Theory of ultracold atomic Fermi gases
The physics of quantum degenerate atomic Fermi gases in uniform as well as in harmonically trapped configurations is reviewed from a theoretical perspective. Emphasis is given to the effect of interactions that play a crucial role, bringing the gas into a superfluid phase at low temperature. In these dilute systems, interactions are characterized by a single parameter, the s-wave scattering length, whose value can be tuned using an external magnetic field near a broad Feshbach resonance. The BCS limit of ordinary Fermi superfluidity, the Bose-Einstein condensation (BEC) of dimers, and the unitary limit of large scattering length are important regimes exhibited by interacting Fermi gases. In particular, the BEC and the unitary regimes are characterized by a high value of the superfluid critical temperature, on the order of the Fermi temperature. Different physical properties are discussed, including the density profiles and the energy of the ground-state configurations, the momentum distribution, the fraction of condensed pairs, collective oscillations and pair-breaking effects, the expansion of the gas, the main thermodynamic properties, the behavior in the presence of optical lattices, and the signatures of superfluidity, such as the existence of quantized vortices, the quenching of the moment of inertia, and the consequences of spin polarization. Various theoretical approaches are considered, ranging from the mean-field description of the BCS-BEC crossover to nonperturbative methods based on quantum Monte Carlo techniques. A major goal of the review is to compare theoretical predictions with available experimental results.
Vortex line in spin-orbit coupled atomic Fermi gases
Işkın, Menderes
2011-01-01
PHYSICAL REVIEW A 85, 013622 (2012) Vortex line in spin-orbit coupled atomic Fermi gases M. Iskin Department of Physics, Koc¸ University, Rumelifeneri Yolu, TR-34450 Sariyer, Istanbul, Turkey (Received 1 December 2011; published 17 January 2012) It has recently been shown that the spin-orbit coupling gives rise to topologically nontrivial and thermodynamically stable gapless superfluid phases when the pseudospin populations of an atomic Fermi gas are imbalanced, with the ...
Atom loss maximum in ultra-cold Fermi gases
Recent experiments on atom loss in ultra-cold Fermi gases all show a maximum at a magnetic field below Feshbach resonance, where the s-wave scattering length is large (comparable to inter-particle distance) and positive. These experiments have been performed over a wide range of conditions, with temperatures and trap depths spanning three decades. Different groups have come up with different explanations, including the emergence of Stoner ferromagnetism. Here, we show that this maximum is a consequence of two major steps. The first is the establishment of a population of shallow dimers, which is the combined effect of dimer formation through three-body recombination, and the dissociation of shallow dimers back to atoms through collisions. The dissociation process will be temperature dependent and is affected by Pauli blocking at low temperatures. The second is the relaxation of shallow dimers into tightly bound dimers through atom-dimer and dimer-dimer collisions. In these collisions, a significant amount of energy is released. The reaction products leave the trap, leading to trap loss. We have constructed a simple set of rate equations describing these processes. Remarkably, even with only a few parameters, these equations reproduce the loss rate observed in all recent experiments, despite their widely different experimental conditions. Our studies show that the location of the maximum loss rate depends crucially on experimental parameters such as trap depth and temperature. These extrinsic characters show that this maximum is not a reliable probe of the nature of the underlying quantum states. The physics of our equations also explains some general trends found in current experiments.
Strongly interacting Fermi gases
Bakr W.
2013-08-01
Full Text Available Strongly interacting gases of ultracold fermions have become an amazingly rich test-bed for many-body theories of fermionic matter. Here we present our recent experiments on these systems. Firstly, we discuss high-precision measurements on the thermodynamics of a strongly interacting Fermi gas across the superfluid transition. The onset of superfluidity is directly observed in the compressibility, the chemical potential, the entropy, and the heat capacity. Our measurements provide benchmarks for current many-body theories on strongly interacting fermions. Secondly, we have studied the evolution of fermion pairing from three to two dimensions in these gases, relating to the physics of layered superconductors. In the presence of p-wave interactions, Fermi gases are predicted to display toplogical superfluidity carrying Majorana edge states. Two possible avenues in this direction are discussed, our creation and direct observation of spin-orbit coupling in Fermi gases and the creation of fermionic molecules of 23Na 40K that will feature strong dipolar interactions in their absolute ground state.
Pseudospin pairing and transport in atomic Fermi gases and bilayer systems
Mink, M.P.
2012-01-01
In this Thesis we consider the behavior of the drag conductivity close to exciton condensation in bilayer systems and close to the superfluid transition in cold Fermi gases. In chapter 2 we calculate the transition temperature for exciton condensation in double-layer graphene, showing that the remot
Phase transitions and pairing signature in strongly attractive Fermi atomic gases
We investigate pairing and quantum phase transitions in the one-dimensional two-component Fermi atomic gas in an external field. The phase diagram, critical fields, magnetization, and local pairing correlation are obtained analytically via the exact thermodynamic Bethe ansatz solution. At zero temperature, bound pairs of fermions with opposite spin states form a singlet ground state when the external field Hc1. A completely ferromagnetic phase without pairing occurs when the external field H>Hc2. In the region Hc1c2, we observe a mixed phase of matter in which paired and unpaired atoms coexist. The phase diagram is reminiscent of that of type II superconductors. For temperatures below the degenerate temperature and in the absence of an external field, the bound pairs of fermions form hard-core bosons obeying generalized exclusion statistics
Spin-orbit coupled two-electron Fermi gases of ytterbium atoms
Song, Bo; Zhang, Shanchao; Zou, Yueyang; Haciyev, Elnur; Huang, Wei; Liu, Xiong-Jun; Jo, Gyu-Boong
2016-01-01
We demonstrate the spin-orbit coupling (SOC) in a two-electron Fermi gas of $^{173}$Yb atoms by coupling two hyperfine ground states via the two-photon Raman transition. Due to the SU($N$) symmetry of the $^1$S$_0$ ground-state manifold which is insensitive to external magnetic field, an optical AC Stark effect is applied to split the ground spin states and separate an effective spin-1/2 subspace out from other hyperfine levels for the realization of SOC. With a momentum-dependent spin-orbit gap being suddenly opened by switching on the Raman transition, the dephasing of spin dynamics is observed, as a consequence of the momentum-dependent Rabi oscillations. Moreover, the momentum asymmetry of the spin-orbit coupled Fermi gas is also examined after projection onto the bare spin state and the corresponding momentum distribution is measured for different two-photon detuning. The realization of SOC for Yb fermions may open a new avenue to the study of novel spin-orbit physics with alkaline-earth-like atoms.
Thermodynamics of interacting cold atomic Fermi gases with spin-orbit coupling
Jensen, Scott; Alhassid, Yoram; Gilbreth, Christopher
New physics is suggested with the prediction of novel phases in cold atom systems when a synthetic spin-orbit coupling is introduced. In particular, recent studies show that a new type of Bose-Einstein condensate, termed Rashbon-BEC, is formed when a generalized Rashba spin-orbit term is present. The Rashbon-BEC phase can be obtained by tuning the spin-orbit coupling strength even in the case of finite negative scattering length. This stands in contrast to the BCS-BEC crossover in the absence of spin-orbit coupling where a negative scattering length is associated with BCS physics, and its divergence signals the crossover. In our work we apply finite-temperature quantum Monte Carlo methods to a spherical Rashba spin-orbit coupled two-species Fermi gas with contact s-wave interaction in three dimensions. We will discuss the phase diagram for this system, and its crossover behavior from BCS to Rashbon-BEC. This work was supported in part by the Department of Energy Grant No. DE-FG-0291-ER-40608.
Molecular regimes in ultracold Fermi gases
D.S. Petrov; C. Salomon; G.V. Shlyapnikov
2009-01-01
The use of Feshbach resonances for tuning the interparticle interaction in ultracold Fermi gases has led to remarkable developments, in particular to the creation and Bose-Einstein condensation of weakly bound diatomic molecules of fermionic atoms. These are the largest diatomic molecules obtained s
Chen, Qijin
2016-01-01
BCS–Bose-Einstein condensation (BEC) crossover is effected by increasing pairing strength between fermions from weak to strong in the particle-particle channel, and has attracted a lot of attention since the experimental realization of quantum degenerate atomic Fermi gases. Here we study the effect of the (often dropped) particle-hole channel on the zero T gap Δ(0), superfluid transition temperature Tc, the pseudogap at Tc, and the mean-field ratio 2Δ(0)/, from BCS through BEC regimes, using a pairing fluctuation theory which includes self-consistently the contributions of finite-momentum pairs and features a pseudogap in single particle excitation spectrum. Summing over the infinite particle-hole ladder diagrams, we find a complex dynamical structure for the particle-hole susceptibility χph, and conclude that neglecting the self-energy feedback causes a serious over-estimate of χph. While our result in the BCS limit agrees with Gor’kov et al., the particle-hole channel effect becomes more complex and pronounced in the crossover regime, where χph is reduced by both a smaller Fermi surface and a big (pseudo)gap. Deep in the BEC regime, the particle-hole channel contributions drop to zero. We predict a density dependence of the magnetic field at the Feshbach resonance, which can be used to quantify χph and test different theories. PMID:27183875
Chen, Qijin
2016-05-01
BCS–Bose-Einstein condensation (BEC) crossover is effected by increasing pairing strength between fermions from weak to strong in the particle-particle channel, and has attracted a lot of attention since the experimental realization of quantum degenerate atomic Fermi gases. Here we study the effect of the (often dropped) particle-hole channel on the zero T gap Δ(0), superfluid transition temperature Tc, the pseudogap at Tc, and the mean-field ratio 2Δ(0)/, from BCS through BEC regimes, using a pairing fluctuation theory which includes self-consistently the contributions of finite-momentum pairs and features a pseudogap in single particle excitation spectrum. Summing over the infinite particle-hole ladder diagrams, we find a complex dynamical structure for the particle-hole susceptibility χph, and conclude that neglecting the self-energy feedback causes a serious over-estimate of χph. While our result in the BCS limit agrees with Gor’kov et al., the particle-hole channel effect becomes more complex and pronounced in the crossover regime, where χph is reduced by both a smaller Fermi surface and a big (pseudo)gap. Deep in the BEC regime, the particle-hole channel contributions drop to zero. We predict a density dependence of the magnetic field at the Feshbach resonance, which can be used to quantify χph and test different theories.
Capponi, S.; Lecheminant, P.; Totsuka, K.
2016-04-01
Alkaline-earth and ytterbium cold atomic gases make it possible to simulate SU(N)-symmetric fermionic systems in a very controlled fashion. Such a high symmetry is expected to give rise to a variety of novel phenomena ranging from molecular Luttinger liquids to (symmetry-protected) topological phases. We review some of the phases that can be stabilized in a one dimensional lattice. The physics of this multi-component Fermi gas turns out to be much richer and more exotic than in the standard SU(2) case. For N > 2, the phase diagram is quite rich already in the case of the single-band model, including a molecular Luttinger liquid (with dominant superfluid instability in the N-particle channel) for incommensurate fillings, as well as various Mott-insulating phases occurring at commensurate fillings. Particular attention will be paid to the cases with additional orbital degree of freedom (which is accessible experimentally either by taking into account two atomic states or by putting atoms in the p-band levels). We introduce two microscopic models which are relevant for these cases and discuss their symmetries and strong coupling limits. More intriguing phase diagrams are then presented including, for instance, symmetry protected topological phases characterized by non-trivial edge states.
Thermodynamics of ultracold Fermi gases
Complex Hamiltonians from condensed matter, such as the Fermi-Hubbard model, can be experimentally studied using ultracold gases. This thesis describes a new method for determining the equation of state of an ultracold gas, making the comparison with many-body theories straightforward. It is based on the measurement of the local pressure inside a trapped gas from the analysis of its in situ image. We first apply this method to the study of a Fermi gas with resonant interactions, a weakly-interacting 7Li gas acting as a thermometer. Surprisingly, none of the existing many-body theories of the unitary gas accounts for the equation of state deduced from our study over its full range. The virial expansion extracted from the high-temperature data agrees with the resolution of the three-body problem. At low temperature, we observe, contrary to some previous studies, that the normal phase behaves as a Fermi liquid. Finally we obtain the critical temperature for superfluidity from a clear signature on the equation of state. We also measure the pressure of the ground state as a function of spin imbalance and interaction strength - measure directly relevant to describe the crust of neutron stars. Our data validate Monte-Carlo simulations and quantify the Lee-Huang-Yang corrections to mean-field interactions in low-density fermionic or bosonic superfluids. We show that, in most cases, the partially polarized normal phase can be described as a Fermi liquid of polarons. The polaron effective mass extracted from the equation of state is in agreement with a study of collective modes. (author)
Strong Correlations in Ultracold Fermi Gases
Schneider, William
Ultracold atomic gases provide an ideal system with which to study fundamental manybody physics. Exhibiting universal interactions in clean and controllable environments, long-used simple models as well as more exotic models can now be realized. The interplay between theory and experiment is therefore very active, and, in this thesis, I will detail several works, both exact analytic results and numerical calculations, which have impacts on current experiments. I begin with an introduction to the field including a brief discussion of experiments, the microscopic model of two species of interacting fermions, the BCS-BEC crossover and an overview of the various phases of atomic Fermi gases. I then describe the various results of my theoretical investigations, which are divided into five chapters. First, I describe radio frequency (RF) spectroscopy experiments and how they probe the single-particle spectral function. This leads to my results on an exact feature of the spectral lineshape, a universal large-momentum structure which exists for all states of interacting Fermi systems and has been verified in recent angle-resolved RF experiments. Second, I focus on gases which have a normal Fermi liquid ground state and show that their lineshape exhibits a characteristic jump discontinuity. I illustrate this Fermi surface singularity and the previously mentioned universal large momentum tail with explicit calculations. Third, I turn to the low energy structure of the single-particle spectral function in the superfluid state. I argue that sharp low energy quasiparticle excitations exist across the BCS-BEC crossover using a general argument that includes the interaction of fermions with the low-energy collective mode. This is illustrated with an explicit calculation within an approximation scheme. Fourth, I address the trap-induced inhomogeneity and use a Bogoliubov-deGennes analysis to test if a simple local density approximation (LDA) can provide an adequate description of
Probing ultracold Fermi gases with light-induced gauge potentials
We theoretically investigate the response of a two-component Fermi gas to vector potentials that couple separately to the two spin components. Such vector potentials may be implemented in ultracold atomic gases using optically dressed states. Our study indicates that light-induced gauge potentials may be used to probe the properties of the interacting ultracold Fermi gas, providing, among other things, ways to measure the superfluid density and the strength of pairing.
Bruun, Georg
2011-01-01
We examine spin diffusion in a two-component homogeneous Fermi gas in the normal phase. Using a variational approach, analytical results are presented for the spin diffusion coefficient and the related spin relaxation time as a function of temperature and interaction strength. For low temperatures......, strong correlation effects are included through the Landau parameters which we extract from Monte Carlo results. We show that the spin diffusion coefficient has a minimum for a temperature somewhat below the Fermi temperature with a value that approaches the quantum limit ~/m in the unitarity regime...
Virial theorem for confined universal Fermi gases
Thomas, J E
2008-01-01
Optically-trapped two-component Fermi gases near a broad Feshbach resonance exhibit universal thermodynamics, where the properties of the gas are independent of the details of the two-body scattering interactions. We present a global proof that such a universal gas obeys the virial theorem for {\\it any} trapping potential $U$ and any spin mixture, without assuming either the local density approximation or harmonic confinement. The total energy of the gas is given in scale invariant form by $E...
Generalized Seniority Description of Cold Fermi Gases
G. E. Brown; Gelman, B. A.; Kuo, T. T. S.
2004-01-01
We suggest that the extension of the Racah seniority description of strongly interacting fermions in the nuclear shell model is directly generalizable to describe pairing of atoms in cold Fermi systems. We illustrate this by the fermionic pairing in the much studied cold two-component gas of Li atoms. Our pairing interaction is two orders of magnitude stronger than that used in the usual BCS approach. We also explain why the Racah scheme is less applicable to nuclei, and discuss the similarit...
Quasicondensation in Two-Dimensional Fermi Gases.
Wu, Chien-Te; Anderson, Brandon M; Boyack, Rufus; Levin, K
2015-12-11
In this paper we follow the analysis and protocols of recent experiments, combined with simple theory, to arrive at a physical understanding of quasi-condensation in two dimensional Fermi gases. A key signature of quasi-condensation, which contains aspects of Berezinskiĭ-Kosterlitz-Thouless behavior, is a strong zero momentum peak in the pair momentum distribution. Importantly, this peak emerges at a reasonably well defined onset temperature. The resulting phase diagram, pair momentum distribution, and algebraic power law decay are compatible with recent experiments throughout the continuum from BEC to BCS. PMID:26705613
Laser cooling of trapped Fermi gases
Idziaszek, Z [Institut fuer Theoretische Physik, Universitaet Hannover, D-30167 Hannover (Germany); Santos, L [Institut fuer Theoretische Physik, Universitaet Hannover, D-30167 Hannover (Germany); Baranov, M [Institut fuer Theoretische Physik, Universitaet Hannover, D-30167 Hannover (Germany); Lewenstein, M [Institut fuer Theoretische Physik, Universitaet Hannover, D-30167 Hannover (Germany)
2003-04-01
The collective Raman cooling of trapped one- and two-component Fermi gases is considered. We obtain the quantum master equation that describes laser cooling in the festina lente regime, for which the heating due to photon reabsorption can be neglected. For the two-component case the collisional processes are described within the formalism of the quantum Boltzmann master equation. The inhibition of the spontaneous emission can be overcome by properly adjusting the spontaneous Raman rate during the cooling. Our numerical results, based on Monte Carlo simulations of the corresponding rate equations, show that three-dimensional temperatures of the order of 0.08T{sub F} (single component) and 0.03T{sub F} (two components) can be achieved. We investigate the statistical properties of the equilibrium distribution of the laser-cooled gas, showing that the number fluctuations are enhanced compared with the thermal distribution close to the Fermi surface. Finally, we analyse the heating related to the background losses, concluding that our laser-cooling scheme should maintain the temperature of the gas without significant additional losses.
Non-hydrodynamic transport in trapped unitary Fermi gases
Brewer, Jasmine
2015-01-01
Many strongly coupled fluids are known to share similar hydrodynamic transport properties. In this work we argue that this similarity could extend beyond hydrodynamics to transient dynamics through the presence of non-hydrodynamic modes. We review non-hydrodynamic modes in kinetic theory and gauge/gravity duality and discuss their signatures in trapped Fermi gases close to unitarity. Reanalyzing previously published experimental data, we find hints of non-hydrodynamic modes in cold Fermi gases in two and three dimensions.
Nonperturbative effects on the ferromagnetic transition in repulsive Fermi gases
He, Lianyi; Huang, Xu-Guang
2012-04-01
It is generally believed that a dilute spin-(1)/(2) Fermi gas with repulsive interactions can undergo a ferromagnetic phase transition to a spin-polarized state at a critical gas parameter (kFa)c. Previous theoretical predictions of the ferromagnetic phase transition have been based on the perturbation theory, which treats the gas parameter as a small number. On the other hand, Belitz, Kirkpatrick, and Vojta (BKV) have argued that the phase transition in clean itinerant ferromagnets is generically of first order at low temperatures, due to the correlation effects that lead to a nonanalytic term in the free energy. The second-order perturbation theory predicts a first-order phase transition at (kFa)c=1.054, consistent with the BKV argument. However, since the critical gas parameter is expected to be of order O(1), perturbative predictions may be unreliable. In this paper we study the nonperturbative effects on the ferromagnetic phase transition by summing the particle-particle ladder diagrams to all orders in the gas parameter. We consider a universal repulsive Fermi gas where the effective range effects can be neglected, which can be realized in a two-component Fermi gas of 6Li atoms by using a nonadiabatic field switch to the upper branch of a Feshbach resonance with a positive s-wave scattering length. Our theory predicts a second-order phase transition, which indicates that ferromagnetic transition in dilute Fermi gases is possibly a counterexample to the BKV argument. The predicted critical gas parameter (kFa)c=0.858 is in good agreement with the recent quantum Monte Carlo result (kFa)c=0.86 for a nearly zero-range potential [S. Pilati , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.105.030405 105, 030405 (2010)]. We also compare the spin susceptibility with the quantum Monte Carlo result and find good agreement.
Physics of ultracold Fermi gases revealed by spectroscopies
Törmä, Päivi
2016-04-01
This article provides a brief review of how various spectroscopies have been used to investitage many-body quantum phenomena in the context of ultracold Fermi gases. In particular, work done with RF spectroscopy, Bragg spectroscopy and lattice modulation spectroscopy is considered. The theoretical basis of these spectroscopies, namely linear response theory in the many-body quantum physics context is briefly presented. Experiments related to the BCS-BEC crossover, imbalanced Fermi gases, polarons, possible pseudogap and Fermi liquid behaviour and measuring the contact are discussed. Remaining open problems and goals in the field are sketched from the perspective how spectroscopies could contribute.
String Theory Based Predictions for Novel Collective Modes in Strongly Interacting Fermi Gases
Bantilan, H; Ishii, T; Lewis, W E; Romatschke, P
2016-01-01
Very different strongly interacting quantum systems such as Fermi gases, quark-gluon plasmas formed in high energy ion collisions and black holes studied theoretically in string theory are known to exhibit quantitatively similar damping of hydrodynamic modes. It is not known if such similarities extend beyond the hydrodynamic limit. Do non-hydrodynamic collective modes in Fermi gases with strong interactions also match those from string theory calculations? In order to answer this question, we use calculations based on string theory to make predictions for novel types of modes outside the hydrodynamic regime in trapped Fermi gases. These predictions are amenable to direct testing with current state-of-the-art cold atom experiments.
Itinerant Ferromagnetism in Ultracold Fermi Gases
Heiselberg, Henning
2012-01-01
. Thermodynamic functions and observables such as the compressibility and spin susceptibility and the resulting fluctuations in number and spin are calculated. For trapped gases the resulting cloud radii and kinetic energies are calculated and compared to recent experiments. Spin polarized systems are recommended...
Metastability in spin polarised Fermi gases and quasiparticle decays
Sadeghzadeh, Kayvan; Bruun, Georg; Lobo, Carlos;
2011-01-01
We investigate the metastability associated with the first order transition from normal to superfluid phases in the phase diagram of two-component polarised Fermi gases.We begin by detailing the dominant decay processes of single quasiparticles.Having determined the momentum thresholds of each pr...
Collective excitation of trapped degenerate Fermi gases
Damski, Bogdan; Sacha, Krzysztof; Zakrzewski, Jakub [Instytut Fizyki Imienia Mariana Smoluchowskiego, Uniwersytet Jagiellonski, Crakow (Poland)
2002-04-14
We show that the slow driving of a focused laser beam through a cloud of trapped cold fermions allows creation of a collective excitation in the system. The method, proposed originally by us for bosons, seems to be quite feasible experimentally - it requires only an appropriate change in time of the potential in the atomic traps, as realized in laboratories already. (author). Letter-to-the-editor.
Metastability of Bose and Fermi gases on the upper branch
LeClair, Andre; Roditi, Itzhak; Squires, Joshua
2016-01-01
We study three dimensional Bose and Fermi gases in the upper branch, a phase defined by the absence of bound states in the repulsive interaction regime, within an approximation that considers only two-body interactions. Employing a formalism based on the S-matrix, we derive a useful analytic expression that holds on the upper branch in the weak coupling limit. We determine upper branch phase diagrams for both bosons and fermions with techniques valid for arbitrary positive scattering length.
Dynamics of atom-atom correlations in the Fermi problem
Borrelli, Massimo; Sabín, Carlos; Adesso, Gerardo; Plastina, Francesco; Maniscalco, Sabrina
2012-01-01
We present a detailed perturbative study of the dynamics of several types of atom-atom correlations in the famous Fermi problem. This is an archetypal model to study micro-causality in the quantum domain, where two atoms, one initially excited and the other prepared in its ground state, interact with the vacuum electromagnetic field. The excitation can be transferred to the second atom via a flying photon, and various kinds of quantum correlations between the two are generated during this pro...
What can ultracold Fermi gases teach us about high Tc superconductors and vice versa?
We review recent developments in the field of ultracold atomic Fermi gases. As the cold atom system evolves from BCS to Bose-Einstein condensation (BEC), the behavior of the thermodynamics, and the particle density profiles evolves smoothly in a way which can be well understood theoretically. In the interesting 'unitary' regime, we show that these and other data necessarily require the introduction of a pseudogap in the fermionic spectrum which exhibits many striking similarities to its counterpart in underdoped high Tc superconductors. We emphasize these similarities, giving an overview of the experimental tools and key issues of common interest in both systems
Finite-size Energy of Non-interacting Fermi Gases
Gebert, Martin, E-mail: gebert@math.lmu.de [ETH Zürich , Theoretische Physik (Switzerland)
2015-12-15
We study the asymptotics of the difference of the ground-state energies of two non-interacting N-particle Fermi gases in a finite volume of length L in the thermodynamic limit up to order 1/L. We are particularly interested in subdominant terms proportional to 1/L, called finite-size energy. In the nineties (Affleck, Nuc. Phys. B 58, 35–41 1997; Zagoskin and Affleck, J. Phys. A 30, 5743–5765 1997) claimed that the finite-size energy is related to the decay exponent occurring in Anderson’s orthogonality. We prove that the finite-size energy depends on the details of the thermodynamic limit and is therefore non-universal. Typically, it includes an additional linear term in the scattering phase shift.
Universal low-energy physics in 1D strongly repulsive multi-component Fermi gases
Jiang, Yuzhu; He, Peng; Guan, Xi-Wen
2016-04-01
It has been shown (Yang and You 2011 Chin. Phys. Lett. 28 020503) that at zero temperature the ground state of the one-dimensional (1D) w-component Fermi gas coincides with that of the spinless Bose gas in the limit ω \\to ∞ . This behavior was experimentally evidenced through quasi-1D tightly trapping ultracold 173Yb atoms in a recent paper (Pagano et al 2014 Nat. Phys. 10 198). However, understanding of low-temperature behavior of Fermi gases with a repulsive interaction requires spin-charge separated conformal field theories of an effective Tomonaga-Luttinger liquid and an antiferromagnetic SU(w) Heisenberg spin chain. Here we analytically derive universal thermodynamics of 1D strongly repulsive fermionic gases with SU(w) symmetry via the Yang-Yang thermodynamic Bethe ansatz method. The analytical free energy and magnetic properties of the systems at low temperature in a weak magnetic field are obtained through the Wiener-Hopf method. In particular, the free energy essentially manifests the spin-charge separated conformal field theories for high-symmetry systems with arbitrary repulsive interaction strength. We also find that the sound velocity of the Fermi gases in the large w limit coincides with that for the spinless Bose gas, whereas the spin velocity vanishes quickly as w becomes large. This indicates strong suppression of the Fermi exclusion statistics by the commutativity feature among the w-component fermions with different spin states in the Tomonaga-Luttinger liquid phase. Moreover, the equations of state and critical behavior of physical quantities at finite temperature are analytically derived in terms of the polylogarithm functions in the quantum critical region.
Time-of-flight expansion of trapped dipolar Fermi gases: from collisionless to hydrodynamic regime
Veljic, Vladimir; Pelster, Axel
2016-01-01
A recent time-of-flight (TOF) expansion experiment with polarized fermionic erbium atoms measured a Fermi surface deformation from a sphere to an ellipsoid due to dipole-dipole interaction, thus confirming previous theoretical predictions. Here we perform a systematic study of the ground-state properties and TOF dynamics for trapped dipolar Fermi gases from the collisionless to the hydrodynamic regime at zero temperature. To this end we solve analytically the underlying Boltzmann-Vlasov equation within the relaxation-time approximation in the vicinity of equilibrium by using a suitable rescaling of the equilibrium distribution. The resulting ordinary differential equations for the respective scaling parameters are then solved numerically for experimentally realistic parameters and relaxation times that correspond to the collisionless, collisional, and hydrodynamic regime. The equations for the collisional regime are first solved in the approximation of a fixed relaxation time, and then this approach is extend...
Electron-Atom Collisions in Gases
Kraftmakher, Yaakov
2013-01-01
Electron-atom collisions in gases are an aspect of atomic physics. Three experiments in this field employing a thyratron are described: (i) the Ramsauer-Townsend effect, (ii) the excitation and ionization potentials of xenon and (iii) the ion-electron recombination after interrupting the electric discharge.
Cold Atomic Gases in Optical Lattices with Disorder
Schulte, T.; Drenkelforth, S.; Kruse, J.; Ertmer, W.; Arlt, J. J.; Kantian, A.; Santos, L. Sanchez-Palencia L.; Sanpera, A.; Sacha, K.; Zoller, P.; Lewenstein, M.; Zakrzewski, J.
2007-01-01
Cold atomic gases placed in optical lattices enable studies of simple condensed matter theory models with parameters that may be tuned relatively easily. When the optical potential is randomized (e.g. using laser speckle to create a random intensity distribution) one may be able to observe Anderson localization of matter waves for non-interacting bosons, the so-called Bose glass in the presence of interactions, as well as the Fermi glass or quantum spin glass for mixtures of fermions and bosons.
Chang, Soon Yong
2008-04-01
In the recent years, dilute Fermi gases have played the center stage role in the many-body physics. The gas of neutral alkali atoms such as Lithium-6 and Potassium-40 can be trapped at temperatures below the Fermi degeneracy. The most relevant feature of these gases is that the interaction is tunable and strongly interacting superfluid can be artificially created. I will discuss the recent progress in understanding the ground state properties of the dilute Fermi gases at different interaction regimes. First, I will present the case of the spin symmetric systems where the Fermi gas can smoothly crossover from the BCS regime to the BEC regime. Then, I will discuss the case of the spin polarized systems, where different quantum phases can occur as a function of the polarization. In the laboratory, the trapped Fermi gas shows spatial dependence of the different quantum phases. This can be understood in the context of the local variation of the chemical potential. I will present the most accurate quantum ab initio results and the relevant experiments.
Diffusion Monte Carlo study of strongly interacting two-dimensional Fermi gases
Galea, Alexander; Dawkins, Hillary; Gandolfi, Stefano; Gezerlis, Alexandros
2016-02-01
Ultracold atomic Fermi gases have been a popular topic of research, with attention being paid recently to two-dimensional (2D) gases. In this work, we perform T =0 ab initio diffusion Monte Carlo calculations for a strongly interacting two-component Fermi gas confined to two dimensions. We first go over finite-size systems and the connection to the thermodynamic limit. After that, we illustrate pertinent 2D scattering physics and properties of the wave function. We then show energy results for the strong-coupling crossover, in between the Bose-Einstein condensation (BEC) and Bardeen-Cooper-Schrieffer (BCS) regimes. Our energy results for the BEC-BCS crossover are parametrized to produce an equation of state, which is used to determine Tan's contact. We carry out a detailed comparison with other microscopic results. Finally, we calculate the pairing gap for a range of interaction strengths in the strong coupling regime, following from variationally optimized many-body wave functions.
Lattice simulation of ultracold atomic Bose-Fermi mixtures
Yamamoto, Arata
2012-01-01
Bose-Fermi mixtures have been recently realized and invesitigated in ultracold atomic experiments. We formulate quantum Monte Carlo simulation of Bose-Fermi mixtures on the (3+1)-dimensional lattice. As its first application, we analyze the boson-fermion pair correlation and the phase diagram of the Bose-Einstein condensation.
Degenerate atom-molecule mixture in a cold Fermi gas
We show that the atom-molecule mixture formed in a degenerate atomic Fermi gas with interspecies repulsion near a Feshbach resonance constitutes a peculiar system where the atomic component is almost nondegenerate but quantum degeneracy of molecules is important. We develop a thermodynamic approach for studying this mixture, explain experimental observations, and predict optimal conditions for achieving molecular Bose-Einstein condensation
Degenerate Atom-Molecule Mixture in a Cold Fermi Gas
Kokkelmans, S.J.J.M.F.; Shlyapnikov, G. V.; Salomon, R.
2004-01-01
We show that the atom-molecule mixture formed in a degenerate atomic Fermi gas with interspecies repulsion near a Feshbach resonance, constitutes a peculiar system where the atomic component is almost non-degenerate but quantum degeneracy of molecules is important. We develop a thermodynamic approach for studying this mixture, explain experimental observations and predict optimal conditions for achieving molecular BEC.
Ultracold Fermi gases: from Bose-Einstein condensation of molecules to Cooper pairs
Full text: We will describe recent experiments aiming at studying superfluidity in ultra-cold Fermi gases. Because of the Pauli exclusion principle, cooling methods and analysis techniques developed for bosons must be modified for fermions. Thanks to a resonance phenomenon in ultra-cold collisions, it is possible to adjust the sign and magnitude of the effective interaction between trapped fermions and to enter into the strongly correlated regime. Taking advantage of this tunability of interactions, it has been possible to produce Bose-Einstein condensates (BEC) of molecules and to study some of their properties. We will then present data recorded in the crossover region between BEC of molecules and the BCS regime of fermions with weak attractive interaction. Finally a few perspectives for this work at the interface between atomic physics and condensed matter physics will be given. (author)
Cooperative scattering of light and atoms in ultracold atomic gases
Uys, H.; Meystre, P.
2008-07-01
Superradiance and coherent atomic recoil lasing are two closely related phenomena, both resulting from the cooperative scattering of light by atoms. In ultracold atomic gases below the critical temperature for Bose-Einstein condensation these processes take place with the simultaneous amplification of the atomic matter waves. We explore these phenomena by surveying some of the experimental and theoretical developments that have emerged in this field of study since the first observation of superradiant scattering from a Bose-Einstein condensate in 1999 [1].
Cooperative scattering of light and atoms in ultracold atomic gases
Superradiance and coherent atomic recoil lasing are two closely related phenomena, both resulting from the cooperative scattering of light by atoms. In ultracold atomic gases below the critical temperature for Bose-Einstein condensation these processes take place with the simultaneous amplification of the atomic matter waves. We explore these phenomena by surveying some of the experimental and theoretical developments that have emerged in this field of study since the first observation of superradiant scattering from a Bose-Einstein condensate in 1999 [1
Probing SU(N)-symmetric orbital interactions with ytterbium Fermi gases in optical lattices
This thesis reports on the creation and investigation of interacting two-orbital quantum gases of ytterbium in optical lattices. Degenerate fermionic gases of ytterbium or other alkaline-earth-like atoms have been recently proposed as model systems for orbital phenomena in condensed matter, such as Kondo screening, heavy-Fermi behaviour and colossal magnetoresistance. Such gases are moreover expected to obey a high SU(N) symmetry, owing to their highly decoupled nuclear spin, for which the emergence of novel, exotic phases of matter has been predicted. With the two lowest (meta-) stable electronic states mimicking electrons in distinct orbitals of solid materials, the two-orbital SU(N) Hubbard model and its spin-exchange inter-orbital interactions are realised. The interactions in two-orbital degenerate mixtures of different nuclear spin states of 173Yb are probed by addressing the transition to the metastable state in a state-independent optical lattice. The complete characterisation of the two-orbital scattering channels and the demonstration of the SU(N=6) symmetry within the experimental uncertainty are presented. Most importantly, a strong spin- exchange coupling between the two orbitals is identified and the associated exchange process is observed through the dynamic equilibration of spin imbalances between ensembles in different orbitals. These findings are enabled by the implementation of high precision spectroscopic techniques and of full coherent control of the metastable state population. The realisation of SU(N)-symmetric gases with spin-exchange interactions, the elementary building block of orbital quantum magnetism, represents an important step towards the simulation of paradigmatic many-body models, such as the Kondo lattice model.
Probing SU(N)-symmetric orbital interactions with ytterbium Fermi gases in optical lattices
Scazza, Francesco
2015-02-23
This thesis reports on the creation and investigation of interacting two-orbital quantum gases of ytterbium in optical lattices. Degenerate fermionic gases of ytterbium or other alkaline-earth-like atoms have been recently proposed as model systems for orbital phenomena in condensed matter, such as Kondo screening, heavy-Fermi behaviour and colossal magnetoresistance. Such gases are moreover expected to obey a high SU(N) symmetry, owing to their highly decoupled nuclear spin, for which the emergence of novel, exotic phases of matter has been predicted. With the two lowest (meta-) stable electronic states mimicking electrons in distinct orbitals of solid materials, the two-orbital SU(N) Hubbard model and its spin-exchange inter-orbital interactions are realised. The interactions in two-orbital degenerate mixtures of different nuclear spin states of {sup 173}Yb are probed by addressing the transition to the metastable state in a state-independent optical lattice. The complete characterisation of the two-orbital scattering channels and the demonstration of the SU(N=6) symmetry within the experimental uncertainty are presented. Most importantly, a strong spin- exchange coupling between the two orbitals is identified and the associated exchange process is observed through the dynamic equilibration of spin imbalances between ensembles in different orbitals. These findings are enabled by the implementation of high precision spectroscopic techniques and of full coherent control of the metastable state population. The realisation of SU(N)-symmetric gases with spin-exchange interactions, the elementary building block of orbital quantum magnetism, represents an important step towards the simulation of paradigmatic many-body models, such as the Kondo lattice model.
Photon Bubble Turbulence in Cold Atomic Gases
Rodrigues, João D; Ferreira, António V; Terças, Hugo; Kaiser, Robin; Mendonça, José T
2016-01-01
Turbulent radiation flow is ubiquitous in many physical systems where light-matter interaction becomes relevant. Photon bubbling, in particular, has been identified as the main source of turbulent radiation transport in many astrophysical objects, such as stars and accretion disks. This mechanism takes place when radiation trapping in optically dense media becomes unstable, leading to the energy dissipation from the larger to the smaller bubbles. Here, we report on the observation of photon bubble turbulence in cold atomic gases in the presence of multiple scattering of light. The instability is theoretically explained by a fluid description for the atom density coupled to a diffusive transport equation for the photons, which is known to be accurate in the multiple scattering regime investigated here. We determine the power spectrum of the atom density fluctuations, which displays an unusual $\\sim k^{-4}$ scaling, and entails a complex underlying turbulent dynamics resulting from the formation of dynamical bu...
Collective modes of three- and two-dimensional trapped Fermi gases in the normal phase
We study the transition from the hydrodynamic to the collisionless regime in collective modes of three- and two-dimensional Fermi gases by using the semiclassical Boltzmann equation. We use direct numerical simulations as well as the method of phase-space moments to solve the Boltzmann equation and show that the restriction to second-order moments is not accurate enough. By including higher-order moments, we can successfully describe the hydrodynamic to collisionless transition observed in the quadrupole mode in three-dimensional Fermi gases and the frequency shift and damping of the sloshing mode due to the anharmonic shape of the experimental trap potential. In the case of two-dimensional Fermi gases, however, the strong damping of the quadrupole mode observed in a recent experiment remains unexplained.
Small two-component Fermi gases in a cubic box with periodic boundary conditions
Yin, X. Y.; Blume, D.
2013-01-01
The properties of two-component Fermi gases become universal if the interspecies s-wave scattering length $a_s$ and the average interparticle spacing are much larger than the range of the underlying two-body potential. Using an explicitly correlated Gaussian basis set expansion approach, we determine the eigen energies of two-component Fermi gases in a cubic box with periodic boundary conditions as functions of the interspecies s-wave scattering length and the effective range of the two-body ...
Heat capacity and sound velocities of low dimensional Fermi gases
Salas, P.; Solis, M. A.
2014-03-01
We report the heat capacity ratio and sound velocities for an interactionless Fermi gas immersed in periodic structures such as penetrable multilayers or multitubes created by one (planes) or two perpendicular (tubes) external Dirac comb potentials. The isobaric specific heat of the fermion gas presents the dimensional crossover previously observed in the isochoric specific heat - from 3D to 2D or to 1D -. The quotient between the two quantities has a prominent bump related to the confinement, and as the temperature increases, it goes towards the monoatomic classical gas value 5/3. We present the isothermal and the adiabatic sound velocities of the fermion gas which show anomalous behavior at temperatures below TF due to the dimensionality of the system, while at higher temperatures again we recover the behavior of a classical Fermi gas. Furthermore, as the temperature goes to zero the sound velocity has a finite value, as expected.
Analytic thermodynamics and thermometry of Gaudin-Yang Fermi gases
Zhao, Erhai; Guan, Xi-Wen; Liu, W. Vincent; Batchelor, M. T.; Oshikawa, Masaki
2009-01-01
We study the thermodynamics of a one-dimensional attractive Fermi gas (the Gaudin-Yang model) with spin imbalance. The exact solution has been known from the thermodynamic Bethe ansatz for decades, but it involves an infinite number of coupled nonlinear integral equations whose physics is difficult to extract. Here the solution is analytically reduced to a simple, powerful set of four algebraic equations. The simplified equations become universal and exact in the experimental regime of strong...
Repulsive polarons and itinerant ferromagnetism in strongly polarized Fermi gases
Massignan, Pietro; Bruun, Georg
2011-01-01
We analyze the properties of a single impurity immersed in a Fermi sea. At positive energy and scattering lengths, we show that the system possesses a well-defined but metastable excitation, the repulsive polaron, and we calculate its energy, quasiparticle residue and effective mass. From a...... thermodynamic argument we obtain the number of particles in the dressing cloud, illustrating the repulsive character of the polaron. Identifying the important 2- and 3-body decay channels, we furthermore calculate the lifetime of the repulsive polaron. The stability conditions for the formation of fully spin...
Transdimensional equivalence of universal constants for Fermi gases at unitarity.
Endres, Michael G
2012-12-21
I present lattice Monte Carlo calculations for a universal four-component Fermi gas confined to a finite box and to a harmonic trap in one spatial dimension. I obtain the values ξ(1D) = 0.370(4) and ξ(1D) = 0.372(1), respectively, for the Bertsch parameter, a nonperturbative universal constant defined as the (square of the) energy of the untrapped (trapped) system measured in units of the free gas energy. The Bertsch parameter obtained for the one-dimensional system is consistent to within ~1% uncertainties with the most recent numerical and experimental estimates of the analogous Bertsch parameter for a three-dimensional spin-1/2 Fermi gas at unitarity. The finding suggests the intriguing possibility that there exists a universality between two conformal theories in different dimensions. To lend support to this study, I also compute ground state energies for four and five fermions confined to a harmonic trap and demonstrate the restoration of a virial theorem in the continuum limit. The continuum few-body energies obtained are consistent with exact analytical calculations to within ~1.0% and ~0.3% statistical uncertainties, respectively. PMID:23368437
Transdimensional equivalence of universal constants from universal Fermi gases
Endres, Michael G
2012-01-01
I present lattice Monte Carlo calculations for a universal four-component Fermi gas confined to a finite box and to a harmonic trap in one spatial dimension. I obtain the continuum and thermodynamic limit extrapolated values xi_1d = 0.370(4) and xi_1d = 0.372(1), respectively, for the Bertsch parameter, a nonperturbative universal constant defined as the (square of the) energy of the untrapped (trapped) system measured in units of the free gas energy. The Bertsch parameter for the one-dimensional system is consistent to within ~1% uncertainties with the most recent numerical and experimental estimates of the analogous Bertsch parameter for a three-dimensional spin-1/2 Fermi gas at unitarity. The finding suggests the intriguing possibility that there exists a universality between two conformal theories in different dimensions. To lend support to this study, I also compute continuum extrapolated ground state energies for four and five fermions confined to a harmonic trap and demonstrate the restoration of a Vir...
Renormalization group analysis of ultracold Fermi gases with two-body attractive interaction
Guo, Xiaoyong; Chi, Zimeng; Zheng, Qiang; Wang, Zaijun
2016-01-01
We propose a new functional renormalization group (RG) strategy to investigate the many-body physics of interacting ultracold Fermi gases. By mapping the Ginzburg-Landau (GL) action of Fermi gases onto a complex φ4-model, we can obtain the closed flow equation in the one-loop approximation. An analysis of the emerging RG flow gives the ground state behavior. The Hamiltonian of a Fermi gas with a two-body attractive interaction is used as a demonstration to clarify our treatment. The fixed point structure reveals not only the condensation phase transition, but also the Bardeen-Cooper-Schrieffer (BCS) to Bose-Einstein condensation (BEC) crossover. The effect of the imaginary time renormalization is also discussed. It is shown that for the dynamical field configuration our RG procedure can reproduce the well known theoretical results of BCS-BEC crossover, while under a static approximation the phase transition takes place at a higher critical temperature.
Mixtures of ultracold gases: Fermi sea and Bose-Einstein condensate of lithium isotopes
Schreck, F.
2003-03-01
This thesis presents studies of quantum degenerate atomic gases of fermionic ^6Li and bosonic ^7Li. Degeneracy is reached by evaporative cooling of ^7Li in a strongly confining magnetic trap. Since at low temperatures direct evaporative cooling is not possible for a polarized fermionic gas, ^6Li is sympathetically cooled by thermal contact with ^7Li. In a first series of experiments both isotopes are trapped in their low-field seeking higher hyperfine states. A Fermi degeneracy of T/T_F=0.25(5) is achieved for 10^5 fermions. For more than 300 atoms, the ^7Li condensate collapses, due to the attractive interatomic interaction in this state. This limits the degeneracy reached for both species. To overcome this limit, in a second series of experiments ^7Li and ^6Li atoms are transferred to their low field seeking lower hyperfine states, where the boson-boson interaction is repulsive but weak. The inter-isotope collisions are used to thermalize the mixture. A ^7Li Bose-Einstein condensate (BEC) of 10^4 atoms immersed in a Fermi sea is produced. The BEC is quasi-one-dimensional and the thermal fraction can be negligible. The measured degeneracies are T/T_C=T/T_F=0.2(1). The temperature is measured using the bosonic thermal fraction, which vanishes at the lowest temperatures, limiting our measurement sensitivity. In a third series of experiments, the bosons are transferred into an optical trap and their internal state is changed to |F=1,m_F=1rangle, the lowest energy state. A Feshbach resonance is detected and used to produce a BEC with tunable atomic interactions. When the effective interaction between atoms is tuned to be small and attractive, we observe the formation of a matter-wave bright soliton. Propagation of the soliton without spreading over a macroscopic distance of 1.1 mm is observed. Mélanges de gaz ultrafroids: mer de Fermi et condensat de Bose-Einstein des isotopes du lithium Cette thèse décrit l'étude des gaz de fermions ^6Li et de bosons ^7Li dans le
Sanpera, A.; Kantian, A.; Sanchez-Palencia, L.; Zakrzewski, J.; Lewenstein, M.
2004-07-01
We investigate strongly interacting atomic Fermi-Bose mixtures in inhomogeneous and random optical lattices. We derive an effective Hamiltonian for the system and discuss its low temperature physics. We demonstrate the possibility of controlling the interactions at local level in inhomogeneous but regular lattices. Such a control leads to the achievement of Fermi glass, quantum Fermi spin-glass, and quantum percolation regimes involving bare and/or composite fermions in random lattices.
Phase transitions in definite total spin states of two-component Fermi gases
Yurovsky, Vladimir A
2016-01-01
Symmetry under permutations of indistinguishable particles, contained in each medium, is one of the fundamental symmetries. Generally, a change in symmetry affects the medium's thermodynamic properties, leading to phase transitions. Permutation symmetry can be changed since, in addition to the conventional symmetric and anti-symmetric states under permutations of bosons and fermions, mathematical group-representation theory allows for non-Abelian permutation symmetry. Such symmetry can be hidden in states with defined total spins of spinor gases, which can be formed in optical cavities. However, the thermodynamic effects of non-Abelian symmetry are unknown. The present work shows that the symmetry reveals itself in spin-independent or coordinate-independent properties of these gases, namely as non-Abelian entropy in thermodynamic properties. In weakly interacting Fermi gases, saturated and unsaturated phases appear associated with fermionic and non-Abelian symmetry under permutations of particle states, respe...
Inhomogeneous atomic Bose-Fermi mixtures in cubic lattices
We determine the ground state properties of inhomogeneous mixtures of bosons and fermions in cubic lattices and parabolic confining potentials. For finite hopping we determine the domain boundaries between Mott-insulator plateaux and hopping-dominated regions for lattices of arbitrary dimension within mean-field and perturbation theory. The results are compared with a new numerical method that is based on a Gutzwiller variational approach for the bosons and an exact treatment for the fermions. The findings can be applied as a guideline for future experiments with trapped atomic Bose-Fermi mixtures in optical lattices
Inhomogeneous atomic Bose-Fermi mixtures in cubic lattices.
Cramer, M; Eisert, J; Illuminati, F
2004-11-01
We determine the ground state properties of inhomogeneous mixtures of bosons and fermions in cubic lattices and parabolic confining potentials. For finite hopping we determine the domain boundaries between Mott-insulator plateaux and hopping-dominated regions for lattices of arbitrary dimension within mean-field and perturbation theory. The results are compared with a new numerical method that is based on a Gutzwiller variational approach for the bosons and an exact treatment for the fermions. The findings can be applied as a guideline for future experiments with trapped atomic Bose-Fermi mixtures in optical lattices. PMID:15600816
Expansion dynamics of Fermi atoms in optical lattice
We study the non-equilibrium quantum dynamics of attractive Fermi gases in one- and two-dimensional optical lattice. We use the dynamic Bogoliubov–de Gennes (DBdG) method and time-evolving block decimation (TEBD) to investigate the expansion dynamics, which can be implemented by suddenly removing the harmonic trap. The evolutions of density and superfluid order parameters have been calculated. We find that for the noninteracting case, the expansion rate is linear with hopping amplitude, which is a ballistic expansion result. And the interaction damps the expansion rate exponentially both in one and two dimensions and makes it deviate from the ballistic expansion. - Highlights: • We use DBdG method and TEBD to investigate the expansion dynamics in optical lattice. • We calculate the evolution of density and superfluid order parameters. • We find a ballistic expansion result for non-interacting case. • We find interaction damps the expansion rate exponentially
Proximity effects in cold gases of multiply charged atoms (Review)
Chikina, I.; Shikin, V.
2016-07-01
Possible proximity effects in gases of cold, multiply charged atoms are discussed. Here we deal with rarefied gases with densities nd of multiply charged (Z ≫ 1) atoms at low temperatures in the well-known Thomas-Fermi (TF) approximation, which can be used to evaluate the statistical properties of single atoms. In order to retain the advantages of the TF formalism, which is successful for symmetric problems, the external boundary conditions accounting for the finiteness of the density of atoms (donors), nd ≠ 0, are also symmetrized (using a spherical Wigner-Seitz cell) and formulated in a standard way that conserves the total charge within the cell. The model shows that at zero temperature in a rarefied gas of multiply charged atoms there is an effective long-range interaction Eproxi(nd), the sign of which depends on the properties of the outer shells of individual atoms. The long-range character of the interaction Eproxi is evaluated by comparing it with the properties of the well-known London dispersive attraction ELond(nd) 0 and for the alkali and alkaline-earth elements Eproxi theory through the temperature dependence of the different versions of Eproxi. The anomaly in the thermal proximity effect shows up in the following way: for T ≠ 0 there is no equilibrium solution of TS statistics for single multiply charged atoms in a vacuum when the effect is present. Instability is suppressed in a Wigner-Seitz model under the assumption that there are no electron fluxes through the outer boundary R3 ∝ n-1d of a Wigner-Seitz cell. Eproxi corresponds to the definition of the correlation energy in a gas of interacting particles. This review is written so as to enable comparison of the results of the TF formalism with the standard assumptions of the correlation theory for classical plasmas. The classic example from work on weak solutions (including charged solutions)—the use of semi-impermeable membranes for studies of osmotic pressure—is highly appropriate for
Proximity effects in cold gases of multiply charged atoms (Review)
Chikina, I.; Shikin, V.
2016-07-01
Possible proximity effects in gases of cold, multiply charged atoms are discussed. Here we deal with rarefied gases with densities nd of multiply charged (Z ≫ 1) atoms at low temperatures in the well-known Thomas-Fermi (TF) approximation, which can be used to evaluate the statistical properties of single atoms. In order to retain the advantages of the TF formalism, which is successful for symmetric problems, the external boundary conditions accounting for the finiteness of the density of atoms (donors), nd ≠ 0, are also symmetrized (using a spherical Wigner-Seitz cell) and formulated in a standard way that conserves the total charge within the cell. The model shows that at zero temperature in a rarefied gas of multiply charged atoms there is an effective long-range interaction Eproxi(nd), the sign of which depends on the properties of the outer shells of individual atoms. The long-range character of the interaction Eproxi is evaluated by comparing it with the properties of the well-known London dispersive attraction ELond(nd) 0 and for the alkali and alkaline-earth elements Eproxi thermal decay are interesting in themselves as they determine the important phenomenon of dissociation of neutral complexes into charged fragments. This phenomenon appears consistently in the TF theory through the temperature dependence of the different versions of Eproxi. The anomaly in the thermal proximity effect shows up in the following way: for T ≠ 0 there is no equilibrium solution of TS statistics for single multiply charged atoms in a vacuum when the effect is present. Instability is suppressed in a Wigner-Seitz model under the assumption that there are no electron fluxes through the outer boundary R3 ∝ n-1d of a Wigner-Seitz cell. Eproxi corresponds to the definition of the correlation energy in a gas of interacting particles. This review is written so as to enable comparison of the results of the TF formalism with the standard assumptions of the correlation theory for
Ultracold Fermi and Bose gases and Spinless Bose Charged Sound Particles
Minasyan V.
2011-10-01
Full Text Available We propose a novel approach for investigation of the motion of Bose or Fermi liquid (or gas which consists of decoupled electrons and ions in the uppermost hyperfine state. Hence, we use such a concept as the fluctuation motion of “charged fluid particles” or “charged fluid points” representing a charged longitudinal elastic wave. In turn, this elastic wave is quantized by spinless longitudinal Bose charged sound particles with the rest mass m and charge e 0 . The existence of spinless Bose charged sound particles allows us to present a new model for description of Bose or Fermi liquid via a non-ideal Bose gas of charged sound particles . In this respect, we introduce a new postulation for the superfluid component of Bose or Fermi liquid determined by means of charged sound particles in the condensate, which may explain the results of experiments connected with ultra-cold Fermi gases of spin-polarized hydrogen, 6 Li and 40 K, and such a Bose gas as 87 Rb in the uppermost hyperfine state, where the Bose- Einstein condensation of charged sound particles is realized by tuning the magnetic field.
Quantum gases: spin-polarized atomic hydrogen and deuterium
Properties of atomic gases, spin-polarized hydrogen and deuterium, are discussed. The underlying ideas required for stabilizing these gases against recombination to the molecular form are presented and experimental techniques are briefly described. The consequences of the presence of a helium surface for Bose Einstein Condensation (BEC) are discussed. It is shown that interactions between atoms on the surface are required to achieve sufficiently high gas phase densities for BEC to occur. (Auth.)
Harmonically trapped quasi-two-dimensional Fermi gases with synthetic spin-orbit coupling
Wang, JingKun; Chen, JinGe; Chen, KeJi; Yi, Wei; Zhang, Wei
2016-09-01
We study the properties of spin-orbit coupled and harmonically trapped quasi-two-dimensional Fermi gas with tunable s-wave interaction between the two spin species. We adapt an effective two-channel model which takes the excited states occupation in the strongly confined axial direction into consideration by introducing dressed molecules in the closed channel, and use a Bogoliubovde Gennes (BdG) formalism to go beyond local density approximation. We find that both the in-trap phase structure and density distribution can be significantly modified near a wide Feshbach resonance compared with the single-channel model without the dressed molecules. Our findings will be helpful for the experimental search for the topological superfluid phase in ultracold Fermi gases.
Statistical Mechanical Approach to the Equation of State of Unitary Fermi Gases
De Silva, Theja N
2016-01-01
We combine a Tan's universal relation with a basic statistical mechanical approach to derive a general equation of state for unitary Fermi gases. The universal equation of state is written as a series solution to a self consistent integral equation where the general solution is a linear combination of Fermi functions. By truncating our series solution to four terms with already known exact theoretical inputs at limiting cases, namely the first three virial coefficients and the Bertsch parameter, we find a good agreement with experimental measurements in the entire temperature region in the normal state. Our analytical equation of state agrees with experimental data up to the fugacity $z = 18$, which is a vast improvement over the other analytical equations of state available where the agreements is \\emph{only} up to $z \\approx 7$.
Counterflow of spontaneous mass currents in trapped spin-orbit coupled Fermi gases
Doko, Ernada; Işkın, Menderes; Subaşı, Ahmet Levent
2011-01-01
PHYSICAL REVIEW A 85, 053634 (2012) Counterflow of spontaneous mass currents in trapped spin-orbit-coupled Fermi gases E. Doko,1 A. L. Subas¸ı,2 and M. Iskin1 1Department of Physics, Koc¸ University, Rumelifeneri Yolu, 34450 Sarıyer, Istanbul, Turkey 2Department of Physics, Faculty of Science and Letters, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey (Received 20 December 2011; published 24 May 2012) We use the Bogoliubov–de Gennes formalism and study the gro...
Simulating Chiral Magnetic and Separation Effects with Spin-Orbit Coupled Atomic Gases.
Huang, Xu-Guang
2016-01-01
The chiral magnetic and chiral separation effects-quantum-anomaly-induced electric current and chiral current along an external magnetic field in parity-odd quark-gluon plasma-have received intense studies in the community of heavy-ion collision physics. We show that analogous effects occur in rotating trapped Fermi gases with Weyl-Zeeman spin-orbit coupling where the rotation plays the role of an external magnetic field. These effects can induce a mass quadrupole in the atomic cloud along the rotation axis which may be tested in future experiments. Our results suggest that the spin-orbit coupled atomic gases are potential simulators of the chiral magnetic and separation effects. PMID:26868084
Simulating Chiral Magnetic and Separation Effects with Spin-Orbit Coupled Atomic Gases
Xu-Guang Huang
2016-01-01
The chiral magnetic and chiral separation effects---quantum-anomaly-induced electric current and chiral current along an external magnetic field in parity-odd quark-gluon plasma---have received intense studies in the community of heavy-ion collision physics. We show that analogous effects occur in rotating trapped Fermi gases with Weyl-Zeeman spin-orbit coupling where the rotation plays the role of an external magnetic field. These effects can induce a mass quadrupole in the atomic cloud alon...
Quantum Effects of Uniform Bose Atomic Gases with Weak Attraction
CHENG Ze
2011-01-01
@@ We find that uniform Bose atomic gases with weak attraction can undergo a Bardeen-Cooper-Schrieffer(BCS)condensation below a critical temperature.In the BCS condensation state,bare atoms with opposite wave vectors are bound into pairs,and unpaired bare atoms are transformed into a new kind of quasi-particles,i.e.the dressed atoms.The atom-pair system is a condensate or a superfluid and the dressed-atom system is a normal fluid.The critical temperature and the effective mass of dressed atoms are derived analytically.The transition from the BCS condensation state to the normal state is a first-order phase transition.%We find that uniform Bose atomic gases with weak attraction can undergo a Bardeen-Cooper-Schrieffer (BCS)condensation below a critical temperature. In the BCS condensation state, bare atoms with opposite wave vectors are bound into pairs, and unpaired bare atoms are transformed into a new kind of quasi-particles, i.e. the dressed atoms. The atom-pair system is a condensate or a superfluid and the dressed-atom system is a normal fluid. The critical temperature and the effective mass of dressed atoms are derived analytically. The transition from the BCS condensation state to the normal state is a first-order phase transition.
A Single Atom Thermometer for Ultracold Gases
Hohmann, Michael; Lausch, Tobias; Mayer, Daniel; Schmidt, Felix; Widera, Artur
2016-01-01
We use single or few Cs atoms as thermometer for an ultracold, thermal Rb cloud. Observing the thermometer atoms' thermalization with the cold gas using spatially resolved fluorescence detection, we find an interesting situation, where a fraction of thermometer atoms thermalizes with the cloud while the other fraction remains unaffected. We compare release-recapture measurements of the thermometer atoms to Monte-Carlo simulations while correcting for the non-thermalized fraction, and recover the cold cloud's temperature. The temperatures obtained are verified by independent time-of-flight measurements of the cold cloud's temperature. We also check the reliability of our simulations by first numerically modelling the unperturbed in-trap motion of single atoms in absence of the cold cloud, and second by performing release-recapture thermometry on the cold cloud itself. Our findings pave the way for local temperature probing of quantum systems in non-equilibrium situations.
Small two-component Fermi gases in a cubic box with periodic boundary conditions
Yin, X. Y.; Blume, D.
2013-06-01
The properties of two-component Fermi gases become universal if the interspecies s-wave scattering length as and the average interparticle spacing are much larger than the range of the underlying two-body potential. Using an explicitly correlated Gaussian basis set expansion approach, we determine the eigenenergies of two-component Fermi gases in a cubic box with periodic boundary conditions as functions of the interspecies s-wave scattering length and the effective range of the two-body potential. The universal properties of systems consisting of up to four particles are determined by extrapolating the finite-range energies to the zero-range limit. We determine the eigenenergies of states with vanishing and finite momenta. In the weakly attractive BCS regime, we analyze the energy spectra and degeneracies using first-order degenerate perturbation theory. Excellent agreement between the perturbative energy shifts and the numerically determined energies is obtained. For the infinitely large scattering length case, we compare our results—where available—with those presented in the literature.
Topological phenomena in ultracold atomic gases
Price, Hannah
2013-01-01
Topological phenomena arise in a wide range of systems, with fascinating physical consequences. There is great interest in finding new ways to measure such consequences in ultracold atomic gas experiments. These experiments have significant advantages over the solid-state as ultracold atoms are controllable, tuneable and clean. They can also be used to investigate properties which are inaccessible in other quantum systems. We explore some of the novel features of topological energy bands ...
Ultracold gases of ytterbium: ferromagnetism and Mott states in an SU(6) Fermi system
Cazalilla, M A [Centro de FIsica de Materiales (CFM), Centro Mixto CSIC-UPV/EHU, Edificio Korta, Avenida de Tolosa, 72, 20018 San Sebastian (Spain); Ho, A F [Department of Physics, Royal Holloway, University of London, Egham, Surrey TW20 0EX (United Kingdom); Ueda, M [ERATO Macroscopic Quantum Control Project, JST, Yayoi, Bunkyo-Ku, Tokyo 113-8656 (Japan)], E-mail: waxcagum@ehu.es
2009-10-15
It is argued that an ultracold quantum degenerate gas of ytterbium {sup 173}Yb atoms having nuclear spin I=5/2 exhibits an enlarged SU(6) symmetry. Within the Landau Fermi liquid theory, stability criteria against Fermi liquid (Pomeranchuk) instabilities in the spin channel are considered. Focusing on the SU(n>2) generalizations of ferromagnetism, it is shown within mean-field theory that the transition from the paramagnet to the itinerant ferromagnet is generically first order. On symmetry grounds, general SU(n) itinerant ferromagnetic ground states and their topological excitations are also discussed. These SU(n>2) ferromagnets can become stable by increasing the scattering length using optical methods or in an optical lattice. However, in an optical lattice at current experimental temperatures, Mott states with different filling are expected to coexist in the same trap, as obtained from a calculation based on the SU(6) Hubbard model.
Quantum information entropies of ultracold atomic gases in a harmonic trap
Tutul Biswas; Tarun Kanti Ghosh
2011-10-01
The position and momentum space information entropies of weakly interacting trapped atomic Bose–Einstein condensates and spin-polarized trapped atomic Fermi gases at absolute zero temperature are evaluated. We ﬁnd that sum of the position and momentum space information entropies of these quantum systems containing atoms conﬁned in a $D(≤ 3)$-dimensional harmonic trap has a universal form as $S^{(D)}_t = N(a D − b ln N)$, where ∼ 2.332 and = 2 for interacting bosonic systems and a ∼ 1.982 and = 1 for ideal fermionic systems. These results obey the entropic uncertainty relation given by Beckner, Bialynicki-Birula and Myceilski.
Single-branch theory of ultracold Fermi gases with artificial Rashba spin–orbit coupling
We consider interacting ultracold fermions subject to the Rashba spin–orbit coupling. We construct a single-branch interacting theory for the Fermi gas when the system is dilute enough so that the positive helicity branch is not occupied at all in the non-interacting ground state. We show that the theory is renormalizable in perturbation theory and therefore yields a model of polarized fermions that avoids a multi-channel treatment of the problem. Our results open the path towards a much more straightforward approach to the many-body physics of cold atoms subject to artificial vector potentials. (paper)
Induced p-wave Superfluidity in Imbalanced Fermi Gases in a Synthetic Gauge Field
Caldas, Heron; Continentino, Mucio
2015-03-01
We study pairing formation and the appearance of induced spin-triplet p-wave superfluidity in dilute three-dimensional imbalanced Fermi gases in the presence of a uniform non-Abelian gauge field. This gauge field generates a synthetic Rashba-type spin-orbit interaction which has remarkable consequences in the induced p-wave pairing gaps. Without the synthetic gauge field, the p-wave pairing occurs in one of the components due to the induced (second-order) interaction via an exchange of density fluctuations in the other component. We show that this p-wave superfluid gap induced by density fluctuations is greatly enhanced due to the Rashba-type spin-orbit coupling. This work was partially supported by CAPES, CNPq, FAPERJ, and FAPEMIG (Brazilian Agencies).
Hao Guo
2015-01-01
Full Text Available Recent experimental progress allows for exploring some important physical quantities of ultracold Fermi gases, such as the compressibility, spin susceptibility, viscosity, optical conductivity, and spin diffusivity. Theoretically, these quantities can be evaluated from suitable linear response theories. For BCS superfluid, it has been found that the gauge invariant linear response theories can be fully consistent with some stringent consistency constraints. When the theory is generalized to stronger than BCS regime, one may meet serious difficulties to satisfy the gauge invariance conditions. In this paper, we try to construct density and spin linear response theories which are formally gauge invariant for a Fermi gas undergoing BCS-Bose-Einstein Condensation (BEC crossover, especially below the superfluid transition temperature Tc. We adapt a particular t-matrix approach which is close to the G0G formalism to incorporate noncondensed pairing in the normal state. We explicitly show that the fundamental constraints imposed by the Ward identities and Q-limit Ward identity are indeed satisfied.
Comparing and contrasting nuclei and cold atomic gases
Zinner, Nikolaj Thomas; Jensen, Aksel Stenholm
2013-01-01
The experimental revolution in ultracold atomic gas physics over the past decades has brought tremendous amounts of new insight to the world of degenerate quantum systems. Here we compare and contrast the developments of cold atomic gases with the physics of nuclei since many concepts, techniques......, and nomenclatures are common to both fields. However, nuclei are finite systems with interactions that are typically much more complicated than those of ultracold atomic gases. The similarities and differences must therefore be carefully addressed for a meaningful comparison and to facilitate fruitful...... crossdisciplinary activity. We first consider condensates of bosonic and paired systems of fermionic particles with the mean-field description, but take great care to point out potential problems in the limit of small particle numbers. Along the way we review some of the basic results of Bose–Einstein condensate...
National Aeronautics and Space Administration — Fermi is a powerful space observatory that will open a wide window on the universe. Gamma rays are the highest-energy form of light, and the gamma-ray sky is...
Fermi-Bose mixtures of 40K and 87Rb atoms
After the recent realization of the BCS-BEC crossover in dilute atomic Fermi gases, quantum degenerate mixtures of bosonic and fermionic atoms are expected to provide a complementary approach to fermionic super fluidity where the attractive interaction between Fermions is mediated by the inter species interaction, a situation which is in many ways analogous to phonon-mediated Cooper pairing in superconductors. Moreover, these mixtures are expected to show a rich phase diagram when loaded into an optical lattice, with various pairing phases involving one or several fermionic and bosonic atoms. Already in a harmonic trap, these mixtures show a rich class of phenomena. The behaviour of the mixture is influenced by a lot of properties: mean ld interaction both between Fermions and Bosons as well as the mean field interaction in the condensate. Depending on the sign of the Fermi-Bose interaction, phase separation or mean ld trapping and collapse of the mixture are expected. The mass ratio between Fermions and Bosons will also influence the ratio of trapping frequencies between the two species. Three-body loss processes can have a dramatic impact on lifetime and dynamical behaviour of the mixture. The condensate overlapping only with a small part of the Fermi sea will introduce localized trapping and loss processes. We report on the production of a quantum degenerate Fermi-Bose mixture of 40K and 87Rb in a regime of large particle numbers. In the experiment, we can span a wide range of phenomena starting at small particle numbers, where the expansion of the bosonic and the fermionic component are well described by the respective single-component Thomas-Fermi profiles. As particle numbers and densities in the mixture increase, the mean field attraction will create a strong localized mean field trapping potential in the centre of the trap where the BEC is localized. We observe this in-trap effect as a bimodal distribution of the fermionic component in the axial direction
Experimental studies of spin-imbalanced Fermi gases in 2D geometries
Thomas, John
We study the thermodynamics of a quasi-two-dimensional Fermi gas, which is not quite two-dimensional (2D), but far from three dimensional (3D). This system offers opportunities to test predictions that cross interdisciplinary boundaries, such as enhanced superfluid transition temperatures in spin-imbalanced quasi-2D superconductors, and provides important benchmarks for calculations of the phase diagrams. In the experiments, an ultra-cold Fermi gas is confined in an infrared CO2 laser standing-wave, which produces periodic pancake-shaped potential wells, separated by 5.3 μm. To study the thermodynamics, we load an ultra-cold mixture of N1 = 800 spin 1/2 -up and N2 measured properties are in disagreement with 2D-BCS theory, but can be fit by a 2D-polaron gas model, where each atom is surrounded by a cloud of particle-hole pairs of the opposite spin. However, this model fails to predict a transition to a spin-balanced central region as N2/N1is increased. Supported by the physics divisions of ARO, AFOSR, and NSF and by the Division of Materials Science and Engineering, the Office of Basic Energy Sciences, DOE.
Dong Hang; Ma Yong-Li
2009-01-01
Using quantum hydrodynamic approaches, we study the quantum pressure correction to the collective excitation spectrum of the interacting trapped superfluid Fermi gases in the BEC-BCS crossover. Based on a phenomenological equation of state, we derive hydrodynamic equations of the system in the whole BEC-BCS crossover regime. Beyond the Thomas-Fermi approximation, expressions of the frequency corrections of collective modes for both spherical and axial symmetric traps excited in the BEC-BCS crossover are given explicitly. The corrections of the eigenfrequencies due to the quantum pressure and their dependence on the inverse interaction strength. Anisotropic parameter and particle numbers of the condensate are discussed in detail.
Four-wave mixing in degenerate Fermi gases: Beyond the undepleted pump approximation
We analyze the full nonlinear dynamics of the four-wave mixing between an incident beam of fermions and a fermionic density grating. We find that when the number of atoms in the beam is comparable to the number of atoms forming the grating, the dephasing of that grating, which normally leads to the decay of its amplitude, is suppressed. Instead, the density grating and the beam density exhibit large nonlinear coupled amplitude oscillations. In this case, four-wave mixing can persist for much longer times compared to the case of negligible back action. We also evaluate the efficiency of the four-wave mixing and show that it can be enhanced by producing an initial density grating with an amplitude that is less than the maximum value. These results indicate that efficient four-wave mixing in fermionic alkali gases should be experimentally observable
Controlling Rydberg atom excitations in dense background gases
Liebisch, Tara Cubel; Engel, Felix; Nguyen, Huan; Balewski, Jonathan; Lochead, Graham; Böttcher, Fabian; Westphal, Karl M; Kleinbach, Kathrin S; Schmid, Thomas; Gaj, Anita; Löw, Robert; Hofferberth, Sebastian; Pfau, Tilman; Pérez-Ríos, Jesús; Greene, Chris H
2016-01-01
We discuss the density shift and broadening of Rydberg spectra measured in cold, dense atom clouds in the context of Rydberg atom spectroscopy done at room temperature, dating back to the experiments of Amaldi and Segr\\`e in 1934. We discuss the theory first developed in 1934 by Fermi to model the mean-field density shift and subsequent developments of the theoretical understanding since then. In particular, we present a model whereby the density shift is calculated using a microscopic model in which the configurations of the perturber atoms within the Rydberg orbit are considered. We present spectroscopic measurements of a Rydberg atom, taken in a Bose-Einstein condensate (BEC) and thermal clouds with densities varying from $5\\times10^{14}\\textrm{cm}^{-3}$ to $9\\times10^{12}\\textrm{cm}^{-3}$. The density shift measured via the spectrum's center of gravity is compared with the mean-field energy shift expected for the effective atom cloud density determined via a time of flight image. Lastly, we present calcul...
Energy spectra of small two-component Fermi gases in a cubic box with periodic boundary conditions
Yin, X. Y.; Blume, D.
2013-05-01
The properties of two-component Fermi gases become universal if the interspecies s-wave scattering length and the average interparticle spacing are much larger than the range of the underlying two-body potential. Using an explicitly correlated Gaussian basis set expansion approach, we determine the eigenenergies of two-component Fermi gases in a cubic box with periodic boundary conditions as functions of the interspecies s-wave scattering length and the effective range of the two-body potential. The universal properties of systems consisting of up to five particles are determined by extrapolating the finite-range energies to the zero-range limit. We determine the eigenenergies of states with vanishing and finite momentum. For the infinitely large scattering length case, we compare our results with those presented in the literature. Support by the ARO is gratefully acknowledged.
Ferromagnetism in a repulsive atomic Fermi gas with correlated disorder
Pilati, S.; Fratini, E.
2016-05-01
We investigate the zero-temperature ferromagnetic behavior of a two-component repulsive Fermi gas in the presence of a correlated random field that represents an optical speckle pattern. The density is tuned so that the (noninteracting) Fermi energy is close to the mobility edge of the Anderson localization transition. We employ quantum Monte Carlo simulations to determine various ground-state properties, including the equation of state, the magnetic susceptibility, and the energy of an impurity immersed in a polarized Fermi gas (repulsive polaron). In the weakly interacting limit, the magnetic susceptibility is found to be suppressed by disorder. However, it rapidly increases with the interaction strength, and it diverges at a much weaker interaction strength compared to the clean gas. Both the transition from the paramagnetic phase to the partially ferromagnetic phase, and the one from the partially to the fully ferromagnetic phase, are strongly favored by disorder, indicating a case of order induced by disorder.
Optomechanical self-structuring in cold atomic gases
Labeyrie, Guillaume; Gomes, Pedro M; Oppo, Gian-Luca; Firth, William J; Robb, Gordon R M; Arnold, Aidan S; Kaiser, Robin; Ackemann, Thorsten
2013-01-01
The rapidly developing field of optomechanics aims at the combined control of optical and mechanical (solid-state or atomic) modes. In particular, laser cooled atoms have been used to exploit optomechanical coupling for self-organization in a variety of schemes where the accessible length scales are constrained by a combination of pump modes and those associated to a second imposed axis, typically a cavity axis. Here, we consider a system with many spatial degrees of freedom around a single distinguished axis, in which two symmetries - rotations and translations in the plane orthogonal to the pump axis - are spontaneously broken. We observe the simultaneous spatial structuring of the density of a cold atomic cloud and an optical pump beam. The resulting patterns have hexagonal symmetry. The experiment demonstrates the manipulation of matter by opto-mechanical self-assembly with adjustable length scales and can be potentially extended to quantum degenerate gases.
Inhomogeneous atomic Bose-Fermi mixtures in cubic lattices
Cramer, M.; Eisert, J.; Illuminati, F.
2003-01-01
We determine the ground state properties of inhomogeneous mixtures of bosons and fermions in cubic lattices by studying the Bose-Fermi Hubbard model including parabolic confining potentials. We present the exact solution in the limit of vanishing hopping (ultradeep lattices) and study the resulting domain structure of composite particles. For finite hopping we determine the domain boundaries between Mott-insulator plateaux and hopping-dominated regions for lattices of arbitrary dimensionality...
Theory of open Fermi systems for atomic nuclei
Formulae for amplitudes of direct elastic and inelastic nuclear reactions with participation of nucleons and compound particles are constructed on the basis of the quantum theory of open Fermi systems by means of the projection operators method and the delay time technique. It is shown that real parts of nucleon-nuclear and nucleus-nuclear optical potentials and transfer operators for inelastic channels are determined by vacuum nucleon-nucleon potentials for the case of the global averaging scheme. It is found that real parts of global optical potentials are deep and attracting
Pressure shifts and electron scattering in atomic and molecular gases
In this work, the authors focus on one aspect of Rydberg electron scattering, namely number density effects in molecular gases. The recent study of Rydberg states of CH3I and C6H6 perturbed by H2 is the first attempt to investigate number density effects of a molecular perturber on Rydberg electrons. Highly excited Rydberg states, because of their ''large orbital'' nature, are very sensitive to the surrounding medium. Photoabsorption or photoionization spectra of CH3I have also been measured as a function of perturber pressure in 11 different binary gas mixtures consisting of CH3I and each one of eleven different gaseous perturbers. Five of the perturbers were rare gases (He, Ne, Ar, Kr, Xe) and six were non-dipolar molecules (H2, CH4, N2, C2H6, C3H8). The goal of this work is to underline similarities and differences between atomic and molecular perturbers. The authors first list some results of the molecular study
Strongly interacting Fermi systems in 1/N expansion: From cold atoms to color superconductivity
Abuki, H.; Brauner, Tomáš
2008-01-01
Roč. 78, č. 12 (2008), 125010/1-125010/13. ISSN 1550-7998 R&D Projects: GA ČR GA202/06/0734 Institutional research plan: CEZ:AV0Z10480505 Keywords : BCS-BEC crossover * Unitary Fermi gas * Quark matter Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 5.050, year: 2008
Recoil-limited laser cooling of 87Sr atoms near the Fermi temperature.
Mukaiyama, Takashi; Katori, Hidetoshi; Ido, Tetsuya; Li, Ying; Kuwata-Gonokami, Makoto
2003-03-21
A dynamic magneto-optical trap, which relies on the rapid randomization of population in Zeeman substates, has been demonstrated for fermionic strontium atoms on the 1S0-3P1 intercombination transition. The obtained sample, 1x10(6) atoms at a temperature of 2 microK in the trap, was further Doppler cooled and polarized in a far-off resonant optical lattice to achieve 2 times the Fermi temperature. PMID:12688925
Antonello Sindona
2015-03-01
Full Text Available The sudden introduction of a local impurity in a Fermi sea leads to an anomalous disturbance of its quantum state that represents a local quench, leaving the system out of equilibrium and giving rise to the Anderson orthogonality catastrophe. The statistics of the work done describe the energy fluctuations produced by the quench, providing an accurate and detailed insight into the fundamental physics of the process. We present here a numerical approach to the non-equilibrium work distribution, supported by applications to phenomena occurring at very diverse energy ranges. One of them is the valence electron shake-up induced by photo-ionization of a core state in a fullerene molecule. The other is the response of an ultra-cold gas of trapped fermions to an embedded two-level atom excited by a fast pulse. Working at low thermal energies, we detect the primary role played by many-particle states of the perturbed system with one or two excited fermions. We validate our approach through the comparison with some photoemission data on fullerene films and previous analytical calculations on harmonically trapped Fermi gases.
Probing superfluid properties in strongly correlated Fermi gases with high spatial resolution
Weimer, Wolf
2014-07-01
In this thesis an apparatus to study ultracold fermionic {sup 6}Li with tunable interaction strength and dimensionality is presented. The apparatus is applied to investigate the speed of sound v{sub s} and the superfluid critical velocity v{sub c} across the transition from Bose-Einstein condensation (BEC) to Bardeen-Cooper-Schrieffer (BCS) superfluidity. The results set benchmarks for theories describing strongly correlated systems. To measure v{sub c}, an obstacle, that is formed by a tightly focused laser beam, is moved through a superfluid sample with a constant velocity along a line of constant density. For velocities larger than v{sub c} heating of the gas is observed. The critical velocity is mapped out for various different interaction strengths covering the BEC-BCS crossover. According to the Landau criterion and Bogolyubov theory, v{sub c} should be closely related to v{sub s} in a Bose-Einstein condensate. The measurement of v{sub s} is conducted by creating a density modulation in the centre of the cloud and tracking the excited modulation. The velocities v{sub s} and v{sub c} are measured in a similar range of interaction strengths and in similar samples to ensure comparability. The apparatus which provides the ultracold samples is a two chamber design with a magneto-optical trap that is loaded via a Zeeman slower. The subsequent cooling steps are all-optical and finally create an ultracold oblate atom cloud inside a flat vacuum cell. This cell provides optimal optical access and is placed between two high numerical aperture microscope objectives. These objectives are used to probe the samples in-situ on length scales which are comparable to the intrinsic length scales of the gases. Similarly, optical dipole potentials are employed to manipulate the clouds on the same small length scales. The oblate samples are sufficiently flat such that there spatial extent along the microscope axes is smaller than the depth of field of the objectives. With an
High-temperature atomic superfluidity in lattice Bose-Fermi mixtures
We consider atomic Bose-Fermi mixtures in optical lattices and study the superfluidity of fermionic atoms due to s-wave pairing induced by boson-fermion interactions. We prove that the induced fermion-fermion coupling is always attractive if the boson-boson on-site interaction is repulsive, and predict the existence of an enhanced BEC-BCS crossover as the strength of the lattice potential is varied. We show that for direct on-site fermion-fermion repulsion, the induced attraction can give rise to superfluidity via s-wave pairing at striking variance with the case of pure systems of fermionic atoms with direct repulsive interactions
Synthetic Lorentz force in classical atomic gases via Doppler effect and radiation pressure
Dubček, T; Jukić, D; Aumiler, D; Ban, T; Buljan, H
2014-01-01
We theoretically predict a novel type of synthetic Lorentz force for classical (cold) atomic gases, which is based on the Doppler effect and radiation pressure. A fairly uniform and strong force can be constructed for gases in macroscopic volumes of several cubic millimeters and more. This opens the possibility to mimic classical charged gases in magnetic fields, such as those in a tokamak, in cold atom experiments.
Fermi-Dirac gas of atoms in a box with low adiabatic invariant
Quantum degenerate Fermi-Dirac gas of atoms, confined in a cubic box, shows an energy spectrum, which is discrete and strongly dependent on the atomic mass number, Aat, box geometry and temperature, for low product of Aat and the adiabatic invariant, TV1/3, i.e. on γ = AatTV1/3. The present study compares the total number of particles and the total energy obtained by summing up the contributions of a finite number of states, defined by the values of γ, to the widespread approximations of the corresponding integrals. The sums show simple calculation algorithms and more precise results for a large interval of values of γ. A new accurate analytic formula for the chemical potential of the Fermi-Dirac quantum gas is also given. (author)
Mapping the Two-Component Atomic Fermi Gas to the Nuclear Shell-Model
Özen, C.; Zinner, Nikolaj Thomas
2014-01-01
the external potential becomes important. A system of two-species fermionic cold atoms with an attractive zero-range interaction is analogous to a simple model of nucleus in which neutrons and protons interact only through a residual pairing interaction. In this article, we discuss how the problem of...... a two-component atomic fermi gas in a tight external trap can be mapped to the nuclear shell model so that readily available many-body techniques in nuclear physics, such as the Shell Model Monte Carlo (SMMC) method, can be directly applied to the study of these systems. We demonstrate an...
High-temperature atomic superfluidity in lattice Bose-Fermi mixtures.
Illuminati, Fabrizio; Albus, Alexander
2004-08-27
We consider atomic Bose-Fermi mixtures in optical lattices and study the superfluidity of fermionic atoms due to s-wave pairing induced by boson-fermion interactions. We prove that the induced fermion-fermion coupling is always attractive if the boson-boson on-site interaction is repulsive, and predict the existence of an enhanced BEC-BCS crossover as the strength of the lattice potential is varied. We show that for direct on-site fermion-fermion repulsion, the induced attraction can give rise to superfluidity via s-wave pairing at striking variance with the case of pure systems of fermionic atoms with direct repulsive interactions. PMID:15447082
Box traps on an atom chip for one-dimensional quantum gases
van Es, J J P; van Amerongen, A H; Rétif, C; Whitlock, S; van Druten, N J
2009-01-01
We present the implementation of tailored trapping potentials for ultracold gases on an atom chip. We realize highly elongated traps with box-like confinement along the long, axial direction combined with conventional harmonic confinement along the two radial directions. The design, fabrication and characterization of the atom chip and the box traps is described. We load ultracold ($\\lesssim1 \\mu$K) clouds of $^{87}$Rb in a box trap, and demonstrate Bose-gas focusing as a means to characterize these atomic clouds in arbitrarily shaped potentials. Our results show that box-like axial potentials on atom chips are very promising for studies of one-dimensional quantum gases.
Single atom detection in ultracold quantum gases: a review of current progress
Ott, Herwig
2016-05-01
The recent advances in single atom detection and manipulation in experiments with ultracold quantum gases are reviewed. The discussion starts with the basic principles of trapping, cooling and detecting single ions and atoms. The realization of single atom detection in ultracold quantum gases is presented in detail and the employed methods, which are based on light scattering, electron scattering, field ionization and direct neutral particle detection are discussed. The microscopic coherent manipulation of single atoms in a quantum gas is also covered. Various examples are given in order to highlight the power of these approaches to study many-body quantum systems.
Propagation of sound and supersonic bright solitons in superfluid Fermi gases in BCS-BEC crossover
Wen, Wen; Shen, Shun-Qing; Huang, Guoxiang
2010-01-01
We investigate the linear and nonlinear sound propagations in a cigar-shaped superfluid Fermi gas with a large particle number. We first solve analytically the eigenvalue problem of linear collective excitations and provide explicit expressions of all eigenvalues and eigenfunctions, which are valid for all superfluid regimes in the Bardeen-Cooper-Schrieffer-Bose-Einstein condensation (BCS-BEC) crossover. The linear sound speed obtained agrees well with that of a recent experimental measurement. We then consider a weak nonlinear excitation and show that the time evolution of the excitation obeys a Korteweg de Vries equation. Different from the result obtained in quasi-one-dimensional case studied previously, where subsonic dark solitons are obtained via the balance between quantum pressure and nonlinear effect, we demonstrate that bright solitons with supersonic propagating velocity can be generated in the present three-dimensional system through the balance between a waveguidelike dispersion and the interparticle interaction. The supersonic bright solitons obtained display different physical properties in different superfluid regimes and hence can be used to characterize superfluid features of the BCS-BEC crossover.
Non-equilibrium transport in d-dimensional non-interacting Fermi gases
We consider a non-interacting Fermi gas in d dimensions, both in the non-relativistic and relativistic case. The system of size Ld is initially prepared into two halves L and R, each of them thermalized at two different temperatures, TL and TR respectively. At time t = 0 the two halves are put in contact and the entire system is left to evolve unitarily. We show that, in the thermodynamic limit, the time evolution of the particle and energy densities is perfectly described by a semiclassical approach which permits to analytically evaluate the corresponding stationary currents. In particular, in the case of non-relativistic fermions, we find a low-temperature behavior for the particle and energy currents which is independent from the dimensionality d of the system, being proportional to the difference TL2−TR2. Only in one spatial dimension (d = 1) do the results for the non-relativistic case agree with the massless relativistic ones (paper)
We investigate the ferromagnetic transition in repulsive Fermi gases at zero temperature with upper branch and effective range effects. Based on a general effective Lagrangian that reproduces precisely the two-body s-wave scattering phase shift, we obtain a nonperturbative expression of the energy density as a function of the polarization by using the Bethe–Goldstone ladder resummation. For hard sphere potential, the predicted critical gas parameter kFa=0.816 and the spin susceptibility agree well with the results from fixed-node diffusion Monte Carlo calculations. In general, positive and negative effective ranges have opposite effects on the critical gas parameter kFa: While a positive effective range reduces the critical gas parameter, a negative effective range increases it. For attractive potential or Feshbach resonance model, the many-body upper branch exhibits an energy maximum at kFa=α with α=1.34 from the Bethe–Goldstone ladder resummation, which is qualitatively consistent with experimental results. The many-body T-matrix has a positive-energy pole for kFa>α and it becomes impossible to distinguish the bound state and the scattering state. These positive-energy bound states become occupied and therefore the upper branch reaches an energy maximum at kFa=α. In the zero range limit, there exists a narrow window (0.86
XIONG De-Zhi; CHEN Hai-Xia; WANG Peng-Jun; YU Xu-Dong; GAO Feng; ZHANG Jing
2008-01-01
@@ We report on the attainment of quantum degeneracy of 40K by means of efficient thermal collisions with the evaporatively cooled 87Rb atoms.In a quadrupole-Ioffe configuration trap,potassium atoms are cooled to 0.5 times the Fermi temperature.We obtain up to 7.59 × 105 degenerate fermions 40K.
Pederson, Mark R
2015-02-14
A recent modification of the Perdew-Zunger self-interaction-correction to the density-functional formalism has provided a framework for explicitly restoring unitary invariance to the expression for the total energy. The formalism depends upon construction of Löwdin orthonormalized Fermi-orbitals which parametrically depend on variational quasi-classical electronic positions. Derivatives of these quasi-classical electronic positions, required for efficient minimization of the self-interaction corrected energy, are derived and tested, here, on atoms. Total energies and ionization energies in closed-shell singlet atoms, where correlation is less important, using the Perdew-Wang 1992 Local Density Approximation (PW92) functional, are in good agreement with experiment and non-relativistic quantum-Monte-Carlo results albeit slightly too low. PMID:25681892
Pederson, Mark R
2014-01-01
A recent modification of the Perdew-Zunger self-interaction-correction (SIC) to the density-functional formalism (Pederson, Ruzsinszky, Perdew) has provided a framework for explicitly restoring unitary invariance to the expression for the total energy. The formalism depends upon construction of Lowdin orthonormalized Fermi-orbitals (Luken et al) which parametrically depend on variational quasi-classical electronic positions. Derivatives of these quasi-classical electronic positions, required for efficient minimization of the self-interaction corrected energy, are derived and tested here on atoms. Total energies and ionization energies in closed-shell atoms, where correlation is less important, using the PW92 LDA functional are in very good to excellent agreement with experiment and non-relativistic Quantum-Monte-Carlo (QMC) results.
Experimental comparison of the critical ionization velocity in atomic and molecular gases
The critical ionization velocity usub(c) of Ne, Kr, Xe, Cl2, O2, CO, CO2, NH3 and H2O is investigated experimentally in a coaxial plasma gun. Together with experimental data obtained in earlier experiments the present results make it possible to make a systematic comparison between the critical ionization velocity for atomic and molecular gases. It is found that atomic and molecular gases tend to have values of critical ionization velocity which are respectively smaller and larger than the theoretical values. The current dependence of usub(c) is found to be different for atomic and molecular gases. A number of atomic and molecular processes relevant to the experiment are discussed
Slow polaritons with orbital angular momentum in atomic gases
Ruseckas J.; Mekys A.; Juzeliunas G.
2011-01-01
Polariton formalism is applied for studying the propagation of a probe field of light in a cloud of cold atoms influenced by two control laser beams of larger intensity. The laser beams couple resonantly three hyperfine atomic ground states to a common excited state thus forming a tripod configuration of the atomic energy levels involved. The first control beam can have an optical vortex with the intensity of the beam going to zero at the vortex core. The second control beam without a vortex ...
Spin Hall separation of ultracold atom-molecule mixed gases
Ye, Chong; Fu, Li-Bin; Liu, Jie
2016-05-01
We propose a theoretical scheme to separate a molecular cloud from atoms in analogy to the spin Hall effect and to completely transfer Feshbach molecules to the ground state by applying a spatially modulated laser field to an atom-molecule mixed gas. In particular, the laser-molecule interaction induces a synthetic U(1) gauge potential for the dressed molecular dark state. Through numerical simulation, we demonstrate that such a gauge field leads to a spin Hall separation of atoms and molecules. In such a process, molecules can be transformed into the ground state completely.
Fermi liquid theory: A brief survey in memory of Gerald E. Brown
I present a brief review of Fermi liquid theory, and discuss recent work on Fermi liquid theory in dilute neutron matter and cold atomic gases. I argue that recent interest in transport properties of quantum fluids provides fresh support for Landau's approach to Fermi liquid theory, which is based on kinetic theory rather than effective field theory and the renormalization group. I also discuss work on non-Fermi liquids, in particular dense quark matter
Fermi liquid theory: A brief survey in memory of Gerald E. Brown
Schaefer, Thomas
2014-01-01
I present a brief review of Fermi liquid theory, and discuss recent work on Fermi liquid theory in dilute neutron matter and cold atomic gases. I argue that renewed interest in transport properties of quantum fluids provides fresh support for Landau's approach to Fermi liquid theory, which is based on kinetic theory rather than effective field theory and the renormalization group. I also discuss work on non-Fermi liquids, in particular dense quark matter.
Mazzucchi, Gabriel; Caballero-Benitez, Santiago F.; Mekhov, Igor B.
2016-01-01
Ultracold atomic systems offer a unique tool for understanding behavior of matter in the quantum degenerate regime, promising studies of a vast range of phenomena covering many disciplines from condensed matter to quantum information and particle physics. Coupling these systems to quantized light fields opens further possibilities of observing delicate effects typical of quantum optics in the context of strongly correlated systems. Measurement backaction is one of the most funda- mental manifestations of quantum mechanics and it is at the core of many famous quantum optics experiments. Here we show that quantum backaction of weak measurement can be used for tailoring long-range correlations of ultracold fermions, realizing quantum states with spatial modulations of the density and magnetization, thus overcoming usual requirement for a strong interatomic interactions. We propose detection schemes for implementing antiferromagnetic states and density waves. We demonstrate that such long-range correlations cannot be realized with local addressing, and they are a consequence of the competition between global but spatially structured backaction of weak quantum measurement and unitary dynamics of fermions. PMID:27510369
Mazzucchi, Gabriel; Caballero-Benitez, Santiago F; Mekhov, Igor B
2016-01-01
Ultracold atomic systems offer a unique tool for understanding behavior of matter in the quantum degenerate regime, promising studies of a vast range of phenomena covering many disciplines from condensed matter to quantum information and particle physics. Coupling these systems to quantized light fields opens further possibilities of observing delicate effects typical of quantum optics in the context of strongly correlated systems. Measurement backaction is one of the most funda- mental manifestations of quantum mechanics and it is at the core of many famous quantum optics experiments. Here we show that quantum backaction of weak measurement can be used for tailoring long-range correlations of ultracold fermions, realizing quantum states with spatial modulations of the density and magnetization, thus overcoming usual requirement for a strong interatomic interactions. We propose detection schemes for implementing antiferromagnetic states and density waves. We demonstrate that such long-range correlations cannot be realized with local addressing, and they are a consequence of the competition between global but spatially structured backaction of weak quantum measurement and unitary dynamics of fermions. PMID:27510369
Slow polaritons with orbital angular momentum in atomic gases
Ruseckas, J; Juzeliunas, G; 10.1103/PhysRevA.83.023812
2011-01-01
Polariton formalism is applied for studying the propagation of a probe field of light in a cloud of cold atoms influenced by two control laser beams of larger intensity. The laser beams couple resonantly three hyperfine atomic ground states to a common excited state thus forming a tripod configuration of the atomic energy levels involved. The first control beam can have an optical vortex with the intensity of the beam going to zero at the vortex core. The second control beam without a vortex ensures the loseless (adiabatic) propagation of the probe beam at a vortex core of the first control laser. We investigate the storage of the probe pulse into atomic coherences by switching off the control beams, as well as its subsequent retrieval by switching the control beams on. The optical vortex is transferred from the control to the probe fields during the storage or retrieval of the probe field. We analyze conditions for the vortex to be transferred efficiently to the regenerated probe beam and discuss possibiliti...
Evidence for ferromagnetic instability in a repulsive Fermi gas of ultracold atoms
Valtolina, G; Amico, A; Burchianti, A; Recati, A; Enss, T; Inguscio, M; Zaccanti, M; Roati, G
2016-01-01
Ferromagnetism is among the most spectacular manifestations of interactions within many-body fermion systems. In contrast to weak-coupling phenomena, it requires strong repulsion to develop, making a quantitative description of ferromagnetic materials notoriously difficult. This is especially true for itinerant ferromagnets, where magnetic moments are not localized into a crystal lattice. In particular, it is still debated whether the simplest case envisioned by Stoner of a homogeneous Fermi gas with short-range repulsive interactions can exhibit ferromagnetism at all. In this work, we positively answer this question by studying a clean model system consisting of a binary spin-mixture of ultracold 6Li atoms, whose repulsive interaction is tuned via a Feshbach resonance. We drastically limit detrimental pairing effects that affected previous studies by preparing the gas in a magnetic domain-wall configuration. We reveal the ferromagnetic instability by observing the softening of the spin-dipole collective mode...
Goodisman's correction of the Thomas-Fermi-von Weizsaecker theory of atoms
Following a suggestion of J. Goodisman, we substitute the therm 3/5 γ0ρ5/3 by 3/5 γ0fzρ5/3 in the Thomas-Fermi-von Weizsaecker energy functional for atoms. fz: R3 → [0, 1] is a function depending on the nuclear charge z. We establish conditions for the functions fz such that the ratio of this modified TFW-energy EkzTFWG(z) (kz is the total number of electrons) and the exact quantum mechanical energy converges to 1 as z → ∞. Moreover, we prove that EkzTFWG(z) = EkzTFW(z) + Dz2 + o(z2) (z → ∞) and determine D. Here, EkzTFW(z) is the unmodified TFW energy. (orig.)
Atom Interferometry with Ultracold Quantum Gases in a Microgravity Environment
Williams, Jason; D'Incao, Jose; Chiow, Sheng-Wey; Yu, Nan
2015-05-01
Precision atom interferometers (AI) in space promise exciting technical capabilities for fundamental physics research, with proposals including unprecedented tests of the weak equivalence principle, precision measurements of the fine structure and gravitational constants, and detection of gravity waves and dark energy. Consequently, multiple AI-based missions have been proposed to NASA, including a dual-atomic-species interferometer that is to be integrated into the Cold Atom Laboratory (CAL) onboard the International Space Station. In this talk, I will discuss our plans and preparation at JPL for the proposed flight experiments to use the CAL facility to study the leading-order systematics expected to corrupt future high-precision measurements of fundamental physics with AIs in microgravity. The project centers on the physics of pairwise interactions and molecular dynamics in these quantum systems as a means to overcome uncontrolled shifts associated with the gravity gradient and few-particle collisions. We will further utilize the CAL AI for proof-of-principle tests of systematic mitigation and phase-readout techniques for use in the next-generation of precision metrology experiments based on AIs in microgravity. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.
Bose-Einstein condensates in atomic gases: simple theoretical results
The author presents the theory of the Bose-Einstein condensation along with a discussion of experimental tests. The author deals successively with the following topics: - the ideal Bose gas in a trap (first in a harmonic trap and then in a more general trap), - a model for the atomic interaction, - interacting Bose gas in the Hartree-Fock approximation, - properties of the condensate wavefunction, - the Gross-Pitaevskii equation, - Bogoliubov approach and thermodynamical stability, - phase coherence properties at the Bose-Einstein condensate, and - symmetry-breaking description of condensates. (A.C.)
Acharya, Bijaya; Ji, Chen; Platter, Lucas
2016-05-01
Recent experimental studies have unveiled Efimov physics in ultracold atomic gases of heteronuclear mixtures. The recombination features of such atomic systems display universal correlations including discrete scaling invariance. We use Effective Field Theory (EFT) to study the Efimov features of the heteronuclear three-atom systems consisting of two identical bosons which interact with each other through a natural scattering length and with the third particle through a large scattering length. We compute the corrections to the universal correlations by perturbative insertions of the interspecies effective range and the intraspecies scattering length. Such an analysis is relevant for mixtures of ultracold atomic gases near the interspecies Feshbach resonance. Supported by the US Department of Energy under Contract No. DE-AC05-00OR22725 and the National Science Foundation under Grant No. PHY-1516077.
Nearly perfect fluidity: from cold atomic gases to hot quark gluon plasmas
Shear viscosity is a measure of the amount of dissipation in a simple fluid. In kinetic theory shear viscosity is related to the rate of momentum transport by quasi-particles, and the uncertainty relation suggests that the ratio of shear viscosity η to entropy density s in units of ℎ/kB is bounded by a constant. Here, ℎ is Planck's constant and kB is Boltzmann's constant. A specific bound has been proposed on the basis of string theory where, for a large class of theories, one can show that η/s ≥ ℎ/(4πkB). We will refer to a fluid that saturates the string theory bound as a perfect fluid. In this review we summarize theoretical and experimental information on the properties of the three main classes of quantum fluids that are known to have values of η/s that are smaller than ℎ/kB. These fluids are strongly coupled Bose fluids, in particular liquid helium, strongly correlated ultracold Fermi gases and the quark gluon plasma. We discuss the main theoretical approaches to transport properties of these fluids: kinetic theory, numerical simulations based on linear response theory and holographic dualities. We also summarize the experimental situation, in particular with regard to the observation of hydrodynamic behavior in ultracold Fermi gases and the quark gluon plasma.
Enhancement of Efficiency of XUV Generation in Atomic Gases Irradiated by Intense Laser Fields
Andreev, A. V.; Stremoukhov, S. Y.; Shoutova, O. A.
We present the results of the theoretical study of the high-order harmonic generation (HHG) in atomic gases. It is shown that the photoemission spectra exhibit unusual behavior when the laser field strength approaches near-atomic values. In subatomic field strength the cut-off frequency increases linearly with laser pulse intensity. However, when the field strength approaches near-atomic region firstly cut-off frequency slows down and then saturates. To interpret such kind of photoemission spectrum behavior we have proposed the light-atom interaction theory based on the use of eigenfunctions of boundary value problem for "an atom in the external field" instead of the traditional basis of the "free atom" eigenfunctions.
75 FR 20867 - DTE Energy; Enrico Fermi Atomic Power Plant, Unit 1
2010-04-21
..., Deputy Director, Decommissioning and Uranium Recovery Licensing Directorate, Division of Waste Management... Action DTE is in the process of decommissioning Fermi-1. During the decommissioning process,...
Fermi and Coulomb correlation effects upon the interacting quantum atoms energy partition
Ruiz, Isela; Holguín-Gallego, Fernando José; Francisco, Evelio; Pendás, Ángel Martín; Rocha-Rinza, Tomás
2016-01-01
The Interacting Quantum Atoms (IQA) electronic energy partition is an important method in the field of quantum chemical topology which has given important insights of different systems and processes in physical chemistry. There have been several attempts to include Electron Correlation (EC) in the IQA approach, for example, through DFT and Hartree-Fock/Coupled-Cluster (HF/CC) transition densities. This work addresses the separation of EC in Fermi and Coulomb correlation and its effect upon the IQA analysis by taking into account spin-dependent one- and two-electron matrices $D^{\\mathrm{HF/CC}}_{p\\sigma q \\sigma}$ and $d^{\\mathrm{HF/CC}}_{p\\sigma q\\sigma r\\tau s\\tau}$ wherein $\\sigma$ and $\\tau$ represent either of the $\\alpha$ and $\\beta$ spin projections. We illustrate this approach by considering BeH$_2$,BH, CN$^-$, HF, LiF, NO$^+$, LiH, H$_2$O$\\cdots$H$_2$O and C$_2$H$_2$, which comprise non-polar covalent, polar covalent, ionic and hydrogen bonded systems. The same and different spin contributions to ($i$...
Coexistence of photonic and atomic Bose-Einstein condensates in ideal atomic gases
N. Boichenko
2015-12-01
Full Text Available We have studied conditions of photon Bose-Einstein condensate formation that is in thermodynamic equilibrium with ideal gas of two-level Bose atoms below the degeneracy temperature. Equations describing thermodynamic equilibrium in the system were formulated; critical temperatures and densities of photonic and atomic gas subsystems were obtained analytically. Coexistence conditions of these photonic and atomic Bose-Einstein condensates were found. There was predicted the possibility of an abrupt type of photon condensation in the presence of Bose condensate of ground-state atoms: it was shown that the slightest decrease of the temperature could cause a significant gathering of photons in the condensate. This case could be treated as a simple model of the situation known as "stopped light" in cold atomic gas. We also showed how population inversion of atomic levels can be created by lowering the temperature. The latter situation looks promising for light accumulation in atomic vapor at very low temperatures.
D'Incao, Jose P.; Willians, Jason R.
2015-05-01
Precision atom interferometers (AI) in space are a key element for several applications of interest to NASA. Our proposal for participating in the Cold Atom Laboratory (CAL) onboard the International Space Station is dedicated to mitigating the leading-order systematics expected to corrupt future high-precision AI-based measurements of fundamental physics in microgravity. One important focus of our proposal is to enhance initial state preparation for dual-species AIs. Our proposed filtering scheme uses Feshbach molecular states to create highly correlated mixtures of heteronuclear atomic gases in both their position and momentum distributions. We will detail our filtering scheme along with the main factors that determine its efficiency. We also show that the atomic and molecular heating and loss rates can be mitigated at the unique temperature and density regimes accessible on CAL. This research is supported by the National Aeronautics and Space Administration.
Trap losses induced by near-resonant Rydberg dressing of cold atomic gases
Aman, J. A.; DeSalvo, B. J.; Dunning, F. B.; Killian, T. C.; Yoshida, S.; Burgdörfer, J.
2016-04-01
The near-resonant dressing of cold strontium gases and Bose-Einstein condensates contained in an optical dipole trap (ODT) with the 5 s 30 s S31 Rydberg state is investigated as a function of the effective two-photon Rabi frequency, detuning, and dressing time. The measurements demonstrate that a rapid decrease in the ground-state atom population in the ODT occurs even for weak dressing and when well detuned from resonance. This decrease is attributed to Rydberg atom excitation, which can lead to direct escape from the trap and to population of very long-lived 5 s 5 p 0, 2 3P metastable states. The effects of interactions between Rydberg atoms, including those populated by blackbody radiation, are analyzed. The work has important implications when considering the use of Rydberg dressing to control the interactions between dressed ground-state atoms.
Critical temperature of Bose-Einstein condensation in trapped atomic Bose-Fermi mixtures
We calculate the shift in the critical temperature of Bose-Einstein condensation for a dilute Bose-Fermi mixture confined by a harmonic potential, to lowest order in both the Bose-Bose and Bose-Fermi coupling constants. The relative importance of the effect on the critical temperature of the boson-boson and boson-fermion interactions is investigated as a function of the parameters of the mixture. The possible relevance of the shift of the transition temperature in current experiments on trapped Bose-Fermi mixtures is discussed. (letter to the editor)
Critical temperature of Bose-Einstein condensation in trapped atomic Bose-Fermi mixtures
Albus, A P [Institut fuer Physik, Universitaet Potsdam, D-14469 Potsdam (Germany); Giorgini, S [Dipartimento di Fisica, Universita di Trento, and Istituto Nazionale per la Fisica della Materia, I-38050 Povo (Italy); Illuminati, F [Dipartimento di Fisica, Universita di Salerno, and Istituto Nazionale per la Fisica della Materia, I-84081 Baronissi (Italy); Viverit, L [Dipartimento di Fisica, Universita di Trento, and Istituto Nazionale per la Fisica della Materia, I-38050 Povo (Italy)
2002-12-14
We calculate the shift in the critical temperature of Bose-Einstein condensation for a dilute Bose-Fermi mixture confined by a harmonic potential, to lowest order in both the Bose-Bose and Bose-Fermi coupling constants. The relative importance of the effect on the critical temperature of the boson-boson and boson-fermion interactions is investigated as a function of the parameters of the mixture. The possible relevance of the shift of the transition temperature in current experiments on trapped Bose-Fermi mixtures is discussed. (letter to the editor)
Shortcut to a Fermi-Degenerate Gas of Molecules via Cooperative Association
Dannenberg, O; Suominen, K A; Dannenberg, Olavi; Mackie, Matt; Suominen, Kalle-Antti; 10.1103/.91.210404
2003-01-01
The creation of a Fermi-degenerate gas molecules using either photoassociation or the Feshbach resonance is theoretically examined. This problem raises an interest because, unlike bosons, fermions in general do not behave cooperatively, so that the collective association of, say, two million atoms into one million molecules is not to be expected. Nevertheless, we find that the coupled Fermi system displays collective Rabi-like oscillations and adiabatic passage between atoms and molecules, thereby mimicking Bose-Einstein statistics. Cooperative association of a degenerate mixture of Bose and Fermi gases could therefore serve as a shortcut to a degenerate gas of Fermi molecules.
We study the virial relations for ultracold trapped two-component Fermi gases in the case of short finite range interactions. Numerical verifications for such relations are reported through the Bardeen-Cooper-Schrieffer (BCS) Bose-Einstein-condensate (BEC) crossover. As an intermediate step, it is necessary to evaluate the partial derivatives of the many-body energy with respect to the inverse of the scattering length and with respect to the interaction range. Once the binding energy of the formed molecules in the BEC side is subtracted, the corresponding energy derivatives are found to have extreme values at the unitary limit. The value of the derivative with respect to the potential range in that limit is large enough to yield measurable differences between the total energy and twice the trapping energy unless the interacting system is described by extremely short potential ranges. The virial results are used to check the quality of the variational wavefunction involved in the calculations.
Rosales-Zarate, L E C; Jauregui, R, E-mail: laura@fisica.unam.m, E-mail: rocio@fisica.unam.m [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Apdo. Postal 20-364, Mexico DF 01000 (Mexico)
2010-04-15
We study the virial relations for ultracold trapped two-component Fermi gases in the case of short finite range interactions. Numerical verifications for such relations are reported through the Bardeen-Cooper-Schrieffer (BCS) Bose-Einstein-condensate (BEC) crossover. As an intermediate step, it is necessary to evaluate the partial derivatives of the many-body energy with respect to the inverse of the scattering length and with respect to the interaction range. Once the binding energy of the formed molecules in the BEC side is subtracted, the corresponding energy derivatives are found to have extreme values at the unitary limit. The value of the derivative with respect to the potential range in that limit is large enough to yield measurable differences between the total energy and twice the trapping energy unless the interacting system is described by extremely short potential ranges. The virial results are used to check the quality of the variational wavefunction involved in the calculations.
贾伟; 豆福全; 孙建安; 段文山
2015-01-01
We investigate the tunneling dynamics of the Fermi gases in an optical lattice in the Bose–Einstein condensation (BEC) regime. The three critical scattering lengths and the system energies are found in different cases of Josephson os-cillation (JO), oscillating-phase-type self-trapping (OPTST), running-phase-type self-trapping (RPTST), and self-trapping (ST). It is found that the s-wave scattering lengths have a crucial role on the tunneling dynamics. By adjusting the scattering length in the adiabatic condition, the transition probability changes with the adiabatic periodicity and a rectangular periodic pattern emerges. The periodicity of the rectangular wave depends on the system parameters such as the periodicity of the adjustable parameter, the s-wave scattering length.
Critical temperature of Bose-Einstein condensation in trapped atomic Bose-Fermi mixtures
Albus, Alexander P.; Giorgini, Stefano; Illuminati, Fabrizio; Viverit, Luciano
2002-01-01
We calculate the shift in the critical temperature of Bose-Einstein condensation for a dilute Bose-Fermi mixture confined by a harmonic potential to lowest order in both the Bose-Bose and Bose-Fermi coupling constants. The relative importance of the effect on the critical temperature of the boson-boson and boson-fermion interactions is investigated as a function of the parameters of the mixture. The possible relevance of the shift of the transition temperature in current experiments on trappe...
Ilo-Okeke, Ebubechukwu O
2016-01-01
We further examine a theory of phase contrast imaging (PCI) of cold atomic gases, first introduced by us in Phys. Rev. Lett. {\\bf 112}, 233602 (2014). We model the PCI measurement by directly calculating the entangled state between the light and the atoms due to the ac Stark shift, which induces a conditional phase shift on the light depending upon the atomic state. By interfering the light that passes through the BEC with the original light, one can obtain information of the atomic state at a single shot level. We derive an exact expression for a measurement operator that embodies the information obtained from PCI, as well as the back-action on the atomic state. By the use of exact expressions for the measurement process, we go beyond the continuous variables approximation such that the non-Gaussian regime can be accessed for both the measured state and the post-measurement state. Features such as the photon probability density, signal, signal variance, Fisher information, error of the measurement, and the b...
Ultracold Fermi-Fermi Mixtures of Lithium and Potassium
Ultracold atomic Fermi gases are a unique experimental tool for simulating and studying many-body systems. Since they are very well controllable and clean systems with tunable interactions, they can serve as quantum simulators for effects that occur in solid states and usually arise from the quantum nature of the Fermi gas of electrons. Different phenomena such as high-temperature superconductivity, Josephson junctions and ferromagnetism can be explored using degenerate Fermi gases. Even in the context of particle physics, Fermi gases can be used to simulate the behavior of quarks inside a nucleus. In the past decade, experiments with a single fermionic (either 6Li or 40K) species have led to ground breaking results. In the past five years, several experiments have been set up that combine the two fermionic alkali species. Additionally to the capabilities offered by a single-species experiment (such as tuning of interaction strength, spin polarization, trap parameters), the two-species mixtures open up control of new parameters - the most obvious being the mass ratio. Due to the mass-imbalance, the Fermi-spheres would no longer overlap, and thus exotic quantum phases emerge. So far experimentally unobserved effects include superfluidity, phase separation, crystalline phases, exotic pairing mechanisms and long-lived trimers. More practically, a mixture would allow to species-selectively apply optical trapping potentials. This thesis presents the experimental efforts from creating an ultracold Fermi- Fermi mixture of 6Li and 40K to the creation of heteronuclear molecules. Three published articles are contained in this thesis. In the first article we report on the observation of Feshbach resonances in an ultracold mixture of two fermionic species, 6Li and 40K. The experimental data are interpreted using a simple asymptotic bound state model and full coupled channels calculations. This unambiguously assigns the observed resonances in terms of various s- and p
Quantum-Shell Corrections to the Finite-Temperature Thomas-Fermi-Dirac Statistical Model of the Atom
Ritchie, A B
2003-07-22
Quantum-shell corrections are made directly to the finite-temperature Thomas-Fermi-Dirac statistical model of the atom by a partition of the electronic density into bound and free components. The bound component is calculated using analytic basis functions whose parameters are chosen to minimize the energy. Poisson's equation is solved for the modified density, thereby avoiding the need to solve Schroedinger's equation for a self-consistent field. The shock Hugoniot is calculated for aluminum: shell effects characteristic of quantum self-consistent field models are fully captures by the present model.
Theory of two-atom coherence in gases. II. Continuous-wave spectra
Ben-Reuven, Abraham
1980-12-01
General expressions are derived for the spectral line shapes of resonance absorption and scattering of coherent radiation in collision-broadened gases, taking into account effects of coherent excitation of two or more atoms (or molecules), as steady-state solutions of a hierarchy of master equations described in a previous publication (paper I). Coupling between the coherent motions of the atoms, provided by a Bethe-Salpeter-type effective interaction, in the binary-collision approximation, forms the essential mechanism for introducing cooperative coherent effects into the steady-state spectra. Explicit expressions are given for the effects of two-atom coherence in the binary-collision approximation, in which the Bloch-type dressed-atom self-energy superoperator is modified by the presence of collisions in which both atoms retain memory of their coherent propagation before the collision. The self-energies include the effects of resonance exchange symmetrization in self-broadening, and are renormalized by the coincidence of radiative transitions during the collisions. The impact (near-resonance) and the quasistatic (line-wing) limits of the applied-frequency detunings are discussed. In the quasistatic limit, coherent many-atom excitations become irrelevant; however, interactions of both collision partners with the radiation during the collision accounts for such phenomena as collision-induced absorption or radiative collisions. In the impact limit, the inclusion of the Bethe-Salpeter interactions allows for the appearance of two-atom resonances. Magnitude estimates of these effects are discussed. Effects of higher-rank (many-body) coherences are formally discussed with the help of a diagrammatic method, leading into implicit bootstrap equations that can be solved by iterative or other procedures.
Iskin, M.
2016-07-01
We first show that the many-body Hamiltonian governing the physical properties of an alkaline-earth 173Yb Fermi gas across the recently realized orbital Feshbach resonance is exactly analogous to that of two-band s -wave superconductors with contact interactions; i.e., even though the free-particle bands have a tunable energy offset in between and are coupled by a Josephson-type attractive interband pair scattering, the intraband interactions have exactly the same strength. We then introduce two intraband order parameters within the BCS mean-field approximation and investigate the competition between their in-phase and out-of-phase (i.e., the so-called π -phase) solutions in the entire BCS-BEC evolution at zero temperature.
Exotic pairing in 1D spin-3/2 atomic gases with SO(4 symmetry
Yuzhu Jiang
2015-06-01
Full Text Available Tuning interactions in the spin singlet and quintet channels of two colliding atoms could change the symmetry of the one-dimensional spin-3/2 fermionic systems of ultracold atoms while preserving the integrability. Here we find a novel SO(4 symmetry integrable point in the spin-3/2 Fermi gas and derive the exact solution of the model using the Bethe ansatz. In contrast to the model with SU(4 and SO(5 symmetries, the present model with SO(4 symmetry preserves spin singlet and quintet Cooper pairs in two sets of SU(2⊗SU(2 spin subspaces. We obtain full phase diagrams, including the Fulde–Ferrel–Larkin–Ovchinnikov like pair correlations, spin excitations and quantum criticality through the generalized Yang–Yang thermodynamic equations. In particular, various correlation functions are calculated by using finite-size corrections in the frame work of conformal field theory. Moreover, within the local density approximation, we further find that spin singlet and quintet pairs form subtle multiple shell structures in density profiles of the trapped gas.
The Thomas-Fermi (TF) and Thomas-Fermi-von Weizsacker (TFW) theories of atoms and molecules with electron-electron repulsion are reviewed briefly. The main difference between the energies, E/sup TFW/ - E/sup TF/ (for large z), is a term D/sup TFW/z2. (It is also believed that E/sup Q/ - E/sup TF/ approx. D/sup Q/z2, where E/sup Q/ is the true quantum ground state energy). To calculate D/sup TFW/, it is necessary to find the positive solution to the differential equation: ]- Δ + vertical bar psi(x) vertical bar/sup 4/3/ - vertical bar x vertical bar-1] psi(x) = 0 in three dimensions. While this equation arises from TFW theory with electron-electron repulsion, it also has a second interpretation - namely as the TFW equation for an atom without electron-electron repulsion. The main content of this report is the numerical solution of this equation and the evaluation of D/sup TFW/
Quantum Hall states of atomic Bose gases: Density profiles in single-layer and multilayer geometries
We describe the density profiles of confined atomic Bose gases in the high-rotation limit, in single-layer and multilayer geometries. We show that, in a local-density approximation, the density in a single layer shows a landscape of quantized steps due to the formation of incompressible liquids, which are analogous to fractional quantum Hall liquids for a two-dimensional electron gas in a strong magnetic field. In a multilayered setup we find different phases, depending on the strength of the interlayer tunneling t. We discuss the situation where a vortex lattice in the three-dimensional condensate (at large tunneling) undergoes quantum melting at a critical tunneling tc1. For tunneling well below tc1 one expects weakly coupled or isolated layers, each exhibiting a landscape of quantum Hall liquids. After expansion, this gives a radial density distribution with characteristic features (cusps) that provide experimental signatures of the quantum Hall liquids
Electron capture into the 4s state of atomic hydrogen by H+ impact on noble gases
Cross sections for electron capture into the 4s state of hydrogen have been measured for 10--150-keV protons incident upon He, Ne, Ar, Kr, and Xe. The cross-section curves for each gas reach an apparent maximum in this projectile-energy range. The values for Kr and Xe are consistent with an n-3 scaling in previous 3s capture-cross-section measurements in this projectile range. The He, Ne, and Ar values are in excellent agreement with previously reported measurements above 60 keV but give consistently higher values than those measurements at the lower energies. There are no comparable Kr and Xe values in the literature. The shape and magnitude of the excitation functions for these gases indicate that the internal structure of the target atom is an important factor in the charge-transfer process
Cluster ions from keV-energy ion and atom bombardment of frozen gases
David, Donald E.; Magnera, Thomas F.; Tian, Rujiang; Stulik, Dusan; Michl, Josef
1986-04-01
A brief survey is given of the mass spectra obtained from frozen gases by bombardment with keV-energy ions and atoms. The internal chemical constitution of the observed secondary cluster ions, which bears no simple relation to the molecular structure of the solid, has been established by observations of collision-induced dissociation, laser-induced dissociation and metastable decay. It has been correlated with the chemical composition of the residual bombarded solid, deduced from spectroscopic observations. These results, as well as preliminary results on sputtering yields for impact of 1-4 keV rare gas ions on solid argon, are compatible with the previously proposed mechanistic model for the formation of the cluster ions based on the flow of supercritical gas from the elastic collision spike region.
Vortex structures and zero-energy states in the BCS-to-BEC evolution of p-wave resonant Fermi gases
Multiply quantized vortices in the BCS-to-BEC (Bose-Einstein condensation) evolution of p-wave resonant Fermi gases are investigated theoretically. The vortex structure and the low-energy quasiparticle states are discussed, based on the self-consistent calculations of the Bogoliubov-de Gennes and gap equations. We reveal the direct relation between the macroscopic structure of vortices, such as particle densities, and the low-lying quasiparticle state. In addition, the net angular momentum for multiply quantized vortices with a vorticity κ is found to be expressed by a simple equation, which reflects the chirality of the Cooper pairing. Hence, the observation of the particle density depletion and the measurement of the angular momentum will provide the information on the core-bound state and p-wave superfluidity. Moreover, the details on the zero energy Majorana state are discussed in the vicinity of the BCS-to-BEC evolution. It is demonstrated numerically that the zero energy Majorana state appears in the weak coupling BCS limit only when the vortex winding number is odd. The κ branches of the core-bound states for a vortex state with vorticity κ exist; however, only one of them can be the zero energy. This zero energy state vanishes at the BCS-BEC topological phase transition because of interference between the core-bound and edge-bound states.
GAPHYOR (GAz PHYsique ORsay) is a retrieval system of the simple properties of atoms and molecules (energy levels, lifetimes, dipole moments, polarizability etc.), of the interaction properties between these particles (cross-sections, reaction rates etc.) and of the macroscopic properties of the corresponding gases (viscosity, electronic and ion mobility, thermodynamic functions etc.). The chemical systems described must be based on a small number of elements (1 to 4 in the most recent version) and composed of molecules having 8 atoms at the most. In the present article the fundamental principles of GAPHYOR are described and by means of a few simple statistics the present state of the bank after five years of operation is analysed. On 1.11.76 the file contained more than 33,000 lines, and these increase by about 10,000 per year. The information comes from about 300 periodicals, although 45% of the results are taken from 4 principal journals. Geographical analysis of the file provides useful information about the scientific work of the various research centres and the scientific publishing policies of the different countries. Finally, the qualities, difficulties and possible improvements of GAPHYOR are analysed
A 3-photon process for producing degenerate gases of metastable alkaline-earth atoms
Barker, Daniel S.; Pisenti, Neal C.; Reschovsky, Benjamin J.; Campbell, Gretchen K.
2016-05-01
We present a method for creating quantum degenerate gases of metastable alkaline-earth atoms. A degenerate gas in any of the 3 P metastable states has not previously been obtained due to large inelastic collision rates, which are unfavorable for evaporative cooling. Samples prepared in the 1S0 ground state can be rapidly transferred to either the 3P2 or 3P0 state via a coherent 3-photon process. Numerical integration of the density matrix evolution for the fine structure of bosonic alkaline-earth atoms shows that transfer efficiencies of ~= 90 % can be achieved with experimentally feasible laser parameters in both Sr and Yb. Importantly, the 3-photon process does not impart momentum to the degenerate gas during excitation, which allows studies of these metastable samples outside the Lamb-Dicke regime. We discuss several experimental challenges to the successful realization of our scheme, including the minimization of differential AC Stark shifts between the four states connected by the 3-photon transition.
Theory of open Fermi systems for description of atomic nuclei and nuclear reactions
The Leman expansion for exact single-particle Green function, taking into account the continuous spectrum states of an open Fermi system, is built. The analytical properties of the elastic scattering S-matrix and Green function are investigated, taking into account ground state correlations. On the base of the projection operator method the Leman expansion of mass operators and equations of the unified theory of nuclear reactions are found. The conclusion is drawn on the coincidence of the mean field, real part of optical potential for global average scheme and generalized Hartree-Fock potential is done. The character of fluctuations of the optical potential parameters for the transition from the global set to individual sets and their connection with the dispersion relation are described
Two-body physics in quasi-low-dimensional atomic gases under spin-orbit coupling
Wang, Jing-Kun; Yi, Wei; Zhang, Wei
2016-06-01
One of the most dynamic directions in ultracold atomic gas research is the study of low-dimensional physics in quasi-low-dimensional geometries, where atoms are confined in strongly anisotropic traps. Recently, interest has significantly intensified with the realization of synthetic spin-orbit coupling (SOC). As a first step toward understanding the SOC effect in quasi-low-dimensional systems, the solution of two-body problems in different trapping geometries and different types of SOC has attracted great attention in the past few years. In this review, we discuss both the scattering-state and the bound-state solutions of two-body problems in quasi-one and quasi-two dimensions. We show that the degrees of freedom in tightly confined dimensions, in particular with the presence of SOC, may significantly affect system properties. Specifically, in a quasi-one-dimensional atomic gas, a one-dimensional SOC can shift the positions of confinement-induced resonances whereas, in quasitwo- dimensional gases, a Rashba-type SOC tends to increase the two-body binding energy, such that more excited states in the tightly confined direction are occupied and the system is driven further away from a purely two-dimensional gas. The effects of the excited states can be incorporated by adopting an effective low-dimensional Hamiltonian having the form of a two-channel model. With the bare parameters fixed by two-body solutions, this effective Hamiltonian leads to qualitatively different many-body properties compared to a purely low-dimensional model.
Supplement No. 4 to the Safety Evaluation Report related to the operation of the Enrico Fermi Atomic Power Plant, Unit 2, provides the staff's evaluation of additional information submitted by the applicant regarding outstanding review issues identified in Supplement No. 3 to the Safety Evaluation Report, dated January 1983
Supplement No. 3 to the Safety Evaluation Report related to the operation of the Enrico Fermi Atomic Power Plant, Unit 2, provides the staff's evaluation of additional information submitted by the applicant regarding outstanding review issues identified in Supplement No. 2 to the Safety Evaluation Report, dated January 1982
We report a novel method of measuring the spin polarization of alkali-metal atoms by detecting the NMR frequency shifts of noble gases. We calculated the profile of 87Rb D1 line absorption cross sections. We then measured the absorption profile of the sample cell, from which we calculated the 87Rb number densities at different temperatures. Then we measured the frequency shifts resulted from the spin polarization of the 87Rb atoms and calculated its polarization degrees at different temperatures. The behavior of frequency shifts versus temperature in experiment was consistent with theoretical calculation, which may be used as compensative signal for the NMRG closed-loop control system
A Quantum Gas Microscope for Fermionic Atoms
Cheuk, Lawrence W.; Nichols, Matthew A.; Okan, Melih; Gersdorf, Thomas; Ramasesh, Vinay V.; Bakr, Waseem S.; Lompe, Thomas; Zwierlein, Martin W.
2015-01-01
Strongly interacting fermions define the properties of complex matter at all densities, from atomic nuclei to modern solid state materials and neutron stars. Ultracold atomic Fermi gases have emerged as a pristine platform for the study of many-fermion systems. Here we realize a quantum gas microscope for fermionic $^{40}$K atoms trapped in an optical lattice, which allows one to probe strongly correlated fermions at the single atom level. We combine 3D Raman sideband cooling with high-resolu...
2010-10-18
.... Nuclear Regulatory Commission (NRC or the Commission) now or hereafter in effect. Fermi 1 was a fast breeder reactor power plant cooled by sodium and operated at essentially atmospheric pressure. In November... in Monroe County, Michigan. Fermi 1 is a permanently shutdown nuclear reactor facility. The...
The Moliere approximation to the Thomas-Fermi screening function was used in a screened Coulomb potential to calculate tables of differential scattering cross sections for laboratory scattering angles of 90 and 1380. Data are provided for incident ions of 3He+ and 20Ne+ as a function of energy (0.05 to 5.0 keV) and target atom. 3 references
The Fermi-Segre normalization expression is rederived for arbitrary orbital angular momentum l within the context of a generalized WKB method. Results from the approximation are compared with calculations employing Hartree-Slater atomic potentials
Efimov, D. K.; Miculis, K.; Bezuglov, N. N.; Ekers, A.
2016-06-01
We consider Penning ionization of Rydberg atom pairs as an Auger-type process induced by the dipole–dipole interaction and employ semiclassical formulae for dipole transitions to calculate the autoionization width as a function of the principal quantum numbers, n d , n i , of both atoms. While for symmetric atom pairs with {n}d={n}i={n}0 the well-known increase of the autoionization width with increasing n 0 is obtained, the result for asymmetric pairs is counterintuitive—for a fixed n i of the ionizing atom of the pair, the autoionization width strongly increases with decreasing n d of the de-excited atom. For H Rydberg atoms this increase reaches two orders of magnitude at the maximum of the n d dependence, and the same type of counterintuitive behavior is exhibited also by Na, Rb and Cs atoms. This is a purely quantum-mechanical effect, which points towards existence of optimal (we call them ‘Tom’ and ‘Jerry’ for ‘big’ and ‘small’) pairs of Rydberg atoms with respect to autoionization efficiency. Building on the model of population redistribution in cold Rydberg gases proposed in [1], we demonstrate that population evolution following the initial laser excitation of Rydberg atoms in state n 0 would eventually lead to the formation of such Tom–Jerry pairs with {n}i\\gt {n}0\\gt {n}d which feature autoionization widths that are enhanced by several orders of magnitude compared to that of two atoms in the initial laser-excited state n 0. We also show that in the high-density regime of cold Rydberg gas experiments the ionization rate of Tom–Jerry pairs can be substantially larger than the blackbody radiation-induced photoionization rate.
Erika Bailey
2011-07-07
The Enrico Fermi Atomic Power Plant, Unit 1 (Fermi 1) was a fast breeder reactor design that was cooled by sodium and operated at essentially atmospheric pressure. On May 10, 1963, the Atomic Energy Commission (AEC) granted an operating license, DPR-9, to the Power Reactor Development Company (PRDC), a consortium specifically formed to own and operate a nuclear reactor at the Fermi 1 site. The reactor was designed for a maximum capability of 430 megawatts (MW); however, the maximum reactor power with the first core loading (Core A) was 200 MW. The primary system was filled with sodium in December 1960 and criticality was achieved in August 1963.
Differential cross sections for charge change resulting from the scattering of 20-MeV 127I5+ and 20-MeV 35Cl4+ ions from thin gaseous targets of Xe, Ar, and N2 were measured and published. Total electron loss cross sections were measured for 20-MeV Fe4+ ions transmitted through a variety of atomic and molecular gaseous targets. All low-charge-state peaks were well resolved. The measured total cross sections per target atom for loss of one to eleven electrons in a single collision for 20-MeV Fe4+ ions transmitted through gases of N2, SF6, Ar, Kr, and Xe are shown as a function of the final charge state q. There is an overall rather steep decrease for increasing q, interrupted by a weaker decrease between q = 6 and q = 8. For the highest q values, the cross sections follow a nearly exponential decrease with q. The cross sections are smaller and the decrease at high q values is more pronounced, the lighter the target atoms. The cross sections are smaller for molecular targets than for the noble gases. 2 figures
In early work by the writer introducing the Pauli potential VP (r) into density functional theory, the relation of VP (r) to the, as yet unknown, single-particle kinetic energy density functional was emphasized. Here, because of ongoing experiments on ultracold atomic gases of fermions, an explicit expression for the first derivative of VP (r) for an arbitrary number of closed shells generated by harmonic confinement is derived in terms of the spherically symmetric particle density n(r) and the confining potential. (author)
黄志远; 戴晔; 赵睿睿; 王丁; 冷雨欣
2016-01-01
We numerically study the pulse compression approaches based on atomic or molecular gases in a hollow-core fiber. From the perspective of self-phase modulation (SPM), we give the extensive study of the SPM infl uence on a probe pulse with molecular phase modulation (MPM) effect. By comparing the two compression methods, we summarize their advan-tages and drawbacks to obtain the few-cycle pulses with micro-or millijoule energies. It is also shown that the double pump-probe approach can be used as a tunable dual-color source by adjusting the time delay between pump and probe pulses to proper values.
Towards Quantum Turbulence in Cold Atomic Fermionic Superfluids
Bulgac, Aurel; Wlazłowski, Gabriel
2016-01-01
Fermionic superfluids provide a new realization of quantum turbulence, accessible to both experiment and theory, yet relevant to both cold atoms and nuclear astrophysics. In particular, the strongly interacting Fermi gas realized in cold-atom experiments is closely related to dilute neutron matter in the neutron star crust. Unlike the liquid superfluids 4He (bosons) and 3He (fermions), where quantum turbulence has been studied in laboratory for decades, quantum gases, and in particular superfluid Fermi gases stand apart for a number of reasons. Fermi gases admit a rather reliable microscopic description based on density functional theory which describes both static and dynamical phenomena. Cold atom experiments demonstrate exquisite control over particle number, spin polarization, density, temperature, and interacting strength. Topological defects such as domain walls and quantized vortices, which lie at the heart of quantum turbulence, can be created and manipulated with time-dependent external potentials, a...
Optical resonance shifts in the fluorescence imaging of thermal and cold Rubidium atomic gases
Jenkins, S D; Javanainen, J; Bourgain, R; Jennewein, S; Sortais, Y R P; Browaeys, A
2016-01-01
We show that the resonance shifts in fluorescence of a cold gas of rubidium atoms substantially differ from those of thermal atomic ensembles that obey the standard continuous medium electrodynamics. The analysis is based on large-scale microscopic numerical simulations and experimental measurements of the resonance shifts in a steady-state response in light propagation.
Optical Resonance Shifts in the Fluorescence of Thermal and Cold Atomic Gases
Jenkins, S. D.; Ruostekoski, J.; Javanainen, J.; Bourgain, R.; Jennewein, S.; Sortais, Y. R. P.; Browaeys, A.
2016-05-01
We show that the resonance shifts in the fluorescence of a cold gas of rubidium atoms substantially differ from those of thermal atomic ensembles that obey the standard continuous medium electrodynamics. The analysis is based on large-scale microscopic numerical simulations and experimental measurements of the resonance shifts in a steady-state response in light propagation.
Dispersion of the dielectric permittivity of dense and cold atomic gases
On the basis of general theoretical results developed previously in [JETP 112, 246 (2011)], we analyze the atomic polarization created by weak monochromatic light in an optically thick, dense, and cold atomic ensemble. We show that the amplitude of the polarization averaged over a uniform random atomic distribution decreases exponentially beyond the boundary regions. The phase of this polarization increases linearly with increasing penetration into the medium. On these grounds, we determine numerically the wavelength of the light in the dense atomic medium, its extinction coefficient, and the complex refractive index and dielectric constant of the medium. The dispersion of the permittivity is investigated for different atomic densities. It is shown that, for dense clouds, the real part of the permittivity is negative in some spectral domains.
Engineering the Dynamics of Effective Spin-Chain Models for Strongly Interacting Atomic Gases
Volosniev, A. G.; Petrosyan, D.; Valiente, M.; Fedorov, D. V.; Jensen, A. S.; Zinner, Nikolaj Thomas
2015-01-01
We consider a one-dimensional gas of cold atoms with strong contact interactions and construct an effective spin-chain Hamiltonian for a two-component system. The resulting Heisenberg spin model can be engineered by manipulating the shape of the external confining potential of the atomic gas. We...... find that bosonic atoms offer more flexibility for tuning independently the parameters of the spin Hamiltonian through interatomic (intra-species) interaction which is absent for fermions due to the Pauli exclusion principle. Our formalism can have important implications for control and manipulation of...
Işkın, Menderes; Subaşı, Ahmet Levent
2012-01-01
PHYSICAL REVIEW A 87, 063627 (2013) Topological superfluid phases of an atomic Fermi gas with in- and out-of-plane Zeeman fields and equal Rashba-Dresselhaus spin-orbit coupling M. Iskin1 and A. L. Subas¸ı2 1Department of Physics, Koc¸ University, Rumelifeneri Yolu, 34450 Sarıyer, Istanbul, Turkey 2Department of Physics, Faculty of Science and Letters, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey (Received 16 November 2012; revised manuscript received 14 May...
Byers, N
2002-01-01
This talk is about Enrico Fermi and Leo Szilard, their collaboration and involvement in nuclear energy development and decisions to construct and use the atomic bomb in World War II. Fermi and Szilard worked closely together at Columbia in 1939-40 to explore feasibility of a nuclear chain reaction, and then on the physics for construction of the first pile (nuclear reactor). "On matters scientific or technical there was rarely any disagreement between Fermi and myself" Szilard said. But there were sharp differences on other matters.
Cruz, Salvador A.
An assessment of the use of statistical atomic models for the study of many-electron atom confinement is presented. The Thomas-Fermi-Dirac-[lambda]-Weizsäcker TFD[lambda]W functional formalism based on known properties of the orbital electron density is shown to be an appropriate tool for the description of the ground-state energy evolution of many-electron atoms spatially limited by closed and open boundaries. A brief review of the strategy followed in the TFD[lambda]W method for the study of atoms enclosed in hard and soft spherical cavities is presented along with more refined quantitative calculations as compared with previous results. Also, detailed quantitative results are shown-for the first time-in the case of confinement by a hard prolate spheroidal box for nuclear positions located at one of the foci and for an atom located at a distance D from a hard plane. A discussion is presented on the physical consequences of different confinement geometries and the adequacy of the TFD[lambda]W formalism to explore many-electron atom confinement by open and closed boundaries.
Quantum gases finite temperature and non-equilibrium dynamics
Szymanska, Marzena; Davis, Matthew; Gardiner, Simon
2013-01-01
The 1995 observation of Bose-Einstein condensation in dilute atomic vapours spawned the field of ultracold, degenerate quantum gases. Unprecedented developments in experimental design and precision control have led to quantum gases becoming the preferred playground for designer quantum many-body systems. This self-contained volume provides a broad overview of the principal theoretical techniques applied to non-equilibrium and finite temperature quantum gases. Covering Bose-Einstein condensates, degenerate Fermi gases, and the more recently realised exciton-polariton condensates, it fills a gap by linking between different methods with origins in condensed matter physics, quantum field theory, quantum optics, atomic physics, and statistical mechanics. Thematically organised chapters on different methodologies, contributed by key researchers using a unified notation, provide the first integrated view of the relative merits of individual approaches, aided by pertinent introductory chapters and the guidance of ed...
Optical pumping effect in absorption imaging of F=1 atomic gases
Kim, Sooshin; Noh, Heung-Ryoul; Shin, Y
2016-01-01
We report our study of the optical pumping effect in absorption imaging of $^{23}$Na atoms in the $F=1$ hyperfine spin states. Solving a set of rate equations for the spin populations under a probe beam, we obtain an analytic expression for the optical signal of the $F=1$ absorption imaging. Furthermore, we verify the result by measuring the absorption spectra of $^{23}$Na Bose-Einstein condensates prepared in various spin states with different probe beam pulse durations. The analytic result can be used in quantitative analysis of $F=1$ spinor condensate imaging and readily applied to other alkali atoms with $I=3/2$ nuclear spin such as $^{87}$Rb.
Synthesis of atomically thin GaSe wrinkles for strain sensors
Wang, Cong; Yang, Sheng-Xue; Zhang, Hao-Ran; Du, Le-Na; Wang, Lei; Yang, Feng-You; Zhang, Xin-Zheng; Liu, Qian
2016-04-01
A wrinkle-based thin-film device can be used to develop optoelectronic devices, photovoltaics, and strain sensors. Here, we propose a stable and ultrasensitive strain sensor based on two-dimensional (2D) semiconducting gallium selenide (GaSe) for the first time. The response of the electrical resistance to strain was demonstrated to be very sensitive for the GaSe-based strain sensor, and it reached a gauge factor of-4.3, which is better than that of graphene-based strain sensors. The results show us that strain engineering on a nanoscale can be used not only in strain sensors but also for a wide range of applications, such as flexible field-effect transistors, stretchable electrodes, and flexible solar cells.
Unitary quantum gases: from cold atoms to quark-gluon plasmas
van Heugten, J. J. R. M.
2013-01-01
We investigate the many-body properties of two distinct degenerate systems with strong interactions, namely that of a quark-gluon plasma and of an atomic Bose gas. In the first part of this thesis, the temperature dependence of the thermodynamic potential of quantum chromodynamics is studied. In par
This is the sixth annual progress report on this project. During the period covered by the first five reports (June 1976 through December 1980) a shock tube and optical systems to measure H, D and O atom concentrations were built and fully characterized. The performance of our microwave discharge lamps was defined by numerous high-resolution spectroscopic profiles, while empirical calibrations were also made for all three of the above species. H, D and O atom concentrations were measured in gas mixtures containing H2, D2, O2, CD4, C2H6, C2D6, C3H8 and C3D8 in various proportions, and rate constants of several elementary reactions were deduced from the data. During the period covered by this report (January 1 to November 30, 1981) we have made an extensive series of measurements of O concentrations in shock-heated mixtures of C2H6-O2-AR, C2D6-O2-Ar, C3H8-O2-Ar and C3D8-O2-Ar. We have made kinetic modelling calculations for these mixtures to correlate these observed O concentrations, and also our earlier measurements of H and D atom concentrations in similar mixtures, with elementary reaction rate constants. From these calculations we expect to deduce rate constants for a number of reactions. We have also completed a series of O atom measurements in H2-N2O-Ar and D2-N2O-Ar mixtures, from which we have obtained good rate constant data for the reactions O + H2 → OH + H and O + D2 → OD + D. Our immediate future plans involve meaurements of H and D atoms in the dissociation of benzene, toluene, neopentane and their deuterium analogs leading to direct evaluation of rate constants for the unimolecular dissociation of these substances
Singh Vishwanath P.
2012-01-01
Full Text Available Total mass attenuation coefficients, µm, effective atomic number, Zeff, and effective electron density, Neff, of different gases - carbon dioxide, methane, acetylene, propane, butane, and pentane used in radiation detectors, have been calculated for the photon energy of 1 keV to 100 GeV. Each gas has constant Zeff values between 0.10 to 10 MeV photon energies; however, these values are way far away from ICRU tissue. Carbon dioxide gas shows the closest tissue equivalence in the entire photon energy spectrum. Relative tissue equivalences of the mixtures of gases with respect to ICRU tissue are in the range of 0.998-1.041 for air, argon (4.5% + methane (95.5%, argon (0.5% + carbon dioxide (99.5%, and nitrogen (5% + methane (7% + carbon dioxide (88%. The gas composition of xenon (0.5% + carbon dioxide (99.5% shows 1.605 times higher tissue equivalence compared to the ICRU tissue. The investigated photon interaction parameters are useful for exposure and energy absorption buildup factors calculation and design, and fabrication of gaseous detectors for ambient radiation measurement by the Geiger-Muller detector, ionization chambers and proportional counters.
Zhi-Yuan, Huang; Ye, Dai; Rui-Rui, Zhao; Ding, Wang; Yu-Xin, Leng
2016-07-01
We numerically study the pulse compression approaches based on atomic or molecular gases in a hollow-core fiber. From the perspective of self-phase modulation (SPM), we give the extensive study of the SPM influence on a probe pulse with molecular phase modulation (MPM) effect. By comparing the two compression methods, we summarize their advantages and drawbacks to obtain the few-cycle pulses with micro- or millijoule energies. It is also shown that the double pump-probe approach can be used as a tunable dual-color source by adjusting the time delay between pump and probe pulses to proper values. Project supported by the National Natural Science Foundation of China (Grant Nos. 11204328, 61221064, 61078037, 11127901, 11134010, and 61205208), the National Basic Research Program of China (Grant No. 2011CB808101), and the Natural Science Foundation of Shanghai, China (Grant No. 13ZR1414800).
Corona discharge in working media of lasers on a fluoride rare gases and molecule and atom florines
We investigated the oscillograms of the corona discharge current, the dependences of the repetition rate of the current pulse on the voltage at the needles, and the current-voltage characteristics of the discharge in the rare gas mixture with F2 molecules. An investigation of the emission spectra of the generation zones of the corona discharge and the dependences of the emission lines of fluorine atoms, the heavy rare gases and their monofluorides on the corona discharge current was performed. The given corona discharge is uniformly distributed over the length of the active media of electro-discharge lasers with the pumping transverse discharge, therefore, it is of great interest in using it in electric circulation modules and UV preionisation systems of high-pressure lasers
Tőkési K.
2014-01-01
Full Text Available The ionization of Ar by 15 keV N+ ion is studied theoretically. The energy distributions of the ejected electrons as a function of the scattering angle were calculated using the classical trajectory Monte Carlo method. We identify the signature of the Fermi-shuttle type ionization in the double differential cross sections which should be a possible source of the high energy electrons in the plasma. Our classical calculation also describes the previously measured data with high accuracy.
DC normal glow discharges in atmospheric pressure atomic and molecular gases
DC glow discharges were experimentally investigated in atmospheric pressure helium, argon, hydrogen, nitrogen and air. The discharges were characterized by visualization of the discharges and voltage and current measurements for current of up to several milliamperes. Significant differences are seen in the gas temperature; however all the discharges appear to operate as temperature and pressure scaled versions of low pressure discharges. In the normal glow discharges, features such as negative glow, Faraday dark space and positive column regions are clearly observable. In hydrogen and to a lesser degree in helium and argon standing striations of the positive column were visible in the normal glow regime. Normal glow characteristics such as normal current density at the cathode and constant electric field in the positive column are observed although there are some unexplained effects. The emission spectra for each of the discharges were studied. Also the rotational and vibrational temperature of the discharges were measured by adding trace amounts of N2 to the discharge gas and comparing modeled optical emission spectra of the N2 2nd positive system with spectroscopic measurements from the discharge. The gas temperatures for a 3.5 mA normal glow discharge were around 420 K, 680 K, 750 K, 890 K and 1320 K in helium, argon, hydrogen, nitrogen and air, respectively. Measured vibrational and excitation temperatures indicate non-thermal discharge operation. Mixtures of gases achieved intermediate temperatures.
Two-photon-excited stimulated emission from atomic oxygen in flames and cold gases
The authors describe their observation of stimulated emission (SE) from the atomic oxygen 33P - 33 transition at 845 nm following two-photon excitation of the 23P - 33 transition using 226-nm laser radiation. They studied this SE process in flames and room temperature flows of O2 and N2O, comparing its behavior to fluorescence (FL) signals acquired simultaneously. Rapid depletion of the laser-excited state by the SE process may impact the use of diagnostic techniques based on multiphoton excitation in oxygen and other species. The strength of the SE signal suggests that it may have applications as a diagnostic technique. To prove that the signal observed in the direction of the laser beam as in fact SE, they measured the relative strengths of the forward direction signal and the FL collected at right angles. Because FL and SE have distinctly different dependences on the density of excited atoms or molecules responsible for their emission, their signals should behave differently as the excited state density is varied through changes is excitation conditions. The difference in the behavior of the signals, especially evident at the lower intensities is shown
Saß, Anne; Forge, Ralf; Christopoulos, Stavros; Knicker, Katharina; Moroshkin, Peter; Weitz, Martin
2014-01-01
We study laser cooling of atomic gases by collisional redistribution of fluorescence. In a high pressure buffer gas regime, frequent collisions perturb the energy levels of alkali atoms, which allows for the absorption of a far red detuned irradiated laser beam. Subsequent spontaneous decay occurs close to the unperturbed resonance frequency, leading to a cooling of the dense gas mixture by redistribution of fluorescence. Thermal deflection spectroscopy indicates large relative temperature ch...
Non-equilibrium universality in the dynamics of dissipative cold atomic gases
Marcuzzi, M.; Levi, E.; Li, W.; Garrahan, J. P.; Olmos, B.; Lesanovsky, I.
2015-07-01
The theory of continuous phase transitions predicts the universal collective properties of a physical system near a critical point, which for instance manifest in characteristic power-law behaviours of physical observables. The well-established concept at or near equilibrium, universality, can also characterize the physics of systems out of equilibrium. The most fundamental instance of a genuine non-equilibrium phase transition is the directed percolation (DP) universality class, where a system switches from an absorbing inactive to a fluctuating active phase. Despite being known for several decades it has been challenging to find experimental systems that manifest this transition. Here we show theoretically that signatures of the DP universality class can be observed in an atomic system with long-range interactions. Moreover, we demonstrate that even mesoscopic ensembles—which are currently studied experimentally—are sufficient to observe traces of this non-equilibrium phase transition in one, two and three dimensions.
MeV femtosecond electron pulses from direct-field acceleration in low density atomic gases
Varin, Charles; Hogan-Lamarre, Pascal; Fennel, Thomas; Piché, Michel; Brabec, Thomas
2015-01-01
Using three-dimensional particle-in-cell simulations, we show that few-MeV electrons can be produced by focusing tightly few-cycle radially-polarized laser pulses in a low-density atomic gas. In particular, it is observed that for the few-TW laser power needed to reach relativistic electron energies, longitudinal attosecond microbunching occurs naturally, resulting in femtosecond structures with high-contrast attosecond density modulations. The three-dimensional particle-in-cell simulations show that in the relativistic regime the leading pulse of these attosecond substructures survives to propagation over extended distances, suggesting that it could be delivered to a distant target, with the help of a properly designed transport beamline.
Acharya, Bijaya; Platter, Lucas
2016-01-01
We use an effective field theory framework to analyze the Efimov effect in heteronuclear three-body systems consisting of two species of atoms with a large interspecies scattering length. In the leading-order description of this theory, various three-body observables in heteronuclear mixtures can be universally parameterized by one three-body parameter. We present the next-to-leading corrections, which include the effects of the finite interspecies effective range and the finite intraspecies scattering length, to various three-body observables. We show that only one additional three-body parameter is required to render the theory predictive at this order. By including the effective range and intraspecies scattering length corrections, we derive a set of universal relations that connect the different Efimov features near the interspecies Feshbach resonance. Furthermore, we show that these relations can be interpreted in terms of the running of the three-body counterterms that naturally emerge from proper renor...
Exploring the thermodynamics of a universal Fermi gas
Nascimbène, S.; Navon, N.; Jiang, K. J.; Chevy, F.; Salomon, C.
2010-02-01
One of the greatest challenges in modern physics is to understand the behaviour of an ensemble of strongly interacting particles. A class of quantum many-body systems (such as neutron star matter and cold Fermi gases) share the same universal thermodynamic properties when interactions reach the maximum effective value allowed by quantum mechanics, the so-called unitary limit. This makes it possible in principle to simulate some astrophysical phenomena inside the highly controlled environment of an atomic physics laboratory. Previous work on the thermodynamics of a two-component Fermi gas led to thermodynamic quantities averaged over the trap, making comparisons with many-body theories developed for uniform gases difficult. Here we develop a general experimental method that yields the equation of state of a uniform gas, as well as enabling a detailed comparison with existing theories. The precision of our equation of state leads to new physical insights into the unitary gas. For the unpolarized gas, we show that the low-temperature thermodynamics of the strongly interacting normal phase is well described by Fermi liquid theory, and we localize the superfluid transition. For a spin-polarized system, our equation of state at zero temperature has a 2 per cent accuracy and extends work on the phase diagram to a new regime of precision. We show in particular that, despite strong interactions, the normal phase behaves as a mixture of two ideal gases: a Fermi gas of bare majority atoms and a non-interacting gas of dressed quasi-particles, the fermionic polarons.
Kuramasu, T.; Ohyama, H.; Yoshikawa, S.; Terazawa, N.; Ishikawa, Y.; Arai, S.
1995-07-01
Quartet excited halogen atoms F*(2p4 3s,4PJ), Cl*(3p4 4s,4PJ), Br*(4p4 5s,4PJ), and I*(5p4 6s,4PJ), where the J's are 5/2, 3/2, and 1/2, were found to be produced in the electron pulse irradiation of Ne or Ar containing one of SF6, CCl4, CClF3, CBrF3, CBr2F2, and CF3I. The population distribution ratios at the stage of production were 1.0(J=5/2):0.41(J=3/2):0.06(J=1/2) for F* in Ne containing SF6, 1.0(J=5/2):0.27(J=3/2):0.14(J=1/2) for Cl* in Ne containing CCl4, 1.0(J=5/2):0.29(J=3/2):0.2-0.3(J=1/2) for Br* in Ne containing CBr2F2, and 1.0(J=5/2):0.13(J=3/2):0.54(J=1/2) for I* in Ar containing CF3I. The observed ratios considerably differ from those calculated from the Boltzmann distribution law. F*(4P5/2), F*(4P3/2), and Cl*(4P5/2) are mainly produced by the reactions of lowest triplet excited diatomic molecules of neon with SF6 and CCl4. Cl*(4P3/2) and Cl*(4P1/2) are produced in a rapid process and deactivated into lower Cl*(4P5/2). Several reaction channels probably contribute to the formation of Br*(4PJ) and I*(4PJ). Rate constants for reactions of triplet excited diatomic molecules of neon or argon with these parent molecules were determined from observed absorption decay curves for Ne2* or Ar2* in the presence of parent molecules.
Propagation and scattering of high-intensity X-ray pulses in dense atomic gases and plasmas
Nonlinear spectroscopy in the X-ray domain is a promising technique to explore the dynamics of elementary excitations in matter. X-rays provide an element specificity that allows them to target individual chemical elements, making them a great tool to study complex molecules. The recent advancement of X-ray free electron lasers (XFELs) allows to investigate non-linear processes in the X-ray domain for the first time. XFELs provide short femtosecond X-ray pulses with peak powers that exceed previous generation synchrotron X-ray sources by more than nine orders of magnitude. This thesis focuses on the theoretical description of stimulated emission processes in the X-ray regime in atomic gases. These processes form the basis for more complex schemes in molecules and provide a proof of principle for nonlinear X-ray spectroscopy. The thesis also includes results from two experimental campaigns at the Linac Coherent Light Source and presents the first experimental demonstration of stimulated X-ray Raman scattering. Focusing an X-ray free electron laser beam into an elongated neon gas target generates an intense stimulated X-ray emission beam in forward direction. If the incoming X-rays have a photon energy above the neon K edge, they can efficiently photo-ionize 1s electrons and generate short-lived core excited states. The core-excited states decay mostly via Auger decay but have a small probability to emit a spontaneous X-ray photon. The spontaneous emission emitted in forward direction can stimulate X-ray emission along the medium and generate a highly directional and intense X-ray laser pulse. If the photon energy of the incoming X-rays however is below the ionization edge in the region of the pre-edge resonance the incoming X-rays can be inelastically scattered. This spontaneous X-ray Raman scattering process has a very low probability, but the spontaneously scattered photons in the beginning of the medium can stimulate Raman scattering along the medium. The
Propagation and scattering of high-intensity X-ray pulses in dense atomic gases and plasmas
Weninger, Clemens
2015-10-15
Nonlinear spectroscopy in the X-ray domain is a promising technique to explore the dynamics of elementary excitations in matter. X-rays provide an element specificity that allows them to target individual chemical elements, making them a great tool to study complex molecules. The recent advancement of X-ray free electron lasers (XFELs) allows to investigate non-linear processes in the X-ray domain for the first time. XFELs provide short femtosecond X-ray pulses with peak powers that exceed previous generation synchrotron X-ray sources by more than nine orders of magnitude. This thesis focuses on the theoretical description of stimulated emission processes in the X-ray regime in atomic gases. These processes form the basis for more complex schemes in molecules and provide a proof of principle for nonlinear X-ray spectroscopy. The thesis also includes results from two experimental campaigns at the Linac Coherent Light Source and presents the first experimental demonstration of stimulated X-ray Raman scattering. Focusing an X-ray free electron laser beam into an elongated neon gas target generates an intense stimulated X-ray emission beam in forward direction. If the incoming X-rays have a photon energy above the neon K edge, they can efficiently photo-ionize 1s electrons and generate short-lived core excited states. The core-excited states decay mostly via Auger decay but have a small probability to emit a spontaneous X-ray photon. The spontaneous emission emitted in forward direction can stimulate X-ray emission along the medium and generate a highly directional and intense X-ray laser pulse. If the photon energy of the incoming X-rays however is below the ionization edge in the region of the pre-edge resonance the incoming X-rays can be inelastically scattered. This spontaneous X-ray Raman scattering process has a very low probability, but the spontaneously scattered photons in the beginning of the medium can stimulate Raman scattering along the medium. The
Controlling Spin Current in a Trapped Fermi Gas
We study fundamental features of spin current in a very weakly interacting Fermi gas of 6Li. By creating a spin current and then reversing its flow, we demonstrate control of the spin current. This reversal is predicted by a spin vector evolution equation in energy representation, which shows how the spin and energy of individual atoms become correlated in the nearly undamped regime of the experiments. The theory provides a simple physical description of the spin current and explains both the large amplitude and the slow temporal evolution of the data. Our results have applications in studying and controlling fundamental spin interactions and spin currents in ultracold gases.
Charge states of high Z atoms in a strong laser field
We present a numerical solution of the Thomas-Fermi atom in the presence of a static electric field as a model of the adiabatic response of a heavy atom in the presence of a strong laser field. In this semiclassical approach, we calculate the resulting charge state of the atom and its induced dipole moment after the field is turned on. Due to the scaling properties of the Thomas-Fermi approach, the resulting total atomic charge and dipole moment can be expressed as a universal function of the field. We compare our results with recent ionization experiments performed on noble gases using laser fields. 7 refs., 5 figs
Petrović, Zoran Lj; Marić, Dragana; Malović, Gordana
2011-03-01
This special issue consists of papers that are associated with invited lectures, workshop papers and hot topic papers presented at the 20th European Sectional Conference on Atomic and Molecular Physics of Ionized Gases (ESCAMPIG XX). This conference was organized in Novi Sad (Serbia) from 13 to 17 July 2010 by the Institute of Physics of the University of Belgrade. It is important to note that this is not a conference 'proceedings'. Following the initial selection process by the International Scientific Committee, all papers were submitted to the journal by the authors and have been fully peer reviewed to the standard required for publication in Plasma Sources Science and Technology (PSST). The papers are based on presentations given at the conference but are intended to be specialized technical papers covering all or part of the topic presented by the author during the meeting. The ESCAMPIG conference is a regular biennial Europhysics Conference of the European Physical Society focusing on collisional and radiative aspects of atomic and molecular physics in partially ionized gases as well as on plasma-surface interaction. The conference focuses on low-temperature plasma sciences in general and includes the following topics: Atomic and molecular processes in plasmas Transport phenomena, particle velocity distribution function Physical basis of plasma chemistry Plasma surface interaction (boundary layers, sheath, surface processes) Plasma diagnostics Plasma and discharges theory and simulation Self-organization in plasmas, dusty plasmas Upper atmospheric plasmas and space plasmas Low-pressure plasma sources High-pressure plasma sources Plasmas and gas flows Laser-produced plasmas During ESCAMPIG XX special sessions were dedicated to workshops on: Atomic and molecular collision data for plasma modeling, organized by Professors Z Lj Petrovic and N Mason Plasmas in medicine, organized by Dr N Puac and Professor G Fridman. The conference topics were represented in the
Dipolar quantum gases of erbium
Since the preparation of the first Bose-Einstein condensate about two decades ago and the first degenerate Fermi gas following four years later a plethora of fascinating quantum phenomena have been explored. The vast majority of experiments focused on quantum degenerate atomic gases with short-range contact interaction between particles. Atomic species with large magnetic dipole moments, such as chromium, dysprosium, and erbium, offer unique possibilities to investigate phenomena arising from dipolar interaction. This kind of interaction is not only long-range but also anisotropic in character and imprints qualitatively novel features on the system. Prominent examples are the d-wave collapse of a dipolar Bose-Einstein condensate of chromium atoms realized by the group in Stuttgart, the spin magnetization and demagnetization dynamics observed by groups in Stuttgart, Paris, and Stanford, and the deformation of the Fermi surface observed by our group in Innsbruck. This thesis reports on the creation and study of the first Bose-Einstein condensate and degenerate Fermi gas of erbium atoms. Erbium belongs to the lanthanide group of elements and has a large magnetic moment of seven Bohr magneton. In particular, this thesis describes the experimental apparatus and the sequence for producing a dipolar quantum gas. There is an emphasis on the production of the narrow-line magneto-optical trap of erbium since this represents a very efficient and robust laser-cooling scheme that greatly simplifies the experimental procedure. After describing the experimental setup this thesis focuses on several fundamental questions related to the dipolar character of erbium and to its lanthanide nature. A first set of studies centers on the scattering properties of ultracold erbium atoms, including the elastic and the inelastic cross section and the spectrum of Feshbach resonances. Specifically, we observe that identical dipolar fermions do collide and rethermalize even at low temperatures
Strongly interacting ultracold quantum gases
Hui ZHAI
2009-01-01
This article reviews recent progresses in ul- tracold quantum gases, and it includes three subjects which are the Fermi gases across a Feshbach resonance, quantum gases in the optical lattices and the fast ro- tating quantum gases. In this article, we discuss many basic physics pictures and concepts in quantum gases, for examples, the resonant interaction, universality and condensation in the lowest Landau level; we introduce fundamental theoretical tools for studying these systems, such as mean-field theory for BEC-BCS crossover and for the boson Hubbard model; also, we emphasize the im- portant unsolved problems in the forefront of this field, for instance, the temperature effect in optical lattices.
Nambu-Goldstone Fermion Mode in Quark-Gluon Plasma and Bose-Fermi Cold Atom System
It was suggested that supersymmetry (SUSY) is broken at finite temperature, and as a result of the symmetry breaking, a Nambu-Goldstone fermion (goldstino) related to SUSY breaking appears. Since dispersion relations of quarks and gluons are almost degenerate at extremely high temperature, quasi-zero energy quark excitation was suggested to exist in quark-gluon plasma (QGP), though QCD does not have exact SUSY. On the other hand, in condensed matter system, a setup of cold atom system in which the Hamiltonian has SUSY was proposed, the goldstino was suggested to exist, and the dispersion relation of that mode at zero temperature was obtained recently. In this presentation, we obtain the expressions for the dispersion relation of the goldstino in cold atom system at finite temperature, and compare it with the dispersion of the quasi zero-mode in QGP. Furthermore, we show that the form of the dispersion relation of the goldstino can be understood by using an analogy with a magnon in ferromagnet. We also discuss on how the dispersion relation of the goldstino is reflected in observable quantities in experiment. (author)
We report on the first simultaneous observations that cover the optical, X-ray, and high-energy gamma-ray bands of the BL Lac object PKS 2155-304. The gamma-ray bands were observed for 11 days, between 2008 August 25 and 2008 September 6 (MJD 54704-54715), jointly with the Fermi Gamma-ray Space Telescope and the HESS atmospheric Cherenkov array, providing the first simultaneous MeV-TeV spectral energy distribution (SED) with the new generation of γ-ray telescopes. The ATOM telescope and the RXTE and Swift observatories provided optical and X-ray coverage of the low-energy component over the same time period. The object was close to the lowest archival X-ray and very high energy (VHE; >100 GeV) state, whereas the optical flux was much higher. The light curves show relatively little (∼30%) variability overall when compared to past flaring episodes, but we find a clear optical/VHE correlation and evidence for a correlation of the X-rays with the high-energy spectral index. Contrary to previous observations in the flaring state, we do not find any correlation between the X-ray and VHE components. Although synchrotron self-Compton models are often invoked to explain the SEDs of BL Lac objects, the most common versions of these models are at odds with the correlated variability we find in the various bands for PKS 2155-304.
Aharonian, F.; /Heidelberg, Max Planck Inst. /Dublin Inst.; Akhperjanian, A.G.; /Yerevan Phys. Inst.; Anton, G.; /Erlangen - Nuremberg U.; Barres de Almeida, U.; /Durham U.; Bazer-Bachi, A.R.; /Toulouse, CESR; Becherini, Y.; /APC, Paris; Behera, B.; /Heidelberg Observ.; Bernlohr, K.; /Heidelberg, Max Planck Inst. /Humboldt U., Berlin; Boisson, C.; /LUTH, Meudon; Bochow, A.; /Heidelberg, Max Planck Inst.; Borrel, V.; /Toulouse, CESR; Brion, E.; /DAPNIA, Saclay; Brucker, J.; /Erlangen - Nuremberg U.; Brun, P.; /DAPNIA, Saclay; Buhler, R.; /Heidelberg, Max Planck Inst.; Bulik, T.; /Warsaw, Copernicus Astron. Ctr.; Busching, I.; /Western Ontario U.; Boutelier, T.; /Grenoble Observ.; Chadwick, P.M.; /Durham U.; Charbonnier, A.; /Paris U., VI-VII; Chaves, R.C.G.; /Heidelberg, Max Planck Inst. /Durham U. /Ecole Polytechnique /Heidelberg, Max Planck Inst. /Annecy, LAPP /Humboldt U., Berlin /Durham U. /Namibia U. /Western Ontario U. /Ecole Polytechnique /Heidelberg, Max Planck Inst. /Durham U. /APC, Paris /Heidelberg, Max Planck Inst. /Dublin Inst. /Annecy, LAPP /Grenoble Observ. /Warsaw, Copernicus Astron. Ctr. /Cracow, INP /Heidelberg, Max Planck Inst. /Heidelberg Observ. /APC, Paris /Montpellier U. /Montpellier U. /Montpellier U. /Heidelberg, Max Planck Inst. /Ecole Polytechnique /Humboldt U., Berlin /Dublin Inst. /Montpellier U. /APC, Paris /SLAC; /more authors..
2009-05-07
We report on the first simultaneous observations that cover the optical, X-ray, and high-energy gamma-ray bands of the BL Lac object PKS 2155-304. The gamma-ray bands were observed for 11 days, between 2008 August 25 and 2008 September 6 (MJD 54704-54715), jointly with the Fermi Gamma-ray Space Telescope and the HESS atmospheric Cherenkov array, providing the first simultaneous MeV-TeV spectral energy distribution (SED) with the new generation of {gamma}-ray telescopes. The ATOM telescope and the RXTE and Swift observatories provided optical and X-ray coverage of the low-energy component over the same time period. The object was close to the lowest archival X-ray and very high energy (VHE; >100 GeV) state, whereas the optical flux was much higher. The light curves show relatively little ({approx}30%) variability overall when compared to past flaring episodes, but we find a clear optical/VHE correlation and evidence for a correlation of the X-rays with the high-energy spectral index. Contrary to previous observations in the flaring state, we do not find any correlation between the X-ray and VHE components. Although synchrotron self-Compton models are often invoked to explain the SEDs of BL Lac objects, the most common versions of these models are at odds with the correlated variability we find in the various bands for PKS 2155-304.
Raja, Muhammad Asif Zahoor; Zameer, Aneela; Khan, Aziz Ullah; Wazwaz, Abdul Majid
2016-01-01
In this study, a novel bio-inspired computing approach is developed to analyze the dynamics of nonlinear singular Thomas-Fermi equation (TFE) arising in potential and charge density models of an atom by exploiting the strength of finite difference scheme (FDS) for discretization and optimization through genetic algorithms (GAs) hybrid with sequential quadratic programming. The FDS procedures are used to transform the TFE differential equations into a system of nonlinear equations. A fitness function is constructed based on the residual error of constituent equations in the mean square sense and is formulated as the minimization problem. Optimization of parameters for the system is carried out with GAs, used as a tool for viable global search integrated with SQP algorithm for rapid refinement of the results. The design scheme is applied to solve TFE for five different scenarios by taking various step sizes and different input intervals. Comparison of the proposed results with the state of the art numerical and analytical solutions reveals that the worth of our scheme in terms of accuracy and convergence. The reliability and effectiveness of the proposed scheme are validated through consistently getting optimal values of statistical performance indices calculated for a sufficiently large number of independent runs to establish its significance. PMID:27610319
Realizing a Kondo-correlated state with ultracold atoms
Bauer, Johannes; Salomon, Christophe; Demler, Eugene
2013-01-01
We propose a novel realization of Kondo physics with ultracold atomic gases. It is based on a Fermi sea of two different hyperfine states of one atom species forming bound states with a different species, which is spatially confined in a trapping potential. We show that different situations displaying Kondo physics can be realized when Feshbach resonances between the species are tuned by a magnetic field and the trapping frequency is varied. We illustrate that a mixture of \\(^{40}K\\) and \\(^{...
The program complex intended for calculations, on the personal computer, of spectroscopic properties of separate gases and their mixes in UV, visible and IR ranges is submitted in this work. It consists of algorithms describing spectroscopic characteristics of the neutral and ionized atoms and molecules; banks of initial data, physical, thermodynamic and spectroscopic constants, parameters and package of applied programs. The complex allows the computation of parameters of fine and hyperfine structure in electronic-vibrational-rotational spectrums of diatomic molecules, such as wave numbers, Hoenl-London factors, intensities and half-widths of rotational lines; absorption coefficients, absorption cross-sections and emissivity of the heated-up gases with the account of Λ-doubling in ranges of temperatures 200-10 000 K, pressure 10-5-10 atm and wavelengths 0.1-25.0 μm at anyone spectral intervals of averaging
Matter Waves in Reduced Dimensions: Dipolar-Induced Resonances and Atomic Artificial Crystals
Bartolo, Nicola
2014-01-01
The experimental achievement of Bose-Einstein condensation and Fermi degeneracy with ultracold gases boosted tremendous progresses both in theoretical methods and in the development of new experimental tools. Among them, intriguing possibilities have been opened by the implementation of optical lattices: periodic potentials for neutral atoms created by interfering laser beams. Degenerate gases in optical lattices can be forced in highly anisotropic traps, reducing the effective dimensionality...
Pairing fluctuations in trapped Fermi gases
Bruun, Georg Morten; Minguzzi, Anna; Rosario, F.
2004-01-01
A0530F- Fermion-systems-and-electron-gas-quantum-statistical-mechanics; A0540-Fluctuation-phenomena-random-processes-and-Brownian-motion......A0530F- Fermion-systems-and-electron-gas-quantum-statistical-mechanics; A0540-Fluctuation-phenomena-random-processes-and-Brownian-motion...
Zero Sound in Dipolar Fermi Gases
Ronen, Shai; Bohn, John L.
2009-01-01
We study the propagation of sound in a homogeneous dipolar gas at zero temperature, known as zero sound. We find that undamped sound propagation is possible only in a range of solid angles around the direction of polarization of the dipoles. Above a critical dipole moment, we find an unstable mode, by which the gas collapses locally perpendicular to the dipoles' direction.
Erika Bailey
2011-10-27
The Enrico Fermi Atomic Power Plant, Unit 1 (Fermi 1) was a fast breeder reactor design that was cooled by sodium and operated at essentially atmospheric pressure. On May 10, 1963, the Atomic Energy Commission (AEC) granted an operating license, DPR-9, to the Power Reactor Development Company (PRDC), a consortium specifically formed to own and operate a nuclear reactor at the Fermi 1 site. The reactor was designed for a maximum capability of 430 megawatts (MW); however, the maximum reactor power with the first core loading (Core A) was 200 MW. The primary system was filled with sodium in December 1960 and criticality was achieved in August 1963. The reactor was tested at low power during the first couple years of operation. Power ascension testing above 1 MW commenced in December 1965 immediately following the receipt of a high-power operating license. In October 1966 during power ascension, zirconium plates at the bottom of the reactor vessel became loose and blocked sodium coolant flow to some fuel subassemblies. Two subassemblies started to melt and the reactor was manually shut down. No abnormal releases to the environment occurred. Forty-two months later after the cause had been determined, cleanup completed, and the fuel replaced, Fermi 1 was restarted. However, in November 1972, PRDC made the decision to decommission Fermi 1 as the core was approaching its burn-up limit. The fuel and blanket subassemblies were shipped off-site in 1973. Following that, the secondary sodium system was drained and sent off-site. The radioactive primary sodium was stored on-site in storage tanks and 55 gallon (gal) drums until it was shipped off-site in 1984. The initial decommissioning of Fermi 1 was completed in 1975. Effective January 23, 1976, DPR-9 was transferred to the Detroit Edison Company (DTE) as a 'possession only' license (DTE 2010a). This report details the confirmatory activities performed during the second Oak Ridge Institute for Science and Education
Bouffard, Karen
1999-05-01
This column contains problems and solutions for the general category of questions known as "Fermi" questions. Forcing the students to use their ability to estimate, giving answers in terms of order-of-magnitude, is not only a challenge for a competition, but a teaching strategy to use in the classroom to develop self-confidence and the ability to analyze answers as to whether or not they make sense, as opposed to relying on the "precision" of a calculator value.
Enrico Fermi the obedient genius
Bruzzaniti, Giuseppe
2016-01-01
This biography explores the life and career of the Italian physicist Enrico Fermi, which is also the story of thirty years that transformed physics and forever changed our understanding of matter and the universe: nuclear physics and elementary particle physics were born, nuclear fission was discovered, the Manhattan Project was developed, the atomic bombs were dropped, and the era of “big science” began. It would be impossible to capture the full essence of this revolutionary period without first understanding Fermi, without whom it would not have been possible. Enrico Fermi: The Obedient Genius attempts to shed light on all aspects of Fermi’s life - his work, motivation, influences, achievements, and personal thoughts - beginning with the publication of his first paper in 1921 through his death in 1954. During this time, Fermi demonstrated that he was indeed following in the footsteps of Galileo, excelling in his work both theoretically and experimentally by deepening our understanding of the Pauli e...
Wang, Hao
2014-01-01
In industry, cryogenic rectification for separating xenon from other noble gases such as krypton and argon is an energy and capital intensive process. Here we show that a microporous metal-organic framework, namely Co 3(HCOO)6 is capable of effective capture and separation of xenon from other noble gases. Henry\\'s constant, isosteric heat of adsorption (Qst), and IAST selectivity are calculated based on single component sorption isotherms. Having the highest Qst reported to date, Co 3(HCOO)6 demonstrates high adsorption capacity for xenon and its IAST selectivity for Xe-Kr is the largest among all MOFs investigated to date. To mimic real world conditions, breakthrough experiments are conducted on Xe-Kr binary mixtures at room temperature and 1 atmosphere. The results are consistent with the calculated data. These findings show that Co 3(HCOO)6 is a promising candidate for xenon capture and purification. Our gas adsorption measurements and molecular simulation study also reveal that the adsorption of xenon represents the first example of commensurate adsorption of atomic gases near ambient conditions. © 2014 The Royal Society of Chemistry.
Saß, Anne; Christopoulos, Stavros; Knicker, Katharina; Moroshkin, Peter; Weitz, Martin
2014-01-01
We study laser cooling of atomic gases by collisional redistribution of fluorescence. In a high pressure buffer gas regime, frequent collisions perturb the energy levels of alkali atoms, which allows for the absorption of a far red detuned irradiated laser beam. Subsequent spontaneous decay occurs close to the unperturbed resonance frequency, leading to a cooling of the dense gas mixture by redistribution of fluorescence. Thermal deflection spectroscopy indicates large relative temperature changes down to and even below room temperature starting from an initial cell temperature near 700 K. We are currently performing a detailed analysis of the temperature distribution in the cell. As we expect this cooling technique to work also for molecular-noble gas mixtures, we also present initial spectroscopic experiments on alkali-dimers in a dense buffer gas surrounding.
The ability of the field-ion microscope to image individual atoms has been applied, at Cornell University, to the study of fundamental properties of point defects in irradiated or quenched metals. The capability of the atom probe field-ion microscope to determine the chemistry - that is, the mass-to-charge ratio - of a single ion has been used to investigate the behavior of different implanted species in metals. A brief review is presented of: (1) the basic physical principles of the field-ion and atom-probe microscopes; (2) the many applications of these instruments to the study of defects and radiation damage in solids; and (3) the application of the atom-probe field-ion microscope to the study of the behavior of implanted 3He and 4He atoms in tungsten. The paper is heavily referenced so that the reader can pursue his specific research interests in detail
M B Das; S Karmakar
2005-12-01
High-frequency deflection (HFD) technique with a delayed coincidence single photon counting arrangement is an efficient technique for radiative lifetime measurement. An apparatus for measurement of the radiative lifetime of atoms and molecules has been developed in our laboratory and measurements have been performed with great success in a large number of atoms and ions. The present version of the apparatus is described in this paper together with a brief description of the basic features and performance.
Burke, Philip G.
2012-06-01
After a brief historical introduction this talk will review the broad range of collision processes involving electron and photon collisions with atoms and molecules that are now being considered. Their application in the analysis of astronomical spectra, atmospheric observations and laboratory plasmas will be considered. The talk will review the R-matrix computational method which has been widely used by international collaborations and by other scientists in the field to obtain accurate scattering amplitudes and cross sections of importance in these applications. Results of some recent calculations of electron and photon collisions with atoms and molecules will be presented. In conclusion some challenges for future research will be briefly discussed.
A human factors audit of the Fermi-2 control room was conducted April 27 through May 1, 1981. This report contains the audit team findings, organized according to the draft NUREG-0700 guidelines sections. The discrepancies identified during the audit are categorized according to their severity and the required schedule for their resolution
A set of intercombination rules has been used to calculate the two excited (30 and 31) state potential parameters ε12 and R 12 of Hg, Cd and Zn interacting with inert gases (Xe, Kr, Ar and Ne). The results obtained with these rules are compared with various experimental and theoretical results for these molecules. The rules can be very well used for determination of the position of the potential minimum for the two states of all molecules. Concerning the well depths of the two states (30 and 31) of these molecules, it is observed that for the more bounded excited state 30 some of these rules give results that are in close agreement with experimental data especially for molecules consisting of heavy atoms but for the shallow excited state 31 these rules cannot be used
Podosek, F. A.
2003-12-01
The noble gases are the group of elements - helium, neon, argon, krypton, xenon - in the rightmost column of the periodic table of the elements, those which have "filled" outermost shells of electrons (two for helium, eight for the others). This configuration of electrons results in a neutral atom that has relatively low electron affinity and relatively high ionization energy. In consequence, in most natural circumstances these elements do not form chemical compounds, whence they are called "noble." Similarly, much more so than other elements in most circumstances, they partition strongly into a gas phase (as monatomic gas), so that they are called the "noble gases" (also, "inert gases"). (It should be noted, of course, that there is a sixth noble gas, radon, but all isotopes of radon are radioactive, with maximum half-life a few days, so that radon occurs in nature only because of recent production in the U-Th decay chains. The factors that govern the distribution of radon isotopes are thus quite different from those for the five gases cited. There are interesting stories about radon, but they are very different from those about the first five noble gases, and are thus outside the scope of this chapter.)In the nuclear fires in which the elements are forged, the creation and destruction of a given nuclear species depends on its nuclear properties, not on whether it will have a filled outermost shell when things cool off and nuclei begin to gather electrons. The numerology of nuclear physics is different from that of chemistry, so that in the cosmos at large there is nothing systematically special about the abundances of the noble gases as compared to other elements. We live in a very nonrepresentative part of the cosmos, however. As is discussed elsewhere in this volume, the outstanding generalization about the geo-/cosmochemistry of the terrestrial planets is that at some point thermodynamic conditions dictated phase separation of solids from gases, and that the
Lee, Chaohong; Duan, Yiwu; Liu, Wing-Ki; Yuan, Jian-Min; Shi, Lei; Zhu, Xiwen; Gao, Kelin
2001-01-01
Based upon our previous works (Eur.Phys.J.D 6, 319(1999); Chin.Phys.Lett. 18, 236(2001)), we develop a classical approach to calculate the high-order harmonic generation of the laser driven atoms and molecules. The Coulomb singularities in the system have been removed by a regularization procedure. Action-angle variables have been used to generate the initial microcanonical distribution which satisfies the inversion symmetry of the system. The numerical simulation show, within a proper laser ...
Lomsadze, R A; Mosulishvili, N O; Kezerashvili, R Ya
2015-01-01
This work presents a multifaceted experimental study of collisions of Na$^{+}$ and K$^{+}$ ions in the energy range 0.5 -- 10 keV with He and Ar atoms. Absolute cross sections for charge-exchange, ionization, stripping and excitation were measured using a refined version of the transfer electric field method, angle- and energy-dependent collection of product ions, energy loss, and optical spectroscopy. The experimental data and the schematic correlation diagrams have been employed to analyze and determine the mechanisms for these processes.
Signals of Bose Einstein condensation and Fermi quenching in the decay of hot nuclear systems
Marini, P.; Zheng, H.; Boisjoli, M.; Verde, G.; Chbihi, A.; Napolitani, P.; Ademard, G.; Augey, L.; Bhattacharya, C.; Borderie, B.; Bougault, R.; Frankland, J. D.; Fable, Q.; Galichet, E.; Gruyer, D.; Kundu, S.; La Commara, M.; Lombardo, I.; Lopez, O.; Mukherjee, G.; Parlog, M.; Rivet, M. F.; Rosato, E.; Roy, R.; Spadaccini, G.; Vigilante, M.; Wigg, P. C.; Bonasera, A.
2016-05-01
We report on first experimental observations of nuclear fermionic and bosonic components displaying different behaviours in the decay of hot Ca projectile-like sources produced in mid-peripheral collisions at sub-Fermi energies. The experimental setup, constituted by the coupling of the INDRA 4π detector array to the forward angle VAMOS magnetic spectrometer, allowed to reconstruct the mass, charge and excitation energy of the decaying hot projectile-like sources. By means of quantum-fluctuation analysis techniques, temperatures and local partial densities of bosons and fermions could be correlated to the excitation energy of the reconstructed system. The results are consistent with the production of dilute mixed systems of bosons and fermions, where bosons experience higher phase-space and energy density as compared to the surrounding fermionic gas. Our findings recall phenomena observed in the study of Bose condensates and Fermi gases in atomic traps despite the different scales.
Signals of Bose Einstein condensation and Fermi quenching in the decay of hot nuclear systems
P. Marini
2016-05-01
Full Text Available We report on first experimental observations of nuclear fermionic and bosonic components displaying different behaviours in the decay of hot Ca projectile-like sources produced in mid-peripheral collisions at sub-Fermi energies. The experimental setup, constituted by the coupling of the INDRA 4π detector array to the forward angle VAMOS magnetic spectrometer, allowed to reconstruct the mass, charge and excitation energy of the decaying hot projectile-like sources. By means of quantum-fluctuation analysis techniques, temperatures and local partial densities of bosons and fermions could be correlated to the excitation energy of the reconstructed system. The results are consistent with the production of dilute mixed systems of bosons and fermions, where bosons experience higher phase-space and energy density as compared to the surrounding fermionic gas. Our findings recall phenomena observed in the study of Bose condensates and Fermi gases in atomic traps despite the different scales.
Efficient all-optical production of large Li6 quantum gases using D1 gray-molasses cooling
Burchianti, A.; Valtolina, G.; Seman, J. A.; Pace, E.; De Pas, M.; Inguscio, M.; Zaccanti, M.; Roati, G.
2014-10-01
We use a gray molasses operating on the D1 atomic transition to produce degenerate quantum gases of Li6 with a large number of atoms. This sub-Doppler cooling phase allows us to lower the initial temperature of 109 atoms from 500 to 40 μK in 2 ms. We observe that D1 cooling remains effective into a high-intensity infrared dipole trap where two-state mixtures are evaporated to reach the degenerate regime. We produce molecular Bose-Einstein condensates of up to 5 × 105 molecules and weakly interacting degenerate Fermi gases of 7×105 atoms at T /TF<0.1 with a typical experimental duty cycle of 11 s.
Fermions and bosons on an atom chip
Extravour, Marcius H. T.
Ultra-cold dilute gases of neutral atoms are attractive candidates for creating controlled mesoscopic quantum systems. In particular, quantum degenerate gases of bosonic and fermionic atoms can be used to model the correlated many-body behaviour of Bose and Fermi condensed matter systems, and to study matter wave interference and coherence. This thesis describes the experimental realization and manipulation of Bose-Einstein condensates (BECs) of 87Rb and degenerate Fermi gases (DFGs) of 40K using static and dynamic magnetic atom chip traps. Atom chips are versatile modern tools used to manipulate atomic gases. The chips consist of micrometre-scale conductors supported by a planar insulating substrate, and can be used to create confining potentials for neutral atoms tens or hundreds of micrometres from the chip surface. We demonstrate for the first time that a DFG can be produced via sympathetic cooling with a BEC using a simple single-vacuum-chamber apparatus. The large 40 K-87Rb collision rate afforded by the strongly confining atom chip potential permits rapid cooling of 40K to quantum degeneracy via sympathetic cooling with 87Rb. By studying 40K-87Rb cross-thermalization as a function of temperature, we observe the Ramsauer-Townsend reduction in the 40K-87Rb elastic scattering cross-section. We achieve DFG temperatures as low as T ≈ 0:1TF, and observe Fermi pressure in the time-of-flight expansion of the gas. This thesis also describes the radio-frequency (RF) manipulation of trapped atoms to create dressed state double-well potentials for BEC and DFG. We demonstrate for the first time that RF-dressed potentials are species-selective, permitting the formation of simultaneous 87Rb double-well and 40K single-well potentials using a 40K-87Rb mixture. We also develop tools to measure fluctuations of the relative atom number and relative phase of a dynamically split 87Rb BEC. In particular, we observe atom number fluctuations at the shot-noise level using time
Three-body recombination of two-component cold atomic gases into deep dimers in an optical model
Mikkelsen, Mathias; Jensen, A. S.; Fedorov, D. V.; Zinner, Nikolaj Thomas
2015-01-01
We consider three-body recombination into deep dimers in a mass-imbalanced two-component atomic gas. We use an optical model where a phenomenological imaginary potential is added to the lowest adiabatic hyper-spherical potential. The consequent imaginary part of the energy eigenvalue corresponds to...... the decay rate or recombination probability of the three-body system. The method is formulated in details and the relevant qualitative features are discussed as functions of scattering lengths and masses. We use zero-range model in analyses of recent recombination data. The dominating scattering...... length is usually related to the non-equal two-body systems. We account for temperature smearing which tends to wipe out the higher-lying Efimov peaks. The range and the strength of the imaginary potential determine positions and shapes of the Efimov peaks as well as the absolute value of the...
Lee, C; Liu, W K; Yuan Jian Min; Shi, L; Zhu, X; Gao, K; Lee, Chaohong; Duan, Yiwu; Liu, Wing-Ki; Yuan, Jian-Min; Shi, Lei; Zhu, Xiwen; Gao, Kelin
2001-01-01
Based upon our previous works (Eur.Phys.J.D 6, 319(1999); Chin.Phys.Lett. 18, 236(2001)), we develop a classical approach to calculate the high-order harmonic generation of the laser driven atoms and molecules. The Coulomb singularities in the system have been removed by a regularization procedure. Action-angle variables have been used to generate the initial microcanonical distribution which satisfies the inversion symmetry of the system. The numerical simulation show, within a proper laser intensity, a harmonic plateau with only odd harmonics appears. At higher intensities, the spectra become noisier because of the existence of chaos. With further increase in laser intensity, ionization takes place, and the high-order harmonics disappear. Thus chaos introduces noise in the spectra, and ionization suppresses the harmonic generation, with the onset of the ionization follows the onset of chaos.
刘洪毓
2007-01-01
Atoms(原子)are all around us.They are something like the bricks (砖块)of which everything is made. The size of an atom is very,very small.In just one grain of salt are held millions of atoms. Atoms are very important.The way one object acts depends on what
Thermodynamics of Quantum Gases for the Entire Range of Temperature
Biswas, Shyamal; Jana, Debnarayan
2012-01-01
We have analytically explored the thermodynamics of free Bose and Fermi gases for the entire range of temperature, and have extended the same for harmonically trapped cases. We have obtained approximate chemical potentials for the quantum gases in closed forms of temperature so that the thermodynamic properties of the quantum gases become…
Completed by recent contributions on various topics (atoms and the Brownian motion, the career of Jean Perrin, the evolution of atomic physics since Jean Perrin, relationship between scientific atomism and philosophical atomism), this book is a reprint of a book published at the beginning of the twentieth century in which the author addressed the relationship between atomic theory and chemistry (molecules, atoms, the Avogadro hypothesis, molecule structures, solutes, upper limits of molecular quantities), molecular agitation (molecule velocity, molecule rotation or vibration, molecular free range), the Brownian motion and emulsions (history and general features, statistical equilibrium of emulsions), the laws of the Brownian motion (Einstein's theory, experimental control), fluctuations (the theory of Smoluchowski), light and quanta (black body, extension of quantum theory), the electricity atom, the atom genesis and destruction (transmutations, atom counting)
Adams, Allan; Schaefer, Thomas; Steinberg, Peter; Thomas, John E
2012-01-01
Strongly correlated quantum fluids are phases of matter that are intrinsically quantum mechanical, and that do not have a simple description in terms of weakly interacting quasi-particles. Two systems that have recently attracted a great deal of interest are the quark-gluon plasma, a plasma of strongly interacting quarks and gluons produced in relativistic heavy ion collisions, and ultracold atomic Fermi gases, very dilute clouds of atomic gases confined in optical or magnetic traps. These systems differ by more than 20 orders of magnitude in temperature, but they were shown to exhibit very similar hydrodynamic flow. In particular, both fluids exhibit a robustly low shear viscosity to entropy density ratio which is characteristic of quantum fluids described by holographic duality, a mapping from strongly correlated quantum field theories to weakly curved higher dimensional classical gravity. This review explores the connection between these fields, and it also serves as an introduction to the Focus Issue of N...
Creation of Quantum-Degenerate Gases of Ytterbium in a Compact 2D-/3D-MOT Setup
Dorscher S.; Thobe A.; Hundt B.; Kochanke A.; Le Targat R.; Windpassinger P.; Becker C; Sengstock K.
2013-01-01
We report on the first experimental setup based on a 2D-/3D-MOT scheme to create both Bose-Einstein condensates and degenerate Fermi gases of several ytterbium isotopes. Our setup does not require a Zeeman slower and offers the flexibility to simultaneously produce ultracold samples of other atomic species. Furthermore, the extraordinary optical access favors future experiments in optical lattices. A 2D-MOT on the strong 1S0-1P1 transition captures ytterbium directly from a dispenser of atoms...
We study the energetics and dispersion of anomalous dimers that are induced by the Pauli blocking effect in a quantum Fermi gas of majority atoms near interspecies resonances. Unlike in vacuum, we find that both the sign and magnitude of the dimer masses are tunable via Feshbach resonances. We also investigate the effects of particle-hole fluctuations on the dispersion of dimers and demonstrate that the particle-hole fluctuations near a Fermi surface (with Fermi momentum (ℎ/2π)kF) generally reduce the effective two-body interactions and the binding energy of dimers. Furthermore, in the limit of light minority atoms the particle-hole fluctuations disfavor the formation of dimers with a total momentum (ℎ/2π)kF, because near (ℎ/2π)kF the modes where the dominating particle-hole fluctuations appear are the softest. Our calculation suggests that near broad interspecies resonances when the minority-majority mass ratio mB/mF is smaller than a critical value (estimated to be 0.136), dimers in a finite-momentum channel are energetically favored over dimers in the zero-momentum channel. We apply our theory to quantum gases of 6Li40K, 6Li87Rb, 40K87Rb, and 6Li23Na near broad interspecies resonances, and discuss the limitations of our calculations and implications.
Peltier cooling of fermionic quantum gases
Grenier, Charles; Georges, Antoine; Kollath, Corinna
2014-01-01
We propose a cooling scheme for fermionic quantum gases, based on the principles of the Peltier thermoelectric effect and energy filtering. The system to be cooled is connected to another harmonically trapped gas acting as a reservoir. The cooling is achieved by two simultaneous processes: (i) the system is evaporatively cooled and (ii) cold fermions from deep below the Fermi surface of the reservoir are injected below the Fermi level of the system, in order to fill the 'holes' in the energy ...
Efstathios E. Theotokoglou
2015-01-01
Full Text Available Two kinds of second-order nonlinear, ordinary differential equations (ODEs appearing in mathematical physics are analyzed in this paper. The first one concerns the Thomas-Fermi (TF equation, while the second concerns the Langmuir-Blodgett (LB equation in current flow. According to a mathematical methodology recently developed, the exact analytic solutions of both TF and LB ODEs are proposed. Both of these are nonlinear of the second order and by a series of admissible functional transformations are reduced to Abel’s equations of the second kind of the normal form. The closed form solutions of the TF and LB equations in the phase and physical plane are given. Finally a new interesting result has been obtained related to the derivative of the TF function at the limit.
Okazaki, K; Ito, Y.; Ota, Y; Kotani, Y.; Shimojima, T.; Kiss, T.; Watanabe, S; C.-T. Chen; S. Niitaka; Hanaguri, T; Takagi, H.; Chainani, A.; Shin, S.
2014-01-01
Conventional superconductivity follows Bardeen-Cooper-Schrieffer(BCS) theory of electrons-pairing in momentum-space, while superfluidity is the Bose-Einstein condensation(BEC) of atoms paired in real-space. These properties of solid metals and ultra-cold gases, respectively, are connected by the BCS-BEC crossover. Here we investigate the band dispersions in FeTe$_{0.6}$Se$_{0.4}$($T_c$ = 14.5 K $\\sim$ 1.2 meV) in an accessible range below and above the Fermi level($E_F$) using ultra-high reso...
梯状光晶格中自旋轨道耦合的排斥费米气体%Spin-orbit coupled Fermi atoms loaded in an optical ladder lattice
郭飞翔; 周晓凡; 赵华
2015-01-01
采用密度矩阵重整化群 ( density-matrix-renormalization-group, DMRG) 方法, 研究梯状光晶格中排斥相互作用费米气体的基态属性. 研究表明, Zeeman场能够激发系统的相分离 (完全极化相和部分极化相), 而自旋轨道耦合效应能抑制相分离, 使整个晶格处于部分极化相, 在不同的强弱排斥相互作用系统中, 极化率会随自旋轨道耦合改变表现出不同的变化规律.%The density-matrix-renormalization-group ( DMRG ) method is used to numerically calculate the ground state of repulsively interacting Fermi atoms loaded in optical ladder lattices. It is found that the system exhibits the spatial separation of a fully spin-polarized phase from the partially polarized phase for the suitable intensity of Zeeman field without the effect of spin-orbit coupled atoms. The spin-orbit coupling drives the fully spin-polarized phase to the partially spin-polarized phase in the whole system. The spin polarizations of weak and strong repulsively interac-ting systems vary differently with spin-orbit interaction strength.
Fermi: a physicist in the upheaval
This book summarizes the life, works and complex personality of the Italian physicist Enrico Fermi (1901-1954) whose myth is linked with the political upheaval of the 2. world war: the youth of an autodidact, the theorician and the quantum mechanics, his invention of a quantum statistics, the weak interaction theory, his works on artificial radioactivity, the end of the Fermi team and his exile in the USA, the secrete researches at the university of Columbia and the birth of the first atomic 'pile' (December 2, 1942), the building of Los Alamos center and the Alamogordo explosion test, the disagreements among the physicists of the Manhattan project and the position of Fermi, Fermi's contribution in the H-bomb construction, the creation of the physics school of Chicago, the Oppenheimer spying affair. (J.S.)
Virial Theorem and Universality in a Unitary Fermi Gas
Thomas, J E; Kinast, J.; Turlapov, A.
2005-01-01
Unitary Fermi gases, where the scattering length is large compared to the interparticle spacing, can have universal properties, which are independent of the details of the interparticle interactions when the range of the scattering potential is negligible. We prepare an optically-trapped, unitary Fermi gas of $^6$Li, tuned just above the center of a broad Feshbach resonance. In agreement with the universal hypothesis, we observe that this strongly-interacting many-body system obeys the virial...
From few to many. Ultracold atoms in reduced dimensions
This thesis reports on experimental studies exploring few and many-body physics of ultracold Bose and Fermi gases with reduced dimensionality. These experiments illustrate the versatility and great amount of control over the particle number, the interaction and other degrees of freedom, like the spin, that these generic quantum systems offer. In the first part of this thesis, we use quasi one-dimensional few-particle systems of one to ten fermionic atoms to investigate the crossover from few to many-body physics. This is achieved by measuring the interaction energy between a single impurity atom in a state vertical stroke ↓ right angle which repulsively interacts with an increasing number of majority atoms in a state vertical stroke ↑ right angle. We find that the system quickly approaches the results from the many-body theory, which describes the behavior of a single impurity immersed in a Fermi sea of an infinite number of majority particles. The second part of this thesis presents studies of the time evolution of a bosonic F=1 spinor BEC of 87Rb atoms. In this system, we investigate the emergence and coarsening of ferromagnetic spin textures from initially unmagnetized samples. While the ferromagnetic domains grow, we observe the development of a spin space anisotropy which is in agreement with the predicted phase-diagram. The last part of this thesis presents our first steps towards the investigation of phase coherence of quasi two-dimensional quantum gases in the crossover from bosonic molecules to fermionic atoms.
The universal sound velocity formula for the strongly interacting unitary Fermi gas
Liu Ke; Chen Ji-Sheng
2011-01-01
Due to the scale invariance, the thermodynamic laws of strongly interacting limit unitary Fermi gas can be similar to those of non-interacting ideal gas. For example, the virial theorem between pressure and energy density of the ideal gas P = 2E/ZV is still satisfied by the unitary Fermi gas. This paper analyses the sound velocity of unitary Fermi gases with the quasi-linear approximation. For comparison, the sound velocities for the ideal Boltzmann, Bose and Fermi gas are also given. Quite interestingly, the sound velocity formula for the ideal non-interacting gas is found to be satisfied by the unitary Fermi gas in different temperature regions.
Enrico Fermi and the Old Quantum Physics
De Gregorio, Alberto; Sebastiani, Fabio
2009-01-01
We outline Fermi's early attitude towards old quantum physics. We sketch out the context from which his interest for quantum physics arose, and we deal with his work on quantum statistics. We also go through the first two courses on theoretical physics he held in Rome, and his 1928 book on atomic physics.
Ground state of charged Base and Fermi fluids in strong coupling
The ground state and excited states of the charged Bose gas were studied (wave function, equation of state, thermodynamics, application of Feynman theory). The ground state of the charged Fermi gas was also investigated together with the miscibility of charged Bose and Fermi gases at 0 deg K (bosons-bosons, fermions-bosons and fermions-fermions)
Thermodynamic property of gases in the sonoluminescing bubble
AN Yu; LI Guiqin; ZHOU Tieying
2001-01-01
With the theory of statistical physics dealing with chemical reaction (the law of mass action), the different thermodynamic property of noble gases (mono-atomic gases) in a small bubble and diatomic gases in a small bubble semi-quantitatively are analyzed. As bubbles of the mono-atomic and the diatomic gases are compressed, shock waves are produced in both bubbles. Though shock wave leads to sharp increase of pressure and temperature of gases in the bubble, diatomic gas will excitated vibrations and dissociate themselves to mono-atomic gas,these processes will consume many accumulated heat energy and block the further increase of the temperature. Therefore, compare with the mono-atomic gases in the bubble, there will be no enough charged particles ionized to flash for diatomic gases in the bubble, this may be the reason why a bubble of diatomic gases has no single bubble sonoluminescence while a bubble of noble gases has.
NASA
2009-01-01
1. This view from NASA's Fermi Gamma-ray Space Telescope is the deepest and best-resolved portrait of the gamma-ray sky to date. The image shows how the sky appears at energies more than 150 million times greater than that of visible light. Among the signatures of bright pulsars and active galaxies is something familiar -- a faint path traced by the sun. (Credit: NASA/DOE/Fermi LAT Collaboration) 2. The Large Area Telescope (LAT) on Fermi detects gamma-rays through matter (electrons) and antimatter (positrons) they produce after striking layers of tungsten. (Credit: NASA/Goddard Space Flight Center Conceptual Image Lab)
Speed of Sound of a Spin-Balanced Fermi Gas with s- and d-Wave Pairings Across the BCS-BEC Evolution
Koinov, Zlatko; Mendoza, Rafael
2016-06-01
The authors of a recent paper (Phys Rev A 87:013613, 2013) argued that in fermionic systems with d-wave pairing the speed of sound is nonanalytic across the BCS-BEC crossover at the point where the chemical potential vanishes, regardless of the specific details of the interaction potential. On the contrary, the numerical results reported here suggest that the speed of sound across the BCS-BEC evolution of atomic Fermi gases with s- and d-wave pairings in two-dimensional square lattices is a smooth analytic function at the vanishing chemical potential.
National Aeronautics and Space Administration — Fermi is a powerful space observatory that will open a wide window on the universe. Gamma rays are the highest-energy form of light, and the gamma-ray sky is...
National Aeronautics and Space Administration — All analysis results presented here are preliminary and are not intended as an official catalog of Fermi-LAT detected GRBs. Please consult the table's caveat page...
Kontrym-Sznajd, G. [Polska Akademia Nauk, Wroclaw (Poland). Inst. Niskich Temperatur i Badan Strukturalnych; Sormann, H. [Technische Univ., Graz (Austria). Inst. fuer Theoretische Physik; West, R.N. [Texas Univ., Arlington, TX (United States). Dept. of Physics
2001-07-01
Electron-positron momentum densities in Y, reconstructed from two-dimensional angular correlation of annihilation radiation spectra, are compared with the theoretical predictions of fully-relativistic augmented plane-wave calculations. Knowledge of the theoretical densities and of the effects on them of certain symmetry selection rules has allowed us to separate two hole Fermi surfaces in the third and fourth bands and to establish some Fermi momenta for each of them. (orig.)
Sadeghi, N.; Setser, D. W.; Francis, A.; Czarnetzki, U.; Döbele, H. F.
2001-08-01
The total quenching rate constants of argon atoms in the 4p'[1/2]0, 4p[1/2]0, 4p[3/2]2, and 4p[5/2]2 states (2p1, 2p5, 2p6, and 2p8, respectively, in the Paschen numbering system) by rare gases, H2, D2, N2, CO, NO, O2, F2, Cl2, CO2, NO2, CH4, C2H2, C2H4, C2H6, CF4, CHF3, and SF6 have been determined at room temperature. These four excited states of argon (energy 13.09-13.48 eV) were selectively prepared by two-photon excitation from the ground state using VUV (184-190 nm range) laser pulses. The total quenching rates were deduced from the pressure dependence of the decay times of the excited-state atoms, measured by observing their fluorescence emission intensities in the presence of added reagents. The quenching constants increase from values of ≅0.01×10-10 cm3 atom-1 s-1 for Ne, to ≅0.1×10-10 cm3 atom-1 s-1 for He and Ar, and to very large values, (5-15)×10-10 cm3 atom-1 s-1, for most polyatomic molecules, F2, Cl2, and O2. The quenching mechanisms of the Ar(4p,4p') atoms are briefly discussed and compared to the reactions of the Ar(4s,4s') metastable and resonance state atoms, 11.55-11.83 eV, which can serve as a reference.
Born, Max
1989-01-01
The Nobel Laureate's brilliant exposition of the kinetic theory of gases, elementary particles, the nuclear atom, wave-corpuscles, atomic structure and spectral lines, electron spin and Pauli's principle, quantum statistics, molecular structure and nuclear physics. Over 40 appendices, a bibliography, numerous figures and graphs.
Industrial gas companies have fought hard to boost sales and hold margins in the tough economic climate, and investments are well down from their 1989-'91 peak. But 'our industry is still very strong long term' says Alain Joly, CEO of industry leader L'Air Liquide (AL). By 1994, if a European and Japanese recovery follows through on one in the U.S., 'we could see major [investment] commitments starting again,' he says. 'Noncryogenic production technology is lowering the cost of gas-making possible new applications, oxygen is getting plenty of attention in the environmental area, and hydrogen also fits into the environmental thrust,' says Bob Lovett, executive v.p./gases and equipment with Air Products ampersand Chemicals (AP). Through the 1990's, 'Industrial gases could grow even faster than in the past decade,' he says. Virtually a new generation of new gases applications should become reality by the mid-1990s, says John Campbell, of industry consultants J.R. Campbell ampersand Associates (Lexington, MA). Big new oxygen volumes will be required for powder coal injection in blast furnaces-boosting a steel mill's requirement as much as 40% and coal gasification/combined cycle (CGCC). Increased oil refinery hydroprocessing needs promise hydrogen requirements
Enrico Fermi centenary exhibition seminar
Maximilien Brice
2002-01-01
Photo 01: Dr. Juan Antonio Rubio, Leader of the Education and Technology Transfer Division and CERN Director General, Prof. Luciano Maiani. Photo 03: Luciano Maiani, Welcome and Introduction Photo 09: Antonino Zichichi, The New 'Centro Enrico Fermi' at Via Panisperna Photos 10, 13: Ugo Amaldi, Fermi at Via Panisperna and the birth of Nuclear Medicine Photo 14: Jack Steinberger, Fermi in Chicago Photo 18: Valentin Telegdi, A close-up of Fermi Photo 21: Arnaldo Stefanini, Celebrating Fermi's Centenary in Documents and Pictures.
BEC-BCS crossover of a trapped Fermi gas without using the local density approximation
We perform a variational quantum Monte Carlo simulation of an interacting Fermi gas confined in a three dimensional harmonic potential. This gas is considered as the precursor system from which a molecular bosonic gas is formed. Based on the results of two-body calculations for trapped atoms, we propose a family of variational many-body wave functions that takes into account the qualitative different nature of the Bardeen-Cooper-Schieffer and Bose-Einstein condensate regimes as a function of the scattering length. Energies, densities, and correlation functions are calculated and compared with previous results for homogeneous gases. Universality tests at the unitarity limit are performed including the verification of the virial relation and the evaluation of the β parameter
Smirnov, Boris M
2001-01-01
A comprehensive textbook and reference for the study of the physics of ionized gasesThe intent of this book is to provide deep physical insight into the behavior of gases containing atoms and molecules from which one or more electrons have been ionized. The study of these so-called plasmas begins with an overview of plasmas as they are found in nature and created in the laboratory. This serves as a prelude to a comprehensive study of plasmas, beginning with low temperature and "ideal" plasmas and extending to radiation and particle transport phenomena, the response of plasmas to external fields, and an insightful treatment of plasma waves, plasma instabilities, nonlinear phenomena in plasmas, and the study of plasma interactions with surfaces