WorldWideScience

Sample records for b1 sequence-based real-time

  1. Combined use of real-time PCR and nested sequence-based typing in survey of human Legionella infection.

    Science.gov (United States)

    Qin, T; Zhou, H; Ren, H; Shi, W; Jin, H; Jiang, X; Xu, Y; Zhou, M; Li, J; Wang, J; Shao, Z; Xu, X

    2016-07-01

    Legionnaires' disease (LD) is a globally distributed systemic infectious disease. The burden of LD in many regions is still unclear, especially in Asian countries including China. A survey of Legionella infection using real-time PCR and nested sequence-based typing (SBT) was performed in two hospitals in Shanghai, China. A total of 265 bronchoalveolar lavage fluid (BALF) specimens were collected from hospital A between January 2012 and December 2013, and 359 sputum specimens were collected from hospital B throughout 2012. A total of 71 specimens were positive for Legionella according to real-time PCR focusing on the 5S rRNA gene. Seventy of these specimens were identified as Legionella pneumophila as a result of real-time PCR amplification of the dotA gene. Results of nested SBT revealed high genetic polymorphism in these L. pneumophila and ST1 was the predominant sequence type. These data revealed that the burden of LD in China is much greater than that recognized previously, and real-time PCR may be a suitable monitoring technology for LD in large sample surveys in regions lacking the economic and technical resources to perform other methods, such as urinary antigen tests and culture methods.

  2. Prevalence of Hepatitis C Virus Subgenotypes 1a and 1b in Japanese Patients: Ultra-Deep Sequencing Analysis of HCV NS5B Genotype-Specific Region

    Science.gov (United States)

    Wu, Shuang; Kanda, Tatsuo; Nakamoto, Shingo; Jiang, Xia; Miyamura, Tatsuo; Nakatani, Sueli M.; Ono, Suzane Kioko; Takahashi-Nakaguchi, Azusa; Gonoi, Tohru; Yokosuka, Osamu

    2013-01-01

    Background Hepatitis C virus (HCV) subgenotypes 1a and 1b have different impacts on the treatment response to peginterferon plus ribavirin with direct-acting antivirals (DAAs) against patients infected with HCV genotype 1, as the emergence rates of resistance mutations are different between these two subgenotypes. In Japan, almost all of HCV genotype 1 belongs to subgenotype 1b. Methods and Findings To determine HCV subgenotype 1a or 1b in Japanese patients infected with HCV genotype 1, real-time PCR-based method and Sanger method were used for the HCV NS5B region. HCV subgenotypes were determined in 90% by real-time PCR-based method. We also analyzed the specific probe regions for HCV subgenotypes 1a and 1b using ultra-deep sequencing, and uncovered mutations that could not be revealed using direct-sequencing by Sanger method. We estimated the prevalence of HCV subgenotype 1a as 1.2-2.5% of HCV genotype 1 patients in Japan. Conclusions Although real-time PCR-based HCV subgenotyping method seems fair for differentiating HCV subgenotypes 1a and 1b, it may not be sufficient for clinical practice. Ultra-deep sequencing is useful for revealing the resistant strain(s) of HCV before DAA treatment as well as mixed infection with different genotypes or subgenotypes of HCV. PMID:24069214

  3. Field-based species identification in eukaryotes using real-time nanopore sequencing.

    OpenAIRE

    Papadopulos, Alexander; Devey, Dion; Helmstetter, Andrew; Parker, Joe

    2017-01-01

    Advances in DNA sequencing and informatics have revolutionised biology over the past four decades, but technological limitations have left many applications unexplored. Recently, portable, real-time, nanopore sequencing (RTnS) has become available. This offers opportunities to rapidly collect and analyse genomic data anywhere. However, the generation of datasets from large, complex genomes has been constrained to laboratories. The portability and long DNA sequences of RTnS offer great potenti...

  4. Analytical and clinical evaluation of the Abbott RealTime hepatitis B sequencing assay.

    Science.gov (United States)

    Huh, Hee Jae; Kim, Ji-Youn; Lee, Myoung-Keun; Lee, Nam Yong; Kim, Jong-Won; Ki, Chang-Seok

    2016-12-01

    Long-term nucleoside analogue (NA) treatment leads to selection for drug-resistant mutations in patients undergoing hepatitis B virus (HBV) therapy. The Abbott RealTime HBV Sequencing assay (Abbott assay; Abbott Molecular Inc., Des Plaines, IL, USA) targets the reverse transcriptase region of the polymerase gene and as such has the ability to detect NA resistance-associated mutations in HBV. We evaluated the analytical performance of the Abbott assay and compared its diagnostic performance to that of a laboratory-developed nested-PCR and sequencing method. The analytical sensitivity of the Abbott assay was determined using a serially-diluted WHO International Standard. To validate the clinical performances of the Abbott assay and the laboratory-developed assay, 89 clinical plasma samples with various levels of HBV DNA were tested using both assays. The limit of detection of the Abbott assay, was 210IU/ml and it successfully detected mutations when the mutant types were present at levels ≥20%. Among 89 clinical specimens, 43 and 42 were amplification positive in the Abbott and laboratory-developed assays, respectively, with 87.6% overall agreement (78/89; 95% confidence interval [CI], 78.6-93.4). The Abbott assay failed to detect the minor mutant populations in two specimens, and therefore overall concordance was 85.3% (76/89), and the kappa value was 0.79 (95% CI, 0.67-0.90). The Abbott assay showed comparable diagnostic performance to laboratory-developed nested PCR followed by direct sequencing, and may be useful as a routine method for detecting HBV NA resistance-associated mutations in clinical laboratory settings. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Verifying real-time systems against scenario-based requirements

    DEFF Research Database (Denmark)

    Larsen, Kim Guldstrand; Li, Shuhao; Nielsen, Brian

    2009-01-01

    We propose an approach to automatic verification of real-time systems against scenario-based requirements. A real-time system is modeled as a network of Timed Automata (TA), and a scenario-based requirement is specified as a Live Sequence Chart (LSC). We define a trace-based semantics for a kernel...... subset of the LSC language. By equivalently translating an LSC chart into an observer TA and then non-intrusively composing this observer with the original system model, the problem of verifying a real-time system against a scenario-based requirement reduces to a classical real-time model checking...

  6. The Development of a Course Sequence in Real-Time Systems Design

    Science.gov (United States)

    1993-08-01

    This project deals with the development of a senior level course sequence in software intensive real - time systems . The sequence consists of a course...for an engineering industrial career in real - time systems development. The course sequence emphasizes practical standards, techniques, and tools for...system development. Few universities include real - time systems development in their undergraduate Computer Engineering or Computer Science curriculum

  7. Towards clinical assessment of velopharyngeal closure using MRI: evaluation of real-time MRI sequences at 1.5 and 3 T.

    Science.gov (United States)

    Scott, A D; Boubertakh, R; Birch, M J; Miquel, M E

    2012-11-01

    The objective of this study was to demonstrate soft palate MRI at 1.5 and 3 T with high temporal resolution on clinical scanners. Six volunteers were imaged while speaking, using both four real-time steady-state free-precession (SSFP) sequences at 3 T and four balanced SSFP (bSSFP) at 1.5 T. Temporal resolution was 9-20 frames s(-1) (fps), spatial resolution 1.6 × 1.6 × 10.0-2.7 × 2.7 × 10.0 mm(3). Simultaneous audio was recorded. Signal-to-noise ratio (SNR), palate thickness and image quality score (1-4, non-diagnostic-excellent) were evaluated. SNR was higher at 3 T than 1.5 T in the relaxed palate (nasal breathing position) and reduced in the elevated palate at 3 T, but not 1.5 T. Image quality was not significantly different between field strengths or sequences (p=NS). At 3 T, 40% acquisitions scored 2 and 56% scored 3. Most 1.5 T acquisitions scored 1 (19%) or 4 (46%). Image quality was more dependent on subject or field than sequence. SNR in static images was highest with 1.9 × 1.9 × 10.0 mm(3) resolution (10 fps) and measured palate thickness was similar (p=NS) to that at the highest resolution (1.6 × 1.6 × 10.0 mm(3)). SNR in intensity-time plots through the soft palate was highest with 2.7 × 2.7 × 10.0 mm(3) resolution (20 fps). At 3 T, SSFP images are of a reliable quality, but 1.5 T bSSFP images are often better. For geometric measurements, temporal should be traded for spatial resolution (1.9 × 1.9 × 10.0 mm(3), 10 fps). For assessment of motion, temporal should be prioritised over spatial resolution (2.7 × 2.7 × 10.0 mm(3), 20 fps). Advances in knowledge Diagnostic quality real-time soft palate MRI is possible using clinical scanners and optimised protocols have been developed. 3 T SSFP imaging is reliable, but 1.5 T bSSFP often produces better images.

  8. Real-time SPARSE-SENSE cardiac cine MR imaging: optimization of image reconstruction and sequence validation.

    Science.gov (United States)

    Goebel, Juliane; Nensa, Felix; Bomas, Bettina; Schemuth, Haemi P; Maderwald, Stefan; Gratz, Marcel; Quick, Harald H; Schlosser, Thomas; Nassenstein, Kai

    2016-12-01

    Improved real-time cardiac magnetic resonance (CMR) sequences have currently been introduced, but so far only limited practical experience exists. This study aimed at image reconstruction optimization and clinical validation of a new highly accelerated real-time cine SPARSE-SENSE sequence. Left ventricular (LV) short-axis stacks of a real-time free-breathing SPARSE-SENSE sequence with high spatiotemporal resolution and of a standard segmented cine SSFP sequence were acquired at 1.5 T in 11 volunteers and 15 patients. To determine the optimal iterations, all volunteers' SPARSE-SENSE images were reconstructed using 10-200 iterations, and contrast ratios, image entropies, and reconstruction times were assessed. Subsequently, the patients' SPARSE-SENSE images were reconstructed with the clinically optimal iterations. LV volumetric values were evaluated and compared between both sequences. Sufficient image quality and acceptable reconstruction times were achieved when using 80 iterations. Bland-Altman plots and Passing-Bablok regression showed good agreement for all volumetric parameters. 80 iterations are recommended for iterative SPARSE-SENSE image reconstruction in clinical routine. Real-time cine SPARSE-SENSE yielded comparable volumetric results as the current standard SSFP sequence. Due to its intrinsic low image acquisition times, real-time cine SPARSE-SENSE imaging with iterative image reconstruction seems to be an attractive alternative for LV function analysis. • A highly accelerated real-time CMR sequence using SPARSE-SENSE was evaluated. • SPARSE-SENSE allows free breathing in real-time cardiac cine imaging. • For clinically optimal SPARSE-SENSE image reconstruction, 80 iterations are recommended. • Real-time SPARSE-SENSE imaging yielded comparable volumetric results as the reference SSFP sequence. • The fast SPARSE-SENSE sequence is an attractive alternative to standard SSFP sequences.

  9. Real-time PCR assays for hepatitis B virus DNA quantification may require two different targets.

    Science.gov (United States)

    Liu, Chao; Chang, Le; Jia, Tingting; Guo, Fei; Zhang, Lu; Ji, Huimin; Zhao, Junpeng; Wang, Lunan

    2017-05-12

    Quantification Hepatitis B virus (HBV) DNA plays a critical role in the management of chronic HBV infections. However, HBV is a DNA virus with high levels of genetic variation, and drug-resistant mutations have emerged with the use of antiviral drugs. If a mutation caused a sequence mismatched in the primer or probe of a commercial DNA quantification kit, this would lead to an underestimation of the viral load of the sample. The aim of this study was to determine whether commercial kits, which use only one pair of primers and a single probe, accurately quantify the HBV DNA levels and to develop an improved duplex real-time PCR assay. We developed a new duplex real-time PCR assay that used two pairs of primers and two probes based on the conserved S and C regions of the HBV genome. We performed HBV DNA quantitative detection of HBV samples and compared the results of our duplex real-time PCR assays with the COBAS TaqMan HBV Test version 2 and Daan real-time PCR assays. The target region of the discordant sample was amplified, sequenced, and validated using plasmid. The results of the duplex real-time PCR were in good accordance with the commercial COBAS TaqMan HBV Test version 2 and Daan real-time PCR assays. We showed that two samples from Chinese HBV infections underestimated viral loads when quantified by the Roche kit because of a mismatch between the viral sequence and the reverse primer of the Roche kit. The HBV DNA levels of six samples were undervalued by duplex real-time PCR assays of the C region because of mutations in the primer of C region. We developed a new duplex real-time PCR assay, and the results of this assay were similar to the results of commercial kits. The HBV DNA level could be undervalued when using the COBAS TaqMan HBV Test version 2 for Chinese HBV infections owing to a mismatch with the primer/probe. A duplex real-time PCR assay based on the S and C regions could solve this problem to some extent.

  10. Water and fat separation in real-time MRI of joint movement with phase-sensitive bSSFP.

    Science.gov (United States)

    Mazzoli, Valentina; Nederveen, Aart J; Oudeman, Jos; Sprengers, Andre; Nicolay, Klaas; Strijkers, Gustav J; Verdonschot, Nico

    2017-07-01

    To introduce a method for obtaining fat-suppressed images in real-time MRI of moving joints at 3 Tesla (T) using a bSSFP sequence with phase detection to enhance visualization of soft tissue structures during motion. The wrist and knee of nine volunteers were imaged with a real-time bSSFP sequence while performing dynamic tasks. For appropriate choice of sequence timing parameters, water and fat pixels showed an out-of-phase behavior, which was exploited to reconstruct water and fat images. Additionally, a 2-point Dixon sequence was used for dynamic imaging of the joints, and resulting water and fat images were compared with our proposed method. The joints could be visualized with good water-fat separation and signal-to-noise ratio (SNR), while maintaining a relatively high temporal resolution (5 fps in knee imaging and 10 fps in wrist imaging). The proposed method produced images of moving joints with higher SNR and higher image quality when compared with the Dixon method. Water-fat separation is feasible in real-time MRI of moving knee and wrist at 3 T. PS-bSSFP offers movies with higher SNR and higher diagnostic quality when compared with Dixon scans. Magn Reson Med 78:58-68, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  11. Use of a FORTH-based PROLOG for real-time expert systems. 1: Spacelab life sciences experiment application

    Science.gov (United States)

    Paloski, William H.; Odette, Louis L.; Krever, Alfred J.; West, Allison K.

    1987-01-01

    A real-time expert system is being developed to serve as the astronaut interface for a series of Spacelab vestibular experiments. This expert system is written in a version of Prolog that is itself written in Forth. The Prolog contains a predicate that can be used to execute Forth definitions; thus, the Forth becomes an embedded real-time operating system within the Prolog programming environment. The expert system consists of a data base containing detailed operational instructions for each experiment, a rule base containing Prolog clauses used to determine the next step in an experiment sequence, and a procedure base containing Prolog goals formed from real-time routines coded in Forth. In this paper, we demonstrate and describe the techniques and considerations used to develop this real-time expert system, and we conclude that Forth-based Prolog provides a viable implementation vehicle for this and similar applications.

  12. Scenario-based verification of real-time systems using UPPAAL

    DEFF Research Database (Denmark)

    Li, Shuhao; Belaguer, Sandie; David, Alexandre

    2010-01-01

    Abstract This paper proposes two approaches to tool-supported automatic verification of dense real-time systems against scenario-based requirements, where a system is modeled as a network of timed automata (TAs) or as a set of driving live sequence charts (LSCs), and a requirement is specified...... as a separate monitored LSC chart. We make timed extensions to a kernel subset of the LSC language and define a trace-based semantics. By translating a monitored LSC chart to a behavior-equivalent observer TA and then non-intrusively composing this observer with the original TA modeled real-time system......, the problem of scenario-based verification reduces to a computation tree logic (CTL) real-time model checking problem. In case the real time system is modeled as a set of driving LSC charts, we translate these driving charts and the monitored chart into a behavior-equivalent network of TAs by using a “one...

  13. CNR considerations for rapid real-time MRI tumor tracking in radiotherapy hybrid devices: Effects of B0 field strength

    International Nuclear Information System (INIS)

    Wachowicz, K.; De Zanche, N.; Yip, E.; Volotovskyy, V.; Fallone, B. G.

    2016-01-01

    Purpose: This work examines the subject of contrast-to-noise ratio (CNR), specifically between tumor and tissue background, and its dependence on the MRI field strength, B 0 . This examination is motivated by the recent interest and developments in MRI/radiotherapy hybrids where real-time imaging can be used to guide treatment beams. The ability to distinguish a tumor from background tissue is of primary importance in this field, and this work seeks to elucidate the complex relationship between the CNR and B 0 that is too often assumed to be purely linear. Methods: Experimentally based models of B 0 -dependant relaxation for various tumor and normal tissues from the literature were used in conjunction with signal equations for MR sequences suitable for rapid real-time imaging to develop field-dependent predictions for CNR. These CNR models were developed for liver, lung, breast, glioma, and kidney tumors for spoiled gradient-echo, balanced steady-state free precession (bSSFP), and single-shot half-Fourier fast spin echo sequences. Results: Due to the pattern in which the relaxation properties of tissues are found to vary over B 0 field (specifically the T 1 time), there was always an improved CNR at lower fields compared to linear dependency. Further, in some tumor sites, the CNR at lower fields was found to be comparable to, or sometimes higher than those at higher fields (i.e., bSSFP CNR for glioma, kidney, and liver tumors). Conclusions: In terms of CNR, lower B 0 fields have been shown to perform as well or better than higher fields for some tumor sites due to superior T 1 contrast. In other sites this effect was less pronounced, reversing the CNR advantage. This complex relationship between CNR and B 0 reveals both low and high magnetic fields as viable options for tumor tracking in MRI/radiotherapy hybrids.

  14. Enhanced spatio-temporal alignment of plantar pressure image sequences using B-splines.

    Science.gov (United States)

    Oliveira, Francisco P M; Tavares, João Manuel R S

    2013-03-01

    This article presents an enhanced methodology to align plantar pressure image sequences simultaneously in time and space. The temporal alignment of the sequences is accomplished using B-splines in the time modeling, and the spatial alignment can be attained using several geometric transformation models. The methodology was tested on a dataset of 156 real plantar pressure image sequences (3 sequences for each foot of the 26 subjects) that was acquired using a common commercial plate during barefoot walking. In the alignment of image sequences that were synthetically deformed both in time and space, an outstanding accuracy was achieved with the cubic B-splines. This accuracy was significantly better (p align real image sequences with unknown transformation involved, the alignment based on cubic B-splines also achieved superior results than our previous methodology (p alignment on the dynamic center of pressure (COP) displacement was also assessed by computing the intraclass correlation coefficients (ICC) before and after the temporal alignment of the three image sequence trials of each foot of the associated subject at six time instants. The results showed that, generally, the ICCs related to the medio-lateral COP displacement were greater when the sequences were temporally aligned than the ICCs of the original sequences. Based on the experimental findings, one can conclude that the cubic B-splines are a remarkable solution for the temporal alignment of plantar pressure image sequences. These findings also show that the temporal alignment can increase the consistency of the COP displacement on related acquired plantar pressure image sequences.

  15. A distributed agent architecture for real-time knowledge-based systems: Real-time expert systems project, phase 1

    Science.gov (United States)

    Lee, S. Daniel

    1990-01-01

    We propose a distributed agent architecture (DAA) that can support a variety of paradigms based on both traditional real-time computing and artificial intelligence. DAA consists of distributed agents that are classified into two categories: reactive and cognitive. Reactive agents can be implemented directly in Ada to meet hard real-time requirements and be deployed on on-board embedded processors. A traditional real-time computing methodology under consideration is the rate monotonic theory that can guarantee schedulability based on analytical methods. AI techniques under consideration for reactive agents are approximate or anytime reasoning that can be implemented using Bayesian belief networks as in Guardian. Cognitive agents are traditional expert systems that can be implemented in ART-Ada to meet soft real-time requirements. During the initial design of cognitive agents, it is critical to consider the migration path that would allow initial deployment on ground-based workstations with eventual deployment on on-board processors. ART-Ada technology enables this migration while Lisp-based technologies make it difficult if not impossible. In addition to reactive and cognitive agents, a meta-level agent would be needed to coordinate multiple agents and to provide meta-level control.

  16. Analytical Performances of Human Immunodeficiency Virus Type 1 RNA-Based Amplix® Real-Time PCR Platform for HIV-1 RNA Quantification

    Directory of Open Access Journals (Sweden)

    Christian Diamant Mossoro-Kpinde

    2016-01-01

    Full Text Available Objectives. We evaluated the performances of Amplix real-time PCR platform developed by Biosynex (Strasbourg, France, combining automated station extraction (Amplix station 16 Dx and real-time PCR (Amplix NG, for quantifying plasma HIV-1 RNA by lyophilized HIV-1 RNA-based Amplix reagents targeting gag and LTR, using samples from HIV-1-infected adults from Central African Republic. Results. Amplix real-time PCR assay showed low limit of detection (28 copies/mL, across wide dynamic range (1.4–10 log copies/mL, 100% sensitivity and 99% specificity, high reproducibility, and accuracy with mean bias < 5%. The assay showed excellent correlations and concordance of 95.3% with the reference HIV-1 RNA load assay (Roche, with mean absolute bias of +0.097 log copies/mL by Bland-Altman analysis. The assay was able to detect and quantify the most prevalent HIV-1 subtype strains and the majority of non-B subtypes, CRFs of HIV-1 group M, and HIV-1 groups N and O circulating in Central Africa. The Amplix assay showed 100% sensitivity and 99.6% specificity to diagnose virological failure in clinical samples from antiretroviral drug-experienced patients. Conclusions. The HIV-1 RNA-based Amplix real-time PCR platform constitutes sensitive and reliable system for clinical monitoring of HIV-1 RNA load in HIV-1-infected children and adults, particularly adapted to intermediate laboratory facilities in sub-Saharan Africa.

  17. A Metrics-Based Approach to Intrusion Detection System Evaluation for Distributed Real-Time Systems

    Science.gov (United States)

    2002-04-01

    Based Approach to Intrusion Detection System Evaluation for Distributed Real - Time Systems Authors: G. A. Fink, B. L. Chappell, T. G. Turner, and...Distributed, Security. 1 Introduction Processing and cost requirements are driving future naval combat platforms to use distributed, real - time systems of...distributed, real - time systems . As these systems grow more complex, the timing requirements do not diminish; indeed, they may become more constrained

  18. Real-time tricolor phase measuring profilometry based on CCD sensitivity calibration

    Science.gov (United States)

    Zhu, Lin; Cao, Yiping; He, Dawu; Chen, Cheng

    2017-02-01

    A real-time tricolor phase measuring profilometry (RTPMP) based on charge coupled device (CCD) sensitivity calibration is proposed. Only one colour fringe pattern whose red (R), green (G) and blue (B) components are, respectively, coded as three sinusoidal phase-shifting gratings with an equivalent shifting phase of 2π/3 is needed and sent to an appointed flash memory on a specialized digital light projector (SDLP). A specialized time-division multiplexing timing sequence actively controls the SDLP to project the fringe patterns in R, G and B channels sequentially onto the measured object in one over seventy-two of a second and meanwhile actively controls a high frame rate monochrome CCD camera to capture the corresponding deformed patterns synchronously with the SDLP. So the sufficient information for reconstructing the three-dimensional (3D) shape in one over twenty-four of a second is obtained. Due to the different spectral sensitivity of the CCD camera to RGB lights, the captured deformed patterns from R, G and B channels cannot share the same peak and valley, which will lead to lower accuracy or even failing to reconstruct the 3D shape. So a deformed pattern amending method based on CCD sensitivity calibration is developed to guarantee the accurate 3D reconstruction. The experimental results verify the feasibility of the proposed RTPMP method. The proposed RTPMP method can obtain the 3D shape at over the video frame rate of 24 frames per second, avoid the colour crosstalk completely and be effective for measuring real-time changing object.

  19. Approaching near real-time biosensing: microfluidic microsphere based biosensor for real-time analyte detection.

    Science.gov (United States)

    Cohen, Noa; Sabhachandani, Pooja; Golberg, Alexander; Konry, Tania

    2015-04-15

    In this study we describe a simple lab-on-a-chip (LOC) biosensor approach utilizing well mixed microfluidic device and a microsphere-based assay capable of performing near real-time diagnostics of clinically relevant analytes such cytokines and antibodies. We were able to overcome the adsorption kinetics reaction rate-limiting mechanism, which is diffusion-controlled in standard immunoassays, by introducing the microsphere-based assay into well-mixed yet simple microfluidic device with turbulent flow profiles in the reaction regions. The integrated microsphere-based LOC device performs dynamic detection of the analyte in minimal amount of biological specimen by continuously sampling micro-liter volumes of sample per minute to detect dynamic changes in target analyte concentration. Furthermore we developed a mathematical model for the well-mixed reaction to describe the near real time detection mechanism observed in the developed LOC method. To demonstrate the specificity and sensitivity of the developed real time monitoring LOC approach, we applied the device for clinically relevant analytes: Tumor Necrosis Factor (TNF)-α cytokine and its clinically used inhibitor, anti-TNF-α antibody. Based on the reported results herein, the developed LOC device provides continuous sensitive and specific near real-time monitoring method for analytes such as cytokines and antibodies, reduces reagent volumes by nearly three orders of magnitude as well as eliminates the washing steps required by standard immunoassays. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. A sensitive, reproducible, and economic real-time reverse transcription PCR detecting avian metapneumovirus subtypes A and B.

    Science.gov (United States)

    Franzo, G; Drigo, M; Lupini, C; Catelli, E; Laconi, A; Listorti, V; Bonci, M; Naylor, C J; Martini, M; Cecchinato, M

    2014-06-01

    Use of real-time PCR is increasing in the diagnosis of infectious disease due to its sensitivity, specificity, and speed of detection. These characteristics make it particularly suited for the diagnosis of viral infections, like avian metapneumovirus (AMPV), for which effective control benefits from continuously updated knowledge of the epidemiological situation. Other real-time reverse transcription (RT)-PCRs have been published based on highly specific fluorescent dye-labeled probes, but they have high initial cost, complex validation, and a marked susceptibility to the genetic variability of their target sequence. With this in mind, we developed and validated a SYBR Green I-based quantitative RT-PCR for the detection of the two most prevalent AMPV subtypes (i.e., subtypes A and B). The assay demonstrated an analytical sensitivity comparable with that of a previously published real-time RT-PCR and the ability to detect RNA equivalent to approximately 0.5 infectious doses for both A and B subtypes. The high efficiency and linearity between viral titer and crossing point displayed for both subtypes make it suited for viral quantification. Optimization of reaction conditions and the implementation of melting curve analysis guaranteed the high specificity of the assay. The stable melting temperature difference between the two subtypes indicated the possibility of subtyping through melting temperature analysis. These characteristics make our assay a sensitive, specific, and rapid tool, enabling contemporaneous detection, quantification, and discrimination of AMPV subtype A and B.

  1. Four Years of Real-Time GRB Followup by BOOTES-1B (2005–2008

    Directory of Open Access Journals (Sweden)

    Martin Jelínek

    2010-01-01

    Full Text Available Four years of BOOTES-1B GRB follow-up history are summarised for the first time in the form of a table. The successfully followed events are described case by case. Further, the data are used to show the GRB trigger rate in Spain on a per-year basis, resulting in an estimate of 18 triggers and about 51 hours of telescope time per year for real-time triggers. These numbers grow to about 22 triggers and 77 hours per year if we include also the GRBs observable within 2 hours after the trigger.

  2. CNR considerations for rapid real-time MRI tumor tracking in radiotherapy hybrid devices: Effects of B{sub 0} field strength

    Energy Technology Data Exchange (ETDEWEB)

    Wachowicz, K., E-mail: keith.wachowicz@albertahealthservices.ca; De Zanche, N.; Yip, E. [Division of Medical Physics, Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Volotovskyy, V. [Cross Cancer Institute, Alberta Health Services, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Fallone, B. G. [Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Canada and Departments of Oncology and Physics, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada)

    2016-08-15

    Purpose: This work examines the subject of contrast-to-noise ratio (CNR), specifically between tumor and tissue background, and its dependence on the MRI field strength, B{sub 0}. This examination is motivated by the recent interest and developments in MRI/radiotherapy hybrids where real-time imaging can be used to guide treatment beams. The ability to distinguish a tumor from background tissue is of primary importance in this field, and this work seeks to elucidate the complex relationship between the CNR and B{sub 0} that is too often assumed to be purely linear. Methods: Experimentally based models of B{sub 0}-dependant relaxation for various tumor and normal tissues from the literature were used in conjunction with signal equations for MR sequences suitable for rapid real-time imaging to develop field-dependent predictions for CNR. These CNR models were developed for liver, lung, breast, glioma, and kidney tumors for spoiled gradient-echo, balanced steady-state free precession (bSSFP), and single-shot half-Fourier fast spin echo sequences. Results: Due to the pattern in which the relaxation properties of tissues are found to vary over B{sub 0} field (specifically the T{sub 1} time), there was always an improved CNR at lower fields compared to linear dependency. Further, in some tumor sites, the CNR at lower fields was found to be comparable to, or sometimes higher than those at higher fields (i.e., bSSFP CNR for glioma, kidney, and liver tumors). Conclusions: In terms of CNR, lower B{sub 0} fields have been shown to perform as well or better than higher fields for some tumor sites due to superior T{sub 1} contrast. In other sites this effect was less pronounced, reversing the CNR advantage. This complex relationship between CNR and B{sub 0} reveals both low and high magnetic fields as viable options for tumor tracking in MRI/radiotherapy hybrids.

  3. A comparison of EGFR mutation testing methods in lung carcinoma: direct sequencing, real-time PCR and immunohistochemistry.

    Directory of Open Access Journals (Sweden)

    Bárbara Angulo

    Full Text Available The objective of this study is to compare two EGFR testing methodologies (a commercial real-time PCR kit and a specific EGFR mutant immunohistochemistry, with direct sequencing and to investigate the limit of detection (LOD of both PCR-based methods. We identified EGFR mutations in 21 (16% of the 136 tumours analyzed by direct sequencing. Interestingly, the Therascreen EGFR Mutation Test kit was able to characterize as wild-type one tumour that could not be analyzed by direct sequencing of the PCR product. We then compared the LOD of the kit and that of direct sequencing using the available mutant tumours. The kit was able to detect the presence of a mutation in a 1% dilution of the total DNA in nine of the 18 tumours (50%, which tested positive with the real-time quantitative PCR method. In all cases, EGFR mutation was identified at a dilution of 5%. Where the mutant DNA represented 30% of the total DNA, sequencing was able to detect mutations in 12 out of 19 cases (63%. Additional experiments with genetically defined standards (EGFR ΔE746-A750/+ and EGFR L858R/+ yielded similar results. Immunohistochemistry (IHC staining with exon 19-specific antibody was seen in eight out of nine cases with E746-A750del detected by direct sequencing. Neither of the two tumours with complex deletions were positive. Of the five L858R-mutated tumours detected by the PCR methods, only two were positive for the exon 21-specific antibody. The specificity was 100% for both antibodies. The LOD of the real-time PCR method was lower than that of direct sequencing. The mutation specific IHC produced excellent specificity.

  4. VEST: An Aspect-Based Composition Tool for Real-Time Systems

    Science.gov (United States)

    2003-01-01

    VEST: An Aspect-Based Composition Tool for Real - Time Systems * John A. Stankovic Ruiqing Zhu Ram Poornalingam Chenyang Lu Zhendong Yu Marty Humphrey...Composition Tool for Real - Time Systems 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK...it is obvious that designers of embedded real - time systems face many difficult problems. By working through various product scenarios with avionics

  5. Evaluation of the Abbott Real Time HCV genotype II assay for Hepatitis C virus genotyping.

    Science.gov (United States)

    Sariguzel, Fatma Mutlu; Berk, Elife; Gokahmetoglu, Selma; Ercal, Baris Derya; Celik, Ilhami

    2015-01-01

    The determination of HCV genotypes and subtypes is very important for the selection of antiviral therapy and epidemiological studies. The aim of this study was to evaluate the performance of Abbott Real Time HCV Genotype II assay in HCV genotyping of HCV infected patients in Kayseri, Turkey. One hundred patients with chronic hepatitis C admitted to our hospital were evaluated between June 2012 and December 2012, HCV RNA levels were determined by the COBAS® AmpliPrep/COBAS® TaqMan® 48 HCV test. HCV genotyping was investigated by the Abbott Real Time HCV Genotype II assay. With the exception of genotype 1, subtypes of HCV genotypes could not be determined by Abbott assay. Sequencing analysis was used as the reference method. Genotypes 1, 2, 3 and 4 were observed in 70, 4, 2 and 24 of the 100 patients, respectively, by two methods. The concordance between the two systems to determine HCV major genotypes was 100%. Of 70 patients with genotype 1, 66 showed infection with subtype 1b and 4 with subtype 1a by Abbott Real Time HCV Genotype II assay. Using sequence analysis, 61 showed infection with subtype 1b and 9 with subtype 1a. In determining of HCV genotype 1 subtypes, the difference between the two methods was not statistically significant (P>0.05). HCV genotype 4 and 3 samples were found to be subtype 4d and 3a, respectively, by sequence analysis. There were four patients with genotype 2. Sequence analysis revealed that two of these patients had type 2a and the other two had type 2b. The Abbott Real Time HCV Genotype II assay yielded results consistent with sequence analysis. However, further optimization of the Abbott Real Time HCV Genotype II assay for subtype identification of HCV is required.

  6. Large deviation estimates for exceedance times of perpetuity sequences and their dual processes

    DEFF Research Database (Denmark)

    Buraczewski, Dariusz; Collamore, Jeffrey F.; Damek, Ewa

    2016-01-01

    In a variety of problems in pure and applied probability, it is of relevant to study the large exceedance probabilities of the perpetuity sequence $Y_n := B_1 + A_1 B_2 + \\cdots + (A_1 \\cdots A_{n-1}) B_n$, where $(A_i,B_i) \\subset (0,\\infty) \\times \\reals$. Estimates for the stationary tail dist......-time exceedance probabilities of $\\{ M_n^\\ast \\}$, yielding a new result concerning the convergence of $\\{ M_n^\\ast \\}$ to its stationary distribution.......In a variety of problems in pure and applied probability, it is of relevant to study the large exceedance probabilities of the perpetuity sequence $Y_n := B_1 + A_1 B_2 + \\cdots + (A_1 \\cdots A_{n-1}) B_n$, where $(A_i,B_i) \\subset (0,\\infty) \\times \\reals$. Estimates for the stationary tail...... distribution of $\\{ Y_n \\}$ have been developed in the seminal papers of Kesten (1973) and Goldie (1991). Specifically, it is well-known that if $M := \\sup_n Y_n$, then ${\\mathbb P} \\left\\{ M > u \\right\\} \\sim {\\cal C}_M u^{-\\xi}$ as $u \\to \\infty$. While much attention has been focused on extending...

  7. Open-circuit respirometry: real-time, laboratory-based systems.

    Science.gov (United States)

    Ward, Susan A

    2018-05-04

    This review explores the conceptual and technological factors integral to the development of laboratory-based, automated real-time open-circuit mixing-chamber and breath-by-breath (B × B) gas-exchange systems, together with considerations of assumptions and limitations. Advances in sensor technology, signal analysis, and digital computation led to the emergence of these technologies in the mid-20th century, at a time when investigators were beginning to recognise the interpretational advantages of nonsteady-state physiological-system interrogation in understanding the aetiology of exercise (in)tolerance in health, sport, and disease. Key milestones include the 'Auchincloss' description of an off-line system to estimate alveolar O 2 uptake B × B during exercise. This was followed by the first descriptions of real-time automated O 2 uptake and CO 2 output B × B measurement by Beaver and colleagues and by Linnarsson and Lindborg, and mixing-chamber measurement by Wilmore and colleagues. Challenges to both approaches soon emerged: e.g., the influence of mixing-chamber washout kinetics on mixed-expired gas concentration determination, and B × B alignment of gas-concentration signals with respired flow. The challenging algorithmic and technical refinements required for gas-exchange estimation at the alveolar level have also been extensively explored. In conclusion, while the technology (both hardware and software) underpinning real-time automated gas-exchange measurement has progressively advanced, there are still concerns regarding accuracy especially under the challenging conditions of changing metabolic rate.

  8. Rapid quantification of semen hepatitis B virus DNA by real-time polymerase chain reaction

    Science.gov (United States)

    Qian, Wei-Ping; Tan, Yue-Qiu; Chen, Ying; Peng, Ying; Li, Zhi; Lu, Guang-Xiu; Lin, Marie C.; Kung, Hsiang-Fu; He, Ming-Ling; Shing, Li-Ka

    2005-01-01

    AIM: To examine the sensitivity and accuracy of real-time polymerase chain reaction (PCR) for the quantification of hepatitis B virus (HBV) DNA in semen. METHODS: Hepatitis B viral DNA was isolated from HBV carriers’ semen and sera using phenol extraction method and QIAamp DNA blood mini kit (Qiagen, Germany). HBV DNA was detected by conventional PCR and quantified by TaqMan technology-based real-time PCR (quantitative polymerase chain reaction (qPCR)). The detection threshold was 200 copies of HBV DNA for conventional PCR and 10 copies of HBV DNA for real time PCR per reaction. RESULTS: Both methods of phenol extraction and QIAamp DNA blood mini kit were suitable for isolating HBV DNA from semen. The value of the detection thresholds was 500 copies of HBV DNA per mL in the semen. The viral loads were 7.5 × 107 and 1.67 × 107 copies of HBV DNA per mL in two HBV infected patients’ sera, while 2.14 × 105 and 3.02 × 105 copies of HBV DNA per mL in the semen. CONCLUSION: Real-time PCR is a more sensitive and accurate method to detect and quantify HBV DNA in the semen. PMID:16149152

  9. Real time application of whole genome sequencing for outbreak investigation - What is an achievable turnaround time?

    Science.gov (United States)

    McGann, Patrick; Bunin, Jessica L; Snesrud, Erik; Singh, Seema; Maybank, Rosslyn; Ong, Ana C; Kwak, Yoon I; Seronello, Scott; Clifford, Robert J; Hinkle, Mary; Yamada, Stephen; Barnhill, Jason; Lesho, Emil

    2016-07-01

    Whole genome sequencing (WGS) is increasingly employed in clinical settings, though few assessments of turnaround times (TAT) have been performed in real-time. In this study, WGS was used to investigate an unfolding outbreak of vancomycin resistant Enterococcus faecium (VRE) among 3 patients in the ICU of a tertiary care hospital. Including overnight culturing, a TAT of just 48.5 h for a comprehensive report was achievable using an Illumina Miseq benchtop sequencer. WGS revealed that isolates from patient 2 and 3 differed from that of patient 1 by a single nucleotide polymorphism (SNP), indicating nosocomial transmission. However, the unparalleled resolution provided by WGS suggested that nosocomial transmission involved two separate events from patient 1 to patient 2 and 3, and not a linear transmission suspected by the time line. Rapid TAT's are achievable using WGS in the clinical setting and can provide an unprecedented level of resolution for outbreak investigations. Published by Elsevier Inc.

  10. ABO Blood Group Genotyping by Real-time PCR in Kazakh Population

    Directory of Open Access Journals (Sweden)

    Pavel Tarlykov

    2014-12-01

    Full Text Available Introduction. ABO blood group genotyping is a new technology in hematology that helps prevent adverse transfusion reactions in patients. Identification of antigens on the surface of red blood cells is based on serology; however, genotyping employs a different strategy and is aimed directly at genes that determine the surface proteins. ABO blood group genotyping by real-time PCR has several crucial advantages over other PCR-based techniques, such as high rapidity and reliability of analysis. The purpose of this study was to examine nucleotide substitutions differences by blood types using a PCR-based method on Kazakh blood donors.Methods. The study was approved by the Ethics Committee of the National Center for Biotechnology. Venous blood samples from 369 healthy Kazakh blood donors, whose blood types had been determined by serological methods, were collected after obtaining informed consent. The phenotypes of the samples included blood group A (n = 99, B (n = 93, O (n = 132, and AB (n = 45. Genomic DNA was extracted using a salting-out method. PCR products of ABO gene were sequenced on an ABI 3730xl DNA analyzer (Applied Biosystems. The resulting nucleotide sequences were compared and aligned against reference sequence NM_020469.2. Real-time PCR analysis was performed on CFX96 Touch™ Real-Time PCR Detection System (BioRad.Results. Direct sequencing of ABO gene in 369 samples revealed that the vast majority of nucleotide substitutions that change the ABO phenotype were limited to exons 6 and 7 of the ABO gene at positions 261, 467, 657, 796, 803, 930 and 1,060. However, genotyping of only three of them (261, 796 and 803 resulted in identification of major ABO genotypes in the Kazakh population. As a result, TaqMan probe based real-time PCR assay for the specific detection of genotypes 261, 796 and 803 was developed. The assay did not take into account several other mutations that may affect the determination of blood group, because they have a

  11. Real time 1.55 μm VCSEL-based coherent detection link

    DEFF Research Database (Denmark)

    Rodes Lopez, Roberto; Parekh, D.; Jensen, Jesper Bevensee

    2012-01-01

    This paper presents an experimental demonstration of VCSEL-based PON with simplified real-time coherent receiver at 2.5 Gbps. Receiver sensitivity of −37 dBm is achieved proving splitting ratio up to 2048 after 17 km fiber transmission.......This paper presents an experimental demonstration of VCSEL-based PON with simplified real-time coherent receiver at 2.5 Gbps. Receiver sensitivity of −37 dBm is achieved proving splitting ratio up to 2048 after 17 km fiber transmission....

  12. Real-Time Whole-Genome Sequencing for Routine Typing, Surveillance, and Outbreak Detection of Verotoxigenic Escherichia coli

    Science.gov (United States)

    Scheutz, Flemming; Lund, Ole; Hasman, Henrik; Kaas, Rolf S.; Nielsen, Eva M.; Aarestrup, Frank M.

    2014-01-01

    Fast and accurate identification and typing of pathogens are essential for effective surveillance and outbreak detection. The current routine procedure is based on a variety of techniques, making the procedure laborious, time-consuming, and expensive. With whole-genome sequencing (WGS) becoming cheaper, it has huge potential in both diagnostics and routine surveillance. The aim of this study was to perform a real-time evaluation of WGS for routine typing and surveillance of verocytotoxin-producing Escherichia coli (VTEC). In Denmark, the Statens Serum Institut (SSI) routinely receives all suspected VTEC isolates. During a 7-week period in the fall of 2012, all incoming isolates were concurrently subjected to WGS using IonTorrent PGM. Real-time bioinformatics analysis was performed using web-tools (www.genomicepidemiology.org) for species determination, multilocus sequence type (MLST) typing, and determination of phylogenetic relationship, and a specific VirulenceFinder for detection of E. coli virulence genes was developed as part of this study. In total, 46 suspected VTEC isolates were characterized in parallel during the study. VirulenceFinder proved successful in detecting virulence genes included in routine typing, explicitly verocytotoxin 1 (vtx1), verocytotoxin 2 (vtx2), and intimin (eae), and also detected additional virulence genes. VirulenceFinder is also a robust method for assigning verocytotoxin (vtx) subtypes. A real-time clustering of isolates in agreement with the epidemiology was established from WGS, enabling discrimination between sporadic and outbreak isolates. Overall, WGS typing produced results faster and at a lower cost than the current routine. Therefore, WGS typing is a superior alternative to conventional typing strategies. This approach may also be applied to typing and surveillance of other pathogens. PMID:24574290

  13. Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli.

    Science.gov (United States)

    Joensen, Katrine Grimstrup; Scheutz, Flemming; Lund, Ole; Hasman, Henrik; Kaas, Rolf S; Nielsen, Eva M; Aarestrup, Frank M

    2014-05-01

    Fast and accurate identification and typing of pathogens are essential for effective surveillance and outbreak detection. The current routine procedure is based on a variety of techniques, making the procedure laborious, time-consuming, and expensive. With whole-genome sequencing (WGS) becoming cheaper, it has huge potential in both diagnostics and routine surveillance. The aim of this study was to perform a real-time evaluation of WGS for routine typing and surveillance of verocytotoxin-producing Escherichia coli (VTEC). In Denmark, the Statens Serum Institut (SSI) routinely receives all suspected VTEC isolates. During a 7-week period in the fall of 2012, all incoming isolates were concurrently subjected to WGS using IonTorrent PGM. Real-time bioinformatics analysis was performed using web-tools (www.genomicepidemiology.org) for species determination, multilocus sequence type (MLST) typing, and determination of phylogenetic relationship, and a specific VirulenceFinder for detection of E. coli virulence genes was developed as part of this study. In total, 46 suspected VTEC isolates were characterized in parallel during the study. VirulenceFinder proved successful in detecting virulence genes included in routine typing, explicitly verocytotoxin 1 (vtx1), verocytotoxin 2 (vtx2), and intimin (eae), and also detected additional virulence genes. VirulenceFinder is also a robust method for assigning verocytotoxin (vtx) subtypes. A real-time clustering of isolates in agreement with the epidemiology was established from WGS, enabling discrimination between sporadic and outbreak isolates. Overall, WGS typing produced results faster and at a lower cost than the current routine. Therefore, WGS typing is a superior alternative to conventional typing strategies. This approach may also be applied to typing and surveillance of other pathogens.

  14. Real-time PCR-based detection of Bordetella pertussis and Bordetella parapertussis in an Irish paediatric population.

    LENUS (Irish Health Repository)

    Grogan, Juanita A

    2011-06-01

    Novel real-time PCR assays targeting the Bordetella pertussis insertion sequence IS481, the toxin promoter region and Bordetella parapertussis insertion sequence IS1001 were designed. PCR assays were capable of detecting ≤10 copies of target DNA per reaction, with an amplification efficiency of ≥90 %. From September 2003 to December 2009, per-nasal swabs and nasopharyngeal aspirates submitted for B. pertussis culture from patients ≤1 month to >15 years of age were examined by real-time PCR. Among 1324 patients, 76 (5.7 %) were B. pertussis culture positive and 145 (10.95 %) were B. pertussis PCR positive. Of the B. pertussis PCR-positive patients, 117 (81 %) were aged 6 months or less. A total of 1548 samples were examined, of which 87 (5.6 %) were culture positive for B. pertussis and 169 (10.92 %) were B. pertussis PCR positive. All culture-positive samples were PCR positive. Seven specimens (0.5 %) were B. parapertussis culture positive and 10 (0.8 %) were B. parapertussis PCR positive, with all culture-positive samples yielding PCR-positive results. A review of patient laboratory records showed that of the 1324 patients tested for pertussis 555 (42 %) had samples referred for respiratory syncytial virus (RSV) testing and 165 (30 %) were positive, as compared to 19.4 % of the total 5719 patients tested for RSV in this period. Analysis of the age distribution of RSV-positive patients identified that 129 (78 %) were aged 6 months or less, similar to the incidence observed for pertussis in that patient age group. In conclusion, the introduction of the real-time PCR assays for the routine detection of B. pertussis resulted in a 91 % increase in the detection of the organism as compared to microbiological culture. The incidence of infection with B. parapertussis is low while the incidence of RSV infection in infants suspected of having pertussis is high, with a similar age distribution to B. pertussis infection.

  15. Development of real-time PCR assay for genetic identification of the mottled skate, Beringraja pulchra.

    Science.gov (United States)

    Hwang, In Kwan; Lee, Hae Young; Kim, Min-Hee; Jo, Hyun-Su; Choi, Dong-Ho; Kang, Pil-Won; Lee, Yang-Han; Cho, Nam-Soo; Park, Ki-Won; Chae, Ho Zoon

    2015-10-01

    The mottled skate, Beringraja pulchra is one of the commercially important fishes in the market today. However, B. pulchra identification methods have not been well developed. The current study reports a novel real-time PCR method based on TaqMan technology developed for the genetic identification of B. pulchra. The mitochondrial cytochrome oxidase subunit 1 (COI) nucleotide sequences of 29 B. pulchra, 157 skates and rays reported in GenBank DNA database were comparatively analyzed and the COI sequences specific to B. pulchra was identified. Based on this information, a system of specific primers and Minor Groove Binding (MGB) TaqMan probe were designed. The assay successfully discriminated in 29 specimens of B. pulchra and 27 commercial samples with unknown species identity. For B. pulchra DNA, an average Threshold Cycle (Ct) value of 19.1±0.1 was obtained. Among 27 commercial samples, two samples showed average Ct values 19.1±0.0 and 26.7±0.1, respectively and were confirmed to be B. pulchra based on sequencing. The other samples tested showed undetectable or extremely weak signals for the target fragment, which was also consistent with the sequencing results. These results reveal that the method developed is a rapid and efficient tool to identify B. pulchra and might prevent fraud or mislabeling during the distribution of B. pulchra products. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Development of a real-time PCR for detection of Staphylococcus pseudintermedius using a novel automated comparison of whole-genome sequences.

    Directory of Open Access Journals (Sweden)

    Koen M Verstappen

    Full Text Available Staphylococcus pseudintermedius is an opportunistic pathogen in dogs and cats and occasionally causes infections in humans. S. pseudintermedius is often resistant to multiple classes of antimicrobials. It requires a reliable detection so that it is not misidentified as S. aureus. Phenotypic and currently-used molecular-based diagnostic assays lack specificity or are labour-intensive using multiplex PCR or nucleic acid sequencing. The aim of this study was to identify a specific target for real-time PCR by comparing whole genome sequences of S. pseudintermedius and non-pseudintermedius.Genome sequences were downloaded from public repositories and supplemented by isolates that were sequenced in this study. A Perl-script was written that analysed 300-nt fragments from a reference genome sequence of S. pseudintermedius and checked if this sequence was present in other S. pseudintermedius genomes (n = 74 and non-pseudintermedius genomes (n = 138. Six sequences specific for S. pseudintermedius were identified (sequence length between 300-500 nt. One sequence, which was located in the spsJ gene, was used to develop primers and a probe. The real-time PCR showed 100% specificity when testing for S. pseudintermedius isolates (n = 54, and eight other staphylococcal species (n = 43. In conclusion, a novel approach by comparing whole genome sequences identified a sequence that is specific for S. pseudintermedius and provided a real-time PCR target for rapid and reliable detection of S. pseudintermedius.

  17. Advanced Hard Real-Time Operating System, The Maruti Project. Part 1.

    Science.gov (United States)

    1997-01-01

    REAL - TIME OPERATING SYSTEM , THE MARUTI PROJECT Part 1 of 2 Ashok K. Agrawala Satish K. Tripathi Department of Computer Science University of Maryland...Hard Real - Time Operating System , The Maruti Project DASG-60-92-C-0055 5b. Program Element # 62301E 6. Author(s) 5c. Project # DRPB Ashok K. Agrawala...SdSA94), a real - time operating system developed at the I3nversity of Maryland, and conducted extensive experiments under various task

  18. Real-time image-based B-mode ultrasound image simulation of needles using tensor-product interpolation.

    Science.gov (United States)

    Zhu, Mengchen; Salcudean, Septimiu E

    2011-07-01

    In this paper, we propose an interpolation-based method for simulating rigid needles in B-mode ultrasound images in real time. We parameterize the needle B-mode image as a function of needle position and orientation. We collect needle images under various spatial configurations in a water-tank using a needle guidance robot. Then we use multidimensional tensor-product interpolation to simulate images of needles with arbitrary poses and positions using collected images. After further processing, the interpolated needle and seed images are superimposed on top of phantom or tissue image backgrounds. The similarity between the simulated and the real images is measured using a correlation metric. A comparison is also performed with in vivo images obtained during prostate brachytherapy. Our results, carried out for both the convex (transverse plane) and linear (sagittal/para-sagittal plane) arrays of a trans-rectal transducer indicate that our interpolation method produces good results while requiring modest computing resources. The needle simulation method we present can be extended to the simulation of ultrasound images of other wire-like objects. In particular, we have shown that the proposed approach can be used to simulate brachytherapy seeds.

  19. Sensitive detection of novel Indian isolate of BTV 21 using ns1 gene based real-time PCR assay

    Directory of Open Access Journals (Sweden)

    Gaya Prasad

    2013-06-01

    Full Text Available Aim: The study was conducted to develop ns1 gene based sensitive real-time RT-PCR assay for diagnosis of India isolates of bluetongue virus (BTV. Materials and Methods: The BTV serotype 21 isolate (KMNO7 was isolated from Andhra Pradesh and propagated in BHK-21 cell line in our laboratory. The Nucleic acid (dsRNA of virus was extracted using Trizol method and cDNA was prepared using a standard protocol. The cDNA was allowed to ns1 gene based group specific PCR to confirm the isolate as BTV. The viral RNA was diluted 10 folds and the detection limit of ns1 gene based RT-PCR was determined. Finally the tenfold diluted viral RNA was subjected to real-time RT-PCR using ns1 gene primer and Taq man probe to standardized the reaction and determine the detection limit. Results: The ns1 gene based group specific PCR showed a single 366bp amplicon in agarose gel electrophoresis confirmed the sample as BTV. The ns1 gene RT-PCR using tenfold diluted viral RNA showed the detection limit of 70.0 fg in 1%agarose gel electrophoresis. The ns1 gene based real time RT-PCR was successfully standardized and the detection limit was found to be 7.0 fg. Conclusion: The ns1 gene based real-time RT-PCR was successfully standardized and it was found to be 10 times more sensitive than conventional RT-PCR. Key words: bluetongue, BTV21, RT-PCR, Real time RT-PCR, ns1 gene [Vet World 2013; 6(8.000: 554-557

  20. Multiplex, rapid and sensitive isothermal detection of nucleic-acid sequence by endonuclease restriction-mediated real-time multiple cross displacement amplification

    Directory of Open Access Journals (Sweden)

    Yi eWang

    2016-05-01

    Full Text Available We have devised a novel isothermal amplification technology, termed endonuclease restriction-mediated real-time multiple cross displacement amplification (ET-MCDA, which facilitated multiplex, rapid, specific and sensitive detection of nucleic-acid sequences at a constant temperature. The ET-MCDA integrated multiple cross displacement amplification strategy, restriction endonuclease cleavage and real-time fluorescence detection technique. In the ET-MCDA system, the functional cross primer E-CP1 or E-CP2 was constructed by adding a short sequence at the 5’ end of CP1 or CP2, respectively, and the new E-CP1 or E-CP2 primer was labelled at the 5’ end with a fluorophore and in the middle with a dark quencher. The restriction endonuclease Nb.BsrDI specifically recognized the short sequence and digested the newly synthesized double-stranded terminal sequences (5’ end short sequences and their complementary sequences, which released the quenching, resulting on a gain of fluorescence signal. Thus, the ET-MCDA allowed real-time detection of single or multiple targets in only a single reaction, and the positive results were observed in as short as 12 minutes, detecting down to 3.125 fg of genomic DNA per tube. Moreover, the analytical specificity and the practical application of the ET-MCDA were also successfully evaluated in this study. Here we provided the details on the novel ET-MCDA technique and expounded the basic ET-MCDA amplification mechanism.

  1. Multiplex, Rapid, and Sensitive Isothermal Detection of Nucleic-Acid Sequence by Endonuclease Restriction-Mediated Real-Time Multiple Cross Displacement Amplification.

    Science.gov (United States)

    Wang, Yi; Wang, Yan; Zhang, Lu; Liu, Dongxin; Luo, Lijuan; Li, Hua; Cao, Xiaolong; Liu, Kai; Xu, Jianguo; Ye, Changyun

    2016-01-01

    We have devised a novel isothermal amplification technology, termed endonuclease restriction-mediated real-time multiple cross displacement amplification (ET-MCDA), which facilitated multiplex, rapid, specific and sensitive detection of nucleic-acid sequences at a constant temperature. The ET-MCDA integrated multiple cross displacement amplification strategy, restriction endonuclease cleavage and real-time fluorescence detection technique. In the ET-MCDA system, the functional cross primer E-CP1 or E-CP2 was constructed by adding a short sequence at the 5' end of CP1 or CP2, respectively, and the new E-CP1 or E-CP2 primer was labeled at the 5' end with a fluorophore and in the middle with a dark quencher. The restriction endonuclease Nb.BsrDI specifically recognized the short sequence and digested the newly synthesized double-stranded terminal sequences (5' end short sequences and their complementary sequences), which released the quenching, resulting on a gain of fluorescence signal. Thus, the ET-MCDA allowed real-time detection of single or multiple targets in only a single reaction, and the positive results were observed in as short as 12 min, detecting down to 3.125 fg of genomic DNA per tube. Moreover, the analytical specificity and the practical application of the ET-MCDA were also successfully evaluated in this study. Here, we provided the details on the novel ET-MCDA technique and expounded the basic ET-MCDA amplification mechanism.

  2. Development of an MMS/PC based real time simulation of the B and W NSS plant for advanced control system design

    International Nuclear Information System (INIS)

    Bartells, P.S.; Brownell, R.B.

    1990-01-01

    The development of this personal-computer-based simulation of the Babcock and Wilcox nuclear steam system (NSS) was prompted in part by the need for a real-time analysis tool to be used in evaluating advanced control concepts for the NSS. NSS control is currently accomplished via conventional analog systems that are becoming increasingly obsolete. With the widespread use of digital micro-processor-based control systems for fossil power and other applications, the B and W Owners Group Advanced Control System Task Force is developing a next-generation control system for upgrading existing B and W power plants. To take advantage of the digital control technology, it is desirable to have a flexible, cost-effective, and portable control analysis tool available that can simulate various postulated control strategies and algorithms and couple these with simulated plant responses in real time to determine overall effectiveness. To develop the desired capability, B and W has incorporated the simulation methodology of the Modular Modeling System (MMS) and the knowledge gained during development of a similar Department of Energy-funded project. The MMS-based NSS model was developed and then modified to increase execution speed, ported to an IBM Personal System 2 (Model 80) and interfaced with user-friendly graphics. The user can develop alternative control strategies and readily interface them with the NSS model for real-time display and evaluation. The paper addresses the key considerations and programming techniques used to accomplish the resulting simulation

  3. Visualization of swallowing using real-time TrueFISP MR fluoroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Barkhausen, Joerg; Goyen, Mathias; Lauenstein, Thomas; Debatin, Joerg F. [Department of Diagnostic Radiology, University Hospital Essen (Germany); Winterfeld, F. von; Arweiler-Harbeck, Diana [Department of Otorhinolaryngology, University Hospital Essen (Germany)

    2002-01-01

    The aim of this study was to evaluate the ability of different real-time true fast imaging with steady precession (TrueFISP) sequences regarding their ability to depict the swallowing process and delineate oropharyngeal pathologies in patients with dysphagia. Real-time TrueFISP visualization of swallowing was performed in 8 volunteers and 6 patients with dysphagia using a 1.5 T scanner (Magnetom Sonata, Siemens, Erlangen Germany) equipped with high-performance gradients (amplitude 40 mT/m). Image quality of four different real-time TrueFISP sequences (TR 2.2-3.0 ms, TE 1.1-1.5 ms, matrix 63 x 128-135 x 256, field of view 250 mm{sup 2}, acquisition time per image 139-405 ms) was evaluated. Water, yoghurt, and semolina pudding were assessed as oral contrast agents. Functional exploration of the oropharyngeal apparatus was best possible using the fastest real-time TrueFISP sequence (TR 2.2 ms, TE 1.1 ms, matrix 63 x 128). Increased acquisition time resulted in blurring of anatomical structures. As the image contrast of TrueFISP sequences depends on T2/T1 properties, all tested foodstuff were well suited as oral contrast agents, but image quality was best using semolina pudding. Real-time visualization of swallowing is possible using real-time TrueFISP sequences in conjunction with oral contrast agents. For the functional exploration of swallowing high temporal resolution is more crucial than spatial resolution. (orig.)

  4. Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli.

    OpenAIRE

    Joensen, Katrine Grimstrup; Scheutz, Flemming; Lund, Ole; Hasman, Henrik; Kaas, Rolf Sommer; Nielsen, Eva M.; Aarestrup, Frank Møller

    2014-01-01

    Fast and accurate identification and typing of pathogens are essential for effective surveillance and outbreak detection. The current routine procedure is based on a variety of techniques, making the procedure laborious, time-consuming, and expensive. With whole-genome sequencing (WGS) becoming cheaper, it has huge potential in both diagnostics and routine surveillance. The aim of this study was to perform a real-time evaluation of WGS for routine typing and surveillance of verocytotoxin-prod...

  5. Real-Time Whole-Genome Sequencing for Routine Typing, Surveillance, and Outbreak Detection of Verotoxigenic Escherichia coli

    OpenAIRE

    Joensen, Katrine Grimstrup; Scheutz, Flemming; Lund, Ole; Hasman, Henrik; Kaas, Rolf S.; Nielsen, Eva M.; Aarestrup, Frank M.

    2014-01-01

    Fast and accurate identification and typing of pathogens are essential for effective surveillance and outbreak detection. The current routine procedure is based on a variety of techniques, making the procedure laborious, time-consuming, and expensive. With whole-genome sequencing (WGS) becoming cheaper, it has huge potential in both diagnostics and routine surveillance. The aim of this study was to perform a real-time evaluation of WGS for routine typing and surveillance of verocytotoxin-prod...

  6. Quantitative assessment of hematopoietic chimerism by quantitative real-time polymerase chain reaction of sequence polymorphism systems after hematopoietic stem cell transplantation.

    Science.gov (United States)

    Qin, Xiao-ying; Li, Guo-xuan; Qin, Ya-zhen; Wang, Yu; Wang, Feng-rong; Liu, Dai-hong; Xu, Lan-ping; Chen, Huan; Han, Wei; Wang, Jing-zhi; Zhang, Xiao-hui; Li, Jin-lan; Li, Ling-di; Liu, Kai-yan; Huang, Xiao-jun

    2011-08-01

    Analysis of changes in recipient and donor hematopoietic cell origin is extremely useful to monitor the effect of hematopoietic stem cell transplantation (HSCT) and sequential adoptive immunotherapy by donor lymphocyte infusions. We developed a sensitive, reliable and rapid real-time PCR method based on sequence polymorphism systems to quantitatively assess the hematopoietic chimerism after HSCT. A panel of 29 selected sequence polymorphism (SP) markers was screened by real-time PCR in 101 HSCT patients with leukemia and other hematological diseases. The chimerism kinetics of bone marrow samples of 8 HSCT patients in remission and relapse situations were followed longitudinally. Recipient genotype discrimination was possible in 97.0% (98 of 101) with a mean number of 2.5 (1-7) informative markers per recipient/donor pair. Using serial dilutions of plasmids containing specific SP markers, the linear correlation (r) of 0.99, the slope between -3.2 and -3.7 and the sensitivity of 0.1% were proved reproducible. By this method, it was possible to very accurately detect autologous signals in the range from 0.1% to 30%. The accuracy of the method in the very important range of autologous signals below 5% was extraordinarily high (standard deviation real-time PCR method over short tandem repeat PCR chimerism assays is the absence of PCR competition and plateau biases, with demonstrated greater sensitivity and linearity. Finally, we prospectively analyzed bone marrow samples of 8 patients who received allografts and presented the chimerism kinetics of remission and relapse situations that illustrated the sensitivity level and the promising clinical application of this method. This SP-based real-time PCR assay provides a rapid, sensitive, and accurate quantitative assessment of mixed chimerism that can be useful in predicting graft rejection and early relapse.

  7. Real-time PCR-based method for rapid detection of Aspergillus niger and Aspergillus welwitschiae isolated from coffee.

    Science.gov (United States)

    von Hertwig, Aline Morgan; Sant'Ana, Anderson S; Sartori, Daniele; da Silva, Josué José; Nascimento, Maristela S; Iamanaka, Beatriz Thie; Pelegrinelli Fungaro, Maria Helena; Taniwaki, Marta Hiromi

    2018-05-01

    Some species from Aspergillus section Nigri are morphologically very similar and altogether have been called A. niger aggregate. Although the species included in this group are morphologically very similar, they differ in their ability to produce mycotoxins and other metabolites and their taxonomical status has evolved continuously. Among them, A. niger and A. welwitschiae are ochratoxin A and fumonisin B 2 producers and their detection and/or identification is of crucial importance for food safety. The aim of this study was the development of a real-time PCR-based method for simultaneous discrimination of A. niger and A. welwitschiae from other species of the A. niger aggregate isolated from coffee beans. One primer pair and a hybridization probe specific for detection of A. niger and A. welwitschiae strains were designed based on the BenA gene sequences, and used in a Real-time PCR assay for the rapid discrimination between both these species from all others of the A. niger aggregate. The Real-time PCR assay was shown to be 100% efficient in discriminating the 73 isolates of A. niger/A. welwitschiae from the other A. niger aggregate species analyzed as a negative control. This result testifies to the use of this technique as a good tool in the rapid detection of these important toxigenic species. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. MO-FG-202-07: Real-Time EPID-Based Detection Metric For VMAT Delivery Errors

    International Nuclear Information System (INIS)

    Passarge, M; Fix, M K; Manser, P; Stampanoni, M F M; Siebers, J V

    2016-01-01

    Purpose: To create and test an accurate EPID-frame-based VMAT QA metric to detect gross dose errors in real-time and to provide information about the source of error. Methods: A Swiss cheese model was created for an EPID-based real-time QA process. The system compares a treatmentplan- based reference set of EPID images with images acquired over each 2° gantry angle interval. The metric utilizes a sequence of independent consecutively executed error detection Methods: a masking technique that verifies infield radiation delivery and ensures no out-of-field radiation; output normalization checks at two different stages; global image alignment to quantify rotation, scaling and translation; standard gamma evaluation (3%, 3 mm) and pixel intensity deviation checks including and excluding high dose gradient regions. Tolerances for each test were determined. For algorithm testing, twelve different types of errors were selected to modify the original plan. Corresponding predictions for each test case were generated, which included measurement-based noise. Each test case was run multiple times (with different noise per run) to assess the ability to detect introduced errors. Results: Averaged over five test runs, 99.1% of all plan variations that resulted in patient dose errors were detected within 2° and 100% within 4° (∼1% of patient dose delivery). Including cases that led to slightly modified but clinically equivalent plans, 91.5% were detected by the system within 2°. Based on the type of method that detected the error, determination of error sources was achieved. Conclusion: An EPID-based during-treatment error detection system for VMAT deliveries was successfully designed and tested. The system utilizes a sequence of methods to identify and prevent gross treatment delivery errors. The system was inspected for robustness with realistic noise variations, demonstrating that it has the potential to detect a large majority of errors in real-time and indicate the error

  9. MO-FG-202-07: Real-Time EPID-Based Detection Metric For VMAT Delivery Errors

    Energy Technology Data Exchange (ETDEWEB)

    Passarge, M; Fix, M K; Manser, P [Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern (Switzerland); Stampanoni, M F M [Institute for Biomedical Engineering, ETH Zurich, and PSI, Villigen (Switzerland); Siebers, J V [Department of Radiation Oncology, University of Virginia, Charlottesville, VA (United States)

    2016-06-15

    Purpose: To create and test an accurate EPID-frame-based VMAT QA metric to detect gross dose errors in real-time and to provide information about the source of error. Methods: A Swiss cheese model was created for an EPID-based real-time QA process. The system compares a treatmentplan- based reference set of EPID images with images acquired over each 2° gantry angle interval. The metric utilizes a sequence of independent consecutively executed error detection Methods: a masking technique that verifies infield radiation delivery and ensures no out-of-field radiation; output normalization checks at two different stages; global image alignment to quantify rotation, scaling and translation; standard gamma evaluation (3%, 3 mm) and pixel intensity deviation checks including and excluding high dose gradient regions. Tolerances for each test were determined. For algorithm testing, twelve different types of errors were selected to modify the original plan. Corresponding predictions for each test case were generated, which included measurement-based noise. Each test case was run multiple times (with different noise per run) to assess the ability to detect introduced errors. Results: Averaged over five test runs, 99.1% of all plan variations that resulted in patient dose errors were detected within 2° and 100% within 4° (∼1% of patient dose delivery). Including cases that led to slightly modified but clinically equivalent plans, 91.5% were detected by the system within 2°. Based on the type of method that detected the error, determination of error sources was achieved. Conclusion: An EPID-based during-treatment error detection system for VMAT deliveries was successfully designed and tested. The system utilizes a sequence of methods to identify and prevent gross treatment delivery errors. The system was inspected for robustness with realistic noise variations, demonstrating that it has the potential to detect a large majority of errors in real-time and indicate the error

  10. Evaluation of a real-time PCR assay based on the single-copy SAG1 gene for the detection of Toxoplasma gondii.

    Science.gov (United States)

    Yu, Haijie; Huang, Bin; Zhuo, Xunhui; Chen, Xueqiu; Du, Aifang

    2013-11-08

    Real-time PCR-based detection of Toxoplasma gondii is very sensitive and convenient for diagnosing toxoplasmosis. However, the performance of the PCR assays could be influenced by the target gene chosen. Here we evaluate a real-time PCR assay using double-stranded DNA dyes (SYBR(®) Green I assay) with a new set of primers targeting the SAG1 gene for the fast and specific detection of T. gondii. The assay showed higher sensitivity than conventional PCR protocols using T. gondii DNA as template. The detection limit of the developed real-time PCR assay was in the order of 1 tachyzoite. The assay was also assessed by experimentally infected mice and showed positive results for blood (25%), spleen (50%) and lung (50%) as early as 1 dpi. The specificity of the assay was confirmed by using DNA from Neospora caninum, Escherichia coli, Babesia bovis, Trypanosoma brucei, Cryptosporidium parvum, and Toxocara canis. Assay applicability was successfully tested in blood samples collected from slaughtered pigs. These results indicate that, based on SYBR(®) green I, the quantitative SAG1 assay may also be useful in the study of the pathogenicity, immunoprophylaxis, and treatment of T. gondii. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Mapping and characterizing N6-methyladenine in eukaryotic genomes using single molecule real-time sequencing.

    Science.gov (United States)

    Zhu, Shijia; Beaulaurier, John; Deikus, Gintaras; Wu, Tao; Strahl, Maya; Hao, Ziyang; Luo, Guanzheng; Gregory, James A; Chess, Andrew; He, Chuan; Xiao, Andrew; Sebra, Robert; Schadt, Eric E; Fang, Gang

    2018-05-15

    N6-methyladenine (m6dA) has been discovered as a novel form of DNA methylation prevalent in eukaryotes, however, methods for high resolution mapping of m6dA events are still lacking. Single-molecule real-time (SMRT) sequencing has enabled the detection of m6dA events at single-nucleotide resolution in prokaryotic genomes, but its application to detecting m6dA in eukaryotic genomes has not been rigorously examined. Herein, we identified unique characteristics of eukaryotic m6dA methylomes that fundamentally differ from those of prokaryotes. Based on these differences, we describe the first approach for mapping m6dA events using SMRT sequencing specifically designed for the study of eukaryotic genomes, and provide appropriate strategies for designing experiments and carrying out sequencing in future studies. We apply the novel approach to study two eukaryotic genomes. For green algae, we construct the first complete genome-wide map of m6dA at single nucleotide and single molecule resolution. For human lymphoblastoid cells (hLCLs), joint analyses of SMRT sequencing and independent sequencing data suggest that putative m6dA events are enriched in the promoters of young, full length LINE-1 elements (L1s). These analyses demonstrate a general method for rigorous mapping and characterization of m6dA events in eukaryotic genomes. Published by Cold Spring Harbor Laboratory Press.

  12. Implementation of SoC Based Real-Time Electromagnetic Transient Simulator

    Directory of Open Access Journals (Sweden)

    I. Herrera-Leandro

    2017-01-01

    Full Text Available Real-time electromagnetic transient simulators are important tools in the design stage of new control and protection systems for power systems. Real-time simulators are used to test and stress new devices under similar conditions that the device will deal with in a real network with the purpose of finding errors and bugs in the design. The computation of an electromagnetic transient is complex and computationally demanding, due to features such as the speed of the phenomenon, the size of the network, and the presence of time variant and nonlinear elements in the network. In this work, the development of a SoC based real-time and also offline electromagnetic transient simulator is presented. In the design, the required performance is met from two sides, (a using a technique to split the power system into smaller subsystems, which allows parallelizing the algorithm, and (b with specialized and parallel hardware designed to boost the solution flow. The results of this work have shown that for the proposed case studies, based on a balanced distribution of the node of subsystems, the proposed approach has decreased the total simulation time by up to 99 times compared with the classical approach running on a single high performance 32-bit embedded processor ARM-Cortex A9.

  13. Time-stretch microscopy based on time-wavelength sequence reconstruction from wideband incoherent source

    International Nuclear Information System (INIS)

    Zhang, Chi; Xu, Yiqing; Wei, Xiaoming; Tsia, Kevin K.; Wong, Kenneth K. Y.

    2014-01-01

    Time-stretch microscopy has emerged as an ultrafast optical imaging concept offering the unprecedented combination of the imaging speed and sensitivity. However, dedicated wideband and coherence optical pulse source with high shot-to-shot stability has been mandated for time-wavelength mapping—the enabling process for ultrahigh speed wavelength-encoded image retrieval. From the practical point of view, exploiting methods to relax the stringent requirements (e.g., temporal stability and coherence) for the source of time-stretch microscopy is thus of great value. In this paper, we demonstrated time-stretch microscopy by reconstructing the time-wavelength mapping sequence from a wideband incoherent source. Utilizing the time-lens focusing mechanism mediated by a narrow-band pulse source, this approach allows generation of a wideband incoherent source, with the spectral efficiency enhanced by a factor of 18. As a proof-of-principle demonstration, time-stretch imaging with the scan rate as high as MHz and diffraction-limited resolution is achieved based on the wideband incoherent source. We note that the concept of time-wavelength sequence reconstruction from wideband incoherent source can also be generalized to any high-speed optical real-time measurements, where wavelength is acted as the information carrier

  14. Rapid identification of ST131 Escherichia coli by a novel multiplex real-time allelic discrimination assay.

    Science.gov (United States)

    François, Patrice; Bonetti, Eve-Julie; Fankhauser, Carolina; Baud, Damien; Cherkaoui, Abdessalam; Schrenzel, Jacques; Harbarth, Stephan

    2017-09-01

    Escherichia coli sequence type 131 is increasingly described in severe hospital infections. We developed a rapid real-time allelic discrimination assay for the rapid identification of E. coli ST131 isolates. This rapid assay represents an affordable alternative to sequence-based strategies before completing characterization of potentially highly virulent isolates of E. coli. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. The L2b real-time PCR targeting the pmpH gene of Chlamydia trachomatis used for the diagnosis of lymphogranuloma venereum is not specific to L2b strains.

    Science.gov (United States)

    Touati, A; Peuchant, O; Hénin, N; Bébéar, C; de Barbeyrac, B

    2016-06-01

    The French Reference Centre for chlamydiae uses two real-time PCRs targeting the pmpH gene of Chlamydia trachomatis to differentiate between L strains and variant L2b, responsible for a lymphogranuloma venereum outbreak in Europe. We compared the results obtained for 122 L2b C. trachomatis-positive specimens, using the two real-time PCRs, with the sequencing of the ompA gene. Only 91 specimens were confirmed as L2b. Our results demonstrate that the lymphogranuloma venereum outbreak is no longer dominated by the variant L2b, and that many L-positive specimens were misidentified as L2b with the method used, which raises the question of its specificity. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  16. Evolution of simeprevir-resistant variants over time by ultra-deep sequencing in HCV genotype 1b.

    Science.gov (United States)

    Akuta, Norio; Suzuki, Fumitaka; Sezaki, Hitomi; Suzuki, Yoshiyuki; Hosaka, Tetsuya; Kobayashi, Masahiro; Kobayashi, Mariko; Saitoh, Satoshi; Ikeda, Kenji; Kumada, Hiromitsu

    2014-08-01

    Using ultra-deep sequencing technology, the present study was designed to investigate the evolution of simeprevir-resistant variants (amino acid substitutions of aa80, aa155, aa156, and aa168 positions in HCV NS3 region) over time. In Toranomon Hospital, 18 Japanese patients infected with HCV genotype 1b, received triple therapy of simeprevir/PEG-IFN/ribavirin (DRAGON or CONCERT study). Sustained virological response rate was 67%, and that was significantly higher in patients with IL28B rs8099917 TT than in those with non-TT. Six patients, who did not achieve sustained virological response, were tested for resistant variants by ultra-deep sequencing, at the baseline, at the time of re-elevation of viral loads, and at 96 weeks after the completion of treatment. Twelve of 18 resistant variants, detected at re-elevation of viral load, were de novo resistant variants. Ten of 12 de novo resistant variants become undetectable over time, and that five of seven resistant variants, detected at baseline, persisted over time. In one patient, variants of Q80R at baseline (0.3%) increased at 96-week after the cessation of treatment (10.2%), and de novo resistant variants of D168E (0.3%) also increased at 96-week after the cessation of treatment (9.7%). In conclusion, the present study indicates that the emergence of simeprevir-resistant variants after the start of treatment could not be predicted at baseline, and the majority of de novo resistant variants become undetectable over time. Further large-scale prospective studies should be performed to investigate the clinical utility in detecting simeprevir-resistant variants. © 2014 Wiley Periodicals, Inc.

  17. Cluster-Based Multipolling Sequencing Algorithm for Collecting RFID Data in Wireless LANs

    Science.gov (United States)

    Choi, Woo-Yong; Chatterjee, Mainak

    2015-03-01

    With the growing use of RFID (Radio Frequency Identification), it is becoming important to devise ways to read RFID tags in real time. Access points (APs) of IEEE 802.11-based wireless Local Area Networks (LANs) are being integrated with RFID networks that can efficiently collect real-time RFID data. Several schemes, such as multipolling methods based on the dynamic search algorithm and random sequencing, have been proposed. However, as the number of RFID readers associated with an AP increases, it becomes difficult for the dynamic search algorithm to derive the multipolling sequence in real time. Though multipolling methods can eliminate the polling overhead, we still need to enhance the performance of the multipolling methods based on random sequencing. To that extent, we propose a real-time cluster-based multipolling sequencing algorithm that drastically eliminates more than 90% of the polling overhead, particularly so when the dynamic search algorithm fails to derive the multipolling sequence in real time.

  18. Detection of Salmonella in Shellfish Using SYBR Green™ I-Based Real-Time Multiplexed PCR Assay Targeting invA and spvB

    KAUST Repository

    Gangwar, Maulshree

    2012-09-23

    A SYBR Green™ I-based real-time multiplexed PCR assay was developed targeting invA and spvB for the detection of Salmonella strains in shellfish after both hns and invA genes were identified in all Salmonella strains. Simultaneously, the 16S rRNA gene was used as a PCR internal amplification control (IAC). All 89 Salmonella strains tested in this study exhibited amplification of invA, whereas only 21 (23. 6 %) were PCR positive for spvB. The sensitivity of detection of all three targeted genes was 1 ng, which is equivalent to approximately 105 colony-forming unit (CFU) of Salmonella enterica. The analysis showed specific PCR products that were identified by reproducible melt temperature profiles (invA, 84. 27 ± 1. 7 °C; spvB, 88. 76 ± 1. 0 °C; and 16S rRNA gene, 87. 16 ± 0. 8 °C). The sensitivity of detection was 10 pg purified DNA (invA) or 105 CFU in 1 mL pure culture of S. enterica ATCC 14028. The above molecular detection method for Salmonella strains was successfully applied to the oyster homogenates (food matrix). An initial inoculum of 106 and 102 CFU Salmonella in 1 ml seeded oyster tissue homogenate was detected by multiplexed PCR for all three genes after 5 and 24 h of enrichment, respectively. Natural oysters isolated from Gulf of Mexico during the winter months exhibited negative PCR amplification results suggesting the absence of Salmonella. In contrast to conventional PCR, real-time multiplex PCR assay developed in this study is rapid and sensitive and will help Interstate Shellfish Sanitation Conference undertake appropriate measures to monitor Salmonella in oysters, thereby preventing disease outbreaks and consequently protecting consumer health. © 2012 Springer Science+Business Media, LLC.

  19. Detection of Salmonella in Shellfish Using SYBR Green™ I-Based Real-Time Multiplexed PCR Assay Targeting invA and spvB

    KAUST Repository

    Gangwar, Maulshree; Waters, Alicia M.; Bej, Gautam A.; Bej, Asim K.; Mojib, Nazia

    2012-01-01

    A SYBR Green™ I-based real-time multiplexed PCR assay was developed targeting invA and spvB for the detection of Salmonella strains in shellfish after both hns and invA genes were identified in all Salmonella strains. Simultaneously, the 16S rRNA gene was used as a PCR internal amplification control (IAC). All 89 Salmonella strains tested in this study exhibited amplification of invA, whereas only 21 (23. 6 %) were PCR positive for spvB. The sensitivity of detection of all three targeted genes was 1 ng, which is equivalent to approximately 105 colony-forming unit (CFU) of Salmonella enterica. The analysis showed specific PCR products that were identified by reproducible melt temperature profiles (invA, 84. 27 ± 1. 7 °C; spvB, 88. 76 ± 1. 0 °C; and 16S rRNA gene, 87. 16 ± 0. 8 °C). The sensitivity of detection was 10 pg purified DNA (invA) or 105 CFU in 1 mL pure culture of S. enterica ATCC 14028. The above molecular detection method for Salmonella strains was successfully applied to the oyster homogenates (food matrix). An initial inoculum of 106 and 102 CFU Salmonella in 1 ml seeded oyster tissue homogenate was detected by multiplexed PCR for all three genes after 5 and 24 h of enrichment, respectively. Natural oysters isolated from Gulf of Mexico during the winter months exhibited negative PCR amplification results suggesting the absence of Salmonella. In contrast to conventional PCR, real-time multiplex PCR assay developed in this study is rapid and sensitive and will help Interstate Shellfish Sanitation Conference undertake appropriate measures to monitor Salmonella in oysters, thereby preventing disease outbreaks and consequently protecting consumer health. © 2012 Springer Science+Business Media, LLC.

  20. Real Time Animation of Trees Based on BBSC in Computer Games

    Directory of Open Access Journals (Sweden)

    Xuefeng Ao

    2009-01-01

    Full Text Available That researchers in the field of computer games usually find it is difficult to simulate the motion of actual 3D model trees lies in the fact that the tree model itself has very complicated structure, and many sophisticated factors need to be considered during the simulation. Though there are some works on simulating 3D tree and its motion, few of them are used in computer games due to the high demand for real-time in computer games. In this paper, an approach of animating trees in computer games based on a novel tree model representation—Ball B-Spline Curves (BBSCs are proposed. By taking advantage of the good features of the BBSC-based model, physical simulation of the motion of leafless trees with wind blowing becomes easier and more efficient. The method can generate realistic 3D tree animation in real-time, which meets the high requirement for real time in computer games.

  1. Real time animation of space plasma phenomena

    International Nuclear Information System (INIS)

    Jordan, K.F.; Greenstadt, E.W.

    1987-01-01

    In pursuit of real time animation of computer simulated space plasma phenomena, the code was rewritten for the Massively Parallel Processor (MPP). The program creates a dynamic representation of the global bowshock which is based on actual spacecraft data and designed for three dimensional graphic output. This output consists of time slice sequences which make up the frames of the animation. With the MPP, 16384, 512 or 4 frames can be calculated simultaneously depending upon which characteristic is being computed. The run time was greatly reduced which promotes the rapid sequence of images and makes real time animation a foreseeable goal. The addition of more complex phenomenology in the constructed computer images is now possible and work proceeds to generate these images

  2. A TaqMan-based real time PCR assay for specific detection and quantification of Xylella fastidiosa strains causing bacterial leaf scorch in oleander.

    Science.gov (United States)

    Guan, Wei; Shao, Jonathan; Singh, Raghuwinder; Davis, Robert E; Zhao, Tingchang; Huang, Qi

    2013-02-15

    A TaqMan-based real-time PCR assay was developed for specific detection of strains of X. fastidiosa causing oleander leaf scorch. The assay uses primers WG-OLS-F1 and WG-OLS-R1 and the fluorescent probe WG-OLS-P1, designed based on unique sequences found only in the genome of oleander strain Ann1. The assay is specific, allowing detection of only oleander-infecting strains, not other strains of X. fastidiosa nor other plant-associated bacteria tested. The assay is also sensitive, with a detection limit of 10.4fg DNA of X. fastidiosa per reaction in vitro and in planta. The assay can also be applied to detect low numbers of X. fastidiosa in insect samples, or further developed into a multiplex real-time PCR assay to simultaneously detect and distinguish diverse strains of X. fastidiosa that may occupy the same hosts or insect vectors. Specific and sensitive detection and quantification of oleander strains of X. fastidiosa should be useful for disease diagnosis, epidemiological studies, management of oleander leaf scorch disease, and resistance screening for oleander shrubs. Published by Elsevier B.V.

  3. Real-time PCR quantification of human complement C4A and C4B genes

    Directory of Open Access Journals (Sweden)

    Fust George

    2006-01-01

    Full Text Available Abstract Background The fourth component of human complement (C4, an essential factor of the innate immunity, is represented as two isoforms (C4A and C4B in the genome. Although these genes differ only in 5 nucleotides, the encoded C4A and C4B proteins are functionally different. Based on phenotypic determination, unbalanced production of C4A and C4B is associated with several diseases, such as systemic lupus erythematosus, type 1 diabetes, several autoimmune diseases, moreover with higher morbidity and mortality of myocardial infarction and increased susceptibility for bacterial infections. Despite of this major clinical relevance, only low throughput, time and labor intensive methods have been used so far for the quantification of C4A and C4B genes. Results A novel quantitative real-time PCR (qPCR technique was developed for rapid and accurate quantification of the C4A and C4B genes applying a duplex, TaqMan based methodology. The reliable, single-step analysis provides the determination of the copy number of the C4A and C4B genes applying a wide range of DNA template concentration (0.3–300 ng genomic DNA. The developed qPCR was applied to determine C4A and C4B gene dosages in a healthy Hungarian population (N = 118. The obtained data were compared to the results of an earlier study of the same population. Moreover a set of 33 samples were analyzed by two independent methods. No significant difference was observed between the gene dosages determined by the employed techniques demonstrating the reliability of the novel qPCR methodology. A Microsoft Excel worksheet and a DOS executable are also provided for simple and automated evaluation of the measured data. Conclusion This report describes a novel real-time PCR method for single-step quantification of C4A and C4B genes. The developed technique could facilitate studies investigating disease association of different C4 isotypes.

  4. Comparison of Hybrid Capture 2 Assay with Real-time-PCR for Detection and Quantitation of Hepatitis B Virus DNA.

    Science.gov (United States)

    Majid, Farjana; Jahan, Munira; Lutful Moben, Ahmed; Tabassum, Shahina

    2014-01-01

    Both real-time-polymerase chain reaction (PCR) and hybrid capture 2 (HC2) assay can detect and quantify hepatitis B virus (HBV) DNA. However, real-time-PCR can detect a wide range of HBV DNA, while HC2 assay could not detect lower levels of viremia. The present study was designed to detect and quantify HBV DNA by real-time-PCR and HC2 assay and compare the quantitative data of these two assays. A cross-sectional study was conducted in between July 2010 and June 2011. A total of 66 serologically diagnosed chronic hepatitis B (CHB) patients were selected for the study. Real-time-PCR and HC2 assay was done to detect HBV DNA. Data were analyzed by statistical Package for the social sciences (SPSS). Among 66 serologically diagnosed chronic hepatitis B patients 40 (60.61%) patients had detectable and 26 (39.39%) had undetectable HBV DNA by HC2 assay. Concordant results were obtained for 40 (60.61%) out of these 66 patients by real-time-PCR and HC2 assay with mean viral load of 7.06 ± 1.13 log 10 copies/ml and 6.95 ± 1.08 log 10 copies/ml, respectively. In the remaining 26 patients, HBV DNA was detectable by real-time-PCR in 20 patients (mean HBV DNA level was 3.67 ± 0.72 log 10 copies/ml. However, HBV DNA could not be detectable in six cases by the both assays. The study showed strong correlation (r = 0.915) between real-time-PCR and HC2 assay for the detection and quantification of HBV DNA. HC2 assay may be used as an alternative to real-time-PCR for CHB patients. How to cite this article: Majid F, Jahan M, Moben AL, Tabassum S. Comparison of Hybrid Capture 2 Assay with Real-time-PCR for Detection and Quantitation of Hepatitis B Virus DNA. Euroasian J Hepato-Gastroenterol 2014;4(1):31-35.

  5. A TaqMan real-time PCR-based assay for the identification of Fasciola spp.

    Science.gov (United States)

    Alasaad, Samer; Soriguer, Ramón C; Abu-Madi, Marawan; El Behairy, Ahmed; Jowers, Michael J; Baños, Pablo Díez; Píriz, Ana; Fickel, Joerns; Zhu, Xing-Quan

    2011-06-30

    Real time quantitative PCR (qPCR) is one of the key technologies of the post-genome era, with clear advantages compared to normal end-point PCR. In this paper, we report the first qPCR-based assay for the identification of Fasciola spp. Based on sequences of the second internal transcribed spacers (ITS-2) of the ribosomal rRNA gene, we used a set of genus-specific primers for Fasciola ITS-2 amplification, and we designed species-specific internal TaqMan probes to identify F. hepatica and F. gigantica, as well as the hybrid 'intermediate'Fasciola. These primers and probes were used for the highly specific, sensitive, and simple identification of Fasciola species collected from different animal host from China, Spain, Niger and Egypt. The novel qPCR-based technique for the identification of Fasciola spp. may provide a useful tool for the epidemiological investigation of Fasciola infection, including their intermediate snail hosts. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. NOAA Ship Henry B. Bigelow Underway Meteorological Data, Near Real Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Henry B. Bigelow Underway Meteorological Data (Near Real Time, updated daily) are from the Shipboard Automated Meteorological and Oceanographic System...

  7. Enteroviruses in blood of patients with type 1 diabetes detected by integrated cell culture and reverse transcription quantitative real-time PCR.

    Science.gov (United States)

    Alidjinou, Enagnon Kazali; Sane, Famara; Lefevre, Christine; Baras, Agathe; Moumna, Ilham; Engelmann, Ilka; Vantyghem, Marie-Christine; Hober, Didier

    2017-11-01

    Enteroviruses (EV) have been associated with type 1 diabetes (T1D), but EV RNA detection has been reported in only a small proportion of T1D patients. We studied whether integrated cell culture and reverse transcription real-time PCR could improve EV detection in blood samples from patients with T1D. Blood was collected from 13 patients with T1D. The presence of EV RNA in blood was investigated by using real-time RT-PCR. In addition, plasma and white blood cells (WBC) were inoculated to BGM and Vero cell line cultures. Culture supernatants and cells collected on day 7 and day 14 were tested for EV RNA by real-time RT-PCR. Enterovirus identification was performed through sequencing of the VP4/VP2 region. Enterovirus RNA was detected in blood by using real-time RT-PCR in only one out of 13 patients. The detection of EV RNA in cultures inoculated with clinical samples (plasma and/or WBC) gave positive results in five other patients. The viral loads were low, ranging from 45 to 4420 copies/ng of total RNA. One isolate was successfully identified as coxsackievirus B1. Integrated cell culture and reverse transcription real-time PCR can improve the detection rate of EV in blood samples of patients with T1D and can be useful to investigate further the relationship between EV and the disease.

  8. Real-time elastography with a novel quantitative technology for assessment of liver fibrosis in chronic hepatitis B

    International Nuclear Information System (INIS)

    Wang Juan; Guo Long; Shi Xiuying; Pan Wenqian; Bai Yunfei; Ai Hong

    2012-01-01

    Background: The accurate evaluation of liver fibrosis stage is important in determining the treatment strategy. The limitations of percutaneous liver biopsy as the gold standard are obvious for invasion. Real-time elastography with conventional ultrasound probes and a new quantitative technology for diffuse histological lesion is a novel approach for staging of liver fibrosis. Purpose: This study aimed to evaluate the value of real-time tissue elastography with a new quantitative technology for the assessment of liver fibrosis stage. Materials and methods: Real-time elastography was performed in 55 patients with liver fibrosis and chronic hepatitis B and in 20 healthy volunteers. Eleven parameters for every patient in colorcode image obtained from the real-time elastography were analyzed with principal components analysis. We analyzed the correlation between elasticity index and liver fibrosis stage and the accuracy of real-time elastography for liver fibrosis staging. Additionally, aspartate transaminase-to-platelet ratio index was also included in the analysis. Results: The Spearman's correlation coefficient between the elasticity index and the histologic fibrosis stage was 0.81, which is highly significant (p 0.05), respectively. Conclusions: Real-time elastography with a new quantitative technology for diffuse histological lesion is a new and promising sonography-based noninvasive method for the assessment of liver fibrosis in patients with chronic hepatitis B.

  9. Real-time biscuit tile image segmentation method based on edge detection.

    Science.gov (United States)

    Matić, Tomislav; Aleksi, Ivan; Hocenski, Željko; Kraus, Dieter

    2018-05-01

    In this paper we propose a novel real-time Biscuit Tile Segmentation (BTS) method for images from ceramic tile production line. BTS method is based on signal change detection and contour tracing with a main goal of separating tile pixels from background in images captured on the production line. Usually, human operators are visually inspecting and classifying produced ceramic tiles. Computer vision and image processing techniques can automate visual inspection process if they fulfill real-time requirements. Important step in this process is a real-time tile pixels segmentation. BTS method is implemented for parallel execution on a GPU device to satisfy the real-time constraints of tile production line. BTS method outperforms 2D threshold-based methods, 1D edge detection methods and contour-based methods. Proposed BTS method is in use in the biscuit tile production line. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Same-day genomic and epigenomic diagnosis of brain tumors using real-time nanopore sequencing.

    Science.gov (United States)

    Euskirchen, Philipp; Bielle, Franck; Labreche, Karim; Kloosterman, Wigard P; Rosenberg, Shai; Daniau, Mailys; Schmitt, Charlotte; Masliah-Planchon, Julien; Bourdeaut, Franck; Dehais, Caroline; Marie, Yannick; Delattre, Jean-Yves; Idbaih, Ahmed

    2017-11-01

    Molecular classification of cancer has entered clinical routine to inform diagnosis, prognosis, and treatment decisions. At the same time, new tumor entities have been identified that cannot be defined histologically. For central nervous system tumors, the current World Health Organization classification explicitly demands molecular testing, e.g., for 1p/19q-codeletion or IDH mutations, to make an integrated histomolecular diagnosis. However, a plethora of sophisticated technologies is currently needed to assess different genomic and epigenomic alterations and turnaround times are in the range of weeks, which makes standardized and widespread implementation difficult and hinders timely decision making. Here, we explored the potential of a pocket-size nanopore sequencing device for multimodal and rapid molecular diagnostics of cancer. Low-pass whole genome sequencing was used to simultaneously generate copy number (CN) and methylation profiles from native tumor DNA in the same sequencing run. Single nucleotide variants in IDH1, IDH2, TP53, H3F3A, and the TERT promoter region were identified using deep amplicon sequencing. Nanopore sequencing yielded ~0.1X genome coverage within 6 h and resulting CN and epigenetic profiles correlated well with matched microarray data. Diagnostically relevant alterations, such as 1p/19q codeletion, and focal amplifications could be recapitulated. Using ad hoc random forests, we could perform supervised pan-cancer classification to distinguish gliomas, medulloblastomas, and brain metastases of different primary sites. Single nucleotide variants in IDH1, IDH2, and H3F3A were identified using deep amplicon sequencing within minutes of sequencing. Detection of TP53 and TERT promoter mutations shows that sequencing of entire genes and GC-rich regions is feasible. Nanopore sequencing allows same-day detection of structural variants, point mutations, and methylation profiling using a single device with negligible capital cost. It

  11. Design and realization of real-time processing system for seismic exploration

    International Nuclear Information System (INIS)

    Zhang Sifeng; Cao Ping; Song Kezhu; Yao Lin

    2010-01-01

    For solving real-time seismic data processing problems, a high-speed, large-capacity and real-time data processing system is designed based on FPGA and ARM. With the advantages of multi-processor, DRPS has the characteristics of high-speed data receiving, large-capacity data storage, protocol analysis, data splicing, data converting from time sequence into channel sequence, no dead time data ping-pong storage, etc. And with the embedded Linux operating system, DRPS has the characteristics of flexibility and reliability. (authors)

  12. A real-time spike sorting method based on the embedded GPU.

    Science.gov (United States)

    Zelan Yang; Kedi Xu; Xiang Tian; Shaomin Zhang; Xiaoxiang Zheng

    2017-07-01

    Microelectrode arrays with hundreds of channels have been widely used to acquire neuron population signals in neuroscience studies. Online spike sorting is becoming one of the most important challenges for high-throughput neural signal acquisition systems. Graphic processing unit (GPU) with high parallel computing capability might provide an alternative solution for increasing real-time computational demands on spike sorting. This study reported a method of real-time spike sorting through computing unified device architecture (CUDA) which was implemented on an embedded GPU (NVIDIA JETSON Tegra K1, TK1). The sorting approach is based on the principal component analysis (PCA) and K-means. By analyzing the parallelism of each process, the method was further optimized in the thread memory model of GPU. Our results showed that the GPU-based classifier on TK1 is 37.92 times faster than the MATLAB-based classifier on PC while their accuracies were the same with each other. The high-performance computing features of embedded GPU demonstrated in our studies suggested that the embedded GPU provide a promising platform for the real-time neural signal processing.

  13. FPGA-based architecture for motion recovering in real-time

    Science.gov (United States)

    Arias-Estrada, Miguel; Maya-Rueda, Selene E.; Torres-Huitzil, Cesar

    2002-03-01

    A key problem in the computer vision field is the measurement of object motion in a scene. The main goal is to compute an approximation of the 3D motion from the analysis of an image sequence. Once computed, this information can be used as a basis to reach higher level goals in different applications. Motion estimation algorithms pose a significant computational load for the sequential processors limiting its use in practical applications. In this work we propose a hardware architecture for motion estimation in real time based on FPGA technology. The technique used for motion estimation is Optical Flow due to its accuracy, and the density of velocity estimation, however other techniques are being explored. The architecture is composed of parallel modules working in a pipeline scheme to reach high throughput rates near gigaflops. The modules are organized in a regular structure to provide a high degree of flexibility to cover different applications. Some results will be presented and the real-time performance will be discussed and analyzed. The architecture is prototyped in an FPGA board with a Virtex device interfaced to a digital imager.

  14. Real time magnetic resonance guided endomyocardial local delivery

    Science.gov (United States)

    Corti, R; Badimon, J; Mizsei, G; Macaluso, F; Lee, M; Licato, P; Viles-Gonzalez, J F; Fuster, V; Sherman, W

    2005-01-01

    Objective: To investigate the feasibility of targeting various areas of left ventricle myocardium under real time magnetic resonance (MR) imaging with a customised injection catheter equipped with a miniaturised coil. Design: A needle injection catheter with a mounted resonant solenoid circuit (coil) at its tip was designed and constructed. A 1.5 T MR scanner with customised real time sequence combined with in-room scan running capabilities was used. With this system, various myocardial areas within the left ventricle were targeted and injected with a gadolinium-diethylenetriaminepentaacetic acid (DTPA) and Indian ink mixture. Results: Real time sequencing at 10 frames/s allowed clear visualisation of the moving catheter and its transit through the aorta into the ventricle, as well as targeting of all ventricle wall segments without further image enhancement techniques. All injections were visualised by real time MR imaging and verified by gross pathology. Conclusion: The tracking device allowed real time in vivo visualisation of catheters in the aorta and left ventricle as well as precise targeting of myocardial areas. The use of this real time catheter tracking may enable precise and adequate delivery of agents for tissue regeneration. PMID:15710717

  15. A Lyapunov Function Based Remedial Action Screening Tool Using Real-Time Data

    Energy Technology Data Exchange (ETDEWEB)

    Mitra, Joydeep [Michigan State Univ., East Lansing, MI (United States); Ben-Idris, Mohammed [Univ. of Nevada, Reno, NV (United States); Faruque, Omar [Florida State Univ., Tallahassee, FL (United States); Backhaus, Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Deb, Sidart [LCG Consulting, Los Altos, CA (United States)

    2016-03-30

    This report summarizes the outcome of a research project that comprised the development of a Lyapunov function based remedial action screening tool using real-time data (L-RAS). The L-RAS is an advanced computational tool that is intended to assist system operators in making real-time redispatch decisions to preserve power grid stability. The tool relies on screening contingencies using a homotopy method based on Lyapunov functions to avoid, to the extent possible, the use of time domain simulations. This enables transient stability evaluation at real-time speed without the use of massively parallel computational resources. The project combined the following components. 1. Development of a methodology for contingency screening using a homotopy method based on Lyapunov functions and real-time data. 2. Development of a methodology for recommending remedial actions based on the screening results. 3. Development of a visualization and operator interaction interface. 4. Testing of screening tool, validation of control actions, and demonstration of project outcomes on a representative real system simulated on a Real-Time Digital Simulator (RTDS) cluster. The project was led by Michigan State University (MSU), where the theoretical models including homotopy-based screening, trajectory correction using real-time data, and remedial action were developed and implemented in the form of research-grade software. Los Alamos National Laboratory (LANL) contributed to the development of energy margin sensitivity dynamics, which constituted a part of the remedial action portfolio. Florida State University (FSU) and Southern California Edison (SCE) developed a model of the SCE system that was implemented on FSU's RTDS cluster to simulate real-time data that was streamed over the internet to MSU where the L-RAS tool was executed and remedial actions were communicated back to FSU to execute stabilizing controls on the simulated system. LCG Consulting developed the visualization

  16. Real-time 2-D Phased Array Vector Flow Imaging

    DEFF Research Database (Denmark)

    Holbek, Simon; Hansen, Kristoffer Lindskov; Fogh, Nikolaj

    2018-01-01

    Echocardiography examination of the blood flow is currently either restricted to 1-D techniques in real-time or experimental off-line 2-D methods. This paper presents an implementation of transverse oscillation for real-time 2-D vector flow imaging (VFI) on a commercial BK Ultrasound scanner....... A large field-of-view (FOV) sequence for studying flow dynamics at 11 frames per second (fps) and a sequence for studying peak systolic velocities (PSV) with a narrow FOV at 36 fps were validated. The VFI sequences were validated in a flow-rig with continuous laminar parabolic flow and in a pulsating flow...

  17. Impact of scatterometer wind (ASCAT-A/B) data assimilation on semi real-time forecast system at KIAPS

    Science.gov (United States)

    Han, H. J.; Kang, J. H.

    2016-12-01

    Since Jul. 2015, KIAPS (Korea Institute of Atmospheric Prediction Systems) has been performing the semi real-time forecast system to assess the performance of their forecast system as a NWP model. KPOP (KIAPS Protocol for Observation Processing) is a part of KIAPS data assimilation system and has been performing well in KIAPS semi real-time forecast system. In this study, due to the fact that KPOP would be able to treat the scatterometer wind data, we analyze the effect of scatterometer wind (ASCAT-A/B) on KIAPS semi real-time forecast system. O-B global distribution and statistics of scatterometer wind give use two information which are the difference between background field and observation is not too large and KPOP processed the scatterometer wind data well. The changes of analysis increment because of O-B global distribution appear remarkably at the bottom of atmospheric field. It also shows that scatterometer wind data cover wide ocean where data would be able to short. Performance of scatterometer wind data can be checked through the vertical error reduction against IFS between background and analysis field and vertical statistics of O-A. By these analysis result, we can notice that scatterometer wind data will influence the positive effect on lower level performance of semi real-time forecast system at KIAPS. After, long-term result based on effect of scatterometer wind data will be analyzed.

  18. A real-time photogrammetry system based on embedded architecture

    Directory of Open Access Journals (Sweden)

    S. Y. Zheng

    2014-06-01

    Full Text Available In order to meet the demand of real-time spatial data processing and improve the online processing capability of photogrammetric system, a kind of real-time photogrammetry method is proposed in this paper. According to the proposed method, system based on embedded architecture is then designed: using FPGA, ARM+DSP and other embedded computing technology to build specialized hardware operating environment, transplanting and optimizing the existing photogrammetric algorithm to the embedded system, and finally real-time photogrammetric data processing is realized. At last, aerial photogrammetric experiment shows that the method can achieve high-speed and stable on-line processing of photogrammetric data. And the experiment also verifies the feasibility of the proposed real-time photogrammetric system based on embedded architecture. It is the first time to realize real-time aerial photogrammetric system, which can improve the online processing efficiency of photogrammetry to a higher level and broaden the application field of photogrammetry.

  19. Confabulation Based Real-time Anomaly Detection for Wide-area Surveillance Using Heterogeneous High Performance Computing Architecture

    Science.gov (United States)

    2015-06-01

    CONFABULATION BASED REAL-TIME ANOMALY DETECTION FOR WIDE-AREA SURVEILLANCE USING HETEROGENEOUS HIGH PERFORMANCE COMPUTING ARCHITECTURE SYRACUSE...DETECTION FOR WIDE-AREA SURVEILLANCE USING HETEROGENEOUS HIGH PERFORMANCE COMPUTING ARCHITECTURE 5a. CONTRACT NUMBER FA8750-12-1-0251 5b. GRANT...processors including graphic processor units (GPUs) and Intel Xeon Phi processors. Experimental results showed significant speedups, which can enable

  20. Pick- and waveform-based techniques for real-time detection of induced seismicity

    Science.gov (United States)

    Grigoli, Francesco; Scarabello, Luca; Böse, Maren; Weber, Bernd; Wiemer, Stefan; Clinton, John F.

    2018-05-01

    The monitoring of induced seismicity is a common operation in many industrial activities, such as conventional and non-conventional hydrocarbon production or mining and geothermal energy exploitation, to cite a few. During such operations, we generally collect very large and strongly noise-contaminated data sets that require robust and automated analysis procedures. Induced seismicity data sets are often characterized by sequences of multiple events with short interevent times or overlapping events; in these cases, pick-based location methods may struggle to correctly assign picks to phases and events, and errors can lead to missed detections and/or reduced location resolution and incorrect magnitudes, which can have significant consequences if real-time seismicity information are used for risk assessment frameworks. To overcome these issues, different waveform-based methods for the detection and location of microseismicity have been proposed. The main advantages of waveform-based methods is that they appear to perform better and can simultaneously detect and locate seismic events providing high-quality locations in a single step, while the main disadvantage is that they are computationally expensive. Although these methods have been applied to different induced seismicity data sets, an extensive comparison with sophisticated pick-based detection methods is still missing. In this work, we introduce our improved waveform-based detector and we compare its performance with two pick-based detectors implemented within the SeiscomP3 software suite. We test the performance of these three approaches with both synthetic and real data sets related to the induced seismicity sequence at the deep geothermal project in the vicinity of the city of St. Gallen, Switzerland.

  1. A duplex real-time RT-PCR assay for detecting H5N1 avian influenza virus and pandemic H1N1 influenza virus

    Directory of Open Access Journals (Sweden)

    Qin E-de

    2010-06-01

    Full Text Available Abstract A duplex real-time reverse transcriptase polymerase chain reaction (RT-PCR assay was improved for simultaneous detection of highly pathogenic H5N1 avian influenza virus and pandemic H1N1 (2009 influenza virus, which is suitable for early diagnosis of influenza-like patients and for epidemiological surveillance. The sensitivity of this duplex real-time RT-PCR assay was 0.02 TCID50 (50% tissue culture infective dose for H5N1 and 0.2 TCID50 for the pandemic H1N1, which was the same as that of each single-target RT-PCR for pandemic H1N1 and even more sensitive for H5N1 with the same primers and probes. No cross reactivity of detecting other subtype influenza viruses or respiratory tract viruses was observed. Two hundred and thirty-six clinical specimens were tested by comparing with single real-time RT-PCR and result from the duplex assay was 100% consistent with the results of single real-time RT-PCR and sequence analysis.

  2. Competitive On-Line Scheduling for Overloaded Real-Time Systems

    Science.gov (United States)

    1993-09-01

    Real - Time Systems by Gilad Koren a dissertation submitted in partial fulfillment of the requirements...Overloaded Real - Time Systems 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK...1.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2 1.1.1 Real - Time Systems : : : : : : : : : : : : : : : : : : : : : : : : : : : :

  3. Real-time micro-vibration multi-spot synchronous measurement within a region based on heterodyne interference

    Science.gov (United States)

    Lan, Ma; Xiao, Wen; Chen, Zonghui; Hao, Hongliang; Pan, Feng

    2018-01-01

    Real-time micro-vibration measurement is widely used in engineering applications. It is very difficult for traditional optical detection methods to achieve real-time need in a relatively high frequency and multi-spot synchronous measurement of a region at the same time,especially at the nanoscale. Based on the method of heterodyne interference, an experimental system of real-time measurement of micro - vibration is constructed to satisfy the demand in engineering applications. The vibration response signal is measured by combing optical heterodyne interferometry and a high-speed CMOS-DVR image acquisition system. Then, by extracting and processing multiple pixels at the same time, four digital demodulation technique are implemented to simultaneously acquire the vibrating velocity of the target from the recorded sequences of images. Different kinds of demodulation algorithms are analyzed and the results show that these four demodulation algorithms are suitable for different interference signals. Both autocorrelation algorithm and cross-correlation algorithm meet the needs of real-time measurements. The autocorrelation algorithm demodulates the frequency more accurately, while the cross-correlation algorithm is more accurate in solving the amplitude.

  4. Real-Time WGS-based Typing of VTEC Isolates for Surveillance and Outbreak Detection

    DEFF Research Database (Denmark)

    Joensen, Katrine Grimstrup; Hasman, Henrik; Scheutz, F.

    2013-01-01

    the IonTorrent PGM benchtop sequencing technology. WGS-based typing was carried out using web-based tools, developed by the Center for Genomic Epidemiology (www.genomicepidemiology.org), for determination of MLST types, virulence genes and phylogenetic relationship between the isolates. The WGS-based...... a small outbreak occurred. For all isolates, apart from one resulting in poor sequence output, the WGS-based typing led to detection of the same virulence gene variants as the routine typing, and was also able to detect many other possible virulence features, and in most instances produce a useful typing...... result faster than routine typing. Also, the WGS-approach was able to correctly detect, according to the routine typing, the isolates belonging to the outbreak. Conclusion: The real-time WGS-based typing was able to produce typing results comparable to the routine typing, at least as fast as the routine...

  5. Design and implementation of real-time wireless projection system based on ARM embedded system

    Science.gov (United States)

    Long, Zhaohua; Tang, Hao; Huang, Junhua

    2018-04-01

    Aiming at the shortage of existing real-time screen sharing system, a real-time wireless projection system is proposed in this paper. Based on the proposed system, a weight-based frame deletion strategy combined sampling time period and data variation is proposed. By implementing the system on the hardware platform, the results show that the system can achieve good results. The weight-based strategy can improve the service quality, reduce the delay and optimize the real-time customer service system [1].

  6. Recurrent high level parvovirus B19/genotype 2 viremia in a renal transplant recipient analyzed by real-time PCR for simultaneous detection of genotypes 1 to 3.

    Science.gov (United States)

    Liefeldt, Lutz; Plentz, Annelie; Klempa, Boris; Kershaw, Olivia; Endres, Anne-Sophie; Raab, Ulla; Neumayer, Hans-H; Meisel, Helga; Modrow, Susanne

    2005-01-01

    Organ transplant recipients infected with parvovirus B19 frequently develop persistent viremia associated with chronic anemia and pure red cell aplasia. In this study, a male renal transplant recipient who had been infected with parvovirus B19/genotype 2 after renal transplantation at the age of 34 years is described. The patient was repeatedly treated with high dose intravenous immunoglobulin (IVIG) that resulted in the resolvement of symptoms but not in virus eradication. During an observation period of 33 months after transplantation three phases associated with high parvovirus B19 viremia were observed. Both the first and the second viremic phases were combined with severe anemia. Parvovirus B19 specific IgM-antibodies were initially detected at the beginning of the second phase in continually rising concentrations. Initially eradication of the virus by immunoglobulin therapy was reported after the first viremic phase [Liefeldt et al. (2002): Nephrol Dial Transplant 17:1840-1842]. Retrospectively this statement has to be corrected. It was based on the use of a qualitative PCR assay specific for parvovirus B19 genotype 1 associated with reduced sensitivity for detection of genotype 2. After sequence analysis of the viral DNA and adjustment of a real-time PCR assay (TaqMan) for quantitative detection of all three B19 virus genotypes analysis of consecutive serum samples allowed the demonstration of long lasting phases with reduced viral loads following IVIG-treatment. These results demonstrate that IVIG treatment of parvovirus B19-triggered anemia in transplant recipients offers an opportunity to resolve symptoms, but does not guarantee eradication of the virus. Since reactivation of parvovirus B19 infection can result in high virus load associated with the recurrence of symptoms repeated screening for viral DNA is recommended using the TaqMan system established for quantitative detection of all three genotypes of parvovirus B19. Copyright 2005 Wiley-Liss, Inc.

  7. A study of real-time content marketing : formulating real-time content marketing based on content, search and social media

    OpenAIRE

    Nguyen, Thi Kim Duyen

    2015-01-01

    The primary objective of this research is to understand profoundly the new concept of content marketing – real-time content marketing on the aspect of the digital marketing experts. Particularly, the research will focus on the real-time content marketing theories and how to build real-time content marketing strategy based on content, search and social media. It also finds out how marketers measure and keep track of conversion rates of their real-time content marketing plan. Practically, th...

  8. Sequence-specific validation of LAMP amplicons in real-time optomagnetic detection of Dengue serotype 2 synthetic DNA

    DEFF Research Database (Denmark)

    Minero, Gabriel Khose Antonio; Nogueira, Catarina; Rizzi, Giovanni

    2017-01-01

    We report on an optomagnetic technique optimised for real-time molecular detection of Dengue fever virus under ideal as well as non-ideal laboratory conditions using two different detection approaches. The first approach is based on the detection of the hydrodynamic volume of streptavidin coated...... magnetic nanoparticles attached to biotinylated LAMP amplicons. We demonstrate detection of sub-femtomolar Dengue DNA target concentrations in the ideal contamination-free lab environment within 20 min. The second detection approach is based on sequence-specific binding of functionalised magnetic...... claim detection of down to 100 fM of Dengue target after 20 min of LAMP with a contamination background....

  9. Genome sequence of the Bacteroides fragilis phage ATCC 51477-B1

    Directory of Open Access Journals (Sweden)

    Hawkins Shawn A

    2008-08-01

    Full Text Available Abstract The genome of a fecal pollution indicator phage, Bacteroides fragilis ATCC 51477-B1, was sequenced and consisted of 44,929 bases with a G+C content of 38.7%. Forty-six putative open reading frames were identified and genes were organized into functional clusters for host specificity, lysis, replication and regulation, and packaging and structural proteins.

  10. Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli

    DEFF Research Database (Denmark)

    Joensen, Katrine Grimstrup; Scheutz, Flemming; Lund, Ole

    2014-01-01

    suspected VTEC isolates. During a 7-week period in the fall of 2012, all incoming isolates were concurrently subjected to WGS using IonTorrent PGM. Real-time bioinformatics analysis was performed using web-tools (www.genomicepidemiology.org) for species determination, multilocus sequence type (MLST) typing...

  11. Response of a diuron-degrading community to diuron exposure assessed by real-time quantitative PCR monitoring of phenylurea hydrolase A and B encoding genes

    OpenAIRE

    Pesce , S.; Beguet , J.; Rouard , N.; Devers Lamrani , M.; Martin Laurent , F.

    2013-01-01

    A real-time quantitative PCR method was developed to detect and quantify phenlylurea hydrolase genes' (puhA and puhB) sequences from environmental DNA samples to assess diuron-degrading genetic potential in some soil and sediment microbial communities. In the soil communities, mineralization rates (determined with [ring-14C]-labeled diuron) were linked to diuron-degrading genetic potentials estimated from puhB number copies, which increased following repeated diuron treatments. In the sedimen...

  12. A real-time MTFC algorithm of space remote-sensing camera based on FPGA

    Science.gov (United States)

    Zhao, Liting; Huang, Gang; Lin, Zhe

    2018-01-01

    A real-time MTFC algorithm of space remote-sensing camera based on FPGA was designed. The algorithm can provide real-time image processing to enhance image clarity when the remote-sensing camera running on-orbit. The image restoration algorithm adopted modular design. The MTF measurement calculation module on-orbit had the function of calculating the edge extension function, line extension function, ESF difference operation, normalization MTF and MTFC parameters. The MTFC image filtering and noise suppression had the function of filtering algorithm and effectively suppressing the noise. The algorithm used System Generator to design the image processing algorithms to simplify the design structure of system and the process redesign. The image gray gradient dot sharpness edge contrast and median-high frequency were enhanced. The image SNR after recovery reduced less than 1 dB compared to the original image. The image restoration system can be widely used in various fields.

  13. Internal control for real-time polymerase chain reaction based on MS2 bacteriophage for RNA viruses diagnostics.

    Science.gov (United States)

    Zambenedetti, Miriam Ribas; Pavoni, Daniela Parada; Dallabona, Andreia Cristine; Dominguez, Alejandro Correa; Poersch, Celina de Oliveira; Fragoso, Stenio Perdigão; Krieger, Marco Aurélio

    2017-05-01

    Real-time reverse transcription polymerase chain reaction (RT-PCR) is routinely used to detect viral infections. In Brazil, it is mandatory the use of nucleic acid tests to detect hepatitis C virus (HCV), hepatitis B virus and human immunodeficiency virus in blood banks because of the immunological window. The use of an internal control (IC) is necessary to differentiate the true negative results from those consequent from a failure in some step of the nucleic acid test. The aim of this study was the construction of virus-modified particles, based on MS2 bacteriophage, to be used as IC for the diagnosis of RNA viruses. The MS2 genome was cloned into the pET47b(+) plasmid, generating pET47b(+)-MS2. MS2-like particles were produced through the synthesis of MS2 RNA genome by T7 RNA polymerase. These particles were used as non-competitive IC in assays for RNA virus diagnostics. In addition, a competitive control for HCV diagnosis was developed by cloning a mutated HCV sequence into the MS2 replicase gene of pET47b(+)-MS2, which produces a non-propagating MS2 particle. The utility of MS2-like particles as IC was evaluated in a one-step format multiplex real-time RT-PCR for HCV detection. We demonstrated that both competitive and non-competitive IC could be successfully used to monitor the HCV amplification performance, including the extraction, reverse transcription, amplification and detection steps, without compromising the detection of samples with low target concentrations. In conclusion, MS2-like particles generated by this strategy proved to be useful IC for RNA virus diagnosis, with advantage that they are produced by a low cost protocol. An attractive feature of this system is that it allows the construction of a multicontrol by the insertion of sequences from more than one pathogen, increasing its applicability for diagnosing different RNA viruses.

  14. Internal control for real-time polymerase chain reaction based on MS2 bacteriophage for RNA viruses diagnostics

    Directory of Open Access Journals (Sweden)

    Miriam Ribas Zambenedetti

    Full Text Available BACKGROUND Real-time reverse transcription polymerase chain reaction (RT-PCR is routinely used to detect viral infections. In Brazil, it is mandatory the use of nucleic acid tests to detect hepatitis C virus (HCV, hepatitis B virus and human immunodeficiency virus in blood banks because of the immunological window. The use of an internal control (IC is necessary to differentiate the true negative results from those consequent from a failure in some step of the nucleic acid test. OBJECTIVES The aim of this study was the construction of virus-modified particles, based on MS2 bacteriophage, to be used as IC for the diagnosis of RNA viruses. METHODS The MS2 genome was cloned into the pET47b(+ plasmid, generating pET47b(+-MS2. MS2-like particles were produced through the synthesis of MS2 RNA genome by T7 RNA polymerase. These particles were used as non-competitive IC in assays for RNA virus diagnostics. In addition, a competitive control for HCV diagnosis was developed by cloning a mutated HCV sequence into the MS2 replicase gene of pET47b(+-MS2, which produces a non-propagating MS2 particle. The utility of MS2-like particles as IC was evaluated in a one-step format multiplex real-time RT-PCR for HCV detection. FINDINGS We demonstrated that both competitive and non-competitive IC could be successfully used to monitor the HCV amplification performance, including the extraction, reverse transcription, amplification and detection steps, without compromising the detection of samples with low target concentrations. In conclusion, MS2-like particles generated by this strategy proved to be useful IC for RNA virus diagnosis, with advantage that they are produced by a low cost protocol. An attractive feature of this system is that it allows the construction of a multicontrol by the insertion of sequences from more than one pathogen, increasing its applicability for diagnosing different RNA viruses.

  15. Real-time global illumination on mobile device

    Science.gov (United States)

    Ahn, Minsu; Ha, Inwoo; Lee, Hyong-Euk; Kim, James D. K.

    2014-02-01

    We propose a novel method for real-time global illumination on mobile devices. Our approach is based on instant radiosity, which uses a sequence of virtual point lights in order to represent the e ect of indirect illumination. Our rendering process consists of three stages. With the primary light, the rst stage generates a local illumination with the shadow map on GPU The second stage of the global illumination uses the re ective shadow map on GPU and generates the sequence of virtual point lights on CPU. Finally, we use the splatting method of Dachsbacher et al 1 and add the indirect illumination to the local illumination on GPU. With the limited computing resources in mobile devices, a small number of virtual point lights are allowed for real-time rendering. Our approach uses the multi-resolution sampling method with 3D geometry and attributes simultaneously and reduce the total number of virtual point lights. We also use the hybrid strategy, which collaboratively combines the CPUs and GPUs available in a mobile SoC due to the limited computing resources in mobile devices. Experimental results demonstrate the global illumination performance of the proposed method.

  16. Multiplex real-time PCR assay for Legionella species.

    Science.gov (United States)

    Kim, Seung Min; Jeong, Yoojung; Sohn, Jang Wook; Kim, Min Ja

    2015-12-01

    Legionella pneumophila serogroup 1 (sg1) accounts for the majority of infections in humans, but other Legionella species are also associated with human disease. In this study, a new SYBR Green I-based multiplex real-time PCR assay in a single reaction was developed to allow the rapid detection and differentiation of Legionella species by targeting specific gene sequences. Candidate target genes were selected, and primer sets were designed by referring to comparative genomic hybridization data of Legionella species. The Legionella species-specific groES primer set successfully detected all 30 Legionella strains tested. The xcpX and rfbA primers specifically detected L. pneumophila sg1-15 and L. pneumophila sg1, respectively. In addition, this assay was validated by testing clinical samples and isolates. In conclusion, this novel multiplex real-time PCR assay might be a useful diagnostic tool for the rapid detection and differentiation of Legionella species in both clinical and epidemiological studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. B1 mapping for bias-correction in quantitative T1 imaging of the brain at 3T using standard pulse sequences.

    Science.gov (United States)

    Boudreau, Mathieu; Tardif, Christine L; Stikov, Nikola; Sled, John G; Lee, Wayne; Pike, G Bruce

    2017-12-01

    B 1 mapping is important for many quantitative imaging protocols, particularly those that include whole-brain T 1 mapping using the variable flip angle (VFA) technique. However, B 1 mapping sequences are not typically available on many magnetic resonance imaging (MRI) scanners. The aim of this work was to demonstrate that B 1 mapping implemented using standard scanner product pulse sequences can produce B 1 (and VFA T 1 ) maps comparable in quality and acquisition time to advanced techniques. Six healthy subjects were scanned at 3.0T. An interleaved multislice spin-echo echo planar imaging double-angle (EPI-DA) B 1 mapping protocol, using a standard product pulse sequence, was compared to two alternative methods (actual flip angle imaging, AFI, and Bloch-Siegert shift, BS). Single-slice spin-echo DA B 1 maps were used as a reference for comparison (Ref. DA). VFA flip angles were scaled using each B 1 map prior to fitting T 1 ; the nominal flip angle case was also compared. The pooled-subject voxelwise correlation (ρ) for B 1 maps (BS/AFI/EPI-DA) relative to the reference B 1 scan (Ref. DA) were ρ = 0.92/0.95/0.98. VFA T 1 correlations using these maps were ρ = 0.86/0.88/0.96, much better than without B 1 correction (ρ = 0.53). The relative error for each B 1 map (BS/AFI/EPI-DA/Nominal) had 95 th percentiles of 5/4/3/13%. Our findings show that B 1 mapping implemented using product pulse sequences can provide excellent quality B 1 (and VFA T 1 ) maps, comparable to other custom techniques. This fast whole-brain measurement (∼2 min) can serve as an excellent alternative for researchers without access to advanced B 1 pulse sequences. 1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2017;46:1673-1682. © 2017 International Society for Magnetic Resonance in Medicine.

  18. MR defecography at 1.5 Tesla with radial real-time imaging at a reduced FOV

    International Nuclear Information System (INIS)

    Tacke, J.; Nolte-Ernsting, C.; Glowinski, A.; Adam, G.; Guenther, R.W.

    1999-01-01

    Purpose: To evaluate a new technique for MR defecography with real-time imaging using radial k-space profiles. Materials and Methods: A catheter-mounted condom was inserted into the rectum of 16 patients and filled in situ by a mixture of Nestargel trademark and Gadolinium. After multiplanar imaging of the pelvis by high resolution T 2 -weighted turbo-spin echo sequences, defecation was imaged by a gradient echo sequence with radial k-space filling using a reduced field of view (rFOV) in real-time. The documentation was performed on an S-VHS recorder. Results: At a constant background signal, radial k-space filling yields a real-time impression. An interactive software allowed the operator to modify the slice thickness, slice plane, flip angle and slice angulation during scanning, resulting in an optimum imaging quality of the defecation. Conclusions: This new imaging technique allows real-time MR defecography in a high-field scanner and provides all anatomical and functional information of the defecation. (orig.) [de

  19. Frequency Based Real-time Pricing for Residential Prosumers

    Science.gov (United States)

    Hambridge, Sarah Mabel

    This work is the first to explore frequency based pricing for secondary frequency control as a price-reactive control mechanism for residential prosumers. A frequency based real-time electricity rate is designed as an autonomous market control mechanism for residential prosumers to provide frequency support as an ancillary service. In addition, prosumers are empowered to participate in dynamic energy transactions, therefore integrating Distributed Energy Resources (DERs), and increasing distributed energy storage onto the distributed grid. As the grid transitions towards DERs, a new market based control system will take the place of the legacy distributed system and possibly the legacy bulk power system. DERs provide many benefits such as energy independence, clean generation, efficiency, and reliability to prosumers during blackouts. However, the variable nature of renewable energy and current lack of installed energy storage on the grid will create imbalances in supply and demand as uptake increases, affecting the grid frequency and system operation. Through a frequency-based electricity rate, prosumers will be encouraged to purchase energy storage systems (ESS) to offset their neighbor's distributed generation (DG) such as solar. Chapter 1 explains the deregulation of the power system and move towards Distributed System Operators (DSOs), as prosumers become owners of microgrids and energy cells connected to the distributed system. Dynamic pricing has been proposed as a benefit to prosumers, giving them the ability to make decisions in the energy market, while also providing a way to influence and control their behavior. Frequency based real-time pricing is a type of dynamic pricing which falls between price-reactive control and transactive control. Prosumer-to-prosumer transactions may take the place of prosumer-to-utility transactions, building The Energy Internet. Frequency based pricing could be a mechanism for determining prosumer prices and supporting

  20. Detection of Histoplasma capsulatum from clinical specimens by cycling probe-based real-time PCR and nested real-time PCR.

    Science.gov (United States)

    Muraosa, Yasunori; Toyotome, Takahito; Yahiro, Maki; Watanabe, Akira; Shikanai-Yasuda, Maria Aparecida; Kamei, Katsuhiko

    2016-05-01

    We developed new cycling probe-based real-time PCR and nested real-time PCR assays for the detection of Histoplasma capsulatum that were designed to detect the gene encoding N-acetylated α-linked acidic dipeptidase (NAALADase), which we previously identified as an H. capsulatum antigen reacting with sera from patients with histoplasmosis. Both assays specifically detected the DNAs of all H. capsulatum strains but not those of other fungi or human DNA. The limited of detection (LOD) of the real-time PCR assay was 10 DNA copies when using 10-fold serial dilutions of the standard plasmid DNA and 50 DNA copies when using human serum spiked with standard plasmid DNA. The nested real-time PCR improved the LOD to 5 DNA copies when using human serum spiked with standard plasmid DNA, which represents a 10-fold higher than that observed with the real-time PCR assay. To assess the ability of the two assays to diagnose histoplasmosis, we analyzed a small number of clinical specimens collected from five patients with histoplasmosis, such as sera (n = 4), formalin-fixed paraffin-embedded (FFPE) tissue (n = 4), and bronchoalveolar lavage fluid (BALF) (n = 1). Although clinical sensitivity of the real-time PCR assay was insufficiently sensitive (33%), the nested real-time PCR assay increased the clinical sensitivity (77%), suggesting it has a potential to be a useful method for detecting H. capsulatum DNA in clinical specimens. © The Author 2015. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Improved Real-time Denoising Method Based on Lifting Wavelet Transform

    Directory of Open Access Journals (Sweden)

    Liu Zhaohua

    2014-06-01

    Full Text Available Signal denoising can not only enhance the signal to noise ratio (SNR but also reduce the effect of noise. In order to satisfy the requirements of real-time signal denoising, an improved semisoft shrinkage real-time denoising method based on lifting wavelet transform was proposed. The moving data window technology realizes the real-time wavelet denoising, which employs wavelet transform based on lifting scheme to reduce computational complexity. Also hyperbolic threshold function and recursive threshold computing can ensure the dynamic characteristics of the system, in addition, it can improve the real-time calculating efficiency as well. The simulation results show that the semisoft shrinkage real-time denoising method has quite a good performance in comparison to the traditional methods, namely soft-thresholding and hard-thresholding. Therefore, this method can solve more practical engineering problems.

  2. A knowledge-based system framework for real-time monitoring applications

    International Nuclear Information System (INIS)

    Heaberlin, J.O.; Robinson, A.H.

    1989-01-01

    A real-time environment presents a challenge for knowledge-based systems for process monitoring with on-line data acquisition in nuclear power plants. These applications are typically data intensive. This, coupled with the dynamic nature of events on which problematic decisions are based, requires the development of techniques fundamentally different from those generally employed. Traditional approaches involve knowledge management techniques developed for static data, the majority of which is elicited directly from the user in a consultation environment. Inference mechanisms are generally noninterruptible, requiring all appropriate rules to be fired before new data can be accommodated. As a result, traditional knowledge-based applications in real-time environments have inherent problems in dealing with the time dependence of both the data and the solution process. For example, potential problems include obtaining a correct solution too late to be of use or focusing computing resources on problems that no longer exist. A knowledge-based system framework, the real-time framework (RTF), has been developed that can accommodate the time dependencies and resource trade-offs required for real-time process monitoring applications. This framework provides real-time functionality by using generalized problem-solving goals and control strategies that are modifiable during system operation and capable of accommodating feedback for redirection of activities

  3. European validation of a real-time PCR-based method for detection of Listeria monocytogenes in soft cheese.

    Science.gov (United States)

    Gianfranceschi, Monica Virginia; Rodriguez-Lazaro, David; Hernandez, Marta; González-García, Patricia; Comin, Damiano; Gattuso, Antonietta; Delibato, Elisabetta; Sonnessa, Michele; Pasquali, Frederique; Prencipe, Vincenza; Sreter-Lancz, Zuzsanna; Saiz-Abajo, María-José; Pérez-De-Juan, Javier; Butrón, Javier; Kozačinski, Lidija; Tomic, Danijela Horvatek; Zdolec, Nevijo; Johannessen, Gro S; Jakočiūnė, Džiuginta; Olsen, John Elmerdahl; De Santis, Paola; Lovari, Sarah; Bertasi, Barbara; Pavoni, Enrico; Paiusco, Antonella; De Cesare, Alessandra; Manfreda, Gerardo; De Medici, Dario

    2014-08-01

    The classical microbiological method for detection of Listeria monocytogenes requires around 7 days for final confirmation, and due to perishable nature of RTE food products, there is a clear need for an alternative methodology for detection of this pathogen. This study presents an international (at European level) ISO 16140-based validation trial of a non-proprietary real-time PCR-based methodology that can generate final results in the following day of the analysis. This methodology is based on an ISO compatible enrichment coupled to a bacterial DNA extraction and a consolidated real-time PCR assay. Twelve laboratories from six European countries participated in this trial, and soft cheese was selected as food model since it can represent a difficult matrix for the bacterial DNA extraction and real-time PCR amplification. The limit of detection observed was down to 10 CFU per 25 of sample, showing excellent concordance and accordance values between samples and laboratories (>75%). In addition, excellent values were obtained for relative accuracy, specificity and sensitivity (82.75%, 96.70% and 97.62%, respectively) when the results obtained for the real-time PCR-based methods were compared to those of the ISO 11290-1 standard method. An interesting observation was that the L. monocytogenes detection by the real-time PCR method was less affected in the presence of Listeria innocua in the contaminated samples, proving therefore to be more reliable than the reference method. The results of this international trial demonstrate that the evaluated real-time PCR-based method represents an excellent alterative to the ISO standard since it shows a higher performance as well as reduce the extent of the analytical process, and can be easily implemented routinely by the competent authorities and food industry laboratories. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Novel 3′-Processing Integrase Activity Assay by Real-Time PCR for Screening and Identification of HIV-1 Integrase Inhibitors

    Directory of Open Access Journals (Sweden)

    Supachai Sakkhachornphop

    2015-01-01

    Full Text Available The 3′-end processing (3′P of each viral long terminal repeat (LTR during human immunodeficiency virus type-1 (HIV-1 integration is a vital step in the HIV life cycle. Blocking the 3′P using 3′P inhibitor has recently become an attractive strategy for HIV-1 therapeutic intervention. Recently, we have developed a novel real-time PCR based assay for the detection of 3′P activity in vitro. The methodology usually involves biotinylated HIV-1 LTR, HIV-1 integrase (IN, and specific primers and probe. In this novel assay, we designed the HIV-1 LTR substrate based on a sequence with a homology to HIV-1 LTR labeled at its 3′ end with biotin on the sense strand. Two nucleotides at the 3′ end were subsequently removed by IN activity. Only two nucleotides labeled biotin were captured on an avidin-coated tube; therefore, inhibiting the binding of primers and probe results in late signals in the real-time PCR. This novel assay has successfully detected both the 3′P activity of HIV-1 IN and the anti-IN activity by Raltegravir and sodium azide agent. This real-time PCR assay has been shown to be effective and inexpensive for a high-throughput screening of novel IN inhibitors.

  5. EPMLR: sequence-based linear B-cell epitope prediction method using multiple linear regression.

    Science.gov (United States)

    Lian, Yao; Ge, Meng; Pan, Xian-Ming

    2014-12-19

    B-cell epitopes have been studied extensively due to their immunological applications, such as peptide-based vaccine development, antibody production, and disease diagnosis and therapy. Despite several decades of research, the accurate prediction of linear B-cell epitopes has remained a challenging task. In this work, based on the antigen's primary sequence information, a novel linear B-cell epitope prediction model was developed using the multiple linear regression (MLR). A 10-fold cross-validation test on a large non-redundant dataset was performed to evaluate the performance of our model. To alleviate the problem caused by the noise of negative dataset, 300 experiments utilizing 300 sub-datasets were performed. We achieved overall sensitivity of 81.8%, precision of 64.1% and area under the receiver operating characteristic curve (AUC) of 0.728. We have presented a reliable method for the identification of linear B cell epitope using antigen's primary sequence information. Moreover, a web server EPMLR has been developed for linear B-cell epitope prediction: http://www.bioinfo.tsinghua.edu.cn/epitope/EPMLR/ .

  6. The Case For Prediction-based Best-effort Real-time Systems.

    Science.gov (United States)

    1999-01-01

    Real - time Systems Peter A. Dinda Loukas Kallivokas January...DISTRIBUTION STATEMENT A Approved for Public Release Distribution Unlimited DTIG QUALBR DISSECTED X The Case For Prediction-based Best-effort Real - time Systems Peter...Mellon University Pittsburgh, PA 15213 A version of this paper appeared in the Seventh Workshop on Parallel and Distributed Real - Time Systems

  7. Determinazione quantitativa di HCV-RNA: valutazione comparativa dei saggi Abbott Real-Time e Versant bDNA v.3

    Directory of Open Access Journals (Sweden)

    Aldo Manzin

    2007-06-01

    Full Text Available Hepatitis C virus (HCV RNA measurement before, during and after antiviral therapy has become an essential tool in the management of interferon-based treatment of HCV-related infections. Conventional Polymerase Chain Reaction (PCR has been largely used to obtain quantitative data, but laborious, time-consuming post-PCR handling steps are required to gain valuable results. Real time (RT PCR now provides advantages over end-point (EP PCR due to its improved rapidity, sensitivity, reproducibility and the reduced risk of carry-over contamination, and has now proven itself to be valuable for the more precise monitoring of viral load kinetics and assessing antiviral response.The Abbott Real-Time HCV-RNA is a recently introduced assay for the automated processing of clinical samples and HCV-RNA quantitation: its basic technology relies on use of fluorescent linear probes (dynamic range using 0.5 ml as input target= 12-108 IU/mL and a hybridization/detection step at low temperature (35°C, which allows target mismatches to be tolerated. To determine the clinical application of the Abbott Real-Time assay and defining its correlation with the Bayer Versant bDNA v.3 assay, 68 consecutive samples from unselected HCV-infected patients were retrospectively analysed with RT and the results obtained using the two tests compared.A good correlation was found between RT-PCR and bDNA: 97% of samples tested had a result within a 0.5 log HCV IU/mL difference (bias=0.15 log, whereas 6 samples negative with bDNA gave positive results with Abbott RT (range, 1.89-3.07 log IU/mL and “in-house” qualitative RT-PCR assays.

  8. Securing Real-Time Sessions in an IMS-Based Architecture

    Science.gov (United States)

    Cennamo, Paolo; Fresa, Antonio; Longo, Maurizio; Postiglione, Fabio; Robustelli, Anton Luca; Toro, Francesco

    The emerging all-IP mobile network infrastructures based on 3rd Generation IP Multimedia Subsystem philosophy are characterised by radio access technology independence and ubiquitous connectivity for mobile users. Currently, great focus is being devoted to security issues since most of the security threats presently affecting the public Internet domain, and the upcoming ones as well, are going to be suffered by mobile users in the years to come. While a great deal of research activity, together with standardisation efforts and experimentations, is carried out on mechanisms for signalling protection, very few integrated frameworks for real-time multimedia data protection have been proposed in a context of IP Multimedia Subsystem, and even fewer experimental results based on testbeds are available. In this paper, after a general overview of the security issues arising in an advanced IP Multimedia Subsystem scenario, a comprehensive infrastructure for real-time multimedia data protection, based on the adoption of the Secure Real-Time Protocol, is proposed; then, the development of a testbed incorporating such functionalities, including mechanisms for key management and cryptographic context transfer, and allowing the setup of Secure Real-Time Protocol sessions is presented; finally, experimental results are provided together with quantitative assessments and comparisons of system performances for audio sessions with and without the adoption of the Secure Real-Time Protocol framework.

  9. Frame based Motion Detection for real-time Surveillance

    OpenAIRE

    Brajesh Patel; Neelam Patel

    2012-01-01

    In this paper a series of algorithm has been formed to track the feature of motion detection under surveillance system. In the proposed work a pixel variant plays a vital role in detection of moving object of a particular clip. If there is a little bit motion in a frame then it is detected very easily by calculating pixel variance. This algorithm detects the zero variation only when there is no motion in a real-time video sequence. It is simple and easier for motion detection in the fames of ...

  10. Real-time particle image velocimetry based on FPGA technology

    International Nuclear Information System (INIS)

    Iriarte Munoz, Jose Miguel

    2008-01-01

    Particle image velocimetry (PIV), based on laser sheet, is a method for image processing and calculation of distributed velocity fields.It is well established as a fluid dynamics measurement tool, being applied to liquid, gases and multiphase flows.Images of particles are processed by means of computationally demanding algorithms, what makes its real-time implementation difficult.The most probable displacements are found applying two dimensional cross-correlation function. In this work, we detail how it is possible to achieve real-time visualization of PIV method by designing an adaptive embedded architecture based on FPGA technology.We show first results of a physical field of velocity calculated by this platform system in a real-time approach. [es

  11. High-speed railway real-time localization auxiliary method based on deep neural network

    Science.gov (United States)

    Chen, Dongjie; Zhang, Wensheng; Yang, Yang

    2017-11-01

    High-speed railway intelligent monitoring and management system is composed of schedule integration, geographic information, location services, and data mining technology for integration of time and space data. Assistant localization is a significant submodule of the intelligent monitoring system. In practical application, the general access is to capture the image sequences of the components by using a high-definition camera, digital image processing technique and target detection, tracking and even behavior analysis method. In this paper, we present an end-to-end character recognition method based on a deep CNN network called YOLO-toc for high-speed railway pillar plate number. Different from other deep CNNs, YOLO-toc is an end-to-end multi-target detection framework, furthermore, it exhibits a state-of-art performance on real-time detection with a nearly 50fps achieved on GPU (GTX960). Finally, we realize a real-time but high-accuracy pillar plate number recognition system and integrate natural scene OCR into a dedicated classification YOLO-toc model.

  12. Real-Time PCR-Based Quantitation Method for the Genetically Modified Soybean Line GTS 40-3-2.

    Science.gov (United States)

    Kitta, Kazumi; Takabatake, Reona; Mano, Junichi

    2016-01-01

    This chapter describes a real-time PCR-based method for quantitation of the relative amount of genetically modified (GM) soybean line GTS 40-3-2 [Roundup Ready(®) soybean (RRS)] contained in a batch. The method targets a taxon-specific soybean gene (lectin gene, Le1) and the specific DNA construct junction region between the Petunia hybrida chloroplast transit peptide sequence and the Agrobacterium 5-enolpyruvylshikimate-3-phosphate synthase gene (epsps) sequence present in GTS 40-3-2. The method employs plasmid pMulSL2 as a reference material in order to quantify the relative amount of GTS 40-3-2 in soybean samples using a conversion factor (Cf) equal to the ratio of the RRS-specific DNA to the taxon-specific DNA in representative genuine GTS 40-3-2 seeds.

  13. Legionella confirmation in cooling tower water. Comparison of culture, real-time PCR and next generation sequencing.

    Science.gov (United States)

    Farhat, Maha; Shaheed, Raja A; Al-Ali, Haider H; Al-Ghamdi, Abdullah S; Al-Hamaqi, Ghadeer M; Maan, Hawraa S; Al-Mahfoodh, Zainab A; Al-Seba, Hussain Z

    2018-02-01

    To investigate the presence of Legionella spp in cooling tower water. Legionella proliferation in cooling tower water has serious public health implications as it can be transmitted to humans via aerosols and cause Legionnaires' disease. Samples of cooling tower water were collected from King Fahd Hospital of the University (KFHU) (Imam Abdulrahman Bin Faisal University, 2015/2016). The water samples were analyzed by a standard Legionella culture method, real-time polymerase chain reaction (RT-PCR), and 16S rRNA next-generation sequencing. In addition, the bacterial community composition was evaluated. All samples were negative by conventional Legionella culture. In contrast, all water samples yielded positive results by real-time PCR (105 to 106 GU/L). The results of 16S rRNA next generation sequencing showed high similarity and reproducibility among the water samples. The majority of sequences were Alpha-, Beta-, and Gamma-proteobacteria, and Legionella was the predominant genus. The hydrogen-oxidizing gram-negative bacterium Hydrogenophaga was present at high abundance, indicating high metabolic activity. Sphingopyxis, which is known for its resistance to antimicrobials and as a pioneer in biofilm formation, was also detected. Our findings indicate that monitoring of Legionella in cooling tower water would be enhanced by use of both conventional culturing and molecular methods.

  14. Risk-based technical specifications: Development and application of an approach to the generation of a plant specific real-time risk model

    International Nuclear Information System (INIS)

    Puglia, B.; Gallagher, D.; Amico, P.; Atefi, B.

    1992-10-01

    This report describes a process developed to convert an existing PRA into a model amenable to real time, risk-based technical specification calculations. In earlier studies (culminating in NUREG/CR-5742), several risk-based approaches to technical specification were evaluated. A real-time approach using a plant specific PRA capable of modeling plant configurations as they change was identified as the most comprehensive approach to control plant risk. A master fault tree logic model representative of-all of the core damage sequences was developed. Portions of the system fault trees were modularized and supercomponents comprised of component failures with similar effects were developed to reduce the size of the model and, quantification times. Modifications to the master fault tree logic were made to properly model the effect of maintenance and recovery actions. Fault trees representing several actuation systems not modeled in detail in the existing PRA were added to the master fault tree logic. This process was applied to the Surry NUREG-1150 Level 1 PRA. The master logic mode was confirmed. The model was then used to evaluate frequency associated with several plant configurations using the IRRAS code. For all cases analyzed computational time was less than three minutes. This document Volume 2, contains appendices A, B, and C. These provide, respectively: Surry Technical Specifications Model Database, Surry Technical Specifications Model, and a list of supercomponents used in the Surry Technical Specifications Model

  15. Complex blood flow quantification using real-time in vivo vector flow ultrasound

    DEFF Research Database (Denmark)

    Pedersen, Mads Møller; Pihl, Michael Johannes; Per, Haugaard

    A new method to define and quantify complex blood flow is presented. The standard deviations of real-time in vivo vector flow angle estimates are used. Using vector flow ultrasound imaging both carotid bifurcations of two healthy volunteers were scanned. Scanning was performed with a 7.6 MHz linear...... transducer (8670, B-K Medical, Denmark) and a commercial vector flow ultrasound scanner (ProFocus 2202, B-K Medical). Eight video sequences of one cardiac cycle were obtained. In every frame boxes were placed to define the common carotid artery(box1) and the carotid bulb(box2). The standard deviation...... for the vector angle estimates was calculated for each box in every frame. For comparison three ultrasound experts evaluated the presence of complex flow in every box. The trial was blinded. For every sequence the mean standard deviation of the vector angle estimates were calculated for box1 {39...

  16. Real-time fluorescence target/background (T/B) ratio calculation in multimodal endoscopy for detecting GI tract cancer

    Science.gov (United States)

    Jiang, Yang; Gong, Yuanzheng; Wang, Thomas D.; Seibel, Eric J.

    2017-02-01

    Multimodal endoscopy, with fluorescence-labeled probes binding to overexpressed molecular targets, is a promising technology to visualize early-stage cancer. T/B ratio is the quantitative analysis used to correlate fluorescence regions to cancer. Currently, T/B ratio calculation is post-processing and does not provide real-time feedback to the endoscopist. To achieve real-time computer assisted diagnosis (CAD), we establish image processing protocols for calculating T/B ratio and locating high-risk fluorescence regions for guiding biopsy and therapy in Barrett's esophagus (BE) patients. Methods: Chan-Vese algorithm, an active contour model, is used to segment high-risk regions in fluorescence videos. A semi-implicit gradient descent method was applied to minimize the energy function of this algorithm and evolve the segmentation. The surrounding background was then identified using morphology operation. The average T/B ratio was computed and regions of interest were highlighted based on user-selected thresholding. Evaluation was conducted on 50 fluorescence videos acquired from clinical video recordings using a custom multimodal endoscope. Results: With a processing speed of 2 fps on a laptop computer, we obtained accurate segmentation of high-risk regions examined by experts. For each case, the clinical user could optimize target boundary by changing the penalty on area inside the contour. Conclusion: Automatic and real-time procedure of calculating T/B ratio and identifying high-risk regions of early esophageal cancer was developed. Future work will increase processing speed to <5 fps, refine the clinical interface, and apply to additional GI cancers and fluorescence peptides.

  17. Development of a sensitive real-time PCR for simultaneous detection and subtyping of influenza A and B viruses

    Directory of Open Access Journals (Sweden)

    Daniela Amicizia

    2005-03-01

    Full Text Available

    A new real-time PCR assay, using melting curve analysis, was developed for the rapid and reliable detection and sub-typing of influenza A and B.

    In order to evaluate it’s specificity, cell culture surnatants positive for Respiratory Syncytial Virus, Parainfluenza Viruses 1, 2 and 3, Measles Virus, Influenza A (to evaluate Influenza B primer and B (to evaluate Influenza A primer were tested and all of the results were negative.

    A series of Influenza A and B cell culture-grown viruses were diluted in virus transport medium, titrated and tested to determine the analytical sensibility which equated to 0.64, 0.026, 0.64, 0.62 PFU for A/H1N1, A/H3N2, Victoria-like and Yamagata-like B viruses, respectively. Twenty-five specimens, collected during the 2001/02 and 2002/03 seasons, which were positive for A/H1N1 (n = 7, A/H3N2 (n = 10, B Victoria-lineage (n = 5 and B Yamagata-lineage (n = 3, were tested in order to evaluate the assay’s clinical sensitivity, all of the results were positive.

    The new real-time PCR appears to be a suitable tool for virological surveillance and the diagnosis of respiratory infections.

  18. Validation of highly accelerated real-time cardiac cine MRI with radial k-space sampling and compressed sensing in patients at 1.5T and 3T.

    Science.gov (United States)

    Haji-Valizadeh, Hassan; Rahsepar, Amir A; Collins, Jeremy D; Bassett, Elwin; Isakova, Tamara; Block, Tobias; Adluru, Ganesh; DiBella, Edward V R; Lee, Daniel C; Carr, James C; Kim, Daniel

    2018-05-01

    To validate an optimal 12-fold accelerated real-time cine MRI pulse sequence with radial k-space sampling and compressed sensing (CS) in patients at 1.5T and 3T. We used two strategies to reduce image artifacts arising from gradient delays and eddy currents in radial k-space sampling with balanced steady-state free precession readout. We validated this pulse sequence against a standard breath-hold cine sequence in two patient cohorts: a myocardial infarction (n = 16) group at 1.5T and chronic kidney disease group (n = 18) at 3T. Two readers independently performed visual analysis of 68 cine sets in four categories (myocardial definition, temporal fidelity, artifact, noise) on a 5-point Likert scale (1 = nondiagnostic, 2 = poor, 3 = adequate or moderate, 4 = good, 5 = excellent). Another reader calculated left ventricular (LV) functional parameters, including ejection fraction. Compared with standard cine, real-time cine produced nonsignificantly different visually assessed scores, except for the following categories: 1) temporal fidelity scores were significantly lower (P = 0.013) for real-time cine at both field strengths, 2) artifacts scores were significantly higher (P = 0.013) for real-time cine at both field strengths, and 3) noise scores were significantly (P = 0.013) higher for real-time cine at 1.5T. Standard and real-time cine pulse sequences produced LV functional parameters that were in good agreement (e.g., absolute mean difference in ejection fraction cine MRI pulse sequence using radial k-space sampling and CS produces good to excellent visual scores and relatively accurate LV functional parameters in patients at 1.5T and 3T. Magn Reson Med 79:2745-2751, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  19. Comparison of Directigen Flu A+B with Real Time PCR in the Diagnosis of Influenza.

    Science.gov (United States)

    Bosevska, Golubinka; Panovski, Nikola; Janceska, Elizabeta; Mikik, Vladimir; Topuzovska, Irena Kondova; Milenkovik, Zvonko

    2015-01-01

    Early diagnosis and treatment of patients with influenza is the reason why physicians need rapid high-sensitivity influenza diagnostic tests that require no complex lab equipment and can be performed and interpreted within 15 min. The Aim of this study was to compare the rapid Directigen Flu A+B test with real time PCR for detection of influenza viruses in the Republic of Macedonia. One-hundred-eight respiratory samples (combined nose and throat swabs) were routinely collected for detection of influenza virus during influenza seasons. Forty-one patients were pediatric cases and 59 were adult. Their mean age was 23 years. The patients were allocated into 6 age groups: 0-4 yrs, 5-9 yrs, 10-14 yrs, 15-19 yrs, 20-64 yrs and > 65 yrs. Each sample was tested with Directigen Flu A+B and CDC real time PCR kit for detection and typisation/subtypisation of influenza according to the lab diagnostic protocol. Directigen Flu A+B identified influenza A virus in 20 (18.5%) samples and influenza B virus in two 2 (1.9%) samples. The high specificity (100%) and PPV of Directigen Flu A+B we found in our study shows that the positive results do not need to be confirmed. The overall sensitivity of Directigen Flu A+B is 35.1% for influenza A virus and 33.0% for influenza B virus. The sensitivity for influenza A is higher among children hospitalized (45.0%) and outpatients (40.0%) versus adults. Directigen Flu A+B has relatively low sensitivity for detection of influenza viruses in combined nose and throat swabs. Negative results must be confirmed.

  20. Sequence Analysis of IncA/C and IncI1 Plasmids Isolated from Multidrug-Resistant Salmonella Newport Using Single-Molecule Real-Time Sequencing.

    Science.gov (United States)

    Cao, Guojie; Allard, Marc; Hoffmann, Maria; Muruvanda, Tim; Luo, Yan; Payne, Justin; Meng, Kevin; Zhao, Shaohua; McDermott, Patrick; Brown, Eric; Meng, Jianghong

    2018-04-05

    Multidrug-resistant (MDR) plasmids play an important role in disseminating antimicrobial resistance genes. To elucidate the antimicrobial resistance gene compositions in A/C incompatibility complex (IncA/C) plasmids carried by animal-derived MDR Salmonella Newport, and to investigate the spread mechanism of IncA/C plasmids, this study characterizes the complete nucleotide sequences of IncA/C plasmids by comparative analysis. Complete nucleotide sequencing of plasmids and chromosomes of six MDR Salmonella Newport strains was performed using PacBio RSII. Open reading frames were assigned using prokaryotic genome annotation pipeline (PGAP). To understand genomic diversity and evolutionary relationships among Salmonella Newport IncA/C plasmids, we included three complete IncA/C plasmid sequences with similar backbones from Salmonella Newport and Escherichia coli: pSN254, pAM04528, and peH4H, and additional 200 draft chromosomes. With the exception of canine isolate CVM22462, which contained an additional IncI1 plasmid, each of the six MDR Salmonella Newport strains contained only the IncA/C plasmid. These IncA/C plasmids (including references) ranged in size from 80.1 (pCVM21538) to 176.5 kb (pSN254) and carried various resistance genes. Resistance genes floR, tetA, tetR, strA, strB, sul, and mer were identified in all IncA/C plasmids. Additionally, bla CMY-2 and sugE were present in all IncA/C plasmids, excepting pCVM21538. Plasmid pCVM22462 was capable of being transferred by conjugation. The IncI1 plasmid pCVM22462b in CVM22462 carried bla CMY-2 and sugE. Our data showed that MDR Salmonella Newport strains carrying similar IncA/C plasmids clustered together in the phylogenetic tree using chromosome sequences and the IncA/C plasmids from animal-derived Salmonella Newport contained diverse resistance genes. In the current study, we analyzed genomic diversities and phylogenetic relationships among MDR Salmonella Newport using complete plasmids and chromosome

  1. Time synchronization for an Ethernet-based real-time token network

    NARCIS (Netherlands)

    Hanssen, F.T.Y.; van den Boom, Joost; Jansen, P.G.; Scholten, Johan

    We present a distributed clock synchronization algorithm. It performs clock synchronization on an Ethernet-based real-time token local area network, without the use of an external clock source. It is used to enable the token schedulers in each node to agree upon a common time. Its intended use is in

  2. Real-Time EEG-Based Happiness Detection System

    Directory of Open Access Journals (Sweden)

    Noppadon Jatupaiboon

    2013-01-01

    Full Text Available We propose to use real-time EEG signal to classify happy and unhappy emotions elicited by pictures and classical music. We use PSD as a feature and SVM as a classifier. The average accuracies of subject-dependent model and subject-independent model are approximately 75.62% and 65.12%, respectively. Considering each pair of channels, temporal pair of channels (T7 and T8 gives a better result than the other area. Considering different frequency bands, high-frequency bands (Beta and Gamma give a better result than low-frequency bands. Considering different time durations for emotion elicitation, that result from 30 seconds does not have significant difference compared with the result from 60 seconds. From all of these results, we implement real-time EEG-based happiness detection system using only one pair of channels. Furthermore, we develop games based on the happiness detection system to help user recognize and control the happiness.

  3. Perfect sequences over the real quaternions

    OpenAIRE

    Kuznetsov, Oleg

    2017-01-01

    In this Thesis, perfect sequences over the real quaternions are first considered. Definitions for the right and left periodic autocorrelation functions are given, and right and left perfect sequences introduced. It is shown that the right (left) perfection of any sequence implies the left (right) perfection, so concepts of right and left perfect sequences over the real quaternions are equivalent. Unitary transformations of the quaternion space ℍ are then considered. Using the equivalence of t...

  4. Real-time tracking of tumor motions and deformations along the leaf travel direction with the aid of a synchronized dynamic MLC leaf sequencer

    International Nuclear Information System (INIS)

    Tacke, Martin; Nill, Simeon; Oelfke, Uwe

    2007-01-01

    Advanced radiotherapeutical techniques like intensity-modulated radiation therapy (IMRT) are based on an accurate knowledge of the location of the radiation target. An accurate dose delivery, therefore, requires a method to account for the inter- and intrafractional target motion and the target deformation occurring during the course of treatment. A method to compensate in real time for changes in the position and shape of the target is the use of a dynamic multileaf collimator (MLC) technique which can be devised to automatically arrange the treatment field according to real-time image information. So far, various approaches proposed for leaf sequencers have had to rely on a priori known target motion data and have aimed to optimize the overall treatment time. Since for a real-time dose delivery the target motion is not known a priori, the velocity range of the leading leaves is restricted by a safety margin to c x v max while the following leaves can travel with an additional maximum speed to compensate for the respective target movements. Another aspect to be considered is the tongue and groove effect. A uniform radiation field can only be achieved if the leaf movements are synchronized. The method presented in this note is the first to combine a synchronizing sequencer and real-time tracking with a dynamic MLC. The newly developed algorithm is capable of online optimizing the leaf velocities by minimizing the overall treatment time while at the same time it synchronizes the leaf trajectories in order to avoid the tongue and groove effect. The simultaneous synchronization is performed with the help of an online-calculated mid-time leaf trajectory which is common for all leaf pairs and which takes into account the real-time target motion and deformation information. (note)

  5. Real-time tracking of tumor motions and deformations along the leaf travel direction with the aid of a synchronized dynamic MLC leaf sequencer.

    Science.gov (United States)

    Tacke, Martin; Nill, Simeon; Oelfke, Uwe

    2007-11-21

    Advanced radiotherapeutical techniques like intensity-modulated radiation therapy (IMRT) are based on an accurate knowledge of the location of the radiation target. An accurate dose delivery, therefore, requires a method to account for the inter- and intrafractional target motion and the target deformation occurring during the course of treatment. A method to compensate in real time for changes in the position and shape of the target is the use of a dynamic multileaf collimator (MLC) technique which can be devised to automatically arrange the treatment field according to real-time image information. So far, various approaches proposed for leaf sequencers have had to rely on a priori known target motion data and have aimed to optimize the overall treatment time. Since for a real-time dose delivery the target motion is not known a priori, the velocity range of the leading leaves is restricted by a safety margin to c x v(max) while the following leaves can travel with an additional maximum speed to compensate for the respective target movements. Another aspect to be considered is the tongue and groove effect. A uniform radiation field can only be achieved if the leaf movements are synchronized. The method presented in this note is the first to combine a synchronizing sequencer and real-time tracking with a dynamic MLC. The newly developed algorithm is capable of online optimizing the leaf velocities by minimizing the overall treatment time while at the same time it synchronizes the leaf trajectories in order to avoid the tongue and groove effect. The simultaneous synchronization is performed with the help of an online-calculated mid-time leaf trajectory which is common for all leaf pairs and which takes into account the real-time target motion and deformation information.

  6. Real-time sequence-validated loop-mediated isothermal amplification assays for detection of Middle East respiratory syndrome coronavirus (MERS-CoV.

    Directory of Open Access Journals (Sweden)

    Sanchita Bhadra

    Full Text Available The Middle East respiratory syndrome coronavirus (MERS-CoV, an emerging human coronavirus, causes severe acute respiratory illness with a 35% mortality rate. In light of the recent surge in reported infections we have developed asymmetric five-primer reverse transcription loop-mediated isothermal amplification (RT-LAMP assays for detection of MERS-CoV. Isothermal amplification assays will facilitate the development of portable point-of-care diagnostics that are crucial for management of emerging infections. The RT-LAMP assays are designed to amplify MERS-CoV genomic loci located within the open reading frame (ORF1a and ORF1b genes and upstream of the E gene. Additionally we applied one-step strand displacement probes (OSD for real-time sequence-specific verification of LAMP amplicons. Asymmetric amplification effected by incorporating a single loop primer in each assay accelerated the time-to-result of the OSD-RT-LAMP assays. The resulting assays could detect 0.02 to 0.2 plaque forming units (PFU (5 to 50 PFU/ml of MERS-CoV in infected cell culture supernatants within 30 to 50 min and did not cross-react with common human respiratory pathogens.

  7. Identification of four novel HLA-B alleles, B*1590, B*1591, B*2726, and B*4705, from an East African population by high-resolution sequence-based typing.

    Science.gov (United States)

    Luo, M; Mao, X; Plummer, F A

    2005-02-01

    We report here four novel HLA-B alleles, B*1590, B*1591, B*2726, and B*4705, identified from an East African population during sequence-based HLA-B typing. The novel alleles were confirmed by sequencing two separate polymerase chain reaction products, and by molecular cloning and sequencing multiple clones. B*1590 is identical to B*1510 at exon 2 and exon 3, except for a difference (GCCGTC) at codon 158. Sequence differences at codon 152 (GAGGTG) and codon 167 (TGGTCG) differentiate B*1591 from B*1503 at exon 3. B*2726 is identical to B*2708 at exon 2 and exon 3, except for a difference (AAGCAG) at codon 70. B*4705 was identified in three Kenyan women. The allele is identical to B*47010101/02 at exon 2 and exon 3, except for differences at codon 97 (AGGAAT) and codon 99 (TTTTAT). These new alleles have been named by the WHO Nomenclature Committee. Identification of these novel HLA-B alleles reflects the genetic diversity of this East African population.

  8. Real-time collaboration in activity-based architectures

    DEFF Research Database (Denmark)

    Bardram, Jakob Eyvind; Christensen, Henrik Bærbak

    2004-01-01

    With the growing research into mobile and ubiquitous computing, there is a need for addressing how such infrastructures can support collaboration between nomadic users. We present the activity based computing paradigm and outline a proposal for handling collaboration in an activity......-based architecture. We argue that activity-based computing establishes a natural and sound conceptual and architectural basis for session management in real-time, synchronous collaboration....

  9. Development of real-time PCR for detection and quantitation of Streptococcus parauberis.

    Science.gov (United States)

    Nguyen, T L; Lim, Y J; Kim, D-H; Austin, B

    2016-01-01

    Streptococcus parauberis is an increasing threat to aquaculture of olive flounder, Paralichthys olivaceus Temminck & Schlegel, in South Korea. We developed a real-time polymerase chain reaction (PCR) method using the TaqMan probe assay to detect and quantify S. parauberis by targeting the gyrB gene sequences, which are effective for molecular analysis of the genus Streptococcus. Our real-time PCR assay is capable of detecting 10 fg of genomic DNA per reaction. The intra- and interassay coefficient of variation (CV) values ranged from 0.42-1.95%, demonstrating that the assay has good reproducibility. There was not any cross-reactivity to Streptococcus iniae or to other streptococcal/lactococcal fish pathogens, such as S. agalactiae and Lactococcus garvieae, indicating that the assay is highly specific to S. parauberis. The results of the real-time PCR assay corresponded well to those of conventional culture assays for S. parauberis from inoculated tissue homogenates (r = 0.957; P < 0.05). Hence, this sensitive and specific real-time PCR is a valuable tool for diagnostic quantitation of S. parauberis in clinical samples. © 2014 John Wiley & Sons Ltd.

  10. Revealing the microbiota of marketed edible insects through PCR-DGGE, metagenomic sequencing and real-time PCR.

    Science.gov (United States)

    Osimani, Andrea; Milanović, Vesna; Garofalo, Cristiana; Cardinali, Federica; Roncolini, Andrea; Sabbatini, Riccardo; De Filippis, Francesca; Ercolini, Danilo; Gabucci, Claudia; Petruzzelli, Annalisa; Tonucci, Franco; Clementi, Francesca; Aquilanti, Lucia

    2018-07-02

    The present study aimed to identify the microbiota present in six species of processed edible insects produced in Thailand and marketed worldwide via the internet, namely, giant water bugs (Belostoma lutarium), black ants (Polyrhachis), winged termites (alates, Termitoidae), rhino beetles (Hyboschema contractum), mole crickets (Gryllotalpidae), and silkworm pupae (Bombyx mori). For each species, two samples of boiled, dried and salted insects were purchased. The microbial DNA was extracted from the insect samples and subjected to polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), high-throughput sequencing and qualitative real-time PCR assays. The microbiota of the analyzed samples were widely characterized by the presence of spore-forming bacteria mainly represented by the genera Bacillus and Clostridium. Moreover, the genera Anaerobacillus, Paenibacillus, Geobacillus, Pseudomonas, Stenotrophomonas, Massilia, Delftia, Lactobacillus, Staphylococcus, Streptococcus, Vagococcus, and Vibrio were also detected. Real-time PCR allowed for ascertainment of the absence of Coxiella burnetii, Shiga toxin-producing E. coli (STEC), and Pseudomonas aeruginosa in all samples. The results of this study confirm the importance of combining different molecular techniques to characterize the biodiversity of complex ecosystems such as edible insects. The presence of potential human pathogens suggests the need for a careful application of good manufacturing practices during insect processing. This study provides further data that will be useful in risk analyses of edible insects as a novel food source. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. [Clinical utility of real-time fluorescent PCR for combined detection of anaplastic lymphoma kinase and c-ros oncogene 1 receptor tyrosine kinase in non-small cell lung cancer].

    Science.gov (United States)

    Bai, D Y; Zhang, H P; Zhong, S; Suo, W H; Gao, D H; Ding, Y; Tu, J H

    2016-12-23

    Objective: To investigate the clinical application value of combined detection of ALK fusion gene and c-ros oncogene 1 receptor tyrosine kinase (ROS1) fusion gene in non-small cell lung cancer (NSCLC) using real-time fluorescent PCR. Methods: A kit for combined detection of ALK fusion gene and ROS1 fusion gene based on fluorescent PCR was used to simultaneously detect the two fusion genes in 302 cases of NSCLC specimens. The results were validated through Sanger sequencing. The consistency of the two detection methods was analyzed. Results: All 302 cases of NSCLC specimens were successfully analyzed through fluorescent PCR (302/302). 12 cases (4.0%) were found to contain ALK fusion gene, including 3 cases with ALK-M1, 3 with ALK-M2, 3 with ALK-M3, 1 with ALK-M4, and 2 with ALK-M6 fusion gene.12 cases (4.0%) were found to contain ROS1 fusion gene, including 1 case with ROS1-M7, 8 cases with ROS1-M8, 1 case with ROS1-M12, 1 case with ROS1-M14, and 1 case with double-positive ROS1-M3 and ROS1-M8 fusion genes. The total detection rate of ALK fusion gene and ROS1 fusion gene was 7.9% (24/302) and 278 cases showed to be negative for ALK fusion gene and ROS1 fusion gene. The successful detection rates for Sanger DNA sequencing were also 100%. The positive, negative and total coincidence rates obtained by real-time fluorescent PCR and by Sanger DNA sequencing were all 100%. Conclusions: The results of Sanger DNA sequencing demonstrate that the real-time fluorescent PCR assay is equally effective in detecting ALK and ROS1 fusion genes in NSCLC tissues. Furthermore, real-time fluorescent PCR assay can be used to detect trace ALK and ROS1 fusion gene simultaneously in tiny samples, and can save time and avoid repeated sampling. It is worthy of recommendation as a rapid and reliable detection technique.

  12. Development and validation of a real-time PCR assay for the detection of anguillid herpesvirus 1.

    Science.gov (United States)

    van Beurden, S J; Voorbergen-Laarman, M A; Roozenburg, I; van Tellingen, J; Haenen, O L M; Engelsma, M Y

    2016-01-01

    Anguillid herpesvirus 1 (AngHV1) causes a haemorrhagic disease with increased mortality in wild and farmed European eel, Anguilla anguilla (L.) and Japanese eel Anguilla japonica, Temminck & Schlegel). Detection of AngHV1 is currently based on virus isolation in cell culture, antibody-based typing assays or conventional PCR. We developed, optimized and concisely validated a diagnostic TaqMan probe based real-time PCR assay for the detection of AngHV1. The primers and probe target AngHV1 open reading frame 57, encoding the capsid protease and scaffold protein. Compared to conventional PCR, the developed real-time PCR is faster, less labour-intensive and has a reduced risk of cross-contamination. The real-time PCR assay was shown to be analytically sensitive and specific and has a high repeatability, efficiency and r(2) -value. The diagnostic performance of the assay was determined by testing 10% w/v organ suspensions and virus cultures from wild and farmed European eels from the Netherlands by conventional and real-time PCR. The developed real-time PCR assay is a useful tool for the rapid and sensitive detection of AngHV1 in 10% w/v organ suspensions from wild and farmed European eels. © 2015 John Wiley & Sons Ltd.

  13. Analysis of hepatitis C NS5A resistance associated polymorphisms using ultra deep single molecule real time (SMRT) sequencing.

    Science.gov (United States)

    Bergfors, Assar; Leenheer, Daniël; Bergqvist, Anders; Ameur, Adam; Lennerstrand, Johan

    2016-02-01

    Development of Hepatitis C virus (HCV) resistance against direct-acting antivirals (DAAs), including NS5A inhibitors, is an obstacle to successful treatment of HCV when DAAs are used in sub-optimal combinations. Furthermore, it has been shown that baseline (pre-existing) resistance against DAAs is present in treatment naïve-patients and this will potentially complicate future treatment strategies in different HCV genotypes (GTs). Thus the aim was to detect low levels of NS5A resistant associated variants (RAVs) in a limited sample set of treatment-naïve patients of HCV GT1a and 3a, since such polymorphisms can display in vitro resistance as high as 60000 fold. Ultra-deep single molecule real time (SMRT) sequencing with the Pacific Biosciences (PacBio) RSII instrument was used to detect these RAVs. The SMRT sequencing was conducted on ten samples; three of them positive with Sanger sequencing (GT1a Q30H and Y93N, and GT3a Y93H), five GT1a samples, and two GT3a non-positive samples. The same methods were applied to the HCV GT1a H77-plasmid in a dilution series, in order to determine the error rates of replication, which in turn was used to determine the limit of detection (LOD), as defined by mean + 3SD, of minority variants down to 0.24%. We found important baseline NS5A RAVs at levels between 0.24 and 0.5%, which could potentially have clinical relevance. This new method with low level detection of baseline RAVs could be useful in predicting the most cost-efficient combination of DAA treatment, and reduce the treatment duration for an HCV infected individual. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Real-time application of knowledge-based systems

    Science.gov (United States)

    Brumbaugh, Randal W.; Duke, Eugene L.

    1989-01-01

    The Rapid Prototyping Facility (RPF) was developed to meet a need for a facility which allows flight systems concepts to be prototyped in a manner which allows for real-time flight test experience with a prototype system. This need was focused during the development and demonstration of the expert system flight status monitor (ESFSM). The ESFSM was a prototype system developed on a LISP machine, but lack of a method for progressive testing and problem identification led to an impractical system. The RPF concept was developed, and the ATMS designed to exercise its capabilities. The ATMS Phase 1 demonstration provided a practical vehicle for testing the RPF, as well as a useful tool. ATMS Phase 2 development continues. A dedicated F-18 is expected to be assigned for facility use in late 1988, with RAV modifications. A knowledge-based autopilot is being developed using the RPF. This is a system which provides elementary autopilot functions and is intended as a vehicle for testing expert system verification and validation methods. An expert system propulsion monitor is being prototyped. This system provides real-time assistance to an engineer monitoring a propulsion system during a flight.

  15. High-speed real-time OFDM transmission based on FPGA

    Science.gov (United States)

    Xiao, Xin; Li, Fan; Yu, Jianjun

    2016-02-01

    In this paper, we review our recent research progresses on real-time orthogonal frequency division multiplexing (OFDM) transmission based on FPGA. We successfully demonstrated four-channel wavelength-division multiplexing (WDM) 256.51Gb/s 16-ary quadrature amplitude modulation (16QAM)-OFDM signal transmission system for short-reach optical amplifier free inter-connection with real-time reception. Four optical carriers are modulated by four different 16QAM-OFDM signals via 10G-class direct modulation lasers (DMLs). We achieved highest capacity real-time reception optical OFDM signal transmission over 2.4-km SMF with the bit-error ratio (BER) under soft-decision forward error correction (SD-FEC) limitation of 2.4×10-2. In order to achieve higher spectrum efficiency (SE), we demonstrate 4-channel high level QAM-OFDM transmission over 20-km SMF-28 with real-time reception. 58.72-Gb/s 256QAM-OFDM and 56.4-Gb/s 128QAM-OFDM signal transmission within 25-GHz grid is achieved with the BER under 2.4×10-2 and real-time reception.

  16. Species level identification of coagulase negative Staphylococcus spp. from buffalo using matrix-assisted laser desorption ionization-time of flight mass spectrometry and cydB real-time quantitative PCR.

    Science.gov (United States)

    Pizauro, Lucas J L; de Almeida, Camila C; Soltes, Glenn A; Slavic, Durda; Rossi-Junior, Oswaldo D; de Ávila, Fernando A; Zafalon, Luiz F; MacInnes, Janet I

    2017-05-01

    Incorrect identification of Staphylococcus spp. can have serious clinical and zoonotic repercussions. Accordingly, the aim of this study was to determine if matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and/or cydB real- time quantitative PCR (qPCR) could be used to accurately identify coagulase negative Staphylococcus spp. (CoNS) obtained from buffalo milk and milking environment samples. Seventy-five of 84 CoNS isolates could be identified to the species level (score value >1.99) using MALDI-TOF MS. However, as determined by cytochrome d ubiquinol oxidase subunit II (cydB) qPCR and by 16S RNA and cydB gene sequencing, 10S. agnetis strains were wrongly identified as S. hyicus by MALDI-TOF MS. In addition, 9 isolates identified by MALDI-TOF only to the genus level (score values between 1.70 and 1.99) could be identified to species by cydB qPCR. Our findings suggest that MALDI-TOF MS is a reliable method for rapid identification of S. chromogenes and S. epidermidis (species of interest both in human and veterinary medicine) and may be able to correctly identify other Staphylococcus spp. However, at present not all Staphylococcus spp. found in buffalo milk can be accurately identified by MALDI-TOF MS and for these organisms, the cydB qPCR developed in the current study may provide a reliable alternative method for rapid identification of CoNS species. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Reasoning about real-time systems with temporal interval logic constraints on multi-state automata

    Science.gov (United States)

    Gabrielian, Armen

    1991-01-01

    Models of real-time systems using a single paradigm often turn out to be inadequate, whether the paradigm is based on states, rules, event sequences, or logic. A model-based approach to reasoning about real-time systems is presented in which a temporal interval logic called TIL is employed to define constraints on a new type of high level automata. The combination, called hierarchical multi-state (HMS) machines, can be used to model formally a real-time system, a dynamic set of requirements, the environment, heuristic knowledge about planning-related problem solving, and the computational states of the reasoning mechanism. In this framework, mathematical techniques were developed for: (1) proving the correctness of a representation; (2) planning of concurrent tasks to achieve goals; and (3) scheduling of plans to satisfy complex temporal constraints. HMS machines allow reasoning about a real-time system from a model of how truth arises instead of merely depending of what is true in a system.

  18. GNSS global real-time augmentation positioning: Real-time precise satellite clock estimation, prototype system construction and performance analysis

    Science.gov (United States)

    Chen, Liang; Zhao, Qile; Hu, Zhigang; Jiang, Xinyuan; Geng, Changjiang; Ge, Maorong; Shi, Chuang

    2018-01-01

    Lots of ambiguities in un-differenced (UD) model lead to lower calculation efficiency, which isn't appropriate for the high-frequency real-time GNSS clock estimation, like 1 Hz. Mixed differenced model fusing UD pseudo-range and epoch-differenced (ED) phase observations has been introduced into real-time clock estimation. In this contribution, we extend the mixed differenced model for realizing multi-GNSS real-time clock high-frequency updating and a rigorous comparison and analysis on same conditions are performed to achieve the best real-time clock estimation performance taking the efficiency, accuracy, consistency and reliability into consideration. Based on the multi-GNSS real-time data streams provided by multi-GNSS Experiment (MGEX) and Wuhan University, GPS + BeiDou + Galileo global real-time augmentation positioning prototype system is designed and constructed, including real-time precise orbit determination, real-time precise clock estimation, real-time Precise Point Positioning (RT-PPP) and real-time Standard Point Positioning (RT-SPP). The statistical analysis of the 6 h-predicted real-time orbits shows that the root mean square (RMS) in radial direction is about 1-5 cm for GPS, Beidou MEO and Galileo satellites and about 10 cm for Beidou GEO and IGSO satellites. Using the mixed differenced estimation model, the prototype system can realize high-efficient real-time satellite absolute clock estimation with no constant clock-bias and can be used for high-frequency augmentation message updating (such as 1 Hz). The real-time augmentation message signal-in-space ranging error (SISRE), a comprehensive accuracy of orbit and clock and effecting the users' actual positioning performance, is introduced to evaluate and analyze the performance of GPS + BeiDou + Galileo global real-time augmentation positioning system. The statistical analysis of real-time augmentation message SISRE is about 4-7 cm for GPS, whlile 10 cm for Beidou IGSO/MEO, Galileo and about 30 cm

  19. Flanking sequence determination and specific PCR identification of transgenic wheat B102-1-2.

    Science.gov (United States)

    Cao, Jijuan; Xu, Junyi; Zhao, Tongtong; Cao, Dongmei; Huang, Xin; Zhang, Piqiao; Luan, Fengxia

    2014-01-01

    The exogenous fragment sequence and flanking sequence between the exogenous fragment and recombinant chromosome of transgenic wheat B102-1-2 were successfully acquired using genome walking technology. The newly acquired exogenous fragment encoded the full-length sequence of transformed genes with transformed plasmid and corresponding functional genes including ubi, vector pBANF-bar, vector pUbiGUSPlus, vector HSP, reporter vector pUbiGUSPlus, promoter ubiquitin, and coli DH1. A specific polymerase chain reaction (PCR) identification method for transgenic wheat B102-1-2 was established on the basis of designed primers according to flanking sequence. This established specific PCR strategy was validated by using transgenic wheat, transgenic corn, transgenic soybean, transgenic rice, and non-transgenic wheat. A specifically amplified target band was observed only in transgenic wheat B102-1-2. Therefore, this method is characterized by high specificity, high reproducibility, rapid identification, and excellent accuracy for the identification of transgenic wheat B102-1-2.

  20. Application of a molecular beacon based real-time isothermal amplification (MBRTIA) technology for simultaneous detection of Bacillus cereus and Staphylococcus aureus.

    Science.gov (United States)

    Mandappa, I M; Joglekar, Prasanna; Manonmani, H K

    2015-07-01

    A multiplex real-time isothermal amplification assay was developed using molecular beacons for the detection of Bacillus cereus and Staphylococcus aureus by targeting four important virulence genes. A correlation between targeting highly accessible DNA sequences and isothermal amplification based molecular beacon efficiency and sensitivity was demonstrated using phi(Φ)29 DNA polymerase at a constant isothermal temperature of 30 °C. It was very selective and consistently detected down to 10(1) copies of DNA. The specificity and sensitivity of this assay, when tested with pure culture were high, surpassing those of currently used PCR assays for the detection of these organisms. The molecular beacon based real-time isothermal amplification (MBRTIA) assay could be carried out entirely in 96 well plates or well strips, enabling a rapid and high-throughput detection of food borne pathogens.

  1. Real Time Radiation Monitoring Using Nanotechnology

    Science.gov (United States)

    Li, Jing (Inventor); Hanratty, James J. (Inventor); Wilkins, Richard T. (Inventor); Lu, Yijiang (Inventor)

    2016-01-01

    System and method for monitoring receipt and estimating flux value, in real time, of incident radiation, using two or more nanostructures (NSs) and associated terminals to provide closed electrical paths and to measure one or more electrical property change values .DELTA.EPV, associated with irradiated NSs, during a sequence of irradiation time intervals. Effects of irradiation, without healing and with healing, of the NSs, are separately modeled for first order and second order healing. Change values.DELTA.EPV are related to flux, to cumulative dose received by NSs, and to radiation and healing effectivity parameters and/or.mu., associated with the NS material and to the flux. Flux and/or dose are estimated in real time, based on EPV change values, using measured .DELTA.EPV values. Threshold dose for specified changes of biological origin (usually undesired) can be estimated. Effects of time-dependent radiation flux are analyzed in pre-healing and healing regimes.

  2. Real-time traffic signal optimization model based on average delay time per person

    Directory of Open Access Journals (Sweden)

    Pengpeng Jiao

    2015-10-01

    Full Text Available Real-time traffic signal control is very important for relieving urban traffic congestion. Many existing traffic control models were formulated using optimization approach, with the objective functions of minimizing vehicle delay time. To improve people’s trip efficiency, this article aims to minimize delay time per person. Based on the time-varying traffic flow data at intersections, the article first fits curves of accumulative arrival and departure vehicles, as well as the corresponding functions. Moreover, this article transfers vehicle delay time to personal delay time using average passenger load of cars and buses, employs such time as the objective function, and proposes a signal timing optimization model for intersections to achieve real-time signal parameters, including cycle length and green time. This research further implements a case study based on practical data collected at an intersection in Beijing, China. The average delay time per person and queue length are employed as evaluation indices to show the performances of the model. The results show that the proposed methodology is capable of improving traffic efficiency and is very effective for real-world applications.

  3. Real-Time PCR Typing of Escherichia coli Based on Multiple Single Nucleotide Polymorphisms--a Convenient and Rapid Method.

    Science.gov (United States)

    Lager, Malin; Mernelius, Sara; Löfgren, Sture; Söderman, Jan

    2016-01-01

    Healthcare-associated infections caused by Escherichia coli and antibiotic resistance due to extended-spectrum beta-lactamase (ESBL) production constitute a threat against patient safety. To identify, track, and control outbreaks and to detect emerging virulent clones, typing tools of sufficient discriminatory power that generate reproducible and unambiguous data are needed. A probe based real-time PCR method targeting multiple single nucleotide polymorphisms (SNP) was developed. The method was based on the multi locus sequence typing scheme of Institute Pasteur and by adaptation of previously described typing assays. An 8 SNP-panel that reached a Simpson's diversity index of 0.95 was established, based on analysis of sporadic E. coli cases (ESBL n = 27 and non-ESBL n = 53). This multi-SNP assay was used to identify the sequence type 131 (ST131) complex according to the Achtman's multi locus sequence typing scheme. However, it did not fully discriminate within the complex but provided a diagnostic signature that outperformed a previously described detection assay. Pulsed-field gel electrophoresis typing of isolates from a presumed outbreak (n = 22) identified two outbreaks (ST127 and ST131) and three different non-outbreak-related isolates. Multi-SNP typing generated congruent data except for one non-outbreak-related ST131 isolate. We consider multi-SNP real-time PCR typing an accessible primary generic E. coli typing tool for rapid and uniform type identification.

  4. A system for EPID-based real-time treatment delivery verification during dynamic IMRT treatment.

    Science.gov (United States)

    Fuangrod, Todsaporn; Woodruff, Henry C; van Uytven, Eric; McCurdy, Boyd M C; Kuncic, Zdenka; O'Connor, Daryl J; Greer, Peter B

    2013-09-01

    To design and develop a real-time electronic portal imaging device (EPID)-based delivery verification system for dynamic intensity modulated radiation therapy (IMRT) which enables detection of gross treatment delivery errors before delivery of substantial radiation to the patient. The system utilizes a comprehensive physics-based model to generate a series of predicted transit EPID image frames as a reference dataset and compares these to measured EPID frames acquired during treatment. The two datasets are using MLC aperture comparison and cumulative signal checking techniques. The system operation in real-time was simulated offline using previously acquired images for 19 IMRT patient deliveries with both frame-by-frame comparison and cumulative frame comparison. Simulated error case studies were used to demonstrate the system sensitivity and performance. The accuracy of the synchronization method was shown to agree within two control points which corresponds to approximately ∼1% of the total MU to be delivered for dynamic IMRT. The system achieved mean real-time gamma results for frame-by-frame analysis of 86.6% and 89.0% for 3%, 3 mm and 4%, 4 mm criteria, respectively, and 97.9% and 98.6% for cumulative gamma analysis. The system can detect a 10% MU error using 3%, 3 mm criteria within approximately 10 s. The EPID-based real-time delivery verification system successfully detected simulated gross errors introduced into patient plan deliveries in near real-time (within 0.1 s). A real-time radiation delivery verification system for dynamic IMRT has been demonstrated that is designed to prevent major mistreatments in modern radiation therapy.

  5. The FERMI-Elettra distributed real-time framework

    International Nuclear Information System (INIS)

    Pivetta, L.; Gaio, G.; Passuello, R.; Scalamera, G.

    2012-01-01

    FERMI-Elettra is a Free Electron Laser (FEL) based on a 1.5 GeV linac. The pulsed operation of the accelerator and the necessity to characterize and control each electron bunch requires synchronous acquisition of the beam diagnostics together with the ability to drive actuators in real-time at the linac repetition rate. The Adeos/Xenomai real-time extensions have been adopted in order to add real-time capabilities to the Linux based control system computers running the Tango software. A software communication protocol based on Gigabit Ethernet and known as Network Reflective Memory (NRM) has been developed to implement a shared memory across the whole control system, allowing computers to communicate in real-time. The NRM architecture, the real-time performance and the integration in the control system are described. (authors)

  6. Accident diagnosis system based on real-time decision tree expert system

    Science.gov (United States)

    Nicolau, Andressa dos S.; Augusto, João P. da S. C.; Schirru, Roberto

    2017-06-01

    Safety is one of the most studied topics when referring to power stations. For that reason, sensors and alarms develop an important role in environmental and human protection. When abnormal event happens, it triggers a chain of alarms that must be, somehow, checked by the control room operators. In this case, diagnosis support system can help operators to accurately identify the possible root-cause of the problem in short time. In this article, we present a computational model of a generic diagnose support system based on artificial intelligence, that was applied on the dataset of two real power stations: Angra1 Nuclear Power Plant and Santo Antônio Hydroelectric Plant. The proposed system processes all the information logged in the sequence of events before a shutdown signal using the expert's knowledge inputted into an expert system indicating the chain of events, from the shutdown signal to its root-cause. The results of both applications showed that the support system is a potential tool to help the control room operators identify abnormal events, as accidents and consequently increase the safety.

  7. Real-time CT-video registration for continuous endoscopic guidance

    Science.gov (United States)

    Merritt, Scott A.; Rai, Lav; Higgins, William E.

    2006-03-01

    Previous research has shown that CT-image-based guidance could be useful for the bronchoscopic assessment of lung cancer. This research drew upon the registration of bronchoscopic video images to CT-based endoluminal renderings of the airway tree. The proposed methods either were restricted to discrete single-frame registration, which took several seconds to complete, or required non-real-time buffering and processing of video sequences. We have devised a fast 2D/3D image registration method that performs single-frame CT-Video registration in under 1/15th of a second. This allows the method to be used for real-time registration at full video frame rates without significantly altering the physician's behavior. The method achieves its speed through a gradient-based optimization method that allows most of the computation to be performed off-line. During live registration, the optimization iteratively steps toward the locally optimal viewpoint at which a CT-based endoluminal view is most similar to a current bronchoscopic video frame. After an initial registration to begin the process (generally done in the trachea for bronchoscopy), subsequent registrations are performed in real-time on each incoming video frame. As each new bronchoscopic video frame becomes available, the current optimization is initialized using the previous frame's optimization result, allowing continuous guidance to proceed without manual re-initialization. Tests were performed using both synthetic and pre-recorded bronchoscopic video. The results show that the method is robust to initialization errors, that registration accuracy is high, and that continuous registration can proceed on real-time video at >15 frames per sec. with minimal user-intervention.

  8. NOAA’s Physical Oceanographic Real-Time Systems (PORTS(Registered))

    Science.gov (United States)

    2010-06-01

    1 NOAA’s Physical Oceanographic Real - Time Systems (PORTS®) Darren Wright and Robert Bassett National Oceanic and Atmospheric Administration...operation of several Physical Oceanographic Real - Time Systems (PORTS®). 0-933957-38-1 ©2009 MTS Report Documentation Page Form ApprovedOMB No. 0704-0188...TITLE AND SUBTITLE NOAAs Physical Oceanographic Real - Time Systems (PORTS®) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6

  9. Retrospective Reconstruction of High Temporal Resolution Cine Images from Real-Time MRI using Iterative Motion Correction

    DEFF Research Database (Denmark)

    Hansen, Michael Schacht; Sørensen, Thomas Sangild; Arai, Andrew

    2012-01-01

    acquisitions in 10 (N = 10) subjects. Acceptable image quality was obtained in all motion-corrected reconstructions, and the resulting mean image quality score was (a) Cartesian real-time: 2.48, (b) Golden Angle real-time: 1.90 (1.00–2.50), (c) Cartesian motion correction: 3.92, (d) Radial motion correction: 4...... and motion correction based on nonrigid registration and can be applied to arbitrary k-space trajectories. The method is demonstrated with real-time Cartesian imaging and Golden Angle radial acquisitions, and the motion-corrected acquisitions are compared with raw real-time images and breath-hold cine...

  10. Establishment of a novel two-probe real-time PCR for simultaneously quantification of hepatitis B virus DNA and distinguishing genotype B from non-B genotypes.

    Science.gov (United States)

    Wang, Wei; Liang, Hongpin; Zeng, Yongbin; Lin, Jinpiao; Liu, Can; Jiang, Ling; Yang, Bin; Ou, Qishui

    2014-11-01

    Establishment of a simple, rapid and economical method for quantification and genotyping of hepatitis B virus (HBV) is of great importance for clinical diagnosis and treatment of chronic hepatitis B patients. We hereby aim to develop a novel two-probe real-time PCR for simultaneous quantification of HBV viral concentration and distinguishing genotype B from non-B genotypes. Conserved primers and TaqMan probes for genotype B and non-B genotypes were designed. The linear range, detection sensitivity, specificity and repeatability of the method were assessed. 539 serum samples from HBV-infected patients were assayed, and the results were compared with commercial HBV quantification and HBV genotyping kits. The detection sensitivity of the two-probe real-time PCR was 500IU/ml; the linear range was 10(3)-10(9)IU/ml, and the intra-assay CVs and inter-assay CVs were between 0.84% and 2.80%. No cross-reaction was observed between genotypes B and non-B. Of the 539 detected samples, 509 samples were HBV DNA positive. The results showed that 54.0% (275/509) of the samples were genotype B, 39.5% (201/509) were genotype non-B and 6.5% (33/509) were mixed genotype. The coincidence rate between the method and a commercial HBV DNA genotyping kit was 95.9% (488/509, kappa=0.923, PDNA qPCR kit were achieved. A novel two-probe real-time PCR method for simultaneous quantification of HBV viral concentration and distinguishing genotype B from non-B genotypes was established. The assay was sensitive, specific and reproducible which can be applied to areas prevalent with HBV genotypes B and C, especially in China. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. A class of kernel based real-time elastography algorithms.

    Science.gov (United States)

    Kibria, Md Golam; Hasan, Md Kamrul

    2015-08-01

    In this paper, a novel real-time kernel-based and gradient-based Phase Root Seeking (PRS) algorithm for ultrasound elastography is proposed. The signal-to-noise ratio of the strain image resulting from this method is improved by minimizing the cross-correlation discrepancy between the pre- and post-compression radio frequency signals with an adaptive temporal stretching method and employing built-in smoothing through an exponentially weighted neighborhood kernel in the displacement calculation. Unlike conventional PRS algorithms, displacement due to tissue compression is estimated from the root of the weighted average of the zero-lag cross-correlation phases of the pair of corresponding analytic pre- and post-compression windows in the neighborhood kernel. In addition to the proposed one, the other time- and frequency-domain elastography algorithms (Ara et al., 2013; Hussain et al., 2012; Hasan et al., 2012) proposed by our group are also implemented in real-time using Java where the computations are serially executed or parallely executed in multiple processors with efficient memory management. Simulation results using finite element modeling simulation phantom show that the proposed method significantly improves the strain image quality in terms of elastographic signal-to-noise ratio (SNRe), elastographic contrast-to-noise ratio (CNRe) and mean structural similarity (MSSIM) for strains as high as 4% as compared to other reported techniques in the literature. Strain images obtained for the experimental phantom as well as in vivo breast data of malignant or benign masses also show the efficacy of our proposed method over the other reported techniques in the literature. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Comparison of 454 Ultra-Deep Sequencing and Allele-Specific Real-Time PCR with Regard to the Detection of Emerging Drug-Resistant Minor HIV-1 Variants after Antiretroviral Prophylaxis for Vertical Transmission.

    Directory of Open Access Journals (Sweden)

    Andrea Hauser

    Full Text Available Pregnant HIV-infected women were screened for the development of HIV-1 drug resistance after implementation of a triple-antiretroviral transmission prophylaxis as recommended by the WHO in 2006. The study offered the opportunity to compare amplicon-based 454 ultra-deep sequencing (UDS and allele-specific real-time PCR (ASPCR for the detection of drug-resistant minor variants in the HIV-1 reverse transcriptase (RT.Plasma samples from 34 Tanzanian women were previously analysed by ASPCR for key resistance mutations in the viral RT selected by AZT, 3TC, and NVP (K70R, K103N, Y181C, M184V, T215Y/F. In this study, the RT region of the same samples was investigated by amplicon-based UDS for resistance mutations using the 454 GS FLX System.Drug-resistant HIV-variants were identified in 69% (20/29 of women by UDS and in 45% (13/29 by ASPCR. The absolute number of resistance mutations identified by UDS was twice that identified by ASPCR (45 vs 24. By UDS 14 of 24 ASPCR-detected resistance mutations were identified at the same position. The overall concordance between UDS and ASPCR was 61.0% (25/41. The proportions of variants quantified by UDS were approximately 2-3 times lower than by ASPCR. Amplicon generation from samples with viral loads below 20,000 copies/ml failed more frequently by UDS compared to ASPCR (limit of detection = 650 copies/ml, resulting in missing or insufficient sequence coverage.Both methods can provide useful information about drug-resistant minor HIV-1 variants. ASPCR has a higher sensitivity than UDS, but is restricted to single resistance mutations. In contrast, UDS is limited by its requirement for high viral loads to achieve sufficient sequence coverage, but the sequence information reveals the complete resistance patterns within the genomic region analysed. Improvements to the UDS limit of detection are in progress, and UDS could then facilitate monitoring of drug-resistant minor variants in the HIV-1 quasispecies.

  13. Microgrids Real-Time Pricing Based on Clustering Techniques

    Directory of Open Access Journals (Sweden)

    Hao Liu

    2018-05-01

    Full Text Available Microgrids are widely spreading in electricity markets worldwide. Besides the security and reliability concerns for these microgrids, their operators need to address consumers’ pricing. Considering the growth of smart grids and smart meter facilities, it is expected that microgrids will have some level of flexibility to determine real-time pricing for at least some consumers. As such, the key challenge is finding an optimal pricing model for consumers. This paper, accordingly, proposes a new pricing scheme in which microgrids are able to deploy clustering techniques in order to understand their consumers’ load profiles and then assign real-time prices based on their load profile patterns. An improved weighted fuzzy average k-means is proposed to cluster load curve of consumers in an optimal number of clusters, through which the load profile of each cluster is determined. Having obtained the load profile of each cluster, real-time prices are given to each cluster, which is the best price given to all consumers in that cluster.

  14. Detection by real-time PCR and pyrosequencing of the cry1Ab and cry1Ac genes introduced in genetically modified (GM) constructs.

    Science.gov (United States)

    Debode, Frederic; Janssen, Eric; Bragard, Claude; Berben, Gilbert

    2017-08-01

    The presence of genetically modified organisms (GMOs) in food and feed is mainly detected by the use of targets focusing on promoters and terminators. As some genes are frequently used in genetically modified (GM) construction, they also constitute excellent screening elements and their use is increasing. In this paper we propose a new target for the detection of cry1Ab and cry1Ac genes by real-time polymerase chain reaction (PCR) and pyrosequencing. The specificity, sensitivity and robustness of the real-time PCR method were tested following the recommendations of international guidelines and the method met the expected performance criteria. This paper also shows how the robustness testing was assessed. This new cry1Ab/Ac method can provide a positive signal with a larger number of GM events than do the other existing methods using double dye-probes. The method permits the analysis of results with less ambiguity than the SYBRGreen method recommended by the European Reference Laboratory (EURL) GM Food and Feed (GMFF). A pyrosequencing method was also developed to gain additional information thanks to the sequence of the amplicon. This method of sequencing-by-synthesis can determine the sequence between the primers used for PCR. Pyrosequencing showed that the sequences internal to the primers present differences following the GM events considered and three different sequences were observed. The sensitivity of the pyrosequencing was tested on reference flours with a low percentage GM content and different copy numbers. Improvements in the pyrosequencing protocol provided correct sequences with 50 copies of the target. Below this copy number, the quality of the sequence was more random.

  15. A GPS-based Real-time Road Traffic Monitoring System

    Science.gov (United States)

    Tanti, Kamal Kumar

    In recent years, monitoring systems are astonishingly inclined towards ever more automatic; reliably interconnected, distributed and autonomous operation. Specifically, the measurement, logging, data processing and interpretation activities may be carried out by separate units at different locations in near real-time. The recent evolution of mobile communication devices and communication technologies has fostered a growing interest in the GIS & GPS-based location-aware systems and services. This paper describes a real-time road traffic monitoring system based on integrated mobile field devices (GPS/GSM/IOs) working in tandem with advanced GIS-based application software providing on-the-fly authentications for real-time monitoring and security enhancement. The described system is developed as a fully automated, continuous, real-time monitoring system that employs GPS sensors and Ethernet and/or serial port communication techniques are used to transfer data between GPS receivers at target points and a central processing computer. The data can be processed locally or remotely based on the requirements of client’s satisfaction. Due to the modular architecture of the system, other sensor types may be supported with minimal effort. Data on the distributed network & measurements are transmitted via cellular SIM cards to a Control Unit, which provides for post-processing and network management. The Control Unit may be remotely accessed via an Internet connection. The new system will not only provide more consistent data about the road traffic conditions but also will provide methods for integrating with other Intelligent Transportation Systems (ITS). For communication between the mobile device and central monitoring service GSM technology is used. The resulting system is characterized by autonomy, reliability and a high degree of automation.

  16. Real-time traffic sign recognition based on a general purpose GPU and deep-learning.

    Science.gov (United States)

    Lim, Kwangyong; Hong, Yongwon; Choi, Yeongwoo; Byun, Hyeran

    2017-01-01

    We present a General Purpose Graphics Processing Unit (GPGPU) based real-time traffic sign detection and recognition method that is robust against illumination changes. There have been many approaches to traffic sign recognition in various research fields; however, previous approaches faced several limitations when under low illumination or wide variance of light conditions. To overcome these drawbacks and improve processing speeds, we propose a method that 1) is robust against illumination changes, 2) uses GPGPU-based real-time traffic sign detection, and 3) performs region detecting and recognition using a hierarchical model. This method produces stable results in low illumination environments. Both detection and hierarchical recognition are performed in real-time, and the proposed method achieves 0.97 F1-score on our collective dataset, which uses the Vienna convention traffic rules (Germany and South Korea).

  17. A system for EPID-based real-time treatment delivery verification during dynamic IMRT treatment

    Energy Technology Data Exchange (ETDEWEB)

    Fuangrod, Todsaporn [Faculty of Engineering and Built Environment, School of Electrical Engineering and Computer Science, the University of Newcastle, NSW 2308 (Australia); Woodruff, Henry C.; O’Connor, Daryl J. [Faculty of Science and IT, School of Mathematical and Physical Sciences, the University of Newcastle, NSW 2308 (Australia); Uytven, Eric van; McCurdy, Boyd M. C. [Division of Medical Physics, CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba R3E 0V9 (Canada); Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada); Department of Radiology, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada); Kuncic, Zdenka [School of Physics, University of Sydney, Sydney, NSW 2006 (Australia); Greer, Peter B. [Faculty of Science and IT, School of Mathematical and Physical Sciences, the University of Newcastle, NSW 2308, Australia and Department of Radiation Oncology, Calvary Mater Newcastle Hospital, Locked Bag 7, Hunter region Mail Centre, Newcastle, NSW 2310 (Australia)

    2013-09-15

    Purpose: To design and develop a real-time electronic portal imaging device (EPID)-based delivery verification system for dynamic intensity modulated radiation therapy (IMRT) which enables detection of gross treatment delivery errors before delivery of substantial radiation to the patient.Methods: The system utilizes a comprehensive physics-based model to generate a series of predicted transit EPID image frames as a reference dataset and compares these to measured EPID frames acquired during treatment. The two datasets are using MLC aperture comparison and cumulative signal checking techniques. The system operation in real-time was simulated offline using previously acquired images for 19 IMRT patient deliveries with both frame-by-frame comparison and cumulative frame comparison. Simulated error case studies were used to demonstrate the system sensitivity and performance.Results: The accuracy of the synchronization method was shown to agree within two control points which corresponds to approximately ∼1% of the total MU to be delivered for dynamic IMRT. The system achieved mean real-time gamma results for frame-by-frame analysis of 86.6% and 89.0% for 3%, 3 mm and 4%, 4 mm criteria, respectively, and 97.9% and 98.6% for cumulative gamma analysis. The system can detect a 10% MU error using 3%, 3 mm criteria within approximately 10 s. The EPID-based real-time delivery verification system successfully detected simulated gross errors introduced into patient plan deliveries in near real-time (within 0.1 s).Conclusions: A real-time radiation delivery verification system for dynamic IMRT has been demonstrated that is designed to prevent major mistreatments in modern radiation therapy.

  18. A system for EPID-based real-time treatment delivery verification during dynamic IMRT treatment

    International Nuclear Information System (INIS)

    Fuangrod, Todsaporn; Woodruff, Henry C.; O’Connor, Daryl J.; Uytven, Eric van; McCurdy, Boyd M. C.; Kuncic, Zdenka; Greer, Peter B.

    2013-01-01

    Purpose: To design and develop a real-time electronic portal imaging device (EPID)-based delivery verification system for dynamic intensity modulated radiation therapy (IMRT) which enables detection of gross treatment delivery errors before delivery of substantial radiation to the patient.Methods: The system utilizes a comprehensive physics-based model to generate a series of predicted transit EPID image frames as a reference dataset and compares these to measured EPID frames acquired during treatment. The two datasets are using MLC aperture comparison and cumulative signal checking techniques. The system operation in real-time was simulated offline using previously acquired images for 19 IMRT patient deliveries with both frame-by-frame comparison and cumulative frame comparison. Simulated error case studies were used to demonstrate the system sensitivity and performance.Results: The accuracy of the synchronization method was shown to agree within two control points which corresponds to approximately ∼1% of the total MU to be delivered for dynamic IMRT. The system achieved mean real-time gamma results for frame-by-frame analysis of 86.6% and 89.0% for 3%, 3 mm and 4%, 4 mm criteria, respectively, and 97.9% and 98.6% for cumulative gamma analysis. The system can detect a 10% MU error using 3%, 3 mm criteria within approximately 10 s. The EPID-based real-time delivery verification system successfully detected simulated gross errors introduced into patient plan deliveries in near real-time (within 0.1 s).Conclusions: A real-time radiation delivery verification system for dynamic IMRT has been demonstrated that is designed to prevent major mistreatments in modern radiation therapy

  19. A Lecture Supporting System Based on Real-Time Learning Analytics

    Science.gov (United States)

    Shimada, Atsushi; Konomi, Shin'ichi

    2017-01-01

    A new lecture supporting system based on real-time learning analytics is proposed. Our target is on-site classrooms where teachers give their lectures, and a lot of students listen to teachers' explanation, conduct exercises etc. We utilize not only an e-Learning system, but also an e-Book system to collect real-time learning activities during the…

  20. SPARSE: quadratic time simultaneous alignment and folding of RNAs without sequence-based heuristics.

    Science.gov (United States)

    Will, Sebastian; Otto, Christina; Miladi, Milad; Möhl, Mathias; Backofen, Rolf

    2015-08-01

    RNA-Seq experiments have revealed a multitude of novel ncRNAs. The gold standard for their analysis based on simultaneous alignment and folding suffers from extreme time complexity of [Formula: see text]. Subsequently, numerous faster 'Sankoff-style' approaches have been suggested. Commonly, the performance of such methods relies on sequence-based heuristics that restrict the search space to optimal or near-optimal sequence alignments; however, the accuracy of sequence-based methods breaks down for RNAs with sequence identities below 60%. Alignment approaches like LocARNA that do not require sequence-based heuristics, have been limited to high complexity ([Formula: see text] quartic time). Breaking this barrier, we introduce the novel Sankoff-style algorithm 'sparsified prediction and alignment of RNAs based on their structure ensembles (SPARSE)', which runs in quadratic time without sequence-based heuristics. To achieve this low complexity, on par with sequence alignment algorithms, SPARSE features strong sparsification based on structural properties of the RNA ensembles. Following PMcomp, SPARSE gains further speed-up from lightweight energy computation. Although all existing lightweight Sankoff-style methods restrict Sankoff's original model by disallowing loop deletions and insertions, SPARSE transfers the Sankoff algorithm to the lightweight energy model completely for the first time. Compared with LocARNA, SPARSE achieves similar alignment and better folding quality in significantly less time (speedup: 3.7). At similar run-time, it aligns low sequence identity instances substantially more accurate than RAF, which uses sequence-based heuristics. © The Author 2015. Published by Oxford University Press.

  1. Performance characteristics and comparison of Abbott and artus real-time systems for hepatitis B virus DNA quantification.

    Science.gov (United States)

    Ismail, Ashrafali M; Sivakumar, Jayashree; Anantharam, Raghavendran; Dayalan, Sujitha; Samuel, Prasanna; Fletcher, Gnanadurai J; Gnanamony, Manu; Abraham, Priya

    2011-09-01

    Virological monitoring of hepatitis B virus (HBV) DNA is critical to the management of HBV infection. With several HBV DNA quantification assays available, it is important to use the most efficient testing system for virological monitoring. In this study, we evaluated the performance characteristics and comparability of three HBV DNA quantification systems: Abbott HBV real-time PCR (Abbott PCR), artus HBV real-time PCR with QIAamp DNA blood kit purification (artus-DB), and artus HBV real-time PCR with the QIAamp DSP virus kit purification (artus-DSP). The lower limits of detection of these systems were established against the WHO international standards for HBV DNA and were found to be 1.43, 82, and 9 IU/ml, respectively. The intra-assay and interassay coefficients of variation of plasma samples (1 to 6 log(10) IU/ml) ranged between 0.05 to 8.34% and 0.16 to 3.48% for the Abbott PCR, 1.53 to 26.85% and 0.50 to 12.89% for artus-DB, and 0.29 to 7.42% and 0.94 to 3.01% for artus-DSP, respectively. Ninety HBV clinical samples were used for comparison of assays, and paired quantitative results showed strong correlation by linear regression analysis (artus-DB with Abbott PCR, r = 0.95; Abbott PCR with artus-DSP, r = 0.97; and artus-DSP with artus-DB, r = 0.94). Bland-Altman analysis showed a good level of agreement for Abbott PCR and artus-DSP, with a mean difference of 0.10 log(10) IU/ml and limits of agreement of -0.91 to 1.11 log(10) IU/ml. No genotype-specific bias was seen in all three systems for HBV genotypes A, C, and D, which are predominant in this region. This finding illustrates that the Abbott real-time HBV and artus-DSP systems show more comparable performance than the artus-DB system, meeting the current guidelines for assays to be used in the management of hepatitis B.

  2. The Raptor Real-Time Processing Architecture

    Science.gov (United States)

    Galassi, M.; Starr, D.; Wozniak, P.; Brozdin, K.

    The primary goal of Raptor is ambitious: to identify interesting optical transients from very wide field of view telescopes in real time, and then to quickly point the higher resolution Raptor ``fovea'' cameras and spectrometer to the location of the optical transient. The most interesting of Raptor's many applications is the real-time search for orphan optical counterparts of Gamma Ray Bursts. The sequence of steps (data acquisition, basic calibration, source extraction, astrometry, relative photometry, the smarts of transient identification and elimination of false positives, telescope pointing feedback, etc.) is implemented with a ``component'' approach. All basic elements of the pipeline functionality have been written from scratch or adapted (as in the case of SExtractor for source extraction) to form a consistent modern API operating on memory resident images and source lists. The result is a pipeline which meets our real-time requirements and which can easily operate as a monolithic or distributed processing system. Finally, the Raptor architecture is entirely based on free software (sometimes referred to as ``open source'' software). In this paper we also discuss the interplay between various free software technologies in this type of astronomical problem.

  3. Multilocus Sequence Analysis and rpoB Sequencing of Mycobacterium abscessus (Sensu Lato) Strains▿

    Science.gov (United States)

    Macheras, Edouard; Roux, Anne-Laure; Bastian, Sylvaine; Leão, Sylvia Cardoso; Palaci, Moises; Sivadon-Tardy, Valérie; Gutierrez, Cristina; Richter, Elvira; Rüsch-Gerdes, Sabine; Pfyffer, Gaby; Bodmer, Thomas; Cambau, Emmanuelle; Gaillard, Jean-Louis; Heym, Beate

    2011-01-01

    Mycobacterium abscessus, Mycobacterium bolletii, and Mycobacterium massiliense (Mycobacterium abscessus sensu lato) are closely related species that currently are identified by the sequencing of the rpoB gene. However, recent studies show that rpoB sequencing alone is insufficient to discriminate between these species, and some authors have questioned their current taxonomic classification. We studied here a large collection of M. abscessus (sensu lato) strains by partial rpoB sequencing (752 bp) and multilocus sequence analysis (MLSA). The final MLSA scheme developed was based on the partial sequences of eight housekeeping genes: argH, cya, glpK, gnd, murC, pgm, pta, and purH. The strains studied included the three type strains (M. abscessus CIP 104536T, M. massiliense CIP 108297T, and M. bolletii CIP 108541T) and 120 isolates recovered between 1997 and 2007 in France, Germany, Switzerland, and Brazil. The rpoB phylogenetic tree confirmed the existence of three main clusters, each comprising the type strain of one species. However, divergence values between the M. massiliense and M. bolletii clusters all were below 3% and between the M. abscessus and M. massiliense clusters were from 2.66 to 3.59%. The tree produced using the concatenated MLSA gene sequences (4,071 bp) also showed three main clusters, each comprising the type strain of one species. The M. abscessus cluster had a bootstrap value of 100% and was mostly compact. Bootstrap values for the M. massiliense and M. bolletii branches were much lower (71 and 61%, respectively), with the M. massiliense cluster having a fuzzy aspect. Mean (range) divergence values were 2.17% (1.13 to 2.58%) between the M. abscessus and M. massiliense clusters, 2.37% (1.5 to 2.85%) between the M. abscessus and M. bolletii clusters, and 2.28% (0.86 to 2.68%) between the M. massiliense and M. bolletii clusters. Adding the rpoB sequence to the MLSA-concatenated sequence (total sequence, 4,823 bp) had little effect on the clustering

  4. Multilocus sequence analysis and rpoB sequencing of Mycobacterium abscessus (sensu lato) strains.

    Science.gov (United States)

    Macheras, Edouard; Roux, Anne-Laure; Bastian, Sylvaine; Leão, Sylvia Cardoso; Palaci, Moises; Sivadon-Tardy, Valérie; Gutierrez, Cristina; Richter, Elvira; Rüsch-Gerdes, Sabine; Pfyffer, Gaby; Bodmer, Thomas; Cambau, Emmanuelle; Gaillard, Jean-Louis; Heym, Beate

    2011-02-01

    Mycobacterium abscessus, Mycobacterium bolletii, and Mycobacterium massiliense (Mycobacterium abscessus sensu lato) are closely related species that currently are identified by the sequencing of the rpoB gene. However, recent studies show that rpoB sequencing alone is insufficient to discriminate between these species, and some authors have questioned their current taxonomic classification. We studied here a large collection of M. abscessus (sensu lato) strains by partial rpoB sequencing (752 bp) and multilocus sequence analysis (MLSA). The final MLSA scheme developed was based on the partial sequences of eight housekeeping genes: argH, cya, glpK, gnd, murC, pgm, pta, and purH. The strains studied included the three type strains (M. abscessus CIP 104536(T), M. massiliense CIP 108297(T), and M. bolletii CIP 108541(T)) and 120 isolates recovered between 1997 and 2007 in France, Germany, Switzerland, and Brazil. The rpoB phylogenetic tree confirmed the existence of three main clusters, each comprising the type strain of one species. However, divergence values between the M. massiliense and M. bolletii clusters all were below 3% and between the M. abscessus and M. massiliense clusters were from 2.66 to 3.59%. The tree produced using the concatenated MLSA gene sequences (4,071 bp) also showed three main clusters, each comprising the type strain of one species. The M. abscessus cluster had a bootstrap value of 100% and was mostly compact. Bootstrap values for the M. massiliense and M. bolletii branches were much lower (71 and 61%, respectively), with the M. massiliense cluster having a fuzzy aspect. Mean (range) divergence values were 2.17% (1.13 to 2.58%) between the M. abscessus and M. massiliense clusters, 2.37% (1.5 to 2.85%) between the M. abscessus and M. bolletii clusters, and 2.28% (0.86 to 2.68%) between the M. massiliense and M. bolletii clusters. Adding the rpoB sequence to the MLSA-concatenated sequence (total sequence, 4,823 bp) had little effect on the

  5. Real-time trafficking and signaling of the glucagon-like peptide-1 receptor

    DEFF Research Database (Denmark)

    Roed, Sarah Noerklit; Wismann, Pernille; Underwood, Christina Rye

    2014-01-01

    The glucagon-like peptide-1 incretin receptor (GLP-1R) of family B G protein-coupled receptors (GPCRs) is a major drug target in type-2-diabetes due to its regulatory effect on post-prandial blood-glucose levels. The mechanism(s) controlling GLP-1R mediated signaling are far from fully understood....... A fundamental mechanism controlling the signaling capacity of GPCRs is the post-endocytic trafficking of receptors between recycling and degradative fates. Here, we combined microscopy with novel real-time assays to monitor both receptor trafficking and signaling in living cells. We find that the human GLP-1R...

  6. Impact of inter-genotypic recombination and probe cross-reactivity on the performance of the Abbott RealTime HCV Genotype II assay for hepatitis C genotyping.

    Science.gov (United States)

    Sridhar, Siddharth; Yip, Cyril C Y; Chan, Jasper F W; To, Kelvin K W; Cheng, Vincent C C; Yuen, Kwok-Yung

    2018-05-01

    The Abbott RealTime HCV Genotype II assay (Abbott-RT-HCV assay) is a real-time PCR based genotyping method for hepatitis C virus (HCV). This study measured the impact of inter-genotypic recombination and probe cross-reactivity on the performance of the Abbott-RT-HCV assay. 517 samples were genotyped using the Abbott-RT-HCV assay over a one-year period, 34 (6.6%) were identified as HCV genotype 1 without further subtype designation raising the possibility of inaccurate genotyping. These samples were subjected to confirmatory sequencing. 27 of these 34 (79%) samples were genotype 1b while five (15%) were genotype 6. One HCV isolate was an inter-genotypic 1a/4o recombinant. This is a novel natural HCV recombinant that has never been reported. Inter-genotypic recombination and probe cross-reactivity can affect the accuracy of the Abbott-RT-HCV assay, both of which have significant implications on antiviral regimen choice. Confirmatory sequencing of ambiguous results is crucial for accurate genotyping. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Evaluation of a novel real-time PCR test based on the ssrA gene for the identification of group B streptococci in vaginal swabs.

    LENUS (Irish Health Repository)

    Wernecke, Martina

    2009-01-01

    BACKGROUND: Despite the implementation of prevention guidelines, early-onset group B streptococci (GBS) disease remains a cause of neonatal morbidity and mortality worldwide. Strategies to identify women who are at risk of transmitting GBS to their infant and the administration of intrapartum antibiotics have greatly reduced the incidence of neonatal GBS disease. However, there is a requirement for a rapid diagnostic test for GBS that can be carried out in a labour ward setting especially for women whose GBS colonisation status is unknown at the time of delivery. We report the design and evaluation of a real-time PCR test (RiboSEQ GBS test) for the identification of GBS in vaginal swabs from pregnant women. METHODS: The qualitative real-time PCR RiboSEQ GBS test was designed based on the bacterial ssrA gene and incorporates a competitive internal standard control. The analytical sensitivity of the test was established using crude lysate extracted from serial dilutions of overnight GBS culture using the IDI Lysis kit. Specificity studies were performed using DNA prepared from a panel of GBS strains, related streptococci and other species found in the genital tract environment. The RiboSEQ GBS test was evaluated on 159 vaginal swabs from pregnant women and compared with the GeneOhm StrepB Assay and culture for the identification of GBS. RESULTS: The RiboSEQ GBS test is specific and has an analytical sensitivity of 1-10 cell equivalents. The RiboSEQ GBS test was 96.4% sensitive and 95.8% specific compared to "gold standard" culture for the identification of GBS in vaginal swabs from pregnant women. In this study, the RiboSEQ GBS test performed slightly better than the commercial BD GeneOhm StrepB Assay which gave a sensitivity of 94.6% and a specificity of 89.6% compared to culture. CONCLUSION: The RiboSEQ GBS test is a valuable method for the rapid, sensitive and specific detection of GBS in pregnant women. This study also validates the ssrA gene as a suitable and

  8. Real-Time Location-Based Rendering of Urban Underground Pipelines

    Directory of Open Access Journals (Sweden)

    Wei Li

    2018-01-01

    Full Text Available The concealment and complex spatial relationships of urban underground pipelines present challenges in managing them. Recently, augmented reality (AR has been a hot topic around the world, because it can enhance our perception of reality by overlaying information about the environment and its objects onto the real world. Using AR, underground pipelines can be displayed accurately, intuitively, and in real time. We analyzed the characteristics of AR and their application in underground pipeline management. We mainly focused on the AR pipeline rendering procedure based on the BeiDou Navigation Satellite System (BDS and simultaneous localization and mapping (SLAM technology. First, in aiming to improve the spatial accuracy of pipeline rendering, we used differential corrections received from the Ground-Based Augmentation System to compute the precise coordinates of users in real time, which helped us accurately retrieve and draw pipelines near the users, and by scene recognition the accuracy can be further improved. Second, in terms of pipeline rendering, we used Visual-Inertial Odometry (VIO to track the rendered objects and made some improvements to visual effects, which can provide steady dynamic tracking of pipelines even in relatively markerless environments and outdoors. Finally, we used the occlusion method based on real-time 3D reconstruction to realistically express the immersion effect of underground pipelines. We compared our methods to the existing methods and concluded that the method proposed in this research improves the spatial accuracy of pipeline rendering and the portability of the equipment. Moreover, the updating of our rendering procedure corresponded with the moving of the user’s location, thus we achieved a dynamic rendering of pipelines in the real environment.

  9. Toward metrological traceability for DNA fragment ratios in GM quantification. 1. Effect of DNA extraction methods on the quantitative determination of Bt176 corn by real-time PCR.

    Science.gov (United States)

    Corbisier, Philippe; Broothaerts, Wim; Gioria, Sabrina; Schimmel, Heinz; Burns, Malcolm; Baoutina, Anna; Emslie, Kerry R; Furui, Satoshi; Kurosawa, Yasunori; Holden, Marcia J; Kim, Hyong-Ha; Lee, Yun-Mi; Kawaharasaki, Mamoru; Sin, Della; Wang, Jing

    2007-05-02

    An international CCQM-P60 pilot study involving eight national metrological institutes was organized to investigate if the quantification of genetically modified (GM) corn powder by real-time PCR was affected by the DNA extraction method applied. Four commonly used extraction methods were compared for the extraction of DNA from a GM Bt176 corn powder. The CTAB-based method yielded the highest DNA template quantity and quality. A difference in the 260 nm/230 nm absorbance ratio was observed among the different extraction methods. Real-time amplification of sequences specific for endogenous genes zein and hmg as well as transgenic sequences within the cryIA(b) gene and a fragment covering the junction between the transformed DNA and the plant genome were used to determine the GM percentage. The detection of the transgenic gene was affected by the quantity and quality of template used for the PCR reaction. The Bt176 percentages measured on diluted or purified templates were statistically different depending on the extraction method applied.

  10. Real-time underwater object detection based on an electrically scanned high-resolution sonar

    DEFF Research Database (Denmark)

    Henriksen, Lars

    1994-01-01

    The paper describes an approach to real time detection and tracking of underwater objects, using image sequences from an electrically scanned high-resolution sonar. The use of a high resolution sonar provides a good estimate of the location of the objects, but strains the computers on board, beca...

  11. An Overview on Base Real-Time Hard Shadow Techniques in Virtual Environments

    Directory of Open Access Journals (Sweden)

    Mohd Shahrizal Sunar

    2012-03-01

    Full Text Available Shadows are elegant to create a realistic scene in virtual environments variety type of shadow techniques encourage us to prepare an overview on all base shadow techniques. Non real-time and real-time techniques are big subdivision of shadow generation. In non real-time techniques ray tracing, ray casting and radiosity are well known and are described deeply. Radiosity is implemented to create very realistic shadow on non real-time scene. Although traditional radiosity algorithm is difficult to implement, we have proposed a simple one. The proposed pseudo code is easier to understand and implement. Ray tracing is used to prevent of collision of movement objects. Projection shadow, shadow volume and shadow mapping are used to create real-time shadow in virtual environments. We have used projection shadow for some objects are static and have shadow on flat surface. Shadow volume is used to create accurate shadow with sharp outline. Shadow mapping that is the base of most recently techniques is reconstructed. The reconstruct algorithm gives some new idea to propose another algorithm based on shadow mapping.

  12. SPARSE: quadratic time simultaneous alignment and folding of RNAs without sequence-based heuristics

    Science.gov (United States)

    Will, Sebastian; Otto, Christina; Miladi, Milad; Möhl, Mathias; Backofen, Rolf

    2015-01-01

    Motivation: RNA-Seq experiments have revealed a multitude of novel ncRNAs. The gold standard for their analysis based on simultaneous alignment and folding suffers from extreme time complexity of O(n6). Subsequently, numerous faster ‘Sankoff-style’ approaches have been suggested. Commonly, the performance of such methods relies on sequence-based heuristics that restrict the search space to optimal or near-optimal sequence alignments; however, the accuracy of sequence-based methods breaks down for RNAs with sequence identities below 60%. Alignment approaches like LocARNA that do not require sequence-based heuristics, have been limited to high complexity (≥ quartic time). Results: Breaking this barrier, we introduce the novel Sankoff-style algorithm ‘sparsified prediction and alignment of RNAs based on their structure ensembles (SPARSE)’, which runs in quadratic time without sequence-based heuristics. To achieve this low complexity, on par with sequence alignment algorithms, SPARSE features strong sparsification based on structural properties of the RNA ensembles. Following PMcomp, SPARSE gains further speed-up from lightweight energy computation. Although all existing lightweight Sankoff-style methods restrict Sankoff’s original model by disallowing loop deletions and insertions, SPARSE transfers the Sankoff algorithm to the lightweight energy model completely for the first time. Compared with LocARNA, SPARSE achieves similar alignment and better folding quality in significantly less time (speedup: 3.7). At similar run-time, it aligns low sequence identity instances substantially more accurate than RAF, which uses sequence-based heuristics. Availability and implementation: SPARSE is freely available at http://www.bioinf.uni-freiburg.de/Software/SPARSE. Contact: backofen@informatik.uni-freiburg.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25838465

  13. Near real-time estimation of ionosphere vertical total electron content from GNSS satellites using B-splines in a Kalman filter

    Science.gov (United States)

    Erdogan, Eren; Schmidt, Michael; Seitz, Florian; Durmaz, Murat

    2017-02-01

    Although the number of terrestrial global navigation satellite system (GNSS) receivers supported by the International GNSS Service (IGS) is rapidly growing, the worldwide rather inhomogeneously distributed observation sites do not allow the generation of high-resolution global ionosphere products. Conversely, with the regionally enormous increase in highly precise GNSS data, the demands on (near) real-time ionosphere products, necessary in many applications such as navigation, are growing very fast. Consequently, many analysis centers accepted the responsibility of generating such products. In this regard, the primary objective of our work is to develop a near real-time processing framework for the estimation of the vertical total electron content (VTEC) of the ionosphere using proper models that are capable of a global representation adapted to the real data distribution. The global VTEC representation developed in this work is based on a series expansion in terms of compactly supported B-spline functions, which allow for an appropriate handling of the heterogeneous data distribution, including data gaps. The corresponding series coefficients and additional parameters such as differential code biases of the GNSS satellites and receivers constitute the set of unknown parameters. The Kalman filter (KF), as a popular recursive estimator, allows processing of the data immediately after acquisition and paves the way of sequential (near) real-time estimation of the unknown parameters. To exploit the advantages of the chosen data representation and the estimation procedure, the B-spline model is incorporated into the KF under the consideration of necessary constraints. Based on a preprocessing strategy, the developed approach utilizes hourly batches of GPS and GLONASS observations provided by the IGS data centers with a latency of 1 h in its current realization. Two methods for validation of the results are performed, namely the self consistency analysis and a comparison

  14. Real-time DSP implementation for MRF-based video motion detection.

    Science.gov (United States)

    Dumontier, C; Luthon, F; Charras, J P

    1999-01-01

    This paper describes the real time implementation of a simple and robust motion detection algorithm based on Markov random field (MRF) modeling, MRF-based algorithms often require a significant amount of computations. The intrinsic parallel property of MRF modeling has led most of implementations toward parallel machines and neural networks, but none of these approaches offers an efficient solution for real-world (i.e., industrial) applications. Here, an alternative implementation for the problem at hand is presented yielding a complete, efficient and autonomous real-time system for motion detection. This system is based on a hybrid architecture, associating pipeline modules with one asynchronous module to perform the whole process, from video acquisition to moving object masks visualization. A board prototype is presented and a processing rate of 15 images/s is achieved, showing the validity of the approach.

  15. Real-time electricity pricing mechanism in China based on system dynamics

    International Nuclear Information System (INIS)

    He, Yongxiu; Zhang, Jixiang

    2015-01-01

    Highlights: • The system dynamics is used to research the real-time electricity pricing mechanism. • Four kinds of the real-time electricity pricing models are carried out and simulated. • It analysed the electricity price, the user satisfaction and the social benefits under the different models. • Market pricing is the trend of the real-time electricity pricing mechanism. • Initial development path of the real-time price mechanism for China is designed between 2015 and 2030. - Abstract: As an important means of demand-side response, the reasonable formulation of the electricity price mechanism will have an important impact on the balance between the supply and demand of electric power. With the introduction of Chinese intelligence apparatus and the rapid development of smart grids, real-time electricity pricing, as the frontier electricity pricing mechanism in the smart grid, will have great significance on the promotion of energy conservation and the improvement of the total social surplus. From the perspective of system dynamics, this paper studies different real-time electricity pricing mechanisms based on load structure, cost structure and bidding and analyses the situation of user satisfaction and the total social surplus under different pricing mechanisms. Finally, through the comparative analysis of examples under different real-time pricing scenarios, this paper aims to explore and design the future dynamic real-time electricity pricing mechanism in China, predicts the dynamic real-time pricing level and provides a reference for real-time electricity price promotion in the future

  16. Dual-EKF-Based Real-Time Celestial Navigation for Lunar Rover

    Directory of Open Access Journals (Sweden)

    Li Xie

    2012-01-01

    Full Text Available A key requirement of lunar rover autonomous navigation is to acquire state information accurately in real-time during its motion and set up a gradual parameter-based nonlinear kinematics model for the rover. In this paper, we propose a dual-extended-Kalman-filter- (dual-EKF- based real-time celestial navigation (RCN method. The proposed method considers the rover position and velocity on the lunar surface as the system parameters and establishes a constant velocity (CV model. In addition, the attitude quaternion is considered as the system state, and the quaternion differential equation is established as the state equation, which incorporates the output of angular rate gyroscope. Therefore, the measurement equation can be established with sun direction vector from the sun sensor and speed observation from the speedometer. The gyro continuous output ensures the algorithm real-time operation. Finally, we use the dual-EKF method to solve the system equations. Simulation results show that the proposed method can acquire the rover position and heading information in real time and greatly improve the navigation accuracy. Our method overcomes the disadvantage of the cumulative error in inertial navigation.

  17. Heritable heading time variation in wheat lines with the same number of Ppd-B1 gene copies.

    Science.gov (United States)

    Ivaničová, Zuzana; Valárik, Miroslav; Pánková, Kateřina; Trávníčková, Martina; Doležel, Jaroslav; Šafář, Jan; Milec, Zbyněk

    2017-01-01

    The ability of plants to identify an optimal flowering time is critical for ensuring the production of viable seeds. The main environmental factors that influence the flowering time include the ambient temperature and day length. In wheat, the ability to assess the day length is controlled by photoperiod (Ppd) genes. Due to its allohexaploid nature, bread wheat carries the following three Ppd-1 genes: Ppd-A1, Ppd-B1 and Ppd-D1. While photoperiod (in)sensitivity controlled by Ppd-A1 and Ppd-D1 is mainly determined by sequence changes in the promoter region, the impact of the Ppd-B1 alleles on the heading time has been linked to changes in the copy numbers (and possibly their methylation status) and sequence changes in the promoter region. Here, we report that plants with the same number of Ppd-B1 copies may have different heading times. Differences were observed among F7 lines derived from crossing two spring hexaploid wheat varieties. Several lines carrying three copies of Ppd-B1 headed 16 days later than other plants in the population with the same number of gene copies. This effect was associated with changes in the gene expression level and methylation of the Ppd-B1 gene.

  18. Heritable heading time variation in wheat lines with the same number of Ppd-B1 gene copies.

    Directory of Open Access Journals (Sweden)

    Zuzana Ivaničová

    Full Text Available The ability of plants to identify an optimal flowering time is critical for ensuring the production of viable seeds. The main environmental factors that influence the flowering time include the ambient temperature and day length. In wheat, the ability to assess the day length is controlled by photoperiod (Ppd genes. Due to its allohexaploid nature, bread wheat carries the following three Ppd-1 genes: Ppd-A1, Ppd-B1 and Ppd-D1. While photoperiod (insensitivity controlled by Ppd-A1 and Ppd-D1 is mainly determined by sequence changes in the promoter region, the impact of the Ppd-B1 alleles on the heading time has been linked to changes in the copy numbers (and possibly their methylation status and sequence changes in the promoter region. Here, we report that plants with the same number of Ppd-B1 copies may have different heading times. Differences were observed among F7 lines derived from crossing two spring hexaploid wheat varieties. Several lines carrying three copies of Ppd-B1 headed 16 days later than other plants in the population with the same number of gene copies. This effect was associated with changes in the gene expression level and methylation of the Ppd-B1 gene.

  19. Modeling Interdependent and Periodic Real-World Action Sequences

    Science.gov (United States)

    Kurashima, Takeshi; Althoff, Tim; Leskovec, Jure

    2018-01-01

    Mobile health applications, including those that track activities such as exercise, sleep, and diet, are becoming widely used. Accurately predicting human actions in the real world is essential for targeted recommendations that could improve our health and for personalization of these applications. However, making such predictions is extremely difficult due to the complexities of human behavior, which consists of a large number of potential actions that vary over time, depend on each other, and are periodic. Previous work has not jointly modeled these dynamics and has largely focused on item consumption patterns instead of broader types of behaviors such as eating, commuting or exercising. In this work, we develop a novel statistical model, called TIPAS, for Time-varying, Interdependent, and Periodic Action Sequences. Our approach is based on personalized, multivariate temporal point processes that model time-varying action propensities through a mixture of Gaussian intensities. Our model captures short-term and long-term periodic interdependencies between actions through Hawkes process-based self-excitations. We evaluate our approach on two activity logging datasets comprising 12 million real-world actions (e.g., eating, sleep, and exercise) taken by 20 thousand users over 17 months. We demonstrate that our approach allows us to make successful predictions of future user actions and their timing. Specifically, TIPAS improves predictions of actions, and their timing, over existing methods across multiple datasets by up to 156%, and up to 37%, respectively. Performance improvements are particularly large for relatively rare and periodic actions such as walking and biking, improving over baselines by up to 256%. This demonstrates that explicit modeling of dependencies and periodicities in real-world behavior enables successful predictions of future actions, with implications for modeling human behavior, app personalization, and targeting of health interventions. PMID

  20. Microcomputer-based real-time optical signal processing system

    Science.gov (United States)

    Yu, F. T. S.; Cao, M. F.; Ludman, J. E.

    1986-01-01

    A microcomputer-based real-time programmable optical signal processing system utilizing a Magneto-Optic Spatial Light Modulator (MOSLM) and a Liquid Crystal Light Valve (LCLV) is described. This system can perform a myriad of complicated optical operations, such as image correlation, image subtraction, matrix multiplication and many others. The important assets of this proposed system must be the programmability and the capability of real-time addressing. The design specification and the progress toward practical implementation of this proposed system are discussed. Some preliminary experimental demonstrations are conducted. The feasible applications of this proposed system to image correlation for optical pattern recognition, image subtraction for IC chip inspection and matrix multiplication for optical computing are demonstrated.

  1. Comparison of DNA Microarray, Loop-Mediated Isothermal Amplification (LAMP) and Real-Time PCR with DNA Sequencing for Identification of Fusarium spp. Obtained from Patients with Hematologic Malignancies.

    Science.gov (United States)

    de Souza, Marcela; Matsuzawa, Tetsuhiro; Sakai, Kanae; Muraosa, Yasunori; Lyra, Luzia; Busso-Lopes, Ariane Fidelis; Levin, Anna Sara Shafferman; Schreiber, Angélica Zaninelli; Mikami, Yuzuru; Gonoi, Tohoru; Kamei, Katsuhiko; Moretti, Maria Luiza; Trabasso, Plínio

    2017-08-01

    The performance of three molecular biology techniques, i.e., DNA microarray, loop-mediated isothermal amplification (LAMP), and real-time PCR were compared with DNA sequencing for properly identification of 20 isolates of Fusarium spp. obtained from blood stream as etiologic agent of invasive infections in patients with hematologic malignancies. DNA microarray, LAMP and real-time PCR identified 16 (80%) out of 20 samples as Fusarium solani species complex (FSSC) and four (20%) as Fusarium spp. The agreement among the techniques was 100%. LAMP exhibited 100% specificity, while DNA microarray, LAMP and real-time PCR showed 100% sensitivity. The three techniques had 100% agreement with DNA sequencing. Sixteen isolates were identified as FSSC by sequencing, being five Fusarium keratoplasticum, nine Fusarium petroliphilum and two Fusarium solani. On the other hand, sequencing identified four isolates as Fusarium non-solani species complex (FNSSC), being three isolates as Fusarium napiforme and one isolate as Fusarium oxysporum. Finally, LAMP proved to be faster and more accessible than DNA microarray and real-time PCR, since it does not require a thermocycler. Therefore, LAMP signalizes as emerging and promising methodology to be used in routine identification of Fusarium spp. among cases of invasive fungal infections.

  2. Using Sun’s Java Real-Time System to Manage Behavior-Based Mobile Robot Controllers

    Directory of Open Access Journals (Sweden)

    Andrew McKenzie

    2011-01-01

    Full Text Available Implementing a robot controller that can effectively manage limited resources in a deterministic, real-time manner is challenging. Behavior-based architectures that decompose autonomy into levels of intelligence are popular due to their robustness but do not provide real-time features that enforce timing constraints or support determinism. We propose an architecture and approach for using the real-time features of the Real-Time Specification for Java (RTSJ in a behavior-based mobile robot controller to show that timing constraints affect performance. This is accomplished by extending a real-time aware architecture that explicitly enumerates timing requirements for each behavior. It is not enough to reduce latency. The usefulness of this approach is demonstrated via an implementation on Solaris 10 and the Sun Java Real-Time System (Java RTS. Experimental results are obtained using a K-team Koala robot performing path following with four composite behaviors. Experiments were conducted using several task period sets in three cases: real-time threads with the real-time garbage collector, real-time threads with the non- real-time garbage collector, and non-real-time threads with the non-real-time garbage collector. Results show that even if latency and determinism are improved, the timing of each individual behavior significantly affects task performance.

  3. Expansion of B-1a cells with germline heavy chain sequence in lupus mice

    Directory of Open Access Journals (Sweden)

    Nichol E Holodick

    2016-03-01

    Full Text Available B6.Sle1.Sle2.Sle3 (B6.TC lupus-prone mice carrying the NZB allele of Cdkn2c, encoding for the cyclin-dependent kinase inhibitor P18INK4, accumulate B-1a cells due to a higher rate of proliferative self-renewal. However, it is unclear whether this affects primarily early appearing B-1a cells of fetal origin or later appearing B-1a cells that emerge from bone marrow. B-1a cells are the major source of natural autoantibodies, and it has been shown that their protective nature is associated with a germline-like sequence, which is characterized by few N-nucleotide insertions and a repertoire skewed towards rearrangements predominated during fetal life, VH11 and VH12. To determine the nature of B-1a cells expanded in B6.TC mice, we amplified immunoglobulin genes by PCR from single cells in mice. Sequencing showed a significantly higher proportion of B-1a cell antibodies display fewer N-additions in B6.TC mice than in B6 control mice. Following this lower number of N-insertions within the CDR-H3 region, the B6.TC B-1a cells display shorter CDR-H3 length than B6 B-1a cells. The absence of N-additions is a surrogate for fetal origin, as TdT expression starts after birth in mice. Therefore, our results suggest that the B-1a cell population is not only expanded in autoimmune B6.TC mice but also qualitatively different with the majority of cells from fetal origin. Accordingly, our sequencing results also demonstrated overuse of VH11 and VH12 in autoimmune B6.TC mice as compared to B6 controls. These results suggest that the development of lupus autoantibodies in these mice is coupled with skewing of the B-1a cell repertoire and possible retention of protective natural antibodies.

  4. Advanced Hard Real-Time Operating System, the Maruti Project. Part 2.

    Science.gov (United States)

    1997-01-01

    Real - Time Operating System , The Maruti Project DASG-60-92-C-0055 5b. Program Element # 62301E 6. Author(s...The maruti hard real - time " operating system . A CM SIGOPS, Operating Systems Review. 23:90-106, July 1989. 254 !1 110) C. L. Liu and J. Layland...February 14, 1995 Abstract The Maruti Real - Time Operating System was developed for applications that must meet hard real-time constraints. In order

  5. Online Synchrophasor-Based Dynamic State Estimation using Real-Time Digital Simulator

    DEFF Research Database (Denmark)

    Khazraj, Hesam; Adewole, Adeyemi Charles; Udaya, Annakkage

    2018-01-01

    Dynamic state estimation is a very important control center application used in the dynamic monitoring of state variables. This paper presents and validates a time-synchronized phasor measurement unit (PMU)-based for dynamic state estimation by unscented Kalman filter (UKF) method using the real-...... using the RTDS (real-time digital simulator). The dynamic state variables of multi-machine systems are monitored and measured for the study on the transient behavior of power systems.......Dynamic state estimation is a very important control center application used in the dynamic monitoring of state variables. This paper presents and validates a time-synchronized phasor measurement unit (PMU)-based for dynamic state estimation by unscented Kalman filter (UKF) method using the real......-time digital simulator (RTDS). The dynamic state variables of the system are the rotor angle and speed of the generators. The performance of the UKF method is tested with PMU measurements as inputs using the IEEE 14-bus test system. This test system was modeled in the RSCAD software and tested in real time...

  6. Real-time synchronization of wireless sensor network by 1-PPS signal

    Science.gov (United States)

    Giammarini, Marco; Pieralisi, Marco; Isidori, Daniela; Concettoni, Enrico; Cristalli, Cristina; Fioravanti, Matteo

    2015-05-01

    The use of wireless sensor networks with different nodes is desirable in a smart environment, because the network setting up and installation on preexisting structures can be done without a fixed cabled infrastructure. The flexibility of the monitoring system is fundamental where the use of a considerable quantity of cables could compromise the normal exercise, could affect the quality of acquired signal and finally increase the cost of the materials and installation. The network is composed of several intelligent "nodes", which acquires data from different kind of sensors, and then store or transmit them to a central elaboration unit. The synchronization of data acquisition is the core of the real-time wireless sensor network (WSN). In this paper, we present a comparison between different methods proposed by literature for the real-time acquisition in a WSN and finally we present our solution based on 1-Pulse-Per-Second (1-PPS) signal generated by GPS systems. The sensor node developed is a small-embedded system based on ARM microcontroller that manages the acquisition, the timing and the post-processing of the data. The communications between the sensors and the master based on IEEE 802.15.4 protocol and managed by dedicated software. Finally, we present the preliminary results obtained on a 3 floor building simulator with the wireless sensors system developed.

  7. Real-time simulation of a Doubly-Fed Induction Generator based wind power system on eMEGASimRTM Real-Time Digital Simulator

    Science.gov (United States)

    Boakye-Boateng, Nasir Abdulai

    The growing demand for wind power integration into the generation mix prompts the need to subject these systems to stringent performance requirements. This study sought to identify the required tools and procedures needed to perform real-time simulation studies of Doubly-Fed Induction Generator (DFIG) based wind generation systems as basis for performing more practical tests of reliability and performance for both grid-connected and islanded wind generation systems. The author focused on developing a platform for wind generation studies and in addition, the author tested the performance of two DFIG models on the platform real-time simulation model; an average SimpowerSystemsRTM DFIG wind turbine, and a detailed DFIG based wind turbine using ARTEMiSRTM components. The platform model implemented here consists of a high voltage transmission system with four integrated wind farm models consisting in total of 65 DFIG based wind turbines and it was developed and tested on OPAL-RT's eMEGASimRTM Real-Time Digital Simulator.

  8. Lessons Learned from Real-Time, Event-Based Internet Science Communications

    Science.gov (United States)

    Phillips, T.; Myszka, E.; Gallagher, D. L.; Adams, M. L.; Koczor, R. J.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    For the last several years the Science Directorate at Marshall Space Flight Center has carried out a diverse program of Internet-based science communication. The Directorate's Science Roundtable includes active researchers, NASA public relations, educators, and administrators. The Science@NASA award-winning family of Web sites features science, mathematics, and space news. The program includes extended stories about NASA science, a curriculum resource for teachers tied to national education standards, on-line activities for students, and webcasts of real-time events. The focus of sharing science activities in real-time has been to involve and excite students and the public about science. Events have involved meteor showers, solar eclipses, natural very low frequency radio emissions, and amateur balloon flights. In some cases, broadcasts accommodate active feedback and questions from Internet participants. Through these projects a pattern has emerged in the level of interest or popularity with the public. The pattern differentiates projects that include science from those that do not, All real-time, event-based Internet activities have captured public interest at a level not achieved through science stories or educator resource material exclusively. The worst event-based activity attracted more interest than the best written science story. One truly rewarding lesson learned through these projects is that the public recognizes the importance and excitement of being part of scientific discovery. Flying a camera to 100,000 feet altitude isn't as interesting to the public as searching for viable life-forms at these oxygen-poor altitudes. The details of these real-time, event-based projects and lessons learned will be discussed.

  9. Hardware Algorithms For Tile-Based Real-Time Rendering

    NARCIS (Netherlands)

    Crisu, D.

    2012-01-01

    In this dissertation, we present the GRAphics AcceLerator (GRAAL) framework for developing embedded tile-based rasterization hardware for mobile devices, meant to accelerate real-time 3-D graphics (OpenGL compliant) applications. The goal of the framework is a low-cost, low-power, high-performance

  10. A Realization of Temperature Monitoring System Based on Real-Time Kernel μC/OS and 1-wire Bus

    Directory of Open Access Journals (Sweden)

    Yanmei Qi

    2013-06-01

    Full Text Available The traditional temperature monitoring system generally adopt some analog sensors for collecting data and a microcontroller for processing data for the purpose of temperature monitoring. However, this back-fore ground system has the disadvantages that the system has poor real-time property and single function, the amount of sensors is not easy to expand, and the software system has a difficulty in upgrading. Aiming at these disadvantages, the system designed in this paper adopts brand-new hardware and software structures: a digitaltemperature sensor array is connected to 1-wire bus and communicated with a control core through 1-wire bus protocol, thus a great convenience is provided for the expansion of the sensor; a real-time operating system is introduced into the software, an application program capable of realizing various functions runs on the real-time kernel μC/OS-II platform. The application of the real-time kernel also provides a good lower layer interface for the late-stage software upgrading.

  11. Rapid diagnosis of sepsis with TaqMan-Based multiplex real-time PCR.

    Science.gov (United States)

    Liu, Chang-Feng; Shi, Xin-Ping; Chen, Yun; Jin, Ye; Zhang, Bing

    2018-02-01

    The survival rate of septic patients mainly depends on a rapid and reliable diagnosis. A rapid, broad range, specific and sensitive quantitative diagnostic test is the urgent need. Thus, we developed a TaqMan-Based Multiplex real-time PCR assays to identify bloodstream pathogens within a few hours. Primers and TaqMan probes were designed to be complementary to conserved regions in the 16S rDNA gene of different kinds of bacteria. To evaluate accurately, sensitively, and specifically, the known bacteria samples (Standard strains, whole blood samples) are determined by TaqMan-Based Multiplex real-time PCR. In addition, 30 blood samples taken from patients with clinical symptoms of sepsis were tested by TaqMan-Based Multiplex real-time PCR and blood culture. The mean frequency of positive for Multiplex real-time PCR was 96% at a concentration of 100 CFU/mL, and it was 100% at a concentration greater than 1000 CFU/mL. All the known blood samples and Standard strains were detected positively by TaqMan-Based Multiplex PCR, no PCR products were detected when DNAs from other bacterium were used in the multiplex assay. Among the 30 patients with clinical symptoms of sepsis, 18 patients were confirmed positive by Multiplex real-time PCR and seven patients were confirmed positive by blood culture. TaqMan-Based Multiplex real-time PCR assay with highly sensitivity, specificity and broad detection range, is a rapid and accurate method in the detection of bacterial pathogens of sepsis and should have a promising usage in the diagnosis of sepsis. © 2017 Wiley Periodicals, Inc.

  12. Hard real-time multibody simulations using ARM-based embedded systems

    Energy Technology Data Exchange (ETDEWEB)

    Pastorino, Roland, E-mail: roland.pastorino@kuleuven.be, E-mail: rpastorino@udc.es; Cosco, Francesco, E-mail: francesco.cosco@kuleuven.be; Naets, Frank, E-mail: frank.naets@kuleuven.be; Desmet, Wim, E-mail: wim.desmet@kuleuven.be [KU Leuven, PMA division, Department of Mechanical Engineering (Belgium); Cuadrado, Javier, E-mail: javicuad@cdf.udc.es [Universidad de La Coruña, Laboratorio de Ingeniería Mecánica (Spain)

    2016-05-15

    The real-time simulation of multibody models on embedded systems is of particular interest for controllers and observers such as model predictive controllers and state observers, which rely on a dynamic model of the process and are customarily executed in electronic control units. This work first identifies the software techniques and tools required to easily write efficient code for multibody models to be simulated on ARM-based embedded systems. Automatic Programming and Source Code Translation are the two techniques that were chosen to generate source code for multibody models in different programming languages. Automatic Programming is used to generate procedural code in an intermediate representation from an object-oriented library and Source Code Translation is used to translate the intermediate representation automatically to an interpreted language or to a compiled language for efficiency purposes. An implementation of these techniques is proposed. It is based on a Python template engine and AST tree walkers for Source Code Generation and on a model-driven translator for the Source Code Translation. The code is translated from a metalanguage to any of the following four programming languages: Python-Numpy, Matlab, C++-Armadillo, C++-Eigen. Two examples of multibody models were simulated: a four-bar linkage with multiple loops and a 3D vehicle steering system. The code for these examples has been generated and executed on two ARM-based single-board computers. Using compiled languages, both models could be simulated faster than real-time despite the low resources and performance of these embedded systems. Finally, the real-time performance of both models was evaluated when executed in hard real-time on Xenomai for both embedded systems. This work shows through measurements that Automatic Programming and Source Code Translation are valuable techniques to develop real-time multibody models to be used in embedded observers and controllers.

  13. Hard real-time multibody simulations using ARM-based embedded systems

    International Nuclear Information System (INIS)

    Pastorino, Roland; Cosco, Francesco; Naets, Frank; Desmet, Wim; Cuadrado, Javier

    2016-01-01

    The real-time simulation of multibody models on embedded systems is of particular interest for controllers and observers such as model predictive controllers and state observers, which rely on a dynamic model of the process and are customarily executed in electronic control units. This work first identifies the software techniques and tools required to easily write efficient code for multibody models to be simulated on ARM-based embedded systems. Automatic Programming and Source Code Translation are the two techniques that were chosen to generate source code for multibody models in different programming languages. Automatic Programming is used to generate procedural code in an intermediate representation from an object-oriented library and Source Code Translation is used to translate the intermediate representation automatically to an interpreted language or to a compiled language for efficiency purposes. An implementation of these techniques is proposed. It is based on a Python template engine and AST tree walkers for Source Code Generation and on a model-driven translator for the Source Code Translation. The code is translated from a metalanguage to any of the following four programming languages: Python-Numpy, Matlab, C++-Armadillo, C++-Eigen. Two examples of multibody models were simulated: a four-bar linkage with multiple loops and a 3D vehicle steering system. The code for these examples has been generated and executed on two ARM-based single-board computers. Using compiled languages, both models could be simulated faster than real-time despite the low resources and performance of these embedded systems. Finally, the real-time performance of both models was evaluated when executed in hard real-time on Xenomai for both embedded systems. This work shows through measurements that Automatic Programming and Source Code Translation are valuable techniques to develop real-time multibody models to be used in embedded observers and controllers.

  14. Distribution Locational Real-Time Pricing Based Smart Building Control and Management

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Jun; Dai, Xiaoxiao; Zhang, Yingchen; Zhang, Jun; Gao, Wenzhong

    2016-11-21

    This paper proposes an real-virtual parallel computing scheme for smart building operations aiming at augmenting overall social welfare. The University of Denver's campus power grid and Ritchie fitness center is used for demonstrating the proposed approach. An artificial virtual system is built in parallel to the real physical system to evaluate the overall social cost of the building operation based on the social science based working productivity model, numerical experiment based building energy consumption model and the power system based real-time pricing mechanism. Through interactive feedback exchanged between the real and virtual system, enlarged social welfare, including monetary cost reduction and energy saving, as well as working productivity improvements, can be achieved.

  15. Linear Regression Based Real-Time Filtering

    Directory of Open Access Journals (Sweden)

    Misel Batmend

    2013-01-01

    Full Text Available This paper introduces real time filtering method based on linear least squares fitted line. Method can be used in case that a filtered signal is linear. This constraint narrows a band of potential applications. Advantage over Kalman filter is that it is computationally less expensive. The paper further deals with application of introduced method on filtering data used to evaluate a position of engraved material with respect to engraving machine. The filter was implemented to the CNC engraving machine control system. Experiments showing its performance are included.

  16. Dependable Real-Time Systems

    Science.gov (United States)

    1991-09-30

    0196 or 413 545-0720 PI E-mail Address: krithi@nirvan.cs.umass.edu, stankovic(ocs.umass.edu Grant or Contract Title: Dependable Real - Time Systems Grant...Dependable Real - Time Systems " Grant or Contract Number: N00014-85-k-0398 L " Reporting Period: 1 Oct 87 - 30 Sep 91 , 2. Summary of Accomplishments ’ 2.1 Our...in developing a sound approach to scheduling tasks in complex real - time systems , (2) developed a real-time operating system kernel, a preliminary

  17. Performance Characteristics and Comparison of Abbott and artus Real-Time Systems for Hepatitis B Virus DNA Quantification ▿

    Science.gov (United States)

    Ismail, Ashrafali M.; Sivakumar, Jayashree; Anantharam, Raghavendran; Dayalan, Sujitha; Samuel, Prasanna; Fletcher, Gnanadurai J.; Gnanamony, Manu; Abraham, Priya

    2011-01-01

    Virological monitoring of hepatitis B virus (HBV) DNA is critical to the management of HBV infection. With several HBV DNA quantification assays available, it is important to use the most efficient testing system for virological monitoring. In this study, we evaluated the performance characteristics and comparability of three HBV DNA quantification systems: Abbott HBV real-time PCR (Abbott PCR), artus HBV real-time PCR with QIAamp DNA blood kit purification (artus-DB), and artus HBV real-time PCR with the QIAamp DSP virus kit purification (artus-DSP). The lower limits of detection of these systems were established against the WHO international standards for HBV DNA and were found to be 1.43, 82, and 9 IU/ml, respectively. The intra-assay and interassay coefficients of variation of plasma samples (1 to 6 log10 IU/ml) ranged between 0.05 to 8.34% and 0.16 to 3.48% for the Abbott PCR, 1.53 to 26.85% and 0.50 to 12.89% for artus-DB, and 0.29 to 7.42% and 0.94 to 3.01% for artus-DSP, respectively. Ninety HBV clinical samples were used for comparison of assays, and paired quantitative results showed strong correlation by linear regression analysis (artus-DB with Abbott PCR, r = 0.95; Abbott PCR with artus-DSP, r = 0.97; and artus-DSP with artus-DB, r = 0.94). Bland-Altman analysis showed a good level of agreement for Abbott PCR and artus-DSP, with a mean difference of 0.10 log10 IU/ml and limits of agreement of −0.91 to 1.11 log10 IU/ml. No genotype-specific bias was seen in all three systems for HBV genotypes A, C, and D, which are predominant in this region. This finding illustrates that the Abbott real-time HBV and artus-DSP systems show more comparable performance than the artus-DB system, meeting the current guidelines for assays to be used in the management of hepatitis B. PMID:21795507

  18. Evaluation of highly accelerated real-time cardiac cine MRI in tachycardia.

    Science.gov (United States)

    Bassett, Elwin C; Kholmovski, Eugene G; Wilson, Brent D; DiBella, Edward V R; Dosdall, Derek J; Ranjan, Ravi; McGann, Christopher J; Kim, Daniel

    2014-02-01

    Electrocardiogram (ECG)-gated breath-hold cine MRI is considered to be the gold standard test for the assessment of cardiac function. However, it may fail in patients with arrhythmia, impaired breath-hold capacity and poor ECG gating. Although ungated real-time cine MRI may mitigate these problems, commercially available real-time cine MRI pulse sequences using parallel imaging typically yield relatively poor spatiotemporal resolution because of their low image acquisition efficiency. As an extension of our previous work, the purpose of this study was to evaluate the diagnostic quality and accuracy of eight-fold-accelerated real-time cine MRI with compressed sensing (CS) for the quantification of cardiac function in tachycardia, where it is challenging for real-time cine MRI to provide sufficient spatiotemporal resolution. We evaluated the performances of eight-fold-accelerated cine MRI with CS, three-fold-accelerated real-time cine MRI with temporal generalized autocalibrating partially parallel acquisitions (TGRAPPA) and ECG-gated breath-hold cine MRI in 21 large animals with tachycardia (mean heart rate, 104 beats per minute) at 3T. For each cine MRI method, two expert readers evaluated the diagnostic quality in four categories (image quality, temporal fidelity of wall motion, artifacts and apparent noise) using a Likert scale (1-5, worst to best). One reader evaluated the left ventricular functional parameters. The diagnostic quality scores were significantly different between the three cine pulse sequences, except for the artifact level between CS and TGRAPPA real-time cine MRI. Both ECG-gated breath-hold cine MRI and eight-fold accelerated real-time cine MRI yielded all four scores of ≥ 3.0 (acceptable), whereas three-fold-accelerated real-time cine MRI yielded all scores below 3.0, except for artifact (3.0). The left ventricular ejection fraction (LVEF) measurements agreed better between ECG-gated cine MRI and eight-fold-accelerated real-time cine MRI

  19. Beyond DNA Sequencing in Space: Current and Future Omics Capabilities of the Biomolecule Sequencer Payload

    Science.gov (United States)

    Wallace, Sarah

    2017-01-01

    Why do we need a DNA sequencer to support the human exploration of space? (A) Operational environmental monitoring; (1) Identification of contaminating microbes, (2) Infectious disease diagnosis, (3) Reduce down mass (sample return for environmental monitoring, crew health, etc.). (B) Research; (1) Human, (2) Animal, (3) Microbes/Cell lines, (4) Plant. (C) Med Ops; (1) Response to countermeasures, (2) Radiation, (3) Real-time analysis can influence medical intervention. (C) Support astrobiology science investigations; (1) Technology superiorly suited to in situ nucleic acid-based life detection, (2) Functional testing for integration into robotics for extraplanetary exploration mission.

  20. Development of Quantitative Competitive PCR and Absolute Based Real-Time PCR Assays for Quantification of The Butyrate Producing Bacterium: Butyrivibrio fibrisolvens

    Directory of Open Access Journals (Sweden)

    Mojtaba Tahmoorespur

    2016-04-01

    Full Text Available Introduction Butyrivibrio fibrisolvens strains are presently recognized as the major butyrate-producing bacteria found in the rumen and digestive track of many animals and also in the human gut. In this study we reported the development of two DNA based techniques, quantitative competitive (QC PCR and absolute based Real-Time PCR, for enumerating Butyrivibrio fibrisolvens strains. Despite the recent introduction of real-time PCR method for the rapid quantification of the target DNA sequences, use of quantitative competitive PCR (QC-PCR technique continues to play an important role in nucleic acid quantification since it is more cost effective. The procedure relies on the co-amplification of the sequence of interest with a serially diluted synthetic DNA fragment of the known concentration (competitor, using the single set primers. A real-time polymerase chain reaction is a laboratory technique of molecular biology based on the polymerase chain reaction (PCR. It monitors the amplification of a targeted DNA molecule during the PCR. Materials and Methods At first reported species-specific primers targeting the 16S rDNA region of the bacterium Butyrivibrio fibrisolvens were used for amplifying a 213 bp fragment. A DNA competitor differing by 50 bp in length from the 213 bp fragment was constructed and cloned into pTZ57R/T vector. The competitor was quantified by NanoDrop spectrophotometer and serially diluted and co-amplified by PCR with total extracted DNA from rumen fluid samples. PCR products were quantified by photographing agarose gels and analyzed with Image J software and the amount of amplified target DNA was log plotted against the amount of amplified competitor. Coefficient of determination (R2 was used as a criterion of methodology precision. For developing the Real-time PCR technique, the 213 bp fragment was amplified and cloned into pTZ57R/T was used to draw a standard curve. Results and Discussion The specific primers of Butyrivibrio

  1. St. Patrick's Day 2015 geomagnetic storm analysis based on Real Time Ionosphere Monitoring

    Science.gov (United States)

    García-Rigo, Alberto

    2017-04-01

    Ionosphere Monitoring (RTIM) is a new Working Group within the International Association of Geodesy (IAG) Sub-Commission 4.3 "Atmosphere Remote Sensing". The complementary expertise of the participating research groups allows to analyse the ionospheric behaviour from a broad perspective, taking benefit of comparing multiple independent real time and near real time ionospheric approaches. In this context, a detailed analysis will be presented for the days in March, 2015 surrounding St. Patrick's Day 2015 geomagnetic storm, based on the existing ionospheric models (global or regional) within the group, which are mainly based on Global Navigation Satellite Systems (GNSS) and ionosonde data. For this purpose, a variety of ionospheric parameters will be considered, including Total Electron Content (TEC), F2 layer critical frequency (foF2), F2 layer peak (hmF2), bottomside half-thickness (B0) and ionospheric disturbance W-index. Also, ionospheric high-frequency perturbations such as Travelling Ionospheric Disturbances (TIDs), scintillations and the impact of solar flares facing the Earth will be presented to derive a clear picture of the ionospheric dynamics. Among other sources of information to take part in the comparisons, there will be (1) scintillation results -from MONITOR ESA/ESTEC-funded project- derived by means of S4 index and Sigma Phi (IEEA), specially significant in the African sector and European high latitudes, (2) dynamics of the global maps of W-index with 1h resolution derived from JPL Global Ionospheric Maps (GIMs; IZMIRAN), (3) deviations from expected quiet-time behavior analysed in terms of foF2, hmF2, B0 and B1 based on IRTAM and GIRO network of digisondes (Lowell), showing F2 layer peculiar changes due to the storm, (4) statistics based on the median of the VTEC for the 15 previous days considering VTEC european regional maps (ROB), (5) time series of VTEC data that are derived by running the NRT ionosphere model of DGFI-TUM in offline mode, which show

  2. Biosensor-based real-time monitoring of paracetamol photocatalytic degradation.

    Science.gov (United States)

    Calas-Blanchard, Carole; Istamboulié, Georges; Bontoux, Margot; Plantard, Gaël; Goetz, Vincent; Noguer, Thierry

    2015-07-01

    This paper presents for the first time the integration of a biosensor for the on-line, real-time monitoring of a photocatalytic degradation process. Paracetamol was used as a model molecule due to its wide use and occurrence in environmental waters. The biosensor was developed based on tyrosinase immobilization in a polyvinylalcohol photocrosslinkable polymer. It was inserted in a computer-controlled flow system installed besides a photocatalytic reactor including titanium dioxide (TiO2) as photocatalyst. It was shown that the biosensor was able to accurately monitor the paracetamol degradation with time. Compared with conventional HPLC analysis, the described device provides a real-time information on the reaction advancement, allowing a better control of the photodegradation process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. FPGA-Based Real-Time Motion Detection for Automated Video Surveillance Systems

    Directory of Open Access Journals (Sweden)

    Sanjay Singh

    2016-03-01

    Full Text Available Design of automated video surveillance systems is one of the exigent missions in computer vision community because of their ability to automatically select frames of interest in incoming video streams based on motion detection. This research paper focuses on the real-time hardware implementation of a motion detection algorithm for such vision based automated surveillance systems. A dedicated VLSI architecture has been proposed and designed for clustering-based motion detection scheme. The working prototype of a complete standalone automated video surveillance system, including input camera interface, designed motion detection VLSI architecture, and output display interface, with real-time relevant motion detection capabilities, has been implemented on Xilinx ML510 (Virtex-5 FX130T FPGA platform. The prototyped system robustly detects the relevant motion in real-time in live PAL (720 × 576 resolution video streams directly coming from the camera.

  4. Design and implement of infrared small target real-time detection system based on pipeline technology

    Science.gov (United States)

    Sun, Lihui; Wang, Yongzhong; He, Yongqiang

    2007-01-01

    The detection for motive small target in infrared image sequence has become a hot topic nowadays. Background suppress algorithm based on minim gradient median filter and temporal recursion target detection algorithm are introduced. On the basis of contents previously mentioned, a four stages pipeline structure infrared small target detection process system, which aims at characters of algorithm complexity, large amounts of data to process, high frame frequency and exigent real-time character in this kind of application, is designed and implemented. The logical structure of the system was introduced and the function and signals flows are programmed. The system is composed of two FPGA chips and two DSP chips of TI. According to the function of each part, the system is divided into image preprocess stage, target detection stage, track relation stage and image output stage. The experiment of running algorithms on the system presented in this paper proved that the system could meet acquisition and process of 50Hz 240x320 digital image and the system could real time detect small target with a signal-noise ratio more than 3 reliably. The system achieves the characters of large amount of memory, high real-time processing, excellent extension and favorable interactive interface.

  5. Digital Sequences and a Time Reversal-Based Impact Region Imaging and Localization Method

    Science.gov (United States)

    Qiu, Lei; Yuan, Shenfang; Mei, Hanfei; Qian, Weifeng

    2013-01-01

    To reduce time and cost of damage inspection, on-line impact monitoring of aircraft composite structures is needed. A digital monitor based on an array of piezoelectric transducers (PZTs) is developed to record the impact region of impacts on-line. It is small in size, lightweight and has low power consumption, but there are two problems with the impact alarm region localization method of the digital monitor at the current stage. The first one is that the accuracy rate of the impact alarm region localization is low, especially on complex composite structures. The second problem is that the area of impact alarm region is large when a large scale structure is monitored and the number of PZTs is limited which increases the time and cost of damage inspections. To solve the two problems, an impact alarm region imaging and localization method based on digital sequences and time reversal is proposed. In this method, the frequency band of impact response signals is estimated based on the digital sequences first. Then, characteristic signals of impact response signals are constructed by sinusoidal modulation signals. Finally, the phase synthesis time reversal impact imaging method is adopted to obtain the impact region image. Depending on the image, an error ellipse is generated to give out the final impact alarm region. A validation experiment is implemented on a complex composite wing box of a real aircraft. The validation results show that the accuracy rate of impact alarm region localization is approximately 100%. The area of impact alarm region can be reduced and the number of PZTs needed to cover the same impact monitoring region is reduced by more than a half. PMID:24084123

  6. Real-time integration of control strategies for an isolated DFIG-based WECS

    Science.gov (United States)

    Bouchiba, Nouha; Barkia, Asma; Chrifi-Alaoui, Larbi; Drid, Saïd; Sallem, Souhir; Kammoun, M. B. A.

    2017-08-01

    This paper deals with voltage and frequency control of a stand-alone wind energy conversion system (WECS) based on a double fed induction generator (DFIG) under wind speed and load variations. In this context, two kinds of linear and nonlinear control strategies, classical PI and backstepping, have been applied to the system in real time. A series of experiments have been conducted to evaluate and to compare dynamic performances of the proposed control approaches. Experiments on a 1.5Kw doubly fed induction machine in real time are carried out using dSpace DS1104 card based on the MATLAB/Simulink environment. Experimental results show the validity of implemented controllers and demonstrate the effectiveness, the precision and the rapidity of the backstepping control strategy compared with the PI controller.

  7. Culture-independent identification and quantification of Gallibacterium anatis (G. anatis) by real-time quantitative PCR

    DEFF Research Database (Denmark)

    Wang, Chong; Robles, Francisco; Ramirez, Saul

    2016-01-01

    Gallibacterium is a genus within the family Pasteurellaceae characterized by a high level of phenotypic and genetic diversity. No diagnostic method has yet been described, which allows species-specific identification of Gallibacterium anatis. The aim of this study was to develop a real...... published conventional PCR method and culture-based identification, respectively. The detection rates were 97%, 78% and 34% for the current qPCR, the conventional PCR and the culture-based identification method, respectively. The qPCR assay was able to detect the gene gyrB in serial dilutions of 10......-time quantitative PCR (qPCR) method allowing species-specific identification and quantification of G. anatis. A G. anatis specific DNA sequence was identified in the gyrase subunit B gene (gyrB) and used to design a TaqMan probe and corresponding primers. The specificity of the assay was tested on 52 bacterial...

  8. Real-time all-optical OFDM transmission system based on time-domain optical fourier transformation

    DEFF Research Database (Denmark)

    Guan, Pengyu; Kong, Deming; Røge, Kasper Meldgaard

    2014-01-01

    We propose a novel simple all-optical OFDM transmission system based on time-domain OFT using time-lenses. A real-time 160 Gbit/s DPSK OFDM transmission with 16 decorrelated data subcarriers is successfully demonstrated over 100 km....

  9. BurkDiff: a real-time PCR allelic discrimination assay for Burkholderia pseudomallei and B. mallei.

    Directory of Open Access Journals (Sweden)

    Jolene R Bowers

    2010-11-01

    Full Text Available A real-time PCR assay, BurkDiff, was designed to target a unique conserved region in the B. pseudomallei and B. mallei genomes containing a SNP that differentiates the two species. Sensitivity and specificity were assessed by screening BurkDiff across 469 isolates of B. pseudomallei, 49 isolates of B. mallei, and 390 isolates of clinically relevant non-target species. Concordance of results with traditional speciation methods and no cross-reactivity to non-target species show BurkDiff is a robust, highly validated assay for the detection and differentiation of B. pseudomallei and B. mallei.

  10. Lab-in-a-tube: Real-time molecular point-of-care diagnostics for influenza A and B using the cobas(R) Liat(R) system

    NARCIS (Netherlands)

    Melchers, W.J.G.; Kuijpers, J; Sickler, J.J.; Rahamat-Langendoen, J.C.

    2017-01-01

    Rapid diagnosis of influenza A and B is important for direct treatment decisions in patient care and for the reduction of in-hospital transmissions. The new real-time PCR based molecular point-of-care (POC) assay, the cobas(R) Influenza A/B test on the cobas(R) Liat(R) System (cobas(R) Liat(R)

  11. CD-SEM real time bias correction using reference metrology based modeling

    Science.gov (United States)

    Ukraintsev, V.; Banke, W.; Zagorodnev, G.; Archie, C.; Rana, N.; Pavlovsky, V.; Smirnov, V.; Briginas, I.; Katnani, A.; Vaid, A.

    2018-03-01

    Accuracy of patterning impacts yield, IC performance and technology time to market. Accuracy of patterning relies on optical proximity correction (OPC) models built using CD-SEM inputs and intra die critical dimension (CD) control based on CD-SEM. Sub-nanometer measurement uncertainty (MU) of CD-SEM is required for current technologies. Reported design and process related bias variation of CD-SEM is in the range of several nanometers. Reference metrology and numerical modeling are used to correct SEM. Both methods are slow to be used for real time bias correction. We report on real time CD-SEM bias correction using empirical models based on reference metrology (RM) data. Significant amount of currently untapped information (sidewall angle, corner rounding, etc.) is obtainable from SEM waveforms. Using additional RM information provided for specific technology (design rules, materials, processes) CD extraction algorithms can be pre-built and then used in real time for accurate CD extraction from regular CD-SEM images. The art and challenge of SEM modeling is in finding robust correlation between SEM waveform features and bias of CD-SEM as well as in minimizing RM inputs needed to create accurate (within the design and process space) model. The new approach was applied to improve CD-SEM accuracy of 45 nm GATE and 32 nm MET1 OPC 1D models. In both cases MU of the state of the art CD-SEM has been improved by 3x and reduced to a nanometer level. Similar approach can be applied to 2D (end of line, contours, etc.) and 3D (sidewall angle, corner rounding, etc.) cases.

  12. Calculation of the source term for a S1B-sequence at a VVER-1000 type reactor. Part 1

    International Nuclear Information System (INIS)

    Sdouz, G.

    1990-10-01

    The behaviour of the source term in a VVER-1000 type reactor is calculated using the 'Source Term Code Package' (STCP). The input data are based on the russian plant Zaporozhye-5. The selected accident sequence is a small break LOCA in the hot leg followed by loss offsite and onsite electric power (S 1 B-sequence). According to the course of the calculation the results are presented and analyzed for each program. Except for the noble gases all release fractions are lower than 10 -4 . 18 refs., 10 tabs. (Author)

  13. Cf-252 based neutron radiography using real-time image processing system

    International Nuclear Information System (INIS)

    Mochiki, Koh-ichi; Koiso, Manabu; Yamaji, Akihiro; Iwata, Hideki; Kihara, Yoshitaka; Sano, Shigeru; Murata, Yutaka

    2001-01-01

    For compact Cf-252 based neutron radiography, a real-time image processing system by particle counting technique has been developed. The electronic imaging system consists of a supersensitive imaging camera, a real-time corrector, a real-time binary converter, a real-time calculator for centroid, a display monitor and a computer. Three types of accumulated NR image; ordinary, binary and centroid images, can be observed during a measurement. Accumulated NR images were taken by the centroid mode, the binary mode and ordinary mode using of Cf-252 neutron source and those images were compared. The centroid mode presented the sharpest image and its statistical characteristics followed the Poisson distribution, while the ordinary mode showed the smoothest image as the averaging effect by particle bright spots with distributed brightness was most dominant. (author)

  14. Real-time implementation of a 1.25-Gbit/s DMT transmitter for robust and low-cost LED-based plastic optical fiber applications

    NARCIS (Netherlands)

    Lee, S.C.J.; Breyer, F.; Cárdenas, D.; Randel, S.; Koonen, A.M.J.

    2009-01-01

    Real-time implementation of a DMT transmitter in FPGA is demonstrated for low-cost, standard 1-mm step-index plastic optical fiber applications based on commercial resonant-cavity LED and large-diameter (540 µm) photodiode.

  15. Agent-Based Modeling of Day-Ahead Real Time Pricing in a Pool-Based Electricity Market

    Directory of Open Access Journals (Sweden)

    Sh. Yousefi

    2011-09-01

    Full Text Available In this paper, an agent-based structure of the electricity retail market is presented based on which day-ahead (DA energy procurement for customers is modeled. Here, we focus on operation of only one Retail Energy Provider (REP agent who purchases energy from DA pool-based wholesale market and offers DA real time tariffs to a group of its customers. As a model of customer response to the offered real time prices, an hourly acceptance function is proposed in order to represent the hourly changes in the customer’s effective demand according to the prices. Here, Q-learning (QL approach is applied in day-ahead real time pricing for the customers enabling the REP agent to discover which price yields the most benefit through a trial-and-error search. Numerical studies are presented based on New England day-ahead market data which include comparing the results of RTP based on QL approach with that of genetic-based pricing.

  16. Flanking sequence determination and event-specific detection of genetically modified wheat B73-6-1.

    Science.gov (United States)

    Xu, Junyi; Cao, Jijuan; Cao, Dongmei; Zhao, Tongtong; Huang, Xin; Zhang, Piqiao; Luan, Fengxia

    2013-05-01

    In order to establish a specific identification method for genetically modified (GM) wheat, exogenous insert DNA and flanking sequence between exogenous fragment and recombinant chromosome of GM wheat B73-6-1 were successfully acquired by means of conventional polymerase chain reaction (PCR) and thermal asymmetric interlaced (TAIL)-PCR strategies. Newly acquired exogenous fragment covered the full-length sequence of transformed genes such as transformed plasmid and corresponding functional genes including marker uidA, herbicide-resistant bar, ubiquitin promoter, and high-molecular-weight gluten subunit. The flanking sequence between insert DNA revealed high similarity with Triticum turgidum A gene (GenBank: AY494981.1). A specific PCR detection method for GM wheat B73-6-1 was established on the basis of primers designed according to the flanking sequence. This specific PCR method was validated by GM wheat, GM corn, GM soybean, GM rice, and non-GM wheat. The specifically amplified target band was observed only in GM wheat B73-6-1. This method is of high specificity, high reproducibility, rapid identification, and excellent accuracy for the identification of GM wheat B73-6-1.

  17. Quantification of bacteria adherent to gastrointestinal mucosa by real-time PCR

    NARCIS (Netherlands)

    Huijsdens, Xander W.; Linskens, Ronald K.; Mak, Mariëtte; Meuwissen, Stephan G. M.; Vandenbroucke-Grauls, Christina M. J. E.; Savelkoul, Paul H. M.

    2002-01-01

    The use of real-time quantitative PCR (5' nuclease PCR assay) as a tool to study the gastrointestinal microflora that adheres to the colonic mucosa was evaluated. We developed primers and probes based on the 16S ribosomal DNA gene sequences for the detection of Escherichia coli and Bacteroides

  18. Towards real-time body pose estimation for presenters in meeting environments

    NARCIS (Netherlands)

    Poppe, Ronald Walter; Heylen, Dirk K.J.; Nijholt, Antinus; Poel, Mannes

    2005-01-01

    This paper describes a computer vision-based approach to body pose estimation. The algorithm can be executed in real-time and processes low resolution, monocular image sequences. A silhouette is extracted and matched against a projection of a 16 DOF human body model. In addition, skin color is used

  19. Fuzzy logic based power-efficient real-time multi-core system

    CERN Document Server

    Ahmed, Jameel; Najam, Shaheryar; Najam, Zohaib

    2017-01-01

    This book focuses on identifying the performance challenges involved in computer architectures, optimal configuration settings and analysing their impact on the performance of multi-core architectures. Proposing a power and throughput-aware fuzzy-logic-based reconfiguration for Multi-Processor Systems on Chip (MPSoCs) in both simulation and real-time environments, it is divided into two major parts. The first part deals with the simulation-based power and throughput-aware fuzzy logic reconfiguration for multi-core architectures, presenting the results of a detailed analysis on the factors impacting the power consumption and performance of MPSoCs. In turn, the second part highlights the real-time implementation of fuzzy-logic-based power-efficient reconfigurable multi-core architectures for Intel and Leone3 processors. .

  20. Real-time probabilistic covariance tracking with efficient model update.

    Science.gov (United States)

    Wu, Yi; Cheng, Jian; Wang, Jinqiao; Lu, Hanqing; Wang, Jun; Ling, Haibin; Blasch, Erik; Bai, Li

    2012-05-01

    The recently proposed covariance region descriptor has been proven robust and versatile for a modest computational cost. The covariance matrix enables efficient fusion of different types of features, where the spatial and statistical properties, as well as their correlation, are characterized. The similarity between two covariance descriptors is measured on Riemannian manifolds. Based on the same metric but with a probabilistic framework, we propose a novel tracking approach on Riemannian manifolds with a novel incremental covariance tensor learning (ICTL). To address the appearance variations, ICTL incrementally learns a low-dimensional covariance tensor representation and efficiently adapts online to appearance changes of the target with only O(1) computational complexity, resulting in a real-time performance. The covariance-based representation and the ICTL are then combined with the particle filter framework to allow better handling of background clutter, as well as the temporary occlusions. We test the proposed probabilistic ICTL tracker on numerous benchmark sequences involving different types of challenges including occlusions and variations in illumination, scale, and pose. The proposed approach demonstrates excellent real-time performance, both qualitatively and quantitatively, in comparison with several previously proposed trackers.

  1. Real-time forecasting of an epidemic using a discrete time stochastic model: a case study of pandemic influenza (H1N1-2009

    Directory of Open Access Journals (Sweden)

    Nishiura Hiroshi

    2011-02-01

    Full Text Available Abstract Background Real-time forecasting of epidemics, especially those based on a likelihood-based approach, is understudied. This study aimed to develop a simple method that can be used for the real-time epidemic forecasting. Methods A discrete time stochastic model, accounting for demographic stochasticity and conditional measurement, was developed and applied as a case study to the weekly incidence of pandemic influenza (H1N1-2009 in Japan. By imposing a branching process approximation and by assuming the linear growth of cases within each reporting interval, the epidemic curve is predicted using only two parameters. The uncertainty bounds of the forecasts are computed using chains of conditional offspring distributions. Results The quality of the forecasts made before the epidemic peak appears largely to depend on obtaining valid parameter estimates. The forecasts of both weekly incidence and final epidemic size greatly improved at and after the epidemic peak with all the observed data points falling within the uncertainty bounds. Conclusions Real-time forecasting using the discrete time stochastic model with its simple computation of the uncertainty bounds was successful. Because of the simplistic model structure, the proposed model has the potential to additionally account for various types of heterogeneity, time-dependent transmission dynamics and epidemiological details. The impact of such complexities on forecasting should be explored when the data become available as part of the disease surveillance.

  2. Sequencing the real time of the elderly: Evidence from South Africa

    Directory of Open Access Journals (Sweden)

    Erofili Grapsa

    2016-09-01

    Full Text Available Background: Understanding how the elderly in developing countries spend their time has received little attention. Moreover, the potential of time use data to discern variation in activity patterns has not been fully realized by methods which use a mean added time approach. Objective: To uncover patterns of time use among the elderly (60 years and older in South Africa by applying an innovative methodology that incorporates the timing, duration, and frequency of activities in the analysis. Methods: We use sequence analysis, which treats the daily series of activities of each individual as a sequence, and cluster analysis, to group these sequences into common clusters of time use behaviour. We then estimate multinomial logit regressions to identify the characteristics of the elderly which predict cluster membership. Results: We find that the time use behaviour of the elderly in South Africa can be divided into five distinct clusters, according to the relative importance in their day of personal care, household maintenance, work, mass media, and social or cultural activities. In comparison to men, women are overrepresented in the cluster where household work dominates, while they are underrepresented in the cluster of the elderly who engage in production work. A range of other individual and household characteristics are also important in predicting cluster membership. Contribution: Sequence and cluster analysis permit a nuanced examination of the differences and commonalities in time use patterns among the elderly in South Africa. There is considerable potential to extend these methods to other studies of time use behaviour.

  3. Detection of Tomato black ring virus by real-time one-step RT-PCR.

    Science.gov (United States)

    Harper, Scott J; Delmiglio, Catia; Ward, Lisa I; Clover, Gerard R G

    2011-01-01

    A TaqMan-based real-time one-step RT-PCR assay was developed for the rapid detection of Tomato black ring virus (TBRV), a significant plant pathogen which infects a wide range of economically important crops. Primers and a probe were designed against existing genomic sequences to amplify a 72 bp fragment from RNA-2. The assay amplified all isolates of TBRV tested, but no amplification was observed from the RNA of other nepovirus species or healthy host plants. The detection limit of the assay was estimated to be around nine copies of the TBRV target region in total RNA. A comparison with conventional RT-PCR and ELISA, indicated that ELISA, the current standard test method, lacked specificity and reacted to all nepovirus species tested, while conventional RT-PCR was approximately ten-fold less sensitive than the real-time RT-PCR assay. Finally, the real-time RT-PCR assay was tested using five different RT-PCR reagent kits and was found to be robust and reliable, with no significant differences in sensitivity being found. The development of this rapid assay should aid in quarantine and post-border surveys for regulatory agencies. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Quantification of trace-level DNA by real-time whole genome amplification.

    Science.gov (United States)

    Kang, Min-Jung; Yu, Hannah; Kim, Sook-Kyung; Park, Sang-Ryoul; Yang, Inchul

    2011-01-01

    Quantification of trace amounts of DNA is a challenge in analytical applications where the concentration of a target DNA is very low or only limited amounts of samples are available for analysis. PCR-based methods including real-time PCR are highly sensitive and widely used for quantification of low-level DNA samples. However, ordinary PCR methods require at least one copy of a specific gene sequence for amplification and may not work for a sub-genomic amount of DNA. We suggest a real-time whole genome amplification method adopting the degenerate oligonucleotide primed PCR (DOP-PCR) for quantification of sub-genomic amounts of DNA. This approach enabled quantification of sub-picogram amounts of DNA independently of their sequences. When the method was applied to the human placental DNA of which amount was accurately determined by inductively coupled plasma-optical emission spectroscopy (ICP-OES), an accurate and stable quantification capability for DNA samples ranging from 80 fg to 8 ng was obtained. In blind tests of laboratory-prepared DNA samples, measurement accuracies of 7.4%, -2.1%, and -13.9% with analytical precisions around 15% were achieved for 400-pg, 4-pg, and 400-fg DNA samples, respectively. A similar quantification capability was also observed for other DNA species from calf, E. coli, and lambda phage. Therefore, when provided with an appropriate standard DNA, the suggested real-time DOP-PCR method can be used as a universal method for quantification of trace amounts of DNA.

  5. Real-time target tracking of soft tissues in 3D ultrasound images based on robust visual information and mechanical simulation.

    Science.gov (United States)

    Royer, Lucas; Krupa, Alexandre; Dardenne, Guillaume; Le Bras, Anthony; Marchand, Eric; Marchal, Maud

    2017-01-01

    In this paper, we present a real-time approach that allows tracking deformable structures in 3D ultrasound sequences. Our method consists in obtaining the target displacements by combining robust dense motion estimation and mechanical model simulation. We perform evaluation of our method through simulated data, phantom data, and real-data. Results demonstrate that this novel approach has the advantage of providing correct motion estimation regarding different ultrasound shortcomings including speckle noise, large shadows and ultrasound gain variation. Furthermore, we show the good performance of our method with respect to state-of-the-art techniques by testing on the 3D databases provided by MICCAI CLUST'14 and CLUST'15 challenges. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. REAL TIME SYSTEM OPERATIONS 2006-2007

    Energy Technology Data Exchange (ETDEWEB)

    Eto, Joseph H.; Parashar, Manu; Lewis, Nancy Jo

    2008-08-15

    The Real Time System Operations (RTSO) 2006-2007 project focused on two parallel technical tasks: (1) Real-Time Applications of Phasors for Monitoring, Alarming and Control; and (2) Real-Time Voltage Security Assessment (RTVSA) Prototype Tool. The overall goal of the phasor applications project was to accelerate adoption and foster greater use of new, more accurate, time-synchronized phasor measurements by conducting research and prototyping applications on California ISO's phasor platform - Real-Time Dynamics Monitoring System (RTDMS) -- that provide previously unavailable information on the dynamic stability of the grid. Feasibility assessment studies were conducted on potential application of this technology for small-signal stability monitoring, validating/improving existing stability nomograms, conducting frequency response analysis, and obtaining real-time sensitivity information on key metrics to assess grid stress. Based on study findings, prototype applications for real-time visualization and alarming, small-signal stability monitoring, measurement based sensitivity analysis and frequency response assessment were developed, factory- and field-tested at the California ISO and at BPA. The goal of the RTVSA project was to provide California ISO with a prototype voltage security assessment tool that runs in real time within California ISO?s new reliability and congestion management system. CERTS conducted a technical assessment of appropriate algorithms, developed a prototype incorporating state-of-art algorithms (such as the continuation power flow, direct method, boundary orbiting method, and hyperplanes) into a framework most suitable for an operations environment. Based on study findings, a functional specification was prepared, which the California ISO has since used to procure a production-quality tool that is now a part of a suite of advanced computational tools that is used by California ISO for reliability and congestion management.

  7. NEMO-SN-1 the first 'real-time' seafloor observatory of ESONET

    International Nuclear Information System (INIS)

    Favali, Paolo; Beranzoli, Laura; D'Anna, Giuseppe; Gasparoni, Francesco; Gerber, Hans W.

    2006-01-01

    The fruitful collaboration between Italian Research Institutions, particularly Istituto Nazionale di Fisica Nucleare (INFN) and Istituto Nazionale di Geofisica e Vulcanologia (INGV) together with Marine Engineering Companies, led to the development of NEMO-SN-1, the first European cabled seafloor multiparameter observatory. This observatory, deployed at 2060 m w.d. about 12 miles off-shore the Eastern coasts of Sicily (Southern Italy), is in real-time acquisition since January 2005 and addressed to different set of measurements: geophysical and oceanographic. In particular the SN-1 seismological data are integrated in the INGV land-based national seismic network, and they arrive in real-time to the Operative Centre in Rome. In the European Commission (EC) European Seafloor Observatory NETwork (ESONET) project, in connection to the Global Monitoring for Environment and Security (GMES) action plan, the NEMO-SN-1 site has been proposed as an European key area, both for its intrinsic importance for geo-hazards and for the availability of infrastructure as a stepwise development in GMES program. Presently, NEMO-SN-1 is the only ESONET site operative. The paper gives a description of SN-1 observatory with examples of data

  8. A first near real-time seismology-based landquake monitoring system.

    Science.gov (United States)

    Chao, Wei-An; Wu, Yih-Min; Zhao, Li; Chen, Hongey; Chen, Yue-Gau; Chang, Jui-Ming; Lin, Che-Min

    2017-03-02

    Hazards from gravity-driven instabilities on hillslope (termed 'landquake' in this study) are an important problem facing us today. Rapid detection of landquake events is crucial for hazard mitigation and emergency response. Based on the real-time broadband data in Taiwan, we have developed a near real-time landquake monitoring system, which is a fully automatic process based on waveform inversion that yields source information (e.g., location and mechanism) and identifies the landquake source by examining waveform fitness for different types of source mechanisms. This system has been successfully tested offline using seismic records during the passage of the 2009 Typhoon Morakot in Taiwan and has been in online operation during the typhoon season in 2015. In practice, certain levels of station coverage (station gap 10 6  m 3 and area > 0.20 km 2 ) are required to ensure good performance (fitness > 0.6 for successful source identification) of the system, which can be readily implemented in other places in the world with real-time seismic networks and high landquake activities.

  9. A shared memory based interface of MARTe with EPICS for real-time applications

    International Nuclear Information System (INIS)

    Yun, Sangwon; Neto, André C.; Park, Mikyung; Lee, Sangil; Park, Kaprai

    2014-01-01

    Highlights: • We implemented a shared memory based interface of MARTe with EPICS. • We implemented an EPICS module supporting device and driver support. • We implemented an example EPICS IOC and CSS OPI for evaluation. - Abstract: The Multithreaded Application Real-Time executor (MARTe) is a multi-platform C++ middleware designed for the implementation of real-time control systems. It currently supports the Linux, Linux + RTAI, VxWorks, Solaris and MS Windows platforms. In the fusion community MARTe is being used at JET, COMPASS, ISTTOK, FTU and RFX in fusion [1]. The Experimental Physics and Industrial Control System (EPICS), a standard framework for the control systems in KSTAR and ITER, is a set of software tools and applications which provide a software infrastructure for use in building distributed control systems to operate devices. For a MARTe based application to cooperate with an EPICS based application, an interface layer between MARTe and EPICS is required. To solve this issue, a number of interfacing solutions have been proposed and some of them have been implemented. Nevertheless, a new approach is required to mitigate the functional limitations of existing solutions and to improve their performance for real-time applications. This paper describes the design and implementation of a shared memory based interface between MARTe and EPICS

  10. A shared memory based interface of MARTe with EPICS for real-time applications

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Sangwon, E-mail: yunsw@nfri.re.kr [National Fusion Research Institute (NFRI), Gwahangno 169-148, Yuseong-Gu, Daejeon 305-806 (Korea, Republic of); Neto, André C. [Associação EURATOM/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, P-1049-001 Lisboa (Portugal); Park, Mikyung; Lee, Sangil; Park, Kaprai [National Fusion Research Institute (NFRI), Gwahangno 169-148, Yuseong-Gu, Daejeon 305-806 (Korea, Republic of)

    2014-05-15

    Highlights: • We implemented a shared memory based interface of MARTe with EPICS. • We implemented an EPICS module supporting device and driver support. • We implemented an example EPICS IOC and CSS OPI for evaluation. - Abstract: The Multithreaded Application Real-Time executor (MARTe) is a multi-platform C++ middleware designed for the implementation of real-time control systems. It currently supports the Linux, Linux + RTAI, VxWorks, Solaris and MS Windows platforms. In the fusion community MARTe is being used at JET, COMPASS, ISTTOK, FTU and RFX in fusion [1]. The Experimental Physics and Industrial Control System (EPICS), a standard framework for the control systems in KSTAR and ITER, is a set of software tools and applications which provide a software infrastructure for use in building distributed control systems to operate devices. For a MARTe based application to cooperate with an EPICS based application, an interface layer between MARTe and EPICS is required. To solve this issue, a number of interfacing solutions have been proposed and some of them have been implemented. Nevertheless, a new approach is required to mitigate the functional limitations of existing solutions and to improve their performance for real-time applications. This paper describes the design and implementation of a shared memory based interface between MARTe and EPICS.

  11. Design and implementation of an interactive web-based near real-time forest monitoring system

    NARCIS (Netherlands)

    Pratihast, Arun Kumar; Vries, de Ben; Avitabile, Valerio; Bruin, De Sytze; Herold, Martin; Bergsma, Aldo

    2016-01-01

    This paper describes an interactive web-based near real-time (NRT) forest monitoring system using four levels of geographic information services: 1) the acquisition of continuous data streams from satellite and community-based monitoring using mobile devices, 2) NRT forest disturbance detection

  12. Smartphone-Based Real-Time Indoor Location Tracking With 1-m Precision.

    Science.gov (United States)

    Liang, Po-Chou; Krause, Paul

    2016-05-01

    Monitoring the activities of daily living of the elderly at home is widely recognized as useful for the detection of new or deteriorating health conditions. However, the accuracy of existing indoor location tracking systems remains unsatisfactory. The aim of this study was, therefore, to develop a localization system that can identify a patient's real-time location in a home environment with maximum estimation error of 2 m at a 95% confidence level. A proof-of-concept system based on a sensor fusion approach was built with considerations for lower cost, reduced intrusiveness, and higher mobility, deployability, and portability. This involved the development of both a step detector using the accelerometer and compass of an iPhone 5, and a radio-based localization subsystem using a Kalman filter and received signal strength indication to tackle issues that had been identified as limiting accuracy. The results of our experiments were promising with an average estimation error of 0.47 m. We are confident that with the proposed future work, our design can be adapted to a home-like environment with a more robust localization solution.

  13. Real-time temperature field measurement based on acoustic tomography

    International Nuclear Information System (INIS)

    Bao, Yong; Jia, Jiabin; Polydorides, Nick

    2017-01-01

    Acoustic tomography can be used to measure the temperature field from the time-of-flight (TOF). In order to capture real-time temperature field changes and accurately yield quantitative temperature images, two improvements to the conventional acoustic tomography system are studied: simultaneous acoustic transmission and TOF collection along multiple ray paths, and an offline iteration reconstruction algorithm. During system operation, all the acoustic transceivers send modulated and filtered wideband Kasami sequences simultaneously to facilitate fast and accurate TOF measurements using cross-correlation detection. For image reconstruction, the iteration process is separated and executed offline beforehand to shorten computation time for online temperature field reconstruction. The feasibility and effectiveness of the developed methods are validated in the simulation study. The simulation results demonstrate that the proposed method can reduce the processing time per frame from 160 ms to 20 ms, while the reconstruction error remains less than 5%. Hence, the proposed method has great potential in the measurement of rapid temperature change with good temporal and spatial resolution. (paper)

  14. Near real-time digital holographic microscope based on GPU parallel computing

    Science.gov (United States)

    Zhu, Gang; Zhao, Zhixiong; Wang, Huarui; Yang, Yan

    2018-01-01

    A transmission near real-time digital holographic microscope with in-line and off-axis light path is presented, in which the parallel computing technology based on compute unified device architecture (CUDA) and digital holographic microscopy are combined. Compared to other holographic microscopes, which have to implement reconstruction in multiple focal planes and are time-consuming the reconstruction speed of the near real-time digital holographic microscope can be greatly improved with the parallel computing technology based on CUDA, so it is especially suitable for measurements of particle field in micrometer and nanometer scale. Simulations and experiments show that the proposed transmission digital holographic microscope can accurately measure and display the velocity of particle field in micrometer scale, and the average velocity error is lower than 10%.With the graphic processing units(GPU), the computing time of the 100 reconstruction planes(512×512 grids) is lower than 120ms, while it is 4.9s using traditional reconstruction method by CPU. The reconstruction speed has been raised by 40 times. In other words, it can handle holograms at 8.3 frames per second and the near real-time measurement and display of particle velocity field are realized. The real-time three-dimensional reconstruction of particle velocity field is expected to achieve by further optimization of software and hardware. Keywords: digital holographic microscope,

  15. Design optimization of TTEthernet-based distributed real-time systems

    DEFF Research Database (Denmark)

    Tamas-Selicean, Domitian; Pop, Paul; Steiner, Wilfried

    2015-01-01

    Many safety-critical real-time applications are implemented using distributed architectures, composed of heterogeneous processing elements interconnected in a network. Our focus in this paper is on the TTEthernet protocol, a deterministic, synchronized and congestion-free network protocol based o...

  16. Real-time motion-adaptive-optimization (MAO) in TomoTherapy

    Energy Technology Data Exchange (ETDEWEB)

    Lu Weiguo; Chen Mingli; Ruchala, Kenneth J; Chen Quan; Olivera, Gustavo H [TomoTherapy Inc., 1240 Deming Way, Madison, WI (United States); Langen, Katja M; Kupelian, Patrick A [MD Anderson Cancer Center-Orlando, Orlando, FL (United States)], E-mail: wlu@tomotherapy.com

    2009-07-21

    IMRT delivery follows a planned leaf sequence, which is optimized before treatment delivery. However, it is hard to model real-time variations, such as respiration, in the planning procedure. In this paper, we propose a negative feedback system of IMRT delivery that incorporates real-time optimization to account for intra-fraction motion. Specifically, we developed a feasible workflow of real-time motion-adaptive-optimization (MAO) for TomoTherapy delivery. TomoTherapy delivery is characterized by thousands of projections with a fast projection rate and ultra-fast binary leaf motion. The technique of MAO-guided delivery calculates (i) the motion-encoded dose that has been delivered up to any given projection during the delivery and (ii) the future dose that will be delivered based on the estimated motion probability and future fluence map. These two pieces of information are then used to optimize the leaf open time of the upcoming projection right before its delivery. It consists of several real-time procedures, including 'motion detection and prediction', 'delivered dose accumulation', 'future dose estimation' and 'projection optimization'. Real-time MAO requires that all procedures are executed in time less than the duration of a projection. We implemented and tested this technique using a TomoTherapy (registered) research system. The MAO calculation took about 100 ms per projection. We calculated and compared MAO-guided delivery with two other types of delivery, motion-without-compensation delivery (MD) and static delivery (SD), using simulated 1D cases, real TomoTherapy plans and the motion traces from clinical lung and prostate patients. The results showed that the proposed technique effectively compensated for motion errors of all test cases. Dose distributions and DVHs of MAO-guided delivery approached those of SD, for regular and irregular respiration with a peak-to-peak amplitude of 3 cm, and for medium and large

  17. Real-time motion-adaptive-optimization (MAO) in TomoTherapy

    International Nuclear Information System (INIS)

    Lu Weiguo; Chen Mingli; Ruchala, Kenneth J; Chen Quan; Olivera, Gustavo H; Langen, Katja M; Kupelian, Patrick A

    2009-01-01

    IMRT delivery follows a planned leaf sequence, which is optimized before treatment delivery. However, it is hard to model real-time variations, such as respiration, in the planning procedure. In this paper, we propose a negative feedback system of IMRT delivery that incorporates real-time optimization to account for intra-fraction motion. Specifically, we developed a feasible workflow of real-time motion-adaptive-optimization (MAO) for TomoTherapy delivery. TomoTherapy delivery is characterized by thousands of projections with a fast projection rate and ultra-fast binary leaf motion. The technique of MAO-guided delivery calculates (i) the motion-encoded dose that has been delivered up to any given projection during the delivery and (ii) the future dose that will be delivered based on the estimated motion probability and future fluence map. These two pieces of information are then used to optimize the leaf open time of the upcoming projection right before its delivery. It consists of several real-time procedures, including 'motion detection and prediction', 'delivered dose accumulation', 'future dose estimation' and 'projection optimization'. Real-time MAO requires that all procedures are executed in time less than the duration of a projection. We implemented and tested this technique using a TomoTherapy (registered) research system. The MAO calculation took about 100 ms per projection. We calculated and compared MAO-guided delivery with two other types of delivery, motion-without-compensation delivery (MD) and static delivery (SD), using simulated 1D cases, real TomoTherapy plans and the motion traces from clinical lung and prostate patients. The results showed that the proposed technique effectively compensated for motion errors of all test cases. Dose distributions and DVHs of MAO-guided delivery approached those of SD, for regular and irregular respiration with a peak-to-peak amplitude of 3 cm, and for medium and large prostate motions. The results conceptually

  18. Coexistence of Epstein-Barr virus and Parvovirus B19 in tonsillar tissue samples: quantitative measurement by real-time PCR.

    Science.gov (United States)

    Sahiner, Fatih; Gümral, Ramazan; Yildizoğlu, Üzeyir; Babayiğit, Mustafa Alparslan; Durmaz, Abdullah; Yiğit, Nuri; Saraçli, Mehmet Ali; Kubar, Ayhan

    2014-08-01

    In this study, we aimed to investigate the presence and copy number of six different viruses in tonsillar tissue samples removed surgically because of chronic recurrent tonsillitis or chronic obstructive tonsillar hypertrophy. In total, 56 tissue samples (tonsillar core) collected from 44 children and 12 adults were included in this study. The presence of viruses was investigated using a new TaqMan-based quantitative real-time PCR assay. Of the 56 tissue samples, 67.9% (38/56) were positive for at least one of the six viruses. Epstein-Barr virus was the most frequently detected virus, being found in 53.6% (30/56), followed by human Parvovirus B19 21.4% (12/56), human adenovirus 12.5% (7/56), human Cytomegalovirus 5.4% (3/56), BK polyomavirus 1.8% (1/56), and Herpes simplex virus 1.8% (1/56). Precancerous or cancerous changes were not detected in the tonsillar tissue samples by pathologic examination, whereas lymphoid hyperplasia was observed in 24 patients. In contrast to other viruses, B19 virus was present in high copy number in tonsillar tissues. The rates of EBV and B19 virus with high copy number (>500.000 copies/ml) were higher in children than in adults, and a positive relationship was also found between the presence of EBV and the presence of B19 virus with high copy number (P=0.037). It is previously reported that some viral agents are associated with different chronic tonsillar pathologies. In the present study, the presence of B19 virus in tonsillar core samples was investigated quantitatively for the first time, and our data suggests that EBV infections could be associated with B19 virus infections or could facilitate B19 virus replication. However, further detailed studies are needed to clarify this observation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Towards cycle-accurate performance predictions for real-time embedded systems

    NARCIS (Netherlands)

    Triantafyllidis, K.; Bondarev, E.; With, de P.H.N.; Arabnia, H.R.; Deligiannidis, L.; Jandieri, G.

    2013-01-01

    In this paper we present a model-based performance analysis method for component-based real-time systems, featuring cycle-accurate predictions of latencies and enhanced system robustness. The method incorporates the following phases: (a) instruction-level profiling of SW components, (b) modeling the

  20. Quantitative detection and typing of hepatitis D virus in human serum by real-time polymerase chain reaction and melting curve analysis.

    Science.gov (United States)

    Hofmann, Joerg; Frenzel, Katrin; Minh, Bui Q; von Haeseler, Arndt; Edelmann, Anke; Ross, Stefan R; Berg, Thomas; Krüger, Detlev H; Meisel, Helga

    2010-06-01

    Hepatitis D virus (HDV) infection is an important etiologic agent of fulminant hepatitis and may aggravate the clinical course of chronic hepatitis B infection resulting in cirrhosis and liver failure. This report describes the establishment of a real-time reverse transcriptase polymerase chain reaction method that allows the quantitative detection of HDV-1 and HDV-3 with a sensitivity in a linear range of 2 x 10(3) to 10(8) copies/mL. Additionally, the new assay provides the opportunity to distinguish HDV-1 from HDV-3 by a subsequent melting curve analysis, an important option because these HDV types are highly associated with severe clinical outcome. The results of the melting curve analysis of 42 HDV sequences obtained in this study and the phylogenetic analysis based on 139 full-length sequences from GenBank were consistent and showed that all sequences described here cluster within the HDV-1 clade. Therefore, this assay is useful for monitoring of antiviral treatment and molecular epidemiologic studies of HDV distribution. Copyright 2010 Elsevier Inc. All rights reserved.

  1. Development of a highly sensitive one-tube nested real-time PCR for detecting Mycobacterium tuberculosis.

    Science.gov (United States)

    Choi, Yeonim; Jeon, Bo-Young; Shim, Tae Sun; Jin, Hyunwoo; Cho, Sang-Nae; Lee, Hyeyoung

    2014-12-01

    Rapid, accurate detection of Mycobacterium tuberculosis is crucial in the diagnosis of tuberculosis (TB), but conventional diagnostic methods have limited sensitivity and specificity or are time consuming. A new highly sensitive nucleic acid amplification test, combined nested and real-time polymerase chain reaction (PCR) in a single tube (one-tube nested real-time PCR), was developed for detecting M. tuberculosis, which takes advantage of two PCR techniques, i.e., nested PCR and real-time PCR. One-tube nested real-time PCR was designed to have two sequential reactions with two sets of primers and dual probes for the insertion sequence (IS) 6110 sequence of M. tuberculosis in a single closed tube. The minimum limits of detection of IS6110 real-time PCR and IS6110 one-tube nested real-time PCR were 100 fg/μL and 1 fg/μL of M. tuberculosis DNA, respectively. AdvanSure TB/non-tuberculous mycobacteria (NTM) real-time PCR, IS6110 real-time PCR, and two-tube nested real-time PCR showed 100% sensitivity and 100% specificity for clinical M. tuberculosis isolates and NTM isolates. In comparison, the sensitivities of AdvanSure TB/NTM real-time PCR, single IS6110 real-time PCR, and one-tube nested real-time PCR were 91% (152/167), 94.6% (158/167), and 100% (167/167) for sputum specimens, respectively. In conclusion, IS6110 one-tube nested real-time PCR is useful for detecting M. tuberculosis due to its high sensitivity and simple manipulation. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Characterizing spatial heterogeneity based on the b-value and fractal analyses of the 2015 Nepal earthquake sequence

    Science.gov (United States)

    Nampally, Subhadra; Padhy, Simanchal; Dimri, Vijay P.

    2018-01-01

    The nature of spatial distribution of heterogeneities in the source area of the 2015 Nepal earthquake is characterized based on the seismic b-value and fractal analysis of its aftershocks. The earthquake size distribution of aftershocks gives a b-value of 1.11 ± 0.08, possibly representing the highly heterogeneous and low stress state of the region. The aftershocks exhibit a fractal structure characterized by a spectrum of generalized dimensions, Dq varying from D2 = 1.66 to D22 = 0.11. The existence of a fractal structure suggests that the spatial distribution of aftershocks is not a random phenomenon, but it self-organizes into a critical state, exhibiting a scale-independent structure governed by a power-law scaling, where a small perturbation in stress is sufficient enough to trigger aftershocks. In order to obtain the bias in fractal dimensions resulting from finite data size, we compared the multifractal spectrum for the real data and random simulations. On comparison, we found that the lower limit of bias in D2 is 0.44. The similarity in their multifractal spectra suggests the lack of long-range correlation in the data, with an only weakly multifractal or a monofractal with a single correlation dimension D2 characterizing the data. The minimum number of events required for a multifractal process with an acceptable error is discussed. We also tested for a possible correlation between changes in D2 and energy released during the earthquakes. The values of D2 rise during the two largest earthquakes (M > 7.0) in the sequence. The b- and D2 values are related by D2 = 1.45 b that corresponds to the intermediate to large earthquakes. Our results provide useful constraints on the spatial distribution of b- and D2-values, which are useful for seismic hazard assessment in the aftershock area of a large earthquake.

  3. Real-time learning of predictive recognition categories that chunk sequences of items stored in working memory

    Directory of Open Access Journals (Sweden)

    Stephen eGrossberg

    2014-10-01

    Full Text Available How are sequences of events that are temporarily stored in a cognitive working memory unitized, or chunked, through learning? Such sequential learning is needed by the brain in order to enable language, spatial understanding, and motor skills to develop. In particular, how does the brain learn categories, or list chunks, that become selectively tuned to different temporal sequences of items in lists of variable length as they are stored in working memory, and how does this learning process occur in real time? The present article introduces a neural model that simulates learning of such list chunks. In this model, sequences of items are temporarily stored in an Item-and-Order, or competitive queuing, working memory before learning categorizes them using a categorization network, called a Masking Field, which is a self-similar, multiple-scale, recurrent on-center off-surround network that can weigh the evidence for variable-length sequences of items as they are stored in the working memory through time. A Masking Field hereby activates the learned list chunks that represent the most predictive item groupings at any time, while suppressing less predictive chunks. In a network with a given number of input items, all possible ordered sets of these item sequences, up to a fixed length, can be learned with unsupervised or supervised learning. The self-similar multiple-scale properties of Masking Fields interacting with an Item-and-Order working memory provide a natural explanation of George Miller's Magical Number Seven and Nelson Cowan's Magical Number Four. The article explains why linguistic, spatial, and action event sequences may all be stored by Item-and-Order working memories that obey similar design principles, and thus how the current results may apply across modalities. Item-and-Order properties may readily be extended to Item-Order-Rank working memories in which the same item can be stored in multiple list positions, or ranks, as in the list

  4. Power System Real-Time Monitoring by Using PMU-Based Robust State Estimation Method

    DEFF Research Database (Denmark)

    Zhao, Junbo; Zhang, Gexiang; Das, Kaushik

    2016-01-01

    Accurate real-time states provided by the state estimator are critical for power system reliable operation and control. This paper proposes a novel phasor measurement unit (PMU)-based robust state estimation method (PRSEM) to real-time monitor a power system under different operation conditions...... the system real-time states with good robustness and can address several kinds of BD.......-based bad data (BD) detection method, which can handle the smearing effect and critical measurement errors, is presented. We evaluate PRSEM by using IEEE benchmark test systems and a realistic utility system. The numerical results indicate that, in short computation time, PRSEM can effectively track...

  5. Single reaction, real time RT-PCR detection of all known avian and human metapneumoviruses.

    Science.gov (United States)

    Lemaitre, E; Allée, C; Vabret, A; Eterradossi, N; Brown, P A

    2018-01-01

    Current molecular methods for the detection of avian and human metapneumovirus (AMPV, HMPV) are specifically targeted towards each virus species or individual subgroups of these. Here a broad range SYBR Green I real time RT-PCR was developed which amplified a highly conserved fragment of sequence in the N open reading frame. This method was sufficiently efficient and specific in detecting all MPVs. Its validation according to the NF U47-600 norm for the four AMPV subgroups estimated low limits of detection between 1000 and 10copies/μL, similar with detection levels described previously for real time RT-PCRs targeting specific subgroups. RNA viruses present a challenge for the design of durable molecular diagnostic test due to the rate of change in their genome sequences which can vary substantially in different areas and over time. The fact that the regions of sequence for primer hybridization in the described method have remained sufficiently conserved since the AMPV and HMPV diverged, should give the best chance of continued detection of current subgroups and of potential unknown or future emerging MPV strains. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Real-time label-free quantitative fluorescence microscopy-based detection of ATP using a tunable fluorescent nano-aptasensor platform

    Science.gov (United States)

    Shrivastava, Sajal; Sohn, Il-Yung; Son, Young-Min; Lee, Won-Il; Lee, Nae-Eung

    2015-11-01

    Although real-time label-free fluorescent aptasensors based on nanomaterials are increasingly recognized as a useful strategy for the detection of target biomolecules with high fidelity, the lack of an imaging-based quantitative measurement platform limits their implementation with biological samples. Here we introduce an ensemble strategy for a real-time label-free fluorescent graphene (Gr) aptasensor platform. This platform employs aptamer length-dependent tunability, thus enabling the reagentless quantitative detection of biomolecules through computational processing coupled with real-time fluorescence imaging data. We demonstrate that this strategy effectively delivers dose-dependent quantitative readouts of adenosine triphosphate (ATP) concentration on chemical vapor deposited (CVD) Gr and reduced graphene oxide (rGO) surfaces, thereby providing cytotoxicity assessment. Compared with conventional fluorescence spectrometry methods, our highly efficient, universally applicable, and rational approach will facilitate broader implementation of imaging-based biosensing platforms for the quantitative evaluation of a range of target molecules.Although real-time label-free fluorescent aptasensors based on nanomaterials are increasingly recognized as a useful strategy for the detection of target biomolecules with high fidelity, the lack of an imaging-based quantitative measurement platform limits their implementation with biological samples. Here we introduce an ensemble strategy for a real-time label-free fluorescent graphene (Gr) aptasensor platform. This platform employs aptamer length-dependent tunability, thus enabling the reagentless quantitative detection of biomolecules through computational processing coupled with real-time fluorescence imaging data. We demonstrate that this strategy effectively delivers dose-dependent quantitative readouts of adenosine triphosphate (ATP) concentration on chemical vapor deposited (CVD) Gr and reduced graphene oxide (r

  7. GPU-based real-time triggering in the NA62 experiment

    CERN Document Server

    Ammendola, R.; Cretaro, P.; Di Lorenzo, S.; Fantechi, R.; Fiorini, M.; Frezza, O.; Lamanna, G.; Lo Cicero, F.; Lonardo, A.; Martinelli, M.; Neri, I.; Paolucci, P.S.; Pastorelli, E.; Piandani, R.; Pontisso, L.; Rossetti, D.; Simula, F.; Sozzi, M.; Vicini, P.

    2016-01-01

    Over the last few years the GPGPU (General-Purpose computing on Graphics Processing Units) paradigm represented a remarkable development in the world of computing. Computing for High-Energy Physics is no exception: several works have demonstrated the effectiveness of the integration of GPU-based systems in high level trigger of different experiments. On the other hand the use of GPUs in the low level trigger systems, characterized by stringent real-time constraints, such as tight time budget and high throughput, poses several challenges. In this paper we focus on the low level trigger in the CERN NA62 experiment, investigating the use of real-time computing on GPUs in this synchronous system. Our approach aimed at harvesting the GPU computing power to build in real-time refined physics-related trigger primitives for the RICH detector, as the the knowledge of Cerenkov rings parameters allows to build stringent conditions for data selection at trigger level. Latencies of all components of the trigger chain have...

  8. Real time expert systems

    International Nuclear Information System (INIS)

    Asami, Tohru; Hashimoto, Kazuo; Yamamoto, Seiichi

    1992-01-01

    Recently, aiming at the application to the plant control for nuclear reactors and traffic and communication control, the research and the practical use of the expert system suitable to real time processing have become conspicuous. In this report, the condition for the required function to control the object that dynamically changes within a limited time is presented, and the technical difference between the real time expert system developed so as to satisfy it and the expert system of conventional type is explained with the actual examples and from theoretical aspect. The expert system of conventional type has the technical base in the problem-solving equipment originating in STRIPS. The real time expert system is applied to the fields accompanied by surveillance and control, to which conventional expert system is hard to be applied. The requirement for the real time expert system, the example of the real time expert system, and as the techniques of realizing real time processing, the realization of interruption processing, dispersion processing, and the mechanism of maintaining the consistency of knowledge are explained. (K.I.)

  9. Comparison of multiple DNA dyes for real-time PCR: effects of dye concentration and sequence composition on DNA amplification and melting temperature

    DEFF Research Database (Denmark)

    Guðnason, Haukur; Dufva, Hans Martin; Bang, Dang Duong

    2007-01-01

    investigate 15 different intercalating DNA dyes for their inhibitory effects on PCR, effects on DNA melting temperature and possible preferential binding to GC-rich sequences. Our results demonstrated that in contrast to the results of SYBR Green I, two intercalating dyes SYTO-13 and SYTO-82 do not inhibit......The importance of real-time polymerase chain reaction (PCR) has increased steadily in clinical applications over the last decade. Many applications utilize SYBR Green I dye to follow the accumulation of amplicons in real time. SYBR Green I has, however, a number of limitations that include...... the inhibition of PCR, preferential binding to GC-rich sequences and effects on melting curve analysis. Although a few alternative dyes without some of these limitations have been recently proposed, no large-scale investigation into the properties of intercalating dyes has been performed. In this study, we...

  10. Digital video timing analyzer for the evaluation of PC-based real-time simulation systems

    Science.gov (United States)

    Jones, Shawn R.; Crosby, Jay L.; Terry, John E., Jr.

    2009-05-01

    Due to the rapid acceleration in technology and the drop in costs, the use of commercial off-the-shelf (COTS) PC-based hardware and software components for digital and hardware-in-the-loop (HWIL) simulations has increased. However, the increase in PC-based components creates new challenges for HWIL test facilities such as cost-effective hardware and software selection, system configuration and integration, performance testing, and simulation verification/validation. This paper will discuss how the Digital Video Timing Analyzer (DiViTA) installed in the Aviation and Missile Research, Development and Engineering Center (AMRDEC) provides quantitative characterization data for PC-based real-time scene generation systems. An overview of the DiViTA is provided followed by details on measurement techniques, applications, and real-world examples of system benefits.

  11. Real-Time Reliability Verification for UAV Flight Control System Supporting Airworthiness Certification.

    Science.gov (United States)

    Xu, Haiyang; Wang, Ping

    2016-01-01

    In order to verify the real-time reliability of unmanned aerial vehicle (UAV) flight control system and comply with the airworthiness certification standard, we proposed a model-based integration framework for modeling and verification of time property. Combining with the advantages of MARTE, this framework uses class diagram to create the static model of software system, and utilizes state chart to create the dynamic model. In term of the defined transformation rules, the MARTE model could be transformed to formal integrated model, and the different part of the model could also be verified by using existing formal tools. For the real-time specifications of software system, we also proposed a generating algorithm for temporal logic formula, which could automatically extract real-time property from time-sensitive live sequence chart (TLSC). Finally, we modeled the simplified flight control system of UAV to check its real-time property. The results showed that the framework could be used to create the system model, as well as precisely analyze and verify the real-time reliability of UAV flight control system.

  12. DNA microsatellite region for a reliable quantification of soft wheat adulteration in durum wheat-based foodstuffs by real-time PCR.

    Science.gov (United States)

    Sonnante, Gabriella; Montemurro, Cinzia; Morgese, Anita; Sabetta, Wilma; Blanco, Antonio; Pasqualone, Antonella

    2009-11-11

    Italian industrial pasta and durum wheat typical breads must be prepared using exclusively durum wheat semolina. Previously, a microsatellite sequence specific of the wheat D-genome had been chosen for traceability of soft wheat in semolina and bread samples, using qualitative and quantitative Sybr green-based real-time experiments. In this work, we describe an improved method based on the same soft wheat genomic region by means of a quantitative real-time PCR using a dual-labeled probe. Standard curves based on dilutions of 100% soft wheat flour, pasta, or bread were constructed. Durum wheat semolina, pasta, and bread samples were prepared with increasing amounts of soft wheat to verify the accuracy of the method. Results show that reliable quantifications were obtained especially for the samples containing a lower amount of soft wheat DNA, fulfilling the need to verify labeling of pasta and typical durum wheat breads.

  13. A real time Taqman RT-PCR for the detection of rabbit hemorrhagic disease virus 2 (RHDV2).

    Science.gov (United States)

    Duarte, Margarida Dias; Carvalho, Carina L; Barros, Silvia C; Henriques, Ana M; Ramos, Fernanda; Fagulha, Teresa; Luís, Tiago; Duarte, Elsa L; Fevereiro, Miguel

    2015-07-01

    A specific real time RT-PCR for the detection of RHDV2 was developed and validated using RHDV and RHDV2 RNA preparations from positive field samples. The system was designed to amplify a 127 nucleotide-long RNA region located within the vp60 gene, based on the alignment of six sequences originated in Portugal, obtained in our laboratory, and 11 sequences from France and Italy. The primers and probe target sequences are highly conserved in the vast majority of the RHDV2 sequences presently known. In the sequences showing variability, only one mismatch is found per strain, usually outlying the 3' end of the primer or probe hybridization sequences. The specificity of the method was demonstrated in vitro with a panel of common rabbit pathogens. Standardization was performed with RNA transcripts obtained from a recombinant plasmid harboring the target sequence. The method was able to detected nine RNA molecules with an efficiency of 99.4% and a R(2) value of 1. Repeatability and reproducibility of the method were very high, with coefficients of variation lower than 2.40%. The assay was proven a valuable tool to diagnose most of RDVH2 circulating strains, and may be also useful to monitor viral loads, and consequently, disease progression and vaccination efficacy. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Real-time stylistic prediction for whole-body human motions.

    Science.gov (United States)

    Matsubara, Takamitsu; Hyon, Sang-Ho; Morimoto, Jun

    2012-01-01

    The ability to predict human motion is crucial in several contexts such as human tracking by computer vision and the synthesis of human-like computer graphics. Previous work has focused on off-line processes with well-segmented data; however, many applications such as robotics require real-time control with efficient computation. In this paper, we propose a novel approach called real-time stylistic prediction for whole-body human motions to satisfy these requirements. This approach uses a novel generative model to represent a whole-body human motion including rhythmic motion (e.g., walking) and discrete motion (e.g., jumping). The generative model is composed of a low-dimensional state (phase) dynamics and a two-factor observation model, allowing it to capture the diversity of motion styles in humans. A real-time adaptation algorithm was derived to estimate both state variables and style parameter of the model from non-stationary unlabeled sequential observations. Moreover, with a simple modification, the algorithm allows real-time adaptation even from incomplete (partial) observations. Based on the estimated state and style, a future motion sequence can be accurately predicted. In our implementation, it takes less than 15 ms for both adaptation and prediction at each observation. Our real-time stylistic prediction was evaluated for human walking, running, and jumping behaviors. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. A near real-time satellite-based global drought climate data record

    International Nuclear Information System (INIS)

    AghaKouchak, Amir; Nakhjiri, Navid

    2012-01-01

    Reliable drought monitoring requires long-term and continuous precipitation data. High resolution satellite measurements provide valuable precipitation information on a quasi-global scale. However, their short lengths of records limit their applications in drought monitoring. In addition to this limitation, long-term low resolution satellite-based gauge-adjusted data sets such as the Global Precipitation Climatology Project (GPCP) one are not available in near real-time form for timely drought monitoring. This study bridges the gap between low resolution long-term satellite gauge-adjusted data and the emerging high resolution satellite precipitation data sets to create a long-term climate data record of droughts. To accomplish this, a Bayesian correction algorithm is used to combine GPCP data with real-time satellite precipitation data sets for drought monitoring and analysis. The results showed that the combined data sets after the Bayesian correction were a significant improvement compared to the uncorrected data. Furthermore, several recent major droughts such as the 2011 Texas, 2010 Amazon and 2010 Horn of Africa droughts were detected in the combined real-time and long-term satellite observations. This highlights the potential application of satellite precipitation data for regional to global drought monitoring. The final product is a real-time data-driven satellite-based standardized precipitation index that can be used for drought monitoring especially over remote and/or ungauged regions. (letter)

  16. Response of a diuron-degrading community to diuron exposure assessed by real-time quantitative PCR monitoring of phenylurea hydrolase A and B encoding genes.

    Science.gov (United States)

    Pesce, Stéphane; Beguet, Jérémie; Rouard, Nadine; Devers-Lamrani, Marion; Martin-Laurent, Fabrice

    2013-02-01

    A real-time quantitative PCR method was developed to detect and quantify phenlylurea hydrolase genes' (puhA and puhB) sequences from environmental DNA samples to assess diuron-degrading genetic potential in some soil and sediment microbial communities. In the soil communities, mineralization rates (determined with [ring-¹⁴C]-labeled diuron) were linked to diuron-degrading genetic potentials estimated from puhB number copies, which increased following repeated diuron treatments. In the sediment communities, mineralization potential did not depend solely on the quantity of puhB copies, underlining the need to assess gene expression. In the sediment samples, both puhB copy numbers and mineralization capacities were highly conditioned by whether or not diuron-treated soil was added. This points to transfers of degradative potential from soils to sediments. No puhA gene was detected in soil and sediment DNA extracts. Moreover, some sediments exhibited high diuron mineralization potential even though puhB genes were not detected, suggesting the existence of alternative diuron degradation pathways.

  17. A FRET-based real-time PCR assay to identify the main causal agents of New World tegumentary leishmaniasis.

    Directory of Open Access Journals (Sweden)

    Pablo Tsukayama

    Full Text Available In South America, various species of Leishmania are endemic and cause New World tegumentary leishmaniasis (NWTL. The correct identification of these species is critical for adequate clinical management and surveillance activities. We developed a real-time polymerase chain reaction (PCR assay and evaluated its diagnostic performance using 64 archived parasite isolates and 192 prospectively identified samples collected from individuals with suspected leishmaniasis enrolled at two reference clinics in Lima, Peru. The real-time PCR assay was able to detect a single parasite and provided unambiguous melting peaks for five Leishmania species of the Viannia subgenus that are highly prevalent in South America: L. (V. braziliensis, L. (V. panamensis, L. (V. guyanensis, L. (V. peruviana and L. (V. lainsoni. Using kinetoplastid DNA-based PCR as a gold standard, the real-time PCR had sensitivity and specificity values of 92% and 77%, respectively, which were significantly higher than those of conventional tests such as microscopy, culture and the leishmanin skin test (LST. In addition, the real-time PCR identified 147 different clinical samples at the species level, providing an overall agreement of 100% when compared to multilocus sequence typing (MLST data performed on a subset of these samples. Furthermore, the real-time PCR was three times faster and five times less expensive when compared to PCR - MLST for species identification from clinical specimens. In summary, this new assay represents a cost-effective and reliable alternative for the identification of the main species causing NWTL in South America.

  18. Shape based kinetic outlier detection in real-time PCR

    Directory of Open Access Journals (Sweden)

    D'Atri Mario

    2010-04-01

    Full Text Available Abstract Background Real-time PCR has recently become the technique of choice for absolute and relative nucleic acid quantification. The gold standard quantification method in real-time PCR assumes that the compared samples have similar PCR efficiency. However, many factors present in biological samples affect PCR kinetic, confounding quantification analysis. In this work we propose a new strategy to detect outlier samples, called SOD. Results Richards function was fitted on fluorescence readings to parameterize the amplification curves. There was not a significant correlation between calculated amplification parameters (plateau, slope and y-coordinate of the inflection point and the Log of input DNA demonstrating that this approach can be used to achieve a "fingerprint" for each amplification curve. To identify the outlier runs, the calculated parameters of each unknown sample were compared to those of the standard samples. When a significant underestimation of starting DNA molecules was found, due to the presence of biological inhibitors such as tannic acid, IgG or quercitin, SOD efficiently marked these amplification profiles as outliers. SOD was subsequently compared with KOD, the current approach based on PCR efficiency estimation. The data obtained showed that SOD was more sensitive than KOD, whereas SOD and KOD were equally specific. Conclusion Our results demonstrated, for the first time, that outlier detection can be based on amplification shape instead of PCR efficiency. SOD represents an improvement in real-time PCR analysis because it decreases the variance of data thus increasing the reliability of quantification.

  19. Optimization of a Real Time PCR based method for the detection of Listeria monocytogenes in pork meat.

    Science.gov (United States)

    Gattuso, Antonietta; Gianfranceschi, Monica Virginia; Sonnessa, Michele; Delibato, Elisabetta; Marchesan, Massimo; Hernandez, Marta; De Medici, Dario; Rodriguez-Lazaro, David

    2014-08-01

    The aim of this study was to optimize a Real-Time PCR protocol for a rapid detection of Listeria monocytogenes in pork meat, using reduced volumes of primary selective enrichment broth and times of incubation to decrease the cost and time for analysis. Forty-five samples of pork meat were artificially contaminated with two different levels of L. monocytogenes (1-10 CFU per sample and 10-100 CFU per sample), homogenized in three different volumes of Half Fraser Broth (1:3; 1:5 and 1:10) and incubated at 30°C ± 1°C for 5h, 8h and 24h. The detection was conducted in parallel by Real-Time PCR and the ISO standard 11290-1 methods. L. monocytogenes was detected in all the samples after 24h by Real-Time PCR method, also using reduced volumes of Half Fraser Broth. This represents a clear advantage as the time to final detection and the inherent costs were significantly reduced compared to the ISO reference method. All samples artificially contaminated were correctly detected also after 8 of incubation at 30°C ± 1°C in Half Fraser Broth and 24h in Fraser Broth at 37°C ± 1°C using cultural method. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Likelihood-Based Inference of B Cell Clonal Families.

    Directory of Open Access Journals (Sweden)

    Duncan K Ralph

    2016-10-01

    Full Text Available The human immune system depends on a highly diverse collection of antibody-making B cells. B cell receptor sequence diversity is generated by a random recombination process called "rearrangement" forming progenitor B cells, then a Darwinian process of lineage diversification and selection called "affinity maturation." The resulting receptors can be sequenced in high throughput for research and diagnostics. Such a collection of sequences contains a mixture of various lineages, each of which may be quite numerous, or may consist of only a single member. As a step to understanding the process and result of this diversification, one may wish to reconstruct lineage membership, i.e. to cluster sampled sequences according to which came from the same rearrangement events. We call this clustering problem "clonal family inference." In this paper we describe and validate a likelihood-based framework for clonal family inference based on a multi-hidden Markov Model (multi-HMM framework for B cell receptor sequences. We describe an agglomerative algorithm to find a maximum likelihood clustering, two approximate algorithms with various trade-offs of speed versus accuracy, and a third, fast algorithm for finding specific lineages. We show that under simulation these algorithms greatly improve upon existing clonal family inference methods, and that they also give significantly different clusters than previous methods when applied to two real data sets.

  1. Development of a multiplex real-time PCR assay for phylogenetic analysis of Uropathogenic Escherichia coli.

    Science.gov (United States)

    Hasanpour, Mojtaba; Najafi, Akram

    2017-06-01

    Uropathogenic Escherichia coli (UPEC) is among major pathogens causing 80-90% of all episodes of urinary tract infections (UTIs). Recently, E. coli strains are divided into eight main phylogenetic groups including A, B1, B2, C, D, E, F, and clade I. This study was aimed to develop a rapid, sensitive, and specific multiplex real time PCR method capable of detecting phylogenetic groups of E. coli strains. This study was carried out on E. coli strains (isolated from the patient with UTI) in which the presence of all seven target genes had been confirmed in our previous phylogenetic study. An EvaGreen-based singleplex and multiplex real-time PCR with melting curve analysis was designed for simultaneous detection and differentiation of these genes. The primers were selected mainly based on the production of amplicons with melting temperatures (T m ) ranging from 82°C to 93°C and temperature difference of more than 1.5°C between each peak.The multiplex real-time PCR assays that have been developed in the present study were successful in detecting the eight main phylogenetic groups. Seven distinct melting peaks were discriminated, with Tm value of 93±0.8 for arpA, 89.2±0.1for chuA, 86.5±0.1 for yjaA, 82.3±0.2 for TspE4C2, 87.8±0.1for trpAgpC, 85.4±0.6 for arpAgpE genes, and 91±0.5 for the internal control. To our knowledge, this study is the first melting curve-based real-time PCR assay developed for simultaneous and discrete detection of these seven target genes. Our findings showed that this assay has the potential to be a rapid, reliable and cost-effective alternative for routine phylotyping of E. coli strains. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. ISTTOK real-time architecture

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Ivo S., E-mail: ivoc@ipfn.ist.utl.pt; Duarte, Paulo; Fernandes, Horácio; Valcárcel, Daniel F.; Carvalho, Pedro J.; Silva, Carlos; Duarte, André S.; Neto, André; Sousa, Jorge; Batista, António J.N.; Hekkert, Tiago; Carvalho, Bernardo B.

    2014-03-15

    Highlights: • All real-time diagnostics and actuators were integrated in the same control platform. • A 100 μs control cycle was achieved under the MARTe framework. • Time-windows based control with several event-driven control strategies implemented. • AC discharges with exception handling on iron core flux saturation. • An HTML discharge configuration was developed for configuring the MARTe system. - Abstract: The ISTTOK tokamak was upgraded with a plasma control system based on the Advanced Telecommunications Computing Architecture (ATCA) standard. This control system was designed to improve the discharge stability and to extend the operational space to the alternate plasma current (AC) discharges as part of the ISTTOK scientific program. In order to accomplish these objectives all ISTTOK diagnostics and actuators relevant for real-time operation were integrated in the control system. The control system was programmed in C++ over the Multi-threaded Application Real-Time executor (MARTe) which provides, among other features, a real-time scheduler, an interrupt handler, an intercommunications interface between code blocks and a clearly bounded interface with the external devices. As a complement to the MARTe framework, the BaseLib2 library provides the foundations for the data, code introspection and also a Hypertext Transfer Protocol (HTTP) server service. Taking advantage of the modular nature of MARTe, the algorithms of each diagnostic data processing, discharge timing, context switch, control and actuators output reference generation, run on well-defined blocks of code named Generic Application Module (GAM). This approach allows reusability of the code, simplified simulation, replacement or editing without changing the remaining GAMs. The ISTTOK control system GAMs run sequentially each 100 μs cycle on an Intel{sup ®} Q8200 4-core processor running at 2.33 GHz located in the ATCA crate. Two boards (inside the ATCA crate) with 32 analog

  3. ISTTOK real-time architecture

    International Nuclear Information System (INIS)

    Carvalho, Ivo S.; Duarte, Paulo; Fernandes, Horácio; Valcárcel, Daniel F.; Carvalho, Pedro J.; Silva, Carlos; Duarte, André S.; Neto, André; Sousa, Jorge; Batista, António J.N.; Hekkert, Tiago; Carvalho, Bernardo B.

    2014-01-01

    Highlights: • All real-time diagnostics and actuators were integrated in the same control platform. • A 100 μs control cycle was achieved under the MARTe framework. • Time-windows based control with several event-driven control strategies implemented. • AC discharges with exception handling on iron core flux saturation. • An HTML discharge configuration was developed for configuring the MARTe system. - Abstract: The ISTTOK tokamak was upgraded with a plasma control system based on the Advanced Telecommunications Computing Architecture (ATCA) standard. This control system was designed to improve the discharge stability and to extend the operational space to the alternate plasma current (AC) discharges as part of the ISTTOK scientific program. In order to accomplish these objectives all ISTTOK diagnostics and actuators relevant for real-time operation were integrated in the control system. The control system was programmed in C++ over the Multi-threaded Application Real-Time executor (MARTe) which provides, among other features, a real-time scheduler, an interrupt handler, an intercommunications interface between code blocks and a clearly bounded interface with the external devices. As a complement to the MARTe framework, the BaseLib2 library provides the foundations for the data, code introspection and also a Hypertext Transfer Protocol (HTTP) server service. Taking advantage of the modular nature of MARTe, the algorithms of each diagnostic data processing, discharge timing, context switch, control and actuators output reference generation, run on well-defined blocks of code named Generic Application Module (GAM). This approach allows reusability of the code, simplified simulation, replacement or editing without changing the remaining GAMs. The ISTTOK control system GAMs run sequentially each 100 μs cycle on an Intel ® Q8200 4-core processor running at 2.33 GHz located in the ATCA crate. Two boards (inside the ATCA crate) with 32 analog

  4. Discovery of the rare HLA-B*39:77 allele in an unrelated Taiwanese bone marrow stem cell donor using the sequence-based typing method.

    Science.gov (United States)

    Yang, K L; Lee, S K; Lin, P Y

    2013-08-01

    We detected a rare HLA-B locus allele, B*39:77, in a Taiwanese unrelated marrow stem cell donor in our routine HLA sequence-based typing (SBT) exercise for a possible haematopoietic stem cell donation. In exons 2, 3 and 4, the DNA sequence of B*39:77 is identical to the sequence of B*39:01:01:01 except one nucleotide at nucleotide position 733 (G->A) in exon 4. The nucleotide variation caused one amino acid alteration at residue 221 (Gly->Ser). B*39:77 was probably derived from a nucleotide substitution event involving B*39:01:01:01. The probable HLA-A, -B, -C, -DRB1 and -DQB1 haplotype in association with B*39:77 may be deduced as A*02:01-B*39:77-C*07:02-DRB1*08:03-DQB1*06:01. Our discovery of B*39:77 in Taiwanese adds further polymorphism of B*39 variants in Taiwanese population. © 2013 John Wiley & Sons Ltd.

  5. Real-time numerical forecast of global epidemic spreading: case study of 2009 A/H1N1pdm

    Directory of Open Access Journals (Sweden)

    Tizzoni Michele

    2012-12-01

    Full Text Available Abstract Background Mathematical and computational models for infectious diseases are increasingly used to support public-health decisions; however, their reliability is currently under debate. Real-time forecasts of epidemic spread using data-driven models have been hindered by the technical challenges posed by parameter estimation and validation. Data gathered for the 2009 H1N1 influenza crisis represent an unprecedented opportunity to validate real-time model predictions and define the main success criteria for different approaches. Methods We used the Global Epidemic and Mobility Model to generate stochastic simulations of epidemic spread worldwide, yielding (among other measures the incidence and seeding events at a daily resolution for 3,362 subpopulations in 220 countries. Using a Monte Carlo Maximum Likelihood analysis, the model provided an estimate of the seasonal transmission potential during the early phase of the H1N1 pandemic and generated ensemble forecasts for the activity peaks in the northern hemisphere in the fall/winter wave. These results were validated against the real-life surveillance data collected in 48 countries, and their robustness assessed by focusing on 1 the peak timing of the pandemic; 2 the level of spatial resolution allowed by the model; and 3 the clinical attack rate and the effectiveness of the vaccine. In addition, we studied the effect of data incompleteness on the prediction reliability. Results Real-time predictions of the peak timing are found to be in good agreement with the empirical data, showing strong robustness to data that may not be accessible in real time (such as pre-exposure immunity and adherence to vaccination campaigns, but that affect the predictions for the attack rates. The timing and spatial unfolding of the pandemic are critically sensitive to the level of mobility data integrated into the model. Conclusions Our results show that large-scale models can be used to provide valuable real-time

  6. Real-time systems

    OpenAIRE

    Badr, Salah M.; Bruztman, Donald P.; Nelson, Michael L.; Byrnes, Ronald Benton

    1992-01-01

    This paper presents an introduction to the basic issues involved in real-time systems. Both real-time operating sys and real-time programming languages are explored. Concurrent programming and process synchronization and communication are also discussed. The real-time requirements of the Naval Postgraduate School Autonomous Under Vehicle (AUV) are then examined. Autonomous underwater vehicle (AUV), hard real-time system, real-time operating system, real-time programming language, real-time sy...

  7. Subsurface Scattering-Based Object Rendering Techniques for Real-Time Smartphone Games

    Directory of Open Access Journals (Sweden)

    Won-Sun Lee

    2014-01-01

    Full Text Available Subsurface scattering that simulates the path of a light through the material in a scene is one of the advanced rendering techniques in the field of computer graphics society. Since it takes a number of long operations, it cannot be easily implemented in real-time smartphone games. In this paper, we propose a subsurface scattering-based object rendering technique that is optimized for smartphone games. We employ our subsurface scattering method that is utilized for a real-time smartphone game. And an example game is designed to validate how the proposed method can be operated seamlessly in real time. Finally, we show the comparison results between bidirectional reflectance distribution function, bidirectional scattering distribution function, and our proposed subsurface scattering method on a smartphone game.

  8. A Programmable Microkernel for Real-Time Systems

    Science.gov (United States)

    2003-06-01

    A Programmable Microkernel for Real - Time Systems Christoph M. Kirsch Thomas A. Henzinger Marco A.A. Sanvido Report No. UCB/CSD-3-1250 June 2003...TITLE AND SUBTITLE A Programmable Microkernel for Real - Time Systems 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 A Programmable Microkernel for Real - Time Systems ∗ Christoph M

  9. Demonstrating the Value of Near Real-time Satellite-based Earth Observations in a Research and Education Framework

    Science.gov (United States)

    Chiu, L.; Hao, X.; Kinter, J. L.; Stearn, G.; Aliani, M.

    2017-12-01

    The launch of GOES-16 series provides an opportunity to advance near real-time applications in natural hazard detection, monitoring and warning. This study demonstrates the capability and values of receiving real-time satellite-based Earth observations over a fast terrestrial networks and processing high-resolution remote sensing data in a university environment. The demonstration system includes 4 components: 1) Near real-time data receiving and processing; 2) data analysis and visualization; 3) event detection and monitoring; and 4) information dissemination. Various tools are developed and integrated to receive and process GRB data in near real-time, produce images and value-added data products, and detect and monitor extreme weather events such as hurricane, fire, flooding, fog, lightning, etc. A web-based application system is developed to disseminate near-real satellite images and data products. The images are generated with GIS-compatible format (GeoTIFF) to enable convenient use and integration in various GIS platforms. This study enhances the capacities for undergraduate and graduate education in Earth system and climate sciences, and related applications to understand the basic principles and technology in real-time applications with remote sensing measurements. It also provides an integrated platform for near real-time monitoring of extreme weather events, which are helpful for various user communities.

  10. Connectivity-based neurofeedback: Dynamic causal modeling for real-time fMRI☆

    Science.gov (United States)

    Koush, Yury; Rosa, Maria Joao; Robineau, Fabien; Heinen, Klaartje; W. Rieger, Sebastian; Weiskopf, Nikolaus; Vuilleumier, Patrik; Van De Ville, Dimitri; Scharnowski, Frank

    2013-01-01

    Neurofeedback based on real-time fMRI is an emerging technique that can be used to train voluntary control of brain activity. Such brain training has been shown to lead to behavioral effects that are specific to the functional role of the targeted brain area. However, real-time fMRI-based neurofeedback so far was limited to mainly training localized brain activity within a region of interest. Here, we overcome this limitation by presenting near real-time dynamic causal modeling in order to provide feedback information based on connectivity between brain areas rather than activity within a single brain area. Using a visual–spatial attention paradigm, we show that participants can voluntarily control a feedback signal that is based on the Bayesian model comparison between two predefined model alternatives, i.e. the connectivity between left visual cortex and left parietal cortex vs. the connectivity between right visual cortex and right parietal cortex. Our new approach thus allows for training voluntary control over specific functional brain networks. Because most mental functions and most neurological disorders are associated with network activity rather than with activity in a single brain region, this novel approach is an important methodological innovation in order to more directly target functionally relevant brain networks. PMID:23668967

  11. Dynamics model for real time diagnostics of Triga RC-1 system

    International Nuclear Information System (INIS)

    Gadomski, A.M.; Nanni, V.; Meo, G.

    1988-01-01

    This paper presents dynamics model of TRIGA RC-1 reactor system. The model is dedicated to the real-time early fault detection during a reactor operation in one week exploitation cycle. The algorithms are specially suited for real-time, long time and also accelerated simulations with assumed diagnostic oriented accuracy. The approximations, modular structure, numerical methods and validation are discussed. The elaborated model will be build in the TRIGA Supervisor System and TRIGA Diagnostic Simulator

  12. Sensitive quantification of aflatoxin B1 in animal feeds, corn feed grain, and yellow corn meal using immunomagnetic bead-based recovery and real-time immunoquantitative-PCR.

    Science.gov (United States)

    Babu, Dinesh; Muriana, Peter M

    2014-12-02

    Aflatoxins are considered unavoidable natural mycotoxins encountered in foods, animal feeds, and feed grains. In this study, we demonstrate the application of our recently developed real-time immunoquantitative PCR (RT iq-PCR) assay for sensitive detection and quantification of aflatoxins in poultry feed, two types of dairy feed (1 and 2), horse feed, whole kernel corn feed grains, and retail yellow ground corn meal. Upon testing methanol/water (60:40) extractions of the above samples using competitive direct enzyme linked immunosorbent assay, the aflatoxin content was found to be effect in samples containing aflatoxin levels higher than the quantification limits (0.1-10 μg/kg), addressed by comparing the quantification results of undiluted and diluted extracts. In testing the reliability of the immuno-PCR assay, samples were spiked with 200 μg/kg of aflatoxin B1, but the recovery of spiked aflatoxin was found to be poor. Considering the significance of determining trace levels of aflatoxins and their serious implications for animal and human health, the RT iq-PCR method described in this study can be useful for quantifying low natural aflatoxin levels in complex matrices of food or animal feed samples without the requirement of extra sample cleanup.

  13. Real-time software for the COMPASS tokamak plasma control

    International Nuclear Information System (INIS)

    Valcarcel, D.F.; Duarte, A.S.; Neto, A.; Carvalho, I.S.; Carvalho, B.B.; Fernandes, H.; Sousa, J.; Sartori, F.; Janky, F.; Cahyna, P.; Hron, M.; Panek, R.

    2010-01-01

    The COMPASS tokamak has started its operation recently in Prague and to meet the necessary operation parameters its real-time system, for data processing and control, must be designed for both flexibility and performance, allowing the easy integration of code from several developers and to guarantee the desired time cycle. For this purpose an Advanced Telecommunications Computing Architecture based real-time system has been deployed with a solution built on a multi-core x86 processor. It makes use of two software components: the BaseLib2 and the MARTe (Multithreaded Application Real-Time executor) real-time frameworks. The BaseLib2 framework is a generic real-time library with optimized objects for the implementation of real-time algorithms. This allowed to build a library of modules that process the acquired data and execute control algorithms. MARTe executes these modules in kernel space Real-Time Application Interface allowing to attain the required cycle time and a jitter of less than 1.5 μs. MARTe configuration and data storage are accomplished through a Java hardware client that connects to the FireSignal control and data acquisition software. This article details the implementation of the real-time system for the COMPASS tokamak, in particular the organization of the control code, the design and implementation of the communications with the actuators and how MARTe integrates with the FireSignal software.

  14. Real-time software for the COMPASS tokamak plasma control

    Energy Technology Data Exchange (ETDEWEB)

    Valcarcel, D.F., E-mail: danielv@ipfn.ist.utl.p [Associacao EURATOM/IST, Instituto de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior Tecnico, P-1049-001 Lisboa (Portugal); Duarte, A.S.; Neto, A.; Carvalho, I.S.; Carvalho, B.B.; Fernandes, H.; Sousa, J. [Associacao EURATOM/IST, Instituto de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior Tecnico, P-1049-001 Lisboa (Portugal); Sartori, F. [Euratom-UKAEA, Culham Science Centre, Abingdon, OX14 3DB Oxon (United Kingdom); Janky, F.; Cahyna, P.; Hron, M.; Panek, R. [Institute of Plasma Physics AS CR, v.v.i., Association EURATOM/IPP.CR, Za Slovankou 3, 182 00 Prague (Czech Republic)

    2010-07-15

    The COMPASS tokamak has started its operation recently in Prague and to meet the necessary operation parameters its real-time system, for data processing and control, must be designed for both flexibility and performance, allowing the easy integration of code from several developers and to guarantee the desired time cycle. For this purpose an Advanced Telecommunications Computing Architecture based real-time system has been deployed with a solution built on a multi-core x86 processor. It makes use of two software components: the BaseLib2 and the MARTe (Multithreaded Application Real-Time executor) real-time frameworks. The BaseLib2 framework is a generic real-time library with optimized objects for the implementation of real-time algorithms. This allowed to build a library of modules that process the acquired data and execute control algorithms. MARTe executes these modules in kernel space Real-Time Application Interface allowing to attain the required cycle time and a jitter of less than 1.5 {mu}s. MARTe configuration and data storage are accomplished through a Java hardware client that connects to the FireSignal control and data acquisition software. This article details the implementation of the real-time system for the COMPASS tokamak, in particular the organization of the control code, the design and implementation of the communications with the actuators and how MARTe integrates with the FireSignal software.

  15. T-UPPAAL: Online Model-based Testing of Real-Time Systems

    DEFF Research Database (Denmark)

    Mikucionis, Marius; Larsen, Kim Guldstrand; Nielsen, Brian

    2004-01-01

    The goal of testing is to gain confidence in a physical computer based system by means of executing it. More than one third of typical project resources is spent on testing embedded and real-time systems, but still it remains ad-hoc, based on heuristics, and error-prone. Therefore systematic...

  16. A framework for intelligent data acquisition and real-time database searching for shotgun proteomics.

    Science.gov (United States)

    Graumann, Johannes; Scheltema, Richard A; Zhang, Yong; Cox, Jürgen; Mann, Matthias

    2012-03-01

    In the analysis of complex peptide mixtures by MS-based proteomics, many more peptides elute at any given time than can be identified and quantified by the mass spectrometer. This makes it desirable to optimally allocate peptide sequencing and narrow mass range quantification events. In computer science, intelligent agents are frequently used to make autonomous decisions in complex environments. Here we develop and describe a framework for intelligent data acquisition and real-time database searching and showcase selected examples. The intelligent agent is implemented in the MaxQuant computational proteomics environment, termed MaxQuant Real-Time. It analyzes data as it is acquired on the mass spectrometer, constructs isotope patterns and SILAC pair information as well as controls MS and tandem MS events based on real-time and prior MS data or external knowledge. Re-implementing a top10 method in the intelligent agent yields similar performance to the data dependent methods running on the mass spectrometer itself. We demonstrate the capabilities of MaxQuant Real-Time by creating a real-time search engine capable of identifying peptides "on-the-fly" within 30 ms, well within the time constraints of a shotgun fragmentation "topN" method. The agent can focus sequencing events onto peptides of specific interest, such as those originating from a specific gene ontology (GO) term, or peptides that are likely modified versions of already identified peptides. Finally, we demonstrate enhanced quantification of SILAC pairs whose ratios were poorly defined in survey spectra. MaxQuant Real-Time is flexible and can be applied to a large number of scenarios that would benefit from intelligent, directed data acquisition. Our framework should be especially useful for new instrument types, such as the quadrupole-Orbitrap, that are currently becoming available.

  17. Quantitation of hepatitis B virus DNA in plasma using a sensitive cost-effective "in-house" real-time PCR assay

    Directory of Open Access Journals (Sweden)

    Daniel Hubert Darius

    2009-01-01

    Full Text Available Background: Sensitive nucleic acid testing for the detection and accurate quantitation of hepatitis B virus (HBV is necessary to reduce transmission through blood and blood products and for monitoring patients on antiviral therapy. The aim of this study is to standardize an "in-house" real-time HBV polymerase chain reaction (PCR for accurate quantitation and screening of HBV. Materials and Methods: The "in-house" real-time assay was compared with a commercial assay using 30 chronically infected individuals and 70 blood donors who are negative for hepatitis B surface antigen, hepatitis C virus (HCV antibody and human immunodeficiency virus (HIV antibody. Further, 30 HBV-genotyped samples were tested to evaluate the "in-house" assay′s capacity to detect genotypes prevalent among individuals attending this tertiary care hospital. Results: The lower limit of detection of this "in-house" HBV real-time PCR was assessed against the WHO international standard and found to be 50 IU/mL. The interassay and intra-assay coefficient of variation (CV of this "in-house" assay ranged from 1.4% to 9.4% and 0.0% to 2.3%, respectively. Virus loads as estimated with this "in-house" HBV real-time assay correlated well with the commercial artus HBV RG PCR assay ( r = 0.95, P < 0.0001. Conclusion: This assay can be used for the detection and accurate quantitation of HBV viral loads in plasma samples. This assay can be employed for the screening of blood donations and can potentially be adapted to a multiplex format for simultaneous detection of HBV, HIV and HCV to reduce the cost of testing in blood banks.

  18. Space Weather and Real-Time Monitoring

    Directory of Open Access Journals (Sweden)

    S Watari

    2009-04-01

    Full Text Available Recent advance of information and communications technology enables to collect a large amount of ground-based and space-based observation data in real-time. The real-time data realize nowcast of space weather. This paper reports a history of space weather by the International Space Environment Service (ISES in association with the International Geophysical Year (IGY and importance of real-time monitoring in space weather.

  19. Duplex detection of the Mycobacterium tuberculosis complex and medically important non-tuberculosis mycobacteria by real-time PCR based on the rnpB gene.

    Science.gov (United States)

    Abdeldaim, Guma; Svensson, Erik; Blomberg, Jonas; Herrmann, Björn

    2016-11-01

    A duplex real-time PCR based on the rnpB gene was developed for Mycobacterium spp. The assay was specific for the Mycobacterium tuberculosis complex (MTB) and also detected all 19 tested species of non-tuberculous mycobacteria (NTM). The assay was evaluated on 404 clinical samples: 290 respiratory samples and 114 from tissue and other non-respiratory body sites. M. tuberculosis was detected by culture in 40 samples and in 30 samples by the assay. The MTB assay showed a sensitivity similar to Roche Cobas Amplicor MTB-PCR (Roche Molecular Systems, Pleasanton, CA, USA). There were only nine samples with non-tuberculous mycobacteria detected by culture. Six of them were detected by the PCR assay. © 2016 APMIS. Published by John Wiley & Sons Ltd.

  20. Design of a Real-Time and Continua-Based Framework for Care Guideline Recommendations

    Directory of Open Access Journals (Sweden)

    Yu-Feng Lin

    2014-04-01

    Full Text Available Telehealth is an important issue in the medical and healthcare domains. Although a number of systems have been developed to meet the demands of emerging telehealth services, the following problems still remain to be addressed: (1 most systems do not monitor/predict the vital signs states so that they are able to send alarms to caregivers in real-time; (2 most systems do not focus on reducing the amount of work that caregivers need to do, and provide patients with remote care; and (3 most systems do not recommend guidelines for caregivers. This study thus proposes a framework for a real-time and Continua-based Care Guideline Recommendation System (Cagurs which utilizes mobile device platforms to provide caregivers of chronic patients with real-time care guideline recommendations, and that enables vital signs data to be transmitted between different devices automatically, using the Continua standard. Moreover, the proposed system adopts the episode mining approach to monitor/predict anomalous conditions of patients, and then offers related recommended care guidelines to caregivers so that they can offer preventive care in a timely manner.

  1. Dynamics model for real time diagnostics of TRIGA RC-1 system

    International Nuclear Information System (INIS)

    Gadomski, A.M.; Nanni, V.; Meo, G.B.

    1986-01-01

    This paper presents dynamics model of TRIGA RC-1 reactor system. The model is dedicated to the real-time early fault detection during a reactor operation in one week exploitation cycle. The algorithms are specially suited for real-time, long time and also accelerated simulations with assumed diagnostic oriented accuracy. The approximations, modular structure, numerical methods and validation are discussed. The elaborated model will be build in the TRIGA Supervisory System and TRIGA Diagnostic Simulator. (author)

  2. Integration of domain and resource-based reasoning for real-time control in dynamic environments

    Science.gov (United States)

    Morgan, Keith; Whitebread, Kenneth R.; Kendus, Michael; Cromarty, Andrew S.

    1993-01-01

    A real-time software controller that successfully integrates domain-based and resource-based control reasoning to perform task execution in a dynamically changing environment is described. The design of the controller is based on the concept of partitioning the process to be controlled into a set of tasks, each of which achieves some process goal. It is assumed that, in general, there are multiple ways (tasks) to achieve a goal. The controller dynamically determines current goals and their current criticality, choosing and scheduling tasks to achieve those goals in the time available. It incorporates rule-based goal reasoning, a TMS-based criticality propagation mechanism, and a real-time scheduler. The controller has been used to build a knowledge-based situation assessment system that formed a major component of a real-time, distributed, cooperative problem solving system built under DARPA contract. It is also being employed in other applications now in progress.

  3. Design and application of a web-based real-time personal PM2.5 exposure monitoring system.

    Science.gov (United States)

    Sun, Qinghua; Zhuang, Jia; Du, Yanjun; Xu, Dandan; Li, Tiantian

    2018-06-15

    Growing demand from public health research for conduct large-scale epidemiological studies to explore health effect of PM 2.5 was well-documented. To address this need, we design a web-based real-time personal PM 2.5 exposure monitoring system (RPPM2.5 system) which can help researcher to get big data of personal PM 2.5 exposure with low-cost, low labor requirement, and low operating technical requirements. RPPM2.5 system can provide relative accurate real-time personal exposure data for individuals, researches, and decision maker. And this system has been used in a survey of PM 2.5 personal exposure level conducted in 5 cities of China and has provided mass of valuable data for epidemiological research. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Low-cost HIV-1 diagnosis and quantification in dried blood spots by real time PCR.

    Science.gov (United States)

    Mehta, Nishaki; Trzmielina, Sonia; Nonyane, Bareng A S; Eliot, Melissa N; Lin, Rongheng; Foulkes, Andrea S; McNeal, Kristina; Ammann, Arthur; Eulalievyolo, Vindu; Sullivan, John L; Luzuriaga, Katherine; Somasundaran, Mohan

    2009-06-05

    Rapid and cost-effective methods for HIV-1 diagnosis and viral load monitoring would greatly enhance the clinical management of HIV-1 infected adults and children in limited-resource settings. Recent recommendations to treat perinatally infected infants within the first year of life are feasible only if early diagnosis is routinely available. Dried blood spots (DBS) on filter paper are an easy and convenient way to collect and transport blood samples. A rapid and cost effective method to diagnose and quantify HIV-1 from DBS is urgently needed to facilitate early diagnosis of HIV-1 infection and monitoring of antiretroviral therapy. We have developed a real-time LightCycler (rtLC) PCR assay to detect and quantify HIV-1 from DBS. HIV-1 RNA extracted from DBS was amplified in a one-step, single-tube system using primers specific for long-terminal repeat sequences that are conserved across all HIV-1 clades. SYBR Green dye was used to quantify PCR amplicons and HIV-1 RNA copy numbers were determined from a standard curve generated using serially diluted known copies of HIV-1 RNA. This assay detected samples across clades, has a dynamic range of 5 log(10), and %CV real-time systems demonstrated similar performance. The accuracy, reliability, genotype inclusivity and affordability, along with the small volumes of blood required for the assay suggest that the rtLC DBS assay will be useful for early diagnosis and monitoring of pediatric HIV-1 infection in resource-limited settings.

  5. Microcontroller-based real-time QRS detection.

    Science.gov (United States)

    Sun, Y; Suppappola, S; Wrublewski, T A

    1992-01-01

    The authors describe the design of a system for real-time detection of QRS complexes in the electrocardiogram based on a single-chip microcontroller (Motorola 68HC811). A systematic analysis of the instrumentation requirements for QRS detection and of the various design techniques is also given. Detection algorithms using different nonlinear transforms for the enhancement of QRS complexes are evaluated by using the ECG database of the American Heart Association. The results show that the nonlinear transform involving multiplication of three adjacent, sign-consistent differences in the time domain gives a good performance and a quick response. When implemented with an appropriate sampling rate, this algorithm is also capable of rejecting pacemaker spikes. The eight-bit single-chip microcontroller provides sufficient throughput and shows a satisfactory performance. Implementation of multiple detection algorithms in the same system improves flexibility and reliability. The low chip count in the design also favors maintainability and cost-effectiveness.

  6. Automated reasoning with dynamic event trees: a real-time, knowledge-based decision aide

    International Nuclear Information System (INIS)

    Touchton, R.A.; Gunter, A.D.; Subramanyan, N.

    1988-01-01

    The models and data contained in a probabilistic risk assessment (PRA) Event Sequence Analysis represent a wealth of information that can be used for dynamic calculation of event sequence likelihood. In this paper we report a new and unique computerization methodology which utilizes these data. This sub-system (referred to as PREDICTOR) has been developed and tested as part of a larger system. PREDICTOR performs a real-time (re)calculation of the estimated likelihood of core-melt as a function of plant status. This methodology uses object-oriented programming techniques from the artificial intelligence discipline that enable one to codify event tree and fault tree logic models and associated probabilities developed in a PRA study. Existence of off-normal conditions is reported to PREDICTOR, which then updates the relevant failure probabilities throughout the event tree and fault tree models by dynamically replacing the off-the-shelf (or prior) probabilities with new probabilities based on the current situation. The new event probabilities are immediately propagated through the models (using 'demons') and an updated core-melt probability is calculated. Along the way, the dominant non-success path of each event tree is determined and highlighted. (author)

  7. Lab-on-a-chip enabled HLA diagnostic: combined sample preparation and real time PCR for HLA-B57 diagnosis

    Science.gov (United States)

    Gärtner, Claudia; Becker, Holger; Hlawatsch, Nadine; Klemm, Richard; Moche, Christian; Schattschneider, Sebastian; Frank, Rainer; Willems, Andreas

    2015-05-01

    The diverse human HLA (human leukocyte antigen) system is responsible for antigen presentation and recognition. It is essential for the immune system to maintain a stable defense line, but also is also involved in autoimmunity as well as metabolic disease. HLA-haplotype (HLA-B27), for instance, is associated with inflammatory diseases such as Bechterew's disease. The administration of the HIV drug Abacavir in combination with another HLA-haplotype (HLAB57) is associated with severe hypersensitivity reactions. Accordingly, the HLA status has to be monitored for diagnosis or prior to start of therapy. Along this line, a miniaturized microfluidic platform has been developed allowing performing the complete analytical process from "sample-in" to "answer-out" in a point-of-care environment. The main steps of the analytical cascade inside the integrated system are blood cell lysis and DNA isolation, DNA purification, real-time PCR and quantitative monitoring of the rise of a fluorescent signal appearing during the PCR based sequence amplification. All bio-analytical steps were intended to be performed inside one chip and will be actuated, controlled and monitored by a matching device. This report will show that all required processes are established and tested and all device components work well and interact with the functional modules on the chips in a harmonized fashion.

  8. Performance Evaluation of Components Using a Granularity-based Interface Between Real-Time Calculus and Timed Automata

    Directory of Open Access Journals (Sweden)

    Karine Altisen

    2010-06-01

    Full Text Available To analyze complex and heterogeneous real-time embedded systems, recent works have proposed interface techniques between real-time calculus (RTC and timed automata (TA, in order to take advantage of the strengths of each technique for analyzing various components. But the time to analyze a state-based component modeled by TA may be prohibitively high, due to the state space explosion problem. In this paper, we propose a framework of granularity-based interfacing to speed up the analysis of a TA modeled component. First, we abstract fine models to work with event streams at coarse granularity. We perform analysis of the component at multiple coarse granularities and then based on RTC theory, we derive lower and upper bounds on arrival patterns of the fine output streams using the causality closure algorithm. Our framework can help to achieve tradeoffs between precision and analysis time.

  9. Alternate mode for data acquisition and real-time monitoring system based on CAMAC system

    International Nuclear Information System (INIS)

    Luo, J.R.; Wei, P.J.; Li, G.M.; Wang, H.

    2006-01-01

    Long discharges (about 250 s) have been achieved on HT-7 tokamak experiments in the Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP). And in the next generation tokamaks like ITER , KSTAR and EAST , the pulses will be about 1000 s. In such steady-state operation, we have to upgrade the CAMAC-based data acquisition system, with higher sampling rates and longer acquisition times. It is necessary to monitor the plasma parameters in real-time so that the operators can change the operational conditions during the discharge to maintain the plasma. A design of the system named alternant data acquisition and real-time monitoring system for steady-state tokamak operation based on CAMAC system has been setup in ASIPP. The application of this system has been demonstrated in the HT-7 and TRIAM-1M tokamaks during their 2004 experiment campaigns

  10. Hard Real-Time Networking on Firewire

    NARCIS (Netherlands)

    Zhang, Yuchen; Orlic, Bojan; Visser, Peter; Broenink, Jan

    2005-01-01

    This paper investigates the possibility of using standard, low-cost, widely used FireWire as a new generation fieldbus medium for real-time distributed control applications. A real-time software subsys- tem, RT-FireWire was designed that can, in combination with Linux-based real-time operating

  11. SU-E-J-240: Development of a Novel 4D MRI Sequence for Real-Time Liver Tumor Tracking During Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, L; Burmeister, J [Department of Oncology, Wayne State Univ School of Medicine, Detroit, MI (United States); Ye, Y [Department of Radiology, Wayne State Univ School of Medicine, Detroit, MI (United States)

    2015-06-15

    Purpose: To develop a Novel 4D MRI Technique that is feasible for realtime liver tumor tracking during radiotherapy. Methods: A volunteer underwent an abdominal 2D fast EPI coronal scan on a 3.0T MRI scanner (Siemens Inc., Germany). An optimal set of parameters was determined based on image quality and scan time. A total of 23 slices were scanned to cover the whole liver in the test scan. For each scan position, the 2D images were retrospectively sorted into multiple phases based on breathing signal extracted from the images. Consequently the 2D slices with same phase numbers were stacked to form one 3D image. Multiple phases of 3D images formed the 4D MRI sequence representing one breathing cycle. Results: The optimal set of scan parameters were: TR= 57ms, TE= 19ms, FOV read= 320mm and flip angle= 30°, which resulted in a total scan time of 14s for 200 frames (FMs) per slice and image resolution of (2.5mm,2.5mm,5.0mm) in three directions. Ten phases of 3D images were generated, each of which had 23 slices. Based on our test scan, only 100FMs were necessary for the phase sorting process which may lower the scan time to 7s/100FMs/slice. For example, only 5 slices/35s are necessary for a 4D MRI scan to cover liver tumor size ≤ 2cm leading to the possibility of tumor trajectory tracking every 35s during treatment. Conclusion: The novel 4D MRI technique we developed can reconstruct a 4D liver MRI sequence representing one breathing cycle (7s/ slice) without an external monitor. This technique can potentially be used for real-time liver tumor tracking during radiotherapy.

  12. Real-Time Multifault Rush Repairing Strategy Based on Utility Theory and Multiagent System in Distribution Networks

    Directory of Open Access Journals (Sweden)

    Zhao Hao

    2016-01-01

    Full Text Available The problem of multifault rush repair in distribution networks (DNs is a multiobjective dynamic combinatorial problem with topology constraints. The problem consists of archiving an optimal faults’ allocation strategy to squads and an admissible multifault rush repairing strategy with coordinating switch operations. In this article, the utility theory is introduced to solve the first problem and a new discrete bacterial colony chemotaxis (DBCC algorithm is proposed for the second problem to determine the optimal sequence for each squad to repair faults and the corresponding switch operations. The above solution is called the two-stage approach. Additionally, a double mathematical optimization model based on the fault level is proposed in the second stage to minimize the outage loss and total repairing time. The real-time adjustment multiagent system (RA-MAS is proposed to provide facility to achieve online multifault rush repairing strategy in DNs when there are emergencies after natural disasters. The two-stage approach is illustrated with an example from a real urban distribution network and the simulation results show the effectiveness of the two-stage approach.

  13. First Experience With Real-Time EPID-Based Delivery Verification During IMRT and VMAT Sessions

    International Nuclear Information System (INIS)

    Woodruff, Henry C.; Fuangrod, Todsaporn; Van Uytven, Eric; McCurdy, Boyd M.C.; Beek, Timothy van; Bhatia, Shashank; Greer, Peter B.

    2015-01-01

    Purpose: Gantry-mounted megavoltage electronic portal imaging devices (EPIDs) have become ubiquitous on linear accelerators. WatchDog is a novel application of EPIDs, in which the image frames acquired during treatment are used to monitor treatment delivery in real time. We report on the preliminary use of WatchDog in a prospective study of cancer patients undergoing intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) and identify the challenges of clinical adoption. Methods and Materials: At the time of submission, 28 cancer patients (head and neck, pelvis, and prostate) undergoing fractionated external beam radiation therapy (24 IMRT, 4 VMAT) had ≥1 treatment fraction verified in real time (131 fractions or 881 fields). EPID images acquired continuously during treatment were synchronized and compared with model-generated transit EPID images within a frame time (∼0.1 s). A χ comparison was performed to cumulative frames to gauge the overall delivery quality, and the resulting pass rates were reported graphically during treatment delivery. Every frame acquired (500-1500 per fraction) was saved for postprocessing and analysis. Results: The system reported the mean ± standard deviation in real time χ 91.1% ± 11.5% (83.6% ± 13.2%) for cumulative frame χ analysis with 4%, 4 mm (3%, 3 mm) criteria, global over the integrated image. Conclusions: A real-time EPID-based radiation delivery verification system for IMRT and VMAT has been demonstrated that aims to prevent major mistreatments in radiation therapy.

  14. First Experience With Real-Time EPID-Based Delivery Verification During IMRT and VMAT Sessions

    Energy Technology Data Exchange (ETDEWEB)

    Woodruff, Henry C., E-mail: henry.woodruff@newcastle.edu.au [Faculty of Science and Information Technology, School of Mathematical and Physical Sciences, University of Newcastle, New South Wales (Australia); Fuangrod, Todsaporn [Faculty of Engineering and Built Environment, School of Electrical Engineering and Computer Science, University of Newcastle, New South Wales (Australia); Van Uytven, Eric; McCurdy, Boyd M.C.; Beek, Timothy van [Division of Medical Physics, CancerCare Manitoba, Winnipeg, Manitoba (Canada); Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba (Canada); Department of Radiology, University of Manitoba, Winnipeg, Manitoba (Canada); Bhatia, Shashank [Department of Radiation Oncology, Calvary Mater Newcastle Hospital, Newcastle, New South Wales (Australia); Greer, Peter B. [Faculty of Science and Information Technology, School of Mathematical and Physical Sciences, University of Newcastle, New South Wales (Australia); Department of Radiation Oncology, Calvary Mater Newcastle Hospital, Newcastle, New South Wales (Australia)

    2015-11-01

    Purpose: Gantry-mounted megavoltage electronic portal imaging devices (EPIDs) have become ubiquitous on linear accelerators. WatchDog is a novel application of EPIDs, in which the image frames acquired during treatment are used to monitor treatment delivery in real time. We report on the preliminary use of WatchDog in a prospective study of cancer patients undergoing intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) and identify the challenges of clinical adoption. Methods and Materials: At the time of submission, 28 cancer patients (head and neck, pelvis, and prostate) undergoing fractionated external beam radiation therapy (24 IMRT, 4 VMAT) had ≥1 treatment fraction verified in real time (131 fractions or 881 fields). EPID images acquired continuously during treatment were synchronized and compared with model-generated transit EPID images within a frame time (∼0.1 s). A χ comparison was performed to cumulative frames to gauge the overall delivery quality, and the resulting pass rates were reported graphically during treatment delivery. Every frame acquired (500-1500 per fraction) was saved for postprocessing and analysis. Results: The system reported the mean ± standard deviation in real time χ 91.1% ± 11.5% (83.6% ± 13.2%) for cumulative frame χ analysis with 4%, 4 mm (3%, 3 mm) criteria, global over the integrated image. Conclusions: A real-time EPID-based radiation delivery verification system for IMRT and VMAT has been demonstrated that aims to prevent major mistreatments in radiation therapy.

  15. Molecular detection of HIV-1 subtype B, CRF01_AE, CRF33_01B, and newly emerging recombinant lineages in Malaysia.

    Science.gov (United States)

    Chook, Jack Bee; Ong, Lai Yee; Takebe, Yutaka; Chan, Kok Gan; Choo, Martin; Kamarulzaman, Adeeba; Tee, Kok Keng

    2015-03-01

    A molecular genotyping assay for human immunodeficiency virus type 1 (HIV-1) circulating in Southeast Asia is difficult to design because of the high level of genetic diversity. We developed a multiplex real-time polymerase chain reaction (PCR) assay to detect subtype B, CRF01_AE, CRF33_01B, and three newly described circulating recombinant forms, (CRFs) (CRF53_01B, CRF54_01B, and CRF58_01B). A total of 785 reference genomes were used for subtype-specific primers and TaqMan probes design targeting the gag, pol, and env genes. The performance of this assay was compared and evaluated with direct sequencing and phylogenetic analysis. A total of 180 HIV-infected subjects from Kuala Lumpur, Malaysia were screened and 171 samples were successfully genotyped, in agreement with the phylogenetic data. The HIV-1 genotype distribution was as follows: subtype B (16.7%); CRF01_AE (52.8%); CRF33_01B (24.4%); CRF53_01B (1.1%); CRF54_01B (0.6%); and CRF01_AE/B unique recombinant forms (4.4%). The overall accuracy of the genotyping assay was over 95.0%, in which the sensitivities for subtype B, CRF01_AE, and CRF33_01B detection were 100%, 100%, and 97.7%, respectively. The specificity of genotyping was 100%, inter-subtype specificities were > 95% and the limit of detection of 10(3) copies/mL for plasma. The newly developed real-time PCR assay offers a rapid and cost-effective alternative for large-scale molecular epidemiological surveillance for HIV-1. © The American Society of Tropical Medicine and Hygiene.

  16. Real-time MRI of the temporomandibular joint at 15 frames per second—A feasibility study

    International Nuclear Information System (INIS)

    Krohn, Sebastian; Gersdorff, Nikolaus; Wassmann, Torsten; Merboldt, Klaus-Dietmar; Joseph, Arun A.; Buergers, Ralf; Frahm, Jens

    2016-01-01

    The purpose of this study was to develop and evaluate a novel method for real-time MRI of TMJ function at high temporal resolution and with two different contrasts. Real-time MRI was based on undersampled radial fast low angle shot (FLASH) acquisitions with iterative image reconstruction by regularized nonlinear inversion. Real-time MRI movies with T1 contrast were obtained with use of a radiofrequency-spoiled FLASH sequence, while movies with T2/T1 contrast employed a gradient-refocused FLASH version. TMJ function was characterized in 40 randomly selected volunteers by sequential 20 s acquisitions of both the right and left joint during voluntary opening and closing of the mouth (in a medial, central and lateral oblique sagittal section perpendicular to the long axis of the condylar head). All studies were performed on a commercial MRI system at 3 T using the standard head coil, while online reconstruction was achieved with a bypass computer fully integrated into the MRI system. As a first result, real-time MRI studies of the right and left TMJ were successfully performed in all 40 subjects (80 joints) within a total examination time per subject of only 15 min. Secondly, at an in-plane resolution of 0.75 mm and 5 mm section thickness, the achieved temporal resolution was 66.7 ms per image or 15 frames per second. Thirdly, both T1-weighted and T2/T1-weighted real-time MRI movies provided information about TMJ function such as disc position, condyle mobility and disc-condyle relationship. While T1 contrast offers a better delineation of structures during rapid jaw movements, T2/T1 contrast was rated superior for characterizing the articular disc. In conclusion, the proposed real-time MRI method may become a robust and efficient tool for the clinical assessment of TMJ function.

  17. Real-time MRI of the temporomandibular joint at 15 frames per second—A feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Krohn, Sebastian; Gersdorff, Nikolaus; Wassmann, Torsten [Department of Prosthodontics, University Medical Center, Göttingen (Germany); Merboldt, Klaus-Dietmar [Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für Biophysikalische Chemie, Göttingen (Germany); Joseph, Arun A., E-mail: ajoseph@mpibpc.mpg.de [Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für Biophysikalische Chemie, Göttingen (Germany); Buergers, Ralf [Department of Prosthodontics, University Medical Center, Göttingen (Germany); Frahm, Jens [Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für Biophysikalische Chemie, Göttingen (Germany)

    2016-12-15

    The purpose of this study was to develop and evaluate a novel method for real-time MRI of TMJ function at high temporal resolution and with two different contrasts. Real-time MRI was based on undersampled radial fast low angle shot (FLASH) acquisitions with iterative image reconstruction by regularized nonlinear inversion. Real-time MRI movies with T1 contrast were obtained with use of a radiofrequency-spoiled FLASH sequence, while movies with T2/T1 contrast employed a gradient-refocused FLASH version. TMJ function was characterized in 40 randomly selected volunteers by sequential 20 s acquisitions of both the right and left joint during voluntary opening and closing of the mouth (in a medial, central and lateral oblique sagittal section perpendicular to the long axis of the condylar head). All studies were performed on a commercial MRI system at 3 T using the standard head coil, while online reconstruction was achieved with a bypass computer fully integrated into the MRI system. As a first result, real-time MRI studies of the right and left TMJ were successfully performed in all 40 subjects (80 joints) within a total examination time per subject of only 15 min. Secondly, at an in-plane resolution of 0.75 mm and 5 mm section thickness, the achieved temporal resolution was 66.7 ms per image or 15 frames per second. Thirdly, both T1-weighted and T2/T1-weighted real-time MRI movies provided information about TMJ function such as disc position, condyle mobility and disc-condyle relationship. While T1 contrast offers a better delineation of structures during rapid jaw movements, T2/T1 contrast was rated superior for characterizing the articular disc. In conclusion, the proposed real-time MRI method may become a robust and efficient tool for the clinical assessment of TMJ function.

  18. Indoor Localization of a Quadrotor Based on WSN: A Real-Time Application

    Directory of Open Access Journals (Sweden)

    Jose L. Rullan-Lara

    2013-01-01

    Full Text Available A real-time localization algorithm is presented in this paper. The algorithm presented here uses an extended Kalman filter and is based on Time Difference Of Arrivals (TDOA measurements of radio signal. The position and velocity of an Unmanned Aerial Vehicle (UAV are successfully estimated in closed-loop in real-time, both in hover and path following flights. Relatively small position errors obtained from the experiments prove the good performance of the proposed algorithm.

  19. Implementation of a FPGA-Based Feature Detection and Networking System for Real-time Traffic Monitoring

    OpenAIRE

    Chen, Jieshi; Schafer, Benjamin Carrion; Ho, Ivan Wang-Hei

    2016-01-01

    With the growing demand of real-time traffic monitoring nowadays, software-based image processing can hardly meet the real-time data processing requirement due to the serial data processing nature. In this paper, the implementation of a hardware-based feature detection and networking system prototype for real-time traffic monitoring as well as data transmission is presented. The hardware architecture of the proposed system is mainly composed of three parts: data collection, feature detection,...

  20. Genotyping three SNPs affecting warfarin drug response by isothermal real-time HDA assays.

    Science.gov (United States)

    Li, Ying; Jortani, Saeed A; Ramey-Hartung, Bronwyn; Hudson, Elizabeth; Lemieux, Bertrand; Kong, Huimin

    2011-01-14

    The response to the anticoagulant drug warfarin is greatly affected by genetic polymorphisms in the VKORC1 and CYP2C9 genes. Genotyping these polymorphisms has been shown to be important in reducing the time of the trial and error process for finding the maintenance dose of warfarin thus reducing the risk of adverse effects of the drug. We developed a real-time isothermal DNA amplification system for genotyping three single nucleotide polymorphisms (SNPs) that influence warfarin response. For each SNP, real-time isothermal Helicase Dependent Amplification (HDA) reactions were performed to amplify a DNA fragment containing the SNP. Amplicons were detected by fluorescently labeled allele specific probes during real-time HDA amplification. Fifty clinical samples were analyzed by the HDA-based method, generating a total of 150 results. Of these, 148 were consistent between the HDA-based assays and a reference method. The two samples with unresolved HDA-based test results were repeated and found to be consistent with the reference method. The HDA-based assays demonstrated a clinically acceptable performance for genotyping the VKORC1 -1639G>A SNP and two SNPs (430C>T and 1075A>C) for the CYP2C9 enzyme (CYP2C9*2 and CYP2C9*3), all of which are relevant in warfarin pharmacogenentics. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks

    Science.gov (United States)

    Abdeljaber, Osama; Avci, Onur; Kiranyaz, Serkan; Gabbouj, Moncef; Inman, Daniel J.

    2017-02-01

    Structural health monitoring (SHM) and vibration-based structural damage detection have been a continuous interest for civil, mechanical and aerospace engineers over the decades. Early and meticulous damage detection has always been one of the principal objectives of SHM applications. The performance of a classical damage detection system predominantly depends on the choice of the features and the classifier. While the fixed and hand-crafted features may either be a sub-optimal choice for a particular structure or fail to achieve the same level of performance on another structure, they usually require a large computation power which may hinder their usage for real-time structural damage detection. This paper presents a novel, fast and accurate structural damage detection system using 1D Convolutional Neural Networks (CNNs) that has an inherent adaptive design to fuse both feature extraction and classification blocks into a single and compact learning body. The proposed method performs vibration-based damage detection and localization of the damage in real-time. The advantage of this approach is its ability to extract optimal damage-sensitive features automatically from the raw acceleration signals. Large-scale experiments conducted on a grandstand simulator revealed an outstanding performance and verified the computational efficiency of the proposed real-time damage detection method.

  2. Complete genome sequence of Klebsiella pneumoniae J1, a protein-based microbial flocculant-producing bacterium.

    Science.gov (United States)

    Pang, Changlong; Li, Ang; Cui, Di; Yang, Jixian; Ma, Fang; Guo, Haijuan

    2016-02-20

    Klebsiella pneumoniae J1 is a Gram-negative strain, which belongs to a protein-based microbial flocculant-producing bacterium. However, little genetic information is known about this species. Here we carried out a whole-genome sequence analysis of this strain and report the complete genome sequence of this organism and its genetic basis for carbohydrate metabolism, capsule biosynthesis and transport system. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Task 1. Monitoring real time materials degradation. NRC extended In-situ and real-time Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Bakhtiari, Sasan [Argonne National Lab. (ANL), Argonne, IL (United States)

    2012-03-01

    The overall objective of this project was to perform a scoping study to identify, in concert with the nuclear industry, those sensors and techniques that have the most promising commercial viability and fill a critical inspection or monitoring need. Candidates to be considered include sensors to monitor real-time material degradation, characterize residual stress, monitor and inspect component fabrication, assess radionuclide and associated chemical species concentrations in ground water and soil, characterize fuel properties, and monitor severe accident conditions. Under Task 1—Monitoring Real-Time Materials Degradation—scoping studies were conducted to assess the feasibility of potential inspection and monitoring technologies (i.e., a combination of sensors, advanced signal processing techniques, and data analysis methods) that could be utilized in LWR and/or advanced reactor applications for continuous monitoring of degradation in-situ. The goal was to identify those techniques that appear to be the most promising, i.e., those that are closest to being both technically and commercially viable and that the nuclear industry is most likely to pursue. Current limitations and associated issues that must be overcome before commercial application of certain techniques have also been addressed.

  4. Real-Time Acquisition of High Quality Face Sequences from an Active Pan-Tilt-Zoom Camera

    DEFF Research Database (Denmark)

    Haque, Mohammad A.; Nasrollahi, Kamal; Moeslund, Thomas B.

    2013-01-01

    -based real-time high-quality face image acquisition system, which utilizes pan-tilt-zoom parameters of a camera to focus on a human face in a scene and employs a face quality assessment method to log the best quality faces from the captured frames. The system consists of four modules: face detection, camera...... control, face tracking, and face quality assessment before logging. Experimental results show that the proposed system can effectively log the high quality faces from the active camera in real-time (an average of 61.74ms was spent per frame) with an accuracy of 85.27% compared to human annotated data.......Traditional still camera-based facial image acquisition systems in surveillance applications produce low quality face images. This is mainly due to the distance between the camera and subjects of interest. Furthermore, people in such videos usually move around, change their head poses, and facial...

  5. Real-time vision systems

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.; Hernandez, J.E.; Lu, Shin-yee [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    Many industrial and defence applications require an ability to make instantaneous decisions based on sensor input of a time varying process. Such systems are referred to as `real-time systems` because they process and act on data as it occurs in time. When a vision sensor is used in a real-time system, the processing demands can be quite substantial, with typical data rates of 10-20 million samples per second. A real-time Machine Vision Laboratory (MVL) was established in FY94 to extend our years of experience in developing computer vision algorithms to include the development and implementation of real-time vision systems. The laboratory is equipped with a variety of hardware components, including Datacube image acquisition and processing boards, a Sun workstation, and several different types of CCD cameras, including monochrome and color area cameras and analog and digital line-scan cameras. The equipment is reconfigurable for prototyping different applications. This facility has been used to support several programs at LLNL, including O Division`s Peacemaker and Deadeye Projects as well as the CRADA with the U.S. Textile Industry, CAFE (Computer Aided Fabric Inspection). To date, we have successfully demonstrated several real-time applications: bullet tracking, stereo tracking and ranging, and web inspection. This work has been documented in the ongoing development of a real-time software library.

  6. Development of a real-time RT-PCR assay for the simultaneous identification, quantitation and differentiation of avian metapneumovirus subtypes A and B.

    Science.gov (United States)

    Cecchinato, Mattia; Lupini, Caterina; Munoz Pogoreltseva, Olga Svetlana; Listorti, Valeria; Mondin, Alessandra; Drigo, Michele; Catelli, Elena

    2013-01-01

    In recent years, special attention has been paid to real-time polymerase chain reaction (PCR) for avian metapneumovirus (AMPV) diagnosis, due to its numerous advantages over classical PCR. A new multiplex quantitative real-time reverse transcription-PCR (qRT-PCR) with molecular beacon probe assay, designed to target the SH gene, was developed. The test was evaluated in terms of specificity, sensitivity and repeatability, and compared with conventional RT nested-PCR based on the G gene. All of the AMPV subtype A and B strains tested were amplified and specifically detected while no amplification occurred with other non-target bird respiratory pathogens. The detection limit of the assay was 10(-0.41) median infectious dose/ml and 10(1.15) median infectious dose/ml when the AMPV-B strain IT/Ty/B/Vr240/87 and the AMPV-A strain IT/Ty/A/259-01/03 were used, respectively, as templates. In all cases, the amplification efficiency was approximately 2 and the error values were 0.9375) between crossing point values and virus quantities, making the assay herein designed reliable for quantification. When the newly developed qRT-PCR was compared with a conventional RT nested-PCR, it showed greater sensitivity with RNA extracted from both positive controls and from experimentally infected birds. This assay can be effectively used for the detection, identification, differentiation and quantitation of AMPV subtype A or subtype B to assist in disease diagnosis and to carry out rapid surveillance with high levels of sensitivity and specificity.

  7. Evaluation of 793/B-like and Mass-like vaccine strain kinetics in experimental and field conditions by real-time RT-PCR quantification.

    Science.gov (United States)

    Tucciarone, C M; Franzo, G; Berto, G; Drigo, M; Ramon, G; Koutoulis, K C; Catelli, E; Cecchinato, M

    2018-01-01

    Infectious bronchitis virus (IBV) is a great economic burden both for productive losses and costs of the control strategies. Many different vaccination protocols are applied in the same region and even in consecutive cycles on the same farm in order to find the perfect balance between costs and benefits. In Northern Italy, the usual second vaccination is more and more often moved up to the chick's first d of life. The second strain administration together with the common Mass priming by spray at the hatchery allows saving money and time and reducing animal stress. The present work compared the different vaccine strains (Mass-like or B48, and 1/96) kinetics both in field conditions and in a 21-day-long experimental trial in broilers, monitoring the viral replication by upper respiratory tract swabbing and vaccine specific real time reverse transcription PCR (RT-PCR) quantification. In both field and experimental conditions, titers for all the vaccines showed an increasing trend in the first 2 wk and then a decrease, though still remaining detectable during the whole monitored period. IBV field strain and avian Metapneumovirus (aMPV) presence also was also investigated by RT-PCR and sequencing, and by multiplex real-time RT-PCR, respectively, revealing a consistency in the pathogen introduction timing at around 30 d, in correspondence with the vaccine titer's main decrease. These findings suggest the need for an accurate knowledge of live vaccine kinetics, whose replication can compete with the other pathogen one, providing additional protection to be added to what is conferred by the adaptive immune response. © 2017 Poultry Science Association Inc.

  8. Design and performance of the CDC real-time reverse transcriptase PCR swine flu panel for detection of 2009 A (H1N1) pandemic influenza virus.

    Science.gov (United States)

    Shu, Bo; Wu, Kai-Hui; Emery, Shannon; Villanueva, Julie; Johnson, Roy; Guthrie, Erica; Berman, LaShondra; Warnes, Christine; Barnes, Nathelia; Klimov, Alexander; Lindstrom, Stephen

    2011-07-01

    Swine influenza viruses (SIV) have been shown to sporadically infect humans and are infrequently identified by the Influenza Division of the Centers for Disease Control and Prevention (CDC) after being received as unsubtypeable influenza A virus samples. Real-time reverse transcriptase PCR (rRT-PCR) procedures for detection and characterization of North American lineage (N. Am) SIV were developed and implemented at CDC for rapid identification of specimens from cases of suspected infections with SIV. These procedures were utilized in April 2009 for detection of human cases of 2009 A (H1N1) pandemic (pdm) influenza virus infection. Based on genetic sequence data derived from the first two viruses investigated, the previously developed rRT-PCR procedures were optimized to create the CDC rRT-PCR Swine Flu Panel for detection of the 2009 A (H1N1) pdm influenza virus. The analytical sensitivity of the CDC rRT-PCR Swine Flu Panel was shown to be 5 copies of RNA per reaction and 10(-1.3 - -0.7) 50% infectious doses (ID(50)) per reaction for cultured viruses. Cross-reactivity was not observed when testing human clinical specimens or cultured viruses that were positive for human seasonal A (H1N1, H3N2) and B influenza viruses. The CDC rRT-PCR Swine Flu Panel was distributed to public health laboratories in the United States and internationally from April 2009 until June 2010. The CDC rRT-PCR Swine Flu Panel served as an effective tool for timely and specific detection of 2009 A (H1N1) pdm influenza viruses and facilitated subsequent public health response implementation.

  9. Loss pattern identification in near-real-time accounting systems

    International Nuclear Information System (INIS)

    Argentesi, F.

    1983-01-01

    To maximize the benefits from an advanced safeguards technique such as near-real-time accounting, sophisticated methods of analysing sequential material accounting data are necessary. The methods must be capable of controlling the overall false-alarm rate while assuring good power of detection against all possible diversion scenarios. A method drawn from the field of pattern recognition and related to the alarm-sequence chart appears to be promising. Power curves based on Monte Carlo calculations illustrate the improvements over more conventional methods. (author)

  10. Real-time polymerase chain reaction-based approach for quantification of the pat gene in the T25 Zea mays event.

    Science.gov (United States)

    Weighardt, Florian; Barbati, Cristina; Paoletti, Claudia; Querci, Maddalena; Kay, Simon; De Beuckeleer, Marc; Van den Eede, Guy

    2004-01-01

    In Europe, a growing interest for reliable techniques for the quantification of genetically modified component(s) of food matrixes is arising from the need to comply with the European legislative framework on novel food products. Real-time polymerase chain reaction (PCR) is currently the most powerful technique for the quantification of specific nucleic acid sequences. Several real-time PCR methodologies based on different molecular principles have been developed for this purpose. The most frequently used approach in the field of genetically modified organism (GMO) quantification in food or feed samples is based on the 5'-3'-exonuclease activity of Taq DNA polymerase on specific degradation probes (TaqMan principle). A novel approach was developed for the establishment of a TaqMan quantification system assessing GMO contents around the 1% threshold stipulated under European Union (EU) legislation for the labeling of food products. The Zea mays T25 elite event was chosen as a model for the development of the novel GMO quantification approach. The most innovative aspect of the system is represented by the use of sequences cloned in plasmids as reference standards. In the field of GMO quantification, plasmids are an easy to use, cheap, and reliable alternative to Certified Reference Materials (CRMs), which are only available for a few of the GMOs authorized in Europe, have a relatively high production cost, and require further processing to be suitable for analysis. Strengths and weaknesses of the use of novel plasmid-based standards are addressed in detail. In addition, the quantification system was designed to avoid the use of a reference gene (e.g., a single copy, species-specific gene) as normalizer, i.e., to perform a GMO quantification based on an absolute instead of a relative measurement. In fact, experimental evidences show that the use of reference genes adds variability to the measurement system because a second independent real-time PCR-based measurement

  11. Development and implementation of real-time nucleic acid amplification for the detection of enterovirus infections in comparison to rapid culture of various clinical specimens

    NARCIS (Netherlands)

    van Doornum, G J J; Schutten, Martin; Voermans, J; Guldemeester, G J J; Niesters, H G M

    2007-01-01

    Several real-time PCR and nucleic acid sequence-based amplification (NASBA) primer pairs and a modified real-time PCR primer pair for the detection of enteroviruses were compared. The modified real-time PCR primer pair was evaluated on clinical samples in comparison with cell culture using the

  12. Video-based real-time on-street parking occupancy detection system

    Science.gov (United States)

    Bulan, Orhan; Loce, Robert P.; Wu, Wencheng; Wang, YaoRong; Bernal, Edgar A.; Fan, Zhigang

    2013-10-01

    Urban parking management is receiving significant attention due to its potential to reduce traffic congestion, fuel consumption, and emissions. Real-time parking occupancy detection is a critical component of on-street parking management systems, where occupancy information is relayed to drivers via smart phone apps, radio, Internet, on-road signs, or global positioning system auxiliary signals. Video-based parking occupancy detection systems can provide a cost-effective solution to the sensing task while providing additional functionality for traffic law enforcement and surveillance. We present a video-based on-street parking occupancy detection system that can operate in real time. Our system accounts for the inherent challenges that exist in on-street parking settings, including illumination changes, rain, shadows, occlusions, and camera motion. Our method utilizes several components from video processing and computer vision for motion detection, background subtraction, and vehicle detection. We also present three traffic law enforcement applications: parking angle violation detection, parking boundary violation detection, and exclusion zone violation detection, which can be integrated into the parking occupancy cameras as a value-added option. Our experimental results show that the proposed parking occupancy detection method performs in real-time at 5 frames/s and achieves better than 90% detection accuracy across several days of videos captured in a busy street block under various weather conditions such as sunny, cloudy, and rainy, among others.

  13. SNPServer: a real-time SNP discovery tool.

    Science.gov (United States)

    Savage, David; Batley, Jacqueline; Erwin, Tim; Logan, Erica; Love, Christopher G; Lim, Geraldine A C; Mongin, Emmanuel; Barker, Gary; Spangenberg, German C; Edwards, David

    2005-07-01

    SNPServer is a real-time flexible tool for the discovery of SNPs (single nucleotide polymorphisms) within DNA sequence data. The program uses BLAST, to identify related sequences, and CAP3, to cluster and align these sequences. The alignments are parsed to the SNP discovery software autoSNP, a program that detects SNPs and insertion/deletion polymorphisms (indels). Alternatively, lists of related sequences or pre-assembled sequences may be entered for SNP discovery. SNPServer and autoSNP use redundancy to differentiate between candidate SNPs and sequence errors. For each candidate SNP, two measures of confidence are calculated, the redundancy of the polymorphism at a SNP locus and the co-segregation of the candidate SNP with other SNPs in the alignment. SNPServer is available at http://hornbill.cspp.latrobe.edu.au/snpdiscovery.html.

  14. Sequence and organization of the rhoptry-associated-protein-1 (rap-1) locus for the sheep hemoprotozoan Babesia sp. BQ1 Lintan (B. motasi phylogenetic group).

    Science.gov (United States)

    Niu, Qingli; Bonsergent, Claire; Guan, Guiquan; Yin, Hong; Malandrin, Laurence

    2013-11-15

    Babesiosis is a frequent infection of animals worldwide by tick borne pathogen Babesia, and several species are responsible for ovine babesiosis. Recently, several Babesia motasi-like isolates were described in sheep in China. In this study, we sequenced the multigenic rap-1 gene locus of one of these isolates, Babesia sp. BQ1 Lintan. The RAP-1 proteins are involved in the process of red blood cells invasion and thus represent a potential target for vaccine development. A complex composition and organization of the rap-1 locus was discovered with: (1) the presence of 3 different types of rap-1 sequences (rap-1a, rap-1b and rap-1c); (2) the presence of multiple copies of rap-1a and rap-1b; (3) polymorphism among the rap-1a copies, with two classes (named rap-1a61 and rap-1a67) having a similarity of 95.7%, each class represented by two close variants; (4) polymorphism between rap-1a61-1 and rap-1a61-2 limited to three nucleotide positions; (5) a difference of eight nucleotides between rap-1a67-1 and rap-1a67-2 from position 1270 to the putative stop site of rap-1a67-1 which might produce two putative proteins of slightly different sizes; (6) the ratio of rap-1a copies corresponding to one rap-1a67, one rap-1a61-1 and one rap-1a61-2; (7) the presence of three different intergenic regions separating rap-1a, rap-1b and rap-1c; (8) interspacing of the rap-1a copies with rap-1b copies; and (9) the terminal position of rap-1c in the locus. A 31kb locus composed of 6 rap-1a sequences interspaced with 5 rap-1b sequences and with a terminal rap-1c copy was hypothesized. A strikingly similar sequence composition (rap-1a, rap-1b and rap-1c), as well as strong gene identities and similar locus organization with B. bigemina were found and highlight the conservation of synteny at this locus in this phylogenetic clade. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Neural Network Based Real-time Correction of Transducer Dynamic Errors

    Science.gov (United States)

    Roj, J.

    2013-12-01

    In order to carry out real-time dynamic error correction of transducers described by a linear differential equation, a novel recurrent neural network was developed. The network structure is based on solving this equation with respect to the input quantity when using the state variables. It is shown that such a real-time correction can be carried out using simple linear perceptrons. Due to the use of a neural technique, knowledge of the dynamic parameters of the transducer is not necessary. Theoretical considerations are illustrated by the results of simulation studies performed for the modeled second order transducer. The most important properties of the neural dynamic error correction, when emphasizing the fundamental advantages and disadvantages, are discussed.

  16. Evaluation of an Extremum Seeking Control Based Optimization and Sequencing Strategy for a Chilled-water Plant

    OpenAIRE

    Zhao, Zhongfan; Li, Yaoyu; Mu, Baojie; Salsbury, Timothy I.; House, John M.

    2016-01-01

    Chilled-water plants with multiple chillers account for a significant fraction of energy use in large commercial buildings. Real-time optimization and sequencing of such plants is thus critical for building energy efficiency. Due to the cost and complexity associated with calibrating a chiller plant model to field operation, model-free control has become an attractive solution. Recently, Mu et al. (2015) proposed a model-free real-time optimization and sequencing strategy based on extremum se...

  17. Real-time amyloid aggregation monitoring with a photonic crystal-based approach.

    Science.gov (United States)

    Santi, Sara; Musi, Valeria; Descrovi, Emiliano; Paeder, Vincent; Di Francesco, Joab; Hvozdara, Lubos; van der Wal, Peter; Lashuel, Hilal A; Pastore, Annalisa; Neier, Reinhard; Herzig, Hans Peter

    2013-10-21

    We propose the application of a new label-free optical technique based on photonic nanostructures to real-time monitor the amyloid-beta 1-42 (Aβ(1-42)) fibrillization, including the early stages of the aggregation process, which are related to the onset of the Alzheimer's Disease (AD). The aggregation of Aβ peptides into amyloid fibrils has commonly been associated with neuronal death, which culminates in the clinical features of the incurable degenerative AD. Recent studies revealed that cell toxicity is determined by the formation of soluble oligomeric forms of Aβ peptides in the early stages of aggregation. At this phase, classical amyloid detection techniques lack in sensitivity. Upon a chemical passivation of the sensing surface by means of polyethylene glycol, the proposed approach allows an accurate, real-time monitoring of the refractive index variation of the solution, wherein Aβ(1-42) peptides are aggregating. This measurement is directly related to the aggregation state of the peptide throughout oligomerization and subsequent fibrillization. Our findings open new perspectives in the understanding of the dynamics of amyloid formation, and validate this approach as a new and powerful method to screen aggregation at early stages. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Sensitive Quantification of Aflatoxin B1 in Animal Feeds, Corn Feed Grain, and Yellow Corn Meal Using Immunomagnetic Bead-Based Recovery and Real-Time Immunoquantitative-PCR

    Directory of Open Access Journals (Sweden)

    Dinesh Babu

    2014-12-01

    Full Text Available Aflatoxins are considered unavoidable natural mycotoxins encountered in foods, animal feeds, and feed grains. In this study, we demonstrate the application of our recently developed real-time immunoquantitative PCR (RT iq-PCR assay for sensitive detection and quantification of aflatoxins in poultry feed, two types of dairy feed (1 and 2, horse feed, whole kernel corn feed grains, and retail yellow ground corn meal. Upon testing methanol/water (60:40 extractions of the above samples using competitive direct enzyme linked immunosorbent assay, the aflatoxin content was found to be <20 μg/kg. The RT iq-PCR assay exhibited high antigen hook effect in samples containing aflatoxin levels higher than the quantification limits (0.1–10 μg/kg, addressed by comparing the quantification results of undiluted and diluted extracts. In testing the reliability of the immuno-PCR assay, samples were spiked with 200 μg/kg of aflatoxin B1, but the recovery of spiked aflatoxin was found to be poor. Considering the significance of determining trace levels of aflatoxins and their serious implications for animal and human health, the RT iq-PCR method described in this study can be useful for quantifying low natural aflatoxin levels in complex matrices of food or animal feed samples without the requirement of extra sample cleanup.

  19. A multiplex, internally controlled real-time PCR assay for detection of toxigenic Clostridium difficile and identification of hypervirulent strain 027/ST-1

    DEFF Research Database (Denmark)

    Hoegh, A M; Nielsen, J B; Lester, A

    2012-01-01

    The purpose of this study was to validate a multiplex real-time PCR assay capable of detecting toxigenic Clostridium difficile and simultaneously identifying C. difficile ribotype 027/ST-1 by targeting the toxin genes tcdA, tcdB and cdtA in one reaction and in a separate reaction identifying the Δ...... to confirm the correct identification of the Δ117 deletion in tcdC and C. difficile ribotype 027/ST-1, respectively. The PCR assay displayed a sensitivity, specificity, PPV and NPV of 99.0%, 97.4%, 87.4% and 99.8%, respectively, compared to toxigenic culture on 665 samples evaluable both by PCR and culture....... Sequencing of tcdC, ribotyping and MLST of cultured isolates validated the genotyping assay and confirmed the ability of the assay to correctly identify C. difficile ribotype 027/ST-1 in our current epidemiological setting. We describe the use of a combination of two separate PCR assays for sensitive...

  20. Design of real-time communication system for image recognition based colony picking instrument

    Science.gov (United States)

    Wang, Qun; Zhang, Rongfu; Yan, Hua; Wu, Huamin

    2017-11-01

    In order to aachieve autommated observatiion and pickinng of monocloonal colonies, an overall dessign and realizzation of real-time commmunication system based on High-throoughput monooclonal auto-piicking instrumment is propossed. The real-time commmunication system is commposed of PCC-PLC commuunication systtem and Centrral Control CComputer (CCC)-PLC communicatioon system. Bassed on RS232 synchronous serial communnication methood to develop a set of dedicated shoort-range commmunication prootocol betweenn the PC and PPLC. Furthermmore, the systemm uses SQL SSERVER database to rrealize the dataa interaction between PC andd CCC. Moreoover, the commmunication of CCC and PC, adopted Socket Ethernnet communicaation based on TCP/IP protoccol. TCP full-dduplex data cannnel to ensure real-time data eexchange as well as immprove system reliability andd security. We tested the commmunication syystem using sppecially develooped test software, thee test results show that the sysstem can realizze the communnication in an eefficient, safe aand stable way between PLC, PC andd CCC, keep thhe real-time conntrol to PLC annd colony inforrmation collecttion.

  1. A Kinect-Based Segmentation of Touching-Pigs for Real-Time Monitoring

    Directory of Open Access Journals (Sweden)

    Miso Ju

    2018-05-01

    Full Text Available Segmenting touching-pigs in real-time is an important issue for surveillance cameras intended for the 24-h tracking of individual pigs. However, methods to do so have not yet been reported. We particularly focus on the segmentation of touching-pigs in a crowded pig room with low-contrast images obtained using a Kinect depth sensor. We reduce the execution time by combining object detection techniques based on a convolutional neural network (CNN with image processing techniques instead of applying time-consuming operations, such as optimization-based segmentation. We first apply the fastest CNN-based object detection technique (i.e., You Only Look Once, YOLO to solve the separation problem for touching-pigs. If the quality of the YOLO output is not satisfied, then we try to find the possible boundary line between the touching-pigs by analyzing the shape. Our experimental results show that this method is effective to separate touching-pigs in terms of both accuracy (i.e., 91.96% and execution time (i.e., real-time execution, even with low-contrast images obtained using a Kinect depth sensor.

  2. Real-time ISEE data system

    International Nuclear Information System (INIS)

    Tsurutani, B.T.; Baker, D.N.

    1979-01-01

    Prediction of geomagnetic substorms and storms would be of great scientific and commercial interest. A real-time ISEE data system directed toward this purpose is discussed in detail. Such a system may allow up to 60+ minutes advance warning of magnetospheric substorms and up to 30 minute warnings of geomagnetic storms (and other disturbances) induced by high-speed streams and solar flares. The proposed system utilizes existing capabilities of several agencies (NASA, NOAA, USAF), and thereby minimizes costs. This same concept may be applicable to data from other spacecraft, and other NASA centers; thus, each individual experimenter can receive quick-look data in real time at his or her base institution. 6 figures, 1 table

  3. Improvements to Web Toolkits for Antelope-based Real-time Monitoring Systems

    Science.gov (United States)

    Lindquist, K. G.; Newman, R. L.; Vernon, F. L.; Hansen, T. S.; Orcutt, J.

    2005-12-01

    The Antelope Environmental Monitoring System (http://www.brtt.com) is a robust middleware architecture for near-real-time data collection, analysis, archiving and distribution. Antelope has an extensive toolkit allowing users to interact directly with their datasets. A rudimentary interface was developed in previous work between Antelope and the web-scripting language PHP (The PHP language is described in more detail at http://www.php.net). This interface allowed basic application development for remote access to and interaction with near-real-time data through a World Wide Web interface. We have added over 70 new functions for the Antelope interface to PHP, providing a solid base for web-scripting of near-real-time Antelope database applications. In addition, we have designed a new structure for web sites to be created from the Antelope platform, including PHP applications and Perl CGI scripts as well as static pages. Finally we have constructed the first version of the dbwebproject program, designed to dynamically create and maintain web-sites from specified recipes. These tools have already proven valuable for the creation of web tools for the dissemination of and interaction with near-real-time data streams from multi-signal-domain real-time sensor networks. We discuss current and future directions of this work in the context of the ROADNet project. Examples and applications of these core tools are elaborated in a companion presentation in this session (Newman et al., AGU 2005, session IN06).

  4. HIV-1 viral load measurement in venous blood and fingerprick blood using Abbott RealTime HIV-1 DBS assay.

    Science.gov (United States)

    Tang, Ning; Pahalawatta, Vihanga; Frank, Andrea; Bagley, Zowie; Viana, Raquel; Lampinen, John; Leckie, Gregor; Huang, Shihai; Abravaya, Klara; Wallis, Carole L

    2017-07-01

    HIV RNA suppression is a key indicator for monitoring success of antiretroviral therapy. From a logistical perspective, viral load (VL) testing using Dried Blood Spots (DBS) is a promising alternative to plasma based VL testing in resource-limited settings. To evaluate the analytical and clinical performance of the Abbott RealTime HIV-1 assay using a fully automated one-spot DBS sample protocol. Limit of detection (LOD), linearity, lower limit of quantitation (LLQ), upper limit of quantitation (ULQ), and precision were determined using serial dilutions of HIV-1 Virology Quality Assurance stock (VQA Rush University), or HIV-1-containing armored RNA, made in venous blood. To evaluate correlation, bias, and agreement, 497 HIV-1 positive adult clinical samples were collected from Ivory Coast, Uganda and South Africa. For each HIV-1 participant, DBS-fingerprick, DBS-venous and plasma sample results were compared. Correlation and bias values were obtained. The sensitivity and specificity were analyzed at a threshold of 1000 HIV-1 copies/mL generated using the standard plasma protocol. The Abbott HIV-1 DBS protocol had an LOD of 839 copies/mL, a linear range from 500 to 1×10 7 copies/mL, an LLQ of 839 copies/mL, a ULQ of 1×10 7 copies/mL, and an inter-assay SD of ≤0.30 log copies/mL for all tested levels within this range. With clinical samples, the correlation coefficient (r value) was 0.896 between DBS-fingerprick and plasma and 0.901 between DBS-venous and plasma, and the bias was -0.07 log copies/mL between DBS-fingerprick and plasma and -0.02 log copies/mL between DBS-venous and plasma. The sensitivity of DBS-fingerprick and DBS-venous was 93%, while the specificity of both DBS methods was 95%. The results demonstrated that the Abbott RealTime HIV-1 assay with DBS sample protocol is highly sensitive, specific and precise across a wide dynamic range and correlates well with plasma values. The Abbott RealTime HIV-1 assay with DBS sample protocol provides an

  5. Real-Time Control of an Articulatory-Based Speech Synthesizer for Brain Computer Interfaces.

    Directory of Open Access Journals (Sweden)

    Florent Bocquelet

    2016-11-01

    Full Text Available Restoring natural speech in paralyzed and aphasic people could be achieved using a Brain-Computer Interface (BCI controlling a speech synthesizer in real-time. To reach this goal, a prerequisite is to develop a speech synthesizer producing intelligible speech in real-time with a reasonable number of control parameters. We present here an articulatory-based speech synthesizer that can be controlled in real-time for future BCI applications. This synthesizer converts movements of the main speech articulators (tongue, jaw, velum, and lips into intelligible speech. The articulatory-to-acoustic mapping is performed using a deep neural network (DNN trained on electromagnetic articulography (EMA data recorded on a reference speaker synchronously with the produced speech signal. This DNN is then used in both offline and online modes to map the position of sensors glued on different speech articulators into acoustic parameters that are further converted into an audio signal using a vocoder. In offline mode, highly intelligible speech could be obtained as assessed by perceptual evaluation performed by 12 listeners. Then, to anticipate future BCI applications, we further assessed the real-time control of the synthesizer by both the reference speaker and new speakers, in a closed-loop paradigm using EMA data recorded in real time. A short calibration period was used to compensate for differences in sensor positions and articulatory differences between new speakers and the reference speaker. We found that real-time synthesis of vowels and consonants was possible with good intelligibility. In conclusion, these results open to future speech BCI applications using such articulatory-based speech synthesizer.

  6. Mixed-mode Operating System for Real-time Performance

    Directory of Open Access Journals (Sweden)

    M.M. Hasan

    2017-11-01

    Full Text Available The purpose of the mixed-mode system research is to handle devices with the accuracy of real-time systems and at the same time, having all the benefits and facilities of a matured Graphic User Interface (GUI operating system which is typically nonreal-time. This mixed-mode operating system comprising of a real-time portion and a non-real-time portion was studied and implemented to identify the feasibilities and performances in practical applications (in the context of scheduled the real-time events. In this research an i8751 microcontroller-based hardware was used to measure the performance of the system in real-time-only as well as non-real-time-only configurations. The real-time portion is an 486DX-40 IBM PC system running under DOS-based realtime kernel and the non-real-time portion is a Pentium III based system running under Windows NT. It was found that mixed-mode systems performed as good as a typical realtime system and in fact, gave many additional benefits such as simplified/modular programming and load tolerance.

  7. Real-time wavelet-transform spectrum analyzer for the investigation of 1/fα noise

    Science.gov (United States)

    Brogioli, Doriano; Vailati, Alberto

    2003-04-01

    A wavelet-transform spectrum analyzer operating in real time within the frequency range 3×10-5-1.3×105Hz has been implemented on a low-cost digital signal processing (DSP) board operating at 150 MHz. The wavelet decomposition of the signal allows one to efficiently process nonstationary signals dominated by large amplitude events fairly well localized in time, thus providing the natural tool to analyze processes characterized by 1/fα power spectrum. The parallel architecture of the DSP allows the real-time processing of the wavelet transform of the signal sampled at 0.3 MHz. The bandwidth is about 220 dB, almost 10 decades. The power spectrum of the signal is processed in real time from the mean square value of the wavelet coefficients within each frequency band. The performances of the spectrum analyzer have been investigated by performing dynamic light scattering experiments on colloidal suspensions and by comparing the measured spectra with the correlation functions data obtained with a traditional multitau correlator. In order to assess the potentialities of the spectrum analyzer in the investigation of processes involving a wide range of time scales, we have performed measurements on a model system where fluctuations in the scattered intensities are generated by the number fluctuations in a dilute colloidal suspension illuminated by a wide beam. This system is characterized by a power-law spectrum with exponent -3/2 in the scattered intensity fluctuations. The spectrum analyzer allows one to recover the power spectrum with a dynamic range spanning about 8 decades. The advantages of wavelet analysis versus correlation analysis in the investigation of processes characterized by a wide distribution of time scales and nonstationary processes are briefly discussed.

  8. A Systematic Evaluation of Feature Selection and Classification Algorithms Using Simulated and Real miRNA Sequencing Data

    Directory of Open Access Journals (Sweden)

    Sheng Yang

    2015-01-01

    Full Text Available Sequencing is widely used to discover associations between microRNAs (miRNAs and diseases. However, the negative binomial distribution (NB and high dimensionality of data obtained using sequencing can lead to low-power results and low reproducibility. Several statistical learning algorithms have been proposed to address sequencing data, and although evaluation of these methods is essential, such studies are relatively rare. The performance of seven feature selection (FS algorithms, including baySeq, DESeq, edgeR, the rank sum test, lasso, particle swarm optimistic decision tree, and random forest (RF, was compared by simulation under different conditions based on the difference of the mean, the dispersion parameter of the NB, and the signal to noise ratio. Real data were used to evaluate the performance of RF, logistic regression, and support vector machine. Based on the simulation and real data, we discuss the behaviour of the FS and classification algorithms. The Apriori algorithm identified frequent item sets (mir-133a, mir-133b, mir-183, mir-937, and mir-96 from among the deregulated miRNAs of six datasets from The Cancer Genomics Atlas. Taking these findings altogether and considering computational memory requirements, we propose a strategy that combines edgeR and DESeq for large sample sizes.

  9. Mixed - mode Operating System for Real - time Performance

    Directory of Open Access Journals (Sweden)

    Hasan M. M.

    2017-11-01

    Full Text Available The purpose of the mixed-mode system research is to handle devices with the accuracy of real-time systems and at the same time, having all the benefits and facilities of a matured Graphic User Interface(GUIoperating system which is typicallynon-real-time. This mixed-mode operating system comprising of a real-time portion and a non-real-time portion was studied and implemented to identify the feasibilities and performances in practical applications (in the context of scheduled the real-time events. In this research an i8751 microcontroller-based hardware was used to measure the performance of the system in real-time-only as well as non-real-time-only configurations. The real-time portion is an 486DX-40 IBM PC system running under DOS-based real-time kernel and the non-real-time portion is a Pentium IIIbased system running under Windows NT. It was found that mixed-mode systems performed as good as a typical real-time system and in fact, gave many additional benefits such as simplified/modular programming and load tolerance.

  10. Real-time flow - determination of vena cava inferior on two different levels via 'RACE' pulse sequence in MR

    International Nuclear Information System (INIS)

    Helzel, M.V.; Mueller, E.

    1993-01-01

    A new and simple parameter for quantiative evaluation of liver perfusion is outlined: Post-sinusoidal quantitative measurement of the entire liver venous flow: This is a result of the differences in evaluated flow volumes at two different levels in the inferior V.cava. The first level is the height of diaphragm, and the second is situated just cranial of the renal vessels. Normal values obtained from a group of healthy volunteers are presented. A gradient-echo pulse sequence called RACE, enabling flow measurements in real-time, is outlined. (orig.) [de

  11. Loss-pattern identification in near-real-time accounting systems

    International Nuclear Information System (INIS)

    Argentesi, F.; Hafer, J.F.; Markin, J.T.; Shipley, J.P.

    1982-01-01

    To maximize the benefits from an advanced safeguards technique such as near-real-time accounting (NRTA), sophisticated methods of analyzing sequential materials accounting data are necessary. The methods must be capable of controlling the overall false-alarm rate while assuring good power of detection against all possible diversion scenarios. A method drawn from the field of pattern recognition and related to the alarm-sequence chart appears to be promising. Power curves based on Monte Carlo calculations illustrate the improvements over more conventional methods. 3 figures, 2 tables

  12. Prospective navigator-echo-based real-time triggering of fetal head movement for the reduction of artifacts

    International Nuclear Information System (INIS)

    Bonel, H.; Frei, K.A.; Raio, L.; Meyer-Wittkopf, M.; Remonda, L.; Wiest, R.

    2008-01-01

    The purpose of this study was to evaluate the neuroimaging quality and accuracy of prospective real-time navigator-echo acquisition correction versus untriggered intrauterine magnetic resonance imaging (MRI) techniques. Twenty women in whom fetal motion artifacts compromised the neuroimaging quality of fetal MRI taken during the 28.7 ± 4 week of pregnancy below diagnostic levels were additionally investigated using a navigator-triggered half-Fourier acquired single-shot turbo-spin echo (HASTE) sequence. Imaging quality was evaluated by two blinded readers applying a rating scale from 1 (not diagnostic) to 5 (excellent). Diagnostic criteria included depiction of the germinal matrix, grey and white matter, CSF, brain stem and cerebellum. Signal-difference-to-noise ratios (SDNRs) in the white matter and germinal zone were quantitatively evaluated. Imaging quality improved in 18/20 patients using the navigator echo technique (2.4 ± 0.58 vs. 3.65 ± 0.73 SD, p < 0.01 for all evaluation criteria). In 2/20 patients fetal movement severely impaired image quality in conventional and navigated HASTE. Navigator-echo imaging revealed additional structural brain abnormalities and confirmed diagnosis in 8/20 patients. The accuracy improved from 50% to 90%. Average SDNR increased from 0.7 ± 7.27 to 19.83 ± 15.71 (p < 0.01). Navigator-echo-based real-time triggering of fetal head movement is a reliable technique that can deliver diagnostic fetal MR image quality despite vigorous fetal movement. (orig.)

  13. Prospective navigator-echo-based real-time triggering of fetal head movement for the reduction of artifacts.

    Science.gov (United States)

    Bonel, H; Frei, K A; Raio, L; Meyer-Wittkopf, M; Remonda, L; Wiest, R

    2008-04-01

    The purpose of this study was to evaluate the neuroimaging quality and accuracy of prospective real-time navigator-echo acquisition correction versus untriggered intrauterine magnetic resonance imaging (MRI) techniques. Twenty women in whom fetal motion artifacts compromised the neuroimaging quality of fetal MRI taken during the 28.7 +/- 4 week of pregnancy below diagnostic levels were additionally investigated using a navigator-triggered half-Fourier acquired single-shot turbo-spin echo (HASTE) sequence. Imaging quality was evaluated by two blinded readers applying a rating scale from 1 (not diagnostic) to 5 (excellent). Diagnostic criteria included depiction of the germinal matrix, grey and white matter, CSF, brain stem and cerebellum. Signal-difference-to-noise ratios (SDNRs) in the white matter and germinal zone were quantitatively evaluated. Imaging quality improved in 18/20 patients using the navigator echo technique (2.4 +/- 0.58 vs. 3.65 +/- 0.73 SD, p < 0.01 for all evaluation criteria). In 2/20 patients fetal movement severely impaired image quality in conventional and navigated HASTE. Navigator-echo imaging revealed additional structural brain abnormalities and confirmed diagnosis in 8/20 patients. The accuracy improved from 50% to 90%. Average SDNR increased from 0.7 +/- 7.27 to 19.83 +/- 15.71 (p < 0.01). Navigator-echo-based real-time triggering of fetal head movement is a reliable technique that can deliver diagnostic fetal MR image quality despite vigorous fetal movement.

  14. Prospective navigator-echo-based real-time triggering of fetal head movement for the reduction of artifacts

    Energy Technology Data Exchange (ETDEWEB)

    Bonel, H. [University Hospital Berne-Inselspital, Freiburgstrasse, Institute of Diagnostic, Interventional and Pediatric Radiology, Bern (Switzerland); Frei, K.A.; Raio, L.; Meyer-Wittkopf, M. [University of Berne, Women' s' Hospital, Bern (Switzerland); Remonda, L.; Wiest, R. [University of Berne, Institute of Diagnostic and Interventional Neuroradiology (DIN), Inselspital, Bern (Switzerland)

    2008-04-15

    The purpose of this study was to evaluate the neuroimaging quality and accuracy of prospective real-time navigator-echo acquisition correction versus untriggered intrauterine magnetic resonance imaging (MRI) techniques. Twenty women in whom fetal motion artifacts compromised the neuroimaging quality of fetal MRI taken during the 28.7 {+-} 4 week of pregnancy below diagnostic levels were additionally investigated using a navigator-triggered half-Fourier acquired single-shot turbo-spin echo (HASTE) sequence. Imaging quality was evaluated by two blinded readers applying a rating scale from 1 (not diagnostic) to 5 (excellent). Diagnostic criteria included depiction of the germinal matrix, grey and white matter, CSF, brain stem and cerebellum. Signal-difference-to-noise ratios (SDNRs) in the white matter and germinal zone were quantitatively evaluated. Imaging quality improved in 18/20 patients using the navigator echo technique (2.4 {+-} 0.58 vs. 3.65 {+-} 0.73 SD, p < 0.01 for all evaluation criteria). In 2/20 patients fetal movement severely impaired image quality in conventional and navigated HASTE. Navigator-echo imaging revealed additional structural brain abnormalities and confirmed diagnosis in 8/20 patients. The accuracy improved from 50% to 90%. Average SDNR increased from 0.7 {+-} 7.27 to 19.83 {+-} 15.71 (p < 0.01). Navigator-echo-based real-time triggering of fetal head movement is a reliable technique that can deliver diagnostic fetal MR image quality despite vigorous fetal movement. (orig.)

  15. MO-FG-202-08: Real-Time Monte Carlo-Based Treatment Dose Reconstruction and Monitoring for Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Z; Shi, F; Gu, X; Tan, J; Hassan-Rezaeian, N; Jiang, S; Jia, X [UT Southwestern Medical Center, Dallas, TX (United States); Graves, Y [University of California, San Diego, La Jolla, CA (United States)

    2016-06-15

    Purpose: This proof-of-concept study is to develop a real-time Monte Carlo (MC) based treatment-dose reconstruction and monitoring system for radiotherapy, especially for the treatments with complicated delivery, to catch treatment delivery errors at the earliest possible opportunity and interrupt the treatment only when an unacceptable dosimetric deviation from our expectation occurs. Methods: First an offline scheme is launched to pre-calculate the expected dose from the treatment plan, used as ground truth for real-time monitoring later. Then an online scheme with three concurrent threads is launched while treatment delivering, to reconstruct and monitor the patient dose in a temporally resolved fashion in real-time. Thread T1 acquires machine status every 20 ms to calculate and accumulate fluence map (FM). Once our accumulation threshold is reached, T1 transfers the FM to T2 for dose reconstruction ad starts to accumulate a new FM. A GPU-based MC dose calculation is performed on T2 when MC dose engine is ready and a new FM is available. The reconstructed instantaneous dose is directed to T3 for dose accumulation and real-time visualization. Multiple dose metrics (e.g. maximum and mean dose for targets and organs) are calculated from the current accumulated dose and compared with the pre-calculated expected values. Once the discrepancies go beyond our tolerance, an error message will be send to interrupt the treatment delivery. Results: A VMAT Head-and-neck patient case was used to test the performance of our system. Real-time machine status acquisition was simulated here. The differences between the actual dose metrics and the expected ones were 0.06%–0.36%, indicating an accurate delivery. ∼10Hz frequency of dose reconstruction and monitoring was achieved, with 287.94s online computation time compared to 287.84s treatment delivery time. Conclusion: Our study has demonstrated the feasibility of computing a dose distribution in a temporally resolved fashion

  16. Genotyping of B. licheniformis based on a novel multi-locus sequence typing (MLST scheme

    Directory of Open Access Journals (Sweden)

    Madslien Elisabeth H

    2012-10-01

    Full Text Available Abstract Background Bacillus licheniformis has for many years been used in the industrial production of enzymes, antibiotics and detergents. However, as a producer of dormant heat-resistant endospores B. licheniformis might contaminate semi-preserved foods. The aim of this study was to establish a robust and novel genotyping scheme for B. licheniformis in order to reveal the evolutionary history of 53 strains of this species. Furthermore, the genotyping scheme was also investigated for its use to detect food-contaminating strains. Results A multi-locus sequence typing (MLST scheme, based on the sequence of six house-keeping genes (adk, ccpA, recF, rpoB, spo0A and sucC of 53 B. licheniformis strains from different sources was established. The result of the MLST analysis supported previous findings of two different subgroups (lineages within this species, named “A” and “B” Statistical analysis of the MLST data indicated a higher rate of recombination within group “A”. Food isolates were widely dispersed in the MLST tree and could not be distinguished from the other strains. However, the food contaminating strain B. licheniformis NVH1032, represented by a unique sequence type (ST8, was distantly related to all other strains. Conclusions In this study, a novel and robust genotyping scheme for B. licheniformis was established, separating the species into two subgroups. This scheme could be used for further studies of evolution and population genetics in B. licheniformis.

  17. A fast density-based clustering algorithm for real-time Internet of Things stream.

    Science.gov (United States)

    Amini, Amineh; Saboohi, Hadi; Wah, Teh Ying; Herawan, Tutut

    2014-01-01

    Data streams are continuously generated over time from Internet of Things (IoT) devices. The faster all of this data is analyzed, its hidden trends and patterns discovered, and new strategies created, the faster action can be taken, creating greater value for organizations. Density-based method is a prominent class in clustering data streams. It has the ability to detect arbitrary shape clusters, to handle outlier, and it does not need the number of clusters in advance. Therefore, density-based clustering algorithm is a proper choice for clustering IoT streams. Recently, several density-based algorithms have been proposed for clustering data streams. However, density-based clustering in limited time is still a challenging issue. In this paper, we propose a density-based clustering algorithm for IoT streams. The method has fast processing time to be applicable in real-time application of IoT devices. Experimental results show that the proposed approach obtains high quality results with low computation time on real and synthetic datasets.

  18. Rapid and sensitive detection of Pseudomonas aeruginosa in chlorinated water and aerosols targeting gyrB gene using real-time PCR.

    Science.gov (United States)

    Lee, C S; Wetzel, K; Buckley, T; Wozniak, D; Lee, J

    2011-10-01

    For the rapid detection of Pseudomonas aeruginosa from chlorinated water and aerosols, gyrB gene-based real-time PCR assay was developed and investigated. Two novel primer sets (pa722F/746MGB/899R and pa722F/746MGB/788R) were designed using the most updated 611 Pseudomonas and 748 other bacterial gyrB genes for achieving high specificity. Their specificity showed 100% accuracy when tested with various strains including clinical isolates from cystic fibrosis patients. The assay was tested with Ps. aeruginosa-containing chlorinated water and aerosols to simulate the waterborne and airborne transmission routes (detection limit 3·3 × 10² CFU per PCR-2·3 × 10³ CFU per PCR). No chlorine interference in real-time PCR was observed at drinking water level (c. 1 mg l⁻¹), but high level of chorine (12 mg l⁻¹) interfered the assay, and thus neutralization was needed. Pseudomonas aeruginosa in aerosol was successfully detected after capturing with gelatin filters with minimum 2 min of sampling time when the initial concentration of 10⁴ CFU ml⁻¹ bacteria existed in the nebulizer. A highly specific and rapid assay (2-3 h) was developed by targeting gyrB gene for the detection of Ps. aeruginosa in chlorinated water and aerosols, combined with optimized sample collection methods and sample processing, so the direct DNA extraction from either water or aerosol was possible while achieving the desired sensitivity of the method.   The new assay can provide timely and accurate risk assessment to prevent Ps. aeruginosa exposure from water and aerosol, resulting in reduced disease burden, especially among immune-compromised and susceptible individuals. This approach can be easily utilized as a platform technology for the detection of other types of micro-organisms, especially for those that are transmitted via water and aerosol routes, such as Legionella pneumophila. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  19. Near-real-time feedback control system for liver thermal ablations based on self-referenced temperature imaging

    International Nuclear Information System (INIS)

    Keserci, Bilgin M.; Kokuryo, Daisuke; Suzuki, Kyohei; Kumamoto, Etsuko; Okada, Atsuya; Khankan, Azzam A.; Kuroda, Kagayaki

    2006-01-01

    Our challenge was to design and implement a dedicated temperature imaging feedback control system to guide and assist in a thermal liver ablation procedure in a double-donut 0.5T open MR scanner. This system has near-real-time feedback capability based on a newly developed 'self-referenced' temperature imaging method using 'moving-slab' and complex-field-fitting techniques. Two phantom validation studies and one ex vivo experiment were performed to compare the newly developed self-referenced method with the conventional subtraction method and evaluate the ability of the feedback control system in the same MR scanner. The near-real-time feedback system was achieved by integrating the following primary functions: (1) imaging of the moving organ temperature; (2) on-line needle tip tracking; (3) automatic turn-on/off the heating devices; (4) a Windows operating system-based novel user-interfaces. In the first part of the validation studies, microwave heating was applied in an agar phantom using a fast spoiled gradient recalled echo in a steady state sequence. In the second part of the validation and ex vivo study, target visualization, treatment planning and monitoring, and temperature and thermal dose visualization with the graphical user interface of the thermal ablation software were demonstrated. Furthermore, MR imaging with the 'self-referenced' temperature imaging method has the ability to localize the hot spot in the heated region and measure temperature elevation during the experiment. In conclusion, we have demonstrated an interactively controllable feedback control system that offers a new method for the guidance of liver thermal ablation procedures, as well as improving the ability to assist ablation procedures in an open MR scanner

  20. A SiPM based real time dosimeter for radiotherapic beams

    Energy Technology Data Exchange (ETDEWEB)

    Berra, A., E-mail: alessandro.berra@gmail.it [Università degli Studi dell' Insubria e INFN sezione di Milano Bicocca, Via Valleggio, 11 22100 Como (Italy); Conti, V. [Ospedale Sant' Anna, Servizio di Fisica Sanitaria, Como (Italy); Lietti, D.; Milan, L.; Novati, C. [Università degli Studi dell' Insubria e INFN sezione di Milano Bicocca, Via Valleggio, 11 22100 Como (Italy); Ostinelli, A. [Ospedale Sant' Anna, Servizio di Fisica Sanitaria, Como (Italy); Prest, M.; Romanó, C. [Università degli Studi dell' Insubria e INFN sezione di Milano Bicocca, Via Valleggio, 11 22100 Como (Italy); Vallazza, E. [INFN sezione di Trieste (Italy)

    2015-02-11

    This paper describes the development of a scintillator dosimeter prototype for radiotherapic applications based on plastic scintillating fibers readout by Silicon PhotoMultipliers. The dosimeter, whose probes are water equivalent, could be used for quality control measurements, beam characterization and in vivo dosimetry, allowing a real time measurement of the dose spatial distribution. This paper describes the preliminary percentual depth dose scan performed with clinical 6 and 18 MV photon beams, comparing the results with a reference curve. The measurements were performed using a Varian Clinac iX linear accelerator at the Radiotherapy Department of the St. Anna Hospital in Como (IT). The prototype has given promising results, allowing real time measurements of relative dose without applying any correction factors.

  1. Seven novel probe systems for real-time PCR provide absolute single-base discrimination, higher signaling, and generic components.

    Science.gov (United States)

    Murray, James L; Hu, Peixu; Shafer, David A

    2014-11-01

    We have developed novel probe systems for real-time PCR that provide higher specificity, greater sensitivity, and lower cost relative to dual-labeled probes. The seven DNA Detection Switch (DDS)-probe systems reported here employ two interacting polynucleotide components: a fluorescently labeled probe and a quencher antiprobe. High-fidelity detection is achieved with three DDS designs: two internal probes (internal DDS and Flip probes) and a primer probe (ZIPR probe), wherein each probe is combined with a carefully engineered, slightly mismatched, error-checking antiprobe. The antiprobe blocks off-target detection over a wide range of temperatures and facilitates multiplexing. Other designs (Universal probe, Half-Universal probe, and MacMan probe) use generic components that enable low-cost detection. Finally, single-molecule G-Force probes employ guanine-mediated fluorescent quenching by forming a hairpin between adjacent C-rich and G-rich sequences. Examples provided show how these probe technologies discriminate drug-resistant Mycobacterium tuberculosis mutants, Escherichia coli O157:H7, oncogenic EGFR deletion mutations, hepatitis B virus, influenza A/B strains, and single-nucleotide polymorphisms in the human VKORC1 gene. Copyright © 2014 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  2. Real Time Engineering Analysis Based on a Generative Component Implementation

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Klitgaard, Jens

    2007-01-01

    The present paper outlines the idea of a conceptual design tool with real time engineering analysis which can be used in the early conceptual design phase. The tool is based on a parametric approach using Generative Components with embedded structural analysis. Each of these components uses the g...

  3. Development and validation of a real-time PCR assay for specific and sensitive detection of canid herpesvirus 1.

    Science.gov (United States)

    Decaro, Nicola; Amorisco, Francesca; Desario, Costantina; Lorusso, Eleonora; Camero, Michele; Bellacicco, Anna Lucia; Sciarretta, Rossana; Lucente, Maria Stella; Martella, Vito; Buonavoglia, Canio

    2010-10-01

    A TaqMan-based real-time PCR assay targeting the glycoprotein B-encoding gene was developed for diagnosis of canid herpesvirus 1 (CHV-1) infection. The established assay was highly specific, since no cross-reactions were observed with other canine DNA viruses, including canine parvovirus type 2, canine minute virus, or canine adenovirus types 1 and 2. The detection limit was 10(1) and 1.20 x 10(1) DNA copies per 10 microl(-1) of template for standard DNA and a CHV-1-positive kidney sample, respectively: about 1-log higher than a gel-based PCR assay targeting the thymidine kinase gene. The assay was also reproducible, as shown by satisfactory low intra-assay and inter-assay coefficients of variation. CHV-1 isolates of different geographical origins were recognised by the TaqMan assay. Tissues and clinical samples collected from three pups which died of CHV-1 neonatal infection were also tested, displaying a wide distribution of CHV-l DNA in their organs. Unlike other CHV-1-specific diagnostic methods, this quantitative assay permits simultaneous detection and quantitation of CHV-1 DNA in a wide range of canine tissues and body fluids, thus providing a useful tool for confirmation of a clinical diagnosis, for the study of viral pathogenesis and for evaluation of the efficacy of vaccines and antiviral drugs. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  4. Real-time monitoring of inflammation status in 3T3-L1 adipocytes possessing a secretory Gaussia luciferase gene under the control of nuclear factor-kappa B response element

    Energy Technology Data Exchange (ETDEWEB)

    Nagasaki, Haruka; Yoshimura, Takeshi [Department of Life Sciences, Graduate School of Bioresources, Mie University, Tsu 514-8507 (Japan); Aoki, Naohito, E-mail: n-aoki@bio.mie-u.ac.jp [Department of Life Sciences, Graduate School of Bioresources, Mie University, Tsu 514-8507 (Japan)

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer Inflammation status in adipocytes can be monitored by the new assay system. Black-Right-Pointing-Pointer Only an aliquot of conditioned medium is required without cell lysis. Black-Right-Pointing-Pointer Inflammation-attenuating compounds can be screened more conveniently. -- Abstract: We have established 3T3-L1 cells possessing a secretory Gaussia luciferase (GLuc) gene under the control of nuclear factor-kappa B (NF-{kappa}B) response element. The 3T3-L1 cells named 3T3-L1-NF-{kappa}B-RE-GLuc could differentiate into adipocyte as comparably as parental 3T3-L1 cells. Inflammatory cytokines such as tumor necrosis factor (TNF)-{alpha} and interleukin (IL)-1{beta} induced GLuc secretion of 3T3-L1-NF-{kappa}B-RE-GLuc adipocytes in a concentration- and time-dependent manner. GLuc secretion of 3T3-L1-NF-{kappa}B-RE-GLuc adipocytes was also induced when cultured with RAW264.7 macrophages and was dramatically enhanced by lipopolysaccharide (LPS)-activated macrophages. An NF-{kappa}B activation inhibitor BAY-11-7085 and an antioxidant N-acetyl cysteine significantly suppressed GLuc secretion induced by macrophages. Finally, we found that rosemary-derived carnosic acid strongly suppressed GLuc secretion induced by macrophages and on the contrary up-regulated adiponectin secretion. Collectively, by using 3T3-L1-NF-{kappa}B-RE-GLuc adipocytes, inflammation status can be monitored in real time and inflammation-attenuating compounds can be screened more conveniently.

  5. Real-Time Dynamics in U(1 Lattice Gauge Theories with Tensor Networks

    Directory of Open Access Journals (Sweden)

    T. Pichler

    2016-03-01

    Full Text Available Tensor network algorithms provide a suitable route for tackling real-time-dependent problems in lattice gauge theories, enabling the investigation of out-of-equilibrium dynamics. We analyze a U(1 lattice gauge theory in (1+1 dimensions in the presence of dynamical matter for different mass and electric-field couplings, a theory akin to quantum electrodynamics in one dimension, which displays string breaking: The confining string between charges can spontaneously break during quench experiments, giving rise to charge-anticharge pairs according to the Schwinger mechanism. We study the real-time spreading of excitations in the system by means of electric-field and particle fluctuations. We determine a dynamical state diagram for string breaking and quantitatively evaluate the time scales for mass production. We also show that the time evolution of the quantum correlations can be detected via bipartite von Neumann entropies, thus demonstrating that the Schwinger mechanism is tightly linked to entanglement spreading. To present a variety of possible applications of this simulation platform, we show how one could follow the real-time scattering processes between mesons and the creation of entanglement during scattering processes. Finally, we test the quality of quantum simulations of these dynamics, quantifying the role of possible imperfections in cold atoms, trapped ions, and superconducting circuit systems. Our results demonstrate how entanglement properties can be used to deepen our understanding of basic phenomena in the real-time dynamics of gauge theories such as string breaking and collisions.

  6. Real time diagnosis of bladder cancer with probe-based confocal laser endomicroscopy

    Science.gov (United States)

    Liu, Jen-Jane; Wu, Katherine; Adams, Winifred; Hsiao, Shelly T.; Mach, Kathleen E.; Beck, Andrew H.; Jensen, Kristin C.; Liao, Joseph C.

    2011-02-01

    Probe-based confocal laser endomicroscopy (pCLE) is an emerging technology for in vivo optical imaging of the urinary tract. Particularly for bladder cancer, real time optical biopsy of suspected lesions will likely lead to improved management of bladder cancer. With pCLE, micron scale resolution is achieved with sterilizable imaging probes (1.4 or 2.6 mm diameter), which are compatible with standard cystoscopes and resectoscopes. Based on our initial experience to date (n = 66 patients), we have demonstrated the safety profile of intravesical fluorescein administration and established objective diagnostic criteria to differentiate between normal, benign, and neoplastic urothelium. Confocal images of normal bladder showed organized layers of umbrella cells, intermediate cells, and lamina propria. Low grade bladder cancer is characterized by densely packed monomorphic cells with central fibrovascular cores, whereas high grade cancer consists of highly disorganized microarchitecture and pleomorphic cells with indistinct cell borders. Currently, we are conducting a diagnostic accuracy study of pCLE for bladder cancer diagnosis. Patients scheduled to undergo transurethral resection of bladder tumor are recruited. Patients undergo first white light cystocopy (WLC), followed by pCLE, and finally histologic confirmation of the resected tissues. The diagnostic accuracy is determined both in real time by the operative surgeon and offline after additional image processing. Using histology as the standard, the sensitivity, specificity, positive and negative predictive value of WLC and WLC + pCLE are calculated. With additional validation, pCLE may prove to be a valuable adjunct to WLC for real time diagnosis of bladder cancer.

  7. Real-Time Hand Position Sensing Technology Based on Human Body Electrostatics

    Directory of Open Access Journals (Sweden)

    Kai Tang

    2018-05-01

    Full Text Available Non-contact human-computer interactions (HCI based on hand gestures have been widely investigated. Here, we present a novel method to locate the real-time position of the hand using the electrostatics of the human body. This method has many advantages, including a delay of less than one millisecond, low cost, and does not require a camera or wearable devices. A formula is first created to sense array signals with five spherical electrodes. Next, a solving algorithm for the real-time measured hand position is introduced and solving equations for three-dimensional coordinates of hand position are obtained. A non-contact real-time hand position sensing system was established to perform verification experiments, and the principle error of the algorithm and the systematic noise were also analyzed. The results show that this novel technology can determine the dynamic parameters of hand movements with good robustness to meet the requirements of complicated HCI.

  8. Real-time intensity based 2D/3D registration using kV-MV image pairs for tumor motion tracking in image guided radiotherapy

    Science.gov (United States)

    Furtado, H.; Steiner, E.; Stock, M.; Georg, D.; Birkfellner, W.

    2014-03-01

    Intra-fractional respiratorymotion during radiotherapy is one of themain sources of uncertainty in dose application creating the need to extend themargins of the planning target volume (PTV). Real-time tumormotion tracking by 2D/3D registration using on-board kilo-voltage (kV) imaging can lead to a reduction of the PTV. One limitation of this technique when using one projection image, is the inability to resolve motion along the imaging beam axis. We present a retrospective patient study to investigate the impact of paired portal mega-voltage (MV) and kV images, on registration accuracy. We used data from eighteen patients suffering from non small cell lung cancer undergoing regular treatment at our center. For each patient we acquired a planning CT and sequences of kV and MV images during treatment. Our evaluation consisted of comparing the accuracy of motion tracking in 6 degrees-of-freedom(DOF) using the anterior-posterior (AP) kV sequence or the sequence of kV-MV image pairs. We use graphics processing unit rendering for real-time performance. Motion along cranial-caudal direction could accurately be extracted when using only the kV sequence but in AP direction we obtained large errors. When using kV-MV pairs, the average error was reduced from 3.3 mm to 1.8 mm and the motion along AP was successfully extracted. The mean registration time was of 190+/-35ms. Our evaluation shows that using kVMV image pairs leads to improved motion extraction in 6 DOF. Therefore, this approach is suitable for accurate, real-time tumor motion tracking with a conventional LINAC.

  9. Real-time pricing strategy of micro-grid energy centre considering price-based demand response

    Science.gov (United States)

    Xu, Zhiheng; Zhang, Yongjun; Wang, Gan

    2017-07-01

    With the development of energy conversion technology such as power to gas (P2G), fuel cell and so on, the coupling between energy sources becomes more and more closely. Centralized dispatch among electricity, natural gas and heat will become a trend. With the goal of maximizing the system revenue, this paper establishes the model of micro-grid energy centre based on energy hub. According to the proposed model, the real-time pricing strategy taking into account price-based demand response of load is developed. And the influence of real-time pricing strategy on the peak load shifting is discussed. In addition, the impact of wind power predicted inaccuracy on real-time pricing strategy is analysed.

  10. Development of Real-Time Precise Positioning Algorithm Using GPS L1 Carrier Phase Data

    Directory of Open Access Journals (Sweden)

    Jeong-Ho Joh

    2002-12-01

    Full Text Available We have developed Real-time Phase DAta Processor(RPDAP for GPS L1 carrier. And also, we tested the RPDAP's positioning accuracy compared with results of real time kinematic(RTK positioning. While quality of the conventional L1 RTK positioning highly depend on receiving condition, the RPDAP can gives more stable positioning result because of different set of common GPS satellites, which searched by elevation mask angle and signal strength. In this paper, we demonstrated characteristics of the RPDAP compared with the L1 RTK technique. And we discussed several improvement ways to apply the RPDAP to precise real-time positioning using low-cost GPS receiver. With correcting the discussed weak points in near future, the RPDAP will be used in the field of precise real-time application, such as precise car navigation and precise personal location services.

  11. Real-Time Shop-Floor Production Performance Analysis Method for the Internet of Manufacturing Things

    Directory of Open Access Journals (Sweden)

    Yingfeng Zhang

    2014-04-01

    Full Text Available Typical challenges that manufacturing enterprises are facing now are compounded by lack of timely, accurate, and consistent information of manufacturing resources. As a result, it is difficult to analyze the real-time production performance for the shop-floor. In this paper, the definition and overall architecture of the internet of manufacturing things is presented to provide a new paradigm by extending the techniques of internet of things (IoT to manufacturing field. Under this architecture, the real-time primitive events which occurred at different manufacturing things such as operators, machines, pallets, key materials, and so forth can be easily sensed. Based on these distributed primitive events, a critical event model is established to automatically analyze the real-time production performance. Here, the up-level production performance analysis is regarded as a series of critical events, and the real-time value of each critical event can be easily calculated according to the logical and sequence relationships among these multilevel events. Finally, a case study is used to illustrate how to apply the designed methods to analyze the real-time production performance.

  12. Loss less real-time data compression based on LZO for steady-state Tokamak DAS

    International Nuclear Information System (INIS)

    Pujara, H.D.; Sharma, Manika

    2008-01-01

    The evolution of data acquisition system (DAS) for steady-state operation of Tokamak has been technology driven. Steady-state Tokamak demands a data acquisition system which is capable enough to acquire data losslessly from diagnostics. The needs of loss less continuous acquisition have a significant effect on data storage and takes up a greater portion of any data acquisition systems. Another basic need of steady state of nature of operation demands online viewing of data which loads the LAN significantly. So there is strong demand for something that would control the expansion of both these portion by a way of employing compression technique in real time. This paper presents a data acquisition systems employing real-time data compression technique based on LZO. It is a data compression library which is suitable for data compression and decompression in real time. The algorithm used favours speed over compression ratio. The system has been rigged up based on PXI bus and dual buffer mode architecture is implemented for loss less acquisition. The acquired buffer is compressed in real time and streamed to network and hard disk for storage. Observed performance of measure on various data type like binary, integer float, types of different type of wave form as well as compression timing overheads has been presented in the paper. Various software modules for real-time acquiring, online viewing of data on network nodes have been developed in LabWindows/CVI based on client server architecture

  13. Phylogenetic relationships of Palaearctic Formica species (Hymenoptera, Formicidae based on mitochondrial cytochrome B sequences.

    Directory of Open Access Journals (Sweden)

    Anna V Goropashnaya

    Full Text Available Ants of genus Formica demonstrate variation in social organization and represent model species for ecological, behavioral, evolutionary studies and testing theoretical implications of the kin selection theory. Subgeneric division of the Formica ants based on morphology has been questioned and remained unclear after an allozyme study on genetic differentiation between 13 species representing all subgenera was conducted. In the present study, the phylogenetic relationships within the genus were examined using mitochondrial DNA sequences of the cytochrome b and a part of the NADH dehydrogenase subunit 6. All 23 Formica species sampled in the Palaearctic clustered according to the subgeneric affiliation except F. uralensis that formed a separate phylogenetic group. Unlike Coptoformica and Formica s. str., the subgenus Serviformica did not form a tight cluster but more likely consisted of a few small clades. The genetic distances between the subgenera were around 10%, implying approximate divergence time of 5 Myr if we used the conventional insect divergence rate of 2% per Myr. Within-subgenus divergence estimates were 6.69% in Serviformica, 3.61% in Coptoformica, 1.18% in Formica s. str., which supported our previous results on relatively rapid speciation in the latter subgenus. The phylogeny inferred from DNA sequences provides a necessary framework against which the evolution of social traits can be compared. We discuss implications of inferred phylogeny for the evolution of social traits.

  14. Research of real-time performance based on VxWorks embedded system

    International Nuclear Information System (INIS)

    Liu Daming; Li Haiming

    2011-01-01

    In the research of mechanism and heating efficiency of Ion Cyclotron Range of Frequency (ICRF) heating, data acquisition system with high real-time performance needed. By the means of system logic analyzer, SPY and other relevant software on VxWorks embedded operating system for real-time testing gives real-time data of the system. Real-time level to achieve balances used time and processor idle time, real-time data acquisition, and minimize the interference of external to the system, ensure the system work in its own set of scheduling trajectory. Interrupt switching time and task context switching time meet the system requirements. (authors)

  15. 4g-Based Specialty Vehicles Real-Time Monitoring System Design and Implementation

    Directory of Open Access Journals (Sweden)

    Zhuang Yu-Feng

    2017-01-01

    Full Text Available In the future development of natural gas transportation industry, emerging ITS technology will be applied more and more, aiming at integrating precise positioning technology, geographic information system technology, database technology, multimedia technology and modern communication technology, sensor network technology and video capture technology, so as to achieve the transport steam (oil vehicles in real time monitoring and management. The main research content of this paper is to design and research the monitoring and locating system of luck (oil vehicle based on 4G on Android System. Real-time monitoring and alarming by sensor module, real-time video recording and uploading through camera module, real-time position recording and uploading through GPS module, vehicle navigation module and quick alarm module, which is composed of five parts. The system is the application of new intelligent transport technology in the field of special vehicle transport. It apply electronic information technology and internet of things technology to the vehicle system, so we can monitor natural gas and other special dangerous goods anytime, anywhere.

  16. Nucleotide sequence of a human cDNA encoding a ras-related protein (rap1B)

    Energy Technology Data Exchange (ETDEWEB)

    Pizon, V; Lerosey, I; Chardin, P; Tavitian, A [INSERM, Paris (France)

    1988-08-11

    The authors have previously characterized two human ras-related genes rap1 and rap2. Using the rap1 clone as probe they isolated and sequenced a new rap cDNA encoding the 184aa rap1B protein. The rap1B protein is 95% identical to rap1 and shares several properties with the ras protein suggesting that it could bind GTP/GDP and have a membrane location. As for rap1, the structural characteristics of rap1B suggest that the rap and ras proteins might interact on the same effector.

  17. Dense time discretization technique for verification of real time systems

    International Nuclear Information System (INIS)

    Makackas, Dalius; Miseviciene, Regina

    2016-01-01

    Verifying the real-time system there are two different models to control the time: discrete and dense time based models. This paper argues a novel verification technique, which calculates discrete time intervals from dense time in order to create all the system states that can be reached from the initial system state. The technique is designed for real-time systems specified by a piece-linear aggregate approach. Key words: real-time system, dense time, verification, model checking, piece-linear aggregate

  18. Compiling models into real-time systems

    International Nuclear Information System (INIS)

    Dormoy, J.L.; Cherriaux, F.; Ancelin, J.

    1992-08-01

    This paper presents an architecture for building real-time systems from models, and model-compiling techniques. This has been applied for building a real-time model-based monitoring system for nuclear plants, called KSE, which is currently being used in two plants in France. We describe how we used various artificial intelligence techniques for building it: a model-based approach, a logical model of its operation, a declarative implementation of these models, and original knowledge-compiling techniques for automatically generating the real-time expert system from those models. Some of those techniques have just been borrowed from the literature, but we had to modify or invent other techniques which simply did not exist. We also discuss two important problems, which are often underestimated in the artificial intelligence literature: size, and errors. Our architecture, which could be used in other applications, combines the advantages of the model-based approach with the efficiency requirements of real-time applications, while in general model-based approaches present serious drawbacks on this point

  19. Compiling models into real-time systems

    International Nuclear Information System (INIS)

    Dormoy, J.L.; Cherriaux, F.; Ancelin, J.

    1992-08-01

    This paper presents an architecture for building real-time systems from models, and model-compiling techniques. This has been applied for building a real-time model-base monitoring system for nuclear plants, called KSE, which is currently being used in two plants in France. We describe how we used various artificial intelligence techniques for building it: a model-based approach, a logical model of its operation, a declarative implementation of these models, and original knowledge-compiling techniques for automatically generating the real-time expert system from those models. Some of those techniques have just been borrowed from the literature, but we had to modify or invent other techniques which simply did not exist. We also discuss two important problems, which are often underestimated in the artificial intelligence literature: size, and errors. Our architecture, which could be used in other applications, combines the advantages of the model-based approach with the efficiency requirements of real-time applications, while in general model-based approaches present serious drawbacks on this point

  20. A MATLAB based Distributed Real-time Simulation of Lander-Orbiter-Earth Communication for Lunar Missions

    Science.gov (United States)

    Choudhury, Diptyajit; Angeloski, Aleksandar; Ziah, Haseeb; Buchholz, Hilmar; Landsman, Andre; Gupta, Amitava; Mitra, Tiyasa

    Lunar explorations often involve use of a lunar lander , a rover [1],[2] and an orbiter which rotates around the moon with a fixed radius. The orbiters are usually lunar satellites orbiting along a polar orbit to ensure visibility with respect to the rover and the Earth Station although with varying latency. Communication in such deep space missions is usually done using a specialized protocol like Proximity-1[3]. MATLAB simulation of Proximity-1 have been attempted by some contemporary researchers[4] to simulate all features like transmission control, delay etc. In this paper it is attempted to simulate, in real time, the communication between a tracking station on earth (earth station), a lunar orbiter and a lunar rover using concepts of Distributed Real-time Simulation(DRTS).The objective of the simulation is to simulate, in real-time, the time varying communication delays associated with the communicating elements with a facility to integrate specific simulation modules to study different aspects e.g. response due to a specific control command from the earth station to be executed by the rover. The hardware platform comprises four single board computers operating as stand-alone real time systems (developed by MATLAB xPC target and inter-networked using UDP-IP protocol). A time triggered DRTS approach is adopted. The earth station, the orbiter and the rover are programmed as three standalone real-time processes representing the communicating elements in the system. Communication from one communicating element to another constitutes an event which passes a state message from one element to another, augmenting the state of the latter. These events are handled by an event scheduler which is the fourth real-time process. The event scheduler simulates the delay in space communication taking into consideration the distance between the communicating elements. A unique time synchronization algorithm is developed which takes into account the large latencies in space

  1. Real-time Energy Resource Scheduling considering a Real Portuguese Scenario

    DEFF Research Database (Denmark)

    Silva, Marco; Sousa, Tiago; Morais, Hugo

    2014-01-01

    The development in power systems and the introduction of decentralized gen eration and Electric Vehicles (EVs), both connected to distribution networks, represents a major challenge in the planning and operation issues. This new paradigm requires a new energy resources management approach which...... scheduling in smart grids, considering day - ahead, hour - ahead and real - time scheduling. The case study considers a 33 - bus distribution network with high penetration of distributed energy resources . The wind generation profile is base d o n a rea l Portuguese wind farm . Four scenarios are presented...... taking into account 0, 1, 2 and 5 periods (hours or minutes) ahead of the scheduling period in the hour - ahead and real - time scheduling...

  2. Real-time biodetection using a smartphone-based dual-color surface plasmon resonance sensor

    Science.gov (United States)

    Liu, Qiang; Yuan, Huizhen; Liu, Yun; Wang, Jiabin; Jing, Zhenguo; Peng, Wei

    2018-04-01

    We proposed a compact and cost-effective red-green dual-color fiber optic surface plasmon resonance (SPR) sensor based on the smartphone. Inherent color selectivity of phone cameras was utilized for real-time monitoring of red and green color channels simultaneously, which can reduce the chance of false detection and improve the sensitivity. Because there are no external prisms, complex optical lenses, or diffraction grating, simple optical configuration is realized. It has a linear response in a refractive index range of 1.326 to 1.351 (R2 = 0.991) with a resolution of 2.3 × 10 - 4 RIU. We apply it for immunoglobulin G (IgG) concentration measurement. Experimental results demonstrate that a linear SPR response was achieved for IgG concentrations varying from 0.02 to 0.30 mg / ml with good repeatability. It may find promising applications in the fields of public health and environment monitoring owing to its simple optics design and applicability in real-time, label-free biodetection.

  3. Multiple ECG Fiducial Points-Based Random Binary Sequence Generation for Securing Wireless Body Area Networks.

    Science.gov (United States)

    Zheng, Guanglou; Fang, Gengfa; Shankaran, Rajan; Orgun, Mehmet A; Zhou, Jie; Qiao, Li; Saleem, Kashif

    2017-05-01

    Generating random binary sequences (BSes) is a fundamental requirement in cryptography. A BS is a sequence of N bits, and each bit has a value of 0 or 1. For securing sensors within wireless body area networks (WBANs), electrocardiogram (ECG)-based BS generation methods have been widely investigated in which interpulse intervals (IPIs) from each heartbeat cycle are processed to produce BSes. Using these IPI-based methods to generate a 128-bit BS in real time normally takes around half a minute. In order to improve the time efficiency of such methods, this paper presents an ECG multiple fiducial-points based binary sequence generation (MFBSG) algorithm. The technique of discrete wavelet transforms is employed to detect arrival time of these fiducial points, such as P, Q, R, S, and T peaks. Time intervals between them, including RR, RQ, RS, RP, and RT intervals, are then calculated based on this arrival time, and are used as ECG features to generate random BSes with low latency. According to our analysis on real ECG data, these ECG feature values exhibit the property of randomness and, thus, can be utilized to generate random BSes. Compared with the schemes that solely rely on IPIs to generate BSes, this MFBSG algorithm uses five feature values from one heart beat cycle, and can be up to five times faster than the solely IPI-based methods. So, it achieves a design goal of low latency. According to our analysis, the complexity of the algorithm is comparable to that of fast Fourier transforms. These randomly generated ECG BSes can be used as security keys for encryption or authentication in a WBAN system.

  4. Real-time particle image velocimetry based on FPGA technology;Velocimetria PIV en tiempo real basada en logica programable FPGA

    Energy Technology Data Exchange (ETDEWEB)

    Iriarte Munoz, Jose Miguel [Universidad Nacional de Cuyo, Instituto Balseiro, Centro Atomico Bariloche (Argentina)

    2008-07-01

    Particle image velocimetry (PIV), based on laser sheet, is a method for image processing and calculation of distributed velocity fields.It is well established as a fluid dynamics measurement tool, being applied to liquid, gases and multiphase flows.Images of particles are processed by means of computationally demanding algorithms, what makes its real-time implementation difficult.The most probable displacements are found applying two dimensional cross-correlation function. In this work, we detail how it is possible to achieve real-time visualization of PIV method by designing an adaptive embedded architecture based on FPGA technology.We show first results of a physical field of velocity calculated by this platform system in a real-time approach.;La velocimetria por imagenes de particulas (PIV), basada en plano laser, es una potente herramienta de medicion en dinamica de fluidos, capaz de medir sin grandes errores, un campo de velocidades distribuido en liquidos, gases y flujo multifase.Los altos requerimientos computacionales de los algoritmos PIV dificultan su empleo en tiempo-real.En este trabajo presentamos el diseno de una plataforma basada en tecnologia FPGA para capturar video y procesar en tiempo real el algoritmo de correlacion cruzada bidimensional.Mostramos resultados de un primer abordaje de la captura de imagenes y procesamiento de un campo fisico de velocidades en tiempo real.

  5. The Chimera II Real-Time Operating System for advanced sensor-based control applications

    Science.gov (United States)

    Stewart, David B.; Schmitz, Donald E.; Khosla, Pradeep K.

    1992-01-01

    Attention is given to the Chimera II Real-Time Operating System, which has been developed for advanced sensor-based control applications. The Chimera II provides a high-performance real-time kernel and a variety of IPC features. The hardware platform required to run Chimera II consists of commercially available hardware, and allows custom hardware to be easily integrated. The design allows it to be used with almost any type of VMEbus-based processors and devices. It allows radially differing hardware to be programmed using a common system, thus providing a first and necessary step towards the standardization of reconfigurable systems that results in a reduction of development time and cost.

  6. Simultaneous quantitative assessment of circulating cell-free mitochondrial and nuclear DNA by multiplex real-time PCR

    Directory of Open Access Journals (Sweden)

    Peng Xia

    2009-01-01

    Full Text Available Quantification of circulating nucleic acids in plasma and serum could be used as a non-invasive diagnostic tool for monitoring a wide variety of diseases and conditions. We describe here a rapid, simple and accurate multiplex real-time PCR method for direct synchronized analysis of circulating cell-free (ccf mitochondrial (mtDNA and nuclear (nDNA DNA in plasma and serum samples. The method is based on one-step multiplex real-time PCR using a FAM-labeled MGB probe and primers to amplify the mtDNA sequence of the ATP 8 gene, and a VIC-labeled MGB probe and primers to amplify the nDNA sequence of the glycerinaldehyde-3-phosphate-dehydrogenase (GAPDH gene, in plasma and serum samples simultaneously. The efficiencies of the multiplex assays were measured in serial dilutions. Based on the simulation of the PCR reaction kinetics, the relative quantities of ccf mtDNA were calculated using a very simple equation. Using our optimised real-time PCR conditions, close to 100% efficiency was obtained from the two assays. The two assays performed in the dilution series showed very good and reproducible correlation to each other. This optimised multiplex real-time PCR protocol can be widely used for synchronized quantification of mtDNA and nDNA in different samples, with a very high rate of efficiency.

  7. Computation Offloading for Frame-Based Real-Time Tasks under Given Server Response Time Guarantees

    Directory of Open Access Journals (Sweden)

    Anas S. M. Toma

    2014-11-01

    Full Text Available Computation offloading has been adopted to improve the performance of embedded systems by offloading the computation of some tasks, especially computation-intensive tasks, to servers or clouds. This paper explores computation offloading for real-time tasks in embedded systems, provided given response time guarantees from the servers, to decide which tasks should be offloaded to get the results in time. We consider frame-based real-time tasks with the same period and relative deadline. When the execution order of the tasks is given, the problem can be solved in linear time. However, when the execution order is not specified, we prove that the problem is NP-complete. We develop a pseudo-polynomial-time algorithm for deriving feasible schedules, if they exist.  An approximation scheme is also developed to trade the error made from the algorithm and the complexity. Our algorithms are extended to minimize the period/relative deadline of the tasks for performance maximization. The algorithms are evaluated with a case study for a surveillance system and synthesized benchmarks.

  8. Parametric spectro-temporal analyzer (PASTA) for real-time optical spectrum observation

    Science.gov (United States)

    Zhang, Chi; Xu, Jianbing; Chui, P. C.; Wong, Kenneth K. Y.

    2013-06-01

    Real-time optical spectrum analysis is an essential tool in observing ultrafast phenomena, such as the dynamic monitoring of spectrum evolution. However, conventional method such as optical spectrum analyzers disperse the spectrum in space and allocate it in time sequence by mechanical rotation of a grating, so are incapable of operating at high speed. A more recent method all-optically stretches the spectrum in time domain, but is limited by the allowable input condition. In view of these constraints, here we present a real-time spectrum analyzer called parametric spectro-temporal analyzer (PASTA), which is based on the time-lens focusing mechanism. It achieves a frame rate as high as 100 MHz and accommodates various input conditions. As a proof of concept and also for the first time, we verify its applications in observing the dynamic spectrum of a Fourier domain mode-locked laser, and the spectrum evolution of a laser cavity during its stabilizing process.

  9. Real-time reverse transcription polymerase chain reaction method for detection of Canine distemper virus modified live vaccine shedding for differentiation from infection with wild-type strains.

    Science.gov (United States)

    Wilkes, Rebecca P; Sanchez, Elena; Riley, Matthew C; Kennedy, Melissa A

    2014-01-01

    Canine distemper virus (CDV) remains a common cause of infectious disease in dogs, particularly in high-density housing situations such as shelters. Vaccination of all dogs against CDV is recommended at the time of admission to animal shelters and many use a modified live virus (MLV) vaccine. From a diagnostic standpoint for dogs with suspected CDV infection, this is problematic because highly sensitive diagnostic real-time reverse transcription polymerase chain reaction (RT-PCR) tests are able to detect MLV virus in clinical samples. Real-time PCR can be used to quantitate amount of virus shedding and can differentiate vaccine strains from wild-type strains when shedding is high. However, differentiation by quantitation is not possible in vaccinated animals during acute infection, when shedding is low and could be mistaken for low level vaccine virus shedding. While there are gel-based RT-PCR assays for differentiation of vaccine strains from field strains based on sequence differences, the sensitivity of these assays is unable to match that of the real-time RT-PCR assay currently used in the authors' laboratory. Therefore, a real-time RT-PCR assay was developed that detects CDV MLV vaccine strains and distinguishes them from wild-type strains based on nucleotide sequence differences, rather than the amount of viral RNA in the sample. The test is highly sensitive, with detection of as few as 5 virus genomic copies (corresponding to 10(-1) TCID(50)). Sequencing of the DNA real-time products also allows phylogenetic differentiation of the wild-type strains. This test will aid diagnosis during outbreaks of CDV in recently vaccinated animals.

  10. CHIMERA II - A real-time multiprocessing environment for sensor-based robot control

    Science.gov (United States)

    Stewart, David B.; Schmitz, Donald E.; Khosla, Pradeep K.

    1989-01-01

    A multiprocessing environment for a wide variety of sensor-based robot system, providing the flexibility, performance, and UNIX-compatible interface needed for fast development of real-time code is addressed. The requirements imposed on the design of a programming environment for sensor-based robotic control is outlined. The details of the current hardware configuration are presented, along with the details of the CHIMERA II software. Emphasis is placed on the kernel, low-level interboard communication, user interface, extended file system, user-definable and dynamically selectable real-time schedulers, remote process synchronization, and generalized interprocess communication. A possible implementation of a hierarchical control model, the NASA/NBS standard reference model for telerobot control system is demonstrated.

  11. Coalescence measurements for evolving foams monitored by real-time projection imaging

    International Nuclear Information System (INIS)

    Myagotin, A; Helfen, L; Baumbach, T

    2009-01-01

    Real-time radiographic projection imaging together with novel spatio-temporal image analysis is presented to be a powerful technique for the quantitative analysis of coalescence processes accompanying the generation and temporal evolution of foams and emulsions. Coalescence events can be identified as discontinuities in a spatio-temporal image representing a sequence of projection images. Detection, identification of intensity and localization of the discontinuities exploit a violation criterion of the Fourier shift theorem and are based on recursive spatio-temporal image partitioning. The proposed method is suited for automated measurements of discontinuity rates (i.e., discontinuity intensity per unit time), so that large series of radiographs can be analyzed without user intervention. The application potential is demonstrated by the quantification of coalescence during the formation and decay of metal foams monitored by real-time x-ray radiography

  12. [Real time 3D echocardiography

    Science.gov (United States)

    Bauer, F.; Shiota, T.; Thomas, J. D.

    2001-01-01

    Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients.

  13. Conventional and real time RT-PCR assays for the detection and differentiation of variant rabbit hemorrhagic disease virus (RHDVb) and its recombinants.

    Science.gov (United States)

    Dalton, K P; Arnal, J L; Benito, A A; Chacón, G; Martín Alonso, J M; Parra, F

    2018-01-01

    Since its emergence, variant RHDV (RHDVb/RHDV2) has spread throughout the Iberian Peninsula aided by the apparent lack of cross protection provided by classic (genogroup 1; G1) strain derived vaccines. In addition to RHDVb, full-length genome sequencing of RHDV strains has recently revealed the circulation of recombinant viruses on the Iberian Peninsula. These recombinant viruses contain the RHDVb structural protein encoding sequences and the non-structural coding regions of either pathogenic RHDV-G1 strains or non-pathogenic (np) rabbit caliciviruses. The aim of the work was twofold: firstly to validate a diagnostic real time RT-PCR developed in 2012 for the detection of RHDVb strains and secondly, to design a conventional RT-PCR for the differentiation of RHDVb strains from RHDVb recombinants by subsequent sequencing of the amplicon. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. A Fast Density-Based Clustering Algorithm for Real-Time Internet of Things Stream

    Science.gov (United States)

    Ying Wah, Teh

    2014-01-01

    Data streams are continuously generated over time from Internet of Things (IoT) devices. The faster all of this data is analyzed, its hidden trends and patterns discovered, and new strategies created, the faster action can be taken, creating greater value for organizations. Density-based method is a prominent class in clustering data streams. It has the ability to detect arbitrary shape clusters, to handle outlier, and it does not need the number of clusters in advance. Therefore, density-based clustering algorithm is a proper choice for clustering IoT streams. Recently, several density-based algorithms have been proposed for clustering data streams. However, density-based clustering in limited time is still a challenging issue. In this paper, we propose a density-based clustering algorithm for IoT streams. The method has fast processing time to be applicable in real-time application of IoT devices. Experimental results show that the proposed approach obtains high quality results with low computation time on real and synthetic datasets. PMID:25110753

  15. Model-based framework for multi-axial real-time hybrid simulation testing

    Science.gov (United States)

    Fermandois, Gaston A.; Spencer, Billie F.

    2017-10-01

    Real-time hybrid simulation is an efficient and cost-effective dynamic testing technique for performance evaluation of structural systems subjected to earthquake loading with rate-dependent behavior. A loading assembly with multiple actuators is required to impose realistic boundary conditions on physical specimens. However, such a testing system is expected to exhibit significant dynamic coupling of the actuators and suffer from time lags that are associated with the dynamics of the servo-hydraulic system, as well as control-structure interaction (CSI). One approach to reducing experimental errors considers a multi-input, multi-output (MIMO) controller design, yielding accurate reference tracking and noise rejection. In this paper, a framework for multi-axial real-time hybrid simulation (maRTHS) testing is presented. The methodology employs a real-time feedback-feedforward controller for multiple actuators commanded in Cartesian coordinates. Kinematic transformations between actuator space and Cartesian space are derived for all six-degrees-offreedom of the moving platform. Then, a frequency domain identification technique is used to develop an accurate MIMO transfer function of the system. Further, a Cartesian-domain model-based feedforward-feedback controller is implemented for time lag compensation and to increase the robustness of the reference tracking for given model uncertainty. The framework is implemented using the 1/5th-scale Load and Boundary Condition Box (LBCB) located at the University of Illinois at Urbana- Champaign. To demonstrate the efficacy of the proposed methodology, a single-story frame subjected to earthquake loading is tested. One of the columns in the frame is represented physically in the laboratory as a cantilevered steel column. For realtime execution, the numerical substructure, kinematic transformations, and controllers are implemented on a digital signal processor. Results show excellent performance of the maRTHS framework when six

  16. Photonics-based real-time ultra-high-range-resolution radar with broadband signal generation and processing.

    Science.gov (United States)

    Zhang, Fangzheng; Guo, Qingshui; Pan, Shilong

    2017-10-23

    Real-time and high-resolution target detection is highly desirable in modern radar applications. Electronic techniques have encountered grave difficulties in the development of such radars, which strictly rely on a large instantaneous bandwidth. In this article, a photonics-based real-time high-range-resolution radar is proposed with optical generation and processing of broadband linear frequency modulation (LFM) signals. A broadband LFM signal is generated in the transmitter by photonic frequency quadrupling, and the received echo is de-chirped to a low frequency signal by photonic frequency mixing. The system can operate at a high frequency and a large bandwidth while enabling real-time processing by low-speed analog-to-digital conversion and digital signal processing. A conceptual radar is established. Real-time processing of an 8-GHz LFM signal is achieved with a sampling rate of 500 MSa/s. Accurate distance measurement is implemented with a maximum error of 4 mm within a range of ~3.5 meters. Detection of two targets is demonstrated with a range-resolution as high as 1.875 cm. We believe the proposed radar architecture is a reliable solution to overcome the limitations of current radar on operation bandwidth and processing speed, and it is hopefully to be used in future radars for real-time and high-resolution target detection and imaging.

  17. Visual detectability of elastic contrast in real-time ultrasound images

    Science.gov (United States)

    Miller, Naomi R.; Bamber, Jeffery C.; Doyley, Marvin M.; Leach, Martin O.

    1997-04-01

    Elasticity imaging (EI) has recently been proposed as a technique for imaging the mechanical properties of soft tissue. However, dynamic features, known as compressibility and mobility, are already employed to distinguish between different tissue types in ultrasound breast examination. This method, which involves the subjective interpretation of tissue motion seen in real-time B-mode images during palpation, is hereafter referred to as differential motion imaging (DMI). The purpose of this study was to develop the methodology required to perform a series of perception experiments to measure elastic lesion detectability by means of DMI and to obtain preliminary results for elastic contrast thresholds for different lesion sizes. Simulated sequences of real-time B-scans of tissue moving in response to an applied force were generated. A two-alternative forced choice (2-AFC) experiment was conducted and the measured contrast thresholds were compared with published results for lesions detected by EI. Although the trained observer was found to be quite skilled at the task of differential motion perception, it would appear that lesion detectability is improved when motion information is detected by computer processing and converted to gray scale before presentation to the observer. In particular, for lesions containing fewer than eight speckle cells, a signal detection rate of 100% could not be achieved even when the elastic contrast was very high.

  18. Design and Performance of the CDC Real-Time Reverse Transcriptase PCR Swine Flu Panel for Detection of 2009 A (H1N1) Pandemic Influenza Virus▿†‡

    Science.gov (United States)

    Shu, Bo; Wu, Kai-Hui; Emery, Shannon; Villanueva, Julie; Johnson, Roy; Guthrie, Erica; Berman, LaShondra; Warnes, Christine; Barnes, Nathelia; Klimov, Alexander; Lindstrom, Stephen

    2011-01-01

    Swine influenza viruses (SIV) have been shown to sporadically infect humans and are infrequently identified by the Influenza Division of the Centers for Disease Control and Prevention (CDC) after being received as unsubtypeable influenza A virus samples. Real-time reverse transcriptase PCR (rRT-PCR) procedures for detection and characterization of North American lineage (N. Am) SIV were developed and implemented at CDC for rapid identification of specimens from cases of suspected infections with SIV. These procedures were utilized in April 2009 for detection of human cases of 2009 A (H1N1) pandemic (pdm) influenza virus infection. Based on genetic sequence data derived from the first two viruses investigated, the previously developed rRT-PCR procedures were optimized to create the CDC rRT-PCR Swine Flu Panel for detection of the 2009 A (H1N1) pdm influenza virus. The analytical sensitivity of the CDC rRT-PCR Swine Flu Panel was shown to be 5 copies of RNA per reaction and 10−1.3∼−0.7 50% infectious doses (ID50) per reaction for cultured viruses. Cross-reactivity was not observed when testing human clinical specimens or cultured viruses that were positive for human seasonal A (H1N1, H3N2) and B influenza viruses. The CDC rRT-PCR Swine Flu Panel was distributed to public health laboratories in the United States and internationally from April 2009 until June 2010. The CDC rRT-PCR Swine Flu Panel served as an effective tool for timely and specific detection of 2009 A (H1N1) pdm influenza viruses and facilitated subsequent public health response implementation. PMID:21593260

  19. Real Time Revisited

    Science.gov (United States)

    Allen, Phillip G.

    1985-12-01

    The call for abolishing photo reconnaissance in favor of real time is once more being heard. Ten years ago the same cries were being heard with the introduction of the Charge Coupled Device (CCD). The real time system problems that existed then and stopped real time proliferation have not been solved. The lack of an organized program by either DoD or industry has hampered any efforts to solve the problems, and as such, very little has happened in real time in the last ten years. Real time is not a replacement for photo, just as photo is not a replacement for infra-red or radar. Operational real time sensors can be designed only after their role has been defined and improvements made to the weak links in the system. Plodding ahead on a real time reconnaissance suite without benefit of evaluation of utility will allow this same paper to be used ten years from now.

  20. EZH2 and CD79B mutational status over time in B-cell non-Hodgkin lymphomas detected by high-throughput sequencing using minimal samples

    Science.gov (United States)

    Saieg, Mauro Ajaj; Geddie, William R; Boerner, Scott L; Bailey, Denis; Crump, Michael; da Cunha Santos, Gilda

    2013-01-01

    BACKGROUND: Numerous genomic abnormalities in B-cell non-Hodgkin lymphomas (NHLs) have been revealed by novel high-throughput technologies, including recurrent mutations in EZH2 (enhancer of zeste homolog 2) and CD79B (B cell antigen receptor complex-associated protein beta chain) genes. This study sought to determine the evolution of the mutational status of EZH2 and CD79B over time in different samples from the same patient in a cohort of B-cell NHLs, through use of a customized multiplex mutation assay. METHODS: DNA that was extracted from cytological material stored on FTA cards as well as from additional specimens, including archived frozen and formalin-fixed histological specimens, archived stained smears, and cytospin preparations, were submitted to a multiplex mutation assay specifically designed for the detection of point mutations involving EZH2 and CD79B, using MassARRAY spectrometry followed by Sanger sequencing. RESULTS: All 121 samples from 80 B-cell NHL cases were successfully analyzed. Mutations in EZH2 (Y646) and CD79B (Y196) were detected in 13.2% and 8% of the samples, respectively, almost exclusively in follicular lymphomas and diffuse large B-cell lymphomas. In one-third of the positive cases, a wild type was detected in a different sample from the same patient during follow-up. CONCLUSIONS: Testing multiple minimal tissue samples using a high-throughput multiplex platform exponentially increases tissue availability for molecular analysis and might facilitate future studies of tumor progression and the related molecular events. Mutational status of EZH2 and CD79B may vary in B-cell NHL samples over time and support the concept that individualized therapy should be based on molecular findings at the time of treatment, rather than on results obtained from previous specimens. Cancer (Cancer Cytopathol) 2013;121:377–386. © 2013 American Cancer Society. PMID:23361872

  1. System Architecture of an Experimental Synthetic Aperture Real-Time Ultrasound System

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Hansen, Martin; Tomov, Borislav Gueorguiev

    2007-01-01

    is done using a parametric beam former. Code synthesized for a Xilinx V4FX100 speed grade 11 FPGA can operate at a maximum clock frequency of 167.8 MHz producing 1 billion I and Q samples/second sufficient for real time SA imaging. The system is currently in production, and all boards have been laid out......Synthetic Aperture (SA) ultrasound imaging has many advantages in terms of flexibility and accuracy. One of the major drawbacks is, however, that no system exists, which can implement SA imaging in real time due to the very high number of calculations amounting to roughly 1 billion complex focused...... samples per second per receive channel. Real time imaging is a key aspect in ultrasound, and to truly demonstrate the many advantages of SA imaging, a system usable in the clinic should be made. The paper describes a system capable of real time SA B-mode and vector flow imaging. The Synthetic Aperture...

  2. Real-time control of oxic phase using pH (mV)-time profile in swine wastewater treatment

    International Nuclear Information System (INIS)

    Ga, C.H.; Ra, C.S.

    2009-01-01

    The feasibility of real-time control of the oxic phase using the pH (mV)-time profile in a sequencing batch reactor for swine wastewater treatment was evaluated, and the characteristics of the novel real-time control strategies were analyzed in two different concentrated wastewaters. The nitrogen break point (NBP) on the moving slope change (MSC) of the pH (mV) was designated as a real-time control point, and a pilot-scale sequencing batch reactor (18 m 3 ) was designed to fulfill the objectives of the study. Successful real-time control using the developed control strategy was achieved despite the large variations in the influent strength and the loading rate per cycle. Indeed, complete and consistent removal of NH 4 -N (100% removal) was achieved. There was a strong positive correlation (r 2 = 0.9789) between the loading rate and soluble total organic carbon (TOCs) removal, and a loading rate of 100 g/m 3 /cycle was found to be optimum for TOCs removal. Experimental data showed that the real-time control strategy using the MSC of the pH (mV)-time profile could be utilized successfully for the removal of nitrogen from swine wastewater. Furthermore, the pH (mV) was a more reliable real-time control parameter than the oxidation-reduction potential (ORP) for the control of the oxic phase. However, the nitrate knee point (NKP) appeared more consistently upon the completion of denitrification on the ORP-time profile than on the pH (mV)-time profile.

  3. Complete sequencing of IncI1 sequence type 2 plasmid pJIE512b indicates mobilization of blaCMY-2 from an IncA/C plasmid.

    Science.gov (United States)

    Tagg, Kaitlin A; Iredell, Jonathan R; Partridge, Sally R

    2014-08-01

    Sequencing of pJIE512b, a 92.3-kb IncI1 sequence type 2 (ST2) plasmid carrying bla(CMY-2), revealed a bla(CMY-2) context that appeared to have been mobilized from an IncA/C plasmid by the insertion sequence IS1294. A comparison with published plasmids suggests that bla(CMY-2) has been mobilized from IncA/C to IncI1 plasmids more than once by IS1294-like elements. Alignment of pJIE512b with the only other available IncI1 ST2 plasmid revealed differences across the backbones, indicating variability within this sequence type. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  4. A LAN with real-time facilities based on OSI concepts

    International Nuclear Information System (INIS)

    Raaf, A.J. de; Dijkstra, A.; Swierstra, S.D.

    1986-01-01

    Research is being done into structured design and realization methods for Local Area Networks (LAN's). The main aim is to develop a LAN (ZWOLAN) with real-time facilities for use in laboratories and based on ISO-OSI standards. Twentenet will be used for the physical and the data link layer of ZWOLAN. Twentenet is based on a Priority based CSMA/CD data link access mechanism with guaranteed access times. An implementation model has been constructed from an FSM decomposition analysis of OSI protocols. Modular Pascal will be used as language for the realization of the network software. The emphasis is on the software architecture and the reduction of the OSI protocol overhead. (Auth.)

  5. Swarm-based Sequencing Recommendations in E-learning

    NARCIS (Netherlands)

    Van den Berg, Bert; Tattersall, Colin; Janssen, José; Brouns, Francis; Kurvers, Hub; Koper, Rob

    2005-01-01

    Van den Berg, B., Tattersall, C., Janssen, J., Brouns, F., Kurvers, H., & Koper, R. (2006). Swarm-based Sequencing Recommendations in E-learning. International Journal of Computer Science & Applications, III(III), 1-11.

  6. Web-Based Real Time Earthquake Forecasting and Personal Risk Management

    Science.gov (United States)

    Rundle, J. B.; Holliday, J. R.; Graves, W. R.; Turcotte, D. L.; Donnellan, A.

    2012-12-01

    Earthquake forecasts have been computed by a variety of countries and economies world-wide for over two decades. For the most part, forecasts have been computed for insurance, reinsurance and underwriters of catastrophe bonds. One example is the Working Group on California Earthquake Probabilities that has been responsible for the official California earthquake forecast since 1988. However, in a time of increasingly severe global financial constraints, we are now moving inexorably towards personal risk management, wherein mitigating risk is becoming the responsibility of individual members of the public. Under these circumstances, open access to a variety of web-based tools, utilities and information is a necessity. Here we describe a web-based system that has been operational since 2009 at www.openhazards.com and www.quakesim.org. Models for earthquake physics and forecasting require input data, along with model parameters. The models we consider are the Natural Time Weibull (NTW) model for regional earthquake forecasting, together with models for activation and quiescence. These models use small earthquakes ('seismicity-based models") to forecast the occurrence of large earthquakes, either through varying rates of small earthquake activity, or via an accumulation of this activity over time. These approaches use data-mining algorithms combined with the ANSS earthquake catalog. The basic idea is to compute large earthquake probabilities using the number of small earthquakes that have occurred in a region since the last large earthquake. Each of these approaches has computational challenges associated with computing forecast information in real time. Using 25 years of data from the ANSS California-Nevada catalog of earthquakes, we show that real-time forecasting is possible at a grid scale of 0.1o. We have analyzed the performance of these models using Reliability/Attributes and standard Receiver Operating Characteristic (ROC) tests. We show how the Reliability and

  7. Real-time dual-polarization transmission based on hybrid optical wireless communications

    Science.gov (United States)

    Sousa, Artur N.; Alimi, Isiaka A.; Ferreira, Ricardo M.; Shahpari, Ali; Lima, Mário; Monteiro, Paulo P.; Teixeira, António L.

    2018-01-01

    We present experimental work on a gigabit-capable and long-reach hybrid coherent UWDM-PON plus FSO system for supporting different applications over the same fiber infrastructure in the mobile backhaul (MBH) networks. Also, for the first time, we demonstrate a reconfigurable real-time DSP transmission/reception of DP-QPSK signals over standard single-mode fiber (SSMF) and FSO links. The receiver presented is based on a commercial field-programmable gate array (FPGA). The considered communication links are based on 20 UDWDM channels with 625 Mbaud and 2.5 GHz channel spacing. We are able to demonstrate the lowest sampling rate required for digital coherent PON by employing four 1.25 Gsa/s ADCs using an electrical front-end receiver that offers only 1 GHz analog bandwidth. We achieved this by implementing a phase and polarization diversity coherent receiver combined with the DP-QPSK modulation formats. The system performance is estimated in terms of receiver sensitivity. The results show the viability of coherent PON and flexible dual-polarization supported by software-defined transceivers for the MBH.

  8. A rapid and direct real time PCR-based method for identification of Salmonella spp

    DEFF Research Database (Denmark)

    Rodriguez-Lazaro, D.; Hernández, Marta; Esteve, T.

    2003-01-01

    The aim of this work was the validation of a rapid, real-time PCR assay based on TaqMan((R)) technology for the unequivocal identification of Salmonella spp. to be used directly on an agar-grown colony. A real-time PCR system targeting at the Salmonella spp. invA gene was optimized and validated ...

  9. Real-Time Management of Groundwater Resources Based on Wireless Sensors Networks

    Directory of Open Access Journals (Sweden)

    Qingguo Zhou

    2018-01-01

    Full Text Available Groundwater plays a vital role in the arid inland river basins, in which the groundwater management is critical to the sustainable development of area economy and ecology. Traditional sustainable management approaches are to analyze different scenarios subject to assumptions or to construct simulation–optimization models to obtain optimal strategy. However, groundwater system is time-varying due to exogenous inputs. In this sense, the groundwater management based on static data is relatively outdated. As part of the Heihe River Basin (HRB, which is a typical arid river basin in Northwestern China, the Daman irrigation district was selected as the study area in this paper. First, a simulation–optimization model was constructed to optimize the pumping rates of the study area according to the groundwater level constraints. Three different groundwater level constraints were assigned to explore sustainable strategies for groundwater resources. The results indicated that the simulation–optimization model was capable of identifying the optimal pumping yields and satisfy the given constraints. Second, the simulation–optimization model was integrated with wireless sensors network (WSN technology to provide real-time features for the management. The results showed time-varying feature for the groundwater management, which was capable of updating observations, constraints, and decision variables in real time. Furthermore, a web-based platform was developed to facilitate the decision-making process. This study combined simulation and optimization model with WSN techniques and meanwhile attempted to real-time monitor and manage the scarce groundwater resource, which could be used to support the decision-making related to sustainable management.

  10. Clinical evaluation of the Abbott RealTime MTB Assay for direct detection of Mycobacterium tuberculosis-complex from respiratory and non-respiratory samples.

    Science.gov (United States)

    Hinić, Vladimira; Feuz, Kinga; Turan, Selda; Berini, Andrea; Frei, Reno; Pfeifer, Karin; Goldenberger, Daniel

    2017-05-01

    Rapid and reliable diagnosis is crucial for correct management of tuberculosis. The Abbott RealTime MTB Assay represents a novel qualitative real-time PCR assay for direct detection of M. tuberculosis-complex (MTB) DNA from respiratory samples. The test targets two highly conserved sequences, the multi-copy insertion element IS6110 and the protein antigen B (PAB) gene of MTB, allowing even the detection of IS6610-deficient strains. We evaluated this commercial diagnostic test by analyzing 200 respiratory and, for the first time, 87 non-respiratory clinical specimens from our tertiary care institution and compared its results to our IS6110-based in-house real-time PCR for MTB as well as MTB culture. Overall sensitivity for Abbott RealTime MTB was 100% (19/19) in smear positive and 87.5% (7/8) in smear negative specimens, while the specificity of the assay was 100% (260/260). For both non-respiratory smear positive and smear negative specimens Abbott RealTime MTB tests showed 100% (8/8) sensitivity and 100% (8/8) specificity. Cycle threshold (Ct) value analysis of 16 MTB positive samples showed a slightly higher Ct value of the Abbott RealTime MTB test compared to our in-house MTB assay (mean delta Ct = 2.55). In conclusion, the performance of the new Abbott RealTime MTB Assay was highly similar to culture and in-house MTB PCR. We document successful analysis of 87 non-respiratory samples with the highly automated Abbott RealTime MTB test with no inhibition observed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. A Real-Time Plagiarism Detection Tool for Computer-Based Assessments

    Science.gov (United States)

    Jeske, Heimo J.; Lall, Manoj; Kogeda, Okuthe P.

    2018-01-01

    Aim/Purpose: The aim of this article is to develop a tool to detect plagiarism in real time amongst students being evaluated for learning in a computer-based assessment setting. Background: Cheating or copying all or part of source code of a program is a serious concern to academic institutions. Many academic institutions apply a combination of…

  12. Key technology research of HILS based on real-time operating system

    Science.gov (United States)

    Wang, Fankai; Lu, Huiming; Liu, Che

    2018-03-01

    In order to solve the problems that the long development cycle of traditional simulation and digital simulation doesn't have the characteristics of real time, this paper designed a HILS(Hardware In the Loop Simulation) system based on the real-time operating platform xPC. This system solved the communication problems between HMI and Simulink models through the MATLAB engine interface, and realized the functions of system setting, offline simulation, model compiling and downloading, etc. Using xPC application interface and integrating the TeeChart ActiveX chart component to realize the monitoring function of real-time target application; Each functional block in the system is encapsulated in the form of DLL, and the data interaction between modules was realized by MySQL database technology. When the HILS system runs, search the address of the online xPC target by means of the Ping command, to establish the Tcp/IP communication between the two machines. The technical effectiveness of the developed system is verified through the typical power station control system.

  13. Real-time communication protocols: an overview

    NARCIS (Netherlands)

    Hanssen, F.T.Y.; Jansen, P.G.

    2003-01-01

    This paper describes several existing data link layer protocols that provide real-time capabilities on wired networks, focusing on token-ring and Carrier Sense Multiple Access based networks. Existing modifications to provide better real-time capabilities and performance are also described. Finally

  14. Real time analysis under EDS

    International Nuclear Information System (INIS)

    Schneberk, D.

    1985-07-01

    This paper describes the analysis component of the Enrichment Diagnostic System (EDS) developed for the Atomic Vapor Laser Isotope Separation Program (AVLIS) at Lawrence Livermore National Laboratory (LLNL). Four different types of analysis are performed on data acquired through EDS: (1) absorption spectroscopy on laser-generated spectral lines, (2) mass spectrometer analysis, (3) general purpose waveform analysis, and (4) separation performance calculations. The information produced from this data includes: measures of particle density and velocity, partial pressures of residual gases, and overall measures of isotope enrichment. The analysis component supports a variety of real-time modeling tasks, a means for broadcasting data to other nodes, and a great degree of flexibility for tailoring computations to the exact needs of the process. A particular data base structure and program flow is common to all types of analysis. Key elements of the analysis component are: (1) a fast access data base which can configure all types of analysis, (2) a selected set of analysis routines, (3) a general purpose data manipulation and graphics package for the results of real time analysis. Each of these components are described with an emphasis upon how each contributes to overall system capability. 3 figs

  15. Games and Scenarios for Real-Time System Validation

    DEFF Research Database (Denmark)

    Li, Shuhao

    This thesis presents research on the validation of real-time embedded software systems in the context of model-based development. The thesis proposes scenario-based and game-theoretic approaches to system analysis, verification, synthesis and testing to address the challenges that arise from....... By linking our prototype translators with existing model checker Uppaal and game solver Uppaal-Tiga, we show that these methods contribute to the interaction correctness and timeliness of early system designs. The thesis also shows that testing a real-time reactive system can be viewed as playing a timed...... communicating real-time systems can be modeled and specified with LSC. By translating LSC to timed automata (TAs), we reduce scenario-based model consistency checking and property verification to CTL real-time model checking problems, and reduce scenario-based synthesis to a timed game solving problem...

  16. A point-based rendering approach for real-time interaction on mobile devices

    Institute of Scientific and Technical Information of China (English)

    LIANG XiaoHui; ZHAO QinPing; HE ZhiYing; XIE Ke; LIU YuBo

    2009-01-01

    Mobile device is an Important interactive platform. Due to the limitation of computation, memory, display area and energy, how to realize the efficient and real-time interaction of 3D models based on mobile devices is an important research topic. Considering features of mobile devices, this paper adopts remote rendering mode and point models, and then, proposes a transmission and rendering approach that could interact in real time. First, improved simplification algorithm based on MLS and display resolution of mobile devices is proposed. Then, a hierarchy selection of point models and a QoS transmission control strategy are given based on interest area of operator, interest degree of object in the virtual environment and rendering error. They can save the energy consumption. Finally, the rendering and interaction of point models are completed on mobile devices. The experiments show that our method is efficient.

  17. Human Activity Recognition in Real-Times Environments using Skeleton Joints

    Directory of Open Access Journals (Sweden)

    Ajay Kumar

    2016-06-01

    Full Text Available In this research work, we proposed a most effective noble approach for Human activity recognition in real-time environments. We recognize several distinct dynamic human activity actions using kinect. A 3D skeleton data is processed from real-time video gesture to sequence of frames and getter skeleton joints (Energy Joints, orientation, rotations of joint angles from selected setof frames. We are using joint angle and orientations, rotations information from Kinect therefore less computation required. However, after extracting the set of frames we implemented several classification techniques Principal Component Analysis (PCA with several distance based classifiers and Artificial Neural Network (ANN respectively with some variants for classify our all different gesture models. However, we conclude that use very less number of frame (10-15% for train our system efficiently from the entire set of gesture frames. Moreover, after successfully completion of our classification methods we clinch an excellent overall accuracy 94%, 96% and 98% respectively. We finally observe that our proposed system is more useful than comparing to other existing system, therefore our model is best suitable for real-time application such as in video games for player action/gesture recognition.

  18. Real-time LMR control parameter generation using advanced adaptive synthesis

    International Nuclear Information System (INIS)

    King, R.W.; Mott, J.E.

    1990-01-01

    The reactor ''delta T'', the difference between the average core inlet and outlet temperatures, for the liquid-sodium-cooled Experimental Breeder Reactor 2 is empirically synthesized in real time from, a multitude of examples of past reactor operation. The real-time empirical synthesis is based on reactor operation. The real-time empirical synthesis is based on system state analysis (SSA) technology embodied in software on the EBR 2 data acquisition computer. Before the real-time system is put into operation, a selection of reactor plant measurements is made which is predictable over long periods encompassing plant shutdowns, core reconfigurations, core load changes, and plant startups. A serial data link to a personal computer containing SSA software allows the rapid verification of the predictability of these plant measurements via graphical means. After the selection is made, the real-time synthesis provides a fault-tolerant estimate of the reactor delta T accurate to +/-1%. 5 refs., 7 figs

  19. Real-time video quality monitoring

    Science.gov (United States)

    Liu, Tao; Narvekar, Niranjan; Wang, Beibei; Ding, Ran; Zou, Dekun; Cash, Glenn; Bhagavathy, Sitaram; Bloom, Jeffrey

    2011-12-01

    The ITU-T Recommendation G.1070 is a standardized opinion model for video telephony applications that uses video bitrate, frame rate, and packet-loss rate to measure the video quality. However, this model was original designed as an offline quality planning tool. It cannot be directly used for quality monitoring since the above three input parameters are not readily available within a network or at the decoder. And there is a great room for the performance improvement of this quality metric. In this article, we present a real-time video quality monitoring solution based on this Recommendation. We first propose a scheme to efficiently estimate the three parameters from video bitstreams, so that it can be used as a real-time video quality monitoring tool. Furthermore, an enhanced algorithm based on the G.1070 model that provides more accurate quality prediction is proposed. Finally, to use this metric in real-world applications, we present an example emerging application of real-time quality measurement to the management of transmitted videos, especially those delivered to mobile devices.

  20. Screen Space Ambient Occlusion Based Multiple Importance Sampling for Real-Time Rendering

    Science.gov (United States)

    Zerari, Abd El Mouméne; Babahenini, Mohamed Chaouki

    2018-03-01

    We propose a new approximation technique for accelerating the Global Illumination algorithm for real-time rendering. The proposed approach is based on the Screen-Space Ambient Occlusion (SSAO) method, which approximates the global illumination for large, fully dynamic scenes at interactive frame rates. Current algorithms that are based on the SSAO method suffer from difficulties due to the large number of samples that are required. In this paper, we propose an improvement to the SSAO technique by integrating it with a Multiple Importance Sampling technique that combines a stratified sampling method with an importance sampling method, with the objective of reducing the number of samples. Experimental evaluation demonstrates that our technique can produce high-quality images in real time and is significantly faster than traditional techniques.

  1. MPN- and Real-Time-Based PCR Methods for the Quantification of Alkane Monooxygenase Homologous Genes (alkB) in Environmental Samples

    Science.gov (United States)

    Pérez-de-Mora, Alfredo; Schulz, Stephan; Schloter, Michael

    Hydrocarbons are major contaminants of soil ecosystems as a result of uncontrolled oil spills and wastes disposal into the environment. Ecological risk assessment and remediation of affected sites is often constrained due to lack of suitable prognostic and diagnostic tools that provide information of abiotic-biotic interactions occurring between contaminants and biological targets. Therefore, the identification and quantification of genes involved in the degradation of hydrocarbons may play a crucial role for evaluating the natural attenuation potential of contaminated sites and the development of successful bioremediation strategies. Besides other gene clusters, the alk operon has been identified as a major player for alkane degradation in different soils. An oxygenase gene (alkB) codes for the initial step of the degradation of aliphatic alkanes under aerobic conditions. In this work, we present an MPN- and a real-time PCR method for the quantification of the bacterial gene alkB (coding for rubredoxin-dependent alkane monooxygenase) in environmental samples. Both approaches enable a rapid culture-independent screening of the alkB gene in the environment, which can be used to assess the intrinsic natural attenuation potential of a site or to follow up the on-going progress of bioremediation assays.

  2. The INGV Real Time Strong Motion Database

    Science.gov (United States)

    Massa, Marco; D'Alema, Ezio; Mascandola, Claudia; Lovati, Sara; Scafidi, Davide; Gomez, Antonio; Carannante, Simona; Franceschina, Gianlorenzo; Mirenna, Santi; Augliera, Paolo

    2017-04-01

    The INGV real time strong motion data sharing is assured by the INGV Strong Motion Database. ISMD (http://ismd.mi.ingv.it) was designed in the last months of 2011 in cooperation among different INGV departments, with the aim to organize the distribution of the INGV strong-motion data using standard procedures for data acquisition and processing. The first version of the web portal was published soon after the occurrence of the 2012 Emilia (Northern Italy), Mw 6.1, seismic sequence. At that time ISMD was the first European real time web portal devoted to the engineering seismology community. After four years of successfully operation, the thousands of accelerometric waveforms collected in the archive need necessary a technological improvement of the system in order to better organize the new data archiving and to make more efficient the answer to the user requests. ISMD 2.0 was based on PostgreSQL (www.postgresql.org), an open source object- relational database. The main purpose of the web portal is to distribute few minutes after the origin time the accelerometric waveforms and related metadata of the Italian earthquakes with ML≥3.0. Data are provided both in raw SAC (counts) and automatically corrected ASCII (gal) formats. The web portal also provide, for each event, a detailed description of the ground motion parameters (i.e. Peak Ground Acceleration, Velocity and Displacement, Arias and Housner Intensities) data converted in velocity and displacement, response spectra up to 10.0 s and general maps concerning the recent and the historical seismicity of the area together with information about its seismic hazard. The focal parameters of the events are provided by the INGV National Earthquake Center (CNT, http://cnt.rm.ingv.it). Moreover, the database provides a detailed site characterization section for each strong motion station, based on geological, geomorphological and geophysical information. At present (i.e. January 2017), ISMD includes 987 (121

  3. Toward a real-time system for temporal enhanced ultrasound-guided prostate biopsy.

    Science.gov (United States)

    Azizi, Shekoofeh; Van Woudenberg, Nathan; Sojoudi, Samira; Li, Ming; Xu, Sheng; Abu Anas, Emran M; Yan, Pingkun; Tahmasebi, Amir; Kwak, Jin Tae; Turkbey, Baris; Choyke, Peter; Pinto, Peter; Wood, Bradford; Mousavi, Parvin; Abolmaesumi, Purang

    2018-03-27

    We have previously proposed temporal enhanced ultrasound (TeUS) as a new paradigm for tissue characterization. TeUS is based on analyzing a sequence of ultrasound data with deep learning and has been demonstrated to be successful for detection of cancer in ultrasound-guided prostate biopsy. Our aim is to enable the dissemination of this technology to the community for large-scale clinical validation. In this paper, we present a unified software framework demonstrating near-real-time analysis of ultrasound data stream using a deep learning solution. The system integrates ultrasound imaging hardware, visualization and a deep learning back-end to build an accessible, flexible and robust platform. A client-server approach is used in order to run computationally expensive algorithms in parallel. We demonstrate the efficacy of the framework using two applications as case studies. First, we show that prostate cancer detection using near-real-time analysis of RF and B-mode TeUS data and deep learning is feasible. Second, we present real-time segmentation of ultrasound prostate data using an integrated deep learning solution. The system is evaluated for cancer detection accuracy on ultrasound data obtained from a large clinical study with 255 biopsy cores from 157 subjects. It is further assessed with an independent dataset with 21 biopsy targets from six subjects. In the first study, we achieve area under the curve, sensitivity, specificity and accuracy of 0.94, 0.77, 0.94 and 0.92, respectively, for the detection of prostate cancer. In the second study, we achieve an AUC of 0.85. Our results suggest that TeUS-guided biopsy can be potentially effective for the detection of prostate cancer.

  4. Swab-to-Sequence: Real-time Data Analysis Platform for the Biomolecule Sequencer

    Data.gov (United States)

    National Aeronautics and Space Administration — DNA was successfully sequenced on the ISS in 2016, but the DNA sequenced was prepared on the ground. With FY’16 IRAD funds, the same team developed a...

  5. T-L Plane Abstraction-Based Energy-Efficient Real-Time Scheduling for Multi-Core Wireless Sensors

    Directory of Open Access Journals (Sweden)

    Youngmin Kim

    2016-07-01

    Full Text Available Energy efficiency is considered as a critical requirement for wireless sensor networks. As more wireless sensor nodes are equipped with multi-cores, there are emerging needs for energy-efficient real-time scheduling algorithms. The T-L plane-based scheme is known to be an optimal global scheduling technique for periodic real-time tasks on multi-cores. Unfortunately, there has been a scarcity of studies on extending T-L plane-based scheduling algorithms to exploit energy-saving techniques. In this paper, we propose a new T-L plane-based algorithm enabling energy-efficient real-time scheduling on multi-core sensor nodes with dynamic power management (DPM. Our approach addresses the overhead of processor mode transitions and reduces fragmentations of the idle time, which are inherent in T-L plane-based algorithms. Our experimental results show the effectiveness of the proposed algorithm compared to other energy-aware scheduling methods on T-L plane abstraction.

  6. Design of a 1 _s real-time low-noise data acquisition for power converters control loop

    CERN Document Server

    AUTHOR|(SzGeCERN)712364; Arpaia, Pasquale; Cerqueira Bastos, Miguel; Martino, Michele

    2015-01-01

    The proof of principle of a real-time data acquisition system to be integrated into a digital control loop for controlling the power converters of the Compact LInear Collider is presented. The system is based on an ultra low noise analogue front-end with 1:1 ppm RMS noise (referred to input), and about 1 _s of real-time delay. After the analogue conditioning, a fully-differential analogue-todigital converter is foreseen. The requirements of this system, directly derived from the accelerator performance, are discussed and translated into design specification. The results obtained by means of Pspice simulations are reported in order to prove that the design is feasible with the proposed architecture. Finally, the results of the experimental validation of the prototype, currently under design, will be included in the final paper.

  7. Autonomous Real Time Requirements Tracing

    Science.gov (United States)

    Plattsmier, George; Stetson, Howard

    2014-01-01

    One of the more challenging aspects of software development is the ability to verify and validate the functional software requirements dictated by the Software Requirements Specification (SRS) and the Software Detail Design (SDD). Insuring the software has achieved the intended requirements is the responsibility of the Software Quality team and the Software Test team. The utilization of Timeliner-TLX(sup TM) Auto- Procedures for relocating ground operations positions to ISS automated on-board operations has begun the transition that would be required for manned deep space missions with minimal crew requirements. This transition also moves the auto-procedures from the procedure realm into the flight software arena and as such the operational requirements and testing will be more structured and rigorous. The autoprocedures would be required to meet NASA software standards as specified in the Software Safety Standard (NASASTD- 8719), the Software Engineering Requirements (NPR 7150), the Software Assurance Standard (NASA-STD-8739) and also the Human Rating Requirements (NPR-8705). The Autonomous Fluid Transfer System (AFTS) test-bed utilizes the Timeliner-TLX(sup TM) Language for development of autonomous command and control software. The Timeliner-TLX(sup TM) system has the unique feature of providing the current line of the statement in execution during real-time execution of the software. The feature of execution line number internal reporting unlocks the capability of monitoring the execution autonomously by use of a companion Timeliner-TLX(sup TM) sequence as the line number reporting is embedded inside the Timeliner-TLX(sup TM) execution engine. This negates I/O processing of this type data as the line number status of executing sequences is built-in as a function reference. This paper will outline the design and capabilities of the AFTS Autonomous Requirements Tracker, which traces and logs SRS requirements as they are being met during real-time execution of the

  8. High abundance of JS-1- and Chloroflexi-related Bacteria in deeply buried marine sediments revealed by quantitative, real-time PCR.

    Science.gov (United States)

    Blazejak, Anna; Schippers, Axel

    2010-05-01

    Sequences of members of the bacterial candidate division JS-1 and the classes Anaerolineae and Caldilineae of the phylum Chloroflexi are frequently found in 16S rRNA gene clone libraries obtained from marine sediments. Using a newly designed quantitative, real-time PCR assay, these bacterial groups were jointly quantified in samples from near-surface and deeply buried marine sediments from the Peru margin, the Black Sea, and a forearc basin off the island of Sumatra. In near-surface sediments, sequences of the JS-1 as well as Anaerolineae- and Caldilineae-related Bacteria were quantified with significantly lower 16S rRNA gene copy numbers than the sequences of total Bacteria. In contrast, in deeply buried sediments below approximately 1 m depth, similar quantities of the 16S rRNA gene copies of these specific groups and Bacteria were found. This finding indicates that JS-1 and Anaerolineae- and Caldilineae-related Bacteria might dominate the bacterial community in deeply buried marine sediments and thus seem to play an important ecological role in the deep biosphere.

  9. Research on Control Method Based on Real-Time Operational Reliability Evaluation for Space Manipulator

    Directory of Open Access Journals (Sweden)

    Yifan Wang

    2014-05-01

    Full Text Available A control method based on real-time operational reliability evaluation for space manipulator is presented for improving the success rate of a manipulator during the execution of a task. In this paper, a method for quantitative analysis of operational reliability is given when manipulator is executing a specified task; then a control model which could control the quantitative operational reliability is built. First, the control process is described by using a state space equation. Second, process parameters are estimated in real time using Bayesian method. Third, the expression of the system's real-time operational reliability is deduced based on the state space equation and process parameters which are estimated using Bayesian method. Finally, a control variable regulation strategy which considers the cost of control is given based on the Theory of Statistical Process Control. It is shown via simulations that this method effectively improves the operational reliability of space manipulator control system.

  10. Artificial Intelligence In Processing A Sequence Of Time-Varying Images

    Science.gov (United States)

    Siler, W.; Tucker, D.; Buckley, J.; Hess, R. G.; Powell, V. G.

    1985-04-01

    A computer system is described for unsupervised analysis of five sets of ultrasound images of the heart. Each set consists of 24 frames taken at 33 millisecond intervals. The images are acquired in real time with computer control of the ultrasound apparatus. After acquisition the images are segmented by a sequence of image-processing programs; features are extracted and stored in a version of the Carnegie- Mellon Blackboard. Region classification is accomplished by a fuzzy logic expert system FLOPS based on OPS5. Preliminary results are given.

  11. Real-time control and data-acquisition system for high-energy neutral-beam injectors

    International Nuclear Information System (INIS)

    Glad, A.S.; Jacobson, V.

    1981-12-01

    The need for a real-time control system and a data acquisition, processing and archiving system operating in parallel on the same computer became a requirement on General Atomic's Doublet III fusion energy project with the addition of high energy neutral beam injectors. The data acquisition processing and archiving system is driven from external events and is sequenced through each experimental shot utilizing ModComp's intertask message service. This system processes, archives and displays on operator console CRTs all physics diagnostic data related to the neutral beam injectores such as temperature, beam alignment, etc. The real-time control system is data base driven and provides periodic monitoring and control of the numerous dynamic subsystems of the neutral beam injectors such as power supplies, timing, water cooling, etc

  12. An active robot vision system for real-time 3-D structure recovery

    Energy Technology Data Exchange (ETDEWEB)

    Juvin, D. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. d`Electronique et d`Instrumentation Nucleaire; Boukir, S.; Chaumette, F.; Bouthemy, P. [Rennes-1 Univ., 35 (France)

    1993-10-01

    This paper presents an active approach for the task of computing the 3-D structure of a nuclear plant environment from an image sequence, more precisely the recovery of the 3-D structure of cylindrical objects. Active vision is considered by computing adequate camera motions using image-based control laws. This approach requires a real-time tracking of the limbs of the cylinders. Therefore, an original matching approach, which relies on an algorithm for determining moving edges, is proposed. This method is distinguished by its robustness and its easiness to implement. This method has been implemented on a parallel image processing board and real-time performance has been achieved. The whole scheme has been successfully validated in an experimental set-up.

  13. An active robot vision system for real-time 3-D structure recovery

    International Nuclear Information System (INIS)

    Juvin, D.

    1993-01-01

    This paper presents an active approach for the task of computing the 3-D structure of a nuclear plant environment from an image sequence, more precisely the recovery of the 3-D structure of cylindrical objects. Active vision is considered by computing adequate camera motions using image-based control laws. This approach requires a real-time tracking of the limbs of the cylinders. Therefore, an original matching approach, which relies on an algorithm for determining moving edges, is proposed. This method is distinguished by its robustness and its easiness to implement. This method has been implemented on a parallel image processing board and real-time performance has been achieved. The whole scheme has been successfully validated in an experimental set-up

  14. Distributed, Embedded and Real-time Java Systems

    CERN Document Server

    Wellings, Andy

    2012-01-01

    Research on real-time Java technology has been prolific over the past decade, leading to a large number of corresponding hardware and software solutions, and frameworks for distributed and embedded real-time Java systems.  This book is aimed primarily at researchers in real-time embedded systems, particularly those who wish to understand the current state of the art in using Java in this domain.  Much of the work in real-time distributed, embedded and real-time Java has focused on the Real-time Specification for Java (RTSJ) as the underlying base technology, and consequently many of the Chapters in this book address issues with, or solve problems using, this framework. Describes innovative techniques in: scheduling, memory management, quality of service and communication systems supporting real-time Java applications; Includes coverage of multiprocessor embedded systems and parallel programming; Discusses state-of-the-art resource management for embedded systems, including Java’s real-time garbage collect...

  15. Reliable 5-min real-time MR technique for left-ventricular-wall motion analysis

    International Nuclear Information System (INIS)

    Katoh, Marcus; Spuentrup, Elmar; Guenther, Rolf W.; Buecker, Arno; Kuehl, Harald P.; Lipke, Claudia S.A.

    2007-01-01

    The aim of this study was to investigate the value of a real-time magnetic resonance imaging (MRI) approach for the assessment of left-ventricular-wall motion in patients with insufficient transthoracic echocardiography in terms of accuracy and temporal expenditure. Twenty-five consecutive patients were examined on a 1.5-Tesla whole-body MR system (ACS-NT, Philips Medical Systems, Best, NL) using a real-time and ECG-gated (the current gold standard) steady-state free-precession (SSFP) sequence. Wall motion was analyzed by three observers by consensus interpretation. In addition, the preparation, scanning, and overall examination times were measured. The assessment of the wall motion demonstrated a close agreement between the two modalities resulting in a mean κ coefficient of 0.8. At the same time, each stage of the examination was significantly shortened using the real-time MR approach. Real-time imaging allows for accurate assessment of left-ventricular-wall motion with the added benefit of decreased examination time. Therefore, it may serve as a cost-efficient alternative in patients with insufficient echocardiography. (orig.)

  16. Molecular beacon probes-base multiplex NASBA Real-time for detection of HIV-1 and HCV.

    Science.gov (United States)

    Mohammadi-Yeganeh, S; Paryan, M; Mirab Samiee, S; Kia, V; Rezvan, H

    2012-06-01

    Developed in 1991, nucleic acid sequence-based amplification (NASBA) has been introduced as a rapid molecular diagnostic technique, where it has been shown to give quicker results than PCR, and it can also be more sensitive. This paper describes the development of a molecular beacon-based multiplex NASBA assay for simultaneous detection of HIV-1 and HCV in plasma samples. A well-conserved region in the HIV-1 pol gene and 5'-NCR of HCV genome were used for primers and molecular beacon design. The performance features of HCV/HIV-1 multiplex NASBA assay including analytical sensitivity and specificity, clinical sensitivity and clinical specificity were evaluated. The analysis of scalar concentrations of the samples indicated that the limit of quantification of the assay was beacon probes detected all HCV genotypes and all major variants of HIV-1. This method may represent a relatively inexpensive isothermal method for detection of HIV-1/HCV co-infection in monitoring of patients.

  17. Near Real-Time Accountancy at JNC-1

    International Nuclear Information System (INIS)

    Richet, S.

    2015-01-01

    The JNC-1 site in Japan includes four large Pu/MOX bulk handling facilities for which standard plutonium accountancy would not be sufficient to give high confidence in the timely detection of diversion. Other safeguards measures are needed to strengthen the ability for early detection, and Near Real Time Accountancy (NRTA) provides the capability of performing a short-term evaluation of material accountancy in the field as well as at Headquarters. NRTA was introduced at the main JNC-1 facilities on a facility-by-facility basis, starting at the MOX fuel fabrication plant (Plutonium Fuel Production Facility, PFPF) in 1999, followed by the reprocessing plant (Tokai Reprocessing Plant, TRP) in 2000, the MOX fuel fabrication and R&D facility (Plutonium fuel centre, Plutonium Fuel Facility, PPFF) in 2007, and finally at the conversion facility (Plutonium Conversion and Development Facility, PCDF) in 2014. In all four facilities, the main process areas are covered. This paper summarizes the experience gained with NRTA in PFPF, TRP, and PPFF since it was introduced in the respective facilities and describes the development work performed in implementing it in the last facility, PCDF. The key NRTA signatures which help guide the analysts' decisions on possible follow-up activities, i.e., the early detection of changes in parameters toward which NRTA is geared, are described based on the experience gained over the years. Furthermore, the paper describes the basis of the algorithms used in NRTA and the important relationships and dependencies between vessel calibrations, the determination of calibration curves and the associated uncertainty matrices on one side and the implemented structure and algorithms employed in the software on the other side. These algorithms were developed using Oracle SQL PLUS, MS Excel and Visual Basic, and batch commands. (author)

  18. CUDA-based real time surgery simulation.

    Science.gov (United States)

    Liu, Youquan; De, Suvranu

    2008-01-01

    In this paper we present a general software platform that enables real time surgery simulation on the newly available compute unified device architecture (CUDA)from NVIDIA. CUDA-enabled GPUs harness the power of 128 processors which allow data parallel computations. Compared to the previous GPGPU, it is significantly more flexible with a C language interface. We report implementation of both collision detection and consequent deformation computation algorithms. Our test results indicate that the CUDA enables a twenty times speedup for collision detection and about fifteen times speedup for deformation computation on an Intel Core 2 Quad 2.66 GHz machine with GeForce 8800 GTX.

  19. A real-time architecture for time-aware agents.

    Science.gov (United States)

    Prouskas, Konstantinos-Vassileios; Pitt, Jeremy V

    2004-06-01

    This paper describes the specification and implementation of a new three-layer time-aware agent architecture. This architecture is designed for applications and environments where societies of humans and agents play equally active roles, but interact and operate in completely different time frames. The architecture consists of three layers: the April real-time run-time (ART) layer, the time aware layer (TAL), and the application agents layer (AAL). The ART layer forms the underlying real-time agent platform. An original online, real-time, dynamic priority-based scheduling algorithm is described for scheduling the computation time of agent processes, and it is shown that the algorithm's O(n) complexity and scalable performance are sufficient for application in real-time domains. The TAL layer forms an abstraction layer through which human and agent interactions are temporally unified, that is, handled in a common way irrespective of their temporal representation and scale. A novel O(n2) interaction scheduling algorithm is described for predicting and guaranteeing interactions' initiation and completion times. The time-aware predicting component of a workflow management system is also presented as an instance of the AAL layer. The described time-aware architecture addresses two key challenges in enabling agents to be effectively configured and applied in environments where humans and agents play equally active roles. It provides flexibility and adaptability in its real-time mechanisms while placing them under direct agent control, and it temporally unifies human and agent interactions.

  20. Assessment of SCAR markers to design real-time PCR primers for rhizosphere quantification of Azospirillum brasilense phytostimulatory inoculants of maize.

    Science.gov (United States)

    Couillerot, O; Poirier, M-A; Prigent-Combaret, C; Mavingui, P; Caballero-Mellado, J; Moënne-Loccoz, Y

    2010-08-01

    To assess the applicability of sequence characterized amplified region (SCAR) markers obtained from BOX, ERIC and RAPD fragments to design primers for real-time PCR quantification of the phytostimulatory maize inoculants Azospirillum brasilense UAP-154 and CFN-535 in the rhizosphere. Primers were designed based on strain-specific SCAR markers and were screened for successful amplification of target strain and absence of cross-reaction with other Azospirillum strains. The specificity of primers thus selected was verified under real-time PCR conditions using genomic DNA from strain collection and DNA from rhizosphere samples. The detection limit was 60 fg DNA with pure cultures and 4 x 10(3) (for UAP-154) and 4 x 10(4) CFU g(-1) (for CFN-535) in the maize rhizosphere. Inoculant quantification was effective from 10(4) to 10(8) CFU g(-1) soil. BOX-based SCAR markers were useful to find primers for strain-specific real-time PCR quantification of each A. brasilense inoculant in the maize rhizosphere. Effective root colonization is a prerequisite for successful Azospirillum phytostimulation, but cultivation-independent monitoring methods were lacking. The real-time PCR methods developed here will help understand the effect of environmental conditions on root colonization and phytostimulation by A. brasilense UAP-154 and CFN-535.

  1. Problem based learning: the effect of real time data on the website to student independence

    Science.gov (United States)

    Setyowidodo, I.; Pramesti, Y. S.; Handayani, A. D.

    2018-05-01

    Learning science developed as an integrative science rather than disciplinary education, the reality of the nation character development has not been able to form a more creative and independent Indonesian man. Problem Based Learning based on real time data in the website is a learning method focuses on developing high-level thinking skills in problem-oriented situations by integrating technology in learning. The essence of this study is the presentation of authentic problems in the real time data situation in the website. The purpose of this research is to develop student independence through Problem Based Learning based on real time data in website. The type of this research is development research with implementation using purposive sampling technique. Based on the study there is an increase in student self-reliance, where the students in very high category is 47% and in the high category is 53%. This learning method can be said to be effective in improving students learning independence in problem-oriented situations.

  2. Real-time safety risk assessment based on a real-time location system for hydropower construction sites.

    Science.gov (United States)

    Jiang, Hanchen; Lin, Peng; Fan, Qixiang; Qiang, Maoshan

    2014-01-01

    The concern for workers' safety in construction industry is reflected in many studies focusing on static safety risk identification and assessment. However, studies on real-time safety risk assessment aimed at reducing uncertainty and supporting quick response are rare. A method for real-time safety risk assessment (RTSRA) to implement a dynamic evaluation of worker safety states on construction site has been proposed in this paper. The method provides construction managers who are in charge of safety with more abundant information to reduce the uncertainty of the site. A quantitative calculation formula, integrating the influence of static and dynamic hazards and that of safety supervisors, is established to link the safety risk of workers with the locations of on-site assets. By employing the hidden Markov model (HMM), the RTSRA provides a mechanism for processing location data provided by the real-time location system (RTLS) and analyzing the probability distributions of different states in terms of false positives and negatives. Simulation analysis demonstrated the logic of the proposed method and how it works. Application case shows that the proposed RTSRA is both feasible and effective in managing construction project safety concerns.

  3. Babesia microti real-time polymerase chain reaction testing of Connecticut blood donors: potential implications for screening algorithms.

    Science.gov (United States)

    Johnson, Stephanie T; Van Tassell, Eric R; Tonnetti, Laura; Cable, Ritchard G; Berardi, Victor P; Leiby, David A

    2013-11-01

    Babesia microti, an intraerythrocytic parasite, has been implicated in transfusion transmission. B. microti seroprevalence in Connecticut (CT) blood donors is approximately 1%; however, it is not known what percentage of donors is parasitemic and poses a risk for transmitting infection. Therefore, we determined the prevalence of demonstrable B. microti DNA in donors from a highly endemic area of CT and compared observed rates with concurrent immunofluorescence assay (IFA) testing results. Blood samples from consenting donors in southeastern CT were collected from mid-August through early October 2009 and tested by IFA for immunoglobulin G antibodies and real-time polymerase chain reaction (PCR) for B. microti DNA. IFA specificity was determined using blood donor samples collected in northwestern Vermont (VT), an area nonendemic for Babesia. Of 1002 CT donors, 25 (2.5%) were IFA positive and three (0.3%) were real-time PCR positive. Among the three real-time PCR-positive donors, two were also IFA positive, while one was IFA negative and may represent a window period infection. The two IFA- and real-time PCR-positive donors appeared to subsequently clear infection. The other real-time PCR-positive donor did not provide follow-up samples. Of 1015 VT donors tested by IFA, only one (0.1%) was positive, but may have acquired infection during travel to an endemic area. We prospectively identified several real-time PCR-positive blood donors, including an IFA-negative real-time PCR-positive donor, in an area highly endemic for B. microti. These results suggest the need to include nucleic acid testing in planned mitigation strategies for B. microti. © 2013 American Association of Blood Banks.

  4. Online decoding of object-based attention using real-time fMRI

    NARCIS (Netherlands)

    Niazi, A.M.; Broek, P.L.C. van den; Klanke, S.; Barth, M.; Poel, M.; Gerven, M.A.J. van

    2014-01-01

    Visual attention is used to selectively filter relevant information depending on current task demands and goals. Visual attention is called object-based attention when it is directed to coherent forms or objects in the visual field. This study used real-time functional magnetic resonance imaging for

  5. Online decoding of object-based attention using real-time fMRI

    NARCIS (Netherlands)

    Niazi, Adnan M.; van den Broek, Philip L.C.; Klanke, Stefan; Barth, Markus; Poel, Mannes; Desain, Peter; van Gerven, Marcel A.J.

    Visual attention is used to selectively filter relevant information depending on current task demands and goals. Visual attention is called object-based attention when it is directed to coherent forms or objects in the visual field. This study used real-time functional magnetic resonance imaging for

  6. Estudio comparativo entre una prueba rápida y RT-PCR tiempo real en el diagnóstico de influenza AH1N1 2009 Comparative study of a rapid testing with real time RT-PCR for diagnosis of influenza AH1N1 2009

    Directory of Open Access Journals (Sweden)

    Luz Araceli Castro-Cárdenas

    2011-08-01

    Full Text Available OBJETIVO: Comparar la prueba QuickVue Influenza A+B empleando como estándar la RT-PCR tiempo real para influenza AH1N1 2009. MATERIAL Y MÉTODOS: Estudio retrospectivo-comparativo de 135 muestras de vías respiratorias de individuos sintomáticos para influenza procesadas de mayo 2009 a octubre 2010.Las pruebas citadas se realizaron simultáneamente. Se utilizó el software Confidence Interval Analysis 2000. RESULTADOS: Sensibilidad 62.96; especificidad 94.44; valor predictivo negativo 62.9; valor predictivo positivo 94.44; razón de probabilidad positiva 11.33 y razón de probabilidad negativa 0.39. Se calcularon intervalos de confianza a 95. DISCUSIÓN: Los valores obtenidos concuerdan con otros estudios donde la sensibilidad fluctúa de 50 a 70 y especificidad entre 90 y 95 por ciento. La prueba QuickVue Influenza A+B es rápida, simple y de menor costo que el RT-PCR tiempo real, útil para identificar el tipo de virus en brotes de influenza de una población determinadaOBJECTIVE: Compare QuickVue Influenza A+B test with real-time RT-PCR for the diagnosis of influenza AH1N1 2009. MATERIAL AND METHODS: Retrospective-comparative study of 135 respiratory specimens from individuals with symptoms of influenza processed from May 2009 to October 2010.The above mentioned tests were performed simultaneously. For statistic analysisthe softwareof Confidence IntervalAnalysis 2000 was used. RESULTS: The parameters obtained were: sensitivity 62.96; specificity 94.44; negative predictive value 62.9; positive predictive value 94.44; positive likelihood ratio 11.33; negative likelihood ratio 0.39. Confidence intervals to 95,were calculated to all of the above data. DISCUSSION: The test QuickVue InfluenzaA+B is a rapid,simple test,with lower cost than real-time RT-PCR useful for identifying the type of virus outbreaks of influenza in a given population.It correlates well with more specific test and similar reports.

  7. Towards real-time cardiovascular magnetic resonance-guided transarterial aortic valve implantation: In vitro evaluation and modification of existing devices

    Directory of Open Access Journals (Sweden)

    Ladd Mark E

    2010-10-01

    Full Text Available Abstract Background Cardiovascular magnetic resonance (CMR is considered an attractive alternative for guiding transarterial aortic valve implantation (TAVI featuring unlimited scan plane orientation and unsurpassed soft-tissue contrast with simultaneous device visualization. We sought to evaluate the CMR characteristics of both currently commercially available transcatheter heart valves (Edwards SAPIEN™, Medtronic CoreValve® including their dedicated delivery devices and of a custom-built, CMR-compatible delivery device for the Medtronic CoreValve® prosthesis as an initial step towards real-time CMR-guided TAVI. Methods The devices were systematically examined in phantom models on a 1.5-Tesla scanner using high-resolution T1-weighted 3D FLASH, real-time TrueFISP and flow-sensitive phase-contrast sequences. Images were analyzed for device visualization quality, device-related susceptibility artifacts, and radiofrequency signal shielding. Results CMR revealed major susceptibility artifacts for the two commercial delivery devices caused by considerable metal braiding and precluding in vivo application. The stainless steel-based Edwards SAPIEN™ prosthesis was also regarded not suitable for CMR-guided TAVI due to susceptibility artifacts exceeding the valve's dimensions and hindering an exact placement. In contrast, the nitinol-based Medtronic CoreValve® prosthesis was excellently visualized with delineation even of small details and, thus, regarded suitable for CMR-guided TAVI, particularly since reengineering of its delivery device toward CMR-compatibility resulted in artifact elimination and excellent visualization during catheter movement and valve deployment on real-time TrueFISP imaging. Reliable flow measurements could be performed for both stent-valves after deployment using phase-contrast sequences. Conclusions The present study shows that the Medtronic CoreValve® prosthesis is potentially suited for real-time CMR-guided placement

  8. Sensitive and specific detection of potentially allergenic almond (Prunus dulcis) in complex food matrices by Taqman(®) real-time polymerase chain reaction in comparison to commercially available protein-based enzyme-linked immunosorbent assay.

    Science.gov (United States)

    Röder, Martin; Vieths, Stefan; Holzhauser, Thomas

    2011-01-24

    Currently, causative immunotherapies are lacking in food allergy. The only option to prevent allergic reactions in susceptible individuals is to strictly avoid the offending food. Thus, reliable labelling of allergenic constituents is of major importance, but can only be achieved if appropriate specific and sensitive detection techniques for foods with allergenic potential are available. Almond is an allergenic food that requires mandatory labelling on prepackaged foods and belongs to the genus Prunus. Species of this genus are phylogenetically closely related. We observed commercially available almond specific ELISA being highly cross-reactive with other foods of the Prunoideae family, resulting in a false-positive detection of up to 500,000 mg kg(-1) almond. Previously published PCR methods were reported to be cross-reactive with false positive results >1200 mg kg(-1). We describe the development of a novel almond specific real-time PCR, based on mutated mismatch primers and sequence specific Taqman(®) probe detection, in comparison with two quantitative commercially available ELISA. PCR sensitivity was investigated with chocolate, chocolate coating and cookies spiked between 5 and 100,000 mg kg(-1) almond. In all matrices almond was reproducibly detected by real-time PCR at the lowest spike level of 5 mg kg(-1). Further, between 100 and 100,000 mg kg(-1) spiked almond, the method featured good correlation between quantified copy numbers and the amount of spiked almond. Within this range a similar relation between detectable signal and amount of almond was observed for both PCR and ELISA. In contrast to ELISA the Taqman(®) real-time PCR method was highly specific in 59 food items with negligible cross-reactivity for a very limited number of Prunoideae foods. The real-time PCR analysis of 24 retail samples was in concordance with ELISA results: 21% (n=5) contained undeclared almond. This is the first completely disclosed real-time PCR method for a specific and

  9. A CAMAC based real-time noise analysis system for nuclear reactors

    International Nuclear Information System (INIS)

    Ciftcioglu, O.

    1987-01-01

    A CAMAC based real-time noise analysis system was designed for the TRIGA MARK II nuclear reactor at the Institute for Nuclear Energy, Istanbul. The input analog signals obtained from the radiation detectors are introduced to the system through CAMAC interface. The signals coverted into digital form are processed by a PDP-11 computer. The fast data processing based on auto/cross power spectral density computations is carried out by means of assembly written FFT algorithms in real-time and the spectra obtained are displayed on a CAMAC driven display system as an additional monitoring device. The system has the advantage of being software programmable and controlled by a CAMAC system so that it is operated under porgram control for reactor surveillance, anomaly detection and diagnosis. The system can also be used for the identification of nonstationary operational characteristics of the reactor in long term by comparing the noise power spectra with the corresponding reference noise patterns prepared in advance. (orig.)

  10. Towards exascale real-time RFI mitigation

    NARCIS (Netherlands)

    van Nieuwpoort, R.V.

    2016-01-01

    We describe the design and implementation of an extremely scalable real-time RFI mitigation method, based on the offline AOFlagger. All algorithms scale linearly in the number of samples. We describe how we implemented the flagger in the LOFAR real-time pipeline, on both CPUs and GPUs. Additionally,

  11. Real-time x-ray fluoroscopy-based catheter detection and tracking for cardiac electrophysiology interventions

    Energy Technology Data Exchange (ETDEWEB)

    Ma Yingliang; Housden, R. James; Razavi, Reza; Rhode, Kawal S. [Division of Imaging Sciences and Biomedical Engineering, King' s College London, London SE1 7EH (United Kingdom); Gogin, Nicolas; Cathier, Pascal [Medisys Research Group, Philips Healthcare, Paris 92156 (France); Gijsbers, Geert [Interventional X-ray, Philips Healthcare, Best 5680 DA (Netherlands); Cooklin, Michael; O' Neill, Mark; Gill, Jaswinder; Rinaldi, C. Aldo [Department of Cardiology, Guys and St. Thomas' Hospitals NHS Foundation Trust, London SE1 7EH (United Kingdom)

    2013-07-15

    Purpose: X-ray fluoroscopically guided cardiac electrophysiology (EP) procedures are commonly carried out to treat patients with arrhythmias. X-ray images have poor soft tissue contrast and, for this reason, overlay of a three-dimensional (3D) roadmap derived from preprocedural volumetric images can be used to add anatomical information. It is useful to know the position of the catheter electrodes relative to the cardiac anatomy, for example, to record ablation therapy locations during atrial fibrillation therapy. Also, the electrode positions of the coronary sinus (CS) catheter or lasso catheter can be used for road map motion correction.Methods: In this paper, the authors present a novel unified computational framework for image-based catheter detection and tracking without any user interaction. The proposed framework includes fast blob detection, shape-constrained searching and model-based detection. In addition, catheter tracking methods were designed based on the customized catheter models input from the detection method. Three real-time detection and tracking methods are derived from the computational framework to detect or track the three most common types of catheters in EP procedures: the ablation catheter, the CS catheter, and the lasso catheter. Since the proposed methods use the same blob detection method to extract key information from x-ray images, the ablation, CS, and lasso catheters can be detected and tracked simultaneously in real-time.Results: The catheter detection methods were tested on 105 different clinical fluoroscopy sequences taken from 31 clinical procedures. Two-dimensional (2D) detection errors of 0.50 {+-} 0.29, 0.92 {+-} 0.61, and 0.63 {+-} 0.45 mm as well as success rates of 99.4%, 97.2%, and 88.9% were achieved for the CS catheter, ablation catheter, and lasso catheter, respectively. With the tracking method, accuracies were increased to 0.45 {+-} 0.28, 0.64 {+-} 0.37, and 0.53 {+-} 0.38 mm and success rates increased to 100%, 99

  12. Real-time detection of TDP1 activity using a fluorophore-quencher coupled DNA-biosensor

    DEFF Research Database (Denmark)

    Jensen, Pia Wrensted; Falconi, Mattia; Kristoffersen, Emil Laust

    2013-01-01

    structure of the biosensor. The specific action of TDP1 removes the quencher, thereby enabling optical detection of the fluorophore. Since the enzymatic action of TDP1 is the only “signal amplification” the increase in fluorescence may easily be followed in real-time and allows quantitative analyses of TDP1......Real-time detection of enzyme activities may present the easiest and most reliable way of obtaining quantitative analyses in biological samples. We present a new DNA-biosensor capable of detecting the activity of the potential anticancer drug target tyrosyl-DNA phosphodiesterase 1 (TDP1) in a very...... simple, high throughput, and real-time format. The biosensor is specific for Tdp1 even in complex biological samples, such as human cell extracts, and may consequently find future use in fundamental studies as well as a cancer predictive tool allowing fast analyses of diagnostic cell samples...

  13. Implementation of real-time duplex synthetic aperture ultrasonography

    DEFF Research Database (Denmark)

    Hemmsen, Martin Christian; Larsen, Lee; Kjeldsen, Thomas

    2015-01-01

    This paper presents a real-time duplex synthetic aperture imaging system, implemented on a commercially available tablet. This includes real-time wireless reception of ultrasound signals and GPU processing for B-mode and Color Flow Imaging (CFM). The objective of the work is to investigate the im...... and that the required bandwidth between the probe and processing unit is within the current Wi-Fi standards....

  14. Multiplex real-time RT-PCR assay for bovine viral diarrhea virus type 1, type 2 and HoBi-like pestivirus.

    Science.gov (United States)

    Mari, Viviana; Losurdo, Michele; Lucente, Maria Stella; Lorusso, Eleonora; Elia, Gabriella; Martella, Vito; Patruno, Giovanni; Buonavoglia, Domenico; Decaro, Nicola

    2016-03-01

    HoBi-like pestiviruses are emerging pestiviruses that infect cattle causing clinical forms overlapping to those induced by bovine viral diarrhea virus (BVDV) 1 and 2. As a consequence of their widespread distribution reported in recent years, molecular tools for rapid discrimination among pestiviruses infecting cattle are needed. The aim of the present study was to develop a multiplex real-time RT-PCR assay, based on the TaqMan technology, for the rapid and unambiguous characterisation of all bovine pestiviruses, including the emerging HoBi-like strains. The assay was found to be sensitive, specific and repeatable, ensuring detection of as few as 10(0)-10(1) viral RNA copies. No cross-reactions between different pestiviral species were observed even in samples artificially contaminated with more than one pestivirus. Analysis of field samples tested positive for BVDV-1, BVDV-2 or HoBi-like virus by a nested PCR protocol revealed that the developed TaqMan assay had equal or higher sensitivity and was able to discriminate correctly the viral species in all tested samples, whereas a real-time RT-PCR assay previously developed for HoBi-like pestivirus detection showed cross-reactivity with few high-titre BVDV-2 samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. REAL-TIME VIDEO SCALING BASED ON CONVOLUTION NEURAL NETWORK ARCHITECTURE

    Directory of Open Access Journals (Sweden)

    S Safinaz

    2017-08-01

    Full Text Available In recent years, video super resolution techniques becomes mandatory requirements to get high resolution videos. Many super resolution techniques researched but still video super resolution or scaling is a vital challenge. In this paper, we have presented a real-time video scaling based on convolution neural network architecture to eliminate the blurriness in the images and video frames and to provide better reconstruction quality while scaling of large datasets from lower resolution frames to high resolution frames. We compare our outcomes with multiple exiting algorithms. Our extensive results of proposed technique RemCNN (Reconstruction error minimization Convolution Neural Network shows that our model outperforms the existing technologies such as bicubic, bilinear, MCResNet and provide better reconstructed motioning images and video frames. The experimental results shows that our average PSNR result is 47.80474 considering upscale-2, 41.70209 for upscale-3 and 36.24503 for upscale-4 for Myanmar dataset which is very high in contrast to other existing techniques. This results proves our proposed model real-time video scaling based on convolution neural network architecture’s high efficiency and better performance.

  16. Towards real-time regional earthquake simulation I: real-time moment tensor monitoring (RMT) for regional events in Taiwan

    Science.gov (United States)

    Lee, Shiann-Jong; Liang, Wen-Tzong; Cheng, Hui-Wen; Tu, Feng-Shan; Ma, Kuo-Fong; Tsuruoka, Hiroshi; Kawakatsu, Hitoshi; Huang, Bor-Shouh; Liu, Chun-Chi

    2014-01-01

    We have developed a real-time moment tensor monitoring system (RMT) which takes advantage of a grid-based moment tensor inversion technique and real-time broad-band seismic recordings to automatically monitor earthquake activities in the vicinity of Taiwan. The centroid moment tensor (CMT) inversion technique and a grid search scheme are applied to obtain the information of earthquake source parameters, including the event origin time, hypocentral location, moment magnitude and focal mechanism. All of these source parameters can be determined simultaneously within 117 s after the occurrence of an earthquake. The monitoring area involves the entire Taiwan Island and the offshore region, which covers the area of 119.3°E to 123.0°E and 21.0°N to 26.0°N, with a depth from 6 to 136 km. A 3-D grid system is implemented in the monitoring area with a uniform horizontal interval of 0.1° and a vertical interval of 10 km. The inversion procedure is based on a 1-D Green's function database calculated by the frequency-wavenumber (fk) method. We compare our results with the Central Weather Bureau (CWB) catalogue data for earthquakes occurred between 2010 and 2012. The average differences between event origin time and hypocentral location are less than 2 s and 10 km, respectively. The focal mechanisms determined by RMT are also comparable with the Broadband Array in Taiwan for Seismology (BATS) CMT solutions. These results indicate that the RMT system is realizable and efficient to monitor local seismic activities. In addition, the time needed to obtain all the point source parameters is reduced substantially compared to routine earthquake reports. By connecting RMT with a real-time online earthquake simulation (ROS) system, all the source parameters will be forwarded to the ROS to make the real-time earthquake simulation feasible. The RMT has operated offline (2010-2011) and online (since January 2012 to present) at the Institute of Earth Sciences (IES), Academia Sinica

  17. Highly-Accelerated Real-Time Cardiac Cine MRI Using k-t SPARSE-SENSE

    Science.gov (United States)

    Feng, Li; Srichai, Monvadi B.; Lim, Ruth P.; Harrison, Alexis; King, Wilson; Adluru, Ganesh; Dibella, Edward VR.; Sodickson, Daniel K.; Otazo, Ricardo; Kim, Daniel

    2012-01-01

    For patients with impaired breath-hold capacity and/or arrhythmias, real-time cine MRI may be more clinically useful than breath-hold cine MRI. However, commercially available real-time cine MRI methods using parallel imaging typically yield relatively poor spatio-temporal resolution due to their low image acquisition speed. We sought to achieve relatively high spatial resolution (~2.5mm × 2.5mm) and temporal resolution (~40ms), to produce high-quality real-time cine MR images that could be applied clinically for wall motion assessment and measurement of left ventricular (LV) function. In this work, we present an 8-fold accelerated real-time cardiac cine MRI pulse sequence using a combination of compressed sensing and parallel imaging (k-t SPARSE-SENSE). Compared with reference, breath-hold cine MRI, our 8-fold accelerated real-time cine MRI produced significantly worse qualitative grades (1–5 scale), but its image quality and temporal fidelity scores were above 3.0 (adequate) and artifacts and noise scores were below 3.0 (moderate), suggesting that acceptable diagnostic image quality can be achieved. Additionally, both 8-fold accelerated real-time cine and breath-hold cine MRI yielded comparable LV function measurements, with coefficient of variation cine MRI with k-t SPARSE-SENSE is a promising modality for rapid imaging of myocardial function. PMID:22887290

  18. Highly accelerated real-time cardiac cine MRI using k-t SPARSE-SENSE.

    Science.gov (United States)

    Feng, Li; Srichai, Monvadi B; Lim, Ruth P; Harrison, Alexis; King, Wilson; Adluru, Ganesh; Dibella, Edward V R; Sodickson, Daniel K; Otazo, Ricardo; Kim, Daniel

    2013-07-01

    For patients with impaired breath-hold capacity and/or arrhythmias, real-time cine MRI may be more clinically useful than breath-hold cine MRI. However, commercially available real-time cine MRI methods using parallel imaging typically yield relatively poor spatio-temporal resolution due to their low image acquisition speed. We sought to achieve relatively high spatial resolution (∼2.5 × 2.5 mm(2)) and temporal resolution (∼40 ms), to produce high-quality real-time cine MR images that could be applied clinically for wall motion assessment and measurement of left ventricular function. In this work, we present an eightfold accelerated real-time cardiac cine MRI pulse sequence using a combination of compressed sensing and parallel imaging (k-t SPARSE-SENSE). Compared with reference, breath-hold cine MRI, our eightfold accelerated real-time cine MRI produced significantly worse qualitative grades (1-5 scale), but its image quality and temporal fidelity scores were above 3.0 (adequate) and artifacts and noise scores were below 3.0 (moderate), suggesting that acceptable diagnostic image quality can be achieved. Additionally, both eightfold accelerated real-time cine and breath-hold cine MRI yielded comparable left ventricular function measurements, with coefficient of variation cine MRI with k-t SPARSE-SENSE is a promising modality for rapid imaging of myocardial function. Copyright © 2012 Wiley Periodicals, Inc.

  19. Real-time power angle determination of salient-pole synchronous machine based on air gap measurements

    Energy Technology Data Exchange (ETDEWEB)

    Despalatovic, Marin; Jadric, Martin; Terzic, Bozo [FESB University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, R. Boskovica bb, 21000 Split (Croatia)

    2008-11-15

    This paper presents a new method for the real-time power angle determination of the salient-pole synchronous machines. This method is based on the terminal voltage and air gap measurements, which are the common features of the hydroturbine generator monitoring system. The raw signal of the air gap sensor is used to detect the rotor displacement with reference to the fundamental component of the terminal voltage. First, the algorithm developed for the real-time power angle determination is tested using the synthetic data obtained by the standard machine model simulation. Thereafter, the experimental investigation is carried out on the 26 MVA utility generator. The validity of the method is verified by comparing with another method, which is based on a tooth gear mounted on the rotor shaft. The proposed real-time algorithm has an adequate accuracy and needs a very short processing time. For applications that do not require real-time processing, such as the estimation of the synchronous machine parameters, the accuracy is additionally increased by applying an off-line data-processing algorithm. (author)

  20. [Detecting HB-1 Expression Level in Bone Marrow of Acute Leukemia Patients by Real-Time Fluorescence Quantitative RT-PCR].

    Science.gov (United States)

    Wang, Qing-Yun; Li, Yuan; Ji, Li; Liang, Ze-Yin; Liu, Wei; Ren, Han-Yun; Qiu, Zhi-Xiang

    2018-02-01

    To investigate the expression level of HB-1 gene in patients with acute lymphoblastic leukemia (ALL) and the significance of HB-1 gene in monitoring of minimal residual disease (MRD). The method of real-time fluorescence quantitative RT-PCR (Taqman probe) was established to detect the expression levels of HB-1 gene; then the sensitivity, specificity and repeatability of this assay were evaluated and verified. The HB-1 gene expression levels in bone marrow of 183 cases of ALL, 70 cases of acute myeloid leukemias (AML), 52 cases of non-malignant hematologic diseases and 24 healthy hematopoietic stem cell donors were detected. The correlation of HB-1 level with diagnosis and relapse was analyzed by detecting bone marrow samples of 33 B-ALL. The sensitivity of this assay reached the 10 -4 level. The coefficient of variation for inter-batch and inter-tube of HB-1 were 6.79% and 4.80%, respectively. It was found that HB-1 gene specifically expressed in acute B lymphoblastic leukemia. The median expression levels of HB-1 gene in newly diagnosed and relapsed B-ALL patients were statistically significantly higher than those in ALL in complete remission(CR), newly diagnosed T-ALL, newly diagnosed AML, non-malignant hematologic diseases, and healthy hematopoietic stem cell donors(33.0% vs 0.68%, 0.07%, 0.02%, 0.58% and 0, respectively) (P0.05). The expression level of HB-1 gene declined sharply when B-ALL patients reached complete remission (0-7.99%, with median level 0.68%), but increased when relapsed (7.69%, 8.08% and 484.0% in 3 relapsed samples), which was in accordance with results of flow cytometry. HB-1 gene specifically expressed in acute B lymphoblastic leukemia cells. The established real-time fluorescence quantitative RT-PCR assay shows good sensitivity, specificity and repeatability, thus, can be used as a biological marker in the clinical detection, monitoring MRD and predicting of early relapse for B-ALL patients.

  1. Real-Time (Vision-Based) Road Sign Recognition Using an Artificial Neural Network

    Science.gov (United States)

    Islam, Kh Tohidul; Raj, Ram Gopal

    2017-01-01

    Road sign recognition is a driver support function that can be used to notify and warn the driver by showing the restrictions that may be effective on the current stretch of road. Examples for such regulations are ‘traffic light ahead’ or ‘pedestrian crossing’ indications. The present investigation targets the recognition of Malaysian road and traffic signs in real-time. Real-time video is taken by a digital camera from a moving vehicle and real world road signs are then extracted using vision-only information. The system is based on two stages, one performs the detection and another one is for recognition. In the first stage, a hybrid color segmentation algorithm has been developed and tested. In the second stage, an introduced robust custom feature extraction method is used for the first time in a road sign recognition approach. Finally, a multilayer artificial neural network (ANN) has been created to recognize and interpret various road signs. It is robust because it has been tested on both standard and non-standard road signs with significant recognition accuracy. This proposed system achieved an average of 99.90% accuracy with 99.90% of sensitivity, 99.90% of specificity, 99.90% of f-measure, and 0.001 of false positive rate (FPR) with 0.3 s computational time. This low FPR can increase the system stability and dependability in real-time applications. PMID:28406471

  2. Real-Time (Vision-Based) Road Sign Recognition Using an Artificial Neural Network.

    Science.gov (United States)

    Islam, Kh Tohidul; Raj, Ram Gopal

    2017-04-13

    Road sign recognition is a driver support function that can be used to notify and warn the driver by showing the restrictions that may be effective on the current stretch of road. Examples for such regulations are 'traffic light ahead' or 'pedestrian crossing' indications. The present investigation targets the recognition of Malaysian road and traffic signs in real-time. Real-time video is taken by a digital camera from a moving vehicle and real world road signs are then extracted using vision-only information. The system is based on two stages, one performs the detection and another one is for recognition. In the first stage, a hybrid color segmentation algorithm has been developed and tested. In the second stage, an introduced robust custom feature extraction method is used for the first time in a road sign recognition approach. Finally, a multilayer artificial neural network (ANN) has been created to recognize and interpret various road signs. It is robust because it has been tested on both standard and non-standard road signs with significant recognition accuracy. This proposed system achieved an average of 99.90% accuracy with 99.90% of sensitivity, 99.90% of specificity, 99.90% of f-measure, and 0.001 of false positive rate (FPR) with 0.3 s computational time. This low FPR can increase the system stability and dependability in real-time applications.

  3. A Short Interspersed Nuclear Element (SINE)-Based Real-Time PCR Approach to Detect and Quantify Porcine Component in Meat Products.

    Science.gov (United States)

    Zhang, Chi; Fang, Xin; Qiu, Haopu; Li, Ning

    2015-01-01

    Real-time PCR amplification of mitochondria gene could not be used for DNA quantification, and that of single copy DNA did not allow an ideal sensitivity. Moreover, cross-reactions among similar species were commonly observed in the published methods amplifying repetitive sequence, which hindered their further application. The purpose of this study was to establish a short interspersed nuclear element (SINE)-based real-time PCR approach having high specificity for species detection that could be used in DNA quantification. After massive screening of candidate Sus scrofa SINEs, one optimal combination of primers and probe was selected, which had no cross-reaction with other common meat species. LOD of the method was 44 fg DNA/reaction. Further, quantification tests showed this approach was practical in DNA estimation without tissue variance. Thus, this study provided a new tool for qualitative detection of porcine component, which could be promising in the QC of meat products.

  4. Neurotoxoplasmosis diagnosis for HIV-1 patients by real-time PCR of cerebrospinal fluid

    Directory of Open Access Journals (Sweden)

    Fábio Luís Nascimento Nogui

    Full Text Available Encephalitis caused by Toxoplasma gondii is the most common cause of central nervous system damage in patients with acquired immunodeficiency syndrome (AIDS. Toxoplasma may infect any of the brain cells, thus leading to non-specific neurotoxoplasmosis clinical manifestations including focused or non-focused signs and symptoms of central nervous system malfunction. Clinical development ranges from insidious display during weeks to experiencing acute general confusion or ultimately fatal onset. Cerebral toxoplasmosis occurs in advanced stages of immunodeficiency, and the absence of anti-toxoplasmosis antibodies by the immunofluorescence method does not allow us to rule out its diagnosis. As specific therapy begins, diagnosis confirmation is sought through clinical and radiological response. There are few accurate diagnosis methods to confirm such cases. We present a method for T. gondii DNA detection by real time PCR-Multiplex. Fifty-one patients were evaluated; 16 patients had AIDS and a presumptive diagnosis for toxoplasmosis, 23 patients were HIV-positive with further morbidities except neurotoxoplasmosis, and 12 subjects were HIV-negative control patients. Real time PCR-Multiplex was applied to these patients' cephalorachidian liquid with a specific T. gondii genome sequence from the 529bp fragment. This test is usually carried out within four hours. Test sensitivity, specificity, positive predictive value, and negative predictive value were calculated according to applicable tables. Toxoplasma gondii assay by real time Multiplex of cephalorachidian fluid was positive for 11 out of 16 patients with AIDS and a presumptive diagnosis for cerebral toxoplasmosis, while none of the 35 control patients displayed such a result. Therefore, this method allowed us to achieve 68.8% sensitivity, 100% specificity, 100% positive predictive value, and 87.8% negative predictive value. Real time PCR on CSF allowed high specificity and good sensitivity among

  5. Present and future aspects of PROSA - A computer program for near real time accountancy

    International Nuclear Information System (INIS)

    Beedgen, R.

    1987-01-01

    The methods of near real time accountancy (NRTA) for safeguarding nuclear material received a lot of attention in the last years. They developed PROSA 1.0 as a computer program to evaluate a sequence of material balance data based on three statistical tests for a selected false alarm probability. A new NRTA test procedure will be included and an option for the calculation of detection probabilities of hypothetical loss patterns will be made available in future releases of PROSA. Under a non-loss assumption, PROSA may also be used for the analysis of facility measurement models

  6. Interactive real-time nuclear plant simulations on a UNIX based supercomputer

    International Nuclear Information System (INIS)

    Behling, S.R.

    1990-01-01

    Interactive real-time nuclear plant simulations are critically important to train nuclear power plant engineers and operators. In addition, real-time simulations can be used to test the validity and timing of plant technical specifications and operational procedures. To accurately and confidently simulate a nuclear power plant transient in real-time, sufficient computer resources must be available. Since some important transients cannot be simulated using preprogrammed responses or non-physical models, commonly used simulation techniques may not be adequate. However, the power of a supercomputer allows one to accurately calculate the behavior of nuclear power plants even during very complex transients. Many of these transients can be calculated in real-time or quicker on the fastest supercomputers. The concept of running interactive real-time nuclear power plant transients on a supercomputer has been tested. This paper describes the architecture of the simulation program, the techniques used to establish real-time synchronization, and other issues related to the use of supercomputers in a new and potentially very important area. (author)

  7. A Tree Based Broadcast Scheme for (m, k)-firm Real-Time Stream in Wireless Sensor Networks.

    Science.gov (United States)

    Park, HoSung; Kim, Beom-Su; Kim, Kyong Hoon; Shah, Babar; Kim, Ki-Il

    2017-11-09

    Recently, various unicast routing protocols have been proposed to deliver measured data from the sensor node to the sink node within the predetermined deadline in wireless sensor networks. In parallel with their approaches, some applications demand the specific service, which is based on broadcast to all nodes within the deadline, the feasible real-time traffic model and improvements in energy efficiency. However, current protocols based on either flooding or one-to-one unicast cannot meet the above requirements entirely. Moreover, as far as the authors know, there is no study for the real-time broadcast protocol to support the application-specific traffic model in WSN yet. Based on the above analysis, in this paper, we propose a new ( m , k )-firm-based Real-time Broadcast Protocol (FRBP) by constructing a broadcast tree to satisfy the ( m , k )-firm, which is applicable to the real-time model in resource-constrained WSNs. The broadcast tree in FRBP is constructed by the distance-based priority scheme, whereas energy efficiency is improved by selecting as few as nodes on a tree possible. To overcome the unstable network environment, the recovery scheme invokes rapid partial tree reconstruction in order to designate another node as the parent on a tree according to the measured ( m , k )-firm real-time condition and local states monitoring. Finally, simulation results are given to demonstrate the superiority of FRBP compared to the existing schemes in terms of average deadline missing ratio, average throughput and energy consumption.

  8. Real-Time MENTAT programming language and architecture

    Science.gov (United States)

    Grimshaw, Andrew S.; Silberman, Ami; Liu, Jane W. S.

    1989-01-01

    Real-time MENTAT, a programming environment designed to simplify the task of programming real-time applications in distributed and parallel environments, is described. It is based on the same data-driven computation model and object-oriented programming paradigm as MENTAT. It provides an easy-to-use mechanism to exploit parallelism, language constructs for the expression and enforcement of timing constraints, and run-time support for scheduling and exciting real-time programs. The real-time MENTAT programming language is an extended C++. The extensions are added to facilitate automatic detection of data flow and generation of data flow graphs, to express the timing constraints of individual granules of computation, and to provide scheduling directives for the runtime system. A high-level view of the real-time MENTAT system architecture and programming language constructs is provided.

  9. Real-time transfer and display of radiography image

    International Nuclear Information System (INIS)

    Liu Ximing; Wu Zhifang; Miao Jicheng

    2000-01-01

    The information process network of cobalt-60 container inspection system is a local area network based on PC. The system requires reliable transfer of radiography image between collection station and process station and the real-time display of radiography image on process station. Due to the very high data acquisition rate, in order to realize the real-time transfer and display of radiography image, 100 M Ethernet technology and network process communication technology are adopted in the system. Windows Sockets is the most common process communication technology up to now. Several kinds of process communication way under Windows Sockets technology are compared and tested. Finally the author realized 1 Mbyte/s' inerrant image transfer and real-time display with blocked datagram transfer technology

  10. Gold nanoparticle-based RT-PCR and real-time quantitative RT-PCR assays for detection of Japanese encephalitis virus

    International Nuclear Information System (INIS)

    Huang, S-H; Tsai, M-H; Lin, C-W; Yang, T-C; Chuang, P-H; Tsai, I-S; Lu, H-C; Wan Lei; Lin, Y-J; Lai, C-H

    2008-01-01

    Virus isolation and antibody detection are routinely used for diagnosis of Japanese encephalitis virus (JEV) infection, but the low level of transient viremia in some JE patients makes JEV isolation from clinical and surveillance samples very difficult. We describe the use of gold nanoparticle-based RT-PCR and real-time quantitative RT-PCR assays for detection of JEV from its RNA genome. We tested the effect of gold nanoparticles on four different PCR systems, including conventional PCR, reverse-transcription PCR (RT-PCR), and SYBR green real-time PCR and RT-PCR assays for diagnosis in the acute phase of JEV infection. Gold nanoparticles increased the amplification yield of the PCR product and shortened the PCR time compared to the conventional reaction. In addition, nanogold-based real-time RT-PCR showed a linear relationship between Ct and template amount using ten-fold dilutions of JEV. The nanogold-based RT-PCR and real-time quantitative RT-PCR assays were able to detect low levels (1-10 000 copies) of the JEV RNA genomes extracted from culture medium or whole blood, providing early diagnostic tools for the detection of low-level viremia in the acute-phase infection. The assays described here were simple, sensitive, and rapid approaches for detection and quantitation of JEV in tissue cultured samples as well as clinical samples

  11. Bus-stop Based Real Time Passenger Information System - Case Study Maribor

    Science.gov (United States)

    Čelan, Marko; Klemenčič, Mitja; Mrgole, Anamarija L.; Lep, Marjan

    2017-10-01

    Real time passenger information system is one of the key element of promoting public transport. For the successful implementation of real time passenger information systems, various components should be considered, such as: passenger needs and requirements, stakeholder involvement, technological solution for tracking, data transfer, etc. This article carrying out designing and evaluation of real time passenger information (RTPI) in the city of Maribor. The design phase included development of methodology for selection of appropriate macro and micro location of the real-time panel, development of a real-time passenger algorithm, definition of a technical specification, financial issues and time frame. The evaluation shows that different people have different requirements; therefore, the system should be adaptable to be used by various types of people, according to the age, the purpose of journey, experience of using public transport, etc. The average difference between perceived waiting time for a bus is 35% higher than the actual waiting time and grow with the headway increase. Experiences from Maribor have shown that the reliability of real time passenger system (from technical point of view) must be close to 100%, otherwise the system may have negative impact on passengers and may discourage the use of public transport. Among considered events of arrivals during the test period, 92% of all prediction were accurate. The cost benefit analysis has focused only on potential benefits from reduced perceived users waiting time and foreseen costs of real time information system in Maribor for 10 years’ period. Analysis shows that the optimal number for implementing real time passenger information system at the bus stops in Maribor is set on 83 bus stops (approx. 20 %) with the highest number of passenger. If we consider all entries at the chosen bus stops, the total perceived waiting time on yearly level could be decreased by about 60,000 hours.

  12. No variations in transit times for Qatar-1 b

    Science.gov (United States)

    Maciejewski, G.; Fernández, M.; Aceituno, F. J.; Ohlert, J.; Puchalski, D.; Dimitrov, D.; Seeliger, M.; Kitze, M.; Raetz, St.; Errmann, R.; Gilbert, H.; Pannicke, A.; Schmidt, J.-G.; Neuhäuser, R.

    2015-05-01

    Aims: The transiting hot-Jupiter planet Qatar-1 b exhibits variations in transit times that could be perturbative. A hot Jupiter with a planetary companion on a nearby orbit would constitute an unprecedented planetary configuration, which is important for theories of the formation and evolution of planetary systems. We performed a photometric follow-up campaign to confirm or refute transit timing variations. Methods: We extend the baseline of transit observations by acquiring 18 new transit light curves acquired with 0.6-2.0 m telescopes. These photometric time series, together with data available in the literature, were analyzed in a homogenous way to derive reliable transit parameters and their uncertainties. Results: We show that the dataset of transit times is consistent with a linear ephemeris leaving no hint of any periodic variations with a range of 1 min. We find no compelling evidence of a close-in planetary companion to Qatar-1 b. This finding is in line with a paradigm that hot Jupiters are not components of compact multiplanetary systems. Based on dynamical simulations, we place tighter constraints on the mass of any fictitious nearby planet in the system. Furthermore, new transit light curves allowed us to redetermine system parameters with better precision than reported in previous studies. Our values generally agree with previous determinations. Partly based on (1) data collected with telescopes at the Rozhen National Astronomical Observatory and (2) observations obtained with telescopes of the University Observatory Jena, which is operated by the Astrophysical Institute of the Friedrich-Schiller-University.Tables of light curve data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/577/A109

  13. An accuracy assessment of realtime GNSS time series toward semi- real time seafloor geodetic observation

    Science.gov (United States)

    Osada, Y.; Ohta, Y.; Demachi, T.; Kido, M.; Fujimoto, H.; Azuma, R.; Hino, R.

    2013-12-01

    Large interplate earthquake repeatedly occurred in Japan Trench. Recently, the detail crustal deformation revealed by the nation-wide inland GPS network called as GEONET by GSI. However, the maximum displacement region for interplate earthquake is mainly located offshore region. GPS/Acoustic seafloor geodetic observation (hereafter GPS/A) is quite important and useful for understanding of shallower part of the interplate coupling between subducting and overriding plates. We typically conduct GPS/A in specific ocean area based on repeated campaign style using research vessel or buoy. Therefore, we cannot monitor the temporal variation of seafloor crustal deformation in real time. The one of technical issue on real time observation is kinematic GPS analysis because kinematic GPS analysis based on reference and rover data. If the precise kinematic GPS analysis will be possible in the offshore region, it should be promising method for real time GPS/A with USV (Unmanned Surface Vehicle) and a moored buoy. We assessed stability, precision and accuracy of StarFireTM global satellites based augmentation system. We primarily tested for StarFire in the static condition. In order to assess coordinate precision and accuracy, we compared 1Hz StarFire time series and post-processed precise point positioning (PPP) 1Hz time series by GIPSY-OASIS II processing software Ver. 6.1.2 with three difference product types (ultra-rapid, rapid, and final orbits). We also used difference interval clock information (30 and 300 seconds) for the post-processed PPP processing. The standard deviation of real time StarFire time series is less than 30 mm (horizontal components) and 60 mm (vertical component) based on 1 month continuous processing. We also assessed noise spectrum of the estimated time series by StarFire and post-processed GIPSY PPP results. We found that the noise spectrum of StarFire time series is similar pattern with GIPSY-OASIS II processing result based on JPL rapid orbit

  14. Evaluation of four endogenous reference genes and their real-time PCR assays for common wheat quantification in GMOs detection.

    Science.gov (United States)

    Huang, Huali; Cheng, Fang; Wang, Ruoan; Zhang, Dabing; Yang, Litao

    2013-01-01

    Proper selection of endogenous reference genes and their real-time PCR assays is quite important in genetically modified organisms (GMOs) detection. To find a suitable endogenous reference gene and its real-time PCR assay for common wheat (Triticum aestivum L.) DNA content or copy number quantification, four previously reported wheat endogenous reference genes and their real-time PCR assays were comprehensively evaluated for the target gene sequence variation and their real-time PCR performance among 37 common wheat lines. Three SNPs were observed in the PKABA1 and ALMT1 genes, and these SNPs significantly decreased the efficiency of real-time PCR amplification. GeNorm analysis of the real-time PCR performance of each gene among common wheat lines showed that the Waxy-D1 assay had the lowest M values with the best stability among all tested lines. All results indicated that the Waxy-D1 gene and its real-time PCR assay were most suitable to be used as an endogenous reference gene for common wheat DNA content quantification. The validated Waxy-D1 gene assay will be useful in establishing accurate and creditable qualitative and quantitative PCR analysis of GM wheat.

  15. Evaluation of four endogenous reference genes and their real-time PCR assays for common wheat quantification in GMOs detection.

    Directory of Open Access Journals (Sweden)

    Huali Huang

    Full Text Available Proper selection of endogenous reference genes and their real-time PCR assays is quite important in genetically modified organisms (GMOs detection. To find a suitable endogenous reference gene and its real-time PCR assay for common wheat (Triticum aestivum L. DNA content or copy number quantification, four previously reported wheat endogenous reference genes and their real-time PCR assays were comprehensively evaluated for the target gene sequence variation and their real-time PCR performance among 37 common wheat lines. Three SNPs were observed in the PKABA1 and ALMT1 genes, and these SNPs significantly decreased the efficiency of real-time PCR amplification. GeNorm analysis of the real-time PCR performance of each gene among common wheat lines showed that the Waxy-D1 assay had the lowest M values with the best stability among all tested lines. All results indicated that the Waxy-D1 gene and its real-time PCR assay were most suitable to be used as an endogenous reference gene for common wheat DNA content quantification. The validated Waxy-D1 gene assay will be useful in establishing accurate and creditable qualitative and quantitative PCR analysis of GM wheat.

  16. Evaluation of Four Endogenous Reference Genes and Their Real-Time PCR Assays for Common Wheat Quantification in GMOs Detection

    Science.gov (United States)

    Huang, Huali; Cheng, Fang; Wang, Ruoan; Zhang, Dabing; Yang, Litao

    2013-01-01

    Proper selection of endogenous reference genes and their real-time PCR assays is quite important in genetically modified organisms (GMOs) detection. To find a suitable endogenous reference gene and its real-time PCR assay for common wheat (Triticum aestivum L.) DNA content or copy number quantification, four previously reported wheat endogenous reference genes and their real-time PCR assays were comprehensively evaluated for the target gene sequence variation and their real-time PCR performance among 37 common wheat lines. Three SNPs were observed in the PKABA1 and ALMT1 genes, and these SNPs significantly decreased the efficiency of real-time PCR amplification. GeNorm analysis of the real-time PCR performance of each gene among common wheat lines showed that the Waxy-D1 assay had the lowest M values with the best stability among all tested lines. All results indicated that the Waxy-D1 gene and its real-time PCR assay were most suitable to be used as an endogenous reference gene for common wheat DNA content quantification. The validated Waxy-D1 gene assay will be useful in establishing accurate and creditable qualitative and quantitative PCR analysis of GM wheat. PMID:24098735

  17. Real-time neutron radiography at the Iea-R1 m nuclear research reactor

    International Nuclear Information System (INIS)

    Menezes, M.O. de; Pugliesi, R.; Pereira, M.A.S.; Andrade, M.L.G.

    2003-01-01

    A LIXI (Light Intensifier X-ray Image) device has been employed in a real-time neutron radiography system. The LIXI is coupled to a video camera and the real-time images can be observed in a TV monitor, and processed in a computer. In order to get the real-time system operational, the neutron radiography facility installed at the IEA-R1 m nuclear research reactor of the IPEN-CNEN/S P has been optimized. The most important improvements were the neutron/gamma ratio, the effective energy of the neutron beam, decrease of the scattered radiation at the irradiation position, and the additional shielding of the video camera. Several one-frame as well as computer processed images are presented. The overall Modulation Transfer Function for the real-time system was obtained from the resolution parameter p = 0:44 +- 0:04 mm; the system sensitivity, evaluated for a Perspex step wedge, was determined and the average value is 0:70 +- 0:09 mm. (author)

  18. Semantic-Based Concurrency Control for Object-Oriented Database Systems Supporting Real-Time Applications

    National Research Council Canada - National Science Library

    Lee, Juhnyoung; Son, Sang H

    1994-01-01

    .... This paper investigates major issues in designing semantic-based concurrency control for object-oriented database systems supporting real-time applications, and it describes approaches to solving...

  19. Research of real-time communication software

    Science.gov (United States)

    Li, Maotang; Guo, Jingbo; Liu, Yuzhong; Li, Jiahong

    2003-11-01

    Real-time communication has been playing an increasingly important role in our work, life and ocean monitor. With the rapid progress of computer and communication technique as well as the miniaturization of communication system, it is needed to develop the adaptable and reliable real-time communication software in the ocean monitor system. This paper involves the real-time communication software research based on the point-to-point satellite intercommunication system. The object-oriented design method is adopted, which can transmit and receive video data and audio data as well as engineering data by satellite channel. In the real-time communication software, some software modules are developed, which can realize the point-to-point satellite intercommunication in the ocean monitor system. There are three advantages for the real-time communication software. One is that the real-time communication software increases the reliability of the point-to-point satellite intercommunication system working. Second is that some optional parameters are intercalated, which greatly increases the flexibility of the system working. Third is that some hardware is substituted by the real-time communication software, which not only decrease the expense of the system and promotes the miniaturization of communication system, but also aggrandizes the agility of the system.

  20. On Real-Time Systems Using Local Area Networks.

    Science.gov (United States)

    1987-07-01

    87-35 July, 1987 CS-TR-1892 On Real - Time Systems Using Local Area Networks*I VShem-Tov Levi Department of Computer Science Satish K. Tripathit...1892 On Real - Time Systems Using Local Area Networks* Shem-Tov Levi Department of Computer Science Satish K. Tripathit Department of Computer Science...constraints and the clock systems that feed the time to real - time systems . A model for real-time system based on LAN communication is presented in

  1. An accurate and rapid continuous wavelet dynamic time warping algorithm for unbalanced global mapping in nanopore sequencing

    KAUST Repository

    Han, Renmin

    2017-12-24

    Long-reads, point-of-care, and PCR-free are the promises brought by nanopore sequencing. Among various steps in nanopore data analysis, the global mapping between the raw electrical current signal sequence and the expected signal sequence from the pore model serves as the key building block to base calling, reads mapping, variant identification, and methylation detection. However, the ultra-long reads of nanopore sequencing and an order of magnitude difference in the sampling speeds of the two sequences make the classical dynamic time warping (DTW) and its variants infeasible to solve the problem. Here, we propose a novel multi-level DTW algorithm, cwDTW, based on continuous wavelet transforms with different scales of the two signal sequences. Our algorithm starts from low-resolution wavelet transforms of the two sequences, such that the transformed sequences are short and have similar sampling rates. Then the peaks and nadirs of the transformed sequences are extracted to form feature sequences with similar lengths, which can be easily mapped by the original DTW. Our algorithm then recursively projects the warping path from a lower-resolution level to a higher-resolution one by building a context-dependent boundary and enabling a constrained search for the warping path in the latter. Comprehensive experiments on two real nanopore datasets on human and on Pandoraea pnomenusa, as well as two benchmark datasets from previous studies, demonstrate the efficiency and effectiveness of the proposed algorithm. In particular, cwDTW can almost always generate warping paths that are very close to the original DTW, which are remarkably more accurate than the state-of-the-art methods including FastDTW and PrunedDTW. Meanwhile, on the real nanopore datasets, cwDTW is about 440 times faster than FastDTW and 3000 times faster than the original DTW. Our program is available at https://github.com/realbigws/cwDTW.

  2. Test bed for real-time image acquisition and processing systems based on FlexRIO, CameraLink, and EPICS

    International Nuclear Information System (INIS)

    Barrera, E.; Ruiz, M.; Sanz, D.; Vega, J.; Castro, R.; Juárez, E.; Salvador, R.

    2014-01-01

    Highlights: • The test bed allows for the validation of real-time image processing techniques. • Offers FPGA (FlexRIO) image processing that does not require CPU intervention. • Is fully compatible with the architecture of the ITER Fast Controllers. • Provides flexibility and easy integration in distributed experiments based on EPICS. - Abstract: Image diagnostics are becoming standard ones in nuclear fusion. At present, images are typically analyzed off-line. However, real-time processing is occasionally required (for instance, hot-spot detection or pattern recognition tasks), which will be the objective for the next generation of fusion devices. In this paper, a test bed for image generation, acquisition, and real-time processing is presented. The proposed solution is built using a Camera Link simulator, a Camera Link frame-grabber, a PXIe chassis, and offers software interface with EPICS. The Camera Link simulator (PCIe card PCIe8 DVa C-Link from Engineering Design Team) generates simulated image data (for example, from video-movies stored in fusion databases) using a Camera Link interface to mimic the frame sequences produced with diagnostic cameras. The Camera Link frame-grabber (FlexRIO Solution from National Instruments) includes a field programmable gate array (FPGA) for image acquisition using a Camera Link interface; the FPGA allows for the codification of ad-hoc image processing algorithms using LabVIEW/FPGA software. The frame grabber is integrated in a PXIe chassis with system architecture similar to that of the ITER Fast Controllers, and the frame grabber provides a software interface with EPICS to program all of its functionalities, capture the images, and perform the required image processing. The use of these four elements allows for the implementation of a test bed system that permits the development and validation of real-time image processing techniques in an architecture that is fully compatible with that of the ITER Fast Controllers

  3. A Matlab based framework for the real-time environment at FTU

    International Nuclear Information System (INIS)

    Vitale, V.; Iannone, F.; Centioli, C.; Pangione, L.; Zaccarian, L.

    2006-01-01

    The Feedback Control System running at FTU has been recently ported from a commercial platform (O.S. LynxOS) to an open-source GNU/Linux-RTAI platform, obtaining significant performance and cost improvements. Thanks to the new platform, more user friendly tools can be developed in order to help the designer with new control laws. A relevant goal within this new framework is to provide a high level environment where new control algorithms can be created then simulated and finally released without minding the code implementation issues. The ideal situation would be to have a dedicated framework which provides all the necessary phases from the design to the commissioning of the new software. This framework should simulate the real-time context and make transparent to the user on the one hand all the issues related to the simulation (e.g. experimental data retrieving) and on the other hand all the aspects (platform, operating system, programming language, network, hardware...) related to the actual environment where the new algorithm will be run. In this paper we report on recent developments, based on The MathWorks' Simulink and Real Time Workshop (RTW) packages, aimed at obtaining the above mentioned environment where a new control law can be easily modelled, simulated with the real time constraints and then translated in the appropriate executable format. Using this tool, the control designer only needs to specify the control law in the Simulink graphical environment. The arising model is then automatically translated in C code, integrated with control system code and simulated in real-time using the data from the FTU data base archive. All the necessary steps to adapt the RTW scripts and the control system code to the new simulation/validation environment will be illustrated in this paper. Moreover we will report on some experimental tests where the actual experiment is compared with the simulations provided by the proposed environment. (author)

  4. Real-time prediction of respiratory motion based on local regression methods

    International Nuclear Information System (INIS)

    Ruan, D; Fessler, J A; Balter, J M

    2007-01-01

    Recent developments in modulation techniques enable conformal delivery of radiation doses to small, localized target volumes. One of the challenges in using these techniques is real-time tracking and predicting target motion, which is necessary to accommodate system latencies. For image-guided-radiotherapy systems, it is also desirable to minimize sampling rates to reduce imaging dose. This study focuses on predicting respiratory motion, which can significantly affect lung tumours. Predicting respiratory motion in real-time is challenging, due to the complexity of breathing patterns and the many sources of variability. We propose a prediction method based on local regression. There are three major ingredients of this approach: (1) forming an augmented state space to capture system dynamics, (2) local regression in the augmented space to train the predictor from previous observation data using semi-periodicity of respiratory motion, (3) local weighting adjustment to incorporate fading temporal correlations. To evaluate prediction accuracy, we computed the root mean square error between predicted tumor motion and its observed location for ten patients. For comparison, we also investigated commonly used predictive methods, namely linear prediction, neural networks and Kalman filtering to the same data. The proposed method reduced the prediction error for all imaging rates and latency lengths, particularly for long prediction lengths

  5. Precipitation Analysis at Fine Time Scales Using Multiple Satellites: Real-time and Research Products and Applications

    Science.gov (United States)

    Adler, Robert; Huffman, George; Bolvin, David; Nelkin, Eric; Curtis, Scott; Pierce, Harold

    2004-01-01

    Quasi-global precipitation analyses at fine time scales (3-hr) are described. TRMM observations (radar and passive microwave) are used to calibrate polar-orbit microwave observations from SSM/I (and other satellites instruments, including AMSR and AMSU) and geosynchronous IR observations. The individual data sets are then merged using a priority order based on quality to form the Multi-satellite Precipitation Analysis (MPA). Raingauge information is used to help constrain the satellite-based estimates over land. The TRMM standard research product (Version 6 3B-42 of the TRMM products) will be available for the entire TRMM period (January 1998-present) in 2004. The real-time version of this merged product has been produced over the past two years and is available on the U.S. TRMM web site (trmm.gsfc.nasa.gov) at 0.25" latitude-longitude resolution over the latitude range from 5O"N-5O0S. Validation of daily totals indicates good results, with limitations noted in mid-latitude winter over land and regions of shallow, orographic precipitation. Various applications of these estimates are described, including: 1) detecting potential floods in near real-time; 2) analyzing Indian Ocean precipitation variations related to the initiation of El Nino; 3) determining characteristics of the African monsoon; and 4) analysis of diurnal variations.

  6. Real-Time Support on IEEE 802.11 Wireless Ad-Hoc Networks: Reality vs. Theory

    Science.gov (United States)

    Kang, Mikyung; Kang, Dong-In; Suh, Jinwoo

    The usable throughput of an IEEE 802.11 system for an application is much less than the raw bandwidth. Although 802.11b has a theoretical maximum of 11Mbps, more than half of the bandwidth is consumed by overhead leaving at most 5Mbps of usable bandwidth. Considering this characteristic, this paper proposes and analyzes a real-time distributed scheduling scheme based on the existing IEEE 802.11 wireless ad-hoc networks, using USC/ISI's Power Aware Sensing Tracking and Analysis (PASTA) hardware platform. We compared the distributed real-time scheduling scheme with the real-time polling scheme to meet deadline, and compared a measured real bandwidth with a theoretical result. The theoretical and experimental results show that the distributed scheduling scheme can guarantee real-time traffic and enhances the performance up to 74% compared with polling scheme.

  7. Real time ultrasonography in obstructive jaundice

    International Nuclear Information System (INIS)

    Cho, Kyung Sik; Kim, Ho Kyun; Sung, Nak Kwan; Kim, Soon Yong

    1982-01-01

    Ultrasonography is a predominantly accurate, relatively simple unique diagnostic method of obstructive jaundice. The ultrasonographic findings of obstructive jaundice are dilated intra- and extrahepatic duct with intraluminal hyper reflective echo or mass in and/ or around the bile duct. The superiority of high resolution real time ultrasonography for the diagnosis of obstructive jaundice is bases on the easy detectability of extra- and intrahepatic bile ducts by its multiple sectional images in a short time, the flexibility of probe and small crystal size. Author evaluated real time sonographic findings 46 obstructive jaundice patients confirmed by surgery or radiographical examinations. The results were: 1. Diameter of extrahepatic duct in obstructive jaundice were varied from normal to 4.0 Cm, mostly 8 to 10 mm in diameter (26%). Degree of dilatation of biliary duct appeared more prominent in cancer patients than other causes of obstruction. 2. The site of obstruction was detected in 85% (39/46) and its common site was common bile duct in 63% (29/46). 3. The diagnostic accuracy of choledocholithiasis and cancer was 82% (22/27) and 44% (4/9), respectively. Diagnostic accuracy of the real time ultrasonography in obstructive jaundice was over all 75% (34/46)

  8. A Sarsa(λ)-based control model for real-time traffic light coordination.

    Science.gov (United States)

    Zhou, Xiaoke; Zhu, Fei; Liu, Quan; Fu, Yuchen; Huang, Wei

    2014-01-01

    Traffic problems often occur due to the traffic demands by the outnumbered vehicles on road. Maximizing traffic flow and minimizing the average waiting time are the goals of intelligent traffic control. Each junction wants to get larger traffic flow. During the course, junctions form a policy of coordination as well as constraints for adjacent junctions to maximize their own interests. A good traffic signal timing policy is helpful to solve the problem. However, as there are so many factors that can affect the traffic control model, it is difficult to find the optimal solution. The disability of traffic light controllers to learn from past experiences caused them to be unable to adaptively fit dynamic changes of traffic flow. Considering dynamic characteristics of the actual traffic environment, reinforcement learning algorithm based traffic control approach can be applied to get optimal scheduling policy. The proposed Sarsa(λ)-based real-time traffic control optimization model can maintain the traffic signal timing policy more effectively. The Sarsa(λ)-based model gains traffic cost of the vehicle, which considers delay time, the number of waiting vehicles, and the integrated saturation from its experiences to learn and determine the optimal actions. The experiment results show an inspiring improvement in traffic control, indicating the proposed model is capable of facilitating real-time dynamic traffic control.

  9. A Sarsa(λ-Based Control Model for Real-Time Traffic Light Coordination

    Directory of Open Access Journals (Sweden)

    Xiaoke Zhou

    2014-01-01

    Full Text Available Traffic problems often occur due to the traffic demands by the outnumbered vehicles on road. Maximizing traffic flow and minimizing the average waiting time are the goals of intelligent traffic control. Each junction wants to get larger traffic flow. During the course, junctions form a policy of coordination as well as constraints for adjacent junctions to maximize their own interests. A good traffic signal timing policy is helpful to solve the problem. However, as there are so many factors that can affect the traffic control model, it is difficult to find the optimal solution. The disability of traffic light controllers to learn from past experiences caused them to be unable to adaptively fit dynamic changes of traffic flow. Considering dynamic characteristics of the actual traffic environment, reinforcement learning algorithm based traffic control approach can be applied to get optimal scheduling policy. The proposed Sarsa(λ-based real-time traffic control optimization model can maintain the traffic signal timing policy more effectively. The Sarsa(λ-based model gains traffic cost of the vehicle, which considers delay time, the number of waiting vehicles, and the integrated saturation from its experiences to learn and determine the optimal actions. The experiment results show an inspiring improvement in traffic control, indicating the proposed model is capable of facilitating real-time dynamic traffic control.

  10. GPU-based real-time trinocular stereo vision

    Science.gov (United States)

    Yao, Yuanbin; Linton, R. J.; Padir, Taskin

    2013-01-01

    Most stereovision applications are binocular which uses information from a 2-camera array to perform stereo matching and compute the depth image. Trinocular stereovision with a 3-camera array has been proved to provide higher accuracy in stereo matching which could benefit applications like distance finding, object recognition, and detection. This paper presents a real-time stereovision algorithm implemented on a GPGPU (General-purpose graphics processing unit) using a trinocular stereovision camera array. Algorithm employs a winner-take-all method applied to perform fusion of disparities in different directions following various image processing techniques to obtain the depth information. The goal of the algorithm is to achieve real-time processing speed with the help of a GPGPU involving the use of Open Source Computer Vision Library (OpenCV) in C++ and NVidia CUDA GPGPU Solution. The results are compared in accuracy and speed to verify the improvement.

  11. Design-time performance analysis of component-based real-time systems

    NARCIS (Netherlands)

    Bondarev, E.

    2009-01-01

    In current real-time systems, performance metrics are one of the most challenging properties to specify, predict and measure. Performance properties depend on various factors, like environmental context, load profile, middleware, operating system, hardware platform and sharing of internal resources.

  12. Real-time gigabit DMT transmission over plastic optical fibre

    NARCIS (Netherlands)

    Lee, S.C.J.; Breyer, F.; Cárdenas, D.; Randel, S.; Koonen, A.M.J.

    2009-01-01

    For the first time, a real-time 1.25 Gbit/s discrete multitone (DMT) transmitter implemented in a field-programmable gate array is demonstrated for use in low-cost, standard 1 mm step-index plastic optical fibre applications based on a commercial resonant-cavity LED and a large-diameter

  13. A real-time camera calibration system based on OpenCV

    Science.gov (United States)

    Zhang, Hui; Wang, Hua; Guo, Huinan; Ren, Long; Zhou, Zuofeng

    2015-07-01

    Camera calibration is one of the essential steps in the computer vision research. This paper describes a real-time OpenCV based camera calibration system, and developed and implemented in the VS2008 environment. Experimental results prove that the system to achieve a simple and fast camera calibration, compared with MATLAB, higher precision and does not need manual intervention, and can be widely used in various computer vision system.

  14. Real time quantitative phase microscopy based on single-shot transport of intensity equation (ssTIE) method

    Science.gov (United States)

    Yu, Wei; Tian, Xiaolin; He, Xiaoliang; Song, Xiaojun; Xue, Liang; Liu, Cheng; Wang, Shouyu

    2016-08-01

    Microscopy based on transport of intensity equation provides quantitative phase distributions which opens another perspective for cellular observations. However, it requires multi-focal image capturing while mechanical and electrical scanning limits its real time capacity in sample detections. Here, in order to break through this restriction, real time quantitative phase microscopy based on single-shot transport of the intensity equation method is proposed. A programmed phase mask is designed to realize simultaneous multi-focal image recording without any scanning; thus, phase distributions can be quantitatively retrieved in real time. It is believed the proposed method can be potentially applied in various biological and medical applications, especially for live cell imaging.

  15. Real-time communication for distributed plasma control systems

    Energy Technology Data Exchange (ETDEWEB)

    Luchetta, A. [Consorzio RFX, Associazione Euratom-ENEA sulla Fusione, Corso Stati Uniti 4, Padova 35127 (Italy)], E-mail: adriano.luchetta@igi.cnr.it; Barbalace, A.; Manduchi, G.; Soppelsa, A.; Taliercio, C. [Consorzio RFX, Associazione Euratom-ENEA sulla Fusione, Corso Stati Uniti 4, Padova 35127 (Italy)

    2008-04-15

    Real-time control applications will benefit in the near future from the enhanced performance provided by multi-core processor architectures. Nevertheless real-time communication will continue to be critical in distributed plasma control systems where the plant under control typically is distributed over a wide area. At RFX-mod real-time communication is crucial for hard real-time plasma control, due to the distributed architecture of the system, which consists of several VMEbus stations. The system runs under VxWorks and uses Gigabit Ethernet for sub-millisecond real-time communication. To optimize communication in the system, a set of detailed measurements has been carried out on the target platforms (Motorola MVME5100 and MVME5500) using either the VxWorks User Datagram Protocol (UDP) stack or raw communication based on the data link layer. Measurements have been carried out also under Linux, using its UDP stack or, in alternative, RTnet, an open source hard real-time network protocol stack. RTnet runs under Xenomai or RTAI, two popular real-time extensions based on the Linux kernel. The paper reports on the measurements carried out and compares the results, showing that the performance obtained by using open source code is suitable for sub-millisecond real-time communication in plasma control.

  16. Measurement of solute proton spin-lattice relaxation times in water using the 1,3,3,1 sequence

    International Nuclear Information System (INIS)

    Sankar, S.S.; Mole, P.A.; Coulson, R.L.

    1986-01-01

    1 H NMR spin-lattice relaxation times (T1) of the N-CH3 proton resonances of phosphocreatine (PCr) and creatine (Cr) in water solutions were obtained using the 1,3,3,1 pulse sequence. These T1 values were equivalent to those obtained in D 2 O and water using either the conventional inversion-recovery experiment or the 1,3,3,1 pulse sequence. Thus, the 1,3,3,1 sequence of proton NMR can provide an independent means along with phosphorous NMR for assess PCr and for the study of the creatine kinase reaction (PCr + ADP in equilibrium ATP + Cr) in aqueous solutions and perhaps in biological preparations

  17. Laboratory-based surveillance of pertussis using multitarget real-time PCR in Japan: evidence for Bordetella pertussis infection in preteens and teens

    Directory of Open Access Journals (Sweden)

    K. Kamachi

    2015-11-01

    Full Text Available Between January 2013 and December 2014, we conducted laboratory-based surveillance of pertussis using multitarget real-time PCR, which discriminates among Bordetella pertussis, Bordetella parapertussis, Bordetella holmesii and Mycoplasma pneumoniae. Of 355 patients clinically diagnosed with pertussis in Japan, B. pertussis, B. parapertussis and M. pneumoniae were detected in 26% (n = 94, 1.1% (n = 4 and 0.6% (n = 2, respectively, whereas B. holmesii was not detected. It was confirmed that B. parapertussis and M. pneumoniae are also responsible for causing pertussis-like illness. The positive rates for B. pertussis ranged from 16% to 49%, depending on age. Infants aged ≤ 3 months had the highest rate (49%, and children aged 1 to 4 years had the lowest rate (16%, p < 0.01 vs. infants aged ≤ 3 months. Persons aged 10 to 14 and 15 to 19 years also showed high positive rates (29% each; the positive rates were not statistically significant compared with that of infants aged ≤ 3 months (p ≥ 0.06. Our observations indicate that similar to infants, preteens and teens are at high risk of B. pertussis infection.

  18. Real-time frequency-to-time mapping based on spectrally-discrete chromatic dispersion.

    Science.gov (United States)

    Dai, Yitang; Li, Jilong; Zhang, Ziping; Yin, Feifei; Li, Wangzhe; Xu, Kun

    2017-07-10

    Traditional photonics-assisted real-time Fourier transform (RTFT) usually suffers from limited chromatic dispersion, huge volume, or large time delay and attendant loss. In this paper we propose frequency-to-time mapping (FTM) by spectrally-discrete dispersion to increase frequency sensitivity greatly. The novel media has periodic ON/OFF intensity frequency response while quadratic phase distribution along disconnected channels, which de-chirps matched optical input to repeated Fourier-transform-limited output. Real-time FTM is then obtained within each period. Since only discrete phase retardation rather than continuously-changed true time delay is required, huge equivalent dispersion is then available by compact device. Such FTM is theoretically analyzed, and implementation by cascaded optical ring resonators is proposed. After a numerical example, our theory is demonstrated by a proof-of-concept experiment, where a single loop containing 0.5-meters-long fiber is used. FTM under 400-MHz unambiguous bandwidth and 25-MHz resolution is reported. Highly-sensitive and linear mapping is achieved with 6.25 ps/MHz, equivalent to ~4.6 × 10 4 -km standard single mode fiber. Extended instantaneous bandwidth is expected by ring cascading. Our proposal may provide a promising method for real-time, low-latency Fourier transform.

  19. GENETIC DIFFERENTIATION AMONG POPULATIONS OF Chromobotia macracanthus BLEEKER FROM SUMATRA AND KALIMANTAN BASED ON SEQUENCING GENE OF MTDNA CYTOCHROME B AND NUCLEUS DNA RAG2

    Directory of Open Access Journals (Sweden)

    Sudarto Sudarto

    2008-12-01

    Full Text Available Research on genetic differentiation among populations of Chromobotia macracanthus Bleeker from Sumatra, based on sequencing gene of mtDNA Cytochrome b and nucleus DNA RAG2 has been done. The objectives of the study were to obtain the representation of genetic differentiation among population of clown loach fishes or botia (Chromobotia macracanthus from Sumatra and Kalimantan and to estimate the time divergence of both population group of botia. Samples of botia population were taken from 3 rivers in Sumatra namely Batanghari, Musi, and Tulang Bawang and one river from Kalimantan namely Kapuas. The genetic analysis was based on the sequencing of mtDNA Cytochrome b and nucleus DNA RAG2. The statistical analysis was done by using APE package on R language. The parameters observed were: nucleotide diversity, genetic distance, and neighbor-joining tree. The result showed that the highest nucleotide diversity was fish population of Musi, while the other two populations, Tulang Bawang (Sumatra and Kapuas (Kalimantan, were considered as the lowest genetic diversity especially based on nucleus DNA RAG2 sequencing. Based on mtDNA Cytochrome-b sequencing, the most distinct population among those populations based on genetic distance were fish populations of Musi and Kapuas. According to the result of neighbor-joining tree analysis, the populations of botia were classified into two groups namely group of Sumatra and group of Kalimantan. The estimation of time divergence among group of population of Sumatra and Kalimantan based on mtDNA Cytochrome b was about 9.25—9.46 million years (Miocene era. The high genetic differences between groups of Sumatra and Kalimantan suggested that the effort of restocking botia from Sumatra into Kalimantan has to be done carefully, because it may disturb the gene originality of both botia populations.

  20. SMA Diagnosis: Detection of SMN1 Deletion with Real-Time mCOP-PCR System Using Fresh Blood DNA.

    Science.gov (United States)

    Niba, Emma Tabe Eko; Ar Rochmah, Mawaddah; Harahap, Nur Imma Fatimah; Awano, Hiroyuki; Morioka, Ichiro; Iijima, Kazumoto; Saito, Toshio; Saito, Kayoko; Takeuchi, Atsuko; Lai, Poh San; Bouike, Yoshihiro; Nishio, Hisahide; Shinohara, Masakazu

    2017-12-18

    Spinal muscular atrophy (SMA) is one of the most common autosomal recessive disorders. The symptoms are caused by defects of lower motor neurons in the spinal cord. More than 95% of SMA patients are homozygous for survival motor neuron 1 (SMN1) deletion. We previously developed a screening system for SMN1 deletion based on a modified competitive oligonucleotide priming-PCR (mCOP-PCR) technique using dried blood spot (DBS) on filter paper. This system is convenient for mass screening in the large population and/or first-tier diagnostic method of the patients in the remote areas. However, this system was still time-consuming and effort-taking, because it required pre-amplification procedure to avoid non-specific amplification and gel-electrophoresis to detect the presence or absence of SMN1 deletion. When the fresh blood samples are used instead of DBS, or when the gel-electrophoresis is replaced by real-time PCR, we may have a simpler and more rapid diagnostic method for SMA. To establish a simpler and more rapid diagnostic method of SMN1 deletion using fresh blood DNA. DNA samples extracted from fresh blood and stored at 4 ℃ for 1 month. The samples were assayed using a real-time mCOP-PCR system without pre-amplification procedures. DNA samples had already been genotyped by PCR-restriction fragment length polymorphism (PCR-RFLP), showing the presence or absence of SMN1 exon 7. The DNA samples were directly subjected to the mCOP-PCR step. The amplification of mCOP-PCR was monitored in a real-time PCR apparatus. The genotyping results of the real-time mCOP-PCR system using fresh blood DNA were completely matched with those of PCR-RFLP. In this real-time mCOP-PCR system using fresh blood-DNA, it took only four hours from extraction of DNA to detection of the presence or absence of SMN1 deletion, while it took more than 12 hours in PCR-RFLP. Our real-time mCOP-PCR system using fresh blood DNA was rapid and accurate, suggesting it may be useful for the first

  1. Real-time electrocardiogram transmission from Mount Everest during continued ascent.

    Science.gov (United States)

    Kao, Wei-Fong; Huang, Jyh-How; Kuo, Terry B J; Chang, Po-Lun; Chang, Wen-Chen; Chan, Kuo-Hung; Liu, Wen-Hsiung; Wang, Shih-Hao; Su, Tzu-Yao; Chiang, Hsiu-chen; Chen, Jin-Jong

    2013-01-01

    The feasibility of a real-time electrocardiogram (ECG) transmission via satellite phone from Mount Everest to determine a climber's suitability for continued ascent was examined. Four Taiwanese climbers were enrolled in the 2009 Mount Everest summit program. Physiological measurements were taken at base camp (5300 m), camp 2 (6400 m), camp 3 (7100 m), and camp 4 (7950 m) 1 hour after arrival and following a 10 minute rest period. A total of 3 out of 4 climbers were able to summit Mount Everest successfully. Overall, ECG and global positioning system (GPS) coordinates of climbers were transmitted in real-time via satellite phone successfully from base camp, camp 2, camp 3, and camp 4. At each camp, Resting Heart Rate (RHR) was transmitted and recorded: base camp (54-113 bpm), camp 2 (94-130 bpm), camp 3 (98-115 bpm), and camp 4 (93-111 bpm). Real-time ECG and GPS coordinate transmission via satellite phone is feasible for climbers on Mount Everest. Real-time RHR data can be used to evaluate a climber's physiological capacity to continue an ascent and to summit.

  2. Parallel algorithm of real-time infrared image restoration based on total variation theory

    Science.gov (United States)

    Zhu, Ran; Li, Miao; Long, Yunli; Zeng, Yaoyuan; An, Wei

    2015-10-01

    Image restoration is a necessary preprocessing step for infrared remote sensing applications. Traditional methods allow us to remove the noise but penalize too much the gradients corresponding to edges. Image restoration techniques based on variational approaches can solve this over-smoothing problem for the merits of their well-defined mathematical modeling of the restore procedure. The total variation (TV) of infrared image is introduced as a L1 regularization term added to the objective energy functional. It converts the restoration process to an optimization problem of functional involving a fidelity term to the image data plus a regularization term. Infrared image restoration technology with TV-L1 model exploits the remote sensing data obtained sufficiently and preserves information at edges caused by clouds. Numerical implementation algorithm is presented in detail. Analysis indicates that the structure of this algorithm can be easily implemented in parallelization. Therefore a parallel implementation of the TV-L1 filter based on multicore architecture with shared memory is proposed for infrared real-time remote sensing systems. Massive computation of image data is performed in parallel by cooperating threads running simultaneously on multiple cores. Several groups of synthetic infrared image data are used to validate the feasibility and effectiveness of the proposed parallel algorithm. Quantitative analysis of measuring the restored image quality compared to input image is presented. Experiment results show that the TV-L1 filter can restore the varying background image reasonably, and that its performance can achieve the requirement of real-time image processing.

  3. ClockWork: a Real-Time Feasibility Analysis Tool

    NARCIS (Netherlands)

    Jansen, P.G.; Hanssen, F.T.Y.; Mullender, Sape J.

    ClockWork shows that we can improve the flexibility and efficiency of real-time kernels. We do this by proposing methods for scheduling based on so-called Real-Time Transactions. ClockWork uses Real-Time Transactions which allow scheduling decisions to be taken by the system. A programmer does not

  4. A standard curve based method for relative real time PCR data processing

    Directory of Open Access Journals (Sweden)

    Krause Andreas

    2005-03-01

    Full Text Available Abstract Background Currently real time PCR is the most precise method by which to measure gene expression. The method generates a large amount of raw numerical data and processing may notably influence final results. The data processing is based either on standard curves or on PCR efficiency assessment. At the moment, the PCR efficiency approach is preferred in relative PCR whilst the standard curve is often used for absolute PCR. However, there are no barriers to employ standard curves for relative PCR. This article provides an implementation of the standard curve method and discusses its advantages and limitations in relative real time PCR. Results We designed a procedure for data processing in relative real time PCR. The procedure completely avoids PCR efficiency assessment, minimizes operator involvement and provides a statistical assessment of intra-assay variation. The procedure includes the following steps. (I Noise is filtered from raw fluorescence readings by smoothing, baseline subtraction and amplitude normalization. (II The optimal threshold is selected automatically from regression parameters of the standard curve. (III Crossing points (CPs are derived directly from coordinates of points where the threshold line crosses fluorescence plots obtained after the noise filtering. (IV The means and their variances are calculated for CPs in PCR replicas. (V The final results are derived from the CPs' means. The CPs' variances are traced to results by the law of error propagation. A detailed description and analysis of this data processing is provided. The limitations associated with the use of parametric statistical methods and amplitude normalization are specifically analyzed and found fit to the routine laboratory practice. Different options are discussed for aggregation of data obtained from multiple reference genes. Conclusion A standard curve based procedure for PCR data processing has been compiled and validated. It illustrates that

  5. A FPGA-based Fast Converging Digital Adaptive Filter for Real-time RFI Mitigation on Ground Based Radio Telescopes

    Science.gov (United States)

    Finger, R.; Curotto, F.; Fuentes, R.; Duan, R.; Bronfman, L.; Li, D.

    2018-02-01

    Radio Frequency Interference (RFI) is a growing concern in the radio astronomy community. Single-dish telescopes are particularly susceptible to RFI. Several methods have been developed to cope with RF-polluted environments, based on flagging, excision, and real-time blanking, among others. All these methods produce some degree of data loss or require assumptions to be made on the astronomical signal. We report the development of a real-time, digital adaptive filter implemented on a Field Programmable Gate Array (FPGA) capable of processing 4096 spectral channels in a 1 GHz of instantaneous bandwidth. The filter is able to cancel a broad range of interference signals and quickly adapt to changes on the RFI source, minimizing the data loss without any assumption on the astronomical or interfering signal properties. The speed of convergence (for a decrease to a 1%) was measured to be 208.1 μs for a broadband noise-like RFI signal and 125.5 μs for a multiple-carrier RFI signal recorded at the FAST radio telescope.

  6. Isolation and structure of a cDNA encoding the B1 (CD20) cell-surface antigen of human B lymphocytes

    International Nuclear Information System (INIS)

    Tender, T.F.; Streuli, M.; Schlossman, S.F.; Saito, H.

    1988-01-01

    The B1 (CD20) molecule is a M/sub r/ 33,000 phosphoprotein on the surface of human B lymphocytes that may serve a central role in the homoral immune response by regulating B-cell proliferation and differentiation. In this report, a cDNA clone that encodes the B1 molecule was isolated and the amino acid sequence of B1 was determined. B-cell-specific cDNA clones were selected from a human tonsillar cDNA library by differential hybridization with labeled cDNA derived from either size-fractionated B-cell mRNA or size-fractionated T-cell mRNA. Of the 261 cDNA clones isolated, 3 cross-hybridizing cDNA clones were chosen as potential candidates for encoding B1 based on their selective hybridization to RNA from B1-positive cell lines. The longest clone, pB1-21, contained a 2.8-kilobase insert with an 891-base-pair open reading frame that encodes a protein of 33 kDa. mRNA synthesized from the pB1-21 cDNA clone in vitro was translated into a protein of the same apparent molecular weight as B1. Limited proteinase digestion of the pB1-21 translation product and B1 generated peptides of the same sizes, indicating that the pB1-21 cDNA encodes the B1 molecule. Gel blot analysis indicated that pB1-21 hybridized with two mRNA species of 2.8 and 3.4 kilobases only in B1-positive cell lines. The amino acid sequence deduced from the pB1-21 nucleotide sequence apparently lacks a signal sequence and contains three extensive hydrophobic regions. The deduced B1 amino acid sequence shows no significant homology with other known patients

  7. Wireless Sensor Network Metrics for Real-Time Systems

    Science.gov (United States)

    2009-05-20

    Wireless Sensor Network Metrics for Real-Time Systems Phoebus Wei-Chih Chen Electrical Engineering and Computer Sciences University of California at...3. DATES COVERED 00-00-2009 to 00-00-2009 4. TITLE AND SUBTITLE Wireless Sensor Network Metrics for Real-Time Systems 5a. CONTRACT NUMBER 5b... wireless sensor networks (WSNs) is moving from studies of WSNs in isolation toward studies where the WSN is treated as a component of a larger system

  8. Real Time Linux - The RTOS for Astronomy?

    Science.gov (United States)

    Daly, P. N.

    The BoF was attended by about 30 participants and a free CD of real time Linux-based upon RedHat 5.2-was available. There was a detailed presentation on the nature of real time Linux and the variants for hard real time: New Mexico Tech's RTL and DIAPM's RTAI. Comparison tables between standard Linux and real time Linux responses to time interval generation and interrupt response latency were presented (see elsewhere in these proceedings). The present recommendations are to use RTL for UP machines running the 2.0.x kernels and RTAI for SMP machines running the 2.2.x kernel. Support, both academically and commercially, is available. Some known limitations were presented and the solutions reported e.g., debugging and hardware support. The features of RTAI (scheduler, fifos, shared memory, semaphores, message queues and RPCs) were described. Typical performance statistics were presented: Pentium-based oneshot tasks running > 30kHz, 486-based oneshot tasks running at ~ 10 kHz, periodic timer tasks running in excess of 90 kHz with average zero jitter peaking to ~ 13 mus (UP) and ~ 30 mus (SMP). Some detail on kernel module programming, including coding examples, were presented showing a typical data acquisition system generating simulated (random) data writing to a shared memory buffer and a fifo buffer to communicate between real time Linux and user space. All coding examples were complete and tested under RTAI v0.6 and the 2.2.12 kernel. Finally, arguments were raised in support of real time Linux: it's open source, free under GPL, enables rapid prototyping, has good support and the ability to have a fully functioning workstation capable of co-existing hard real time performance. The counter weight-the negatives-of lack of platforms (x86 and PowerPC only at present), lack of board support, promiscuous root access and the danger of ignorance of real time programming issues were also discussed. See ftp://orion.tuc.noao.edu/pub/pnd/rtlbof.tgz for the StarOffice overheads

  9. Real-time image processing and control interface for remote operation of a microscope

    Science.gov (United States)

    Leng, Hesong; Wilder, Joseph

    1999-08-01

    A real-time image processing and control interface for remote operation of a microscope is presented in this paper. The system has achieved real-time color image display for 640 X 480 pixel images. Multi-resolution image representation can be provided for efficient transmission through the network. Through the control interface the computer can communicate with the programmable microscope via the RS232 serial ports. By choosing one of three scanning patterns, a sequence of images can be saved as BMP or PGM files to record information on an entire microscope slide. The system will be used by medical and graduate students at the University of Medicine and Dentistry of New Jersey for distance learning. It can be used in many network-based telepathology applications.

  10. A Tree Based Broadcast Scheme for (m, k-firm Real-Time Stream in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    HoSung Park

    2017-11-01

    Full Text Available Recently, various unicast routing protocols have been proposed to deliver measured data from the sensor node to the sink node within the predetermined deadline in wireless sensor networks. In parallel with their approaches, some applications demand the specific service, which is based on broadcast to all nodes within the deadline, the feasible real-time traffic model and improvements in energy efficiency. However, current protocols based on either flooding or one-to-one unicast cannot meet the above requirements entirely. Moreover, as far as the authors know, there is no study for the real-time broadcast protocol to support the application-specific traffic model in WSN yet. Based on the above analysis, in this paper, we propose a new (m, k-firm-based Real-time Broadcast Protocol (FRBP by constructing a broadcast tree to satisfy the (m, k-firm, which is applicable to the real-time model in resource-constrained WSNs. The broadcast tree in FRBP is constructed by the distance-based priority scheme, whereas energy efficiency is improved by selecting as few as nodes on a tree possible. To overcome the unstable network environment, the recovery scheme invokes rapid partial tree reconstruction in order to designate another node as the parent on a tree according to the measured (m, k-firm real-time condition and local states monitoring. Finally, simulation results are given to demonstrate the superiority of FRBP compared to the existing schemes in terms of average deadline missing ratio, average throughput and energy consumption.

  11. Real-time object-oriented programming: studies and proposals

    International Nuclear Information System (INIS)

    Fouquier, Gilles

    1996-01-01

    This thesis contributes to the introduction of real-time features in object-oriented programming. Object-oriented programming favours modularity and reusability. Therefore, its application to real-time introduces many theoretical and conceptual problems. To deal with these problems, a new real-time object-oriented programming model is presented. This model is based on the active object model which allows concurrence and maintains the encapsulation property. The real-time aspect is treated by replacing the concept of task by the concept of method processing and by associating a real-time constraint to each message (priority or deadline). The set of all the running methods is scheduled. This model, called ATOME, contains several sub-models to deal with the usual concurrence control integrating their priority and deadline processing. The classical HPF and EDF scheduling avoid priority or deadline inversion. This model and its variants are new proposals to program real-time applications in the object-oriented way, therefore easing reusability and code writing. The feasibility of this approach is demonstrated by extending and existing active object-based language to real-time, in using the rules defined in the ATOME model. (author) [fr

  12. Real-time object tracking system based on field-programmable gate array and convolution neural network

    Directory of Open Access Journals (Sweden)

    Congyi Lyu

    2016-12-01

    Full Text Available Vision-based object tracking has lots of applications in robotics, like surveillance, navigation, motion capturing, and so on. However, the existing object tracking systems still suffer from the challenging problem of high computation consumption in the image processing algorithms. The problem can prevent current systems from being used in many robotic applications which have limitations of payload and power, for example, micro air vehicles. In these applications, the central processing unit- or graphics processing unit-based computers are not good choices due to the high weight and power consumption. To address the problem, this article proposed a real-time object tracking system based on field-programmable gate array, convolution neural network, and visual servo technology. The time-consuming image processing algorithms, such as distortion correction, color space convertor, and Sobel edge, Harris corner features detector, and convolution neural network were redesigned using the programmable gates in field-programmable gate array. Based on the field-programmable gate array-based image processing, an image-based visual servo controller was designed to drive a two degree of freedom manipulator to track the target in real time. Finally, experiments on the proposed system were performed to illustrate the effectiveness of the real-time object tracking system.

  13. COLD START CHARACTERISTICS STUDY BASED ON REAL TIME NO EMISSIONS IN AN LPG SI ENGINE

    Directory of Open Access Journals (Sweden)

    Yingli Zu

    2010-01-01

    Full Text Available Normally, cylinder pressure was used as a criterion of combustion occurrence, while in some conditions, it may be unreliable when identifying lean mixture combustion. This is particularly important for fuels like liquefied petroleum gas, which has good capacity for lean combustion. In this study, a fast response NO detector, based on the chemiluminescence method, was used to measure real time NO emissions in order to evaluate the technique as a criterion for establishing combustion occurrence. Test results show that real time NO emissions can be used to identify the cylinder combustion and misfire occurrence during engine cranking, and real time NO emissions can be used to understand the combustion and misfire occurrence. Real time NO emissions mostly happened in first several cycles during cold start, and NO emissions increased with the spark timing advancing.

  14. Advanced Map For Real-Time Process Control

    Science.gov (United States)

    Shiobara, Yasuhisa; Matsudaira, Takayuki; Sashida, Yoshio; Chikuma, Makoto

    1987-10-01

    MAP, a communications protocol for factory automation proposed by General Motors [1], has been accepted by users throughout the world and is rapidly becoming a user standard. In fact, it is now a LAN standard for factory automation. MAP is intended to interconnect different devices, such as computers and programmable devices, made by different manufacturers, enabling them to exchange information. It is based on the OSI intercomputer com-munications protocol standard under development by the ISO. With progress and standardization, MAP is being investigated for application to process control fields other than factory automation [2]. The transmission response time of the network system and centralized management of data exchanged with various devices for distributed control are import-ant in the case of a real-time process control with programmable controllers, computers, and instruments connected to a LAN system. MAP/EPA and MINI MAP aim at reduced overhead in protocol processing and enhanced transmission response. If applied to real-time process control, a protocol based on point-to-point and request-response transactions limits throughput and transmission response. This paper describes an advanced MAP LAN system applied to real-time process control by adding a new data transmission control that performs multicasting communication voluntarily and periodically in the priority order of data to be exchanged.

  15. Novel Advancements in Internet-Based Real-Time Data Technologies

    Science.gov (United States)

    Myers, Gerry; Welch, Clara L. (Technical Monitor)

    2002-01-01

    AZ Technology has been working with NASA MSFC (Marshall Space Flight Center) to find ways to make it easier for remote experimenters (RPI's) to monitor their International Space Station (ISS) payloads in real-time from anywhere using standard/familiar devices. That effort resulted in a product called 'EZStream' which is in use on several ISS-related projects. Although the initial implementation is geared toward ISS, the architecture and lessons learned are applicable to other space-related programs. This paper begins with a brief history on why Internet-based real-time data is important and where EZStream or products like it fit in the flow of data from orbit to experimenter/researcher. A high-level architecture is then presented along with explanations of the components used. A combination of commercial-off-the-shelf (COTS), Open Source, and custom components are discussed. The use of standard protocols is shown along with some details on how data flows between server and client. Some examples are presented to illustrate how a system like EZStream can be used in real world applications and how care was taken to make the end-user experience as painless as possible. A system such as EZStream has potential in the commercial (non-ISS) arena and some possibilities are presented. During the development and fielding of EZStream, a lot was learned. Good and not so good decisions were made. Some of the major lessons learned will be shared. The development of EZStream is continuing and the future of EZStream will be discussed to shed some light over the technological horizon.

  16. Performance Improvement of Real-Time System for Plasma Control in RFX-mod

    International Nuclear Information System (INIS)

    Luchetta, A.; Manduchi, G.; Soppelsa, A.; Taliercio, C.

    2006-01-01

    The real-time system for plasma control has been used routinely in RFX-mod since commissioning (mid 2005). It is based on a modular hardware/software infrastructure, currently including 7 VME stations, capable of fulfilling the tight system requirements in terms of input/output channels (> 700 / > 250), real-time data flow (> 2 Mbyte/s), computation capability (> 1 GFLOP/s per station), and real-time constraints (application cycle times rd EPS Conf. on Plasma Physics, Rome Italy, June 19 - 23 2006]. The high flexibility of the system has stimulated the development of a large number of control schemes with progressively increasing requests in terms of computation complexity and real-time data flow, demanding, at the same time, strict control on cycle times and system latency. Even though careful optimisation of algorithm implementation and real-time data transmission have been performed, allowing to keep pace, so far, with the increased control requirements, future developments require to evolve the current technology, retaining the basic architecture and concepts. Two system enhancements are envisaged in the near future. The 500 MHz PowerPC-based Single Board Computer currently in use will be substituted with the 1 GHz version, whereas the real-time communication system will increase in bandwidth from 100 Mbit/s to 1 Gbit/s. These improvements will surely enhance the overall system performance, even if it is not possible to quantify a priori the exact performance boost, since other components may limit the performance in the new configuration. The paper reports in detail on the analysis of the bottlenecks of the current architecture. Based on measurements carried out in laboratory, it presents the results achieved with the proposed enhancements in terms of real-time data throughput, cycle times and latency. The paper analyses in detail the effects of the increased computing power on the components of the control system and of the improved bandwidth in real-time

  17. Real-time video compressing under DSP/BIOS

    Science.gov (United States)

    Chen, Qiu-ping; Li, Gui-ju

    2009-10-01

    This paper presents real-time MPEG-4 Simple Profile video compressing based on the DSP processor. The programming framework of video compressing is constructed using TMS320C6416 Microprocessor, TDS510 simulator and PC. It uses embedded real-time operating system DSP/BIOS and the API functions to build periodic function, tasks and interruptions etcs. Realize real-time video compressing. To the questions of data transferring among the system. Based on the architecture of the C64x DSP, utilized double buffer switched and EDMA data transfer controller to transit data from external memory to internal, and realize data transition and processing at the same time; the architecture level optimizations are used to improve software pipeline. The system used DSP/BIOS to realize multi-thread scheduling. The whole system realizes high speed transition of a great deal of data. Experimental results show the encoder can realize real-time encoding of 768*576, 25 frame/s video images.

  18. Assessment of surface solar irradiance derived from real-time modelling techniques and verification with ground-based measurements

    Science.gov (United States)

    Kosmopoulos, Panagiotis G.; Kazadzis, Stelios; Taylor, Michael; Raptis, Panagiotis I.; Keramitsoglou, Iphigenia; Kiranoudis, Chris; Bais, Alkiviadis F.

    2018-02-01

    This study focuses on the assessment of surface solar radiation (SSR) based on operational neural network (NN) and multi-regression function (MRF) modelling techniques that produce instantaneous (in less than 1 min) outputs. Using real-time cloud and aerosol optical properties inputs from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on board the Meteosat Second Generation (MSG) satellite and the Copernicus Atmosphere Monitoring Service (CAMS), respectively, these models are capable of calculating SSR in high resolution (1 nm, 0.05°, 15 min) that can be used for spectrally integrated irradiance maps, databases and various applications related to energy exploitation. The real-time models are validated against ground-based measurements of the Baseline Surface Radiation Network (BSRN) in a temporal range varying from 15 min to monthly means, while a sensitivity analysis of the cloud and aerosol effects on SSR is performed to ensure reliability under different sky and climatological conditions. The simulated outputs, compared to their common training dataset created by the radiative transfer model (RTM) libRadtran, showed median error values in the range -15 to 15 % for the NN that produces spectral irradiances (NNS), 5-6 % underestimation for the integrated NN and close to zero errors for the MRF technique. The verification against BSRN revealed that the real-time calculation uncertainty ranges from -100 to 40 and -20 to 20 W m-2, for the 15 min and monthly mean global horizontal irradiance (GHI) averages, respectively, while the accuracy of the input parameters, in terms of aerosol and cloud optical thickness (AOD and COT), and their impact on GHI, was of the order of 10 % as compared to the ground-based measurements. The proposed system aims to be utilized through studies and real-time applications which are related to solar energy production planning and use.

  19. MINIX4RT: a real-time operating system based on MINIX

    OpenAIRE

    Pessolani, Pablo Andrés

    2006-01-01

    Tanenbaum's MINIX Operating System was extended with a Real-Time microkernel and services to conform MINIX4RT, a Real-Time Operating System for academic uses that includes more flexible Interprocess Communications facilities supporting basic priority inheritance protocol, a fixed priority scheduler, timer and event driven interrupt management, statistics and Real-Time metrics gathering keeping backward compatibility with standard MINIX versions. Facultad de Informática

  20. The PWI [plutonium waste incinerator] expert system: Real time, PC-based process analysis

    International Nuclear Information System (INIS)

    Brown, K.G.; Smith, F.G.

    1987-01-01

    A real time, microcomputer-based expert system is being developed for a prototype plutonium waste incinerator (PWI) process at Du Pont's Savannah River Laboratory. The expert system will diagnose instrumentation problems, assist operator training, serve as a repository for engineering knowledge about the process, and provide continuous operation and performance information. A set of necessary operational criteria was developed from process and engineering constraints; it was used to define hardware and software needs. The most important criterion is operating speed because the analysis operates in real time. TURBO PROLOG by Borland International was selected. The analysis system is divided into three sections: the user-system interface, the inference engine and rule base, and the files representing the blackboard information center