pocket and are very hard to be eliminated by conventional mechanical and chemical periodontal therapy. Contaminated...

  18. Transformation of gram positive bacteria by sonoporation

    Science.gov (United States)

    Yang, Yunfeng; Li, Yongchao

    2014-03-11

    The present invention provides a sonoporation-based method that can be universally applied for delivery of compounds into Gram positive bacteria. Gram positive bacteria which can be transformed by sonoporation include, for example, Bacillus, Streptococcus, Acetobacterium, and Clostridium. Compounds which can be delivered into Gram positive bacteria via sonoporation include nucleic acids (DNA or RNA), proteins, lipids, carbohydrates, viruses, small organic and inorganic molecules, and nano-particles.

  19. Bacterias, fuente de energía para el futuro

    Directory of Open Access Journals (Sweden)

    Alba Ayde Romero Mejía

    2012-06-01

    Full Text Available This paper presents a family of bacteria called Geobacter that have the ability to produce power as a renewable source in a microbial fuel cell. These bacteria can completely oxidize organic compounds using different elements or substances as electron acceptors. The paper addresses key features of the bacteria, the mechanisms used to harness the electricity generated and an approximation of the system required to become a competitive source of renewable energy. The results show a comparative analysis of sources of conventional and unconventional energy with respect to the Geobacter family of bacteria.

  20. Aggregation Patterns in Stressed Bacteria

    International Nuclear Information System (INIS)

    We study the formation of spot patterns seen in bacterial colonies when the bacteria are subjected to oxidative stress due to hazardous by-products of respiration. The cell density is coupled to a chemoattractant concentration as well as to nutrient and waste fields. The model combines the propagation of a front of motile bacterial radially outward from an initial site, a Turing instability of the uniformly dense state, and a reduction of motility for cells sufficiently far behind the front. The wide variety of patterns seen in the experiments is reproduced by the model by varying the details of the initiation of the chemoattractant emission as well as the transition to a nonmotile phase

  1. Single Bacteria as Turing Machines

    Science.gov (United States)

    Bos, Julia; Zang, Qiucen; Vyawahare, Saurabh; Austin, Robert

    2014-03-01

    In Allan Turing's famous 1950 paper on Computing Machinery and Intelligence, he started with the provocative statement: ``I propose to consider the question, `Can machines think?' This should begin with definitions of the meaning of the terms `machine' and `think'.'' In our own work on exploring the way that organisms respond to stress and evolve, it seems at times as if they come to remarkably fast solutions to problems, indicating some sort of very clever computational machinery. I'll discuss how it would appear that bacteria can indeed create a form of a Turing Machine, the first example of a computer, and how they might use this algorithm to do rapid evolution to solve a genomics problem.

  2. Resuscitation effects of catalase on airborne bacteria.

    OpenAIRE

    Marthi, B; Shaffer, B.T.; Lighthart, B; Ganio, L

    1991-01-01

    Catalase incorporation into enumeration media caused a significant increase (greater than 63%) in the colony-forming abilities of airborne bacteria. Incubation for 30 to 60 min of airborne bacteria in collection fluid containing catalase caused a greater than 95% increase in colony-forming ability. However, catalase did not have any effects on enumeration at high relative humidities (80 to 90%).

  3. A RAPD based study revealing a previously unreported wide range of mesophilic and thermophilic spore formers associated with milk powders in China.

    Science.gov (United States)

    Sadiq, Faizan A; Li, Yun; Liu, TongJie; Flint, Steve; Zhang, Guohua; He, GuoQing

    2016-01-18

    Aerobic spore forming bacteria are potential milk powder contaminants and are viewed as indicators of poor quality. A total of 738 bacteria, including both mesophilic and thermophilic, isolated from twenty-five powdered milk samples representative of three types of milk powders in China were analyzed based on the random amplified polymorphic DNA (RAPD) protocol to provide insight into species diversity. Bacillus licheniformis was found to be the most prevalent bacterium with greatest diversity (~43% of the total isolates) followed by Geobacillus stearothermophilus (~21% of the total isolates). Anoxybacillus flavithermus represented only 8.5% of the total profiles. Interestingly, actinomycetes represented a major group of the isolates with the predominance of Laceyella sacchari followed by Thermoactinomyces vulgaris, altogether comprising of 7.3% of the total isolates. Out of the nineteen separate bacterial species (except five unidentified groups) recovered and identified from milk powders, twelve proved to belong to novel or previously unreported species in milk powders. Assessment and characterization of the harmful effects caused by this particular micro-flora on the quality and safety of milk powders will be worth doing in the future. PMID:26555161

  4. HYDROCARBON-DEGRADING BACTERIA AND SURFACTANT ACTIVITY

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R; Topher Berry, T; Grazyna A. Plaza, G; jacek Wypych, j

    2006-08-15

    Fate of benzene ethylbenzene toluene xylenes (BTEX) compounds through biodegradation was investigated using two different bacteria, Ralstonia picketti (BP-20) and Alcaligenes piechaudii (CZOR L-1B). These bacteria were isolated from extremely polluted petroleum hydrocarbon contaminated soils. PCR and Fatty Acid Methyl Ester (FAME) were used to identify the isolates. Biodegradation was measured using each organism individually and in combination. Both bacteria were shown to degrade each of the BTEX compounds. Alcaligenes piechaudii biodegraded BTEXs more efficiently while mixed with BP-20 and individually. Biosurfactant production was observed by culture techniques. In addition 3-hydroxy fatty acids, important in biosurfactant production, was observed by FAME analysis. In the all experiments toluene and m+p- xylenes were better growth substrates for both bacteria than the other BTEX compounds. In addition, the test results indicate that the bacteria could contribute to bioremediation of aromatic hydrocarbons (BTEX) pollution increase biodegradation through the action by biosurfactants.

  5. Chryseobacterium indologenes, novel mannanase-producing bacteria

    Directory of Open Access Journals (Sweden)

    Surachai Rattanasuk

    2009-10-01

    Full Text Available Mannanase is a mannan degrading enzyme which is produced by microorganisms, including bacteria. This enzyme can be used in many industrial processes as well as for improving the quality of animal feeds. The aim of the present study was toscreen and characterize the mannanase-producing bacteria. Two genera of bacteria were isolated from Thai soil samples,fermented coconut, and fertilizer. Screening was carried out on agar plates containing mannan stained with iodine solution.The bacteria were identified by partial 16S rRNA gene sequence, biochemical test and morphology, respectively. The mannanase activity was determined by zymogram and DNS method. Two strains of bacteria with mannanase activity were identified as Bacillus and Chryseobacterium. This is the first report of mannanase-producing Chryseobacterium.

  6. Filamentous bacteria existence in aerobic granular reactors.

    Science.gov (United States)

    Figueroa, M; Val del Río, A; Campos, J L; Méndez, R; Mosquera-Corral, A

    2015-05-01

    Filamentous bacteria are associated to biomass settling problems in wastewater treatment plants. In systems based on aerobic granular biomass they have been proposed to contribute to the initial biomass aggregation process. However, their development on mature aerobic granular systems has not been sufficiently studied. In the present research work, filamentous bacteria were studied for the first time after long-term operation (up to 300 days) of aerobic granular systems. Chloroflexi and Sphaerotilus natans have been observed in a reactor fed with synthetic wastewater. These filamentous bacteria could only come from the inoculated sludge. Thiothrix and Chloroflexi bacteria were observed in aerobic granular biomass treating wastewater from a fish canning industry. Meganema perideroedes was detected in a reactor treating wastewater from a plant processing marine products. As a conclusion, the source of filamentous bacteria in these mature aerobic granular systems fed with industrial effluents was the incoming wastewater. PMID:25533039

  7. Catabolism of lysine by mixed rumen bacteria

    International Nuclear Information System (INIS)

    Metabolites arising from the catabolism of lysine by the mixed rumen bacteria were chromatographically examined by using radioactive lysine. After 6 hr incubation, 241 nmole/ml of lysine was decomposed to give ether-soluble substances and CO2 by the bacteria and 90 nmole/ml of lysine was incorporated unchanged into the bacteria. delta-Aminovalerate, cadaverine or pipecolate did not seem to be produced from lysine even after incubation of the bacteria with addition of those three amino compounds to trap besides lysine and radioactive lysine. Most of the ether-soluble substances produced from radioactive lysine was volatile fatty acids (VFAs). Fractionation of VFAs revealed that the peaks of butyric and acetic acids coincided with the strong radioactive peaks. Small amounts of radioactivities were detected in propionic acid peak and a peak assumed to be caproic acid. The rumen bacteria appeared to decompose much larger amounts of lysine than the rumen ciliate protozoa did. (auth.)

  8. Chemotactic selection of pollutant degrading soil bacteria

    Science.gov (United States)

    Hazen, T.C.

    1991-03-04

    A method is described for identifying soil microbial strains which may be bacterial degraders of pollutants. This method includes: Placing a concentration of a pollutant in a substantially closed container; placing the container in a sample of soil for a period of time ranging from one minute to several hours; retrieving the container and collecting its contents; microscopically determining the identity of the bacteria present. Different concentrations of the pollutant can be used to determine which bacteria respond to each concentration. The method can be used for characterizing a polluted site or for looking for naturally occurring biological degraders of the pollutant. Then bacteria identified as degraders of the pollutant and as chemotactically attracted to the pollutant are used to innoculate contaminated soil. To enhance the effect of the bacteria on the pollutant, nutrients are cyclicly provided to the bacteria then withheld to alternately build up the size of the bacterial colony or community and then allow it to degrade the pollutant.

  9. Methylation of ribosomal proteins in bacteria: evidence of conserved modification of the eubacterial 50S subunit.

    OpenAIRE

    Amaro, A M; Jerez, C A

    1984-01-01

    Methylation of the 50S ribosomal proteins from Bacillus stearothermophilus, Bacillus subtilis, Alteromonas espejiana, and Halobacterium cutirubrum was measured after the cells were grown in the presence of [1-14C]methionine or [methyl-3H]methionine or both. Two-dimensional polyacrylamide gel electrophoretic analysis revealed, in general, similar relative electrophoretic mobilities of the methylated proteins from each eubacterium studied. Proteins known to be structurally and functionally homo...

  10. Oxidized magnetosomes in magnetotactic bacteria

    International Nuclear Information System (INIS)

    Single domain magnetite particles formed in chain assemblies by magnetotactic bacteria (MTB) are taken as proxy in inferring environmental and Earth's magnetism. The reliable use of magnetosomes in MTB, or their fossil remains (magnetofossils), requires that they are unaffected by oxidation. Here we present experimental data from saturation isothermal remanent magnetization (SIRM) and ferromagnetic resonance spectroscopy (FMR) between room temperature and 10 K, which were applied to detect oxidation in intact MTB. The distinction of non-oxidized from oxidized MTB-assemblies is based mainly on two different characteristic physical properties: (i) the intrinsic Verwey transition in pure magnetite, and (ii) blocking of spins of nano-sized products formed during oxidation at the surface or the interior of the magnetosomes. Suppression of the Verwey transition due to oxidation prevents the shift of the anisotropy axes, which in turn conserves the anisotropic properties at room temperature down to low temperature. The presented methodology assures a distinction between non- and oxidized magnetite assemblies, with pronounced certainty, unlike standard dc methods.

  11. Oxidized magnetosomes in magnetotactic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Gehring, Andreas U., E-mail: agehring@erdw.ethz.ch [Institute of Geophysics, ETH Zurich, 8092 Zurich (Switzerland); Charilaou, Michalis, E-mail: michalis.charilaou@erdw.ethz.ch [Institute of Geophysics, ETH Zurich, 8092 Zurich (Switzerland); Garcia-Rubio, Ines, E-mail: garciarubio@phys.chem.ethz.ch [Laboratory of Physical Chemistry, ETH Zurich, 8093 Zurich (Switzerland)

    2012-04-15

    Single domain magnetite particles formed in chain assemblies by magnetotactic bacteria (MTB) are taken as proxy in inferring environmental and Earth's magnetism. The reliable use of magnetosomes in MTB, or their fossil remains (magnetofossils), requires that they are unaffected by oxidation. Here we present experimental data from saturation isothermal remanent magnetization (SIRM) and ferromagnetic resonance spectroscopy (FMR) between room temperature and 10 K, which were applied to detect oxidation in intact MTB. The distinction of non-oxidized from oxidized MTB-assemblies is based mainly on two different characteristic physical properties: (i) the intrinsic Verwey transition in pure magnetite, and (ii) blocking of spins of nano-sized products formed during oxidation at the surface or the interior of the magnetosomes. Suppression of the Verwey transition due to oxidation prevents the shift of the anisotropy axes, which in turn conserves the anisotropic properties at room temperature down to low temperature. The presented methodology assures a distinction between non- and oxidized magnetite assemblies, with pronounced certainty, unlike standard dc methods.

  12. Therapeutic Properties of Probiotic Bacteria

    Directory of Open Access Journals (Sweden)

    Nathanon Trachoo

    2006-01-01

    Full Text Available In spite of its long history, public consciousness of probiotics has shifted dramatically in recent years. This is due to a number of factors, including an increased concern about the potential generation of antibiotic resistant bacterial strains due to widespread antibacterial use, and also to the spreading realization that one`s health can be, not simply maintained, but actually improved with proper nutrition. Combined, these factors have stimulated a surge in probiotic research in the past decade, resulting in increasingly refined studies. Indeed, after Elie Metchnikov first printed his work suggesting a positive correlation between human longevity and the consumption of fermented milk, information on probiotics is leaving the realm of the anecdotal as recent, double-blind, placebo controlled randomized tests support beneficial probiotic activity. Concurrently, more is being learned about their activities in vivo. While much work remains to be done before a detailed understanding of probiotics can be achieved, there is mounting evidence that probiotics, when used in proper conditions, may indeed have prophylactic or preventative effects on a broad array of human and animal diseases. This article briefly surveys probiotic history and discusses recent research with a special emphasis on lactic acid bacteria probiotics. Finally, it discusses the inherent difficulties of their study and suggestions for standards for future work.

  13. Antibiotic resistance in probiotic bacteria

    Directory of Open Access Journals (Sweden)

    AbelardoMargolles

    2013-07-01

    Full Text Available Probiotics are live microorganisms which when administered in adequate amounts confer a health benefit on the host. The main probiotic bacteria are strains belonging to the genera Lactobacillus and Bifidobacterium, although other representatives, such as Bacillus or Escherichia coli strains, have also been used. Lactobacillus and Bifidobacterium are two common inhabitants of the human intestinal microbiota. Also, some species are used in food fermentation processes as starters, or as adjunct cultures in the food industry. With some exceptions, antibiotic resistance in these beneficial microbes does not constitute a safety concern in itself, when mutations or intrinsic resistance mechanisms are responsible for the resistance phenotype. In fact, some probiotic strains with intrinsic antibiotic resistance could be useful for restoring the gut microbiota after antibiotic treatment. However, specific antibiotic resistance determinants carried on mobile genetic elements, such as tetracycline resistance genes, are often detected in the typical probiotic genera, and constitute a reservoir of resistance for potential food or gut pathogens, thus representing a serious safety issue.

  14. H2 from hot bacteria

    International Nuclear Information System (INIS)

    This paper reports that a surprisingly large number of bacteria either oxidize or evolve molecular hydrogen (H2) in their natural environments. In such organisms, the reversible activation of H2 is catalyzed by an enzyme turned hydrogenase that can cause electrons provided by an electron donor with protons to evolve H2. The enzyme may oxidize H2 in the presence of a suitable electron acceptor. Hydrogenase will also catalyze an isotope exchange reaction between deuterium (D2) or tritium (T2) gas and water. Few enzymes have as many potential biotechnological applications as hydrogenase. H2 is a versatile and efficient energy carrier, considered the fuel of the future by some, and is an important intermediate in a variety of chemical and petrochemical processes. Hydrogenase has also been proposed to replace platinum in H/D and H/T separations in the nuclear power industry and to activate H2 for electrode-based processes. Indeed, H2 is considered one of the most abundant substrates for the future chemical synthesis industry and the enzyme-catalyzed production of organic chemicals from H2 and CO2 has been described. a complete understanding of how hydrogenases catalyze the reversible activation of H2 might therefore have farreaching consequences in both applied and basic research

  15. Membrane damage of bacteria by silanols treatment

    Scientific Electronic Library Online (English)

    Yun-mi, Kim; Samuel, Farrah; Ronald H, Baney.

    2007-04-15

    Full Text Available Antimicrobial action of silanols, a new class of antimicrobials, was investigated by transmission electron microscopy and fluorescent dye studies. Gram-negative bacteria, Escherichia coli and Pseudomonas aeruginosa and Gram-positive bacteria, Staphylococcus aureus and Enterococcus faecalis were trea [...] ted by silanols at concentration of less than 0.2 wt% for one hour. Membrane damage of the bacteria by the silanol treatment was clearly observed by transmission electron microscopy. Separation of the cytoplasmic membrane from the outer membrane for E. coli and disorganized cytoplasmic membrane of the Gram-positive bacteria were observed when compared to the control. Fluorescent dyes, green-fluorescent nucleic acid stain (Syto 9) and the red-fluorescent nucleic acid stain (Propidium iodide), were used to monitor membrane damage of the bacteria by Confocal microscopy and Spectrophotometer. A reduction of the green fluorescent emission was detected for silanol treated bacteria indicating membrane damage of the bacteria and supporting the hypothesis that their viability loss may be due to their membrane damage analogus to alcohols

  16. Bacteria classification using Cyranose 320 electronic nose

    Directory of Open Access Journals (Sweden)

    Gardner Julian W

    2002-10-01

    Full Text Available Abstract Background An electronic nose (e-nose, the Cyrano Sciences' Cyranose 320, comprising an array of thirty-two polymer carbon black composite sensors has been used to identify six species of bacteria responsible for eye infections when present at a range of concentrations in saline solutions. Readings were taken from the headspace of the samples by manually introducing the portable e-nose system into a sterile glass containing a fixed volume of bacteria in suspension. Gathered data were a very complex mixture of different chemical compounds. Method Linear Principal Component Analysis (PCA method was able to classify four classes of bacteria out of six classes though in reality other two classes were not better evident from PCA analysis and we got 74% classification accuracy from PCA. An innovative data clustering approach was investigated for these bacteria data by combining the 3-dimensional scatter plot, Fuzzy C Means (FCM and Self Organizing Map (SOM network. Using these three data clustering algorithms simultaneously better 'classification' of six eye bacteria classes were represented. Then three supervised classifiers, namely Multi Layer Perceptron (MLP, Probabilistic Neural network (PNN and Radial basis function network (RBF, were used to classify the six bacteria classes. Results A [6 × 1] SOM network gave 96% accuracy for bacteria classification which was best accuracy. A comparative evaluation of the classifiers was conducted for this application. The best results suggest that we are able to predict six classes of bacteria with up to 98% accuracy with the application of the RBF network. Conclusion This type of bacteria data analysis and feature extraction is very difficult. But we can conclude that this combined use of three nonlinear methods can solve the feature extraction problem with very complex data and enhance the performance of Cyranose 320.

  17. Motility fractionation of bacteria by centrifugation

    Science.gov (United States)

    Maggi, Claudio; Lepore, Alessia; Solari, Jacopo; Rizzo, Alessandro; Di Leonardo, Roberto

    Centrifugation is a widespread laboratory technique used to separate mixtures into fractions characterized by a specific size, weight or density. We demonstrate that centrifugation can be also used to separate swimming cells having different motility. To do this we study self-propelled bacteria under the influence of an external centrifugal field. Using dynamic image correlation spectroscopy we measure the spatially resolved motility of bacteria after centrifugation. A significant gradient in swimming-speeds is observed for increasing centrifugal speeds. Our results can be reproduced by a model that treats bacteria as "hot" colloidal particles having a diffusion coefficient that depends on the swimming speed.

  18. Presence of bacteria in dentinal tubules

    Scientific Electronic Library Online (English)

    José Ricardo, Kina; Juliana, Kina; Eunice Fumico Umeda, Kina; Mônica, Kina; Ana Maria Pires, Soubhia.

    2008-06-01

    Full Text Available This study demonstrated that a significant number of bacteria is present in the radicular dentinal tubules of periodontally diseased human teeth. Ten periodontally diseased teeth were prepared and stained by Brown and Brenn technique for histological examination. Bacteria were detected in all teeth. [...] It is suggested that bacteria may invade dentinal tubules exposed to periodontal pocket and are very hard to be eliminated by conventional mechanical and chemical periodontal therapy. Contaminated dentinal tubules of periodontally diseased teeth can thus act as active bacterial reservoirs to promote recolonization of mechanically treated root surfaces, which could interfere with the periodontal healing and progression of the disease.

  19. Folate Production by Probiotic Bacteria

    Directory of Open Access Journals (Sweden)

    Stefano Raimondi

    2011-01-01

    Full Text Available Probiotic bacteria, mostly belonging to the genera Lactobacillus and Bifidobacterium, confer a number of health benefits to the host, including vitamin production. With the aim to produce folate-enriched fermented products and/or develop probiotic supplements that accomplish folate biosynthesis in vivo within the colon, bifidobacteria and lactobacilli have been extensively studied for their capability to produce this vitamin. On the basis of physiological studies and genome analysis, wild-type lactobacilli cannot synthesize folate, generally require it for growth, and provide a negative contribution to folate levels in fermented dairy products. Lactobacillus plantarum constitutes an exception among lactobacilli, since it is capable of folate production in presence of para-aminobenzoic acid (pABA and deserves to be used in animal trials to validate its ability to produce the vitamin in vivo. On the other hand, several folate-producing strains have been selected within the genus Bifidobacterium, with a great variability in the extent of vitamin released in the medium. Most of them belong to the species B. adolescentis and B. pseudocatenulatum, but few folate producing strains are found in the other species as well. Rats fed a probiotic formulation of folate-producing bifidobacteria exhibited increased plasma folate level, confirming that the vitamin is produced in vivo and absorbed. In a human trial, the same supplement raised folate concentration in feces. The use of folate-producing probiotic strains can be regarded as a new perspective in the specific use of probiotics. They could more efficiently confer protection against inflammation and cancer, both exerting the beneficial effects of probiotics and preventing the folate deficiency that is associated with premalignant changes in the colonic epithelia.

  20. Effects of thermoradiation on bacteria

    International Nuclear Information System (INIS)

    A 60Co source was used to determine the effects of thermoradiation on Achromobacter aquamarinus, Staphylococcus aureus, and vegetative and spore cells of Bacillus subtilis var. globigii. The rate of inactivation of these cultures, except vegetative-cell populations of B. subtilis, was exponential and in direct proportion to temperature. The D10 (dose that inactivates 90 percent of the microbial population) value for A. aquamarinus was 8.0 Krad at 25 degrees C and 4.9 Krad at 35 degrees C. For S. aureus, D10 was 9.8 and 5.3 Krad at 35 and 45 degrees C, respectively. Vegetative cells of B. subtilis demonstrated a rapid initial inactivation followed by a steady but decreased exponential rate. The D10 at 25 degrees C was 10.3 Krad, but at 35 and 45 degrees C this value was 6.2 and 3.8 Krad, respectively. Between 0 and 95 Krad, survival curves for B. subtilis spores at 75 degrees C showed slight inactivation, increasing in rat at and above 85 degrees C. The D10 values for spores at 85 and 90 degrees C were 129 and 92 Krad, respectively. Significant synergism between heat and irradiation was noted at 35 degrees C for A. aquamarinus and 45 degrees C for S. aureus. The presence of 0.1 mM cysteine in suspending media afforded protection to both cultures at these critical temperatures. On the other hand, cysteine sensitized B. subtilis spores at radiation doses greater than 100 Krad. The combined effect of heat and irradiation was more destructive to bacteria than either method alone

  1. Magnetotactic Bacteria from Extreme Environments

    Directory of Open Access Journals (Sweden)

    Christopher T. Lefèvre

    2013-03-01

    Full Text Available Magnetotactic bacteria (MTB represent a diverse collection of motile prokaryotes that biomineralize intracellular, membrane-bounded, tens-of-nanometer-sized crystals of a magnetic mineral called magnetosomes. Magnetosome minerals consist of either magnetite (Fe3O4 or greigite (Fe3S4 and cause cells to align along the Earth’s geomagnetic field lines as they swim, a trait called magnetotaxis. MTB are known to mainly inhabit the oxic–anoxic interface (OAI in water columns or sediments of aquatic habitats and it is currently thought that magnetosomes function as a means of making chemotaxis more efficient in locating and maintaining an optimal position for growth and survival at the OAI. Known cultured and uncultured MTB are phylogenetically associated with the Alpha-, Gamma- and Deltaproteobacteria classes of the phylum Proteobacteria, the Nitrospirae phylum and the candidate division OP3, part of the Planctomycetes-Verrucomicrobia-Chlamydiae (PVC bacterial superphylum. MTB are generally thought to be ubiquitous in aquatic environments as they are cosmopolitan in distribution and have been found in every continent although for years MTB were thought to be restricted to habitats with pH values near neutral and at ambient temperature. Recently, however, moderate thermophilic and alkaliphilic MTB have been described including: an uncultured, moderately thermophilic magnetotactic bacterium present in hot springs in northern Nevada with a probable upper growth limit of about 63 °C; and several strains of obligately alkaliphilic MTB isolated in pure culture from different aquatic habitats in California, including the hypersaline, extremely alkaline Mono Lake, with an optimal growth pH of >9.0.

  2. Magnetotactic Bacteria from Extreme Environments

    Science.gov (United States)

    Bazylinski, Dennis A.; Lefère, Christopher T.

    2013-03-01

    Magnetotactic bacteria (MTB) represent a diverse collection of motile prokaryotes that biomineralize intracellular, membrane-bounded, tens-of-nanometer-sized crystals of a magnetic mineral called magnetosomes. Magnetosome minerals consist of either magnetite (Fe3O4) or greigite (Fe3S4) and cause cells to align along the Earth's geomagnetic field lines as they swim, a trait called magnetotaxis. MTB are known to mainly inhabit the oxic-anoxic interface (OAI) in water columns or sediments of aquatic habitats and it is currently thought that magnetosomes function as a means of making chemotaxis more efficient in locating and maintaining an optimal position for growth and survival at the OAI. Known cultured and uncultured MTB are phylogenetically associated with the Alpha-, Gamma- and Deltaproteobacteria classes of the phylum Proteobacteria, the Nitrospirae phylum and the candidate division OP3, part of the Planctomycetes-Verrucomicrobia-Chlamydiae (PVC) bacterial superphylum. MTB are generally thought to be ubiquitous in aquatic environments as they are cosmopolitan in distribution and have been found in every continent although for years MTB were thought to be restricted to habitats with pH values near neutral and at ambient temperature. Recently, however, moderate thermophilic and alkaliphilic MTB have been described including: an uncultured, moderately thermophilic magnetotactic bacterium present in hot springs in northern Nevada with a probable upper growth limit of about 63 °C; and several strains of obligately alkaliphilic MTB isolated in pure culture from different aquatic habitats in California, including the hypersaline, extremely alkaline Mono Lake, with an optimal growth pH of >9.0.

  3. Protection of probiotic bacteria in synbiotic matrices

    Science.gov (United States)

    Probiotics, like Lactobacillus acidophilus, Lactobacillus reuteri, Bifidobacterium breve, Bifidobacterium longum, when encapsulated with prebiotic fibers such as fructo-oligosaccharides (FOS), inulin (I) and pectic-oligosaccharides (POS), formed a synbiotic matrix system that protected the bacteria ...

  4. Abundance, viability and culturability of Antarctic bacteria

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.; DeSouza, M.J.B.D.; Nair, S.; Chandramohan, D.

    The viability of total number of bacteria decide the mineralisation rate in any ecosystem and ultimately the fertility of the region. This study aims at establishing the extent of viability in the standing stock of the Antarctic bacterial population...

  5. Swarming bacteria migrate by Lévy Walk.

    Science.gov (United States)

    Ariel, Gil; Rabani, Amit; Benisty, Sivan; Partridge, Jonathan D; Harshey, Rasika M; Be'er, Avraham

    2015-01-01

    Individual swimming bacteria are known to bias their random trajectories in search of food and to optimize survival. The motion of bacteria within a swarm, wherein they migrate as a collective group over a solid surface, is fundamentally different as typical bacterial swarms show large-scale swirling and streaming motions involving millions to billions of cells. Here by tracking trajectories of fluorescently labelled individuals within such dense swarms, we find that the bacteria are performing super-diffusion, consistent with Lévy walks. Lévy walks are characterized by trajectories that have straight stretches for extended lengths whose variance is infinite. The evidence of super-diffusion consistent with Lévy walks in bacteria suggests that this strategy may have evolved considerably earlier than previously thought. PMID:26403719

  6. Comparative genomics of the lactic acid bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Makarova, K.; Slesarev, A.; Wolf, Y.; Sorokin, A.; Mirkin, B.; Koonin, E.; Pavlov, A.; Pavlova, N.; Karamychev, V.; Polouchine, N.; Shakhova, V.; Grigoriev, I.; Lou, Y.; Rokhsar, D.; Lucas, S.; Huang, K.; Goodstein, D. M.; Hawkins, T.; Plengvidhya, V.; Welker, D.; Hughes, J.; Goh, Y.; Benson, A.; Baldwin, K.; Lee, J. -H.; Diaz-Muniz, I.; Dosti, B.; Smeianov, V; Wechter, W.; Barabote, R.; Lorca, G.; Altermann, E.; Barrangou, R.; Ganesan, B.; Xie, Y.; Rawsthorne, H.; Tamir, D.; Parker, C.; Breidt, F.; Broadbent, J.; Hutkins, R.; O' Sullivan, D.; Steele, J.; Unlu, G.; Saier, M.; Klaenhammer, T.; Richardson, P.; Kozyavkin, S.; Weimer, B.; Mills, D.

    2006-06-01

    Lactic acid-producing bacteria are associated with various plant and animal niches and play a key role in the production of fermented foods and beverages. We report nine genome sequences representing the phylogenetic and functional diversity of these bacteria. The small genomes of lactic acid bacteria encode a broad repertoire of transporters for efficient carbon and nitrogen acquisition from the nutritionally rich environments they inhabit and reflect a limited range of biosynthetic capabilities that indicate both prototrophic and auxotrophic strains. Phylogenetic analyses, comparison of gene content across the group, and reconstruction of ancestral gene sets indicate a combination of extensive gene loss and key gene acquisitions via horizontal gene transfer during the coevolution of lactic acid bacteria with their habitats.

  7. Kitchen Utensils Can Spread Bacteria, Study Finds

    Science.gov (United States)

    ... You Are Here: Home ? Latest Health News ? Article URL of this page: https://www.nlm.nih.gov/medlineplus/news/fullstory_155690.html Kitchen Utensils Can Spread Bacteria, Study Finds Expert advises washing knives, peelers between each use ...

  8. Effect of Dielectric and Liquid on Plasma Sterilization Using Dielectric Barrier Discharge Plasma

    OpenAIRE

    Mastanaiah, Navya; Johnson, Judith A.; Roy, Subrata

    2013-01-01

    Plasma sterilization offers a faster, less toxic and versatile alternative to conventional sterilization methods. Using a relatively small, low temperature, atmospheric, dielectric barrier discharge surface plasma generator, we achieved ?6 log reduction in concentration of vegetative bacterial and yeast cells within 4 minutes and ?6 log reduction of Geobacillus stearothermophilus spores within 20 minutes. Plasma sterilization is influenced by a wide variety of factors. Two factors studied in ...

  9. Performance of a new microbial test for quinolone residues in muscle

    OpenAIRE

    Sanz, David; Mata, Luis; Condón, Santiago; Sanz García, María Angeles; Razquín, Pedro

    2011-01-01

    Concerns regarding the presence of drug residues in foods include allergic reactions, toxicity, technological problems in fermented products and the development of antibiotic resistance in human pathogens. The analysis of antimicrobial residues in foods is generally carried out, in a first step, through microbiological screening tests. These tests commonly use Geobacillus stearothermophilus as target specie but show a low ability to detect quinolones. The goal of our s...

  10. Motility fractionation of bacteria by centrifugation

    OpenAIRE

    C. Maggi; Lepore, A.; J. Solari; Rizzo, A.; Di Leonardo, R.

    2013-01-01

    Centrifugation is a widespread laboratory technique used to separate mixtures into fractions characterized by a specific size, weight or density. We demonstrate that centrifugation can be also used to separate swimming cells having different motility. To do this we study self-propelled bacteria under the influence of an external centrifugal field. Using dynamic image correlation spectroscopy we measure the spatially resolved motility of bacteria after centrifugation. A signi...

  11. Resistance mechanisms of bacteria to antimicrobial compounds

    OpenAIRE

    Cloete, T. E.

    2003-01-01

    A range of antimicrobial compounds (bactericides) commonly termed biocides, microbicides, sanitizers, antiseptics and disinfectants are available, all of which are claimed by their producers to kill bacteria. Resistance has been defined as the temporary or permanent ability of an organism and its progeny to remain viable and/or multiply under conditions that would destroy or inhibit other members of the strain. Bacteria may be defined as resistant when they are not susceptible to a concentrat...

  12. Visualizing Bacteria in Nematodes using Fluorescent Microscopy

    OpenAIRE

    Murfin, Kristen E.; Chaston, John; Goodrich-Blair, Heidi

    2012-01-01

    Symbioses, the living together of two or more organisms, are widespread throughout all kingdoms of life. As two of the most ubiquitous organisms on earth, nematodes and bacteria form a wide array of symbiotic associations that range from beneficial to pathogenic 1-3. One such association is the mutually beneficial relationship between Xenorhabdus bacteria and Steinernema nematodes, which has emerged as a model system of symbiosis 4. Steinernema nematodes are entomopathogenic, using their bact...

  13. Kill the Bacteria … and Also Their Messengers?

    OpenAIRE

    Munford, Robert; Lu, Mingfang; Varley, Alan

    2009-01-01

    We consider here a previously neglected aspect of recovery from infectious diseases: how animals dispose of the dead microbes in their tissues. For one of the most important disease-causing microorganisms, Gram-negative bacteria, there is now evidence that the host catabolism of a key microbial molecule is essential for full recovery. As might be expected, it is the same bacterial molecule that animals sense to detect the presence of Gram-negative bacteria in their tissues, the cell wall lipo...

  14. Distribution of coliform bacteria in waste water

    OpenAIRE

    Chandan Kumar Bahura; Dau Lal Bohra; Vikas Modasiya

    2012-01-01

    Biological activity of water can be apparently judged by the colonization of bacteria (microbes). In order to find out the extent of pollution and the relationship between inorganic matters and microbiota, a quantitative and qualitative analysis of bacteria in various types of sewage waters, namely sewage water by the residential colonies (group I), industrial waste water (group II), sewage treatment hub (group III), unorganized collected waste water (group IV) and old residential waste colle...

  15. Mimicking Seawater For Culturing Marine Bacteria

    DEFF Research Database (Denmark)

    Rygaard, Anita Mac; Sonnenschein, Eva; Gram, Lone; Schmidt Thøgersen, Mariane

    2015-01-01

    Only about 1% of marine bacteria have been brought into culture using traditional techniques. The purpose of this study was to investigate if mimicking the natural bacterial environment can increase culturability.We used marine substrates containing defined algal polymers or gellan gum as solidifying agents, and enumerated bacteria from seawater and algal exudates. We tested if culturability could be influenced by addition of quorum sensing signals (AHLs). All plates were incubated at 15°C. Bact...

  16. Rapid methods for detection of bacteria

    DEFF Research Database (Denmark)

    Corfitzen, Charlotte B.; Andersen, B.Ø.; Miller, M.; Ursin, C.; Arvin, Erik; Albrechtsen, Hans-Jørgen

    2006-01-01

    Traditional methods for detection of bacteria in drinking water e.g. Heterotrophic Plate Counts (HPC) or Most Probable Number (MNP) take 48-72 hours to give the result. New rapid methods for detection of bacteria are needed to protect the consumers against contaminations. Two rapid methods: Measurements of Adosine Triphosphate and BactiQuantTM have shown promising results as new monitoring tools, which gives the result within minutes/hours.

  17. Potentials of Exopolysaccharides from Lactic Acid Bacteria

    OpenAIRE

    Patel, Seema; Majumder, Avishek; Goyal, Arun

    2011-01-01

    Recent research in the area of importance of microbes has revealed the immense industrial potential of exopolysaccharides and their derivative oligosaccharides from lactic acid bacteria. However, due to lack of adequate technological knowledge, the exopolysaccharides have remained largely under exploited. In the present review, the enormous potentials of different types of exopolysaccharides from lactic acid bacteria are described. This also summarizes the recent advances in the applications ...

  18. Probiotic Bacteria Induce a ‘Glow of Health’

    OpenAIRE

    Levkovich, Tatiana; Poutahidis, Theofilos; Smillie, Christopher; Varian, Bernard J; Ibrahim, Yassin M.; Lakritz, Jessica R.; Alm, Eric J; Erdman, Susan E

    2012-01-01

    Radiant skin and hair are universally recognized as indications of good health. However, this ‘glow of health’ display remains poorly understood. We found that feeding of probiotic bacteria to aged mice induced integumentary changes mimicking peak health and reproductive fitness characteristic of much younger animals. Eating probiotic yogurt triggered epithelial follicular anagen-phase shift with sebocytogenesis resulting in thick lustrous fur due to a bacteria-triggered interleukin-10-depend...

  19. Study of Lactobacillus as Probiotic Bacteria

    OpenAIRE

    Nowroozi, J.; M Mirzaii; Norouzi, M

    2004-01-01

    Because of inhibitory effect, selected probiotic lactobacilli may be used as biological preservative, so, the aim of this study was to present some data on lactobacillus as probiotic bacteria. Lactic acid bacteria were isolated from sausage. Each isolate of lactobacillus species was identified by biochemical tests and comparing their sugar fermentation pattern. Antibacterial activities were done by an agar spot, well diffusion and blank disk method. Enzyme sensitivity of supernatant fluid and...

  20. Genetic information transfer promotes cooperation in bacteria

    OpenAIRE

    Dimitriu, Tatiana; Lotton, Chantal; Bénard-Capelle, Julien; Misevic, Dusan; Brown, Sam P.; Lindner, Ariel B.; Taddei, François

    2014-01-01

    Bacteria often cooperate through the production of public goods that change their environment. These processes can affect human health by increasing virulence or antibiotic resistance. Public good production is costly, making cooperation susceptible to invasion by nonproducing “cheater” individuals. Bacteria also readily share genes, even among distinct species. Our experiments and models converge to show that when both cheating and cooperative genes are transferred, cooperators win against c...

  1. Airborne non-sporeforming anaerobic bacteria.

    OpenAIRE

    Hambraeus, A.; Benediktsdóttir, E.

    1980-01-01

    A large proportion of postoperative infections after clean surgery are thought to be exogenous. For aerobic bacteria different routes of transmission have been thoroughly studied. Airborne infection has been considered very important in infections after total hip replacement (Charnley, 1972). Anaerobic non-sporing bacteria have been found in deep late infections after total hip replacement (Kamme et al. 1974; Schwan et al. 1977; Petrini, Nord & Welin-Berger, 1978). However, infections caused ...

  2. Regulating alternative lifestyles in entomopathogenic bacteria

    OpenAIRE

    Crawford, Jason M.; Kontnik, Renee; CLARDY, Jon

    2010-01-01

    Bacteria belonging to the genera Photorhabdus and Xenorhabdus participate in a trilateral symbiosis in which they enable their nematode hosts to parasitize insect larvae [1]. The bacteria switch from persisting peacefully in a nematode's digestive tract to a lifestyle in which pathways to produce insecticidal toxins, degrading enzymes to digest the insect for consumption, and antibiotics to ward off bacterial and fungal competitors are activated. This study addresses three questions: 1) What ...

  3. Characterization of (per)chlorate-reducing bacteria

    OpenAIRE

    Wolterink, A.F.W.M.

    2004-01-01

    Some bacteria can use (per)chlorateas terminal electron acceptor for growth. These bacteria convert perchlorate via chlorate and chlorite into chloride and molecular oxygen. Oxygen formation in microbial respiration is unique. In this study two chlorate-reducing strains belonging to the species Pseudomonas chloritidismutans and a (per)chlorate-reducing strain Dechloromonas hortensis were isolated. The characterization of the chlorate-reducing strain AW-1, which was isolated from a bioreactor ...

  4. Recovery of pathogenic bacteria from cerebrospinal fluid.

    OpenAIRE

    Murray, P. R.; Hampton, C M

    1980-01-01

    We studied the conditions necessary for optimal recovery of bacteria from cerebrospinal fluid. Our results indicated that Streptopcoccus pneumoniae, Neisseria meningitidis, and Haemophilus influenzae can be quantitatively recovered in the sediment after centrifugation at 1,500 X g for 15 min. Equivalent numbers of bacteria were recovered by centrifugation or filtration of antibiotic-free cerebrospinal fluid; however, bacterial recovery by filtration was less effective with antibiotic-suppleme...

  5. Facultatively oligotrophic bacteria in Roman mural paintings

    OpenAIRE

    Laiz Trobajo, L.; Hermosín, Bernardo; Caballero, Belén; Sáiz-Jiménez, Cesáreo

    2002-01-01

    [EN]: Due to the limitation of nutrients during long periods, deteriorated monuments, and particularIy their walls, represent an interesting ecosystem where oligotrophic bacteria can be isolated. Therefore, facultatively oligotrophic bacteria, present in the deteriorated mural paintings decoratíng the Tomb of Servilia, Roman Necropolis of Carmona, 1st and 2nd century AD, were studied. The most abundant genera were Bacillus and Paenibacillus, which were also the most abundant copio...

  6. Bacteria Aggregation in a Steady Vortical Flow

    Science.gov (United States)

    Yazdi, Shahrzad; Li, Sixing; Huang, Tony Jun; Ardekani, Arezoo

    2011-11-01

    The interaction between microorganisms and flow field is an important, yet complicated topic that affects the design of biological reactors, marine ecological processes, and biofilm formation in porous media. Vortical structures and secondary flows are inherently present in porous media despite small Reynolds numbers. Our experimental results show that bacteria in a steady vortical flow aggregate and subsequently form biofilm streamers in a microfluidic system. The combined effects of shape, motility and the vortical background flow contribute to this fast bacteria aggregation.

  7. Low-temperature sensors in bacteria.

    OpenAIRE

    Eriksson, Sofia; Hurme, Reini; Rhen, Mikael

    2002-01-01

    Bacteria are ubiquitous colonizers of various environments and host organisms, and they are therefore often subjected to drastic temperature alterations. Temperature alterations set demands on these colonizers, in that the bacteria need to readjust their biochemical constitution and physiology in order to survive and resume growth at the new temperature. Furthermore, temperature alteration is also a main factor determining the expression or repression of bacterial virulence functions. To cope...

  8. Quorum sensing mechanism in lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Hatice Y?lmaz - Y?ld?ran

    2015-04-01

    and detection occurs as a consecution it is hard to understand their QS mechanism. In this review, connection between QS mechanism and some characteristics of lactic acid bacteria are evaluated such as concordance with its host, inhibition of pathogen development and colonization in gastrointestinal system, bacteriocin production, acid and bile resistance, adhesion to epithelium cells. Understanding QS mechanism of lactic acid bacteria will be useful to design metabiotics which is defined as novel probiotics.

  9. Study of Lactobacillus as Probiotic Bacteria

    Directory of Open Access Journals (Sweden)

    J Nowroozi

    2004-07-01

    Full Text Available Because of inhibitory effect, selected probiotic lactobacilli may be used as biological preservative, so, the aim of this study was to present some data on lactobacillus as probiotic bacteria. Lactic acid bacteria were isolated from sausage. Each isolate of lactobacillus species was identified by biochemical tests and comparing their sugar fermentation pattern. Antibacterial activities were done by an agar spot, well diffusion and blank disk method. Enzyme sensitivity of supernatant fluid and concentrated cell free culture after treatment with ?-amylase, lysozyme and trypsin was determined. The isolated bacteria were Lacto. plantarum, Lacto delbruekii, Lacto. acidophilus, Lacto. brevis. The isolated bacteria had strong activity against indicator strains. The antibacterial activity was stable at 100ºC for 10 min and at 56ºC for 30 min, but activity was lost after autoclaving. The maximum production of plantaricin was obtained at 25 - 30ºC at pH 6.5. Because, lactobacilli that used to process sausage fermentation are producing antimicrobial activity with heat stability bacteriocin, so, these bacteria may be considered to be a healthy probiotic diet. Lactobacilli originally isolated from meat products are the best condidates as probiotic bacteria to improve the microbiological safety of these foods.

  10. Bacteria motility at oil-water interfaces

    Science.gov (United States)

    Juarez, Gabriel; Smirga, Steven; Fernandez, Vicente; Stocker, Roman

    2012-11-01

    The swimming dynamics of bacteria are strongly influenced by interfaces: Motile bacteria often accumulate at rigid boundaries, such as liquid-solid interfaces, and at soft boundaries, such as liquid-air or liquid-liquid interfaces. Attachment of bacteria to these interfaces is crucial for the formation of biofilms (liquid-solid), pellicles (liquid-air), and oil-degrading communities (liquid-liquid). We investigated the motility of the oil-degrading bacteria Marinobacter aquaeolei in the presence of oil droplets. We created individual oil droplets using dedicated microfluidic devices and captured the swimming behavior of individual bacteria near the interface and their attachment dynamics to the droplets with high-speed and epifluorescent microscopy. We find that Marinobacter aquaeolei has a high affinity towards interfaces and their swimming dynamics at soft interfaces differ from both those in the bulk and at rigid boundaries. Characterizing the interaction and attachment of motile bacteria to liquid-liquid interfaces will promote a fundamental understanding to oil-microbe interactions in aquatic environments and potentially lead to improved oil bioremediation strategies.

  11. Molecular probe technology detects bacteria without culture

    Directory of Open Access Journals (Sweden)

    Hyman Richard W

    2012-03-01

    Full Text Available Abstract Background Our ultimate goal is to detect the entire human microbiome, in health and in disease, in a single reaction tube, and employing only commercially available reagents. To that end, we adapted molecular inversion probes to detect bacteria using solely a massively multiplex molecular technology. This molecular probe technology does not require growth of the bacteria in culture. Rather, the molecular probe technology requires only a sequence of forty sequential bases unique to the genome of the bacterium of interest. In this communication, we report the first results of employing our molecular probes to detect bacteria in clinical samples. Results While the assay on Affymetrix GenFlex Tag16K arrays allows the multiplexing of the detection of the bacteria in each clinical sample, one Affymetrix GenFlex Tag16K array must be used for each clinical sample. To multiplex the clinical samples, we introduce a second, independent assay for the molecular probes employing Sequencing by Oligonucleotide Ligation and Detection. By adding one unique oligonucleotide barcode for each clinical sample, we combine the samples after processing, but before sequencing, and sequence them together. Conclusions Overall, we have employed 192 molecular probes representing 40 bacteria to detect the bacteria in twenty-one vaginal swabs as assessed by the Affymetrix GenFlex Tag16K assay and fourteen of those by the Sequencing by Oligonucleotide Ligation and Detection assay. The correlations among the assays were excellent.

  12. Visualizing bacteria in nematodes using fluorescent microscopy.

    Science.gov (United States)

    Murfin, Kristen E; Chaston, John; Goodrich-Blair, Heidi

    2012-01-01

    Symbioses, the living together of two or more organisms, are widespread throughout all kingdoms of life. As two of the most ubiquitous organisms on earth, nematodes and bacteria form a wide array of symbiotic associations that range from beneficial to pathogenic (1-3). One such association is the mutually beneficial relationship between Xenorhabdus bacteria and Steinernema nematodes, which has emerged as a model system of symbiosis (4). Steinernema nematodes are entomopathogenic, using their bacterial symbiont to kill insects (5). For transmission between insect hosts, the bacteria colonize the intestine of the nematode's infective juvenile stage (6-8). Recently, several other nematode species have been shown to utilize bacteria to kill insects (9-13), and investigations have begun examining the interactions between the nematodes and bacteria in these systems (9). We describe a method for visualization of a bacterial symbiont within or on a nematode host, taking advantage of the optical transparency of nematodes when viewed by microscopy. The bacteria are engineered to express a fluorescent protein, allowing their visualization by fluorescence microscopy. Many plasmids are available that carry genes encoding proteins that fluoresce at different wavelengths (i.e. green or red), and conjugation of plasmids from a donor Escherichia coli strain into a recipient bacterial symbiont is successful for a broad range of bacteria. The methods described were developed to investigate the association between Steinernema carpocapsae and Xenorhabdus nematophila (14). Similar methods have been used to investigate other nematode-bacterium associations (9) (,) (15-18)and the approach therefore is generally applicable. The method allows characterization of bacterial presence and localization within nematodes at different stages of development, providing insights into the nature of the association and the process of colonization (14) (,) (16) (,) (19). Microscopic analysis reveals both colonization frequency within a population and localization of bacteria to host tissues (14) (,) (16) (,) (19-21). This is an advantage over other methods of monitoring bacteria within nematode populations, such as sonication (22)or grinding (23), which can provide average levels of colonization, but may not, for example, discriminate populations with a high frequency of low symbiont loads from populations with a low frequency of high symbiont loads. Discriminating the frequency and load of colonizing bacteria can be especially important when screening or characterizing bacterial mutants for colonization phenotypes (21) (,) (24). Indeed, fluorescence microscopy has been used in high throughput screening of bacterial mutants for defects in colonization (17) (,) (18), and is less laborious than other methods, including sonication (22) (,) (25-27)and individual nematode dissection (28) (,) (29). PMID:23117838

  13. Chemically enhanced sunlight for killing bacteria

    International Nuclear Information System (INIS)

    Solar ultraviolet (UV) photocatalyzed oxidation of chemicals with titanium dioxide (TiO2) has received considerable attention. Much less recognized, however, is the ability of the same system to destroy bacteria. This study examined this phenomenon and the conditions that affect it. Bacteria in aqueous solution were given solar exposure with titanium dioxide and their survival with time was determined. Lamps with a predominantly solar ultraviolet spectrum were also used in the experiments. Without exposure to UV light, TiO2 had no deleterious effect on the bacteria. However, several common bacteria on solar exposure in the presence of TiO2 were killed in just a few minutes, whereas without TiO2 it took over an hour to destroy them. A concentration of 0.01% TiO2 was most effective in killing bacteria and 10-fold concentrations lower or higher were successively less effective. Inorganic and organic compounds in solution, even in small amounts, interfered with the efficiency of killing. Alkaline solution also reduced the bactericidal activity. Circulation and agitation provided by stirring to keep the TiO2 particles suspended reduced the time necessary to kill the bacteria. Time-intensity curves for killing bacteria were the same general shape with or without TiO2, indicating that TiO2 served merely as a catalyst to increase the rate of the reaction but that the mechanism of action was not changed. The shape of the curves show that the organisms are sensitized with a minimum intensity of radiation and that an increase doesn't greatly increase the rate of kill. Below this critical intensity, however, the time required for killing markedly increases as the intensity is decreased

  14. Bacterias, fuente de energía para el futuro / Bacteria, source of energy for the future

    Scientific Electronic Library Online (English)

    Alba Ayde, Romero Mejía; Jorge Adrian, Vásquez; Armando, Lugo González.

    2012-04-01

    Full Text Available En el presente trabajo expone una familia de bacterias denominadas Geobacter que tienen la capacidad de producir energía eléctrica como fuente renovable en una celda de combustible microbiana. Estas bacterias pueden oxidar totalmente compuestos orgánicos empleando diferentes elementos o sustancias c [...] omo aceptores de electrones. El trabajo aborda características principales de la bacteria, como los mecanismos utilizados para aprovechar la electricidad que genera y una aproximación sobre el sistema requerido para convertirla en una fuente de energía renovable competitiva. Los resultados muestran un análisis comparativo de fuentes de energía convencionales y no convencionales con respecto a la familia de bacterias Geobacter. Abstract in english This paper presents a family of bacteria called Geobacter that have the ability to produce power as a renewable source in a microbial fuel cell. These bacteria can completely oxidize organic compounds using different elements or substances as electron acceptors. The paper addresses key features of t [...] he bacteria, the mechanisms used to harness the electricity generated and an approximation of the system required to become a competitive source of renewable energy. The results show a comparative analysis of sources of conventional and unconventional energy with respect to the Geobacter family of bacteria.

  15. Method of Detecting Coliform Bacteria and Escherichia Coli Bacteria from Reflected Light

    Science.gov (United States)

    Vincent, Robert (Inventor)

    2013-01-01

    The present invention relates to a method of detecting coliform bacteria in water from reflected light and a method of detecting Eschericha Coli bacteria in water from reflected light, and also includes devices for the measurement, calculation and transmission of data relating to that method.

  16. Using Fluorescent Viruses for Detecting Bacteria in Water

    Science.gov (United States)

    Tabacco, Mary Beth; Qian, Xiaohua; Russo, Jaimie A.

    2009-01-01

    A method of detecting water-borne pathogenic bacteria is based partly on established molecular-recognition and fluorescent-labeling concepts, according to which bacteria of a species of interest are labeled with fluorescent reporter molecules and the bacteria can then be detected by fluorescence spectroscopy. The novelty of the present method lies in the use of bacteriophages (viruses that infect bacteria) to deliver the fluorescent reporter molecules to the bacteria of the species of interest.

  17. Quantification and Qualification of Bacteria Trapped in Chewed Gum

    OpenAIRE

    Wessel, Stefan W.; van der Mei, Henny C.; Morando, David; Slomp, Anje M.; van de Belt-Gritter, Betsy; Maitra, Amarnath; Busscher, Henk J

    2015-01-01

    Chewing of gum contributes to the maintenance of oral health. Many oral diseases, including caries and periodontal disease, are caused by bacteria. However, it is unknown whether chewing of gum can remove bacteria from the oral cavity. Here, we hypothesize that chewing of gum can trap bacteria and remove them from the oral cavity. To test this hypothesis, we developed two methods to quantify numbers of bacteria trapped in chewed gum. In the first method, known numbers of bacteria were finger-...

  18. Bacteria and plutonium in marine environments

    International Nuclear Information System (INIS)

    Microbes are important in geochemical cycling of many elements. Recent reports emphasize biogenous particulates and bacterial exometabolites as controlling oceanic distribution of plutonium. Bacteria perform oxidation/reduction reactions on metals such as mercury, nickel, lead, copper, and cadmium. Redox transformations or uptake of Pu by marine bacteria may well proceed by similar mechanisms. Profiles of water samples and sediment cores were obtained along the continental shelf off Nova Scotia and in the Gulf of St. Lawrence. Profiles of water samples, and sediment cores were obtained. Epifluorescent microscopy was used to view bacteria (from water or sediment) after concentration on membrane filters and staining with acridine orange. Radiochemical analyses measured Pu in sediments and water samples. Studies of 237Pu uptake used a strain of Leucothrix mucor isolated from a macroalga. Enumeration shows bacteria to range 104 to 105 cells/ml in seawater or 107 to 108 cells/gram of sediment. These numbers are related to the levels and distrbution of Pu in the samples. In cultures of L. mucor amended with Pu atom concentrations approximating those present in open ocean environments, bacterial cells concentrated 237Pu slower and to lower levels than did clay minerals, glass beads, or phytoplankton. These data further clarify the role of marine bacteria in Pu biogeochemistry

  19. Bacteria dispersal by hitchhiking on zooplankton

    DEFF Research Database (Denmark)

    Grossart, Hans-Peter; Dziallas, Claudia

    2010-01-01

    Microorganisms and zooplankton are both important components of aquatic food webs. Although both inhabit the same environment, they are often regarded as separate functional units that are indirectly connected through nutrient cycling and trophic cascade. However, research on pathogenic and nonpathogenic bacteria has shown that direct association with zooplankton has significant influences on the bacteria's physiology and ecology. We used stratified migration columns to study vertical dispersal of hitchhiking bacteria through migrating zooplankton across a density gradient that was otherwise impenetrable for bacteria in both upward and downward directions (conveyor-belt hypothesis). The strength of our experiments is to permit quantitative estimation of transport and release of associated bacteria: vertical migration of Daphnia magna yielded an average dispersal rate of 1.3 x 10(5) x cells x Daphnia(-1) x migration cycle(-1) for the lake bacterium Brevundimonas sp. Bidirectional vertical dispersal by migrating D. magna was also shown for two other bacterial species, albeit at lower rates. The prediction that diurnally migrating zooplankton acquire different attached bacterial communities from hypolimnion and epilimnion between day and night was subsequently confirmed in our field study. In mesotrophic Lake Nehmitz, D. hyalina showed pronounced diel vertical migration along with significant diurnal changes in attached bacterial community composition. These results confirm that hitchhiking on migrating animals can be an important mechanism for rapidly relocating microorganisms, including pathogens, allowing them to access otherwise inaccessible resources.

  20. Inorganic nanoparticles engineered to attack bacteria.

    Science.gov (United States)

    Miller, Kristen P; Wang, Lei; Benicewicz, Brian C; Decho, Alan W

    2015-10-19

    Antibiotics were once the golden bullet to constrain infectious bacteria. However, the rapid and continuing emergence of antibiotic resistance (AR) among infectious microbial pathogens has questioned the future utility of antibiotics. This dilemma has recently fueled the marriage of the disparate fields of nanochemistry and antibiotics. Nanoparticles and other types of nanomaterials have been extensively developed for drug delivery to eukaryotic cells. However, bacteria have very different cellular architectures than eukaryotic cells. This review addresses the chemistry of nanoparticle-based antibiotic carriers, and how their technical capabilities are now being re-engineered to attack, kill, but also non-lethally manipulate the physiologies of bacteria. This review also discusses the surface functionalization of inorganic nanoparticles with small ligand molecules, polymers, and charged moieties to achieve drug loading and controllable release. PMID:26190826

  1. Bacteria?Triggered Release of Antimicrobial Agents

    DEFF Research Database (Denmark)

    Komnatnyy, Vitaly V.; Chiang, Wen?Chi

    2014-01-01

    Medical devices employed in healthcare practice are often susceptible to microbial contamination. Pathogenic bacteria may attach themselves to device surfaces of catheters or implants by formation of chemically complex biofilms, which may be the direct cause of device failure. Extracellular bacterial lipases are particularly abundant at sites of infection. Herein it is shown how active or proactive compounds attached to polymeric surfaces using lipase?sensitive linkages, such as fatty acid esters or anhydrides, may be released in response to infection. Proof?of?concept of the responsive material is demonstrated by the bacteria?triggered release of antibiotics to control bacterial populations and signaling molecules to modulate quorum sensing. The self?regulating system provides the basis for the development of device?relevant polymeric materials, which only release antibiotics in dependency of the titer of bacteria surrounding the medical device.

  2. Bacteria-triggered release of antimicrobial agents

    DEFF Research Database (Denmark)

    Komnatnyy, Vitaly V; Chiang, Wen-Chi

    2014-01-01

    Medical devices employed in healthcare practice are often susceptible to microbial contamination. Pathogenic bacteria may attach themselves to device surfaces of catheters or implants by formation of chemically complex biofilms, which may be the direct cause of device failure. Extracellular bacterial lipases are particularly abundant at sites of infection. Herein it is shown how active or proactive compounds attached to polymeric surfaces using lipase-sensitive linkages, such as fatty acid esters or anhydrides, may be released in response to infection. Proof-of-concept of the responsive material is demonstrated by the bacteria-triggered release of antibiotics to control bacterial populations and signaling molecules to modulate quorum sensing. The self-regulating system provides the basis for the development of device-relevant polymeric materials, which only release antibiotics in dependency of the titer of bacteria surrounding the medical device.

  3. Bacteria-Triggered Release of Antimicrobial Agents

    DEFF Research Database (Denmark)

    Komnatnyy, Vitaly V.; Chiang, Wen-Chi

    2014-01-01

    Medical devices employed in healthcare practice are often susceptible to microbial contamination. Pathogenic bacteria may attach themselves to device surfaces of catheters or implants by formation of chemically complex biofilms, which may be the direct cause of device failure. Extracellular bacterial lipases are particularly abundant at sites of infection. Herein it is shown how active or proactive compounds attached to polymeric surfaces using lipase?sensitive linkages, such as fatty acid esters or anhydrides, may be released in response to infection. Proof?of?concept of the responsive material is demonstrated by the bacteria?triggered release of antibiotics to control bacterial populations and signaling molecules to modulate quorum sensing. The self?regulating system provides the basis for the development of device?relevant polymeric materials, which only release antibiotics in dependency of the titer of bacteria surrounding the medical device.

  4. Chemotaxis When Bacteria Remember: Drift versus Diffusion

    CERN Document Server

    Chatterjee, Sakuntala; Kafri, Yariv

    2011-01-01

    Escherichia coli (E. coli) bacteria govern their trajectories by switching between running and tumbling modes as a function of the nutrient concentration they experienced in the past. At short time one observes a drift of the bacterial population, while at long time one observes accumulation in high-nutrient regions. Recent work has pointed to an apparent theoretical contradiction between drift toward favorable regions and accumulation in favorable regions. A number of such earlier studies assume that a bacterium resets its memory at tumbles -- a fact not borne out by experiment -- and make use of approximate coarse-grained descriptions. Here, we revisit the problem of chemotaxis without resorting to any memory resets. We find that when bacteria respond to the environment in a non-adaptive manner, chemotaxis is generally dominated by diffusion, whereas when bacteria respond in an adaptive manner, chemotaxis is dominated by a bias in the motion. In all cases, the apparent contradiction between favorable drift ...

  5. All ecosystems potentially host electrogenic bacteria.

    Science.gov (United States)

    Chabert, Nicolas; Amin Ali, Oulfat; Achouak, Wafa

    2015-12-01

    Instead of requiring metal catalysts, MFCs utilize bacteria that oxidize organic matter and either transfer electrons to the anode or take electrons from the cathode. These devices are thus based on a wide microbial diversity that can convert a large array of organic matter components into sustainable and renewable energy. A wide variety of explored environments were found to host electrogenic bacteria, including extreme environments. In the present review, we describe how different ecosystems host electrogenic bacteria, as well as the physicochemical, electrochemical and biological parameters that control the currents from MFCs. We also report how using new molecular techniques allowed characterization of electrochemical biofilms and identification of potentially new electrogenic species. Finally we discuss these findings in the context of future research directions. PMID:26298511

  6. Gastric spiral bacteria in small felids.

    Science.gov (United States)

    Kinsel, M J; Kovarik, P; Murnane, R D

    1998-06-01

    Nine small cats, including one bobcat (Felis rufus), one Pallas cat (F. manul), one Canada lynx (F. lynx canadensis), two fishing cats (F. viverrina), two margays (F. wiedii), and two sand cats (F. margarita), necropsied between June 1995 and March 1997 had large numbers of gastric spiral bacteria, whereas five large cats, including one African lion (Panthera leo), two snow leopards (P. uncia), one Siberian tiger (P. tigris altaica), and one jaguar (P. onca), necropsied during the same period had none. All of the spiral organisms from the nine small cats were histologically and ultrastructurally similar. Histologically, the spiral bacteria were 5-14 microm long with five to nine coils per organism and were located both extracellularly within gastric glands and surface mucus, and intracellularly in parietal cells. Spiral bacteria in gastric mucosal scrapings from the Canada lynx, one fishing cat, and the two sand cats were gram negative and had corkscrewlike to tumbling motility when viewed with phase contrast microscopy. The bacteria were 0.5-0.7 microm wide, with a periodicity of 0.65-1.1 microm in all cats. Bipolar sheathed flagella were occasionally observed, and no periplasmic fibrils were seen. The bacteria were extracellular in parietal cell canaliculi and intracellular within parietal cells. Culture of mucosal scrapings from the Canada lynx and sand cats was unsuccessful. Based on morphology, motility, and cellular tropism, the bacteria were probably Helicobacter-like organisms. Although the two margays had moderate lymphoplasmacytic gastritis, the other cats lacked or had only mild gastric lymphoid infiltrates, suggesting that these organisms are either commensals or opportunistic pathogens. PMID:9732040

  7. Bacterial biofilms. Bacteria Quorum sensing in biofilms

    Directory of Open Access Journals (Sweden)

    E. S. Vorobey

    2012-03-01

    Full Text Available Data on biofilms, their structure and properties, peculiarities of formation and interaction between microorganisms in the film are presented. Information on discovery and study of biofilms, importance of biofilms in the medical and clinical microbiology are offered. The data allow to interpret biofilm as a form of existence of human normal microflora. For the exchange of information within the biofilm between the individual cells of the same or different species bacteria use the signal molecules of the Quorum sensing system. Coordination of bacterial cells activity in the biofilms gives them significant advantages: in the biofilms bacteria are protected from the influence of the host protective factors and the antibacterial drugs.

  8. Differential staining of bacteria: gram stain.

    Science.gov (United States)

    Moyes, Rita B; Reynolds, Jackie; Breakwell, Donald P

    2009-11-01

    In 1884, Hans Christian Gram, a Danish doctor, developed a differential staining technique that is still the cornerstone of bacterial identification and taxonomic division. This multistep, sequential staining protocol separates bacteria into four groups based on cell morphology and cell wall structure: Gram-positive cocci, Gram-negative cocci, Gram-positive rods, and Gram-negative rods. The Gram stain is useful for assessing bacterial contamination of tissue culture samples or for examining the Gram stain status and morphological features of bacteria isolated from mixed or isolated bacterial cultures. PMID:19885931

  9. Added value of experts' knowledge to improve a quantitative microbial exposure assessment model--Application to aseptic-UHT food products.

    Science.gov (United States)

    Pujol, Laure; Johnson, Nicholas Brian; Magras, Catherine; Albert, Isabelle; Membré, Jeanne-Marie

    2015-10-15

    In a previous study, a quantitative microbial exposure assessment (QMEA) model applied to an aseptic-UHT food process was developed [Pujol, L., Albert, I., Magras, C., Johnson, N. B., Membré, J. M. Probabilistic exposure assessment model to estimate aseptic UHT product failure rate. 2015 International Journal of Food Microbiology. 192, 124-141]. It quantified Sterility Failure Rate (SFR) associated with Bacillus cereus and Geobacillus stearothermophilus per process module (nine modules in total from raw material reception to end-product storage). Previously, the probabilistic model inputs were set by experts (using knowledge and in-house data). However, only the variability dimension was taken into account. The model was then improved using expert elicitation knowledge in two ways. First, the model was refined by adding the uncertainty dimension to the probabilistic inputs, enabling to set a second order Monte Carlo analysis. The eight following inputs, and their impact on SFR, are presented in detail in this present study: D-value for each bacteria of interest (B. cereus and G. stearothermophilus) associated with the inactivation model for the UHT treatment step, i.e., two inputs; log reduction (decimal reduction) number associated with the inactivation model for the packaging sterilization step for each bacterium and each part of the packaging (product container and sealing component), i.e., four inputs; and bacterial spore air load of the aseptic tank and the filler cabinet rooms, i.e., two inputs. Second, the model was improved by leveraging expert knowledge to develop further the existing model. The proportion of bacteria in the product which settled on surface of pipes (between the UHT treatment and the aseptic tank on one hand, and between the aseptic tank and the filler cabinet on the other hand) leading to a possible biofilm formation for each bacterium, was better characterized. It was modeled as a function of the hygienic design level of the aseptic-UHT line: the experts provided the model structure and most of the model parameters values. Mean of SFR was estimated to 10×10(-8) (95% Confidence Interval=[0×10(-8); 350×10(-8)]) and 570×10(-8) (95% CI=[380×10(-8); 820×10(-8)]) for B. cereus and G. stearothermophilus, respectively. These estimations were more accurate (since the confidence interval was provided) than those given by the model with only variability (for which the estimates were 15×10(-8) and 580×10(-8) for B. cereus and G. stearothermophilus, respectively). The updated model outputs were also compared with those obtained when inputs were described by a generic distribution, without specific information related to the case-study. Results showed that using a generic distribution can lead to unrealistic estimations (e.g., 3,181,000 product units contaminated by G. stearothermophilus among 10(8) product units produced) and emphasized the added value of eliciting information from experts from the relevant specialist field knowledge. PMID:26143288

  10. CHARACTERIZATION OF NATURAL MICROCOSMS OF ESTUARINE MAGNETOTACTIC BACTERIA / CARACTERIZACIÓN DE MICROCOSMOS NATURALES DE BACTERIAS MAGNETOTÁCTICAS ESTUARINAS

    Scientific Electronic Library Online (English)

    ALEJANDRO, SALAZAR; ALVARO, MORALES; MARCO, MÁRQUEZ.

    2011-08-01

    Full Text Available No se ha reportado ningún estudio completo sobre microcosmos naturales de bacterias magnetotácticas (MTB) en estuarios o ambientes tropicales. Además, casi todos los estudios sobre las bacterias magnetotácticas se han desarrollado en aguas dulces alejadas del ecuador. Este trabajo se desarrolla sobr [...] e el ecuador y reporta una caracterización mineralógica y fisicoquímica detallada de dos microcosmos bacterianos estuarinos. Los resultados muestran que la lixiviación de minerales en los sedimentos puede ser un factor importante en la solubilización de elementos requeridos por las bacterias magnetotácticas. Específicamente, que el clinocloro, flogopita, nontronita y haloisita pueden estar entre los minerales más importantes en la lixiviación de hierro a los microcosmos estuarinos. Se concluye que la concentración de nitrato en el agua no debe ser tan baja como se ha reportado para lograr un crecimiento bacteriano óptimo. Las bacterias magnetotácticas no necesitan grandes cantidades de hierro disuelto para su crecimiento ni para la síntesis de magnetosomas. Abstract in english To date, no complete study of magnetotactic bacteria's (MTB) natural microcosms in estuarine or tropical environments has been reported. Besides, almost all the studies around magnetotactic bacteria have been based on fresh waters away from the Equator. In this work, we focused the experimental regi [...] on at the Equator and present a comprehensive mineralogical and physicochemical characterization of two estuarine bacterial microcosms. The results show that mineral lixiviation in the sediments may be an important factor in the solubilization of elements required by magnetotactic bacteria. Specifically, we show that clinochlore, phlogopite, nontronite, and halloysite could be among the main minerals that lixiviate iron to the estuarine microcosms. We conclude that nitrate concentration in the water should not be as low as those that have been reported for other authors to achieve optimal bacteria growth. It is confirmed that magnetotactic bacteria do not need large amounts of dissolved iron to grow or to synthesize magnetosomes.

  11. Total Counts of Marine Bacteria Include a Large Fraction of Non-Nucleoid-Containing Bacteria (Ghosts)

    OpenAIRE

    Zweifel, U. L.; Hagstrom, A.

    1995-01-01

    Counts of heterotrophic bacteria in marine waters are usually in the order of 5 x 10(sup5) to 3 x 10(sup6) bacteria ml(sup-1). These numbers are derived from unspecific fluorescent staining techniques (J. E. Hobbie, R. J. Daley, and S. Jasper, Appl. Environ. Microbiol. 33:1225-1228, 1977; K. G. Porter and Y. S. Feig, Limnol. Oceanogr. 25:943-948, 1980) and are subsequently defined as total counts of bacteria. In samples from the Baltic Sea, the North Sea (Skagerrak), and the northeastern Medi...

  12. Bacteria Isolated from Post-Partum Infections

    Directory of Open Access Journals (Sweden)

    Nahid Arianpour

    2009-06-01

    Full Text Available Objective: This study was undertaken with an aim to determine bacterial species involved in post partum infections and also their abundance in patients admitted to at Khanevadeh hospital. In this study out of three different kinds of postpartum infections (i.e. genital, breast and urinary tract, only genital infection is considered.Materials and Methods: Post partum infection among 6077 patients (inpatients and re-admitted patients of Khanevadeh hospital from 2003 till 2008 was studied in this descriptive study. Samples were collected from patients for laboratory diagnosis to find out the causative organisms.Results: Follow up of mothers after delivery revealed 7.59% (461 patients had post partum infection, out of which 1.03% (63 patients were re-hospitalized. Infection was more often among younger mothers. Bacteria isolated and identified were both aerobic and anaerobic cocci and bacilli, majority of which were normal flora of the site of infection. Though, some pathogenic bacteria like Staphylococcus aureus, Neisseria gonorrhea, Chlamydia trachomatis,were also the causative agents. The commonest infection was infection at the site of episiotomy. Conclusion: Puerperal infection was detected in of 7.59% mothers. Bacteria isolated were both aerobic and anaerobic cocci and bacilli, majority of which were normal flora. However; some pathogenic bacteria were isolated.

  13. Chitinolytic bacteria of the mammal digestive tract.

    Czech Academy of Sciences Publication Activity Database

    Šim?nek, Ji?í; Hodrová, Blanka; Barto?ová, H.; Kope?ný, Jan

    2001-01-01

    Ro?. 46, ?. 1 (2001), s. 76-78. ISSN 0015-5632 R&D Projects: GA ?R GA525/00/0984; GA AV ?R KSK5052113 Keywords : chitin olytic bacteria Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.776, year: 2001

  14. Freeze-drying of lactic acid bacteria.

    Science.gov (United States)

    Fonseca, Fernanda; Cenard, Stéphanie; Passot, Stéphanie

    2015-01-01

    Lactic acid bacteria are of great importance for the food and biotechnology industry. They are widely used as starters for manufacturing food (e.g., yogurt, cheese, fermented meats, and vegetables) and probiotic products, as well as for green chemistry applications. Freeze-drying or lyophilization is a convenient method for preservation of bacteria. By reducing water activity to values below 0.2, it allows long-term storage and low-cost distribution at suprazero temperatures, while minimizing losses in viability and functionality. Stabilization of bacteria via freeze-drying starts with the addition of a protectant solution to the bacterial suspension. Freeze-drying includes three steps, namely, (1) freezing of the concentrated and protected cell suspension, (2) primary drying to remove ice by sublimation, and (3) secondary drying to remove unfrozen water by desorption. In this chapter we describe a method for freeze-drying of lactic acid bacteria at a pilot scale, thus allowing control of the process parameters for maximal survival and functionality recovery. PMID:25428024

  15. Bioluminescent bacteria: lux genes as environmental biosensors

    OpenAIRE

    Nunes-Halldorson Vânia da Silva; Duran Norma Letícia

    2003-01-01

    Bioluminescent bacteria are widespread in natural environments. Over the years, many researchers have been studying the physiology, biochemistry and genetic control of bacterial bioluminescence. These discoveries have revolutionized the area of Environmental Microbiology through the use of luminescent genes as biosensors for environmental studies. This paper will review the chronology of scientific discoveries on bacterial bioluminescence and the current applications of bioluminescence in env...

  16. NARMS: ENTERIC BACTERIA - ANIMAL SALMONELLA AND CAMPYLOBACTER

    Science.gov (United States)

    Objectives: Agricultural use of antimicrobials can select for antibiotic resistance both in pathogens and in commensal organisms which may transfer resistance to humans through the food supply. Antibiotic resistance is on the increase among foodborne pathogens and other bacteria. The purpose of this...

  17. Emerging Plant Pathogenic Bacteria and Global Warming

    Science.gov (United States)

    Several bacteria, previously classified as non-fluorescent, oxidase positive pseudomonads, Ralstonia, Acidovorax, and Burkholdria have emerged as serious problems world-wide. Perhaps the most destructive is R. solanacearum (RS), a soilborne pathogen with a very wide host range. RS race 3, biovar 2...

  18. Why engineering lactic acid bacteria for biobutanol

    Science.gov (United States)

    The Gram-positive Lactic acid bacteria (LAB) are considered attractive biocatalysts for biomass to biofuels for several reasons. They have GRAS (Generally Recognized As Safe) status that are acceptable in food, feed, and medical applications. LAB are fermentative: selected strains are capable of f...

  19. Photorhabdus Species: Bioluminescent Bacteria as Human Pathogens?

    OpenAIRE

    Gerrard, John G.; McNevin, Samantha; Alfredson, David; Forgan-Smith, Ross; Fraser, Neil

    2003-01-01

    We report two Australian patients with soft tissue infections due to Photorhabdus species. Recognized as important insect pathogens, Photorhabdus spp. are bioluminescent gram-negative bacilli. Bacteria belonging to the genus are emerging as a cause of both localized soft tissue and disseminated infections in humans in the United States and Australia. The source of infection in humans remains unknown.

  20. Susceptibility of anaerobic bacteria to ALP 201.

    OpenAIRE

    Nord, C E; Lindmark, A; Persson, I.

    1989-01-01

    The activity of ALP 201 against 350 strains of anaerobic bacteria was determined by an agar dilution method. Its activity was compared with those of piperacillin, cefoxitin, imipenem, clindamycin, metronidazole, and chloramphenicol. ALP 201 and imipenem were the most active agents tested. Based on these results, ALP 201 appears to be a promising antimicrobial agent for anaerobic infections and warrants further clinical investigations.

  1. NSAID enteropathy and bacteria: a complicated relationship.

    Science.gov (United States)

    Syer, Stephanie D; Blackler, Rory W; Martin, Rebeca; de Palma, Giada; Rossi, Laura; Verdu, Elena; Bercik, Premek; Surette, Michael G; Aucouturier, Anne; Langella, Philippe; Wallace, John L

    2015-04-01

    The clinical significance of small intestinal damage caused by nonsteroidal anti-inflammatory drugs (NSAIDs) remains under-appreciated. It occurs with greater frequency than the damage caused by these drugs in the upper gastrointestinal tract, but is much more difficult to diagnose and treat. Although the pathogenesis of NSAID enteropathy remains incompletely understood, it is clear that bacteria, bile, and the enterohepatic circulation of NSAIDs are all important factors. However, they are also interrelated with one another. Bacterial enzymes can affect the cytotoxicity of bile and are essential for enterohepatic circulation of NSAIDs. Gram-negative bacteria appear to be particularly important in the pathogenesis of NSAID enteropathy, possibly through release of endotoxin. Inhibitors of gastric acid secretion significantly aggravate NSAID enteropathy, and this effect is due to significant changes in the intestinal microbiome. Treatment with antibiotics can, in some circumstances, reduce the severity of NSAID enteropathy, but published results are inconsistent. Specific antibiotic-induced changes in the microbiota have not been causally linked to prevention of intestinal damage. Treatment with probiotics, particularly Bifidobacterium, Lactobacillus, and Faecalibacteriaum prausnitzii, has shown promising effects in animal models. Our studies suggest that these beneficial effects are due to colonization by the bacteria, rather than to products released by the bacteria. PMID:25572030

  2. Phosphate solubilizing bacteria around Indian peninsula

    Digital Repository Service at National Institute of Oceanography (India)

    DeSouza, M.J.B.D.; Nair, S.; Chandramohan, D.

    . Their ability to survive on carriers up to 60 days indicates that they could be effective seed organisms for field applications. These bacteria were found to be highly adaptive and therefore, can significantly contribute to the phosphate economy of the marine...

  3. Regulating alternative lifestyles in entomopathogenic bacteria.

    Science.gov (United States)

    Crawford, Jason M; Kontnik, Renee; Clardy, Jon

    2010-01-12

    Bacteria belonging to the genera Photorhabdus and Xenorhabdus participate in a trilateral symbiosis in which they enable their nematode hosts to parasitize insect larvae. The bacteria switch from persisting peacefully in a nematode's digestive tract to a lifestyle in which pathways to produce insecticidal toxins, degrading enzymes to digest the insect for consumption, and antibiotics to ward off bacterial and fungal competitors are activated. This study addresses three questions: (1) What molecular signal triggers antibiotic production in the bacteria? (2) What small molecules are regulated by the signal? And (3), how do the bacteria recognize the signal? Differential metabolomic profiling in Photorhabdus luminescens TT01 and Xenorhabdus nematophila revealed that L-proline in the insect's hemolymph initiates a metabolic shift. Small molecules known to be crucial for virulence and antibiosis in addition to previously unknown metabolites are dramatically upregulated by L-proline, linking the recognition of host environment to bacterial metabolic regulation. To identify the L-proline-induced signaling pathway, we deleted the proline transporters putP and proU in P. luminescens TT01. Studies of these strains support a model in which acquisition of L-proline both regulates the metabolic shift and maintains the bacterial proton motive force that ultimately regulates the downstream bacterial pathways affecting virulence and antibiotic production. PMID:20022247

  4. Cellulolytic bacteria in the human colon.

    Czech Academy of Sciences Publication Activity Database

    Kope?ný, Jan; Hajer, J.; Mrázek, Jakub

    Košice : IAP SAS SR, 2003. s. 12. [International Symposium on Anaerobic Microbiology/3./. 05.06.2003-08.06.2003, Košice] Institutional research plan: CEZ:AV0Z5045916 Keywords : cellulolytic bacteria Subject RIV: EE - Microbiology, Virology

  5. Jumping Genes: The Transposable DNAs of Bacteria.

    Science.gov (United States)

    Berg, Claire M.; Berg, Douglas E.

    1984-01-01

    Transposons are transposable elements that carry genes for antibiotic resistance. Provides background information on the structure and organization of these "jumping genes" in bacteria. Also describes the use of transposons in tagging genes and lists pertinent references and resource materials. (DH)

  6. Propolis antimicrobial activity against periodontopathic bacteria

    OpenAIRE

    Gebara Elaine C.E.; Lima Luiz A.; Mayer Marcia P.A.

    2002-01-01

    Propolis extract antimicrobial activity against periodontopathic (ATCC) bacteria was investigated "in vitro". Bacterial strains tested were: Prevotella intermedia, Prevotella melaninogenica, Porphyromonas gingivalis, Actinobacillus actinomycetemcomitans, Capnocytophaga gingivalis and Fusobacterium nucleatum. Minimal inhibitory concentration (MIC) for the strains tested was determined using the method of broth dilution with the propolis extract in serial concentrations. Results showed MIC of 1...

  7. Brilliant glyconanocapsules for trapping of bacteria.

    Science.gov (United States)

    Yan, Xibo; Sivignon, Adeline; Alcouffe, Pierre; Burdin, Béatrice; Favre-Bonté, Sabine; Bilyy, Rostyslav; Barnich, Nicolas; Fleury, Etienne; Ganachaud, François; Bernard, Julien

    2015-08-28

    Nanoprecipitation of miglyol into droplets surrounded by a functional glycopolymer generates nanocapsules of biointerest. Fluorophores are trapped in situ or post-grafted onto the crosslinked polymer shell for efficient imaging. The resulting colloids induce aggregation of bacteria through strong specific interactions and promote their facile removal. PMID:26194620

  8. STUDIES OF METHANOGENIC BACTERIA IN SLUDGE

    Science.gov (United States)

    Methanogenic bacteria were isolated from mesophilic anaerobic digesters. The isolates were able to utilize H2 and CO2 acetate, formate and methanol, but were not able to metabolize propionate and butyrate. It was shown the propionate and butyrate are not substrates for methanogen...

  9. Regulation of ribosome synthesis in bacteria.

    Czech Academy of Sciences Publication Activity Database

    Krásný, Libor

    ?eské Bud?jovice : P?FUK Praha, 2005, s. 2. [RNA Club. ?eské Bud?jovice (CZ), 10.03.2005] Institutional research plan: CEZ:AV0Z50520514 Keywords : ribosome synthesis * bacteria Subject RIV: EB - Genetics ; Molecular Biology

  10. Linking genome content to biofuel production yields: a meta-analysis of major catabolic pathways among select H2 and ethanol-producing bacteria

    Directory of Open Access Journals (Sweden)

    Carere Carlo R

    2012-12-01

    Full Text Available Abstract Background Fermentative bacteria offer the potential to convert lignocellulosic waste-streams into biofuels such as hydrogen (H2 and ethanol. Current fermentative H2 and ethanol yields, however, are below theoretical maxima, vary greatly among organisms, and depend on the extent of metabolic pathways utilized. For fermentative H2 and/or ethanol production to become practical, biofuel yields must be increased. We performed a comparative meta-analysis of (i reported end-product yields, and (ii genes encoding pyruvate metabolism and end-product synthesis pathways to identify suitable biomarkers for screening a microorganism’s potential of H2 and/or ethanol production, and to identify targets for metabolic engineering to improve biofuel yields. Our interest in H2 and/or ethanol optimization restricted our meta-analysis to organisms with sequenced genomes and limited branched end-product pathways. These included members of the Firmicutes, Euryarchaeota, and Thermotogae. Results Bioinformatic analysis revealed that the absence of genes encoding acetaldehyde dehydrogenase and bifunctional acetaldehyde/alcohol dehydrogenase (AdhE in Caldicellulosiruptor, Thermococcus, Pyrococcus, and Thermotoga species coincide with high H2 yields and low ethanol production. Organisms containing genes (or activities for both ethanol and H2 synthesis pathways (i.e. Caldanaerobacter subterraneus subsp. tengcongensis, Ethanoligenens harbinense, and Clostridium species had relatively uniform mixed product patterns. The absence of hydrogenases in Geobacillus and Bacillus species did not confer high ethanol production, but rather high lactate production. Only Thermoanaerobacter pseudethanolicus produced relatively high ethanol and low H2 yields. This may be attributed to the presence of genes encoding proteins that promote NADH production. Lactate dehydrogenase and pyruvate:formate lyase are not conducive for ethanol and/or H2 production. While the type(s of encoded hydrogenases appear to have little impact on H2 production in organisms that do not encode ethanol producing pathways, they do influence reduced end-product yields in those that do. Conclusions Here we show that composition of genes encoding pathways involved in pyruvate catabolism and end-product synthesis pathways can be used to approximate potential end-product distribution patterns. We have identified a number of genetic biomarkers for streamlining ethanol and H2 producing capabilities. By linking genome content, reaction thermodynamics, and end-product yields, we offer potential targets for optimization of either ethanol or H2 yields through metabolic engineering.

  11. Lactic acid bacteria from fresh fruit and vegetables as biocontrol agents of phytopathogenic bacteria and fungi

    OpenAIRE

    Trias Mansilla, Rosalia; Bañeras Vives, Lluís; Montesinos Seguí, Emilio; Badosa Romañó, Esther

    2008-01-01

    This study evaluated the efficacy of lactic acid bacteria (LAB) isolated from fresh fruits and vegetables as biocontrol agents against the phytopathogenic and spoilage bacteria and fungi, Xanthomonas campestris, Erwinia carotovora, Penicillium expansum, Monilinia laxa, and Botrytis cinerea. The antagonistic activity of 496 LAB strains was tested in vitro and all tested microorganisms except P. expansum were inhibited by at least one isolate. The 496 isolates were also analyzed for the inhibit...

  12. Assessment of the Levels of Airborne Bacteria, Gram-Negative Bacteria, and Fungi in Hospital Lobbies

    OpenAIRE

    Dong-Uk Park; Jeong-Kwan Yeom; Won Jae Lee; Kyeong-Min Lee

    2013-01-01

    Aims: We assessed the levels of airborne bacteria, Gram-negative bacteria (GNB), and fungi in six hospital lobbies, and investigated the environmental and hospital characteristics that affected the airborne microorganism levels. Methods: An Andersen single-stage sampler equipped with appropriate nutrition plate agar was used to collect the samples. The three types of microorganisms were repeatedly collected at a fixed location in each hospital (assumed to be representative of the entire hospi...

  13. Environmental pollution detection and bioremediation by marine bacteria

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaiah, N.; De, J.; Iyer, S.R.

    and biochemistry of microbes. The results of these studies on the usefulness of marine luminous bacteria in marine pollution pre-screening, the direct viable counts of bacteria in sensing marine environmental pollution stress are reported....

  14. Molecular clue links bacteria to the origin of animals

    OpenAIRE

    Hadfield, Michael G.

    2012-01-01

    Bacteria have a role in the formation of colonies by a species of single-celled organisms whose ancestors gave rise to the animals, which suggests that bacteria might also have influenced the origin of multicellularity in animals.

  15. Bacteria can mobilize nematode-trapping fungi to kill nematodes

    OpenAIRE

    Wang, Xin; Li, Guo-Hong; Zou, Cheng-Gang; Ji, Xing-Lai; Liu, Tong; Zhao, Pei-Ji; Liang, Lian-Ming; Xu, Jian-ping; An, Zhi-Qiang; Zheng, Xi; Qin, Yue-Ke; Tian, Meng-Qing; Xu, You-Yao; Ma, Yi-Cheng; Yu, Ze-Fen

    2014-01-01

    In their natural habitat, bacteria are consumed by bacterivorous nematodes; however, they are not simply passive preys. Here we report a defensive mechanism used by certain bacteria to mobilize nematode-trapping fungi to kill nematodes. These bacteria release urea, which triggers a lifestyle switch in the fungus Arthrobotrys oligospora from saprophytic to nematode–predatory form; this predacious form is characterized by formation of specialized cellular structures or ‘traps’. The bacteria sig...

  16. Population dynamics of bacteria introduced into bentonite amended soil.

    OpenAIRE

    Heijnen, C. E.

    1992-01-01

    Bacteria have frequently been introduced into the soil environment, e.g. for increasing crop production or for biological control purposes. Many applications require high numbers of surviving organisms in order to be effective. However, survival of bacteria after introduction into soil is generally poor, and numbers of introduced bacteria have been known to decrease from 10 9to approximately 10 3cells/g soil in 25 days. Thus, if bacteria are to be used as effective microbial inoculants to, a ...

  17. Bactericidal effects of antibiotics on slowly growing and nongrowing bacteria.

    OpenAIRE

    Eng, R H; Padberg, F T; Smith, S. M.; Tan, E N; Cherubin, C. E.

    1991-01-01

    Antimicrobial agents are most often tested against bacteria in the log phase of multiplication to produce the maximum bactericidal effect. In an infection, bacteria may multiply less optimally. We examined the effects of several classes of antimicrobial agents to determine their actions on gram-positive and gram-negative bacteria during nongrowing and slowly growing phases. Only ciprofloxacin and ofloxacin exhibited bactericidal activity against nongrowing gram-negative bacteria, and no antib...

  18. The Effect of Bacteria Penetration on Chalk Permeability

    DEFF Research Database (Denmark)

    Halim, Amalia Yunita; Shapiro, Alexander; Nielsen, Sidsel Marie; Eliasson Lantz, Anna

    2014-01-01

    Bacteria selective plugging is one of the mechanisms through which microorganisms can be applied for enhanced oil recovery. Bacteria can plug the water-bearing zones of a reservoir, thus altering the flow paths and improving sweep efficiency. It is known that the bacteria can penetrate deeply into reservoirs, however, a complete understanding of the penetration behavior of bacteria is lacking, especially in chalk formations where the pore throat sizes are almost comparable with the sizes of bact...

  19. Metabolism in bacteria at low temperature: A recent report

    Indian Academy of Sciences (India)

    Dipanwita Sengupta; Madhab K Chattopadhyay

    2013-06-01

    The adaptability of bacteria to extreme cold environments has been demonstrated from time to time by various investigators. Metabolic activity of bacteria at subzero temperatures is also evidenced. Recent studies indicate that bacteria continue both catabolic and anabolic activities at subzero temperatures. Implications of these findings are discussed.

  20. On Ants, Bacteria and Dynamic Environments

    CERN Document Server

    Ramos, V; Rosa, A C; Ramos, Vitorino; Fernandes, Carlos; Rosa, Agostinho C.

    2005-01-01

    Wasps, bees, ants and termites all make effective use of their environment and resources by displaying collective swarm intelligence. Termite colonies - for instance - build nests with a complexity far beyond the comprehension of the individual termite, while ant colonies dynamically allocate labor to various vital tasks such as foraging or defense without any central decision-making ability. Recent research suggests that microbial life can be even richer: highly social, intricately networked, and teeming with interactions, as found in bacteria. What strikes from these observations is that both ant colonies and bacteria have similar natural mechanisms based on Stigmergy and Self-Organization in order to emerge coherent and sophisticated patterns of global behaviour. Keeping in mind the above characteristics we will present a simple model to tackle the collective adaptation of a social swarm based on real ant colony behaviors (SSA algorithm) for tracking extrema in dynamic environments and highly multimodal co...

  1. Effect of Essential Oils on Pathogenic Bacteria

    Directory of Open Access Journals (Sweden)

    Filomena Nazzaro

    2013-11-01

    Full Text Available The increasing resistance of microorganisms to conventional chemicals and drugs is a serious and evident worldwide problem that has prompted research into the identification of new biocides with broad activity. Plants and their derivatives, such as essential oils, are often used in folk medicine. In nature, essential oils play an important role in the protection of plants. Essential oils contain a wide variety of secondary metabolites that are capable of inhibiting or slowing the growth of bacteria, yeasts and moulds. Essential oils and their components have activity against a variety of targets, particularly the membrane and cytoplasm, and in some cases, they completely change the morphology of the cells. This brief review describes the activity of essential oils against pathogenic bacteria.

  2. Bacteria slingshot more on soft surfaces

    Science.gov (United States)

    Zhang, Rongrong; Ni, Lei; Jin, Zhenyu; Li, Jiahong; Jin, Fan

    2014-11-01

    Adaptive responses greatly improve the competitive capacities of bacteria in diverse environments. Here, we investigate whether bacteria can adapt to a microenvironment with distinctive softness by examining the type-IV pili (TFP)-mediated motility of Pseudomonas aeruginosa cells on brush-like surfaces that are grafted with a layer of thermally sensitive polymer chains, where the softness of the brush-layer is tunable by applying a small temperature change (from 30 to 37?°C). We report that P. aeruginosa cells slingshot more on soft surfaces at a shear-thinning condition, which greatly facilitates their surface crawling by means of reducing energy dissipation. This adaptive response suggests that P. aeruginosa cells may be able to sense the local viscoelasticity and then deploy TFP to adapt to their physical surroundings.

  3. In situ soil remediation: Bacteria or fungi?

    International Nuclear Information System (INIS)

    Contamination of the environment is not a new problem. For most of recorded history, the unwanted byproducts of industrial and residential processes have been dumped into unlined pits or nearby streams. Although disposal techniques have greatly improved, significant quantities of hazardous materials are still being released to the environment via accidental spills and leaking underground storage tanks. One particular group of contaminants of critical environmental concern is polycyclic aromatic hydrocarbons (PAHs). PAH-contaminated sites typically cover large areas; therefore, the development of in situ remediation techniques such as bioremediation is strongly emphasized. In situations when inherent microorganisms are not capable of degrading the contaminants, foreign strains must be used. Bioremediation experiments were conducted to compare the remediation efficiencies of a bacteria and a fungus for an industrially PAH contaminated soil. Specifically, the use of three supplemental nutrient solutions were investigated in conjunction with the bacteria Achromobacter sp. and fungus Cunninghamella echinulata var. elegans

  4. Sulfur-oxidizing bacteria in environmental technology.

    Science.gov (United States)

    Pokorna, Dana; Zabranska, Jana

    2015-11-01

    Hydrogen sulfide is widely known as the most undesirable component of biogas that caused not only serious sensoric and toxic problems, but also corrosion of concrete and steel structures. Many agricultural and industrial waste used in biogas production, may contain a large amount of substances that serve as direct precursors to the formation of sulfide sulfur-sources of hydrogen sulfide in the biogas. Biological desulfurization methods are currently promoted to abiotic methods because they are less expensive and do not produce undesirable materials which must be disposed of. The final products of oxidation of sulfides are no longer hazardous. Biological removal of sulfide from a liquid or gaseous phase is based on the activity of sulfur-oxidizing bacteria. They need an oxidizing agent such as an acceptor of electrons released during the oxidation of sulfides-atmospheric oxygen or oxidized forms of nitrogen. Different genera of sulfur-oxidizing bacteria and their technological application are discussed. PMID:25701621

  5. Biotechnological potential of Clostridium butyricum bacteria

    Scientific Electronic Library Online (English)

    Daria, Szymanowska-Powa& #322; owska; Dorota, Orczyk; Katarzyna, Leja.

    2014-09-01

    Full Text Available In response to demand from industry for microorganisms with auspicious biotechnological potential, a worldwide interest has developed in bacteria and fungi isolation. Microorganisms of interesting metabolic properties include non-pathogenic bacteria of the genus Clostridium, particularly C. acetobut [...] ylicum, C. butyricum and C. pasteurianum. A well-known property of C. butyricum is their ability to produce butyric acid, as well as effectively convert glycerol to 1,3-propanediol (38.2 g/L). A conversion rate of 0.66 mol 1,3-propanediol/mol of glycerol has been obtained. Results of the studies described in the present paper broaden our knowledge of characteristic features of C. butyricum specific isolates in terms of their phylogenetic affiliation, fermentation capacity and antibacterial properties.

  6. Physics of Intracellular Organization in Bacteria.

    Science.gov (United States)

    Wingreen, Ned S; Huang, Kerwyn Casey

    2015-10-15

    With the realization that bacteria achieve exquisite levels of spatiotemporal organization has come the challenge of discovering the underlying mechanisms. In this review, we describe three classes of such mechanisms, each of which has physical origins: the use of landmarks, the creation of higher-order structures that enable geometric sensing, and the emergence of length scales from systems of chemical reactions coupled to diffusion. We then examine the diversity of geometric cues that exist even in cells with relatively simple geometries, and end by discussing both new technologies that could drive further discovery and the implications of our current knowledge for the behavior, fitness, and evolution of bacteria. The organizational strategies described here are employed in a wide variety of systems and in species across all kingdoms of life; in many ways they provide a general blueprint for organizing the building blocks of life. PMID:26488278

  7. Comparative Genomics of Green Sulfur Bacteria

    DEFF Research Database (Denmark)

    Ussery, David; Davenport, C

    2010-01-01

    Eleven completely sequenced Chlorobi genomes were compared in oligonucleotide usage, gene contents, and synteny. The green sulfur bacteria (GSB) are equipped with a core genome that sustains their anoxygenic phototrophic lifestyle by photosynthesis, sulfur oxidation, and CO(2) fixation. Whole-genome gene family and single gene sequence comparisons yielded similar phylogenetic trees of the sequenced chromosomes indicating a concerted vertical evolution of large gene sets. Chromosomal synteny of genes is not preserved in the phylum Chlorobi. The accessory genome is characterized by anomalous oligonucleotide usage and endows the strains with individual features for transport, secretion, cell wall, extracellular constituents, and a few elements of the biosynthetic apparatus. Giant genes are a peculiar feature of the genera Chlorobium and Prosthecochloris. The predicted proteins have a huge molecular weight of 10(6), and are probably instrumental for the bacteria to generate their own intimate (micro)environment.

  8. Seeing Streptococcus pneumoniae, a Common Killer Bacteria

    DEFF Research Database (Denmark)

    Kjærgaard, Rikke Schmidt; Andersen, Ebbe Sloth

    2014-01-01

    Look around you. The diversity and complexity of life on earth is overwhelming and data continues to grow. In our desire to understand and explain everything scientifically from molecular evolution to supernovas we depend on visual representations. This paper investigates visual representations of the bacteria Streptococcus pneumoniae by use of ink, watercolours and computer graphics. We propose a novel artistic visual rendering of Streptococcus pneumoniae and ask what the value of these kind of representations are compared to traditional scientific data. We ask if drawings and computer-assisted representations can add to our scientific knowledge about this dangerous bacteria. Is there still a role for the scientific illustrator in the scientific process and synthesis of scientific knowledge?

  9. Bioactive Compounds from Marine Bacteria and Fungi

    OpenAIRE

    Debbab, Abdessamad; Aly, Amal H.; Lin, Wen H.; Proksch, Peter

    2010-01-01

    Marine bacteria and fungi are of considerable importance as new promising sources of a huge number of biologically active products. Some of these marine species live in a stressful habitat, under cold, lightless and high pressure conditions. Surprisingly, a large number of species with high diversity survive under such conditions and produce fascinating and structurally complex natural products. Up till now, only a small number of microorganisms have been investigated for bioactive metabolite...

  10. Bacteria viability assessment after photocatalytic treatment

    OpenAIRE

    Cai, Yanling; Strömme, Maria; Welch, Ken

    2013-01-01

    The aim of the present work was to evaluate several methods for analyzing the viability of bacteria after antibacterial photocatalytic treatment. Colony-forming unit (CFU) counting, metabolic activity assays based on resazurin and phenol red and the Live/Dead® BacLight™ bacterial viability assay (Live/Dead staining) were employed to assess photocatalytically treated Staphylococcus epidermidis and Streptococcus mutans. The results showed conformity between CFU counting and the metabolic activ...

  11. Electron Microscopy of Frozen-Hydrated Bacteria

    OpenAIRE

    1984-01-01

    Amorphous, unstained, frozen-hydrated sections of bacteria provide a faithful high-resolution image of procaryotic cells. Conventional preparation artifacts due to fixation, staining, and dehydration are nonexistent. Freezing damage is avoided by using glucose as a cryoprotectant. Cutting damage on frozen material is severe, but sectioning artifacts, being always related to the cutting direction, can be systematically recognized and thus taken into consideration. Geometry and density distribu...

  12. Pattern Formation in Growing Polar Bacteria

    Science.gov (United States)

    Yang, Xingbo; Marchetti, M.; Marenduzzo, Davide

    2013-03-01

    We analyze a continuum model of a bacterial suspension that includes motility suppression from steric repulsion, polar alignment, and bacteria reproduction and death. Using a combination of linear stability analysis and numerical solution of the nonlinear equations, we demonstrate that the model exhibits a rich variety of emergent structures, corresponding to generic patterns seen in experiments. Motility suppression in a crowded environment gives rise to a density phase separation, regulated by the growth/death of the bacteria, as demonstrated earlier by Cates et al. [PNAS 107, 11715-11720(2010)], with spherically symmetric patterns similar to those observed in S. typhimurium. The addition of polar alignment yields new ring/band and swirl/spiral structures resembling those observed in E.coli colonies. The stationary/traveling nature of the patterns and their symmetry is classified and summarized in a phase diagram. We analyze a continuum model of a bacterial suspension that includes motility suppression from steric repulsion, polar alignment, and bacteria reproduction and death. Using a combination of linear stability analysis and numerical solution of the nonlinear equations, we demonstrate that the model exhibits a rich variety of emergent structures, corresponding to generic patterns seen in experiments. Motility suppression in a crowded environment gives rise to a density phase separation, regulated by the growth/death of the bacteria, as demonstrated earlier by Cates et al. [PNAS 107, 11715-11720(2010)], with spherically symmetric patterns similar to those observed in S. typhimurium. The addition of polar alignment yields new ring/band and swirl/spiral structures resembling those observed in E.coli colonies. The stationary/traveling nature of the patterns and their symmetry is classified and summarized in a phase diagram. This work was supported by the NSF through grant DMR-1004789.

  13. New Fluorescein Precursors for Live Bacteria Detection.

    Science.gov (United States)

    Guilini, Celia; Baehr, Corinne; Schaeffer, Etienne; Gizzi, Patrick; Rufi, Frédéric; Haiech, Jacques; Weiss, Etienne; Bonnet, Dominique; Galzi, Jean-Luc

    2015-09-01

    Swiftness, reliability, and sensitivity of live bacteria detection in drinking water are key issues for human safety. The most widespread used indicator of live bacteria is a caged form of carboxyfluorescein in which 3' and 6' hydroxyl groups are masked as acetate esters (CFDA). This derivatization altogether abolishes fluorescein fluorescence and renders the molecule prone to passive diffusion through bacterial membranes. Once in the cytoplasm, acetate groups from CFDA are removed by bacterial hydrolases and fluorescence develops, rendering live but not dead cells detectable. Yet the reagent, carboxyfluorescein diacetate, still possesses a free carboxyl group whose ionization constant is such that the majority of the probe is charged at physiological pH. This unfavors probe permeation through membranes. Here, we prepare several chemical modifications of the carboxyl moiety of CFDA, in order to neutralize its charge and improve its passive diffusion through membranes. We show that the ethylamido derivative of the 5-carboxyl group from 5-carboxy-fluorescein diacetate or from Oregon green diacetate or from Oregon green diacetoxymethylester are stable molecules in biological media, penetrate into bacterial cells and are metabolized into fluorescent species. Only live bacteria are revealed since bleached samples are not labeled. Other derivatives with modification of the 5-carboxyl group with an ester group or with a thiourea-based moiety were almost inefficient probes. The most interesting probe, triembarine (5-ethylaminocarboxy-oregon green, 3',6'diacetoxymethyl ester) leads to 6-10 times more sensitive detection of bacteria as compared to CFDA. Addition of contrast agents (trypan blue or brilliant blue R) improve the signal-to-noise ratio by quenching extracellular fluorescence while bromophenol blue quenches both intracellular and extracellular fluorescence, allowing standardization of detections. PMID:26260548

  14. Nitrogen uptake of saprotrophic basidiomycetes and bacteria

    OpenAIRE

    Weißhaupt, Petra

    2012-01-01

    Saprotrophic basidiomycetes decompose wood in aerobic environments and can cause economic damage. The availability of nitrogen is determining for decomposition, and diazotrophic bacteria might enhance the nitrogen availability by fixation of atmospheric N2. Simultaneous decomposition by basidiomycetes and diazotrophs may intensify decomposition, because N2 fixation requires ATP, which could be provided during cellulose decomposition. In this study, the interaction was analysed by measurements...

  15. Designing surfaces that kill bacteria on contact

    OpenAIRE

    Tiller, Joerg C.; Liao, Chun-Jen; Lewis, Kim; Klibanov, Alexander M.

    2001-01-01

    Poly(4-vinyl-N-alkylpyridinium bromide) was covalently attached to glass slides to create a surface that kills airborne bacteria on contact. The antibacterial properties were assessed by spraying aqueous suspensions of bacterial cells on the surface, followed by air drying and counting the number of cells remaining viable (i.e., capable of growing colonies). Amino glass slides were acylated with acryloyl chloride, copolymerized with 4-vinylpyridine, and N-alkylated...

  16. Antimicrobial resistant bacteria in the food chain

    DEFF Research Database (Denmark)

    Wegener, Henrik Caspar

    2003-01-01

    Antimicrobials are used for treatment and prevention of disease in food animals and as feed additives for growth promotion. All uses lead to the development of resistant bacteria, some of which are pathogenic to humans. Current main concerns are with resistance in Salmonella and Campylobacter to fluoroquinolones, which are used for empirical treatment of diarrhea in humans. Resistance to vancomycin and Synercid((R)) in enterococci is associated with use of similar drugs as growth promoters in fo...

  17. Evolution of root endosymbiosis with bacteria

    DEFF Research Database (Denmark)

    Markmann, Katharina; Parniske, Martin

    2009-01-01

    Plants form diverse symbioses with nitrogen-fixing bacteria to gain access to ammonium, a product of the prokaryote-exclusive enzyme nitrogenase. Improving the symbiotic effectiveness of crop plants like maize, wheat or rice is a highly topical challenge and could help reduce the need for energy-intense nitrogen fertilizer in staple food production. Root nodule symbiosis (RNS) constitutes one of the most productive nitrogen-fixing systems, but it is restricted to a small group of related angiosp...

  18. Bacteria-Triggered Release of Antimicrobial Agents

    DEFF Research Database (Denmark)

    Komnatnyy, Vitaly V.; Chiang, Wen-Chi; Tolker-Nielsen, Tim; Givskov, Michael Christian; Nielsen, Thomas Eiland

    2014-01-01

    Medical devices employed in healthcare practice are often susceptible to microbial contamination. Pathogenic bacteria may attach themselves to device surfaces of catheters or implants by formation of chemically complex biofilms, which may be the direct cause of device failure. Extracellular bacterial lipases are particularly abundant at sites of infection. Herein it is shown how active or proactive compounds attached to polymeric surfaces using lipase?sensitive linkages, such as fatty acid ester...

  19. Comparative Genomics of Green Sulfur Bacteria

    DEFF Research Database (Denmark)

    Ussery, David; Davenport, C; Tümmler, B

    2010-01-01

    Eleven completely sequenced Chlorobi genomes were compared in oligonucleotide usage, gene contents, and synteny. The green sulfur bacteria (GSB) are equipped with a core genome that sustains their anoxygenic phototrophic lifestyle by photosynthesis, sulfur oxidation, and CO(2) fixation. Whole-genome gene family and single gene sequence comparisons yielded similar phylogenetic trees of the sequenced chromosomes indicating a concerted vertical evolution of large gene sets. Chromosomal synteny of g...

  20. Ancient bacteria show evidence of DNA repair

    DEFF Research Database (Denmark)

    Johnson, Sarah Stewart; Hebsgaard, Martin B; Christensen, Torben R; Mastepanov, Mikhail; Nielsen, Rasmus; Munch, Kasper; Brand, Tina; Gilbert, Tom; Zuber, Maria T; Bunce, Michael; Rønn, Regin; Gilichinsky, David; Froese, Duane; Willerslev, Eske

    2007-01-01

    Recent claims of cultivable ancient bacteria within sealed environments highlight our limited understanding of the mechanisms behind long-term cell survival. It remains unclear how dormancy, a favored explanation for extended cellular persistence, can cope with spontaneous genomic decay over geological timescales. There has been no direct evidence in ancient microbes for the most likely mechanism, active DNA repair, or for the metabolic activity necessary to sustain it. In this paper, we couple ...

  1. Control of indigenous pathogenic bacteria in seafood

    DEFF Research Database (Denmark)

    Huss, Hans Henrik

    1997-01-01

    The pathogenic bacteria indigenous to the aquatic and general environment are listed. Their distribution in nature, prevalence in seafood and the possibilities for growth of these organisms in various types of products are outlined These data, combined with what is known regarding the epidemiology of disease, are used to place the various seafood products in risk categories and to identify areas of concern. It is concluded that the presence of pathogens in molluscs and the growth of Listeria mon...

  2. Application of Pulsed Electric Field on Bacteria.

    Czech Academy of Sciences Publication Activity Database

    Kadlec, Tomáš; Babický, Václav; ?lupek, Martin; Vrbová, M.

    Prague : Czech Technical University in Prague, 2011 - (Pospíšilová, M.; Vrbová, M.; Machá?, R.), s. 161-164 ISBN 978-80-01-04915-0. [Instruments and Methods for Biology and Medicine 2011. Kladno (CZ), 02.06.2011-02.06.2011] R&D Projects: GA AV ?R IAAX00430802; GA ?R(CZ) GD104/09/H080 Institutional research plan: CEZ:AV0Z20430508 Keywords : Pulsed Electric Field * Bacteria Subject RIV: BO - Biophysics

  3. Flow cytometry, fluorescent probes, and flashing bacteria

    OpenAIRE

    Bunthof, C.J.

    2002-01-01

     Key words: fluorescent probes, flow cytometry, CSLM, viability, survival, microbial physiology, lactic acid bacteria, Lactococcus lactis , Lactobacillus plantarum , cheese, milk, probiotic In food industry there is a perceived need for rapid methods for detection and viability assessment of microbes. Fluorescent staining and flow cytometry provide excellent tools for microbial analysis. This thesis describes fluorescent techniques for assessment of the physiological state of lactic acid bact...

  4. Probiotics Bacteria in Fermented Dairy Products

    OpenAIRE

    Omer Turki Mamdoh Ershidat; Ayman Suliman Mazahreh

    2009-01-01

    The nutritional value of diary based product that contains probiotic bacteria on the gastrointestinal health and functions have been investigated in this study. Both probiotic Lactobacillus bulgaricus and Streptococcus thermophilus species, contribute to the formation of yogurt as a result of anaerobic fermentation of lactic acid in the milk. The benefits of yogurt consumption on the gastrointestinal function mediated through the gut micro flora, bowel transit and the enhancement of gastroint...

  5. Dynamics of swimming bacteria at complex interfaces

    OpenAIRE

    Lopez, Diego; Lauga, Eric

    2014-01-01

    Flagellated bacteria exploiting helical propulsion are known to swim along circular trajectories near surfaces. Fluid dynamics predicts this circular motion to be clockwise (CW) above a rigid surface (when viewed from inside the fluid) and counter-clockwise (CCW) below a free surface. Recent experimental investigations showed that complex physicochemical processes at the nearby surface could lead to a change in the direction of rotation, both at solid surfaces absorbing slip...

  6. Components of ice nucleation structures of bacteria.

    OpenAIRE

    Turner, M. A.; Arellano, F; Kozloff, L M

    1991-01-01

    Nonprotein components attached to the known protein product of the inaZ gene of Pseudomonas syringae have been identified and shown to be necessary for the most efficient ice nucleation of supercooled H2O. Previous studies have shown that cultures of Ina+ bacteria have cells with three major classes of ice-nucleating structures with readily differentiated activities. Further, some cells in the culture have nucleating activities intermediate between those of the different classes and presumabl...

  7. Electromagnetic low-frequency fields and bacteria.

    Czech Academy of Sciences Publication Activity Database

    Foltýn, D.; ?ermáková, E.; Kolá?ová, M.; Bartušek, Karel

    Košice : RVS VLA Košice, 2002 - (Džunda, M.; Br?nová, B.), s. 133 - 137 ISBN 80-7166-034-5. [New trends of development in aviation. Košice (SK), 01.09.2002] Institutional research plan: CEZ:AV0Z2065902 Keywords : low-frequency fields * bacteria Staphylococcus aureus * low-frequency ELM fields Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  8. Bacteria?Triggered Release of Antimicrobial Agents

    DEFF Research Database (Denmark)

    Komnatnyy, Vitaly V.; Chiang, Wen?Chi; Tolker?Nielsen, Tim; Givskov, Michael Christian; Nielsen, Thomas Eiland

    2014-01-01

    Medical devices employed in healthcare practice are often susceptible to microbial contamination. Pathogenic bacteria may attach themselves to device surfaces of catheters or implants by formation of chemically complex biofilms, which may be the direct cause of device failure. Extracellular bacterial lipases are particularly abundant at sites of infection. Herein it is shown how active or proactive compounds attached to polymeric surfaces using lipase?sensitive linkages, such as fatty acid ester...

  9. Bacteria-triggered release of antimicrobial agents

    DEFF Research Database (Denmark)

    Komnatnyy, Vitaly V; Chiang, Wen-Chi; Tolker-Nielsen, Tim; Givskov, Michael; Nielsen, Thomas E

    2014-01-01

    Medical devices employed in healthcare practice are often susceptible to microbial contamination. Pathogenic bacteria may attach themselves to device surfaces of catheters or implants by formation of chemically complex biofilms, which may be the direct cause of device failure. Extracellular bacterial lipases are particularly abundant at sites of infection. Herein it is shown how active or proactive compounds attached to polymeric surfaces using lipase-sensitive linkages, such as fatty acid ester...

  10. Isolation of Lightning-Competent Soil Bacteria

    OpenAIRE

    Cérémonie, Hélène; Buret, François; Simonet, Pascal; Vogel, Timothy M.

    2004-01-01

    Artificial transformation is typically performed in the laboratory by using either a chemical (CaCl2) or an electrical (electroporation) method. However, laboratory-scale lightning has been shown recently to electrotransform Escherichia coli strain DH10B in soil. In this paper, we report on the isolation of two “lightning-competent” soil bacteria after direct electroporation of the Nycodenz bacterial ring extracted from prairie soil in the presence of the pBHCRec plasmid (Tcr, Spr, Smr). The ...

  11. Seeing Streptococcus pneumoniae, a Common Killer Bacteria

    DEFF Research Database (Denmark)

    Kjærgaard, Rikke Schmidt; Andersen, Ebbe Sloth

    2014-01-01

    Look around you. The diversity and complexity of life on earth is overwhelming and data continues to grow. In our desire to understand and explain everything scientifically from molecular evolution to supernovas we depend on visual representations. This paper investigates visual representations of the bacteria Streptococcus pneumoniae by use of ink, watercolours and computer graphics. We propose a novel artistic visual rendering of Streptococcus pneumoniae and ask what the value of these kind of...

  12. Engineering bacteria to manufacture functionalized polyester beads

    OpenAIRE

    Draper, Jenny L.; Rehm, Bernd H.

    2012-01-01

    The ability to generate tailor-made, functionalized polyester (polyhydroxyalkanoate, PHA) beads in bacteria by harnessing their natural carbon-storage granule production system is an exciting recent development. Proteins that naturally attach to the polyester granule core were rationally engineered to enable in vivo production of PHA beads which are applicable in bioseparation, protein purification, enzyme immobilization and diagnostics and which show advantageous properties toward the develo...

  13. Cellulose biosynthesis and function in bacteria.

    OpenAIRE

    Ross, P.; Mayer, R; Benziman, M.

    1991-01-01

    The current model of cellulose biogenesis in plants, as well as bacteria, holds that the membranous cellulose synthase complex polymerizes glucose moieties from UDP-Glc into beta-1,4-glucan chains which give rise to rigid crystalline fibrils upon extrusion at the outer surface of the cell. The distinct arrangement and degree of association of the polymerizing enzyme units presumably govern extracellular chain assembly in addition to the pattern and width of cellulose fibril deposition. Most e...

  14. Study of fatty acid-bacteria interactions

    International Nuclear Information System (INIS)

    Complete text of publication follows. During our work we investigated fatty acid-bacteria interactions. The antibacterial property of fatty acids was reported by several authors. Despite of them there is not reassuring explanation about the mechanism of the antibacterial activity of these compounds. An effect can considerably change in case of different structured fatty acids. Our earlier studies conduct that small changes in the structures can modify changes in their behavior towards bacteria. The stearic acid does not cause any antibacterial effects during the first few hours of the investigation, may even help the bacterial growth. However, linolic acid (C18:2) shows a strong antibacterial effect during the first hours. After 24 hours this effect wears out and the bacteria have adapted to the stress. We studied the antibacterial activity using direct bioautography. This method has the advantage to allow examining lipophilic compounds. The linoleic acid decomposes in time under different physiological conditions creating numerous oxidized molecules. This may be the reason of its antimicrobial effect. For studying this phenomenon we used infrared and mass spectroscopic methods. We applied infrared spectroscopy for indicating any changes in the spectra of the fatty acids after the interaction of fatty acids with bacteria. So we are able to deduct on what could happen during these process. We paid great attention towards the changes of double bonds, on methylation and demethylation processes. Using mass spectroscopy we searched for oxidized products that may play important role in this process. These studies are only part of our more widespreading investigations, dealing with the antimicrobial properties of fatty acids.

  15. Pathogenic bacteria in Finnish bulk tank milk.

    Science.gov (United States)

    Ruusunen, Marjo; Salonen, Marleena; Pulkkinen, Hanna; Huuskonen, Marianne; Hellström, Sanna; Revez, Joana; Hänninen, Marja-Liisa; Fredriksson-Ahomaa, Maria; Lindström, Miia

    2013-02-01

    While the quality of raw cow milk in Finland is known for its high hygienic standard, with the national average total bacterial count being below 10(4) CFU/mL annually, the prevalence of pathogenic bacteria in Finnish raw milk is underreported. The aim of this study was to determine the occurrence of Listeria monocytogenes, thermophilic Campylobacter spp., Salmonella spp., stx-positive Escherichia coli (STEC), coagulase-positive staphylococci, Yersinia spp., and Bacillus cereus group in raw cow milk samples collected from bulk tanks at 183 Finnish farms. Additionally, the hygienic quality of the milk was studied by determining the total bacterial and E. coli counts. L. monocytogenes was detected in 5.5% of the milk samples, with concentrations varying from ail, suggesting that they were non-pathogenic. Coagulase-positive staphylococci were detected in 34.4% of the samples, with an average concentration of 25 CFU/mL in the positive samples. Members of the B. cereus group were detected in 20.8% of the samples, with an average concentration of 1 CFU/mL in the positive samples. No relationship was detected between E. coli or the total bacterial count and the presence of pathogenic bacteria, which suggests that pathogens can be present also in farms with excellent production hygiene. Although the concentration of pathogenic bacteria in fresh raw milk was mainly relatively low, it should be borne in mind that some of the pathogenic bacteria can survive and multiply at refrigeration temperatures and may cause a disease with a very low infectious dose. Thus, consumption of raw milk and related products poses a potential risk for food poisoning. PMID:23373473

  16. Mutation, Selection and Genetic Interactions in Bacteria

    OpenAIRE

    I Gordo; Sousa, A

    2010-01-01

    Mutation is the ultimate source of genetic variation. The rate at whichnew mutations typically occurs, their effects on fitness and the strength and type of genetic interactions between different mutations are key for understanding the evolution of any population. Estimates of these parameters in organisms such as bacteria will have a profound impact on our understanding of their biology, diversity, rate of speciation and in our health. Experimental evolution with bact...

  17. Filamentous bacteria transport electrons over centimetre distances

    DEFF Research Database (Denmark)

    Pfeffer, Christian; Larsen, Steffen; Song, Jie; Dong, Mingdong; Besenbacher, Flemming; Meyer, Rikke Louise; Kjeldsen, Kasper Urup; Schreiber, Lars; Gorby, Yuri A.; El-Naggar, Mohamed Y.; Leung, Kar Man; Schramm, Andreas; Risgaard-Petersen, Nils; Nielsen, Lars Peter

    2012-01-01

    Oxygen consumption in marine sediments is often coupled to the oxidation of sulphide generated by degradation of organic matter in deeper, oxygen-free layers. Geochemical observations have shown that this coupling can be mediated by electric currents carried by unidentified electron transporters across centimetre-wide zones. Here we present evidence that the native conductors are long, filamentous bacteria. They abounded in sediment zones with electric currents and along their length they contai...

  18. Tumour targeting with systemically administered bacteria.

    LENUS (Irish Health Repository)

    Morrissey, David

    2012-01-31

    Challenges for oncology practitioners and researchers include specific treatment and detection of tumours. The ideal anti-cancer therapy would selectively eradicate tumour cells, whilst minimising side effects to normal tissue. Bacteria have emerged as biological gene vectors with natural tumour specificity, capable of homing to tumours and replicating locally to high levels when systemically administered. This property enables targeting of both the primary tumour and secondary metastases. In the case of invasive pathogenic species, this targeting strategy can be used to deliver genes intracellularly for tumour cell expression, while non-invasive species transformed with plasmids suitable for bacterial expression of heterologous genes can secrete therapeutic proteins locally within the tumour environment (cell therapy approach). Many bacterial genera have been demonstrated to localise to and replicate to high levels within tumour tissue when intravenously (IV) administered in rodent models and reporter gene tagging of bacteria has permitted real-time visualisation of this phenomenon. Live imaging of tumour colonising bacteria also presents diagnostic potential for this approach. The nature of tumour selective bacterial colonisation appears to be tumour origin- and bacterial species- independent. While originally a correlation was drawn between anaerobic bacterial colonisation and the hypoxic nature of solid tumours, it is recently becoming apparent that other elements of the unique microenvironment within solid tumours, including aberrant neovasculature and local immune suppression, may be responsible. Here, we consider the pre-clinical data supporting the use of bacteria as a tumour-targeting tool, recent advances in the area, and future work required to develop it into a beneficial clinical tool.

  19. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria

    OpenAIRE

    Png, C.W.; Linden, S.K.; Gilshenan, K.S.; Zoetendal, E.G.; McSweeney, C S; Sly, L. I.; McGuckin, M A; Florin, T.H.

    2010-01-01

    OBJECTIVES: Mucosa-associated bacteria are increased in inflammatory bowel disease (IBD), which suggests the possibility of an increased source of digestible endogenous mucus substrate. We hypothesized that mucolytic bacteria are increased in IBD, providing increased substrate to sustain nonmucolytic mucosa-associated bacteria. METHODS: Mucolytic bacteria were characterized by the ability to degrade human secretory mucin (MUC2) in pure and mixed anaerobic cultures. Real-time PCR was used t...

  20. Soil bacteria for remediation of polluted soils

    Energy Technology Data Exchange (ETDEWEB)

    Springael, D.; Bastiaens, L.; Carpels, M.; Mergaey, M.; Diels, L.

    1996-09-18

    Soil bacteria, specifically adapted to contaminated soils, may be used for the remediation of polluted soils. The Flemish research institute VITO has established a collection of bacteria, which were isolated from contaminated areas. This collection includes microbacteria degrading mineral oils (Pseudomonas sp., Acinetobacter sp. and others), microbacteria degrading polycyclic aromatic hydrocarbons (genera Sphingomonas and Mycobacterium), microbacteria degrading polychlorobiphenyls (genus Ralstonia and strains related to beta-Proteobacteria), and metal resistant bacteria with plasmid borne resistances to Cd, Zn, Ni, Co, Cu, Hg, and Cr. Bench-scale reactors were developed to investigate the industrial feasibility of bioremediation. Batch Stirred Tank Reactors were used to evaluate the efficiency of oil degraders. Soils, contaminated with non-ferrous metals, were treated using a Bacterial Metal Slurry Reactor. It was found that the reduction of the Cd concentration may vary strongly from sample to sample: reduction factors vary from 95 to 50%. Is was shown that Cd contained in metallic sinter and biologically unavailable Cd could not be removed.

  1. Fecal indicator bacteria at Havana Bay

    International Nuclear Information System (INIS)

    Aims: Fecal indicator bacteria concentrations were evaluated in Havana Bay. Methods: Concentrations of traditional fecal indicator bacteria were calculated between April 2010 and February 2011, by MPN methods. Concentrations of thermo tolerant coliform (CTT), Escherichia coli, fecal streptococci (EF), intestinal enterococci (ENT) in seawater, and Clostridium perfringens in sediment surface, were determined. Results: CTT and E. coli levels were far above Cuban water quality standard for indirect contact with water, showing the negative influence of sewage and rivers on the bay. The EF and ENT were measured during sewage spills at the discharge site and they were suitable indicators of fecal contamination, but these indicators didn't show the same behavior in other selected sites. This result comes from its well-known inactivation by solar light in tropical zones and the presumable presence of humid acids in the waters of the bay. Conclusion: Fecal indicator bacteria and its statistical relationships reflect recent and chronic fecal contamination at the bay and near shores.

  2. Multitasking SecB chaperones in bacteria.

    Science.gov (United States)

    Sala, Ambre; Bordes, Patricia; Genevaux, Pierre

    2014-01-01

    Protein export in bacteria is facilitated by the canonical SecB chaperone, which binds to unfolded precursor proteins, maintains them in a translocation competent state and specifically cooperates with the translocase motor SecA to ensure their proper targeting to the Sec translocon at the cytoplasmic membrane. Besides its key contribution to the Sec pathway, SecB chaperone tasking is critical for the secretion of the Sec-independent heme-binding protein HasA and actively contributes to the cellular network of chaperones that control general proteostasis in Escherichia coli, as judged by the significant interplay found between SecB and the trigger factor, DnaK and GroEL chaperones. Although SecB is mainly a proteobacterial chaperone associated with the presence of an outer membrane and outer membrane proteins, secB-like genes are also found in Gram-positive bacteria as well as in certain phages and plasmids, thus suggesting alternative functions. In addition, a SecB-like protein is also present in the major human pathogen Mycobacterium tuberculosis where it specifically controls a stress-responsive toxin-antitoxin system. This review focuses on such very diverse chaperone functions of SecB, both in E. coli and in other unrelated bacteria. PMID:25538690

  3. Rotating Bacteria Aggregate into Active Crystals

    Science.gov (United States)

    Petroff, A. P.; Wu, X. L.; Libchaber, A.

    2014-12-01

    The dynamics of many microbial ecosystems are determined not only by the response of individual bacteria to their chemical and physical environments but also the dynamics that emerge from interactions between cells. Here we investigate collective dynamics displayed by communities of Thiovulum majus, one of the fastest known bacteria. We observe that when these bacteria swim close to a microscope cover slip, the cells spontaneously aggregate into a visually-striking, two-dimensional hexagonal lattice of rotating cells. Each cell in an aggregate rotates its flagella, exerting a force that pushes the cell into the cover slip and a torque that causes the cell to rotate. As cells rotate against their neighbors, they exert forces and torques on the aggregate that cause the crystal to move and cells to hop to new positions in the lattice. We show how these dynamics arise from hydrodynamic and surface forces between cells. We derive the equations of motion for an aggregate, show that this model reproduces many aspects of the observed dynamics, and discuss the stability of these and similar active crystals. Finally, we discuss the ecological significance of this behavior to understand how the ability to aggregate into these communities may have evolved.

  4. Bacteria associated with Amblyomma cajennense tick eggs.

    Science.gov (United States)

    Machado-Ferreira, Erik; Vizzoni, Vinicius Figueiredo; Piesman, Joseph; Gazeta, Gilberto Salles; Soares, Carlos Augusto Gomes

    2015-12-01

    Ticks represent a large group of pathogen vectors that blood feed on a diversity of hosts. In the Americas, the Ixodidae ticks Amblyomma cajennense are responsible for severe impact on livestock and public health. In the present work, we present the isolation and molecular identification of a group of culturable bacteria associated with A. cajennense eggs from females sampled in distinct geographical sites in southeastern Brazil. Additional comparative analysis of the culturable bacteria from Anocentor nitens, Rhipicephalus sanguineus and Ixodes scapularis tick eggs were also performed. 16S rRNA gene sequence analyses identified 17 different bacterial types identified as Serratia marcescens, Stenotrophomonas maltophilia, Pseudomonas fluorescens, Enterobacter spp., Micrococcus luteus, Ochrobactrum anthropi, Bacillus cereus and Staphylococcus spp., distributed in 12 phylogroups. Staphylococcus spp., especially S. sciuri, was the most prevalent bacteria associated with A. cajennense eggs, occurring in 65% of the samples and also frequently observed infecting A. nitens eggs. S. maltophilia, S. marcescens and B. cereus occurred infecting eggs derived from specific sampling sites, but in all cases rising almost as pure cultures from infected A. cajennense eggs. The potential role of these bacterial associations is discussed and they possibly represent new targets for biological control strategies of ticks and tick borne diseases. PMID:26537602

  5. Anhydrobiosis in bacteria: From physiology to applications

    Indian Academy of Sciences (India)

    Armando Hernández García

    2011-12-01

    Anhydrobiosis is a phenomenon related to the partial or total desiccation of living organisms, keeping their vital functions after rehydration. The desiccated state in prokaryotes has been widely studied, mainly due to the broad spectrum of the anhydrobiosis applications. In this review, we present the basic theoretical concepts related to anhydrobiosis, focusing on bacterial species. An update about desiccation tolerance in bacteria is given; and the general mechanisms of desiccation tolerance and desiccation damage are described. In addition, we show how the study of anhydrobiosis in prokaryotes has established the theoretical and practical basis for the development of the drying technologies. With regard to the desiccation tolerance in bacteria, although many mechanisms remain undiscovered at the molecular level, important research about the physiology of the anhydrobiotic state and its applications has been performed, and here we provide the most recent information about this subject. On the other hand, the most widely used drying technologies and their particular applications in several fields are described (e.g. medicine, agriculture and food industry). Finally, topics on the stability of desiccated bacterial cells are treated, concluding with the necessity of focusing the research on the mathematical modelling of the desiccated state in bacteria.

  6. Glochidioboside Kills Pathogenic Bacteria by Membrane Perturbation.

    Science.gov (United States)

    Lee, Heejeong; Woo, Eun-Rhan; Lee, Dong Gun

    2015-07-01

    The aim of this study was to evaluate the antibacterial effects of glochidioboside and determine its mechanism of action. Glochidioboside has been reported to be isolated from some plants but the underlying biological properties have remained largely obscure until now. To identify the antibacterial activity of all biological properties, pathogenic bacteria susceptibility test was performed, and the result shows that the compound displays remarkable antibacterial activity against antibiotic-resistant bacteria not to mention general pathogen. To demonstrate membrane disruption and depolarization, SYTOX green and bis-(1,3-dibutylbarbituric acid) trimethine oxonol were used with Escherichia coli O157, and indicated that glochidioboside affected cytoplasmic membranes by permeabilization and depolarization, respectively. Calcein efflux was evident in a membrane model that encapsulated fluorescent dye, and supported the hypothesis of a membrane-active mechanism. To confirm the release of intracellular matrix owing to membrane damage, the movements of potassium ion were observed; the results indicated that the cells treated with glochidioboside leaked potassium ion, thus the damage induced by the compounds lead to leaking intracellular components. We propose that glochidioboside kills pathogenic bacteria via perturbation of integrity of the membrane. PMID:25820208

  7. Bacteria-Targeting Nanoparticles for Managing Infections

    Science.gov (United States)

    Radovic-Moreno, Aleksandar Filip

    Bacterial infections continue to be a significant concern particularly in healthcare settings and in the developing world. Current challenges include the increasing spread of drug resistant (DR) organisms, the side effects of antibiotic therapy, the negative consequences of clearing the commensal bacterial flora, and difficulties in developing prophylactic vaccines. This thesis was an investigation of the potential of a class of polymeric nanoparticles (NP) to contribute to the management of bacterial infections. More specifically, steps were taken towards using these NPs (1) to achieve greater spatiotemporal control over drug therapy by more targeted antibiotic delivery to bacteria, and (2) to develop a prophylactic vaccine formulation against the common bacterial sexually transmitted disease (STD) caused by Chlamydia trachomatis. In the first part, we synthesized polymeric NPs containing poly(lactic-co-glycolic acid)-block-poly(L-histidine)-block-poly(ethylene glycol) (PLGA-PLH-PEG). We show that these NPs are able to bind to bacteria under model acidic infection conditions and are able to encapsulate and deliver vancomycin to inhibit the growth of Staphylococcus aureus bacteria in vitro. Further work showed that the PLGA-PLH-PEG-based NPs demonstrated the potential for competition for binding bacteria at a site of infection from soluble protein and model phagocytic and tissue-resident cells in a NP composition dependent manner. The NPs demonstrated low toxicity in vitro, were well tolerated by mice in vivo, and circulated in the blood on timescales comparable to control PLGA-PEG NPs. In the second part, we used PLGA-PLH-PEG-based NPs to design a prophylactic vaccine against the obligate intracellular bacterium Chlamydia trachomatis, the most common cause of bacterial STD in the world. Currently, no vaccines against this pathogen are approved for use in humans. We first formulated NPs encapsulating the TLR7 agonist R848 conjugated to poly(lactic acid) (R848-PLA) in PLGA-PLH-PEG-based NPs, then incubated these R848-NPs with UV-inactivated C. trachomatis bacteria in acidity, forming a construct. Mice immunized with this vaccine via genital or intranasal routes demonstrated protection from genital infection post immunization in a primarily CD4+ T cell-dependent manner. These results may suggest avenues for future work in designing and developing more targeted drug therapies or vaccine formulations for managing bacterial infections using polymeric nanoparticles. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs mit.edu)

  8. Enumeration of indicator bacteria exposed to chlorine.

    Science.gov (United States)

    McFeters, G A; Camper, A K

    1983-01-01

    Stress resulting from a variety of chemical and physical environments has been recognized in indicator bacteria. A review by Busta (1976) summarizes the extensive work that has been carried out to describe indicator microorganisms sublethally impaired due to a variety of causes associated with foods. Workers in the area of water microbiology are also gaining an appreciation of the importance of these stressed cells in the assessment of water quality using bacterial indicators. Chemical agents, including chlorine, that are employed in water disinfection processes are important causes of bacterial stress injury. As a result, a significant portion of the total population of indicator bacteria in water might not be enumerated (using the selective procedures that are currently employed) and inaccurate water quality determinations could result. Alternative water disinfection agents that are being suggested, such as ozone, chlorine dioxide, and ultraviolet irradiation, will also probably lead to the same result. In addition, heat from thermal pollution and interactions with other microorganisms or chemicals (including disinfectants and metals) also exert stress that could further debilitate indicator bacteria in various waters and effluents. A need for improved enumeration procedures has accompanied the recognition of injured indicator bacteria in chlorinated waters and wastewaters. This movement has also stimulated interest in the underlying mechanism of cellular damage that is responsible for the submaximal recovery of coliforms from disinfected waters. Various groups have reported that a number of biochemical, genetic, and physiological processes are impaired by chlorine exposure under differing conditions. Evidence from our laboratory and elsewhere implicates functions associated with the cell envelope, i.e., the uptake of extracellular organic substrates, as the primary cellular target of chlorine under conditions that are similar to those in the field. Additional data from our group indicate that sublethal damage from chlorine can be reversed under suitable nonselective conditions. Recent efforts have led to the development of new methods to enumerate injured fecal streptococcus, total and fecal coliform bacteria from chlorinated waters and wastewater. These procedures each yield data that are comparable with that obtained using the more cumbersome MPN method. As a result, the best characteristics of both methods may now be found in three relatively simple MF procedures. Some of these advances have been described in a new section (#921) of the fifteenth edition of "Standard Methods for the Examination of Water and Wastewater" entitled "Stressed Organisms" (APHA, 1981). However, it is anticipated that new and better water quality assessment methodologies will emerge from the growing literature concerning the physiological and biochemical behavior of indicator microorganisms in water and wastewater.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:6650262

  9. Probiotic bacteria: selective enumeration and survival in dairy foods.

    Science.gov (United States)

    Shah, N P

    2000-04-01

    A number of health benefits have been claimed for probiotic bacteria such as Lactobacillus acidophilus, Bifidobacterium spp., and Lactobacillus casei. Because of the potential health benefits, these organisms are increasingly incorporated into dairy foods. However, studies have shown low viability of probiotics in market preparations. In order to assess viability of probiotic bacteria, it is important to have a working method for selective enumeration of these probiotic bacteria. Viability of probiotic bacteria is important in order to provide health benefits. Viability of probiotic bacteria can be improved by appropriate selection of acid and bile resistant strains, use of oxygen impermeable containers, two-step fermentation, micro-encapsulation, stress adaptation, incorporation of micronutrients such as peptides and amino acids and by sonication of yogurt bacteria. This review will cover selective enumeration and survival of probiotic bacteria in dairy foods. PMID:10791807

  10. Plants as Sources of Airborne Bacteria, Including Ice Nucleation-Active Bacteria

    OpenAIRE

    Lindemann, Julianne; Constantinidou, Helen A.; Barchet, William R.; Upper, Christen D.

    2011-01-01

    Vertical wind shear and concentration gradients of viable, airborne bacteria were used to calculate the upward flux of viable cells above bare soil and canopies of several crops. Concentrations at soil or canopy height varied from 46 colony-forming units per m3 over young corn and wet soil to 663 colony-forming units per m3 over dry soil and 6,500 colony-forming units per m3 over a closed wheat canopy. In simultaneous samples, concentrations of viable bacteria in the air 10 m inside an alfalf...

  11. Clay-Bacteria Systems and Biofilm Production

    Science.gov (United States)

    Steiner, J.; Alimova, A.; Katz, A.; Steiner, N.; Rudolph, E.; Gottlieb, P.

    2007-12-01

    Soil clots and the aerosol transport of bacteria and spores are promoted by the formation of biofilms (bacteria cells in an extracellular polymeric matrix). Biofilms protect microorganisms by promoting adhesion to both organic and inorganic surfaces. Time series experiments on bacteria-clay suspensions demonstrate that biofilm growth is catalyzed by the presence of hectorite in minimal growth media for the studied species: Gram negatives (Pseudomonas syringae and Escherichia coli,) and Gram positives (Staphylococcus aureus and Bacillus subtilis). Soil organisms (P. syringae, B. subtilis) and organisms found in the human population (E. coli, S. aureus) are both used to demonstrate the general applicability of clay involvement. Fluorescent images of the biofilms are acquired by staining with propidium iodide, a component of the BacLightTM Live/Dead bacterial viability staining kit (Molecular Probes, Eugene, OR). The evolving polysaccharide-rich biofilm reacts with the clay interlayer site causing a complex substitution of the two-water hectorite interlayer with polysaccharide. The result is often a three-peak composite of the (001) x-ray diffraction maxima resulting from polysaccharide-expanded clays and an organic-driven contraction of a subset of the clays in the reaction medium. X-ray diffractograms reveal that the expanded set creates a broad maximum with clay subsets at 1.84 nm and 1.41 nm interlayer spacings as approximated by a least squares double Lorentzian fit, and a smaller shoulder at larger 2q, deriving from a contraction of the interlayer spacing. Washing with chlorox removes organic material from the contracted clay and creates a 1-water hectorite single peak in place of the double peak. The clay response can be used as an indirect indicator of biofilm in an environmental system.

  12. 2D simulation of chemotactic bacteria aggregation

    OpenAIRE

    Marrocco, Americo

    2002-01-01

    We start from a mathematical model which describes the collective motion of bacteria taking into account the underlying biochemistry. This model was first introduced by Keller-Segel . A new formulation of the system of partial differential equations is obtained by the introduction of a new variable (this new variable is similar to the quasi-Fermi level in the framework of semiconductor modelling). This new system of P.D.E. is approximat- ed via a mixed finite element technique. The solution a...

  13. Bacteriophage Infection of Model Metal Reducing Bacteria

    Science.gov (United States)

    Weber, K. A.; Bender, K. S.; Gandhi, K.; Coates, J. D.

    2008-12-01

    Microbially-mediated metal reduction plays a significant role controlling contaminant mobility in aqueous, soil, and sedimentary environments. From among environmentally relevant microorganisms mediating metal reduction, Geobacter spp. have been identified as predominant metal-reducing bacteria under acetate- oxidizing conditions. Due to the significance of these bacteria in environmental systems, it is necessary to understand factors influencing their metabolic physiology. Examination of the annotated finished genome sequence of G. sulfurreducens PCA, G. uraniumreducens Rf4, G. metallireduceans GS-15 as well as a draft genome sequence of Geobacter sp. FRC-32 have identified gene sequences of putative bacteriophage origin. Presence of these sequences indicates that these bacteria are susceptible to phage infection. Polymerase chain reaction (PCR) primer sets designed tested for the presence of 12 of 25 annotated phage-like sequences in G. sulfurreducens PCA and 9 of 17 phage-like sequences in FRC- 32. The following genes were successfully amplified in G. sulfurreducens PCA: prophage type transcription regulator, phage-induced endonuclease, phage tail sheath, 2 phage tail proteins, phage protein D, phage base plate protein, phage-related DNA polymerase, integrase, phage transcriptional regulator, and Cro-like transcription regulator. Nine of the following sequences were present in FRC-32: 4 separate phage- related proteins, phage-related tail component, viron core protein, phage Mu protein, phage base plate, and phage tail sheath. In addition to the bioinformatics evidence, incubation of G. sulfurreducens PCA with 1 ?g mL-1 mytomycin C (mutagen stimulating prophage induction) during mid-log phase resulted in significant cell lysis relative to cultures that remained unamended. Cell lysis was concurrent with an increase in viral like particles enumerated using epifluorescent microscopy. In addition, samples collected following this lytic event (~44hours) were filtered through a 0.22 ? m sterile nylon filter, stained with phosphotungstic acid (PTA), and examined using transmission electron microscopy (TEM). TEM revealed the presence of viral like particles in the culture exposed to mytomycin C. Together these results suggest an active infection with a lysogenic bacteriophage in the model metal reducing bacteria, Geobacter spp., which could affect metabolic physiology and subsequently metal reduction in environmental systems.

  14. Dynamic Clustering in Suspension of Motile Bacteria

    CERN Document Server

    Chen, Xiao; Yang, Mingcheng; Zhang, Hepeng

    2015-01-01

    A bacteria suspension exhibits a wide range of collective phenomena arsing from interactions between individual cells. Here we show that Serratia marcescens cells near an air-liquid interface spontaneously aggregate into dynamic clusters through surface-mediated hydrodynamic interactions. These long-lived clusters translate randomly and rotate in the counter-clockwise direction; they continuously evolve, merge with others and split into smaller ones. The observed cluster dynamics is qualitatively reproduced by a numerical model of self-propelled particles that interact via pair-wise forces extracted from hydrodynamic calculations. Bacterial clusters change material and fluid transport near the interface and hence may have environmental and biological consequences.

  15. Multitasking SecB chaperones in bacteria

    OpenAIRE

    Sala, Ambre; Bordes, Patricia; Genevaux, Pierre

    2014-01-01

    Protein export in bacteria is facilitated by the canonical SecB chaperone, which binds to unfolded precursor proteins, maintains them in a translocation competent state and specifically cooperates with the translocase motor SecA to ensure their proper targeting to the Sec translocon at the cytoplasmic membrane. Besides its key contribution to the Sec pathway, SecB chaperone tasking is critical for the secretion of the Sec-independent heme-binding protein HasA and actively contributes to the c...

  16. Turning bacteria suspensions into a "superfluid"

    CERN Document Server

    López, Héctor Matías; Douarche, Carine; Auradou, Harold; Clément, Eric

    2015-01-01

    The rheological response under simple shear of an active suspension of Escherichia coli is determined in a large range of shear rates and concentrations. The effective viscosity and the time scales characterizing the bacterial organization under shear are obtained. In the dilute regime, we bring evidences for a low shear Newtonian plateau characterized by a shear viscosity decreasing with concentration. In the semi-dilute regime, for particularly active bacteria, the suspension display a "super-fluid" like transition where the viscous resistance to shear vanishes, thus showing that macroscopically, the activity of pusher swimmers organized by shear, is able to fully overcome the dissipative effects due to viscous loss.

  17. Anger management: bacteria soothe the savage host

    OpenAIRE

    Seed, Patrick C.

    2013-01-01

    A 5-year-old girl has come to you a week after completing a course of antibiotics for a febrile urinary tract infection (UTI). She now seems well and energetic. A urinalysis is now clear without traces of inflammation, including an absence of protein, blood, leukocyte esterase, and nitrites. Her urine is submitted for a test of cure and comes back positive, with over 100,000 colonies per milliliter of E. coli, the same kind of bacteria that was cultured from her urine when she was symptomatic...

  18. Multiple Strategies for Translesion Synthesis in Bacteria

    OpenAIRE

    Penny J. Beuning; Jones, Kathryn M; Ippoliti, Paul J.; DeLateur, Nicholas A

    2012-01-01

    Damage to DNA is common and can arise from numerous environmental and endogenous sources. In response to ubiquitous DNA damage, Y-family DNA polymerases are induced by the SOS response and are capable of bypassing DNA lesions. In Escherichia coli, these Y-family polymerases are DinB and UmuC, whose activities are modulated by their interaction with the polymerase manager protein UmuD. Many, but not all, bacteria utilize DinB and UmuC homologs. Recently, a C-family polymerase named ImuC, which...

  19. Manganese Oxidation by Bacteria: Biogeochemical Aspects

    Digital Repository Service at National Institute of Oceanography (India)

    Sujith, P.P.; LokaBharathi, P.A.

    of -16.31kcal (Ehrlich 1976, 1978) in the reaction Mn 2+ + ½ O 2 + H 2 O ? MnO 2 + 2H + and yield ?G -18.5kcal in the reverse reaction MnO 2 + 4H + + 2e ? Mn 2+ + 2H 2 O when allowance for physiological pH of 7.0 is made (Ehrlich 1987... 1 Author version: In “Molecular Biomineralization. Ed. by: Muller, W.E.G.(Progress in Molecular and Subcellular Biology). Springer, vol.52; 2011; 49-76” MANGANESE OXIDATION BY BACTERIA: BIOGEOCHEMICAL ASPECTS Sujith PP (spp@nio.org) Loka...

  20. Are Bacteria more dangerous in space?

    International Nuclear Information System (INIS)

    With a mission to Mars and a permanent base on the moon as the ultimate dream, space travel is continually pushing back the frontiers. But long space missions present great challenges for science, for example in the field of microbiology. Together with the European Space Agency (ESA), SCK-CEN is studying the effects of space travel conditions on the behaviour of bacteria. In 2009 the SCK-CEN experts completed four innovative research projects at the cutting edge of microbiology, radiation sciences and space travel.

  1. The effect of lactic acid bacteria on cocoa bean fermentation.

    Science.gov (United States)

    Ho, Van Thi Thuy; Zhao, Jian; Fleet, Graham

    2015-07-16

    Cocoa beans (Theobroma cacao L.) are the raw material for chocolate production. Fermentation of cocoa pulp by microorganisms is crucial for developing chocolate flavor precursors. Yeasts conduct an alcoholic fermentation within the bean pulp that is essential for the production of good quality beans, giving typical chocolate characters. However, the roles of bacteria such as lactic acid bacteria and acetic acid bacteria in contributing to the quality of cocoa bean and chocolate are not fully understood. Using controlled laboratory fermentations, this study investigated the contribution of lactic acid bacteria to cocoa bean fermentation. Cocoa beans were fermented under conditions where the growth of lactic acid bacteria was restricted by the use of nisin and lysozyme. The resultant microbial ecology, chemistry and chocolate quality of beans from these fermentations were compared with those of indigenous (control) fermentations. The yeasts Hanseniaspora guilliermondii, Pichia kudriavzevii, Kluyveromyces marxianus and Saccharomyces cerevisiae, the lactic acid bacteria Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus fermentum and the acetic acid bacteria Acetobacter pasteurianus and Gluconobacter frateurii were the major species found in control fermentations. In fermentations with the presence of nisin and lysozyme, the same species of yeasts and acetic acid bacteria grew but the growth of lactic acid bacteria was prevented or restricted. These beans underwent characteristic alcoholic fermentation where the utilization of sugars and the production of ethanol, organic acids and volatile compounds in the bean pulp and nibs were similar for beans fermented in the presence of lactic acid bacteria. Lactic acid was produced during both fermentations but more so when lactic acid bacteria grew. Beans fermented in the presence or absence of lactic acid bacteria were fully fermented, had similar shell weights and gave acceptable chocolates with no differences in sensory rankings. It was concluded that lactic acid bacteria may not be necessary for successful cocoa fermentation. PMID:25889523

  2. Metabolism of polychlorinated biphenyls by marine bacteria

    International Nuclear Information System (INIS)

    There have been no reports of laboratory studies of PCB metabolism by marine organisms. A few workers have analyzed marine animals for products of PCB metabolism. A search for hydroxylated PCBs in marine fish proved inconclusive. Phenolic metabolites of PCBs have been identified in seals and guillemot. PCBs that had been hydroxylated and excreted by marine organisms would most likely be found in the sediments, so in our laboratory we conducted a search for these compounds in marine sediments. Two kilograms of organic-rich surface sediment from Buzzards Bay, Massachusetts, were extracted. The phenolic fraction was isolated and analyzed by gas chromatography-mass spectrometry (GC-MS). Neither wide mass scans nor selected mass searches produced any evidence of hydroxylated PCB derivatives. It was felt that if any marine organisms were capable of metabolism of PCBs, some marine bacteria should have that capability. Thus a series of laboratory experiments was conducted to test this possibility. Reported here is the finding of PCB metabolism by marine bacteria in batch culture

  3. Co-electrospinning of bacteria and viruses

    Science.gov (United States)

    Salalha, Wael; Kuhn, Jonathan; Chervinsky, Shmuel; Zussman, Eyal

    2006-03-01

    Co-electrospinning provides a novel and highly versatile approach towards composite fibers with diameters ranging from a few hundred nm down to 30 nm with embedded elements. In the present work, co-electrospinning of poly(vinyl alcohol) (PVA) and viruses (T7, T4, ?) or bacteria (Escherichia coli, Staphylococcus albus) was carried out. These preparations should have applications for tissue engineering, gene therapy, phage therapy and biosensing. The average diameter of the co-spun nanofibers was about 300 nm. We found that the encapsulated viruses and bacteria manage to survive the electrospinning process, its pressure buildup in the core of the fiber and the electrostatic field in the co-electrospinning process. Approximately 10% of the Escherichia coli and 20% of Staphylococcus albus cells are viable after spinning. Approximately 5% of the bacterial viruses were also viable after the electrospinning. It should be noted that the encapsulated cells and viruses remain stable for two months without a further decrease in number. These results demonstrate the potential of the co-electrospinning process for the encapsulation and immobilization of bio-objects and the possibility of adapting them to technical applications (e.g., bio-chips).

  4. Inoculation of sugarcane with diazotrophic bacteria

    Directory of Open Access Journals (Sweden)

    Nivaldo Schultz

    2014-04-01

    Full Text Available The sugarcane industry, a strategic crop in Brazil, requires technological improvements in production efficiency to increase the crop energy balance. Among the various currently studied alternatives, inoculation with diazotrophic bacteria proved to be a technology with great potential. In this context, the efficiency of a mixture of bacterial inoculant was evaluated with regard to the agronomic performance and N nutrition of sugarcane. The experiment was carried out on an experimental field of Embrapa Agrobiologia, in Seropédica, Rio de Janeiro, using a randomized block, 2 × 3 factorial design (two varieties and three treatments with four replications, totaling 24 plots. The varieties RB867515 and RB72454 were tested in treatments consisting of: inoculation with diazotrophic bacteria, N-fertilized control with 120 kg ha-1 N and absolute control (no inoculation and no N fertilizer. The inoculum was composed of five strains of five diazotrophic species. The yield, dry matter accumulation, total N in the shoot dry matter and the contribution of N by biological fixation were evaluated, using the natural 15N abundance in non-inoculated sugarcane as reference. The bacterial inoculant increased the stalk yield of variety RB72454 similarly to fertilization with 120 kg ha-1 N in the harvests of plant-cane and first ratoon crops, however the contribution of biological N fixation was unchanged by inoculation, indicating that the benefits of the inoculant in sugarcane may have resulted from plant growth promotion.

  5. Rapid detection of bacteria in water

    Science.gov (United States)

    Deininger, Rolf A.; Lee, Ji Y.

    2002-06-01

    A rapid detection of bacteria in water is essential for a timely response. This applies primarily to drinking water, be it bottled water or water from a public supply system, but is equally important for the analysis of water from swimming pools and beaches, and ballast water from oceangoing ships discharging into coastal or inland waters of the US. There are several methods available today for a rapid test including PCR based methods, flow cytometry, and electro chemiluminescence, to name a few. All of the above methods work, but are complicated and/or require expensive equipment and highly trained analysts in a laboratory. The method described here is based on lysing the bacteria after capture on a membrane filter, and measuring the ATP in a luminometer after the addition of luciferin/luciferase. This bioluminescence test can be done onsite, in less than 5 minutes, with equipment that fits onto a clipboard. It is a fast screening test that indicates if there is enough biologically active material in the same to pose a threat to the consumer. If this is the case, an additional step using immunomagnetic separation may be used to identify the responsible organisms. Tests have been done with E. coli 0157:H7, pseudomonas, and logionella. These tests take about 30 minutes each, and allow a quick determination of bacterial threats in a field situation.

  6. The Role of Bacteria in Iron Biomineralization

    Science.gov (United States)

    Konhauser, K. O.

    2012-04-01

    Bacteria contribute significantly to the development of extremely fine-grained iron mineral precipitates, including oxyhydroxides, carbonates, silicates, phosphates, and sulphides. They influence biomineralization in two significant ways. First, bacteria possess a negative surface charge at pH values characteristic of most natural environments, and in doing so, will become reactive towards metal cations. Once bound, those cations react with more ions, potentially leading to mineral precipitation if a state of supersaturation is achieved. Second, during metabolism, the bacterium affects the redox and saturation states of the fluids around the living cells. In this regard, the microenvironment surrounding each cell can be quite different from the bulk aqueous environment, and as a result, mineral phases form that would not normally be predicted from the geochemistry of the bulk fluid. The impact that iron biomineralization has on elemental cycling in aqueous and sedimentary environments cannot be overstated because many major elemental cycles are strongly linked to iron biomineralizing processes. Although individual 'biomineral' grains are micrometer in scale, if one adds the total amount of biomineralizing biomass, it is not difficult to imagine how they can be significant in partitioning metals from the hydrosphere into the sedimentary system. Indeed, the extensive record of banded iron formation (BIF), from 3.8 to 0.5 billion years ago, testifies to the enormous magnitude of ferric iron sequestration into the sediments throughout much of Earth's history.

  7. Are ruminal bacteria armed with bacteriocins?

    Science.gov (United States)

    Kalmokoff, M L; Bartlett, F; Teather, R M

    1996-12-01

    The production of toxic compounds or antibiotics is a common component of intermicrobial competitive interactions, and many of these toxins have been adopted and adapted for the control of microbial populations. One class of these toxins, the bacteriocins, is a heterogeneous group of proteinaceous antibiotics that often display a high degree of target specificity, although many have a very wide spectrum of activity. To date, only limited information is available concerning the occurrence of bacteriocins among ruminal isolates or the sensitivity of ruminal microorganisms to exogenous bacteriocins. A survey of 50 strains of Butyrivibrio spp. isolated from a variety of sources (sheep, deer, and cattle) for bacteriocin production indicated a high incidence of bacteriocin-like activity (50%). Many of these inhibitory compounds appear to have a broad spectrum of activity, which suggests that bacteriocins may have a significant impact on both the competitive fitness of individual microbial strains within the rumen and on the overall structure of the microbial population within the rumen. Selected bacteriocins from lactic acid bacteria also were shown to have activity against Butyrivibrio spp. and may have application in ruminant systems. Bacteriocins may provide an alternative group of antibiotics for the manipulation of ruminal microbial populations. Bacteriocins have significant advantages over other antibiotics in target specificity, susceptibility to proteolytic digestion, possibility of genetic transfer and manipulation, and, in the case of some bacteriocins derived from lactic acid bacteria, a long history of safe use. PMID:9029368

  8. Epidemiology of nosocomial bacteria resistant to antimicrobials

    Directory of Open Access Journals (Sweden)

    Cristina E. Cabrera

    2011-03-01

    Full Text Available Nosocomial infections are a major challenge for public health because of the high rates of morbidity and mortality generated. It was considered that the excessive or inappropriate use of antibiotics triggers the emergence of resistant strains. Among the clinically important bacteria that most commonly cause nososcomial infections, Gram positive multiresistant pathogens stand out such as methicillin-resistant Staphylococcus aureus (MRSA and vancomycin-resistant Enterococcus spp (VRE, and the Gram negative strains of Klebsiella pneumoniae, Escherichia coli, Pseudomonas spp. and Acinetobacter baumannii producing expanded spectrum b-lactamases (ESbL. This review describes the behavior of the main bacterial pathogens resistant to antibiotics that cause infections in Europe, United States, and Latin America, emphasizing studies of molecular epidemiology on a global scale, including the major epidemiological studies in Colombia. The genetic structure of S. aureus and Enterococcus spp strains shows a clonal characteristic favored by the predominance of a small number of clones with the capacity to spread globally, due probably to cross-infection. However, the introduction of MRSA strains from the community encourages genetic diversity, tending to establish a genetic polyclonal endemic structure in places like the United States. In Gram negative bacteria, the high genetic diversity among isolates, mainly in Latin American countries, indicates that the polyclonal spread is influenced by horizontal transfer of plasmids, by excessive exposure to antibiotics, and prolonged hospital stays. In Colombia, there is information on nosocomial resistant pathogens, but molecular epidemiological information is still scarce.

  9. Rapid, quantitative determination of bacteria in water. [adenosine triphosphate

    Science.gov (United States)

    Chappelle, E. W.; Picciolo, G. L.; Thomas, R. R.; Jeffers, E. L.; Deming, J. W. (inventors)

    1978-01-01

    A bioluminescent assay for ATP in water borne bacteria is made by adding nitric acid to a water sample with concentrated bacteria to rupture the bacterial cells. The sample is diluted with sterile, deionized water, then mixed with a luciferase-luciferin mixture and the resulting light output of the bioluminescent reaction is measured and correlated with bacteria present. A standard and a blank also are presented so that the light output can be correlated to bacteria in the sample and system noise can be substracted from the readings. A chemiluminescent assay for iron porphyrins in water borne bacteria is made by adding luminol reagent to a water sample with concentrated bacteria and measuring the resulting light output of the chemiluminescent reaction.

  10. Biodiversity of moderately halophilic bacteria in hypersaline habitats in Egypt.

    Science.gov (United States)

    Ghozlan, Hanan; Deif, Hisham; Kandil, Rania Abu; Sabry, Soraya

    2006-04-01

    Screening bacteria from different saline environments in Alexandria. Egypt, lead to the isolation of 76 Gram-negative and 14 Gram-positive moderately halophilic bacteria. The isolates were characterized taxonomically for a total of 155 features. These results were analyzed by numerical techniques using simple matching coefficient (SSM) and the clustering was achieved by the unweighed pair-group method of association (UPGMA). At 75% similarity level the Gram-negative bacteria were clustered in 7 phena in addition to one single isolate, whereas 4 phena represented the Gram-positive. Based on phenotypic characteristics, it is suggested that the Gram-negative bacteria belong to the genera Pseudoalteromonas, Flavobacterium, Chromohalobacter, Halomonas and Salegentibacter, in addition to the non-identified single isolate. The Gram-positive bacteria are proposed to belong to the genera Halobacillus, Salinicoccus, Staphylococcus and Tetragenococcus. This study provides the first publication on the biodiversity of moderately halophilic bacteria in saline environments in Alexandria, Egypt. PMID:16778349

  11. In situ morphologies of deep-sea and sediment bacteria.

    Science.gov (United States)

    Carlucci, A F; Shimp, S L; Jumars, P A; Paerl, H W

    1976-11-01

    Deep-sea and sediment bacteria at the bottom of an approximately 1200-m water column were sampled by means of pressure vessels attached to a remote underwater manipulator. Cells were immediately fixed in situ with glutaraldehyde, and after processing in the laboratory their morphologies were observed with the scanning electron microscope. Most bacteria were coccoid or rod-lide and less than 0.4 mum in diameter or width. Few filamentous bacteria were observed. Bacteria were in aggregates or free-living. It is concluded that morphologies of deep-sea bacteria collected and fixed at the hydrostatic pressure of their environment are, in general, similar to the observed morphologies of deep-sea bacteria determined at 1 atm pressure after collection and decompression during ascent through the water column. PMID:974915

  12. The role of adhesins in bacteria motility modification

    Science.gov (United States)

    Conrad, Jacinta; Gibiansky, Maxsim; Jin, Fan; Gordon, Vernita; Motto, Dominick; Shrout, Joshua; Parsek, Matthew; Wong, Gerard

    2010-03-01

    Bacterial biofilms are multicellular communities responsible for a broad range of infections. To investigate the early-stage formation of biofilms, we have developed high-throughput techniques to quantify the motility of surface-associated bacteria. We translate microscopy movies of bacteria into a searchable database of trajectories using tracking algorithms adapted from colloidal physics. By analyzing the motion of both wild-type (WT) and isogenic knockout mutants, we have previously characterized fundamental motility mechanisms in P. aeruginosa. Here, we develop biometric routines to recognize signatures of adhesion and trapping. We find that newly attached bacteria move faster than previously adherent bacteria, and are more likely to be oriented out-of-plane. Motility appendages influence the bacterium's ability to become trapped: WT bacteria exhibit two types of trapped trajectories, whereas flagella-deficient bacteria rarely become trapped. These results suggest that flagella play a key role in adhesion.

  13. Isolation of Fucosyltransferase-Producing Bacteria from Marine Environments

    OpenAIRE

    Kajiwara, Hitomi; Toda, Munetoyo; Mine, Toshiki; Nakada,Hiroshi; Yamamoto, Takeshi

    2012-01-01

    Fucose-containing oligosaccharides on the cell surface of some pathogenic bacteria are thought to be important for host-microbe interactions and to play a major role in the pathogenicity of bacterial pathogens. Here, we screened marine bacteria for glycosyltransferases using two methods: a one-pot glycosyltransferase assay method and a lectin-staining method. Using this approach, we isolated marine bacteria with fucosyltransferase activity. There have been no previous reports of marine bacter...

  14. Interaction of bacteria-feeding soil flagellates and Pseudomonas spp

    DEFF Research Database (Denmark)

    Pedersen, Annette L; Ekelund, Flemming; Johansen, Anders; Winding, Anne

    2010-01-01

    Pseudomonas strains may be used as alternatives to fungicides as some of them produce secondary metabolites, which can inhibit growth of plant pathogenic fungi. Increased knowledge of non-target effects of the antagonistic bacteria on other soil organisms as well as of the survival and predation resistance of the antagonistic bacteria is necessary for risk assessment and increased performance of antagonistic bacteria as biological control agents. In the present study, we aimed to investigate the...

  15. Adhesion of Biodegradative Anaerobic Bacteria to Solid Surfaces

    OpenAIRE

    van Schie, Paula M.; Fletcher, Madilyn

    1999-01-01

    In order to exploit the ability of anaerobic bacteria to degrade certain contaminants for bioremediation of polluted subsurface environments, we need to understand the mechanisms by which such bacteria partition between aqueous and solid phases, as well as the environmental conditions that influence partitioning. We studied four strictly anaerobic bacteria, Desulfomonile tiedjei, Syntrophomonas wolfei, Syntrophobacter wolinii, and Desulfovibrio sp. strain G11, which theoretically together can...

  16. Molecular Detection of Endophytic Bacteria on Plantlet Tissue of Sugarcane

    OpenAIRE

    WIWIK EKO WIDAYATI; JOKO WIDADA; JOEDORO SOEDARSONO

    2007-01-01

    Endophytic bacteria live in plant host tissues without causing any symptoms. The aim of this study was to examine the indigenous endophytic bacteria on sugarcane plantlets produced from the young leaf cells by using tissue culture techniques. To detect the existence of endophytic bacteria in the plantlet tissue, a series of molecular method based on PCR were applied by using ribosomal intergenic spacer (RIS) primer followed by 16S rDNA partial sequence and single strand conformation polymorph...

  17. Heme and menaquinone induced electron transport in lactic acid bacteria

    OpenAIRE

    Santos Filipe; Smit Bart; Brooijmans Rob; van Riel Jan; de Vos Willem M; Hugenholtz Jeroen

    2009-01-01

    Abstract Background For some lactic acid bacteria higher biomass production as a result of aerobic respiration has been reported upon supplementation with heme and menaquinone. In this report, we have studied a large number of species among lactic acid bacteria for the existence of this trait. Results Heme- (and menaquinone) stimulated aerobic growth was observed for several species and genera of lactic acid bacteria. These include Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacill...

  18. Emerging roles of immunostimulatory oral bacteria in periodontitis development

    OpenAIRE

    Jiao, Yizu; Hasegawa, Mizuho; Inohara, Naohiro

    2014-01-01

    Periodontitis is a common dental disease which results in irreversible alveolar bone loss around teeth, and subsequent tooth loss. Previous studies have focused on bacteria that damage the host and the roles of commensals to facilitate their colonization. Although some immune responses targeting oral bacteria protect the host from alveolar bone loss, recent studies show that particular host defense responses to oral bacteria can induce alveolar bone loss. Host damaging and immunostimulatory o...

  19. Immunochemical Detection and Isolation of DNA from Metabolically Active Bacteria

    OpenAIRE

    Urbach, Ena; Vergin, Kevin L.; Giovannoni, Stephen J

    1999-01-01

    Most techniques used to assay the growth of microbes in natural communities provide no information on the relationship between microbial productivity and community structure. To identify actively growing bacteria, we adapted a technique from immunocytochemistry to detect and selectively isolate DNA from bacteria incorporating bromodeoxyuridine (BrdU), a thymidine analog. In addition, we developed an immunocytochemical protocol to visualize BrdU-labeled microbial cells. Cultured bacteria and n...

  20. Culturable diversity of halophilic bacteria in foreshore soils

    OpenAIRE

    Irshad, Aarzoo; Ahmad, Irshad; Kim, Seung Bum

    2014-01-01

    Halophilic bacteria are commonly found in natural environments containing significant concentration of NaCl such as inland salt lakes and evaporated sea-shore pools, as well as environments such as curing brines, salted food products and saline soils. Dependence on salt is an important phenotypic characteristic of halophilic bacteria, which can be used in the polyphasic characterization of newly discovered microorganisms. In this study the diversity of halophilic bacteria in foreshore soils o...

  1. Incoming pathogens team up with harmless ‘resident’ bacteria

    OpenAIRE

    Venturi, Vittorio

    2014-01-01

    The seminar will focus on "Interspecies and interkingdom signaling in plant-associated bacteria". Studies of chemical signaling between plants and bacteria in the past have been largely confined to two models: the rhizobial-legume symbiotic association and pathogenesis between agrobacteria and their host plants. Recent studies are beginning to provide evidence that many plant-associated bacteria undergo chemical signaling with the plant host via low-molecular-weight compounds. Plant-produced ...

  2. Recovery of aerobic and anaerobic bacteria from irradiated mice.

    OpenAIRE

    Brook, I; MacVittie, T J; Walker, R. I.

    1984-01-01

    Anaerobic and aerobic bacteria were often found as mixed infections in 225 lethally irradiated mice. Of a total of 57 mice that were sacrificed, aerobic bacteria were recovered exclusively in 9 (27%) of the 34 culture-positive mice, anaerobic bacteria were recovered exclusively in 15 (44%), and mixed aerobic and anaerobic flora were recovered in 10 (29%). The predominant organisms were anaerobic cocci Escherichia coli, Proteus mirabilis, Staphylococcus spp., and Bacteroides spp.

  3. Influence of disturbances on bacteria level in an operating room

    OpenAIRE

    Brohus, Henrik; Hyldig, Mikkel; Kamper, Simon; Vachek, Ulla Maria

    2008-01-01

    In operating rooms great effort is manifested to reduce the bacteria level in order to decrease the risk of infections. The main source of bacteria is the staff and the patient, thus, the resulting bacteria concentration is roughly speaking a combination of the ventilation system and the emission from the occupants. This study investigates the influence of two main disturbances in an operating room namely the door opening during the operation and the activity level of the staff. It is found t...

  4. Hessian Fly-Associated Bacteria: Transmission, Essentiality, and Composition

    OpenAIRE

    Bansal, Raman; Hulbert, Scot; Schemerhorn, Brandi; Reese, John C; Whitworth, R Jeff; Jeffrey J. Stuart; CHEN, MING-SHUN

    2011-01-01

    Plant-feeding insects have been recently found to use microbes to manipulate host plant physiology and morphology. Gall midges are one of the largest groups of insects that manipulate host plants extensively. Hessian fly (HF, Mayetiola destructor) is an important pest of wheat and a model system for studying gall midges. To examine the role of bacteria in parasitism, a systematic analysis of bacteria associated with HF was performed for the first time. Diverse bacteria were found in different...

  5. Prevalence of Tetracycline Resistance Genes in Oral Bacteria

    OpenAIRE

    Villedieu, A.; Diaz-Torres, M. L.; Hunt, N.; Mcnab, R.; D. A. Spratt; Wilson, M.; Mullany, P

    2003-01-01

    Tetracycline is a broad-spectrum antibiotic used in humans, animals, and aquaculture; therefore, many bacteria from different ecosystems are exposed to this antibiotic. In order to determine the genetic basis for resistance to tetracycline in bacteria from the oral cavity, saliva and dental plaque samples were obtained from 20 healthy adults who had not taken antibiotics during the previous 3 months. The samples were screened for the presence of bacteria resistant to tetracycline, and the tet...

  6. Culturable bacteria in Himalayan ice in response to atmospheric circulation

    OpenAIRE

    Zhang, S; Hou, S.(Department of Physics, National Taiwan University, 10617, Taipei, Taiwan); Ma, X.; Qin, D; Chen, T.

    2006-01-01

    Only recently has specific attention been given to culturable bacteria in Tibetan glaciers, but their relation to atmospheric circulation is less understood yet. Here we investigate the seasonal variation of culturable bacteria preserved in a Himalayan ice core. High concentration of culturable bacteria in glacial ice deposited during the pre-monsoon season is attributed to the transportation of continental dust stirred up by the frequent dust storms in Northwest China during spring. This is ...

  7. Susceptibility and resistance of ruminal bacteria to antimicrobial feed additives.

    OpenAIRE

    Nagaraja, T. G.; Taylor, M. B.

    1987-01-01

    Susceptibility and resistance of ruminal bacterial species to avoparcin, narasin, salinomycin, thiopeptin, tylosin, virginiamycin, and two new ionophore antibiotics, RO22-6924/004 and RO21-6447/009, were determined. Generally, antimicrobial compounds were inhibitory to gram-positive bacteria and those bacteria that have gram-positive-like cell wall structure. MICs ranged from 0.09 to 24.0 micrograms/ml. Gram-negative bacteria were resistant at the highest concentration tested (48.0 micrograms...

  8. Commensal bacteria and "oncologic surveillance": suggestions from an experimental model.

    Science.gov (United States)

    Pagnini, Cristiano; Corleto, Vito D; Hoang, Sharon B; Saeed, Rubina; Cominelli, Fabio; Delle Fave, Gianfranco

    2008-09-01

    The relationship between resident intestinal flora and colon cancer development are not yet clear. Apoptosis induction could represent a mechanism by which commensal and/or probiotic bacteria could prevent proliferation of dysplastic cells. In the present study, the in vivo and in vitro proapoptotic effect of resident bacteria was evaluated in mouse colon mucosa. Preliminary results suggest that colonic apoptosis induction, by commensal bacteria, could possibly represent a physiologic "oncologic surveillance" mechanism for colonic proliferative disease prevention. PMID:18685507

  9. Interspecific interactions of heterotrophic bacteria during chitin degradation

    OpenAIRE

    Jagmann, Nina

    2012-01-01

    In their natural habitats, bacteria live in multi-species microbial communities and are, thus, constantly interacting with bacteria of other phylogenetic groups. In order to prevail in these interspecific interactions, such as the competition for nutrients, bacteria have developed numerous strategies. During the degradation of polymers such interspecific interactions are likely to occur, because degradation starts as an extracellular process. In one possible interaction scenario, investor bac...

  10. Isolation of oxalotrophic bacteria able to disperse on fungal mycelium.

    Science.gov (United States)

    Bravo, Daniel; Cailleau, Guillaume; Bindschedler, Saskia; Simon, Anaele; Job, Daniel; Verrecchia, Eric; Junier, Pilar

    2013-11-01

    A technique based on an inverted Petri dish system was developed for the growth and isolation of soil oxalotrophic bacteria able to disperse on fungal mycelia. The method is related to the 'fungal highways' dispersion theory in which mycelial fungal networks allow active movement of bacteria in soil. Quantification of this phenomenon showed that bacterial dispersal occurs preferentially in upper soil horizons. Eight bacteria and one fungal strain were isolated by this method. The oxalotrophic activity of the isolated bacteria was confirmed through calcium oxalate dissolution in solid selective medium. After separation of the bacteria-fungus couple, partial sequencing of the 16S and the ITS1 and ITS2 sequences of the ribosomal RNA genes were used for the identification of bacteria and the associated fungus. The isolated oxalotrophic bacteria included strains related to Stenotrophomonas, Achromobacter, Lysobacter, Pseudomonas, Agrobacterium, Cohnella, and Variovorax. The recovered fungus corresponded to Trichoderma sp. A test carried out to verify bacterial transport in an unsaturated medium showed that all the isolated bacteria were able to migrate on Trichoderma hyphae or glass fibers to re-colonize an oxalate-rich medium. The results highlight the importance of fungus-driven bacterial dispersal to understand the functional role of oxalotrophic bacteria and fungi in soils. PMID:24106816

  11. Amoeba-Resisting Bacteria and Ventilator-Associated Pneumonia

    OpenAIRE

    La Scola, Bernard; Boyadjiev, Ioanna; Greub, Gilbert; Khamis, Atieh; Martin, Claude; Raoult, Didier

    2003-01-01

    To evaluate the role of amoeba-associated bacteria as agents of ventilator-associated pneumonia (VAP), we tested the water from an intensive care unit (ICU) every week for 6 months for such bacteria isolates; serum samples and bronchoalveolar lavage samples (BAL) were also obtained from 30 ICU patients. BAL samples were examined for amoeba-associated bacteria DNA by suicide-polymerase chain reaction, and serum samples were tested against ICU amoeba-associated bacteria. A total of 310 amoeba-a...

  12. Absence of Tolerance to Cefoxitin in Anaerobic Bacteria

    OpenAIRE

    Goldstein, Ellie J. C.; Kwok, Y Y; Sutter, Vera L.

    1981-01-01

    None of the 46 strains of anaerobic bacteria tested, including 26 strains of Bacteroides fragilis, showed tolerance (minimal bactericidal concentration/minimum inhibitory concentration ratio >32) to cefoxitin.

  13. The Effect of Bacteria Penetration on Chalk Permeability

    DEFF Research Database (Denmark)

    Halim, Amalia Yunita; Shapiro, Alexander

    Bacteria selective plugging is one of the mechanisms through which microorganisms can be applied for enhanced oil recovery. Bacteria can plug the water-bearing zones of a reservoir, thus altering the flow paths and improving sweep efficiency. It is known that the bacteria can penetrate deeply into reservoirs, however, a complete understanding of the penetration behavior of bacteria is lacking, especially in chalk formations where the pore throat sizes are almost comparable with the sizes of bacteria vegetative cells. This study investigates the penetration of bacteria into chalk. Two bacteria types, the spore forming Bacillus licheniformis 421 and the non-spore forming Pseudomonas putida K12, were used. The core plugs were Stevns Klint outcrop with initial permeability at 2-4 mD. The results revealed that bacteria were able to penetrate and to be transported through the chalk. Furthermore, a higher number of B. licheniformis was detected on the effluent compared with P. putida. However, in the experiment withB. licheniformis mainly spores were detected in the effluent. The core permeability decreased rapidly during injection of bacteria and a starvation period of 12 days did not allow the permeability to return to initial condition.

  14. Phage-bacteria infection networks: From nestedness to modularity

    Science.gov (United States)

    Flores, Cesar O.; Valverde, Sergi; Weitz, Joshua S.

    2013-03-01

    Bacteriophages (viruses that infect bacteria) are the most abundant biological life-forms on Earth. However, very little is known regarding the structure of phage-bacteria infections. In a recent study we re-evaluated 38 prior studies and demonstrated that phage-bacteria infection networks tend to be statistically nested in small scale communities (Flores et al 2011). Nestedness is consistent with a hierarchy of infection and resistance within phages and bacteria, respectively. However, we predicted that at large scales, phage-bacteria infection networks should be typified by a modular structure. We evaluate and confirm this hypothesis using the most extensive study of phage-bacteria infections (Moebus and Nattkemper 1981). In this study, cross-infections were evaluated between 215 marine phages and 286 marine bacteria. We develop a novel multi-scale network analysis and find that the Moebus and Nattkemper (1981) study, is highly modular (at the whole network scale), yet also exhibits nestedness and modularity at the within-module scale. We examine the role of geography in driving these modular patterns and find evidence that phage-bacteria interactions can exhibit strong similarity despite large distances between sites. Bacteriophages (viruses that infect bacteria) are the most abundant biological life-forms on Earth. However, very little is known regarding the structure of phage-bacteria infections. In a recent study we re-evaluated 38 prior studies and demonstrated that phage-bacteria infection networks tend to be statistically nested in small scale communities (Flores et al 2011). Nestedness is consistent with a hierarchy of infection and resistance within phages and bacteria, respectively. However, we predicted that at large scales, phage-bacteria infection networks should be typified by a modular structure. We evaluate and confirm this hypothesis using the most extensive study of phage-bacteria infections (Moebus and Nattkemper 1981). In this study, cross-infections were evaluated between 215 marine phages and 286 marine bacteria. We develop a novel multi-scale network analysis and find that the Moebus and Nattkemper (1981) study, is highly modular (at the whole network scale), yet also exhibits nestedness and modularity at the within-module scale. We examine the role of geography in driving these modular patterns and find evidence that phage-bacteria interactions can exhibit strong similarity despite large distances between sites. CFG acknowledges the support of CONACyT Foundation. JSW holds a Career Award at the Scientific Interface from the Burroughs Wellcome Fund and acknowledges the support of the James S. McDonnell Foundation

  15. Antagonistic Effect of Epiphytic Bacteria from Marine Algae, Southeastern India

    Directory of Open Access Journals (Sweden)

    A. Alex John

    2013-01-01

    Full Text Available Aim of this study was to evaluate the antagonistic potential of epibiotic bacteria from seaweeds, Ulva lactuca, Dictyota dichotoma and Padina tetrastromatica against some potent human pathogens. The epibiotic bacteria of Ulva lactuca shows higher level of inhibition properties than the other species. The strain UL1 shows broad spectrum inhibitory activity against 7 pathogens. The inhibitory level of epibiotic bacteria ranged from low to moderate activity. The present investigation suggests that the epibiotic bacteria are good source for the isolation of antibacterial compounds of biomedical importance. The compounds can further be purified and can used to save mankind from dreadful diseases.

  16. Biotechnological applications of acetic acid bacteria.

    Science.gov (United States)

    Raspor, Peter; Goranovic, Dusan

    2008-01-01

    The acetic acid bacteria (AAB) have important roles in food and beverage production, as well as in the bioproduction of industrial chemicals. In recent years, there have been major advances in understanding their taxonomy, molecular biology, and physiology, and in methods for their isolation and identification. AAB are obligate aerobes that oxidize sugars, sugar alcohols, and ethanol with the production of acetic acid as the major end product. This special type of metabolism differentiates them from all other bacteria. Recently, the AAB taxonomy has been strongly rearranged as new techniques using 16S rRNA sequence analysis have been introduced. Currently, the AAB are classified in ten genera in the family Acetobacteriaceae. AAB can not only play a positive role in the production of selected foods and beverages, but they can also spoil other foods and beverages. AAB occur in sugar- and alcohol-enriched environments. The difficulty of cultivation of AAB on semisolid media in the past resulted in poor knowledge of the species present in industrial processes. The first step of acetic acid production is the conversion of ethanol from a carbohydrate carried out by yeasts, and the second step is the oxidation of ethanol to acetic acid carried out by AAB. Vinegar is traditionally the product of acetous fermentation of natural alcoholic substrates. Depending on the substrate, vinegars can be classified as fruit, starch, or spirit substrate vinegars. Although a variety of bacteria can produce acetic acid, mostly members of Acetobacter, Gluconacetobacter, and Gluconobacter are used commercially. Industrial vinegar manufacturing processes fall into three main categories: slow processes, quick processes, and submerged processes. AAB also play an important role in cocoa production, which represents a significant means of income for some countries. Microbial cellulose, produced by AAB, possesses some excellent physical properties and has potential for many applications. Other products of biotransformations by AAB or their enzymes include 2-keto-L-gulonic acid, which is used for the production of vitamin C; D-tagatose, which is used as a bulking agent in food and a noncalorific sweetener; and shikimate, which is a key intermediate for a large number of antibiotics. Recently, for the first time, a pathogenic acetic acid bacterium was described, representing the newest and tenth genus of AAB. PMID:18568850

  17. Antifungal Activity of Selected Lactic Acid Bacteria and Propionic Acid Bacteria against Dairy-Associated Spoilage Fungi

    DEFF Research Database (Denmark)

    Aunsbjerg, Stina Dissing

    2014-01-01

    Bacterial cultures of lactic and propionic acid bacteria are widely used in fermented products including dairy products. Spoilage fungi may constitute a quality and safety issue in these products. The antifungal properties of some lactic and propionic acid bacteria make them potential candidates for prolonging shelf-life of food without the addition of specific preservatives. Increased interest in the use of these bacteria for biopreservation has led to identification of a range of potent strain...

  18. Bacteria and bioremediation of marine oil spills

    International Nuclear Information System (INIS)

    Virtually all marine ecosystems harbor indigenous hydrocarbon-degrading bacteria. These hydrocarbon degraders comprise less than one percent of the bacterial community in unpolluted environments, but generally increase to one to ten percent following petroleum contamination. Various hydrocarbons are degraded by these microorganisms at different rates, so there is an evolution in the residual hydrocarbon mixture, and some hydrocarbons and asphaltic petroleum hydrocarbons remain undegraded. Fortunately, these persistent petroleum pollutants are, for the most part, insoluble or are bound to solids; hence they are not biologically available and therefore not toxic to marine organisms. Carbon dioxide, water, and cellular biomass produced by the microorganisms from the degradable hydrocarbons may be consumed by detrital feeders and comprise the end products of the natural biological degradation process. Bioremediation attempts to accelerate the natural hydrocarbon degradation rates by overcoming factors that limit bacterial hydrocarbon degrading activities

  19. Enumeration of petroleum hydrocarbon utilizing bacteria

    International Nuclear Information System (INIS)

    In-situ biological treatment is one among a number of emerging technologies that may be applied to the remediation of contaminated soils and groundwater. In 1985, a surface spill of 1,500 gallons of dielectric transformer oil at the Sandia National Laboratories (HERMES II facility) resulted in contamination of soil up to depths of 160 feet. The extent of contamination and site characteristics favored the application of in-situ bioremediation as a potential remedial technology. The purpose of this research was to enumerate indigenous microbial populations capable of degrading petroleum hydrocarbons. Microbial enumeration and characterization methods suitably adapted for hydrocarbon utilizing bacteria were used as an indicator of the presence of viable microbial consortia in excavated oil samples with hydrocarbon (TPH) concentrations ranging from 300 to 26,850 ppm. Microbial activity was quantified by direct and streak plating soil samples on silica gel media. Effects of toxicity and temperature were studied using batch cultures of hydrocarbon utilizing bacteria (selectively isolated in an enrichment medium), at temperatures of 20 and 35 C. It was concluded from this study that it is possible to isolate native microorganisms from contaminated soils from depths of 60 to 160 feet, and with oil concentration ranging from 300 to 26,850 ppm. About 62% of the microorganisms isolated form the contaminated soil were capable of using contaminant oil as a substrate for growth andtaminant oil as a substrate for growth and metabolism under aerobic conditions. Growth rates were observed to be 50% higher for the highest contaminant concentration at 20 C. Resistance to toxicity to contaminant oil was also observed to be greater at 20 C than at 35 CIn-situ biological treatment is one among a number of emerging technologies that may be applied to the remediation of contaminated soils and groundwater. In 1985, a surface spill of 1,500 gallons of dielectric transformer oil at the Sandia National Laboratories (HERMES II facility) resulted in contamination of soil up to depths of 160 feet. The extent of contamination and site characteristics favored the application of in-situ bioremediation as a potential remedial technology. The purpose of this research was to enumerate indigenous microbial populations capable of degrading petroleum hydrocarbons. Microbial enumeration and characterization methods suitably adapted for hydrocarbon utilizing bacteria were used as an indicator of the presence of viable microbial consortia in excavated oil samples with hydrocarbon (TPH) concentrations ranging from 300 to 26,850 ppm. Microbial activity was quantified by direct and streak plating soil samples on silica gel media. Effects of toxicity and temperature were studied using batch cultures of hydrocarbon utilizing bacteria (selectively isolated in an enrichment medium), at temperatures of 20 and 35 C. It was concluded from this study that it is possible to isolate native microorganisms from contaminated soils from depths of 60 to 160 feet, and with oil concentration ranging from 300 to 26,850 ppm. About 62% of the microorganisms isolated form the contaminated soil were capable of using contaminant oil as a substrate for growth an

  20. Bioactive proteins against pathogenic and spoilage bacteria

    Directory of Open Access Journals (Sweden)

    Mahmoud Z. Sitohy

    2014-10-01

    Full Text Available Background: It is likely that both human nutrition and the nutrition of livestock are benefited by the presence of bioactive proteins within their respective diet regimes. Bioactive proteins have been defined as specific protein fragments that positively impact bodily functions or conditions and may, ultimately, influence overall human health. The ingestion of bioactive proteins may have an effect on the major body systems—namely, the cardiovascular, digestive, immune and nervous systems. According to their functional properties, bioactive proteins may be classified as antimicrobial, antithrombotic, antihypertensive, opioid, immune-modulatory, mineral binding and anti-oxidative. There are many examples of biologically active food proteins and active peptides that can be obtained from various food protein sources. They have a physiological significance beyond the pure nutritional requirements; in other wordsthey have the acquisition of nitrogen for normal growth and maintenance. Objective: This study aims to specify and characterize the extent and mode of action of bioactive proteins in their native form, (glycinin, glycinin basic sub-unit and ?-conglycinin against specific main pathogens (Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella enterica serovar Enteritidis. We will be using standard media while identifying the main constituents responsible for this action. Methods: Glycinin, basic sub-unit and ?-conglycinin were isolated from soybean protein and tested for their antimicrobial action against pathogenic and spoilage bacteria, They were thencompared to the properties of penicillin. Methylated soybean protein and also methylated chickpea protein (MSP and MCP, with isoelectric points around pI 8, were prepared by esterifying. 83 % of their free carboxyl groups and their interactions with Gram positive and Gram negative bacteria were examined. Results: The three divisions of cationic proteins exhibited antibacterial activities equivalent to or higher than the activity of penicillin, with the basic sub-unit exhibiting the highest activity, followed by glycinin.; ?-conglycinin exhibited the lowest level of activity with a MIC of 50, 100 and 1000 ?g/mL, respectively. The IC50% values of the basic subunit, glycinin and ?-conglycinin, against Listeria monocytogenes, were 15, 16 and 695 ?g/mL; against Bacillus subtilis the values were 17, 20, and 612 ?g/mL; and against Salmonella Enteritidis the values were 18, 21 and 526 ?g/mL, respectively. Transmission electron microscopy images of L. monocytogenes and S. Enteritidis exhibited an increase in cell size and a separation of the cell wall from the cell membrane when treated with glycinin or basic sub-unit. The scanning electron microscopy of B. subtilis indicated signs of an irregular, wrinkled outer surface as well as the fragmentation, adhesion, and aggregation of damaged cells or cellular debris when treated with glycinin or the basic subunits; however not with penicillin. The proliferation of L. monocytogenes, S. Enteritidis and Escherichia coli O157:H7-when artificially inoculated in raw milk ,stored at 4 or 25 °C was significantly (P<0·05 reduced by the glycinin sub-unit and nisin (0·5% w/v; but they were only slightly reduced by ?-conglycinin and moderately reduced by lysozyme. The two substances (MSP and MCP exhibited a concentration-dependent inhibitory action against two of the studied bacteria with a minimum inhibitory concentration of approximately 100 µg/mL. The supplementation of raw milk with esterified legume proteins (MSP and MCP has significantly (p < 0.05 reduced the levels of TBC, PBC and PSC in raw milk stored at a temperature of 4 °C. This potentially will delaythe onset of spoilage of by four days. Conclusion: Both glycinin and the basic sub-unit have a more swift antimicrobial action than that of penicillin. Basic sub-units exhibited the highest efficiency at killing bacterial cells, followed by glycinin, penicillin and ?-conglycinin-with the lowest effect; while the bacteria most susceptible to the

  1. Dynamics of swimming bacteria at complex interfaces

    CERN Document Server

    Lopez, Diego

    2014-01-01

    Flagellated bacteria exploiting helical propulsion are known to swim along circular trajectories near surfaces. Fluid dynamics predicts this circular motion to be clockwise (CW) above a rigid surface (when viewed from inside the fluid) and counter-clockwise (CCW) below a free surface. Recent experimental investigations showed that complex physicochemical processes at the nearby surface could lead to a change in the direction of rotation, both at solid surfaces absorbing slip-inducing polymers and interfaces covered with surfactants. Motivated by these results, we use a far-field hydrodynamic model to predict the kinematics of swimming near three types of interfaces: clean fluid-fluid interface, slipping rigid wall, and a fluid interface covered by incompressible surfactants. Representing the helical swimmer by a superposition of hydrodynamic singularities, we first show that in all cases the surfaces reorient the swimmer parallel to the surface and attract it, both of which are a consequence of the Stokes dip...

  2. Physical mode of bacteria and virus coevolution

    Science.gov (United States)

    Han, Pu; Niestemski, Liang; Deem, Michael

    2013-03-01

    Single-cell hosts such as bacteria or archaea possess an adaptive, heritable immune system that protects them from viral invasion. This system, known as the CRISPR-Cas system, allows the host to recognize and incorporate short foreign DNA or RNA sequences from viruses or plasmids. The sequences form what are called ``spacers'' in the CRISPR. Spacers in the CRISPR loci provide a record of the host and predator coevolution history. We develop a physical model to study the dynamics of this coevolution due to immune pressure. Hosts and viruses reproduce, die, and evolve due to viral infection pressure, host immune pressure, and mutation. We will discuss the differing effects of point mutation and recombination on CRISPR evolution. We will also discuss the effect of different spacer deletion mechanisms. We will describe population structure of hosts and viruses, how spacer diversity depends on position within CRISPR, and match of the CRISPR spacers to the virus population.

  3. Magnetotactic bacteria. Promising biosorbents for heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Wei; Zhang, Yanzong; Ding, Xiaohui; Liu, Yan; Shen, Fei; Zhang, Xiaohong; Deng, Shihuai; Xiao, Hong; Yang, Gang; Peng, Hong [Sichuan Agricultural Univ., Chengdu (China). Provincial Key Lab. of Agricultural Environmental Engineering

    2012-09-15

    Magnetotactic bacteria (MTB), which can orient and migrate along a magnetic line of force due to intracellular nanosized magnetosomes, have been a subject of research in the medical field, in dating environmental changes, and in environmental remediation. This paper reviews the recent development of MTB as biosorbents for heavy metals. Ultrastructures and taxis of MTB are investigated. Adsorptions in systems of unitary and binary ions are highlighted, as well as adsorption conditions (temperature, pH value, biomass concentration, and pretreatments). The separation and desorption of MTB in magnetic separators are also discussed. A green method to produce metal nanoparticles is provided, and an energy-efficient way to recover precious metals is put forward during biosorption. (orig.)

  4. Antimicrobial resistant bacteria in the food chain

    DEFF Research Database (Denmark)

    Wegener, Henrik Caspar Technical University of Denmark,

    2003-01-01

    Antimicrobials are used for treatment and prevention of disease in food animals and as feed additives for growth promotion. All uses lead to the development of resistant bacteria, some of which are pathogenic to humans. Current main concerns are with resistance in Salmonella and Campylobacter to fluoroquinolones, which are used for empirical treatment of diarrhea in humans. Resistance to vancomycin and Synercid((R)) in enterococci is associated with use of similar drugs as growth promoters in food animals. Danish food animal producers have terminated the use of antimicrobial growth promoters. This has reduced the total use of antimicrobials by more than 50% and markedly reduced levels of resistance. There is an urgent need to implement globally, WHO principles for prudent use of antimicrobials in food animals. Use of antimicrobials as growth promoters could and should be terminated completely.

  5. Degradation of multiwall carbon nanotubes by bacteria

    International Nuclear Information System (INIS)

    Understanding the environmental transformation of multiwall carbon nanotubes (MWCNTs) is important to their life cycle assessment and potential environmental impacts. We report that a bacterial community is capable of degrading 14C-labeled MWCNTs into 14CO2 in the presence of an external carbon source via co-metabolism. Multiple intermediate products were detected, and genotypic characterization revealed three possible microbial degraders: Burkholderia kururiensis, Delftia acidovorans, and Stenotrophomonas maltophilia. This result suggests that microbe/MWCNTs interaction may impact the long-term fate of MWCNTs. Highlights: •Mineralization of MWCNTs by a bacterial community was observed. •The mineralization required an external carbon source. •Multiple intermediate products were identified in the MWCNT degrading culture. •Three bacterial species were found likely responsible for MWCNT degradation. -- The 14C-labeled multiwall carbon nanotubes can be degraded to 14CO2 and other byproducts by a bacteria community under natural conditions

  6. Interaction of actinides with aerobic soil bacteria

    Science.gov (United States)

    Panak, P. J.; Nitsche, H.

    2000-07-01

    The production and testing of nuclear weapons, nuclear reactor accidents, and accidents during the transport of nuclear weapons have caused significant environmental contamination with radionuclides. Their migration behavior is controlled by a variety of complex chemical and geochemical reactions such as solubility, sorption on the geo-matrix, hydrolysis, redox reactions, and complexation reactions with inorganic, organic, and biological ligands. In addition, microorganisms can strongly influence the actinides' transport behavior by both direct interaction (biosorption, bioaccumulation, oxidation, and reduction reactions) and indirect interaction (change of pH and redox potential), thus immobilizing or mobilizing the radionuclides. Extensive studies were performed on the interaction of uranium with different kinds of bacteria (aerobic and anaerobic).1 Nevertheless, very little information is available for transuranic elements such as Np, Am, Cm, and especially Pu.2

  7. Fewer Bacteria Adhere to Softer Hydrogels.

    Science.gov (United States)

    Kolewe, Kristopher W; Peyton, Shelly R; Schiffman, Jessica D

    2015-09-01

    Clinically, biofilm-associated infections commonly form on intravascular catheters and other hydrogel surfaces. The overuse of antibiotics to treat these infections has led to the spread of antibiotic resistance and underscores the importance of developing alternative strategies that delay the onset of biofilm formation. Previously, it has been reported that during surface contact, bacteria can detect surfaces through subtle changes in the function of their motors. However, how the stiffness of a polymer hydrogel influences the initial attachment of bacteria is unknown. Systematically, we investigated poly(ethylene glycol) dimethacrylate (PEGDMA) and agar hydrogels that were 20 times thicker than the cumulative size of bacterial cell appendages, as a function of Young's moduli. Soft (44.05-308.5 kPa), intermediate (1495-2877 kPa), and stiff (5152-6489 kPa) hydrogels were synthesized. Escherichia coli and Staphylococcus aureus attachment onto the hydrogels was analyzed using confocal microscopy after 2 and 24 h incubation periods. Independent of hydrogel chemistry and incubation time, E. coli and S. aureus attachment correlated positively to increasing hydrogel stiffness. For example, after a 24 h incubation period, there were 52 and 82% fewer E. coli adhered to soft PEGDMA hydrogels than to the intermediate and stiff PEGDMA hydrogels, respectively. A 62 and 79% reduction in the area coverage by the Gram-positive microbe S. aureus occurred after 24 h incubation on the soft versus intermediate and stiff PEGDMA hydrogels. We suggest that hydrogel stiffness is an easily tunable variable that could potentially be used synergistically with traditional antimicrobial strategies to reduce early bacterial adhesion and therefore the occurrence of biofilm-associated infections. PMID:26291308

  8. Determination of Ammonia Oxidizing Bacteria and Nitrate Oxidizing Bacteria in Wastewater and Bioreactors

    Science.gov (United States)

    Francis, Somilez Asya

    2014-01-01

    The process of water purification has many different physical, chemical, and biological processes. One part of the biological process is the task of ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB). Both play critical roles in the treatment of wastewater by oxidizing toxic compounds. The broad term is nitrification, a naturally occurring process that is carried out by AOB and NOB by using oxidation to convert ammonia to nitrite and nitrite to nitrate. To monitor this biological activity, bacterial staining was performed on wastewater contained in inoculum tanks and biofilm samples from bioreactors. Using microscopy and qPCR, the purpose of this experiment was to determine if the population of AOB and NOB in wastewater and membrane bioreactors changed depending on temperature and hibernation conditions to determine the optimal parameters for AOB/NOB culture to effectively clean wastewater.

  9. Isolation of Crude Oil from Polluted Waters Using Biosurfactants Pseudomonas Bacteria: Assessment of Bacteria Concentration Effects

    Directory of Open Access Journals (Sweden)

    A. Khalifeh

    2013-04-01

    Full Text Available Biological decomposition techniques and isolation of environmental pollutions using biosurfactants bacteria are effective methods of environmental protection. Surfactants are amphiphilic compounds that are produced by local microorganisms and are able to reduce the surface and the stresses between surfaces. As a result, they will increase solubility, biological activity, and environmental decomposition of organic compounds. This study analyzes the effects of biosurfactants on crude oil recovery and its isolation using pseudomonas sea bacteria species. Preparation of biosurfactants was done in glass flasks and laboratory conditions. Experiments were carried out to obtain the best concentration of biosurfactants for isolating oil from water and destroying oil-in-water or water-in-oil emulsions in two pH ranges and four saline solutions of different concentrations. The most effective results were gained when a concentration of 0.1% biosurfactants was applied.

  10. Evidence for Detachment of Indigenous Bacteria from Aquifer Sediment in Response to Arrival of Injected Bacteria

    OpenAIRE

    Johnson, W. P.; Zhang, P; Gardner, P. M.; Fuller, M. E.; DeFlaun, M F

    2001-01-01

    Two bacterial strains isolated from the aquifer underlying Oyster, Va., were recently injected into the aquifer and monitored using ferrographic capture, a high-resolution immunomagnetic technique. Injected cells were enumerated on the basis of a vital fluorescence stain, whereas total cell numbers (stained target cells plus unstained target and antigenically similar indigenous bacteria) were identified by cell outlines emanating from fluorophore-conjugated antibodies to the two target strain...

  11. Isolation of Crude Oil from Polluted Waters Using Biosurfactants Pseudomonas Bacteria: Assessment of Bacteria Concentration Effects

    OpenAIRE

    A. Khalifeh; B. Roozbehani; A. M. Moradi; S. Imani Moqadam; M. Mirdrikvand

    2013-01-01

    Biological decomposition techniques and isolation of environmental pollutions using biosurfactants bacteria are effective methods of environmental protection. Surfactants are amphiphilic compounds that are produced by local microorganisms and are able to reduce the surface and the stresses between surfaces. As a result, they will increase solubility, biological activity, and environmental decomposition of organic compounds. This study analyzes the effects of biosurfactants on crude oil recove...

  12. Acetic acid bacteria: A group of bacteria with versatile biotechnological applications.

    Science.gov (United States)

    Saichana, Natsaran; Matsushita, Kazunobu; Adachi, Osao; Frébort, Ivo; Frebortova, Jitka

    2015-11-01

    Acetic acid bacteria are gram-negative obligate aerobic bacteria assigned to the family Acetobacteraceae of Alphaproteobacteria. They are members of the genera Acetobacter, Gluconobacter, Gluconacetobacter, Acidomonas, Asaia, Kozakia, Swaminathania, Saccharibacter, Neoasaia, Granulibacter, Tanticharoenia, Ameyamaea, Neokomagataea, and Komagataeibacter. Many strains of Acetobacter and Komagataeibacter have been known to possess high acetic acid fermentation ability as well as the acetic acid and ethanol resistance, which are considered to be useful features for industrial production of acetic acid and vinegar, the commercial product. On the other hand, Gluconobacter strains have the ability to perform oxidative fermentation of various sugars, sugar alcohols, and sugar acids leading to the formation of several valuable products. Thermotolerant strains of acetic acid bacteria were isolated in order to serve as the new strains of choice for industrial fermentations, in which the cooling costs for maintaining optimum growth and production temperature in the fermentation vessels could be significantly reduced. Genetic modifications by adaptation and genetic engineering were also applied to improve their properties, such as productivity and heat resistance. PMID:25485864

  13. Dominant Bacteria and Biomass in the Kuytun 51 Glacier ? †

    Science.gov (United States)

    Xiang, Shu-Rong; Shang, Tian-Cui; Chen, Yong; Jing, Ze-Fan; Yao, Tandong

    2009-01-01

    Dominant bacteria in the different habitats in the Kuytun 51 Glacier were investigated using a 16S rRNA gene clone library sequencing technique. Results showed diverse bacteria on the glacial surface, with the dominant phyla being Proteobacteria, Cyanobacteria, and Bacteroidetes. UniFrac data showed distinct community patterns between the Kuytun and Himalayan Rongbuk glaciers. PMID:19749065

  14. Killing of bacteria during solar eclipse and its biological implications

    International Nuclear Information System (INIS)

    Enhanced killing of bacteria was obtained by radiation reaching the earth during total solar eclipse (February 16, 1980) than during the corresponding time of a normal day (February 26, 1980). The killing was not due to the formation of sunlight induced photoproducts of tryptophan. The damage to the bacteria exposed to sunlight could be repaired by photoreactivation. (orig.)

  15. Rapid plasmid DNA isolation from mucoid gram-negative bacteria.

    OpenAIRE

    Domenico, P; Marx, J L; Schoch, P E; Cunha, B. A.

    1992-01-01

    Exopolysaccharides interfere with the isolation and characterization of plasmid DNA from gram-negative bacteria. To repress capsular polysaccharide production, bacteria were cultured in medium containing bismuth nitrate and sodium salicylate. Rapid removal of other contaminating bacterial surface components was achieved by mild acidic zwitterionic detergent extraction. After treatment, bacterial cells were more readily lysed in alkaline detergents. The resulting plasmid preparations contained...

  16. The ecology of nitrite-oxiding bacteria in grassland soils

    OpenAIRE

    Both, Gerrit Johan,

    1990-01-01

    In order to enable the study of the spatial and temporal distribution of nitrite-oxidizing bacteria in semi-natural grassland soils, it was necessary to find a reliable method for enumerating these bacteria. The MPN-technique seemed the most suitable to determine the total number of viable nitrite oxidizers. ... Zie: Summary

  17. Petrifilm plates for enumeration of bacteria counts in goat milk

    Science.gov (United States)

    PetrifilmTM Aerobic Count (AC) and Coliform Count (CC) plates were validated against standard methods for enumeration of coliforms, total bacteria, and psychrotrophic bacteria in raw (n = 39) and pasteurized goat milk (n = 17) samples. All microbiological data were transformed into log form and sta...

  18. Fermentation of Fructooligosaccharides by Lactic Acid Bacteria and Bifidobacteria†

    OpenAIRE

    Kaplan, Handan; Hutkins, Robert W.

    2000-01-01

    Lactic acid bacteria and bifidobacteria were screened of their ability to ferment fructooligosaccharides (FOS) on MRS agar. Of 28 strains of lactic acid bacteria and bifidobacteria examined, 12 of 16 Lactobacillus strains and 7 of 8 Bifidobacterium strains fermented FOS. Only strains that gave a positive reaction by the agar method reached high cell densities in broth containing FOS.

  19. High-throughput antibody microarray for bacteria and toxins

    Science.gov (United States)

    Ingestion of pathogenic bacteria in foods often results in illnesses that are of worldwide concern. Hence, our research efforts have focused on developing screening tests capable of multiplexed detection of foodborne bacteria and associated toxins. In this study, we describe the combination of a s...

  20. Use of thermophilic bacteria for bioremediation of petroleum contaminants

    International Nuclear Information System (INIS)

    Several strains of thermophilic bacteria were isolated from the environment of the United Arab Emirates. These bacteria show extraordinary resistance to heat and have their maximum growth rate around 60--80 C. This article investigates the potential of using these facultative bacteria for both in situ and ex situ bioremediation of petroleum contaminants. In a series of batch experiments, bacterial growth was observed using a computer image analyzer following a recently developed technique. These experiments showed clearly that the growth rate is enhanced in the presence of crude oil. This is coupled with a rapid degradation of the crude oil. These bacteria were found to be ideal for breaking down long-chain organic molecules at a temperature of 40 C, which is the typical ambient temperature of the Persian Gulf region. The same strains of bacteria are also capable of surviving in the presence of the saline environment that can prevail in both sea water and reservoir connate water. This observation prompted further investigation into the applicability of the bacteria in microbial enhanced oil recovery. In the United Arab Emirates, the reservoirs are typically at a temperature of around 85 C. Finally, the performance of the bacteria is tested in a newly developed bioreactor that uses continuous aeration through a transverse slotted pipe. This reactor also uses mixing without damaging the filamentous bacteria. In this process, the mechanisms of bioremediation are identified

  1. Methods and Techniques of Sampling, Culturing and Identifying of Subsurface Bacteria

    International Nuclear Information System (INIS)

    This report described sampling, culturing and identifying of KURT underground bacteria, which existed as iron-, manganese-, and sulfate-reducing bacteria. The methods of culturing and media preparation were different by bacteria species affecting bacteria growth-rates. It will be possible for the cultured bacteria to be used for various applied experiments and researches in the future

  2. AZF Microdeletions in Human Semen Infected with Bacteria

    Directory of Open Access Journals (Sweden)

    Hayfa H Hassani

    2011-11-01

    Full Text Available Bacterial infections are associated with infertility in men. This study was aimed to investigate microdeletions on Yq chromosome in semen infected with bacteria by using bacteriological, biochemical, and serological assays. The investigation showed that 107 of 300 (84.80% semen samples collected from infertile men with primary or secondary infertility were infected with different species of bacteria. Chlamydia trachomatis and Neisseria gonorrheae were the most frequently diagnosed bacteria in the infected semen samples. The percentages of infections of semen samples with C. trachomatis and N. gonorrhea were 42.31% and 35.28% respectively. Genomic DNA from each semen sample infected with predominant bacteria was analyzed for AZF deletions by using multiplex PCR. Different patterns of AZF microdeletions were obtained. It can be concluded that sexually transmitted bacteria may contribute in microdeletions of Yq chromosome by indirectly producing reactive oxygen species and causing gene defect in AZF regions.

  3. Viability of bacteria in dental calculus - A microbiological study

    Directory of Open Access Journals (Sweden)

    Moolya Nikesh

    2010-01-01

    Full Text Available Aim: The aim of this study was (1 To investigate the viability of bacteria within supragingival and subgingival calculus, (2 To examine motility of bacteria, and (3 To identify bacterial morphotypes in calculus. Materials and Methods: Supra and subgingival calculus were harvested from 30 subjects having clinical evidence of chronic inflammatory periodontal disease and were divided into two groups . Samples from both groups were immediately transported to the Department of Microbiology for gram staining, acridine orange staining, bacterial culture and to the Department of Oral Pathology for dark field microscopy. Results: Gram staining revealed presence of bacteria within the samples. Dark field microscopic examination revealed presence of filamentous organisms, spirochetes, and motile short bacilli. Acridine orange fluorescent stain showed that the viable bacteria appeared apple green. Bacterial culture revealed presence of a variety of aerobic organisms. Conclusion: From the results, it appeared that viable bacteria were present within calculus especially within internal channels and lacunae.

  4. Studies on Bacteria?Like Particles Sampled from the Stratosphere

    Energy Technology Data Exchange (ETDEWEB)

    Wainwright, M; Weber, P; Smith, J; Hutcheon, I; Klyce, B; Wickramasinghe, N; Narlikar, J; Rajaratnam, P

    2004-07-16

    Bacteria-like particles recovered from the stratosphere and deposited on cellulose acetate membranes have been analyzed to confirm their bacterial nature. One particle appeared to be attached to an inorganic particle apparently by mucoid material typically produced by bacteria. A filamentous structure, morphologically similar to a fungal hypha, was also observed. EDS analysis showed that the particles were all non-mineral and therefore could be biological in nature. However, the composition several clumps of nanobacteria-sized particles were found, by SIMS analysis, to be inconsistent with that of bacteria. The results show that it is dangerous to assume that bacteria-like particles seen under scanning electron microscopy are necessarily bacteria.

  5. COMPARISON OF OCCURENCE LACTIC ACID BACTERIA IN CHOSEN YOGURTS

    Directory of Open Access Journals (Sweden)

    Silvia Pinterová

    2010-11-01

    Full Text Available The yogurt is healthy food, which contains at least 100 million cultures per gram. Probiotic bacteria have been proven to reduce the effects of some gastrointestinal problems, probiotics can greatly reduce lactose intolerance, have also been proven to prevent colon cancers, there are also a natural immune system booster. In our research we detected numbers of lactid acid bacteria in yogurts in slovak market. There were classical yogurts, yogurts with probiotics, yogurts with fat and non fat. We numbered lactid acid bacteria from and after expiration, in agars MRS and Lee´s. In examined yogurts we detected from expiration from 78.107  to 169.107  and after expiration from 59.107 to 133.107 lactic acid bacteria in 1 ml of yogurt. In agreement with Food Codex of SR (2010 of rules all these yogurts satisfy number of lactid acid bacteria. doi:10.5219/31

  6. Sensitivity of certain bacteria to antibiotics and irradiation

    International Nuclear Information System (INIS)

    An experiment has been conducted to find vegetative forms of certain bacteria in Indonesia which are resistant to irradiation, the resistance of which will be compared to that of known radioresistant bacteria micrococcus radiodurans. To inactivate the vegetative forms of resistant bacteria to irradiation high doses are needed, while for storage purposes lower doses change the physical and chemical properties of the stored commodity are preferred. For this purpose the bacteria were irradiated in aerobic condition with gamma radiation doses of 0.1, 0.2 and 0.3 kGy, or treated with antibiotics e.g. tetracycline HCl or chloramphenicol with concentrations of 0.1, 0.2 and 0.3 ?g/ml respectively. The results indicated that doses of 0.2 kGy and 0.1 ?g/ml reduced the ability of the bacteria for multiplication. (author)

  7. Culturable bacteria in Himalayan ice in response to atmospheric circulation

    Directory of Open Access Journals (Sweden)

    S. Zhang

    2006-06-01

    Full Text Available Only recently has specific attention been given to culturable bacteria in Tibetan glaciers, but their relation to atmospheric circulation is less understood yet. Here we investigate the seasonal variation of culturable bacteria preserved in a Himalayan ice core. High concentration of culturable bacteria in glacial ice deposited during the pre-monsoon season is attributed to the transportation of continental dust stirred up by the frequent dust storms in Northwest China during spring. This is also confirmed by the spatial distribution of culturable bacteria in Tibetan glaciers. Culturable bacteria deposited during monsoon season are more diverse than other seasons because they derive from both marine air masses and local or regional continental sources. We suggest that microorganisms in Himalayan ice can be used to reconstruct atmospheric circulation.

  8. High resistance of some oligotrophic bacteria to ionizing radiation

    International Nuclear Information System (INIS)

    The resistance of seven cultures of eutrophic and oligotrophic bacteria to gamma radiation (at doses up to 360 Gy) was investigated. The bacteria under study were divided into three groups according to their survival ability after irradiation. Methylobacterium organophilum and open-quotes Pedodermatophilus halotoleransclose quotes (LD50 = 270 Gy) were highly tolerant. By their tolerance, these organisms approached Deinococcus radiodurans. Aquatic ring-shaped (toroidal) bacteria Flectobacillus major and open-quotes Arcocella aquaticaclose quotes (LD5 = 173 and 210 Gy, respectively) were moderately tolerant. Eutrophic Pseudomonas fluorescens and Escherichia coli (LD50 = 43 and 38 Gy, respectively) were the most sensitive. X-ray microanalysis showed that in tolerant bacteria the intracellular content of potassium increased and the content of calcium decreased after irradiation. No changes in the element composition of the eutrophic bacterium E. coli were detected. Possible mechanisms of the resistance of oligotrophic bacteria to gamma radiation are discussed

  9. Detection of pathogenic gram negative bacteria using infrared thermography

    Science.gov (United States)

    Lahiri, B. B.; Divya, M. P.; Bagavathiappan, S.; Thomas, Sabu; Philip, John

    2012-11-01

    Detection of viable bacteria is of prime importance in all fields of microbiology and biotechnology. Conventional methods of enumerating bacteria are often time consuming and labor-intensive. All living organisms generate heat due to metabolic activities and hence, measurement of heat energy is a viable tool for detection and quantification of bacteria. In this article, we employ a non-contact and real time method - infrared thermography (IRT) for measurement of temperature variations in four clinically significant gram negative pathogenic bacteria, viz. Vibrio cholerae, Vibrio mimicus, Proteus mirabilis and Pseudomonas aeruginosa. We observe that, the energy content, defined as the ratio of heat generated by bacterial metabolic activities to the heat lost from the liquid medium to the surrounding, vary linearly with the bacterial concentration in all the four pathogenic bacteria. The amount of energy content observed in different species is attributed to their metabolisms and morphologies that affect the convection velocity and hence heat transport in the medium.

  10. Presence of Pathogenic Bacteria and Viruses in the Daycare Environment.

    Science.gov (United States)

    Ibfelt, Tobias; Engelund, Eva Hoy; Permin, Anders; Madsen, Jonas Stenløkke; Schultz, Anna Charlotte; Andersen, Leif Percival

    2015-10-01

    The number of children in daycare centers (DCCs) is rising. This increases exposure to microorganisms and infectious diseases. Little is known about which bacteria and viruses are present in the DCC environment and where they are located. In the study described in this article, the authors set out to determine the prevalence of pathogenic bacteria and viruses and to find the most contaminated fomites in DCCs. Fifteen locations in each DCC were sampled for bacteria, respiratory viruses, and gastrointestinal viruses. The locations were in the toilet, kitchen, and playroom areas and included nursery pillows, toys, and tables, among other things. Coliform bacteria were primarily found in the toilet and kitchen areas whereas nasopharyngeal bacteria were found mostly on toys and fabric surfaces in the playroom. Respiratory viruses were omnipresent in the DCC environment, especially on the toys. PMID:26591334

  11. Influence of disturbances on bacteria level in an operating room

    DEFF Research Database (Denmark)

    Brohus, Henrik; Hyldig, Mikkel

    2008-01-01

    In operating rooms great effort is manifested to reduce the bacteria level in order to decrease the risk of infections. The main source of bacteria is the staff and the patient, thus, the resulting bacteria concentration is roughly speaking a combination of the ventilation system and the emission from the occupants. This study investigates the influence of two main disturbances in an operating room namely the door opening during the operation and the activity level of the staff. It is found that the frequent door opening in this case does not cause significant transport of air from outside the operating room to the wound area of the patient. However, a significant influence of the activity level on the bacteria emission and concentration is found. Counting the number of persons in an operating room to estimate the bacteria source strength is not sufficient, the corresponding activity level must be considered, too.

  12. Presence of Pathogenic Bacteria and Viruses in the Daycare Environment

    DEFF Research Database (Denmark)

    Ibfelt, Tobias; Engelund, Eva HØy

    2015-01-01

    The number of children in daycare centers (DCCs) is rising. This increases exposure to microorganisms and infectious diseases. Little is known about which bacteria and viruses are present in the DCC environment and where they are located. In the study described in this article, the authors set out to determine the prevalence of pathogenic bacteria and viruses and to find the most contaminated fomites in DCCs. Fifteen locations in each DCC were sampled for bacteria, respiratory viruses, and gastrointestinal viruses. The locations were in the toilet, kitchen, and playroom areas and included nursery pillows, toys, and tables, among other things. Coliform bacteria were primarily found in the toilet and kitchen areas whereas nasopharyngeal bacteria were found mostly on toys and fabric surfaces in the playroom. Respiratory viruses were omnipresent in the DCC environment, especially on the toys.

  13. Viabilidade celular de Saccharomyces cerevisiae cultivada em associação com bactérias contaminantes da fermentação alcoólica Cellular viability of Saccharomyces cerevisiae cultivated in association with contaminant bacteria of alcoholic fermentation

    OpenAIRE

    Thais de Paula Nobre; Jorge Horii; André Ricardo Alcarde

    2007-01-01

    O objetivo deste trabalho foi estudar a influência de bactérias dos gêneros Bacillus e Lactobacillus, bem como de seus produtos metabólicos, na redução da viabilidade celular de leveduras Saccharomyces cerevisiae. As bactérias Bacillus subtilis, Bacillus coagulans, Bacillus stearothermophilus, Lactobacillus fermentum e Lactobacillus plantarum foram cultivadas em associação com a levedura S. cerevisiae (cepa Y-904) por 72 horas a 32 °C, sob agitação. A viabilidade celular, a taxa de brotam...

  14. DEVELOPMENT OF TOFU PRODUCTION METHOD WITH PROBIOTIC BACTERIA ADDITION

    Directory of Open Access Journals (Sweden)

    Dorota Zieli?ska

    2015-06-01

    Full Text Available The aim of the study was to develop a production method for tofu with probiotic bacteria under laboratory conditions. The works included: selection of a strain and tofu production conditions, and a storage test of the manufactured product. It was concluded that the sensory quality of tofu with the addition of different probiotic cultures did not differ significantly (p>0.01, depending on used strains and their mixtures, and the sample quality was comparable to the commercial product. It was observed that the number of Lactobacillus bacteria in study samples was the factor determining the palatability of tofu (r= 0.75. On the other hand, the sensory quality of products was significantly affected by the production method of tofu with the addition of probiotic bacteria. It was concluded that the formation of curds from soy beverage by the addition of CaSO4, followed by inoculation with Lactobacillus casei ?OCK 0900 at the amount of 9.26 log CFU/g and incubation at temp. of 37?C for 2h as well as for 20h are methods recommended for production tofu with regard to sensory qualities of the final product among all tested methods. The number of lactic acid bacteria in studied tofu samples was maintained at the high level (109-1010 CFU/g, and the number of Bifidobacterium animalis ssp lactis BB-12 bacteria did not exceed 103 CFU/g, whereas the number of Lactobacillus bacteria was equal to 108-109 CFU/g. For the period of 15 days of storage of tofu with probiotic bacteria at the temperature of 4?C the number of lactic acid bacteria was maintained at the constant level of approx. 109 CFU/g. It was concluded that it is possible to produce tofu with probiotic bacteria that has acceptable sensory characteristics and a high number of lactic acid bacteria, therefore the product could be considered as a functional one.

  15. Antioxidant and Antimicrobial Potential of the Bifurcaria bifurcata Epiphytic Bacteria

    Directory of Open Access Journals (Sweden)

    André Horta

    2014-03-01

    Full Text Available Surface-associated marine bacteria are an interesting source of new secondary metabolites. The aim of this study was the isolation and identification of epiphytic bacteria from the marine brown alga, Bifurcaria bifurcata, and the evaluation of the antioxidant and antimicrobial activity of bacteria extracts. The identification of epiphytic bacteria was determined by 16S rRNA gene sequencing. Bacteria extracts were obtained with methanol and dichloromethane (1:1 extraction. The antioxidant activity of extracts was performed by quantification of total phenolic content (TPC, 2,2-diphenyl-1-picrylhydrazyl (DPPH radical scavenging activity and oxygen radical absorbance capacity (ORAC. Antimicrobial activities were evaluated against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, Salmonella enteritidis, Staphylococcus aureus, Saccharomyces cerevisiae and Candida albicans. A total of 39 Bifurcaria bifurcata-associated bacteria were isolated and 33 were identified as Vibrio sp. (48.72%, Alteromonas sp. (12.82%, Shewanella sp. (12.26%, Serratia sp. (2.56%, Citricoccus sp. (2.56%, Cellulophaga sp. (2.56%, Ruegeria sp. (2.56% and Staphylococcus sp. (2.56%. Six (15.38% of the 39 bacteria Bifurcaria bifurcata-associated bacteria presented less than a 90% Basic Local Alignment Search Tool (BLAST match, and some of those could be new. The highest antioxidant activity and antimicrobial activity (against B. subtilis was exhibited by strain 16 (Shewanella sp.. Several strains also presented high antimicrobial activity against S. aureus, mainly belonging to Alteromonas sp. and Vibrio sp. There were no positive results against fungi and Gram-negative bacteria. Bifurcaria bifurcata epiphytic bacteria were revealed to be excellent sources of natural antioxidant and antimicrobial compounds.

  16. Antioxidant and antimicrobial potential of the Bifurcaria bifurcata epiphytic bacteria.

    Science.gov (United States)

    Horta, André; Pinteus, Susete; Alves, Celso; Fino, Nádia; Silva, Joana; Fernandez, Sara; Rodrigues, Américo; Pedrosa, Rui

    2014-03-01

    Surface-associated marine bacteria are an interesting source of new secondary metabolites. The aim of this study was the isolation and identification of epiphytic bacteria from the marine brown alga, Bifurcaria bifurcata, and the evaluation of the antioxidant and antimicrobial activity of bacteria extracts. The identification of epiphytic bacteria was determined by 16S rRNA gene sequencing. Bacteria extracts were obtained with methanol and dichloromethane (1:1) extraction. The antioxidant activity of extracts was performed by quantification of total phenolic content (TPC), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity and oxygen radical absorbance capacity (ORAC). Antimicrobial activities were evaluated against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, Salmonella enteritidis, Staphylococcus aureus, Saccharomyces cerevisiae and Candida albicans. A total of 39 Bifurcaria bifurcata-associated bacteria were isolated and 33 were identified as Vibrio sp. (48.72%), Alteromonas sp. (12.82%), Shewanella sp. (12.26%), Serratia sp. (2.56%), Citricoccus sp. (2.56%), Cellulophaga sp. (2.56%), Ruegeria sp. (2.56%) and Staphylococcus sp. (2.56%). Six (15.38%) of the 39 bacteria Bifurcaria bifurcata-associated bacteria presented less than a 90% Basic Local Alignment Search Tool (BLAST) match, and some of those could be new. The highest antioxidant activity and antimicrobial activity (against B. subtilis) was exhibited by strain 16 (Shewanella sp.). Several strains also presented high antimicrobial activity against S. aureus, mainly belonging to Alteromonas sp. and Vibrio sp. There were no positive results against fungi and Gram-negative bacteria. Bifurcaria bifurcata epiphytic bacteria were revealed to be excellent sources of natural antioxidant and antimicrobial compounds. PMID:24663118

  17. Active stress driven convection in a suspension of chemotactic bacteria

    Science.gov (United States)

    Kasyap, T. V.; Koch, Donald

    2011-11-01

    We examine the linear stability of a suspension of swimming bacteria producing dipolar hydrodynamic disturbances confined in a channel subjected to a linear chemo-attractant gradient across the channel. At the continuum level swimming bacteria exert an ``active'' stress on the fluid which is a function of the bacterial concentration and orientation fields. In the base-state without any fluid flow, the fluxes from the chemotactic and diffusive motion of the bacteria balance to yield exponential number density and active stress profiles across the channel. We show that such a base-state is unstable to perturbations in the number density parallel to the channel walls if the bacterial concentration exceeds a critical value determined by a Peclet number measuring the strength of chemotaxis relative to diffusion. Active stress gradients resulting from the perturbation in the number density drive convective fluid flow, which transports bacteria into the regions of highest perturbed bacteria concentration reinforcing the original perturbation. We examine the linear stability of a suspension of swimming bacteria producing dipolar hydrodynamic disturbances confined in a channel subjected to a linear chemo-attractant gradient across the channel. At the continuum level swimming bacteria exert an ``active'' stress on the fluid which is a function of the bacterial concentration and orientation fields. In the base-state without any fluid flow, the fluxes from the chemotactic and diffusive motion of the bacteria balance to yield exponential number density and active stress profiles across the channel. We show that such a base-state is unstable to perturbations in the number density parallel to the channel walls if the bacterial concentration exceeds a critical value determined by a Peclet number measuring the strength of chemotaxis relative to diffusion. Active stress gradients resulting from the perturbation in the number density drive convective fluid flow, which transports bacteria into the regions of highest perturbed bacteria concentration reinforcing the original perturbation. This work is supported by NSF grant CBET-0730579.

  18. capillare contra bacterias patógenas de peces

    Directory of Open Access Journals (Sweden)

    Pilar Negrete Redondo

    2006-01-01

    Full Text Available En el presente estudio se comprobó, in vitro, la capacidad del extracto que se obtuvo a partir del alga verde dulce acuícola, Oedogonium capillare, con el propósito de inhibir el crecimiento de 23 diferentes bacterias, tanto patógenas de humanos como de importancia ictiopatogénica, pertenecientes a las familias Pseudomonadaceae, Enterobacteriaceae, Aeromonadacea y Vibrionaceae. Las diferentes cepas bacterianas silvestres se aislaron a partir de peces Carassius auratus, cultivados en granjas acuícolas en Morelos, México; después de su purifi cación se identifi caron mediante la técnica API-20E y API-20NE. Las algas que se recolectaron de los estanques para su cultivo se instalaron en el Centro de Investigaciones Biológicas y Acuícolas, en Xochimilco. Secas y homegeneizadas, las algas se sometieron a dos extracciones con hexano a temperatura de refl ujo; la segunda extracción se realizó con una columna cromatrográfi ca de sílica gel y cloroformo etílico. Con el fi n de determinar la sensibilidad de las bacterias a la actividad del extracto, se instrumentó el sistema estandarizado de pruebas de difusión discos. Se impregnaron discos de papel fi ltro con el extracto obtenido del alga O. capillare y con antibióticos comerciales de mayor uso en la acuicultura: kanamicina, cloranfenicol y tetraciclina. Se efectuó la técnica de lisis alcalina para la extracción de plásmidos-R a fi n de determinar su presencia en las cepas. Todo el experimento se replicó mediante cepas bacterianas de la American Type Culture Colection. Se comparó el comportamiento como antibacterial de O. capillare con cada uno de los antibióticos comerciales descritos, por medio de un análisis de correlación. Se obtuvieron altos coefi cientes de correlación entre la forma de actuar del extracto del alga y los antibióticos empleados en este estudio. La actividad antibacterial de O. capillare está más relacionada con la kanamicina que con los otros dos antibióticos. En todas las cepas de colección se registró mayor actividad antibacteriana del extracto, el promedio de los diámetros de los halos de inhibición de las especies de las cuatro familias bacterianas de este grupo fue mayor que los del grupo silvestre, posiblemente debido a la presencia de plásmidos-R en este último grupo.

  19. Mecanismos de resistencia a los antibióticos en bacterias Gram negativas Mechanisms of antibiotic resistance in Gram negative bacteria

    Directory of Open Access Journals (Sweden)

    José David Tafur

    2008-09-01

    Full Text Available Las infecciones por bacterias Gram negativas son muy prevalentes en pacientes hospitalizados, especialmente en las unidades de cuidados intensivos. La multirresistencia representa un reto terapéutico que deja pocas posibilidades para el tratamiento de estas infecciones. Los mecanismos que utilizan las bacterias para defenderse de los antibióticos están en constante evolución. Esta revisión describe los mecanismos de resistencia más frecuentemente utilizados por estas bacterias, haciendo énfasis en los antibióticos betalactámicos.Infections caused by Gram negative bacteria are highly prevalent in hospitalized patients, especially in intensive care units. Multidrug resistant strains represent a therapeutic challenge, leaving very few possibilities for the treatment of such infections. The mechanisms that this bacteria use to defend themselves from antibiotics are constantly evolving. This review describes the most frequently used mechanisms of resistance by these germs, emphasizing on beta-lactam antibiotics.

  20. In vitro production of thymine dimer by ultroviolet irradiation of DNA from mesophilic and thermophilic bacteria

    International Nuclear Information System (INIS)

    Thymine dimer was produced in vitro by ultraviolet irradiation of DNA, isolated from the mesophile Bacillus licheniformis and the thermophile B. stearothermophilus. Irradiation was performed at three different temperaturs (35, 45 and 55 C) and the thymine dimer was isolated and determined. An HPLC procedure was developed that permitted temperature was greater for the thermophile than for the mesophile. Formation of thymine dimer increased with temperature for both organisms but more so for the thermophile; over the temperature range of 35-55 C, the average increase in thymine dimer production for the themrophile was about 4-times that for the mesophile. The melting out temperature, as a function of increasing irradiation temperature, was essentially unchanged for the mesophilic DNA, but decreased progressively for the thermophilic DNA. These results are discussed in terms of the macromolecular theory of to the macromolecular theory of the thermophily. (author). 31 refs.; 4 figs.; 3 tabs

  1. Isolation of methanotrophic bacteria from termite gut.

    Science.gov (United States)

    Reuß, Julia; Rachel, Reinhard; Kämpfer, Peter; Rabenstein, Andreas; Küver, Jan; Dröge, Stefan; König, Helmut

    2015-10-01

    The guts of termites feature suitable conditions for methane oxidizing bacteria (MOB) with their permanent production of CH4 and constant supply of O2via tracheae. In this study, we have isolated MOB from the gut contents of the termites Incisitermes marginipennis, Mastotermes darwiniensis, and Neotermes castaneus for the first time. The existence of MOB was indicated by detecting pmoA, the gene for the particulate methane monooxygenase, in the DNA of gut contents. Fluorescence in situ hybridization and quantitative real-time polymerase chain reaction supported those findings. The MOB cell titer was determined to be 10(2)-10(3) per gut. Analyses of the 16S rDNA from isolates indicated close similarity to the genus Methylocystis. After various physiological tests and fingerprinting methods, no exact match to a known species was obtained, indicating the isolation of new MOB species. However, MALDI-TOF MS analyses revealed a close relationship to Methylocystis bryophila and Methylocystis parvus. PMID:26411892

  2. Lactic acid bacteria and human health.

    Science.gov (United States)

    Gorbach, S L

    1990-02-01

    Although claims for health and nutritional benefits have been made for lactic acid bacteria in fermented dairy products for nearly a century, the nutritional and therapeutic value of these organisms is still controversial. This article will review the scientific basis of these claims. There are numerous studies showing fermentation of food with lactobacilli increase the quantity, availability, digestibility, and assimilability of nutrients. The basis for this conclusion comes from direct measurements of vitamin synthesis and from increased feed efficiency when fermented products are fed to animals. There have been a number of studies showing that various fermented dairy products lower serum cholesterol levels in humans and animals. These studies are reviewed and the validity of these findings are assessed. A summary of the evidence indicating that lactase deficient individuals can eat yogurt and the mechanisms involved in this toleration is reviewed. The role of fermented dairy products in inhibiting tumor growth and chemically induced tumors in animals is discussed and the possible mechanisms involved in this protective effect are reviewed. Fermented dairy products and lypholized lactobacilli preparations have been shown to be useful in treating and preventing various intestinal infections including; salmonellosis, shigellosis and antibiotic induced diarrhea. In this context a specific lactobacillus designated GG has been shown to be useful in treating recurring diarrhea caused by a toxin produced by Clostridium difficile. PMID:2109988

  3. Contribution of Gut Bacteria to Liver Pathobiology

    Directory of Open Access Journals (Sweden)

    Gakuhei Son

    2010-01-01

    Full Text Available Emerging evidence suggests a strong interaction between the gut microbiota and health and disease. The interactions of the gut microbiota and the liver have only recently been investigated in detail. Receiving approximately 70% of its blood supply from the intestinal venous outflow, the liver represents the first line of defense against gut-derived antigens and is equipped with a broad array of immune cells (i.e., macrophages, lymphocytes, natural killer cells, and dendritic cells to accomplish this function. In the setting of tissue injury, whereby the liver is otherwise damaged (e.g., viral infection, toxin exposure, ischemic tissue damage, etc., these same immune cell populations and their interactions with the infiltrating gut bacteria likely contribute to and promote these pathologies. The following paper will highlight recent studies investigating the relationship between the gut microbiota, liver biology, and pathobiology. Defining these connections will likely provide new targets for therapy or prevention of a wide variety of acute and chronic liver pathologies.

  4. Marine bacteria exploit Euler buckling to turn

    Science.gov (United States)

    Son, Kwangmin; Guasto, Jeffrey S.; Lazarus, Arnaud; Miller, James; Reis, Pedro M.; Stocker, Roman

    2011-11-01

    Important species of marine bacteria were recently discovered to swim in a three-step pattern: they swim forward by rotating a single helical flagellum, then backwards by reversing the flagellar rotation, and finally ``flick'' the flagellum in an off-axis motion, producing a large (~90°) reorientation in the swimming direction. What remains unknown in this elegant, minimalistic swimming pattern are the biomechanics of the flick. Here we present new observations based on high-speed video microscopy to capture the detailed dynamics of the reorientation process in Vibrio alginolyticus. Combining the data with a model of buckling of thin structures, we show that the onset of forward swimming triggers a mechanical instability of the flagellar hook, because the propulsive force exceeds the threshold for Euler buckling. This surprising adaptation, where cells take advantage of the flexibility of the flagellar hook to generate a turn, may represent the evolutionarily cheapest bacterial motility pattern and a highly beneficial solution to foraging in resource-poor marine environments.

  5. Microbial influenced corrosion by thermophilic bacteria

    Science.gov (United States)

    Lata, Suman; Sharma, Chhaya; Singh, Ajay

    2012-03-01

    The present study was undertaken to investigate microbial influenced corrosion (MIC) on stainless steels due to thermophilic bacteria Desulfotomaculum nigrificans. The objective of the study was to measure the extent of corrosion and correlate it with the growth of the biofilm by monitoring the composition of its extracellular polymeric substances (EPS). The toxic effect of heavy metals on MIC was also observed. For this purpose, stainless steels 304L, 316L and 2205 were subjected to electrochemical polarization and immersion tests in the modified Baar's media, control and inoculated, in anaerobic conditions at room temperature. Scanning electron microscopy (SEM)/energy dispersive spectroscopy (EDS) were used to identify the chemicals present in/outside the pit. The results show maximum corrosive conditions when bacterial activity is highest, which in turn minimizes the amount of carbohydrate and protein along with the increase in the fraction of uronic acid in carbohydrate in EPS of the biofilm. However, although bacterial activity and corrosion rate decreases, the amount of biofilm components continue to increase. It is also observed that the toxicity of metals ions affect the bacterial activity and EPS production. It was observed that Desulfotomaculum sp. has the ability to biodegrade its own EPS.

  6. Purple bacteria and quantum Fourier transform

    CERN Document Server

    Lipovaca, S

    2007-01-01

    The LH-II of purple bacteria Rhodospirillum (Rs.) molischianum and Rhodopseudomonas (Rps.) acidophila adopts a highly symmetrical ring shape, with a radius of about 7 nm. In the case of Rps. acidophila the ring has a ninefold symmetry axis, and in LH-II from Rs. molischianum the ring has an eightfold symmetry axis. These rings are found to exibit two bands of excitons. A simplified mathematical description of the exciton states is given in Hu, X. & Schulten, K. (1997) Physics Today 50, 28-34. Using this description, we will show, by suitable labeling of the lowest energy (Qy) excited states of individual BChls, that the resulting exciton states are the quantum Fourier transform of the BChls excited states. For Rs. molischianum ring exciton states will be modeled as the four qubit quantum Fourier transform and the explicit circuit will be derived. Exciton states for Rps. acidophila ring cannot be modeled with an integer number of qubits. Both quantum Fourier transforms are instances of the hidden subgroup ...

  7. Control of indigenous pathogenic bacteria in seafood

    DEFF Research Database (Denmark)

    Huss, Hans Henrik

    1997-01-01

    The pathogenic bacteria indigenous to the aquatic and general environment are listed. Their distribution in nature, prevalence in seafood and the possibilities for growth of these organisms in various types of products are outlined These data, combined with what is known regarding the epidemiology of disease, are used to place the various seafood products in risk categories and to identify areas of concern. It is concluded that the presence of pathogens in molluscs and the growth of Listeria monocytogenes in lightly preserved fish products are hazards which are presently not under control. In order to prevent growth and toxin production by Clostridium botulinum when products are stored at abuse temperature, it is recommended that additional barriers to growth are included in lightly preserved (e.g. cold smoked salmon) and low-heat treated (e.g REPFEDS) products. It is finally pointed out that the Hazard Analysis Critical Control Point (HACCP) system is the preferred strategy in most quality assurance programmes and it is recommended that microbiological criteria are applied only as guidelines in the verification of the HACCP-system - and not for official control purposes. (C) 1997 Elsevier Science Ltd

  8. Monitoring sulfide and sulfate-reducing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Tanner, R.S.

    1995-12-31

    Simple yet precise and accurate methods for monitoring sulfate-reducing bacteria (SRB) and sulfide remain useful for the study of bacterial souring and corrosion. Test kits are available to measure sulfide in field samples. A more precise methylene blue sulfide assay for both field and laboratory studies is described here. Improved media, compared to that in API RP-38, for enumeration of SRB have been formulated. One of these, API-RST, contained cysteine (1.1 mM) as a reducing agent, which may be a confounding source of sulfide. While cysteine was required for rapid enumeration of SRB from environmental samples, the concentration of cysteine in medium could be reduced to 0.4 mM. It was also determined that elevated levels of yeast extract (>1 g/liter) could interfere with enumeration of SRB from environmental samples. The API-RST medium was modified to a RST-11 medium. Other changes in medium composition, in addition to reduction of cysteine, included reduction of the concentration of phosphate from 3.4 mM to 2.2 mM, reduction of the concentration of ferrous iron from 0.8 mM to 0.5 mM and preparation of a stock mineral solution to ease medium preparation. SRB from environmental samples could be enumerated in a week in this medium.

  9. Helicobacter pylori, un modelo de bacteria carcinogénica

    Directory of Open Access Journals (Sweden)

    Carolina Romo González

    2010-01-01

    Full Text Available Helicobacter pylori es un microorganismo que habitualmente se encuentra en el estómago humano. Se considera que aproximadamente 50% de los seres humanos están colonizados por esta bacteria. Los porcentajes de colonización varían de acuerdo con las condiciones socioeconómicas de los individuos y con el desarrollo económico del país, presentándose las tasas más altas de colonización en los sectores socialmente desfavorecidos de los países en desarrollo. H. pylori es reconocido como un patógeno implicado en el desarrollo de gastritis, úlcera péptica, cáncer gástrico y linfoma tipo MALT (Mucosa-Associated Lymphoid Tissue, patologías inducidas a largo plazo por la colonización del estómago y un proceso inflamatorio crónico asociado con la presencia del microorganismo y con la actividad de sus factores de virulencia. Los conocimientos derivados de la investigación sobre la fisiología de H. pylori y su relación huésped-parásito han cambiado los paradigmas en Medicina sobre el origen, tratamiento y profilaxis de las enfermedades asociadas con la infección por H. pylori y sobre los eventos de carcinogénesis inducida por microorganismos.

  10. Plant growth promoting bacteria in Brachiaria brizantha.

    Science.gov (United States)

    Silva, Mylenne Calciolari Pinheiro; Figueiredo, Aline Fernandes; Andreote, Fernando Dini; Cardoso, Elke Jurandy Bran Nogueira

    2013-01-01

    Brachiaria brizantha is considered one of the preferred fodders among farmers for having high forage yield and large production of root mass. The association of beneficial bacteria with these grasses can be very valuable in the recovery of the pasture areas with nutritional deficiency. With the aim of studying this possibility, we carried out the sampling of soil and roots of B. brizantha in three areas (Nova Odessa-SP, São Carlos-SP and Campo Verde-MT, Brazil). Seventy-two bacterial strains were isolated and used in tests to evaluate their biotechnological potential. Almost all isolates presented at least one positive feature. Sixty-eight isolates produced analogues of indole-3-acetic acid, ten showed nitrogenase activity when subjected to the method of increasing the concentration of total nitrogen (total N) in the culture medium and sixty-five isolates showed nitrogenase activity when subjected to acetylene reduction technique. The partial sequencing of 16S rRNA of these isolates allowed the identification of seven main groups, with the prevalence of those affiliated to the genus Stenotrophomonas (69 %). At the end, this work elected the strains C4 (Pseudomonadaceae) and C7 (Rhodospirillaceae) as promising organisms for the development of inoculants due to their higher nitrogenase activity. PMID:22987328

  11. Thermophilic, lignocellulolytic bacteria for ethanol production. Current state and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Tinghong; Yao, Shuo [Technical Univ. of Denmark, Roskilde (Denmark). Microbial Engineering Group

    2011-10-15

    Lignocellulosic biomass contains a variety of carbohydrates, and their conversion into ethanol by fermentation requires an efficient microbial platform to achieve high yield, productivity, and final titer of ethanol. In recent years, growing attention has been devoted to the development of cellulolytic and saccharolytic thermophilic bacteria for lignocellulosic ethanol production because of their unique properties. First of all, thermophilic bacteria possess unique cellulolytic and hemicellulolytic systems and are considered as potential sources of highly active and thermostable enzymes for efficient biomass hydrolysis. Secondly, thermophilic bacteria ferment a broad range of carbohydrates into ethanol, and some of them display potential for ethanologenic fermentation at high yield. Thirdly, the establishment of the genetic tools for thermophilic bacteria has allowed metabolic engineering, in particular with emphasis on improving ethanol yield, and this facilitates their employment for ethanol production. Finally, different processes for second-generation ethanol production based on thermophilic bacteria have been proposed with the aim to achieve cost-competitive processes. However, thermophilic bacteria exhibit an inherent low tolerance to ethanol and inhibitors in the pretreated biomass, and this is at present the greatest barrier to their industrial application. Further improvement of the properties of thermophilic bacteria, together with the optimization production processes, is equally important for achieving a realistic industrial ethanol production. (orig.)

  12. Differentiating the growth phases of single bacteria using Raman spectroscopy

    Science.gov (United States)

    Strola, S. A.; Marcoux, P. R.; Schultz, E.; Perenon, R.; Simon, A.-C.; Espagnon, I.; Allier, C. P.; Dinten, J.-M.

    2014-03-01

    In this paper we present a longitudinal study of bacteria metabolism performed with a novel Raman spectrometer system. Longitudinal study is possible with our Raman setup since the overall procedure to localize a single bacterium and collect a Raman spectrum lasts only 1 minute. Localization and detection of single bacteria are performed by means of lensfree imaging, whereas Raman signal (from 600 to 3200 cm-1) is collected into a prototype spectrometer that allows high light throughput (HTVS technology, Tornado Spectral System). Accomplishing time-lapse Raman spectrometry during growth of bacteria, we observed variation in the net intensities for some band groups, e.g. amides and proteins. The obtained results on two different bacteria species, i.e. Escherichia coli and Bacillus subtilis clearly indicate that growth affects the Raman chemical signature. We performed a first analysis to check spectral differences and similarities. It allows distinguishing between lag, exponential and stationary growth phases. And the assignment of interest bands to vibration modes of covalent bonds enables the monitoring of metabolic changes in bacteria caused by growth and aging. Following the spectra analysis, a SVM (support vector machine) classification of the different growth phases is presented. In sum this longitudinal study by means of a compact and low-cost Raman setup is a proof of principle for routine analysis of bacteria, in a real-time and non-destructive way. Real-time Raman studies on metabolism and viability of bacteria pave the way for future antibiotic susceptibility testing.

  13. Thermophilic, lignocellulolytic bacteria for ethanol production: current state and perspectives

    DEFF Research Database (Denmark)

    Chang, Tinghong; Yao, Shuo

    2011-01-01

    Lignocellulosic biomass contains a variety of carbohydrates, and their conversion into ethanol by fermentation requires an efficient microbial platform to achieve high yield, productivity, and final titer of ethanol. In recent years, growing attention has been devoted to the development of cellulolytic and saccharolytic thermophilic bacteria for lignocellulosic ethanol production because of their unique properties. First of all, thermophilic bacteria possess unique cellulolytic and hemicellulolytic systems and are considered as potential sources of highly active and thermostable enzymes for efficient biomass hydrolysis. Secondly, thermophilic bacteria ferment a broad range of carbohydrates into ethanol, and some of them display potential for ethanologenic fermentation at high yield. Thirdly, the establishment of the genetic tools for thermophilic bacteria has allowed metabolic engineering, in particular with emphasis on improving ethanol yield, and this facilitates their employment for ethanol production. Finally, different processes for second-generation ethanol production based on thermophilic bacteria have been proposed with the aim to achieve cost-competitive processes. However, thermophilic bacteria exhibit an inherent low tolerance to ethanol and inhibitors in the pretreated biomass, and this is at present the greatest barrier to their industrial application. Further improvement of the properties of thermophilic bacteria, together with the optimization production processes, is equally important for achieving a realistic industrial ethanol production.

  14. Multiresistant Bacteria Isolated from Chicken Meat in Austria

    Directory of Open Access Journals (Sweden)

    Gernot Zarfel

    2014-12-01

    Full Text Available Multidrug resistant bacteria (MDR bacteria, such as extended spectrum beta-lactamase (ESBL Enterobacteriaceae, methicillin resistant Staphylococcus aureus (MRSA, and vancomycin-resistant Enterococci (VRE, pose a challenge to the human health care system. In recent years, these MDR bacteria have been detected increasingly outside the hospital environment. Also the contamination of food with MDR bacteria, particularly of meat and meat products, is a concern. The aim of the study was to evaluate the occurrence of MDR bacteria in chicken meat on the Austrian market. For this study, 50 chicken meat samples were analysed. All samples originated from chickens slaughtered in Austrian slaughterhouses and were marked as produced in Austria. Samples were analysed for the presence of ESBL Enterobacteriaceae, methicillin resistant Staphylococci and VRE. Resistance genes of the isolated bacteria were characterised by PCR and sequencing. In the present study 26 ESBL producing E. coli, five mecA gene harbouring Staphylococci (but no MRSA, and four VRE were detected in chicken meat samples of Austrian origin. In 24 (48% of the samples no ESBL Enterobacteriaceae, MRSA, methicillin resistant coagulase negative Staphylococcus (MRCNS or VRE could be detected. None of the samples contained all three types of investigated multiresistant bacteria. In concordance to previous studies, CTX-M-1 and SHV-12 were the dominant ESBL genes.

  15. Antibacterial and Plasmid Curing Activity of Lactic Acid Bacteria against Multidrug Resistant Bacteria Strains

    Directory of Open Access Journals (Sweden)

    Nehal El-Deeb

    2015-01-01

    Full Text Available Multiple Drug Resistance (MDR is a serious health problem and major challenge to global drug discovery programs. Most of the genetic determinants that confer resistance to antibiotics are located on plasmids in bacteria. The present investigation was undertaken to investigate the antibacterial effect and the ability of extra- and intra-cellular extracts of Lactic Acid Bacteria (LAB to cure plasmid acquiring resistance in certain clinical antibiotic-resistant bacterial isolates (Pseudomonas aeruginosa, Staphylococcus aureus, Klebsiella pneumoniae and Shigella sp.. Transformation experiments were carried out using clinical isolates as plasmid donor and Escherichia coli strain HB101 (sensitive to the tested antibiotic, as recipient. Minimal Inhibitory Concentration (MIC of LAB extracts was determined using the microtiter plate method. Plasmid curing activity of LAB extracts was determined by evaluating the inability of bacterial colonies (pre-treated with LAB extract for 18 h to grow in the presence of antibiotics. The physical loss of plasmid DNA in the cured derivatives was further confirmed by agarose gel electrophoresis. The LAB showed antibacterial effect, inhibited up to 90% of bacterial biofilm formation and cured the pathogenic bacteria from plasmids. The presence of plasmid in transformants was confirmed through electrophoresis and the transformants were also tested for each antibiotic resistance already recorded for the donor isolates. Both extracts (extra-and intra-cellular extracts inhibited the growth of the clinical isolates. Extracellular extracts exceeded 90% inhibition on some isolates. The LAB extract mediated plasmid curing resulted in the subsequent loss of antibiotic (Chl, Dox, Ery, Gm, Kaf, Lin and Pen resistance encoded in the plasmids as revealed by antibiotic resistance profile of cured strains. The extracellular extract of LAB may be a source of anti-plasmid (plasmid borne multiple antibiotic resistance agents of natural origin.

  16. Enumeration of lactic acid bacteria on grass and the effects on silage fermentation of added bacteria

    OpenAIRE

    Moran, Joseph

    1990-01-01

    Initial studies on the methodology of enumerating lactic acid bacteria (LAB) on grass and silage indicated that (a) varying the homogenisation time in a stomacher from 1 to 7 minutes did not effect LAB numbers, (b) MRS and Rogosa media gave similar LAB counts in silage and (c) anaerobic incubation of plates led to higher counts of LAB from silage compared to micro-aerophi1ic incubation, but similar counts from grass. A survey of LAB numbers on grass grown for silage sh...

  17. Infecciones por bacterias poco comunes y oncogénesis bacteriana / Infections due to unusual bacteria and bacterial oncogenesis

    Scientific Electronic Library Online (English)

    Horacio A., Lopardo.

    Full Text Available La recuperación de algunos microorganismos de aislamiento esporádico en el laboratorio de microbiología clínica podría significar la existencia de algún defecto inmunitarioespecial en el paciente. Por ejemplo, se ha descrito una importante correlación entre Clostridium septicum y carcinoma de colon, [...] y se han visto relacionadas con leucemias y linfomas a especies que aparecen casi siempre como contaminantes (Bacillus spp., Corynebacterium spp.) y a otras raramente aisladas en otros contextos (Capnocytophaga spp.). Hay bacterias que se aíslan casi exclusivamente de pacientes con sida (Rhodococcus equi). Se ha observado una mayor frecuencia de infecciones por Campylobacter spp., Aeromonas spp. y estreptococos del grupo G y del grupo mitis en individuos con algún tipo de cáncer que en el resto de los pacientes. También hay bacterias que son marcadoras de algún cáncer no detectado o que afectan más a pacientes neutropénicos que a individuos normoinmunes. La alteración de la reacción inflamatoria, la linfoproliferación mediada por antígenos bacterianos y la inducción de hormonas que aumentan la proliferación de las células epiteliales podrían ser causas de la oncogénesis bacteriana. Los ejemplos clásicos son el adenocarcinoma gástrico inducido por Helicobacter pylori, la asociación de la bacteriemia por estreptococos del grupo bovis y el cáncer de colon y los linfomas de tejido linfoide asociado a mucosas (MALT) en vinculación con especies de Helicobacter (MALT gástricos) y con Chlamydophila spp. (MALT oculares). El aislamiento de alguno de estos patógenos debería ser un llamado de atención para inducir al estudio de alguna enfermedad maligna. Abstract in english The recovery of an unusual organism in the clinical microbiology laboratory may be an indicator of an immunological abnormality in the patient. For instance, an important relationship between Clostridium septicum and colon carcinoma as well as between leukemia or lymphoma with species frequently con [...] sidered contaminants (Bacillus spp., Corynebacterium spp.) or others rarely isolated from different contexts (Capnocytophaga spp.) were described. Some bacteria are almost exclusively isolated from AIDS patients (Rhodococcus equi). Campylobacter spp., Aeromonas spp., group G and mitis group streptococci were more frequently isolated in individuals suffering from any type of cancer than in other patients. Furthermore, some other bacteria can be considered markers of an undetected cancer that can be found mostly in neutropenic patients rather than in immunologically normal individuals. Possible mechanisms of bacterial oncogenesis include a modification of the inflammatory response, antigen-derived lymphoproliferation, and induction of hormones that increase epithelial cell proliferation. Typical examples of the above are: gastric adenocarcinoma induced by Helicobacter pylori, the association between group bovis bacteremia and colon carcinoma and the mucosa-associated lymphoid tissue (MALT) related to Helicobacter species (gastric MALT) and Chlamydophila spp. (ocular MALT). Isolation of any of these pathogens should require a thorough search for possible malignant diseases.

  18. Bacteria in the ECHAM5-HAM global climate model

    OpenAIRE

    A. Sesartic; Lohmann, U.; Storelvmo, T.

    2011-01-01

    Bacteria are the most active naturally occuring ice nuclei (IN) due to the ice nucleation active proteins on their surface, which serve as active sites for ice nucleation. Their potential impact on clouds and precipitation is not well known and needs to be investigated. Bacteria as a new aerosol species were introduced into the global climate model (GCM) ECHAM5-HAM. The inclusion of bacteria acting as IN in a GCM leads to only minor changes in cloud formation and precipitation on a global lev...

  19. Can soil bacteria solve PCB disposal problems with bioremediation

    International Nuclear Information System (INIS)

    A study headed by scientists at Laval University in Quebec City is designed to turn common soil bacteria into polychlorinated biphenyl (PCB) neutralizers. There are currently four natural enzymes that can give bacteria the power they need to break down 30 or 40 of the 209 compounds which make up PCBs. The objective of this research project is to explore the enzymatic mechanisms that enable bacteria to break down some PCB compounds but not others. The research team hopes to be able to modify the enzymes so that they will be able to degrade many other toxic PCB compounds, and other toxic materials such as polycyclic aromatic hydrocarbons, dioxins and furans. 1 fig

  20. Reduction of viscosity in suspension of swimming bacteria.

    Energy Technology Data Exchange (ETDEWEB)

    Sokolov, A.; Aranson, I. S.; Materials Science Division; Illinois Inst. of Tech.

    2009-01-01

    Measurements of the shear viscosity in suspensions of swimming Bacillus subtilis in free-standing liquid films have revealed that the viscosity can decrease by up to a factor of 7 compared to the viscosity of the same liquid without bacteria or with nonmotile bacteria. The reduction in viscosity is observed in two complementary experiments: one studying the decay of a large vortex induced by a moving probe and another measuring the viscous torque on a rotating magnetic particle immersed in the film. The viscosity depends on the concentration and swimming speed of the bacteria.

  1. Reduction of viscosity in suspension of swimming bacteria.

    Energy Technology Data Exchange (ETDEWEB)

    Aranson, I. S.; Sokolov, A.; Chen, L.; Jin, Q.; Materials Science Division

    2009-09-29

    Measurements of the shear viscosity in suspensions of swimming Bacillus subtilis in free-standing liquid films have revealed that the viscosity can decrease by up to a factor of 7 compared to the viscosity of the same liquid without bacteria or with nonmotile bacteria. The reduction in viscosity is observed in two complementary experiments: one studying the decay of a large vortex induced by a moving probe and another measuring the viscous torque on a rotating magnetic particle immersed in the film. The viscosity depends on the concentration and swimming speed of the bacteria.

  2. Discriminating Bacteria with Optical Sensors Based on Functionalized Nanoporous Xerogels

    Directory of Open Access Journals (Sweden)

    Sabine Crunaire

    2014-06-01

    Full Text Available An innovative and low-cost method is proposed for the detection and discrimination of indole-positive pathogen bacteria. The method allows the non-invasive detection of gaseous indole, released by bacteria, with nanoporous colorimetric sensors. The innovation comes from the use of nanoporous matrices doped with 4-(dimethylamino-cinnamaldehyde, which act as sponges to trap and concentrate the targeted analyte and turn from transparent to dark green, long before the colonies get visible with naked eyes. With such sensors, it was possible to discriminate E. coli from H. alvei, two indole-positive and negative bacteria after seven hours of incubation.

  3. Evidence of Selection upon Genomic GC-Content in Bacteria

    OpenAIRE

    Meyer, Axel; Hildebrand, Falk; Eyre-Walker, Adam

    2010-01-01

    The genomic GC-content of bacteria varies dramatically, from less than 20% to more than 70%. This variation is generally ascribed to differences in the pattern of mutation between bacteria. Here we test this hypothesis by examining patterns of synonymous polymorphism using datasets from 149 bacterial species. We find a large excess of synonymous GC?AT mutations over AT?GC mutations segregating in all but the most AT-rich bacteria, across a broad range of phylogenetically diverse species. We s...

  4. Anammox bacteria in different compartments of recirculating aquaculture systems.

    Science.gov (United States)

    van Kessel, Maartje A H J; Harhangi, Harry R; Flik, Gert; Jetten, Mike S M; Klaren, Peter H M; Op den Camp, Huub J M

    2011-12-01

    Strict environmental restrictions force the aquaculture industry to guarantee optimal water quality for fish production in a sustainable manner. The implementation of anammox (anaerobic ammonium oxidation) in biofilters would result in the conversion of both ammonium and nitrite (both toxic to aquatic animals) into harmless dinitrogen gas. Both marine and freshwater aquaculture systems contain populations of anammox bacteria. These bacteria are also present in the faeces of freshwater and marine fish. Interestingly, a new planctomycete species appears to be present in these recirculation systems too. Further exploitation of anammox bacteria in different compartments of aquaculture systems can lead to a more environmentally friendly aquaculture practice. PMID:22103532

  5. Effect of BCD Plasma on a Bacteria Cell Membrane

    International Nuclear Information System (INIS)

    Abstract Cell membrane rupture is considered to be one of the probable mechanisms for bacterial inactivation using barrier corona discharge (BCD) plasma. In this paper, the effect of the BCD plasma on the Escherichia coli (E. coli) bacteria cell wall was investigated through two analytical methods; Adenosine-5'-triphosphate (ATP) assay and Atomic Force Microscopy (AFM). The ATP assay results indicate an increase in the ATP content of samples which were exposed to the BCD plasma. This implies the bacteria cell rupture. Moreover, AFM images confirm a serious damage of the bacteria cell wall under the influence of the bactericidal agents of the plasma

  6. Effect of BCD Plasma on a Bacteria Cell Membrane

    Science.gov (United States)

    Nasrin, Navabsafa; Hamid, Ghomi; Maryam, Nikkhah; Soheila, Mohades; Hossein, Dabiri; Saeed, Ghasemi

    2013-07-01

    Abstract Cell membrane rupture is considered to be one of the probable mechanisms for bacterial inactivation using barrier corona discharge (BCD) plasma. In this paper, the effect of the BCD plasma on the Escherichia coli (E. coli) bacteria cell wall was investigated through two analytical methods; Adenosine-5'-triphosphate (ATP) assay and Atomic Force Microscopy (AFM). The ATP assay results indicate an increase in the ATP content of samples which were exposed to the BCD plasma. This implies the bacteria cell rupture. Moreover, AFM images confirm a serious damage of the bacteria cell wall under the influence of the bactericidal agents of the plasma.

  7. Efficacy of entomopathogenic bacteria for control of Musca domestica.

    Science.gov (United States)

    Zimmer, Cristine R; Dias de Castro, Luciana L; Pires, Sabrina M; Delgado Menezes, Adriane M; Ribeiro, Paulo B; Leivas Leite, Fábio P

    2013-11-01

    The aim of this study was to evaluate the larvicidal activity, and sub lethal effects of entomopathogenic bacteria Brevibacillus laterosporus, Bacillus thuringiensis var. israelensis, B. thuringiensis var. kurstaki, and a commercial formulation of Bacillus sphaericus on Musca domestica. Bacterial suspensions were prepared in different concentrations and added to the diet of newly-hatched larvae which were monitored until the adult stage. The larvae were susceptible to the B. laterosporus, B. thuringiensis var. israelensis, and B. thuringiensis var. kurstaki bacteria in varied concentration levels. These bacteria have larvicidal and sub lethal effects on the development of flies, reducing both adult size, and impairing the reproductive performance of the species. PMID:24018169

  8. Extraction and Characterization of Oil Degrading Bacteria

    Directory of Open Access Journals (Sweden)

    Khalida Khan

    2006-01-01

    Full Text Available The present study was conducted to determine the isolation, identification and characterization of efficient oil degrading bacterial strains and to study the effect of different concentration of crude oil on the growth of bacterial strain. Two samples soil and water were collected from the crude oil contaminated areas for the isolation and characterization of efficient crude oil degrading strains. Sub culturing technique was employed to isolate 43 numerically dominant bacteria that had the ability to grow on 1.0% crude oil on nutrient agar plates. The isolates were then subjected to different concentrations of crude oil on nutrient agar, mineral salt agar media containing Phosphorous, Nitrogen and trace elements with glucose (PNTG and without glucose (PER. These isolates showed rich growth on nutrient agar media along with crude oil. Out of 43 isolates 7 were able to grow up to 2.0% crude oil and were named as AA-1 to AA-7. These strains were also able to grow on mineral salt agar media with and without glucose but with different susceptibility to different concentrations of crude oil. Finally 3 prospective strains AA-1, AA-2 and AA-3 were selected for further studies. These strains exhibited good growth in PNTG containing 1.0% crude oil as evident by increase in Optical Density (OD after every 24 h for five days. These isolated strains were identified by morphological and biochemical tests and were found to belong to genus Bacillus. These strains were subjected to shake flask transformation of crude oil in mineral salt media (PNTG with glucose for 15 days. Marked change in crude oil colour was observed for these isolates, indicating their biodegradative ability. These isolated strains were able to use crude oil as the sole source of carbon and energy even under stressed environmental conditions. Thus these strains have bright potential for biodegradation of crude oil resulting in clean up of oil spills.

  9. Bioremediation of Copper Contaminated Soil Using Bacteria

    Directory of Open Access Journals (Sweden)

    Parul Bhatt Kotiyal

    2013-04-01

    Full Text Available Bioremediation is the use of living organisms (primarily microorganisms for removal of a pollutant from the biosphere. It relies on biological processes to minimize an unwanted environment impact of the pollutants. The microorganisms in particular have the abilities to degrade, detoxify and even accumulate the harmful organic as well as inorganic compounds. Five soil samples were collected from Selaqui industrial area, from different places at a depth of 0-15 cm. These soil samples were subjected to dilution (1:10, then from these dilution 4 and 5 were used for inoculation. Nutrient agar plates were prepared to be used as media. Replica of each dilution was prepared. After 24 hours of incubation at 28 degree centigrade bacterial colonies were observed on the plates. These cultures were purified to get 10 bacterial cultures. Further these cultures were inoculated in 10ml of nutrient broths each and after dense growth were inoculated in 10gm of soil samples in petriplates and were incubated for four days and then copper was estimated by Atomic Absorption Spectrometry technique and compared with the levels of copper obtained that were not inoculated with bacterial strains. The soil samples collected are all alkaline in nature; all the 10 isolated bacteria are gram negative and are chained cocci in structure. Sample 1 and 2, both dilutions have shown reduction in the amount of copper as compared to original soil samples without bacterial inoculation. According to this research sample 1 and sample 2 have shown reduction in the copper levels as compared to the raw soil samples that is without bacterial inoculation in them.

  10. Terpene synthases are widely distributed in bacteria.

    Science.gov (United States)

    Yamada, Yuuki; Kuzuyama, Tomohisa; Komatsu, Mamoru; Shin-Ya, Kazuo; Omura, Satoshi; Cane, David E; Ikeda, Haruo

    2015-01-20

    Odoriferous terpene metabolites of bacterial origin have been known for many years. In genome-sequenced Streptomycetaceae microorganisms, the vast majority produces the degraded sesquiterpene alcohol geosmin. Two minor groups of bacteria do not produce geosmin, with one of these groups instead producing other sesquiterpene alcohols, whereas members of the remaining group do not produce any detectable terpenoid metabolites. Because bacterial terpene synthases typically show no significant overall sequence similarity to any other known fungal or plant terpene synthases and usually exhibit relatively low levels of mutual sequence similarity with other bacterial synthases, simple correlation of protein sequence data with the structure of the cyclized terpene product has been precluded. We have previously described a powerful search method based on the use of hidden Markov models (HMMs) and protein families database (Pfam) search that has allowed the discovery of monoterpene synthases of bacterial origin. Using an enhanced set of HMM parameters generated using a training set of 140 previously identified bacterial terpene synthase sequences, a Pfam search of 8,759,463 predicted bacterial proteins from public databases and in-house draft genome data has now revealed 262 presumptive terpene synthases. The biochemical function of a considerable number of these presumptive terpene synthase genes could be determined by expression in a specially engineered heterologous Streptomyces host and spectroscopic identification of the resulting terpene products. In addition to a wide variety of terpenes that had been previously reported from fungal or plant sources, we have isolated and determined the complete structures of 13 previously unidentified cyclic sesquiterpenes and diterpenes. PMID:25535391

  11. Mineral deposition in bacteria-filled and bacteria-free calcium bodies in the crustacean Hyloniscus riparius (Isopoda: Oniscidea).

    Science.gov (United States)

    Vittori, Miloš; Rozman, Alenka; Grdadolnik, Jože; Novak, Urban; Štrus, Jasna

    2013-01-01

    Crustacean calcium bodies are epithelial sacs which contain a mineralized matrix. The objectives of this study were to describe the microscopic anatomy of calcium bodies in the terrestrial isopod Hyloniscus riparius and to establish whether they undergo molt-related structural changes. We performed 3D reconstruction of the calcium bodies from paraffin sections and analyzed their structure with light and electron microscopy. In addition, we analyzed the chemical composition of their mineralized matrices with micro-Raman spectroscopy. Two pairs of these organs are present in H. riparius. One pair is filled with bacteria while the other pair is not. In non-molting animals, the bacteria-filled calcium bodies contain apatite crystals and the bacteria-free calcium bodies enclose CaCO3-containing concretions with little organic matrix. During preparation for molt, an additional matrix layer is deposited in both pairs of calcium bodies. In the bacteria-filled calcium bodies it contains a mixture of calcium carbonate and calcium phosphate, whereas only calcium carbonate is present in bacteria-free calcium bodies. After ecdysis, all mineral components in bacteria-free calcium bodies and the additional matrix layer in bacteria-filled calcium bodies are completely resorbed. During calcium resorption, the apical surface of the calcium body epithelium is deeply folded and electron dense granules are present in spaces between epithelial cells. Our results indicate that the presence of bacteria might be linked to calcium phosphate mineralization. Calcium bodies likely provide a source of calcium and potentially phosphate for the mineralization of the new cuticle after molt. Unlike other terrestrial isopods, H. riparius does not form sternal CaCO3 deposits and the bacteria-free calcium bodies might functionally replace them in this species. PMID:23554963

  12. Sulfate reducing bacteria detection in gas pipelines; Deteccao de bacterias redutoras de sulfato em gasodutos

    Energy Technology Data Exchange (ETDEWEB)

    Lutterbach, Marcia Teresa S.; Oliveira, Ana Lucia C. de; Cavalcanti, Eduardo H. de S. [Instituto Nacional de Tecnologia (INT), Rio de Janeiro, RJ (Brazil). Div. de Corrosao e Degradacao]. E-mails: marciasl@int.gov.br; analucia@int.gov.br; eduardoh@int.gov.br

    2004-07-01

    Microbiology induced corrosion (MIC) process associated with sulfate reducing bacteria (BRS) are one of the most important matter of concern for the oil and gas industry as 77% of failures have been attributed this sort of degradation. Corrosion products found present in gas transportation pipelines, the so-called 'black-powder' problem, are also a nuisance and source of economic losses for the gas industry. According to the literature, the incidence of black-powder can be ascribed to the metabolism of BRS that can be found in the gas environment. Integrity monitoring programs of gas pipelines adopt pigging as an important tool for internal corrosion monitoring. Solid residue such as the black-powder, collected by pigging, as well as the condensed, can be seen as a very valuable samples for microbiological analyses that can be used to detect and quantify bacteria related to the incidence of MIC processes. In the present work results concerning samples collected by pigging and condensed are presented. Small populations of viable BRS have been found in the pipeline. It can be seen that the inclusion of microbiological analyses of solid and liquid residues as a complementary action in the integrity monitoring programs adopted by gas transportation industry can be very helpful on the decision making concerning preventive and corrective actions to be taken in order to maintain the CIM processes under control. (author)

  13. The effect of radiation on bioluminescent bacteria: possible use of luminescent bacteria as a biological dosemeter

    International Nuclear Information System (INIS)

    The purpose of the study was to investigate the response of the bioluminescent Photobacterium phosphoreum to radiation, and the possible use of the bacteria as a biological radiation dosemeter, i.e. a water-equivalent biological system that will compare beams not merely on the basis of absorbed dose, but also have intrinsic RBE values for different radiation beams. Samples were irradiated by a 12 MeV electron beam at a dose rate of 3.0 Gy min-1, by 60Co gamma rays at 2.85 Gy min-1, and by 100 kVsub(p) x-rays at a dose rate of 2.13 Gy min-1. To study dose-rate dependence, the survival fraction was obtained for a 12 MeV electron beam at 0.50 and 12 Gy min-1 for 20.0 Gy. The survival fraction proved to be independent of dose rate in this range. The results presented in this work indicate that by using bioluminescent bacteria, RBE measurements can be markedly simplified and the results interpreted unequivocally. (U.K.)

  14. Method of Detecting Coliform Bacteria from Reflected Light

    Science.gov (United States)

    Vincent, Robert K. (Inventor)

    2014-01-01

    The present invention relates to a method of detecting coliform bacteria in water from reflected light, and also includes devices for the measurement, calculation and transmission of data relating to that method.

  15. Identification of active fluorescence stained bacteria by Raman spectroscopy

    Science.gov (United States)

    Krause, Mario; Beyer, Beatrice; Pietsch, Christian; Radt, Benno; Harz, Michaela; Rösch, Petra; Popp, Jürgen

    2008-04-01

    Microorganisms can be found everywhere e.g. in food both as useful ingredients or harmful contaminations causing food spoilage. Therefore, a fast and easy to handle analysis method is needed to detect bacteria in different kinds of samples like meat, juice or air to decide if the sample is contaminated by harmful microorganisms. Conventional identification methods in microbiology require always cultivation and therefore are time consuming. In this contribution we present an analysis approach to identify fluorescence stained bacteria on strain level by means of Raman spectroscopy. The stained bacteria are highlighted and can be localized easier against a complex sample environment e.g. in food. The use of Raman spectroscopy in combination with chemometrical methods allows the identification of single bacteria within minutes.

  16. EFFECT OF SODIUM PHOSPHATES ON SELECTED FOOD GRADE BACTERIA

    Directory of Open Access Journals (Sweden)

    Stanislav Krá?mar

    2011-04-01

    Full Text Available The aim of this study was to examine the inhibitory effect in vitro of selected sodium phosphates (under the corporate names Hexa 68, Hexa 70, Trikrystal, FST, Pyro 52, KPS, Didi on selected gram-positive and gram-negative bacteria. Seven different concentrations of each phosphate were used. Sensitivity of the bacterial strains to phosphates was observed in broth supplemented with salts. In vitro was showed a negative effect of various phosphates on growth of selected gram-positive bacteria. Orthophosphates and diphosphates (pyrophosphates did not have significant inhibitory effect on tested bacteria at neutral pH. With the exception of phosphate Trikrystal has not been found in vitro significant inhibitory effects on gram-negative bacteria.doi:10.5219/141

  17. Carbon and Nitrogen Content of Natural Planktonic Bacteria

    Science.gov (United States)

    Nagata, Toshi

    1986-01-01

    A method of estimating carbon and nitrogen content per unit of natural bacterial cell volume was developed. This method is based on the difference in the retentiveness of bacteria between two kinds of glass fiber filter, GF/C and GF/F (Whatman, Inc., Clifton, N.J.). Biovolume and biomass (carbon and nitrogen content) of bacteria which passed through the GF/C but not the GF/F filter were estimated with an epifluorescence microscopy and a CHN analyzer, respectively. From seasonal determinations of natural planktonic bacteria in epilimnetic waters of a mesotrophic lake, the conversion factors of 106 fg of C/?m3 and 25 fg of N/?m3 were derived as average values. By using these values, the contribution of bacteria to the biomass of lake plankton is discussed. PMID:16347114

  18. Immunogenicity of gamma-treated Salmonella Gallinarum-Pullorum bacteria

    International Nuclear Information System (INIS)

    Studied was the immunogenicity of Salmonella gallinarum-pullorum bacteria treated with 1, 10 and 20 MR gamma rays or killed with acetone. Bacterial cultures were irradiated with a LMB-gamma M device, having a 137Cs source, single doses being of a 3,252 R/min power Biozzi's clearance test was employed to determine the changes in the immunogenic properties of the irradiated bacteria. The results obtained with both the clearance test and the protection test spoke of a considerable drop in the immunogenic capacity of the irradiated bacteria, using rates of 10, and especially of 20 MR gamma rays as compared to those killed with acetone. Protection was manifested best by bacteria treated at the rate of 1 MR gamma-rays, which pointed to the possibility of their practical use in the immunoprophylaxis of pullorum disease in birds. (author)

  19. Search continues for faster-acting PCB breakdown bacteria

    International Nuclear Information System (INIS)

    Studies have been conducted to identify fast-acting bacteria that are capable of breaking down polychlorinated biphenyls (PCBs). Four naturally-occurring enzymes have been identified that equip common soil bacteria with the means to at least partially degrade 30 or 40 of the more than 200 PCB compounds in existence. This study also examined how certain enzymes enable bacteria to break down some PCB components but not others. An enzyme modification phase of the research is underway. The goal of the project is develop a comprehensive set of PCB-degrading bacteria. It was suggested that bioremediation could be applied in new ways to deal also with other persistent toxic compounds such as poly aromatic hydrocarbons (PAHs), dioxins and furans

  20. The Use of Bacteria for Remediation of Mercury Contaminated Groundwater

    Science.gov (United States)

    Many processes of mercury transformation in the environment are bacteria mediated. Mercury properties cause some difficulties of remediation of mercury contaminated environment. Despite the significance of the problem of mercury pollution, methods of large scale bioremediation ...

  1. Phylogenetic analysis on the soil bacteria distributed in karst forest

    Scientific Electronic Library Online (English)

    JunPei, Zhou; Ying, Huang; MingHe, Mo.

    2009-12-01

    Full Text Available Phylogenetic composition of bacterial community in soil of a karst forest was analyzed by culture-independent molecular approach. The bacterial 16S rRNA gene was amplified directly from soil DNA and cloned to generate a library. After screening the clone library by RFLP, 16S rRNA genes of representa [...] tive clones were sequenced and the bacterial community was analyzed phylogenetically. The 16S rRNA gene inserts of 190 clones randomly selected were analyzed by RFLP and generated 126 different RFLP types. After sequencing, 126 non-chimeric sequences were obtained, generating 113 phylotypes. Phylogenetic analysis revealed that the bacteria distributed in soil of the karst forest included the members assigning into Proteobacteria, Acidobacteria, Planctomycetes, Chloroflexi (Green nonsulfur bacteria), Bacteroidetes, Verrucomicrobia, Nitrospirae, Actinobacteria (High G+C Gram-positive bacteria), Firmicutes (Low G+C Gram-positive bacteria) and candidate divisions (including the SPAM and GN08).

  2. Local bacteria affect the efficacy of chemotherapeutic drugs

    Science.gov (United States)

    Lehouritis, Panos; Cummins, Joanne; Stanton, Michael; Murphy, Carola T.; McCarthy, Florence O.; Reid, Gregor; Urbaniak, Camilla; Byrne, William L.; Tangney, Mark

    2015-01-01

    In this study, the potential effects of bacteria on the efficacy of frequently used chemotherapies was examined. Bacteria and cancer cell lines were examined in vitro and in vivo for changes in the efficacy of cancer cell killing mediated by chemotherapeutic agents. Of 30 drugs examined in vitro, the efficacy of 10 was found to be significantly inhibited by certain bacteria, while the same bacteria improved the efficacy of six others. HPLC and mass spectrometry analyses of sample drugs (gemcitabine, fludarabine, cladribine, CB1954) demonstrated modification of drug chemical structure. The chemoresistance or increased cytotoxicity observed in vitro with sample drugs (gemcitabine and CB1954) was replicated in in vivo murine subcutaneous tumour models. These findings suggest that bacterial presence in the body due to systemic or local infection may influence tumour responses or off-target toxicity during chemotherapy. PMID:26416623

  3. Small Talk: Cell-to-Cell Communication in Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Bassler, Bonnie (Princeton University)

    2008-05-14

    Cell-cell communication in bacteria involves the production, release, and subsequent detection of chemical signaling molecules called autoinducers. This process, called quorum sensing, allows bacteria to regulate gene expression on a population-wide scale. Processes controlled by quorum sensing are usually ones that are unproductive when undertaken by an individual bacterium but become effective when undertaken by the group. For example, quorum sensing controls bioluminescence, secretion of virulence factors, biofilm formation, sporulation, and the exchange of DNA. Thus, quorum sensing is a mechanism that allows bacteria to function as multi-cellular organisms. Bacteria make, detect, and integrate information from multiple autoinducers, some of which are used exclusively for intra-species communication while others enable communication between species. Research is now focused on the development of therapies that interfere with quorum sensing to control bacterial virulence.

  4. Directional swimming in bacteria: active and passive gradient responses

    Science.gov (United States)

    Stocker, Roman

    2012-02-01

    The ability to swim directionally is paramount for bacteria, in their quest for nutrients and favorable microhabitats. This ability depends on both active and passive responses to gradients. Here we bring an example from each case, based on novel microfluidic experiments that quantify the swimming behavior of bacteria. First, we describe their active response to oxygen gradients - or aerotaxis - and show the unexpected consequences of competing oxygen gradients with nutrient gradients. Then, we present the first observations of directional swimming by bacteria in response to fluid velocity gradients - or rheotaxis. Combining experiments with mathematical modeling we demonstrate that, unlike in larger organisms such as fish, rheotaxis in bacteria is passive, resulting from a previously undetected torque that originates from the chirality of the bacterial flagellum.

  5. Interactions of bacteria with diatoms: Influence on natural marine biofilms.

    Digital Repository Service at National Institute of Oceanography (India)

    Khandeparker, L.; DeCosta, P.M.; Anil, A.C.; Sawant, S.S.

    Interactions between microfouling components influence the biofilm community and the cascading events, thus playing an important role in the biofouling process. Bacteria and diatoms are among the dominant forms reported in biofilms. Experiments were...

  6. Anaerobic degradation of benzoate by sulfate-reducing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Silva, S.P.; Adorno, M.A.T.; Moraes, E.M.; Varesche, M.B.A. [Sao Paulo Univ., Sao Carlos, SP (Brazil). Biological Processes Laboratory

    2004-07-01

    Anaerobic processes are an efficient way to degrade aromatic compounds in industrial wastewater, such as phenol, cresol and benzoate. This study characterized the bacteria that degrades benzoate, an anaerobic degradation intermediate of several complex aromatic compounds. In particular, the study assessed the capacity to use benzoate with sulfate reducing bacteria in mesophilic conditions. Biofilm from polyurethane foam matrices of a fixed bed reactor was used as the cellular inoculum to treat industrial wastewater containing organic peroxide. Dilution techniques were used to purify the material and obtain cultures of cocci. The benzoate consumption capacity in sulfidogenic conditions was observed when the purified inoculum was applied to batch reactors with different benzoate/sulfate relations. Results indicate that purification was positive to bacteria that can degrade aromatic compounds. Desulfococcus multivorans bacteria was identified following the physiologic and kinetic experiments. The 0.6 benzoate/sulfate relation was considered ideal for complete consumption of carbon and total use of sulfur. 10 refs., 3 figs.

  7. Local bacteria affect the efficacy of chemotherapeutic drugs.

    Science.gov (United States)

    Lehouritis, Panos; Cummins, Joanne; Stanton, Michael; Murphy, Carola T; McCarthy, Florence O; Reid, Gregor; Urbaniak, Camilla; Byrne, William L; Tangney, Mark

    2015-01-01

    In this study, the potential effects of bacteria on the efficacy of frequently used chemotherapies was examined. Bacteria and cancer cell lines were examined in vitro and in vivo for changes in the efficacy of cancer cell killing mediated by chemotherapeutic agents. Of 30 drugs examined in vitro, the efficacy of 10 was found to be significantly inhibited by certain bacteria, while the same bacteria improved the efficacy of six others. HPLC and mass spectrometry analyses of sample drugs (gemcitabine, fludarabine, cladribine, CB1954) demonstrated modification of drug chemical structure. The chemoresistance or increased cytotoxicity observed in vitro with sample drugs (gemcitabine and CB1954) was replicated in in vivo murine subcutaneous tumour models. These findings suggest that bacterial presence in the body due to systemic or local infection may influence tumour responses or off-target toxicity during chemotherapy. PMID:26416623

  8. Production of L-Asparaginase by the marine luminous bacteria

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaiah, N.; Chandramohan, D.

    Fortythree strains of luminous bacteria, belonging to 4 species, (Vibrio harveyi, V. fischeri, Photobacterium leiognathi and P. phosphoreum) isolated from different marine samples, were examined for the production of L-asparaginase. Presence...

  9. Oh What a Tangled Biofilm Web Bacteria Weave

    Science.gov (United States)

    ... form streamers that tangle with each other and trap other passing bacteria, creating a full blockage in a surprisingly short period of time. Researchers at Princeton University used time-lapse microscopy ...

  10. CHARACTERIZATION OF NATURAL MICROCOSMS OF ESTUARINE MAGNETOTACTIC BACTERIA

    Directory of Open Access Journals (Sweden)

    ALEJANDRO SALAZAR

    2011-01-01

    Full Text Available No se ha reportado ningún estudio completo sobre microcosmos naturales de bacterias magnetotácticas (MTB en estuarios o ambientes tropicales. Además, casi todos los estudios sobre las bacterias magnetotácticas se han desarrollado en aguas dulces alejadas del ecuador. Este trabajo se desarrolla sobre el ecuador y reporta una caracterización mineralógica y fisicoquímica detallada de dos microcosmos bacterianos estuarinos. Los resultados muestran que la lixiviación de minerales en los sedimentos puede ser un factor importante en la solubilización de elementos requeridos por las bacterias magnetotácticas. Específicamente, que el clinocloro, flogopita, nontronita y haloisita pueden estar entre los minerales más importantes en la lixiviación de hierro a los microcosmos estuarinos. Se concluye que la concentración de nitrato en el agua no debe ser tan baja como se ha reportado para lograr un crecimiento bacteriano óptimo. Las bacterias magnetotácticas no necesitan grandes cantidades de hierro disuelto para su crecimiento ni para la síntesis de magnetosomas.

  11. Essential Amendments to Control Resistance to Antibiotics among Bacteria

    Directory of Open Access Journals (Sweden)

    PK Maheshwar

    2013-09-01

    Full Text Available Microbial resistance to antibiotics is gaining a lot of attention in the past few years. There has been a lot of debate in this regard but the outcome seems to be very disappointing. Added to the situation there are no proper data on per cent raise in antibiotic resistance. The growing threat from resistant bacteria calls for concerted action, to prevent the emergence of new resistant strains. Since the discovery and subsequent widespread use of antibiotics, a variety of bacterial species of human and animal origin have developed numerous mechanisms, which render bacteria resistant to nearly all known antibiotics. There are many virulent bacterial genera that are resistant to multiple classes of antibiotics. Infections caused by multidrug resistant bacteria have limiting treatment options, compromising effective therapy. In this regard the present article provides few parameters, which need to be implemented at various levels for efficient reduction of antibiotic resistance among bacteria.

  12. Maintenance of Laboratory strains of obligately anaerobic rumen bacteria.

    Science.gov (United States)

    Teather, R M

    1982-08-01

    Cultures of rumen bacteria can be stored at -20 degrees C for at least 2 years in a liquid medium containing 20% glycerol. Thawing, sampling, and refreezing do not significantly affect viability. PMID:7125660

  13. Molecular and chemical dialogues in bacteria-protozoa interactions.

    Science.gov (United States)

    Song, Chunxu; Mazzola, Mark; Cheng, Xu; Oetjen, Janina; Alexandrov, Theodore; Dorrestein, Pieter; Watrous, Jeramie; van der Voort, Menno; Raaijmakers, Jos M

    2015-01-01

    Protozoan predation of bacteria can significantly affect soil microbial community composition and ecosystem functioning. Bacteria possess diverse defense strategies to resist or evade protozoan predation. For soil-dwelling Pseudomonas species, several secondary metabolites were proposed to provide protection against different protozoan genera. By combining whole-genome transcriptome analyses with (live) imaging mass spectrometry (IMS), we observed multiple changes in the molecular and chemical dialogues between Pseudomonas fluorescens and the protist Naegleria americana. Lipopeptide (LP) biosynthesis was induced in Pseudomonas upon protozoan grazing and LP accumulation transitioned from homogeneous distributions across bacterial colonies to site-specific accumulation at the bacteria-protist interface. Also putrescine biosynthesis was upregulated in P. fluorescens upon predation. We demonstrated that putrescine induces protozoan trophozoite encystment and adversely affects cyst viability. This multifaceted study provides new insights in common and strain-specific responses in bacteria-protozoa interactions, including responses that contribute to bacterial survival in highly competitive soil and rhizosphere environments. PMID:26246193

  14. Anti-Allergic Properties of Lactic Acid Bacteria

    International Science & Technology Center (ISTC)

    Genotyping and Analysis of Lactic Acid Bacteria Isolated from National Sour Milk Produce Included into Functional Nutrition Rations in the Residence Regions of Persons with Active Longevity in the CIS Countries

  15. Transfer of antibiotic resistant bacteria from animals to man

    DEFF Research Database (Denmark)

    Wegener, Henrik Caspar; Aarestrup, Frank MØller

    1999-01-01

    Antibiotic resistance develops in zoonotic bacteria in response to antibiotics used in food animals. A close association exists between the amounts of antibiotics used and the levels of resistance observed. The classes of antibiotics routinely used for treatment of human infections are also used for animals either for therapy or for growth promotion. Antibiotic resistance in zoonotic bacteria constitute a public health hazard, primarily through the increased risk of treatment failures. This paper describes the zoonotic bacteria, salmonella, campylobacter, yersinia and enterohaemorrhagic E. coli (EHEC). Infections with these agents do not generally require antibiotic therapy, but in some cases antibiotics are essential to obtain a successful cure. The levels and types of resistance observed in zoonotic bacteria in some countries, especially the increasing levels of fluoroquinolone resistance in salmonella and campylobacter, gives cause for concern. The principles of controlling resistance development involve infection control at herd level and prudent use of antibiotics.

  16. Las grandes bacterias del Sulfureto de Humboldt / The big bacteria in the Humboldt Sulfuretum

    Scientific Electronic Library Online (English)

    Víctor Ariel, Gallardo; Carola, Espinoza; Alexis, Fonseca; Selim, Musleh.

    Full Text Available Durante el primer estudio nacional de la zona de mínimo oxígeno (ZMO) y del macrobentos animal costa afuera del norte de Chile (1962), se descubrió una comunidad bentónica compuesta de bacterias filamentosas multicelulares gigantes en los sedimentos fuertemente reducidos entre 50 y182 m. La masiva a [...] bundancia de filamentos bacterianos visibles a simple vista y el extremadamente escaso macrobentos animal, fueron rasgos inesperados. Más recientemente (2004) un nuevo ensamble de bacterias filamentosas multicelulares más pequeñas fue descubierto distribuido en los sedimentos más reducidos sub-superficiales del tapiz bacteriano. Hoy reconocemos que este ecosistema dominado por procariotas constituye un rasgo mayor y distinto al nivel mundial el que aquí denominamos "Sulfureto de Humboldt" (SH) por su distribución entre Perú central y Chile central. Durante un largo periodo de una intensa investigación que surge después de 1977, con fuerte contribución internacional, se ha acumulado un gran cuerpo de información sobre el primer ensamble y su ambiente, fundamental para la comprensión del funcionamiento del Gran Ecosistema Marino de Humboldt, en tanto que la investigación sobre el segundo ensamble recién comienza. El presente trabajo es un esfuerzo para reunir la mayor parte de la literatura pertinente con la intención de estimular a los científicos locales a enfrentar el necesario y urgente gran esfuerzo de investigación en las diversas líneas que la biota y el ambiente del Sulfureto de Humboldt ofrecen. Abstract in english During the first national study of the oxygen minimum zone (OMZ) and the animal macrobenthos off northern Chile (1962), a benthic community mainly composed of giant filamentous multicellular bacteria was discovered in the highly reduced shelf bottoms between 50-182 m depth. Totally unexpected were t [...] he great abundance of massive and visible filamentous bacteria and the pronounced scarcity of macrobenthic animals. More recently (2004) a new assemblage of smaller filamentous multicellular bacteria was again discovered interspersed within the more reduced subsurface sediment of the same bacterial mat. Today we recognize that this prokaryote-dominated ecosystem constitutes a major distinct benthic marine feature and thus it is here named "Humboldt Sulfuretum" (HS) for his distribution under the OMZ between central Peru and central Chile. During a period of intense scientific research which took off after 1977, strongly based on international collaboration, a large body of information fundamental to the understanding of the Humboldt Current Large Marine Ecosystem has accumulated on the first assemblage and its environment while the research on the second assemblage is just beginning. The present work is an effort to put together most of the pertinent literature with the intention of stimulating local researchers to face the much urgent, major scientific effort along the many lines offered by the biota and the environment of the Humboldt Sulfuretum.

  17. Proteorhodopsin lateral gene transfer between marine planktonic Bacteria and Archaea

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Martinez, Asuncion; Mincer, Tracy J; DeLong, Edward F

    2006-01-01

    Planktonic Bacteria, Archaea and Eukarya reside and compete in the ocean's photic zone under the pervasive influence of light. Bacteria in this environment were recently shown to contain photoproteins called proteorhodopsins, thought to contribute to cellular energy metabolism by catalysing light-driven proton translocation across the cell membrane. So far, proteorhodopsin genes have been well documented only in proteobacteria and a few other bacterial groups. Here we report the presence and dis...

  18. Presence of Multidrug Resistant Enteric Bacteria in Dairy Farm Topsoil

    OpenAIRE

    Burgos, J. M.; Ellington, B. A.; Varela, M F

    2005-01-01

    In addition to human and veterinary medicine, antibiotics are extensively used in agricultural settings, such as for treatment of infections, growth enhancement and prophylaxis in food animals, leading to selection of drug and multidrug resistant bacteria. In order to help circumvent the problem of bacterial antibiotic resistance, it is first necessary to understand the scope of the problem. However, is it not fully understood how widespread antibiotic resistant bacteria are in agricultural s...

  19. Flow Cytometric Assessment of Viability of Lactic Acid Bacteria

    OpenAIRE

    Bunthof, C.J.; Bloemen, K.; Breeuwer, P.; Rombouts, F. M.; Abee, T.

    2001-01-01

    The viability of lactic acid bacteria is crucial for their applications as dairy starters and as probiotics. We investigated the usefulness of flow cytometry (FCM) for viability assessment of lactic acid bacteria. The esterase substrate carboxyfluorescein diacetate (cFDA) and the dye exclusion DNA binding probes propidium iodide (PI) and TOTO-1 were tested for live/dead discrimination using a Lactococcus, a Streptococcus, three Lactobacillus, two Leuconostoc, an Enterococcus, and a Pediococcu...

  20. Viability of bacteria in dental calculus – A microbiological study

    OpenAIRE

    Moolya Nikesh; Thakur Srinath; Ravindra S; Setty Swati; Kulkarni Raghavendra; Hallikeri Kaveri

    2010-01-01

    Aim: The aim of this study was (1) To investigate the viability of bacteria within supragingival and subgingival calculus, (2) To examine motility of bacteria, and (3) To identify bacterial morphotypes in calculus. Materials and Methods: Supra and subgingival calculus were harvested from 30 subjects having clinical evidence of chronic inflammatory periodontal disease and were divided into two groups . Samples from both groups were immediately transported to the Department of Microbiology for ...