Energy harvesting efficiency of piezoelectric flags in axial flows
Michelin, Sebastien
2012-01-01
Self-sustained oscillations resulting from fluid-solid instabilities, such as the flutter of a flexible flag in axial flow, can be used to harvest energy if one is able to convert the solid energy into electricity. Here, this is achieved using piezoelectric patches attached to the surface of the flag that convert the solid deformation into an electric current powering purely resistive output circuits. Nonlinear numerical simulations in the slender-body limit, based on an explicit description of the coupling between the fluid-solid and electric systems, are used to determine the harvesting efficiency of the system, namely the fraction of the flow kinetic energy flux effectively used to power the output circuit, and its evolution with the system's parameters. The role of the tuning between the characteristic frequencies of the fluid-solid and electric systems is emphasized, as well as the critical impact of the piezoelectric coupling intensity. High fluid loading, classically associated with destabilization by ...
Energy Dissipation in Sandwich Structures During Axial Compression
Urban, Jesper
2002-01-01
The purpose of this paper is to investigate the energy dissipation in sandwich structures during axial crushing. Axial crushing tests on six sandwich elements are described. The sandwich elements consist of a polyurethane core and E-glass/Polyester skin. The elements compare to full......-scale structural elements in fast sandwich vessels. Two of the crushing tests are simulated with the explicit finite element software LS-DYNA3D. The key results are load-end shortening relationship and the energy dissipation. Good agreement between the numerical predictions and the experiments are obtained. A...... simple analytical model for the energy dissipation during axial crushing is proposed. Keywords: Sandwich, Energy Dissipation, Axial Crushing, LS-DYNA, Analytical crushing models, Crashworthiness....
Dimensional enhancement of kinetic energies
Schleich, W. P.; Dahl, Jens Peder
2002-01-01
Simple thermodynamics considers kinetic energy to be an extensive variable which is proportional to the number, N, of particles. We present a quantum state of N non-interacting particles for which the kinetic energy increases quadratically with N. This enhancement effect is tied to the quantum centrifugal potential whose strength is quadratic in the number of dimensions of configuration space.
Dimensional enhancement of kinetic energies
Schleich, W.P.; Dahl, Jens Peder
2002-01-01
Simple thermodynamics considers kinetic energy to be an extensive variable which is proportional to the number N of particles. We present a quantum state of N noninteracting particles for which the kinetic energy increases quadratically with N. This enhancement effect is tied to the quantum centr...... centrifugal potential whose strength is quadratic in the number of dimensions of configuration space....
Classical kinetic energy, quantum fluctuation terms and kinetic-energy functionals
Hamilton, I. P.; Mosna, Ricardo A.; Site, L. Delle
2006-01-01
We employ a recently formulated dequantization procedure to obtain an exact expression for the kinetic energy which is applicable to all kinetic-energy functionals. We express the kinetic energy of an N-electron system as the sum of an N-electron classical kinetic energy and an N-electron purely quantum kinetic energy arising from the quantum fluctuations that turn the classical momentum into the quantum momentum. This leads to an interesting analogy with Nelson's stochastic approach to quant...
Axial focusing of energy from a hypervelocity impact on earth
We have performed computational simulations to determine how energy from a large hypervelocity impact on the Earth's surface would couple to its interior. Because of the first-order axial symmetry of both the impact energy source and the stress-wave velocity structure of the Earth, a disproportionate amount of energy is dissipated along the axis defined by the impact point and its antipode (point opposite the impact). For a symmetric and homogeneous Earth model, all the impact energy that is radiated as seismic waves into the Earth at a given takeoff angle (ray parameter), independent of azimuthal direction, is refocused (minus attenuation) on the axis of symmetry, regardless of the number of reflections and refractions it has experienced. Material on or near the axis of symmetry experiences more strain cycles with much greater amplitude than elsewhere, and therefore experiences more irreversible heating. The focusing is most intense in the upper mantle, within the asthenosphere, where seismic energy is most effectively converted to heat. For a sufficiently energetic impact, this mechanism might generate enough local heating to create an isostatic instability leading to uplift, possibly resulting in rifting, volcanism, or other rearrangement of the interior dynamics of the planet. These simulations demonstrate how hypervelocity impact energy can be transported to the Earth's interior, supporting the possibility of a causal link between large impacts on Earth and major internally-driven geophysical processes
Presented here is a new numerical nodal method for the simulation of the axial power distribution within nuclear reactors using the one-dimensional one speed kinetics diffusion model with one group of delayed neutron precursors. Our method is based on a spectral analysis of the nodal kinetics equations. These equations are obtained by integrating the original kinetics equations separately over a time step and over a spatial node, and then considering flat approximations for the forward difference terms. These flat approximations are the only approximations that are considered in the method. As a result, the spectral nodal method for space - time reactor kinetics generates numerical solutions for space independent problems or for time independent problems that are completely free from truncation errors. We show numerical results to illustrate the method's accuracy for coarse mesh calculations. (author)
Takehiro, Shin-ichi, E-mail: takepiro@gfd-dennou.or [Research Institute for Mathematical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan)
2010-10-15
The kinetic energy budget analysis of spiraling columnar critical convection emerging in a rapidly rotating spherical shell is performed. In the cylindrical-radially elongated spiraling convection mode appearing as a critical mode at small Prandtl numbers, the kinetic energy generated in the inner region of the spherical shell is transported in a cylindrically radial manner and is dissipated near the outer boundary around the equator. However, when the Prandtl number is increased, the dynamical energy flux turns in the axial direction rather than in the cylindrically radial direction. The kinetic energy generated inside the shell is transported in the direction of the rotating axis and is dissipated near the outer boundary at the same cylindrically radial location. The existence of the axial component of the dynamical energy flux is attributed to the ageostrophic flows in the columnar vortices induced by viscous damping and buoyancy force. In spite of the existence of the axial component of dynamical energy flux, the obtained geometry of the axially integrated kinetic energy budget is consistent with the results using a two-dimensional rotating annulus model. Therefore, the interpretation of spiraling structure with the radial propagation properties of topographic Rossby waves is applicable to the three-dimensional spiraling columnar convection emerging in a rotating spherical shell. Flow patterns calculated from the dispersion relation of two-dimensional topographic Rossby waves in a rotating spherical shell well explain the structure of the three-dimensional spiraling columnar convection.
M Bhoopal; N Ravi Kumar Reddy; S Satyanarayana
2003-04-01
Kinetics and equilibria of axial ligation of bromomethyl(aquo) cobaloxime by a series of straight chain primary amines (methylamine, ethylamine, propylamine, butylamine, pentylamine, hexylamine), cycloamines (cyclopentylamine, cyclohexylamine, cycloheptylamine) and secondary amines (N,N-dimethylamine, N,N-diethylamine) have been measured as functions of pH by spectrophotometric technique in aqueous solution, ionic strength 1 M (KCl) at 25°C. The rate of substitution of H2O varies with the Ka of incoming ligand, thus establishing nucleophilic participation of the ligand in the transition state. Binding and kinetic data are interpreted based on the basicity and steric influence of the entering ligand. To compare the rate constants of the entering ligands, pH independent second-order rate constants (on) are calculated.
How ambiguous is the local kinetic energy?
Anderson, James S M; Ayers, Paul W; Hernandez, Juan I Rodriguez
2010-08-26
The local kinetic energy and the closely related local electronic stress tensor are commonly used to elucidate chemical bonding patterns, especially for covalent bonds. We use three different approaches-transformation properties of the stress tensor, quasiprobability distributions, and the virial theorem from density-functional theory-to clarify the inherent ambiguity in these quantities, discussing the implications for analyses based on the local kinetic energy and stress tensor. An expansive-but not universal-family of local kinetic energy forms that includes the most common choices and is suitable for both chemical-bonding and atoms-in-molecule analysis is derived. A family of local electronic stress tensors is also derived. Several local kinetic energy functions that are mathematically justified, but unlikely to be conceptually useful, are derived. The implications of these forms for atoms-in-molecule analysis are discussed. PMID:20586467
Nanostructured energy devices equilibrium concepts and kinetics
Bisquert, Juan
2014-01-01
Due to the pressing needs of society, low cost materials for energy devices have experienced an outstanding development in recent times. In this highly multidisciplinary area, chemistry, material science, physics, and electrochemistry meet to develop new materials and devices that perform required energy conversion and storage processes with high efficiency, adequate capabilities for required applications, and low production cost. Nanostructured Energy Devices: Equilibrium Concepts and Kinetics introduces the main physicochemical principles that govern the operation of energy devices. It inclu
Concepts of radial and angular kinetic energies
Dahl, Jens Peder; Schleich, W.P.
2002-01-01
We consider a general central-field system in D dimensions and show that the division of the kinetic energy into radial and angular parts proceeds differently in the wave-function picture and the Weyl-Wigner phase-space picture, Thus, the radial and angular kinetic energies are different quantities...... in the two pictures, containing different physical information, but the relation between them is well defined. We discuss this relation and illustrate its nature by examples referring to a free particle and to a ground-state hydrogen atom....
Kinetic energy of vortex knots and unknots
New results on the kinetic energy of ideal vortex filaments in the shape of torus knots and unknots are presented. These knots are given by small-amplitude torus knot solutions (Ricca, 1993) to the Localized Induction Approximation (LIA) law. The kinetic energy of different knot and unknot types is calculated and presented for comparison. These results provide new information on relationships between geometry, topology and dynamics of complex vortex systems and help to establish possible connections between aspects of structural complexity of dynamical systems and vortical flows.
Utilization of rotor kinetic energy storage for hybrid vehicles
Hsu, John S.
2011-05-03
A power system for a motor vehicle having an internal combustion engine, the power system comprises an electric machine (12) further comprising a first excitation source (47), a permanent magnet rotor (28) and a magnetic coupling rotor (26) spaced from the permanent magnet rotor and at least one second excitation source (43), the magnetic coupling rotor (26) also including a flywheel having an inertial mass to store kinetic energy during an initial acceleration to an operating speed; and wherein the first excitation source is electrically connected to the second excitation source for power cycling such that the flywheel rotor (26) exerts torque on the permanent magnet rotor (28) to assist braking and acceleration of the permanent magnet rotor (28) and consequently, the vehicle. An axial gap machine and a radial gap machine are disclosed and methods of the invention are also disclosed.
Nonlocal kinetic-energy-density functionals
In this paper we present nonlocal kinetic-energy functionals T[n] within the average density approximation (ADA) framework, which do not require any extra input when applied to any electron system and recover the exact kinetic energy and the linear response function of a homogeneous system. In contrast with previous ADA functionals, these present good behavior of the long-range tail of the exact weight function. The averaging procedure for the kinetic functional (averaging the Fermi momentum of the electron gas, instead of averaging the electron density) leads to a functional without numerical difficulties in the calculation of extended systems, and it gives excellent results when applied to atoms and jellium surfaces. copyright 1996 The American Physical Society
Aircraft Measurements of Atmospheric Kinetic Energy Spectra
Lundtang Petersen, Erik; Lilly, D. K.
1983-01-01
Wind velocity data obtained from a jet airliner are used to construct kinetic energy spectra over the range of wavelengths from 2.5 to 2500 km. The spectra exhibit an approximate -5/3 slope for wavelengths of less than about 150 km, steepening to about -2.2 at larger scales. These results support...
On kinetic energy stabilized superconductivity in cuprates
Singh, D. J.
2006-01-01
The possibility of kinetic energy driven superconductivity in cuprates as was recently found in the $tJ$ model is discussed. We argue that the violation of the virial theorem implied by this result is serious and means that the description of superconductivity within the $tJ$ model is pathological.
Electric Vehicles Mileage Extender Kinetic Energy Storage
Jivkov Venelin
2015-03-01
Full Text Available The proposed paper considers small urban vehicles with electric hybrid propulsion systems. Energy demands are examined on the basis of European drive cycle (NEUDC and on an energy recuperation coefficient and are formulated for description of cycle energy transfers. Numerical simulation results show real possibilities for increasing in achievable vehicle mileage at the same energy levels of a main energy source - the electric battery. Kinetic energy storage (KES, as proposed to be used as an energy buffer and different structural schemes of the hybrid propulsion system are commented. Minimum energy levels for primary (the electric battery and secondary (KES sources are evaluated. A strategy for reduced power flows control is examined, and its impact on achievable vehicle mileage is investigated. Results show an additional increase in simulated mileage at the same initial energy levels.
Ye-Wei Zhang
2013-01-01
Full Text Available Nonlinear targeted energy transfer (TET is applied to suppress the excessive vibration of an axially moving string with transverse wind loads. The coupling dynamic equations used are modeled by a nonlinear energy sink (NES attached to the string to absorb vibrational energy. By a two-term Galerkin procedure, the equations are discretized, and the effects of vibration suppression by numerical methods are demonstrated. Results show that the NES can effectively suppress the vibration of the axially moving string with transverse wind loadings, thereby protecting the string from excessive movement.
Production of low axial energy spread ion beams with multicusp sources
Multicusp ion sources are capable of producing ions with low axial energy spread which are necessary in applications such as: ion projection lithography (IPL) and focused ion beams for the next generation lithographic tools and nuclear science experiments such as radioactive ion beam production. The axial ion energy spread for multicusp source is approximately 6 eV which is too large for IPL and radioactive ion beam applications. The addition of a magnetic filter which consists of a pair of permanent magnets to the multicusp source reduces the energy spread considerably. The reduction is due to the improvement in the uniformity of the axial plasma potential distribution in the discharge region. Axial ion energy spread of the filament driven ion source has been measured using three different techniques. In all cases, it was found to be less than 2 eV. Energy spread of the radio frequency (RF) driven source has also been explored, and it was found to be less than 3 eV with the proper RF-shielding. A new multicusp source configuration has been designed and constructed to further reduce the energy spread. To achieve a more uniform axial plasma potential distribution, a cylindrical magnetic filter has been designed and constructed for a 2-cm-diameter source. This new source configuration, the co-axial source, is new in its kind. The energy spread in this source has been measured to be a record low of 0.6 eV. Because of the novelty of this device, some plasma parameters inside the source have been studied. Langmuir probe has been used to measure the plasma potential, the electron temperature and the density distribution
Here we present a novel method to improve the kinetic energy resolution of a velocity map imaging(VMI) spectrometer. The main modifications, compared to the original design of Eppink and Parker (1997 Rev. Sci. Instrum. 68 3477), are two additional grid electrodes. One of the electrodes is a grounded grid and the other is an arc-shaped grid with negative voltages (or positive voltages for an ions spectrometer). The arc-shaped electrode is axially symmetrical around the spectrometer axis. The field constructed by the two electrodes is to compensate the dispersion of the ‘v’-shaped energy resolution. Simulations by SIMION and reconstructions by the basis set expansion Abel transform method show that the kinetic energy resolution can be improved drastically by our new method. Furthermore, the accuracy in the determination of the kinetic energy of ion/electrons remains unchanged with respect to the original design. (paper)
Computation of liquid drop deformation energy for axial symmetric nuclei
Computation methods for deformation dependent terms of the nuclear potential energy in the Myers-Swiatecki's and Krappe-Nix's variants of the liquid-drop model are presented. Also, an extension of the Krappe-Nix integral, surface and Coulomb energies formulas in case of reflection asymmetric deformations leading to fragments with different charge-to-mass ratio is introduced. (author)
Kotha Laxma Reddy; K Ashwini Kumar; N Ravi Kumar Reddy; Penumaka Nagababu; A Panasa Reddy; S Satyanarayana
2009-11-01
The kinetics and equilibria for the axial ligation of pyridine and substituted pyridines to bromomethyl(aqua)cobaloxime have been measured spectrophotometrically in aqueous solutions of ionic strength 1.0 M (KC1) at 25°C as a function of H. The binding constants and rate of formation increase in the order 4-NH2Py 4-EtPy > 4-MePy > Py > 2-NH2Py > 2-EtPy. The data have been interpreted based on the basicity of the ligand, -back bonding from Co(III) → L and hard and soft interactions. The rate of substitution of H2O varies with the pKa of the incoming ligand, thus establishing the existence of nucleophilic participation of the ligand in the transition state. We have investigated the DNA binding of bromomethyl(aqua)cobaloxime with DNA. Bromomethyl(ligand)cobaloximes were isolated and characterized by elemental analysis, IR and NMR (1H, 13C) spectra.
Imperfect dark energy from kinetic gravity braiding
We introduce a large class of scalar-tensor models with interactions containing the second derivatives of the scalar field but not leading to additional degrees of freedom. These models exhibit peculiar features, such as an essential mixing of scalar and tensor kinetic terms, which we have named kinetic braiding. This braiding causes the scalar stress tensor to deviate from the perfect-fluid form. Cosmology in these models possesses a rich phenomenology, even in the limit where the scalar is an exact Goldstone boson. Generically, there are attractor solutions where the scalar monitors the behaviour of external matter. Because of the kinetic braiding, the position of the attractor depends both on the form of the Lagrangian and on the external energy density. The late-time asymptotic of these cosmologies is a de Sitter state. The scalar can exhibit phantom behaviour and is able to cross the phantom divide with neither ghosts nor gradient instabilities. These features provide a new class of models for Dark Energy. As an example, we study in detail a simple one-parameter model. The possible observational signatures of this model include a sizeable Early Dark Energy and a specific equation of state evolving into the final de-Sitter state from a healthy phantom regime
The effect of non-uniform damping on flutter in axial flow and energy harvesting strategies
Singh, Kiran; Michelin, Sebastien; de Langre, Emmanuel
2012-01-01
The problem of energy harvesting from flutter instabilities in flexible slender structures in axial flows is considered. In a recent study, we used a reduced order theoretical model of such a system to demonstrate the feasibility for harvesting energy from these structures. Following this preliminary study, we now consider a continuous fluid-structure system. Energy harvesting is modelled as strain-based damping and the slender structure under investigation lies in a moderate fluid loading ra...
Optimization of an axial-flux permanent-magnet generator for a small wind energy application
Vansompel, Hendrik; Sergeant, Peter; Dupré, Luc
2011-01-01
Axial-flux permanent-magnet synchronous machines have a high torque output at low speeds and are therefore very suitable for direct drive wind energy applications. This research focuses on: measures to improve the efficiency of the energy conversion; simplification of the construction and easy maintenance by introduction of a modular stator construction; adaptations required to obtain an efficient power conversion in direct drive wind energy applications.
Kinetic Energy Transport in Rayleigh--B\\'enard Convection
Petschel, Klaus; Stellmach, Stephan; Wilczek, Michael; Lülff, Johannes; Hansen, Ulli
2014-01-01
The kinetic energy balance in Rayleigh--B\\'{e}nard convection is investigated for the Prandtl number range $0.01\\le Pr \\le 150$ and for fixed Rayleigh number $Ra=5\\cdot10^{6}$. The kinetic energy balance is divided into a dissipation, a production and a flux term. We discuss profiles of all terms and find that the different contributions to the energy balance can be spatially separated into regions where kinetic energy is produced and where kinetic energy is dissipated. Analysing the Prandtl ...
Effects of the symmetry energy slope on the axial oscillations of neutron stars
Wen De-Hua; Zhou Ying
2013-01-01
The impact of symmetry energy slope L on the axial w-mode oscillations is explored,where the range of the constrained slope L of symmetry energy at saturation density is adopted from 25 MeV to 115 MeV while keeping the equation of state (EOS) of symmetric nuclear matter fixed.Based on the range of the symmetry energy slope,a constraint on the frequency and damping time of the wI-mode of the neutron star is given.It is found that there is a perfect linear relation between the frequency and the stellar mass for a fixed slope L,and the softer symmetry energy corresponds to a higher frequency.Moreover,it is confirmed that both the frequencies and damping times have a perfect universal scaling behavior for the EOSs with different symmetry energy slopes at saturation density.
Kinetic energy functional for Fermi vapors in spherical harmonic confinement
Minguzzi, A.; March, N. H.; Tosi, M. P.
2001-01-01
Two equations are constructed which reflect, for fermions moving independently in a spherical harmonic potential, a differential virial theorem and a relation between the turning points of kinetic energy and particle densities. These equations are used to derive a differential equation for the particle density and a non-local kinetic energy functional.
Reassessing the Plastic Hinge Model for Energy Dissipation of Axially Loaded Columns
R. M. Korol
2014-01-01
Full Text Available This paper investigates the energy dissipation potential of axially loaded columns and evaluates the use of a plastic hinge model for analysis of hi-rise building column collapse under extreme loading conditions. The experimental program considered seven axially loaded H-shaped extruded aluminum structural section columns having slenderness ratios that would be typical of floor-to-ceiling heights in buildings. All seven test specimens initially experienced minor-axis overall buckling followed by formation of a plastic hinge at the mid-height region, leading to local buckling of the flanges on the compression side of the plastic hinge, and eventual folding of the compression flanges. The experimental energy absorption, based on load-displacement relations, was compared to the energy estimates based on section plastic moment resistance based on measured yield stress and based on measured hinge rotations. It was found that the theoretical plastic hinge model underestimates a column’s actual ability to absorb energy by a factor in the range of 3 to 4 below that obtained from tests. It was also noted that the realizable hinge rotation is less than 180°. The above observations are based, of course, on actual columns being able to sustain high tensile strains at hinge locations without fracturing.
Hydro-Kinetic Energy Conversion : Resource and Technology
Grabbe, Mårten
2013-01-01
The kinetic energy present in tidal currents and other water courses has long been appreciated as a vast resource of renewable energy. The work presented in this doctoral thesis is devoted to both the characteristics of the hydro-kinetic resource and the technology for energy conversion. An assessment of the tidal energy resource in Norwegian waters has been carried out based on available data in pilot books. More than 100 sites have been identified as interesting with a total estimated theor...
The effect of non-uniform damping on flutter in axial flow and energy harvesting strategies
Singh, Kiran; de Langre, Emmanuel
2012-01-01
The problem of energy harvesting from flutter instabilities in flexible slender structures in axial flows is considered. In a recent study, we used a reduced order theoretical model of such a system to demonstrate the feasibility for harvesting energy from these structures. Following this preliminary study, we now consider a continuous fluid-structure system. Energy harvesting is modelled as strain-based damping and the slender structure under investigation lies in a moderate fluid loading range, for which {the flexible structure} may be destabilised by damping. The key goal of this work is to {analyse the effect of damping distribution and intensity on the amount of energy harvested by the system}. The numerical results {indeed} suggest that non-uniform damping distributions may significantly improve the power harvesting capacity of the system. For low damping levels, clustered dampers at the position of peak curvature are shown to be optimal. Conversely for higher damping, harvesters distributed over the wh...
Axial enrichment profile in advance nuclear energy power plant at supercritical-pressures
Tashakor, S. [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of). Reactor Research School; Islamic Azad Univ., Shiraz (Iran, Islamic Republic of). Dept. of Nuclear Engineering; Zarifi, E. [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of). Reactor Research School; Salehi, A.A. [Sharif University of Technology, Tehran (Iran, Islamic Republic of). Dept. of Nuclear Energy
2015-12-15
The High-Performance Light Water Reactor (HPLWR) is the European version of the advance nuclear energy power plant at Supercritical-pressure. A light water reactor at supercritical pressure, being currently under design, is the new generation of nuclear reactors. The aim of this study is to predict the HPLWR neutronic behavior of the axial enrichment profile with an average enrichment of 5 w/o U-235. Neutronic calculations are performed using WIMS and CITATION codes. Changes in neutronic parameter, such as Power Peaking Factor (PPF) are discussed in this paper.
Turbulence generation through intense kinetic energy sources
Maqui, Agustin F.; Donzis, Diego A.
2016-06-01
Direct numerical simulations (DNS) are used to systematically study the development and establishment of turbulence when the flow is initialized with concentrated regions of intense kinetic energy. This resembles both active and passive grids which have been extensively used to generate and study turbulence in laboratories at different Reynolds numbers and with different characteristics, such as the degree of isotropy and homogeneity. A large DNS database was generated covering a wide range of initial conditions with a focus on perturbations with some directional preference, a condition found in active jet grids and passive grids passed through a contraction as well as a new type of active grid inspired by the experimental use of lasers to photo-excite the molecules that comprise the fluid. The DNS database is used to assert under what conditions the flow becomes turbulent and if so, the time required for this to occur. We identify a natural time scale of the problem which indicates the onset of turbulence and a single Reynolds number based exclusively on initial conditions which controls the evolution of the flow. It is found that a minimum Reynolds number is needed for the flow to evolve towards fully developed turbulence. An extensive analysis of single and two point statistics, velocity as well as spectral dynamics and anisotropy measures is presented to characterize the evolution of the flow towards realistic turbulence.
A study of the kinetic energy density functional for atoms
This paper studies the rigorous kinetic energy density functional at the level of the Hartree-Fock method for closed electron shell atoms. The behaviour of the kinetic energy and its components, is analysed as the atomic number N increases. It is shown that the increments of the specific energies for two consecutive closed electron shells atoms depend distinctly on the electron configuration of the last electron shell. 35 refs, 1 fig., 4 tabs
Zero kinetic energy photoelectron spectroscopy of triphenylene
Harthcock, Colin; Zhang, Jie; Kong, Wei, E-mail: wei.kong@oregonstate.edu [Department of Chemistry, Oregon State University, Corvallis, Oregon 97331 (United States)
2014-06-28
We report vibrational information of both the first electronically excited state and the ground cationic state of jet-cooled triphenylene via the techniques of resonantly enhanced multiphoton ionization (REMPI) and zero kinetic energy (ZEKE) photoelectron spectroscopy. The first excited electronic state S{sub 1} of the neutral molecule is of A{sub 1}′ symmetry and is therefore electric dipole forbidden in the D{sub 3h} group. Consequently, there are no observable Franck-Condon allowed totally symmetric a{sub 1}′ vibrational bands in the REMPI spectrum. All observed vibrational transitions are due to Herzberg-Teller vibronic coupling to the E′ third electronically excited state S{sub 3}. The assignment of all vibrational bands as e′ symmetry is based on comparisons with calculations using the time dependent density functional theory and spectroscopic simulations. When an electron is eliminated, the molecular frame undergoes Jahn-Teller distortion, lowering the point group to C{sub 2v} and resulting in two nearly degenerate electronic states of A{sub 2} and B{sub 1} symmetry. Here we follow a crude treatment by assuming that all e′ vibrational modes resolve into b{sub 2} and a{sub 1} modes in the C{sub 2v} molecular frame. Some observed ZEKE transitions are tentatively assigned, and the adiabatic ionization threshold is determined to be 63 365 ± 7 cm{sup −1}. The observed ZEKE spectra contain a consistent pattern, with a cluster of transitions centered near the same vibrational level of the cation as that of the intermediate state, roughly consistent with the propensity rule. However, complete assignment of the detailed vibrational structure due to Jahn-Teller coupling requires much more extensive calculations, which will be performed in the future.
Kinetic Energy-Based Temperature Computation in Non-Equilibrium Molecular Dynamics Simulation
Liu, Bin; Xu, Ran; He, Xiaoqiao
2009-01-01
The average kinetic energy is widely used to characterize temperature in molecular dynamics (MD) simulation. In this letter, the applicability of three types of average kinetic energy as measures of temperature is investigated, i.e., the total kinetic energy, kinetic energy without the centroid translation part, and thermal disturbance kinetic energy. Our MD simulations indicate that definitions of temperature based on the kinetic energy including rigid translational or rotational motion may ...
Fisher information, kinetic energy and uncertainty relation inequalities
By interpolating between Fisher information and mechanical kinetic energy, we introduce a general notion of kinetic energy with respect to a parameter of Schroedinger wavefunctions from a statistical inference perspective. Kinetic energy is the sum of Fisher information and an integral of a parametrized analogue of quantum mechanical current density related to phase. A family of integral inequalities concerning kinetic energy and moments are established, among which the Cramer-Rao inequality and the Weyl-Heisenberg inequality, are special cases. In particular, the integral inequalities involving the negative order moments are relevant to the study of electron systems. Moreover, by specifying the parameter to a scale, we obtain a family of inequalities of uncertainty relation type which incorporate the position and momentum observables symmetrically in a single quantity. (author)
Vaddeboina Sridhar; S Satyanarayana
2000-12-01
Kinetics and equilibria of the axial ligation of alkyl(aquo)cobaloximes by imidazole and cyanide have been measured spectrophotometrically in aqueous solutions of ionic strength 1.0 M at 25°C as a function of H. Comparison of IMD and CN- of CH3, C2H5 and BrCH2 cobaloximes indicates that their stability is in the order BrCH2 > CH3 > C2H5. As the electron-withdrawing capacity of the alkyl group trans to water increases, the electron density of the cobalt(III) decreases and thus it becomes a stronger Lewis acid and binds more strongly to imidazole and cyanide. The association and dissociation rate constants are better correlated to the relative softness of the ligand showing that cyanide binds 30 times faster than imidazole. These complexes are isolated and are characterized by IR and 1H NMR spectra.
The influence of an axial energy spread on the negative-mass instability in a relativistic nonneutral E layer aligned parallel to a uniform axial magnetic field B0e/sub z/ is investigated. The stability analysis is carried out within the framework of the linearized Vlasov--Maxwell equations. It is assumed that the E layer is thin with radial thickness (2a) much smaller than the mean radius (R0), and that ν/γ0very-much-less-than1, where ν is Budker's parameter and γ0mc2 is the mean electron energy. Stability properties are investigated for the choice of electron distribution function in which all electrons have the same value of canonical angular momentum (P/sub theta P0/=const) and a step-function distribution in axial momentum p/sub z/. The negative-mass growth rate is calculated including the important stabilizing influence of axial energy spread (ΔE), and it is shown that a modest energy spread (ΔE/γ0mc2approx. = a few percent) is sufficient to stabilize perturbations with axial wavenumber satisfying k2R20> or approx. =1
Energy loss distributions of relativistic protons axially channeled in a bent silicon crystal
Stojanov, Nace, E-mail: nacestoj@pmf.ukim.mk [Institute of Physics, Faculty of Natural Sciences and Mathematics, Sts. Cyril and Methodius University, P.O. Box 162, 1000 Skopje (Macedonia, The Former Yugoslav Republic of); Petrović, Srdjan; Nešković, Nebojša [Laboratory of Physics (010), Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia)
2013-05-01
A detailed study of the energy loss distributions of the relativistic protons axially channeled in the bent < 100 > Si crystals is presented in this work. The bending angle was varied from 0 to 20 μrad, while the crystal thickness was equal to 1 mm. The proton energy was chosen to be 7 TeV in accordance with the Large Hadron Collider (LHC) project, at the European Organization for Nuclear Research (CERN), in Geneva, Switzerland. The energy loss distributions of the channeled protons were generated using the numerical solution of the proton equations of motion in the transverse plane and the computer simulation method. An accurate energy loss model was used, which takes into account the trajectory dependence of the energy loss of protons during their motion through the crystal channels. Further, the dispersion of the proton’s scattering angle caused by its collisions with the electrons of the crystal and the divergence of the proton beam were taken into account. The calculated dependence of the number of dechanneled protons on the bending angle was excellently fitted by the Gompertz type dechanneling function.
Yuquan Zhang; Yuan Zheng; Chunxia Yang; Yantao Zhu; Xin Zhang
2015-12-01
The axial flow turbine applied in an overtopping wave energy convertor can continuously provide power with high efficiency and reliably. To study the rules between parameters of the turbine and flows, three different types of turbines with complete 3D flow-channel models were designed and optimized. It appears that diameter of the runner, flow rates, number of guide vanes and shape of outflow passage have a considerable impact on the performance of the whole convertor. The turbine with a diameter of 0.8 m, flow rate of 0.5 m3/s, double guide vanes and bent section in outflow passage shows the best comprehensive performance. Moreover, the results of the experiments indicate that the output power can be enhanced by increasing the wave overtopping rate.
Liu Yu-Min; Yu Zhong-Yuan
2009-01-01
Calculations of electronic structures about the semiconductor quantum dot and the semiconductor quantum ring are presented in this paper. To reduce the calculation costs, for the quantum dot and the quantum ring, their simplified axially symmetric shapes are utilized in our analysis. The energy dependent effective mass is taken into account in solving the Schrodinger equations in the single band effective mass approximation. The calculated results show that the energy dependent effective mass should be considered only for relatively small volume quantum dots or small quantum rings. For large size quantum materials, both the energy dependent effective mass and the parabolic effective mass can give the same results. The energy states and the effective masses of the quantum dot and the quantum ring as a function of geometric parameters are also discussed in detail.
Using the assumption of a partially conserved axial-vector current and the conservation law for the electromagnetic current, we rederive a low-energy theorem for the pion electroproduction. In contrast to the traditional approach, we include all effects of off-shell nucleons and pions. We parametrize the axial-vector current in its most general form and apply the minimal substitution prescription to obtain the radiative axial-vector vertex that is required for gauge invariance. We split the full radiative axial-vector vertex into the isolated-pole contribution, the minimal-coupling interaction, and the remainder. The Ward-Takahashi identities are translated into the constraints on the pion electroproduction amplitude. The rigorous low-energy theorem is obtained for the zero four-momentum pion electroproduction. It is found that the off-shell matrix elements of the axial-vector current affect the isolated-pole term and the gauge term so that the low-energy theorem is at variance with the standard one given in the literature
Energy efficiency of an innovative vertical axial rotary kiln for pottery production
Carlos Andrés Forero Núñez
2015-01-01
Full Text Available Colombia is a remarkablecoal producer and exporter worldwide; several sectors use this resource for electricity and thermal energy production. Among them, the ceramic industry consumed 118,590 tons in 2011. Most of the pottery production companies in this country arelocated in rural areas and use old coal fired kilns with low energy efficiencies, generating environmental effects to the population nearby. Despite of the importance of these industries to the small rural economies, the government agencies have closed them due to the lack of development on cleaner devices. This work aims to analyze the thermal behavior of an innovative vertical axial rotary kiln for pottery production, and the energy efficiency varying operation mode. The kiln operated during seven hours needed three hours for stabilizing sintering temperature at 800°C. The mean temperatures of the loading, drying, sintering and cooling stage were 204°C, 223°C, 809°C and 321°C respectively. The convection and radiation heat losses were 15 % whereas the flue gas heat losses 18 %.During continuous operation, the kiln energy efficiency was about 60 %. This design proven to reach the temperatures required in the firing stage of the pottery production; moreover, a gas fuel was fuelled making the process cleaner and more efficient than coal-fired systems.
Strain Energy Approach for Axial and Torsional Fatigue Life Prediction in Aged NiCrMoV Steels
Song, Gee Wook; Hyun, Jung Seob; Ha, Jeong Soo
Axial and torsional low cycle fatigue tests were performed for NiCrMoV steels serviced low-pressure turbine rotor of nuclear power plant. The results were used to evaluate multiaxial fatigue life models including Tresca, von Mises and Brown and Miller's critical plane. The fatigue life predicted by the multiaxial fatigue models didn't correspond with the experimental results in small strain range. We proposed the total strain energy density model to predict torsional fatigue life from axial fatigue data. The total strain energy density model was found to best correlate the experimental data with predictions being within a factor of 2.
Study of electron-beam-pumped KrF laser kinetics and calculation of energy deposition
The program of the electron-beam-pumped KrF laser kinetics has been developed. By using this program the relation of relaxation rate of upper laser level to the optimum output condition of the KrF laser is studied. It is expected that the laser output will be directly proportional to the relaxation rate under a given condition when the laser flux is near saturation. The numerical simulation showed that a rise (or drop) in pump rate is faster than that of the relaxation rate, the laser output rises (or drops) as well. The optimum condition of output is obtained. The pressure (5 ∼ 6 atm*), the pump power and the Ar, Kr, F2 mixture ratio are determined for the optimum condition. In order to study the energy deposition of the electron-beam-pumped KrF gas laser, the SANDYL and the ITS programs have been developed. The latter is the program with the axial magnetic field applied, while the former without any field. The energy depositions of two kinds of Ar/Kr/F2 mixtures at various pressures of the electron-beam-pumped cylindrical KrF laser are calculated with the SANDYL program. The results show that under the same conditions, the energy deposition with the axial magnetic field applied is 3 times larger than that without any magnetic field. The energy depositions of two kinds of Ar/Kr/F2
Energy loss distributions of 7 TeV protons axially channeled in the bent Si crystal
Stojanov, Nace; Petrović, Srdjan
2016-04-01
In this article, the energy loss distributions of relativistic protons axially channeled in the bent Si crystal are studied. The crystal thickness is equal to 1 mm, which corresponds to the reduced crystal thickness, Λ, equal to 1.22, whereas the bending angle, α, was varied from 0 to 30 μrad. The proton energy of 7 TeV was chosen in accordance with the concept of using the bent crystals as a tool for selective deflection of the beam halo particles from the LUA9 experiment at LHC. For the continuum interaction potential of the proton and the crystal the Molière's expression was used and the energy loss of a proton was calculated by applying the trajectory dependent stopping power model. Further, the uncertainness of the scattering angle of the proton caused by its collisions with the electrons of the crystal and the divergence of the proton beam were taken into account. The energy loss distribution of the channeled protons was obtained via the numerical solution of the proton equations of motion in the transverse plane and the computer simulation method. The analysis of the obtained theoretical data shows that the shape of the energy loss distribution strongly depends on the horizontal or vertical direction of the curvature of the crystal. The number of dechanneled protons as a function of the bending angle also strongly depends on the direction of the crystal's curvature. As a result, the dechanneling rates and ranges, obtained from the Gompertz type sigmoidal fitting functions, have different sets of values for different bending orientations. We have also studied the influence of the proton beam divergence on the energy loss distribution of channeled protons.
A Kinetic Model for the Energy Transfer in Phycobilisomes
Suter, Georg W.; Holzwarth, Alfred R.
1987-01-01
A kinetic model for the energy transfer in phycobilisome (PBS) rods of Synechococcus 6301 is presented, based on a set of experimental parameters from picosecond studies. It is shown that the enormous complexity of the kinetic system formed by 400-500 chromophores can be greatly simplified by using symmetry arguments. According to the model the transfer along the phycocyanin rods has to be taken into account in both directions, i.e., back and forth along the rods. The corresponding forward ra...
Renormalizing the kinetic energy operator in elementary quantum mechanics
Coutinho, F A B [Faculdade de Medicina, Universidade de Sao Paulo e LIM 01-HCFMUSP, 05405-000 Sao Paulo (Brazil); Amaku, M [Faculdade de Medicina Veterinaria e Zootecnia, Universidade de Sao Paulo, 05508-970 Sao Paulo (Brazil)], E-mail: coutinho@dim.fm.usp.br
2009-09-15
In this paper, we consider solutions to the three-dimensional Schroedinger equation of the form {psi}(r) = u(r)/r, where u(0) {ne} 0. The expectation value of the kinetic energy operator for such wavefunctions diverges. We show that it is possible to introduce a potential energy with an expectation value that also diverges, exactly cancelling the kinetic energy divergence. This renormalization procedure produces a self-adjoint Hamiltonian. We solve some problems with this new Hamiltonian to illustrate its usefulness.
Logarithmic entropy corrected holographic dark energy with nonminimal kinetic coupling
Amani, Ali R.; Sadeghi, J.; Farajollahi, H.; Pourali, M.
2012-01-01
In this paper, we have considered a cosmological model with the non--minimal kinetic coupling terms and investigated its cosmological implications with respect to the logarithmic entropy-- corrected holographic dark energy (LECHDE). The correspondence between LECHDE in flat FRW cosmology and the phantom dark energy model with the aim to interpret the current universe acceleration is also examined.
The quantum mechanics based on a general kinetic energy
Wei, Yuchuan
2016-01-01
In this paper, we introduce the Schrodinger equation with a general kinetic energy operator. The conservation law is proved and the probability continuity equation is deducted in a general sense. Examples with a Hermitian kinetic energy operator include the standard Schrodinger equation, the relativistic Schrodinger equation, the fractional Schrodinger equation, the Dirac equation, and the deformed Schrodinger equation. We reveal that the Klein-Gordon equation has a hidden non-Hermitian kinetic energy operator. The probability continuity equation with sources indicates that there exists a different way of probability transportation, which is probability teleportation. An average formula is deducted from the relativistic Schrodinger equation, the Dirac equation, and the K-G equation.
Welzel, B. [Stuttgart Univ. (Germany). Inst. fuer Stroemungsmechanik und Hydraulische Stroemungsmaschinen
1997-12-31
Within the framework of a project sponsored by the Stiftung Energieforschung Baden-Wuerttemberg, an axial turbine was developed as a flash evaporator, which permits energy recovery in all sectors where liquids in piping undergoes pressure relaxation. A specific feature of this turbine is that it forms part, complete with generator, of a single pipeline and that it does not cause any pressure variations worth mentioning in case of mains failure. The report describes the turbine, its advantages, and a pilot operation carried out with a prototype. The turbine`s performance is compared with a return pump. Further, the optimization of the hydraulic design by computer and the results of a market analysis are dealt with. (orig.) [Deutsch] Im Rahmen einer von der Stiftung Energieforschung Baden-Wuerttemberg gefoerderten Neuentwicklung wurde eine Axialturbine als Entspannungsturbine entwickelt, mit der eine Energierueckgewinnung in allen Bereichen erfolgen kann, in denen Fluessigkeiten in Rohrleitungssystemen entspannt werden. Die Turbine zeichnet sich unter anderem dadurch aus, dass sie komplett, inklusive Generator, innerhalb einer Rohrleitung angeordnet ist und bei Netzausfall keine nennenswerte Druckschwankung erzeugt. Es werden die Turbine, deren Vorteile sowie der mit einem Prototypen durchgefuehrte Betriebsversuch beschrieben. Weiterhin werden ein Vergleich des Betriebsverhaltens mit einer rueckwaertslaufenden Pumpe, die rechnerische Optimierung der hydraulischen Formgebung sowie die Ergebnisse einer Marktanalyse behandelt. (orig.)
Kinetic and Exchange Energy Densities near the Nucleus
Lucian A. Constantin
2016-04-01
Full Text Available We investigate the behavior of the kinetic and the exchange energy densities near the nuclear cusp of atomic systems. Considering hydrogenic orbitals, we derive analytical expressions near the nucleus, for single shells, as well as in the semiclassical limit of large non-relativistic neutral atoms. We show that a model based on the helium iso-electronic series is very accurate, as also confirmed by numerical calculations on real atoms up to two thousands electrons. Based on this model, we propose non-local density-dependent ingredients that are suitable for the description of the kinetic and exchange energy densities in the region close to the nucleus. These non-local ingredients are invariant under the uniform scaling of the density, and they can be used in the construction of non-local exchange-correlation and kinetic functionals.
Rizzo, Giuseppe; Bonanno, Antonino; Massarotti, Giorgio Paolo; Pastorello, Luca; Raimondo, Mariarosa; Veronesi, Federico; Blosi, Magda
2016-01-01
Axial piston pumps and motors are widely used in heavy-duty applications and play a fundamental role in hydrostatic and power split drives. The mechanical power losses in hydraulic piston pumps come from the friction between parts in relative motion. The improvement, albeit marginal, in overall efficiency of these components may significantly impact the global efficiency of the machine. The friction between slipper and swash plate is a functional key in an axial piston pump, especially when t...
Evaluating rainfall kinetic energy - intensity relationships with observed disdrometric data
Angulo-Martinez, Marta; Begueria, Santiago; Latorre, Borja
2016-04-01
Rainfall kinetic energy is required for determining erosivity, the ability of rainfall to detach soil particles and initiate erosion. Its determination relay on the use of disdrometers, i.e. devices capable of measuring the drop size distribution and velocity of falling raindrops. In the absence of such devices, rainfall kinetic energy is usually estimated with empirical expressions relating rainfall energy and intensity. We evaluated the performance of 14 rainfall energy equations in estimating one-minute rainfall energy and event total energy, in comparison with observed data from 821 rainfall episodes (more than 100 thousand one-minute observations) by means of an optical disdrometer. In addition, two sources of bias when using such relationships were evaluated: i) the influence of using theoretical terminal raindrop fall velocities instead of measured values; and ii) the influence of time aggregation (rainfall intensity data every 5-, 10-, 15-, 30-, and 60-minutes). Empirical relationships did a relatively good job when complete events were considered (R2 > 0.82), but offered poorer results for within-event (one-minute resolution) variation. Also, systematic biases where large for many equations. When raindrop size distribution was known, estimating the terminal fall velocities by empirical laws produced good results even at fine time resolution. The influence of time aggregation was very high in the estimated kinetic energy, although linear scaling may allow empirical correction. This results stress the importance of considering all these effects when rainfall energy needs to be estimated from more standard precipitation records. , and recommends the use of disdrometer data to locally determine rainfall kinetic energy.
Kinetic-energy functionals studied by surface calculations
Vitos, Levente; Skriver, Hans Lomholt; Kollár, J.
1998-01-01
The self-consistent jellium model of metal surfaces is used to study the accuracy of a number of semilocal kinetic-energy functionals for independent particles. It is shown that the poor accuracy exhibited by the gradient expansion approximation and most of the semiempirical functionals in the lo...
The eddy kinetic energy budget in the Red Sea
Zhan, Peng
2016-06-09
The budget of eddy kinetic energy (EKE) in the Red Sea, including the sources, redistributions and sink, is examined using a high-resolution eddy-resolving ocean circulation model. A pronounced seasonally varying EKE is identified, with its maximum intensity occurring in winter, and the strongest EKE is captured mainly in the central and northern basins within the upper 200 m. Eddies acquire kinetic energy from conversion of eddy available potential energy (EPE), from transfer of mean kinetic energy (MKE), and from direct generation due to time-varying (turbulent) wind stress, the first of which contributes predominantly to the majority of the EKE. The EPE-to-EKE conversion occurs almost in the entire basin, while the MKE-to-EKE transfer appears mainly along the shelf boundary of the basin (200 miso-bath) where high horizontal shear interacts with topography. The EKE generated by the turbulent wind stress is relatively small and limited to the southern basin. All these processes are intensified during winter, when the rate of energy conversion is about four to five times larger than that in summer. The EKE is redistributed by the vertical and horizontal divergence of energy flux and the advection of the mean flow. As a main sink of EKE, dissipation processes is ubiquitously found in the basin. The seasonal variability of these energy conversion terms can explain the significant seasonality of eddy activities in the Red Sea. This article is protected by copyright. All rights reserved.
A proposed method to measure relativistic kinetic energy of electrons in Penning Trap
Penning ion trap is a versatile tool which serves as a storage device for sub-atomic particles using a combination of quadrupolar electric potential for axial confinement and a strong magnetic field for radial confinement. Trapped particles have three oscillatory motions: 1) axial motion, along the direction of the magnetic field with frequency ωz, 2) the trap modified cyclotron motion at a higher frequency ω+, 3) slow magnetron motion with frequency ω+ , where ω- z + . The cryogenic Penning trap has so far been used for various precision measurements like the measurement of (g-2) parameter of electron and positron and several other similar studies. In this work, a new method of measuring the shape of a beta spectrum by high precision measurement of the relativistic kinetic energy of the electrons using a cryogenic Penning trap is proposed. Using this method, it might be possible to measure the shape of the end-point of a beta spectrum with a high precision enabling the mass measurement of electron-neutrino
Plasma neutrino energy loss due to the axial-vector current at the late stages of stellar evolution
LIU Jing-Jing
2009-01-01
Based on the Weinberg-Salam theory, the plasma neutrino energy loss rates of vector and axialvector contributions are studied.A ratable factor of the rates from the axial-vector current relative to those of the total neutrino energy loss rates is accurately calculated.The results show that the ratable factor will reach a maximum of 0.95 or even more at relatively higher temperature and lower density (such as P/μe＜ 10~7 g/cm~3).Thus the rates of the axial-vector contribution cannot be neglected.On the other hand, the rates of the axialvector contribution are on the order of～0.01% of the total vector contribution, which is in good agreement with Itoh's at relatively high density (such as p/μe＞10~7 g/cm~3) and a temperature of T≤10~(11) K.
The frequencies and damping times of the axial w-mode oscillations of neutron stars are investigated using a nuclear equation of state (EOS) partially constrained by the available terrestrial laboratory data. It is found that the nuclear symmetry energy Esym(ρ), especially its high density behavior, plays an important role in determining both the eigen-frequencies and the damping times of these oscillations. (author)
Kinetic-energy density functional: Atoms and shell structure
We present a nonlocal kinetic-energy functional which includes an anisotropic average of the density through a symmetrization procedure. This functional allows a better description of the nonlocal effects of the electron system. The main consequence of the symmetrization is the appearance of a clear shell structure in the atomic density profiles, obtained after the minimization of the total energy. Although previous results with some of the nonlocal kinetic functionals have given incipient structures for heavy atoms, only our functional shows a clear shell structure for most of the atoms. The atomic total energies have a good agreement with the exact calculations. Discussion of the chemical potential and the first ionization potential in atoms is included. The functional is also extended to spin-polarized systems. copyright 1996 The American Physical Society
Kinetics with deactivation of methylcyclohexane dehydrogenation for hydrogen energy storage
Maria, G.; Marin, A.; Wyss, C.; Mueller, S.; Newson, E. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)
1997-06-01
The methylcyclohexane dehydrogenation step to recycle toluene and release hydrogen is being studied as part of a hydrogen energy storage project. The reaction is performed catalytically in a fixed bed reactor, and the efficiency of this step significantly determines overall system economics. The fresh catalyst kinetics and the deactivation of the catalyst by coke play an important role in the process analysis. The main reaction kinetics were determined from isothermal experiments using a parameter sensitivity analysis for model discrimination. An activation energy for the main reaction of 220{+-}11 kJ/mol was obtained from a two-parameter model. From non-isothermal deactivation in PC-controlled integral reactors, an activation energy for deactivation of 160 kJ/mol was estimated. A model for catalyst coke content of 3-17 weight% was compared with experimental data. (author) 3 figs., 6 refs.
Systems engineering analysis of kinetic energy weapon concepts
Senglaub, M.
1996-06-01
This study examines, from a systems engineering design perspective, the potential of kinetic energy weapons being used in the role of a conventional strategic weapon. Within the Department of Energy (DOE) complex, strategic weapon experience falls predominantly in the nuclear weapons arena. The techniques developed over the years may not be the most suitable methodologies for use in a new design/development arena. For this reason a more fundamental approach was pursued with the objective of developing an information base from which design decisions might be made concerning the conventional strategic weapon system concepts. The study examined (1) a number of generic missions, (2) the effects of a number of damage mechanisms from a physics perspective, (3) measures of effectiveness (MOE`s), and (4) a design envelope for kinetic energy weapon concepts. With the base of information a cut at developing a set of high-level system requirements was made, and a number of concepts were assessed against these requirements.
Crystal dissolution kinetics and Gibbs free energy
Luettge, Andreas [Department of Earth Science and the Department of Chemistry, Center for Biological and Environmental Nanotechnology, Rice University, 6100 Main Street, Houston, TX 77005 (United States)]. E-mail: aluttge@rice.edu
2006-02-15
The dependence of dissolution rates on the difference of Gibbs free energy is of critical importance for our understanding of crystal dissolution, reactive flow models and their applications to a variety of environmentally related problems. Here, we review experimental data generated with mineral powders and single crystals to develop a better understanding of apparent inconsistencies between otherwise internally consistent data sets. Additional information from direct surface observations and measurements with vertical scanning interferometry (VSI) and atomic force microscopy (AFM) of albite dissolution at 25, 150 and 185 deg. C may shed new light on this old but unsolved question. Our discussion is based on the importance of etch pit development, its {delta}G dependence, and the pits' role as a source for steps and step movement in the dissolution process. Results indicate that reaction history may be of critical importance in determining the overall reaction mechanism and its rate. Different rates are observed for systems having otherwise identical {delta}G {sub r} acquired from increasing versus decreasing disequilibrium positions. In this context, we finally discuss the validity of the common application of transition state theory (TST) to elementary and overall reactions governing the dissolution process. In this discussion of crystal dissolution, we contrast TST applications with a stochastic, many-body treatment that has led to the development of a stepwave model. This discussion also focuses on the controversy caused by the rivalry between surface adsorption models and a probabilistic model that seeks to incorporate the full three-dimensional crystal structure.
Mesoscale and macroscale kinetic energy fluxes from granular fabric evolution
Walker, David M.; Tordesillas, Antoinette; Froyland, Gary
2014-03-01
Recent advances in high-resolution measurements means it is now possible to identify and track the local "fabric" or contact topology of individual grains in a deforming sand throughout loading history. These provide compelling impetus to the development of methods for inferring changes in the contact forces and energies at multiple spatiotemporal scales, using information on grain contacts alone. Here we develop a surrogate measure of the fluctuating kinetic energy based on changes in the local contact topology of individual grains. We demonstrate the method for dense granular materials under quasistatic biaxial shear. In these systems, the initially stable and solidlike response eventually gives way to liquidlike behavior and global failure. This crossover in mechanical behavior, akin to a phase transition, is marked by bursts of kinetic energy and frictional dissipation. Mechanisms underlying this release of energy include the buckling of major load-bearing structures known as force chains. These columns of grains represent major repositories for stored strain energy. Stored energy initially accumulates at all of the contacts along the force chain, but is released collectively when the chain overloads and buckles. The exact quantification of the buildup and release of energy in force chains, and the manner in which force chain buckling propagates in the sample (i.e., diffuse and systemwide versus localized into shear bands), requires detailed knowledge of contact forces. To date, however, the forces at grain contacts continue to elude measurement in natural granular materials like sand. Here, using data from computer simulations, we show that a proxy for the fluctuating kinetic energy in dense granular materials can be suitably constructed solely from the evolving properties of the grain's local contact topology. Our approach directly relates the evolution of fabric to energy flux and makes possible research into the propagation of failure from measurements of
Effects of directed and kinetic energy weapons on spacecraft
Fraas, A P
1986-12-01
The characteristics of the various directed energy beams are reviewed, and their damaging effects on typical materials are examined for a wide range of energy pulse intensities and durations. Representative cases are surveyed, and charts are presented to indicate regions in which damage to spacecraft structures, particularly radiators for power plants, would be likely. The effects of kinetic energy weapons, such as bird-shot, are similarly examined. The charts are then applied to evaluate the effectiveness of various measures designed to reduce the vulnerability of spacecraft components, particularly nuclear electric power plants.
Reaction Path Optimization with Holonomic Constraints and Kinetic Energy Potentials
Two methods are developed to enhance the stability, efficiency, and robustness of reaction path optimization using a chain of replicas. First, distances between replicas are kept equal during path optimization via holonomic constraints. Finding a reaction path is, thus, transformed into a constrained optimization problem. This approach avoids force projections for finding minimum energy paths (MEPs), and fast-converging schemes such as quasi-Newton methods can be readily applied. Second, we define a new objective function - the total Hamiltonian - for reaction path optimization, by combining the kinetic energy potential of each replica with its potential energy function. Minimizing the total Hamiltonian of a chain determines a minimum Hamiltonian path (MHP). If the distances between replicas are kept equal and a consistent force constant is used, then the kinetic energy potentials of all replicas have the same value. The MHP in this case is the most probable isokinetic path. Our results indicate that low-temperature kinetic energy potentials (7eq-to-Cax isomerization of an alanine dipeptide, the 4C1-to-1C4 transition of an α-D-glucopyranose, and the helix-to-sheet transition of a GNNQQNY heptapeptide. By applying the methods developed in this work, convergence of reaction path optimization can be achieved for these complex transitions, involving full atomic details and a large number of replicas (>100). For the case of helix-to-sheet transition, we identify pathways whose energy barriers are consistent with experimental measurements. Further, we develop a method based on the work energy theorem to quantify the accuracy of reaction paths and to determine whether the atoms used to define a path are enough to provide quantitative estimation of energy barriers.
The axial buckling behavior of magnetically affected current-carrying nanowires is studied accounting for the surface energy effect. Using Euler–Bernoulli beam theory, the Lorentz force on the nanowire is determined and the governing equations are established. By application of the Galerkin approach and assumed mode method, the critical axial compressive load of the nanostructure is evaluated in the cases of simply supported and fully clamped ends. The effects of surface energy, electric current, strength of the magnetic field, slenderness ratio, and nanowire’s radius on the axial buckling loads are comprehensively discussed. The obtained results reveal that both the electric current and exerted magnetic field endanger the axial stability of the nanowire. For high levels of electric current or magnetic field strength, the surface effect becomes significant in the axial buckling performance of the nanostructure. (paper)
Universal Power Law for Relationship between Rainfall Kinetic Energy and Rainfall Intensity
Seung Sook Shin; Sang Deog Park; Byoung Koo Choi
2016-01-01
Rainfall kinetic energy has been linked to linear, exponential, logarithmic, and power-law functions using rainfall intensity as an independent variable. The power law is the most suitable mathematical expression used to relate rainfall kinetic energy and rainfall intensity. In evaluating the rainfall kinetic energy, the empirical power laws have shown a larger deviation than other functions. In this study, universal power law between rainfall kinetic energy and rainfall intensity was propose...
This paper presents a novel vibration-based piezoelectric energy harvester capable of passively tuning its resonant frequency to a wide range of frequencies. The device comprises a dual bimorph with a mass at its free end. A novel sliding mechanism, consisting of two oblique springs connected to the tip mass, is proposed to widen the resonance frequency of the device even to very low frequencies. The application of two oblique springs results in an additional stiffness and axial load that are introduced within the system, such that the resonance frequency of the device is now a function of both the stiffness and axial load associated with the spring forces. An operator can manually change the resonance frequency of the harvester just by small adjustments of the sliding mechanism. Further, the device allows one to tune the resonance frequency of the beam to match very low frequencies without the requirement of having a large proof mass. The analytical solution of an axially loaded cantilevered piezoelectric energy harvester with tip stiffness, using Euler–Bernoulli beam assumptions, is presented. A parametric case study is presented to demonstrate the performance of the device. (paper)
Rotational and divergent kinetic energy in the mesoscale model ALADIN
V. Blažica
2013-03-01
Full Text Available Kinetic energy spectra from the mesoscale numerical weather prediction (NWP model ALADIN with horizontal resolution 4.4 km are split into divergent and rotational components which are then compared at horizontal scales below 300 km and various vertical levels. It is shown that about 50% of kinetic energy in the free troposphere in ALADIN is divergent energy. The percentage increases towards 70% near the surface and in the upper troposphere towards 100 hPa. The maximal percentage of divergent energy is found at stratospheric levels around 100 hPa and at scales below 100 km which are not represented by the global models. At all levels, the divergent energy spectra are characterised by shallower slopes than the rotational energy spectra, and the difference increases as horizontal scales become larger. A very similar vertical distribution of divergent energy is obtained by using the standard ALADIN approach for the computation of spectra based on the extension zone and by applying detrending approach commonly used in mesoscale NWP community.
Fragment kinetic energy distributions in ion induced CO2 fragmentation
The dissociation of CO3+2 formed in heavy ion induced ionization of CO2 has been studied using the technique of time of flight mass spectroscopy with position sensitive ion detector, with 5 MeV/u Si12+ ions as projectiles. The kinetic energy released in the CO3+2→ C+ + O+ + O+ is measured and compared to theoretical ab initio calculations as well as photoionization results.
Kinetic Energy of Tornadoes in the United States
Tyler Fricker; James B. Elsner
2015-01-01
Tornadoes can cause catastrophic destruction. Here total kinetic energy (TKE) as a metric of destruction is computed from the fraction of the tornado path experiencing various damage levels and a characteristic wind speed for each level. The fraction of the path is obtained from a model developed for the Nuclear Regulatory Commission that combines theory with empirical data. TKE is validated as a useful metric by comparing it to other indexes and loss indicators. Half of all tornadoes have TK...
Fragmentation and mean kinetic energy release of the nitrogen molecule
Ionization and fragmentation of the N2 molecule in coincidence with the final projectile charge state have been measured for the impact of 0.188-0.875 MeV/amu He+ projectiles. The average kinetic energy release (KER) of the target ionic fragments is derived from the peak widths of their time-of-flight distributions. It is shown that the KER's for singly-charged products follow scaling laws irrespectively to the collision channel
In this paper, the generation of high-quality and high-energy micro electron beam in vacuum by a chirped Gaussian laser pulse in the presence of an axial magnetic field is numerically investigated. The features of energy and angular spectra, emittances, and position distribution of electron beam are compared in two cases, i.e., in the presence and absence of an external magnetic field. The electron beam is accelerated with higher energy and qualified in spatial distribution in the presence of the magnetic field. The presence of an axial magnetic field improves electron beam spatial quality as well as its gained energy through keeping the electron motion parallel to the direction of propagation for longer distances. It has been found that a 64 μm electron bunch with about MeV initial energy becomes a 20 μm electron beam with high energy of the order of GeV, after interacting with a laser pulse in the presence of an external magnetic field
Akou, H., E-mail: h.akou@nit.ac.ir; Hamedi, M. [Department of Physics, Faculty of Basic Science, Babol University of Technology, Babol 47148-71167 (Iran, Islamic Republic of)
2015-10-15
In this paper, the generation of high-quality and high-energy micro electron beam in vacuum by a chirped Gaussian laser pulse in the presence of an axial magnetic field is numerically investigated. The features of energy and angular spectra, emittances, and position distribution of electron beam are compared in two cases, i.e., in the presence and absence of an external magnetic field. The electron beam is accelerated with higher energy and qualified in spatial distribution in the presence of the magnetic field. The presence of an axial magnetic field improves electron beam spatial quality as well as its gained energy through keeping the electron motion parallel to the direction of propagation for longer distances. It has been found that a 64 μm electron bunch with about MeV initial energy becomes a 20 μm electron beam with high energy of the order of GeV, after interacting with a laser pulse in the presence of an external magnetic field.
Triebwasser-Freese, D.; Tharayil, N.; Preston, C. M.; Gerard, P.
2013-12-01
Recently, it has been suggested that lignin exhibit a turnover rate of less than 6 years, suggesting that the enzymatic mechanisms mediating the decay of lignin are less understood. One factor that could be affecting the mean residence time of lignin in the soil is the catalytic efficiency of soil oxidoreductase enzymes. We characterized the spatial and seasonal transitions in the Michaelis-Menten kinetics and activation energy of the soil oxidoreductase enzyme, peroxidase, across three ecosystems of differing litter chemistries- pine, deciduous forest, and a cultivated field- and associate it to the soil lignin chemistries. To interpret the combined effect of Vmax and Km, the two parameters were integrated into one term which we defined as the catalytic efficiency. Generally, the peroxidases in pine soils exhibited the highest Vmax and Km, resulting in the lowest catalytic efficiency, followed by that in the deciduous soils. Meanwhile, the agricultural soils which exhibited the lowest Vmax and Km contained the highest catalytic efficiency of peroxidase. Through linear regression analysis of the kinetic parameters to the soil lignin chemistry, we discerned that the catalytic efficiency term best associated to the lignin monomer ratios (C/V, P/V, and SCV/V). The Activation Energy of peroxidase varied by depth, and seasons across the ecosystems. However, the Activation Energy of peroxidase did not relate to the lignin chemistry or quantity. Collectively, our results show that although the peroxidase Vmax and Km in the phenolic-poor soils are low, the degradation efficiency of peroxidases in this soils can be equivalent or exceed that of phenolic-rich soils. This study, through the characterization of Michaelis-Menten kinetics, provides a new insight into the mechanisms that could moderate the decomposition of lignin in soils.
When and How Does A Prominence-like Jet Gain Kinetic Energy?
Liu, J.; Wang, Y.; Zhang, Q.; Liu, K.; Shen, C.
2013-12-01
Usually a jet is triggered by a brightening or flare, which provides the first driving force. In this process, magnetic reconnection is thought to be the mechanism to convert magnetic energy into jet's kinetic energy. However, most jets could reach an unusual height and end far after the end of its associated flare. This fact implies another way continuously transferring magnetic energy into kinetic energy after the reconnection. This picture is well known, but how and how much magnetic energy is released through the way other than the reconnection is still unclear. Here, through studying a prominence-like jet observed by AIA and EUVI, we reveal the continuously relaxation of post-reconnection magnetic field structure is an important process to support a jet. The kinetic energy of the jet gained through this way is 1.6 times of that from the reconnection. The resultant energy flux is hundreds of the required for local coronal heating, suggesting such jets are a possible source to keep corona hot. Rotational motion appearing all the time during the jet implies the torsional Alfven wave induced during reconnection is not the only mechanism to release magnetic energy and drive jets. Left column: Difference images taken by SDO/AIA at 304A passband. The FOV of the images is 430"x430". Right column: Difference images from STEREO-A/EUVI at the same passband. The FOV is 450"x450". Since STEREO-A was 120 degree apart away from SDO on 2012 July 8, the SDO limb event right happened ondisk in the view of STEREO-A. Black and red solid curve: integrated intensity over the cross-section of the jet at different height at 19:11 UT and 19:47 UT, respectively. The two horizontal dashed lines are their average values. Black and red dashed curve with asterisks: axial speed with errors of the eight sub-jets shown in Figure 3 at 19:11 UT and 19:47 UT , respectively. Blue dashed curve with diamonds: angular speed with errors of the jet at different height.
Maximum kinetic energy considerations in proton stereotactic radiosurgery
Sengbusch, Evan R.; Mackie, Thomas R.
2016-01-01
The purpose of this study was to determine the maximum proton kinetic energy required to treat a given percentage of patients eligible for stereotactic radiosurgery (SRS) with coplanar arc-based proton therapy, contingent upon the number and location of gantry angles used. Treatment plans from 100 consecutive patients treated with SRS at the University of Wisconsin Carbone Cancer Center between June of 2007 and March of 2010 were analyzed. For each target volume within each patient, in-house software was used to place proton pencil beam spots over the distal surface of the target volume from 51 equally-spaced gantry angles of up to 360°. For each beam spot, the radiological path length from the surface of the patient to the distal boundary of the target was then calculated along a ray from the gantry location to the location of the beam spot. This data was used to generate a maximum proton energy requirement for each patient as a function of the arc length that would be spanned by the gantry angles used in a given treatment. If only a single treatment angle is required, 100% of the patients included in the study could be treated by a proton beam with a maximum kinetic energy of 118 MeV. As the length of the treatment arc is increased to 90°, 180°, 270°, and 360°, the maximum energy requirement increases to 127, 145, 156, and 179 MeV, respectively. A very high percentage of SRS patients could be treated at relatively low proton energies if the gantry angles used in the treatment plan do not span a large treatment arc. Maximum proton kinetic energy requirements increase linearly with size of the treatment arc. PMID:21844866
Nuclear form in scission point at different kinetic energies
Full text: Form of a fission nucleus in the scission point is determined by the relation of the future fragments masses, deformation, shell structure and quantum-mechanical effects (nuclear temperature, nuclear friction, intranuclear interaction). It is important to establish the contribution of each of these factors in dynamics of nuclear fission, that will allow more precisely to describe formation of the fragments nuclei at descent from the saddle point to the scission point. In the final account, the form of a nucleus determines kinetic energy of scattering fragments and their energy of excitation, and energy of deformation. The kinetic energy, charge and masses of scattering fragments are experimentally determined. Using modeling performances of fission process, by these experimental results it is possible to find the form of a fission nucleus in the scission point. On procedure in detail described in [1] there was determined a distance between fragments in the scission point at the fixed values of kinetic energy Ek for an easy fragment in a range of mass numbers 68 235U by thermal neutrons. The values of a fragment charge ZL were used from work [2]. Further on a technique offered in work [3], there were determined sizes of fragments nuclei and their parameters of deformations βL and βh. The executed accounts show, what at values 88 MeV k L = 76 and Ah = 134 (βL, βh ∼ 0) is observed. These fragments are formed with small excitation; the issue of neutrons from them practically is absent. At additional to them of fragments (Ah = 160, AL = 102) are observed of the large energy of excitation and deformation. The fragments with AL h h k, TKE, ZL/Zh, AL/Ah) and to use independent yield of fragments, it is possible to determine a degree of influence of these parameters on the form of a fission nucleus in the scission point. The dependences between these parameters are established. (author)
Neutron Generation and Kinetic Energy of Expanding Laser Plasmas
HUANG Yong-Sheng; WANG Nai-Yan; DUAN Xiao-Jiao; LAN Xiao-Fei; TAN Zhi-Xin; TANG Xiu-Zhang; HE Ye-Xi
2007-01-01
We investigate the kinetic energy of expanding plasma of a solid target heated by a ultra-short and ultra-intense laser pulse and the efficiency of energy coupling between the ultra-intense laser pulse and the solid target, in order to increase the utilization ratio of laser energy and to raise the neutron generation farther. Some new ideas about improving the energy utilization by head-on collisions between the expanding plasmas are proposed. The significance is the raise of generation of shorter duration neutron, of the order of picoseconds, which allows for an increase of energy resolution in time-of-flight experiments and also for the investigation of the dynamics of nuclear processes with high temporal resolution.
Enhanced propagation of rainfall kinetic energy in the UK
Diodato, Nazzareno; Bellocchi, Gianni
2016-07-01
A gridded 0.25° reconstruction of rainfall kinetic energy (RKE) over the UK, on the basis of pluviometric observations and reanalysis back to 1765, shows that autumn RKE doubled in 1991-2013 (˜2 MJ m-2) compared to 1948-1990 (˜1 MJ m-2). A shift eastward is underway, which includes southern and northern portions of the country. Analyzing the long-running England and Wales precipitation series, we conclude that it is likely that increased precipitation amounts associated with more frequent convective storms created conditions for higher energy events.
Ghotra, Harjit Singh; Kant, Niti
2016-05-01
Electron injected in the path of a circularly polarized Gaussian laser beam under the influence of an external axial magnetic field is shown to be accelerated with a several GeV of energy in vacuum. A small angle of injection δ with 0 ∘ propagation of laser pulse is suggested for better trapping of electron in laser field and stronger betatron resonance under the influence of axial magnetic field. Such an optimized electron injection with axial magnetic field maximizes the acceleration gradient and electron energy gain with low electron scattering.
Ghotra, Harjit Singh; Kant, Niti
2016-05-01
Electron injected in the path of a circularly polarized Gaussian laser beam under the influence of an external axial magnetic field is shown to be accelerated with a several GeV of energy in vacuum. A small angle of injection δ with 0 ∘ < δ < 20 ∘ for a sideway injection of electron about the axis of propagation of laser pulse is suggested for better trapping of electron in laser field and stronger betatron resonance under the influence of axial magnetic field. Such an optimized electron injection with axial magnetic field maximizes the acceleration gradient and electron energy gain with low electron scattering.
Meneveau, Charles
2015-11-01
A topic that elicited the interest of John Lumley is pressure transport in turbulence. In 1978 (JL, in Advances in Applied Mechanics, pages 123-176) he showed that pressure transport likely acts in the opposite direction to the spatial flux of kinetic energy due to triple velocity correlations. Here we examine a flow in which the interplay of turbulent decay and spatial transport is particularly relevant. Specifically, using a specially designed active grid and screens placed in the Corrsin wind tunnel, such a flow is realized. Data are acquired using X-wire thermal anemometry at different spanwise and downstream locations. In order to resolve the dissipation rate accurately, measurements are also acquired using the NSTAP probe developed and manufactured by Princeton researchers and kindly provided to us (M. Hultmark, Y. Fan, L. Smits). The results show power-law decay with downstream distance, with a decay exponent that becomes larger in the high kinetic energy side of the flow. Measurements of the dissipation enable us to obtain the spanwise gradient of the spatial flux. One possible explanation for the observations is upgrading transport of kinetic energy due to pressure-velocity correlations, although its magnitude required to close the budget appears very large. Absence of simultaneous pressure velocity measurement preclude us to fully elucidate the observed trends. In collaboration with Adrien Thormann, Johns Hopkins University. Financial support: National Science Foundation.
A range of analytical and numerical models is available to investigate the thermal behaviour of vertical ground heat exchangers, both in the short- and long-term. However, most of them ignore the thermal effects of weather at ground level that affect the upper part of boreholes. Furthermore, few models look at the integrated simulation of a ground source heat pump system for both the borehole field and heat pump. Consequently, a limited number of applications to real cases are available for designers. This paper shows a study to assess the effects of both axial heat transfer in boreholes and the weather at ground level on the fluid temperature in the boreholes, as well as on the energy efficiency of the heat pump. To this purpose, long-term analysis of two ground source heat pump systems was conducted over ten years by means of a detailed numerical simulation tool. The systems were for two office buildings with unbalanced load profiles in Canada and Italy. These case studies were analyzed as they were being designed, then the influence of the borehole arrangement and borehole length was also investigated. The simulation results show that axial heat transfer affects fluid temperature in the boreholes and the seasonal energy efficiency of the whole system more than the weather. Moreover, when the load profile is unbalanced, neglecting the effect of weather does not always ensure a conservative design of the borehole field. - Highlights: • Multi-year integrated simulations of two real GSHP systems are carried out. • The work focuses on the long-term energy efficiency of GSHP systems. • The simulation tool considers both the borehole field and the heat pump. • The axial heat transfer in the ground affects the energy efficiency of the system. • The weather at the ground level affects the fluid temperature in the boreholes
Biomineralization mechanisms: a kinetics and interfacial energy approach
Nancollas, George H.; Wu, Wenju
2000-04-01
The calcium phosphates and oxalates are among the most frequently encountered biomineral phases and numerous kinetics studies have been made of their crystallization and dissolution in supersaturated and undersaturated solutions, respectively. These have focused mainly on parameters such as solution composition, ionic strength, pH, temperature, and solid surface characteristics. There is considerable interest in extending such studies to solutions more closely simulating the biological milieu. The constant composition method is especially useful for investigating the mechanisms of these reactions, and in the present work, the interfacial tensions between water and each of these surfaces have been calculated from measured contact angles using surface tension component theory. Values for the calcium phosphate phases such as dicalcium phosphate dihydrate (DCPD), octacalcium phosphate (OCP), hydroxyapatite (HAP), and fluorapatite (FAP) may be compared with data calculated from dissolution kinetics experiments invoking different reaction mechanisms. Agreement between the directly measured interfacial energies and those calculated from the kinetics experiments provides valuable corroborative information about individual growth and dissolution mechanisms. For the calcium phosphates, the much smaller interfacial tensions of OCP and DCPD in contact with water as compared with those of HAP and FAP support the suggestion that the former phases are precursors in HAP and FAP biomineralization. The ability of a surface to nucleate mineral phases is closely related to the magnitude of the interfacial energies. Constant composition studies have also shown that HAP is an effective nucleator of calcium oxalate monohydrate, both of which are frequently observed in renal stones.
Momentum and Kinetic Energy Before the Tackle in Rugby Union
Sharief Hendricks, David Karpul, Mike Lambert
2014-09-01
Full Text Available Understanding the physical demands of a tackle in match situations is important for safe and effective training, developing equipment and research. Physical components such as momentum and kinetic energy, and it relationship to tackle outcome is not known. The aim of this study was to compare momenta between ball-carrier and tackler, level of play (elite, university and junior and position (forwards vs. backs, and describe the relationship between ball-carrier and tackler mass, velocity and momentum and the tackle outcome. Also, report on the ball-carrier and tackler kinetic energy before contact and the estimated magnitude of impact (energy distributed between ball-carrier and tackler upon contact. Velocity over 0.5 seconds before contact was determined using a 2-dimensional scaled version of the field generated from a computer alogorithm. Body masses of players were obtained from their player profiles. Momentum and kinetic energy were subsequently calculated for 60 tackle events. Ball-carriers were heavier than the tacklers (ball-carrier 100 ± 14 kg vs. tackler 93 ± 11 kg, d = 0.52, p = 0.0041, n = 60. Ball-carriers as forwards had a significantly higher momentum than backs (forwards 563 ± 226 Kg.m.s-1 n = 31 vs. backs 438 ± 135 Kg.m.s-1, d = 0.63, p = 0.0012, n = 29. Tacklers dominated 57% of tackles and ball-carriers dominated 43% of tackles. Despite the ball-carrier having a mass advantage before contact more frequently than the tackler, momentum advantage and tackle dominance between the ball-carrier and tackler was proportionally similar. These findings may reflect a characteristic of the modern game of rugby where efficiently heavier players (particularly forwards are tactically predetermined to carry the ball in contact.
Oil shale pyrolysis kinetics and variable activation energy principle
Al-Ayed, Omar S. [Faculty of Engineering Technology, Department of Chemical Engineering, P.O. Box 15008, Marka 11134 (Jordan); Matouq, M.; Anbar, Z.; Khaleel, Adnan M. [Faculty of Engineering Technology, Department of Chemical Engineering, P.O. Box 15008, Marka 11134 (Jordan); Department of Basic Sciences, Prince Abdullah Bin-Ghazi of Science and Information, Al-Balqa Applied University (Jordan); Abu-Nameh, Eyad [Department of Basic Sciences, Prince Abdullah Bin-Ghazi of Science and Information, Al-Balqa Applied University (Jordan)
2010-04-15
A modified first order kinetic equation with variable activation energy is employed to model the total weight loss of Ellajjun oil shale samples. Fixed bed retort with 400 g of oil shale sample size is used in this study in 350-550 C temperature range. Variable heating rate, h, in the range 2.6-5 C min{sup -1} are tested. Activation energy was allowed to vary as a function of oil shale conversion. The value of the activation energy increased from 98 to 120 kJ mol{sup -1} while the corresponding frequency factor changed from 9.51 x 10{sup 5} to 1.16 x 10{sup 6}. Fischer Assay analysis of the studied samples indicated 12.2 wt.% oil content. The oil shale decomposition ranged from 3.2% to 28.0%. The obtained kinetic data are modeled using variable heating rate, pyrolysis temperature and variable activation energy principle in a nitrogen sweeping medium. Good fit to the obtained experimental data is achieved. (author)
Momentum and kinetic energy before the tackle in rugby union.
Hendricks, Sharief; Karpul, David; Lambert, Mike
2014-09-01
Understanding the physical demands of a tackle in match situations is important for safe and effective training, developing equipment and research. Physical components such as momentum and kinetic energy, and it relationship to tackle outcome is not known. The aim of this study was to compare momenta between ball-carrier and tackler, level of play (elite, university and junior) and position (forwards vs. backs), and describe the relationship between ball-carrier and tackler mass, velocity and momentum and the tackle outcome. Also, report on the ball-carrier and tackler kinetic energy before contact and the estimated magnitude of impact (energy distributed between ball-carrier and tackler upon contact). Velocity over 0.5 seconds before contact was determined using a 2-dimensional scaled version of the field generated from a computer alogorithm. Body masses of players were obtained from their player profiles. Momentum and kinetic energy were subsequently calculated for 60 tackle events. Ball-carriers were heavier than the tacklers (ball-carrier 100 ± 14 kg vs. tackler 93 ± 11 kg, d = 0.52, p = 0.0041, n = 60). Ball-carriers as forwards had a significantly higher momentum than backs (forwards 563 ± 226 Kg(.)m(.)s(-1) n = 31 vs. backs 438 ± 135 Kg(.)m(.)s(-1), d = 0.63, p = 0.0012, n = 29). Tacklers dominated 57% of tackles and ball-carriers dominated 43% of tackles. Despite the ball-carrier having a mass advantage before contact more frequently than the tackler, momentum advantage and tackle dominance between the ball-carrier and tackler was proportionally similar. These findings may reflect a characteristic of the modern game of rugby where efficiently heavier players (particularly forwards) are tactically predetermined to carry the ball in contact. Key PointsFirst study to quantify momentum, kinetic energy, and magnitude of impact in rugby tackles across different levels in matches without a device attached to a player.Physical components alone, of either ball
Energy dissipation in magnetic null points at kinetic scales
Olshevsky, Vyacheslav; Eriksson, Elin; Markidis, Stefano; Lapenta, Giovanni
2015-01-01
We use kinetic particle-in-cell and magnetohydrodynamic simulations supported by an observational dataset to investigate magnetic reconnection in clusters of null points in space plasma. The magnetic configuration under investigation is driven by fast adiabatic flux rope compression that dissipates almost half of the initial magnetic field energy. In this phase powerful currents are excited producing secondary instabilities, and the system is brought into a state of `intermittent turbulence' within a few ion gyro-periods. Reconnection events are distributed all over the simulation domain and energy dissipation is rather volume-filling. Numerous spiral null points interconnected via their spines form null lines embedded into magnetic flux ropes; null point pairs demonstrate the signatures of torsional spine reconnection. However, energy dissipation mainly happens in the shear layers formed by adjacent flux ropes with oppositely directed currents. In these regions radial null pairs are spontaneously emerging an...
Entropy perturbations in assisted dark energy with mixed kinetic terms
Karwan, Khamphee
2010-01-01
We study the effects of entropy perturbations in the two fields assisted dark energy model on the density perturbations in the universe. Based on usual scenario of assisted dark energy, in which one scalar field is subdominant compared with the other in the early epoch, we show that the entropy perturbations in this two scalar field system can be constant in the early epoch and hence survive until the present epoch for a generic evolution of both fields during the radiation and matter eras. This behaviour of the entropy perturbations is preserved even when the fields are coupled via kinetic interaction. The entropy perturbations can enhance the integrated Sachs-Wolfe (ISW) effect if the signs of the contributions from entropy perturbations and curvature perturbations are opposite during dark energy domination, otherwise the ISW contribution is suppressed or changes sign. For canonical scalar field the effect of entropy perturbations on ISW effect is small because the initial value of the entropy perturbations...
Autoionization rate constants of zero electron kinetic energy Rydberg states
Highlights: ► Rovibrational autoionization rate constants for diatomic molecules. ► Density matrix formulation based on the model of IBOA. ► Quantum number and energy dependences are studied. - Abstract: We have calculated the vibrational and rotational autoionization rate constants for diatomic molecules H2, N2, and HCl in high Rydberg states by employing the density matrix formulation with the inverse Born–Oppenheimer approximation basis set. The purpose is to simulate the main radiationless processes occurring in zero electron kinetic energy (ZEKE) spectroscopy. The quantum numbers and the energy dependences of the calculated autoionization rate constants are represented as the scaling laws via nonlinear regression. These data provide a suitable starting point for quantitative study of the intricate dynamics involved in ZEKE Rydberg states.
Army hypersonic compact kinetic-energy missile laser window design
Russell, Gerald W.; Cayson, Stephen C.; Jones, Michael M.; Carriger, Wendy; Mitchell, Robert R.; Strobel, Forrest A.; Rembert, Michael; Gibson, David A.
2003-09-01
The U.S. Army Aviation and Missile Command, Aviation and Missile Research, Engineering, and Development Center (AMRDEC) is currently developing the Compact Kinetic Energy Missile (CKEM) which achieves hypersonic velocities at sea level. The system incorporates guidance to the target and requires active guidance technology. CKEM's kinetic energy warhead requires an accurate guidance sub-system in order to achieve high probability of kills at long range. Due to the severity of the aerothermal environments, minimized reaction time for small time to target conditions, and the communication degrading effects of the missile's energetic boost motor, a state of the art guidance technique is being developed by the AMRDEC Missile Guidance Directorate called Side-Scatter Laser Beam Rider. This technology incorporates a 1.06 micron laser to receive an off-axis laser guidance link to communicate guidance information from the launch site to the missile. This concept requires the use of optical windows on board the missile for the missile-borne laser energy signal receivers. The current concept utilizes four rectangular windows at 90° increments around the missile. The peak velocity during flight can reach approximately 6300 ft/sec inducing severe aerothermal heating and highly transient thermal gradients. The Propulsion and Structures Directorate was tasked to design and experimentally validate the laser window. Additionally, flight tests were conducted to demonstrate the laser guidance technology. This paper will present the laser window design development process as well as aerothermal testing to induce flight like environments and assess worst case thermostructural conditions.
Extending Newton's law from nonlocal-in-time kinetic energy
We study a new equation of motion derived from a context of classical Newtonian mechanics by replacing the kinetic energy with a form of nonlocal-in-time kinetic energy. It leads to a hypothetical extension of Newton's second law of motion. In a first stage the obtainable solution form is studied by considering an unknown value for the nonlocality time extent. This is done in relation to higher-order Euler-Lagrange equations and a Hamiltonian framework. In a second stage the free particle case and harmonic oscillator case are studied and compared with quantum mechanical results. For a free particle it is shown that the solution form is a superposition of the classical straight line motion and a Fourier series. We discuss the link with quanta interpretations made in Pais-Uhlenbeck oscillators. The discrete nature emerges from the continuous time setting through application of the least action principle. The harmonic oscillator case leads to energy levels that approximately correspond to the quantum harmonic oscillator levels. The solution to the extended Newton equation also admits a quantization of the nonlocality time extent, which is determined by the classical oscillator frequency. The extended equation suggests a new possible way for understanding the relationship between classical and quantum mechanics
CONSERVATIVE CASCADE OF KINETIC ENERGY IN COMPRESSIBLE TURBULENCE
The physical nature of compressible turbulence is of fundamental importance in a variety of astrophysical settings. We investigate the question: 'At what scales does the mechanism of pressure-dilatation operate?' and present the first direct evidence that mean kinetic energy cascades conservatively beyond a transitional 'conversion' scale range despite not being an invariant of the dynamics. We use high-resolution 10243 subsonic and transonic simulations. The key quantity we measure is the pressure-dilatation cospectrum, EPD(k), where we show that it decays at a rate faster than k–1 in wavenumber in at least the subsonic and transonic regimes. This is sufficient to imply that mean pressure-dilatation acts primarily at large scales and that kinetic and internal energy budgets statistically decouple beyond a transitional scale range. However, we observe that small-scale dynamics remains highly compressible locally in space and that the statistical decoupling in the energy budgets is unrelated to the existence of a subsonic scale range. Our results suggest that an extension of Kolmogorov's inertial-range theory to compressible turbulence is possible.
About total kinetic energy distribution between fragments of binary fission
At the investigation of binary fission reactions one of the main characteristic of process is total kinetic energy (TKE) of fission fragments and it distribution between them. From the values of these characteristics it is possible to extract the information about structure of fission fragments in the break up point of initial fissionable nuclear system. In our work TKE dependence from the deformation parameters of shape and density distribution of charge in the fission fragments are investigated. In the end of paper some generalizations of obtaining results are carried out and presented in the form of tables and figures
Quieting the Flows in Valves Using Kinetic Energy Degraders
Pluviose, Michel
2013-01-01
It’s common knowledge that nature is a subtle mixture of order and disorder. On a windless day, everything seems calm, and yet billions and billions of molecules are constantly moving and colliding in the microscopic world. We are oblivious to all this activity and believe we are safe. Then the wind picks up. It possesses kinetic energy that we can partially capture in wind turbines. Sometimes, violent gusts and gale force winds begin to blow, destroying houses and damaging nature in their pa...
Flywheels for Low-Speed Kinetic Energy Storage Systems
A brief overview of different steel disc-type flywheels is presented. It contents the analysis of relationship between stress-state and kinetic energy of rotating body, comparison of the main characteristics of flywheels and description of their optimization procedures. It is shown that pro files of the discs calculated on a basis of plane stress-state assumption may be considered only as a starting point for its further improvement using 3-D approach. The aim of the review is to provide a designer for a insight into problem of shaping of steel flywheels. (Author) 19 refs
Flywheels for Low-Speed Kinetic Energy Storage Systems
Portnov, G.; Cruz, I.; Arias, F.; Fiffe, R. P.
2003-07-01
A brief overview of different steel disc-type flywheels is presented. It contents the analysis of relationship between stress-state and kinetic energy of rotating body, comparison of the main characteristics of flywheels and description of their optimization procedures. It is shown that profiles of the discs calculated on a basis of plane stress-state assumption may be considered only as a starting point for its further improvement using 3-D approach. The aim of the review is to provide a designer for a insight into problem of shaping of steel flywheels. (Author) 19 refs.
Intermediate-high energy nuclear reaction kinetics simulation and QMD
The main features of the IHENRKS and its application in the study of thermalization for reaction of 830 MeV P + 56Fe are described. IHENRKS is the abbreviation of intermediate-high energy nuclear reaction kinetic simulation. It combines the idea and method of MCM, SSIENC and QMD. These kind of models treat the movement of each particle (nucleon and meson) and their collisions in time and space and concern with the new particle production. From calculations for 830 MeV proton bombarding reactions, it can be concluded that the nucleus is not wholly thermalized, but locally thermalized. (1 fig.)
Molecular partitioning based on the kinetic energy density
Noorizadeh, Siamak
2016-05-01
Molecular partitioning based on the kinetic energy density is performed to a number of chemical species, which show non-nuclear attractors (NNA) in their gradient maps of the electron density. It is found that NNAs are removed using this molecular partitioning and although the virial theorem is not valid for all of the basins obtained in the being used AIM, all of the atoms obtained using the new approach obey this theorem. A comparison is also made between some atomic topological parameters which are obtained from the new partitioning approach and those calculated based on the electron density partitioning.
Spectral Energy Transfer and Dissipation of Magnetic Energy from Fluid to Kinetic Scales
Bowers, K.; Li, H.
2007-01-01
We investigate the magnetic energy transfer from the fluid to kinetic scales and dissipation processes using three-dimensional fully kinetic particle-in-cell plasma simulations. The nonlinear evolution of a sheet pinch is studied where we show that it exhibits both fluid scale global relaxation and kinetic scale collisionless reconnection at multiple resonant surfaces. The interactions among collisionless tearing modes destroy the original flux surfaces and produce stochastic fields, along with generating sheets and filaments of intensified currents. In addition, the magnetic energy is transferred from the original shear length scale both to the large scales due to the global relaxation and to the smaller, kinetic scales for dissipation. The dissipation is dominated by the thermal or pressure effect in the generalized Ohm’s law, and electrons are preferentially accelerated.
Signatures for axial chromodynamics
Within the context of basic left-right symmetry and the hypothesis of unification of weak, electromagnetic and strong forces at a mass level approximately equal to 104-106 GeV, relatively light ''mass'' axial gluons, confined or liberated, must be postulated. The authors remark that the existence of such ''light'' axial gluons supplementing the familiar vector octet preserves the successes of QCD, both for deep inelastic processes and charmonium physics. Through the characteristic spin-spin force, generated by their exchange, they may even help resolve some of the discrepancies between vector QCD predictions and charmonium physics. The main remark of this note is that if colour is liberated, not only vector but also axial-vector gluons are produced in high-energy e-e+ experiments, e.g. at PETRA and PEP, with fairly large cross-section. Distinctive decay modes of such liberated axial gluons are noted
Mass, momentum and kinetic energy of a relativistic particle
A rigorous definition of mass in special relativity, proposed in a recent paper, is recalled and employed to obtain simple and rigorous deductions of the expressions of momentum and kinetic energy for a relativistic particle. The whole logical framework appears as the natural extension of the classical one. Only the first, second and third laws of non-relativistic classical dynamics are postulated, in an axiomatic form which does not employ the concept of force. The axiomatic statements of the second and third laws of relativistic dynamics, which yield the relativistic definitions of mass and four-momentum and the conservation of four-momentum for an isolated pair of relativistic particles with a small relative velocity, are proved as simple consequences of the classical ones and of the Lorentz transformation of coordinates. Then, relativistic four-force and three-force are defined, and the expression of relativistic kinetic energy is deduced. Finally, a simple proof of the Lorentz invariance of the conservation of the sum of four-momenta for any set of particles, with arbitrary relative velocities, is presented.
Kinetic energy for the nuclear Yang-Mills collective model
Rosensteel, George; Sparks, Nick
2015-10-01
The Bohr-Mottelson-Frankfurt model of nuclear rotations and quadrupole vibrations is a foundational model in nuclear structure physics. The model, also called the geometrical collective model or simply GCM, has two hidden mathematical structures, one Lie group theoretic and the other differential geometric. Although the group structure has been understood for some time, the geometric structure is a new unexplored feature that shares the same mathematical origin as Yang-Mills, viz., a vector bundle with a non-abelian structure group and a connection. Using the de Rham Laplacian ▵ = * d * d from differential geometry for the kinetic energy extends significantly the physical scope of the GCM model. This Laplacian contains a ``magnetic'' term due to the coupling between base manifold rotational and fiber vorticity degrees of freedom. When the connection specializes to irrotational flow, the Laplacian reduces to the Bohr-Mottelson kinetic energy operator. More generally, the connection yields a moment of inertia that is intermediate between the extremes of irrotational flow and rigid body motion.
The conservative cascade of kinetic energy in compressible turbulence
Aluie, Hussein; Li, Hui
2011-01-01
The physical nature of compressible turbulence is of fundamental importance in a variety of astrophysical settings. We present the first direct evidence that mean kinetic energy cascades conservatively beyond a transitional "conversion" scale-range despite not being an invariant of the compressible flow dynamics. We use high-resolution three-dimensional simulations of compressible hydrodynamic turbulence on $512^3$ and $1024^3$ grids. We probe regimes of forced steady-state isothermal flows and of unforced decaying ideal gas flows. The key quantity we measure is pressure dilatation cospectrum, $E^{PD}(k)$, where we provide the first numerical evidence that it decays at a rate faster than $k^{-1}$ as a function of wavenumber. This is sufficient to imply that mean pressure dilatation acts primarily at large-scales and that kinetic and internal energy budgets statistically decouple beyond a transitional scale-range. Our results suggest that an extension of Kolmogorov's inertial-range theory to compressible turbu...
Reaction kinetics of annealing of high energy implantation by XRD
The annealing of structural defects caused by high energy implantation is studied using X-ray diffraction. The implanted sample (dose: 1 x 1014 ions/cm2) was isochronally annealed in flowing nitrogen in steps of 50 K up to 823 K for 10 min each, using a RTA system developed in Mumbai University. XRD patterns were recorded after each annealing and analyzed for strain and curvature. Also, the screw dislocation density was estimated at each stage of annealing using the FWHM of w scans in high resolution mode. The XRD profiles were simulated using the dynamical theory of X-ray diffraction for layer damage i.e. thickness, mismatch with respect to substrate, Debye Waller factor and sample curvature. The activation energy and characteristic temperature of annealing were estimated through reaction kinetics, utilizing the experimental XRD for progressive changes with temperature, of strain and dislocation density
On a Broken Formal Symmetry between Kinetic and Gravitational Energy
Shirazi, Armin Nikkhah
2010-01-01
Historically, the discovery of symmetries has played an important role in the progress of our fundamental understanding of nature. This paper will demonstrate that there exists in Newtonian theory in a spherical gravitational field a formal symmetry between the kinetic (KE) and gravitational potential energy (GPE) of a test mass. Put differently, there exists a way of expressing GPE such that the form of the mathematical expression remains invariant under an interchange of KE and GPE. When extended to relativity by a suitable assumption, it leads to a framework that bridges the general relativistic and Newtonian conceptions of gravitational energy, even though the symmetry is broken except in the infinitesimal limit. Recognizing this symmetry at infinitesimal scales makes it possible to write a relativistic equation of an individual graviton, the properties of which under under one interpretation may be unexpected.
A rotational and axial motion system load frame insert for in situ high energy x-ray studies
High energy x-ray characterization methods hold great potential for gaining insight into the behavior of materials and providing comparison datasets for the validation and development of mesoscale modeling tools. A suite of techniques have been developed by the x-ray community for characterizing the 3D structure and micromechanical state of polycrystalline materials; however, combining these techniques with in situ mechanical testing under well characterized and controlled boundary conditions has been challenging due to experimental design requirements, which demand new high-precision hardware as well as access to high-energy x-ray beamlines. We describe the design and performance of a load frame insert with a rotational and axial motion system that has been developed to meet these requirements. An example dataset from a deforming titanium alloy demonstrates the new capability
Kinetic Energy of Tornadoes in the United States.
Tyler Fricker
Full Text Available Tornadoes can cause catastrophic destruction. Here total kinetic energy (TKE as a metric of destruction is computed from the fraction of the tornado path experiencing various damage levels and a characteristic wind speed for each level. The fraction of the path is obtained from a model developed for the Nuclear Regulatory Commission that combines theory with empirical data. TKE is validated as a useful metric by comparing it to other indexes and loss indicators. Half of all tornadoes have TKE exceeding 62.1 GJ and a quarter have TKE exceeding 383.2 GJ. One percent of the tornadoes have TKE exceeding 31.9 TJ. April has more energy than May with fewer tornadoes; March has more energy than June with half as many tornadoes. September has the least energy but November and December have the fewest tornadoes. Alabama ranks number one in terms of tornado energy with 2.48 PJ over the period 2007-2013. TKE can be used to help better understand the changing nature of tornado activity.
Kinetic Energy of Tornadoes in the United States.
Fricker, Tyler; Elsner, James B
2015-01-01
Tornadoes can cause catastrophic destruction. Here total kinetic energy (TKE) as a metric of destruction is computed from the fraction of the tornado path experiencing various damage levels and a characteristic wind speed for each level. The fraction of the path is obtained from a model developed for the Nuclear Regulatory Commission that combines theory with empirical data. TKE is validated as a useful metric by comparing it to other indexes and loss indicators. Half of all tornadoes have TKE exceeding 62.1 GJ and a quarter have TKE exceeding 383.2 GJ. One percent of the tornadoes have TKE exceeding 31.9 TJ. April has more energy than May with fewer tornadoes; March has more energy than June with half as many tornadoes. September has the least energy but November and December have the fewest tornadoes. Alabama ranks number one in terms of tornado energy with 2.48 PJ over the period 2007-2013. TKE can be used to help better understand the changing nature of tornado activity. PMID:26132830
Kinetic energy sum spectra in nonmesonic weak decay of hypernuclei
We evaluate the coincidence spectra in the nonmesonic weak decay (NMWD) ΛN→nN of Λ hypernuclei Λ4He, Λ5He, Λ12C, Λ16O, and Λ28Si, as a function of the sum of kinetic energies EnN=En+EN for N=n,p. The strangeness-changing transition potential is described by the one-meson-exchange model, with commonly used parametrization. Two versions of the independent-particle shell model (IPSM) are employed to account for the nuclear structure of the final residual nuclei. They are as follows: (a) IPSM-a, where no correlation, except for the Pauli principle, is taken into account and (b) IPSM-b, where the highly excited hole states are considered to be quasistationary and are described by Breit-Wigner distributions, whose widths are estimated from the experimental data. All np and nn spectra exhibit a series of peaks in the energy interval 110 MeV nN-1 , going from congruent with 4 MeV for Λ28Si to congruent with 40 MeV for Λ4He. Such a description could be pretty fair for the light Λ4He and Λ5He hypernuclei. For the remaining, heavier, hypernuclei it is very important, however, to consider as well the spreading in strength of the deep-hole states and bring into play the IPSM-b approach. Notwithstanding the nuclear model that is employed the results depend only very weakly on the details of the dynamics involved in the decay process proper. We propose that the IPSM is the appropriate lowest-order approximation for the theoretical calculations of the of kinetic energy sum spectra in the NMWD. It is in comparison to this picture that one should appraise the effects of the final-state interactions and of the two-nucleon-induced decay mode
Functional derivative of the kinetic energy functional for spherically symmetric systems.
Nagy, Á
2011-07-28
Ensemble non-interacting kinetic energy functional is constructed for spherically symmetric systems. The differential virial theorem is derived for the ensemble. A first-order differential equation for the functional derivative of the ensemble non-interacting kinetic energy functional and the ensemble Pauli potential is presented. This equation can be solved and a special case of the solution provides the original non-interacting kinetic energy of the density functional theory. PMID:21806089
Isospin-invariant Skyrme energy-density-functional approach with axial symmetry
Sheikh, J A; Dobaczewski, J; Nakatsukasa, T; Nazarewicz, W; Sato, K
2014-01-01
We develop the isospin-invariant Skyrme-EDF method by considering local densities in all possible isospin channels and proton-neutron (p-n) mixing terms as mandated by the isospin symmetry. The EDF employed has the most general form that depends quadratically on the isoscalar and isovector densities. We test and benchmark the resulting p-n EDF approach, and study the general properties of the new scheme by means of the cranking in the isospin space. We extend the existing axial DFT solver HFBTHO to the case of isospin-invariant EDF approach with all possible p-n mixing terms. Explicit expressions have been derived for all the densities and potentials that appear in the isospin representation. In practical tests, we consider the Skyrme EDF SkM* and, as a first application, concentrate on Hartree-Fock aspects of the problem, i.e., pairing has been disregarded. Calculations have been performed for the (A=78, T~11), (A=40, T~8), and (A=48, T~4) isobaric analog chains. Isospin structure of self-consistent p-n mixe...
An integral turbulent kinetic energy analysis of free shear flows
Peters, C. E.; Phares, W. J.
1973-01-01
Mixing of coaxial streams is analyzed by application of integral techniques. An integrated turbulent kinetic energy (TKE) equation is solved simultaneously with the integral equations for the mean flow. Normalized TKE profile shapes are obtained from incompressible jet and shear layer experiments and are assumed to be applicable to all free turbulent flows. The shear stress at the midpoint of the mixing zone is assumed to be directly proportional to the local TKE, and dissipation is treated with a generalization of the model developed for isotropic turbulence. Although the analysis was developed for ducted flows, constant-pressure flows were approximated with the duct much larger than the jet. The axisymmetric flows under consideration were predicted with reasonable accuracy. Fairly good results were also obtained for the fully developed two-dimensional shear layers, which were computed as thin layers at the boundary of a large circular jet.
Mass independent kinetic energy reducing inlet system for vacuum environment
Reilly, Peter T. A. [Knoxville, TN
2010-12-14
A particle inlet system comprises a first chamber having a limiting orifice for an incoming gas stream and a micrometer controlled expansion slit. Lateral components of the momentum of the particles are substantially cancelled due to symmetry of the configuration once the laminar flow converges at the expansion slit. The particles and flow into a second chamber, which is maintained at a lower pressure than the first chamber, and then moves into a third chamber including multipole guides for electromagnetically confining the particle. The vertical momentum of the particles descending through the center of the third chamber is minimized as an upward stream of gases reduces the downward momentum of the particles. The translational kinetic energy of the particles is near-zero irrespective of the mass of the particles at an exit opening of the third chamber, which may be advantageously employed to provide enhanced mass resolution in mass spectrometry.
The eigenfrequencies of the axial w-modes of oscillating neutron stars are studied using the continued fraction method with an equation of state (EOS) partially constrained by the recent terrestrial nuclear laboratory data. It is shown that the density dependence of the nuclear symmetry energy Esym(ρ) affects significantly both the frequencies and the damping times of these modes. Besides confirming the previously found universal behavior of the mass-scaled eigenfrequencies as functions of the compactness of neutron stars, we explored several alternative universal scaling functions. Moreover, the wII-mode is found to exist only for neutron stars having a compactness of M/R≥0.1078 independent of the EOS used.
Trajectory-dependent energy loss for swift He atoms axially scattered off a silver surface
Angle- and energy-loss-resolved distributions of helium atoms grazingly scattered from a Ag(110) surface along low indexed crystallographic directions are investigated considering impact energies in the few keV range. Final projectile distributions are evaluated within a semi-classical formalism that includes dissipative effects due to electron–hole excitations through a friction force. For mono-energetic beams impinging along the [11¯0],[11¯2] and [001] directions, the model predicts the presence of multiple peak structures in energy-loss spectra. Such structures provide detailed information about the trajectory-dependent energy loss. However, when the experimental dispersion of the incident beam is taken into account, these energy-loss peaks are completely washed out, giving rise to a smooth energy-loss distribution, in fairly good agreement with available experimental data
In early work, Dawson and March [J. Chem. Phys. 81, 5850 (1984)] proposed a local energy method for treating both Hartree-Fock and correlated electron theory. Here, an exactly solvable model two-electron atom with pure harmonic interactions is treated in its ground state in the above context. A functional relation between the kinetic energy density t(r) at the origin r=0 and the electron density p(r) at the same point then emerges. The same approach is applied to the Hookean atom; in which the two electrons repel with Coulombic energy e2/r12, with r12 the interelectronic separation, but are still harmonically confined. Again the kinetic energy density t(r) is the focal point, but now generalization away from r=0 is also effected. Finally, brief comments are added about He-like atomic ions in the limit of large atomic number. (author)
Orientational, kinetic, and magnetic energy of geodynamo, reversals, and asymmetries
Starchenko, S. V.
2015-07-01
Integral laws describing the evolution of the kinetic, magnetic, and orientational energy in the liquid core of the Earth, which are also valid in the interiors of the other terrestrial planets, are derived, simplified, and analyzed. These laws are coarsely approximated by a system of ordinary differential equations with a given energy of the convection. The characteristic velocities, magnetic fields, periods, and scales as the functions of the power of the convection are estimated for the states beyond and close to the reversal or excursion. With the assumed simplifications, the convection power should be close to a certain value in order to enable a relatively short reversal or excursion; significant deviation of the convection energy from this value will render the system into a long-term steady state. Here, two types of steady state are possible: the codirectional state with the magnetic field oriented along the velocity vector, and contradirectional state with the opposing orientations of the magnetic field and velocity. These states are not symmetric with respect to each other since, other factors being equal, the energy support of the convection and the average intensity of the magnetic field are typically higher in the contradirectional rather than codirectional state. The total duration of codirectional states is somewhat shorter than contradirectional states in the case when the convection power grows with time; in the case of a long-decreasing convection power, the situation is opposite. This asymmetry in the duration of steady states is confirmed by the paleomagnetic data on the timescale of the magnetic reversals. The length of the average interval between the reversals is controlled by the turbulent, thermal, electromagnetic, and visco-compositional diffusion. The predominant type of the diffusion can be in many cases identified from the dependence of the reversal frequency on the intensity of the magnetic field based on the paleomagnetic data. The
Fluctuating kinetic energy budget during homogeneous flow of a fluid solid mixture
Ensemble-averaging theorems are applied to derive transport equations for the fluctuating kinetic energy of a particulate mixture consisting of a continuous fluid and solid particles. The evolution of fluctuating kinetic energy in a homogeneous flow is examined and discussed. copyright 1996 American Institute of Physics
A Comparison of Kinetic Energy and Momentum in Special Relativity and Classical Mechanics
Riggs, Peter J.
2016-01-01
Kinetic energy and momentum are indispensable dynamical quantities in both the special theory of relativity and in classical mechanics. Although momentum and kinetic energy are central to understanding dynamics, the differences between their relativistic and classical notions have not always received adequate treatment in undergraduate teaching.…
A Virial Theorem for the Kinetic Energy of a Heavy Quark inside Hadrons
Neubert, Matthias(PRISMA Cluster of Excellence & Mainz Institut for Theoretical Physics, Johannes Gutenberg University, D-55099, Mainz, Germany)
1993-01-01
The formalism of the heavy quark effective theory is used to derive the field-theory analog of the virial theorem, which relates the matrix element of the kinetic energy of a heavy quark inside a hadron to a matrix element of the gluon field strength tensor. The existing QCD sum rule calculations of the kinetic energy are not consistent with this theorem.
Axial anomaly and energy dependence of hyperon polarization in Heavy-Ion Collisions
Sorin, A
2016-01-01
We address the issue of energy and charge dependence of global polarization of $\\Lambda$ hyperons in peripheral $Au-Au$ collisions recently observed by STAR collaboration at RHIC. We compare the different contributions to the anomalous mechanism relating polarization to vorticity and hydrodynamic helicity in QCD matter. We stress that the suppression of gravitational anomaly related contribution in strongly correlated matter observed in lattice simulations confirms our earlier prediction of rapid decrease of polarization with collision energy. Our mechanism leads to the polarization of $\\bar \\Lambda$ of the same sign and larger magnitude than $\\Lambda$. The energy and charge dependence of polarization is suggested as a sensitive probe of fine details of QCD matter structure.
The Rainfall and Rainfall Kinetic Energy Intensity-Duration of Landslides and Debris flow in Taiwan
Chang, Jui-Ming; Chen, Hongey
2016-04-01
This research used Joss-Waldvogel Disdrometers (JWD) which set in Shiment catchment, Northern Taiwan and Chishan catchment, Southern Taiwan to record rainfall kinetic energy data, to find the relationship between rainfall kinetic energy and rainfall intensity in these two areas. The distance between the two areas is less than 150 km. These data help the researchers and showed that the equations of relationship were ekN =28.7* (1-0.7027*exp(-0.0395*I)) and ekS=27.4*(1-0.5954*exp(-0.0345*I)). Generally, rainfall kinetic energy in Northern Taiwan is higher than in Southern Taiwan during rainfall period. Also, the occurring time and rainfall records of 143 landslide events from 2006 to 2012 were analyzed. The rainfall-intensity (I-D) relationship could be used to build rainfall threshold which were IN=15.13 D‑0.28 and IS=47.58 D‑0.35. In brief, the rainfall feature in landslide of Northern Taiwan had low rainfall intensity, long rainfall duration and low average accumulative rainfall. By combining rainfall kinetic energy and rainfall threshold, rainfall kinetic energy threshold could be established, which were ¯E N=13.83 D‑0.04 and ¯E S =15.59 D‑0.02. The results showed that not only for rainfall but also for rainfall kinetic energy threshold, the values of thresholds in North were lower than those in South. Due to impaction energy of rainfall to ground surface, rainfall kinetic energy would not forever increase. Therefore, rainfall kinetic energy threshold is also a useful tool for landslide warning. Key words: Rainfall kinetic energy, Rainfall threshold, Rainfall kinetic energy threshold, Landslide
V Sridhar; D Sudarshan Reddy; N Ravikumar Reddy; S Satyanarayana
2002-02-01
Equilibria and kinetics of the reaction of bromomethyl(aquo) cobaloxime with histamine, histidine, glycine and ethyl glycine ester and iodomethyl(aquo) cobaloxime with cyanide, imidazole and substituted imidazoles were studied as a function of H at 25°C, 1.0 M ionic strength (KCl) by spectrophotometry technique. The rate of substitution of H2O varies with the of the incoming ligand, thus establishing the existence of nucleophilic participation of the ligand in the transition state. Dissociation kinetic reactions were also studied as a function of H. Binding and kinetic data were interpreted based on the basicity, steric crowd of the entering ligand and HSAB principle. To compare the rate constants of the entering ligands H independent second-order rate constants were calculated.
Control of Active Axial Magnetic Bearings for Flywheel-based Energy Storage System
Morís Gómez, Juan
2014-01-01
This thesis deals with the design and implementation of the control system for a Flywheel-based Energy Storage System (FESS) with active magnetic bearings. The thesis focuses on the construction of realistic model of the system according to experimental tests. The simulation model will be used to control the thrust magnetic bearings in order to withstand the flywheel in levitation.
Vertical-axial component wind turbine with a high coefficient using for wind energy
The report presents the results of research and development on of promising wind units carousel type with a high ratio utilization of wind energy. This devices use a well-known invention – the wind turbine Darrieus. The rotation of the turbine is due to the action of ascensional power to aerodynamic well-streamlined symmetrical about the chord wing profiles of NASA, which are working wind turbine blades. The shaft rotation can be connected with the working blades of one of two ways: using the “swings” or the way “troposkino”. Darrieus turbine has a ratio utilization of wind energy xmax=045. Despite the fact that this is a good indicator of the efficiency of the turbine working, the proposed option allows us to significantly increase the value of this coefficient. The bases methodology of this research is a method of technical and technological research and development design of prospective wind energy construction (WES). Key words: wind turbine, the blade, coefficient utilization of wind energy
Study of axial magnetic effect
The Axial Magnetic Effect manifests itself as an equilibrium energy flow of massless fermions induced by the axial (chiral) magnetic field. Here we study the Axial Magnetic Effect in the quenched SU(2) lattice gauge theory with massless overlap fermions at finite temperature. We numerically observe that in the low-temperature hadron phase the effect is absent due to the quark confinement. In the high-temperature deconfinement phase the energy flow is an increasing function of the temperature which reaches the predicted asymptotic T2 behavior at high temperatures. We find, however, that energy flow is about one order of magnitude lower compared to a theoretical prediction
Zero Kinetic Energy Photoelectron Spectroscopy of Benzo[h]quinoline.
Harthcock, Colin; Zhang, Jie; Kong, Wei
2015-12-17
We report zero kinetic energy (ZEKE) photoelectron spectroscopy of benzo[h]quinoline (BhQ) via resonantly enhanced multiphoton ionization (REMPI) through the first electronically excited state S1. From the simulated REMPI spectra with and without Herzberg-Teller coupling, we conclude that vibronic coupling plays a minor but observable role in the electronic excitation to the S1 state. We further compare the S1 state of BhQ with the first two electronically excited states of phenanthrene, noticing a similarity of the S1 state of BhQ with the second electronically excited state S2 of phenanthrene. In the ZEKE spectra of BhQ, the vibrational frequencies of the cationic state D0 are consistently higher than those of the intermediate neutral state, indicating enhanced bonding upon ionization. The sparse ZEKE spectra, compared with the spectrum of phenanthrene containing rich vibronic activities, further imply that the nitrogen atom has attenuated the structural change between S1 and D0 states. We speculate that the nitrogen atom can withdraw an electron in the S1 state and donate an electron in the D0 state, thereby minimizing the structural change during ionization. The origin of the first electronically excited state is determined to be 29,410 ± 5 cm(-1), and the adiabatic ionization potential is determined to be 65,064 ± 7 cm(-1). PMID:26039927
Phantom dark energy models with negative kinetic term
We examine phantom dark energy models derived from a scalar field with a negative kinetic term for which V(φ)→∞ asymptotically. All such models can be divided into three classes, corresponding to an equation of state parameter wφ with asymptotic behavior wφ→-1, wφ→w0φ→-∞. We derive the conditions on the potential V(φ) which lead to each of these three types of behavior. For models with wφ→-1, we derive the conditions on V(φ) which determine whether or not such models produce a future big rip. Observational constraints are derived on two classes of these models: power-law potentials with V(φ)=λφα (with α positive or negative) and exponential potentials of the form V(φ)=βeλφα. It is shown that these models spend more time in a state with Ωm∼Ωφ than do corresponding models with a constant value of wφ, thus providing a more satisfactory solution to the coincidence problem
Bare, Simon R.; Knop-Gericke, Axel; Teschner, Detre; Hävacker, Michael; Blume, Raoul; Rocha, Tulio; Schlögl, Robert; Chan, Ally S. Y.; Blackwell, N.; Charochak, M. E.; ter Veen, Rik; Brongersma, Hidde H.
2016-06-01
The surface Si/Al ratio in a series of zeolite Y samples has been obtained using laboratory XPS, synchrotron (variable kinetic energy) XPS, and low energy ion scattering (LEIS) spectroscopy. The non-destructive depth profile obtained using variable kinetic energy XPS is compared to that from the destructive argon ion bombardment depth profile from the lab XPS instrument. All of the data indicate that the near surface region of both the ammonium form and steamed Y zeolites is strongly enriched in aluminum. It is shown that when the inelastic mean free path of the photoelectrons is taken into account the laboratory XPS of aluminosilicates zeolites does not provide a true measurement of the surface stoichiometry, while variable kinetic energy XPS results in a more surface sensitive measurement. A comprehensive Si/Al concentration profile as a function of depth is developed by combining the data from the three surface characterization techniques. The LEIS spectroscopy reveals that the topmost atomic layer is further enriched in Al compared to subsequent layers.
Energy Conservation Tests of a Coupled Kinetic-kinetic Plasma-neutral Transport Code
Stotler, D. P.; Chang, C. S.; Ku, S. H.; Lang, J.; Park, G.
2012-08-29
A Monte Carlo neutral transport routine, based on DEGAS2, has been coupled to the guiding center ion-electron-neutral neoclassical PIC code XGC0 to provide a realistic treatment of neutral atoms and molecules in the tokamak edge plasma. The DEGAS2 routine allows detailed atomic physics and plasma-material interaction processes to be incorporated into these simulations. The spatial pro le of the neutral particle source used in the DEGAS2 routine is determined from the uxes of XGC0 ions to the material surfaces. The kinetic-kinetic plasma-neutral transport capability is demonstrated with example pedestal fueling simulations.
Principal parametric resonance of axially accelerating rectangular thin plate in magnetic field
胡宇达; 张金志
2013-01-01
Nonlinear parametric vibration and stability is investigated for an axially accelerating rectangular thin plate subjected to parametric excitations resulting from the axial time-varying tension and axial time-varying speed in the magnetic field. Consid-ering geometric nonlinearity, based on the expressions of total kinetic energy, potential energy, and electromagnetic force, the nonlinear magneto-elastic vibration equations of axially moving rectangular thin plate are derived by using the Hamilton principle. Based on displacement mode hypothesis, by using the Galerkin method, the nonlinear para-metric oscillation equation of the axially moving rectangular thin plate with four simply supported edges in the transverse magnetic field is obtained. The nonlinear principal parametric resonance amplitude-frequency equation is further derived by means of the multiple-scale method. The stability of the steady-state solution is also discussed, and the critical condition of stability is determined. As numerical examples for an axially moving rectangular thin plate, the influences of the detuning parameter, axial speed, axial tension, and magnetic induction intensity on the principal parametric resonance behavior are investigated.
LaRue, Jerry L; Schäfer, Tim; Matsiev, Daniel; Velarde, Luis; Nahler, N Hendrik; Auerbach, Daniel J; Wodtke, Alec M
2011-12-22
We report kinetic energy distributions of exoelectrons produced by collisions of highly vibrationally excited NO molecules with a low work function Cs dosed Au(111) surface. These measurements show that energy dissipation pathways involving nonadiabatic conversion of vibrational energy to electronic energy can result in electronic excitation of more than 3 eV, consistent with the available vibrational energy. We measured the dependence of the electron energy distributions on the translational and vibrational energy of the incident NO and find a clear positive correlation between final electron kinetic energy and initial vibrational excitation and a weak but observable inverse dependence of electron kinetic energy on initial translational energy. These observations are consistent with a vibrational autodetachment mechanism, where an electron is transferred to NO near its outer vibrational turning point and ejected near its inner vibrational turning point. Within the context of this model, we estimate the NO-to-surface distance for electron transfer. PMID:22112161
Kinetic energy management in road traffic injury prevention: a call for action
Davoud Khorasani-Zavareh
2015-01-01
Full Text Available Abstract: By virtue of their variability, mass and speed have important roles in transferring energies during a crash incidence (kinetic energy. The sum of kinetic energy is important in determining an injury severity and that is equal to one half of the vehicle mass multiplied by the square of the vehicle speed. To meet the Vision Zero policy (a traffic safety policy prevention activities should be focused on vehicle speed management. Understanding the role of kinetic energy will help to develop measures to reduce the generation, distribution, and effects of this energy during a road traffic crash. Road traffic injury preventive activities necessitate Kinetic energy management to improve road user safety.
Universal Power Law for Relationship between Rainfall Kinetic Energy and Rainfall Intensity
Seung Sook Shin
2016-01-01
Full Text Available Rainfall kinetic energy has been linked to linear, exponential, logarithmic, and power-law functions using rainfall intensity as an independent variable. The power law is the most suitable mathematical expression used to relate rainfall kinetic energy and rainfall intensity. In evaluating the rainfall kinetic energy, the empirical power laws have shown a larger deviation than other functions. In this study, universal power law between rainfall kinetic energy and rainfall intensity was proposed based on the rainfall power theory under an ideal assumption that drop-size is uniformly distributed in constant rainfall intensity. An exponent of the proposed power law was 11/9 and coefficient was estimated at 10.3 from the empirical equations of the existing power-law relation. The rainfall kinetic energy calculated by universal power law showed >95% concordance rate in comparison to the average values calculated from exponential and logarithmic functions used in soil erosion model such as USLE, RUSLE, EUROSEM, and SEMMA and <5% relative difference as compared to the average rainfall kinetic energies calculated by other empirical functions. Therefore, it is expected that power law of ideal assumption may be utilized as a universal power law in evaluating rainfall kinetic energy.
Dissociation of CO induced by He2+ ions. Pt. 1: Fragmentation and kinetic energy release spectra
The dissociation of COq+ ions (q ≤ 3) produced in collisions of keV amu-1 He2+ ions with CO has been studied by time-of-flight measurements. Both singles and coincidence time-of-flight techniques have been used to determine the kinetic energy release of the dissociating CO molecules. We describe the method to transform the singles and coincidence time-of-flight spectra into total kinetic energy distributions and discuss these distributions. They represent kinetic energy release distributions which clearly exhibit various contributions associated with different dissociation channels. In comparison with other ionization methods similarities but also clear differences are noted. (author)
Kinetic energy distributions of fragment ions in collisions of energetic heavy ions with C60
Mass distributions of fragment ions of C60 produced in collisions with energetic heavy ions have been measured by means of time-of-flight (TOF) method. From the peak profile analysis, initial kinetic energy distributions (KED) of fragment ions were obtained. KED were investigated for three different projectiles. For all fragment ions except for C1+, KED peaked at a few eV kinetic energies. KED of C1+ was found to have a double-peak structure, indicating that the C1+ ions were produced through two different mechanisms. Also, it was found that the mean kinetic energies had strong correlation with electronic stopping cross-section. (author)
Prediction of free turbulent mixing using a turbulent kinetic energy method
Harsha, P. T.
1973-01-01
Free turbulent mixing of two-dimensional and axisymmetric one- and two-stream flows is analyzed by a relatively simple turbulent kinetic energy method. This method incorporates a linear relationship between the turbulent shear and the turbulent kinetic energy and an algebraic relationship for the length scale appearing in the turbulent kinetic energy equation. Good results are obtained for a wide variety of flows. The technique is shown to be especially applicable to flows with heat and mass transfer, for which nonunity Prandtl and Schmidt numbers may be assumed.
Chen Jian-Xin; Ma Ri; Ren Hai-Zhen; Li Xia; Wu Cheng-Yin; Yang Hong; Gong Qi-Huang
2004-01-01
@@ The kinetic energy release of fragment ions produced by the interaction of femtosecond laser pulse radiation with diatomic and linear triatomic molecules N2, CO, CO2 and CS2 is investigated. In the case of linear polarization, angles at which the kinetic energy release of ions has the maximum value are different from the alignment of molecules though the kinetic energy release of fragment atomic ions depends on the angle between the laser polarization vector and the detection axis of the time-of-flight.
Che, H.; Goldstein, M. L.; Vinas, A. F.
2014-01-01
The observed steep kinetic scale turbulence spectrum in the solar wind raises the question of how that turbulence originates. Observations of keV energetic electrons during solar quiet time suggest them as a possible source of free energy to drive kinetic turbulence. Using particle-in-cell simulations, we explore how the free energy released by an electron two-stream instability drives Weibel-like electromagnetic waves that excite wave-wave interactions. Consequently, both kinetic Alfvénic and whistler turbulence are excited that evolve through inverse and forward magnetic energy cascades.
Power Spectral Analysis of Jupiter's Clouds and Kinetic Energy from Cassini
Choi, David S; 10.1016/j.icarus.2011.10.001
2013-01-01
We present suggestive evidence for an inverse energy cascade within Jupiter's atmosphere through a calculation of the power spectrum of its kinetic energy and its cloud patterns. Using Cassini observations, we composed full-longitudinal mosaics of Jupiter's atmosphere at several wavelengths. We also utilized image pairs derived from these observations to generate full-longitudinal maps of wind vectors and atmospheric kinetic energy within Jupiter's troposphere. We computed power spectra of the image mosaics and kinetic energy maps using spherical harmonic analysis. Power spectra of Jupiter's cloud patterns imaged at certain wavelengths resemble theoretical spectra of two-dimensional turbulence, with power-law slopes near -5/3 and -3 at low and high wavenumbers, respectively. The slopes of the kinetic energy power spectrum are also near -5/3 at low wavenumbers. At high wavenumbers, however, the spectral slopes are relatively flatter than the theoretical prediction of -3. Our results also show the importance of...
Luberti, Mauro; Kim, Yo Han; Lee, Chang-Ha; Ferrari, Maria-Chiara; Ahn, Hyungwoong
2015-01-01
It was aimed to derive rigorous momentum and energy balance equations where the change of kinetic energy in both spatial and temporal domains of a fixed-bed adsorption column was newly taken into account. While the effect of kinetic energy on adsorption column dynamics is negligible in most cases, it can become more and more influential with an adsorption column experiencing a huge pressure drop or with the gas velocity changing abruptly with time and along the column. The rigorous momentum a...
Wakayama, Toshitaka, E-mail: wakayama@saitama-med.ac.jp; Yonemura, Motoki [School of Biomedical Engineering, Saitama Medical University, Yamane 1397-1, Hidaka, Saitama 350-1241 (Japan); Oikawa, Hiroki; Sasanuma, Atsushi; Arai, Goki; Fujii, Yusuke [Department of Electrical and Electronic Engineering, Faculty of Engineering, Utsunomiya University, Yoto 7-1-2, Utsunomiya, Tochigi 321-8585 (Japan); Dinh, Thanh-Hung; Otani, Yukitoshi [Center for Optical Research & Education (CORE), Utsunomiya University, Yoto 7-1-2, Utsunomiya, Tochigi 321-8585 (Japan); Higashiguchi, Takeshi, E-mail: higashi@cc.utsunomiya-u.ac.jp [Department of Electrical and Electronic Engineering, Faculty of Engineering, Utsunomiya University, Yoto 7-1-2, Utsunomiya, Tochigi 321-8585 (Japan); Center for Optical Research & Education (CORE), Utsunomiya University, Yoto 7-1-2, Utsunomiya, Tochigi 321-8585 (Japan); Sakaue, Kazuyuki, E-mail: kazuyuki.sakaue@aoni.waseda.jp [Waseda Institute for Advanced Study, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo 169-8555 (Japan); Washio, Masakazu [Research Institute for Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo 169-8555 (Japan); Miura, Taisuke, E-mail: miura@fzu.cz [HiLASE Centre, Institute of Physics CAS, Za radnicí 828, 252 41, Dolní Břežany (Czech Republic); Takahashi, Akihiko [Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582 (Japan); Nakamura, Daisuke; Okada, Tatsuo [Graduate School of Information Sciences and Electrical Engineering, Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan)
2015-08-24
We demonstrated the generation of the intense radially polarized mid-infrared optical vortex at a wavelength of 10.6 μm by use of a passive axially symmetric zinc selenide (ZnSe) waveplate with high energy pulse throughput. The phase of the radially polarized optical vortex with the degree of polarization of 0.95 was spirally distributed in regard to the angle. The converted laser beam energy of about 2.6 mJ per pulse was obtained at the input pulse energy of 4.9 mJ, corresponding to the energy conversion efficiency of 56%.
We demonstrated the generation of the intense radially polarized mid-infrared optical vortex at a wavelength of 10.6 μm by use of a passive axially symmetric zinc selenide (ZnSe) waveplate with high energy pulse throughput. The phase of the radially polarized optical vortex with the degree of polarization of 0.95 was spirally distributed in regard to the angle. The converted laser beam energy of about 2.6 mJ per pulse was obtained at the input pulse energy of 4.9 mJ, corresponding to the energy conversion efficiency of 56%
Analysis of energy transfer in quantum networks using kinetic network approximations
Moser, David K
2012-01-01
Coherent energy transfer in pigment-protein complexes has been studied by mapping the quantum network to a kinetic network. This gives an analytic way to find parameter values for optimal transfer efficiency. In the case of the Fenna-Matthews-Olson (FMO) complex, the comparison of quantum and kinetic network evolution shows that dephasing-assisted energy transfer is driven by the two-site coherent interaction, and not system-wide coherence. Using the Schur complement, we find a new kinetic network that gives a closer approximation to the quantum network by including all multi-site coherence contributions. Our new network approximation can be expanded as a series with contributions representing different numbers of coherently interacting sites. For both kinetic networks we study the system relaxation time, the time it takes for the excitation to spread throughout the complex. We make mathematically rigorous estimates of the relaxation time when comparing kinetic and quantum network. Numerical simulations compa...
Turbulent kinetic energy balance measurements in the wake of a low-pressure turbine blade
Sideridis, A. [Laboratory of Fluid Mechanics and Turbomachinery, Department of Mechanical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Yakinthos, K., E-mail: kyros@eng.auth.g [Laboratory of Fluid Mechanics and Turbomachinery, Department of Mechanical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Goulas, A. [Laboratory of Fluid Mechanics and Turbomachinery, Department of Mechanical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)
2011-02-15
The turbulent kinetic energy budget in the wake generated by a high lift, low-pressure two-dimensional blade cascade of the T106 profile was investigated experimentally using hot-wire anemometry. The purpose of this study is to examine the transport mechanism of the turbulent kinetic energy and provide validation data for turbulence modeling. Point measurements were conducted on a high spatial resolution, two-dimensional grid that allowed precise derivative calculations. Positioning of the probe was achieved using a high accuracy traversing mechanism. The turbulent kinetic energy (TKE) convection, production, viscous diffusion and turbulent diffusion were all obtained directly from experimental measurements. Dissipation and pressure diffusion were calculated indirectly using techniques presented and validated by previous investigators. Results for all terms of the turbulent kinetic energy budget are presented and discussed in detail in the present work.
Lessons in solid-state kinetics from nuclear energy research
The field of research on solid-state kinetics grew enormously, along with the rest of materials research, in the decades following World War II. The author discusses how research on kinetics in the U.S., the United Kingdom, France and the U.S.S.R. is linked to the reactor development program. This is due to material problems in reactors caused by solid-state reactions or diffusion, the availability of reactor-produced radiotracers, and the early realization of the close connections among radiation behavior, point defects and diffusion
Density dependence of the single particle kinetic energy in {sup 3}He-{sup 4}He
Azuah, R.T. [Keele Univ. (United Kingdom). Dept. of Physics]|[Rutherford Appleton Lab., Chilton, Didcot (United Kingdom); Stirling, W.G. [Keele Univ. (United Kingdom). Dept. of Physics; Gibbs, M.R. [Keele Univ. (United Kingdom). Dept. of Physics; Sokol, P.E. [Dept. of Physics, Pennsylvania State Univ., University Park, PA (United States); Mayers, J. [Rutherford Appleton Lab., Chilton, Didcot (United Kingdom)
1995-08-01
We present inelastic neutron scattering measurements of liquid {sup 3}He-{sup 4}He mixtures at 1.5 K and at {sup 3}He concentrations of 0,15,40,70 and 100%. There is little apparent concentration dependence of the {sup 3}He kinetic energy, in disagreement with recent variational calculations for mixtures. The kinetic energy of the {sup 4}He component for the lower concentration mixtures is consistent with theoretical predictions. (orig.).
Temporal Variability of Oceanic Eddy Kinetic Energy: A High Resolution Model Analysis
Rieck, Jan Klaus
2014-01-01
Mesoscale variability of velocities is an important part of the global ocean circulation, as it contains more kinetic energy than the mean flow over most of the ocean. Understanding its generation, dissipation and modulation processes therefore is crucial to better understand ocean circulation in general. In this thesis, a global 1/12◦ ocean model (ORCA12) is used to study the distribution of mean surface Eddy Kinetic Energy (EKE), its seasonal cycle and possible driving mechanisms, ...
We propose a kinetic energy density functional scheme with nonlocal terms based on the von Weizsaecker functional, instead of the more traditional approach where the nonlocal terms have the structure of the Thomas-Fermi functional. The proposed functionals recover the exact kinetic energy and reproduce the linear response function of homogeneous electron systems. In order to assess their quality, we have tested the total kinetic energies as well as the kinetic energy density for atoms. The results show that these nonlocal functionals give as good results as the most sophisticated functionals in the literature. The proposed scheme for constructing the functionals means a step ahead in the field of fully nonlocal kinetic energy functionals, because they are capable of giving better local behavior than the semilocal functionals, yielding at the same time accurate results for total kinetic energies. Moreover, the functionals enjoy the possibility of being evaluated as a single integral in momentum space if an adequate reference density is defined, and then quasilinear scaling for the computational cost can be achieved
Recently, Blyumkina et al. have noted tfte existence ot fission channel ettects in the total kinetic energy of fragments of fission induced by s- and p-wave neutrons. Effects of this nature can also be expected in the variation of the fragment kinetic energies from resonance to resonance in low-energy (s-wave) neutron-induced fission. A fission-fragment detector whose efficiency is dependent on the kinetic energy of the fragments was used in the study of the slow-neutron-induced fission of U235. Comparing the counting-rate of this detector with a conventional fission detector, whose efficiency is independent of the fragment kinetic energy, shows that there exists a variation in the kinetic energy of certain fragments with neutron energy in the neutron energy region from 0.025 to 1 eV. In order to determine the response of the kinetic-energy-sensitive detector, it was necessary to measure the rangè-energy relations of fission fragments in various media, including noble gases and metallic foils. It was estimated from these data that the variation in the fragment kinetic energy release is ∼500 keV, for those fission events that give the lightest and most energetic of the heavy fragments. The variation in fragment kinetic energy is strongly asymmetric about the 0.28-eV resonance in U235, and suggests that the fragment kinetic energy sensitively reflects the presence of interference effects among resonances in fission. A multi-level multi-channel analysis of the data has been made, based on the parameters of Vogt and under the assumption that different fission channels lead to different configurations at scission, such that the kinetic energy release is also different. Previously a major objection to multi-level multi-channel analysis in fission has been that the parameters obtained are not unique. However, the possibility of observing partial fission cross-sections (fission occurring by way of one channel only) removes one of the ambiguities inherent in the multi
Leading gradient correction to the kinetic energy for two-dimensional fermion gases
Trappe, Martin-Isbjörn; Len, Yink Loong; Ng, Hui Khoon; Müller, Cord Axel; Englert, Berthold-Georg
2016-04-01
Density-functional theory (DFT) is notorious for the absence of gradient corrections to the two-dimensional (2D) Thomas-Fermi kinetic-energy functional; it is widely accepted that the 2D analog of the 3D von Weizsäcker correction vanishes, together with all higher-order corrections. Contrary to this long-held belief, we show that the leading correction to the kinetic energy does not vanish, is unambiguous, and contributes perturbatively to the total energy. This insight emerges naturally in a simple extension of standard DFT, which has the effective potential energy as a functional variable on equal footing with the single-particle density.
Movers and Shakers: Kinetic Energy Harvesting for the Internet of Things
Gorlatova, Maria; Sarik, John; Grebla, Guy; Cong, Mina; Kymissis, Ioannis; Zussman, Gil
2013-01-01
Numerous energy harvesting wireless devices that will serve as building blocks for the Internet of Things (IoT) are currently under development. However, there is still only limited understanding of the properties of various energy sources and their impact on energy harvesting adaptive algorithms. Hence, we focus on characterizing the kinetic (motion) energy that can be harvested by a wireless node with an IoT form factor and on developing energy allocation algorithms for such nodes. In this ...
High-energy interactions in Kinetic Inductance Detectors arrays
D'Addabbo, A; Goupy, J; Benoit, A; Bourrion, O; Catalano, A; Macias-Perez, J F; Monfardini, A
2015-01-01
The impacts of Cosmic Rays on the detectors are a key problem for space-based missions. We are studying the effects of such interactions on arrays of Kinetic Inductance Detectors (KID), in order to adapt this technology for use on board of satellites. Before proposing a new technology such as the Kinetic Inductance Detectors for a space-based mission, the problem of the Cosmic Rays that hit the detectors during in-flight operation has to be studied in detail. We present here several tests carried out with KID exposed to radioactive sources, which we use to reproduce the physical interactions induced by primary Cosmic Rays, and we report the results obtained adopting different solutions in terms of substrate materials and array geometries. We conclude by outlining the main guidelines to follow for fabricating KID for space-based applications.
Incident energy dependence of the mean kinetic energy, flow and temperature azimuthal distributions
The squeeze-out phenomena initially predicted by hydrodynamical calculations has been extensively studied experimentally. A unified representation of the observed trends can be done in terms of the azimuthal distribution of the total mass or kinetic energy. Previously reported comprehensive description of the squeeze-out phenomena in the range 0.25 - 1.15 A · GeV was based on the parametrization of the total mass spectra with an expression characteristic for radially symmetric shell expansion. As far as such a situation can hardly be encountered in heavy ion collisions and is not specific at all for mid-central geometries, we prefer to present also the experimental information free of any model which can be used to extract it. Due to this reasons we report also the results on azimuthal distribution of the mean kinetic energy (kincm>) besides the ones corresponding to β and T values. The azimuthal distributions of kincm>, β and T can be fit with the following expression: (kincm>, β,T) = (kincm>, β,T)0 - (Δ kincm>, Δβ, ΔT) ·cos2Φ. The excitation functions of (kincm>, β,T)max and (kincm>, β,T)min from 90 A · MeV to 400 A · MeV are given. The ellipsoidal character of the flow with the major axis perpendicular to the reaction plane constantly enhances from 90 to 400 A· MeV. At 90 A · MeV the two values are very similar. The lower slope in (E,β,T)min is due to the fact that the violence of the expansion increases faster as a function of incident energy than the decrease of the passage time. At higher incident energy the relativistic contraction and the gradient of the thermal pressure in the reaction plane due to the confinement created by the spectator matter are increasing. The two slopes reverse and a crossing point is expected. It would correspond to an elliptic flow with the major axis aligned in the reaction plane. A larger modulation in the mean kinetic energy or flow relative to temperature can be explained by the larger variation of the
Wang, Guiji; Chen, Xuemiao; Cai, Jintao; Zhang, Xuping; Chong, Tao; Luo, Binqiang; Zhao, Jianheng; Sun, Chengwei; Tan, Fuli; Liu, Cangli; Wu, Gang
2016-06-01
A high current pulsed power generator CQ-3-MMAF (Multi-Modules Assembly Facility, MMAF) was developed for material dynamics experiments under ramp wave and shock loadings at the Institute of Fluid Physics (IFP), which can deliver 3 MA peak current to a strip-line load. The rise time of the current is 470 ns (10%-90%). Different from the previous CQ-4 at IFP, the CQ-3-MMAF energy is transmitted by hundreds of co-axial high voltage cables with a low impedance of 18.6 mΩ and low loss, and then hundreds of cables are reduced and converted to tens of cables into a vacuum chamber by a cable connector, and connected with a pair of parallel metallic plates insulated by Kapton films. It is composed of 32 capacitor and switch modules in parallel. The electrical parameters in short circuit are with a capacitance of 19.2 μF, an inductance of 11.7 nH, a resistance of 4.3 mΩ, and working charging voltage of 60 kV-90 kV. It can be run safely and stable when charged from 60 kV to 90 kV. The vacuum of loading chamber can be up to 10-2 Pa, and the current waveforms can be shaped by discharging in time sequences of four groups of capacitor and switch modules. CQ-3-MMAF is an adaptive machine with lower maintenance because of its modularization design. The COMSOL Multi-physics® code is used to optimize the structure of some key components and calculate their structural inductance for designs, such as gas switches and cable connectors. Some ramp wave loading experiments were conducted to check and examine the performances of CQ-3-MMAF. Two copper flyer plates were accelerated to about 3.5 km/s in one shot when the working voltage was charged to 70 kV. The velocity histories agree very well. The dynamic experiments of some polymer bonded explosives and phase transition of tin under ramp wave loadings were also conducted. The experimental data show that CQ-3-MMAF can be used to do material dynamics experiments in high rate and low cost shots. Based on this design concept, the peak
Vos, M. [Atomic and Molecular Physics Laboratories, Research School of Physics and Engineering, Australian National University, Canberra ACT (Australia); Marmitt, G. G. [Atomic and Molecular Physics Laboratories, Research School of Physics and Engineering, Australian National University, Canberra ACT (Australia); Instituto de Fisica da Universidade Federal do Rio Grande do Sul, Avenida Bento Goncalves 9500, 91501-970 Porto Alegre, RS (Brazil); Finkelstein, Y. [Nuclear Research Center — Negev, Beer-Sheva 84190 (Israel); Moreh, R. [Physics Department, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel)
2015-09-14
Reflection electron energy loss spectra from some insulating materials (CaCO{sub 3}, Li{sub 2}CO{sub 3}, and SiO{sub 2}) taken at relatively high incoming electron energies (5–40 keV) are analyzed. Here, one is bulk sensitive and a well-defined onset of inelastic excitations is observed from which one can infer the value of the band gap. An estimate of the band gap was obtained by fitting the spectra with a procedure that includes the recoil shift and recoil broadening affecting these measurements. The width of the elastic peak is directly connected to the mean kinetic energy of the atom in the material (Doppler broadening). The experimentally obtained mean kinetic energies of the O, C, Li, Ca, and Si atoms are compared with the calculated ones, and good agreement is found, especially if the effect of multiple scattering is taken into account. It is demonstrated experimentally that the onset of the inelastic excitation is also affected by Doppler broadening. Aided by this understanding, we can obtain a good fit of the elastic peak and the onset of inelastic excitations. For SiO{sub 2}, good agreement is obtained with the well-established value of the band gap (8.9 eV) only if it is assumed that the intensity near the edge scales as (E − E{sub gap}){sup 1.5}. For CaCO{sub 3}, the band gap obtained here (7 eV) is about 1 eV larger than the previous experimental value, whereas the value for Li{sub 2}CO{sub 3} (7.5 eV) is the first experimental estimate.
Reflection electron energy loss spectra from some insulating materials (CaCO3, Li2CO3, and SiO2) taken at relatively high incoming electron energies (5–40 keV) are analyzed. Here, one is bulk sensitive and a well-defined onset of inelastic excitations is observed from which one can infer the value of the band gap. An estimate of the band gap was obtained by fitting the spectra with a procedure that includes the recoil shift and recoil broadening affecting these measurements. The width of the elastic peak is directly connected to the mean kinetic energy of the atom in the material (Doppler broadening). The experimentally obtained mean kinetic energies of the O, C, Li, Ca, and Si atoms are compared with the calculated ones, and good agreement is found, especially if the effect of multiple scattering is taken into account. It is demonstrated experimentally that the onset of the inelastic excitation is also affected by Doppler broadening. Aided by this understanding, we can obtain a good fit of the elastic peak and the onset of inelastic excitations. For SiO2, good agreement is obtained with the well-established value of the band gap (8.9 eV) only if it is assumed that the intensity near the edge scales as (E − Egap)1.5. For CaCO3, the band gap obtained here (7 eV) is about 1 eV larger than the previous experimental value, whereas the value for Li2CO3 (7.5 eV) is the first experimental estimate
Effect of kinetic energy on the doping efficiency of cesium cations into superfluid helium droplets
We present an experimental investigation of the effect of kinetic energy on the ion doping efficiency of superfluid helium droplets using cesium cations from a thermionic emission source. The kinetic energy of Cs+ is controlled by the bias voltage of a collection grid collinearly arranged with the droplet beam. Efficient doping from ions with kinetic energies from 20 eV up to 480 V has been observed in different sized helium droplets. The relative ion doping efficiency is determined by both the kinetic energy of the ions and the average size of the droplet beam. At a fixed source temperature, the number of doped droplets increases with increasing grid voltage, while the relative ion doping efficiency decreases. This result implies that not all ions are captured upon encountering with a sufficiently large droplet, a deviation from the near unity doping efficiency for closed shell neutral molecules. We propose that this drop in ion doping efficiency with kinetic energy is related to the limited deceleration rate inside a helium droplet. When the source temperature changes from 14 K to 17 K, the relative ion doping efficiency decreases rapidly, perhaps due to the lack of viable sized droplets. The size distribution of the Cs+-doped droplet beam can be measured by deflection and by energy filtering. The observed doped droplet size is about 5 × 106 helium atoms when the source temperature is between 14 K and 17 K
ZUO Qunjie; GAO Shouting; L(U) Daren
2012-01-01
The local features of transient kinetic energy and available potential energy were investigated using ECMWF (European Centre for Medium-Range Weather Forecasts) Interim Reanalysis data for the stratospheric sudden warming (SSW) event of January 2009.The Western Europe high plays important roles in the propagation of the energy from North America to Eurasian.When the Western Europe high appeared and shifted eastward,energy conversions increased and energy propagated from North America to Eurasian as a form of interaction energy flow.The baroclinic conversion between transient-eddy kinetic energy (Ke)and transient-eddy available potential energy (Ae) and the horizontal advection of geopotential height were approximately one order of magnitude less than Ke and Ae generation terms.So,these terms were less important to this SSW event.
Avila, Ivonete; Silva, Eugenio A.G.; Mortari, Daniela A.; Crnkovic, Paula M.; Milioli, Fernando E. [University of Sao Paulo (EESC/USP), Sao Carlos, SP (Brazil). Engineering School. Group of Thermal and Fluids Engineering], Emails: iavila@sc.usp.br, eugenio.silva@usp.br, paulam@sc.usp.br, milioli@sc.usp.br
2010-07-01
This paper evaluates the behavior of kinetic energy for different heating rates ({alpha}) and particle sizes of the material in the study of the coal combustion process. It aims to obtain a response surface in a large range of particle size, using heating rates between the minimum and maximum values allowed by the equipment. Therefore it searches for a model to evaluate the interaction effect between particle size and the heating rate and to predict the activation energy of the process studied. The activation energy of the process was determined using the isoconversional model Model Free Kinetics. In this model, the activation energy (E{sub {alpha}}) is obtained as a function of the reaction extent ({alpha}). The subscript in E{sub {alpha}} designates the values related to a given value of conversion ({alpha}). All experiments were conducted in thermogravimetric balance using samples of a Brazilian coal (EC4500) witch average particle size between 163 to 650 {mu}m and heating rates between 10 and 40 deg C min{sup -1} in dynamic atmosphere of air. A central rotatable composite design was applied for the 2{sup 2} factorial design including 4 tests under the axial conditions and 3 repetitions in the central point. As expected, the results show that both the particle size and the heating rate affected significantly the values of activation energy of the coal combustion process obtained by the model used. (author)
Vibrational energy-transfer kinetics in molecular disequilibrium. Progress report
A continuous wave CO laser was used to excite the vibrational mode of CO in gas mixtures. 13C isotope enrichment was studied. High steady-state excitation of the CO vibrational mode (0.3 eV/molecule) was achieved, while a translational-rotational temperature near 3000K was maintained by the steady flow of cold gas into the cell. Kinetics of the observed C2 formation were studied. Diagnostic experiments were begun to detect reaction intermediates in the enrichment process
Experimental free energy measurements of kinetic molecular states using fluctuation theorems
Alemany, Anna; Junier, Ivan; Ritort, Felix; 10.1038/nphys2375
2013-01-01
Recent advances in non-equilibrium statistical mechanics and single molecule technologies make it possible to extract free energy differences from irreversible work measurements in pulling experiments. To date, free energy recovery has been focused on native or equilibrium molecular states, whereas free energy measurements of kinetic states (i.e. finite lifetime states that are generated dynamically and are metastable) have remained unexplored. Kinetic states can play an important role in various domains of physics, such as nanotechnology or condensed matter physics. In biophysics, there are many examples where they determine the fate of molecular reactions: protein and peptide-nucleic acid binding, specific cation binding, antigen-antibody interactions, transient states in enzymatic reactions or the formation of transient intermediates and non-native structures in molecular folders. Here we demonstrate that it is possible to obtain free energies of kinetic states by applying extended fluctuation relations. T...
Logarithmic entropy--corrected holographic dark energy with non--minimal kinetic coupling
Amani, Ali R; Farajollahi, H; Pourali, M
2011-01-01
In this paper, we have considered a cosmological model with the non--minimal kinetic coupling terms and investigated its cosmological implications with respect to the logarithmic entropy-- corrected holographic dark energy (LECHDE). The correspondence between LECHDE in flat FRW cosmology and the phantom dark energy model with the aim to interpret the current universe acceleration is also examined.
The k0-IAEA software was used to determine full peak energy efficiency of a High Purity Germanium (HPGe) co-axial detector within the energy range of 121.8 - 2204.5keV and geometries of l7cm, 15cm and 2cm. The experimentally (direct technique) determination of the efficiency of the co-axial detector was within the energy range of 59.54 - 2204.5keV. Plotted ratios of the k0-IAEA derived efficiency over the k0-fitted FEPE values showed slight oscillations at certain energies attributed to the characteristics of the detector while the results of the ratio of k0-IAEA FEPE measurement over the experimentally derived efficiency obtained yielded inconsequential oscillations at certain energy around the unity mark. These deviations of 0.1 to 6% for the three geometries measured from the k0-IAEA experimental data agreed to the accurate and large acceptance of the software for analysis.
A straightforward derivation of relativistic expressions for the mechanical momentum, kinetic and total energies, and mass-energy equivalence (including potential energy) which does not require any knowledge of the energy-momentum relation for electromagnetic waves or consideration of elastic collisions, but is directly based on Newton's second law and Lorentz's transformations, is presented in this paper. The existence of an invariant force is shown to be important for the validity of the relativistic mechanics
Maligaspe, Eranda; Kumpulainen, Tatu; Lemmetyinen, Helge; Tkachenko, Nikolai V; Subbaiyan, Navaneetha K; Zandler, Melvin E; D'Souza, Francis
2010-01-14
Singlet-singlet energy transfer in self-assembled via axial coordination of imidazole-appended (at different positions of one of the meso-phenyl entities) free-base tetraphenylporphyrin, H(2)PIm, to either zinc phthalocyanine, ZnPc, or zinc naphthalocyanine, ZnNc, dyads is investigated in noncoordinating solvents, o-dichlorobenzene and toluene, using both steady-state and time-resolved transient absorption techniques. The newly formed supramolecular dyads were fully characterized by spectroscopic, computational, and electrochemical methods. The binding constants measured from optical absorption spectral data were found to be in the range of 10(4)-10(5) M(-1) for the 1:1 dyads, suggesting fairly stable complex formation. Electrochemical and computational studies suggested that photoinduced electron transfer is a thermodynamically unfavorable process when free-base porphyrin is excited in these dyads. Selective excitation of the donor free-base porphyrin entity was possible in both types of dyads formed by either of the ZnPc or ZnNc energy acceptors. Efficient singlet-singlet energy transfer was observed in these dyads, and the position of imidazole linkage on the free-base porphyrin entity, although flexible, seems to have some control over the overall efficiency of excited energy transfer process. Kinetics of energy transfer was monitored by performing transient absorption measurements using both up-conversion and pump-probe techniques. Such studies revealed ultrafast singlet-singlet energy transfer in the studied dyads with time constants on the order of 2-25 ps depending upon the type of the dyad. PMID:19928821
Mean kinetic energy budget of wakes within an array of model wind turbines and porous discs
Cal, Raúl Bayoán; Camp, Elizabeth
2015-11-01
Wind turbines are often modeled as porous actuator discs within computational studies. In this wind tunnel study, stereo particle image velocimetry (SPIV) is used to characterize the wakes within a 4 ×3 model wind turbine array and an analogous array of porous disks. The SPIV measurements are performed upstream between - 2 . 9 <= x / D <= - 0 . 3 and downstream between 0 . 7 <= x / D <= 5 . 6 of the center turbine in the fourth row. To provide context, the similarities and differences in the flow fields as well as the mean and turbulent stresses are found. The primary analysis revolves around the mean kinetic energy budget in the wakes for both cases, model turbines and discs, obtained by the computation of mean kinetic energy, production of turbulence and flux of kinetic energy as these are equivalent to a measure of extracted power.
Dynamic force spectroscopy of DNA hairpins: I. Force kinetics and free energy landscapes
We investigate the thermodynamics and kinetics of DNA hairpins that fold/unfold under the action of applied mechanical force. We introduce the concept of the molecular free energy landscape and derive simplified expressions for the force dependent Kramers–Bell rates. To test the theory we have designed a specific DNA hairpin sequence that shows two-state cooperative folding under mechanical tension and carried out pulling experiments using optical tweezers. We show how we can determine the parameters that characterize the molecular free energy landscape of such sequences from rupture force kinetic studies. Finally we combine such kinetic studies with experimental investigations of the Crooks fluctuation relation to derive the free energy of formation of the hairpin at zero force
System Perspectives on Hydro-Kinetic Energy Conversion
Yuen, Katarina
2012-01-01
Free-flowing water currents such as tides and unregulated water courses could contribute to world electricity production given the emergence of robust technical solutions for extracting the energy. At Uppsala University, a concept for converting the energy in water currents to electricity using a vertical axis turbine with fixed blade-pitch and a direct-drive permanent magnet generator is studied. Technological equipment for extracting energy from water currents can be studied at desktop to s...
Lee, Kurnchul; Venugopal, Vishnu; Girimaji, Sharath S.
2016-08-01
Return-to-isotropy and kinetic-potential energy equipartition are two fundamental pressure-moderated energy redistributive processes in anisotropic compressible turbulence. Pressure-strain correlation tensor redistributes energy among various Reynolds stress components and pressure-dilatation is responsible for energy reallocation between dilatational kinetic and potential energies. The competition and interplay between these pressure-based processes are investigated in this study. Direct numerical simulations (DNS) of low turbulent Mach number dilatational turbulence are performed employing the hybrid thermal Lattice Boltzman method (HTLBM). It is found that a tendency towards equipartition precedes proclivity for isotropization. An evolution towards equipartition has a collateral but critical effect on return-to-isotropy. The preferential transfer of energy from strong (rather than weak) Reynolds stress components to potential energy accelerates the isotropization of dilatational fluctuations. Understanding of these pressure-based redistributive processes is critical for developing insight into the character of compressible turbulence.
Drop size distributions and kinetic energy rates in variable intensity rainfall
Assouline, Shmuel
2016-04-01
Temporal variability in rainfall intensity reflects on the drop size distribution (DSD), and affects the rainfall kinetic energy during the event. Smith et al. (2009) reported on 1-min interval rainfall intensity and corresponding DSD variability during a storm on the 22/7/06 at Princeton, NJ. They reported also on DSDs characteristics of heavy convective rainfall events during the whole summer. Applying the DSD model of Assouline and Mualem (1997), it is shown that: (a) a similar relationship between the mean drop size and the rainfall intensity characterized the local rainfall at both the seasonal and the single storm scale; (b) using the mean drop size as a scaling factor of the DSD removes the rainfall intensity dependence at the intrastorm scale, providing a powerful tool to deal with temporal variability of rainfall rates during rainfall events. For a storm characterized by a given temporal variability of intensities, three different ways of evaluating kinetic energy per unit mass or time were applied. By comparison to estimates accounting for rainfall temporal variability and related full DSDs, representing the storm by mean intensity and drop diameter tends to overestimate kinetic energy for low intensities and underestimate it for the higher ones. The relative error for the kinetic energy per unit of mass is ±45% and shifts from negative to positive sign for I>25 mm/h. For the kinetic energy per unit of time, the relative error ranges from -100% to +210% and changes sign for I>45 mm/h. When temporal variation of intensity is accounted for but drops are characterized by their mean values instead of the full DSD, kinetic energy is underestimated by 20% on average. Consequently, accounting for temporal variability in rainfall intensity during a storm has a notable impact on the erosive power of the rainfall.
Neutrons and Kinetic Energy of Fragments in Fission of Heavy Nuclei
The distribution of excitation energy and kinetic energy depending on the mass of the fragment formed in heavy- isotope fission by thermal neutrons is experimentally investigated. The excitation energy is shown to have a low minimum in the region of the double-magic fragment (M ∼132), to increase in the symmetrical fission area and to be at its maximum for fragments complementary to magic. The kinetic energy of the fragments measured for U235 correlates with the excitation energy. The total energy release according to the experimental data is in good agreement with calculations according to Milton's mass tables in every case except that of strongly asymmetric fission. In the measurements conducted, the ratio of the maximum of the fragment yield curve to the minimum (after neutron escape) was 500 : 1. (author)
Exact kinetic energy enables accurate evaluation of weak interactions by the FDE-vdW method
The correlation energy of interaction is an elusive and sought-after interaction between molecular systems. By partitioning the response function of the system into subsystem contributions, the Frozen Density Embedding (FDE)-vdW method provides a computationally amenable nonlocal correlation functional based on the adiabatic connection fluctuation dissipation theorem applied to subsystem density functional theory. In reproducing potential energy surfaces of weakly interacting dimers, we show that FDE-vdW, either employing semilocal or exact nonadditive kinetic energy functionals, is in quantitative agreement with high-accuracy coupled cluster calculations (overall mean unsigned error of 0.5 kcal/mol). When employing the exact kinetic energy (which we term the Kohn-Sham (KS)-vdW method), the binding energies are generally closer to the benchmark, and the energy surfaces are also smoother
Vafaee, Mohsen
2007-01-01
The electronic full dimensional of the time dependent Schr\\"odinger equation of the aligned deuterium molecular ion numerically is solved for the simulation of the complicated dissociative ionization process and compared with the related experimental results. In this work, the R-dependent ionization rate and the enhanced ionization phenomenon beyond the Born-Oppenheimer approximation are introduced and calculated and enhanced ionization is directly related to kinetic energy release (KER) of nuclear energy. The signification of the Coulomb explosion energy and dissociation-ionization energy in the ionization channel are comparatively revealed in the total kinetic energy release. It shows that the dissociation-ionization energy spectra in the ionization channel have significant role in the structure of the KER spectrum.
Kinetics of energy transfer processes in C-phycocyanin complexes
赵井泉; 李晔
1999-01-01
The antenna system of algae for photosynthesis is a functional entity composed of various phycobiliproteins and the linker polypeptides. Up to now, high-resolution crystal structure data have been available only for the isolated phycobiliproteins. To have an understanding of the functional connection between different phycobiliproteins, it is necessary to study the complexes composed of different phycobiliproteins. The energy transfer processes in C-phycocyanin complexes were studied through computer simulation because it is difficult to be studied by conventional experimental methods. The main pathways of energy flow and the dynamic property of the energy transfer were obtained. A fast transfer process between two neighboring disks was observed through analyzing the distribution curves of excitation energy over time. According to the definition of the time constants for energy transfer in time-resolved spectrum techniques, for a complex with three C-phycoeyanin hexamer disks, a fluorescence-rising comp
Theoretical study of atoms by the electronic kinetic energy density and stress tensor density
Nozaki, Hiroo; Tachibana, Akitomo
2016-01-01
We analyze the electronic structure of atoms in the first, second and third periods using the electronic kinetic energy density and stress tensor density, which are local quantities motivated by quantum field theoretic consideration, specifically the rigged quantum electrodynamics. We compute the zero surfaces of the electronic kinetic energy density, which we call the electronic interfaces, of the atoms. We find that their sizes exhibit clear periodicity and are comparable to the conventional atomic and ionic radii. We also compute the electronic stress tensor density and its divergence, tension density, of the atoms, and discuss how their electronic structures are characterized by them.
A multiscale numerical study into the cascade of kinetic energy leading to severe local storms
Paine, D. A.; Kaplan, M. L.
1977-01-01
The cascade of kinetic energy from macro- through mesoscales is studied on the basis of a nested grid system used to solve a set of nonlinear differential equations. The kinetic energy cascade and the concentration of vorticity through the hydrodynamic spectrum provide a means for predicting the location and intensity of severe weather from large-scale data sets. A mechanism described by the surface pressure tendency equation proves to be important in explaining how initial middle-tropospheric mass-momentum imbalances alter the low-level pressure field.
A Kinetic Study of Marginal Soil Energy Plant Helianthus annuus Stalk Pyrolysis
Huaxiao Yan; Hui Zhao; Yan Zhang; Yuanyu Tian; Kechang Xie
2013-01-01
The pyrolytic characteristics and kinetics of new marginal soil energy plant Helianthus annuus stalk were investigated using thermogravimetric (TG) method from 50 to 800°C in an inert argon atmosphere at different heating rates of 5, 10, 20, and 30°C min−1. The kinetic parameters of activation energy and pre-exponential factor were deduced by Popescu, Flynn-Wall-Ozawa (FWO), and Kissinger-Akahira-Sunose (KAS) methods, respectively. The results showed that three stages appeared in the thermal ...
Nozaki, Hiroo; Ichikawa, Kazuhide; Watanabe, Taku; Aihara, Yuichi; Tachibana, Akitomo
2016-01-01
We analyze the electronic structure of lithium ionic conductors, ${\\rm Li_3PO_4}$ and ${\\rm Li_3PS_4}$, using the electronic stress tensor density and kinetic energy density with special focus on the ionic bonds among them. We find that, as long as we examine the pattern of the eigenvalues of the electronic stress tensor density, we cannot distinguish between the ionic bonds and bonds among metalloid atoms. We then show that they can be distinguished by looking at the morphology of the electronic interface, the zero surface of the electronic kinetic energy density.
Yao, Kun
2015-01-01
We demonstrate a convolutional neural network trained to reproduce the Kohn-Sham kinetic energy of hydrocarbons from electron density. The output of the network is used as a non-local correction to the conventional local and semi-local kinetic functionals. We show that this approximation qualitatively reproduces Kohn-Sham potential energy surfaces when used with conventional exchange correlation functionals. Numerical noise inherited from the non-linearity of the neural network is identified as the major challenge for the model. Finally we examine the features in the density learned by the neural network to anticipate the prospects of generalizing these models.
Fission-fragment kinetic-energy distributions from a two-dimensional Fokker-Planck equation
We calculate the fission-fragment kinetic-energy distribution for the compound nucleus 213At by simultaneously taking into account spreading in a stretching degree of freedom and fluctuations in a fission degree of freedom. This is done in terms of an approximate solution of a two-dimensional Fokker-Planck equation obtained by propagating Gaussian bundles in momentum space. When compared as functions of nuclear temperature with experimental data, our calculated mean kinetic energies are in approximate agreement and our calculated variances are slightly too small
The distribution of eddy kinetic and potential energies in the global ocean
Ferrari, Raffaele; Wunsch, Carl
2009-01-01
Understanding of the major sources, sinks, and reservoirs of energy in the ocean is briefly updated in a diagram. The nature of the dominant kinetic energy reservoir, that of the balanced variablity, is then found to be indistinguishable in the observations from a sum of barotropic and first baroclinic ordinary quasi-geostrophic modes. Little supporting evidence is available to partition the spectra among forced motions and turbulent cascades, along with significant energy more consistent wit...
Properties of the total kinetic energy balance in wall-bounded turbulent flows
Zhou, Ang; Klewicki, Joseph
2015-11-01
The properties of the total kinetic energy balance in turbulent boundary layer and channel flows are explored empirically. The total kinetic energy transport equation, which is the combination of mean and turbulent kinetic energy transport equations, is appropriately simplified for fully developed turbulent channel flow and the two-dimensional flat plate boundary layer. Different from the turbulence kinetic energy equation, a suitable grouping of terms is found that cleanly segregates the leading balances in the total energy equation. Available high-quality data reveal a four-layer structure for the energetics that is qualitatively different from the four-layer description of the mean dynamics [Wei et al. 2005, J. Fluid Mech. 522, 303]. The wall-normal widths of the layers exhibit significant Reynolds number dependencies, and these are empirically quantified. Present findings indicate that each of the four layers is characterized by a predominance of some of the terms in the governing equations. Particular significance is attached to the ratio of the sum of viscous diffusion and dissipation terms to the production/turbulent diffusion term, since these groupings allow the characterization of the layer widths. The third layer exhibits a complex leading order balance exchange that is described in detail.
Influence of the Richtmyer-Meshkov instability on the kinetic energy spectrum.
Weber, Christopher R. (University of Wisconsin-Madison, Madison, WI)
2010-09-01
The fluctuating kinetic energy spectrum in the region near the Richtmyer-Meshkov instability (RMI) is experimentally investigated using particle image velocimetry (PIV). The velocity field is measured at a high spatial resolution in the light gas to observe the effects of turbulence production and dissipation. It is found that the RMI acts as a source of turbulence production near the unstable interface, where energy is transferred from the scales of the perturbation to smaller scales until dissipation. The interface also has an effect on the kinetic energy spectrum farther away by means of the distorted reflected shock wave. The energy spectrum far from the interface initially has a higher energy content than that of similar experiments with a flat interface. These differences are quick to disappear as dissipation dominates the flow far from the interface.
The present work is devoted to the fragments produced in the neutrons induced fission of 235U, performed with the time of flight-energy spectrometer 'Cosi Fan Tutte' recently built at the neutron high flux reactor of the Laue-Langevin Institute at Grenoble. Mass-kinetic energy-nuclear charge correlations were measured for the light fission fragment group. Nuclear charges were identified for the first time on this spectrometer using the range difference of the fission fragments in an axial field ionisation chamber. The present results are in good agreement with the previous one obtained using the spectrometer 'Lohengrin', which proves the validity of the methods which we developed. In addition, we extend the measurements to higher kinetic energies. The structures which appear in the distributions are attributed to spherical and deformed shell effects in the nascent fragments and to even odd effects. The study of thermal neutron induced fission of 229Th, which is scarcely known, has been started. (author)
Sorgente, R.; A. Olita; P. Oddo; L. Fazioli; A. Ribotti
2011-01-01
The spatial and temporal variability of eddy and mean kinetic energy of the Central Mediterranean region has been investigated, from January 2008 to December 2010, by mean of a numerical simulation mainly to quantify the mesoscale dynamics and their relationships with physical forcing. In order to understand the energy redistribution processes, the baroclinic energy conversion has been analysed, suggesting hypotheses about the drivers of the mesoscale activity in this area. The ocean model us...
Simulations of thermodynamics and kinetics on rough energy landscapes with milestoning.
Bello-Rivas, Juan M; Elber, Ron
2016-03-01
We investigated by computational means the kinetics and stationary behavior of stochastic dynamics on an ensemble of rough two-dimensional energy landscapes. There are no obvious separations of temporal scales in these systems, which constitute a simple model for the behavior of glasses and some biomaterials. Even though there are significant computational challenges present in these systems due to the large number of metastable states, the Milestoning method is able to compute their kinetic and thermodynamic properties exactly. We observe two clearly distinguished regimes in the overall kinetics: one in which diffusive behavior dominates and another that follows an Arrhenius law (despite the absence of a dominant barrier). We compare our results with those obtained with an exactly-solvable one-dimensional model, and with the results from the rough one-dimensional energy model introduced by Zwanzig. © 2015 Wiley Periodicals, Inc. PMID:26265358
The impact of rotor labyrinth seal leakage flow on the loss generation in an axial turbine
Anker, J.; Mayer, J.; Casey, M. [Stuttgart Univ. (Germany). Institute for Thermal Turbomachinery and Machinery Lab.
2005-09-15
This paper examines the impact of labyrinth seal leakage flow over the rotor shroud on the loss generation in an axial turbine stage. Numerical studies have been carried out with an in-house solver using the Baldwin-Lomax turbulence model to identify the changes in secondary flow structures. The code has been validated for this application using test data from a low-speed axial turbine stage with a simple generic rotor shroud labyrinth seal. Numerical simulations are carried out with different clearance gaps (0, 1, and 3 mm) and without cavity wells. The simulations are used to distinguish the separate interactions of the main flow with the leakage flow and the cavity flow. The leakage flow causes a strong increase in the secondary flow kinetic energy in the downstream stator. Both the leakage flow and the cavity flow lead to an increase in the secondary kinetic energy in the rotor. (author)
Implantable medical devices usually require a battery to operate and this can represent a severe restriction. In most cases, the implantable medical devices must be surgically replaced because of the dead batteries; therefore, the longevity of the whole implantable medical device is determined by the battery lifespan. For this reason, researchers have been studying energy harvesting techniques from the human body in order to obtain batteryless implantable medical devices. The human body is a rich source of energy and this energy can be harvested from body heat, breathing, arm motion, leg motion or the motion of other body parts produced during walking or any other activity. In particular, the main human-body energy sources are kinetic energy and thermal energy. This paper reviews the state-of-art in kinetic and thermoelectric energy harvesters for powering implantable medical devices. Kinetic energy harvesters are based on electromagnetic, electrostatic and piezoelectric conversion. The different energy harvesters are analyzed highlighting their sizes, energy or power they produce and their relative applications. As they must be implanted, energy harvesting devices must be limited in size, typically about 1 cm3. The available energy depends on human-body positions; therefore, some positions are more advantageous than others. For example, favorable positions for piezoelectric harvesters are hip, knee and ankle where forces are significant. The energy harvesters here reported produce a power between 6 nW and 7.2 mW; these values are comparable with the supply requirements of the most common implantable medical devices; this demonstrates that energy harvesting techniques is a valid solution to design batteryless implantable medical devices. (topical review)
Axial structure of the nucleon
Veronique Bernard; Latifa Elouadrhiri; Ulf-G Meissner
2002-01-01
We review the current status of experimental and theoretical understanding of the axial nucleon structure at low and moderate energies. Topics considered include (quasi)elastic (anti)neutrino-nucleon scattering, charged pion electroproduction off nucleons and ordinary as well as radiative muon capture on the proton.
A Kinetic Study of Marginal Soil Energy Plant Helianthus annuus Stalk Pyrolysis
Huaxiao Yan
2013-01-01
Full Text Available The pyrolytic characteristics and kinetics of new marginal soil energy plant Helianthus annuus stalk were investigated using thermogravimetric (TG method from 50 to 800°C in an inert argon atmosphere at different heating rates of 5, 10, 20, and 30°C min−1. The kinetic parameters of activation energy and pre-exponential factor were deduced by Popescu, Flynn-Wall-Ozawa (FWO, and Kissinger-Akahira-Sunose (KAS methods, respectively. The results showed that three stages appeared in the thermal degradation process. The primary devolatilization stage of H. annuus stalk can be described by the Avrami-Erofeev function (n=4. The average activation energy of H. annuus stalk was only 142.9 kJ mol−1. There were minor kinetic compensation effects between the pre-exponential factor and the activation energy. The results suggest that H. annuus stalk is suitable for pyrolysis, and more importantly, the experimental results and kinetic parameters provided useful information for the design of pyrolytic processing system using H. annuus stalk as feedstock.
Endo, Kazunaka
2016-02-01
In the Auger electron spectra (AES) simulations, we define theoretical modified kinetic energies of AES in the density functional theory (DFT) calculations. The modified kinetic energies correspond to two final-state holes at the ground state and at the transition-state in DFT calculations, respectively. This method is applied to simulate Auger electron spectra (AES) of 2nd periodic atom (Li, Be, B, C, N, O, F)-involving substances (LiF, beryllium, boron, graphite, GaN, SiO2, PTFE) by deMon DFT calculations using the model molecules of the unit cell. Experimental KVV (valence band electrons can fill K-shell core holes or be emitted during KVV-type transitions) AES of the (Li, O) atoms in the substances agree considerably well with simulation of AES obtained with the maximum kinetic energies of the atoms, while, for AES of LiF, and PTFE substance, the experimental F KVV AES is almost in accordance with the spectra from the transitionstate kinetic energy calculations.
Kinetic, potential and surface tension energies of solitary waves in deep water
Hur, Vera Mikyoung
2015-01-01
We present an exact relation among the kinetic, potential and surface tension energies of a solitary wave in deep water in all dimensions. We deduce its non-existence in the absence of the effects of surface tension, provided that gravity acts in a direction opposite to what is physically realistic.
Kinetic, potential and surface tension energies of solitary waves in deep water
We present an exact relation among the kinetic, potential and surface tension energies of a solitary wave in deep water in all dimensions. We deduce its non-existence in the absence of the effects of surface tension, provided that gravity acts in a direction opposite to what is physically realistic. (fast track communication)
Yafaev, D. R.
2010-01-01
We obtain two-sided bounds on kinetic and potential energies of a bound state of a quantum particle in the semiclassical limit, as the Planck constant $\\hbar\\ri 0$. Proofs of these results rely on the generalized virial theorem obtained in the paper as well as on a decay of eigenfunctions in the classically forbidden region.
Employing Magnetic Levitation to Monitor Reaction Kinetics and Measure Activation Energy
Benz, Lauren; Cesafsky, Karen E.; Le, Tran; Park, Aileen; Malicky, David
2012-01-01
This article describes a simple and inexpensive undergraduate-level kinetics experiment that uses magnetic levitation to monitor the progress and determine the activation energy of a condensation reaction on a polymeric solid support. The method employs a cuvette filled with a paramagnetic solution positioned between two strong magnets. The…
The measurement of ion kinetic energies is important for understanding processes that occur in discharges, e.g., the influence of ions on the etching of semiconductor materials in plasma reactors. Direct measurements of ion kinetic energies striking surfaces exposed to the discharge requires sampling through an orifice in a surface. Difficulties with ion sampling through a small aperture, manifested by errors or distortions in measured ion kinetic-energy distributions (IEDs) have been encountered in previous investigations of both dc and radio-frequency (rf) discharges. The errors are usually most significant at relatively low ion energies. Previous measurements in our laboratory of IEDs for ions sampled through a 0.1-mm hole in a grounded, aluminum electrode for rf discharges in argon showed evidence of reduced detection efficiency (discrimination) for low energy ions (<10 eV), and apparent shifts in the measured ion energies for plasmas generated in other gases. It has been suggested that surface charging at or near the sampling orifice can cause both discrimination and energy shifts. The existence of an insulating, or partially insulating, layer of aluminum oxide on the surface of an electrode allows the possibility of surface-charge accumulation. In the present work, IEDs were measured at both aluminum and 304 stainless-steel grounded electrodes with 0.1 mm sampling orifices in rf plasmas generated in argon and oxygen
R. Sorgente
2011-05-01
Full Text Available The spatial and temporal variability of eddy and mean kinetic energy of the Central Mediterranean Sea has been investigated, from January 2008 to December 2010, by mean of a numerical simulation mainly to quantify the mesoscale dynamics and their relationships with physical forcing. In order to understand the energy redistribution processes, the baroclinic energy conversion has been analysed, suggesting hypotheses about the drivers of the mesoscale activity in this area. The ocean model used is based on the Princeton Ocean Model implemented at 1/32° horizontal resolution. Surface momentum and buoyancy fluxes are interactively computed by mean of standard bulk formulae using predicted model Sea Surface Temperature and atmospheric variables provided by the European Centre for Medium Range Weather Forecast operational analyses. At its lateral boundaries the model is one-way nested within the Mediterranean Forecasting System operational products.
The model domain has been subdivided in four sub-regions: Sardinia channel and southern Tyrrhenian Sea, Sicily channel, eastern Tunisian shelf and Libyan Sea. Temporal evolution of eddy and mean kinetic energy has been analysed, on each of the four sub-regions composing the model domain, showing different behaviours. On annual scales and within the first 5 m depth, the eddy kinetic energy represents approximately the 60 % of the total kinetic energy over the whole domain, confirming the strong mesoscale nature of the surface current flows in this area. The analyses show that the model well reproduces the path and the temporal behaviour of the main known sub-basin circulation features. New mesoscale structures have been also identified, from numerical results and direct observations, for the first time as the Pantelleria Vortex and the Medina Gyre.
The classical the kinetic energy decomposition (eddy and mean allowed to depict and to quantify the stable and fluctuating parts of the
R. Sorgente
2011-08-01
Full Text Available The spatial and temporal variability of eddy and mean kinetic energy of the Central Mediterranean region has been investigated, from January 2008 to December 2010, by mean of a numerical simulation mainly to quantify the mesoscale dynamics and their relationships with physical forcing. In order to understand the energy redistribution processes, the baroclinic energy conversion has been analysed, suggesting hypotheses about the drivers of the mesoscale activity in this area. The ocean model used is based on the Princeton Ocean Model implemented at 1/32° horizontal resolution. Surface momentum and buoyancy fluxes are interactively computed by mean of standard bulk formulae using predicted model Sea Surface Temperature and atmospheric variables provided by the European Centre for Medium Range Weather Forecast operational analyses. At its lateral boundaries the model is one-way nested within the Mediterranean Forecasting System operational products.
The model domain has been subdivided in four sub-regions: Sardinia channel and southern Tyrrhenian Sea, Sicily channel, eastern Tunisian shelf and Libyan Sea. Temporal evolution of eddy and mean kinetic energy has been analysed, on each of the four sub-regions, showing different behaviours. On annual scales and within the first 5 m depth, the eddy kinetic energy represents approximately the 60 % of the total kinetic energy over the whole domain, confirming the strong mesoscale nature of the surface current flows in this area. The analyses show that the model well reproduces the path and the temporal behaviour of the main known sub-basin circulation features. New mesoscale structures have been also identified, from numerical results and direct observations, for the first time as the Pantelleria Vortex and the Medina Gyre.
The classical kinetic energy decomposition (eddy and mean allowed to depict and to quantify the permanent and fluctuating parts of the circulation in the region, and
Kinetic-energy matrix elements for atomic Hylleraas-CI wave functions.
Harris, Frank E
2016-05-28
Hylleraas-CI is a superposition-of-configurations method in which each configuration is constructed from a Slater-type orbital (STO) product to which is appended (linearly) at most one interelectron distance rij. Computations of the kinetic energy for atoms by this method have been difficult due to the lack of formulas expressing these matrix elements for general angular momentum in terms of overlap and potential-energy integrals. It is shown here that a strategic application of angular-momentum theory, including the use of vector spherical harmonics, enables the reduction of all atomic kinetic-energy integrals to overlap and potential-energy matrix elements. The new formulas are validated by showing that they yield correct results for a large number of integrals published by other investigators. PMID:27250282
Shibuya, Kengo; Kawamura, Yoshihiro; Saito, Haruo
2015-06-01
Positronium(Ps) can undergo ortho-para spin conversion reaction during Ps-Xecollisions due to spin-orbit interaction. We have investigated energy dependence of this reaction rate and found it is nearly proportional to T2.1, where T is the temperature (300-623 K), while the pick-off annihilation rate is proportional to T. The strong temperature dependence of the former annihilation rate is attributed to a nature of p-wave scattering because this reaction is forbidden in s-wave scattering. In addition, a new method for measuring Ps kinetic energy has been developed with a high resolution and a high sensitivity by utilizing the strong temperature dependence as a "thermometer." Analyzingthe obtained time evolution of Ps kinetic energy, we have determined the momentum transfer cross section during Ps-Xecollisions at a very low energy (40-60 meV) to be 12(2)×10-16 cm2.
Energy conserving continuum algorithms for kinetic & gyrokinetic simulations of plasmas
Hakim, A.; Hammett, G. W.; Shi, E.; Stoltzfus-Dueck, T.
2015-11-01
We present high-order, energy conserving, continuum algorithms for the solution of gyrokinetic equations for use in edge turbulence simulations. The distribution function is evolved with a discontinuous Galerkin scheme, while the fields are evolved with a continuous finite-element method. These algorithms work for a general, possibly non-canonical, Poisson bracket operator and conserve energy exactly. Benchmark simulations with ETG turbulence in 3X/2V are shown, as well as initial applications of the algorithms to turbulence in a simplified SOL geometry. Sheath boundary conditions with recycling and secondary electron emission are implemented, and a Lenard-Bernstein collision operator is included. Extension of these algorithms to full Vlasov-Maxwell equations are presented. It is shown that with a particular choice of numerical fluxes the total (particle+field) energy is conserved. Algorithms are implemented in a flexible and open-source framework, Gkeyll, which also includes fluid models, allowing potential hybrid simulations of various plasma problems. Supported by the Max-Planck/Princeton Center for Plasma Physics, and DOE Contract DE-AC02-09CH11466.
陈光巨; 李玉学
1999-01-01
The concrete molecule-fixed （MF） kinetic energy operator for penta-atomic molecules is expressed in terms of the parameterδ, the matrix element G?, and angular momentum operator （?）. The applications of the operator are also discussed. Finally, a general compact form of kinetic energy operator suitable for calculating the rovibrational spectra of polyatomie molecules is presented.
Goutte, H.; Berger, J.F.; Casoli, P.; Gogny, D.
2005-01-01
The collective dynamics of low energy fission in 238U is described within a time-dependent formalism based on the Gaussian Overlap Approximation of the time-dependent Generator Coordinate Method. The intrinsic deformed configurations of the nucleus are determined from the self-consistent Hartree-Fock-Bogoliubov procedure employing the effective force D1S with constraints on the quadrupole and octupole moments. Fragment kinetic energy and mass distributions are calculated and compared with exp...
A multi-layer model for turbulent kinetic energy in pipe flows
Chen, Xi; Hussain, Fazle; She, Zhen-Su
2011-01-01
A multi-layer model of an energy length function is developed by employing recent results of the authors. The theory predicts the complete, mean streamwise turbulent kinetic-energy profile (MKP), in good agreement with empirical data for a wide range of Reynolds numbers (Re). In particular, a critical $Re_\\tau$ is predicted, beyond which a scaling anomaly appears and MKP develops a second peak.
On the Exchange of Kinetic and Magnetic Energy Between Clouds and the Interstellar Medium
Miniati, Francesco; Jones, T. W.; Ryu, Dongsu
1999-01-01
We investigate, through 2D MHD numerical simulations, the interaction of a uniform magnetic field oblique to a moving interstellar cloud. In particular we explore the transformation of cloud kinetic energy into magnetic energy as a result of field line stretching. Some previous simulations have emphasized the possible dynamical importance of a ``magnetic shield'' formed around clouds when the magnetic field is perpendicular to the cloud motion (Jones et al. 1996, Miniati et al. 1998). It was ...
Kinetic energy cascades in quasi-geostrophic convection in a spherical shell
We consider triadic nonlinear interaction in the Navier-Stokes equation for quasi-geostrophic convection in a spherical shell. This approach helps us understand the origin of kinetic energy transport in the system and the particular scheme of mode interaction, as well as the locality of energy transfer. The peculiarity of convection in the sphere, concerned with the excitation of Rossby waves, is considered. The obtained results are compared with the results of our previous study on Cartesian geometry. (paper)
DEJAN MARKOVIC
2003-09-01
Full Text Available Simultaneous measurements of fluorescence and thermal emission have been performed by applying combined fluorescence and photoacoustic techniques on isolated thylakoids pretreated by prolonged illumination with saturating light. The traces were used to create Lineweaver-Burk type plots, proving clearly at least a formal analogy between the kinetics of the mechanisms governing fluorescence and thermal emission from isolated thylakoids and Michaelis-Menten kinetics of enzymatic reactions. Two characteristic parameters were calculated from them (energy storage and half-saturation light intensity in order to obtain a basic, initial response of the photosynthetic apparatus functioning under photoinhibition stress.
Joubert, D
2001-01-01
For Psi an eigenfunction of the Hamiltonian operator H = T + V, where T is the kinetic energy operator and V the potential energy operator, the following relations between expectation values are satisfied: = , ^2 = , ^2 = .
Turbulent kinetic energy spectrum in very anisothermal flows
Serra, Sylvain, E-mail: sylvain_serra@bbox.fr [PROcedes, Materiaux et Energie Solaire, UPR CNRS 8521, Rambla de la thermodynamique, Tecnosud, 66100 Perpignan (France); Toutant, Adrien, E-mail: adrien.toutant@univ-Perp.fr [PROcedes, Materiaux et Energie Solaire, UPR CNRS 8521, Rambla de la thermodynamique, Tecnosud, 66100 Perpignan (France); Bataille, Françoise, E-mail: francoise.bataille@promes.cnrs.fr [PROcedes, Materiaux et Energie Solaire, UPR CNRS 8521, Rambla de la thermodynamique, Tecnosud, 66100 Perpignan (France); Zhou, Ye, E-mail: yezhou@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States)
2012-10-01
In this Letter, we find that the Kolmogorov scaling law is no longer valid when the flow is submitted to strong dilatational effects caused by high temperature gradients. As a result, in addition to the nonlinear time scale, there is a much shorter “temperature gradients” time scale. We propose a model that estimates the time scale of the triple decorrelation incorporating the influences of the temperature gradient. The model agrees with the results from the thermal large-eddy simulations of different Reynolds numbers and temperature gradients. This Letter provides a better understanding of the very anisothermal turbulent flow. -- Highlights: ► Turbulent flows subject to high temperature gradients are considered. ► The new “temperature gradients” time scale is determined. ► A generalized energy spectrum is developed to incorporate the effects of temperature gradient.
FLYWHEEL BASED KINETIC ENERGY RECOVERY SYSTEMS (KERS INTEGRATED IN VEHICLES
THOMAS MATHEWS
2013-09-01
Full Text Available Today, many hybrid electric vehicles have been developed in order to reduce the consumption of fossil fuels; unfortunately these vehicles require electrochemical batteries to store energy, with high costs as well as poor conversion efficiencies. By integrating flywheel hybrid systems, these drawbacks can be overcome and can potentially replace battery powered hybrid vehicles cost effectively. The paper will explain the engineering, mechanics of the flywheel system and it’s working in detail. Each component of the flywheel-based kineticenergy recovery system will also be described. The advantages of this technology over the electric hybrids will be elucidated carefully. The latest advancements in the field, the potential future and scope of the flywheelhybrid will be assessed.
Turbulent kinetic energy spectrum in very anisothermal flows
In this Letter, we find that the Kolmogorov scaling law is no longer valid when the flow is submitted to strong dilatational effects caused by high temperature gradients. As a result, in addition to the nonlinear time scale, there is a much shorter “temperature gradients” time scale. We propose a model that estimates the time scale of the triple decorrelation incorporating the influences of the temperature gradient. The model agrees with the results from the thermal large-eddy simulations of different Reynolds numbers and temperature gradients. This Letter provides a better understanding of the very anisothermal turbulent flow. -- Highlights: ► Turbulent flows subject to high temperature gradients are considered. ► The new “temperature gradients” time scale is determined. ► A generalized energy spectrum is developed to incorporate the effects of temperature gradient.
Proton Kinetic Effects and Turbulent Energy Cascade Rate in the Solar Wind
Osman, Kareem T; Kiyani, Khurom H; Hnat, Bogdan; Chapman, Sandra C
2013-01-01
The first observed connection between kinetic instabilities driven by proton temperature anisotropy and estimated energy cascade rates in the turbulent solar wind is reported using measurements from the Wind spacecraft at 1 AU. We find enhanced cascade rates are concentrated along the boundaries of the ($\\beta_{\\parallel}$, $T_{\\perp}/T_{\\parallel}$)-plane, which includes regions theoretically unstable to the mirror and firehose instabilities. A strong correlation is observed between the estimated cascade rate and kinetic effects such as temperature anisotropy and plasma heating, resulting in protons 5-6 times hotter and 70-90% more anisotropic than under typical isotropic plasma conditions. These results offer new insights into kinetic processes in a turbulent regime.
Kinetic energy of throughfall in a highly diverse forest ecosystem in the humid subtropics
Geißler, Christian; Kühn, Peter; Scholten, Thomas
2010-05-01
After decades of research it is generally accepted that vegetation is a key factor in controlling soil erosion. Therefore, in ecosystems where erosion is a serious problem, afforestation is a common measure against erosion. Most of the studies in the last decades focused on agricultural systems and less attention was paid to natural systems. To understand the mechanisms preventing soil erosion in natural systems the processes have to be studied in detail and gradually. The first step and central research question is on how the canopies of the tree layer alter the properties of rainfall and generate throughfall. Kinetic energy is a widely used parameter to estimate the erosion potential of open field rainfall and throughfall. In the past, numerous studies have shown that vegetation of a certain height enhances the kinetic energy under the canopy (Chapman 1948, Mosley 1982, Vis 1986, Hall & Calder 1993, Nanko et al. 2006, Nanko et al. 2008) in relation to open field rainfall. This is mainly due to a shift in the drop size distribution to less but larger drops possessing a higher amount of kinetic energy. In vital forest ecosystems lower vegetation (shrubs, herbs) as well as a continuous litter layer protects the forest soil from the impact of large drops. The influence of biodiversity, specific forest stands or single species in this process system is still in discussion. In the present study calibrated splash cups (after Ellison 1947, Geißler et al. under review) have been used to detect differences in kinetic energy on the scale of specific species and on the scale of forest stands of contrasting age and biodiversity in a natural forest ecosystem. The splash cups have been calibrated experimentally using a laser disdrometer. The results show that the kinetic energy of throughfall produced by the tree layer increases with the age of the specific forest stand. The average throughfall kinetic energy (J m-2) is about 2.6 times higher in forests than under open field
Buoyant production and consumption of turbulence kinetic energy in cloud-topped mixed layers
Randall, D. A.
1984-01-01
It is pointed out that studies of the entraining planetary boundary layer (PBL) have generally emphasized the role of buoyancy fluxes in driving entrainment. The buoyancy flux is proportional to the rate of conversion of the potential energy of the mean flow into the kinetic energy of the turbulence. It is not unusual for conversion to proceed in both directions simultaneously. This occurs, for instance, in both clear and cloudy convective mixed layers which are capped by inversions. A partitioning of the net conversion into positive parts, generating turbulence kinetic energy (TKE), and negative parts (TKE-consuming), would make it possible to include the positive part in the gross production rate, and closure would be achieved. Three different approaches to partitioning have been proposed. The present investigation is concerned with a comparison of the three partitioning theories. Particular attention is given to the cloud-topped mixed layer because in this case the differences between two partitioning approaches are most apparent.
Electron scattering as a tool to study zero-point kinetic energies of atoms in molecules
Moreh, R.; Finkelstein, Y.; Vos, M.
2015-07-01
High resolution electron compton scattering (ECS) is being used to study the atomic momentum distributions and hence the zero-point kinetic energies (ZPKE) of the scattering atoms. Such studies have shown that the scattering is from a single atom of the scattering sample. For an electron beam with a well defined incident energy, the scattered electron energy at any angle from each atomic species is Doppler broadened. The broadening reflects the atomic momentum distribution contributed by both the internal and external motions of the molecular system. By measuring the Doppler broadening of the scattered electron lines it was possible to determine the kinetic energy of the scattering atom including that of its zero-point motion. Thus, the atomic kinetic energies in gases such as H2, D2, HD, CH4 and in H2O, D2O and NH3 were measured and compared with those calculated semi-empirically using the measured optical infra red (IR) and Raman frequencies of the internal vibrations of the molecules. In general, good agreement between the measured and calculated values was found. Electron scattering was also used to study the ratio of e-scattering intensities from the H- and O-atoms in water (H2O), where some anomalies were reported to exist.
Electron scattering as a tool to study zero-point kinetic energies of atoms in molecules
High resolution electron compton scattering (ECS) is being used to study the atomic momentum distributions and hence the zero-point kinetic energies (ZPKE) of the scattering atoms. Such studies have shown that the scattering is from a single atom of the scattering sample. For an electron beam with a well defined incident energy, the scattered electron energy at any angle from each atomic species is Doppler broadened. The broadening reflects the atomic momentum distribution contributed by both the internal and external motions of the molecular system. By measuring the Doppler broadening of the scattered electron lines it was possible to determine the kinetic energy of the scattering atom including that of its zero-point motion. Thus, the atomic kinetic energies in gases such as H2, D2, HD, CH4 and in H2O, D2O and NH3 were measured and compared with those calculated semi-empirically using the measured optical infra red (IR) and Raman frequencies of the internal vibrations of the molecules. In general, good agreement between the measured and calculated values was found. Electron scattering was also used to study the ratio of e-scattering intensities from the H- and O-atoms in water (H2O), where some anomalies were reported to exist
Electron scattering as a tool to study zero-point kinetic energies of atoms in molecules
Moreh, R., E-mail: moreh@bgu.ac.il [Physics Department, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel); Finkelstein, Y. [Nuclear Research Center – Negev, Beer-Sheva 84190 (Israel); Vos, M. [Atomic and Molecular Physics Laboratories, Australian National University, Canberra (Australia)
2015-07-01
High resolution electron compton scattering (ECS) is being used to study the atomic momentum distributions and hence the zero-point kinetic energies (ZPKE) of the scattering atoms. Such studies have shown that the scattering is from a single atom of the scattering sample. For an electron beam with a well defined incident energy, the scattered electron energy at any angle from each atomic species is Doppler broadened. The broadening reflects the atomic momentum distribution contributed by both the internal and external motions of the molecular system. By measuring the Doppler broadening of the scattered electron lines it was possible to determine the kinetic energy of the scattering atom including that of its zero-point motion. Thus, the atomic kinetic energies in gases such as H{sub 2}, D{sub 2}, HD, CH{sub 4} and in H{sub 2}O, D{sub 2}O and NH{sub 3} were measured and compared with those calculated semi-empirically using the measured optical infra red (IR) and Raman frequencies of the internal vibrations of the molecules. In general, good agreement between the measured and calculated values was found. Electron scattering was also used to study the ratio of e-scattering intensities from the H- and O-atoms in water (H{sub 2}O), where some anomalies were reported to exist.
Rock Cutting Depth Model Based on Kinetic Energy of Abrasive Waterjet
Oh, Tae-Min; Cho, Gye-Chun
2016-03-01
Abrasive waterjets are widely used in the fields of civil and mechanical engineering for cutting a great variety of hard materials including rocks, metals, and other materials. Cutting depth is an important index to estimate operating time and cost, but it is very difficult to predict because there are a number of influential variables (e.g., energy, geometry, material, and nozzle system parameters). In this study, the cutting depth is correlated to the maximum kinetic energy expressed in terms of energy (i.e., water pressure, water flow rate, abrasive feed rate, and traverse speed), geometry (i.e., standoff distance), material (i.e., α and β), and nozzle system parameters (i.e., nozzle size, shape, and jet diffusion level). The maximum kinetic energy cutting depth model is verified with experimental test data that are obtained using one type of hard granite specimen for various parameters. The results show a unique curve for a specific rock type in a power function between cutting depth and maximum kinetic energy. The cutting depth model developed here can be very useful for estimating the process time when cutting rock using an abrasive waterjet.
On the ultrafast kinetics of the energy and electron transfer reactions in photosystem I
Slavov, Chavdar Lyubomirov
2009-07-09
The subject of the current work is one of the main participants in the light-dependent phase of oxygenic photosynthesis, Photosystem I (PS I). This complex carries an immense number of cofactors: chlorophylls (Chl), carotenoids, quinones, etc, which together with the protein entity exhibit several exceptional properties. First, PS I has an ultrafast light energy trapping kinetics with a nearly 100% quantum efficiency. Secondly, both of the electron transfer branches in the reaction center are suggested to be active. Thirdly, there are some so called 'red' Chls in the antenna system of PS I, absorbing light with longer wavelengths than the reaction center. These 'red' Chls significantly modify the trapping kinetics of PS I. The purpose of this thesis is to obtain better understanding of the above-mentioned, specific features of PS I. This will not merely cast more light on the mechanisms of energy and electron transfer in the complex, but also will contribute to the future developments of optimized artificial light-harvesting systems. In the current work, a number of PS I complexes isolated from different organisms (Thermosynechococcus elongatus, Chlamydomonas reinhardtii, Arabidopsis thaliana) and possessing distinctive features (different macroorganisation, monomers, trimers, monomers with a semibelt of peripheral antenna attached; presence of 'red' Chls) is investigated. The studies are primarily focused on the electron transfer kinetics in each of the cofactor branches in the PS I reaction center, as well as on the effect of the antenna size and the presence of 'red' Chls on the trapping kinetics of PS I. These aspects are explored with the help of several ultrafast optical spectroscopy methods: (i) time-resolved fluorescence ? single photon counting and synchroscan streak camera; and (ii) ultrafast transient absorption. Physically meaningful information about the molecular mechanisms of the energy trapping in PS I is
Kinetic and potential parts of nuclear symmetry energy: the role of Fock terms
Zhao, Qian; Sun, Bao Yuan; Long, Wen Hui
2015-09-01
The density dependence of nuclear symmetry energy is studied within the covariant density functional (CDF) theory in terms of the kinetic energy, isospin-singlet, and isospin-triplet potential energy parts of the energy density functional. When the Fock diagram is introduced, it is found that both isospin-singlet and isospin-triplet components of the potential energy play an important role in determining the symmetry energy. At high densities, a strong density-dependent behavior is revealed in the isospin-triplet potential part of the symmetry energy. In addition, the inclusion of the Fock terms in the CDF theory reduces the kinetic part of the symmetry energy and may lead to negative values at the supranuclear density region, which is regarded partly as the effect of the nuclear tensor-force components. The results demonstrate the importance of the Fock diagram in the CDF theory on the isospin properties of the in-medium nuclear force at high densities, especially from the isoscalar-meson coupling channels.
Kinetic energy recovery turbine technology: resource assessment and site development strategy
Briand, Marie-Helene; Ng, Karen
2010-09-15
New technologies to extract readily available energy from waves, tides and river flow are being developed and are promising but are still at the demonstration stage. Harnessing kinetic energy from currents (hydrokinetic power) is considered an attractive and cost-effective renewable energy solution to replace thermal generation without requiring construction of a dam or large civil works. The nature of this innovative hydrokinetic technology requires an adaptation of conventional approach to project engineering and environmental impact studies. This paper presents the approach developed by RSW to design a hydrokinetic site in the riverine environment, from resource assessment to detailed engineering design.
Metastable anions of dinitrobenzene: Resonances for electron attachment and kinetic energy release
Mauracher, Andreas; Denifl, S.; Edtbauer, A.; Hager, M; Probst, M.; Echt, O.; Mark, T.D.; Scheier, P.; Field, Thomas; Graupner, Karola
2010-01-01
Attachment of free, low-energy electrons to dinitrobenzene (DNB) in the gas phase leads to DNB as well as several fragment anions. DNB, (DNB-H), (DNB-NO), (DNB-2NO), and (DNB-NO2) are found to undergo metastable (unimolecular) dissociation. A rich pattern of resonances in the yield of these metastable reactions versus electron energy is observed; some resonances are highly isomer-specific. Most metastable reactions are accompanied by large average kinetic energy releases (KER) that range from...
Design, analysis and testing of a piezoelectric flex transducer for harvesting bio-kinetic energy
Daniels, A.; Zhu, M.; Tiwari, A.
2013-12-01
The increasing prevalence of low power consuming electronics brings greater potential to mobile energy harvesting devices as a possible power source. A new piezoelectric energy harvesting device, called the piezoelectric flex transducer (PFT), is presented and developed. A Finite Element Model (FEM) was developed to design and analyse the PFT. The PFT consists of a piezoelectric element sandwiched between substrate layers and metal endcaps that are able to amplify the axial force on the piezoelectric element. Based on the concept of the Cymbal transducer, the PFT can withstand higher forces, was retrofitted into a shoe and used to power a wireless sensor module whilst the subject with a body weight of 760N was wearing the shoe and ran at 3.1mph (1.4HZ on shoe), the PFT produced an average maximum power of 2.5mW (over 2MΩ load).
Design, analysis and testing of a piezoelectric flex transducer for harvesting bio-kinetic energy
The increasing prevalence of low power consuming electronics brings greater potential to mobile energy harvesting devices as a possible power source. A new piezoelectric energy harvesting device, called the piezoelectric flex transducer (PFT), is presented and developed. A Finite Element Model (FEM) was developed to design and analyse the PFT. The PFT consists of a piezoelectric element sandwiched between substrate layers and metal endcaps that are able to amplify the axial force on the piezoelectric element. Based on the concept of the Cymbal transducer, the PFT can withstand higher forces, was retrofitted into a shoe and used to power a wireless sensor module whilst the subject with a body weight of 760N was wearing the shoe and ran at 3.1mph (1.4HZ on shoe), the PFT produced an average maximum power of 2.5mW (over 2MΩ load)
The Harmonic Picture of Nuclear Mean Kinetic Energies in Heavy Water
This paper presents a study of the total mean kinetic energy, (EK), and of individual projections along a given molecular axis, (EK)α, for D and O nuclei in D2O, derived using a harmonic model. Our theoretical approach assumes decoupling amongst translational, rotational and vibrational modes. Resulting values of these dynamical quantities are discussed in terms of the anisotropy of the quantum kinetic energy tensor, its relation to the local potential, and deviations from the hypothesis of harmonicity and mode decoupling. Results are compared with corresponding quantities obtained from Deep Inelastic Neutron Scattering experiments performed on liquid and solid D2O, where the short-time dynamics and local environment of D and O atoms were probed. The present study confirms an overall picture where even small changes in the short-range environment of D and O nuclei have a strong influence on the quantum behaviour of heavy water
How to measure kinetic energy of the heavy quark inside B mesons?
Bigi, Ikaros I; Shifman, M; Uraltsev, N; Vainshtein, A I
1994-01-01
We discuss how one can determine the average kinetic energy of the heavy quark inside heavy mesons from differential distributions in B decays. A new, so-called third, sum rule for the b\\rightarrow c transition is derived in the small velocity (SV) limit. Using this sum rule and the existing data on the momentum dependence in the B\\rightarrow D^* transition (the slope of the Isgur-Wise function) we obtain a new lower bound on the parameter \\mu_\\pi^2 = (2M_B)^{-1}\\langle B |\\bar b (i\\vec{D})^2 b |B\\rangle proportional to the average kinetic energy of b quark inside B meson. The existing data suggest \\mu_\\pi^2 > 0.4~GeV^2 and (from the ``optical'' sum rule) \\overline{\\Lambda} > 500 MeV, albeit with some numerical uncertainties.
Total kinetic energy distribution of fission fragments in 6,7Li + 238U reactions
The shape and width of fission-fragment (FF) mass and kinetic energy distribution provides a lot of information on the fission reaction mechanism and the structure of the compound nucleus (CN), the fragments as well as the interacting nuclei. The shape of the mass distribution of the fission fragments for the actinides induced by the proton or neutron is known to change with the incident energy. At low energies, it shows a double humped distribution which changes slowly to a single humped distribution as energy increases. However, for a reaction involving a weakly bound projectile (i.e., 6Li + 232Th), a sharp change in the shape of the mass distribution with energy was observed. The sharp increase in the peak to valley ratio (P:V) in the fission-fragment mass distribution in 6Li + 232Th reaction by Itkis et al. and in 6,7Li + 238U reactions by Santra et al. was concluded to be due to the reduced energy transfer to the composite system caused by incomplete fusion (ICF) of alpha or deuteron/triton followed by fissions. Total Kinetic Energy (TKE) distribution of fission fragments is another important observable on which the effect of projectile breakup is not explored yet. In this contribution, the study of breakup/transfer effect on average TKE distribution for 6,7Li + 238U reactions is presented
Barkan, Roy
2015-01-01
The general circulation of the ocean is forced by surface fluxes of momentum, heat, and freshwater at basin scales. The kinetic (E_k) and available potential (E_a) energy sources associated with these external forces drive a circulation which exhibits flow features that vary on a wide range of spatial and temporal scales. Understanding how the different forcing mechanisms lead to the observed large-scale ocean circulation patterns and to what degree do the various smaller scale processes modi...
Age-related changes in intraventricular kinetic energy: a physiological or pathological adaptation?
Wong, James; Chabiniok, Radomir; deVecchi, Adelaide; Dedieu, Nathalie; Sammut, Eva; Schaeffter, Tobias
2016-01-01
Aging has important deleterious effects on the cardiovascular system. We sought to compare intraventricular kinetic energy (KE) in healthy subjects of varying ages with subjects with ventricular dysfunction to understand if changes in energetic momentum may predispose individuals to heart failure. Four-dimensional flow MRI was acquired in 35 healthy subjects (age: 1–67 yr) and 10 patients with left ventricular (LV) dysfunction (age: 28–79 yr). Healthy subjects were divided into age quartiles (1st quartile: pathology. PMID:26747496
ENERGY TRANSFER IN TRIMERIC C-PHYCOCYANIN STUDIED BY PICOSECOND FLUORESCENCE KINETICS
WENDLER, J.; John, Wolfhart; Scheer, Hugo; Holzwarth, A. R.
1986-01-01
The excited state kinetics of trimeric C-phycocyanin from Mastigocladus laminosus has been measured as a function of the emission and excitation wavelength by the single-photon timing technique with picosecond resolution and simultaneous data analysis. A fast decay component of 22 ps (C-phycocyanin with linker peptides) and 36 ps (C-phycocyanin lacking linker peptides) is attributed to efficient energy transfer from sensitizing to fluorescing chromophores. At long detection wavelengths the fa...
Revisiting the density scaling of the non-interacting kinetic energy.
Borgoo, Alex; Teale, Andrew M; Tozer, David J
2014-07-28
Scaling relations play an important role in the understanding and development of approximate functionals in density functional theory. Recently, a number of these relationships have been redefined in terms of the Kohn-Sham orbitals [Calderín, Phys. Rev. A: At., Mol., Opt. Phys., 2013, 86, 032510]. For density scaling the author proposed a procedure involving a multiplicative scaling of the Kohn-Sham orbitals whilst keeping their occupation numbers fixed. In the present work, the differences between this scaling with fixed occupation numbers and that of previous studies, where the particle number change implied by the scaling was accommodated through the use of the grand canonical ensemble, are examined. We introduce the terms orbital and ensemble density scaling for these approaches, respectively. The natural ambiguity of the density scaling of the non-interacting kinetic energy functional is examined and the ancillary definitions implicit in each approach are highlighted and compared. As a consequence of these differences, Calderín recovered a homogeneity of degree 1 for the non-interacting kinetic energy functional under orbital scaling, contrasting recent work by the present authors [J. Chem. Phys., 2012, 136, 034101] where the functional was found to be inhomogeneous under ensemble density scaling. Furthermore, we show that the orbital scaling result follows directly from the linearity and the single-particle nature of the kinetic energy operator. The inhomogeneity of the non-interacting kinetic energy functional under ensemble density scaling can be quantified by defining an effective homogeneity. This quantity is shown to recover the homogeneity values for important approximate forms that are exact for limiting cases such as the uniform electron gas and one-electron systems. We argue that the ensemble density scaling provides more insight into the development of new functional forms. PMID:24710656
Kinetic theory of binary particles with unequal mean velocities and non-equipartition energies
Mei, Yifeng; Chen, Yanpei; Wang, Wei
2015-01-01
The hydrodynamic conservation equations and constitutive relations for a binary granular mixture composed of smooth, nearly elastic, hard spheres with non-equipartition energies and different mean velocities are derived. This research is aimed to build three-dimensional kinetic theory to characterize the behaviors of two species of particles suffering different forces. The standard Enskog method is employed assuming a Maxwell velocity distribution for each species of particles. The collision ...
Membrane Bending Energy and Fusion Pore Kinetics in Ca2+-Triggered Exocytosis
Zhang, Zhen; Jackson, Meyer B.
2010-01-01
A fusion pore composed of lipid is an obligatory kinetic intermediate of membrane fusion, and its formation requires energy to bend membranes into highly curved shapes. The energetics of such deformations in viral fusion is well established, but the role of membrane bending in Ca2+-triggered exocytosis remains largely untested. Amperometry recording showed that during exocytosis in chromaffin and PC12 cells, fusion pores formed by smaller vesicles dilated more rapidly than fusion pores formed...
Montoya, M; Rojas, J
2007-01-01
The mass and kinetic energy distribution of nuclear fragments from thermal neutron induced fission of 235U have been studied using a Monte-Carlo simulation. Besides reproducing the pronounced broadening on the standard deviation of the final fragment kinetic energy distribution $\\sigma_{e}(m)$ around the mass number m = 109, our simulation also produces a second broadening around m = 125, that is in agreement with the experimental data obtained by Belhafaf et al. These results are consequence of the characteristics of the neutron emission, the variation in the primary fragment mean kinetic energy and the yield as a function of the mass.
Measuring kinetic energy changes in the mesoscale with low acquisition rates
Roldán, É. [ICFO–Institut de Ciències Fotòniques, Mediterranean Technology Park, Av. Carl Friedrich Gauss 3, 08860 Castelldefels (Barcelona) (Spain); GISC–Grupo Interdisciplinar de Sistemas Complejos, Madrid (Spain); Martínez, I. A.; Rica, R. A., E-mail: rul@ugr.es [ICFO–Institut de Ciències Fotòniques, Mediterranean Technology Park, Av. Carl Friedrich Gauss 3, 08860 Castelldefels (Barcelona) (Spain); Dinis, L. [GISC–Grupo Interdisciplinar de Sistemas Complejos, Madrid (Spain); Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid, 28040 Madrid (Spain)
2014-06-09
We report on the measurement of the average kinetic energy changes in isothermal and non-isothermal quasistatic processes in the mesoscale, realized with a Brownian particle trapped with optical tweezers. Our estimation of the kinetic energy change allows to access to the full energetic description of the Brownian particle. Kinetic energy estimates are obtained from measurements of the mean square velocity of the trapped bead sampled at frequencies several orders of magnitude smaller than the momentum relaxation frequency. The velocity is tuned applying a noisy electric field that modulates the amplitude of the fluctuations of the position and velocity of the Brownian particle, whose motion is equivalent to that of a particle in a higher temperature reservoir. Additionally, we show that the dependence of the variance of the time-averaged velocity on the sampling frequency can be used to quantify properties of the electrophoretic mobility of a charged colloid. Our method could be applied to detect temperature gradients in inhomogeneous media and to characterize the complete thermodynamics of biological motors and of artificial micro and nanoscopic heat engines.
Measuring kinetic energy changes in the mesoscale with low acquisition rates
We report on the measurement of the average kinetic energy changes in isothermal and non-isothermal quasistatic processes in the mesoscale, realized with a Brownian particle trapped with optical tweezers. Our estimation of the kinetic energy change allows to access to the full energetic description of the Brownian particle. Kinetic energy estimates are obtained from measurements of the mean square velocity of the trapped bead sampled at frequencies several orders of magnitude smaller than the momentum relaxation frequency. The velocity is tuned applying a noisy electric field that modulates the amplitude of the fluctuations of the position and velocity of the Brownian particle, whose motion is equivalent to that of a particle in a higher temperature reservoir. Additionally, we show that the dependence of the variance of the time-averaged velocity on the sampling frequency can be used to quantify properties of the electrophoretic mobility of a charged colloid. Our method could be applied to detect temperature gradients in inhomogeneous media and to characterize the complete thermodynamics of biological motors and of artificial micro and nanoscopic heat engines.
Vector modeling and track simulation in axial turn-milling motion
JIANG Zeng-hui; JIA Chun-de
2005-01-01
Through vector analysis the kinetic vector model is built in a machining cylinder surface through axial turn-milling. When building a kinetic vector model in the machining field, machining through axial turn-milling and using equilateral triangles and square prism surfaces, the kinetic vector model is given any equilateral polygon prismic surface. Kinetic tracks are simulated through these kinetic models respectively, thus it can be seen that the axial turn-milling is a very effective method in manufacturing any equilateral, polygon, prismic surface.
Axially symmetric rotating traversable wormholes
Kuhfittig, P K F
2003-01-01
This paper generalizes the static and spherically symmetric traversable wormhole geometry to a rotating axially symmetric one with a time-dependent angular velocity by means of an exact solution. It was found that the violation of the weak energy condition, although unavoidable, is considerably less severe than in the static spherically symmetric case. The radial tidal constraint is more easily met due to the rotation. Similar improvements are seen in one of the lateral tidal constraints. The magnitude of the angular velocity may have little effect on the weak energy condition violation for an axially symmetric wormhole. For a spherically symmetric one, however, the violation becomes less severe with increasing angular velocity. The time rate of change of the angular velocity, on the other hand, was found to have no effect at all. Finally, the angular velocity must depend only on the radial coordinate, confirming an earlier result.
Wang, Y Y; Grygiel, C; Dufour, C; Sun, J R; Wang, Z G; Zhao, Y T; Xiao, G Q; Cheng, R; Zhou, X M; Ren, J R; Liu, S D; Lei, Y; Sun, Y B; Ritter, R; Gruber, E; Cassimi, A; Monnet, I; Bouffard, S; Aumayr, F; Toulemonde, M
2014-01-01
Modification of surface and bulk properties of solids by irradiation with ion beams is a widely used technique with many applications in material science. In this study, we show that nano-hillocks on CaF2 crystal surfaces can be formed by individual impact of medium energy (3 and 5 MeV) highly charged ions (Xe(22+) to Xe(30+)) as well as swift (kinetic energies between 12 and 58 MeV) heavy xenon ions. For very slow highly charged ions the appearance of hillocks is known to be linked to a threshold in potential energy (Ep) while for swift heavy ions a minimum electronic energy loss per unit length (Se) is necessary. With our results we bridge the gap between these two extreme cases and demonstrate, that with increasing energy deposition via Se the Ep-threshold for hillock production can be lowered substantially. Surprisingly, both mechanisms of energy deposition in the target surface seem to contribute in an additive way, which can be visualized in a phase diagram. We show that the inelastic thermal spike model, originally developed to describe such material modifications for swift heavy ions, can be extended to the case where both kinetic and potential energies are deposited into the surface. PMID:25034006
Kinetic Energy Distribution of H(2p) Atoms from Dissociative Excitation of H2
Ajello, Joseph M.; Ahmed, Syed M.; Kanik, Isik; Multari, Rosalie
1995-01-01
The kinetic energy distribution of H(2p) atoms resulting from electron impact dissociation of H2 has been measured for the first time with uv spectroscopy. A high resolution uv spectrometer was used for the measurement of the H Lyman-alpha emission line profiles at 20 and 100 eV electron impact energies. Analysis of the deconvolved 100 eV line profile reveals the existence of a narrow line peak and a broad pedestal base. Slow H(2p) atoms with peak energy near 80 meV produce the peak profile, which is nearly independent of impact energy. The wings of H Lyman-alpha arise from dissociative excitation of a series of doubly excited Q(sub 1) and Q(sub 2) states, which define the core orbitals. The fast atom energy distribution peaks at 4 eV.
The description of an experimental set-up for the study of the excitation energy distribution of fission fragments by means of coincident measurement of fission neutrons is presented. For every fission event the kinetic energy and mass of both fragments are registered simultaneously with the number of prompt neutrons emitted by each of the complementary fission fragments. With this set-up, the fission fragments are detected by a twin ionization chamber and the neutrons - by two large Gd-loaded liquid scintillator tanks. (author)
Optimization of kinetic energy harvesters design for fully implantable Cochlear Implants.
Sudano, A; Accoto, D; Francomano, M T; Salvinelli, F; Guglielmelli, E
2011-01-01
Fully implantable Cochlear Implants (CIs) would represent a tremendous advancement in terms of quality of life, comfort and cosmetics, for patients with profound sensorineural deafness. One of the main challenges involved in the development of such implants consists of finding a power supply means which does not require recharging. To this aim an inertial Energy Harvester (EH), exploiting the kinetic energy produced by vertical movements of the head during walking, has been investigated. Compared to existing devices, the EH needs to exploit very low frequency vibrations (Genetic Algorithms (GAs). The robustness of the solution is also evaluated. PMID:22256117
Total kinetic energy release in the fast neutron-induced fission of $^{235}$U
Yanez, R; Loveland, W.; King, J.; Barrett, J. S.; Fotiades, N.; Lee, H. Y.
2015-01-01
We have measured the total kinetic energy (TKE) release for the $^{235}$U(n,f) reaction for $E_{n}$=2-100 MeV using the 2E method with an array of Si PIN diode detectors. The neutron energies were determined by time of flight measurements using the white spectrum neutron beam at the LANSCE facility. (To calibrate the apparatus, the TKE release for $^{235}$U(n$_{th}$,f) was also measured using a thermal neutron beam from the OSU TRIGA reactor). The TKE decreases non-linearly from 169.0 MeV to ...
Total kinetic energy release in the fast neutron-induced fission of $^{235}$U
Yanez, R; Loveland, W.; King, J.; Barrett, J. S.; Fotiades, N.; Lee, H. Y.
2016-01-01
We have measured the total kinetic energy (TKE) release for the $^{235}$U(n,f) reaction for $E_{n}$=2-100 MeV using the 2E method with an array of Si PIN diode detectors. The neutron energies were determined by time of flight measurements using the white spectrum neutron beam at the LANSCE facility. To benchmark the TKE measurement, the TKE release for $^{235}$U(n$_{th}$,f) was also measured using a thermal neutron beam from the Oregon State University TRIGA reactor, giving pre-neutron emissi...