WorldWideScience

Sample records for atmospheric energy redistribution

  1. ATMOSPHERIC HEAT REDISTRIBUTION ON HOT JUPITERS

    International Nuclear Information System (INIS)

    Perez-Becker, Daniel; Showman, Adam P.

    2013-01-01

    Infrared light curves of transiting hot Jupiters present a trend in which the atmospheres of the hottest planets are less efficient at redistributing the stellar energy absorbed on their daysides—and thus have a larger day-night temperature contrast—than colder planets. To this day, no predictive atmospheric model has been published that identifies which dynamical mechanisms determine the atmospheric heat redistribution efficiency on tidally locked exoplanets. Here we present a shallow-water model of the atmospheric dynamics on synchronously rotating planets that explains why heat redistribution efficiency drops as stellar insolation rises. Our model shows that planets with weak friction and weak irradiation exhibit a banded zonal flow with minimal day-night temperature differences, while models with strong irradiation and/or strong friction exhibit a day-night flow pattern with order-unity fractional day-night temperature differences. To interpret the model, we develop a scaling theory which shows that the timescale for gravity waves to propagate horizontally over planetary scales, τ wave , plays a dominant role in controlling the transition from small to large temperature contrasts. This implies that heat redistribution is governed by a wave-like process, similar to the one responsible for the weak temperature gradients in the Earth's tropics. When atmospheric drag can be neglected, the transition from small to large day-night temperature contrasts occurs when τ wave ∼√(τ rad /Ω), where τ rad is the radiative relaxation time and Ω is the planetary rotation frequency. Alternatively, this transition criterion can be expressed as τ rad ∼ τ vert , where τ vert is the timescale for a fluid parcel to move vertically over the difference in day-night thickness. These results subsume the more widely used timescale comparison for estimating heat redistribution efficiency between τ rad and the horizontal day-night advection timescale, τ adv . Only

  2. Atmospheric redistribution of reactive nitrogen and phosphorus by wildfires and implications for global carbon cycling

    Science.gov (United States)

    Randerson, J. T.; Xu, L.; Wiggins, E. B.; Chen, Y.; Riley, W. J.; Mekonnen, Z. A.; Pellegrini, A.; Mahowald, N. M.

    2017-12-01

    Fires are an important process regulating the redistribution of nutrients within terrestrial ecosystems. Frequently burning ecosystems such as savannas are a net source of N and P to the atmosphere each year, with atmospheric transport and dry and wet deposition increasing nutrient availability in downwind ecosystems and over the open ocean. Transport of N and P aerosols from savanna fires within the Hadley circulation contributes to nutrient deposition over tropical forests, yielding an important cross-biome nutrient transfer. Pyrodenitrification of reactive N increases with fire temperature and modified combustion efficiency, generating a global net biospheric loss of approximately 14 Tg N per year. Here we analyze atmospheric N and P redistribution using the Global Fire Emissions Database version 4s and the Accelerated Climate Modeling for Energy earth system model. We synthesize literature estimates of N and P concentrations in fire-emitted aerosols and ecosystem mass balance measurements to help constrain model estimates of these biosphere-atmosphere fluxes. In our analysis, we estimate the fraction of terrestrial net primary production (NPP) that is sustained by fire-emitted P and reactive N from upwind ecosystems. We then evaluate how recent global declines in burned area in savanna and grassland ecosystems may be changing nutrient availability in downwind ecosystems.

  3. Resonance-line transfer with partial redistribution. VIII. Solution in the comoving frame for moving atmospheres

    International Nuclear Information System (INIS)

    Mihalas, D.; Shine, R.A.; Kunasz, P.B.; Hummer, D.G.

    1976-01-01

    An analysis of the effects of partial frequency redistribution in the scattering process for lines formed in moving atmospheres has been performed using a flexible and general method which allows solutions of the transfer equation in the comoving frame of the gas. As a specific example, we consider the same chromospheric and atomic model, with the same velocity field, that was studied by Cannon and Vardavas. We find that the large changes in the profiles obtained by those authors, between the cases of complete and partial redistribution are spurious effects of angle averaging in the observer's frame instead of the comoving frame. Our results support fully the conclusion by Magnan that these changes are, in fact, unreal, at least for this particular model and redistribution function. Future work with other redistribution functions and with nonmonotone velocity fields will be possible using the techniques developed in this paper

  4. Redistribution effects of energy and climate policy: The electricity market

    International Nuclear Information System (INIS)

    Hirth, Lion; Ueckerdt, Falko

    2013-01-01

    Energy and climate policies are usually seen as measures to internalize externalities. However, as a side effect, the introduction of these policies redistributes wealth between consumers and producers, and within these groups. While redistribution is seldom the focus of the academic literature in energy economics, it plays a central role in public debates and policy decisions. This paper compares the distributional effects of two major electricity policies: support schemes for renewable energy sources, and CO 2 pricing. We find that the redistribution effects of both policies are large, and they work in opposed directions. While renewables support transfers wealth from producers to consumers, carbon pricing does the opposite. More specifically, we show that moderate amounts of wind subsidies can increase consumer surplus, even if consumers bear the subsidy costs. CO 2 pricing, in contrast, increases aggregated producer surplus, even without free allocation of emission allowances; however, not all types of producers benefit. These findings are derived from an analytical model of electricity markets, and a calibrated numerical model of Northwestern Europe. Our findings imply that if policy makers want to avoid large redistribution they might prefer a mix of policies, even if CO 2 pricing alone is the first-best climate policy in terms of allocative efficiency. -- Graphical abstract: Display Omitted -- Highlights: •CO 2 pricing and renewables support have strikingly different impacts on rents. •Carbon pricing increases producer surplus and decreases consumer surplus. •Renewable support schemes (portfolio standards, feed-in tariffs) do the opposite. •We model these impacts theoretically and quantify them for Europe. •Redistribution of wealth is found to be significant in size

  5. Pacific Northwest Laboratory annual report for 1989 to the DOE (Department of Energy) Office of Energy Research - Part 3: Atmospheric Sciences

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-01

    This 1989 Annual Report from Pacific Northwest Laboratory (PNL) to the US Department of Energy (DOE) describes research in environment, safety, and health conducted during fiscal year 1989. The report again consists of five parts, each in a separate volume. This volume contains research in the atmospheric sciences. Currently, the broad goals of atmospheric research at PNL are to describe and predict the nature and fate of atmospheric contaminants and to develop an understanding of the atmospheric processes contributing to their distribution on local, regional, continental, and global scales in the air, in clouds, and on the surface. The redistribution and long-range transport of transformed contaminants passing through clouds is recognized as a necessary extension of our research to even larger scales in the future. Eventually, large-scale experiments on cloud processing and redistribution of contaminants will be integrated into the national program on global change, investigating how energy pollutants affect aerosols and clouds and the transfer of radiant energy through them. As the significance of this effect becomes clear, its global impact on climate will be studied through experimental and modeling research. The description of ongoing atmospheric research at PNL is organized in terms of the following study areas: atmospheric studies in complex terrain, large-scale atmospheric transport and processing of emissions, and climate change. This report describes the progress in FY 1989 in each of these areas. A divider page summarizes the goals of each area and lists project titles that support research activities. 9 refs., 2 figs., 3 tabs.

  6. Redistribution of Kinetic Energy in Turbulent Flows

    Directory of Open Access Journals (Sweden)

    Alain Pumir

    2014-10-01

    Full Text Available In statistically homogeneous turbulent flows, pressure forces provide the main mechanism to redistribute kinetic energy among fluid elements, without net contribution to the overall energy budget. This holds true in both two-dimensional (2D and three-dimensional (3D flows, which show fundamentally different physics. As we demonstrate here, pressure forces act on fluid elements very differently in these two cases. We find in numerical simulations that in 3D pressure forces strongly accelerate the fastest fluid elements, and that in 2D this effect is absent. In 3D turbulence, our findings put forward a mechanism for a possibly singular buildup of energy, and thus may shed new light on the smoothness problem of the solution of the Navier-Stokes equation in 3D.

  7. Income- and energy-taxation for redistribution in general equilibrium

    International Nuclear Information System (INIS)

    FitzRoy, F.R.

    1993-01-01

    In a 3-factor General Equilibrium (GE)-model with a continuum of ability, the employed choose optimal labour supply, and equilibrium unemployment is determined by benefits funded by wage- and energy-taxes. Aggregate labour and the net wage may increase or decrease with taxation (and unemployment), and conditions for a reduction in redistributive wage-taxes to be Pareto-improving are derived. A small energy tax always raises the net wage, providing the wage tax is reduced to maintain constant employment and a balanced budget. High ability households prefer higher energy taxes when externalities are uniformly distributed and non-distorting. (author)

  8. Regularities of in-regional redistribution of the nuclear test products in the atmosphere

    International Nuclear Information System (INIS)

    Tsitskishvili, M.S.; Chkhartishvili, A.G.; Nozadze, M.R.; Intskirveli, L.N.; Buachidze, N.D.; Churguliya, E.R.; Shatberashvili, I.G.; Diasamidze, R.I.; Karchava, G.V.; Gugushvili, B.S.

    2003-01-01

    Regularities of artificial radionuclides redistribution in the Caucasus atmosphere are studied. The structure of global fallout in the region is considered. It is noted, that Caucasus is characterizing by a wide diversity of the landscapes and soils. This diversity results a different migration regime for radioisotopes in soils. Penetration of the nuclear tests products into the soils depends on the annual precipitation amount (soil humidification), and incoming level of the radioisotopes. At evaluation of external and internal irradiation doses on South Caucasus population the Caucasus was divided into regions by levels of the global reactive fallout

  9. Ks-BAND DETECTION OF THERMAL EMISSION AND COLOR CONSTRAINTS TO CoRoT-1b: A LOW-ALBEDO PLANET WITH INEFFICIENT ATMOSPHERIC ENERGY REDISTRIBUTION AND A TEMPERATURE INVERSION

    International Nuclear Information System (INIS)

    Rogers, Justin C.; Apai, Daniel; Lopez-Morales, Mercedes; Sing, David K.; Burrows, Adam

    2009-01-01

    We report the detection in Ks-band of the secondary eclipse of the hot Jupiter CoRoT-1b from time series photometry with the ARC 3.5 m telescope at Apache Point Observatory. The eclipse shows a depth of 0.336 ± 0.042% and is centered at phase 0.5022 +0.0023 -0.0027 , consistent with a zero eccentricity orbit (e cos ω = 0.0035 +0.0036 -0.0042 ). We perform the first optical to near-infrared multi-band photometric analysis of an exoplanet's atmosphere and constrain the reflected and thermal emissions by combining our result with the recent 0.6, 0.71, and 2.09 μm secondary eclipse detections by Snellen et al., Gillon et al., and Alonso et al. Comparing the multi-wavelength detections to state-of-the-art radiative-convective chemical-equilibrium atmosphere models, we find the near-infrared fluxes difficult to reproduce. The closest blackbody-based and physical models provide the following atmosphere parameters: a temperature T = 2460 +80 -160 K; a very low Bond albedo A B = 0.000 +0.081 -0.000 ; and an energy redistribution parameter P n = 0.1, indicating a small but nonzero amount of heat transfer from the day to nightside. The best physical model suggests a thermal inversion layer with an extra optical absorber of opacity κ e = 0.05 cm 2 g -1 , placed near the 0.1 bar atmospheric pressure level. This inversion layer is located 10 times deeper in the atmosphere than the absorbers used in models to fit mid-infrared Spitzer detections of other irradiated hot Jupiters.

  10. Channels of energy redistribution in short-pulse laser interactions with metal targets

    International Nuclear Information System (INIS)

    Zhigilei, Leonid V.; Ivanov, Dmitriy S.

    2005-01-01

    The kinetics and channels of laser energy redistribution in a target irradiated by a short, 1 ps, laser pulse is investigated in computer simulations performed with a model that combines molecular dynamics (MD) simulations with a continuum description of the laser excitation and relaxation of the conduction band electrons, based on the two-temperature model (TTM). The energy transferred from the excited electrons to the lattice splits into several parts, namely the energy of the thermal motion of the atoms, the energy of collective atomic motions associated with the relaxation of laser-induced stresses, the energy carried away from the surface region of the target by a stress wave, the energy of quasi-static anisotropic stresses, and, at laser fluences above the melting threshold, the energy transferred to the latent heat of melting and then released upon recrystallization. The presence of the non-thermal channels of energy redistribution (stress wave and quasi-static stresses), not accounted for in the conventional TTM model, can have important implications for interpretation of experimental results on the kinetics of thermal and mechanical relaxation of a target irradiated by a short laser pulse as well as on the characteristics of laser-induced phase transformations. The fraction of the non-thermal energy in the total laser energy partitioning increases with increasing laser fluence

  11. A TEMPERATURE AND ABUNDANCE RETRIEVAL METHOD FOR EXOPLANET ATMOSPHERES

    International Nuclear Information System (INIS)

    Madhusudhan, N.; Seager, S.

    2009-01-01

    We present a new method to retrieve molecular abundances and temperature profiles from exoplanet atmosphere photometry and spectroscopy. We run millions of one-dimensional (1D) atmosphere models in order to cover the large range of allowed parameter space. In order to run such a large number of models, we have developed a parametric pressure-temperature (P-T) profile coupled with line-by-line radiative transfer, hydrostatic equilibrium, and energy balance, along with prescriptions for non-equilibrium molecular composition and energy redistribution. The major difference from traditional 1D radiative transfer models is the parametric P-T profile, which essentially means adopting energy balance only at the top of the atmosphere and not in each layer. We see the parametric P-T model as a parallel approach to the traditional exoplanet atmosphere models that rely on several free parameters to encompass unknown absorbers and energy redistribution. The parametric P-T profile captures the basic physical features of temperature structures in planetary atmospheres (including temperature inversions), and fits a wide range of published P-T profiles, including those of solar system planets. We apply our temperature and abundance retrieval method to the atmospheres of two transiting exoplanets, HD 189733b and HD 209458b, which have the best Spitzer and Hubble Space Telescope data available. For HD 189733b, we find efficient day-night redistribution of energy in the atmosphere, and molecular abundance constraints confirming the presence of H 2 O, CO, CH 4 , and CO 2 . For HD 209458b, we confirm and constrain the dayside thermal inversion in an average 1D temperature profile. We also report independent detections of H 2 O, CO, CH 4 , and CO 2 on the dayside of HD 209458b, based on six-channel Spitzer photometry. We report constraints for HD 189733b due to individual data sets separately; a few key observations are variable in different data sets at similar wavelengths. Moreover, a

  12. Simulation of Wind-Driven Snow Redistribution at a High-Elevation Alpine Site Using a Meso-Scale Atmospheric Model

    Science.gov (United States)

    Vionnet, V.; Martin, E.; Masson, V.; Guyomarc'h, G.; Naaim-Bouvet, F.; Prokop, A.; Durand, Y.; Lac, C.

    2012-12-01

    In alpine regions, blowing snow events strongly influence the temporal and spatial evolution of the snow depth distribution throughout the winter season. We recently developed a new simulation system to gain understanding on the complex processes that drive the redistribution of snow by the wind in complex terrain. This new system couples directly the detailed snow-pack model Crocus with the meso-scale atmospheric model Meso-NH. A blowing snow scheme allows Meso-NH to simulate the transport of snow particles in the atmosphere. We used the coupled system to study a blowing snow event with snowfall that occurred in February 2011 in the Grandes Rousses range (French Alps). Three nested domains at an horizontal resolution of 450, 150 and 50 m allow the model to simulate the complex 3D precipitation and wind fields around our experimental site (2720 m a.s.l.) during this 22-hour event. Wind-induced snow transport is activated over the domains of higher resolution (150 and 50 m). We firstly assessed the ability of the model to reproduce atmospheric flows at high resolution in alpine terrain using a large dataset of observations (meteorological data, vertical profile of wind speed). Simulated blowing snow fluxes are then compared with measurements from SPC and mechanical snow traps. Finally a map of snow erosion and accumulation produced by Terrestrial Laser measurements allows to evaluate the quality of the simulated snow depth redistribution.

  13. The global warming hiatus: Slowdown or redistribution?

    Science.gov (United States)

    Yan, Xiao-Hai; Boyer, Tim; Trenberth, Kevin; Karl, Thomas R.; Xie, Shang-Ping; Nieves, Veronica; Tung, Ka-Kit; Roemmich, Dean

    2016-11-01

    Global mean surface temperatures (GMST) exhibited a smaller rate of warming during 1998-2013, compared to the warming in the latter half of the 20th Century. Although, not a "true" hiatus in the strict definition of the word, this has been termed the "global warming hiatus" by IPCC (2013). There have been other periods that have also been defined as the "hiatus" depending on the analysis. There are a number of uncertainties and knowledge gaps regarding the "hiatus." This report reviews these issues and also posits insights from a collective set of diverse information that helps us understand what we do and do not know. One salient insight is that the GMST phenomenon is a surface characteristic that does not represent a slowdown in warming of the climate system but rather is an energy redistribution within the oceans. Improved understanding of the ocean distribution and redistribution of heat will help better monitor Earth's energy budget and its consequences. A review of recent scientific publications on the "hiatus" shows the difficulty and complexities in pinpointing the oceanic sink of the "missing heat" from the atmosphere and the upper layer of the oceans, which defines the "hiatus." Advances in "hiatus" research and outlooks (recommendations) are given in this report.

  14. Redistribution effects for OMVPE InP/GaAs

    International Nuclear Information System (INIS)

    Oh, T.I.

    1989-01-01

    The authors have analyzed the redistribution parameters for InP grown by organometallic vapor phase epitaxy (OMVPE) on GaAs substrates. The layers, grown using (trimethyl Indium) TMIn at atmospheric pressure, have been characterized for epitaxial quality using photoluminescence, energy dispersed x-ray analysis, and optical microscopy. In order to better understand the effects of inter-diffusion and inter-mixing for the GaAs into the InP epitaxial layer, the layer-substrate interface was first probed by growing consecutive samples of InP for increasingly longer growth times, and thus characterizing the layers as one moves away from the interface. For more detailed analysis, cross-sections of the InP/GaAs interface were prepared for scanning transmission electron microscopy (STEM). Energy dispersed x-ray analysis has shown that all elements In, Ga, As, and P, are present on the epitaxial side of the interface, while only Ga and As are present on the substrate side. A combination of electron diffraction and luminescence measurements show the epitaxy is at least 80% InP at the interface and essentially 100% InP at a distance of 6000 angstrom into the epilayer. Electron diffraction and bright field investigation at the interface show the existence of a second phase, existing in a mostly InP matrix. The effects of redistribution in heteroepitaxial InP/GaAs are discussed

  15. Gravity Waves in the Martian Atmosphere detected by the Radio Science Experiment MaRS on Mars Express

    Science.gov (United States)

    Tellmann, S.; Pätzold, M.; Häusler, B.; Tyler, G. L.; Hinson, D. P.

    2013-09-01

    Gravity waves are an ubiquitous feature in all stably stratified planetary atmospheres. They are known to play a significant role in the energy and momentum budget of the Earth, and they are assumed to be of importance for the redistribution of energy and momentum throughout the Martian atmosphere.

  16. Dopant redistribution and electrical activation in silicon following ultra-low energy boron implantation and excimer laser annealing

    International Nuclear Information System (INIS)

    Whelan, S.; La Magna, A.; Privitera, V.; Mannino, G.; Italia, M.; Bongiorno, C.; Fortunato, G.; Mariucci, L.

    2003-01-01

    Excimer laser annealing (ELA) of ultra-low-energy (ULE) B-ion implanted Si has been performed. High-resolution transmission electron microscopy has been used to assess the as-implanted damage and the crystal recovery following ELA. The electrical activation and redistribution of B in Si during ELA has been investigated as a function of the laser energy density (melted depth), the implant dose, and the number of laser pulses (melt time). The activated and retained dose has been evaluated with spreading resistance profiling and secondary ion mass spectrometry. A significant amount of the implanted dopant was lost from the sample during ELA. However, the dopant that was retained in crystal material was fully activated following rapid resolidification. At an atomic concentration below the thermodynamic limit, the activation efficiency (dose activated/dose implanted into Si material) was a constant for a fixed melt depth, irrespective of the dose implanted and hence the total activated dose was raised as the implant dose was increased. The electrical activation was increased for high laser energy density annealing when the dopant was redistributed over a deeper range

  17. Electromagnetic Field Redistribution in Metal Nanoparticle on Graphene.

    Science.gov (United States)

    Li, Keke; Liu, Anping; Wei, Dapeng; Yu, Keke; Sun, Xiaonan; Yan, Sheng; Huang, Yingzhou

    2018-04-25

    Benefiting from the induced image charge on metal film, the light energy is confined on a film surface under metal nanoparticle dimer, which is called electromagnetic field redistribution. In this work, electromagnetic field distribution of metal nanoparticle monomer or dimer on graphene is investigated through finite-difference time-domain method. The results point out that the electromagnetic field (EM) redistribution occurs in this nanoparticle/graphene hybrid system at infrared region where light energy could also be confined on a monolayer graphene surface. Surface charge distribution was analyzed using finite element analysis, and surface-enhanced Raman spectrum (SERS) was utilized to verify this phenomenon. Furthermore, the data about dielectric nanoparticle on monolayer graphene demonstrate this EM redistribution is attributed to strong coupling between light-excited surface charge on monolayer graphene and graphene plasmon-induced image charge on dielectric nanoparticle surface. Our work extends the knowledge of monolayer graphene plasmon, which has a wide range of applications in monolayer graphene-related film.

  18. A Case for an Atmosphere on Super-Earth 55 Cancri e

    Science.gov (United States)

    Angelo, Isabel; Hu, Renyu

    2017-12-01

    One of the primary questions when characterizing Earth-sized and super-Earth-sized exoplanets is whether they have a substantial atmosphere like Earth and Venus or a bare-rock surface like Mercury. Phase curves of the planets in thermal emission provide clues to this question, because a substantial atmosphere would transport heat more efficiently than a bare-rock surface. Analyzing phase-curve photometric data around secondary eclipses has previously been used to study energy transport in the atmospheres of hot Jupiters. Here we use phase curve, Spitzer time-series photometry to study the thermal emission properties of the super-Earth exoplanet 55 Cancri e. We utilize a semianalytical framework to fit a physical model to the infrared photometric data at 4.5 μm. The model uses parameters of planetary properties including Bond albedo, heat redistribution efficiency (I.e., ratio between radiative timescale and advective timescale of the atmosphere), and the atmospheric greenhouse factor. The phase curve of 55 Cancri e is dominated by thermal emission with an eastward-shifted hotspot. We determine the heat redistribution efficiency to be {1.47}-0.25+0.30, which implies that the advective timescale is on the same order as the radiative timescale. This requirement cannot be met by the bare-rock planet scenario because heat transport by currents of molten lava would be too slow. The phase curve thus favors the scenario with a substantial atmosphere. Our constraints on the heat redistribution efficiency translate to an atmospheric pressure of ˜1.4 bar. The Spitzer 4.5 μm band is thus a window into the deep atmosphere of the planet 55 Cancri e.

  19. Atmospheric Renewable Energy Research, Volume 3: Solar-Power Microgrids and Atmospheric Influences

    Science.gov (United States)

    2016-09-01

    1.2 DOD Renewable Energy Applications 1 1.3 Atmospheric Renewable Energy Research Strategy 2 1.4 Microgrid Definitions 3 1.4.1 Mobile Microgrid 4...1.4.2 Hybrid Microgrid 4 1.4.3 Smart Microgrid 4 1.5 Long-Term Atmospheric Renewable Energy Research Vision 5 2. Atmospheric Dependencies 5 2.1...developed-for-Army “ smart ” mobile hybrid microgrid that will incorporate both traditional and renewable energy power resources. A significant

  20. Energy: the redistribution of cards; Energie: la redistribution des cartes

    Energy Technology Data Exchange (ETDEWEB)

    Legros, E.

    2003-06-01

    This colloquium, organized by the French inter-army college of defense (CID) at the military school of Paris was devoted to energy geopolitics. The aim was to examine the influence of energy problems on the international relations and to bring out the constants and changes controlling this problem: new supply/demand equilibria, traditional energy sources and future resources, strategic petroleum stocks, the role of the USA and China. (J.S.)

  1. Inelastic diffraction nuclear processes with redistribution of particles

    International Nuclear Information System (INIS)

    Sitenko, A.G.; Goryachij, V.V.; Peresypkin, V.V.

    1979-01-01

    The inelastic nuclear processes at high energies with redistribution of particles are described within the framework of the diffraction approach. The capture processes (p,d) and (p,p'n) generated by the high energy nucleon collision with nuclei are considered. The angular distribution of 4 He(p,d) 3 He reaction is calculated and compared with experimental data

  2. Atmospheric energy for subsurface life on Mars?

    Science.gov (United States)

    Weiss, B. P.; Yung, Y. L.; Nealson, K. H.

    2000-01-01

    The location and density of biologically useful energy sources on Mars will limit the biomass, spatial distribution, and organism size of any biota. Subsurface Martian organisms could be supplied with a large energy flux from the oxidation of photochemically produced atmospheric H(2) and CO diffusing into the regolith. However, surface abundance measurements of these gases demonstrate that no more than a few percent of this available flux is actually being consumed, suggesting that biological activity driven by atmospheric H(2) and CO is limited in the top few hundred meters of the subsurface. This is significant because the available but unused energy is extremely large: for organisms at 30-m depth, it is 2,000 times previous estimates of hydrothermal and chemical weathering energy and far exceeds the energy derivable from other atmospheric gases. This also implies that the apparent scarcity of life on Mars is not attributable to lack of energy. Instead, the availability of liquid water may be a more important factor limiting biological activity because the photochemical energy flux can only penetrate to 100- to 1,000-m depth, where most H(2)O is probably frozen. Because both atmospheric and Viking lander soil data provide little evidence for biological activity, the detection of short-lived trace gases will probably be a better indicator of any extant Martian life.

  3. An introduction to atmospheric gravity waves

    CERN Document Server

    Nappo, Carmen J

    2012-01-01

    Gravity waves exist in all types of geophysical fluids, such as lakes, oceans, and atmospheres. They play an important role in redistributing energy at disturbances, such as mountains or seamounts and they are routinely studied in meteorology and oceanography, particularly simulation models, atmospheric weather models, turbulence, air pollution, and climate research. An Introduction to Atmospheric Gravity Waves provides readers with a working background of the fundamental physics and mathematics of gravity waves, and introduces a wide variety of applications and numerous recent advances. Nappo provides a concise volume on gravity waves with a lucid discussion of current observational techniques and instrumentation.An accompanying website contains real data, computer codes for data analysis, and linear gravity wave models to further enhance the reader's understanding of the book's material. Companion web site features animations and streaming video Foreword by George Chimonas, a renowned expert on the interac...

  4. Energy and zenith angle dependence of atmospheric muons

    CERN Document Server

    Maeda, K

    1973-01-01

    The recently proposed new process for energetic-muon production in the atmosphere should be tested at Mt. Chacaltaya. Rigorous calculations of zenith-angle distribution of atmospheric muons have been made for the altitude of 5200 m above sea level with energy range from 100 GeV to 100 TeV and for zenith angles from 0 degrees to 92.3 degrees . Calculations are based on the extension of the Chapman function to the case of a non-isothermal atmosphere, taking into account (i) energy- dependent nuclear-interaction mean free path of cosmic-ray hadrons in air, (ii) different magnitudes of photonuclear cross-section in the energy-loss process of muons in the atmosphere, (iii) contributions of atmospheric muons arriving below the horizontal directions, and (iv) atmospheric structure and geomagnetic deflection. Results are compared with those corresponding to sea level. Range straggling, particularly its effect on horizontally incident muons, is investigated by Monte Carlo calculation, indicating that its effects and t...

  5. How Many Convective Zones Are There in the Atmosphere of Venus?

    Science.gov (United States)

    Moroz, V. I.; Rodin, A. V.

    2002-11-01

    The qualitative characteristics of the vertical structure of the atmospheres of Venus and the Earth essentially differ. For instance, there are at least two, instead of one, zones with normal (thermal) convection on Venus. The first one is near the surface (a boundary layer); the second is at the altitudes of the lower part of the main cloud layer between 49 and 55 km. Contrary to the hypotheses proposed by Izakov (2001, 2002), the upper convective zone prevents energy transfer from the upper clouds to the subcloud atmosphere by ``anomalous turbulent heat conductivity.'' It is possible, however, that the anomalous turbulent heat conductivity takes part in the redistribution of the heat fluxes within the lower (subcloud) atmosphere.

  6. Solar energy and the abatement of atmospheric emissions

    International Nuclear Information System (INIS)

    Mirasgedis, S.; Diakoulaki, D.; Assimacopoulos, D.

    1996-01-01

    In spite of the fact that solar energy is a ''clean'' energy form, gaseous pollutants are emitted during the manufacturing of the systems necessary for its utilisation. An attempt is made in this paper to estimate the level of atmospheric pollutants emitted during the successive stages which make up the manufacture process for solar water heating (SWH) systems, and to evaluate these results in comparison with the respective pollutant emission levels attributed to the generation of electricity in Greece's conventional power plants. As energy consumption is recognised as the main source of atmospheric pollution, a Life Cycle Analysis (LCA) method was applied, focusing on the most energy-consuming stages of the SWH system production process. The conclusions of the analysis indicate that the emissions of gaseous pollutants associated with the utilisation of solar energy are considerably lower than those caused by the production of electricity in conventional systems, thereby substantiating that solar energy utilisation can make a notable contribution to the abatement of atmospheric pollution. (author)

  7. Annual report 1997. Wind Energy and Atmospheric Physics Department

    Energy Technology Data Exchange (ETDEWEB)

    Madsen, P.H.; Dannemand Andersen, P.; Skrumsager, B. [eds.

    1998-08-01

    The report describes the work of the Wind Energy and Atmospheric Physics Department at Risoe National Laboratory during 1997. The research of the department aims to develop new opportunities in the exploitation of wind energy and to map and alleviate atmospheric aspects of environmental problems. The expertise of the department is utilised in commercial activities such as wind turbine testing and certification, training programmes, courses and consultancy services to industry, authorities and Danish and international organisations on wind energy and atmospheric environmental impact. (au)

  8. Energy balance at the soil atmosphere interface

    NARCIS (Netherlands)

    Sedighi, M; Hepburn, B.D.P.; Thomas, HR; Vardon, P.J.

    2016-01-01

    Soil atmospheric interactions play an important role within the thermal energy balance and seasonal temperature variations of the ground. This paper presents a formulation for the surface boundary conditions related to interactions between soil and atmosphere. The boundary condition formulated

  9. Wave energy budget analysis in the Earth's radiation belts uncovers a missing energy.

    Science.gov (United States)

    Artemyev, A V; Agapitov, O V; Mourenas, D; Krasnoselskikh, V V; Mozer, F S

    2015-05-15

    Whistler-mode emissions are important electromagnetic waves pervasive in the Earth's magnetosphere, where they continuously remove or energize electrons trapped by the geomagnetic field, controlling radiation hazards to satellites and astronauts and the upper-atmosphere ionization or chemical composition. Here, we report an analysis of 10-year Cluster data, statistically evaluating the full wave energy budget in the Earth's magnetosphere, revealing that a significant fraction of the energy corresponds to hitherto generally neglected very oblique waves. Such waves, with 10 times smaller magnetic power than parallel waves, typically have similar total energy. Moreover, they carry up to 80% of the wave energy involved in wave-particle resonant interactions. It implies that electron heating and precipitation into the atmosphere may have been significantly under/over-valued in past studies considering only conventional quasi-parallel waves. Very oblique waves may turn out to be a crucial agent of energy redistribution in the Earth's radiation belts, controlled by solar activity.

  10. Redistributed Regional Ventilation after the Administration of a Bronchodilator Demonstrated on Xenon-Inhaled Dual-Energy CT in a Patient with Asthma

    International Nuclear Information System (INIS)

    Goo, Hyun Woo; Yu, Jin Ho

    2011-01-01

    We report here on the redistributed regional ventilation abnormalities after the administration of a bronchodilator and as seen on xenon-inhaled dual-energy CT in a patient with asthma. The improved ventilation seen in the right lower lobe and the decreased ventilation seen in the right middle lobe after the administration of a bronchodilator on xenon-inhaled dual-energy CT could explain a positive bronchodilator response on a pulmonary function test. These changes may reflect the heterogeneity of the airway responsiveness to a bronchodilator in patients with asthma.

  11. Redistributed Regional Ventilation after the Administration of a Bronchodilator Demonstrated on Xenon-Inhaled Dual-Energy CT in a Patient with Asthma

    Energy Technology Data Exchange (ETDEWEB)

    Goo, Hyun Woo; Yu, Jin Ho [Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    2011-06-15

    We report here on the redistributed regional ventilation abnormalities after the administration of a bronchodilator and as seen on xenon-inhaled dual-energy CT in a patient with asthma. The improved ventilation seen in the right lower lobe and the decreased ventilation seen in the right middle lobe after the administration of a bronchodilator on xenon-inhaled dual-energy CT could explain a positive bronchodilator response on a pulmonary function test. These changes may reflect the heterogeneity of the airway responsiveness to a bronchodilator in patients with asthma.

  12. Wave energy budget analysis in the Earth’s radiation belts uncovers a missing energy

    Science.gov (United States)

    Artemyev, A.V.; Agapitov, O.V.; Mourenas, D.; Krasnoselskikh, V.V.; Mozer, F.S.

    2015-01-01

    Whistler-mode emissions are important electromagnetic waves pervasive in the Earth’s magnetosphere, where they continuously remove or energize electrons trapped by the geomagnetic field, controlling radiation hazards to satellites and astronauts and the upper-atmosphere ionization or chemical composition. Here, we report an analysis of 10-year Cluster data, statistically evaluating the full wave energy budget in the Earth’s magnetosphere, revealing that a significant fraction of the energy corresponds to hitherto generally neglected very oblique waves. Such waves, with 10 times smaller magnetic power than parallel waves, typically have similar total energy. Moreover, they carry up to 80% of the wave energy involved in wave–particle resonant interactions. It implies that electron heating and precipitation into the atmosphere may have been significantly under/over-valued in past studies considering only conventional quasi-parallel waves. Very oblique waves may turn out to be a crucial agent of energy redistribution in the Earth’s radiation belts, controlled by solar activity. PMID:25975615

  13. Damage and redistribution of impurities by ionic bombardment

    International Nuclear Information System (INIS)

    Tognetti, N.P.

    1982-01-01

    Some aspects of displacement collisions in solids bombarded with ions in the medium energy range have been studied using the backscattering and channelling techniques. The production of lattice damage and the spatial redistribution of atoms within the collision cascade were the two main effects considered and experimentally studied. A comprehensive study of disorder production in GaAs was carried out at 40 K for a variety of ions and ion energies, providing insight into the mechanisms of damage generation from both the macro and microscopic points of view. Experiments on thermal recovery of partially disordered substrates revealed that annealing occurs from approximately 100 K to 300 K. A direct procedure developed for the obtainment of damage profiles from backscattering-channelling measurements is described. The net spatial redistribution of displaced atoms, in combined impurity-matrix substrates was studied and compared with existing theories of ion beam mixing. The Ag-Si system was studied for a wide range of fluence of bombarding Ar + ions. Furthermore, the contribution of atomic mixing in the experimental observation of Ge implantation at high doses into Si is discussed. (M.E.L) [es

  14. HAT-P-16b: A Bayesian Atmospheric Retrieval

    Science.gov (United States)

    McIntyre, Kathleen; Harrington, Joseph; Blecic, Jasmina; Cubillos, Patricio; Challener, Ryan; Bakos, Gaspar

    2017-10-01

    HAT-P-16b is a hot (equilibrium temperature 1626 ± 40 K, assuming zero Bond albedo and efficient energy redistribution), 4.19 ± 0.09 Jupiter-mass exoplanet orbiting an F8 star every 2.775960 ± 0.000003 days (Buchhave et al 2010). We observed two secondary eclipses of HAT-P-16b using the 3.6 μm and 4.5 μm channels of the Spitzer Space Telescope's Infrared Array Camera (program ID 60003). We applied our Photometry for Orbits, Eclipses, and Transits (POET) code to produce normalized eclipse light curves, and our Bayesian Atmospheric Radiative Transfer (BART) code to constrain the temperature-pressure profiles and atmospheric molecular abundances of the planet. Spitzer is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. This work was supported by NASA Planetary Atmospheres grant NNX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G.

  15. Calculation of axial hydrogen redistribution on the spent fuels during interim dry storage

    International Nuclear Information System (INIS)

    Sasahara, Akihiro; Matsumura, Tetsuo

    2006-01-01

    One of the phenomena that will affect fuel integrity during a spent fuel dry storage is a hydrogen axial migration in cladding. If there is a hydrogen pickup in cladding in reactor operation, hydrogen will move from hotter to colder cladding region in the axial direction under fuel temperature gradient during dry storage. Then hydrogen beyond solubility limit in colder region will be precipitated as hydride, and consequently hydride embrittlement may take place in the cladding. In this study, hydrogen redistribution experiments were carried out to obtain the data related to hydrogen axial migration by using actually twenty years dry (air) stored spent PWR-UO 2 fuel rods of which burn-ups were 31 and 58 MWd/kg HM. From the hydrogen redistribution experiments, the heat of transport of hydrogen of zircaloy-4 cladding from twenty years dry stored spent PWR-UO 2 fuel rods were from 10.1 to 18.6 kcal/mol and they were significantly larger than that of unirradiated zircaloy-4 cladding. This means that hydrogen in irradiated cladding can move easier than that in unirradiated cladding. In the hydrogen redistribution experiments, hydrogen diffusion coefficients and solubility limit were also obtained. There are few differences in the diffusion coefficients and solubility limits between the irradiated cladding and unirradiated cladding. The hydrogen redistribution in the cladding after dry storage for forty years was evaluated by one-dimensional diffusion calculation using the measured values. The maximum values as the heat of transports, diffusion coefficients and solubility limits of the irradiated cladding and various spent fuel temperature profiles reported were used in the calculation. The axial hydrogen migration was not significant after dry storage for forty years in helium atmosphere and the maximum values as the heat of transports, diffusion coefficients and solubility limits of the unirradiated cladding gave conservative evaluation for hydrogen redistribution

  16. Optimal redistribution of an urban air quality monitoring network using atmospheric dispersion model and genetic algorithm

    Science.gov (United States)

    Hao, Yufang; Xie, Shaodong

    2018-03-01

    Air quality monitoring networks play a significant role in identifying the spatiotemporal patterns of air pollution, and they need to be deployed efficiently, with a minimum number of sites. The revision and optimal adjustment of existing monitoring networks is crucial for cities that have undergone rapid urban expansion and experience temporal variations in pollution patterns. The approach based on the Weather Research and Forecasting-California PUFF (WRF-CALPUFF) model and genetic algorithm (GA) was developed to design an optimal monitoring network. The maximization of coverage with minimum overlap and the ability to detect violations of standards were developed as the design objectives for redistributed networks. The non-dominated sorting genetic algorithm was applied to optimize the network size and site locations simultaneously for Shijiazhuang city, one of the most polluted cities in China. The assessment on the current network identified the insufficient spatial coverage of SO2 and NO2 monitoring for the expanding city. The optimization results showed that significant improvements were achieved in multiple objectives by redistributing the original network. Efficient coverage of the resulting designs improved to 60.99% and 76.06% of the urban area for SO2 and NO2, respectively. The redistributing design for multi-pollutant including 8 sites was also proposed, with the spatial representation covered 52.30% of the urban area and the overlapped areas decreased by 85.87% compared with the original network. The abilities to detect violations of standards were not improved as much as the other two objectives due to the conflicting nature between the multiple objectives. Additionally, the results demonstrated that the algorithm was slightly sensitive to the parameter settings, with the number of generations presented the most significant effect. Overall, our study presents an effective and feasible procedure for air quality network optimization at a city scale.

  17. Annual progress report 2000. Wind Energy and Atmospheric Physics Department

    International Nuclear Information System (INIS)

    Larsen, S.E.; Skrumsager, B.

    2001-05-01

    The report describes the work of the Wind Energy and Atmospheric Physics Department at Risoe National Laboratory in 2000. The research of the department aims to develop new opportunities in the exploitation of wind energy and to map and alleviate atmospheric aspects of environmental problems. The expertise of the department is utilised in commercial activities such as wind turbine testing and certification, training programmes, courses and consultancy services to industry, authorities and Danish and international organisations on wind energy and atmospheric environmental impact. A summary of the department's activities in 2000 is shown, including lists of publications, lectures, committees and staff members. (au)

  18. Spectral Gap Energy Transfer in Atmospheric Boundary Layer

    Science.gov (United States)

    Bhushan, S.; Walters, K.; Barros, A. P.; Nogueira, M.

    2012-12-01

    Experimental measurements of atmospheric turbulence energy spectra show E(k) ~ k-3 slopes at synoptic scales (~ 600 km - 2000 km) and k-5/3 slopes at the mesoscales (theory, it is expected that a strong backward energy cascade would develop at the synoptic scale, and that circulation would grow infinitely. To limit this backward transfer, energy arrest at macroscales must be introduced. The most commonly used turbulence models developed to mimic the above energy transfer include the energy backscatter model for 2D turbulence in the horizontal plane via Large Eddy Simulation (LES) models, dissipative URANS models in the vertical plane, and Ekman friction for the energy arrest. One of the controversial issues surrounding the atmospheric turbulence spectra is the explanation of the generation of the 2D and 3D spectra and transition between them, for energy injection at the synoptic scales. Lilly (1989) proposed that the existence of 2D and 3D spectra can only be explained by the presence of an additional energy injection in the meso-scale region. A second issue is related to the observations of dual peak spectra with small variance in meso-scale, suggesting that the energy transfer occurs across a spectral gap (Van Der Hoven, 1957). Several studies have confirmed the spectral gap for the meso-scale circulations, and have suggested that they are enhanced by smaller scale vertical convection rather than by the synoptic scales. Further, the widely accepted energy arrest mechanism by boundary layer friction is closely related to the spectral gap transfer. This study proposes an energy transfer mechanism for atmospheric turbulence with synoptic scale injection, wherein the generation of 2D and 3D spectra is explained using spectral gap energy transfer. The existence of the spectral gap energy transfer is validated by performing LES for the interaction of large scale circulation with a wall, and studying the evolution of the energy spectra both near to and far from the wall

  19. Heat-induced redistribution of surface oxide in uranium

    International Nuclear Information System (INIS)

    Swissa, E.; Shamir, N.; Bloch, J.; Mintz, M.H.; Israel Atomic Energy Commission, Beersheba. Nuclear Research Center-Negev)

    1990-01-01

    The redistribution of oxygen and uranium metal at the vicinity of the metal-oxide interface of native and grown oxides due to vacuum thermal annealing was studied for uranium and uranium-chromium alloy using Auger depth profiling and metallographic techniques. It was found that uranium metal is segregating out through the uranium oxide layer for annealing temperatures above 450deg C. At the same time the oxide is redistributed in the metal below the oxide-metal interface in a diffusion like process. By applying a diffusion equation of a finite source, the diffusion coefficients for the process were obtained from the oxygen depth profiles measured for different annealing times. An Arrhenius like behavior was found for the diffusion coefficient between 400 and 800deg C. The activation energy obtained was E a =15.4±1.9 kcal/mole and the pre-exponential factor, D 0 =1.1x10 -8 cm 2 /s. An internal oxidation mechanism is proposed to explain the results. (orig.)

  20. Heat-induced redistribution of surface oxide in uranium

    Science.gov (United States)

    Swissa, Eli; Shamir, Noah; Mintz, Moshe H.; Bloch, Joseph

    1990-09-01

    The redistribution of oxygen and uranium metal at the vicinity of the metal-oxide interface of native and grown oxides due to vacuum thermal annealing was studied for uranium and uranium-chromium alloy using Auger depth profiling and metallographic techniques. It was found that uranium metal is segregating out through the uranium oxide layer for annealing temperatures above 450°C. At the same time the oxide is redistributed in the metal below the oxide-metal interface in a diffusion like process. By applying a diffusion equation of a finite source, the diffusion coefficients for the process were obtained from the oxygen depth profiles measured for different annealing times. An Arrhenius like behavior was found for the diffusion coefficient between 400 and 800°C. The activation energy obtained was Ea = 15.4 ± 1.9 kcal/mole and the pre-exponential factor, D0 = 1.1 × 10 -8cm2/ s. An internal oxidation mechanism is proposed to explain the results.

  1. Annual progress report 2000. Wind Energy and Atmospheric Physics Department

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, S.E.; Skrumsager, B. (eds.)

    2001-05-01

    The report describes the work of the Wind Energy and Atmospheric Physics Department at Risoe National Laboratory in 2000. The research of the department aims to develop new opportunities in the exploitation of wind energy and to map and alleviate atmospheric aspects of environmental problems. The expertise of the department is utilised in commercial activities such as wind turbine testing and certification, training programmes, courses and consultancy services to industry, authorities and Danish and international organisations on wind energy and atmospheric environmental impact. A summary of the department's activities in 2000 is shown, including lists of publications, lectures, committees and staff members. (au)

  2. Annual progress report 2000. Wind Energy and Atmospheric Physics Dept.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, S.E.; Skrumsager, B. [eds.

    2001-05-01

    The report describes the work of the Wind Energy and Atmospheric Physics Department at Risoe National Laboratory in 2000. The research of the department aims to develop new opportunities in the exploitation of wind energy and to map and alleviate atmospheric aspects of environmental problems. The expertise of the department is utilised in commercial activities such as wind turbine testing and certification, training programmes, courses and consultancy services to industry, authorities and Danish and international organisations on wind energy and atmospheric environmental impact. A summary of the department's activities in 2000 is shown, including lists of publications, lectures, committees and staff members. (au)

  3. Inequality Aversion and Voting on Redistribution

    DEFF Research Database (Denmark)

    Höchtl, Wolfgang; Sausgruber, Rupert; Tyran, Jean-Robert

    of income classes. We experimentally study voting on redistribution between two income classes and show that the effect of inequality aversion is asymmetric. Inequality aversion is more likely to matter if the “rich” are in majority. With a “poor” majority, we find that redistribution outcomes look...

  4. Inequality aversion and voting on redistribution

    DEFF Research Database (Denmark)

    Höchtl, Wolfgang; Sausgruber, Rupert; Tyran, Jean-Robert Karl

    2012-01-01

    of income classes. We experimentally study voting on redistribution between two income classes and show that the effect of inequality aversion is asymmetric. Inequality aversion is more likely to matter if the “rich” are in majority. With a “poor” majority, we find that redistribution outcomes look...

  5. Direct energy inputs to the middle atmosphere

    Science.gov (United States)

    Rosenberg, T. J.; Lanzerotti, L. J.

    1979-01-01

    As a working definition of the extent of the middle atmosphere (MA), the height range from 30 to 100 km was adopted. The neutral and ionic composition and the dynamics within this height range are, for the most part, poorly understood. From available information, the importance of various particle and photon energy sources, including their variability, for ionization of the neutral atmosphere in this height range is assessed. The following topics are discussed: (1) penetration of the MA by particle and electromagnetic energy; (2) ionization sources for the MA; (3) galactic cosmic rays; (4) solar H Ly alpha, other EUV, and X-rays; (5) magnetospheric electrons and bremsstrahlung X-rays; and (6) solar cosmic rays.

  6. Stellar by Day, Planetary by Night: Atmospheres of Ultra-Hot Jupiters

    Science.gov (United States)

    Hensley, Kerry

    2018-06-01

    Move over, hot Jupiters theres an even stranger kind of giant planet in the universe! Ultra-hot Jupiters are so strongly irradiated that the molecules in their atmospheres split apart. What does this mean for heat transport on these planets?Atmospheres of Exotic PlanetsA diagram showing the orbit of an ultra-hot Jupiter and the longitudes at which dissociation and recombination occur. [Bell Cowan 2018]Similar to hot Jupiters, ultra-hot Jupiters are gas giants with atmospheres dominated by molecular hydrogen. What makes them interesting is that their dayside atmospheres are so hot that the molecules dissociate into individual hydrogen atoms more like the atmospheres of stars than planets.Because of the intense stellar irradiation, there is also an extreme temperature difference between the day and night sides of these planets potentially more than 1,000 K! As the stellar irradiation increases, the dayside atmosphere becomes hotter and hotter and the temperature difference between the day and night sides increases.When hot atomic hydrogen is transported into cooler regions (by winds, for instance), it recombines to form H2 molecules and heats the gas, effectively transporting heat from one location to another. This is similar to how the condensation of water redistributes heat in Earths atmosphere but what effect does this phenomenon have on the atmospheres of ultra-hot Jupiters?Maps of atmospheric temperature of molecular hydrogen dissociation fraction for three wind speeds. Click to enlarge. [Bell Cowan 2018]Modeling Heat RedistributionTaylor Bell and Nicolas Cowan (McGill University) used an energy-balance model to estimate the effects of H2 dissociation and recombination on heat transport in ultra-hot Jupiter atmospheres. In particular, they explored the redistribution of heat and how it affects the resultant phase curve the curve that describes the combination of reflected and thermally emitted light from the planet, observed as a function of its phase angle

  7. Pacific Northwest Laboratory annual report for 1987 to the DOE Office of Energy Research: Part 3, Atmospheric sciences

    Energy Technology Data Exchange (ETDEWEB)

    Elderkin, C.E.

    1988-08-01

    Currently, the broad goals of atmospheric research at Pacific Northwest Laboratory (PNL) are to describe and predict the nature and fate of atmospheric contaminants and to develop an understanding of the atmospheric processes contributing to their distribution on local, regional, and continental scales in the air, in clouds, and on the surface. For several years, studies of transport and diffusion have been extended to mesoscale areas of complex terrain. Atmospheric cleansing research has expanded to a regional scale, multilaboratory investigation of precipitation scavenging processes involving the transformation and wet deposition of chemicals composing ''acid rain.'' In addition, the redistribution and long-range transport of transformed contaminants passing through clouds is recognized as a necessary extension of our research to even larger scales in the future. A few long-range tracer experiments conducted in recent years and the special opportunity for measuring the transport and removal of radioactivity following the Chernobyl reactor accident of April 1986 offer important initial data bases for studying atmospheric processes at these super-regional scales.

  8. An assessment of worldwide energy-related atmospheric pollution

    International Nuclear Information System (INIS)

    1989-01-01

    Energy-related emissions of atmospheric pollutants are currently suspected as the source of a number of major environmental problems. Early concerns about local and regional air quality and respiratory health risks, greatly alleviated in the case of sulfur dioxide (SO 2 ) emissions by the use of tall stacks, have been superseded by ''global problems,'' such as acidification of the biosphere, increase in tropospheric ozone (O 3 ), visibility impairment, long-term exposure to toxic pollutants, and buildup of ''greenhouse gases''. Chapter 1 assesses the sources and physical/chemical atmospheric processes of energy-related atmospheric pollution (ERAP). It is not an exhaustive review but rather a documented statement of the state-of-art knowledge on issues critical to effective environmental decision-making. Chapter 2 looks at the effects on man, the environment and materials, and chapter 3 presents an overview and policy options. (author)

  9. Perancangan dan Analisis Redistribution Routing Protocol OSPF dan EIGRP

    Directory of Open Access Journals (Sweden)

    DWI ARYANTA

    2016-02-01

    Full Text Available Abstrak OSPF (Open Shortest Path First dan EIGRP (Enhanced Interior Gateway Routing Protocol adalah dua routing protokol yang banyak digunakan dalam jaringan komputer. Perbedaan karakteristik antar routing protokol menimbulkan masalah dalam pengiriman paket data. Teknik redistribution adalah solusi untuk melakukan komunikasi antar routing protokol. Dengan menggunakan software Cisco Packet Tracer 5.3 pada penelitian ini dibuat simulasi OSPF dan EIGRP yang dihubungkan oleh teknik redistribution, kemudian dibandingkan kualitasnya dengan single routing protokol EIGRP dan OSPF. Parameter pengujian dalam penelitian ini adalah nilai time delay dan trace route. Nilai trace route berdasarkan perhitungan langsung cost dan metric dibandingkan dengan hasil simulasi. Hasilnya dapat dilakukan proses redistribution OSPF dan EIGRP. Nilai delay redistribution lebih baik 1% dibanding OSPF dan 2-3% di bawah EIGRP tergantung kepadatan traffic. Dalam perhitungan trace route redistribution dilakukan 2 perhitungan, yaitu cost untuk area OSPF dan metric pada area EIGRP. Pengambilan jalur utama dan alternatif pengiriman paket berdasarkan nilai cost dan metric yang terkecil, hal ini terbukti berdasarkan perhitungan dan simulasi. Kata kunci: OSPF, EIGRP, Redistribution, Delay, Cost, Metric. Abstract OSPF (Open Shortest Path First and EIGRP (Enhanced Interior Gateway Routing Protocol are two routing protocols are widely used in computer networks. Differences between the characteristics of routing protocols pose a problem in the delivery of data packets. Redistribution technique is the solution for communication between routing protocols. By using the software Cisco Packet Tracer 5.3 in this study were made simulating OSPF and EIGRP redistribution linked by technique, then compared its quality with a single EIGRP and OSPF routing protocols. Testing parameters in this study is the value of the time delay and trace route. Value trace route based on direct calculation of cost

  10. Annual progress report for 1999. Wind Energy and Atmospheric Physics Department

    International Nuclear Information System (INIS)

    Larsen, S.E.; Skrumsager, B.

    2000-06-01

    The report describes the work of the Wind Energy and Atmospheric Physics Department at Risoe National Laboratory in 1999. The research of the department aims to develop new opportunities in the exploitation of wind energy and to map and alleviate atmospheric aspects of environmental problems. The expertise of the departments is utilised in commercial activities such as wind turbine testing and certification, training programmes, courses and consultancy services to industry, authorities and Danish and international organisations on wind energy and atmospheric environmental impact. A summary of the department's activities in 1999 is presented, including lists of publications, lectures, committees and staff members. (au)

  11. Electricity market integration: Redistribution effect versus resource reallocation

    International Nuclear Information System (INIS)

    Finon, Dominique; Romano, Elliot

    2009-01-01

    Summary: In countries with a significant amount of low variable cost generation capacity, the integration of electricity markets poses a real problem with respect to consumers' interests. In such cases, consumers face a significant price rise compared with consumers in countries where low-cost capacities are lacking. This paper analyses this problem both in the short and long term, focusing on a market dominated by nuclear and hydro production. When there are too many restrictions on new capacity developments in low-cost technologies, market integration will lead to surplus redistribution without any production reallocation. This really makes it legitimate to contemplate redistributive compensations towards local consumers in countries which benefited from low variable cost generators at the moment of liberalisation. This paper examines two alternative ways of rent reallocation, one by income with a windfall tax on nuclear producers and the allocation of this revenue to energy efficiency policy funds, and another by price by giving drawing rights on the existing nuclear generators' production to small commercial and domestic consumers, at a level equivalent to the one necessary to maintain regulated prices.

  12. Impact of variations of gravitational acceleration on the general circulation of the planetary atmosphere

    Science.gov (United States)

    Kilic, Cevahir; Raible, Christoph C.; Stocker, Thomas F.; Kirk, Edilbert

    2017-01-01

    Fundamental to the redistribution of energy in a planetary atmosphere is the general circulation and its meridional structure. We use a general circulation model of the atmosphere in an aquaplanet configuration with prescribed sea surface temperature and investigate the influence of the gravitational acceleration g on the structure of the circulation. For g =g0 = 9.81 ms-2 , three meridional cells exist in each hemisphere. Up to about g /g0 = 1.4 all cells increase in strength. Further increasing this ratio results in a weakening of the thermally indirect cell, such that a two- and finally a one-cell structure of the meridional circulation develops in each hemisphere. This transition is explained by the primary driver of the thermally direct Hadley cell: the diabatic heating at the equator which is proportional to g. The analysis of the energetics of the atmospheric circulation based on the Lorenz energy cycle supports this finding. For Earth-like gravitational accelerations transient eddies are primarily responsible for the meridional heat flux. For large gravitational accelerations, the direct zonal mean conversion of energy dominates the meridional heat flux.

  13. Annual progress report for 1999. Wind Energy and Atmospheric Physics Department

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, S.E.; Skrumsager, B. [eds.

    2000-06-01

    The report describes the work of the Wind Energy and Atmospheric Physics Department at Risoe National Laboratory in 1999. The research of the department aims to develop new opportunities in the exploitation of wind energy and to map and alleviate atmospheric aspects of environmental problems. The expertise of the departments is utilised in commercial activities such as wind turbine testing and certification, training programmes, courses and consultancy services to industry, authorities and Danish and international organisations on wind energy and atmospheric environmental impact. A summary of the department's activities in 1999 is presented, including lists of publications, lectures, committees and staff members. (au)

  14. Calculation of pressure drop and flow redistribution in the core of LMFBR type reactors

    International Nuclear Information System (INIS)

    Botelho, D.A.; Morgado, O.J.

    1985-01-01

    It is studied the flow redistribution through of fuel elements to the pressure drop calculation in the core of sodium cooled reactors. Using the quasi-static formulation of equations of the conservation of mass, energy and momentum, it was developed a computer program to flow redistribution calculations and pressure drop for different power levels and total flow simulating an arbitrary number of channels for sodium flowing . An optimization of the number of sufficient channels for calculations of this nature is done. The method is applied in studies of transients in the same reactor. (M.C.K.) [pt

  15. Calculation of pressure drop and flow redistribution in the LMFBR core

    International Nuclear Information System (INIS)

    Morgado, O.J.

    1984-01-01

    The flow redistribution through fuel assemblies of LMFBRs: for the correct calculation of mass flow rates and pressure drop, are studied. Using a quasi-static formulation of conservation equations of mass and energy, a computer program was developed to simulate any arbitrary number of flow channels, operating at different linear power levels. Therefore f flow channels, operating at different linear power levels. Therefore, it was possible to perform thermal transient calculations for the Clinch River reactor core. The results of the calculations agree with the data found in the literature and supply accurate information about flow redistribution, average temperature, and pressure drop in the core, when the reactor is operated at conditions from the designed flow conditions, as is always the case in a load changing operation, or during transients. (Autor) [pt

  16. Redistributive effect of personal income taxation in Pakistan

    OpenAIRE

    Ahmed, Vaqar; O'Donoghue, Cathal

    2009-01-01

    This paper studies the redistribution effect of personal income tax in Pakistan. We decompose the overall tax system in order to evaluate the contribution of rate, allowances, deductions, exemptions and credits. The structure given in Income Tax Ordinance, 2001, is applied to gross household incomes in 2002 (low growth year) and 2005 (high growth year). Our findings reveal that the reforms laid down in this Ordinance resulted in a greater redistribution of incomes. The redistributive effect i...

  17. The potential impact of hydrogen energy use on the atmosphere

    Science.gov (United States)

    van Ruijven, B. J.; Lamarque, J. F.; van Vuuren, D. P.; Kram, T.; Eerens, H.

    2009-04-01

    Energy models show very different trajectories for future energy systems (partly as function of future climate policy). One possible option is a transition towards a hydrogen-based energy system. The potential impact of such hydrogen economy on atmospheric emissions is highly uncertain. On the one hand, application of hydrogen in clean fuel cells reduces emissions of local air pollutants, like SOx and NOx. On the other hand, emissions of hydrogen from system leakages are expected to change the atmospheric concentrations and behaviour (see also Price et al., 2007; Sanderson et al., 2003; Schultz et al., 2003; Tromp et al., 2003). The uncertainty arises from several sources: the expected use of hydrogen, the intensity of leakages and emissions, and the atmospheric chemical behaviour of hydrogen. Existing studies to the potential impacts of a hydrogen economy on the atmosphere mostly use hydrogen emission scenarios that are based on simple assumptions. This research combines two different modelling efforts to explore the range of impacts of hydrogen on atmospheric chemistry. First, the potential role of hydrogen in the global energy system and the related emissions of hydrogen and other air pollutants are derived from the global energy system simulation model TIMER (van Vuuren, 2007). A set of dedicated scenarios on hydrogen technology development explores the most pessimistic and optimistic cases for hydrogen deployment (van Ruijven et al., 2008; van Ruijven et al., 2007). These scenarios are combined with different assumptions on hydrogen emission factors. Second, the emissions from the TIMER model are linked to the NCAR atmospheric model (Lamarque et al., 2005; Lamarque et al., 2008), in order to determine the impacts on atmospheric chemistry. By combining an energy system model and an atmospheric model, we are able to consistently explore the boundaries of both hydrogen use, emissions and impacts on atmospheric chemistry. References: Lamarque, J.-F., Kiehl, J. T

  18. Wind Energy and Atmospheric Physics Department annual progress report 1999

    DEFF Research Database (Denmark)

    2000-01-01

    The report describes the work of the Wind Energy and Atmospheric Physics Department at Risø National Laboratory in 1999. The research of the department aims to develop new opportunities in the exploitation of wind energy and to map and alleviateatmospheric aspects of environmental problems....... The expertise of the department is utilised in commercial activities such as wind turbine testing and certification, training programmes, courses and consultancy services to industry, authorities and Danishand international organisations on wind energy and atmospheric environmental impact. A sum......-mary of the department's activities in 1999 is presented, including lists of publications, lectures, committees and staff members....

  19. 47 CFR 73.9001 - Redistribution control of digital television broadcasts.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Redistribution control of digital television... RADIO SERVICES RADIO BROADCAST SERVICES Digital Broadcast Television Redistribution Control § 73.9001 Redistribution control of digital television broadcasts. Licensees of TV broadcast stations may utilize the...

  20. Perancangan dan Analisis Redistribution Routing Protocol OSPF dan EIGRP

    Directory of Open Access Journals (Sweden)

    DWI ARYANTA

    2014-07-01

    OSPF (Open Shortest Path First and EIGRP (Enhanced Interior Gateway Routing Protocol are two routing protocols are widely used in computer networks. Differences between the characteristics of routing protocols pose a problem in the delivery of data packets. Redistribution technique is the solution for communication between routing protocols. By using the software Cisco Packet Tracer 5.3 in this study were made simulating OSPF and EIGRP redistribution linked by technique, then compared its quality with a single EIGRP and OSPF routing protocols. Testing parameters in this study is the value of the time delay and trace route. Value trace route based on direct calculation of cost and metric compared with the simulation results. The result can be OSPF and EIGRP redistribution process. Value delay redistribution 1% better than OSPF and EIGRP 2-3% under traffic density dependent. In calculating the trace route redistribution is done 2 calculations, the cost for OSPF area and the area of the EIGRP metric. Making primary and alternate paths based on the packet delivery rate and the cost of the smallest metric, it is proved by calculation and simulation. Keywords: OSPF, EIGRP, Redistribution, Delay, Cost, Metric.

  1. Evaluation of Monte Carlo tools for high energy atmospheric physics

    Directory of Open Access Journals (Sweden)

    C. Rutjes

    2016-11-01

    Full Text Available The emerging field of high energy atmospheric physics (HEAP includes terrestrial gamma-ray flashes, electron–positron beams and gamma-ray glows from thunderstorms. Similar emissions of high energy particles occur in pulsed high voltage discharges. Understanding these phenomena requires appropriate models for the interaction of electrons, positrons and photons of up to 40 MeV energy with atmospheric air. In this paper, we benchmark the performance of the Monte Carlo codes Geant4, EGS5 and FLUKA developed in other fields of physics and of the custom-made codes GRRR and MC-PEPTITA against each other within the parameter regime relevant for high energy atmospheric physics. We focus on basic tests, namely on the evolution of monoenergetic and directed beams of electrons, positrons and photons with kinetic energies between 100 keV and 40 MeV through homogeneous air in the absence of electric and magnetic fields, using a low energy cutoff of 50 keV. We discuss important differences between the results of the different codes and provide plausible explanations. We also test the computational performance of the codes. The Supplement contains all results, providing a first benchmark for present and future custom-made codes that are more flexible in including electrodynamic interactions.

  2. Energy Dissipation in the Upper Atmospheres of TRAPPIST-1 Planets

    Science.gov (United States)

    Cohen, Ofer; Glocer, Alex; Garraffo, Cecilia; Drake, Jeremy J.; Bell, Jared M.

    2018-03-01

    We present a method to quantify the upper limit of the energy transmitted from the intense stellar wind to the upper atmospheres of three of the TRAPPIST-1 planets (e, f, and g). We use a formalism that treats the system as two electromagnetic regions, where the efficiency of the energy transmission between one region (the stellar wind at the planetary orbits) to the other (the planetary ionospheres) depends on the relation between the conductances and impedances of the two regions. Since the energy flux of the stellar wind is very high at these planetary orbits, we find that for the case of high transmission efficiency (when the conductances and impedances are close in magnitude), the energy dissipation in the upper planetary atmospheres is also very large. On average, the Ohmic energy can reach 0.5–1 W m‑2, about 1% of the stellar irradiance and 5–15 times the EUV irradiance. Here, using constant values for the ionospheric conductance, we demonstrate that the stellar wind energy could potentially drive large atmospheric heating in terrestrial planets, as well as in hot Jupiters. More detailed calculations are needed to assess the ionospheric conductance and to determine more accurately the amount of heating the stellar wind can drive in close-orbit planets.

  3. GAUSS-SEIDEL AND SUCCESSIVE OVERRELAXATION METHODS FOR RADIATIVE TRANSFER WITH PARTIAL FREQUENCY REDISTRIBUTION

    International Nuclear Information System (INIS)

    Sampoorna, M.; Bueno, J. Trujillo

    2010-01-01

    The linearly polarized solar limb spectrum that is produced by scattering processes contains a wealth of information on the physical conditions and magnetic fields of the solar outer atmosphere, but the modeling of many of its strongest spectral lines requires solving an involved non-local thermodynamic equilibrium radiative transfer problem accounting for partial redistribution (PRD) effects. Fast radiative transfer methods for the numerical solution of PRD problems are also needed for a proper treatment of hydrogen lines when aiming at realistic time-dependent magnetohydrodynamic simulations of the solar chromosphere. Here we show how the two-level atom PRD problem with and without polarization can be solved accurately and efficiently via the application of highly convergent iterative schemes based on the Gauss-Seidel and successive overrelaxation (SOR) radiative transfer methods that had been previously developed for the complete redistribution case. Of particular interest is the Symmetric SOR method, which allows us to reach the fully converged solution with an order of magnitude of improvement in the total computational time with respect to the Jacobi-based local accelerated lambda iteration method.

  4. Gauss-Seidel and Successive Overrelaxation Methods for Radiative Transfer with Partial Frequency Redistribution

    Science.gov (United States)

    Sampoorna, M.; Trujillo Bueno, J.

    2010-04-01

    The linearly polarized solar limb spectrum that is produced by scattering processes contains a wealth of information on the physical conditions and magnetic fields of the solar outer atmosphere, but the modeling of many of its strongest spectral lines requires solving an involved non-local thermodynamic equilibrium radiative transfer problem accounting for partial redistribution (PRD) effects. Fast radiative transfer methods for the numerical solution of PRD problems are also needed for a proper treatment of hydrogen lines when aiming at realistic time-dependent magnetohydrodynamic simulations of the solar chromosphere. Here we show how the two-level atom PRD problem with and without polarization can be solved accurately and efficiently via the application of highly convergent iterative schemes based on the Gauss-Seidel and successive overrelaxation (SOR) radiative transfer methods that had been previously developed for the complete redistribution case. Of particular interest is the Symmetric SOR method, which allows us to reach the fully converged solution with an order of magnitude of improvement in the total computational time with respect to the Jacobi-based local accelerated lambda iteration method.

  5. Application of the MHD energy principle to magnetostatic atmospheres

    International Nuclear Information System (INIS)

    Zweibel, E.G.

    1984-11-01

    We apply the MHD energy principle to the stability of a magnetized atmosphere which is bounded below by much denser fluid, as is the solar corona. We treat the two fluids as ideal; the approximation which is consistent with the energy principle, and use the dynamical conditions that must hold at a fluid-fluid interface to show that if vertical displacements of the lower boundary are permitted, then the lower atmosphere must be perturbed as well. However, displacements which do not perturb the coronal boundary can be properly treated as isolated perturbations of the corona alone

  6. Redistribution of Income: Policy Directions

    Directory of Open Access Journals (Sweden)

    James B. Davies

    2013-08-01

    Full Text Available Poverty and rising income inequality in Canada have brought demands for improved government action on redistribution. Unfortunately, such pleas risk being overshadowed by a looming fiscal crunch as the baby boomers retire. An expanding population of seniors will add at least one percent annually to both growing health and OAS/GIS costs so that, absent meaningful change, other spending will have to be slashed by an average of 20.2 percent by 2032 if total spending and revenues are not to rise relative to GDP. For Canada’s tax-transfer system to keep fulfilling its redistributive role, a fundamental rethink is required. With non-seniors spending being squeezed, some changes in tax mix, moderate revenue increases and refined targeting of transfers will be needed to protect the system’s progressive nature. Increasing personal income tax and reducing property tax by an offsetting amount would improve redistribution without raising taxes. More revenue could be obtained without severe distortions via a capital transfer tax, the elimination of boutique credits aimed at niche beneficiaries, or perhaps a dual income tax which exacts more from labor than capital income. Improvements to existing transfer programs are another way forward. The conversion of EI to a purely insurance basis, freeing up funds to support redistribution via refundable credits is a possibility. Another cost-saver involves removing the indexation of the OAS/GIS income threshold and allowing its real value to decline, making more recipients subject to clawbacks. Whichever course governments pursue, revamping Canada’s taxtransfer system will be a delicate and difficult task. This paper explores the policy choices available, and makes it clear that time is not on our side.

  7. Macroeconomic and social change and popular demand for redistribution

    DEFF Research Database (Denmark)

    Jæger, Mads Meier

    This paper tests the self-interest hypothesis arguing that changes in macroeconomic and social conditions affect popular demand for redistribution. I analyze data from four waves of the European Social Survey and use a synthetic cohort design to generate pseudo panel data for socio......-demographic groups that are matched over time. I estimate fixed effect models and find that (1) changes in macroeconomic and social conditions affect the demand for redistribution; (2) results are mostly consistent with the self-interest hypothesis claiming that agents demand more redistribution in economically hard...... times (and vice versa in good times); and (3) the effect of macroeconomic and social conditions on the demand for redistribution are highly non-linear....

  8. Cognitive ability and the demand for redistribution.

    Directory of Open Access Journals (Sweden)

    Johanna Mollerstrom

    Full Text Available Empirical research suggests that the cognitively able are politically more influential than the less able, by being more likely to vote and to assume leadership positions. This study asks whether this pattern matters for public policy by investigating what role a person's cognitive ability plays in determining his preferences for redistribution of income among citizens in society. To answer this question, we use a unique Swedish data set that matches responses to a tailor-made questionnaire to administrative tax records and to military enlistment records for men, with the latter containing a measure of cognitive ability. On a scale of 0 to 100 percent redistribution, a one-standard-deviation increase in cognitive ability reduces the willingness to redistribute by 5 percentage points, or by the same amount as a $35,000 increase in mean annual income. We find support for two channels mediating this economically strong and statistically significant relation. First, higher ability is associated with higher income. Second, ability is positively correlated with the view that economic success is the result of effort, rather than luck. Both these factors are, in turn, related to lower demand for redistribution.

  9. Spectral re-distribution and surface loss effects in Swift XRT (XMM-Newton EPIC) MOS CCDs

    CERN Document Server

    Short, A D; Turner, M J L

    2002-01-01

    In the course of testing and selecting the EPIC MOS CCDs for the XMM-Newton observatory, the developed a Monte-Carlo model of the CCD response. Among other things, this model was used to investigate surface loss effects evident at low energies. By fitting laboratory data, these losses were characterised as a simple function of X-ray interaction depth and this result enabled the spectral re-distribution itself to be modelled as a simple analytical function. Subsequently, this analytical function has been used to generate the response matrix for the EPIC MOS instruments and will now be employed to model the spectral re-distribution for the Swift XRT CCD.

  10. Importance of Cross-redistribution in Scattering Polarization of Spectral Lines: The Cases of {sup 3}P−{sup 3}S Triplets of Mg i and Ca i

    Energy Technology Data Exchange (ETDEWEB)

    Sampoorna, M.; Nagendra, K. N., E-mail: sampoorna@iiap.res.in, E-mail: knn@iiap.res.in [Indian Institute of Astrophysics, Koramangala, Bengaluru 560 034 (India)

    2017-04-01

    Scattering on a multi-level atomic system has dominant contributions from resonance and Raman scattering. While initial and final levels are the same for resonance scattering, they are different for Raman scattering. The frequency redistribution for resonance scattering is described by the usual partial frequency redistribution functions of Hummer, while that for Raman scattering is described by cross-redistribution (XRD) function. In the present paper, we investigate the importance of XRD on linear polarization profiles of {sup 3}P−{sup 3}S triplets of Mg i and Ca i formed in an isothermal one-dimensional atmosphere. We show that XRD produces significant effects on the linear polarization profiles when the wavelength separations between the line components of the multiplet are small, like in the cases of Mg i b and Ca i triplets.

  11. Polarized Line Formation in Arbitrary Strength Magnetic Fields Angle-averaged and Angle-dependent Partial Frequency Redistribution

    Energy Technology Data Exchange (ETDEWEB)

    Sampoorna, M.; Nagendra, K. N. [Indian Institute of Astrophysics, Koramangala, Bengaluru 560 034 (India); Stenflo, J. O., E-mail: sampoorna@iiap.res.in, E-mail: knn@iiap.res.in, E-mail: stenflo@astro.phys.ethz.ch [Institute of Astronomy, ETH Zurich, CH-8093 Zurich (Switzerland)

    2017-08-01

    Magnetic fields in the solar atmosphere leave their fingerprints in the polarized spectrum of the Sun via the Hanle and Zeeman effects. While the Hanle and Zeeman effects dominate, respectively, in the weak and strong field regimes, both these effects jointly operate in the intermediate field strength regime. Therefore, it is necessary to solve the polarized line transfer equation, including the combined influence of Hanle and Zeeman effects. Furthermore, it is required to take into account the effects of partial frequency redistribution (PRD) in scattering when dealing with strong chromospheric lines with broad damping wings. In this paper, we present a numerical method to solve the problem of polarized PRD line formation in magnetic fields of arbitrary strength and orientation. This numerical method is based on the concept of operator perturbation. For our studies, we consider a two-level atom model without hyperfine structure and lower-level polarization. We compare the PRD idealization of angle-averaged Hanle–Zeeman redistribution matrices with the full treatment of angle-dependent PRD, to indicate when the idealized treatment is inadequate and what kind of polarization effects are specific to angle-dependent PRD. Because the angle-dependent treatment is presently computationally prohibitive when applied to realistic model atmospheres, we present the computed emergent Stokes profiles for a range of magnetic fields, with the assumption of an isothermal one-dimensional medium.

  12. Exposure to inequality affects support for redistribution.

    Science.gov (United States)

    Sands, Melissa L

    2017-01-24

    The distribution of wealth in the United States and countries around the world is highly skewed. How does visible economic inequality affect well-off individuals' support for redistribution? Using a placebo-controlled field experiment, I randomize the presence of poverty-stricken people in public spaces frequented by the affluent. Passersby were asked to sign a petition calling for greater redistribution through a "millionaire's tax." Results from 2,591 solicitations show that in a real-world-setting exposure to inequality decreases affluent individuals' willingness to redistribute. The finding that exposure to inequality begets inequality has fundamental implications for policymakers and informs our understanding of the effects of poverty, inequality, and economic segregation. Confederate race and socioeconomic status, both of which were randomized, are shown to interact such that treatment effects vary according to the race, as well as gender, of the subject.

  13. Migration, income redistribution, and international capital mobility

    OpenAIRE

    Meckl, Jürgen

    1994-01-01

    This paper studies income-redistribution effects from labor migration in a small open economy under alternative assumptions on the international mobility of capital. Our principal result is that induced international capital flows dampen or may even reverse redistribution effects. However, as long as the location of capital is unaffected by migration redistribntion effects may be greater if some of the capital is foreign owned, depending on whether labor and capital are friends or enemies. On...

  14. Evaluation of Monte Carlo tools for high energy atmospheric physics

    NARCIS (Netherlands)

    C. Rutjes (Casper); D. Sarria (David); A.B. Skeltved (Alexander Broberg); A. Luque (Alejandro); G. Diniz (Gabriel); N. Østgaard (Nikolai); U. M. Ebert (Ute)

    2016-01-01

    textabstractThe emerging field of high energy atmospheric physics (HEAP) includes terrestrial gamma-ray flashes, electron-positron beams and gamma-ray glows from thunderstorms. Similar emissions of high energy particles occur in pulsed high voltage discharges. Understanding these phenomena requires

  15. Evaluation of monte carlo tools for high energy atmospheric physics

    NARCIS (Netherlands)

    Rutjes, Casper; Sarria, David; Skeltved, Alexander Broberg; Luque, Alejandro; Diniz, Gabriel; Østgaard, Nikolai; Ebert, Ute

    2016-01-01

    The emerging field of high energy atmospheric physics (HEAP) includes terrestrial gamma-ray flashes, electron-positron beams and gamma-ray glows from thunderstorms. Similar emissions of high energy particles occur in pulsed high voltage discharges. Understanding these phenomena requires appropriate

  16. Entanglement redistribution in the Schwarzschild spacetime

    International Nuclear Information System (INIS)

    Wang, Jieci; Pan, Qiyuan; Jing, Jiliang

    2010-01-01

    The effect of Hawking radiation on the redistribution of the entanglement and mutual information in the Schwarzschild spacetime is investigated. Our analysis shows that the physically accessible correlations degrade while the unaccessible correlations increase as the Hawking temperature increases because the initial correlations described by inertial observers are redistributed between all the bipartite modes. It is interesting to note that, in the limit case that the temperature tends to infinity, the accessible mutual information equals to just half of its initial value, and the unaccessible mutual information between mode A and II also equals to the same value.

  17. Exposure to inequality affects support for redistribution

    Science.gov (United States)

    Sands, Melissa L.

    2017-01-01

    The distribution of wealth in the United States and countries around the world is highly skewed. How does visible economic inequality affect well-off individuals’ support for redistribution? Using a placebo-controlled field experiment, I randomize the presence of poverty-stricken people in public spaces frequented by the affluent. Passersby were asked to sign a petition calling for greater redistribution through a “millionaire’s tax.” Results from 2,591 solicitations show that in a real-world-setting exposure to inequality decreases affluent individuals’ willingness to redistribute. The finding that exposure to inequality begets inequality has fundamental implications for policymakers and informs our understanding of the effects of poverty, inequality, and economic segregation. Confederate race and socioeconomic status, both of which were randomized, are shown to interact such that treatment effects vary according to the race, as well as gender, of the subject. PMID:28069960

  18. Magnetospheric energy inputs into the upper atmospheres of the giant planets

    Directory of Open Access Journals (Sweden)

    C. G. A. Smith

    2005-07-01

    Full Text Available We revisit the effects of Joule heating upon the upper atmospheres of Jupiter and Saturn. We show that in addition to direct Joule heating there is an additional input of kinetic energy – ion drag energy – which we quantify relative to the Joule heating. We also show that fluctuations about the mean electric field, as observed in the Earth's ionosphere, may significantly increase the Joule heating itself. For physically plausible parameters these effects may increase previous estimates of the upper atmospheric energy input at Saturn from ~10 TW to ~20 TW.

    Keywords. Ionosphere (Electric fields and currents; Planetary ionosphere – Magnetospheric physics (Auroral phenomena

  19. Autoradiographic analysis of iodoamphetamine redistribution in experimental brain ischemia

    International Nuclear Information System (INIS)

    Matsuda, H.; Tsuji, S.; Oba, H.; Shiba, K.; Terada, H.; Kinuya, K.; Mori, H.; Sumiya, H.; Hisada, K.

    1990-01-01

    The pathophysiologic significance of iodoamphetamine (IMP) redistribution was analyzed using a double radionuclide autoradiography technique in experimental brain ischemia in the rat. Within 4 hr after unilateral arterial occlusion, IMP almost completely redistributed at 150 min postinjection in the affected areas. At 2 min postinjection, both a remarkable decrease of IMP accumulation and histopathologic change of diminished staining were observed in these areas. The redistribution amplitude was higher in the affected hemisphere, especially in the regions surrounding the ischemic core than in the unaffected hemisphere. These findings were consistent with computer simulation studies of the time course of brain activity based on the standard diffusible tracer model. The results suggest that IMP redistribution in the ischemic area is due to differences of the temporal changes of the brain activity between the unaffected and affected areas and that it is a physical phenomenon (only flow related) rather than a biologic one

  20. Overall momentum balance and redistribution of the lost energy in asymmetric dijet events in 2.76 A TeV Pb-Pb collisions with a multiphase transport model

    Science.gov (United States)

    Gao, Zhan; Luo, Ao; Ma, Guo-Liang; Qin, Guang-You; Zhang, Han-Zhong

    2018-04-01

    The overall transverse momentum balance and the redistribution of the lost energy from hard jets for asymmetric dijet events in PbPb collisions at 2.76 A TeV at the LHC is studied within a multiphase transport (AMPT) model. A detailed analysis is performed for the projected transverse momentum 〈p/T ||〉 contributed from the final charged hadrons carrying different transverse momenta and emitted from different angular directions. We find that the transverse momentum projection 〈p/T ||〉 in the leading jet direction is mainly contributed by hard hadrons (pT>8.0 GeV /c ) in both peripheral and central PbPb collisions, while the opposite direction in central collisions is dominated by soft hadrons (pT=0.5 -2.0 GeV /c ). The study of in-cone and out-of-cone contributions to 〈p/T ||〉 shows that these soft hadrons are mostly emitted at large angles away from the dijet axis. Our AMPT calculation is in qualitative agreement with the CMS measurements and the primary mechanism for the energy transported to large angles in the AMPT model is the elastic scattering at the partonic stage. Future studies including also inelastic processes should be helpful in understanding the overestimation of the magnitudes of in-cone and out-of-cone imbalances from our AMPT calculations, and shed light on different roles played by radiative and collisional processes in the redistribution of the lost energy from hard jets.

  1. Studies on so-called redistribution phenomenon of cerebral blood flow imaging

    International Nuclear Information System (INIS)

    Oba, Hiroshi

    1989-01-01

    To elucidate the relationship between so-called redistribution phenomenon and metabolism or viability of the brain tissue, a new quantitative triple-radionuclide autoradiography was developed, whereby making it possible to compare both late images and reditribution of IMP with cerebral metabolism in experimentally induced unilateral ischemic brain tissue of rats. Iodine-123 IMP and I-125 IMP were used as tracers for early and late imaging, and H-3 amino acid mixture or H-3 H-2 deoxyglucose as a tracer for protein synthesis or glucose metabolism imaging. There was no significant relationship between redistribution index and protein synthesis or glucose metabolism. Protein synthesis was remarkably decreased in the affected hemisphere regardless of redistribution index values. Although the redistribution indices showed a gentle peak at approximately 34 μ mol/100 g/ min of glucose metabolism, there was no obvious relationship between either late images or redistribution index images and glucose metabolism images. Redistribution indices showed a maximum value at approximately 40 to 50 ml/100 g/min of cerebral blood flow. Reverse redistribution was observed with 160 ml/100 g/min or more of flow. Thin layer chromatographic findings were similar in the affected and non-affected resions, suggesting redistribution of a lipophilic IMP metabolite of p-iodoamphetamine in the affected region. In vitro autoradiography revealed no significant reduction in binding ability of IMP to the affected ischemic cortex. In a computer simulation study for brain activity curve, brain activity at 150 min was found to be almost constant at more than 25 ml/100 g/min of flow. IMP redistribution was unlikely to reflect directly either brain metabolism or function, and both blood flow partition coefficient and blood flow values were independently responsible for cerebral kinetics of IMP. (N.K.)

  2. Nonlinear model dynamics for closed-system, constrained, maximal-entropy-generation relaxation by energy redistribution

    International Nuclear Information System (INIS)

    Beretta, Gian Paolo

    2006-01-01

    We discuss a nonlinear model for relaxation by energy redistribution within an isolated, closed system composed of noninteracting identical particles with energy levels e i with i=1,2,...,N. The time-dependent occupation probabilities p i (t) are assumed to obey the nonlinear rate equations τ dp i /dt=-p i ln p i -α(t)p i -β(t)e i p i where α(t) and β(t) are functionals of the p i (t)'s that maintain invariant the mean energy E=Σ i=1 N e i p i (t) and the normalization condition 1=Σ i=1 N p i (t). The entropy S(t)=-k B Σ i=1 N p i (t)ln p i (t) is a nondecreasing function of time until the initially nonzero occupation probabilities reach a Boltzmann-like canonical distribution over the occupied energy eigenstates. Initially zero occupation probabilities, instead, remain zero at all times. The solutions p i (t) of the rate equations are unique and well defined for arbitrary initial conditions p i (0) and for all times. The existence and uniqueness both forward and backward in time allows the reconstruction of the ancestral or primordial lowest entropy state. By casting the rate equations in terms not of the p i 's but of their positive square roots √(p i ), they unfold from the assumption that time evolution is at all times along the local direction of steepest entropy ascent or, equivalently, of maximal entropy generation. These rate equations have the same mathematical structure and basic features as the nonlinear dynamical equation proposed in a series of papers ending with G. P. Beretta, Found. Phys. 17, 365 (1987) and recently rediscovered by S. Gheorghiu-Svirschevski [Phys. Rev. A 63, 022105 (2001);63, 054102 (2001)]. Numerical results illustrate the features of the dynamics and the differences from the rate equations recently considered for the same problem by M. Lemanska and Z. Jaeger [Physica D 170, 72 (2002)]. We also interpret the functionals k B α(t) and k B β(t) as nonequilibrium generalizations of the thermodynamic-equilibrium Massieu

  3. Energy spectra of hadrons and leptons in the atmosphere

    International Nuclear Information System (INIS)

    Butkevich, A.V.; Dedenko, L.G.; Zheleznykh, I.M.; Kiryushkin, V.P.; Sobolevskij, N.M.

    1982-01-01

    Differential energy spectra of hadrons were calculated in the energy range of 10 11 -10 15 eV in the Earth atmosphere at depths of 60, 260, 690 and 1000 gxcm -2 . The Nickolski spectrum has the best agreement with experiment at a depth of 60 gxcm -2 . At high depths the Grigorov spectrum is less intensive, and the Nickolski and Rayan spectra agree with experiment without errors. Calculations of low energy neutrino fluxes in the atmospehere are given. Total fluxes of muon and electron neutrinos at neutrino energies Esub(γ) -2 xs -1 , correspondingly

  4. The use of a numerical mass-balance model to estimate rates of soil redistribution on uncultivated land from 137Cs measurements

    International Nuclear Information System (INIS)

    Owens, P.N.; Walling, D.E.

    1988-01-01

    A numerical mass-balance model is developed which can be used to estimate rates of soil redistribution on uncultivated land from measurements of bombderived 137 Cs inventories. The model uses a budgeting approach, which takes account of temporal variations in atmospheric fallout of 137 Cs, radioactive decay, and net gains or losses of 137 Cs due to erosion and deposition processes, combined with parameters which describe internal 137 Cs redistribution processes, to estimate the 137 Cs content of topsoil and the 137 Cs inventory at specific points, from the start of 137 Cs fallout in the 1950s to the present day. The model is also able to account for potential differences in particle size composition and organic matter content between mobilised soil particles and the original soil, and the effect that these may have on 137 Cs concentrations and inventories. By running the model for a range of soil erosion and deposition rates, a calibration relationship can be constructed which relates the 137 Cs inventory at a sampling point to the average net soil loss or gain at that location. In addition to the magnitude and temporal distribution of the 137 Cs atmospheric fallout flux, the soil redistribution rates estimated by the model are sensitive to parameters which describe the relative texture and organic matter content of the eroded or deposited material, and the ability of the soil to retain 137 Cs in the upper part of the soil profile. (Copyright (c) 1988 Elsevier Science B.V., Amsterdam. All rights reserved.)

  5. Overload cascading failure on complex networks with heterogeneous load redistribution

    Science.gov (United States)

    Hou, Yueyi; Xing, Xiaoyun; Li, Menghui; Zeng, An; Wang, Yougui

    2017-09-01

    Many real systems including the Internet, power-grid and financial networks experience rare but large overload cascading failures triggered by small initial shocks. Many models on complex networks have been developed to investigate this phenomenon. Most of these models are based on the load redistribution process and assume that the load on a failed node shifts to nearby nodes in the networks either evenly or according to the load distribution rule before the cascade. Inspired by the fact that real power-grid tends to place the excess load on the nodes with high remaining capacities, we study a heterogeneous load redistribution mechanism in a simplified sandpile model in this paper. We find that weak heterogeneity in load redistribution can effectively mitigate the cascade while strong heterogeneity in load redistribution may even enlarge the size of the final failure. With a parameter θ to control the degree of the redistribution heterogeneity, we identify a rather robust optimal θ∗ = 1. Finally, we find that θ∗ tends to shift to a larger value if the initial sand distribution is homogeneous.

  6. Light extinction in the atmosphere

    International Nuclear Information System (INIS)

    Laulainen, N.

    1992-06-01

    Atmospheric aerosol particles originating from natural sources, such as volcanos and sulfur-bearing gas emissions from the oceans, and from human sources, such as sulfur emissions from fossil fuel combustion and biomass burning, strongly affect visual air quality and are suspected to significantly affect radiative climate forcing of the planet. During the daytime, aerosols obscure scenic vistas, while at night they diminish our ability to observe stellar objects. Scattering of light is the main means by which aerosols attenuate and redistribute light in the atmosphere and by which aerosols can alter and reduce visibility and potentially modify the energy balance of the planet. Trends and seasonal variability of atmospheric aerosol loading, such as column-integrated light extinction or optical depth, and how they may affect potential climate change have been difficult to quantify because there have been few observations made of important aerosol optical parameters, such as optical depth, over the globe and over time and often these are of uneven quality. To address questions related to possible climate change, there is a pressing need to acquire more high-quality aerosol optical depth data. Extensive deployment of improved solar radiometers over the next few years will provide higher-quality extinction data over a wider variety of locations worldwide. An often overlooked source of turbidity data, however, is available from astronomical observations, particularly stellar photoelectric photometry observations. With the exception of the Project ASTRA articles published almost 20 years ago, few of these data ever appear in the published literature. This paper will review the current status of atmospheric extinction observations, as highlighted by the ASTRA work and augmented by more recent solar radiometry measurements

  7. The Importance of Deep Roots and Hydraulic Redistribution to Amazonian Rainforest Resilience and Response to Hydro-Climatic Variability: A Simulation Analysis

    Science.gov (United States)

    Drewry, D.; Kumar, P.; Sivapalan, M.; Long, S.; Liang, X.

    2008-12-01

    Amazonian rain forests are a crucial component of the terrestrial biosphere, acting as a significant sink of anthropogenic carbon emissions, as well as playing a key role in driving tropical climate patterns through surface energy partitioning and significant precipitation recycling. Recent studies using remotely-sensed indices of canopy functioning (ie. canopy greeness, canopy water storage and photosynthetic capacity) have raised questions regarding the response of deep-rooted Amazonian vegetation functioning to short-term hydro-climatic forcing anomalies. Climate model predictions show an increase in ENSO-driven drought for eastern Amazonia in the coming decades. In this context, we utilize a multi-layer process-based model that represents the complex set of interactions and feedbacks between the canopy, soil and root subsystems to examine the impacts of drought on deep-rooted Amazonian rainforests. The model canopy is partitioned into several layers, allowing for resolution of the shortwave and longwave radiation regimes that drive photosynthesis, stomatal conductance and leaf energy balance in each layer, along with the canopy microclimate. The above-ground component of the model is coupled to a multi-layer soil-root model that computes soil moisture and heat transport, root water uptake, and the passive redistribution of moisture across soil potential gradients by the root system (ie. hydraulic redistribution). Carbon and nitrogen transformations in each layer of the soil system are modulated by microbial activity, and act to provide nutrient constraints on the photosynthetic capacity of the canopy. Model skill in capturing the seasonal and inter-annual variability in canopy-atmosphere exchange is evaluated through multi-year records of canopy- top eddy covariance CO2, water vapor and heat fluxes collected at a field site in eastern Amazonia. A nearby throughfall exclusion experiment provides information on the vertical distribution of soil moisture under

  8. Social mobility and demand for redistribution in Europe: a comparative analysis.

    Science.gov (United States)

    Jaime-Castillo, Antonio M; Marqués-Perales, Ildefonso

    2018-03-14

    The literature on preferences for redistribution has paid little attention to the effect of social mobility on the demand for redistribution and no systematic test of the hypotheses connecting social mobility and preferences for redistribution has yet been done to date. We use the diagonal reference model to estimate the effect of origin and destination classes on preferences for redistribution in a large sample of European countries using data from the European Social Survey. Our findings are consistent with the logic of acculturation in the sense that newcomers tend to adapt their views to those of the destination class at early stages and that upward and downward mobility do not have distinctive effects on the formation of political preferences. However, even though social origins seem to have a limited impact on preferences for redistribution, the evidence does not support the hypothesis that mobile and non-mobile individuals are alike. We also find that the effect of social origin on preferences varies largely across countries. The empirical evidence leads to the conclusion that the effect of social origin on preferences for redistribution increases in contexts of strong familism. © London School of Economics and Political Science 2018.

  9. ASH REDISTRIBUTION FOLLOWING A POTENTIAL VOLCANIC ERUPTION AT YUCCA MOUNTAIN

    International Nuclear Information System (INIS)

    J. Pelletier; S. deLong; M.L. Cline; C. Harrington; G. Keating

    2005-01-01

    The redistribution of contaminated tephra by hillslope, fluvial, and pedologic processes is a poorly-constrained but important aspect of evaluating the radiological dose from an unlikely volcanic eruption at Yucca Mountain (YM). To better evaluate this hazard, we developed a spatially distributed, numerical model of tephra redistribution that integrates contaminated tephra from hill slopes and active channels, mixes it with clean sediment in the channel system, distributes it on the fan, and migrates it into the soil column. The model is coupled with an atmospheric dispersion model that predicts the deposition of radioactive waste-contaminated tephra at specified grid points. The redistribution model begins in the upper Fortymile Wash drainage basin where it integrates the tephra deposited on steep slopes and active channel beds within a GIS framework. The Fortymile Wash drainage basin is the focus of this model because tephra from only this basin reaches the Fortymile Wash alluvial fan by fluvial processes, and it is on this fan where the radiological dose to a hypothetical individual is compared to the regulatory standard (via additional biosphere models). The dilution effect of flood scour, mixing, and re-deposition within the upper basin is modeled using a dilution-mixing model widely used in the contaminant-transport literature. The accuracy of this model is established by comparing the model prediction with tephra concentrations measured in channels draining the Lathrop Wells volcanic center. The model combines the contaminated tephra transported from the upper basin with the tephra deposited directly on the fan as primary fallout. On the Fortymile Wash fan, channels and interchannel-divide areas are divided on the basis of soil-geomorphic mapping according to whether they are Holocene or Pleistocene in age. This approach allows the model to incorporate the effects of channel migration on the fan within the past 10,000 yr. The model treats the redistribution

  10. Effects of atmospheric variability on energy utilization and conservation. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Reiter, E.R.; Burns, C.C.; Cochrane, H.; Johnson, G.R.; Leong, H.; Sheaffer, J.D.

    1980-07-01

    Research progress for the period September 1979 to July 1980 is reported. Research was structured along four major tasks: (1) atmospheric circulation and climate variability; (2) urban mesoclimate; (3) energy demand modelling; and (4) economic implications of weather variability and energy demand: stimulating residential energy conservation through the financial section. (ACR)

  11. Beamed-Energy Propulsion (BEP): Considerations for Beaming High Energy-Density Electromagnetic Waves Through the Atmosphere

    Science.gov (United States)

    Manning, Robert M.

    2015-01-01

    A study to determine the feasibility of employing beamed electromagnetic energy for vehicle propulsion within and outside the Earth's atmosphere was co-funded by NASA and the Defense Advanced Research Projects Agency that began in June 2010 and culminated in a Summary Presentation in April 2011. A detailed report entitled "Beamed-Energy Propulsion (BEP) Study" appeared in February 2012 as NASA/TM-2012-217014. Of the very many nuances of this subject that were addressed in this report, the effects of transferring the required high energy-density electromagnetic fields through the atmosphere were discussed. However, due to the limitations of the length of the report, only a summary of the results of the detailed analyses were able to be included. It is the intent of the present work to make available the complete analytical modeling work that was done for the BEP project with regard to electromagnetic wave propagation issues. In particular, the present technical memorandum contains two documents that were prepared in 2011. The first one, entitled "Effects of Beaming Energy Through the Atmosphere" contains an overview of the analysis of the nonlinear problem inherent with the transfer of large amounts of energy through the atmosphere that gives rise to thermally-induced changes in the refractive index; application is then made to specific beamed propulsion scenarios. A brief portion of this report appeared as Appendix G of the 2012 Technical Memorandum. The second report, entitled "An Analytical Assessment of the Thermal Blooming Effects on the Propagation of Optical and Millimeter- Wave Focused Beam Waves For Power Beaming Applications" was written in October 2010 (not previously published), provides a more detailed treatment of the propagation problem and its effect on the overall characteristics of the beam such as its deflection as well as its radius. Comparisons are then made for power beaming using the disparate electromagnetic wavelengths of 1.06 microns and 2

  12. Modeling of constituent redistribution in U-Pu-Zr metallic fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Soo [Argonne National Laboratory, Nuclear Engineering, RERTR, 9700 South Cass Avenue, Argonne, IL 60439 (United States)]. E-mail: yskim@anl.gov; Hayes, S.L. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States); Hofman, G.L. [Argonne National Laboratory, Nuclear Engineering, RERTR, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Yacout, A.M. [Argonne National Laboratory, Nuclear Engineering, RERTR, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2006-12-01

    A computer model was developed to analyze constituent redistribution in U-Pu-Zr metallic nuclear fuels. Diffusion and thermochemical properties were parametrically determined to fit the postirradiation data from a fuel test performed in the Experimental Breeder Reactor II (EBR-II). The computer model was used to estimate redistribution profiles of fuels proposed for the conceptual designs of small modular fast reactors. The model results showed that the level of redistribution of the fuel constituents of the designs was similar to the measured data from EBR-II.

  13. Kinetic energy spectra, vertical resolution and dissipation in high-resolution atmospheric simulations.

    Science.gov (United States)

    Skamarock, W. C.

    2017-12-01

    We have performed week-long full-physics simulations with the MPAS global model at 15 km cell spacing using vertical mesh spacings of 800, 400, 200 and 100 meters in the mid-troposphere through the mid-stratosphere. We find that the horizontal kinetic energy spectra in the upper troposphere and stratosphere does not converge with increasing vertical resolution until we reach 200 meter level spacing. Examination of the solutions indicates that significant inertia-gravity waves are not vertically resolved at the lower vertical resolutions. Diagnostics from the simulations indicate that the primary kinetic energy dissipation results from the vertical mixing within the PBL parameterization and from the gravity-wave drag parameterization, with smaller but significant contributions from damping in the vertical transport scheme and from the horizontal filters in the dynamical core. Most of the kinetic energy dissipation in the free atmosphere occurs within breaking mid-latitude baroclinic waves. We will briefly review these results and their implications for atmospheric model configuration and for atmospheric dynamics, specifically that related to the dynamics associated with the mesoscale kinetic energy spectrum.

  14. Atmospheric proton and deuterium energy spectra determination with the MASS2 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Grimani, C.; Brunetti, M.T.; Codino, A.; Finetti, N. [Perugia Univ. (Italy)]|[INFN, Perugia (Italy); Papini, P.; Massimo Brancaccio, F. [Florence Univ. (Italy)]|[INFN, Florence (Italy); Basini, G.; Bongiorno, F. [INFN, Laboratori Nazionali di Frascati, Rome (Italy); Golden, R.L. [New Mexico State Univ., Las Cruces, NM (United States). Particle Astrophysics Lab.; Hof, M. [Siegen Univ. (Germany). Fachbereich Physik

    1995-09-01

    The energy spectra of atmospheric-secondary protons and deuterium nuclei have been measured during the September 23, 1991, balloon flight of the NMSU/Wizard - MASS2 instrument. The apparatus was launched from Fort Sumner, New Mexico. The geomagnetic cutoff at the launch site is about 4.5 GV/c. The instrument was flown for 9.8 hours at an altitude of over 100,000 feet. Particles detected below the geomagnetic cutoff have been produced mainly by the interactions of the primary cosmic rays with the atmosphere. The measurement of cosmic ray energy spectra below the geomagnetic cutoff provide direct insights into the particle production mechanism and allows comparison to atmospheric cascade calculations.

  15. Redistribution and Recognition: Assessing Alternative Frameworks for Aboriginal Policy in Canada

    Directory of Open Access Journals (Sweden)

    Robert Maciel

    2012-11-01

    Full Text Available In this paper, we argue that government approaches to addressing the claims of Aboriginal peoples in Canada are insufficient. Historically, these approaches have focused on redistribution. At the same time, these approaches have all but ignored recognition. We argue that a more holistic approach that addresses both redistribution and recognition is necessary. Further, we attempt to show that our approach is consistent with the tenets of liberalism. By conceiving of Aboriginal politics as such, the state may be better able to address claims. We begin by providing a theoretical overview of redistribution and recognition, respectively. Then, we proceed to show how redistribution and recognition must work together in an adequate account of justice with respect to Aboriginal peoples in Canada. Finally, we offer a conception of Aboriginal politics that fulfills this desideratum, and integrates the principle of recognition and redistribution in a way that is within the bounds of liberalism.

  16. Study of radiation damage restoration and antimony ions redistribution in Si(1 0 0) and Si(1 1 1) crystals

    CERN Document Server

    Labbani, R; Chafi, Z

    2002-01-01

    In this work, we study the radiation damage restoration and antimony ions redistribution into and oriented silicon substrates. The samples are implanted with antimony to a dose of 5x10 sup 1 sup 4 Sb sup + cm sup - sup 2 at 60 keV energy, then annealed under oxygen atmosphere at 900 deg. C, 30 min. The thin layer of SiO sub 2 (which is formed on Si surface by dry oxidation and expected to prevent any loss of Sb sup + dopant during Si recovery) is removed by a 10% HF solution. The specimens are analyzed by H sup + Rutherford Backscattering Spectrometry operating at 0.3 MeV energy in both random and channelling modes. The values of the projected range, R sub p , the standard deviation, DELTA R sub p , and the dose of antimony ions, which are estimated with a simple program, are in agreement with tabulated ones. It is also shown that the surface damage restoration is better for Si(1 0 0) samples than for Si(1 1 1) ones, in other words, the radiation damage is more significant in Si(1 1 1) substrates. Moreover,...

  17. Reducing food waste through direct surplus food redistribution : the Norwegian case

    OpenAIRE

    Capodistrias, Paula

    2015-01-01

    Food waste is a global problem with significant economic and environmental consequences. Food waste management approaches include production of biogas, animal feed and compost and surplus food redistribution. From a sustainability point of view, surplus food redistribution is the most favorable approach. Surplus food redistribution can be either direct (between suppliers of surplus food and charity food services) or indirect (Through Food banks). This paper is a case study on direct surplus f...

  18. Large Abundances of Polycyclic Aromatic Hydrocarbons in Titan's Upper Atmosphere

    Science.gov (United States)

    Lopez-Puertas, M.; Dinelli, B. M.; Adriani, A.; Funke, B.; Garcia-Comas, M.; Moriconi, M. L.; D'Aversa, E.; Boersma, C.; Allamandola, L. J.

    2013-01-01

    In this paper, we analyze the strong unidentified emission near 3.28 micron in Titan's upper daytime atmosphere recently discovered by Dinelli et al.We have studied it by using the NASA Ames PAH IR Spectroscopic Database. The polycyclic aromatic hydrocarbons (PAHs), after absorbing UV solar radiation, are able to emit strongly near 3.3 micron. By using current models for the redistribution of the absorbed UV energy, we have explained the observed spectral feature and have derived the vertical distribution of PAH abundances in Titan's upper atmosphere. PAHs have been found to be present in large concentrations, about (2-3) × 10(exp 4) particles / cubic cm. The identified PAHs have 9-96 carbons, with a concentration-weighted average of 34 carbons. The mean mass is approx 430 u; the mean area is about 0.53 sq. nm; they are formed by 10-11 rings on average, and about one-third of them contain nitrogen atoms. Recently, benzene together with light aromatic species as well as small concentrations of heavy positive and negative ions have been detected in Titan's upper atmosphere. We suggest that the large concentrations of PAHs found here are the neutral counterpart of those positive and negative ions, which hence supports the theory that the origin of Titan main haze layer is located in the upper atmosphere.

  19. Working time flexibilization and the redistribution of work

    OpenAIRE

    Gomes, Joana Adelina Madeira

    2017-01-01

    Nowadays, the fast pace of the transformations in the world of labour and the threat of unemployment lead us to assess the need of work redistribution measures, among which is the flexibilization of working hours. In this context, this thesis’ main aim is to investigate whether or not the flexibilization of working time is the best approach towards work redistribution. Adopting a qualitative approach, this study sets out to evaluate different flexibilization policies and to see to what extent...

  20. Wind Energy and Atmospheric Physics Department annual progress report for 2000

    DEFF Research Database (Denmark)

    2001-01-01

    The report describes the work of the Wind Energy and Atmospheric Physics Department at Risø National Laboratory in 2000. The research of the department aims to develop new opportunities in the exploitation of wind energy and to map and alleviateatmospheric aspects of environmental problems...

  1. Energy implications of future stabilization of atmospheric CO2 content

    International Nuclear Information System (INIS)

    Hoffert, M.I.; Jain, A.K.

    1998-01-01

    The United Nations Framework Convention on Climate Change calls for ''stabilization of greenhouse-gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system...''. A standard baseline scenario that assumes no policy intervention to limit greenhouse-gas emissions has 10 TW (10 x 10 12 watts) of carbon-emission-free power being produced by the year 2050, equivalent to the power provided by all today's energy sources combined. Here we employ a carbon-cycle/energy model to estimate the carbon-emission-free power needed for various atmospheric CO 2 stabilization scenarios. We find that CO 2 stabilization with continued economic growth will require innovative, cost-effective and carbon-emission-free technologies that can provide additional tens of terawatts of primary power in the coming decades, and certainly by the middle of the twenty-first century, even with sustained improvement in the economic productivity of primary energy. (author)

  2. Infrared radiation in the energy balance of the upper atmosphere

    International Nuclear Information System (INIS)

    Gordiets, B.F.; Markov, M.N.

    1977-01-01

    The contribution of the infrared radiation to the energy balance of the Earth's upper atmosphere is discussed. The theoretical analysis has been carried out of the mechanisms of the transformation of the energy of outgoing particles and the ultraviolet-radiation of the Sun absorbed at the heights of Z >= 90 km into the infrared radiation. It is found out the the infrared radiation within the wave length range of 1.2-20 μ is more intensive that the 63 μ radiation of atomic oxygen and plays an important role in the general energy balance and the thermal regime of the thermosphere. It has been found out too that in the area of Z >= 120 km heights the radiation in the 5.3 μ NO band is the most intensive. This radiation is to be considered for the more accurate description of parameters of the atmosphere (temperature, density) conditioning the nature of the translocation of ionospheric sounds (ISS)

  3. The influence of flow redistribution on working rat muscle oxygenation.

    NARCIS (Netherlands)

    Hoofd, L.J.C.; Degens, H.

    2009-01-01

    We applied a theoretical model of muscle tissue O2 transport to investigate the effects of flow redistribution on rat soleus muscle oxygenation. The situation chosen was the anaerobic threshold where redistribution of flow is expected to have the largest impact. In the basic situation all

  4. Democracies under rising inequality : New tests of the redistributive thesis

    NARCIS (Netherlands)

    van der Linde, D.E.

    2017-01-01

    Recent increases in income inequality have led a number of authors to question the redistributive thesis, which predicts higher levels of income inequality will be met with increased redistribution of income, curbing inequality. This dissertation offers a new test of this theory, and sets out to

  5. Who benefits from cooperation? A numerical analysis of redistribution effects resulting from cooperation in European RES-E support

    Energy Technology Data Exchange (ETDEWEB)

    Unteutsch, Michaela

    2014-01-15

    This paper numerically analyzes redistribution effects resulting from cooperation among European countries in achieving the 2020 targets for electricity generation from renewable energy sources (RES-E). The quanti cation of redistribution effects builds on the theoretical analysis by Unteutsch (2014), who shows that cooperation in RES-E support increases overall welfare but is not beneficial for all groups. In this paper, we use a dynamic investment and dispatch optimization model of the European electricity system to investigate which groups potentially benefit from cooperation and which groups would be worse off compared to a situation in which national RES-E targets are reached solely by domestic RES-E production. In the analysis, cooperation in RES-E support is implemented as a European-wide green certificate trading scheme. Main findings of the analysis include that in the European electricity system, effects of the change in the certificate price in most countries would overcompensate for the effects of the change in the wholesale electricity price. Thus, in most countries with comparatively high (low) generation costs for renewable energies, consumer rents increase (decrease) due to cooperation and producers yield lower (higher) profits. In addition, it is found that the magnitude of redistribution effects between the individual groups is quite large: In some countries, the change in consumer rents or producer profits resulting from cooperation is nearly twice as high as the overall welfare effect of cooperation in the whole European electricity system. Moreover, we find that the sign, but not always the magnitude, of redistribution effects is quite robust to different developments of interconnector extensions, the CO{sub 2} price and RES-E investment costs.

  6. Who benefits from cooperation? A numerical analysis of redistribution effects resulting from cooperation in European RES-E support

    International Nuclear Information System (INIS)

    Unteutsch, Michaela

    2014-01-01

    This paper numerically analyzes redistribution effects resulting from cooperation among European countries in achieving the 2020 targets for electricity generation from renewable energy sources (RES-E). The quanti cation of redistribution effects builds on the theoretical analysis by Unteutsch (2014), who shows that cooperation in RES-E support increases overall welfare but is not beneficial for all groups. In this paper, we use a dynamic investment and dispatch optimization model of the European electricity system to investigate which groups potentially benefit from cooperation and which groups would be worse off compared to a situation in which national RES-E targets are reached solely by domestic RES-E production. In the analysis, cooperation in RES-E support is implemented as a European-wide green certificate trading scheme. Main findings of the analysis include that in the European electricity system, effects of the change in the certificate price in most countries would overcompensate for the effects of the change in the wholesale electricity price. Thus, in most countries with comparatively high (low) generation costs for renewable energies, consumer rents increase (decrease) due to cooperation and producers yield lower (higher) profits. In addition, it is found that the magnitude of redistribution effects between the individual groups is quite large: In some countries, the change in consumer rents or producer profits resulting from cooperation is nearly twice as high as the overall welfare effect of cooperation in the whole European electricity system. Moreover, we find that the sign, but not always the magnitude, of redistribution effects is quite robust to different developments of interconnector extensions, the CO 2 price and RES-E investment costs.

  7. A review of the potential for actinide redistribution in CANDU thorium cycle fuels

    International Nuclear Information System (INIS)

    Cameron, D.J.

    1978-02-01

    Actinide redistribution resulting from large radial temperature gradients is an accepted feature of the technology of fast reactor (U,Pu)O 2 fuels. A thorium cycle in CANDU reactors would require the use of oxide fuels with two or more components, raising the question of actinide redistribution in these fuels. The mechanisms proposed to explain redistribution in (U,Pu)O 2 fuels are reviewed, and their relevance to fuels based on ThO 2 is discussed. The fuel primarily considered is (Th,U)O 2 but some reference is made to (Th,Pu)O 2 . At this early stage of thorium fuel cycle technology, it is not possible to consider quantitatively the question of redistribution in specific fuels. However, some guidelines can be presented to indicate to fuel engineers conditions which might result in significant redistribution. It is concluded that redistribution is probably of little concern in high density, CANDU, thorium cycle fuel whose centre temperature is limited to 2350 K. If this centre temperature is exceeded, or if the fuel contains substantial inter-connected porosity, the potential for redistribution is significant and warrants more serious study. (author)

  8. A little fairness may induce a lot of redistribution in democracy

    DEFF Research Database (Denmark)

    Tyran, Jean-Robert; Sausgruber, Rupert

    2006-01-01

    We use a model of self-centered inequality aversion suggested by Fehr and Schmidt (Quart. J. Econom. 114 (3) (1999) 817) to study voting on redistribution. We theoretically identify two classes of conditions when an empirically plausible amount of fairness preferences induces redistribution throu...... referenda. We test the predictions of the adapted inequality aversion model in a simple redistribution experiment and find that it predicts voting outcomes far better than the standard model of voting assuming rationality and strict self-interest...

  9. Reverse re-distribution in the myocardial perfusion scan with 201 Ti

    International Nuclear Information System (INIS)

    Eftekhari, M.; Sadeghi, R.; Fard-Esfahani, A.; Beiki, D.; Fallahi, B.; Saghari, M.

    2004-01-01

    Reverse re-distribution pattern id defined as decreased activity in the myocardium in the rest phase of the myocardial perfusion scan in comparison with the stress images. There are many studies concerning the etiology and clinical significance of this phenomenon in nuclear medicine literature. The dominant idea about etiology of reserve redistribution is early wash out of the radiotracer from the myocardium. There is rather unanimous agreement among researchers about viability of the areas of reverse redistribution and the majority of the studies point to existence of viable tissue in these regions. However from prognostic point of view, this issue is much more controversial. In this review, we tried to summarize the current literature and reach a guideline for practical significance of reverse redistribution in every day work of nuclear medicine specialists

  10. Physical analysis of multivariate measurements in the Atmospheric high-energy physics experiments within ADEI platform

    International Nuclear Information System (INIS)

    Avakyan, K.; Chilingarian, A.; Karapetyan, T.; Chilingaryan, S.

    2017-01-01

    To make transformational scientific progress in Space science and geophysics, the Sun, heliosphere, magnetosphere and different layers of the atmosphere must be studied as a coupled system. Presented paper describes how information on complicated physical processes on Sun, in the heliosphere, magnetosphere and atmosphere can be made immediately assessable for researchers via advanced multivariate visualization system with simple statistical analysis package. Research of the high-energy phenomena in the atmosphere and the atmospheric discharges is of special importance. The relationship between thundercloud electrification, lightning activity, wideband radio emission and particle fluxes have not been yet unambiguously established. One of most intriguing opportunities opening by observation of the high-energy processes in the atmosphere is their relation to lightning initiation. Investigations of the accelerated structures in the geospace plasmas can as well shed light on particle acceleration up to much higher energies in the similar structures of space plasmas in the distant objects of the Universe. (author)

  11. Aerosol influence on energy balance of the middle atmosphere of Jupiter.

    Science.gov (United States)

    Zhang, Xi; West, Robert A; Irwin, Patrick G J; Nixon, Conor A; Yung, Yuk L

    2015-12-22

    Aerosols are ubiquitous in planetary atmospheres in the Solar System. However, radiative forcing on Jupiter has traditionally been attributed to solar heating and infrared cooling of gaseous constituents only, while the significance of aerosol radiative effects has been a long-standing controversy. Here we show, based on observations from the NASA spacecraft Voyager and Cassini, that gases alone cannot maintain the global energy balance in the middle atmosphere of Jupiter. Instead, a thick aerosol layer consisting of fluffy, fractal aggregate particles produced by photochemistry and auroral chemistry dominates the stratospheric radiative heating at middle and high latitudes, exceeding the local gas heating rate by a factor of 5-10. On a global average, aerosol heating is comparable to the gas contribution and aerosol cooling is more important than previously thought. We argue that fractal aggregate particles may also have a significant role in controlling the atmospheric radiative energy balance on other planets, as on Jupiter.

  12. Current redistribution in resistor networks: Fat-tail statistics in regular and small-world networks.

    Science.gov (United States)

    Lehmann, Jörg; Bernasconi, Jakob

    2017-03-01

    The redistribution of electrical currents in resistor networks after single-bond failures is analyzed in terms of current-redistribution factors that are shown to depend only on the topology of the network and on the values of the bond resistances. We investigate the properties of these current-redistribution factors for regular network topologies (e.g., d-dimensional hypercubic lattices) as well as for small-world networks. In particular, we find that the statistics of the current redistribution factors exhibits a fat-tail behavior, which reflects the long-range nature of the current redistribution as determined by Kirchhoff's circuit laws.

  13. The Redistribution of Trade Gains When Income Inequality Matters

    Directory of Open Access Journals (Sweden)

    Marco de Pinto

    2015-10-01

    Full Text Available How does a redistribution of trade gains affect welfare when income inequality matters? To answer this question, we extend the [1] model to unionized labor markets and heterogeneous workers. As redistribution schemes, we consider unemployment benefits that are financed either by a wage tax, a payroll tax or a profit tax. Assuming that welfare declines in income inequality, we find that welfare increases up to a maximum in the case of wage tax funding, while welfare declines weakly (sharply if a profit tax (payroll tax is implemented. These effects are caused by the wage tax neutrality (due to union wage setting and by a profit tax-induced decline in long-term unemployment. As a result, the government’s optimal redistribution scheme is to finance unemployment benefits by a wage tax.

  14. Void redistribution in sand under post-earthquake loading

    International Nuclear Information System (INIS)

    Boulanger, R.W.; Truman, S.P.

    1996-01-01

    A mechanism for void redistribution in an infinite slope under post-earthquake loading conditions is described by consideration of the in situ loading paths that can occur under post-earthquake conditions and the results of triaxial tests designed to represent specific in situ post-earthquake loading paths. The mechanism is illustrated by application to an example problem. Void redistribution is shown to be a phenomena that may be more pronounced at the field scale than at the laboratory scale. (author). 12 refs., 4 figs

  15. The Department of Energy's Atmospheric Chemistry Program: A critical review

    International Nuclear Information System (INIS)

    1991-01-01

    In response to a request from the Department of Energy's (DOE) Office of Health and Environmental Research (OHER), the Committee on Atmospheric Chemistry has reviewed OHER's Atmospheric Chemistry Program (ACP). This report contains the committee's evaluation and critique arising from that review. The review process included a two-day symposium held at the National Academy of Sciences on September 25 and 26, 1990, that focused on presenting the ACP's current components, recent scientific accomplishments, and scientific plans. Following the symposium, committee members met in a one-day executive session to formulate and outline this report. In undertaking this review, OHER and ACP management requested that the committee attempt to answer several specific questions involving the program's technical capability and productivity, its leadership and organization, and its future direction. These questions are given in the Appendix. This report represents the committee's response to the questions posed in the Appendix. Chapter I explores the committee's view of the role that atmospheric chemistry could and should assume within the DOE and its prospective National Energy Strategy. Chapter 2 assesses the current ACP, Chapter 3 presents recommendations for revising and strengthening it, and Chapter 4 restates the committee's conclusions and recommendations

  16. Business Groups and Profit Redistribution : A Boon or Bane for Firms

    NARCIS (Netherlands)

    George, R.; Kabir, M.R.; Douma, S.W.

    2004-01-01

    This study investigates how profit redistribution affects the performance of firms affiliated to business groups.It shows that inefficient profit redistribution causes group-affiliated firms to perform poorly relative to independent firms.This underperformance persists even after controlling for

  17. Inequality, Collective Action and Redistribution: a New Indicator for Assessing a Complex Relationship

    Directory of Open Access Journals (Sweden)

    Federico Traversa

    2015-01-01

    Full Text Available The predominant theoretical viewpoint about the problem of income redistribution in capitalist democracies continues to postulate that the pressure towards redistribution is greatest in democracies with more inequality. However, this assumption does not seem to be corroborated empirically; perhaps this is because sometimes inequality only increases between the lower reaches of the distribution of income. In these cases, inequality increases the dispersion of earnings among the stakeholders of redistribution, and this increases their collective action problems. This paper proposes a new theoretical principle for the analysis of the relationship between inequality and redistribution, and develops an indicator consistent to this principle. A preliminary empirical exploration is carried out to illustrate how the proposed indicator is signifi cantly associated with the levels of income redistribution in 19 OECD countries between 1974 and 2005.

  18. Redistribution of thallium-201 into right ventricle through collateral circulation

    International Nuclear Information System (INIS)

    Kataoka, Hajime; Ohkubo, Toshitaka; Takaoka, Shigeru; Ohshige, Tamao; Miyahara, Kenkichi.

    1984-01-01

    The cases of reversible right ventricular ischemia, which demonstrated redistribution of thallium (Tl)-201 into the right ventricular free wall (RVFW) through collateral channels, were reported. Two cases with complete obstruction in the proximal right coronary artery accompanied by collateral channels (left coronary artery to distal right coronary artery) underwent submaximal exercise stress Tl-201 myocardial imaging. Although the RVFW was not visualized on immediate myocardial images in one or both of the 30 0 and 60 0 left anterior oblique views in each case, three-hour delayed myocardial images showed redistribution of Tl-201 into the RVFW. It was concluded that collateral circulation affects the occurrence of redistribution of Tl-201 into the RVFW. (author)

  19. Social norms on rent seeking and preferences for redistribution

    OpenAIRE

    Sabatini, Fabio; Sarracino, Francesco; Yamamura, Eiji

    2014-01-01

    Empirical studies have shown that preferences for redistribution are sig- nificantly correlated with expectations of future mobility and the belief that society offers equal opportunities. We add to previous research by inves- tigating the role of individual and social norms on rent seeking. We find that the individual propensity for stigmatizing rent seeking significantly and positively affects preferences for redistribution. On the other hand, living in an area where most citizens do not st...

  20. Redistributive Politics in a Political Union

    DEFF Research Database (Denmark)

    Citi, Manuele; Justesen, Mogens Kamp

    One of the main functions of centralized budgets in federal and political unions is to act as an equalizing mechanism to support economic cohesion. This is also the case with the European Union’s budget, which operates as a redistributive mechanism that counteracts the cross-national and cross...... remarkably over the last decades. In this paper, we investigate how and why the net fiscal position of each member state towards the rest of the EU changes over time. Using a novel panel dataset (1979-2014), we study how some key national and EU-level political and economic variables affect the EU...... find that the political orientation of national governments does not per se influence redistributive politics with in the EU. However, when the unemployment rate is rising, right-wing governments are able to extract significantly larger budgetary benefits....

  1. Clinical significance of 201Tl reverse redistribution in patients with aorto-coronary bypass surgery

    International Nuclear Information System (INIS)

    Nishimura, Tsunehiko; Uehara, Tashiisa; Hayashida, Kohei; Kozuka, Takahira

    1987-01-01

    Detection of myocardial ischemia by the stress thallium scan has traditionally been performed using transient defect analysis on exercise, followed by redistribution studies. Worsening of the 201 Tl myocardial image from exercise to redistribution is referred to as reverse redistribution. In this study, we found reverse redistribution in 10 (21%) of 48 angina pectoris patients who had undergone aortocoronary bypass surgery. The clinical significance of this phenomenon in these patients was investigated in relation to angiographic and surgical findings. Reverse redistribution was found to occur in regions which were supplied by bypass grafts. These areas showed increased coronary blood flow and rapid thallium washout. Our results indicate that a perfusion defect in the bypass region of the redistribution image might be caused by relatively rapid washout in the bypass graft region compared to the adjacent normal myocardium. These results should be considered in the clinical interpretation of stress thallium scans. (orig.)

  2. Redistribution of the solar radiation and the rain inside of coffee plantations (Arabic Coffea L.)

    International Nuclear Information System (INIS)

    Jaramillo Robledo, Alvaro

    2005-01-01

    The following review presents a series of studies on microclimates of non-shaded and shaded conditions of coffee plantations (Coffea arabica L.) in Colombia. Likewise, The redistribution of solar radiation and the temperature, as well as the energy balance, of the coffee plant and the crop are described. The results on the components of water balance and transport of nutrients within the coffee plantations are reported

  3. Unequal views of inequality: Cross-national support for redistribution 1985-2011.

    Science.gov (United States)

    VanHeuvelen, Tom

    2017-05-01

    This research examines public views on government responsibility to reduce income inequality, support for redistribution. While individual-level correlates of support for redistribution are relatively well understood, many questions remain at the country-level. Therefore, I examine how country-level characteristics affect aggregate support for redistribution. I test explanations of aggregate support using a unique dataset combining 18 waves of the International Social Survey Programme and European Social Survey. Results from mixed-effects logistic regression and fixed-effects linear regression models show two primary and contrasting effects. States that reduce inequality through bundles of tax and transfer policies are rewarded with more supportive publics. In contrast, economic development has a seemingly equivalent and dampening effect on public support. Importantly, the effect of economic development grows at higher levels of development, potentially overwhelming the amplifying effect of state redistribution. My results therefore suggest a fundamental challenge to proponents of egalitarian politics. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Polarized line formation with J-state interference in the presence of magnetic fields: A Heuristic treatment of collisional frequency redistribution

    International Nuclear Information System (INIS)

    Smitha, H.N.; Nagendra, K.N.; Sampoorna, M.; Stenflo, J.O.

    2013-01-01

    An expression for the partial frequency redistribution (PRD) matrix for line scattering in a two-term atom, which includes the J-state interference between its fine structure line components is derived. The influence of collisions (both elastic and inelastic) and an external magnetic field on the scattering process is taken into account. The lower term is assumed to be unpolarized and infinitely sharp. The linear Zeeman regime in which the Zeeman splitting is much smaller than the fine structure splitting is considered. The inelastic collision rates between the different levels are included in our treatment. We account for the depolarization caused by the collisions coupling the fine structure states of the upper term, but neglect the polarization transfer between the fine structure states. When the fine structure splitting goes to zero, we recover the redistribution matrix that represents the scattering on a two-level atom (which exhibits only m-state interference—namely the Hanle effect). The way in which the multipolar index of the scattering atom enters into the expression for the redistribution matrix through the collisional branching ratios is discussed. The properties of the redistribution matrix are explored for a single scattering process for a L=0→1→0 scattering transition with S=1/2 (a hypothetical doublet centered at 5000 Å and 5001 Å). Further, a method for solving the Hanle radiative transfer equation for a two-term atom in the presence of collisions, PRD, and J-state interference is developed. The Stokes profiles emerging from an isothermal constant property medium are computed. -- Highlights: ► Polarized partial frequency redistribution matrix (PRDM) for two-term atom is derived. ► PRDM includes collisions heuristically and magnetic fields in linear Zeeman regime. ► A method to include this PRDM into the radiative transfer equation is presented. ► The transfer equation is solved both for the magnetic and non-magnetic cases. ► The

  5. Collisional redistribution effects on x-ray laser saturation behavior

    International Nuclear Information System (INIS)

    Koch, J.A.; MacGowan, B.J.; Da Silva, L.B.; Matthews, D.J.; Lee, R.W.; London, R.A.; Mrowka, S.; Underwood, J.H.; Batson, P.J.

    1994-06-01

    We recently published a detailed summary of our experimental and theoretical research on Ne-like Se x-ray laser line widths, and one of our conclusions was that collisional redistribution rates are likely to have an effect on the saturation behavior of the 206.4 angstrom Se x-ray laser. In this paper we focus on the effects of collisional redistribution on x-ray laser gain coefficients, and discuss ways of including these effects in existing laser line- transfer models

  6. Verifiable Secret Redistribution for Threshold Sharing Schemes

    National Research Council Canada - National Science Library

    Wong, Theodore M; Wang, Chenxi; Wing, Jeannette M

    2002-01-01

    .... Our protocol guards against dynamic adversaries. We observe that existing protocols either cannot be readily extended to allow redistribution between different threshold schemes, or have vulnerabilities that allow faulty old shareholders...

  7. Simulation of the Atmospheric Boundary Layer for Wind Energy Applications

    Science.gov (United States)

    Marjanovic, Nikola

    Energy production from wind is an increasingly important component of overall global power generation, and will likely continue to gain an even greater share of electricity production as world governments attempt to mitigate climate change and wind energy production costs decrease. Wind energy generation depends on wind speed, which is greatly influenced by local and synoptic environmental forcings. Synoptic forcing, such as a cold frontal passage, exists on a large spatial scale while local forcing manifests itself on a much smaller scale and could result from topographic effects or land-surface heat fluxes. Synoptic forcing, if strong enough, may suppress the effects of generally weaker local forcing. At the even smaller scale of a wind farm, upstream turbines generate wakes that decrease the wind speed and increase the atmospheric turbulence at the downwind turbines, thereby reducing power production and increasing fatigue loading that may damage turbine components, respectively. Simulation of atmospheric processes that span a considerable range of spatial and temporal scales is essential to improve wind energy forecasting, wind turbine siting, turbine maintenance scheduling, and wind turbine design. Mesoscale atmospheric models predict atmospheric conditions using observed data, for a wide range of meteorological applications across scales from thousands of kilometers to hundreds of meters. Mesoscale models include parameterizations for the major atmospheric physical processes that modulate wind speed and turbulence dynamics, such as cloud evolution and surface-atmosphere interactions. The Weather Research and Forecasting (WRF) model is used in this dissertation to investigate the effects of model parameters on wind energy forecasting. WRF is used for case study simulations at two West Coast North American wind farms, one with simple and one with complex terrain, during both synoptically and locally-driven weather events. The model's performance with different

  8. Role of solar influences on geomagnetosphere and upper atmosphere

    Science.gov (United States)

    Kumar Tripathi, Arvind

    The Earth's magnetosphere and upper atmosphere can be greatly perturbed by variations in the solar luminosity caused by disturbances on the solar surface. The state of near-Earth space environment is governed by the Sun and is very dynamic on all spatial and temporal scale. The geomagnetic field which protects the Earth from solar wind and cosmic rays is also essential to the evolution of life; its variations can have either direct or indirect effect on human physiology and health state even if the magnitude of the disturbance is small. Geomagnetic disturbances are seen at the surface of the Earth as perturbations in the components of the geomagnetic field, caused by electric currents flowing in the magnetosphere and upper atmosphere. Ionospheric and thermospheric storms also result from the redistribution of particles and fields. Global thermospheric storm winds and composition changes are driven by energy injection at high latitudes. These storm effects may penetrate downwards to the lower thermosphere and may even perturb the mesosphere. Many of the ionospheric changes at mid-latitude can be understood as a response to thermospheric perturbations. The transient bursts of solar energetic particles, often associated with large solar transients, have been observed to have effects on the Earth's middle and lower atmosphere, including the large-scale destruction of polar stratospheric and tropospheric ozone. In the present, we have discussed effect of solar influences on earth's magnetosphere and upper atmosphere that are useful to space weather and global warming, on the basis of various latest studies.

  9. Radial plutonium redistribution in mixed-oxide fuel

    International Nuclear Information System (INIS)

    Lawrence, L.A.; Schwinkendorf, K.N.; Karnesky, R.A.

    1981-10-01

    Alpha autoradiographs from all HEDL fuel pin metallography samples are evaluated and catalogued according to different plutonium distribution patterns. The data base is analyzed for effects of fabrication and operating parameters on redistribution

  10. Ionosphere-Magnetosphere Energy Interplay in the Regions of Diffuse Aurora

    Science.gov (United States)

    Khazanov, G. V.; Glocer, A.; Sibeck, D. G.; Tripathi, A. K.; Detweiler, L.G.; Avanov, L. A.; Singhal, R. P.

    2016-01-01

    Both electron cyclotron harmonic (ECH) waves and whistler mode chorus waves resonate with electrons of the Earths plasma sheet in the energy range from tens of eV to several keV and produce the electron diffuse aurora at ionospheric altitudes. Interaction of these superthermal electrons with the neutral atmosphere leads to the production of secondary electrons (E500600 eV) and, as a result, leads to the activation of lower energy superthermal electron spectra that can escape back to the magnetosphere and contribute to the thermal electron energy deposition processes in the magnetospheric plasma. The ECH and whistler mode chorus waves, however, can also interact with the secondary electrons that are coming from both of the magnetically conjugated ionospheres after they have been produced by initially precipitated high-energy electrons that came from the plasma sheet. After their degradation and subsequent reflection in magnetically conjugate atmospheric regions, both the secondary electrons and the precipitating electrons with high (E600 eV) initial energies will travel back through the loss cone, become trapped in the magnetosphere, and redistribute the energy content of the magnetosphere-ionosphere system. Thus, scattering of the secondary electrons by ECH and whistler mode chorus waves leads to an increase of the fraction of superthermal electron energy deposited into the core magnetospheric plasma.

  11. Impact of hydraulic redistribution on multispecies vegetation water use in a semi-arid ecosystem: An experimental and modeling synthesis

    Science.gov (United States)

    Lee, E.; Kumar, P.; Barron-Gafford, G.; Scott, R. L.; Hendryx, S. M.; Sanchez-Canete, E. P.; Minor, R. L.; Colella, A.

    2017-12-01

    A key challenge in critical zone science is to understand and predict the interaction between aboveground and belowground ecohydrologic processes. One of the links that facilitates the interaction is hydraulic redistribution (HR), a phenomenon by which roots serve as preferential pathways for water movement from wet to dry soil layers. We use a multi-layer canopy model in conjunction with experimental data to examine the influence of HR on eco-hydrologic processes, such as transpiration, soil evaporation, and soil moisture, which characterize the competitive and facilitative dynamics between velvet mesquite and understory bunchgrass. Both measured and simulated results show that hydraulic descent (HD) dominates sap flux during the wet monsoon season, whereas hydraulic lift (HL) occurs between precipitation events. About 17% of precipitation is absorbed as soil-moisture, with the rest of the precipitation returning to the atmosphere as evapotranspiration. In the wet season, 13% of precipitation is transferred to deep soil (>2m) through mesquite roots, and in the dry season, 9% of this redistributed water is transported back to shallow soil depth (competitive advantage over understory bunchgrass through HR.

  12. ATMOSPHERE AND SPECTRAL MODELS OF THE KEPLER-FIELD PLANETS HAT-P-7b AND TrES-2

    International Nuclear Information System (INIS)

    Spiegel, David S.; Burrows, Adam

    2010-01-01

    We develop atmosphere models of two of the three Kepler-field planets that were known prior to the start of the Kepler mission (HAT-P-7b and TrES-2). We find that published Kepler and Spitzer data for HAT-P-7b appear to require an extremely hot upper atmosphere on the dayside, with a strong thermal inversion and little day-night redistribution. The Spitzer data for TrES-2 suggest a mild thermal inversion with moderate day-night redistribution. We examine the effect of nonequilibrium chemistry on TrES-2 model atmospheres and find that methane levels must be adjusted by extreme amounts in order to cause even mild changes in atmospheric structure and emergent spectra. Our best-fit models to the Spitzer data for TrES-2 lead us to predict a low secondary eclipse planet-star flux ratio (∼ -5 ) in the Kepler bandpass, which is consistent with what very recent observations have found. Finally, we consider how the Kepler-band optical flux from a hot exoplanet depends on the strength of a possible extra optical absorber in the upper atmosphere. We find that the optical flux is not monotonic in optical opacity, and the non-monotonicity is greater for brighter, hotter stars.

  13. Capital mobility, tax competition, and lobbying for redistributive capital taxation

    OpenAIRE

    Lorz, Jens Oliver

    1996-01-01

    This paper analyzes the impact of international capital mobility on redistributive capital taxation and on lobbying activities by interest groups. It employs a model where different capital endowments lead to a conflict between households concerning their most preferred capital tax rate. Three main results are derived: First, redistributive source based capital taxes or subsidies decline as international tax competition intensifies. Second, lobbying activities of certain interest groups may e...

  14. ENERGY CONTENT AND PROPAGATION IN TRANSVERSE SOLAR ATMOSPHERIC WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Goossens, M.; Van Doorsselaere, T. [Centre for mathematical Plasma Astrophysics, Mathematics Department, Celestijnenlaan 200B bus 2400, B-3001 Heverlee (Belgium); Soler, R. [Solar Physics Group, Departament de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Verth, G., E-mail: tom.vandoorsselaere@wis.kuleuven.be [Solar Physics and Space Plasma Research Centre (SP2RC), School of Mathematics and Statistics, University of Sheffield, Hounsfield Road, Hicks Building, Sheffield S3 7RH (United Kingdom)

    2013-05-10

    Recently, a significant amount of transverse wave energy has been estimated propagating along solar atmospheric magnetic fields. However, these estimates have been made with the classic bulk Alfven wave model which assumes a homogeneous plasma. In this paper, the kinetic, magnetic, and total energy densities and the flux of energy are computed for transverse MHD waves in one-dimensional cylindrical flux tube models with a piecewise constant or continuous radial density profile. There are fundamental deviations from the properties for classic bulk Alfven waves. (1) There is no local equipartition between kinetic and magnetic energy. (2) The flux of energy and the velocity of energy transfer have, in addition to a component parallel to the magnetic field, components in the planes normal to the magnetic field. (3) The energy densities and the flux of energy vary spatially, contrary to the case of classic bulk Alfven waves. This last property has the important consequence that the energy flux computed with the well known expression for bulk Alfven waves could overestimate the real flux by a factor in the range 10-50, depending on the flux tube equilibrium properties.

  15. Redistributive effects of Swedish health care finance.

    Science.gov (United States)

    Gerdtham, U G; Sundberg, G

    1998-01-01

    This paper investigates the redistributive effects of the Swedish health care financing system in 1980 and 1990 for four different financial sources: county council taxes, payroll taxes, direct payments and state grants. The redistributive effects are decomposed into vertical, horizontal and 'reranking' segments for each of the four financial sources. The data used are based on probability samples of the Swedish population, from the Level of Living Survey (LNU) from 1981 and 1991. The paper concludes that the Swedish health care financing system is weakly progressive, although direct payments are regressive. There is some horizontal inequity and 'reranking', which mainly comes from the county council taxes, since those tax rates vary for each county council. The implication is that, to some extent, people with equal incomes are treated unequally.

  16. Does Subjective Left-Right Position Have a Causal Effect on Support for Redistribution?

    DEFF Research Database (Denmark)

    Jæger, Mads Meier

    characteristics as instruments for left-right position, can be used to estimate the causal effect of left-right position on support for redistribution. I analyze data on Sweden, Germany, and Norway from the two first waves of the European Social Survey and find first that left-right position is endogenous...... to support for redistribution, and second consistent with theory, that a causal effect of left-right position on support for redistribution exists which is stronger than previously shown....

  17. Large scale mass redistribution and surface displacement from GRACE and SLR

    Science.gov (United States)

    Cheng, M.; Ries, J. C.; Tapley, B. D.

    2012-12-01

    Mass transport between the atmosphere, ocean and solid earth results in the temporal variations in the Earth gravity field and loading induced deformation of the Earth. Recent space-borne observations, such as GRACE mission, are providing extremely high precision temporal variations of gravity field. The results from 10-yr GRACE data has shown a significant annual variations of large scale vertical and horizontal displacements occurring over the Amazon, Himalayan region and South Asia, African, and Russian with a few mm amplitude. Improving understanding from monitoring and modeling of the large scale mass redistribution and the Earth's response are a critical for all studies in the geosciences, in particular for determination of Terrestrial Reference System (TRS), including geocenter motion. This paper will report results for the observed seasonal variations in the 3-dimentional surface displacements of SLR and GPS tracking stations and compare with the prediction from time series of GRACE monthly gravity solution.

  18. Global Redistributive Obligations in the Face of Severe Poverty

    DEFF Research Database (Denmark)

    Axelsen, David Vestergaard

    ? In the debate on global justice, a number of theorists argue that this discrepancy can indeed be justified (so-called anti-cosmopolitans). Thus, to bring us closer to answer regarding our redistributive obligations towards foreigners, I analyze and evaluate such arguments. My critical examination reveals...... comprehensive obligations to foreigners and compatriots simultaneously. Thus, even if we are duty-bound to redistribute comprehensively to compatriots, this does not entail that we could not also do so towards non-compatriots. Hence, their arguments are incomplete. Thirdly, I show that anti...

  19. Usefulness of semiquantitative analysis of dipyridamole-thallium-201 redistribution for improving risk stratification before vascular surgery

    International Nuclear Information System (INIS)

    Levinson, J.R.; Boucher, C.A.; Coley, C.M.; Guiney, T.E.; Strauss, H.W.; Eagle, K.A.

    1990-01-01

    Preoperative dipyridamole-thallium-201 scanning is sensitive in identifying patients prone to ischemic cardiac complications after vascular surgery, but most patients with redistribution do not have an event after surgery. Therefore, its positive predictive value is limited. To determine which patients with thallium redistribution are at highest risk, dipyridamole-thallium-201 images were interpreted semiquantitatively. Sixty-two consecutive patients with redistribution on preoperative dipyridamole-thallium-201 planar imaging studies were identified. Each thallium scan was then analyzed independently by 2 observers for the number of myocardial segments out of 15, the number of thallium views out of 3 and the number of coronary artery territories with redistribution. Seventeen patients (27%) had postoperative ischemic events, including unstable angina pectoris, ischemic pulmonary edema, myocardial infarction and cardiac death. Thallium predictors of ischemic operative complications included thallium redistribution greater than or equal to 4 myocardial segments (p = 0.03), greater than or equal to 2 of the 3 planar views (p = 0.005) and greater than or equal to 2 coronary territories (p = 0.007). No patient with redistribution in only 1 view had an ischemic event (0 of 15). Thus, determining the extent of redistribution by dipyridamole-thallium-201 scanning improves risk stratification before vascular surgery. Patients with greater numbers of myocardial segments and greater numbers of coronary territories showing thallium-201 redistribution are at higher risk for ischemic cardiac complications. In contrast, when the extent of thallium redistribution is limited, there is a lower risk despite the presence of redistribution

  20. 7 CFR 247.24 - Recovery and redistribution of caseload and administrative funds.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 4 2010-01-01 2010-01-01 false Recovery and redistribution of caseload and...) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE CHILD NUTRITION PROGRAMS COMMODITY SUPPLEMENTAL FOOD PROGRAM § 247.24 Recovery and redistribution of caseload and administrative funds. (a) May FNS...

  1. CELESTE: an atmospheric Cherenkov telescope for high energy gamma astrophysics

    Czech Academy of Sciences Publication Activity Database

    Paré, E.; Balauge, B.; Bazer-Bachi, R.; Bergeret, H.; Berny, F.; Briand, N.; Bruel, P.; Cerutti, M.; Collon, J.; Cordier, A.; Cornbise, P.; Debiais, G.; Dezalay, J. P.; Dumora, D.; Durand, E.; Eschstruth, P.; Espigat, P.; Fabre, B.; Fleury, P.; Gilly, J.; Gouillaud, J. C.; Gregory, C.; Hérault, N.; Holder, J.; Hrabovský, Miroslav; Incerti, S.; Jouenne, A.; Kalt, L.; LeGallou, R.; Lott, B.; Manigot, P.; Neveu, J.; Olive, J. F.; Palatka, Miroslav; Perez, A.; Rebii, A.; Rob, L.; Sans, J. L.; Schovánek, Petr; Villard, G.

    2002-01-01

    Roč. 490, - (2002), s. 71-89 ISSN 0168-9002 R&D Projects: GA MŠk LN00A006 Institutional research plan: CEZ:AV0Z1010920 Keywords : gamma-ray astronopy * atmospheric Cherenkov detector Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.167, year: 2002

  2. Elemental redistribution behavior in tellurite glass induced by high repetition rate femtosecond laser irradiation

    International Nuclear Information System (INIS)

    Teng, Yu; Zhou, Jiajia; Khisro, Said Nasir; Zhou, Shifeng; Qiu, Jianrong

    2014-01-01

    Highlights: • Abnormal elements redistribution behavior was observed in tellurite glass. • The refractive index and Raman intensity distribution changed significantly. • The relative glass composition remained unchanged while the glass density changed. • First time report on the abnormal element redistribution behavior in glass. • The glass network structure determines the elemental redistribution behavior. - Abstract: The success in the fabrication of micro-structures in glassy materials using femtosecond laser irradiation has proved its potential applications in the construction of three-dimensional micro-optical components or devices. In this paper, we report the elemental redistribution behavior in tellurite glass after the irradiation of high repetition rate femtosecond laser pulses. The relative glass composition remained unchanged while the glass density changed significantly, which is quite different from previously reported results about the high repetition rate femtosecond laser induced elemental redistribution in silicate glasses. The involved mechanism is discussed with the conclusion that the glass network structure plays the key role to determine the elemental redistribution. This observation not only helps to understand the interaction process of femtosecond laser with glassy materials, but also has potential applications in the fabrication of micro-optical devices

  3. The Welfare State vs. the Redistributive State.

    Science.gov (United States)

    Plattner, Marc F.

    1979-01-01

    While the principles of progressive taxation and the welfare state have come to be almost universally accepted, it would be a serious error to infer that American policy has ever embraced the idea of income redistribution. (Author)

  4. Topographic Metric Predictions of Soil redistribution and Organic Carbon Distribution in Croplands

    Science.gov (United States)

    Mccarty, G.; Li, X.

    2017-12-01

    Landscape topography is a key factor controlling soil redistribution and soil organic carbon (SOC) distribution in Iowa croplands (USA). In this study, we adopted a combined approach based on carbon () and cesium (137Cs) isotope tracers, and digital terrain analysis to understand patterns of SOC redistribution and carbon sequestration dynamics as influenced by landscape topography in tilled cropland under long term corn/soybean management. The fallout radionuclide 137Cs was used to estimate soil redistribution rates and a Lidar-derived DEM was used to obtain a set of topographic metrics for digital terrain analysis. Soil redistribution rates and patterns of SOC distribution were examined across 560 sampling locations at two field sites as well as at larger scale within the watershed. We used δ13C content in SOC to partition C3 and C4 plant derived C density at 127 locations in one of the two field sites with corn being the primary source of C4 C. Topography-based models were developed to simulate SOC distribution and soil redistribution using stepwise ordinary least square regression (SOLSR) and stepwise principal component regression (SPCR). All topography-based models developed through SPCR and SOLSR demonstrated good simulation performance, explaining more than 62% variability in SOC density and soil redistribution rates across two field sites with intensive samplings. However, the SOLSR models showed lower reliability than the SPCR models in predicting SOC density at the watershed scale. Spatial patterns of C3-derived SOC density were highly related to those of SOC density. Topographic metrics exerted substantial influence on C3-derived SOC density with the SPCR model accounting for 76.5% of the spatial variance. In contrast C4 derived SOC density had poor spatial structure likely reflecting the substantial contribution of corn vegetation to recently sequestered SOC density. Results of this study highlighted the utility of topographic SPCR models for scaling

  5. [Effects of rainfall intensity on rainfall infiltration and redistribution in soil on Loess slope land].

    Science.gov (United States)

    Li, Yi; Shao, Ming'an

    2006-12-01

    With simulation test, this paper studied the patterns of rainfall infiltration and redistribution in soil on typical Loess slope land, and analyzed the quantitative relations between the infiltration and redistribution and the movement of soil water and mass, with rainfall intensity as the main affecting factor. The results showed that rainfall intensity had significant effects on the rainfall infiltration and water redistribution in soil, and the microcosmic movement of soil water. The larger the rainfall intensity, the deeper the wetting front of rainfall infiltration and redistribution was, and the wetting front of soil water redistribution had a slower increase velocity than that of rainfall infiltration. The power function of the wetting front with time, and also with rainfall intensity, was fitted well. There was also a quantitative relation between the wetting front of rainfall redistribution and the duration of rainfall. The larger the rainfall intensity, the higher the initial and steady infiltration rates were, and the cumulative infiltration increased faster with time. Moreover, the larger the rainfall intensity, the smaller the wetting front difference was at the top and the end of the slope. With the larger rainfall intensity, both the difference of soil water content and its descending trend between soil layers became more obvious during the redistribution process on slope land.

  6. Load-redistribution strategy based on time-varying load against cascading failure of complex network

    International Nuclear Information System (INIS)

    Liu Jun; Shi Xin; Wang Kai; Shi Wei-Ren; Xiong Qing-Yu

    2015-01-01

    Cascading failure can cause great damage to complex networks, so it is of great significance to improve the network robustness against cascading failure. Many previous existing works on load-redistribution strategies require global information, which is not suitable for large scale networks, and some strategies based on local information assume that the load of a node is always its initial load before the network is attacked, and the load of the failure node is redistributed to its neighbors according to their initial load or initial residual capacity. This paper proposes a new load-redistribution strategy based on local information considering an ever-changing load. It redistributes the loads of the failure node to its nearest neighbors according to their current residual capacity, which makes full use of the residual capacity of the network. Experiments are conducted on two typical networks and two real networks, and the experimental results show that the new load-redistribution strategy can reduce the size of cascading failure efficiently. (paper)

  7. [International migration and income redistribution: a trade-theoretic analysis].

    Science.gov (United States)

    Leiner, N; Meckl, J

    1995-05-01

    "We analyze the income-redistribution effects of international migration in the host and source country in a general equilibrium framework. The well-known result that marginal migration leaves the welfare of nonmigrants unaffected is discussed in more detail with regard to shifts in national income distributions. With endogenous goods' prices the consequences for the income distribution are in general ambiguous--we show possibilities for an estimation of their magnitude. As long as wage disparities determine the direction of migration it increases world efficiency. However, redistributive policies may generate migration towards the low-wage country." (SUMMARY IN ENG) excerpt

  8. Kinetic model for electric-field induced point defect redistribution near semiconductor surfaces

    Science.gov (United States)

    Gorai, Prashun; Seebauer, Edmund G.

    2014-07-01

    The spatial distribution of point defects near semiconductor surfaces affects the efficiency of devices. Near-surface band bending generates electric fields that influence the spatial redistribution of charged mobile defects that exchange infrequently with the lattice, as recently demonstrated for pile-up of isotopic oxygen near rutile TiO2 (110). The present work derives a mathematical model to describe such redistribution and establishes its temporal dependence on defect injection rate and band bending. The model shows that band bending of only a few meV induces significant redistribution, and that the direction of the electric field governs formation of either a valley or a pile-up.

  9. Kinetic model for electric-field induced point defect redistribution near semiconductor surfaces

    International Nuclear Information System (INIS)

    Gorai, Prashun; Seebauer, Edmund G.

    2014-01-01

    The spatial distribution of point defects near semiconductor surfaces affects the efficiency of devices. Near-surface band bending generates electric fields that influence the spatial redistribution of charged mobile defects that exchange infrequently with the lattice, as recently demonstrated for pile-up of isotopic oxygen near rutile TiO 2 (110). The present work derives a mathematical model to describe such redistribution and establishes its temporal dependence on defect injection rate and band bending. The model shows that band bending of only a few meV induces significant redistribution, and that the direction of the electric field governs formation of either a valley or a pile-up.

  10. Inequality, redistribution and growth : Theory and evidence

    NARCIS (Netherlands)

    Haile, D.

    2005-01-01

    From a macro-perspective, the thesis provides a political economic model that analyses the joint determination of inequality, corruption, taxation, education and economic growth in a dynamic environment. It demonstrates how redistributive taxation is affected by the distribution of wealth and

  11. Atmospheric Energy Limits on Subsurface Life on Mars

    Science.gov (United States)

    Weiss, B. P.; Yung, Y. L.; Nealson, K. H.

    1999-01-01

    It has been suggested that the terrestrial biomass of subterranean organisms may equal or exceed that at the surface. Taken as a group, these organisms can live in heavily saline conditions at temperatures from 115 C to as low as -20 C. Such conditions might exist on Mars beneath the surface oxidant in an aquifer or hydrothermal system, where the surrounding rock would also protect against the solar ultraviolet radiation. The way that such systems could obtain energy and carbon is not completely clear, although it is believed that on Earth, energy flows from the interaction of highly reduced basalt with groundwater produce H2, while carbon is derived from CO2 dissolved in the groundwater. Another potential source is the Martian atmosphere, acting as a photochemical conduit of solar insolation.

  12. LARGE ABUNDANCES OF POLYCYCLIC AROMATIC HYDROCARBONS IN TITAN'S UPPER ATMOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Puertas, M.; Funke, B.; Garcia-Comas, M. [Instituto de Astrofisica de Andalucia (CSIC), E-18080 Granada (Spain); Dinelli, B. M. [ISAC-CNR, I-40129 Bologna (Italy); Adriani, A.; D' Aversa, E. [IAPS-INAF, I-00133 Rome (Italy); Moriconi, M. L. [ISAC-CNR, I-00133 Rome (Italy); Boersma, C.; Allamandola, L. J., E-mail: puertas@iaa.es [NASA Ames Research Center, Moffett Field, CA 94035-1000 (United States)

    2013-06-20

    In this paper, we analyze the strong unidentified emission near 3.28 {mu}m in Titan's upper daytime atmosphere recently discovered by Dinelli et al. We have studied it by using the NASA Ames PAH IR Spectroscopic Database. The polycyclic aromatic hydrocarbons (PAHs), after absorbing UV solar radiation, are able to emit strongly near 3.3 {mu}m. By using current models for the redistribution of the absorbed UV energy, we have explained the observed spectral feature and have derived the vertical distribution of PAH abundances in Titan's upper atmosphere. PAHs have been found to be present in large concentrations, about (2-3) Multiplication-Sign 10{sup 4} particles cm{sup -3}. The identified PAHs have 9-96 carbons, with a concentration-weighted average of 34 carbons. The mean mass is {approx}430 u; the mean area is about 0.53 nm{sup 2}; they are formed by 10-11 rings on average, and about one-third of them contain nitrogen atoms. Recently, benzene together with light aromatic species as well as small concentrations of heavy positive and negative ions have been detected in Titan's upper atmosphere. We suggest that the large concentrations of PAHs found here are the neutral counterpart of those positive and negative ions, which hence supports the theory that the origin of Titan main haze layer is located in the upper atmosphere.

  13. Income inequality, redistribution and poverty: Contrasting rational choices and behavioural perspectives

    OpenAIRE

    Luebker, Malte

    2012-01-01

    Based on the standard axiom of individual utility maximization, rational choice has postulated that higher income inequality translates into greater redistribution by shaping the median voter’s preferences. While numerous papers have tested this proposition, the literature has remained divided over the appropriate measure for redistribution. Revisiting the original contribution by Meltzer and Richard, the present paper argues that the median voter hypothesis implies that relative redistributi...

  14. Managing consequences of climate-driven species redistribution requires integration of ecology, conservation and social science.

    Science.gov (United States)

    Bonebrake, Timothy C; Brown, Christopher J; Bell, Johann D; Blanchard, Julia L; Chauvenet, Alienor; Champion, Curtis; Chen, I-Ching; Clark, Timothy D; Colwell, Robert K; Danielsen, Finn; Dell, Anthony I; Donelson, Jennifer M; Evengård, Birgitta; Ferrier, Simon; Frusher, Stewart; Garcia, Raquel A; Griffis, Roger B; Hobday, Alistair J; Jarzyna, Marta A; Lee, Emma; Lenoir, Jonathan; Linnetved, Hlif; Martin, Victoria Y; McCormack, Phillipa C; McDonald, Jan; McDonald-Madden, Eve; Mitchell, Nicola; Mustonen, Tero; Pandolfi, John M; Pettorelli, Nathalie; Possingham, Hugh; Pulsifer, Peter; Reynolds, Mark; Scheffers, Brett R; Sorte, Cascade J B; Strugnell, Jan M; Tuanmu, Mao-Ning; Twiname, Samantha; Vergés, Adriana; Villanueva, Cecilia; Wapstra, Erik; Wernberg, Thomas; Pecl, Gretta T

    2018-02-01

    Climate change is driving a pervasive global redistribution of the planet's species. Species redistribution poses new questions for the study of ecosystems, conservation science and human societies that require a coordinated and integrated approach. Here we review recent progress, key gaps and strategic directions in this nascent research area, emphasising emerging themes in species redistribution biology, the importance of understanding underlying drivers and the need to anticipate novel outcomes of changes in species ranges. We highlight that species redistribution has manifest implications across multiple temporal and spatial scales and from genes to ecosystems. Understanding range shifts from ecological, physiological, genetic and biogeographical perspectives is essential for informing changing paradigms in conservation science and for designing conservation strategies that incorporate changing population connectivity and advance adaptation to climate change. Species redistributions present challenges for human well-being, environmental management and sustainable development. By synthesising recent approaches, theories and tools, our review establishes an interdisciplinary foundation for the development of future research on species redistribution. Specifically, we demonstrate how ecological, conservation and social research on species redistribution can best be achieved by working across disciplinary boundaries to develop and implement solutions to climate change challenges. Future studies should therefore integrate existing and complementary scientific frameworks while incorporating social science and human-centred approaches. Finally, we emphasise that the best science will not be useful unless more scientists engage with managers, policy makers and the public to develop responsible and socially acceptable options for the global challenges arising from species redistributions. © 2017 Cambridge Philosophical Society.

  15. The analysis of fuel constituent redistribution for ternary metallic fuel slug

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byoung Oon; Lee, Dong Uk; Kim, Young Kyun; Chang, Jin Wook; Lee, Ki Bok; Kim, Young Il

    2004-02-01

    U-TRU-Zr metallic alloy is being considered as the fuel slug for the proliferation resistance core of KALIMER. The radial fuel constituent migration is a general phenomenon in the metallic alloys. This phenomenon may affect the in-reactor performance of metallic fuel rods, influencing such factors as melting temperature, thermal conductivity, power generation rate, phase boundaries and eutectic melting of the fuel slug. Thus, constituent redistribution modeling is essential when developing a metallic fuel performance code. The constituent migration model adopted in this report was based on the Ishida's model and Hofman's theory. A subroutine program has been made and installed into the MACSIS code to simulate constituent redistribution. The radial profile of Zr redistribution was calculated for the ternary metallic fuel, and compared with the measured data.

  16. Trade and the political economy of redistribution

    NARCIS (Netherlands)

    Vannoorenberghe, Gonzague; Janeba, E.

    2016-01-01

    This paper shows how international trade affects the support for policies which redistribute income between workers across sectors, and how the existence of such policies changes the support for trade liberalization. Workers, who are imperfectly mobile across sectors, vote on whether to subsidize

  17. Biodiversity redistribution under climate change

    DEFF Research Database (Denmark)

    Pecl, Gretta T.; Bastos, Miguel; Bell, Johann D.

    2017-01-01

    Distributions of Earth’s species are changing at accelerating rates, increasingly driven by humanmediated climate change. Such changes are already altering the composition of ecological communities, but beyond conservation of natural systems, how and why does this matter? We review evidence that ...... by changes in species distribution. Consideration of these effects of biodiversity redistribution is critical yet lacking in most mitigation and adaptation strategies, including the United Nation’s Sustainable Development Goals....

  18. Atomic population redistribution in a dense Ga vapour proceeding via energy pooling ionization induced by resonant laser-assisted collisions

    International Nuclear Information System (INIS)

    Barsanti, S; Bicchi, P

    2002-01-01

    In this paper we report on the atomic population redistribution originating from the ionization that takes place in a dense Ga vapour kept in quartz cells and resonantly excited by laser radiation, in the collisions between two excited atoms. This ionization process is known as energy-pooling ionization (EPI). The electron/ion recombination that takes place in the low density plasma produced gives rise to population in the atomic Rydberg levels and from the latter via cascade transitions to lower lying ones. We have monitored the fluorescences relative to the radiative emissions from such levels, namely those corresponding to the nP → 5S 1/2 series, with 9 ≤ n ≤ 26, and the 4D → 4P 1/2,3/2 transitions. Their characteristics testify to their origin as being due to the EPI process. Further confirmation is obtained by performing a time-resolved analysis of such fluorescences, whose appearance and time evolution is strongly influenced by the dynamics of the process. The effect of the introduction of a few Torr of buffer gas inside the quartz cell, resulting in the quenching of all the fluorescences for n ≥ 12, is also discussed

  19. Assessing the Atmospheric Pollution of Energy Facilities for Supporting Energy Policy Decisions

    International Nuclear Information System (INIS)

    Meneses Ruiz, E.; Alonso García, D.; Pérez Zayas, G.; Piñera Hernández, I.; Martinez Varona, M.; Molina Esquivel, E.

    2015-01-01

    The impacts of different energy facilities on the environment and human health are a matter of interest and concern throughout the world. For example, fossil fuels are one of the energy sources of more undesirable effects on the environment, but this energy is still one of the most competitive at the market, especially for the developing countries. However, it is necessary to find out a balance between the costs of achieving a lower level of environmental and health injury and the benefits of providing electricity at a reasonable cost. With a view to solving the current deficit in energy production (mainly in electricity generation) in the light of major transformations in the energy sector, the Cuban Government is evaluating ways of incorporating new sources and technologies and the expansion of existing capabilities. In this context non-fossil energy sources will play an increasingly important role. The present work shows the results obtained in the frame of the IAEA Technical Cooperation Project CUB7007. The project integrated several tools and methodologies in the field of air quality modelling and its assessment, emissions measurement and nuclear techniques. The main objective was to assess atmospheric pollution from various energy facilities for supporting energy policy decisions by incorporating nuclear techniques (proton-induced X–ray emission, neutron activation and X–ray fluorescence) for estimating the elementary composition of particulate matter. As results were consolidated national laboratories in the application of nuclear and nonnuclear techniques to support environmental studies, especially for the analysis of emissions in chimneys and ambient air sampling. Moreover, all energy technologies considered in the national strategy of development were assessed. (author)

  20. Collision cascades enhanced hydrogen redistribution in cobalt implanted hydrogenated diamond-like carbon films

    International Nuclear Information System (INIS)

    Gupta, P.; Becker, H.-W.; Williams, G.V.M.; Hübner, R.; Heinig, K.-H.; Markwitz, A.

    2017-01-01

    Highlights: • This paper reports for the first time redistribution of hydrogen atoms in diamond like carbon thin films during ion implantation of low energy magnetic ions. • The results point towards new routes of controlling the composition and distribution of elements at the nanoscale within a base matrix without using any heat treatment methods. • Exploring these opportunities can lead to a new horizon of materials and device engineering needed for enabling advanced technologies and applications. - Abstract: Hydrogenated diamond-like carbon films produced by C_3H_6 deposition at 5 kV and implanted at room temperature with 30 keV Co atoms to 12 at.% show not only a bimodal distribution of Co atoms but also a massive redistribution of hydrogen in the films. Resonant nuclear reaction analysis was used to measure the hydrogen depth profiles (15N-method). Depletion of hydrogen near the surface was measured to be as low as 7 at.% followed by hydrogen accumulation from 27 to 35 at.%. A model is proposed considering the thermal energy deposited by collision cascade for thermal insulators. In this model, sufficient energy is provided for dissociated hydrogen to diffuse out of the sample from the surface and diffuse into the sample towards the interface which is however limited by the range of the incoming Co ions. At a hydrogen concentration of ∼35 at.%, the concentration gradient of the mobile unbounded hydrogen atoms is neutralised effectively stopping diffusion towards the interface. The results point towards new routes of controlling the composition and distribution of elements at the nanoscale within a base matrix without using any heat treatment methods. Exploring these opportunities can lead to a new horizon of materials and device engineering needed for enabling advanced technologies and applications.

  1. Collision cascades enhanced hydrogen redistribution in cobalt implanted hydrogenated diamond-like carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, P. [National Isotope Centre, GNS Science, Lower Hutt (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington (New Zealand); Becker, H.-W. [RUBION, Ruhr-University Bochum (Germany); Williams, G.V.M. [The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington (New Zealand); Hübner, R.; Heinig, K.-H. [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf (Germany); Markwitz, A., E-mail: a.markwitz@gns.cri.nz [National Isotope Centre, GNS Science, Lower Hutt (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington (New Zealand)

    2017-03-01

    Highlights: • This paper reports for the first time redistribution of hydrogen atoms in diamond like carbon thin films during ion implantation of low energy magnetic ions. • The results point towards new routes of controlling the composition and distribution of elements at the nanoscale within a base matrix without using any heat treatment methods. • Exploring these opportunities can lead to a new horizon of materials and device engineering needed for enabling advanced technologies and applications. - Abstract: Hydrogenated diamond-like carbon films produced by C{sub 3}H{sub 6} deposition at 5 kV and implanted at room temperature with 30 keV Co atoms to 12 at.% show not only a bimodal distribution of Co atoms but also a massive redistribution of hydrogen in the films. Resonant nuclear reaction analysis was used to measure the hydrogen depth profiles (15N-method). Depletion of hydrogen near the surface was measured to be as low as 7 at.% followed by hydrogen accumulation from 27 to 35 at.%. A model is proposed considering the thermal energy deposited by collision cascade for thermal insulators. In this model, sufficient energy is provided for dissociated hydrogen to diffuse out of the sample from the surface and diffuse into the sample towards the interface which is however limited by the range of the incoming Co ions. At a hydrogen concentration of ∼35 at.%, the concentration gradient of the mobile unbounded hydrogen atoms is neutralised effectively stopping diffusion towards the interface. The results point towards new routes of controlling the composition and distribution of elements at the nanoscale within a base matrix without using any heat treatment methods. Exploring these opportunities can lead to a new horizon of materials and device engineering needed for enabling advanced technologies and applications.

  2. Calculating the wind energy input to a system using a spatially explicit method that considers atmospheric stability

    Science.gov (United States)

    Atmospheric stability has a major effect in determining the wind energy doing work in the atmospheric boundary layer (ABL); however, it is seldom considered in determining this value in emergy analyses. One reason that atmospheric stability is not usually considered is that a sui...

  3. Effect of eating on thallium-201 myocardial redistribution after myocardial ischemia

    International Nuclear Information System (INIS)

    Angello, D.A.; Wilson, R.A.; Palac, R.T.

    1987-01-01

    To determine whether eating a high-carbohydrate meal between initial and delayed postexercise thallium-201 (Tl-201) imaging affects detection of Tl-201 redistribution during exercise stress testing, 16 patients with stable angina performed 2 Tl-201 treadmill exercise stress tests within a 14-day interval. Immediately after initial postexercise imaging, patients either drank a commercially available instant breakfast preparation for the intervention test or drank an equivalent volume of water for the control test. Comparable exercise workloads were achieved by exercising patients to the same heart rate for both tests. The order of the 2 (intervention and control) tests were randomized. All patients had at least 1 region of Tl-201 myocardial redistribution on either their eating or control test scans, although only 7 of the 16 had positive treadmill exercise test responses. Forty-six regions showing Tl-201 myocardial redistribution were identified in all 144 regions examined. Significantly more of these regions were identified on control test scans than on eating test scans: 11 of 46 on both test scans, 6 of 46 only on eating test scans and 29 of 46 only on control scans (p less than 0.001). Consistent with results of the quantitative regional analysis, the percentage of Tl-201 clearance over 4 hours in the 46 Tl-201 myocardial redistribution regions was 39 +/- 8% for the eating tests and 29 +/- 8% for control tests (mean +/- standard deviation, p less than 0.003). In 4 patients diagnosis of transient ischemia would have been missed because their 14 Tl-201 myocardial redistribution regions were detected only on the control test scans

  4. Drug-driven AMPA receptor redistribution mimicked by selective dopamine neuron stimulation.

    Directory of Open Access Journals (Sweden)

    Matthew T C Brown

    2010-12-01

    Full Text Available Addictive drugs have in common that they cause surges in dopamine (DA concentration in the mesolimbic reward system and elicit synaptic plasticity in DA neurons of the ventral tegmental area (VTA. Cocaine for example drives insertion of GluA2-lacking AMPA receptors (AMPARs at glutamatergic synapes in DA neurons. However it remains elusive which molecular target of cocaine drives such AMPAR redistribution and whether other addictive drugs (morphine and nicotine cause similar changes through their effects on the mesolimbic DA system.We used in vitro electrophysiological techniques in wild-type and transgenic mice to observe the modulation of excitatory inputs onto DA neurons by addictive drugs. To observe AMPAR redistribution, post-embedding immunohistochemistry for GluA2 AMPAR subunit was combined with electron microscopy. We also used a double-floxed AAV virus expressing channelrhodopsin together with a DAT Cre mouse line to selectively express ChR2 in VTA DA neurons. We find that in mice where the effect of cocaine on the dopamine transporter (DAT is specifically blocked, AMPAR redistribution was absent following administration of the drug. Furthermore, addictive drugs known to increase dopamine levels cause a similar AMPAR redistribution. Finally, activating DA VTA neurons optogenetically is sufficient to drive insertion of GluA2-lacking AMPARs, mimicking the changes observed after a single injection of morphine, nicotine or cocaine.We propose the mesolimbic dopamine system as a point of convergence at which addictive drugs can alter neural circuits. We also show that direct activation of DA neurons is sufficient to drive AMPAR redistribution, which may be a mechanism associated with early steps of non-substance related addictions.

  5. Atmospheric energy harvesting: use of Doppler Wind Lidars on UAVs to extend mission endurance and enable quiet operations

    Science.gov (United States)

    Greco, S.; Emmitt, G. D.; Wood, S. A.; Costello, M.

    2014-10-01

    The investigators are developing a system tool that utilizes both pre-flight information and continuous real-time knowledge and description of the state of the atmosphere and atmospheric energetics by an Airborne Doppler Wind Lidar (ADWL) to provide the autonomous guidance for detailed and adaptive flight path planning by UAS and small manned aircraft. This flight planning and control has the potential to reduce mission dependence upon preflight assumptions, extend flight duration and endurance, enable long periods of quiet operations and allow for the optimum self-routing of the aircraft. The ADWL wind data is used in real-time to detect atmospheric energy features such as thermals, waves, wind shear and others. These detected features are then used with an onboard, weather model driven flight control model to adaptively plan a flight path that optimizes energy harvesting with frequent updates on local changes in the opportunities and atmospheric flow characteristics. We have named this package AEORA for the Atmospheric Energy Opportunity Ranking Algorithm (AEORA).

  6. Atmospheric Despersal and Disposition of Tephra From a Potential Volcanic Eruption at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    G. Keating; W.Statham

    2004-01-01

    The purpose of this model report is to provide documentation of the conceptual and mathematical model (ASHPLUME) for atmospheric dispersal and subsequent deposition of ash on the land surface from a potential volcanic eruption at Yucca Mountain, Nevada. This report also documents the ash (tephra) redistribution conceptual model. The ASHPLUME conceptual model accounts for incorporation and entrainment of waste fuel particles associated with a hypothetical volcanic eruption through the Yucca Mountain repository and downwind transport of contaminated tephra. The ASHPLUME mathematical model describes the conceptual model in mathematical terms to allow for prediction of radioactive waste/ash deposition on the ground surface given that the hypothetical eruptive event occurs. This model report also describes the conceptual model for tephra redistribution from a basaltic cinder cone. Sensitivity analyses and model validation activities for the ash dispersal and redistribution models are also presented. Analyses documented in this model report will improve and clarify the previous documentation of the ASHPLUME mathematical model and its application to the Total System Performance Assessment (TSPA) for the License Application (TSPA-LA) igneous scenarios. This model report also documents the redistribution model product outputs based on analyses to support the conceptual model

  7. Atmospheric Dispersal and Dispostion of Tephra From a Potential Volcanic Eruption at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    G. Keating; W.Statham

    2004-02-12

    The purpose of this model report is to provide documentation of the conceptual and mathematical model (ASHPLUME) for atmospheric dispersal and subsequent deposition of ash on the land surface from a potential volcanic eruption at Yucca Mountain, Nevada. This report also documents the ash (tephra) redistribution conceptual model. The ASHPLUME conceptual model accounts for incorporation and entrainment of waste fuel particles associated with a hypothetical volcanic eruption through the Yucca Mountain repository and downwind transport of contaminated tephra. The ASHPLUME mathematical model describes the conceptual model in mathematical terms to allow for prediction of radioactive waste/ash deposition on the ground surface given that the hypothetical eruptive event occurs. This model report also describes the conceptual model for tephra redistribution from a basaltic cinder cone. Sensitivity analyses and model validation activities for the ash dispersal and redistribution models are also presented. Analyses documented in this model report will improve and clarify the previous documentation of the ASHPLUME mathematical model and its application to the Total System Performance Assessment (TSPA) for the License Application (TSPA-LA) igneous scenarios. This model report also documents the redistribution model product outputs based on analyses to support the conceptual model.

  8. Inequality and redistribution behavior in a give-or-take game

    Science.gov (United States)

    Bechtel, Michael M.; Scheve, Kenneth F.

    2018-01-01

    Political polarization and extremism are widely thought to be driven by the surge in economic inequality in many countries around the world. Understanding why inequality persists depends on knowing the causal effect of inequality on individual behavior. We study how inequality affects redistribution behavior in a randomized “give-or-take” experiment that created equality, advantageous inequality, or disadvantageous inequality between two individuals before offering one of them the opportunity to either take from or give to the other. We estimate the causal effect of inequality in representative samples of German and American citizens (n = 4,966) and establish two main findings. First, individuals imperfectly equalize payoffs: On average, respondents transfer 12% of the available endowments to realize more equal wealth distributions. This means that respondents tolerate a considerable degree of inequality even in a setting in which there are no costs to redistribution. Second, redistribution behavior in response to disadvantageous and advantageous inequality is largely asymmetric: Individuals who take from those who are richer do not also tend to give to those who are poorer, and individuals who give to those who are poorer do not tend to take from those who are richer. These behavioral redistribution types correlate in meaningful ways with support for heavy taxes on the rich and the provision of welfare benefits for the poor. Consequently, it seems difficult to construct a majority coalition willing to back the type of government interventions needed to counter rising inequality. PMID:29555734

  9. Atmospheric Retrievals of HAT-P-16b and WASP-11b/HAT-P-10b

    Science.gov (United States)

    McIntyre, Kathleen; Harrington, Joseph; Challener, Ryan; Lenius, Maria; Hartman, Joel D.; Bakos, Gaspar A.; Blecic, Jasmina; Cubillos, Patricio E.; Cameron, Andrew

    2018-01-01

    We report Bayesian atmospheric retrievals performed on the exoplanets HAT-P-16b and WASP-11b/HAT-P-10b. HAT-P-16b is a hot (equilibrium temperature 1626 ± 40 K, assuming zero Bond albedo and efficient energy redistribution), 4.19 ± 0.09 Jupiter-mass exoplanet orbiting an F8 star every 2.775960 ± 0.000003 days (Buchhave et al 2010). WASP-11b/HAT-P-10b is a cooler (1020 ± 17 K), 0.487 ± 0.018 Jupiter-mass exoplanet orbiting a K3 star every 3.7224747 ± 0.0000065 days (Bakos et al. 2009, co-discovered by West et al. 2008). We observed secondary eclipses of both planets using the 3.6 μm and 4.5 μm channels of the Spitzer Space Telescope's Infrared Array Camera (program ID 60003). We applied our Photometry for Orbits, Eclipses, and Transits (POET) code to produce normalized eclipse light curves, and our Bayesian Atmospheric Radiative Transfer (BART) code to constrain the temperature-pressure profiles and atmospheric molecular abundances of the two planets. Spitzer is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. This work was supported by NASA Planetary Atmospheres grant NNX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G.

  10. Land-use change interacts with climate to determine elevational species redistribution.

    Science.gov (United States)

    Guo, Fengyi; Lenoir, Jonathan; Bonebrake, Timothy C

    2018-04-03

    Climate change is driving global species redistribution with profound social and economic impacts. However, species movement is largely constrained by habitat availability and connectivity, of which the interaction effects with climate change remain largely unknown. Here we examine published data on 2798 elevational range shifts from 43 study sites to assess the confounding effect of land-use change on climate-driven species redistribution. We show that baseline forest cover and recent forest cover change are critical predictors in determining the magnitude of elevational range shifts. Forest loss positively interacts with baseline temperature conditions, such that forest loss in warmer regions tends to accelerate species' upslope movement. Consequently, not only climate but also habitat loss stressors and, importantly, their synergistic effects matter in forecasting species elevational redistribution, especially in the tropics where both stressors will increase the risk of net lowland biotic attrition.

  11. Proton transport model in the ionosphere. 2. Influence of magnetic mirroring and collisions on the angular redistribution in a proton beam

    Directory of Open Access Journals (Sweden)

    M. Galand

    1998-10-01

    Full Text Available We investigate the influence of magnetic mirroring and elastic and inelastic scattering on the angular redistribution in a proton/hydrogen beam by using a transport code in comparison with observations. H-emission Doppler profiles viewed in the magnetic zenith exhibit a red-shifted component which is indicative of upward fluxes. In order to determine the origin of this red shift, we evaluate the influence of two angular redistribution sources which are included in our proton/hydrogen transport model. Even though it generates an upward flux, the redistribution due to magnetic mirroring effect is not sufficient to explain the red shift. On the other hand, the collisional angular scattering induces a much more significant red shift in the lower atmosphere. The red shift due to collisions is produced  by <1 -keV protons and is so small as to require an instrumental bandwidth <0.2 nm. This explains the absence of measured upward proton/hydrogen fluxes in the Proton I rocket data because no useable data concerning protons <1 keV are available. At the same time, our model agrees with measured ground-based H-emission Doppler profiles and suggests that previously reported red shift observations were due mostly to instrumental bandwidth broadening of the profile. Our results suggest that Doppler profile measurements with higher spectral resolution may enable us to quantify better the angular scattering in proton aurora.Key words. Auroral ionosphere · Particle precipitation

  12. Simulating the Dependence of Aspen on Redistributed Snow

    Science.gov (United States)

    Soderquist, B.; Kavanagh, K.; Link, T. E.; Seyfried, M. S.; Winstral, A. H.

    2013-12-01

    In mountainous regions across the western USA, the distribution of aspen (Populus tremuloides) is often directly related to heterogeneous soil moisture subsidies resulting from redistributed snow. With decades of climate and precipitation data across elevational and precipitation gradients, the Reynolds Creek Experimental Watershed (RCEW) in southwest Idaho provides a unique opportunity to study the relationship between aspen and redistributed snow. Within the RCEW, the total amount of precipitation has not changed in the past 50 years, but there are sharp declines in the percentage of the precipitation falling as snow. As shifts in the distribution of available moisture continue, future trends in aspen net primary productivity (NPP) remain uncertain. In order to assess the importance of snowdrift subsidies, NPP of three aspen stands was simulated at sites spanning elevational and precipitation gradients using the biogeochemical process model BIOME-BGC. At the aspen site experiencing the driest climate and lowest amount of precipitation from snow, approximately 400 mm of total precipitation was measured from November to March of 2008. However, peak measured snow water equivalent (SWE) held in drifts directly upslope of this stand was approximately 2100 mm, 5 times more moisture than the uniform winter precipitation layer initially assumed by BIOME-BGC. BIOME-BGC simulations in dry years forced by adjusted precipitation data resulted in NPP values approximately 30% higher than simulations assuming a uniform precipitation layer. Using BIOME-BGC and climate data from 1985-2011, the relationship between simulated NPP and measured basal area increments (BAI) improved after accounting for redistributed snow, indicating increased simulation representation. In addition to improved simulation capabilities, soil moisture data, diurnal branch water potential, and stomatal conductance observations at each site detail the use of soil moisture in the rooting zone and the onset

  13. Collective religiosity and the gender gap in attitudes towards economic redistribution in 86 countries, 1990-2008.

    Science.gov (United States)

    Jaime-Castillo, Antonio M; Fernández, Juan J; Valiente, Celia; Mayrl, Damon

    2016-05-01

    What is the relationship between gender and the demand for redistribution? Because, on average, women face more economic deprivation than men, in many countries women favor redistribution more than men. However, this is not the case in a number of other countries, where women do not support redistribution more than men. To explain this cross-national paradox, we stress the role of collective religiosity. In many religions, theological principles both militate against public policies designed to redistribute income, and also promote traditionally gendered patterns of work and family involvement. Hence, we hypothesize that, in those countries where religion remains influential either through closer church-state ties or an intensely religious population, men and women should differ less in their attitudes towards redistribution. Drawing upon the World Values Survey, we estimate three-level regression models that test our religiosity-based approach and two alternative explanations in 86 countries and 175 country-years. The results are consistent with our hypothesis. Moreover, in further support of our theoretical approach, societal religiosity undermines pro-redistribution preferences more among women than men. Our findings suggest that collective religiosity matters more to the gender gap in redistributive attitudes than traditional political and labor force factors. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Radiative redistribution modeling for hot and dense plasmas

    International Nuclear Information System (INIS)

    Mosse, C.; Calisti, A.; Talin, B.; Stamm, R.; Lee, R. W.; Klein, L.

    1999-01-01

    A model based on an extension of the Frequency Fluctuation Model (FFM) is developed to investigate the two-photon processes and particularly the radiative redistribution functions for complex emitters in a wide range of plasmas conditions. The FFM, originally, designed as a fast and reliable numerical procedure for the calculation of the spectral shape of the Stark broadened lines emitted by multi-electron ions, relies on the hypothesis that the emitter-plasma system can be well represented by a set of 'Stark Dressed Transitions', SDT. These transitions connected to each others through a stochastic mixing process accounting for the local microfield random fluctuations, form the basis for the extension of the FFM to computation of non-linear response functions. The formalism of the second order radiative redistribution function is presented and examples are shown

  15. Charge redistribution and properties of high-temperature superconductors

    International Nuclear Information System (INIS)

    Khomskii, D.I.; Kusmartsev, F.V.

    1992-01-01

    We show that in high-T c superconductors (HTSC) with two groups of electrons (e.g., holes in CuO 2 planes and in a ''reservoir'') there should exist a charge redistribution with the temperature: the hole concentration N h in ''active'' superconducting CuO 2 planes increases below T c . This effect may explain structural changes such as the shift of the apical oxygen atom, anomalous thermal expansion, the shift of nuclear quadrupole resonance lines, the change of the positron lifetime, and the modification of the ion channeling below T c . Some other possible consequences of the charge redistribution (the modification of the temperature dependence of a gap Δ and of the ratio 2Δ 0 /T c , the phenomena at a contact of HTSC with normal metals and semiconductors) are discussed

  16. Reaction Mechanisms on Multiwell Potential Energy Surfaces in Combustion (and Atmospheric) Chemistry

    International Nuclear Information System (INIS)

    Osborn, David L.

    2017-01-01

    Chemical reactions occurring on a potential energy surface with multiple wells are ubiquitous in low temperature combustion and the oxidation of volatile organic compounds in earth’s atmosphere. The rich variety of structural isomerizations that compete with collisional stabilization make characterizing such complex-forming reactions challenging. This review describes recent experimental and theoretical advances that deliver increasingly complete views of their reaction mechanisms. New methods for creating reactive intermediates coupled with multiplexed measurements provide many experimental observables simultaneously. Automated methods to explore potential energy surfaces can uncover hidden reactive pathways, while master equation methods enable a holistic treatment of both sequential and well-skipping pathways. Our ability to probe and understand nonequilibrium effects and reaction sequences is increasing. These advances provide the fundamental science base for predictive models of combustion and the atmosphere that are crucial to address global challenges.

  17. Reaction Mechanisms on Multiwell Potential Energy Surfaces in Combustion (and Atmospheric) Chemistry

    Science.gov (United States)

    Osborn, David L.

    2017-05-01

    Chemical reactions occurring on a potential energy surface with multiple wells are ubiquitous in low-temperature combustion and in the oxidation of volatile organic compounds in Earth's atmosphere. The rich variety of structural isomerizations that compete with collisional stabilization makes characterizing such complex-forming reactions challenging. This review describes recent experimental and theoretical advances that deliver increasingly complete views of their reaction mechanisms. New methods for creating reactive intermediates coupled with multiplexed measurements provide many experimental observables simultaneously. Automated methods to explore potential energy surfaces can uncover hidden reactive pathways, and master equation methods enable a holistic treatment of both sequential and well-skipping pathways. Our ability to probe and understand nonequilibrium effects and reaction sequences is increasing. These advances provide the fundamental science base for predictive models of combustion and the atmosphere that are crucial to address global challenges.

  18. Non-standard interactions with high-energy atmospheric neutrinos at IceCube

    Energy Technology Data Exchange (ETDEWEB)

    Salvado, Jordi; Mena, Olga; Palomares-Ruiz, Sergio; Rius, Nuria [Instituto de Física Corpuscular (IFIC), CSIC-Universitat de València,Apartado de Correos 22085, E-46071 Valencia (Spain)

    2017-01-31

    Non-standard interactions in the propagation of neutrinos in matter can lead to significant deviations from expectations within the standard neutrino oscillation framework and atmospheric neutrino detectors have been considered to set constraints. However, most previous works have focused on relatively low-energy atmospheric neutrino data. Here, we consider the one-year high-energy through-going muon data in IceCube, which has been already used to search for light sterile neutrinos, to constrain new interactions in the μτ-sector. In our analysis we include several systematic uncertainties on both, the atmospheric neutrino flux and on the detector properties, which are accounted for via nuisance parameters. After considering different primary cosmic-ray spectra and hadronic interaction models, we improve over previous analysis by using the latest data and showing that systematics currently affect very little the bound on the off-diagonal ε{sub μτ}, with the 90% credible interval given by −6.0×10{sup −3}<ε{sub μτ}<5.4×10{sup −3}, comparable to previous results. In addition, we also estimate the expected sensitivity after 10 years of collected data in IceCube and study the precision at which non-standard parameters could be determined for the case of ε{sub μτ} near its current bound.

  19. Comparison of energy fluxes at the land surface-atmosphere interface in an Alpine valley as simulated with different models

    Directory of Open Access Journals (Sweden)

    G. Grossi

    2003-01-01

    Full Text Available Within the framework of a research project coupling meteorological and hydrological models in mountainous areas a distributed Snow-Soil-Vegetation-Atmosphere Transfer model was developed and applied to simulate the energy fluxes at the land surface – atmosphere interface in an Alpine valley (Toce Valley - North Italy during selected flood events in the last decade. Energy fluxes simulated by the distributed energy transfer model were compared with those simulated by a limited area meteorological model for the event of June 1997 and the differences in the spatial and temporal distribution. The Snow/Soil-Vegetation-Atmosphere Transfer model was also applied to simulate the energy fluxes at the land surface-atmosphere interface for a single cell, assumed to be representative of the Siberia site (Toce Valley, where a micro-meteorological station was installed and operated for 2.5 months in autumn 1999. The Siberia site is very close to the Nosere site, where a standard meteorological station was measuring precipitation, air temperature and humidity, global and net radiation and wind speed during the same special observing period. Data recorded by the standard meteorological station were used to force the energy transfer model and simulate the point energy fluxes at the Siberia site, while turbulent fluxes observed at the Siberia site were used to derive the latent heat flux from the energy balance equation. Finally, the hourly evapotranspiration flux computed by this procedure was compared to the evapotranspiration flux simulated by the energy transfer model. Keywords: energy exchange processes, land surface-atmosphere interactions, turbulent fluxes

  20. Middle atmosphere electrical energy coupling

    Science.gov (United States)

    Hale, L. C.

    1989-01-01

    The middle atmosphere (MA) has long been known as an absorber of radio waves, and as a region of nonlinear interactions among waves. The region of highest transverse conductivity near the top of the MA provides a common return for global thunderstorm, auroral Birkeland, and ionospheric dynamo currents, with possibilities for coupling among them. Their associated fields and other transverse fields map to lower altitudes depending on scale size. Evidence now exists for motion-driven aerosol generators, and for charge trapped at the base of magnetic field lines, both capable of producing large MA electric fields. Ionospheric Maxwell currents (curl H) parallel to the magnetic field appear to map to lower altitudes, with rapidly time-varying components appearing as displacement currents in the stratosphere. Lightning couples a (primarily ELF and ULF) current transient to the ionosphere and magnetosphere whose wave shape is largely dependent on the MA conductivity profile. Electrical energy is of direct significance mainly in the upper MA, but electrodynamic transport of minor constituents such as smoke particles or CN may be important at other altitudes.

  1. Inequality and Fiscal Redistribution in Middle Income Countries: Brazil, Chile, Colombia, Indonesia, Mexico, Peru and South Africa

    OpenAIRE

    Nora Lustig

    2015-01-01

    This paper examines the redistributive impact of fiscal policy for Brazil, Chile, Colombia, Indonesia, Mexico, Peru and South Africa using comparable fiscal incidence analysis with data from around 2010. The largest redistributive effect is in South Africa and the smallest in Indonesia. Success in fiscal redistribution is driven primarily by redistributive effort (share of social spending to GDP in each country) and the extent to which transfers/subsidies are targeted to the poor and direct t...

  2. Energy redistribution in diatomic molecules on surfaces

    International Nuclear Information System (INIS)

    Asscher, M.; Somorjai, G.A.

    1984-04-01

    Translational and internal degrees of freedom of a scattered beam of NO molecules from a Pt(111) single crystal surface were measured as a function of scattering angle and crystal temperature in the range 450 to 1250K. None of the three degrees of freedom were found to fully accommodate to the crystal temperature, the translational degree being the most accommodated and the rotational degree of freedom the least. A precursor state model is suggested to account for the incomplete accommodation of translational and vibrational degrees of freedom as a function of crystal temperature and incident beam energy. The vibrational accommodation is further discussed in terms of a competition between desorption and vibrational excitation processes, thus providing valuable information on the interaction between vibrationally excited molecules and surfaces. Energy transfer into rotational degrees of freedom is qualitatively discussed

  3. Can income redistribution help changing rising inequality?

    NARCIS (Netherlands)

    Salverda, W.

    2014-01-01

    In this article compares the rise in inequality concerning net household incomes in a number of European countries and Canada, the USA and Australia. Two important factors are used to explain this worrying trend: a growing of unequal market incomes and/or a declining redistribution of income through

  4. Fusion of adaptive beam steering and optimization-based wavefront control for laser communications in atmosphere

    Science.gov (United States)

    Nikulin, Vladimir V.

    2005-10-01

    The performance of mobile laser communication systems operating within Earth's atmosphere is generally limited by the pointing errors due to movement of the platforms and mechanical vibrations. In addition, atmospheric turbulence causes changes of the refractive index along the propagation path, creating random redistribution of the optical energy in the spatial domain. Under adverse conditions these effects lead to increased bit error rate. While traditional approaches provide separate treatment of these problems, suggesting high-bandwidth beam steering systems for tracking and wavefront control for the mitigation of atmospheric effects, the two tasks can be integrated. This paper presents a hybrid laser beam-steering-wavefront-control system comprising an electrically addressed spatial light modulator (SLM) installed on the Omni-Wrist sensor mount. The function of the Omni-Wrist is to provide coarse steering over a wide range of pointing angles, while that of the SLM is twofold: wavefront correction and fine steering. The control law for the Omni-Wrist is synthesized using a decentralized approach that provides independent access to the azimuth and declination channels; calculation of the required phase profile for the SLM is optimization-based. This paper presents the control algorithms, the approach to coordinating the operation of the two systems, and the results.

  5. Energy storage and redistribution in molecules

    International Nuclear Information System (INIS)

    Hinze, J.

    1983-01-01

    This book presents information on the following topics: chemistry and spectroscopy of molecules at high levels of excitation; energy and phase randomization in large molecules as probed by laser spectroscopy; intramolecular processes in isolated polyatomic molecules; pulse-probe measurements in low-temperature, low-pressure SF 6 ; the photodissociation dynamics of H 2 S and CF 3 NO; photofragment spectroscopy of the NO 2 dissociation; preparation, laser spectroscopy and predissociation of alkali dimers in supersonic nozzle beams; excited states of small molecules - collisional quenching and photodissociation; quantum-state-resolved scattering of lithium hydride; and molecular negative ions

  6. Current redistribution in cables made of insulated, soldered, or oxidized strands

    International Nuclear Information System (INIS)

    Turck, B.

    1979-07-01

    Current redistributions are compared in cables made of insulated strands, soldered, or oxidized strands and insulated strands with periodic joints. After discussing the different current redistributions in the cases of a rapidly changing current and a dc current, several particular situations are investigated: what happens if a strand is broken, or if a local normal zone appears that does not affect all the strands equally, the detection of this normal zone, and the influence of short circuits between strands

  7. The redistributive effects of personal taxes and social benefits in the Republic of Serbia

    Directory of Open Access Journals (Sweden)

    Đinđić Srđan M.

    2014-01-01

    Full Text Available In this paper we measure the influence of the instruments of Serbia’s fiscal system - personal taxes (personal income tax and social security contributions and social benefits (means tested and nonmeans tested - on income redistribution, using the latest data from the Household Budget Survey 2012. We analyse the redistributive effects of the fiscal system for the year 2013 and of the fiscal system that has been functioning since 1st January 2014. We find that the redistributive effect reduces income inequality by about 50% in both observed years. Social benefits create 98% of vertical redistribution (2013, whereas personal taxes initiate 2% (2013. State pensions, means-tested social benefits, and social security contributions are most important in reducing inequality in Serbia (2013. The partial fiscal reform (2014 has not changed the rank of the focused fiscal instruments.

  8. Energy transfer in diatom/diatom molecular collisions

    International Nuclear Information System (INIS)

    Sohlberg, K.W.

    1992-01-01

    In a collision of two molecules, the translational energy of the collision may be redistributed into internal energy of rotation, vibration, or electron motion, in one or both of the colliding partners. In addition, internal energy in one or more of these modes may be open-quotes quenchedclose quotes into translation, leading to a superelastic collision. Such energy transfer may take place by a number of mechanisms. This energy transfer is of fundamental importance in understanding chemical reaction dynamics. Nearly all chemical reactions take place through a bimolecular collision process (or multiple bimolecular collisions) and the quantum state specificity of the reaction can have a major role in determining the kinetics of the reaction, In particular, the author has investigated vibrational energy transfer in collisions between two diatomic molecules. In addition to serving as models for all molecular collision process, gas phase collisions of these species are ubiquitous in atmospheric phenomena which are of critical importance in answering the current questions about the human induced degradation of the earth's atmospheric. Classical trajectory methods have been used to explore the excitation of vibrations in gas-phase collisions of the nitrogen molecular ion with its parent molecule. The near symmetry of the reactants is shown to result in a high probability that the two molecules are excited by an equal amount of energy. This provides a possible explanation of the molecular beam measurements which show that the total number of vibrational energy quanta excited in the collision is, with a high probability that the two molecules are excited by an equal amount of energy. This provides a possible explanation of the molecular beam measurements which show that the total number of vibrational energy quanta excited in the collision is, with a high probability, even

  9. Significance of Tl-201 redistribution on infarcted region assessed by coronary sinus flow and lactate metabolism

    International Nuclear Information System (INIS)

    Mori, Takao; Yamabe, Hiroshi; Suda, Kenichirou; Ohnishi, Masataka; Shiotani, Hideyuki; Kurimoto, Yasuyuki; Kobayashi, Katsuya; Maeda, Kazumi; Fukuzaki, Hisashi

    1987-01-01

    To clarify the significance of Tl-201 redistribution on infarcted regions, coronary sinus and great cardiac vein flow response and lactate metabolism assessed by Webster catheter on 14 infarcted regions after dipyridamole administration were compared with Tl-201 redistribution phenomenon. The regional coronary flow response and lactate extraction ratio in 11 regions with Tl-201 redistribution were lower than those in 3 regions without Tl-201 redistribution. Only 5 regions in 11 with Tl-201 redistribution showed lactate production. The coronary flow response in 5 regions with lactate production was not different from those in 6 without lactate production (1.16 ± 0.89 vs. 1.47 ± 0.67; n.s.). The degree of Tl-201 redistribution assessed by relative activity was not different between regions with and without lactate production. The left ventricular end-diastolic pressure elevated in 5 regions with lactate production (17.8 ± 5.4 mmHg to 29.6 ± 4.9 mmHg; p < 0.05), but didn't in 6 regions without lactate production. Five regions with lactate production contained 4 hypokinetic regions, on the other hand 6 regions without lactate production contained only 3 hypokinetic regions. In conclusion, Tl-201 redistribution on infarcted region revealed not only ischemia but also decreased coronary flow response without lactate production and/or left ventricular dysfunction. (author)

  10. Using 137Cs measurements to investigate the influence of erosion and soil redistribution on soil properties

    International Nuclear Information System (INIS)

    Du, P.; Walling, D.E.

    2011-01-01

    Information on the interaction between soil erosion and soil properties is an important requirement for sustainable management of the soil resource. The relationship between soil properties and the soil redistribution rate, reflecting both erosion and deposition, is an important indicator of this interaction. This relationship is difficult to investigate using traditional approaches to documenting soil redistribution rates involving erosion plots and predictive models. However, the use of the fallout radionuclide 137 Cs to document medium-term soil redistribution rates offers a means of overcoming many of the limitations associated with traditional approaches. The study reported sought to demonstrate the potential for using 137 Cs measurements to assess the influence of soil erosion and redistribution on soil properties (particle size composition, total C, macronutrients N, P, K and Mg, micronutrients Mn, Mo, Fe, Cu and Zn and other elements, including Ti and As). 137 Cs measurements undertaken on 52 soil cores collected within a 7 ha cultivated field located near Colebrooke in Devon, UK were used to establish the magnitude and spatial pattern of medium-term soil redistribution rates within the field. The soil redistribution rates documented for the individual sampling points within the field ranged from an erosion rate of -12.9 t ha -1 yr -1 to a deposition rate of 19.2 t ha -1 yr -1 . Composite samples of surface soil (0-5 cm) were collected immediately adjacent to each coring point and these samples were analysed for a range of soil properties. Individual soil properties associated with these samples showed significant variability, with CV values generally lying in the range 10-30%. The relationships between the surface soil properties and the soil redistribution rate were analysed. This analysis demonstrated statistically significant relationships between some soil properties (total phosphorus, % clay, Ti and As) and the soil redistribution rate, but for most

  11. Modelling dynamic water redistribution patterns in arid catchments in the Negev Desert of Israel

    NARCIS (Netherlands)

    Buis, E.; Veldkamp, A.

    2008-01-01

    In arid climate regions, redistribution of runoff water is highly relevant for vegetation development. The process of water redistribution at catchment scale is studied with the landscape process model LAPSUS, mainly used for erosion and sedimentation modelling. LAPSUS, formerly applied in

  12. Simulating forest productivity and surface-atmosphere carbon exchange in the BOREAS study region

    Energy Technology Data Exchange (ETDEWEB)

    Kimball, J.S.; Thornton, P.E.; White, M.A.; Running, S.W. [Montana Univ., Missoula, MT (United States). School of Forestry

    1997-12-31

    Studies have shown that the boreal forest region is in danger of experiencing significant warming and drying in response to increases in atmospheric CO{sub 2} concentration and other greenhouse gases. Since the boreal forest region contains 16-24 per cent of the world`s soil carbon, warming in this region could result in a rapid, large-scale displacement and redistribution of boreal forest, enhanced release of CO{sub 2} to the atmosphere, and an intensification of global warming. A study was conducted in which a process-based, general ecosystem model (BIOME-BGC) was used to simulate daily gross primary production, maintenance and heterotrophic respiration, net primary production and net ecosystem carbon exchange of boreal aspen, jack pine and black spruce. The objective was to integrate point measurements across multiple spatial and temporal scales using process level models of the boreal forest water, energy and biogeochemical cycles. Climate characteristics that control simulated carbon fluxes were also studied. Results showed that trees with large daily evapotranspiration rates and those situated on sandy soils with low water holding capacities were especially vulnerable to increased temperature and drought conditions. Trees subject to frequent water stress during the growing season, particularly older trees that exhibit low photosynthetic and high respiration rates, were on the margin between being annual net sources or sinks for atmospheric carbon. 71 refs., 3 tabs., 5 figs.

  13. Influence of atmospheric turbulence on the energy focusability of Gaussian beams with spherical aberration

    International Nuclear Information System (INIS)

    Deng, Jinping; Ji, Xiaoling

    2014-01-01

    By using the four-dimensional (4D) computer code of the time-dependent propagation of laser beams through atmospheric turbulence, the influence of atmospheric turbulence on the energy focusability of Gaussian beams with spherical aberration is studied in detail, where the mean-squared beam width, the power in the bucket (PIB), the β parameter and the energy Strehl ratio are taken as the characteristic parameters. It is shown that turbulence results in beam spreading, and the effect of spherical aberration on the beam spreading decreases due to turbulence. Gaussian beams with negative spherical aberration are more affected by turbulence than those with positive spherical aberration. For the negative spherical aberration case, the focus position moves to the source plane due to turbulence. It is mentioned that the influence of turbulence on the energy focusability defined by a certain energy (i.e. PIB = 63%) is very heavy when the negative spherical aberration is very heavy. On the other hand, the influence of turbulence on the energy focusability defined by the energy within a given bucket radius (i.e. mean-squared beam width) is heaviest when a certain negative spherical aberration coefficient is adopted. (papers)

  14. Species redistribution during solidification of nuclear fuel waste metal castings

    Energy Technology Data Exchange (ETDEWEB)

    Naterer, G F; Schneider, G E [Waterloo Univ., ON (Canada)

    1994-12-31

    An enthalpy-based finite element model and a binary system species redistribution model are developed and applied to problems associated with solidification of nuclear fuel waste metal castings. Minimal casting defects such as inhomogeneous solute segregation and cracks are required to prevent container corrosion and radionuclide release. The control-volume-based model accounts for equilibrium solidification for low cooling rates and negligible solid state diffusion for high cooling rates as well as intermediate conditions. Test problems involving nuclear fuel waste castings are investigated and correct limiting cases of species redistribution are observed. (author). 11 refs., 1 tab., 13 figs.

  15. Redistributed orebodies of Poison Canyon, Sec. 18 and 19, T. 13 N., R. 9 W., McKinley County

    International Nuclear Information System (INIS)

    Tessendorf, T.N.

    1980-01-01

    Since the early 1950's, the Poison Canyon mine has been considered a classic example of uranium geology. Owing to present economic condtions, a close examination of the redistributed mineralization is taking place. Because of the evolution of the structure and geomorphology of Poison Canyon, the primary mineralization went through further oxidation and reduction. Enriched solutions of uranium migrated downdip through permeable sands. These solutions were controlled by north-trending fracture patterns, with some vertical movement along major faults. The uranium collected in structural and lithological traps, forming amoeba-like orebodies with the higher grade mineralization located in the fractures. First-generation redistributed ore is primarily coffinite. Forming later is second-generation redistributed ore, which is mainly tyuyamunite. The latter formed from further oxidation and redistribution of the primary and first-generation mineralization, combined with an increasing nearness to surface. The authigenic minerals in the redistributed mineralization are found in carbon-deficient sands. The redistributed minerals are locally associated with pascoite, although this mineral is rare. The radiometric equilibrium of the primary minerals differs from that of the redistributed minerals. The uranium has been leached from the primary minerals making chemical values less than radiometric values. The redistributed minerals are chemically greater than radiometric, producing a favorable equilibrium. The percent extraction in the mill process is greater for the redistributed ore than for the primary ore. The paragenetic position of the different minerals has a direct bearing on these observations

  16. Atmospheric Renewable Energy Research, Volume 5 (Solar Radiation Flux Model)

    Science.gov (United States)

    2017-09-01

    sources, namely photovoltaic (PV) panels, to roughly determine the energy producing potential of an installation’s solar array. The implicit...power resources assembled as a single system (generator, storage, distribution and load), with the ability to run independently as an “island” and/or...atmospheric layers that will act on the solar radiation as it traverses strata. These terms are a function of cloud type, size , and density. To create a

  17. Implant damage and redistribution of indium in indium-implanted thin silicon-on-insulator

    International Nuclear Information System (INIS)

    Chen Peng; An Zhenghua; Zhu Ming; Fu, Ricky K.Y.; Chu, Paul K.; Montgomery, Neil; Biswas, Sukanta

    2004-01-01

    The indium implant damage and diffusion behavior in thin silicon-on-insulator (SOI) with a 200 nm top silicon layer were studied for different implantation energies and doses. Rutherford backscattering spectrometry in the channeling mode (RBS/C) was used to characterize the implant damage before and after annealing. Secondary ion mass spectrometry (SIMS) was used to study the indium transient enhanced diffusion (TED) behavior in the top Si layer of the SOI structure. An anomalous redistribution of indium after relatively high energy (200 keV) and dose (1 x 10 14 cm -2 ) implantation was observed in both bulk Si and SOI substrates. However, there exist differences in these two substrates that are attributable to the more predominant out-diffusion of indium as well as the influence of the buried oxide layer in the SOI structure

  18. A rediscussion of the atmospheric extinction and the absolute spectral-energy distribution of Vega

    International Nuclear Information System (INIS)

    Hayes, D.S.; Latham, D.W.

    1975-01-01

    For both the Lick and the Palomar calibrations of the spectral-energy distribution of Vega, the atmospheric extinction was treated incorrectly. We present a model for extinction in the Earth's atmosphere and use this model to calculate corrections to the Lick and Palomar calibrations. We also describe a method that can be used to fabricate mean extinction coefficients for any mountain observatory. We combine selected portions of the corrected Lick and corrected Palomar calibrations with the new Mount Hopkins calibration to generate an absolute spectral-energy distibution of Vega over the wavelength range 3300--10,800 A. Until better measurements become available, we recommend the use of this calibration for all practical applications

  19. Who wants to redistribute? Russia's tunnel effect in the 1990's

    OpenAIRE

    Ravallion, Martin; Lokshin, Michael

    1999-01-01

    It seems natural to expect the rich to oppose policies to redistribute income from the rich to the poor, and the poor to favor such policies. But this may be too simple a model, say the Authors. Expectations of future welfare may come into play. Well-off people on a downward trajectory may well favor such policies and poor people on a rising trajectory may not. This resistance of upwardly mobile poor people to lasting redistribution is analogous to Hirshman's"tunnel effect", as applied to tra...

  20. Tailoring electron energy distribution functions through energy confinement in dual radio-frequency driven atmospheric pressure plasmas

    Energy Technology Data Exchange (ETDEWEB)

    O' Neill, C.; Waskoenig, J. [Centre for Plasma Physics, School of Maths and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Gans, T. [Centre for Plasma Physics, School of Maths and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); York Plasma Institute, Department of Physics, University of York, York YO10 5DD (United Kingdom)

    2012-10-08

    A multi-scale numerical model based on hydrodynamic equations with semi-kinetic treatment of electrons is used to investigate the influence of dual frequency excitation on the effective electron energy distribution function (EEDF) in a radio-frequency driven atmospheric pressure plasma. It is found that variations of power density, voltage ratio, and phase relationship provide separate control over the electron density and the mean electron energy. This is exploited to directly influence both the phase dependent and time averaged effective EEDF. This enables tailoring the EEDF for enhanced control of non-equilibrium plasma chemical kinetics at ambient pressure and temperature.

  1. Interconnection getting energy from the Sun and the radiating Earth in cosmos

    International Nuclear Information System (INIS)

    Jumayev, E.E.

    2004-01-01

    , the average temperature of atmosphere was on 31-32 degrees below, than presently. This signifies that even on the equator negative temperatures, but oceans presented icy deserts. Reduplication to concentrations an acid brings about warming atmosphere raising of its average temperatures and redistribution of temperature, precipitation and cloud on surfaces of the Earth. But after all warming a land occurs not only from the incineration of hydrocarbon fuel. Any energy made on the Earth, anyway tells on the nature of heat balance of planet and warms its atmosphere. So much interesting with purely scientific will take aim to study an influence of development of energy on climate our planet. Today amount of artificial energy, the energy, producing people forms sleepy shares of the percent of energy, which the Earth gets from the Sun, and effect of warming until mark. However soon many can change, as far as reduplication of energy production occurs, as we already spoke for 15-18 years. And to the medium of following age a share of the artificial energy in general energy balance of planet can turn out to be highly observable. Recall that us is necessary compare an amount of producing energy not with the energy, which Land gets from the Sun, but with the difference of energy, got from the sun and radiating Earth in cosmos

  2. Redistribution spurs growth by using a portfolio effect on risky human capital.

    Science.gov (United States)

    Lorenz, Jan; Paetzel, Fabian; Schweitzer, Frank

    2013-01-01

    We demonstrate by mathematical analysis and systematic computer simulations that redistribution can lead to sustainable growth in a society. In accordance with economic models of risky human capital, we assume that dynamics of human capital is modeled as a multiplicative stochastic process which, in the long run, leads to the destruction of individual human capital. When agents are linked by fully redistributive taxation the situation might turn to individual growth in the long run. We consider that a government collects a proportion of income and reduces it by a fraction as costs for administration (efficiency losses). The remaining public good is equally redistributed to all agents. Sustainable growth is induced by redistribution despite the losses from the random growth process and despite administrative costs. Growth results from a portfolio effect. The findings are verified for three different tax schemes: proportional tax, taking proportionally more from the rich, and proportionally more from the poor. We discuss which of these tax schemes performs better with respect to maximize growth under a fixed rate of administrative costs, and the governmental income. This leads us to general conclusions about governmental decisions, the relation to public good games with free riding, and the function of taxation in a risk-taking society.

  3. Redistribution spurs growth by using a portfolio effect on risky human capital.

    Directory of Open Access Journals (Sweden)

    Jan Lorenz

    Full Text Available We demonstrate by mathematical analysis and systematic computer simulations that redistribution can lead to sustainable growth in a society. In accordance with economic models of risky human capital, we assume that dynamics of human capital is modeled as a multiplicative stochastic process which, in the long run, leads to the destruction of individual human capital. When agents are linked by fully redistributive taxation the situation might turn to individual growth in the long run. We consider that a government collects a proportion of income and reduces it by a fraction as costs for administration (efficiency losses. The remaining public good is equally redistributed to all agents. Sustainable growth is induced by redistribution despite the losses from the random growth process and despite administrative costs. Growth results from a portfolio effect. The findings are verified for three different tax schemes: proportional tax, taking proportionally more from the rich, and proportionally more from the poor. We discuss which of these tax schemes performs better with respect to maximize growth under a fixed rate of administrative costs, and the governmental income. This leads us to general conclusions about governmental decisions, the relation to public good games with free riding, and the function of taxation in a risk-taking society.

  4. Myocardial viability assessed by Tl-201 SPECT. Redistribution versus reinjection

    International Nuclear Information System (INIS)

    Chalela, William Azem; Pimentel, Flavio Ferrarini de Oliveira; Uchida, Augusto Hiroshi; Bottega, Augusto; Ramires, Jose Antonio Franchine; Izaki, Marisa; Moraes, Aguinaldo Pereira; Soares Junior, Jose; Giorgi, Maria C. Pinto; Moffa, Paulo Jorge; Bellotti, Giovanni; Giovanni Guido Cerri; Meneghetti, Jose Claudio

    1994-01-01

    The purpose of this study was to verify if a third series of images acquired by reinjection thallium-201, 24 h after conventional myocardial perfusion with the radioisotope, improves the identification of myocardial viability segments. The methods: we studied 30 patients, mean age 57.7 ±9.4 years, with old myocardial infarction using thallium (Tl)-201 SPECT, and we obtained three series of images (stress, redistribution after 4 h and reinjection after 24 h. Cardiac images were divided in 5 segments (apical, lateral, anterior, septal and inferior) and each one received a value by a score system according to the Tl-201 myocardial uptake (0=normal uptake; 1=mild hypoperfusion; 2=moderate hypoperfusion; 3=severe hypoperfusion or no myocardial uptake). We considered viable myocardium when the uptake of Tl-201 in the segment related to te myocardial infarction increases at least 1 point in two different axis of Tl-201 SPECT. The results: seven (23,3%) patients demonstrated increase of Tl-201 uptake only at reinjection images, showing a high efficacy of the method. Nine (30%) patients showed persistent hypoperfusion at all series of images suggesting only fibrosis in the are related to the infarction. Fourteen (46,7%) patients showed increase of Tl-201 concentration at redistribution images; among these patients, six showed improvement of myocardial uptake at reinjection. This condition was interpreted as regional chronic ischemic process: hibernating myocardium. The conclusion was that Tl-201 hypoperfusion at redistribution images without significant changes in relation to the stress images do not represent fibrosis at all. The reinjection technic was better than conventional redistribution in the detection of viable myocardium. This data allows a better therapeutic orientation. (author)

  5. Using 137 Cs measurements to investigate the influence of erosion and soil redistribution on soil properties.

    Science.gov (United States)

    Du, P; Walling, D E

    2011-05-01

    Information on the interaction between soil erosion and soil properties is an important requirement for sustainable management of the soil resource. The relationship between soil properties and the soil redistribution rate, reflecting both erosion and deposition, is an important indicator of this interaction. This relationship is difficult to investigate using traditional approaches to documenting soil redistribution rates involving erosion plots and predictive models. However, the use of the fallout radionuclide (137)Cs to document medium-term soil redistribution rates offers a means of overcoming many of the limitations associated with traditional approaches. The study reported sought to demonstrate the potential for using (137)Cs measurements to assess the influence of soil erosion and redistribution on soil properties (particle size composition, total C, macronutrients N, P, K and Mg, micronutrients Mn, Mo, Fe, Cu and Zn and other elements, including Ti and As). (137)Cs measurements undertaken on 52 soil cores collected within a 7 ha cultivated field located near Colebrooke in Devon, UK were used to establish the magnitude and spatial pattern of medium-term soil redistribution rates within the field. The soil redistribution rates documented for the individual sampling points within the field ranged from an erosion rate of -12.9 t ha(-1) yr(-1) to a deposition rate of 19.2 t ha(-1) yr(-1). Composite samples of surface soil (0-5 cm) were collected immediately adjacent to each coring point and these samples were analysed for a range of soil properties. Individual soil properties associated with these samples showed significant variability, with CV values generally lying in the range 10-30%. The relationships between the surface soil properties and the soil redistribution rate were analysed. This analysis demonstrated statistically significant relationships between some soil properties (total phosphorus, % clay, Ti and As) and the soil redistribution rate, but for

  6. Role of Sink Density in Nonequilibrium Chemical Redistribution in Alloys

    Science.gov (United States)

    Martínez, Enrique; Senninger, Oriane; Caro, Alfredo; Soisson, Frédéric; Nastar, Maylise; Uberuaga, Blas P.

    2018-03-01

    Nonequilibrium chemical redistribution in open systems submitted to external forces, such as particle irradiation, leads to changes in the structural properties of the material, potentially driving the system to failure. Such redistribution is controlled by the complex interplay between the production of point defects, atomic transport rates, and the sink character of the microstructure. In this work, we analyze this interplay by means of a kinetic Monte Carlo (KMC) framework with an underlying atomistic model for the Fe-Cr model alloy to study the effect of ideal defect sinks on Cr concentration profiles, with a particular focus on the role of interface density. We observe that the amount of segregation decreases linearly with decreasing interface spacing. Within the framework of the thermodynamics of irreversible processes, a general analytical model is derived and assessed against the KMC simulations to elucidate the structure-property relationship of this system. Interestingly, in the kinetic regime where elimination of point defects at sinks is dominant over bulk recombination, the solute segregation does not directly depend on the dose rate but only on the density of sinks. This model provides new insight into the design of microstructures that mitigate chemical redistribution and improve radiation tolerance.

  7. Voluntary income redistribution with migration.

    Science.gov (United States)

    Crane, R

    1992-01-01

    This study is concerned with the welfare magnet problem, in which disparities in transfer policies across states are believed to encourage recipient and possibly resource migration. "This study clarifies the terms of the debate by showing how the value of redistributing local resources depends not only on the value of income to each group, but also on the cost of the transfer in erosion of the resource base through migration and through the general equilibrium effects of such activity on local prices." The geographical focus is on the United States. excerpt

  8. Relaxation dynamics in quantum dissipative systems: The microscopic effect of intramolecular vibrational energy redistribution

    Energy Technology Data Exchange (ETDEWEB)

    Uranga-Piña, L. [Facultad de Física, Universidad de la Habana, San Lázaro y L, Vedado, 10400 Havana (Cuba); Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, D-14195 Berlin (Germany); Tremblay, J. C., E-mail: jean.c.tremblay@gmail.com [Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, D-14195 Berlin (Germany)

    2014-08-21

    We investigate the effect of inter-mode coupling on the vibrational relaxation dynamics of molecules in weak dissipative environments. The simulations are performed within the reduced density matrix formalism in the Markovian regime, assuming a Lindblad form for the system-bath interaction. The prototypical two-dimensional model system representing two CO molecules approaching a Cu(100) surface is adapted from an ab initio potential, while the diatom-diatom vibrational coupling strength is systematically varied. In the weak system-bath coupling limit and at low temperatures, only first order non-adiabatic uni-modal coupling terms contribute to surface-mediated vibrational relaxation. Since dissipative dynamics is non-unitary, the choice of representation will affect the evolution of the reduced density matrix. Two alternative representations for computing the relaxation rates and the associated operators are thus compared: the fully coupled spectral basis, and a factorizable ansatz. The former is well-established and serves as a benchmark for the solution of Liouville-von Neumann equation. In the latter, a contracted grid basis of potential-optimized discrete variable representation is tailored to incorporate most of the inter-mode coupling, while the Lindblad operators are represented as tensor products of one-dimensional operators, for consistency. This procedure results in a marked reduction of the grid size and in a much more advantageous scaling of the computational cost with respect to the increase of the dimensionality of the system. The factorizable method is found to provide an accurate description of the dissipative quantum dynamics of the model system, specifically of the time evolution of the state populations and of the probability density distribution of the molecular wave packet. The influence of intra-molecular vibrational energy redistribution appears to be properly taken into account by the new model on the whole range of coupling strengths. It

  9. Reverse redistribution in dipyridamole-loading thallium-201 images using single photon emission computed tomography

    International Nuclear Information System (INIS)

    Mori, Kiyoo; Masuda, Masanosuke; Bunko, Hisashi.

    1986-01-01

    Dipyridamole was infused intravenously at a rate of 0.142 mg/kg per min for four min, and a stress image was obtained 10 min after the injection of two mCi 201 Tl. The myocardial image of Tl was analyzed by single photon emission computed tomography and its washout rate was calculated by the segmental ROI method. Myocardial function and the motion of the left ventricular wall were analyzed by 99m Tc-RBC-gated cardiac pool imaging. Reverse redistribution was noted in 27 (21.6 %) of 125 consecutive Tl dipyridamole and redistribution myocardial imaging studies. The stress image demonstrated normal perfusion (group 1) and reduced perfusion (group 2) of Tl. Group 1 consisted of 17 patients with diabetes mellitus, supraventricular arrhythmias, hypertension, and others. Group 2 consisted of 10 patients with subendocardial infarction, diabetes mellitus, and hypertension, and others. The percentage prevalence of reverse redistribution among patients with supraventricular arrhythmia was 62.5 % (five of eight patients), with subendocardial infarction 60.0 % (three of five), with hypertension 42.8 % (six of 14), and with diabetes mellitus 40.0 % (eight of 20), while in those with transmyocardial infarction and angina pectoris no reverse redistribution percentage was found. The washout rate of Tl in normal perfusion areas was 44.0 ± 12.8 %, the reverse redistribution of group 1 was 47.4 ± 12.8 %, and of group 2 was 51.2 ± 8.2 %. The washout rate of the reverse redistribution of group 2 was significantly greater than that of the normal areas. In gated cardiac pool imaging, patients in group 2 had significantly larger areas showing abnormal contraction of the left ventricular wall and significantly lower ejection fraction than did group 1. In the electrocardiogram ST segment depression was noted more frequently in group 2 than group 1. No Q wave was present in the corresponding reverse redistribution area. (J.P.N.)

  10. Gravity Waves in the Atmosphere of Mars as seen by the Radio Science Experiment MaRS on Mars Express

    Science.gov (United States)

    Tellmann, S.; Paetzold, M.; Häusler, B.; Bird, M. K.; Tyler, G. L.; Hinson, D. P.

    2016-12-01

    Gravity waves are atmospheric waves whose restoring force is the buoyancy. They are known to play an essential role in the redistribution of energy, momentum and atmospheric constituents in all stably stratified planetary atmospheres. Possible excitation mechanisms comprise convection in an adjacent atmospheric layer, other atmospheric instabilities like wind shear instabilities, or air flow over orographic obstacles especially in combination with the strong winter jets on Mars. Gravity waves on Mars were observed in the lower atmosphere [1,2] but are also expected to play a major role in the cooling of the thermosphere [3] and the polar warming [4]. A fundamental understanding of the possible source mechanisms is required to reveal the influence of small scale gravity waves on the global atmospheric circulation. Radio occultation profiles from the MaRS experiment on Mars Express [5] with their exceptionally high vertical resolution can be used to study small-scale vertical gravity waves and their global distribution in the lower atmosphere from the planetary boundary layer up to 40 km altitude. Atmospheric instabilities, which are clearly identified in the data, are used to gain further insight into possible atmospheric processes contributing to the excitation of gravity waves. [1] Creasey, J. E., et al.,(2006), Geophys. Res. Lett., 33, L01803, doi:10.1029/2005GL024037. [2]Tellmann, S., et al.(2013), J. Geophys. Res. Planets, 118, 306-320, doi:10.1002/jgre.20058. [3]Medvedev, A. S., et al.(2015), J. Geophys. Res. Planets, 120, 913-927. doi:10.1002/2015JE004802.[4] Barnes, J. R. (1990), J. Geophys. Res., 95, B2, 1401-1421. [5] Pätzold, M., et al. (2016), Planet. Space Sci., 127, 44 - 90.

  11. A test of hypothetical hill-slope-gully-streambed soil redistribution model using fallout cs-137 a first use of the technique in pakistan

    International Nuclear Information System (INIS)

    Ahmad, M.; Sheikh, M.R.; Akram, W.; Ali, M.; Iqbal, N.

    2007-07-01

    Soil degradation by water erosion, which is further responsible for sedimentation in the conveyance systems and reservoirs, is a matter of growing concern in Pakistan. Caesium-137, a fallout radioisotope produced from atmospheric nuclear weapon tests, has become a well-established radiotracer of soil movement. To assess the potential for application of caesium-137 as an indicator of soil erosion and sedimentation, a hypothetical hill slope-gully-streambed redistribution model was tested in Mangla Watershed, Pakistan, as a first use of the technique in the country. The results indicate that the soil redistribution along the different components follows the hypothetical model, with severe net soil loss (sheet erosion) at the hill-slope, no labeling of gully head, and high sedimentation on the streambed. The reference inventory of 137CS obtained by scraper plate (4380 Bq m-2 was in agreement with the mean value of bulk cores (i.e. 3945 +- 457 Bq m-2). The net soil loss along the hill slope estimated by the profile distribution model was 17.2 t ha-1 yr-l. The sedimentation rate in the main stream was more before the year 1974 (8 cm yr-l) than afterwards reducing to 5.9 cm yr-1 due to re-vegetation. The 137CS technique proved to be less time consuming in the provision of information on soil redistribution rates than direct measurement would have been and can be used to assess watershed management practices in Pakistan. (author)

  12. The impact of soil redistribution on SOC pools in a Mediterranean agroforestry catchment

    Science.gov (United States)

    Quijano, Laura; Gaspar, Leticia; Lizaga, Iván; Navas, Ana

    2017-04-01

    Soil redistribution processes play an important role influencing the spatial distribution patterns of soil and associated soil organic carbon (SOC) at landscape scale. Information on drivers of SOC dynamics is key for evaluating both soil degradation and SOC stability that can affect soil quality and sustainability. 137Cs measurements provide a very effective tool to infer spatial patterns of soil redistribution and quantify soil redistribution rates in different landscapes, but to date these data are scarce in mountain Mediterranean agroecosystems. We evaluate the effect of soil redistribution on SOC and SOC pools in relation to land use in a Mediterranean mountain catchment (246 ha). To this purpose, two hundred and four soil bulk cores were collected on a 100 m grid in the Estaña lakes catchment located in the central sector of the Spanish Pyrenees (31T 4656250N 295152E). The study area is an agroforestry and endorheic catchment characterized by the presence of evaporite dissolution induced dolines, some of which host permanent lakes. The selected landscape is representative of rainfed areas of Mediterranean continental climate with erodible lithology and shallow soils, and characterized by an intense anthropogenic activity through cultivation and water management. The cultivated and uncultivated areas are heterogeneously distributed. SOC and SOC pools (the active and decomposable fraction, ACF and the stable carbon fraction SCF) were measured by the dry combustion method and soil redistribution rates were derived from 137Cs measurements. The results showed that erosion predominated in the catchment, most of soil samples were identified as eroded sites (n=114) with an average erosion rate of 26.9±51.4 Mg ha-1 y-1 whereas the mean deposition rate was 13.0±24.2 Mg ha-1 y-1. In cultivated soils (n=54) the average of soil erosion rate was significantly higher (78.5±74.4 Mg ha-1 y-1) than in uncultivated soils (6.8±10.4 Mg ha-1 y-1). Similarly, the mean of soil

  13. Significance of atmospheric effects of heat rejection from energy centers in the semi arid northwest

    International Nuclear Information System (INIS)

    Ramsdell, J.V.; Drake, R.L.; Young, J.R.

    1976-01-01

    The results presented in this paper have been obtained using simple atmospheric models in an attempt to optimize heat sink management in a conceptual nuclear energy center (NEC) at Hanford. The models have been designed to be conservatice in the sense that they are biased toward over prediction of the impact of cooling system effluents on humidity and fog. Thus the models are screening tools to be used to identify subjects for further, more realistic examination. Within this context the following conclusions have been reached: the evaluation of any atmospheric impact postulated for heat dissipation must be conducted in quantitative terms which can be used to determine the significance of the impact; of the potential atmospheric impacts of large heat releases from energy centers, the one most amenable to quantitative evaluation in meaningful terms as the increase in fog; a postulated increase in frequency of fog can be translated into terms of visibility and both can be evaluated statistically; the translation of a increase in fog to visibility terms permits economic evaluation of the impact; and the predicted impact of the HNEC on fog and visibility is statistically significant whether the energy center consists of 20 or 40 units

  14. PROSPECTS FOR CHARACTERIZING THE ATMOSPHERE OF PROXIMA CENTAURI b

    Energy Technology Data Exchange (ETDEWEB)

    Kreidberg, Laura [Harvard Society of Fellows, Harvard University, 78 Mt. Auburn Street, Cambridge, MA 02138 (United States); Loeb, Abraham, E-mail: laura.kreidberg@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2016-11-20

    The newly detected Earth-mass planet in the habitable zone of Proxima Centauri could potentially host life—if it has an atmosphere that supports surface liquid water. We show that thermal phase curve observations with the James Webb Space Telescope ( JWST ) from 5–12 μ m can be used to test for the existence of such an atmosphere. We predict the thermal variation for a bare rock versus a planet with 35% heat redistribution to the nightside and show that a JWST phase curve measurement can distinguish between these cases at 4 σ confidence, assuming photon-limited precision. We also consider the case of an Earth-like atmosphere, and find that the 9.8 μ m ozone band could be detected with longer integration times (a few months). We conclude that JWST observations have the potential to put the first constraints on the possibility of life around the the solar system’s nearest star.

  15. PROSPECTS FOR CHARACTERIZING THE ATMOSPHERE OF PROXIMA CENTAURI b

    International Nuclear Information System (INIS)

    Kreidberg, Laura; Loeb, Abraham

    2016-01-01

    The newly detected Earth-mass planet in the habitable zone of Proxima Centauri could potentially host life—if it has an atmosphere that supports surface liquid water. We show that thermal phase curve observations with the James Webb Space Telescope ( JWST ) from 5–12 μ m can be used to test for the existence of such an atmosphere. We predict the thermal variation for a bare rock versus a planet with 35% heat redistribution to the nightside and show that a JWST phase curve measurement can distinguish between these cases at 4 σ confidence, assuming photon-limited precision. We also consider the case of an Earth-like atmosphere, and find that the 9.8 μ m ozone band could be detected with longer integration times (a few months). We conclude that JWST observations have the potential to put the first constraints on the possibility of life around the the solar system’s nearest star.

  16. Preferences on Redistribution in Fragmented Labor Markets in Latin America and the Caribbean

    Directory of Open Access Journals (Sweden)

    Sarah Berens

    2015-01-01

    Full Text Available This study investigates the extent to which labor market dualization polarizes preferences on redistribution between formal and informal sector workers in Latin America and the Caribbean. Differences in welfare state costs and benefits for these labor market groups are likely to fuel diverging incentives regarding welfare consumption. The article tests whether or not informal workers are driven mainly by economic self-interest to increase gains from public welfare goods. The study employed a hierarchical model on pooled survey data from the Latin American Public Opinion Project (LAPOP 2008 and 2010 to analyze the risk exposure of formal and informal workers and, subsequently, their preferences on redistribution. The analysis reveals that while economic self-interest is an influential factor for formal workers, it is (unexpectedly much less so for informal workers. Also, an increased economically insecure environment, reflected by high unemployment rates, does not motivate informal workers to an exceptional degree to turn towards the state for redistribution, despite greater exposure to economic risk. Labor market dualization does not translate into polarization at the individual level regarding redistributive preferences in Latin America and the Caribbean.

  17. Pacific Northwest Laboratory annual report for 1993 to the DOE Office of Energy Research. Part 3: Atmospheric and climate research

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    The US Department of Energy`s (DOE`s) Office of Health and Environmental Research (OHER) atmospheric sciences and carbon dioxide research programs provide the DOE with scientifically defensible information on the local, regional, and global distributions of energy-related pollutants and their effects on climate. PNL has had a long history of technical leadership in the atmospheric sciences research programs within OHER. Within the Environmental Sciences Division of OHER, the Atmospheric Chemistry Program continues DOE`s long-term commitment to understanding the local, regional, and global effects of energy-related air pollutants. Research through direct measurement, numerical modeling, and analytical studies in the Atmospheric Chemistry Program emphasizes the long-range transport, chemical transformation, and removal of emitted pollutants, photochemically produced oxidant species, nitrogen-reservoir species, and aerosols. The atmospheric studies in Complex Terrain Program applies basic research on atmospheric boundary layer structure and evolution over inhomogeneous terrain to DOE`s site-specific and generic mission needs in site safety, air quality, and climate change. Research at PNL provides basic scientific underpinnings to DOE`s program of global climate research. Research projects within the core carbon dioxide and ocean research programs are now integrated with those in the Atmospheric Radiation Measurements, the Computer Hardware, Advanced Mathematics and Model Physics, and Quantitative Links program to form DOE`s contribution to the US Global Change Research Program. The description of ongoing atmospheric and climate research at PNL is organized in two broad research areas: atmospheric research; and climate research. This report describes the progress in fiscal year 1993 in each of these areas. Individual papers have been processed separately for inclusion in the appropriate data bases.

  18. Migration Elasticities, Fiscal Federalism and the Ability of States to Redistribute Income

    OpenAIRE

    Giertz, Seth H.; Tosun, Mehmet S.

    2012-01-01

    This paper develops a simulation model in order to examine the effectiveness of state attempts at redistribution under a variety of migration elasticity assumptions. Key outputs from the simulation include the impact of tax-induced migration on state revenues, excess burden, and fiscal externalities. With modest migration elasticities, the costs of state-level redistribution are substantial, but state action may still be preferred to a federal policy that is at odds with preferences of a stat...

  19. A proof of the cancellation of the redistribution tidal potential effects on the rotation of an elastic Earth model

    Science.gov (United States)

    Baenas, Tomás; Escapa, Alberto; Ferrándiz, Jose Manuel

    2014-05-01

    The gravitational action of the Moon and the Sun on the elastic Earth originates a redistribution of its mass. In turn, this redistribution is responsible of an additional term in the gravitational potential energy of the system, commonly referred to as tidal potential of redistribution. Its effects on the Earth rotation were previously discussed in Escapa et al. (2004) and Lambert & Mathews (2006). A numerical approach was followed in those works to show that for an elastic Earth model, assumed to be spherical and non-rotating in the undeformed state, there is no net contribution to the motion of the figure axis. This result is consistent with the corresponding one deduced from the torque approach, where one can derive analytically that the redistribution torque for that elastic Earth model vanishes (e.g., Krasinsky 1999). However, it is far from being a trivial question to recover the same result when working directly with the tidal potential of redistribution, as in Escapa et al. (2004) or Lambert & Mathews (2006). In this investigation we revisit the issue, enhancing and completing former results by Escapa et al. (2004). In particular, we aim at proving, by analytical means, that the redistribution tidal potential of the former elastic Earth model does not affect its rotational motion. To this end we expand that potential in terms of an Andoyer-like set of canonical variables, and then compute the torque associated to it. This choice was motivated by the suitability of this set of variables to extend our calculations to the nutations of other different elastic or anelastic Earth models, through the Hamiltonian framework (e.g., Ferrándiz et al. 2012). We show the exact cancellation of the derived expressions as a consequence of certain properties fulfilled by the expansions of the orbital motion of the perturbing bodies. Acknowledgement. - This work has been partially supported by the Spanish government trhough the MINECO projects I+D+I AYA201022039-C02-01, AYA

  20. Cascading failures in interdependent systems under a flow redistribution model

    Science.gov (United States)

    Zhang, Yingrui; Arenas, Alex; Yaǧan, Osman

    2018-02-01

    Robustness and cascading failures in interdependent systems has been an active research field in the past decade. However, most existing works use percolation-based models where only the largest component of each network remains functional throughout the cascade. Although suitable for communication networks, this assumption fails to capture the dependencies in systems carrying a flow (e.g., power systems, road transportation networks), where cascading failures are often triggered by redistribution of flows leading to overloading of lines. Here, we consider a model consisting of systems A and B with initial line loads and capacities given by {LA,i,CA ,i} i =1 n and {LB,i,CB ,i} i =1 n, respectively. When a line fails in system A , a fraction of its load is redistributed to alive lines in B , while remaining (1 -a ) fraction is redistributed equally among all functional lines in A ; a line failure in B is treated similarly with b giving the fraction to be redistributed to A . We give a thorough analysis of cascading failures of this model initiated by a random attack targeting p1 fraction of lines in A and p2 fraction in B . We show that (i) the model captures the real-world phenomenon of unexpected large scale cascades and exhibits interesting transition behavior: the final collapse is always first order, but it can be preceded by a sequence of first- and second-order transitions; (ii) network robustness tightly depends on the coupling coefficients a and b , and robustness is maximized at non-trivial a ,b values in general; (iii) unlike most existing models, interdependence has a multifaceted impact on system robustness in that interdependency can lead to an improved robustness for each individual network.

  1. Household perceptions towards a redistributive policy across health insurance funds in Tanzania

    DEFF Research Database (Denmark)

    Chomi, Eunice; Mujinja, Phares; Hansen, Kristian Schultz

    2015-01-01

    Background The Tanzanian health insurance system comprises multiple health insurance funds targeting different population groups but which operate in parallel, with no mechanisms for redistribution across the funds. Establishing such redistributive mechanisms requires public support, which...... data collected from a survey of 695 households relating to perceptions of household heads towards cross-subsidisation of the poor to enable them to access health services. Kruskal-Wallis test is used to compare perceptions by membership status. Generalized ordinal logistic regression models are used...

  2. Enhanced detection of ischemic but viable myocardium by the reinjection of thallium after stress-redistribution imaging

    International Nuclear Information System (INIS)

    Dilsizian, V.; Rocco, T.P.; Freedman, N.M.; Leon, M.B.; Bonow, R.O.

    1990-01-01

    The identification of ischemic but viable myocardium by thallium exercise scintigraphy is often imprecise, since many of the perfusion defects that develop in ischemic myocardium during exercise do not fill in on subsequent redistribution images. We hypothesized that a second injection of thallium given after the redistribution images were taken might improve the detection of ischemic but viable myocardium. We studied 100 patients with coronary artery disease, using thallium exercise tomographic imaging and radionuclide angiography. Patients received 2 mCi of thallium intravenously during exercise, redistribution imaging was performed three to four hours later, and a second dose of 1 mCi of thallium was injected at rest immediately thereafter. The three sets of images (stress, redistribution, and reinjection) were then analyzed. Ninety-two of the 100 patients had exercise-induced perfusion defects. Of the 260 abnormal myocardial regions identified by stress imaging, 85 (33 percent) appeared to be irreversible on redistribution imaging three to four hours later. However, 42 of these apparently irreversible defects (49 percent) demonstrated improved or normal thallium uptake after the second injection of thallium, with an increase in mean regional uptake from 56 +/- 12 percent on redistribution studies to 64 +/- 10 percent on reinjection imaging (P less than 0.001). Twenty patients were restudied three to six months after coronary angioplasty. Of the 15 myocardial regions with defects on redistribution studies that were identified as viable by reinjection studies before angioplasty, 13 (87 percent) had normal thallium uptake and improved regional wall motion after angioplasty. In contrast, all eight regions with persistent defects on reinjection imaging before angioplasty had abnormal thallium uptake and abnormal regional wall motion after angioplasty

  3. Strategic campaigns and redistributive politics

    DEFF Research Database (Denmark)

    Schultz, Christian

    2007-01-01

    The article investigates strategic, informative campaigning by two parties when politics concern redistribution. Voters are uncertain about whether parties favour special groups. Parties will target campaigns on groups where most votes are gained by informing about policies. In equilibrium......, campaigning will be most intensive in groups where the uncertainty is largest and where voters are most mobile, most likely to vote, most receptive to campaigns and relatively uninformed initially. These groups will become more informed about policy. Parties will therefore gain more votes by treating...... these groups well so these groups will gain from strategic campaigning. Welfare effects are assessed...

  4. Role of redistribution and 24 hour reinjection images to assess myocardial viability in patients with acute myocardial infarction

    International Nuclear Information System (INIS)

    Yoon, Seok Nam; Pai, Moon Sun; Park, Chan H.; Yoon, Myung Ho; Choi, Byung Il

    1998-01-01

    We evaluated the importance of redistribution and 24 hour reinjection images in Tl-201 SPECT assessment of myocardial viability after acute myocardial infarction (AMI). We performed dipyridamole stress-4 hour redistribution-24 hour reinjection Tl-201 SPECT in 43 patients with recent AMI (4-16 days). The myocardium was divided into 16 segments and perfusion grade was measured visually with 4 point score from 0 to 3 (absent uptake to normal uptake). A perfusion defect with stress score 2 was considered moderate. A defect was considered severe if the stress score was 0 or 1 (absent uptake or severe perfusion decrease). Moderate defect on stress image were considered viable and and segments with severe defect were considered viable if they showed improvement of 1 score or more on redistribution or reinjection images. We compared the results of viability assessment in stress-redistribution and stress-reinjection images. On visual analysis, 344 of 688 segments (50%) had abnormal perfusion. Fify two (15%) had moderate perfusion defects and 292 (85%) had severe perfusion defects on stress image. Of 292 severe stress defects, 53 were irreversible on redistribution and reversible on reinjection images, and 15 were reverseble on redistribution and irreversible on reinjection images. Two hundred twenty four of 292 segments (76.7%) showed concordant results on stress-redistribution and stress- reinjection images. Therefore 24 hour reinjection image changed viability status from necrotic to viable in 53 segments of 292 severe stress defect (18%). However, myocardial viability was underestimated in only 5% (15/292) of severe defects by 24 hour reinjection. The 24 hour reinjection imaging is useful in the assessment of myocardial viability. It is more sensitive than 4 hour redistribution imaging. However, both redistribution and reinjection images are needed since they complement each other

  5. Monitoring Top-of-Atmosphere Radiative Energy Imbalance for Climate Prediction

    Science.gov (United States)

    Lin, Bing; Chambers, Lin H.; Stackhouse, Paul W., Jr.; Minnis, Patrick

    2009-01-01

    Large climate feedback uncertainties limit the prediction accuracy of the Earth s future climate with an increased CO2 atmosphere. One potential to reduce the feedback uncertainties using satellite observations of top-of-atmosphere (TOA) radiative energy imbalance is explored. Instead of solving the initial condition problem in previous energy balance analysis, current study focuses on the boundary condition problem with further considerations on climate system memory and deep ocean heat transport, which is more applicable for the climate. Along with surface temperature measurements of the present climate, the climate feedbacks are obtained based on the constraints of the TOA radiation imbalance. Comparing to the feedback factor of 3.3 W/sq m/K of the neutral climate system, the estimated feedback factor for the current climate system ranges from -1.3 to -1.0 W/sq m/K with an uncertainty of +/-0.26 W/sq m/K. That is, a positive climate feedback is found because of the measured TOA net radiative heating (0.85 W/sq m) to the climate system. The uncertainty is caused by the uncertainties in the climate memory length. The estimated time constant of the climate is large (70 to approx. 120 years), implying that the climate is not in an equilibrium state under the increasing CO2 forcing in the last century.

  6. Cooperative Enhancement Mechanisms of Low Energy Nuclear Reactions Using Superlow Energy External Fields

    OpenAIRE

    Gareev, F. A.; Zhidkova, I. E.

    2006-01-01

    We proposed a new mechanism of LENR: cooperative processes in whole system - nuclei+atoms+condensed matter can occur at smaller threshold energies then corresponding ones on free constituents. The cooperative processes can be induced and enhanced by low energy external fields. The excess heat is the emission of internal energy and transmutations at LENR are the result of redistribution inner energy of whole system.

  7. The Transfer of Resonance Line Polarization with Partial Frequency Redistribution in the General Hanle–Zeeman Regime

    Energy Technology Data Exchange (ETDEWEB)

    Ballester, E. Alsina; Bueno, J. Trujillo [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain); Belluzzi, L., E-mail: ealsina@iac.es [Istituto Ricerche Solari Locarno, CH-6605 Locarno Monti (Switzerland)

    2017-02-10

    The spectral line polarization encodes a wealth of information about the thermal and magnetic properties of the solar atmosphere. Modeling the Stokes profiles of strong resonance lines is, however, a complex problem both from a theoretical and computational point of view, especially when partial frequency redistribution (PRD) effects need to be taken into account. In this work, we consider a two-level atom in the presence of magnetic fields of arbitrary intensity (Hanle–Zeeman regime) and orientation, both deterministic and micro-structured. Working within the framework of a rigorous PRD theoretical approach, we have developed a numerical code that solves the full non-LTE radiative transfer problem for polarized radiation, in one-dimensional models of the solar atmosphere, accounting for the combined action of the Hanle and Zeeman effects, as well as for PRD phenomena. After briefly discussing the relevant equations, we describe the iterative method of solution of the problem and the numerical tools that we have developed and implemented. We finally present some illustrative applications to two resonance lines that form at different heights in the solar atmosphere, and provide a detailed physical interpretation of the calculated Stokes profiles. We find that magneto-optical effects have a strong impact on the linear polarization signals that PRD effects produce in the wings of strong resonance lines. We also show that the weak-field approximation has to be used with caution when PRD effects are considered.

  8. Using {sup 137}Cs measurements to investigate the influence of erosion and soil redistribution on soil properties

    Energy Technology Data Exchange (ETDEWEB)

    Du, P. [School of Geography, Beijing Normal University, Beijing (China); Geography, College of Life and Environmental Sciences, University of Exeter, Amory Building, Rennes Drive, Exeter, EX4 4RJ, Devon (United Kingdom); Walling, D.E., E-mail: d.e.walling@exeter.ac.u [Geography, College of Life and Environmental Sciences, University of Exeter, Amory Building, Rennes Drive, Exeter, EX4 4RJ, Devon (United Kingdom)

    2011-05-15

    Information on the interaction between soil erosion and soil properties is an important requirement for sustainable management of the soil resource. The relationship between soil properties and the soil redistribution rate, reflecting both erosion and deposition, is an important indicator of this interaction. This relationship is difficult to investigate using traditional approaches to documenting soil redistribution rates involving erosion plots and predictive models. However, the use of the fallout radionuclide {sup 137}Cs to document medium-term soil redistribution rates offers a means of overcoming many of the limitations associated with traditional approaches. The study reported sought to demonstrate the potential for using {sup 137}Cs measurements to assess the influence of soil erosion and redistribution on soil properties (particle size composition, total C, macronutrients N, P, K and Mg, micronutrients Mn, Mo, Fe, Cu and Zn and other elements, including Ti and As). {sup 137}Cs measurements undertaken on 52 soil cores collected within a 7 ha cultivated field located near Colebrooke in Devon, UK were used to establish the magnitude and spatial pattern of medium-term soil redistribution rates within the field. The soil redistribution rates documented for the individual sampling points within the field ranged from an erosion rate of -12.9 t ha{sup -1} yr{sup -1} to a deposition rate of 19.2 t ha{sup -1} yr{sup -1}. Composite samples of surface soil (0-5 cm) were collected immediately adjacent to each coring point and these samples were analysed for a range of soil properties. Individual soil properties associated with these samples showed significant variability, with CV values generally lying in the range 10-30%. The relationships between the surface soil properties and the soil redistribution rate were analysed. This analysis demonstrated statistically significant relationships between some soil properties (total phosphorus, % clay, Ti and As) and the soil

  9. Carrying away and redistribution of radioisotopes on the Peyne catchment basin. Preliminary report; Entrainement et redistribution des radionucleides sur le bassin versant de la Peyne. Rapport preliminaire

    Energy Technology Data Exchange (ETDEWEB)

    Duffa, C.; Danic, F

    2006-07-01

    The transfers of radioisotopes present in soils and sediments are essentially conditioned by the mobilities of the physical vectors which constitute their supports. The water is the main vector of natural transfer, radioisotopes being associated with it under dissolved or particulate shape. The rainout and the hydrous erosion are responsible in particular for the carrying away and for the redistribution of contaminants following an atmospheric deposit on a catchment basin. However their effect is not the same in any point of the catchment basin. The work begun here aims at elaborating a classification of the grounds sensitivity towards this phenomenon of radioisotopes carrying away. The different factors of sensitivity have been identified: pluviometry, slope, soils occupation and soils nature. The Peyne catchment basin, that presents an important variability of these four parameters, constitutes the experimental site for this study. On this catchment basin, we search to identify the areas the most sensitive to the carrying away of radioisotopes, by combining a theoretical predictive approach based on the cartography and a descriptive approach basing on the sampling and the analysis of soils samples. (N.C.)

  10. Lead sequestration and species redistribution during soil organic matter decomposition

    Science.gov (United States)

    Schroth, A.W.; Bostick, B.C.; Kaste, J.M.; Friedland, A.J.

    2008-01-01

    The turnover of soil organic matter (SOM) maintains a dynamic chemical environment in the forest floor that can impact metal speciation on relatively short timescales. Here we measure the speciation of Pb in controlled and natural organic (O) soil horizons to quantify changes in metal partitioning during SOM decomposition in different forest litters. We provide a link between the sequestration of pollutant Pb in O-horizons, estimated by forest floor Pb inventories, and speciation using synchrotron-based X-ray fluorescence and X-ray absorption spectroscopy. When Pb was introduced to fresh forest Oi samples, it adsorbed primarily to SOM surfaces, but as decomposition progressed over two years in controlled experiments, up to 60% of the Pb was redistributed to pedogenic birnessite and ferrihydrite surfaces. In addition, a significant fraction of pollutant Pb in natural soil profiles was associated with similar mineral phases (???20-35%) and SOM (???65-80%). Conifer forests have at least 2-fold higher Pb burdens in the forest floor relative to deciduous forests due to more efficient atmospheric scavenging and slower organic matter turnover. We demonstrate that pedogenic minerals play an important role in surface soil Pb sequestration, particularly in deciduous forests, and should be considered in any assessment of pollutant Pb mobility. ?? 2008 American Chemical Society.

  11. Demographic aging in the United States: implications for population and income redistribution to the year 2000.

    Science.gov (United States)

    Serow, W J; Spar, M A

    1982-01-01

    "The purpose of this paper is to analyze the effects of a prolonged period of sustained low fertility upon shifts in the population distribution of the United States among Department of Energy (DOE) regions." The authors also examine the impact of demographic aging on income distribution up to the year 2000 using the assumptions made in the Series III population projections prepared by the U.S. Bureau of the Census in 1977. It is noted that migration will emerge as the primary agent for internal population redistribution. excerpt

  12. The Spanish income tax reform of 2015: analysis of the effects on poverty and redistribution using microsimulation tools

    Directory of Open Access Journals (Sweden)

    Nuria Badenes-Plá

    2017-09-01

    Full Text Available In this work we analyze the effects of the 2015 reform of the Spanish personal income tax (PIT on tax revenue, liquidity, redistribution, progressivity, and poverty, using microdata. Tax reform has increased the redistributive effect. The applicable legislation in 2016 is almost 6.3% more redistributive than that in 2011, as measured by the Reynolds-Smolensky index. This is a remarkable achievement since greater redistribution has been attained through significantly lower tax revenue. The 2016 legislation has produced 4.4% lower tax revenue, but progressivity, as measured by Kakwani index, has increased by 12.2% from the 2011 legislation. The redistributive and progressivity analysis has been conducted with the use of microsimulation tools developed in the Instituto de Estudios Fiscales (IEF, in Spain. The poverty analysis is made using EUROMOD, a tax-benefit microsimulation model for the European Union.

  13. Pacific Northwest Laboratory annual report for 1992 to the DOE Office of Energy Research. Part 3, Atmospheric and climate research

    Energy Technology Data Exchange (ETDEWEB)

    Schrempf, R.E. [ed.

    1993-04-01

    Within the US Department of Energy`s (DOE`s) Office of Health and Environmental Research (OHER), the atmospheric sciences and carbon dioxide research programs are part of the Environmental Sciences Division (ESD). One of the central missions of the division is to provide the DOE with scientifically defensible information on the local, regional, and global distributions of energy-related pollutants and their effects on climate. This information is vital to the definition and implementation of a sound national energy strategy. This volume reports on the progress and status of all OHER atmospheric science and climate research projects at the Pacific Northwest Laboratory (PNL). PNL has had a long history of technical leadership in the atmospheric sciences research programs within OHER. Within the ESD, the Atmospheric Chemistry Program (ACP) continues DOE`s long-term commitment to study the continental and oceanic fates of energy-related air pollutants. Research through direct measurement, numerical modeling, and laboratory studies in the ACP emphasizes the long-range transport, chemical transformation, and removal of emitted pollutants, oxidant species, nitrogen-reservoir species, and aerosols. The Atmospheric Studies in Complex Terrain (ASCOT) program continues to apply basic research on density-driven circulations and on turbulent mixing and dispersion in the atmospheric boundary layer to the micro- to mesoscale meteorological processes that affect air-surface exchange and to emergency preparedness at DOE and other facilities. Research at PNL provides basic scientific underpinnings to DOE`s program of global climate research. Research projects within the core carbon dioxide and ocean research programs are now integrated with those in the Atmospheric Radiation Measurements (ARM), the Computer Hardware, Advanced Mathematics and Model Physics (CHAMMP), and Quantitative Links programs to form DOE`s contribution to the US Global Change Research Program.

  14. Is a Minimum Wage an Appropriate Instrument for Redistribution?

    NARCIS (Netherlands)

    A.A.F. Gerritsen (Aart); B. Jacobs (Bas)

    2016-01-01

    textabstractWe analyze the redistributional (dis)advantages of a minimum wage over income taxation in competitive labor markets, without imposing assumptions on the (in)efficiency of labor rationing. Compared to a distributionally equivalent tax change, a minimum-wage increase raises involuntary

  15. Influence of the atmosphere on the space detection of ultra-high energy cosmic rays; Influence de l'atmosphere sur la detection spatiale des rayons cosmiques d'ultra-haute energie

    Energy Technology Data Exchange (ETDEWEB)

    Moreggia, S

    2007-06-15

    EUSO (Extreme Universe Space Observatory) is a project of ultra-high energy (> 10{sup 20} eV) cosmic rays detection from space. Its concept relies on the observation of fluorescence and Cerenkov photons emitted by extensive air showers from a telescope located on the International Space Station. A simulation software has been developed to study the characteristics of this innovative concept of detection. It deals with the different steps of the detection chain: extensive air shower development, emission of fluorescence and Cerenkov light, and radiative transfer to the telescope. A Monte-Carlo code has been implemented to simulate the propagation of photons through the atmosphere, dealing with multiple scattering in clear sky conditions as well as in presence of aerosols and clouds. With this simulation program, the impact of atmospheric conditions on the performance of a space-located detector has been studied. The precise treatment of photons propagation through the atmosphere has permitted to quantify the scattered light contribution to the detected signal. (author)

  16. New Cooperative Mechanisms of Low Energy Nuclear Reactions Using Superlow Energy External Fields

    OpenAIRE

    Gareev, F. A.; Zhidkova, I. E.

    2005-01-01

    We proposed a new mechanism of LENR: cooperative processes in whole system - nuclei+atoms+condensed matter can occur at smaller threshold then corresponding ones on free constituents. The cooperative processes can be induced and enhanced by low energy external fields. The excess heat is the emission of internal energy and transmutations at LENR are the result of redistribution inner energy of whole system.

  17. Changes in the poleward energy flux by the atmosphere and ocean as a possible cause for ice ages

    Energy Technology Data Exchange (ETDEWEB)

    Newell, R E

    1974-01-01

    It is proposed that the two preferred modes of temperature and circulation of the atmosphere which occurred over the past 100,000 yr correspond to two modes of partitioning of the poleward energy flux between the atmosphere and ocean. At present the ocean carries an appreciable fraction of the transport, for example about three-eighths at 30/sup 0/N. In the cold mode it is suggested that the ocean carries less, and the atmosphere more, than at present. During the formation of the ice, at 50,000 BP, for example, the overall flux is expected to be slightly lower than at present and during melting, at 16,000 BP, slightly higher. The transition between the modes is seen as a natural imbalance in the atmosphere-ocean energy budget with a gradual warming of the ocean during an Ice Age eventually culminating in its termination. At the present the imbalance is thought to correspond to a natural cooling of the ocean, which will lead to the next Ice Age. The magnitude of temperature changes in the polar regions differ between the hemispheres in the same way as present seasonal changes, being larger in the northern than in the southern hemisphere. Overall the atmospheric energy cycle was more intense during the Ice Ages than now. Observational tests are proposed by which predictions from the present arguments may be compared with deductions about the environment of the past. Data used for the present state of the atmospheric general circulation are the latest global data available and contain no known major uncertainties. However, data for the oceanic circulation and energy budget are less well known for the present and almost unknown for the past. Hence the proposed imbalances must be treated as part of a speculative hypothesis, but one which eventually may be subject to observational test as no solar variability is invoked.

  18. ATMOSPHERIC DISPERSAL AND DEPOSITION OF TEPHRA FROM A POTENTIAL VOLCANIC ERUPTION AT YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    C. Harrington

    2004-01-01

    The purpose of this model report is to provide documentation of the conceptual and mathematical model (Ashplume) for atmospheric dispersal and subsequent deposition of ash on the land surface from a potential volcanic eruption at Yucca Mountain, Nevada. This report also documents the ash (tephra) redistribution conceptual model. These aspects of volcanism-related dose calculation are described in the context of the entire igneous disruptive events conceptual model in ''Characterize Framework for Igneous Activity'' (BSC 2004 [DIRS 169989], Section 6.1.1). The Ashplume conceptual model accounts for incorporation and entrainment of waste fuel particles associated with a hypothetical volcanic eruption through the Yucca Mountain repository and downwind transport of contaminated tephra. The Ashplume mathematical model describes the conceptual model in mathematical terms to allow for prediction of radioactive waste/ash deposition on the ground surface given that the hypothetical eruptive event occurs. This model report also describes the conceptual model for tephra redistribution from a basaltic cinder cone. Sensitivity analyses and model validation activities for the ash dispersal and redistribution models are also presented. Analyses documented in this model report update the previous documentation of the Ashplume mathematical model and its application to the Total System Performance Assessment (TSPA) for the License Application (TSPA-LA) igneous scenarios. This model report also documents the redistribution model product outputs based on analyses to support the conceptual model. In this report, ''Ashplume'' is used when referring to the atmospheric dispersal model and ''ASHPLUME'' is used when referencing the code of that model. Two analysis and model reports provide direct inputs to this model report, namely ''Characterize Eruptive Processes at Yucca Mountain, Nevada and Number of Waste Packages Hit by Igneous Intrusion''. This model report provides direct inputs to

  19. Free energy change of a dislocation due to a Cottrell atmosphere

    Science.gov (United States)

    Sills, R. B.; Cai, W.

    2018-06-01

    The free energy reduction of a dislocation due to a Cottrell atmosphere of solutes is computed using a continuum model. We show that the free energy change is composed of near-core and far-field components. The far-field component can be computed analytically using the linearized theory of solid solutions. Near the core the linearized theory is inaccurate, and the near-core component must be computed numerically. The influence of interactions between solutes in neighbouring lattice sites is also examined using the continuum model. We show that this model is able to reproduce atomistic calculations of the nickel-hydrogen system, predicting hydride formation on dislocations. The formation of these hydrides leads to dramatic reductions in the free energy. Finally, the influence of the free energy change on a dislocation's line tension is examined by computing the equilibrium shape of a dislocation shear loop and the activation stress for a Frank-Read source using discrete dislocation dynamics.

  20. Synthetic oligomer analysis using atmospheric pressure photoionization mass spectrometry at different photon energies

    International Nuclear Information System (INIS)

    Desmazières, Bernard; Legros, Véronique; Giuliani, Alexandre; Buchmann, William

    2014-01-01

    Graphical abstract: Atmospheric pressure photoIonization mass spectra of synthetic oligomers were recorded in the negative mode by varying the photon energy using synchrotron radiation. Photon energy required for an efficient ionization of the polymer was correlated to ionization potential of the solvent (for example 9.4 eV for tetrahydrofuran). -- Highlights: •Atmospheric pressure photoionization was performed using synchrotron radiation. •Photoionization of oligomers in THF with 10% CH 2 Cl 2 produces intact [M + Cl] − ions. •The photon energy required corresponds to ionization potential of the solvent. •Polymer distributions depend on source parameters such T °C and applied voltages. •Liquid chromatography was coupled to MS using an APPI interface for polymer analysis. -- Abstract: Atmospheric pressure photoionization (APPI) followed by mass spectrometric detection was used to ionize a variety of polymers: polyethylene glycol, polymethyl methacrylate, polystyrene, and polysiloxane. In most cases, whatever the polymer or the solvent used (dichloromethane, tetrahydrofuran, hexane, acetone or toluene), only negative ion mode produced intact ions such as chlorinated adducts, with no or few fragmentations, in contrast to the positive ion mode that frequently led to important in-source fragmentations. In addition, it was shown that optimal detection of polymer distributions require a fine tuning of other source parameters such as temperature and ion transfer voltage. Series of mass spectra were recorded in the negative mode, in various solvents (dichloromethane, tetrahydrofuran, hexane, toluene, and acetone), by varying the photon energy from 8 eV up to 10.6 eV using synchrotron radiation. To these solvents, addition of a classical APPI dopant (toluene or acetone) was not necessary. Courtesy of the synchrotron radiation, it was demonstrated that the photon energy required for an efficient ionization of the polymer was correlated to the ionization energy

  1. Synthetic oligomer analysis using atmospheric pressure photoionization mass spectrometry at different photon energies

    Energy Technology Data Exchange (ETDEWEB)

    Desmazières, Bernard [Global Bioenergies, 5 rue Henri Desbruyeres, 91030 Evry (France); Legros, Véronique [CNRS, UMR8587, Université d’Evry-Val-d’Essonne, Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, F-91025 Evry (France); Giuliani, Alexandre [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, 91192 Gif-sur-Yvette (France); UAR1008, CEPIA, INRA, Rue de la Geraudiere, F-44316 Nantes (France); Buchmann, William, E-mail: william.buchmann@univ-evry.fr [CNRS, UMR8587, Université d’Evry-Val-d’Essonne, Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, F-91025 Evry (France)

    2014-01-15

    Graphical abstract: Atmospheric pressure photoIonization mass spectra of synthetic oligomers were recorded in the negative mode by varying the photon energy using synchrotron radiation. Photon energy required for an efficient ionization of the polymer was correlated to ionization potential of the solvent (for example 9.4 eV for tetrahydrofuran). -- Highlights: •Atmospheric pressure photoionization was performed using synchrotron radiation. •Photoionization of oligomers in THF with 10% CH{sub 2}Cl{sub 2} produces intact [M + Cl]{sup −} ions. •The photon energy required corresponds to ionization potential of the solvent. •Polymer distributions depend on source parameters such T °C and applied voltages. •Liquid chromatography was coupled to MS using an APPI interface for polymer analysis. -- Abstract: Atmospheric pressure photoionization (APPI) followed by mass spectrometric detection was used to ionize a variety of polymers: polyethylene glycol, polymethyl methacrylate, polystyrene, and polysiloxane. In most cases, whatever the polymer or the solvent used (dichloromethane, tetrahydrofuran, hexane, acetone or toluene), only negative ion mode produced intact ions such as chlorinated adducts, with no or few fragmentations, in contrast to the positive ion mode that frequently led to important in-source fragmentations. In addition, it was shown that optimal detection of polymer distributions require a fine tuning of other source parameters such as temperature and ion transfer voltage. Series of mass spectra were recorded in the negative mode, in various solvents (dichloromethane, tetrahydrofuran, hexane, toluene, and acetone), by varying the photon energy from 8 eV up to 10.6 eV using synchrotron radiation. To these solvents, addition of a classical APPI dopant (toluene or acetone) was not necessary. Courtesy of the synchrotron radiation, it was demonstrated that the photon energy required for an efficient ionization of the polymer was correlated to the

  2. Effects of atmospheric deposition of energy-related pollutants on water quality: a review and assessment

    International Nuclear Information System (INIS)

    Davis, M.J.

    1981-05-01

    The effects on surface-water quality of atmospheric pollutants that are generated during energy production are reviewed and evaluated. Atmospheric inputs from such sources to the aquatic environment may include trace elements, organic compounds, radionuclides, and acids. Combustion is the largest energy-related source of trace-element emissions to the atmosphere. This report reviews the nature of these emissions from coal-fired power plants and discusses their terrestrial and aquatic effects following deposition. Several simple models for lakes and streams are developed and are applied to assess the potential for adverse effects on surface-water quality of trace-element emissions from coal combustion. The probability of acute impacts on the aquatic environment appears to be low; however, more subtle, chronic effects are possible. The character of acid precipitation is reviewed, with emphasis on aquatic effects, and the nature of existing or potential effects on water quality, aquatic biota, and water supply is considered. The response of the aquatic environment to acid precipitation depends on the type of soils and bedrock in a watershed and the chemical characteristics of the water bodies in question. Methods for identifying regions sensitive to acid inputs are reviewed. The observed impact of acid precipitation ranges from no effects to elimination of fish populations. Coal-fired power plants and various stages of the nuclear fuel cycle release radionuclides to the atmosphere. Radioactive releases to the atmosphere from these sources and the possible aquatic effects of such releases are examined. For the nuclear fuel cycle, the major releases are from reactors and reprocessing. Although aquatic effects of atmospheric releases have not been fully quantified, there seems little reason for concern for man or aquatic biota

  3. Large-area atmospheric Cherenkov detectors for high-energy gamma-ray astronomy

    International Nuclear Information System (INIS)

    Ong, R.A.

    1996-01-01

    This paper describes the development of new ground-based gamma-ray detectors to explore the energy region between 20 and 200 GeV. This region in energy is interesting because it is currently unexplored by any experiment. The proposed detectors use the atmospheric Cherenkov technique, in which Cherenkov radiation produced in the gamma-ray air showers is detected using mirrors and light-sensitive devices. The important feature of the proposed experiments is the use of large mirror collection areas, which should allow for a significant improvement (i.e. reduction) in energy threshold over existing experiments. Large mirror areas are available for relatively low cost at central tower solar power plants, and there are two groups developing gamma-ray experiments using solar heliostat arrays. This paper summarizes the progress in the design of experiments using this novel approach

  4. Waves in the middle and upper atmosphere of Mars as seen by the Radio Science Experiment MaRS on Mars Express

    Science.gov (United States)

    Tellmann, S.; Paetzold, M.; Häusler, B.; Hinson, D. P.; Peter, K.; Tyler, G. L.

    2017-12-01

    Atmospheric waves play a crucial role in the Martian atmosphere. They are responsible for the redistribution of momentum, energy and dust and for the coupling of the different atmospheric regions on Mars. Almost all kinds of waves have been observed in the lower atmosphere (e.g. stationary and transient waves, baroclinic waves as well as migrating and non-migrating thermal tides, gravity waves, etc...). Atmospheric waves are also known to exist in the middle atmosphere of Mars ( 70-120 km, e.g. by the SPICAM instrument on Mars Express). In the thermosphere, thermal tides have been observed e.g. by radio occultation or accelerometer measurements on MGS. Recently, the NGIMS instrument on MAVEN reported gravity waves in the thermosphere of Mars. Radio Science profiles from the Mars Express Radio Science experiment MaRS on Mars Express can analyse the temperature, pressure and neutral number density profiles in the lower atmosphere (from a few hundred metres above the surface up to 40-50 km) and electron density profiles in the ionosphere of Mars. Wavelike structures have been detected below the main ionospheric layers (M1 & M2) and in the topside of the ionosphere. The two coherent frequencies of the MaRS experiment allow to discriminate between plasma density fluctuations in the ionosphere and Doppler related frequency shifts caused by spacecraft movement. A careful analysis of the observed electron density fluctuations in combination with sensitivity studies of the radio occultation technique will be used to classify the observed fluctuations. The MaRS experiment is funded by DLR under grant 50QM1401.

  5. Atmospheric Energy Deposition Modeling and Inference for Varied Meteoroid Structures

    Science.gov (United States)

    Wheeler, Lorien; Mathias, Donovan; Stokan, Edward; Brown, Peter

    2018-01-01

    Asteroids populations are highly diverse, ranging from coherent monoliths to loosely-bound rubble piles with a broad range of material and compositional properties. These different structures and properties could significantly affect how an asteroid breaks up and deposits energy in the atmosphere, and how much ground damage may occur from resulting blast waves. We have previously developed a fragment-cloud model (FCM) for assessing the atmospheric breakup and energy deposition of asteroids striking Earth. The approach represents ranges of breakup characteristics by combining progressive fragmentation with releases of variable fractions of debris and larger discrete fragments. In this work, we have extended the FCM to also represent asteroids with varied initial structures, such as rubble piles or fractured bodies. We have used the extended FCM to model the Chelyabinsk, Benesov, Kosice, and Tagish Lake meteors, and have obtained excellent matches to energy deposition profiles derived from their light curves. These matches provide validation for the FCM approach, help guide further model refinements, and enable inferences about pre-entry structure and breakup behavior. Results highlight differences in the amount of small debris vs. discrete fragments in matching the various flare characteristics of each meteor. The Chelyabinsk flares were best represented using relatively high debris fractions, while Kosice and Benesov cases were more notably driven by their discrete fragmentation characteristics, perhaps indicating more cohesive initial structures. Tagish Lake exhibited a combination of these characteristics, with lower-debris fragmentation at high altitudes followed by sudden disintegration into small debris in the lower flares. Results from all cases also suggest that lower ablation coefficients and debris spread rates may be more appropriate for the way in which debris clouds are represented in FCM, offering an avenue for future model refinement.

  6. Quantitative estimation of viable myocardium in the infarcted zone by infarct-redistribution map from images of exercise thallium-201 emission computed tomography

    International Nuclear Information System (INIS)

    Sekiai, Yasuhiro

    1988-01-01

    To evaluate, quantitatively, the viable myocardium in the infarcted zone, we invented the infarct-redistribution map which is produced from images of exercise thallium-201 emission computed tomography performed on 10 healthy subjects and 20 patients with myocardial infarction. The map displayed a left ventricle in which the infarcted area both with and without redistribution, the redistribution area without infarction, and normal perfusion area were shown separated in same screen. In these circumstances, the nonredistribution infarct lesion was found as being surrounded by the redistribution area. Indices of infarct and redistribution extent (defect score, % defect, redistribution ratio (RR) and redistribution index (RI)), were induced from the map and were used for quantitative analysis of the redistribution area and as the basis for comparative discussion regarding regional wall motion of the left ventricle. The quantitative indices of defect score, % defect, RR and RI were consistent with the visual assessment of planar images in detecting the extent of redistribution. Furthermore, defect score and % defect had an inverted linear relationship with % shortening (r = -0.573; p < 0.05, r = -0.536; p < 0.05, respectively), and RI had a good linear relationship with % shortening (r = 0.669; p < 0.01). We conclude that the infarct-redistribution map accurately reflects the myocardial viability and therefore may be useful for quantitative estimation of viable myocardium in the infarcted zone. (author)

  7. Mount Aragats as a stable electron accelerator for atmospheric High-energy physics research

    International Nuclear Information System (INIS)

    Chilingarian, A.; Hovsepyan, G.; Mnatsakanyan, E.

    2016-01-01

    The observation of the numerous Thunderstorm ground Enhancements (TGEs), i.e. enhanced fluxes of electrons, gamma rays and neutrons detected by particle detectors located on the Earth’s surface and related to the strong thunderstorms above it helped to establish a new scientific topic - high-energy physics in the atmosphere. The Relativistic Runaway Electron Avalanches (RREAs) are believed to be a central engine initiated high-energy processes in the thunderstorm atmospheres. RREAs observed on Aragats Mt. in Armenia during strongest thunderstorms and simultaneous measurements of TGE electron and gamma ray energy spectra proved that RREA is a robust and realistic mechanism for electron acceleration. TGE research facilitates investigations of the long-standing lightning initiation problem. For the last 5 years we were experimenting with the “beams” of “electron accelerators” operated in the thunderclouds above the Aragats research station. Thunderstorms are very frequent above Aragats, peaking at May-June and almost all of them are accompanied with enhanced particle fluxes. The station is located on a plateau at altitude 3200 asl near a large lake. Numerous particle detectors and field meters are located in three experimental halls as well as outdoors; the facilities are operated all year round. The key method employed is that all the relevant information is being gathered, including the data on the particle fluxes, fields, lightning occurrences, and meteorological conditions. By the example of the huge thunderstorm that took place at Mt. Aragats on the 28th of August 2015, we show that simultaneous detection of all the relevant data allowed us to reveal the temporal pattern of the storm development and to investigate the atmospheric discharges and particle fluxes. (author)

  8. How are radioactive deposits redistributed among watersheds in post-accidental situations? Lessons learned from the Chernobyl and Fukushima accidents

    International Nuclear Information System (INIS)

    2016-03-01

    As radioactive releases in the atmosphere resulted in heterogeneous deposits on large continental surfaces including forests, farming lands and residential areas, water runoff in contaminated areas governs the downstream redistribution of caesium 134 and 137. Based on several published studies, this report proposes a synthetic overview of the knowledge of radionuclide flows associated to these processes. The quantity of radio-caesium concerned by watershed washouts has been studied, and appeared to be the result of complex hydrologic and erosive processes. Some studies noticed that, in this respect, the comparison between exported flows in Chernobyl and in Fukushima is difficult because the washout of radio-caesium was essentially solid in Fukushima while liquid in Chernobyl. Thus, the strategy applied for the management of aquatic environments is different

  9. Redistribution, Recognition and Representation: Working against Pedagogies of Indifference

    Science.gov (United States)

    Lingard, Bob; Keddie, Amanda

    2013-01-01

    This paper reports on an Australian government-commissioned research study that documented classroom pedagogies in 24 Queensland schools. The research created the model of "productive pedagogies", which conjoined what Nancy Fraser calls a politics of redistribution, recognition and representation. In this model pedagogies are…

  10. Organizations of food redistribution and rescue.

    Science.gov (United States)

    Mousa, T Y; Freeland-Graves, J H

    2017-11-01

    Food insecurity affects 13.4% of the USA population, despite the fact that 30-40% of all food is deposited in a landfill. Food rescue nutrition is the process of redistribution of surplus food to the impoverished. The aim of this study is to document the extent of involvement of organizations in food rescue nutrition. In this cross-sectional study, a survey about organizations involved in food rescue nutrition was developed, validated, and then tested. Directors of 100 organizations involved in food rescue nutrition from eight Southwestern States in the USA participated in this research. These organizations provided an average of 2 million kg of food to more than 40,000 clients each month. Food assistance programs had an average of eight workers and 3081 volunteers. In addition to food, these organizations provided other services such as clothing, clinical, and childcare. The agencies encountered several challenges, including lack of resources that resulted in reducing food portions and turning away clients. The extent of involvement of community-based programs in food rescue nutrition was strong in eight Southwestern states in the USA. Organizations involved in food redistribution helped alleviate food insecurity in their clients. Sustainability of these charitable networks was dependent on availability of resources and sufficient volunteers. Health professionals should encourage these organizations by providing support through donations of time, money, and/or food. Copyright © 2017 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  11. Mobile energy sharing futures

    DEFF Research Database (Denmark)

    Worgan, Paul; Knibbe, Jarrod; Plasencia, Diego Martinez

    2016-01-01

    We foresee a future where energy in our mobile devices can be shared and redistributed to suit our current task needs. Many of us are beginning to carry multiple mobile devices and we seek to re-evaluate the traditional view of a mobile device as only accepting energy. In our vision, we can...... sharing futures....

  12. Mass Redistribution in the Core and Time-varying Gravity at the Earth's Surface

    Science.gov (United States)

    Kuang, Wei-Jia; Chao, Benjamin F.; Fang, Ming

    2003-01-01

    The Earth's liquid outer core is in convection, as suggested by the existence of the geomagnetic field in much of the Earth's history. One consequence of the convection is the redistribution of mass resulting from relative motion among fluid parcels with slightly different densities. This time dependent mass redistribution inside the core produces a small perturbation on the gravity field of the Earth. With our numerical dynamo solutions, we find that the mass redistribution (and the resultant gravity field) symmetric about the equator is much stronger than that anti-symmetric about the equator. In particular, J(sub 2) component is the strongest. In addition, the gravity field variation increases with the Rayleigh number that measures the driving force for the geodynamo in the core. With reasonable scaling from the current dynamo solutions, we could expect that at the surface of the Earth, the J(sub 2) variation from the core is on the order of l0(exp -16)/year relative to the mean (i.e. spherically symmetric) gravity field of the Earth. The possible shielding effect due to core-mantle boundary pressure variation loading is likely much smaller and is therefore negligible. Our results suggest that time-varying gravity field perturbation due to core mass redistribution may be measured with modem space geodetic observations, which will result a new means of detecting dynamical processes in the Earth's deep interior.

  13. Oxygen redistribution in (UCe)Osub(2-x)

    International Nuclear Information System (INIS)

    Guedeney, Philippe.

    1983-01-01

    Redistribution of oxygen has been investigated in (Usub(0,7)Cesub(0,3))Osub(2-x) mixed oxide subjected to a temperature gradient in laboratory experiments, in order to apply the results to the nuclear fuel (UPu)Osub(2-x). Cylindrical sintered oxide specimens were exposed to temperature up to 1300 0 C with a longitudinal thermal gradient of about 400 0 C/cm. The most interesting feature of the experimental set-up is a solid-state electrochemical gauge (ThO 2 - Y 2 O 3 ), placed in the cold part of the sample which allows a continuous measurement of the oxygen activity. The experiments showed a fast oxygen migration down the thermal gradient. The calculations performed with a model based on solid-state thermodiffusion are in good agreement with experimental results. The heat of transport Q measured for bare samples reaches (7.2+-0.5)-kcal/mole. When the sample is coated with a tight fitting metallic cladding, an extra term Qe has to be added to the heat of transport Qe. This was interpreted as an electrotransport phenomena. On the same basis, calculations applied to radial oxygen redistribution in (UPu)Osub(2-x) seem to be adequate at least during the first stage of irradiation, taking Q=(20+-5)kcal/mole [fr

  14. Improving wind energy forecasts using an Ensemble Kalman Filter data assimilation technique in a fully coupled hydrologic and atmospheric model

    Science.gov (United States)

    Williams, J. L.; Maxwell, R. M.; Delle Monache, L.

    2012-12-01

    Wind power is rapidly gaining prominence as a major source of renewable energy. Harnessing this promising energy source is challenging because of the chaotic nature of wind and its propensity to change speed and direction over short time scales. Accurate forecasting tools are critical to support the integration of wind energy into power grids and to maximize its impact on renewable energy portfolios. Numerous studies have shown that soil moisture distribution and land surface vegetative processes profoundly influence atmospheric boundary layer development and weather processes on local and regional scales. Using the PF.WRF model, a fully-coupled hydrologic and atmospheric model employing the ParFlow hydrologic model with the Weather Research and Forecasting model coupled via mass and energy fluxes across the land surface, we have explored the connections between the land surface and the atmosphere in terms of land surface energy flux partitioning and coupled variable fields including hydraulic conductivity, soil moisture and wind speed, and demonstrated that reductions in uncertainty in these coupled fields propagate through the hydrologic and atmospheric system. We have adapted the Data Assimilation Research Testbed (DART), an implementation of the robust Ensemble Kalman Filter data assimilation algorithm, to expand our capability to nudge forecasts produced with the PF.WRF model using observational data. Using a semi-idealized simulation domain, we examine the effects of assimilating observations of variables such as wind speed and temperature collected in the atmosphere, and land surface and subsurface observations such as soil moisture on the quality of forecast outputs. The sensitivities we find in this study will enable further studies to optimize observation collection to maximize the utility of the PF.WRF-DART forecasting system.

  15. Numerical study of the electron and muon lateral distribution in atmospheric showers of high energy cosmic rays

    Directory of Open Access Journals (Sweden)

    Georgios Atreidis

    2017-01-01

    Full Text Available The lateral distribution of an atmospheric shower depends on the characteristics of the high energy interactions and the type of the primary particle. The influence of the primary particle in the secondary development of the shower into the atmosphere, is studied by analyzing the lateral distribution of electron and muon showers having as primary particle, proton, photon or iron nucleus. This study of the lateral distribution can provide useful conclusions for the mass and energy of the primary particle. This paper compares the data that we get from simulations with CORSIKA program with experimental data and the theoretical NKG function expressing lateral electron and muon distribution. Then we modify the original NKG function to fit better to the simulation data and propose a method for determining the mass of the original particle started the atmospheric shower.

  16. Testing model energy spectra of charged particles produced in hadron interactions on the basis of atmospheric muons

    International Nuclear Information System (INIS)

    Dedenko, L. G.; Roganova, T. M.; Fedorova, G. F.

    2015-01-01

    An original method for calculating the spectrum of atmospheric muons with the aid of the CORSIKA 7.4 code package and numerical integration is proposed. The first step consists in calculating the energy distribution of muons for various fixed energies of primary-cosmic-ray particles and within several chosen hadron-interaction models included in the CORSIKA 7.4 code package. After that, the spectrum of atmospheric muons is calculated via integrating the resulting distribution densities with the chosen spectrum of primary-cosmic-ray particles. The atmospheric-muon fluxes that were calculated on the basis of the SIBYLL 2.1, QGSJET01, and QGSJET II-04 models exceed the predictions of the wellknown Gaisser approximation of this spectrum by a factor of 1.5 to 1.8 in the range of muon energies between about 10 3 and 10 4 GeV.Under the assumption that, in the region of extremely highmuon energies, a dominant contribution to the muon flux comes from one to two generations of charged π ± and K ± mesons, the production rate calculated for these mesons is overestimated by a factor of 1.3 to 1.5. This conclusion is confirmed by the results of the LHCf and TOTEM experiments

  17. Redistribution of intestinal microcirculatory oxygenation during acute hemodilution in pigs

    NARCIS (Netherlands)

    Schwarte, Lothar A.; Fournell, Artur; van Bommel, Jasper; Ince, Can

    2005-01-01

    Acute normovolemic hemodilution (ANH) compromizes intestinal microcirculatory oxygenation; however, the underlying mechanisms are incompletely understood. We hypothesized that contributors herein include redistribution of oxygen away from the intestines and shunting of oxygen within the intestines.

  18. Three-pattern decomposition of global atmospheric circulation: part II—dynamical equations of horizontal, meridional and zonal circulations

    Science.gov (United States)

    Hu, Shujuan; Cheng, Jianbo; Xu, Ming; Chou, Jifan

    2018-04-01

    The three-pattern decomposition of global atmospheric circulation (TPDGAC) partitions three-dimensional (3D) atmospheric circulation into horizontal, meridional and zonal components to study the 3D structures of global atmospheric circulation. This paper incorporates the three-pattern decomposition model (TPDM) into primitive equations of atmospheric dynamics and establishes a new set of dynamical equations of the horizontal, meridional and zonal circulations in which the operator properties are studied and energy conservation laws are preserved, as in the primitive equations. The physical significance of the newly established equations is demonstrated. Our findings reveal that the new equations are essentially the 3D vorticity equations of atmosphere and that the time evolution rules of the horizontal, meridional and zonal circulations can be described from the perspective of 3D vorticity evolution. The new set of dynamical equations includes decomposed expressions that can be used to explore the source terms of large-scale atmospheric circulation variations. A simplified model is presented to demonstrate the potential applications of the new equations for studying the dynamics of the Rossby, Hadley and Walker circulations. The model shows that the horizontal air temperature anomaly gradient (ATAG) induces changes in meridional and zonal circulations and promotes the baroclinic evolution of the horizontal circulation. The simplified model also indicates that the absolute vorticity of the horizontal circulation is not conserved, and its changes can be described by changes in the vertical vorticities of the meridional and zonal circulations. Moreover, the thermodynamic equation shows that the induced meridional and zonal circulations and advection transport by the horizontal circulation in turn cause a redistribution of the air temperature. The simplified model reveals the fundamental rules between the evolution of the air temperature and the horizontal, meridional

  19. New cooperative mechanisms of low-energy nuclear reactions using super low-energy external field

    International Nuclear Information System (INIS)

    Gareev, F.A.; Zhidkova, I.E.

    2006-01-01

    We propose a new mechanism of LENR: cooperative processes in the whole system, nuclei + atoms + condensed matter, can occur at a smaller threshold energies than the corresponding ones on free constituents. The cooperative processes can be induced and enhanced by low-energy external fields. The excess heat is the emission of internal energy and transmutations at LENR are the result of redistribution of inner energy of the whole system. (author)

  20. New Cooperative Mechanisms of Low-Energy Nuclear Reactions Using Super Low-Energy External Field

    Science.gov (United States)

    Gareev, F. A.; Zhidkova, I. E.

    We propose a new mechanism of LENR: cooperative processes in the whole system, nuclei + atoms + condensed matter, can occur at a smaller threshold energies than the corresponding ones on free constituents. The cooperative processes can be induced and enhanced by low-energy external fields. The excess heat is the emission of internal energy and transmutations at LENR are the result of redistribution of inner energy of the whole system.

  1. Observation of instability-induced current redistribution in a spherical-torus plasma.

    Science.gov (United States)

    Menard, J E; Bell, R E; Gates, D A; Kaye, S M; LeBlanc, B P; Levinton, F M; Medley, S S; Sabbagh, S A; Stutman, D; Tritz, K; Yuh, H

    2006-09-01

    A motional Stark effect diagnostic has been utilized to reconstruct the parallel current density profile in a spherical-torus plasma for the first time. The measured current profile compares favorably with neoclassical theory when no large-scale magnetohydrodynamic instabilities are present in the plasma. However, a current profile anomaly is observed during saturated interchange-type instability activity. This apparent anomaly can be explained by redistribution of neutral beam injection current drive and represents the first observation of interchange-type instabilities causing such redistribution. The associated current profile modifications contribute to sustaining the central safety factor above unity for over five resistive diffusion times, and similar processes may contribute to improved operational scenarios proposed for ITER.

  2. Catchment-scale redistribution of lithogenic solutes and black carbon over three years following wildfire in the Jemez Mountains, New Mexico, USA

    Science.gov (United States)

    Pohlmann, M. A.; Root, R.; Abrell, L.; Schwartz, C. J.; Chorover, J.

    2017-12-01

    Wildfire represents a disturbance that is becoming more prevalent as climate shifts to hotter and drier conditions in the southwestern US. It has profound and potentially long-term effects on the physical, chemical and microbiological properties of soil, including immediate surface deposition of lithogenic elements and incompletely combusted organic matter (i.e., black carbon or BC) previously held in biomass. The long residence time of BC mitigates oxidative release of carbon to the atmosphere and thus has implications for long-term climate forcing. Immediately following the 2013 Thompson Ridge wildfire in the Jemez River Basin Critical Zone Observatory, we sampled 22 soil profiles across a zero order basin at finely resolved depth intervals to 40 cm. Samples were collected again 12 and 24 months following the fire to assess redistribution of solutes and BC in the two years following fire. Water extractable anions, cations and carbon were measured for each sample and maps were generated by geostatistical interpolation. Additionally, the benzene polycarboxylic acid (BPCA) molecular marker method was employed for a selection of samples to quantify and characterize the BC content of the existing soil organic carbon pool as a function of landscape position and time. The `pulsed' deposition of water-soluble ions and BC followed pre-fire vegetation structure as indicated by solution chemistry data for years one and two displaying elevated solute concentrations in surface depths proximal to dense vegetation. Vertical and lateral redistribution of the water extractable elements and BC were consistent with wetting front propagation and topographic trends (driven by erosion, overland flow and lateral subsurface flow). BC depth profiles indicate vertical infiltration and lateral transport with burial, the latter associated with surface erosion of sediment, as mechanisms for redistribution.

  3. The Sheath Transport Observer for the Redistribution of Mass (STORM) Image

    Science.gov (United States)

    Kuntz, Kip; Collier, Michael; Sibeck, David G.; Porter, F. Scott; Carter, J. A.; Cravens, Thomas; Omidi, N.; Robertson, Ina; Sembay, S.; Snowden, Steven L.

    2008-01-01

    All of the solar wind energy that powers magnetospheric processes passes through the magnetosheath and magnetopause. Global images of the magnetosheath and magnetopause boundary layers will resolve longstanding controversy surrounding fundamental phenomena that occur at the magnetopause and provide information needed to improve operational space weather models. Recent developments showing that soft X-rays (0.15-1 keV) result from high charge state solar wind ions undergoing charge exchange recombination through collisions with exospheric neutral atoms has led to the realization that soft X-ray imaging can provide global maps of the high-density shocked solar wind within the magnetosheath and cusps, regions lying between the lower density solar wind and magnetosphere. We discuss an instrument concept called the Sheath Transport Observer for the Redistribution of Mass (STORM), an X-ray imager suitable for simultaneously imaging the dayside magnetosheath, the magnetopause boundary layers, and the cusps.

  4. The Sheath Transport Observer for the Redistribution of Mass (STORM) Imager

    Science.gov (United States)

    Collier, Michael R.; Sibeck, David G.; Porter, F. Scott; Burch, J.; Carter, J. A.; Cravens, Thomas; Kuntz, Kip; Omidi, N.; Read, A.; Robertson, Ina; hide

    2010-01-01

    All of the solar wind energy that powers magnetospheric processes passes through the magnetosheath and magnetopause. Global images of the magnetosheath and magnetopause boundary layers will resolve longstanding controversies surrounding fundamental phenomena that occur at the magnetopause and provide information needed to improve operational space weather models. Recent developments showing that soft X-rays (0.15-1 keV) result from high charge state solar wind ions undergoing charge exchange recombination through collisions with exospheric neutral atoms has led to the realization that soft X-ray imaging can provide global maps of the high-density shocked solar wind within the magnetosheath and cusps, regions lying between the lower density solar wind and magnetosphere. We discuss an instrument concept called the Sheath Transport Observer for the Redistribution of Mass (STORM), an X-ray imager suitable for simultaneously imaging the dayside magnetosheath, the magnetopause boundary layers, and the cusps.

  5. Tropical Cyclone Signatures in Atmospheric Convective Available Potential Energy

    Science.gov (United States)

    Studholme, Joshua; Gulev, Sergey

    2016-04-01

    Tropical cyclones play an important role in the climate system providing transports of energy and water vapor, forcing the ocean, and also affecting mid-latitude circulation phenomena. Tropical cyclone tracks experience strong interannual variability and in addition, longer term trend-like changes in all ocean basins. Analysis of recent historical data reveal a poleward shift in the locations of tropical cyclone tracks in both the Northern and Southern Hemispheres (Kossin et al. 2014, Nature, 509, 349-352). The physical consequences of these alterations are largely unconstrained. For example, the increasing encroachment of tropical cyclone activity into the extra-tropical environment presents a novel and still poorly understood paradigm for tropical-extratropical interactions. In this respect, the role that the atmospheric convective available potential energy (CAPE) plays in the dynamics of tropical cyclones is highly interesting. The two characteristic global-scale spatial patterns in CAPE are identified using EOF analysis. The first pattern shows an abundance of CAPE in the centre of the Pacific and corresponds to the El Nino Southern Oscillation. The second one is capturing positive CAPE anomalies in the oceanic tropics and negative anomalies over equatorial Africa. Associated with these buoyancy patterns, alterations in tropical cyclone activity occur in all basins forming both zonal and meridional patterns. Atmospheric buoyancy is the trigger for deep convection, and subsequently cyclone genesis. This is the mechanism of impact upon location at the start of cyclone tracks. It is found to have less impact upon where cyclones subsequently move, whether or not they undergo extratropical transition and when and where they experience lysis. It is shown that CAPE plays a critical role in the general circulation in the tropics which in turn is the larger steering context for embedded systems within the Walker and Hadley cells. So this lack of `latter life' impact

  6. Marangoni flows induced by atmospheric-pressure plasma jets

    International Nuclear Information System (INIS)

    Berendsen, C W J; Van Veldhuizen, E M; Kroesen, G M W; Darhuber, A A

    2015-01-01

    We studied the interaction of atmospheric-pressure plasma jets of Ar or air with liquid films of an aliphatic hydrocarbon on moving solid substrates. The hydrodynamic jet-liquid interaction induces a track of lower film thickness. The chemical plasma-surface interaction oxidizes the liquid, leading to a local increase of the surface tension and a self-organized redistribution of the liquid film. We developed a numerical model that qualitatively reproduces the formation, instability and coarsening of the flow patterns observed in the experiments. Monitoring the liquid flow has potential as an in-situ, spatially and temporally resolved, diagnostic tool for the plasma-liquid surface interaction. (paper)

  7. Transition from geostrophic turbulence to inertia-gravity waves in the atmospheric energy spectrum.

    Science.gov (United States)

    Callies, Jörn; Ferrari, Raffaele; Bühler, Oliver

    2014-12-02

    Midlatitude fluctuations of the atmospheric winds on scales of thousands of kilometers, the most energetic of such fluctuations, are strongly constrained by the Earth's rotation and the atmosphere's stratification. As a result of these constraints, the flow is quasi-2D and energy is trapped at large scales—nonlinear turbulent interactions transfer energy to larger scales, but not to smaller scales. Aircraft observations of wind and temperature near the tropopause indicate that fluctuations at horizontal scales smaller than about 500 km are more energetic than expected from these quasi-2D dynamics. We present an analysis of the observations that indicates that these smaller-scale motions are due to approximately linear inertia-gravity waves, contrary to recent claims that these scales are strongly turbulent. Specifically, the aircraft velocity and temperature measurements are separated into two components: one due to the quasi-2D dynamics and one due to linear inertia-gravity waves. Quasi-2D dynamics dominate at scales larger than 500 km; inertia-gravity waves dominate at scales smaller than 500 km.

  8. Interference and the Law of Energy Conservation

    Science.gov (United States)

    Drosd, Robert; Minkin, Leonid; Shapovalov, Alexander S.

    2014-01-01

    Introductory physics textbooks consider interference to be a process of redistribution of energy from the wave sources in the surrounding space resulting in constructive and destructive interferences. As one can expect, the total energy flux is conserved. However, one case of apparent non-conservation energy attracts great attention. Imagine that…

  9. Atmospheric aerosols at the Pierre Auger Observatory: characterization and effect on the energy estimation for ultra-high energy cosmic rays

    International Nuclear Information System (INIS)

    Louedec, K.

    2011-01-01

    The Pierre Auger Observatory, located in the Province of Mendoza in Argentina, is making good progress in understanding the nature and origin of the ultra-high energy cosmic rays. Using a hybrid detection technique, based on surface detectors and fluorescence telescopes, it provides large statistics, good mass and energy resolution, and solid control of systematic uncertainties. One of the main challenges for the fluorescence detection technique is the understanding of the atmosphere, used as a giant calorimeter. To minimize as much as possible the systematic uncertainties in fluorescence measurements, the Auger Collaboration has developed an extensive atmospheric monitoring program. The purpose of this work is to improve our knowledge of the atmospheric aerosols, and their effect on fluorescence light propagation. Using a modelling program computing air mass displacements, it has been shown that nights with low aerosol concentrations have air masses coming much more directly from the Pacific Ocean. For the first time, the effect of the aerosol size on the light propagation has been estimated. Indeed, according to the Ramsauer approach, large aerosols have the largest effect on the light scattering. Thus, the dependence on the aerosol size has been added to the light scattering parameterizations used by the Auger Collaboration. A systematic overestimation of the energy and of the maximum air shower development X max is observed. Finally, a method based on the very inclined laser shots fired by the Auger central laser has been developed to estimate the aerosol size. Large aerosol sizes ever estimated at the Pierre Auger Observatory can now be probed. First preliminary results using laser-shot data collected in the past have identified a population of large aerosols. (author)

  10. Intra-assembly flow redistribution in LMFBRs: a simple computational approach

    International Nuclear Information System (INIS)

    Khatib-Rahbar, M.; Cazzoli, E.G.

    1983-01-01

    The liquid metal fast breeder reactor (LMFBR) core consists of fuel, blanket, control, and shielding assemblies packed in a hexagonal configuration. Radial blanket assemblies occupy peripheral locations in the reactor core and are characterized by steep power gradients, while inner blanket assemblies are located within the fuel assembly region and have higher power levels but flatter distributions. It is due to the presence of this radial power gradient that large sodium temperature distributions exist at full power operation. However, at low power, low flow natural convection conditions, a significant flow redistribution takes place leading to considerable radial temperature flattening. The purpose of the present study is to formulate a simple flow-regime dependent model supported by experimental data for prediction of sodium temperature flattening due to buoyancy-induced flow redistribution in LMFBR subassemblies with significant radial power gradient

  11. The redistribution of granulocytes following E. coli endotoxin induced sepsis

    DEFF Research Database (Denmark)

    Toft, P; Lillevang, S T; Tønnesen, Else Kirstine

    1994-01-01

    Infusion of endotoxin elicits granulocytopenia followed by increased numbers of granulocytes in peripheral blood. The purpose of this study was to investigate the redistribution and sequestration of granulocytes in the tissues following E. coli endotoxin induced sepsis. From 16 rabbits granulocytes...... were isolated, labelled with Indium and reinjected intravenously. Eight rabbits received an infusion of E. coli endotoxin 2 micrograms kg-1 while eight received isotonic saline. The redistribution of granulocytes was imaged with a gamma camera and calculated with a connected computer before and 2 and 6...... hours after infusion of endotoxin or saline. Serum cortisol and interleukin-1 beta were measured. In another seven rabbits, respiratory burst activity and degranulation of granulocytes were measured prior to and from 5 min to 6 hours after infusion of E. coli endotoxin 2 micrograms kg-1 BW. Following...

  12. Measurement of the atmospheric muon neutrino energy spectrum with IceCube in the 79- and 86-String configuration

    Directory of Open Access Journals (Sweden)

    Ruhe T.

    2016-01-01

    Full Text Available IceCube is a neutrino telescope with an instrumented volume of one cubic kilometer. A total of 5160 Digital Optical Modules (DOMs is deployed on 86 strings forming a three dimensional detector array. Although primarily designed for the detection of neutrinos from astrophysical sources, the detector can be used for spectral measurements of atmospheric neutrinos. These spectral measurements are hindered by a dominant background of atmospheric muons. State-of-the-art techniques from Machine Learning and Data Mining are required to select a high-purity sample of atmospheric neutrino candidates. The energy spectrum of muon neutrinos is obtained from energy-dependent input variables by utilizing regularized unfolding. The results obtained using IceCube in the 79- and 86-string configuration are presented in this paper.

  13. The Development and Calculation of an Energy-saving Plant for Obtaining Water from Atmospheric Air

    Science.gov (United States)

    Uglanov, D. A.; Zheleznyak, K. E.; Chertykovsev, P. A.

    2018-01-01

    The article shows the calculation of characteristics of energy-efficient water generator from atmospheric air. This installation or the atmospheric water generator is the unique mechanism which produces safe drinking water by extraction it from air. The existing atmospheric generators allow to receive safe drinking water by means of process of condensation at air humidity at least equal to 35% and are capable to give to 25 liters of water in per day, and work from electricity. Authors offer to use instead of the condenser in the scheme of installation for increase volume of produced water by generator in per day, the following refrigerating machines: the vapor compression refrigerating machines (VCRM), the thermoelectric refrigerating machines (TRM) and the Stirling-cycle refrigerating machines (SRM). The paper describes calculation methods for each of refrigerating systems. Calculation of technical-and-economic indexes for the atmospheric water generator was carried out and the optimum system with the maximum volume of received water in per day was picked up. The atmospheric water generator which is considered in article will work from autonomous solar power station.

  14. Radioembolization of hepatic tumors. Flow redistribution after the occlusion of intrahepatic arteries

    International Nuclear Information System (INIS)

    Lauenstein, T.C.; Heusner, T.A.; Antoch, G.; Hamami, M.; Bockisch, A.; Ertle, J.; Schlaak, J.F.; Gerken, G.

    2011-01-01

    Radioembolization using 90yttrium is an emerging therapy option for unresectable liver malignancies. In order to reduce the number of yttrium injections, endovascular occlusion of a segmental hepatic artery has been proposed. The aim of this study was to assess whether sufficient vascular redistribution of the occluded liver segments through intrahepatic collaterals can be observed. 27 patients with hepatocellular carcinoma (n = 16) or hepatic metastases (n = 11) were studied. Hepatic angiography was performed on average 16 days prior to radioembolization. The segment II/III artery (n = 9) or the segment IV artery (n = 18) was occluded using coils. Technectium-99m-labeled macroaggregated albumin (99mTc-MAA) was injected into the right and the remaining part of the left hepatic artery in order to identify any hepatic volume not included in the perfused area. Patients underwent a SPECT/CT on average 1 h after the 99mTc-MAA injection. Two radiologists evaluated the SPECT/CT scans regarding the presence of non-perfused hepatic segments. Furthermore, hepatic perfusion was assessed by digital subtraction angiography (DSA) on the day of radioembolization. In 16 / 27 patients (59 %) a perfusion of the occluded liver segment was visible on the SPECT/CT scan. In 8 / 11 patients without flow redistribution at the time of the SPECT/CT, perfusion of the occluded segment through hepatic collaterals was observed during angiography prior to radioembolization. Hence, flow redistribution was eventually found in 24 / 27 patients (89 %). Flow redistribution after the occlusion of intrahepatic arteries prior to radioembolization can be successfully induced in the majority of patients with anatomical variants of the hepatic arteries. (orig.)

  15. Influence of the atmosphere on the space detection of ultra-high energy cosmic rays; Influence de l'atmosphere sur la detection spatiale des rayons cosmiques d'ultra-haute energie

    Energy Technology Data Exchange (ETDEWEB)

    Moreggia, S

    2007-06-15

    EUSO (Extreme Universe Space Observatory) is a project of ultra-high energy (> 10{sup 20} eV) cosmic rays detection from space. Its concept relies on the observation of fluorescence and Cerenkov photons emitted by extensive air showers from a telescope located on the International Space Station. A simulation software has been developed to study the characteristics of this innovative concept of detection. It deals with the different steps of the detection chain: extensive air shower development, emission of fluorescence and Cerenkov light, and radiative transfer to the telescope. A Monte-Carlo code has been implemented to simulate the propagation of photons through the atmosphere, dealing with multiple scattering in clear sky conditions as well as in presence of aerosols and clouds. With this simulation program, the impact of atmospheric conditions on the performance of a space-located detector has been studied. The precise treatment of photons propagation through the atmosphere has permitted to quantify the scattered light contribution to the detected signal. (author)

  16. Observations of leaf stomatal conductance at the canopy scale: an atmospheric modeling perspective

    International Nuclear Information System (INIS)

    Avissar, R.

    1993-01-01

    Plant stomata play a key role in the redistribution of energy received on vegetated land into sensible and latent heat. As a result, they have a considerable impact on the atmospheric planetary boundary layer, the hydrologic cycle, the climate, and the weather. Current parameterizations of the stomatal mechanism in state-of-the-art atmospheric models are based on empirical relations that are established at the leaf scale between stomatal conductance and environmental conditions. In order to evaluate these parameterizations, an experiment was carried out on a potato field in New Jersey during the summer of 1989. Stomatal conductances were measured within a small homogeneous area in the middle of the potato field and under a relatively broad range of atmospheric conditions. A large variability of stomatal conductances was observed. This variability, which was associated with the variability of micro-environmental and physiological conditions that is found even in a homogeneous canopy, cannot be simulated explicitly on the scale of a single agricultural field and,a fortiori, on the scale of atmospheric models. Furthermore, this variability could not be related to the environmental conditions measured at a height of 2 m above the plant canopy simultaneously with the conductances, reinforcing the concept of scale decoupling suggested by Jarvis and McNaughton (1986) and McNaughton and Jarvis (1991). Thus, for atmospheric modeling purposes, a parameterization of stomatal conductance at the canopy scale using external environmental forcing conditions seems more appropriate than a parameterization based on leaf-scale stomatal conductance, as currently adopted in state-of-the-art atmospheric models. The measured variability was characterized by a lognormal probability density function (pdf) that remained relatively stable during the entire measuring period. These observations support conclusions by McNaughton and Jarvis (1991) that, unlike current parameterizations, a

  17. Observations of leaf stomatal conductance at the canopy scale: an atmospheric modeling perspective

    International Nuclear Information System (INIS)

    Avissar, R.

    1993-01-01

    Plant stomata play a key role in the redistribution of energy received on vegetated land into sensible and latent heat. As a result, they have a considerable impact on the atmospheric planetary boundary layer, the hydrologic cycle, the climate, and the weather. Current parameterizations of the stomatal mechanism in state-of-the-art atmospheric models are based on empirical relations that are established at the leaf scale between stomatal conductance and environmental conditions. In order to evaluate these parameterizations, an experiment was carried out on a potato field in New Jersey during the summer of 1989. Stomatal conductances were measured within a small homogeneous area in the middle of the potato field and under a relatively broad range of atmospheric conditions. A large variability of stomatal conductances was observed. This variability, which was associated with the variability of micro-environmental and physiological conditions that is found even in a homogeneous canopy, cannot be simulated explicitly on the scale of a single agricultural field and, a fortiori, on the scale of atmospheric models. Furthermore, this variability could not be related to the environmental conditions measured at a height of 2 m above the plant canopy simultaneously with the conductances, reinforcing the concept of scale decoupling suggested by Jarvis and McNaughton (1986) and McNaughton and Jarvis (1991). Thus, for atmospheric modeling purposes, a parameterization of stomatal conductance at the canopy scale using external environmental forcing conditions seems more appropriate than a parameterization based on leaf-scale stomatal conductance, as currently adopted in state-of-the-art atmospheric models. The measured variability was characterized by a lognormal probability density function (pdf) that remained relatively stable during the entire measuring period. These observations support conclusions by McNaughton and Jarvis (1991) that, unlike current parameterizations, a

  18. Stress redistribution and void growth in butt-welded canisters for spent nuclear fuel

    International Nuclear Information System (INIS)

    Josefson, B.L.; Karlsson, L.; Haeggblad, H.Aa.

    1993-02-01

    The stress-redistribution in Cu-Fe canisters for spent nuclear fuel during waiting for deposition and after final deposition is calculated numerically. The constitutive equation modelling creep deformation during this time period employs values on materials parameters determined within the SKB-project on 'mechanical integrity of canisters for spent nuclear fuel'. The welding residual stresses are redistributed without lowering maximum values during the waiting period, a very low amount of void growth is predicted for this type of copper during the deposition period. This leads to an estimated very large rupture time

  19. The redistribution of granulocytes following E. coli endotoxin induced sepsis

    DEFF Research Database (Denmark)

    Toft, P; Lillevang, S T; Tønnesen, Else Kirstine

    1994-01-01

    Infusion of endotoxin elicits granulocytopenia followed by increased numbers of granulocytes in peripheral blood. The purpose of this study was to investigate the redistribution and sequestration of granulocytes in the tissues following E. coli endotoxin induced sepsis. From 16 rabbits granulocytes...

  20. Water Cycling under Climate Change. Interactions between the water cycle, vegetation and a changing (sub)tropical climate

    NARCIS (Netherlands)

    de Boer, H.J.

    2012-01-01

    The water cycle is an essential component of the climate system because the physical properties of water in its liquid, solid and gaseous phases allow for the redistribution of energy in the oceans and atmosphere. At the scale of individual organisms, water and energy are also essential for the

  1. Decentralisation and Interregional Redistribution in the Italian Education System

    Science.gov (United States)

    Ferrari, Irene; Zanardi, Alberto

    2014-01-01

    The aim of this paper is to evaluate the potential impact of the reform designed to decentralise public education in Italy, currently under discussion, on interregional redistribution. The central government has always played a prominent financial and administrative role in the provision of compulsory education in Italy. This has had a strong…

  2. Isotope exchange investigation of nitrogen redistribution in expanded austenite

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lundin; Drouet, M.; Martinavičius, A.

    2013-01-01

    Sequential plasma and gaseous nitriding of Fe–18Cr–10Ni–3Mo stainless steel at 390°C with 14N and 15N isotopes followed by denitriding in flowing hydrogen was investigated. Redistribution of plasma-inserted nitrogen atoms (15N) by subsequent gaseous nitriding (14N) was observed. Denitriding after...

  3. Overlap in nitrogen sources and redistribution of nitrogen between trees and grasses in a semi-arid savanna.

    Science.gov (United States)

    Priyadarshini, K V R; Prins, Herbert H T; de Bie, Steven; Heitkönig, Ignas M A; Woodborne, Stephan; Gort, Gerrit; Kirkman, Kevin; Fry, Brian; de Kroon, Hans

    2014-04-01

    A key question in savanna ecology is how trees and grasses coexist under N limitation. We used N stable isotopes and N content to study N source partitioning across seasons from trees and associated grasses in a semi-arid savanna. We also used (15)N tracer additions to investigate possible redistribution of N by trees to grasses. Foliar stable N isotope ratio (δ(15)N) values were consistent with trees and grasses using mycorrhiza-supplied N in all seasons except in the wet season when they switched to microbially fixed N. The dependence of trees and grasses on mineralized soil N seemed highly unlikely based on seasonal variation in mineralization rates in the Kruger Park region. Remarkably, foliar δ(15)N values were similar for all three tree species differing in the potential for N fixation through nodulation. The tracer experiment showed that N was redistributed by trees to understory grasses in all seasons. Our results suggest that the redistribution of N from trees to grasses and uptake of N was independent of water redistribution. Although there is overlap of N sources between trees and grasses, dependence on biological sources of N coupled with redistribution of subsoil N by trees may contribute to the coexistence of trees and grasses in semi-arid savannas.

  4. Acoustic energy transfer to the upper atmosphere from surface chemical and underground nuclear explosions

    Czech Academy of Sciences Publication Activity Database

    Drobzheva, Yana Viktorovna; Krasnov, Valerij Michailovič

    2006-01-01

    Roč. 68, 3-5 (2006), s. 578-585 ISSN 1364-6826 R&D Projects: GA ČR GA205/04/2110 Institutional research plan: CEZ:AV0Z30420517 Keywords : Acoustic wave * Energy * Atmosphere * Ionosphere Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.448, year: 2006

  5. Redistributive taxation, multinational enterprises, and economic integration

    OpenAIRE

    Haufler, Andreas; Klemm, Alexander; Schjelderup, Guttorm

    2008-01-01

    Increased activity of multinational firms exposes national corporate tax bases to cross-country profit shifting, but also leads to rising profitability of the corporate sector. We incorporate these two effects of economic integration into a simple political economy model where the median voter decides on a redistributive income tax rate. In this setting economic integration may raise or lower the equilibrium tax rate, and it is more likely to raise the tax rate of a low-tax country. The impli...

  6. Dynamics of Massive Atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Chemke, Rei; Kaspi, Yohai, E-mail: rei.chemke@weizmann.ac.il [Department of Earth and Planetary Sciences, Weizmann Institute of Science, 234 Herzl st., 76100, Rehovot (Israel)

    2017-08-10

    The many recently discovered terrestrial exoplanets are expected to hold a wide range of atmospheric masses. Here the dynamic-thermodynamic effects of atmospheric mass on atmospheric circulation are studied using an idealized global circulation model by systematically varying the atmospheric surface pressure. On an Earth analog planet, an increase in atmospheric mass weakens the Hadley circulation and decreases its latitudinal extent. These changes are found to be related to the reduction of the convective fluxes and net radiative cooling (due to the higher atmospheric heat capacity), which, respectively, cool the upper troposphere at mid-low latitudes and warm the troposphere at high latitudes. These together decrease the meridional temperature gradient, tropopause height and static stability. The reduction of these parameters, which play a key role in affecting the flow properties of the tropical circulation, weakens and contracts the Hadley circulation. The reduction of the meridional temperature gradient also decreases the extraction of mean potential energy to the eddy fields and the mean kinetic energy, which weakens the extratropical circulation. The decrease of the eddy kinetic energy decreases the Rhines wavelength, which is found to follow the meridional jet scale. The contraction of the jet scale in the extratropics results in multiple jets and meridional circulation cells as the atmospheric mass increases.

  7. Energy intensity decline implications for stabilization of atmospheric CO2 content

    International Nuclear Information System (INIS)

    Lightfoot, H.D.; Green, C.

    2002-01-01

    By calculating the amount of carbon-free energy required to stabilize the level of carbon dioxide in the atmosphere at some level, such as 550 parts per million by volume (ppmv) in 2100, the authors estimate the appropriate rate of world average annual energy intensity decline. The roles played by energy efficiency and long term sectoral changes like shifts in economic activity from high energy intensity sectors or industries to low energy intensity sectors or industries are distinguished. Advances in technology and better and improved procedures, as well as a broader adoption of more efficient technologies currently available are included in the improvements made in energy efficiency. The objective was, for the period 1990 to 2100 (110 years), to estimate the potential energy efficiency increase for world electricity generation. It is noted that electricity generation represents 38 per cent of world energy consumption in 1995, while transportation accounts for 19 per cent and residential, industrial and commercial uses account for 43 per cent. In 2100, it is expected that the overall average decline in energy intensity will be 40.1 per cent of that of 1990, according to the results obtained. Looked at from another perspective, it represents an average annual rate of energy intensity decline of 0.83 per cent for 110 years. Between 0.16 and 0.30 per cent could be added to the impact of sectoral changes on the average annual rate of decline in energy intensity, while 0.83 per cent would be attributable to improvements in energy efficiency, as shown by sensitivity analysis. 33 refs., 9 tabs., 1 fig

  8. Studying DAC capacitor-array degradation in charge-redistribution SAR ADCs

    NARCIS (Netherlands)

    Khan, M.A.; Kerkhoff, Hans G.

    2014-01-01

    In this paper, system-level behavioural models are used to simulate the aging-related degradation effects in the DAC capacitor array of a charge-redistribution successive approximation register (SAR) ADC because of the large calculation time of transistor-level aging simulators. A

  9. Low-energy-electron interactions with DNA: approaching cellular conditions with atmospheric experiments

    International Nuclear Information System (INIS)

    Alizadeh, E.; Sanche, L.

    2014-01-01

    A novel technique has been developed to investigate low energy electron (LEE)-DNA interactions in the presence of small biomolecules (e.g., N 2 , O 2 , H 2 O) found near DNA in the cell nucleus, in order to simulate cellular conditions. In this technique, LEEs are emitted from a metallic surface exposed by soft X-rays and interact with DNA thin films at standard ambient temperature and pressure (SATP). Whereas atmospheric N 2 had little effect on the yields of LEE-induced single and double strand breaks, both O 2 and H 2 O considerably modified and increased such damage. The highest yields were obtained when DNA is embedded in a combined O 2 and H 2 O atmosphere. In this case, the amount of additional double strand breaks was supper-additive. The effect of modifying the chemical and physical stability of DNA by platinum-based chemotherapeutic agents (Pt-drugs) including cisplatin, carboplatin and oxaliplatin was also investigated with this technique. The results obtained provide information on the role played by subexcitation-energy electrons and dissociative electron attachment in the radiosensitization of DNA by Pt-drugs, which is an important step to unravel the mechanisms of radiosensitization of these agents in chemo-radiation cancer therapy. (authors)

  10. Low-energy-electron interactions with DNA: approaching cellular conditions with atmospheric experiments

    Science.gov (United States)

    Alizadeh, Elahe; Sanche, Léon

    2014-04-01

    A novel technique has been developed to investigate low energy electron (LEE)-DNA interactions in the presence of small biomolecules (e.g., N2, O2, H2O) found near DNA in the cell nucleus, in order to simulate cellular conditions. In this technique, LEEs are emitted from a metallic surface exposed by soft X-rays and interact with DNA thin films at standard ambient temperature and pressure (SATP). Whereas atmospheric N2 had little effect on the yields of LEE-induced single and double strand breaks, both O2 and H2O considerably modified and increased such damage. The highest yields were obtained when DNA is embedded in a combined O2 and H2O atmosphere. In this case, the amount of additional double strand breaks was supper-additive. The effect of modifying the chemical and physical stability of DNA by platinum-based chemotherapeutic agents (Pt-drugs) including cisplatin, carboplatin and oxaliplatin was also investigated with this technique. The results obtained provide information on the role played by subexcitation-energy electrons and dissociative electron attachment in the radiosensitization of DNA by Pt-drugs, which is an important step to unravel the mechanisms of radiosensitisation of these agents in chemoradiation cancer therapy.

  11. Differential flux measurement of atmospheric pion, muon, electron and positron energy spectra at balloon altitudes

    Energy Technology Data Exchange (ETDEWEB)

    Grimani, C.; Brunetti, M.T.; Codino, A. [Perugia Univ. (Italy)]|[INFN, Perugia (Italy); Papini, P.; Massimo Brancaccio, F.; Finetti, N. [Florence Univ. (Italy)]|[INFN, Florence (Italy); Stephens, S.A. [Tata Institute of Fundamental Researc, Bombay (International Commission on Radiation Units and Measurements); Basini, G.; Bongiorno, F. [INFN, Laboratori Nazionali di Frascati, Rome (Italy); Golden, R.L. [New Mexico State Univ. Las Cruces, NM (United States). Particle Astrophysics Lab.

    1995-09-01

    The fluxes of atmospheric electrons, positrons, positive and negative muons and negative pions have been determined using the NMSU Wizard-MASS2 balloons-borne instrument. The instrument was launched from Fort Sumner, New Mexico, (geomagnetic cut-off about 4.5 GV/c) on september 23, 1991. The flight lasted 9.8 hours and remained above 100.000 ft. Muons and negative pions were observed and their momenta were determined. Since these particles are not a part of the primary component, the measurement of their fluxes provides information regarding production and propagation of secondary particles in the atmosphere. Similarly, observations of electrons and positrons well below the geomagnetic cut-off provides insight into electromagnetic cascade processes in the upper atmosphere. In addition, the determination of the energy spectra of rare particles such as positrons can be used for background subtraction for cosmic ray experiments gathering data below a few g/cm{sup 2} of overlying atmosphere.

  12. Segregation and Clustering Effects on Complex Boron Redistribution in Strongly Doped Polycrystalline-Silicon Layers

    International Nuclear Information System (INIS)

    Abadli, S.; Mansour, F.

    2011-01-01

    This work deals with the investigation of the complex phenomenon of boron (B) transient enhanced diffusion (TED) in strongly implanted silicon (Si) layers. It concerns the instantaneous influences of the strong B concentrations, the Si layers crystallization, the clustering and the B trapping/segregation during thermal post-implantation annealing. We have used Si thin layers obtained from disilane (Si2H6) by low pressure chemical vapor deposition (LPCVD) and then B implanted with a dose of 4 x 1015 atoms/cm2 at an energy of 15 keV. To avoid long redistributions, thermal annealing was carried out at relatively low-temperatures (700, 750 and 800 'deg'C) for various short-times ranging between 1 and 30 minutes. To investigate the experimental secondary ion mass spectroscopy (SIMS) doping profiles, a redistribution model well adapted to the particular structure of Si-LPCVD layers and to the effects of strong-concentrations has been established. The good adjustment of the simulated profiles with the experimental SIMS profiles allowed a fundamental understanding about the instantaneous physical phenomena giving and disturbing the TED process in strongly doped Si-LPCVD layers. It was found that boron TED is strongly affected by the simultaneous complex kinetics of clustering, crystallization, trapping and segregation during annealing. The fast formation of small Si-B clusters enhances the B diffusivity whereas the evolution of the clusters and segregation reduce this enhancement. (author)

  13. Fast Ion Redistribution and Implications for the Hybrid Regime

    International Nuclear Information System (INIS)

    Nazikian, R.; Austin, M.E.; Budny, R.V.; Chu, M.S.; Heidbrink, W.W.; Makowski, M.A.; Petty, C.C.; Politzer, P.A.; Solomon, W.M.; Van Zeeland, M.A.

    2007-01-01

    Time dependent TRANSP analysis indicates that radial redistribution of fast ions is unlikely to affect the central current density in hybrid plasmas sufficient to raise q(0) above unity. The results suggest that some other mechanism other than fast ion transport must be involved in raising q(0) and preventing sawteeth in hybrid plasmas.

  14. Cost-effective sampling of 137Cs-derived net soil redistribution: part 1 – estimating the spatial mean across scales of variation

    International Nuclear Information System (INIS)

    Li, Y.; Chappell, A.; Nyamdavaa, B.; Yu, H.; Davaasuren, D.; Zoljargal, K.

    2015-01-01

    The 137 Cs technique for estimating net time-integrated soil redistribution is valuable for understanding the factors controlling soil redistribution by all processes. The literature on this technique is dominated by studies of individual fields and describes its typically time-consuming nature. We contend that the community making these studies has inappropriately assumed that many 137 Cs measurements are required and hence estimates of net soil redistribution can only be made at the field scale. Here, we support future studies of 137 Cs-derived net soil redistribution to apply their often limited resources across scales of variation (field, catchment, region etc.) without compromising the quality of the estimates at any scale. We describe a hybrid, design-based and model-based, stratified random sampling design with composites to estimate the sampling variance and a cost model for fieldwork and laboratory measurements. Geostatistical mapping of net (1954–2012) soil redistribution as a case study on the Chinese Loess Plateau is compared with estimates for several other sampling designs popular in the literature. We demonstrate the cost-effectiveness of the hybrid design for spatial estimation of net soil redistribution. To demonstrate the limitations of current sampling approaches to cut across scales of variation, we extrapolate our estimate of net soil redistribution across the region, show that for the same resources, estimates from many fields could have been provided and would elucidate the cause of differences within and between regional estimates. We recommend that future studies evaluate carefully the sampling design to consider the opportunity to investigate 137 Cs-derived net soil redistribution across scales of variation. - Highlights: • The 137 Cs technique estimates net time-integrated soil redistribution by all processes. • It is time-consuming and dominated by studies of individual fields. • We use limited resources to estimate soil

  15. Energy loss of solar p modes due to the excitation of magnetic sausage tube waves: Importance of coupling the upper atmosphere

    International Nuclear Information System (INIS)

    Gascoyne, A.; Jain, R.; Hindman, B. W.

    2014-01-01

    We consider damping and absorption of solar p modes due to their energy loss to magnetic tube waves that can freely carry energy out of the acoustic cavity. The coupling of p modes and sausage tube waves is studied in a model atmosphere composed of a polytropic interior above which lies an isothermal upper atmosphere. The sausage tube waves, excited by p modes, propagate along a magnetic fibril which is assumed to be a vertically aligned, stratified, thin magnetic flux tube. The deficit of p-mode energy is quantified through the damping rate, Γ, and absorption coefficient, α. The variation of Γ and α as a function of frequency and the tube's plasma properties is studied in detail. Previous similar studies have considered only a subphotospheric layer, modeled as a polytrope that has been truncated at the photosphere. Such studies have found that the resulting energy loss by the p modes is very sensitive to the upper boundary condition, which, due to the lack of an upper atmosphere, have been imposed in a somewhat ad hoc manner. The model presented here avoids such problems by using an isothermal layer to model the overlying atmosphere (chromosphere, and, consequently, allows us to analyze the propagation of p-mode-driven sausage waves above the photosphere. In this paper, we restrict our attention to frequencies below the acoustic cut off frequency. We demonstrate the importance of coupling all waves (acoustic, magnetic) in the subsurface solar atmosphere with the overlying atmosphere in order to accurately model the interaction of solar f and p modes with sausage tube waves. In calculating the absorption and damping of p modes, we find that for low frequencies, below ≈3.5 mHz, the isothermal atmosphere, for the two-region model, behaves like a stress-free boundary condition applied at the interface (z = –z 0 ).

  16. Energy loss of solar p modes due to the excitation of magnetic sausage tube waves: Importance of coupling the upper atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Gascoyne, A.; Jain, R. [Applied Mathematics Department, University of Sheffield, Sheffield S3 7RH (United Kingdom); Hindman, B. W., E-mail: a.d.gascoyne@sheffield.ac.uk, E-mail: r.jain@sheffield.ac.uk [JILA and Department of Astrophysical and Planetary Sciences, University of Colorado at Boulder, Boulder, CO 80309-0440 (United States)

    2014-07-10

    We consider damping and absorption of solar p modes due to their energy loss to magnetic tube waves that can freely carry energy out of the acoustic cavity. The coupling of p modes and sausage tube waves is studied in a model atmosphere composed of a polytropic interior above which lies an isothermal upper atmosphere. The sausage tube waves, excited by p modes, propagate along a magnetic fibril which is assumed to be a vertically aligned, stratified, thin magnetic flux tube. The deficit of p-mode energy is quantified through the damping rate, Γ, and absorption coefficient, α. The variation of Γ and α as a function of frequency and the tube's plasma properties is studied in detail. Previous similar studies have considered only a subphotospheric layer, modeled as a polytrope that has been truncated at the photosphere. Such studies have found that the resulting energy loss by the p modes is very sensitive to the upper boundary condition, which, due to the lack of an upper atmosphere, have been imposed in a somewhat ad hoc manner. The model presented here avoids such problems by using an isothermal layer to model the overlying atmosphere (chromosphere, and, consequently, allows us to analyze the propagation of p-mode-driven sausage waves above the photosphere. In this paper, we restrict our attention to frequencies below the acoustic cut off frequency. We demonstrate the importance of coupling all waves (acoustic, magnetic) in the subsurface solar atmosphere with the overlying atmosphere in order to accurately model the interaction of solar f and p modes with sausage tube waves. In calculating the absorption and damping of p modes, we find that for low frequencies, below ≈3.5 mHz, the isothermal atmosphere, for the two-region model, behaves like a stress-free boundary condition applied at the interface (z = –z{sub 0}).

  17. Calculation of the energy spectrum of atmospheric gamma-rays between 1 and 1000 MeV

    International Nuclear Information System (INIS)

    Martin, I.M.; Dutra, S.L.G.; Palmeira, R.A.R.

    The energy spectrum of atmospheric gamma-rays at 4 g/cm 2 has been calculated for cut-off rigidities of 4.5, 10 and 16 GV. The considered processes for the production of these gamma-rays were the π 0 decay plus the bremsstrahlung from primary, secondary like splash and re-entrant albedo electrons. The calculations indicated that the spectrum could be fitted to a power law in energy, with the exponential index varying from 1.1 in the energy range 1 - 10 MeV, to 1.4 in the energy range 10 - 200 MeV and 1.8 in the energy range 200 - 1000 MeV. These results are discussed [pt

  18. Pacific Northwest Laboratory annual report for 1984 to the DOE Office of Energy Research. Part 3. Atmospheric sciences

    International Nuclear Information System (INIS)

    Elderkin, C.E.

    1985-02-01

    The goals of atmospheric research at Pacific Northwest Laboratory (PNL) are to assess, describe, and predict the nature and fate of atmospheric contaminants and to study the impacts of contaminants on local, regional, and global climates. The contaminants being investigated are those resulting from the development and use of conventional resources (coal, gas, oil, and nuclear power) as well as alternative energy sources. The description of the research is organized into 3 sections: (1) Atmospheric Studies in Complex Terrain (ASCOT); (2) Boundary Layer Meteorology; and (3) Dispersion, Deposition, and Resuspension of Atmospheric Contaminants. Separate analytics have been done for each of the sections and are indexed and contained in the EDB

  19. ATMOSPHERIC DISPERSAL AND DEPOSITION OF TEPHRA FROM A POTENTIAL VOLCANIC ERUPTION AT YUCCA MOUNTAIN, NEVADA

    Energy Technology Data Exchange (ETDEWEB)

    C. Harrington

    2004-10-25

    The purpose of this model report is to provide documentation of the conceptual and mathematical model (Ashplume) for atmospheric dispersal and subsequent deposition of ash on the land surface from a potential volcanic eruption at Yucca Mountain, Nevada. This report also documents the ash (tephra) redistribution conceptual model. These aspects of volcanism-related dose calculation are described in the context of the entire igneous disruptive events conceptual model in ''Characterize Framework for Igneous Activity'' (BSC 2004 [DIRS 169989], Section 6.1.1). The Ashplume conceptual model accounts for incorporation and entrainment of waste fuel particles associated with a hypothetical volcanic eruption through the Yucca Mountain repository and downwind transport of contaminated tephra. The Ashplume mathematical model describes the conceptual model in mathematical terms to allow for prediction of radioactive waste/ash deposition on the ground surface given that the hypothetical eruptive event occurs. This model report also describes the conceptual model for tephra redistribution from a basaltic cinder cone. Sensitivity analyses and model validation activities for the ash dispersal and redistribution models are also presented. Analyses documented in this model report update the previous documentation of the Ashplume mathematical model and its application to the Total System Performance Assessment (TSPA) for the License Application (TSPA-LA) igneous scenarios. This model report also documents the redistribution model product outputs based on analyses to support the conceptual model. In this report, ''Ashplume'' is used when referring to the atmospheric dispersal model and ''ASHPLUME'' is used when referencing the code of that model. Two analysis and model reports provide direct inputs to this model report, namely ''Characterize Eruptive Processes at Yucca Mountain, Nevada and Number of Waste Packages Hit

  20. Repair, redistribution and repopulation in V79 spheroids during multifraction irradiation

    International Nuclear Information System (INIS)

    Brown, R.C.; Durand, R.E.

    1994-01-01

    We used cells growing as multicell spheroids to determine whether the initial radiation response would be predictive for multifraction exposures, or whether other factors including repopulation rate should be considered. Potential problems of hypoxia and reoxygenation were avoided by using small spheroids which had not yet developed radiobiologically hypoxic regions. Repair and redistribution dominated the responses in the first two or three exposures, with repopulation playing a minor role. As the fractionation schedule was extended, however, repopulation between fractions largely determined the number of viable cells per spheroid. We conclude that the radiation response of cells from untreated spheroids provides a general indication of net sensitivity, but that repair and redistribution produces considerable variation in radiosensitivity throughout a fractionation protocol. Ultimately, repopulation effects may dominate the multifraction response. (Author)

  1. Effects of zonal flows on correlation between energy balance and energy conservation associated with nonlinear nonviscous atmospheric dynamics in a thin rotating spherical shell

    Science.gov (United States)

    Ibragimov, Ranis N.

    2018-03-01

    The nonlinear Euler equations are used to model two-dimensional atmosphere dynamics in a thin rotating spherical shell. The energy balance is deduced on the basis of two classes of functorially independent invariant solutions associated with the model. It it shown that the energy balance is exactly the conservation law for one class of the solutions whereas the second class of invariant solutions provides and asymptotic convergence of the energy balance to the conservation law.

  2. Atmospheric and oceanic excitation of decadal-scale Earth orientation variations

    Science.gov (United States)

    Gross, Richard S.; Fukumori, Ichiro; Menemenlis, Dimitris

    2005-09-01

    The contribution of atmospheric wind and surface pressure and oceanic current and bottom pressure variations during 1949-2002 to exciting changes in the Earth's orientation on decadal timescales is investigated using an atmospheric angular momentum series computed from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis project and an oceanic angular momentum series computed from a near-global ocean model that was forced by surface fluxes from the NCEP/NCAR reanalysis project. Not surprisingly, since decadal-scale variations in the length of day are caused mainly by interactions between the mantle and core, the effect of the atmosphere and oceans is found to be only about 14% of that observed. More surprisingly, it is found that the effect of atmospheric and oceanic processes on decadal-scale changes in polar motion is also only about 20% (x component) and 38% (y component) of that observed. Therefore redistribution of mass within the atmosphere and oceans does not appear to be the main cause of the Markowitz wobble. It is also found that on timescales between 10 days and 4 years the atmospheric and oceanic angular momentum series used here have very little skill in explaining Earth orientation variations before the mid to late 1970s. This is attributed to errors in both the Earth orientation observations prior to 1976 when measurements from the accurate space-geodetic techniques became available and to errors in the modeled atmospheric fields prior to 1979 when the satellite era of global weather observing systems began.

  3. Modeling of damage generation mechanisms in silicon at energies below the displacement threshold

    International Nuclear Information System (INIS)

    Santos, Ivan; Marques, Luis A.; Pelaz, Lourdes

    2006-01-01

    We have used molecular dynamics simulation techniques to study the generation of damage in Si within the low-energy deposition regime. We have demonstrated that energy transfers below the displacement threshold can produce a significant amount of damage, usually neglected in traditional radiation damage calculations. The formation of amorphous pockets agrees with the thermal spike concept of local melting. However, we have found that the order-disorder transition is not instantaneous, but it requires some time to reach the appropriate kinetic-potential energy redistribution for melting. The competition between the rate of this energy redistribution and the energy diffusion to the surrounding atoms determines the amount of damage generated by a given deposited energy. Our findings explain the diverse damage morphology produced by ions of different masses

  4. Carrying away and redistribution of radioisotopes on the Peyne catchment basin. Preliminary report

    International Nuclear Information System (INIS)

    Duffa, C.; Danic, F.

    2006-01-01

    The transfers of radioisotopes present in soils and sediments are essentially conditioned by the mobilities of the physical vectors which constitute their supports. The water is the main vector of natural transfer, radioisotopes being associated with it under dissolved or particulate shape. The rainout and the hydrous erosion are responsible in particular for the carrying away and for the redistribution of contaminants following an atmospheric deposit on a catchment basin. However their effect is not the same in any point of the catchment basin. The work begun here aims at elaborating a classification of the grounds sensitivity towards this phenomenon of radioisotopes carrying away. The different factors of sensitivity have been identified: pluviometry, slope, soils occupation and soils nature. The Peyne catchment basin, that presents an important variability of these four parameters, constitutes the experimental site for this study. On this catchment basin, we search to identify the areas the most sensitive to the carrying away of radioisotopes, by combining a theoretical predictive approach based on the cartography and a descriptive approach basing on the sampling and the analysis of soils samples. (N.C.)

  5. Complex boron redistribution kinetics in strongly doped polycrystalline-silicon/nitrogen-doped-silicon thin bi-layers

    Energy Technology Data Exchange (ETDEWEB)

    Abadli, S. [Department of Electrical Engineering, University Aout 1955, Skikda, 21000 (Algeria); LEMEAMED, Department of Electronics, University Mentouri, Constantine, 25000 (Algeria); Mansour, F. [LEMEAMED, Department of Electronics, University Mentouri, Constantine, 25000 (Algeria); Pereira, E. Bedel [CNRS-LAAS, 7 avenue du colonel Roche, 31077 Toulouse (France)

    2012-10-15

    We have investigated the complex behaviour of boron (B) redistribution process via silicon thin bi-layers interface. It concerns the instantaneous kinetics of B transfer, trapping, clustering and segregation during the thermal B activation annealing. The used silicon bi-layers have been obtained by low pressure chemical vapor deposition (LPCVD) method at 480 C, by using in-situ nitrogen-doped-silicon (NiDoS) layer and strongly B doped polycrystalline-silicon (P{sup +}) layer. To avoid long-range B redistributions, thermal annealing was carried out at relatively low-temperatures (600 C and 700 C) for various times ranging between 30 min and 2 h. To investigate the experimental secondary ion mass spectroscopy (SIMS) doping profiles, a redistribution model well adapted to the particular structure of two thin layers and to the effects of strong-concentrations has been established. The good adjustment of the simulated profiles with the experimental SIMS profiles allowed a fundamental understanding about the instantaneous physical phenomena giving and disturbing the complex B redistribution profiles-shoulders. The increasing kinetics of the B peak concentration near the bi-layers interface is well reproduced by the established model. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. LABORATORY FREQUENCY REDISTRIBUTION FUNCTION FOR THE POLARIZED Λ-TYPE THREE-TERM ATOM

    Energy Technology Data Exchange (ETDEWEB)

    Casini, R. [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000 (United States); Manso Sainz, R. [Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany)

    2016-12-20

    We present the frequency redistribution function for a polarized three-term atom of the Λ-type in the collisionless regime, and we specialize it to the case where both the initial and final terms of the three-state transition are metastable (i.e., with infinitely sharp levels). This redistribution function represents a generalization of the well-known R {sub II} function to the case where the lower terms of the transition can be polarized and carry atomic coherence, and it can be applied to the investigation of polarized line formation in tenuous plasmas, where collisional rates may be low enough that anisotropy-induced atomic polarization survives even in the case of metastable levels.

  7. Welfare State Regimes and Attitudes Towards Redistribution in 15 Western European Countries

    DEFF Research Database (Denmark)

    Jæger, Mads

    Social Survey and the third wave of the European Values Study, and by means of an ordered mixed probit model with concomitant variables, we find strong evidence that structural characteristics affect mass opinion in a manner consistent with regime theory. For example, public support for redistribution...... increases with total social expenditure relative to GDP, family benefits, and active labour market policies. Furthermore, we find that institutionalised left-wing political power as measured by left-wing government seats and neo-corporatism are significant predictors of support for redistribution.- See more...... at: http://www.sfi.dk/s%c3%b8geresultat-10668.aspx?Action=1&NewsId=248&PID=32427#sthash.ISdYS6vF.dpuf...

  8. Southern hemisphere ocean CO2 uptake: reconciling atmospheric and oceanic estimates

    International Nuclear Information System (INIS)

    Roy, T.; Matear, R.; Rayner, P.; Francey, R.

    2003-01-01

    Using an atmospheric inversion model we investigate the southern hemisphere ocean CO 2 uptake. From sensitivity studies that varied both the initial ocean flux distribution and the atmospheric data used in the inversion, our inversion predicted a total (ocean and land) uptake of 1.65-1.90 Gt C/yr. We assess the consistency between the mean southern hemisphere ocean uptake predicted by an atmospheric inversion model for the 1991-1997 period and the T99 ocean flux estimate based on observed pCO 2 in Takahashi et al. (2002; Deep-Sea Res II, 49, 1601-1622). The inversion can not match the large 1.8 Gt C/yr southern extratropical (20-90 deg S) uptake of the T99 ocean flux estimate without producing either unreasonable land fluxes in the southern mid-latitudes or by increasing the mismatches between observed and simulated atmospheric CO 2 data. The southern extratropical uptake is redistributed between the mid and high latitudes. Our results suggest that the T99 estimate of the Southern Ocean uptake south of 50 deg S is too large, and that the discrepancy reflects the inadequate representation of wintertime conditions in the T99 estimate

  9. Fluorescence imaging of lattice re-distribution on step-index direct laser written Nd:YAG waveguide lasers

    Energy Technology Data Exchange (ETDEWEB)

    Martínez de Mendívil, Jon; Pérez Delgado, Alberto; Lifante, Ginés; Jaque, Daniel [Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049 (Spain); Ródenas, Airán [Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Tarragona 43007 (Spain); Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Benayas, Antonio, E-mail: antonio.benayas@emt.inrs.ca [Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049 (Spain); Institut National de la Recherche Scientifique, Centre – Énergie Matériaux et Télécommunications, 1650, Boul. Lionel Boulet Varennes, Quebec J3X 1S2 (Canada); Aguiló, Magdalena; Diaz, Francesc [Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Tarragona 43007 (Spain); Kar, Ajoy K. [Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom)

    2015-01-14

    The laser performance and crystalline micro-structural properties of near-infrared step-index channel waveguides fabricated inside Neodymium doped YAG laser ceramics by means of three-dimensional sub-picosecond pulse laser direct writing are reported. Fluorescence micro-mapping of the waveguide cross-sections reveals that an essential crystal lattice re-distribution has been induced after short pulse irradiation. Such lattice re-distribution is evidenced at the waveguide core corresponding to the laser written refractive index increased volume. The waveguides core surroundings also present diverse changes including slight lattice disorder and bi-axial strain fields. The step-index waveguide laser performance is compared with previous laser fabricated waveguides with a stress-optic guiding mechanism in absence of laser induced lattice re-distribution.

  10. Responses of the Tropical Atmospheric Circulation to Climate Change and Connection to the Hydrological Cycle

    Science.gov (United States)

    Ma, Jian; Chadwick, Robin; Seo, Kyong-Hwan; Dong, Changming; Huang, Gang; Foltz, Gregory R.; Jiang, Jonathan H.

    2018-05-01

    This review describes the climate change–induced responses of the tropical atmospheric circulation and their impacts on the hydrological cycle. We depict the theoretically predicted changes and diagnose physical mechanisms for observational and model-projected trends in large-scale and regional climate. The tropical circulation slows down with moisture and stratification changes, connecting to a poleward expansion of the Hadley cells and a shift of the intertropical convergence zone. Redistributions of regional precipitation consist of thermodynamic and dynamical components, including a strong offset between moisture increase and circulation weakening throughout the tropics. This allows other dynamical processes to dominate local circulation changes, such as a surface warming pattern effect over oceans and multiple mechanisms over land. To improve reliability in climate projections, more fundamental understandings of pattern formation, circulation change, and the balance of various processes redistributing land rainfall are suggested to be important.

  11. Mechanisms of charge transfer and redistribution in LaAlO3/SrTiO3 revealed by high-energy optical conductivity.

    Science.gov (United States)

    Asmara, T C; Annadi, A; Santoso, I; Gogoi, P K; Kotlov, A; Omer, H M; Motapothula, M; Breese, M B H; Rübhausen, M; Venkatesan, T; Ariando; Rusydi, A

    2014-04-14

    In condensed matter physics the quasi two-dimensional electron gas at the interface of two different insulators, polar LaAlO3 on nonpolar SrTiO3 (LaAlO3/SrTiO3) is a spectacular and surprising observation. This phenomenon is LaAlO3 film thickness dependent and may be explained by the polarization catastrophe model, in which a charge transfer of 0.5e(-) from the LaAlO3 film into the LaAlO3/SrTiO3 interface is expected. Here we show that in conducting samples (≥ 4 unit cells of LaAlO3) there is indeed a ~0.5e(-) transfer from LaAlO3 into the LaAlO3/SrTiO3 interface by studying the optical conductivity in a broad energy range (0.5-35 eV). Surprisingly, in insulating samples (≤ 3 unit cells of LaAlO3) a redistribution of charges within the polar LaAlO3 sublayers (from AlO2 to LaO) as large as ~0.5e(-) is observed, with no charge transfer into the interface. Hence, our results reveal the different mechanisms for the polarization catastrophe compensation in insulating and conducting LaAlO3/SrTiO3 interfaces.

  12. Electoral institutions, parties, and the politics of class: Why some democracies redistribute more than others

    OpenAIRE

    Iversen, Torben; Soskice, David

    2005-01-01

    We develop a general model of redistribution and use it to account for the remarkable variance in government redistribution across democracies. We show that the electoral system plays a key role because it shapes the nature of political parties and the composition of governing coalitions, whether these are conceived as electoral alliances between classes or alliances between class parties. Our argument implies a) that center-left governments dominate under PR systems, while center-right gover...

  13. Electrical properties correlated with redistributed deep states in a-Si:H thin-film transistors on flexible substrates undergoing mechanical bending

    International Nuclear Information System (INIS)

    Lee, M.H.; Hsieh, B.-F.; Chang, S.T.

    2013-01-01

    The formation of trapped states due to mechanical strain dominates the characteristics of a-Si:H thin-film transistors. The behavior of electrical characteristics affected by mechanical strain can be explained by the redistribution of trap states in the bandgap. The disordered bonds may generate a redistribution of trap states, resulting in unstable electrical characteristics, such as threshold voltage, subthreshold swing, and the mobility of carriers. During a mechanical strain, the deep states are redistributed into a Gaussian distribution and are dissimilar to ordinary acceptor-like deep states, which have exponential distributions. It is concluded that the gap state density of an a-Si:H layer under the effects of mechanical strain is fundamental to the reliability and development of flexible electronics. - Highlights: ► The trap formation by mechanical strain dominates the characteristics. ► Weak or broken bonds may contribute to the redistribution of trap states. ► The deep states are redistributed into a Gaussian distribution

  14. Income inequality, redistribution and the position of the decisive voter

    NARCIS (Netherlands)

    Groot, L.F.M.; van der Linde, D.E.

    2016-01-01

    A large literature explaining patterns of redistribution makes use of the median voter theorem. Using a novel approach, this contribution shows that in OECD countries the decisive voter, determined by the earner who sees her preferred tax rate being implemented, on average sits around the 50th

  15. Effects of atmospheric variability on energy utilization and conservation. [Space heating energy demand modeling; Program HEATLOAD

    Energy Technology Data Exchange (ETDEWEB)

    Reiter, E.R.; Johnson, G.R.; Somervell, W.L. Jr.; Sparling, E.W.; Dreiseitly, E.; Macdonald, B.C.; McGuirk, J.P.; Starr, A.M.

    1976-11-01

    Research conducted between 1 July 1975 and 31 October 1976 is reported. A ''physical-adaptive'' model of the space-conditioning demand for energy and its response to changes in weather regimes was developed. This model includes parameters pertaining to engineering factors of building construction, to weather-related factors, and to socio-economic factors. Preliminary testing of several components of the model on the city of Greeley, Colorado, yielded most encouraging results. Other components, especially those pertaining to socio-economic factors, are still under development. Expansion of model applications to different types of structures and larger regions is presently underway. A CRT-display model for energy demand within the conterminous United States also has passed preliminary tests. A major effort was expended to obtain disaggregated data on energy use from utility companies throughout the United States. The study of atmospheric variability revealed that the 22- to 26-day vacillation in the potential and kinetic energy modes of the Northern Hemisphere is related to the behavior of the planetary long-waves, and that the midwinter dip in zonal available potential energy is reflected in the development of blocking highs. Attempts to classify weather patterns over the eastern and central United States have proceeded satisfactorily to the point where testing of our method for longer time periods appears desirable.

  16. Carrier redistribution between different potential sites in semipolar (202¯1) InGaN quantum wells studied by near-field photoluminescence

    KAUST Repository

    Marcinkevičius, S.

    2014-09-15

    © 2014 AIP Publishing LLC. Scanning near-field photoluminescence (PL) spectroscopy at different excitation powers was applied to study nanoscale properties of carrier localization and recombination in semipolar (202¯1) InGaN quantum wells (QWs) emitting in violet, blue, and green-yellow spectral regions. With increased excitation power, an untypical PL peak energy shift to lower energies was observed. The shift was attributed to carrier density dependent carrier redistribution between nm-scale sites of different potentials. Near-field PL scans showed that in (202¯1) QWs the in-plane carrier diffusion is modest, and the recombination properties are uniform, which is advantageous for photonic applications.

  17. Thallium reinjection after stress-redistribution imaging. Does 24-hour delayed imaging after reinjection enhance detection of viable myocardium

    International Nuclear Information System (INIS)

    Dilsizian, V.; Smeltzer, W.R.; Freedman, N.M.; Dextras, R.; Bonow, R.O.

    1991-01-01

    Thallium reinjection immediately after conventional stress-redistribution imaging improves the detection of viable myocardium, as many myocardial regions with apparently 'irreversible' thallium defects on standard 3-4-hour redistribution images manifest enhanced thallium uptake after reinjection. Because the 10-minute period between reinjection and imaging may be too short, the present study was designed to determine whether 24-hour imaging after thallium reinjection provides additional information regarding myocardial viability beyond that obtained by imaging shortly after reinjection. We studied 50 patients with chronic stable coronary artery disease undergoing exercise thallium tomography, radionuclide angiography, and coronary arteriography. Immediately after the 3-4-hour redistribution images were obtained, 1 mCi thallium was injected at rest, and images were reacquired at 10 minutes and 24 hours after reinjection. The stress, redistribution, reinjection, and 24-hour images were then analyzed qualitatively and quantitatively. Of the 127 abnormal myocardial regions on the stress images, 55 had persistent defects on redistribution images by qualitative analysis, of which 25 (45%) demonstrated improved thallium uptake after reinjection. At the 24-hour study, 23 of the 25 regions (92%) with previously improved thallium uptake by reinjection showed no further improvement. Similarly, of the 30 regions determined to have irreversible defects after reinjection, 29 (97%) remained irreversible on 24-hour images. These findings were confirmed by the quantitative analysis. The mean normalized thallium activity in regions with enhanced thallium activity after reinjection increased from 57 +/- 13% on redistribution studies to 70 +/- 14% after reinjection but did not change at 24 hours (71 +/- 14%)

  18. Increased T-helper 17 cell differentiation mediated by exosome-mediated microRNA-451 redistribution in gastric cancer infiltrated T cells.

    Science.gov (United States)

    Liu, Feng; Bu, Zhouyan; Zhao, Feng; Xiao, Daping

    2018-01-01

    MicroRNA (miR)-451 is a cell metabolism-related miRNA that can mediate cell energy-consuming models by several targets. As miR-451 can promote mechanistic target of rapamycin (mTOR) activity, and increased mTOR activity is related to increased differentiation of T-helper 17 (Th17) cells, we sought to investigate whether miR-451 can redistribute from cancer cells to infiltrated T cells and enhance the distribution of Th17 cells through mTOR. Real-time PCR was used for detecting expression of miR-451 in gastric cancer, tumor infiltrated T cells and exosomes, and distribution of Th17 was evaluated by both flow cytometry and immunohistochemistry (IHC). Immunofluorescence staining was used in monitoring the exosome-enveloped miR-451 from cancer cells to T cells with different treatments, and signaling pathway change was analyzed by western blot. miR-451 decreased significantly in gastric cancer (GC) tissues but increased in infiltrated T cells and exosomes; tumor miR-451 was negatively related to infiltrated T cells and exosome miR-451. Exosome miR-451 can not only serve as an indicator for poor prognosis of post-operation GC patients but is also related to increased Th17 distribution in gastric cancer. miR-451 can redistribute from cancer cells to T cells with low glucose treatment. Decreased 5' AMP-activated protein kinase (AMPK) and increased mTOR activity was investigated in miR-451 redistributed T cells and the Th17 polarized differentiation of these T cells were also increased. Exosome miR-451 derived from tumor tissues can serve as an indicator for poor prognosis and redistribution of miR-451 from cancer cells to infiltrated T cells in low glucose treatment can enhance Th17 differentiation by enhancing mTOR activity. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  19. Influence of the atmosphere on the space detection of ultra-high energy cosmic rays

    International Nuclear Information System (INIS)

    Moreggia, S.

    2007-06-01

    EUSO (Extreme Universe Space Observatory) is a project of ultra-high energy (> 10 20 eV) cosmic rays detection from space. Its concept relies on the observation of fluorescence and Cerenkov photons emitted by extensive air showers from a telescope located on the International Space Station. A simulation software has been developed to study the characteristics of this innovative concept of detection. It deals with the different steps of the detection chain: extensive air shower development, emission of fluorescence and Cerenkov light, and radiative transfer to the telescope. A Monte-Carlo code has been implemented to simulate the propagation of photons through the atmosphere, dealing with multiple scattering in clear sky conditions as well as in presence of aerosols and clouds. With this simulation program, the impact of atmospheric conditions on the performance of a space-located detector has been studied. The precise treatment of photons propagation through the atmosphere has permitted to quantify the scattered light contribution to the detected signal. (author)

  20. Ekonomie obnovitelných zdrojů energie – příklad větrné energie v České republice

    Czech Academy of Sciences Publication Activity Database

    Ryvolová, I.; Zemplinerová, Alena

    2010-01-01

    Roč. 58, č. 6 (2010), s. 814-825 ISSN 0032-3233 R&D Projects: GA MŠk LC542 Institutional research plan: CEZ:AV0Z70850503 Keywords : renewable energy sources * energy market regulation * wind energy * redistributive transfers * interest groups Subject RIV: AH - Economics Impact factor: 0.650, year: 2010

  1. POLARIZED LINE FORMATION WITH LOWER-LEVEL POLARIZATION AND PARTIAL FREQUENCY REDISTRIBUTION

    Energy Technology Data Exchange (ETDEWEB)

    Supriya, H. D.; Sampoorna, M.; Nagendra, K. N.; Ravindra, B. [Indian Institute of Astrophysics, Bangalore 560034 (India); Stenflo, J. O. [Institute of Astronomy, ETH Zurich, CH-8093 Zurich (Switzerland)

    2016-09-10

    In the well-established theories of polarized line formation with partial frequency redistribution (PRD) for a two-level and two-term atom, it is generally assumed that the lower level of the scattering transition is unpolarized. However, the existence of unexplained spectral features in some lines of the Second Solar Spectrum points toward a need to relax this assumption. There exists a density matrix theory that accounts for the polarization of all the atomic levels, but it is based on the flat-spectrum approximation (corresponding to complete frequency redistribution). In the present paper we propose a numerical algorithm to solve the problem of polarized line formation in magnetized media, which includes both the effects of PRD and the lower level polarization (LLP) for a two-level atom. First we derive a collisionless redistribution matrix that includes the combined effects of the PRD and the LLP. We then solve the relevant transfer equation using a two-stage approach. For illustration purposes, we consider two case studies in the non-magnetic regime, namely, the J {sub a} = 1, J {sub b} = 0 and J {sub a} = J {sub b} = 1, where J {sub a} and J {sub b} represent the total angular momentum quantum numbers of the lower and upper states, respectively. Our studies show that the effects of LLP are significant only in the line core. This leads us to propose a simplified numerical approach to solve the concerned radiative transfer problem.

  2. Economic benefits of sharing and redistributing influenza vaccines when shortages occurred.

    Science.gov (United States)

    Chen, Sheng-I

    2017-01-01

    Recurrent influenza outbreak has been a concern for government health institutions in Taiwan. Over 10% of the population is infected by influenza viruses every year, and the infection has caused losses to both health and the economy. Approximately three million free vaccine doses are ordered and administered to high-risk populations at the beginning of flu season to control the disease. The government recommends sharing and redistributing vaccine inventories when shortages occur. While this policy intends to increase inventory flexibility, and has been proven as widely valuable, its impact on vaccine availability has not been previously reported. This study developed an inventory model adapted to vaccination protocols to evaluate government recommended polices under different levels of vaccine production. Demands were uncertain and stratified by ages and locations according to the demographic data in Taiwan. When vaccine supply is sufficient, sharing pediatric vaccine reduced vaccine unavailability by 43% and overstock by 54%, and sharing adult vaccine reduced vaccine unavailability by 9% and overstock by 15%. Redistributing vaccines obtained greater gains for both pediatrics and adults (by 75%). When the vaccine supply is in short, only sharing pediatric vaccine yielded a 48% reduction of unused inventory, while other polices do not improve performances. When implementing vaccination activities for seasonal influenza intervention, it is important to consider mismatches of demand and vaccine inventory. Our model confirmed that sharing and redistributing vaccines can substantially increase availability and reduce unused vaccines.

  3. Economic benefits of sharing and redistributing influenza vaccines when shortages occurred.

    Directory of Open Access Journals (Sweden)

    Sheng-I Chen

    Full Text Available Recurrent influenza outbreak has been a concern for government health institutions in Taiwan. Over 10% of the population is infected by influenza viruses every year, and the infection has caused losses to both health and the economy. Approximately three million free vaccine doses are ordered and administered to high-risk populations at the beginning of flu season to control the disease. The government recommends sharing and redistributing vaccine inventories when shortages occur. While this policy intends to increase inventory flexibility, and has been proven as widely valuable, its impact on vaccine availability has not been previously reported.This study developed an inventory model adapted to vaccination protocols to evaluate government recommended polices under different levels of vaccine production. Demands were uncertain and stratified by ages and locations according to the demographic data in Taiwan.When vaccine supply is sufficient, sharing pediatric vaccine reduced vaccine unavailability by 43% and overstock by 54%, and sharing adult vaccine reduced vaccine unavailability by 9% and overstock by 15%. Redistributing vaccines obtained greater gains for both pediatrics and adults (by 75%. When the vaccine supply is in short, only sharing pediatric vaccine yielded a 48% reduction of unused inventory, while other polices do not improve performances.When implementing vaccination activities for seasonal influenza intervention, it is important to consider mismatches of demand and vaccine inventory. Our model confirmed that sharing and redistributing vaccines can substantially increase availability and reduce unused vaccines.

  4. Energy Efficiency through Virtual Machine Redistribution in Telecommunication Infrastructure Nodes

    OpenAIRE

    Tafsir, Miraj Hasnaine

    2013-01-01

    Energy efficiency is one of the key factors impacting the green behavior and operational expenses of telecommunication core network operations. This thesis study is aimed for finding out possible technique to reduce energy consumption in telecommunication infrastructure nodes. The study concentrates on traffic management operation (e.g. media stream control, ATM adaptation) within network processors [LeJ03], categorized as control plane. The control plane of the telecommunication infrastructu...

  5. [Biodistribution and Postmortem Redistribution of Emamectin Benzoate in Intoxicated Mice].

    Science.gov (United States)

    Tang, Wei-wei; Lin, Yu-cai; Lu, Yan-xu

    2016-02-01

    To investigate the lethal blood level, the target organs and tissues, the toxicant storage depots and the postmortem redistribution in mice died of emamectin benzoate poisoning. The mice model of emamectin benzoate poisoning was established via intragastric injection. The main poisoning symptoms and the clinical death times of mice were observed and recorded dynamically in the acute poisoning group as well as the sub-acute poisoning death group. The pathological and histomorphological changes of organs and tissues were observed after poisoning death. The biodistribution and postmortem redistribution of emamectin benzoate in the organs and tissues of mice were assayed by the enzyme-linked immunosorbent assay (ELISA) at 0h, 24h, 48h and 72h after death. The lethal blood concentrations and the concentrations of emamectin benzoate were detected by high performance liquid chromatography (HPLC) at different time points after death. The symptoms of nervous and respiratory system were observed within 15-30 min after intragastric injection. The average time of death was (45.8 ± 7.9) min in the acute poisoning group and (8.0 ± 1.4) d in the sub-acute poisoning group, respectively. The range of acute lethal blood level was 447.164 0-524.463 5 mg/L. The pathological changes of the organs and tissues were observed via light microscope and immunofluorescence microscope. The changes of emamectin benzoate content in the blood, heart, liver, spleen, lung, kidney and brain of poisoning mice showed regularity within 72 h after death (P emamectin benzoate poisoning include heart, liver, kidney, lung, brain and contact position (stomach). The toxicant storage depots are kidney and liver. There is emamectin benzoate postmortem redistribution in mice.

  6. Atmospheric science and power production

    Energy Technology Data Exchange (ETDEWEB)

    Randerson, D. (ed.)

    1984-07-01

    This is the third in a series of scientific publications sponsored by the US Atomic Energy Commission and the two later organizations, the US Energy Research and Development Adminstration, and the US Department of Energy. The first book, Meteorology and Atomic Energy, was published in 1955; the second, in 1968. The present volume is designed to update and to expand upon many of the important concepts presented previously. However, the present edition draws heavily on recent contributions made by atmospheric science to the analysis of air quality and on results originating from research conducted and completed in the 1970s. Special emphasis is placed on how atmospheric science can contribute to solving problems relating to the fate of combustion products released into the atmosphere. The framework of this book is built around the concept of air-quality modeling. Fundamentals are addressed first to equip the reader with basic background information and to focus on available meteorological instrumentation and to emphasize the importance of data management procedures. Atmospheric physics and field experiments are described in detail to provide an overview of atmospheric boundary layer processes, of how air flows around obstacles, and of the mechanism of plume rise. Atmospheric chemistry and removal processes are also detailed to provide fundamental knowledge on how gases and particulate matter can be transformed while in the atmosphere and how they can be removed from the atmosphere. The book closes with a review of how air-quality models are being applied to solve a wide variety of problems. Separate analytics have been prepared for each chapter.

  7. Novel Atmospheric and Sea State Modeling in Ocean Energy Applications

    Science.gov (United States)

    Kallos, George; Galanis, George; Kalogeri, Christina; Larsen, Xiaoli Guo

    2013-04-01

    The rapidly increasing use of renewable energy sources poses new challenges for the research and technological community today. The integration of the, usually, highly variable wind and wave energy amounts into the general grid, the optimization of energy transition and the forecast of extreme values that could lead to instabilities and failures of the system can be listed among them. In the present work, novel methodologies based on state of the art numerical wind/wave simulation systems and advanced statistical techniques addressing such type of problems are discussed. In particular, extremely high resolution modeling systems simulating the atmospheric and sea state conditions with spatial resolution of 100 meters or less and temporal discretization of a few seconds are utilized in order to simulate in the most detailed way the combined wind-wave energy potential at offshore sites. In addition, a statistical analysis based on a variety of mean and variation measures as well as univariate and bivariate probability distributions is used for the estimation of the variability of the power potential revealing the advantages of the use of combined forms of energy by offshore platforms able to produce wind and wave power simultaneously. The estimation and prediction of extreme wind/wave conditions - a critical issue both for site assessment and infrastructure maintenance - is also studied by means of the 50-year return period over areas with increased power potential. This work has been carried out within the framework of the FP7 project MARINA Platform (http://www.marina-platform.info/index.aspx).

  8. A-TOUGH: A multimedia fluid-flow/energy-transport model for fully- coupled atmospheric-subsurface interactions

    International Nuclear Information System (INIS)

    Montazer, P.; Hammermeister, D.; Ginanni, J.

    1994-01-01

    The long-term effect of changes in atmospheric climatological conditions on subsurface hydrological conditions in the unsaturated zone in and environments is an important factor in defining the performance of a high-level and low-level radioactive waste repositories in geological environment. Computer simulation coupled with paleohydrological studies can be used to understand and quantify the potential impact of future climatological conditions on repository performance. A-TOUGH efficiently simulates (given current state-of-the-art technology) the physical processes involved in the near-surface atmosphere and its effect on subsurface conditions. This efficiency is due to the numerical techniques used in TOUGH and the efficient computational techniques used in V-TOUGH to solve non-linear thermodynamic equations that govern the flux of vapor and energy within subsurface porous and fractured media and between these media and the atmosphere

  9. Carbon redistribution by erosion processes in an intensively disturbed catchment

    Science.gov (United States)

    Boix-Fayos, Carolina; Martínez-Mena, María; Pérez Cutillas, Pedro; de Vente, Joris; Barberá, Gonzalo G.; Mosch, Wouter; Navarro Cano, Jose Antonio; Gaspar, Leticia; Navas, Ana

    2016-04-01

    Understanding how organic carbon moves with sediments along the fluvial system is crucial to close catchment scale carbon budgets. Especially challenging is the analysis of organic carbon dynamics during fluvial transport in heterogeneous, fragile and disturbed environments with ephemeral and intense hydrological pulses, typical of Mediterranean conditions. This paper explores the catchment scale organic carbon redistribution by lateral flows in extreme Mediterranean environmental conditions from a geomorphological perspective. The study area is a catchment (Cárcavo) in SE Spain with a semiarid climate, erodible lithologies, shallow soils, and highly disturbed by agricultural terraces, land levelling, reforestations and construction of check-dams. To increase understanding of erosion induced catchment scale organic carbon redistribution, we studied the subcatchments of 8 check-dams distributed along the catchment main channel in detail. We determined 137Cs, physicochemical characteristics and organic carbon pools of soils and sediments deposited behind each check-dam, performed spatial analysis of properties of the catchment and buffer areas around check-dams, and carried out geomorphological analysis of the slope-channel connections. Soils showed very low Total Organic Carbon (TOC) values oscillating between 15.2 and 4.4 g Kg-1 for forest and agricultural soils, respectively. Sediments mobilized by erosion were poor in TOC compared to the eroded (forest) soils (6.6±0.7 g Kg-1), and the redistribution of organic carbon through the catchment, especially of the Mineral Associated Organic Carbon (MAC) pool, showed the same pattern as clay particles and 137Cs. The TOC erosion rates (0.031±0.03 Mg ha-1 y-1) were comparable to others reported for subhumid Mediterranean catchments and to those modelled worldwide for pasture land. Those lateral fluxes were equivalent to 10.4 % of the TOC stock from the topsoil at the moment of the check-dam construction and

  10. Modelling of prompt losses of high energy charged particles in Tokamaks

    International Nuclear Information System (INIS)

    Dillner, Oe.; Anderson, D.; Hamnen, H.; Lisak, M.

    1990-01-01

    A simple analytical expression for the total prompt loss fraction of high energy charged particles in an axisymmetric Tokamak is derived. The results are compared with predictions obtained from numerical simulations and show good agreement. An application is made to sawtooth induced changes in the losses of fusion generated high energy charged particles. Particular emphasis is given to the importance of sawtooth induced profile changes of the background ion densities and temperature as well as to redistribution of particles which have accumulated during the sawtooth rise but are being lost by redistribution at the sawtooth crash. (au)

  11. Study of natural energy system and downward atmospheric radiation. Part 1. Outline on measurement and result on downward atmospheric radiation; Shizen energy system to tenku hosharyo no kansoku kenkyu. 1. Kisho kansoku gaiyo to tenku hosharyo no kansoku kekka

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, K [Kogakuin University, Tokyo (Japan); Masuoka, Y [Yokogawa Architects and Engineers, Inc., Tokyo (Japan)

    1996-10-27

    For the study of a natural energy system taking advantage of radiation cooling, a simplified method for estimating downward atmospheric radiation quantities was examined, using observation records supplied from Hachioji City, Aerological Observatory in Tsukuba City, and four other locations. Downward atmospheric radiation quantities are closely related to partial vapor pressure in the atmosphere. Because partial vapor pressure changes according to the season, it was classified into two, for summer and for winter, and was referred to downward atmospheric radiation quantities for the establishment of their correlationships. Downward atmospheric radiation quantities were predicted on the basis of meteorological factors such as partial vapor pressure and free air temperature. Accuracy was examined of the simplified estimation equation for downward atmospheric radiation that had been proposed. A multiple regression analysis was carried out for calculating constants for the estimation equation, using partial vapor pressure, Stefan-Boltzmann constant, and free air dry-bulb absolute temperature, all closely correlated with atmospheric downward radiation quantities. Accuracy improved by time-based classification. At night, use of SAT (equivalent free air temperature) produced more accurate estimation. Though dependent upon local characteristics of the observation spot, the estimation equation works effectively. 10 refs., 10 figs., 3 tabs.

  12. Changes in the Earth’s Spin Rotation due to the Atmospheric Effects and Reduction in Glaciers

    Directory of Open Access Journals (Sweden)

    Sung-Ho Na

    2016-12-01

    Full Text Available The atmosphere strongly affects the Earth’s spin rotation in wide range of timescale from daily to annual. Its dominant role in the seasonal perturbations of both the pole position and spinning rate of the Earth is once again confirmed by a comparison of two recent data sets; i the Earth orientation parameter and ii the global atmospheric state. The atmospheric semi-diurnal tide has been known to be a source of the Earth’s spin acceleration, and its magnitude is re-estimated by using an enhanced formulation and an up-dated empirical atmospheric S2 tide model. During the last twenty years, an unusual eastward drift of the Earth’s pole has been observed. The change in the Earth’s inertia tensor due to glacier mass redistribution is directly assessed, and the recent eastward movement of the pole is ascribed to this change. Furthermore, the associated changes in the length of day and UT1 are estimated.

  13. A comparative analysis of early child health and development services and outcomes in countries with different redistributive policies.

    Science.gov (United States)

    van den Heuvel, Meta; Hopkins, Jessica; Biscaro, Anne; Srikanthan, Cinntha; Feller, Andrea; Bremberg, Sven; Verkuijl, Nienke; Flapper, Boudien; Ford-Jones, Elizabeth Lee; Williams, Robin

    2013-11-06

    The social environment is a fundamental determinant of early child development and, in turn, early child development is a determinant of health, well-being, and learning skills across the life course. Redistributive policies aimed at reducing social inequalities, such as a welfare state and labour market policies, have shown a positive association with selected health indicators. In this study, we investigated the influence of redistributive policies specifically on the social environment of early child development in five countries with different political traditions. The objective of this analysis was to highlight similarities and differences in social and health services between the countries and their associations with other health outcomes that can inform better global early child development policies and improve early child health and development. Four social determinants of early child development were selected to provide a cross-section of key time periods in a child's life from prenatal to kindergarten. They included: 1) prenatal care, 2) maternal leave, 3) child health care, and 4) child care and early childhood education. We searched international databases and reports (e.g. Organization for Economic Cooperation and Development, World Bank, and UNICEF) to obtain information about early child development policies, services and outcomes. Although a comparative analysis cannot claim causation, our analysis suggests that redistributive policies aimed at reducing social inequalities are associated with a positive influence on the social determinants of early child development. Generous redistributive policies are associated with a higher maternal leave allowance and pay and more preventive child healthcare visits. A decreasing trend in infant mortality, low birth weight rate, and under five mortality rate were observed with an increase in redistributive policies. No clear influence of redistributive policies was observed on breastfeeding and immunization

  14. Strengthening of the hydrological cycle in future scenarios: atmospheric energy and water balance perspective

    Directory of Open Access Journals (Sweden)

    A. Alessandri

    2012-11-01

    Full Text Available Future climate scenarios experiencing global warming are expected to strengthen the hydrological cycle during the 21st century (21C. We analyze the strengthening of the global-scale increase in precipitation from the perspective of changes in whole atmospheric water and energy balances. By combining energy and water equations for the whole atmosphere, we obtain constraints for the changes in surface fluxes and partitioning at the surface between sensible and latent components. We investigate the differences in the strengthening of the hydrological cycle in two centennial simulations performed with an Earth system model forced with specified atmospheric concentration pathways. Alongside the Special Report on Emissions Scenario (SRES A1B, which is a medium-high non-mitigation scenario, we consider a new aggressive-mitigation scenario (E1 with reduced fossil fuel use for energy production aimed at stabilizing global warming below 2 K.

    Our results show that the mitigation scenario effectively constrains the global warming with a stabilization below 2 K with respect to the 1950–2000 historical period. On the other hand, the E1 precipitation does not follow the temperature field toward a stabilization path but continues to increase over the mitigation period. Quite unexpectedly, the mitigation scenario is shown to strengthen the hydrological cycle even more than SRES A1B till around 2070. We show that this is mostly a consequence of the larger increase in the negative radiative imbalance of atmosphere in E1 compared to A1B. This appears to be primarily related to decreased sulfate aerosol concentration in E1, which considerably reduces atmospheric absorption of solar radiation compared to A1B.

    The last decades of the 21C show a marked increase in global precipitation in A1B compared to E1, despite the fact that the two scenarios display almost the same overall increase of radiative imbalance with respect to the 20th century. Our

  15. Land Policy Changes and Land Redistribution in Ecuador

    Directory of Open Access Journals (Sweden)

    María Belén Albornoz Barriga

    2016-12-01

    Full Text Available This paper examines three distinct periods of policy change and land redistribution in Ecuador through the agrarian reform laws of 1964, 1973 and 2010. A comparative case study of each moment of the law reforms was based on the instruments and policy network approach. In order to explain public policy process design, the high incidence of collective domains led by agribusiness on government management, and the incidence of indigenous organizations and farmers over the state action.

  16. Emerging investigator series: As( v ) in magnetite: incorporation and redistribution

    Energy Technology Data Exchange (ETDEWEB)

    Huhmann, Brittany L. [Department of Civil and Environmental Engineering; University of Iowa; Iowa City; USA; Neumann, Anke [School of Engineering; Newcastle University; Newcastle upon Tyne; UK; Boyanov, Maxim I. [Biosciences Division; Argonne National Laboratory; Argonne; USA; Institute of Chemical Engineering; Kemner, Kenneth M. [Biosciences Division; Argonne National Laboratory; Argonne; USA; Scherer, Michelle M. [Department of Civil and Environmental Engineering; University of Iowa; Iowa City; USA

    2017-01-01

    As coprecipitated with magnetite remained incorporated over time whereas sorbed As was redistributed and became increasingly incorporated into magnetite, both the absence and presence of aqueous Fe(ii).

  17. Annealing effect on redistribution of atoms in austenite of Fe-Ni-Mo and Fe-Ni-Si alloys

    International Nuclear Information System (INIS)

    Rodionov, Yu.L.; Isfandiyarov, G.G.; Zambrzhitskij, V.N.

    1980-01-01

    Using the Moessbauer spectrum method, studied has been the change in the fine atomic structure of the Fe-(28-36)%Ni austenite alloys with Mo and Si additives during annealing in the 200-800 deg C range. Also, the energy of the activation of processes, occurring at the annealing temperatures of below 500 deg C has been researched. On the basis of the obtained results a conclusion is drawn that the annealing of the investigated alloys at 300-500 deg C is conducive to the redistribution of the atoms of the alloying element and to the formation of regions with a higher content of Ni and Mo(Si) atoms

  18. Neutrons and gamma transport in atmosphere by Tripoli-2 code. Energy deposit and electron current time function

    International Nuclear Information System (INIS)

    Vergnaud, T.; Nimal, J.C.; Ulpat, J.P.; Faucheux, G.

    1988-01-01

    The Tripoli-2 computer code has been adapted to calculate, in addition to energy deposit in matter by neutrons (Kerma) the energy deposit by gamma produced in neutronic impacts and the induced recoil electron current. The energy deposit conduces at air ionization, consequently at a conductibility. This knowledge added at that of electron current permit to resolve the Maxwell equations of electromagnetic field. The study is realized for an atmospheric explosion 100 meters high. The calculations of energy deposit and electron current have been conducted as far as 2.5km [fr

  19. Complex Boron Redistribution in P+ Doped-polysilicon / Nitrogen Doped Silicon Bi-layers during Activation Annealing

    Science.gov (United States)

    Abadli, S.; Mansour, F.; Perrera, E. Bedel

    We have investigated and modeled the complex phenomenon of boron (B) redistribution process in strongly doped silicon bilayers structure. A one-dimensional two stream transfer model well adapted to the particular structure of bi- layers and to the effects of strong-concentrations has been developed. This model takes into account the instantaneous kinetics of B transfer, trapping, clustering and segregation during the thermal B activation annealing. The used silicon bi-layers have been obtained by low pressure chemical vapor deposition (LPCVD) method, using in-situ nitrogen- doped-silicon (NiDoS) layer and strongly B doped polycrystalline-silicon (P+) layer. To avoid long redistributions, thermal annealing was carried out at relatively lowtemperatures (600 °C and 700 °C) for various times ranging between 30 minutes and 2 hours. The good adjustment of the simulated profiles with the experimental secondary ion mass spectroscopy (SIMS) profiles allowed a fundamental understanding about the instantaneous physical phenomena giving and disturbing the complex B redistribution profiles-shoulders kinetics.

  20. Atmospheric CO2 enrichment alters energy assimilation, investment and allocation in Xanthium strumarium.

    Science.gov (United States)

    Nagel, Jennifer M; Wang, Xianzhong; Lewis, James D; Fung, Howard A; Tissue, David T; Griffin, Kevin L

    2005-05-01

    Energy-use efficiency and energy assimilation, investment and allocation patterns are likely to influence plant growth responses to increasing atmospheric CO2 concentration ([CO2]). Here, we describe the influence of elevated [CO2] on energetic properties as a mechanism of growth responses in Xanthium strumarium. Individuals of X. strumarium were grown at ambient or elevated [CO2] and harvested. Total biomass and energetic construction costs (CC) of leaves, stems, roots and fruits and percentage of total biomass and energy allocated to these components were determined. Photosynthetic energy-use efficiency (PEUE) was calculated as the ratio of total energy gained via photosynthetic activity (Atotal) to leaf CC. Elevated [CO2] increased leaf Atotal, but decreased CC per unit mass of leaves and roots. Consequently, X. strumarium individuals produced more leaf and root biomass at elevated [CO2] without increasing total energy investment in these structures (CCtotal). Whole-plant biomass was associated positively with PEUE. Whole-plant construction required 16.1% less energy than modeled whole-plant energy investment had CC not responded to increased [CO2]. As a physiological mechanism affecting growth, altered energetic properties could positively influence productivity of X. strumarium, and potentially other species, at elevated [CO2].

  1. Low temperature carrier redistribution dynamics in InGaN/GaN quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Badcock, T. J., E-mail: Thomas.badcock@crl.toshiba.co.uk; Dawson, P.; Davies, M. J. [School of Physics and Astronomy, Photon Science Institute, Alan Turing Building, University of Manchester, Manchester M13 9PL (United Kingdom); Kappers, M. J.; Massabuau, F. C.-P.; Oehler, F.; Oliver, R. A.; Humphreys, C. J. [Department of Materials Science and Metallurgy, 27 Charles Babbage Road, University of Cambridge, Cambridge CB3 0FS (United Kingdom)

    2014-03-21

    We have studied the carrier recombination dynamics in an InGaN/GaN multiple quantum well structure as a function of emission energy and excitation density between temperatures of 10 K and 100 K. Under relatively low levels of excitation, the photoluminescence (PL) intensity and decay time of emission on the high energy side of the luminescence spectrum decrease strongly between 10 K and 50 K. In contrast, for emission detected on the low energy side of the spectrum, the PL intensity and decay time increase over the same temperature range. These results are consistent with a thermally activated carrier redistribution process in which the (temperature dependent) average timescale for carrier transfer into or out of a localised state depends on the energy of the given state. Thus, the transfer time out of shallow, weakly localised states is considerably shorter than the arrival time into more deeply localised states. This picture is consistent with carriers hopping between localisation sites in an uncorrelated disorder potential where the density of localised states decreases with increasing localisation depth, e.g., a exponential or Gaussian distribution resulting from random alloy disorder. Under significantly higher levels of excitation, the increased occupation fraction of the localised states results in a greater average separation distance between unoccupied localised states, causing a suppression of the spectral and dynamic signatures of the hopping transfer of carriers.

  2. Toward Rechargeable Persistent Luminescence for the First and Third Biological Windows via Persistent Energy Transfer and Electron Trap Redistribution.

    Science.gov (United States)

    Xu, Jian; Murata, Daisuke; Ueda, Jumpei; Viana, Bruno; Tanabe, Setsuhisa

    2018-05-07

    Persistent luminescence (PersL) imaging without real-time external excitation has been regarded as the next generation of autofluorescence-free optical imaging technology. However, to achieve improved imaging resolution and deep tissue penetration, developing new near-infrared (NIR) persistent phosphors with intense and long duration PersL over 1000 nm is still a challenging but urgent task in this field. Herein, making use of the persistent energy transfer process from Cr 3+ to Er 3+ , we report a novel garnet persistent phosphor of Y 3 Al 2 Ga 3 O 12 codoped with Er 3+ and Cr 3+ (YAG G:Er-Cr), which shows intense Cr 3+ PersL (∼690 nm) in the deep red region matching well with the first biological window (NIR-I, 650-950 nm) and Er 3+ PersL (∼1532 nm) in the NIR region matching well with the third biological window (NIR-III, 1500-1800 nm). The optical imaging through raw-pork tissues (thickness of 1 cm) suggests that the emission band of Er 3+ can achieve higher spatial resolution and more accurate signal location than that of Cr 3+ due to the reduced light scattering at longer wavelengths. Furthermore, by utilizing two independent electron traps with two different trap depths in YAG G:Er-Cr, the Cr 3+ /Er 3+ PersL can even be recharged in situ by photostimulation with 660 nm LED thanks to the redistribution of trapped electrons from the deep trap to the shallow one. Our results serve as a guide in developing promising NIR (>1000 nm) persistent phosphors for long-term optical imaging.

  3. Neutral Particle Analyzer Vertically Scanning Measurements of MHD-induced Energetic Ion Redistribution or Loss in the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Medley, S.S.; Andre, R.; Bell, R.E.; Darrow, D.S.; Domier, C.W.; Fredrickson, E.D.; Gorelenkov, N.N.; Kaye, S.M.; LeBlanc, B.P.; Lee, K.C.; Levinton, F.M.; Liu, D.; Luhmann, N.C. Jr.; Menard, J.E.; Park, H.; Stutman, D.; Roquemore, A.L.; Tritz, K.; Yuh, H

    2007-01-01

    Observations of magneto-hydro-dynamic (MHD) induced redistribution or loss of energetic ions measured using the vertically scanning capability of the Neutral Particle Analyzer diagnostic on the National Spherical Torus Experiment (NSTX) are presented along with TRANSP and ORBIT code analysis of the results. Although redistribution or loss of energetic ions due to bursting fishbone-like and low-frequency (f ∼ 10 kHz) kinktype MHD activity has been reported previously, the primary goal of this work is to study redistribution or loss due to continuous Alfvenic (f ∼ 20-150 kHz) modes, a topic that heretofore has not been investigated in detail for NSTX plasmas. Initial indications are that the former drive energetic ion loss whereas the continuous Alfvenic modes only cause redistribution and the energetic ions remain confined.

  4. Neutral Particle Analyzer Vertically Scanning Measurements of MHD-induced Energetic Ion Redistribution or Loss in the National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    S.S. Medley, R. Andre, R.E. Bell, D.S. Darrow, C.W. Domier, E.D. Fredrickson, N.N. Gorelenkov, S.M. Kaye, B.P. LeBlanc, K.C. Lee, F.M. Levinton, D. Liu, N.C. Luhmann, Jr., J.E. Menard, H. Park, D. Stutman, A.L. Roquemore, K. Tritz, H. Yuh and the NSTX Team

    2007-11-15

    Observations of magneto-hydro-dynamic (MHD) induced redistribution or loss of energetic ions measured using the vertically scanning capability of the Neutral Particle Analyzer diagnostic on the National Spherical Torus Experiment (NSTX) are presented along with TRANSP and ORBIT code analysis of the results. Although redistribution or loss of energetic ions due to bursting fishbone-like and low-frequency (f ~ 10 kHz) kinktype MHD activity has been reported previously, the primary goal of this work is to study redistribution or loss due to continuous Alfvénic (f ~ 20 – 150 kHz) modes, a topic that heretofore has not been investigated in detail for NSTX plasmas. Initial indications are that the former drive energetic ion loss whereas the continuous Alfvénic modes only cause redistribution and the energetic ions remain confined.

  5. Full Wafer Redistribution and Wafer Embedding as Key Technologies for a Multi-Scale Neuromorphic Hardware Cluster

    OpenAIRE

    Zoschke, Kai; Güttler, Maurice; Böttcher, Lars; Grübl, Andreas; Husmann, Dan; Schemmel, Johannes; Meier, Karlheinz; Ehrmann, Oswin

    2018-01-01

    Together with the Kirchhoff-Institute for Physics(KIP) the Fraunhofer IZM has developed a full wafer redistribution and embedding technology as base for a large-scale neuromorphic hardware system. The paper will give an overview of the neuromorphic computing platform at the KIP and the associated hardware requirements which drove the described technological developments. In the first phase of the project standard redistribution technologies from wafer level packaging were adapted to enable a ...

  6. Collision-induced absorption intensity redistribution and the atomic pair polarizabilities

    International Nuclear Information System (INIS)

    Bulanin, M. O.

    1997-01-01

    A modified relation between the trace polarizability of a diatom and the S(-2) dipole sum is proposed that accounts for the effect of atomic collisions on the dipole oscillator strength distribution. Contribution to the collision-induced trace due to redistribution in the ionization continuum of Ar is evaluated and is found to be significant

  7. Helical undulator based on partial redistribution of uniform magnetic field

    Science.gov (United States)

    Balal, N.; Bandurkin, I. V.; Bratman, V. L.; Fedotov, A. E.

    2017-12-01

    A new type of helical undulator based on redistribution of magnetic field of a solenoid by ferromagnetic helix has been proposed and studied both in theory and experiment. Such undulators are very simple and efficient for promising sources of coherent spontaneous THz undulator radiation from dense electron bunches formed in laser-driven photo-injectors.

  8. Mechanisms underlying the redistribution of particles among the lung's alveolar macrophages during alveolar phase clearance

    Energy Technology Data Exchange (ETDEWEB)

    Lehnert, B.E.; Oritz, J.B.; Steinkamp, J.A.; Tietjen, G.L.; Sebring, R.J. (Los Alamos National Lab., NM (United States)); Oberdorster, G. (Rochester Univ., NY (United States))

    1991-01-01

    In order to obtain information about the particle redistribution phenomenon following the deposition of inhaled particles, as well as to obtain information about some of the mechanisms that may be operable in the redistribution of particles, lavaged lung free cell analyses and transmission electron microscopic (TEM) analyses of lung tissue and were performed using lungs from rats after they were subchronically exposed to aerosolized dioxide (TiO{sub 2}). TEM analyses indicated that the in situ autolysis of particle-containing Alveolar Macropages (AM) is one important mechanism involved in the redistribution of particles. Evidence was also obtained that indicated that the engulfment of one particle-containing phagocyte by another phagocyte also occurs. Another prominent mechanism of the particle redistribution phenomenon may be the in situ proliferation of particle-laden AM. We used the macrophage cell line J774A.1 as a surrogate for AM to investigate how different particulate loads in macrophages may affect their abilities to proliferate. These in vitro investigations indicated that the normal rate of proliferation of macrophages is essentially unaffected by the containment of relatively high particulate burdens. Overall, the results of our investigations suggest that in situ autolysis of particle-containing AM and the rephagocytosis of freed particles by other phagocytes, the phagocytosis of effete and disintegrating particle-containing phagocytes by other AM, and the in situ division of particle-containing AM are likely mechanisms that underlie the post-depositional redistribution of particles among the lung's AM during alveolar phase clearance. 19 refs., 8 figs., 2 tabs.

  9. Verification of atmospheric diffusion models using data of long term atmospheric diffusion experiments

    International Nuclear Information System (INIS)

    Tamura, Junji; Kido, Hiroko; Hato, Shinji; Homma, Toshimitsu

    2009-03-01

    Straight-line or segmented plume models as atmospheric diffusion models are commonly used in probabilistic accident consequence assessment (PCA) codes due to cost and time savings. The PCA code, OSCAAR developed by Japan Atomic Energy Research Institute (Present; Japan Atomic Energy Agency) uses the variable puff trajectory model to calculate atmospheric transport and dispersion of released radionuclides. In order to investigate uncertainties involved with the structure of the atmospheric dispersion/deposition model in OSCAAR, we have introduced the more sophisticated computer codes that included regional meteorological models RAMS and atmospheric transport model HYPACT, which were developed by Colorado State University, and comparative analyses between OSCAAR and RAMS/HYPACT have been performed. In this study, model verification of OSCAAR and RAMS/HYPACT was conducted using data of long term atmospheric diffusion experiments, which were carried out in Tokai-mura, Ibaraki-ken. The predictions by models and the results of the atmospheric diffusion experiments indicated relatively good agreements. And it was shown that model performance of OSCAAR was the same degree as it of RAMS/HYPACT. (author)

  10. Helical undulator based on partial redistribution of uniform magnetic field

    Directory of Open Access Journals (Sweden)

    N. Balal

    2017-12-01

    Full Text Available A new type of helical undulator based on redistribution of magnetic field of a solenoid by ferromagnetic helix has been proposed and studied both in theory and experiment. Such undulators are very simple and efficient for promising sources of coherent spontaneous THz undulator radiation from dense electron bunches formed in laser-driven photo-injectors.

  11. Relationship between redistribution on exercise thallium-201 scintigraphy and repetitive ventricular premature beats in patients with recent myocardial infarction

    International Nuclear Information System (INIS)

    Tsuji, H.; Iwasaka, T.; Sugiura, T.; Shimada, T.; Nakamori, H.; Kimura, Y.; Inada, M.

    1991-01-01

    The relationship between myocardial ischemia detected by exercise thallium-201 scintigraphy and repetitive ventricular premature beats (VPBs) during ambulatory monitoring was evaluated in 57 patients with recent myocardial infarction. Multivariate analysis was performed to obtain the relatively important factor related to repetitive VPBs with the use of the following variables: age, redistribution, left ventricular ejection fraction, serum potassium and magnesium concentration, QRS score, left ventricular aneurysm, and the number of diseased vessels. Thirty-five patients had redistribution, but only three of them had repetitive VPBs during exercise testing. The average heart rate before 79% of 398 episodes of repetitive VPBs during ambulatory monitoring was in the range of 56 to 70/min. These data indicate that most of repetitive VPBs during ambulatory monitoring were not provoked by exercise-induced acute myocardial ischemia. However, redistribution was found to be an important factor associated with repetitive VPBs. The electrical abnormality relating to a substrate characterized by chronic reversible ischemia may explain the association between redistribution and repetitive VPBs

  12. Tropospheric Ozone Change from 1980 to 2010 Dominated by Equatorward Redistribution of Emissions

    Science.gov (United States)

    Zhang, Yuqiang; Cooper, Owen R.; Gaudel, Audrey; Thompson, Anne M.; Nedelec, Philippe; Ogino, Shin-Ya; West, J. Jason

    2016-01-01

    Ozone is an important air pollutant at the surface, and the third most important anthropogenic greenhouse gas in the troposphere. Since 1980, anthropogenic emissions of ozone precursors methane, non-methane volatile organic compounds, carbon monoxide and nitrogen oxides (NOx) have shifted from developed to developing regions. Emissions have thereby been redistributed equatorwards, where they are expected to have a stronger effect on the tropospheric ozone burden due to greater convection, reaction rates and NOx sensitivity. Here we use a global chemical transport model to simulate changes in tropospheric ozone concentrations from 1980 to 2010, and to separate the influences of changes in the spatial distribution of global anthropogenic emissions of short-lived pollutants, the magnitude of these emissions, and the global atmospheric methane concentration. We estimate that the increase in ozone burden due to the spatial distribution change slightly exceeds the combined influences of the increased emission magnitude and global methane. Emission increases in Southeast, East and South Asia may be most important for the ozone change, supported by an analysis of statistically significant increases in observed ozone above these regions. The spatial distribution of emissions dominates global tropospheric ozone, suggesting that the future ozone burden will be determined mainly by emissions from low latitudes.

  13. Redistribution of contaminants from pig slurry after direct injection into soil

    DEFF Research Database (Denmark)

    Amin, Mostofa; Bech, T B; Forslund, A

    2010-01-01

    The redistribution of pig manure-borne contaminants after direct injection to soil was investigated in a field study. The spatial distribution of Escherichia coli, Salmonella Typhimurium Bacteriophage 28B and other slurry components in and around the injection slit was measured on day 0.15, 1, 6...

  14. Heat transfer in the atmosphere

    NARCIS (Netherlands)

    Oerlemans, J.

    1982-01-01

    The atmosphere is almost transparent to solar radiation and almost opaque to terrestrial radiation. This implies that in the mean the atmosphere cools while the earth's surface is heated. Convection in the lower atmosphere must therefore occur. The upward flux of energy associated with it

  15. Trade-Induced Atmospheric Mercury Deposition over China and Implications for Demand-Side Controls.

    Science.gov (United States)

    Chen, Long; Meng, Jing; Liang, Sai; Zhang, Haoran; Zhang, Wei; Liu, Maodian; Tong, Yindong; Wang, Huanhuan; Wang, Wei; Wang, Xuejun; Shu, Jiong

    2018-02-20

    Mercury (Hg) is of global concern because of its adverse effects on humans and the environment. In addition to long-range atmospheric transport, Hg emissions can be geographically relocated through economic trade. Here, we investigate the effect of China's interregional trade on atmospheric Hg deposition over China, using an atmospheric transport model and multiregional input-output analysis. In general, total atmospheric Hg deposition over China is 408.8 Mg yr -1 , and 32% of this is embodied in China's interregional trade, with the hotspots occurring over Gansu, Henan, Hebei, and Yunnan provinces. Interprovincial trade considerably redistributes atmospheric Hg deposition over China, with a range in deposition flux from -104% to +28%. Developed regions, such as the Yangtze River Delta (Shanghai, Jiangsu, and Zhejiang) and Guangdong, avoid Hg deposition over their geographical boundaries, instead causing additional Hg deposition over developing provinces. Bilateral interaction among provinces is strong over some regions, suggesting a need for joint mitigation, such as the Jing-Jin-Ji region (Beijing, Tianjin, and Hebei) and the Yangtze River Delta. Transferring advanced technology from developed regions to their developing trade partners would be an effective measure to mitigate China's Hg pollution. Our findings are relevant to interprovincial efforts to reduce trans-boundary Hg pollution in China.

  16. Simulating the Dependence of Sagebrush Steppe Vegetation on Redistributed Snow in a Semi-Arid Watershed.

    Science.gov (United States)

    Soderquist, B.; Kavanagh, K.; Link, T. E.; Strand, E. K.; Seyfried, M. S.

    2014-12-01

    In mountainous regions across the western USA, the composition of aspen (Populus tremuloides) and sagebrush steppe plant communities is often closely related to heterogeneous soil moisture subsidies resulting from redistributed snow. With decades of climate and precipitation data across elevational and precipitation gradients, the Reynolds Creek Experimental Watershed (RCEW) and critical zone observatory (CZO) in southwest Idaho provides a unique opportunity to study the relationship between vegetation types and redistributed snow. Within the RCEW, the total amount of precipitation has remained unchanged over the past 50 years, however the percentage of the precipitation falling as snow has declined by approximately 4% per decade at mid-elevation sites. As shifts in precipitation phase continue, future trends in vegetation composition and net primary productivity (NPP) of different plant functional types remains a critical question. We hypothesize that redistribution of snow may supplement drought sensitive species like aspen more so than drought tolerant species like mountain big sagebrush (Artemisia tridentata spp. vaseyana). To assess the importance of snowdrift subsidies on sagebrush steppe vegetation, NPP of aspen, shrub, and grass species was simulated at three sites using the biogeochemical process model BIOME-BGC. Each site is located directly downslope from snowdrifts providing soil moisture inputs to aspen stands and neighboring vegetation. Drifts vary in size with the largest containing up to four times the snow water equivalent (SWE) of a uniform precipitation layer. Precipitation inputs used by BIOME-BGC were modified to represent the redistribution of snow and simulations were run using daily climate data from 1985-2013. Simulated NPP of annual grasses at each site was not responsive to subsidies from drifting snow. However, at the driest site, aspen and shrub annual NPP was increased by as much as 44 and 30%, respectively, with the redistribution of

  17. Assessment of myocardial viability in patients with myocardial infarction using twenty-four hour thallium-201 late redistribution imaging

    International Nuclear Information System (INIS)

    Yang Xiangjun; He Yongming; Zhang Bin; Wu Yiwei; Hui Jie; Jiang Tingbo; Song Jianping; Liu Zhihua; Jiang Wenping

    2006-01-01

    Rest thallium-201 ( 201 Tl) myocardial perfusion imaging has been widely used for evaluation of myocardial ischemia/viability after myocardial infarction, but the ideal timing for imaging after injection to maximally estimate viability is not well established. Thirty-six patients with myocardial infarction underwent the initial, 3 h, and 24 h redistribution imaging after intravenous injection of 148-185 MBq 201 Tl. The initial and 3 h images, the initial and 24 h images, and the 3 and 24 h images were compared double-blinded. Out of the 184 abnormal segments based on the initial imaging, 56 (30%) segments improved by at least 1 grade on the 3 h imaging while 78 (42%) segments improved by at least 1 grade on the 24 h imaging. The 24 h late imaging detected more viable myocardium than the 3 h imaging did, with a significant difference (χ 2 =5.680, p=0.017). There were 158 abnormal segments on the 3 h imaging, with average 28% (44) segments improved by at least 1 grade on the 24 h imaging. There were 128 initial abnormal segments with no improvement on the 3 h imaging. Out of these segments, the 24 h late redistribution imaging detected additional redistribution in 26 segments, taking up 20%. Twenty-four hour late 201 Tl imaging will demonstrated additional redistribution in patients who have incompletely reversible defects on early redistribution imaging at 3 h. (author)

  18. The Economic and Philosophical Aspects of the Socialization of Tax Redistribution of the Population’s Income

    Directory of Open Access Journals (Sweden)

    Lubkovskyi Serhii A.

    2017-11-01

    Full Text Available The article is aimed at a theoretical substantiation of possibilities and prospects of socialization of the tax redistribution of incomes of population as a direction of harmonization of its fiscal and regulatory functions, on the one hand, as well as private and public interests, on the other. The interrelation of social and tax policy in the mentioned sphere was explored for possibilities and potential of expansion of functional purpose of the tax redistribution of incomes of individuals in the direction of its socialization. The author has proposed and substantiated the introduction to the scientific apparatus of the terms of «socialization of the tax redistribution of incomes of individuals», «socialization of tax policy» in general, as well as «socialization of tax policy in the sphere of income taxation of individuals». In addition, the need to allocate the function of socialization together with the principle of socialization of the income taxation of individuals have been proved. It has been proposed to move from the proportional to the progressive income taxation of individuals with emphasis on the need to take into account the socio-economic situation of the payer, its inclination and sustainability to both socio-economic and fiscal risks, as well as the mandatory targeting of the tax redistribution of population incomes in order to solve the key problems of social development.

  19. Puromycin induces SUMO and ubiquitin redistribution upon proteasome inhibition

    International Nuclear Information System (INIS)

    Matsumoto, Hotaru; Saitoh, Hisato

    2016-01-01

    We have previously reported the co-localization of O-propargyl-puromycin (OP-Puro) with SUMO-2/3 and ubiquitin at promyelocytic leukemia-nuclear bodies (PML-NBs) in the presence of the proteasome inhibitor MG132, implying a role for the ubiquitin family in sequestering OP-puromycylated immature polypeptides to the nucleus during impaired proteasome activity. Here, we found that as expected puromycin induced SUMO-1/2/3 accumulation with ubiquitin at multiple nuclear foci in HeLa cells when co-exposed to MG132. Co-administration of puromycin and MG132 also facilitated redistribution of PML and the SUMO-targeted ubiquitin ligase RNF4 concurrently with SUMO-2/3. As removal of the drugs from the medium led to disappearance of the SUMO-2/3-ubiquitin nuclear foci, our findings indicated that nuclear assembly/disassembly of SUMO-2/3 and ubiquitin was pharmacologically manipulable, supporting our previous observation on OP-Puro, which predicted the ubiquitin family function in sequestrating aberrant proteins to the nucleus. -- Highlights: •Puromycin exhibits the O-propargyl-puromycin effect. •Puromycin induces SUMO redistribution upon proteasome inhibition. •Ubiquitin and RNF4 accumulate at PML-nuclear bodies with SUMO-2/3. •The ubiquitin family may function in nuclear sequestration of immature proteins.

  20. Puromycin induces SUMO and ubiquitin redistribution upon proteasome inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Hotaru [Course for Biological Sciences, Faculty of Science, Kumamoto University, Kumamoto (Japan); Saitoh, Hisato, E-mail: hisa@kumamoto-u.ac.jp [Course for Biological Sciences, Faculty of Science, Kumamoto University, Kumamoto (Japan); Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto (Japan)

    2016-07-29

    We have previously reported the co-localization of O-propargyl-puromycin (OP-Puro) with SUMO-2/3 and ubiquitin at promyelocytic leukemia-nuclear bodies (PML-NBs) in the presence of the proteasome inhibitor MG132, implying a role for the ubiquitin family in sequestering OP-puromycylated immature polypeptides to the nucleus during impaired proteasome activity. Here, we found that as expected puromycin induced SUMO-1/2/3 accumulation with ubiquitin at multiple nuclear foci in HeLa cells when co-exposed to MG132. Co-administration of puromycin and MG132 also facilitated redistribution of PML and the SUMO-targeted ubiquitin ligase RNF4 concurrently with SUMO-2/3. As removal of the drugs from the medium led to disappearance of the SUMO-2/3-ubiquitin nuclear foci, our findings indicated that nuclear assembly/disassembly of SUMO-2/3 and ubiquitin was pharmacologically manipulable, supporting our previous observation on OP-Puro, which predicted the ubiquitin family function in sequestrating aberrant proteins to the nucleus. -- Highlights: •Puromycin exhibits the O-propargyl-puromycin effect. •Puromycin induces SUMO redistribution upon proteasome inhibition. •Ubiquitin and RNF4 accumulate at PML-nuclear bodies with SUMO-2/3. •The ubiquitin family may function in nuclear sequestration of immature proteins.

  1. The hydrostatic pressure indifference point underestimates orthostatic redistribution of blood in humans

    DEFF Research Database (Denmark)

    Petersen, L G; Carlsen, Jonathan F.; Nielsen, Michael Bachmann

    2014-01-01

    The hydrostatic indifference point (HIP; where venous pressure is unaffected by posture) is located at the level of the diaphragm and is believed to indicate the orthostatic redistribution of blood, but it remains unknown whether HIP coincides with the indifference point for blood volume (VIP......). During graded (± 20°) head-up (HUT) and head-down tilt (HDT) in 12 male volunteers, we determined HIP from central venous pressure and VIP from redistribution of both blood, using ultrasound imaging of the inferior caval vein (VIPui), and fluid volume, by regional electrical admittance (VIPadm...... of pressure and filling of the inferior caval vein as well as fluid distribution, we found HIP located corresponding to the diaphragm while VIP was placed low in the abdomen, and that medical antishock trousers elevated both HIP and VIP. The low indifference point for volume shows that the gravitational...

  2. Rapid Atmospheric-Pressure-Plasma-Jet Processed Porous Materials for Energy Harvesting and Storage Devices

    Directory of Open Access Journals (Sweden)

    Jian-Zhang Chen

    2015-01-01

    Full Text Available Atmospheric pressure plasma jet (APPJ technology is a versatile technology that has been applied in many energy harvesting and storage devices. This feature article provides an overview of the advances in APPJ technology and its application to solar cells and batteries. The ultrafast APPJ sintering of nanoporous oxides and 3D reduced graphene oxide nanosheets with accompanying optical emission spectroscopy analyses are described in detail. The applications of these nanoporous materials to photoanodes and counter electrodes of dye-sensitized solar cells are described. An ultrashort treatment (1 min on graphite felt electrodes of flow batteries also significantly improves the energy efficiency.

  3. Evaluating the effect of nutrient redistribution by animals on the phosphorus cycle of lowland Amazonia

    Directory of Open Access Journals (Sweden)

    C. Buendía

    2018-01-01

    Full Text Available Phosphorus (P availability decreases with soil age and potentially limits the productivity of ecosystems growing on old and weathered soils. Despite growing on ancient soils, ecosystems of lowland Amazonia are highly productive and are among the most biodiverse on Earth. P eroded and weathered in the Andes is transported by the rivers and deposited in floodplains of the lowland Amazon basin creating hotspots of P fertility. We hypothesize that animals feeding on vegetation and detritus in these hotspots may redistribute P to P-depleted areas, thus contributing to dissipate the P gradient across the landscape. Using a mathematical model, we show that animal-driven spatial redistribution of P from rivers to land and from seasonally flooded to terra firme (upland ecosystems may sustain the P cycle of Amazonian lowlands. Our results show how P imported to land by terrestrial piscivores in combination with spatial redistribution of herbivores and detritivores can significantly enhance the P content in terra firme ecosystems, thereby highlighting the importance of food webs for the biogeochemical cycling of Amazonia.

  4. Evaluating the effect of nutrient redistribution by animals on the phosphorus cycle of lowland Amazonia

    Science.gov (United States)

    Buendía, Corina; Kleidon, Axel; Manzoni, Stefano; Reu, Björn; Porporato, Amilcare

    2018-01-01

    Phosphorus (P) availability decreases with soil age and potentially limits the productivity of ecosystems growing on old and weathered soils. Despite growing on ancient soils, ecosystems of lowland Amazonia are highly productive and are among the most biodiverse on Earth. P eroded and weathered in the Andes is transported by the rivers and deposited in floodplains of the lowland Amazon basin creating hotspots of P fertility. We hypothesize that animals feeding on vegetation and detritus in these hotspots may redistribute P to P-depleted areas, thus contributing to dissipate the P gradient across the landscape. Using a mathematical model, we show that animal-driven spatial redistribution of P from rivers to land and from seasonally flooded to terra firme (upland) ecosystems may sustain the P cycle of Amazonian lowlands. Our results show how P imported to land by terrestrial piscivores in combination with spatial redistribution of herbivores and detritivores can significantly enhance the P content in terra firme ecosystems, thereby highlighting the importance of food webs for the biogeochemical cycling of Amazonia.

  5. Influence of hadronic interaction models and the cosmic ray spectrum on the high-energy atmospheric muon and neutrino flux

    Directory of Open Access Journals (Sweden)

    Desiati Paolo

    2013-06-01

    Full Text Available The recent observations of muon charge ratio up to about 10 TeV and of atmospheric neutrinos up to energies of about 400 TeV has triggered a renewed interest into the high-energy interaction models and cosmic ray primary composition. A reviewed calculation of lepton spectra produced in cosmic ray induced extensive air showers is carried out with a primary cosmic ray spectrum that fits the latest direct measurements below the knee. In order to achieve this, we used a full Monte Carlo method to derive the inclusive differential spectra (yields of muons, muon neutrinos and electron neutrinos at the surface for energies between 80 GeV and hundreds of PeV. Using these results the differential flux and the flavor ratios of leptons were calculated. The air shower simulator CORSIKA 6.990 was used for showering and propagation of the secondary particles through the atmosphere, employing the established high energy hadronic interaction models SIBYLL 2.1, QGSJet-01 and QGSJet-II-03. We show that the performance of the interaction models allows makes it possible to predict the spectra within experimental uncertainties, while SIBYLL generally yields a higher flux at the surface than the QGSJet models. The calculation of the flavor and charge ratios has lead to inconsistent results, mainly influenced by the different representations of the K/π ratio within the models. The influence of the knee of cosmic rays is reflected in the secondary spectra at energies between 100 and 200 TeV. Furthermore, we could quantify systematic uncertainties of atmospheric muon- and neutrino fluxes, associated to the models of the primary cosmic ray spectrum and the interaction models. For most recent parametrizations of the cosmic ray primary spectrum, atmospheric muons can be determined with an uncertainty smaller than +15/-13% of the average flux. Uncertainties of the muon and electron neutrino fluxes can be calculated within an average error of +32/-22% and +25

  6. Interplane redistribution of oxygen in fine-grained HTSC

    Energy Technology Data Exchange (ETDEWEB)

    Makarov, E.F. [Semenov Institute of Chemical Physics, Russian Academy of Sciences, ul. Kosygina 4, Moscow 119991 (Russian Federation); Mamsurova, L.G. [Semenov Institute of Chemical Physics, Russian Academy of Sciences, ul. Kosygina 4, Moscow 119991 (Russian Federation)]. E-mail: mamsurova@chph.ras.ru; Permyakov, Yu.V. [National Institute for Physical, Radio and Technical Measurements (VNIIFTRI), Mendeleevo, Moscow Region 141570 (Russian Federation); Pigalskiy, K.S. [Semenov Institute of Chemical Physics, Russian Academy of Sciences, ul. Kosygina 4, Moscow 119991 (Russian Federation); Vishnev, A.A. [Semenov Institute of Chemical Physics, Russian Academy of Sciences, ul. Kosygina 4, Moscow 119991 (Russian Federation)

    2004-10-01

    Moessbauer spectra (T = 78 and 293 K) and X-ray (T = 293 K) studies of fine-grained high-temperature superconductors (HTSC) YBa{sub 2}Cu{sub 2.985}{sup 57}Fe{sub 0.015}O{sub y} (y = 6.92-6.93, T{sub c} = 91-91.5 K) with the average grain sizes equal to 0.4, 1, and 2 {mu}m are carried out. The redistribution in the intensities of Moessbauer spectra components with the decrease in the average grain size is found. The latter evidences the oxygen content to increase in (CuO{sub {delta}}) basal planes at the expense of its decrease in (CuO{sub 2}) and (BaO) planes. The redistribution of the oxygen between the different planes of the unit cell is accompanied by the decrease in the lattice parameter c. These effects are caused likely by nonequilibrium conditions which are commonly used in preparation of fine-grained HTSC. The assumption about the existence of partial disorder between Y{sup 3+} and Ba{sup 2+} sites in the samples explains the observed changes in the values of {delta} and c parameters. An efficiency of Moessbauer spectra studies for the compounds of YBaCuO type in the case of the enhanced oxygen parameter {delta} and the possibility of its quantitative estimation from the analysis of the intensities of Moessbauer spectrum components is demonstrated.

  7. Comprehensive calculation of the energy per ion pair or W values for five major planetary upper atmospheres

    Directory of Open Access Journals (Sweden)

    C. Simon Wedlund

    2011-01-01

    Full Text Available The mean energy W expended in a collision of electrons with atmospheric gases is a useful parameter for fast aeronomy computations. Computing this parameter in transport kinetic models with experimental values can tell us more about the number of processes that have to be taken into account and the uncertainties of the models. We present here computations for several atmospheric gases of planetological interest (CO2, CO, N2, O2, O, CH4, H, He using a family of multi-stream kinetic transport codes. Results for complete atmospheres for Venus, Earth, Mars, Jupiter and Titan are also shown for the first time. A simple method is derived to calculate W of gas mixtures from single-component gases and is conclusively checked against the W values of these planetary atmospheres. Discrepancies between experimental and theoretical values show where improvements can be made in the measurement of excitation and dissociation cross-sections of specific neutral species, such as CO2 and CO.

  8. Atmospheric diffusion study and its application to nuclear energy

    International Nuclear Information System (INIS)

    Chino, Masamichi

    1990-01-01

    The report reviews studies on atmospheric diffusion of radioactive substances released from a smokestack. Smoke containing radioactive substances, or radioactive plume, diffuses into air while being affected by atmospheric turbulent flows in various ways depending on the scale of the plume. The diffusion of a radioactive plume released from a smokestack is discussed first, focusing on the diffusion process in the vicinity of the smokestack, in the atmospheric boundary layer and in the troposphere. Many theoretical studies have been conducted by using the Gaussian plume model, though it is too simple to take into account the topographic effects and unstationary atmospheric conditions. Various numerical calculation models (designed for numerical calculation by a computer) have recently been developed, particularly for the implementation of environmental impact evaluation. Diagnostic and forecast type models are available for atmospheric air flow calculation. Other models available for diffusion analysis include the puff model, segment model, PIC (particle in cell)model, and random walk model. (N.K.)

  9. Phenomenology of atmospheric neutrinos

    Directory of Open Access Journals (Sweden)

    Fedynitch Anatoli

    2016-01-01

    Full Text Available The detection of astrophysical neutrinos, certainly a break-through result, introduced new experimental challenges and fundamental questions about acceleration mechanisms of cosmic rays. On one hand IceCube succeeded in finding an unambiguous proof for the existence of a diffuse astrophysical neutrino flux, on the other hand the precise determination of its spectral index and normalization requires a better knowledge about the atmospheric background at hundreds of TeV and PeV energies. Atmospheric neutrinos in this energy range originate mostly from decays of heavy-flavor mesons, which production in the phase space relevant for prompt leptons is uncertain. Current accelerator-based experiments are limited by detector acceptance and not so much by the collision energy. This paper recaps phenomenological aspects of atmospheric leptons and calculation methods, linking recent progress in flux predictions with particle physics at colliders, in particular the Large Hadron Collider.

  10. Development and validity of a new model for assessing pressure redistribution properties of support surfaces.

    Science.gov (United States)

    Matsuo, Junko; Sugama, Junko; Sanada, Hiromi; Okuwa, Mayumi; Nakatani, Toshio; Konya, Chizuko; Sakamoto, Jirou

    2011-05-01

    Pressure ulcers are a common problem, especially in older patients. In Japan, most institutionalized older people are malnourished and show extreme bony prominence (EBP). EBP is a significant factor in the development of pressure ulcers due to increased interface pressure concentrated at the skin surface over the EBP. The use of support surfaces is recommended for the prophylaxis of pressure ulcers. However, the present equivocal criteria for evaluating the pressure redistribution of support surfaces are inadequate. Since pressure redistribution is influenced by physique and posture, evaluations using human subjects are limited. For this reason, models that can substitute for humans are necessary. We developed a new EBP model based on the anthropometric measurements, including pelvic inclination, of 100 bedridden elderly people. A comparison between the pressure distribution charts of our model and bedridden elderly subjects demonstrated that maximum contact pressure values, buttock contact pressure values, and bone prominence rates corresponded closely. This indicates that the model provides a good approximation of the features of elderly people with EBP. We subsequently examined the validity of the model through quantitative assessment of pressure redistribution functions consisting of immersion, envelopment, and contact area change. The model was able to detect differences in the hardness of urethane foam, differences in the internal pressure of an air mattress, and sequential changes during the pressure switching mode. These results demonstrate the validity of our new buttock model in evaluating pressure redistribution for a variety of surfaces. Copyright © 2010 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.

  11. Energy extraction from atmospheric turbulence to improve flight vehicle performance

    Science.gov (United States)

    Patel, Chinmay Karsandas

    Small 'bird-sized' Unmanned Aerial Vehicles (UAVs) have now become practical due to technological advances in embedded electronics, miniature sensors and actuators, and propulsion systems. Birds are known to take advantage of wind currents to conserve energy and fly long distances without flapping their wings. This dissertation explores the possibility of improving the performance of small UAVs by extracting the energy available in atmospheric turbulence. An aircraft can gain energy from vertical gusts by increasing its lift in regions of updraft and reducing its lift in downdrafts - a concept that has been known for decades. Starting with a simple model of a glider flying through a sinusoidal gust, a parametric optimization approach is used to compute the minimum gust amplitude and optimal control input required for the glider to sustain flight without losing energy. For small UAVs using optimal control inputs, sinusoidal gusts with amplitude of 10--15% of the cruise speed are sufficient to keep the aircraft aloft. The method is then modified and extended to include random gusts that are representative of natural turbulence. A procedure to design optimal control laws for energy extraction from realistic gust profiles is developed using a Genetic Algorithm (GA). A feedback control law is designed to perform well over a variety of random gusts, and not be tailored for one particular gust. A small UAV flying in vertical turbulence is shown to obtain average energy savings of 35--40% with the use of a simple control law. The design procedure is also extended to determine optimal control laws for sinusoidal as well as turbulent lateral gusts. The theoretical work is complemented by experimental validation using a small autonomous UAV. The development of a lightweight autopilot and UAV platform is presented. Flight test results show that active control of the lift of an autonomous glider resulted in approximately 46% average energy savings compared to glides with fixed

  12. Developing an Earth system Inverse model for the Earth's energy and water budgets.

    Science.gov (United States)

    Haines, K.; Thomas, C.; Liu, C.; Allan, R. P.; Carneiro, D. M.

    2017-12-01

    The CONCEPT-Heat project aims at developing a consistent energy budget for the Earth system in order to better understand and quantify global change. We advocate a variational "Earth system inverse" solution as the best methodology to bring the necessary expertise from different disciplines together. L'Ecuyer et al (2015) and Rodell et al (2015) first used a variational approach to adjust multiple satellite data products for air-sea-land vertical fluxes of heat and freshwater, achieving closed budgets on a regional and global scale. However their treatment of horizontal energy and water redistribution and its uncertainties was limited. Following the recent work of Liu et al (2015, 2017) which used atmospheric reanalysis convergences to derive a new total surface heat flux product from top of atmosphere fluxes, we have revisited the variational budget approach introducing a more extensive analysis of the role of horizontal transports of heat and freshwater, using multiple atmospheric and ocean reanalysis products. We find considerable improvements in fluxes in regions such as the North Atlantic and Arctic, for example requiring higher atmospheric heat and water convergences over the Arctic than given by ERA-Interim, thereby allowing lower and more realistic oceanic transports. We explore using the variational uncertainty analysis to produce lower resolution corrections to higher resolution flux products and test these against in situ flux data. We also explore the covariance errors implied between component fluxes that are imposed by the regional budget constraints. Finally we propose this as a valuable methodology for developing consistent observational constraints on the energy and water budgets in climate models. We take a first look at the same regional budget quantities in CMIP5 models and consider the implications of the differences for the processes and biases active in the models. Many further avenues of investigation are possible focused on better valuing

  13. The Middle Miocene climate as modelled in an atmosphere-ocean-biosphere model

    Directory of Open Access Journals (Sweden)

    M. Krapp

    2011-11-01

    Full Text Available We present simulations with a coupled atmosphere-ocean-biosphere model for the Middle Miocene 15 million years ago. The model is insofar more consistent than previous models because it captures the essential interactions between ocean and atmosphere and between atmosphere and vegetation. The Middle Miocene topography, which alters both large-scale ocean and atmospheric circulations, causes a global warming of 0.7 K compared to present day. Higher than present-day CO2 levels of 480 and 720 ppm cause a global warming of 2.8 and 4.9 K. The associated water vapour feedback enhances the greenhouse effect which leads to a polar amplification of the warming. These results suggest that higher than present-day CO2 levels are necessary to drive the warm Middle Miocene climate, also because the dynamic vegetation model simulates a denser vegetation which is in line with fossil records. However, we do not find a flatter than present-day equator-to-pole temperature gradient as has been suggested by marine and terrestrial proxies. Instead, a compensation between atmospheric and ocean heat transport counteracts the flattening of the temperature gradient. The acclaimed role of the large-scale ocean circulation in redistributing heat cannot be supported by our results. Including full ocean dynamics, therefore, does not solve the problem of the flat temperature gradient during the Middle Miocene.

  14. End-user GHG emissions from energy. Reallocation of emissions from energy industries to end users 2005-2009

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, R. (European Environment Agency (EEA), Copenhagen (Denmark)); Watterson, J. (AEA Technology plc - EEA' s European Topic Centre on Air Pollution and Climate Change Mitigation (ETC/ACM) (United Kingdom))

    2011-12-15

    The objective of this report is to help improve the understanding of past greenhouse gas (GHG) emission trends in the energy sector from the demand or end-user side. To do this, the report develops a methodology to redistributes emissions from energy industries to the final users (by sector) of that energy. This reallocation is done on the basis of Eurostat's energy balances and GHG inventories for the energy sector as reported to the United Nations Framework Convention on Climate Change (UNFCCC), for the period 2005-2009. (Author)

  15. End-user GHG emissions from energy. Reallocation of emissions from energy industries to end users 2005-2010

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, R. [European Environment Agency (EEA), Copenhagen (Denmark); Watterson, J. [AEA Technology plc - EEA' s European Topic Centre on Air Pollution and Climate Change Mitigation (ETC/ACM) (United Kingdom)

    2012-12-15

    The objective of this report is to help improve the understanding of past GHG emission trends in the energy sector from the demand or end-user side. To do this, the report develops a methodology to redistributes emissions from energy industries to the final users (by sector) of that energy. This reallocation is done on the basis of Eurostat's energy balances and GHG inventories for the energy sector as reported to the United Nations Framework Convention on Climate Change (UNFCCC), for the period 2005-2010. (Author)

  16. Composition, Chemistry, and Climate of the Atmosphere. 2: Mean properties of the atmosphere

    Science.gov (United States)

    Singh, Hanwant B. (Editor); Salstein, David A.

    1994-01-01

    The atmosphere can be defined as the relatively thin gaseous envelope surrounding the entire planet Earth. It possesses a number of properties related to its physical state and chemical composition, and it undergoes a variety of internal processes and external interactions that can either maintain or alter these properties. Whereas descriptions of the atmosphere's chemical properties form much of the remaining chapters of this book, the present chapter will highlight the atmosphere's gases, and these define its temperature structure. In contrast, the larger-scale motions comprise the winds, the global organization of which is often referred to as the general circulation. The framework of the dynamical and thermodynamical laws, including the three principles of conversation of mass, momentum, and energy, are fundamental in describing both the internal processes of the atmosphere and its external interactions. The atmosphere is not a closed system, because it exchanges all three of these internally conservative quantities across the atmosphere's boundary below and receives input from regions outside it. Thus surface fluxes of moisture, momentum, and heat occur to and from the underlying ocean and land. The atmosphere exchanges very little mass and momentum with space, though it absorbs directly a portion of the solar radiational energy received from above.

  17. THE INFLUENCE OF THE EXTREME ULTRAVIOLET SPECTRAL ENERGY DISTRIBUTION ON THE STRUCTURE AND COMPOSITION OF THE UPPER ATMOSPHERE OF EXOPLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Guo, J. H. [Yunnan Observatories, Chinese Academy of Sciences, P.O. Box 110, Kunming 650011 (China); Ben-Jaffel, Lotfi, E-mail: guojh@ynao.ac.cn, E-mail: bjaffel@iap.fr [Sorbonne Universités, UPMC Univ. Paris 6 et CNRS, UMR 7095, Institut Astrophysique de Paris, F-75014 Paris (France)

    2016-02-20

    By varying the profiles of stellar extreme ultraviolet (EUV) spectral energy distributions (SEDs), we tested the influences of stellar EUV SEDs on the physical and chemical properties of an escaping atmosphere. We apply our model to study four exoplanets: HD 189733b, HD 209458b, GJ 436b, and Kepler-11b. We find that the total mass loss rates of an exoplanet, which are determined mainly by the integrated fluxes, are moderately affected by the profiles of the EUV SED, but the composition and species distributions in the atmosphere can be dramatically modified by the different profiles of the EUV SED. For exoplanets with a high hydrodynamic escape parameter (λ), the amount of atomic hydrogen produced by photoionization at different altitudes can vary by one to two orders of magnitude with the variation of stellar EUV SEDs. The effect of photoionization of H is prominent when the EUV SED is dominated by the low-energy spectral region (400–900 Å), which pushes the transition of H/H{sup +} to low altitudes. In contrast, the transition of H/H{sup +} moves to higher altitudes when most photons are concentrated in the high-energy spectral region (50–400 Å). For exoplanets with a low λ, the lower temperatures of the atmosphere make many chemical reactions so important that photoionization alone can no longer determine the composition of the escaping atmosphere. For HD 189733b, it is possible to explain the time variability of Lyα between 2010 and 2011 by a change in the EUV SED of the host K-type star, yet invoking only thermal H i in the atmosphere.

  18. Atmospheric monitoring in H.E.S.S.

    Directory of Open Access Journals (Sweden)

    Hahn J.

    2015-01-01

    Full Text Available Instruments applying the IACT method, such as H.E.S.S. (High Energy Stereoscopic System, observe VHE (very high energy, E > 100 GeV photons indirectly, using the Earth's atmosphere as a calorimeter. In the H.E.S.S. data reconstruction, the properties of this component are estimated by Monte Carlo simulations of a yearly averaged atmosphere density profile. Deviations of the real atmospheric conditions from this assumed atmospheric model will result in a biased reconstruction of the primary gamma-ray energy and thus the resulting source spectrum. In order to keep the corresponding systematic effects to a minimum, H.E.S.S. operates a set of atmospheric monitoring devices that allows it to characterise the atmospheric conditions during data taking. This information in turn is then used in data selection. Here, a short overview with respect to their usage during source observation and a posteriori analysis data selection will be presented.

  19. Plant Clonal Integration Mediates the Horizontal Redistribution of Soil Resources, Benefiting Neighboring Plants.

    Science.gov (United States)

    Ye, Xue-Hua; Zhang, Ya-Lin; Liu, Zhi-Lan; Gao, Shu-Qin; Song, Yao-Bin; Liu, Feng-Hong; Dong, Ming

    2016-01-01

    Resources such as water taken up by plants can be released into soils through hydraulic redistribution and can also be translocated by clonal integration within a plant clonal network. We hypothesized that the resources from one (donor) microsite could be translocated within a clonal network, released into different (recipient) microsites and subsequently used by neighbor plants in the recipient microsite. To test these hypotheses, we conducted two experiments in which connected and disconnected ramet pairs of Potentilla anserina were grown under both homogeneous and heterogeneous water regimes, with seedlings of Artemisia ordosica as neighbors. The isotopes [(15)N] and deuterium were used to trace the translocation of nitrogen and water, respectively, within the clonal network. The water and nitrogen taken up by P. anserina ramets in the donor microsite were translocated into the connected ramets in the recipient microsites. Most notably, portions of the translocated water and nitrogen were released into the recipient microsite and were used by the neighboring A. ordosica, which increased growth of the neighboring A. ordosica significantly. Therefore, our hypotheses were supported, and plant clonal integration mediated the horizontal hydraulic redistribution of resources, thus benefiting neighboring plants. Such a plant clonal integration-mediated resource redistribution in horizontal space may have substantial effects on the interspecific relations and composition of the community and consequently on ecosystem processes.

  20. Plant clonal integration mediates the horizontal redistribution of soil resources, benefiting neighbouring plants

    Directory of Open Access Journals (Sweden)

    Xuehua eYe

    2016-02-01

    Full Text Available Resources such as water taken up by plants can be released into soils through hydraulic redistribution and can also be translocated by clonal integration within a plant clonal network. We hypothesized that the resources from one (donor microsite could be translocated within a clonal network, released into different (recipient microsites and subsequently used by neighbour plants in the recipient microsite. To test these hypotheses, we conducted two experiments in which connected and disconnected ramet pairs of Potentilla anserina were grown under both homogeneous and heterogeneous water regimes, with seedlings of Artemisia ordosica as neighbours. The isotopes [15N] and deuterium were used to trace the translocation of nitrogen and water, respectively, within the clonal network. The water and nitrogen taken up by P. anserina ramets in the donor microsite were translocated into the connected ramets in the recipient microsites. Most notably, portions of the translocated water and nitrogen were released into the recipient microsite and were used by the neighbouring A. ordosica, which increased growth of the neighbouring A. ordosica significantly. Therefore, our hypotheses were supported, and plant clonal integration mediated the horizontal hydraulic redistribution of resources, thus benefiting neighbouring plants. Such a plant clonal integration-mediated resource redistribution in horizontal space may have substantial effects on the interspecific relations and composition of the community and consequently on ecosystem processes.

  1. The influence of Pt redistribution on Ni1-xPtxSi growth properties

    International Nuclear Information System (INIS)

    Demeulemeester, J.; Smeets, D.; Temst, K.; Vantomme, A.; Comrie, C. M.; Van Bockstael, C.; Knaepen, W.; Detavernier, C.

    2010-01-01

    We have studied the influence of Pt on the growth of Ni silicide thin films by examining the Pt redistribution during silicide growth. Three different initial Pt configurations were investigated, i.e., a Pt alloy (Ni+Pt/ ), a Pt capping layer (Pt/Ni/ ) and a Pt interlayer (Ni/Pt/ ), all containing 7 at. % Pt relative to the Ni content. The Pt redistribution was probed using in situ real-time Rutherford backscattering spectrometry (RBS) whereas the phase sequence was monitored during the solid phase reaction (SPR) using in situ real-time x-ray diffraction. We found that the capping layer and alloy exhibit a SPR comparable to the pure Ni/ system, whereas Pt added as an interlayer has a much more drastic influence on the Ni silicide phase sequence. Nevertheless, for all initial sample configurations, Pt redistributes in an erratic way. This phenomenon can be assigned to the low solubility of Pt in Ni 2 Si compared to NiSi and the high mobility of Pt in Ni 2 Si compared to pure Ni. Real-time RBS further revealed that the crucial issue determining the growth properties of each silicide phase is the Pt concentration at the Si interface during the initial stages of phase formation. The formation of areas rich in Pt reduce the Ni silicide growth kinetics which influences the phase sequence and properties of the silicides.

  2. Atmospheric impacts of black carbon emission reductions through the strategic use of biodiesel in California

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hongliang [Department of Civil and Environmental Engineering, University of California at Davis, 1 Shields Ave, Davis, CA 95616 (United States); Magara-Gomez, Kento T. [Environmental Chemistry and Technology Program, University of Wisconsin–Madison, 660 North Park Street, Madison, WI 53706 (United States); Environmental Engineering Department, Pontificia Bolivariana University-Bucaramanga, Km 7 Vía Piedecuesta, Bucaramanga (Colombia); Olson, Michael R. [Environmental Chemistry and Technology Program, University of Wisconsin–Madison, 660 North Park Street, Madison, WI 53706 (United States); Okuda, Tomoaki [Environmental Chemistry and Technology Program, University of Wisconsin–Madison, 660 North Park Street, Madison, WI 53706 (United States); Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Walz, Kenneth A. [Environmental Chemistry and Technology Program, University of Wisconsin–Madison, 660 North Park Street, Madison, WI 53706 (United States); Madison Area Technical College, 3550 Anderson Street, Madison, WI 53704 (United States); Schauer, James J. [Environmental Chemistry and Technology Program, University of Wisconsin–Madison, 660 North Park Street, Madison, WI 53706 (United States); Kleeman, Michael J., E-mail: mjkleeman@ucdavis.edu [Department of Civil and Environmental Engineering, University of California at Davis, 1 Shields Ave, Davis, CA 95616 (United States)

    2015-12-15

    The use of biodiesel as a replacement for petroleum-based diesel fuel has gained interest as a strategy for greenhouse gas emission reductions, energy security, and economic advantage. Biodiesel adoption may also reduce particulate elemental carbon (EC) emissions from conventional diesel engines that are not equipped with after-treatment devices. This study examines the impact of biodiesel blends on EC emissions from a commercial off-road diesel engine and simulates the potential public health benefits and climate benefits. EC emissions from the commercial off-road engine decreased by 76% when ultra-low sulfur commercial diesel (ULSD) fuel was replaced by biodiesel. Model calculations predict that reduced EC emissions translate directly into reduced EC concentrations in the atmosphere, but the concentration of secondary particulate matter was not directly affected by this fuel change. Redistribution of secondary particulate matter components to particles emitted from other sources did change the size distribution and therefore deposition rates of those components. Modification of meteorological variables such as water content and temperature influenced secondary particulate matter formation. Simulations with a source-oriented WRF/Chem model (SOWC) for a severe air pollution episode in California that adopted 75% biodiesel blended with ULSD in all non-road diesel engines reduced surface EC concentrations by up to 50% but changed nitrate and total PM2.5 mass concentrations by less than ± 5%. These changes in concentrations will have public health benefits but did not significantly affect radiative forcing at the top of the atmosphere. The removal of EC due to the adoption of biodiesel produced larger coatings of secondary particulate matter on other atmospheric particles containing residual EC leading to enhanced absorption associated with those particles. The net effect was a minor change in atmospheric optical properties despite a large change in atmospheric EC

  3. Atmospheric impacts of black carbon emission reductions through the strategic use of biodiesel in California

    International Nuclear Information System (INIS)

    Zhang, Hongliang; Magara-Gomez, Kento T.; Olson, Michael R.; Okuda, Tomoaki; Walz, Kenneth A.; Schauer, James J.; Kleeman, Michael J.

    2015-01-01

    The use of biodiesel as a replacement for petroleum-based diesel fuel has gained interest as a strategy for greenhouse gas emission reductions, energy security, and economic advantage. Biodiesel adoption may also reduce particulate elemental carbon (EC) emissions from conventional diesel engines that are not equipped with after-treatment devices. This study examines the impact of biodiesel blends on EC emissions from a commercial off-road diesel engine and simulates the potential public health benefits and climate benefits. EC emissions from the commercial off-road engine decreased by 76% when ultra-low sulfur commercial diesel (ULSD) fuel was replaced by biodiesel. Model calculations predict that reduced EC emissions translate directly into reduced EC concentrations in the atmosphere, but the concentration of secondary particulate matter was not directly affected by this fuel change. Redistribution of secondary particulate matter components to particles emitted from other sources did change the size distribution and therefore deposition rates of those components. Modification of meteorological variables such as water content and temperature influenced secondary particulate matter formation. Simulations with a source-oriented WRF/Chem model (SOWC) for a severe air pollution episode in California that adopted 75% biodiesel blended with ULSD in all non-road diesel engines reduced surface EC concentrations by up to 50% but changed nitrate and total PM2.5 mass concentrations by less than ± 5%. These changes in concentrations will have public health benefits but did not significantly affect radiative forcing at the top of the atmosphere. The removal of EC due to the adoption of biodiesel produced larger coatings of secondary particulate matter on other atmospheric particles containing residual EC leading to enhanced absorption associated with those particles. The net effect was a minor change in atmospheric optical properties despite a large change in atmospheric EC

  4. Measurements of gaseous mercury exchanges at the sediment-water, water-atmosphere and sediment-atmosphere interfaces of a tidal environment (Arcachon Bay, France).

    Science.gov (United States)

    Bouchet, Sylvain; Tessier, Emmanuel; Monperrus, Mathilde; Bridou, Romain; Clavier, Jacques; Thouzeau, Gerard; Amouroux, David

    2011-05-01

    The elemental mercury evasion from non-impacted natural areas is of significant importance in the global Hg cycle due to their large spatial coverage. Intertidal areas represent a dynamic environment promoting the transformations of Hg species and their subsequent redistribution. A major challenge remains in providing reliable data on Hg species variability and fluxes under typical transient tidal conditions found in such environment. Field experiments were thus carried out to allow the assessment and comparison of the magnitude of the gaseous Hg fluxes at the three interfaces, sediment-water, sediment-atmosphere and water-atmosphere of a mesotidal temperate lagoon (Arcachon Bay, Aquitaine, France) over three distinct seasonal conditions. The fluxes between the sediment-water and the sediment-atmosphere interfaces were directly evaluated with field flux chambers, respectively static or dynamic. Water-atmosphere fluxes were evaluated from ambient concentrations using a gas exchange model. The fluxes at the sediment-water interface ranged from -5.0 to 5.1 ng m(-2) h(-1) and appeared mainly controlled by diffusion. The occurrence of macrophytic covers (i.e.Zostera noltii sp.) enhanced the fluxes under light radiations. The first direct measurements of sediment-atmosphere fluxes are reported here. The exchanges were more intense and variable than the two other interfaces, ranging between -78 and 40 ng m(-2) h(-1) and were mostly driven by the overlying atmospheric Hg concentrations and superficial sediment temperature. The exchanges between the water column and the atmosphere, computed as a function of wind speed and gaseous mercury saturation ranged from 0.4 to 14.5 ng m(-2) h(-1). The flux intensities recorded over the intertidal sediments periodically exposed to the atmosphere were roughly 2 to 3 times higher than the fluxes of the other interfaces. The evasion of elemental mercury from emerged intertidal sediments is probably a significant pathway for Hg evasion in

  5. Study of two-phase flow redistribution between two passes of a heat exchanger

    International Nuclear Information System (INIS)

    Mendes de Moura, L.F.

    1989-04-01

    The object of the present thesis deals with the study of two-phase flow redistribution between two passes of a heat exchanger. Mass flow rate measurements of each component performed at each channel outlet of the second pass allowed us to determine the influence of mass flow, gas quality, flow direction (upward or downward) and common header geometry upon flow redistribution. Local void fraction inside common header was measured with an optical probe. A two-dimensional two-phase flow computational code was developed from a two-fluid model. Modelling of interfacial momentum transfer was used in order to take into account twp-phase flow patterns in common headers. Numerical simulation results show qualitative agreement with experimental results. Present theoretical model limitations are analysed and future improvements are proposed [fr

  6. Chemistry and evolution of Titan's atmosphere

    International Nuclear Information System (INIS)

    Strobel, D.F.

    1982-01-01

    The chemistry and evolution of Titan's atmosphere is reviewed in the light of the scientific findings from the Voyager mission. It is argued that the present N 2 atmosphere may be Titan's initial atmosphere rather than photochemically derived from an original NH 3 atmosphere. The escape rate of hydrogen from Titan is controlled by photochemical production from hydrocarbons. CH 4 is irreversibly converted to less hydrogen rich hydrocarbons, which over geologic time accumulate on the surface to a layer thickness of approximately 0.5 km. Magnetospheric electrons interacting with Titan's exosphere may dissociate enough N 2 into hot, escaping N atoms to remove approximately 0.2 of Titan's present atmosphere over geologic time. The energy dissipation of magnetospheric electrons exceeds solar e.u.v. energy deposition in Titan's atmosphere by an order of magnitude and is the principal driver of nitrogen photochemistry. The environmental conditions in Titan's upper atmosphere are favorable to building up complex molecules, particularly in the north polar cap region. (author)

  7. Finance-dominated capitalism and redistribution of income: A Kaleckian perspective

    OpenAIRE

    Hein, Eckhard

    2013-01-01

    This paper examines a major channel through which financialization or finance-dominated capitalism affects macroeconomic performance: the distribution channel. Empirical data for the following dimensions of redistribution in the period of finance-dominated capitalism since the early 1980s is provided for 15 advanced capitalist economies: functional distribution, personal/household distribution, and the share and composition of top incomes. Based on the Kaleckian approach to the determination ...

  8. Sources of inflow and nature of redistribution of 90Sr in the salt lakes of the Crimea.

    Science.gov (United States)

    Mirzoyeva, N Yu; Arkhipova, S I; Kravchenko, N V

    2018-08-01

    At the first time for the period after the Chernobyl NPP accident the nature of the redistribution of the 90 Sr concentrations in components of the ecosystems of the salt lakes of the Crimea were identified and described. Concentration of 90 Sr in water of the salt lakes depends on the sources of the inflow this radionuclide into aquatic ecosystems and salinity level of lakes water. Until April 2014 the flow of the Dnieper river water through the Northern-Crimean canal was more important factor of contamination of salt lakes of the Crimea by 90 Sr, than atmospheric fallout of this radionuclide after the Chernobyl NPP accident. Concentrations of 90 Sr in water of the salt lakes of the Crimea exceeded 2.4-156.5 times its concentrations in their bottom sediments. The 90 Sr dose commitments to hydrophytes, which were sampled from the salt lakes of the Crimea have not reached values which could impact them during entire the after-accident period. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. [Performance of Thallium 201 rest-redistribution spect to predict viability in recent myocardial infarction].

    Science.gov (United States)

    Coll, Claudia; González, Patricio; Massardo, Teresa; Sierralta, Paulina; Humeres, Pamela; Jofré, Josefina; Yovanovich, Jorge; Aramburú, Ivonne; Brugère, Solange; Chamorro, Hernán; Ramírez, Alfredo; Kunstmann, Sonia; López, Héctor

    2002-03-01

    The detection of viability after acute myocardial infarction is primordial to select the most appropriate therapy, to decrease cardiac events and abnormal remodeling. Thallium201 SPECT is one of the radionuclide techniques used to detect viability. To evaluate the use of Thallium201 rest-redistribution SPECT to detect myocardial viability in reperfused patients after a recent myocardial infarction. Forty one patients with up to of 24 days of evolution of a myocardial infarction were studied. All had angiographically demonstrated coronary artery disease and were subjected to a successful thrombolysis, angioplasty or bypass grafting. SPECT Thallium201 images were acquired at rest and after 4 h of redistribution. These results were compared with variations in wall motion score, studied at baseline and after 3 or 4 months with echocardiography. The sensitivity of rest-redistribution Thallium201 SPECT, to predict recovery of wall motion was 91% when patient analysis was performed and 79% when segmental analysis was done in the culprit region. The figures for specificity were 56 and 73% respectively. Rest-distribution Thallium201 SPECT has an excellent sensitivity to predict myocardial viability in recent myocardial infarction. The data obtained in this study is similar to that reported for chronic coronary artery disease.

  10. The ancestral logic of politics: upper-body strength regulates men's assertion of self-interest over economic redistribution.

    Science.gov (United States)

    Petersen, Michael Bang; Sznycer, Daniel; Sell, Aaron; Cosmides, Leda; Tooby, John

    2013-07-01

    Over human evolutionary history, upper-body strength has been a major component of fighting ability. Evolutionary models of animal conflict predict that actors with greater fighting ability will more actively attempt to acquire or defend resources than less formidable contestants will. Here, we applied these models to political decision making about redistribution of income and wealth among modern humans. In studies conducted in Argentina, Denmark, and the United States, men with greater upper-body strength more strongly endorsed the self-beneficial position: Among men of lower socioeconomic status (SES), strength predicted increased support for redistribution; among men of higher SES, strength predicted increased opposition to redistribution. Because personal upper-body strength is irrelevant to payoffs from economic policies in modern mass democracies, the continuing role of strength suggests that modern political decision making is shaped by an evolved psychology designed for small-scale groups.

  11. Atmospheric fluxes and energy spectra of positive and negative muons from Monte-Carlo simulations

    International Nuclear Information System (INIS)

    Vulpescu, B.; Brancus, I.M.; Badea, A.F.; Duma, M.; Bozdog, H.; Petru, M.; Rebel, H.; Weintz, J.; Mathes, H.J.; Haungs, A.; Roth, M.

    1999-01-01

    Cosmic ray muons observed with detectors placed at the ground level originate from the decay of mesons produced by interactions of high energy cosmic ray primaries with air nuclei, mainly due to the decay of charged pions and kaons, processes which lead also to the production of atmospheric neutrinos. Prompted by recent accurate measurements of the charge ratio of atmospheric muons, the flux and energy spectra of positive and negative muons have been studied on the basis of Monte-Carlo simulations (CORSIKA) of the EAS development, using the GHEISHA and VENUS model as generators. The results have been analysed and compared with data under the aspect of their sensitivity to details of the hadronic interaction, in particular in the 3 GeV/n - 20 TeV/n region. The muon charge ratio proves to be a sensitive test quantity for the production model and propagation and it exhibits peculiar features at low energies (< 1 GeV). Results are shown, from magnetic spectrometer experiments in the difficult region of low momenta as well as the precise values obtained with the WILLI detector by observing the lifetime of negative muons stopped in material. The CORSIKA predictions on the charge ratio show a drop below 1 for very low muon momentum and needs further experimental investigations. The EAST-WEST effect is characteristic for low muon momenta and is well reproduced by simulations. The WILLI detector is planned to be developed in a new configuration, being able to investigate with high accuracy the muon charge ratio at different zenithal and azimuthal directions. (authors)

  12. Ribose facilitates thallium-201 redistribution in patients with coronary artery disease

    International Nuclear Information System (INIS)

    Perlmutter, N.S.; Wilson, R.A.; Angello, D.A.; Palac, R.T.; Lin, J.; Brown, B.G.

    1991-01-01

    To investigate whether i.v. infusion of ribose, an adenine nucleotide precursor, postischemia facilitates thallium-201 (201Tl) redistribution and improves identification of ischemic myocardium in patients with coronary artery disease (CAD), 17 patients underwent two exercise 201Tl stress tests, performed 1-2 wk apart. After immediate postexercise planar imaging, patients received either i.v. ribose (3.3 mg/kg/min x 30 min) or saline as a control. Additional imaging was performed 1 and 4 hr postexercise. Reversible defects were identified by count-profile analysis. Significantly more (nearly twice as many) reversible 201Tl defects were identified on the post-ribose images compared to the post-saline (control) images at both 1 and 4 hr postexercise (p less than 0.001). Quantitative analyses of the coronary arteriogram was available in 13 patients and confirmed that the additional reversible defects were in myocardial regions supplied by stenosed arteries. We conclude that ribose appears to facilitate 201Tl redistribution in patients with CAD and enhances identification of ischemic myocardium

  13. Alligator Rivers Analogue project. Weathering and its effects on uranium redistribution

    International Nuclear Information System (INIS)

    Isobe, H.; Ohnuki, T.; Yanase, N.; Sato, T.; Kimura, H.; Sekine, K.; Nagano, T.; Klessa, D.A.; Conoley, C.; Nakashima, S.; Ewing, R.C.

    1992-01-01

    In the vicinity of the uranium ore deposit at Koongarra, quartz-chlorite schist, the ore host rock, has been subjected to weathering. Although quartz is resistant to weathering, chlorite has been altered to clays and iron minerals. The chlorite weathering and the uranium association with the weathered minerals are the main topics of this study. In order to clarify the weathering of chlorite and its effects on the redistribution of uranium, the processes, mechanisms, and kinetics of the chlorite weathering, and the uranium concentrations in minerals were examined by various methods: X-ray diffraction analysis, scanning electron microscopy, electron microprobe analysis, transmission electron microscopy, autoradiography, visible spectroscopy, alpha and gamma spectrometry. The observed results were compared to those calculated, based on two different models developed for the present study. Water-rock interactions have resulted in the weathering of chlorite and precipitation and sorption of uranyl from the groundwaters with the weathering products. It is concluded that the chlorite weathering affects the uranium retardation factor, and thus uranium redistribution at Koongarra. 55 refs., 20 tabs., 120 figs

  14. Instrumentation for the observation of atmospheric parameters, relevant for IACTs, for site-search and correction of the energy spectra

    Energy Technology Data Exchange (ETDEWEB)

    Fruck, Christian; Hose, Juergen; Engelhardt, Toni; Mirzoyan, Razmik; Schweizer, Thomas; Teshima, Masahiro [Max Plank Institut fuer Physik, Muenchen (Germany)

    2010-07-01

    The atmospheric conditions have impact on the measured data by imaging atmospheric Cherenkov telescopes (IACT). Cherenkov light from air showers traverses 5-25 km distance in the atmosphere before reaching the telescopes. This light becomes attenuated because of absorption by oxigen and ozone as well as because of the Rayleigh and the Mie scatterings. The latter is the variable component in the atmosphere that depends on the momentary distribution of aerosols, their size and types and distribution heights. We have developed a micro-LIDAR system for parametrising these losses and plan to locate it next to the MAGIC telescopes for simultaneous operation. This shall allow us to improve the energy resolution of the telescopes for the data taken at non-ideal weather conditions. Also, we are working on developing diverse instrumentation for paramerising the atmosphere and for the searching proper sites for the CTA project. In our presentation we plan to report about the above-mentioned activities.

  15. Validation of neutron flux redistribution factors in JSI TRIGA reactor due to control rod movements

    International Nuclear Information System (INIS)

    Kaiba, Tanja; Žerovnik, Gašper; Jazbec, Anže; Štancar, Žiga; Barbot, Loïc; Fourmentel, Damien; Snoj, Luka

    2015-01-01

    For efficient utilization of research reactors, such as TRIGA Mark II reactor in Ljubljana, it is important to know neutron flux distribution in the reactor as accurately as possible. The focus of this study is on the neutron flux redistributions due to control rod movements. For analyzing neutron flux redistributions, Monte Carlo calculations of fission rate distributions with the JSI TRIGA reactor model at different control rod configurations have been performed. Sensitivity of the detector response due to control rod movement have been studied. Optimal radial and axial positions of the detector have been determined. Measurements of the axial neutron flux distribution using the CEA manufactured fission chambers have been performed. The experiments at different control rod positions were conducted and compared with the MCNP calculations for a fixed detector axial position. In the future, simultaneous on-line measurements with multiple fission chambers will be performed inside the reactor core for a more accurate on-line power monitoring system. - Highlights: • Neutron flux redistribution due to control rod movement in JSI TRIGA has been studied. • Detector response sensitivity to the control rod position has been minimized. • Optimal radial and axial detector positions have been determined

  16. INERT Atmosphere confinement operability test procedure

    International Nuclear Information System (INIS)

    RISENMAY, H.R.

    1999-01-01

    This Operability Test Procedure (OTP) provides instructions for testing operability of the Inert Atmosphere Confinement (IAC). The Inert Atmosphere Confinement was designed and built for opening cans of metal items that might have hydrided surfaces. Unreviewed Safety Question (USQ) PFP-97-005 addresses the discovery of suspected plutonium hydride forming on plutonium metal currently stored in the Plutonium Finishing Plant vaults. Plutonium hydride reacts quickly with air, liberating energy. The Inert Atmosphere Confinement was designed to prevent this sudden liberation of energy by opening the material in an inert argon atmosphere instead of the normal glovebox atmosphere. The IAC is located in glovebox HC-21A, room 230B of the 234-5Z Building at the Plutonium Finishing Plant (PFP) in the 200-West Area of the Hanford Site

  17. Responsibility and Redistribution: The Case of First Best Taxation

    OpenAIRE

    Bertil Tungodden

    2001-01-01

    It is not straightforward to define the ethics of responsibility in cases where the consequences of changes in factors within our control are partly determined by factors beyond our control. In this paper, we suggest that one plausible view is to keep us responsible for the parts of the consequences that are independent of the factors beyond our control. Within the framework of a first best taxation problem, we present and characterise a redistributive mechanism that both satisfies this inter...

  18. Activité féminine, prestations familiales et redistribution

    OpenAIRE

    Olivia Ekert

    1983-01-01

    Ekert Olivia. ? Women's Work, Family Allowances and Redistribution. The system of family allowances may be looked at from two different points of view : the contributions paid throughout working life, and the benefits received when there are dependant children. The aim of this study is to determine who are the net beneficiaries of the system. A balance sheet extending over the lifetime of couples classified by their completed family size and their social group is drawn up. A model is construc...

  19. Evaluation of thallium redistribution in infarcted area in accordance with time interval from the onset of myocardial infarction

    International Nuclear Information System (INIS)

    Shimonagata, Tsuyoshi; Nishimura, Tsunehiko; Uehara, Toshiisa; Hayashida, Kohei; Sumiyoshi, Tetsuya; Nonogi, Hiroshi; Hase, Kazuo

    1991-01-01

    This study evaluated the relationship between the time after onset of myocardial infarction and thallium redistribution in infarcted areas in a total of 123 patients with anterior infarction who underwent exercise thallium scintiscanning. Complete or incomplete redistribution of thallium was visually evaluated for transient perfusion defect by three physicians. Ischemic and defect scores were quantitatively determined by using circumferential profile analysis. The patients were divided into three groups: 64 patients receiving thallium scintiscanning within 3 months after onset of myocardial infarction (Group A), 25 patients receiving it at 3 months to one year after that (Group B), and 34 patients receiving it one year or later (Group C). Complete and incomplete redistributions were seen in 4% and 96%, respectively, for Group A, 38% and 62% for Group B, and 53% and 47% for Group C; and the rate of incomplete redistribution was significantly higher in Group A than the other two groups. Ischemic score was 50±32 for Group A, 46±29 for Group B, and 37±19 for Group C; and defect scores for these groups were 25±16, 24±16, and 20±18, respectively. Both ischemic and defect scores tended to be lower as the time after onset of myocardial infarction was longer. Eighteen patients, comprising 7 in Group A, 4 in Group B, and 7 in Group C, were also reinjected with thallium 201 and then reimaged at rest. These scans for Group A showed a significantly lower defect scores than the conventional thallium scans. Conventional exercise thallium scintiscanning seemed to underestimate thallium redistribution when performed early after onset of myocardial infarction. (N.K.)

  20. Partitioning of heavy metals in a soil contaminated by slag: A redistribution study

    International Nuclear Information System (INIS)

    Bunzl, K.; Trautmannsheimer, M.; Schramel, P.

    1999-01-01

    In order to interpret reasonably the partitioning of heavy metals in a contaminated soil as observed from applying a sequential extraction procedure, information on possible redistribution processes of the metals during the various extraction steps is essential. For this purpose, sequential extraction was used to study the chemical partitioning of Ag, Cu, Ni, Pb, and Zn in a soil contaminated wither by a slag from coal firing or by a slag from pyrite roasting. Through additional application of sequential extraction to the pure slags as well as to the uncontaminated soil, it was shown that during the various extraction steps applied to the soil/slag mixtures, substantial redistribution processes of the metals between the slag- and soil particles can occur. In many cases, metals ions released during the extraction with acid hydroxylamine or acid hydrogen peroxide are partially readsorbed by solid constituents of the mixture and will therefore be found in the subsequent fractions extracted. As a result, one has to realize that (1) it will be difficult to predict the chemical partitioning of these metals in contaminated soils by investigating pure slags only, and (2) information on the partitioning of a metal in a slag contaminated soil will not necessarily give any relevant information on the form of this metal in the slag or in the slag/soil mixture, because the redistribution processes during sequential extraction will not be the same as those occurring in the soil solution under natural conditions

  1. Measurement of the atmospheric νμ energy spectrum from 100 GeV to 200 TeV with the ANTARES telescope

    International Nuclear Information System (INIS)

    Adrian-Martinez, S.; Ardid, M.; Larosa, G.; Martinez-Mora, J.A.; Albert, A.; Drouhin, D.; Racca, C.; Al Samarai, I.; Aubert, J.J.; Bertin, V.; Brunner, J.; Busto, J.; Carr, J.; Charif, Z.; Core, L.; Costantini, H.; Coyle, P.; Curtil, C.; Dornic, D.; Ernenwein, J.P.; Escoffier, S.; Lambard, E.; Riviere, C.; Vallee, C.; Yatkin, K.; Andre, M.; Anghinolfi, M.; Sanguineti, M.; Anton, G.; Classen, F.; Eberl, T.; Enzenhoefer, A.; Fehn, K.; Folger, F.; Fritsch, U.; Geisselsoeder, S.; Geyer, K.; Gleixner, A.; Graf, K.; Herold, B.; Hoessl, J.; James, C.W.; Kalekin, O.; Kappes, A.; Katz, U.; Lahmann, R.; Motz, H.; Neff, M.; Richter, R.; Roensch, K.; Schmid, J.; Schnabel, J.; Seitz, T.; Shanidze, R.; Sieger, C.; Spies, A.; Wagner, S.; Anvar, S.; Louis, F.; Astraatmadja, T.; Bogazzi, C.; Bouwhuis, M.C.; Heijboer, A.J.; Jong, M. de; Michael, T.; Palioselitis, D.; Schulte, S.; Steijger, J.J.M.; Visser, E.; Baret, B.; Bouhou, B.; Creusot, A.; Galata, S.; Kouchner, A.; Elewyck, V. van; Barrios-Marti, J.; Bigongiari, C.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Lambard, G.; Mangano, S.; Sanchez-Losa, A.; Yepes, H.; Zornoza, J.D.; Zuniga, J.; Basa, S.; Marcelin, M.; Nezri, E.; Biagi, S.; Fusco, L.A.; Giacomelli, G.; Margiotta, A.; Spurio, M.; Bruijn, R.; Decowski, M.P.; Wolf, E. de; Capone, A.; De Bonis, G.; Fermani, P.; Perrina, C.; Simeone, F.; Caramete, L.; Pavalas, G.E.; Popa, V.; Carloganu, C.; Dumas, A.; Gay, P.; Guillard, G.; Cecchini, S.; Chiarusi, T.; Charvis, P.; Deschamps, A.; Hello, Y.; Circella, M.; Dekeyser, I.; Lefevre, D.; Martini, S.; Robert, A.; Tamburini, C.; Distefano, C.; Lattuada, D.; Piattelli, P.; Sapienza, P.; Trovato, A.; Donzaud, C.; Dorosti, Q.; Loehner, H.; Flaminio, V.; Giordano, V.; Haren, H. van; Kadler, M.; Kooijman, P.; Kreykenbohm, I.; Mueller, C.; Wilms, J.; Kulikovskiy, V.; Leonora, E.; Lo Presti, D.; Loucatos, S.; Schuessler, F.; Stolarczyk, T.; Vallage, B.; Vernin, P.; Montaruli, T.; Morganti, M.; Pradier, T.; Rostovtsev, A.; Samtleben, D.F.E.; Taiuti, M.; Tayalati, Y.

    2013-01-01

    Atmospheric neutrinos are produced during cascades initiated by the interaction of primary cosmic rays with air nuclei. In this paper, a measurement of the atmospheric ν μ + anti ν μ energy spectrum in the energy range 0.1-200 TeV is presented, using data collected by the ANTARES underwater neutrino telescope from 2008 to 2011. Overall, the measured flux is ∝25 % higher than predicted by the conventional neutrino flux, and compatible with the measurements reported in ice. The flux is compatible with a single power-law dependence with spectral index γ meas =3.58±0.12. With the present statistics the contribution of prompt neutrinos cannot be established. (orig.)

  2. The atmosphere and ocean: A physical introduction

    International Nuclear Information System (INIS)

    Wells, N.

    1986-01-01

    The book's contents are: The Earth within the solar system. Composition and physical properties of the ocean and atmosphere. Radiation, temperature and stability. Water in the atmosphere. Global budgets of heat, water and salt. Observations of winds and currents. The influence of the Earth's rotation on fluid motion. Waves and tides. Energy transfer in the ocean-atmosphere system. Climate variability and predictability. The atmosphere and ocean are two different environmental systems, yet both are interdependent, interacting and exchanging energy, heat and matter. This book attempts to bring the study of the atmosphere and ocean together. It is a descriptive account of physical properties, exploring their common bases, similarities, interactions and fundamental differences

  3. Strategy implementation for the CTA Atmospheric monitoring program

    Directory of Open Access Journals (Sweden)

    Doro Michele

    2015-01-01

    Full Text Available The Cherenkov Telescope Array (CTA is the next generation facility of Imaging Atmospheric Cherenkov Telescopes. It reaches unprecedented sensitivity and energy resolution in very-high-energy gamma-ray astronomy. CTA detects Cherenkov light emitted within an atmospheric shower of particles initiated by cosmic-gamma rays or cosmic rays entering the Earth's atmosphere. From the combination of images the Cherenkov light produces in the telescopes, one is able to infer the primary particle energy and direction. A correct energy estimation can be thus performed only if the local atmosphere is well characterized. The atmosphere not only affects the shower development itself, but also the Cherenkov photon transmission from the emission point in the particle shower, at about 10–20 km above the ground, to the detector. Cherenkov light on the ground is peaked in the UV-blue region, and therefore molecular and aerosol extinction phenomena are important. The goal of CTA is to control systematics in energy reconstruction to better than 10%. For this reason, a careful and continuous monitoring and characterization of the atmosphere is required. In addition, CTA will be operated as an observatory, with data made public along with appropriate analysis tools. High-level data quality can only be ensured if the atmospheric properties are consistently and continuously taken into account. In this contribution, we concentrate on discussing the implementation strategy for the various atmospheric monitoring instruments currently under discussion in CTA. These includes Raman lidars and ceilometers, stellar photometers and others available both from commercial providers and public research centers.

  4. Absorption of solar energy heats up our planet's surface and the atmosphere and makes life for us po

    Science.gov (United States)

    2002-01-01

    Credit: Image courtesy Barbara Summey, NASA Goddard Visualization Analysis Lab, based upon data processed by Takmeng Wong, CERES Science Team, NASA Langley Research Center Satellite: Terra Sensor: CERES Image Date: 09-30-2001 VE Record ID: 11546 Description: Absorption of solar energy heats up our planet's surface and the atmosphere and makes life for us possible. But the energy cannot stay bound up in the Earth's environment forever. If it did then the Earth would be as hot as the Sun. Instead, as the surface and the atmosphere warm, they emit thermal longwave radiation, some of which escapes into space and allows the Earth to cool. This false-color image of the Earth was produced on September 30, 2001, by the Clouds and the Earth's Radiant Energy System (CERES) instrument flying aboard NASA's Terra spacecraft. The image shows where more or less heat, in the form of longwave radiation, is emanating from the top of Earth's atmosphere. As one can see in the image, the thermal radiation leaving the oceans is fairly uniform. The blue swaths across the central Pacific represent thick clouds, the tops of which are so high they are among the coldest places on Earth. In the American Southwest, which can be seen in the upper righthand corner of the globe, there is often little cloud cover to block outgoing radiation and relatively little water to absorb solar energy. Consequently, the amount of outgoing radiation in the American Southwest exceeds that of the oceans. Also, that region was experiencing an extreme heatwave when these data were acquired. Recently, NASA researchers discovered that incoming solar radiation and outgoing thermal radiation increased in the tropics from the 1980s to the 1990s. (Click to read the press release .) They believe that the reason for the unexpected increase has to do with an apparent change in circulation patterns around the globe, which effectively reduced the amount of water vapor and cloud cover in the upper reaches of the atmosphere

  5. Spitzer observations of the thermal emission from WASP-43b

    Energy Technology Data Exchange (ETDEWEB)

    Blecic, Jasmina; Harrington, Joseph; Stevenson, Kevin B.; Hardy, Ryan A.; Cubillos, Patricio E.; Hardin, Matthew; Bowman, Oliver; Nymeyer, Sarah [Planetary Sciences Group, Department of Physics, University of Central Florida, Orlando, FL 32816-2385 (United States); Madhusudhan, Nikku [Department of Physics and Department of Astronomy, Yale University, New Haven, CT 06511 (United States); Anderson, David R.; Hellier, Coel; Smith, Alexis M. S. [Astrophysics Group, Keele University, Keele, Staffordshire ST5 5BG (United Kingdom); Cameron, Andrew Collier, E-mail: jasmina@physics.ucf.edu [SUPA, School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9SS (United Kingdom)

    2014-02-01

    WASP-43b is one of the closest-orbiting hot Jupiters, with a semimajor axis of a = 0.01526 ± 0.00018 AU and a period of only 0.81 days. However, it orbits one of the coolest stars with a hot Jupiter (T {sub *} = 4520 ± 120 K), giving the planet a modest equilibrium temperature of T {sub eq} = 1440 ± 40 K, assuming zero Bond albedo and uniform planetary energy redistribution. The eclipse depths and brightness temperatures from our jointly fit model are 0.347% ± 0.013% and 1670 ± 23 K at 3.6 μm and 0.382% ± 0.015% and 1514 ± 25 K at 4.5 μm. The eclipse timings improved the estimate of the orbital period, P, by a factor of three (P = 0.81347436 ± 1.4 × 10{sup –7} days) and put an upper limit on the eccentricity (e=0.010{sub −0.007}{sup +0.010}). We use our Spitzer eclipse depths along with four previously reported ground-based photometric observations in the near-infrared to constrain the atmospheric properties of WASP-43b. The data rule out a strong thermal inversion in the dayside atmosphere of WASP-43b. Model atmospheres with no thermal inversions and fiducial oxygen-rich compositions are able to explain all the available data. However, a wide range of metallicities and C/O ratios can explain the data. The data suggest low day-night energy redistribution in the planet, consistent with previous studies, with a nominal upper limit of about 35% for the fraction of energy incident on the dayside that is redistributed to the nightside.

  6. Reverse redistribution of thallium-201: a sign of nontransmural myocardial infarction with patency of the infarct-related coronary artery

    International Nuclear Information System (INIS)

    Weiss, A.T.; Maddahi, J.; Lew, A.S.; Shah, P.K.; Ganz, W.; Swan, H.J.; Berman, D.S.

    1986-01-01

    The pattern of reverse redistribution on the day 10 poststreptokinase resting thallium-201 myocardial scintigrams is a common finding in patients who have undergone streptokinase therapy in evolving myocardial infarction. To investigate this phenomenon, 67 patients who underwent streptokinase therapy were studied pre- and 10 days poststreptokinase therapy resting thallium-201 studies, poststreptokinase therapy resting radionuclide ventriculography and coronary arteriography (60 of the 67 patients). Of the 67 patients, 50 (75%) showed the reverse redistribution pattern on the day 10 thallium-201 study (Group I), 9 (13%) had a nonreversible defect (Group II) and the remaining 8 (12%) had a normal study or showed a reversible defect (Group III). The reverse redistribution pattern was associated with patency of the infarct-related artery (100%), quantitative improvement in resting thallium-201 defect size from day 1 to day 10 study (94%) and normal or near normal wall motion on day 10 radionuclide ventriculography (80% of segments with marked and 54% of those with mild reverse redistribution). In contrast, nonreversible defects were associated with significantly less frequent patency of the infarct-related artery (67%, p = 0.01), improvement in defect size (11%, p less than 0.001) and normal or near normal wall motion (21%, p less than 0.05). Group III patients were similar to Group I with respect to these variables. The quantitated thallium-201 percent washout was higher in the regions with the reverse redistribution pattern (49 +/- 15%) compared with the contralateral normal zone (24 +/- 15%, p less than 0.001)

  7. Redistribution of natural radioactive elements resulting from animal and plant life activity in regions with high radioactivity

    International Nuclear Information System (INIS)

    Malslov, V.I.; Maslova, K.I.; Alexakhin, R.M.

    1980-01-01

    A quantitative assessment is made of the influence of plant and animal life on the migration and redistribution of naturally occurring radionuclides in several localized areas with unusually high soil concentrations of 226 Ra, 238 U, or 232 Th. In the taiga and tundra zones examined, the effects of radionuclide accumulation in certain plant species and of the feeding and burrowing habits of small mammals were particularly significant. The observed regularities have predictive applications in assessing the redistribution of radionuclides in regions of high radioactivity

  8. Induction of strand breaks in DNA films by low energy electrons and soft X-ray under nitrous oxide atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Alizadeh, Elahe, E-mail: Elahe.Alizadeh@USherbrooke.ca [Groupe en science des radiations, Departement de medecine nucleaire et radiobiologie, Faculte de medecine et des sciences de la sante, Universite de Sherbrooke, Sherbrooke, J1H 5N4 (Canada); Sanche, Leon, E-mail: Leon.Sanche@USherbrooke.ca [Groupe en science des radiations, Departement de medecine nucleaire et radiobiologie, Faculte de medecine et des sciences de la sante, Universite de Sherbrooke, Sherbrooke, J1H 5N4 (Canada)

    2012-01-15

    Five-monolayer (5 ML) plasmid DNA films deposited on glass and tantalum substrates were exposed to Al K{sub {alpha}} X-rays of 1.5 keV under gaseous nitrous oxide (N{sub 2}O) at atmospheric pressure and temperature. Whereas the damage yields for DNA deposited on glass are due to soft X-rays, those arising from DNA on tantalum are due to both the interaction of low energy photoelectrons from the metal and X-rays. Then, the differences in the yields of damage on glass and tantalum substrates, essentially arises from interaction of essentially low-energy electrons (LEEs) with DNA molecules and the surrounding atmosphere. The G-values (i.e., the number of moles of product per Joule of energy absorbed) for DNA strand breaks induced by LEEs (G{sub LEE}) and the lower limit of G-values for soft X-ray photons (G{sub XL}) were calculated and the results compared to those from previous studies under atmospheric conditions and other ambient gases, such as N{sub 2} and O{sub 2}. Under N{sub 2}O, the G-values for loss of supercoiled DNA are 103{+-}15 nmol/J for X-rays, and 737{+-}110 nmol/J for LEEs. Compared to corresponding values in an O{sub 2} atmosphere, the effectiveness of X-rays to damage DNA in N{sub 2}O is less, but the G value for LEEs in N{sub 2}O is more than twice the corresponding value for an oxygenated environment. This result indicates a higher effectiveness for LEEs relative to N{sub 2} and O{sub 2} environments in causing SSB and DSB in an N{sub 2}O environment. Thus, the previously observed radiosensitization of cells by N{sub 2}O may not be only due to OH{sup {center_dot}} radicals but also to the reaction of LEE with N{sub 2}O molecules near DNA. The previous experiments with N{sub 2} and O{sub 2} and the present one demonstrate the possibility to investigate damage induced by LEEs to biomolecules under various types of surrounding atmospheres. - Highlights: > A completely different and new approach is applied to investigate the radiation chemistry of N

  9. Intra- and inter-layer charge redistribution in biased bilayer graphene

    Directory of Open Access Journals (Sweden)

    Rui-Ning Wang

    2016-03-01

    Full Text Available We investigate the spatial redistribution of the electron density in bilayer graphene in the presence of an interlayer bias within density functional theory. It is found that the interlayer charge redistribution is inhomogeneous between the upper and bottom layers and the transferred charge from the upper layer to the bottom layer linearly increases with the external voltage which further makes the gap at K point linearly increase. However, the band gap will saturate to 0.29 eV in the strong-field regime, but it displays a linear field dependence at the weak-field limit. Due to the AB-stacked way, two carbon atoms per unit cell in the same layer are different and there is also a charge transfer between them, making the widths of π valence bands reduced. In the bottom layer, the charge transfers from the direct atoms which directly face another carbon atom to the indirect atoms facing the center of the hexagon on the opposite layer, while the charge transfers from the indirect atoms to the direct atoms in the upper layer. Furthermore, there is a diploe between the upper and bottom layers which results in the reduction of the interlayer hopping interaction.

  10. Electron attachment to oxygen, ozone and other compounds of atmospheric relevance as studied with ultra-high energy resolution

    International Nuclear Information System (INIS)

    Maerk, T.D.; Matejcik, S.; Kiendler, A.; Cicman, P.; Senn, G.; Skalny, J.; Stampfli, P.; Illenberger, E.; Chu, Y.; Stamatovic, A.

    1996-01-01

    The processes of electron attachment to oxygen, ozone, ozone/oxygen cluster and oxygen cluster as well as other compounds of atmospheric relevance (CF 2 Cl 2 , CHCl 3 and CCl 3 Br) were studied with ultra-high energy resolution crossed beam technique

  11. Population redistribution in Nigeria.

    Science.gov (United States)

    Adebayo, A

    1984-07-01

    One of the major consequences of the reorganization of Nigeria from 4 states into 12 states in 1967 and then into 19 states in the late 1970s was the redistribution of the Nigerian population. Prior to 1967 Nigeria's rural population migrated primarily to the 4 state capitals of Kaduna, Ibadan, Enugu, Benin City and to the federal capital of Lagos. The creation of additional states, each with their own capital, provided new urban environments where migrants from rural areas were afforded opportunities for employment and social mobility. Between 1960-1980, World Bank estimates indicate that 1) population in Nigerian cityes of over 500,000 population increased from 22-57%; 2) the number of cities with a population of 500,000 or more increased from 2 to 9 and 3) the urban population increased from 13-20%. Given Nigeria's estimated population growth rate of 3.6%/year, it is imperative that the goverment continue its decentralization efforts. Tables show 1) population by region based on the 1963 census; 2) estimated population of the 19 state capitals for 1963 and 1975; and 3) estimated population of the areas included in each of the 19 states for 196o, 1977, 1979, and 19819

  12. Representation and redistribution in federations.

    Science.gov (United States)

    Dragu, Tiberiu; Rodden, Jonathan

    2011-05-24

    Many of the world's most populous democracies are political unions composed of states or provinces that are unequally represented in the national legislature. Scattered empirical studies, most of them focusing on the United States, have discovered that overrepresented states appear to receive larger shares of the national budget. Although this relationship is typically attributed to bargaining advantages associated with greater legislative representation, an important threat to empirical identification stems from the fact that the representation scheme was chosen by the provinces. Thus, it is possible that representation and fiscal transfers are both determined by other characteristics of the provinces in a specific country. To obtain an improved estimate of the relationship between representation and redistribution, we collect and analyze provincial-level data from nine federations over several decades, taking advantage of the historical process through which federations formed and expanded. Controlling for a variety of country- and province-level factors and using a variety of estimation techniques, we show that overrepresented provinces in political unions around the world are rather dramatically favored in the distribution of resources.

  13. Re-distribution (condensation) of magnons in a ferromagnet under pumping

    International Nuclear Information System (INIS)

    Zvyagin, A.A.

    2008-01-01

    In recent years several experiments have been performed to study the Bose-Einstein condensation of quasiparticles, in particular, magnons in magnetically ordered systems. Recently the Bose-Einstein condensation of magnons was observed at room temperatures in a ferromagnetic film. A theory of the condensation (redistribution) of magnons under the conditions of pumping, which explains many features of that experiment, is presented. The use of the term 'Bose-Einstein condensation of magnons' is discussed

  14. Solute redistribution in dendritic solidification with diffusion in the solid

    Science.gov (United States)

    Ganesan, S.; Poirier, D. R.

    1989-01-01

    An investigation of solute redistribution during dendritic solidification with diffusion in the solid has been performed using numerical techniques. The extent of diffusion is characterized by the instantaneous and average diffusion parameters. These parameters are functions of the diffusion Fourier number, the partition ratio and the fraction solid. Numerical results are presented as an approximate model, which is used to predict the average diffusion parameter and calculate the composition of the interdendritic liquid during solidification.

  15. Recent changes in sediment redistribution in the upper parts of the fluvial system of European Russia: regional aspects

    Directory of Open Access Journals (Sweden)

    O. P. Yermolaev

    2015-03-01

    Full Text Available Quantitative assessments of soil loss from cultivated land and sediment redistribution along pathways from cultivated fields to river channels have been undertaken using a range of different methods and techniques, including erosion models, detailed studies of sediment redistribution in representative catchments, monitoring of gully head retreat and evaluation of sediment deposition in ponds and small reservoirs. Most of the sediment eroded from arable land is deposited between the lower portions of the cultivated slopes and the river channels. Less than 15% of the eroded sediment is delivered to the river channels. Sediment redistribution rates in the upper parts of the fluvial system have declined during the last 25 years in both the western and eastern parts of the Russian Plain, because of a major reduction of surface runoff during snowmelt and a reduction of the area of arable land in some parts of the study area.

  16. Demonstration and quantification of the redistribution and oxidation of carbon monoxide in the human body by tracer analysis

    Directory of Open Access Journals (Sweden)

    Makoto Sawano

    2016-01-01

    Full Text Available Numerous studies have confirmed the role of endogenous carbon monoxide (CO gas as a signal transmitter. However, CO is considered an intracellular transmitter, as no studies have demonstrated the redistribution of CO from the blood to tissue cells. Tracer analyses of 13 CO 2 production following 13 CO gas inhalation demonstrated that CO is oxidized to carbon dioxide (CO 2 in the body and that CO oxidation does not occur in the circulation. However, these results could not clearly demonstrate the redistribution of CO, because oxidation may have occurred in the airway epithelium. The objective of this study, therefore, was to definitively demonstrate and quantify the redistribution and oxidation of CO using time-course analyses of CO and 13 CO 2 production following 13 CO-hemoglobin infusion. The subject was infused with 0.45 L of 13 CO-saturated autologous blood. Exhaled gas was collected intermittently for 36 hours for measurement of minute volumes of CO/CO 2 exhalation and determination of the 13 CO 2 / 12 CO 2 ratio. 13 CO 2 production significantly increased from 3 to 28 hours, peaking at 8 hours. Of the infused CO, 81% was exhaled as CO and 2.6% as 13 CO 2 . Identical time courses of 13 CO 2 production following 13 CO-hemoglobin infusion and 13 CO inhalation refute the hypothesis that CO is oxidized in the airway epithelium and clearly demonstrate the redistribution of CO from the blood to the tissues. Quantitative analyses have revealed that 19% of CO in the circulating blood is redistributed to tissue cells, whereas 2.6% is oxidized there. Overall, these results suggest that CO functions as a systemic signal transmitter.

  17. The eddy kinetic energy budget in the Red Sea

    KAUST Repository

    Zhan, Peng; Subramanian, Aneesh C.; Yao, Fengchao; Kartadikaria, Aditya R.; Guo, Daquan; Hoteit, Ibrahim

    2016-01-01

    The budget of eddy kinetic energy (EKE) in the Red Sea, including the sources, redistributions and sink, is examined using a high-resolution eddy-resolving ocean circulation model. A pronounced seasonally varying EKE is identified, with its maximum

  18. Preclinical pharmacological study of 99mTcN(NOET)2 and comparison with 201Tl in redistribution of ischemia myocardium

    International Nuclear Information System (INIS)

    Wang, J.C.; Zhang, J.B.; Wang, Q.; Mi, H.Z.; Wang, X.B.

    2002-01-01

    Aim: To study the biological properties of the myocardial imaging agent 99m TcN(NOET) 2 and compare with 201 Tl in redistribution of ischemia myocardium. Materials and Methods: To prepared the 99m TcN(NOET) 2 complex, the intermediate [ 99m TcN] 2+ and ligand NOET were synthesized. In the presence of reducer and the doner of N, the [ 99m Tc=N] 2+ could be synthesized at 100, then NOET was added, 99m TcN(NOET) 2 was formed at room temperature. 201 Tl was provided by the Department of Isotope, China Institute of Atomic Energy. Five dogs were from the Fu Wai experimental animal feeding center, two of them were made into ischemia myocardium models by ligating some coronary artery branches were demonstrated by X-ray coronary angiography, the extent of stenosis of those blood vessels was over 90%. Dynamic imaging of rest was performed respectively in three normal dogs after injecting a dose of 555MBq (15mCi) of 99m TcN(NOET) 2 complex up to two hours. The whole body imaging planar and tomography imaging was carried out respectively at fixed time intervals during two hours in order to obtain the time-activity curves of heart, lung and liver, in vivo biodistribution and quality analysis of myocardial images. Moreover, intravenous blood samples were collected at different times to gain the kinetics of blood clearance. Stress and redistribution imaging underwent in two dogs with ischemia myocardium. Dipyridamol was given intravenously at a dose of 0.6mg/Kg in 4 mins. Stress :9 9m TcN(NOET) 2 myocardial SPECT imaging was performed at 30, 70 and 110 min after injection of 99m TcN(NOET) 2 complex, stress 201 Tl myocardial SPECT imaging was carried out 10 min and redistribution imaging 4 hr after injection of 55.5MBq (1.5mCi) 201 Tl chloride. The tests of 99m TcN(NOET) 2 and 201 Tl were performed respectively in the same dog within 10 days, in order to obtain a comparison between two myocardial redistribution imaging. Results: Radiochemical purity of 99m TcN(NOET) 2 was 98.41%

  19. Carriers' localization and thermal redistribution in post growth voluntarily tuned quantum dashes' size/composition distribution

    International Nuclear Information System (INIS)

    Alouane, M.H. Hadj; Helali, A.; Morris, D.; Maaref, H.; Aimez, V.; Salem, B.; Gendry, M.

    2014-01-01

    This paper treats the impact of post growth tuned InAs/InP quantum dashes' (QDas) size/composition distribution on carriers' localization and thermal redistribution. The spread of this distribution depends on the experimental conditions used for the phosphorus ion implantation enhanced intermixing process. Atypical temperature-dependent luminescence properties have been observed and found to be strongly dependent on the amount of QDas size/composition dispersion. The experimental results have been reproduced by a model that takes into account the width of the QDas localized states distribution and consequent thermally induced carriers' redistribution. This model gives critical temperature values marking the beginning and the end of carriers delocalization and thermal transfer processes via an intermixing induced carrier's transfer channel located below the wetting layer states. -- Highlights: • We examine optical properties of post growth tuned QDas size/composition distribution. • Carriers' localization and thermal redistribution within inhomogeneously intermixed QDas are the origin of the atypical temperature-dependent luminescence properties. • Localized states ensemble's model is successively used to interpret the experimental results. • The carriers thermal transfer processes occur via an intermixing induced channel located below the wetting layer states. • Intermixing degree strongly influence the critical temperatures marking the beginning and the end of the carriers thermal transfer processes

  20. Field penetration induced charge redistribution effects on the field emission properties of carbon nanotubes - a first-principle study

    International Nuclear Information System (INIS)

    Chen, C.-W.; Lee, M.-H.; Clark, S.J.

    2004-01-01

    The effect of field penetration induced charge redistribution on the field emission properties of carbon nanotubes (CNTs) have been studied by the first-principle calculations. It is found that the carbon nanotube becomes polarized under external electric field leading to a charge redistribution. The resulting band bending induced by field penetration into the nanotube tip surface can further reduce the effective workfunction of the carbon nanotubes. The magnitude of the redistributed charge ΔQ is found to be nearly linear to the applied external field strength. In addition, we found that the capped (9, 0) zigzag nanotube demonstrates better field emission properties than the capped (5, 5) armchair nanotube due to the fact that the charge redistribution of π electrons along the zigzag-like tube axis is easier than for the armchair-like tube. The density of states (DOS) of the capped region of the nanotube is found to be enhanced with a value 30% higher than that of the sidewall part for the capped (5, 5) nanotube and 40% for the capped (9, 0) nanotube under an electric field of 0.33 V/A. Such enhancements of the DOS at the carbon nanotube tip show that electrons near the Fermi level will emit more easily due to the change of the surface band structure resulting from the field penetration in a high field

  1. Charge transfer and redistribution at interfaces between metals and 2D materials

    NARCIS (Netherlands)

    Bokdam, Menno

    2013-01-01

    Large potential steps are observed at the interfaces between metals and novel 2D materials. They can lower the work function by more than 1 eV, even when the two parts are only weakly interacting. In this thesis the transfer and redistribution of electrons in metal|2D material heterostructures are

  2. Adsorption, translocation and redistribution of nitrogen (15N) in orange trees

    International Nuclear Information System (INIS)

    Fenilli, Tatiele Anete Bergamo; Boaretto, Antonio Enedi Boaretto; Bendassolli, Jose Albertino; Trivelin, Paulo Cesar Ocheuze; Muraoka, Takashi

    2002-01-01

    The objective was to evaluate the absorption of 15 N from nutrient solution by young orange trees and the translocation and the redistribution of the absorbed N. The treatments were constituted by four periods of 15 N labelling (spring, summer, autumn and winter). In the first treatment, the young orange trees received 15 N in the nutrient solution during the spring and five replicates of the plants were picked at the end of the period. The new part, which was developed during the 15 N labelling period, was separated from the other part (old part) in branch and leaf, and also in flower and fruit when they were. The old part was separated in leaf, stem and root. This same procedure was followed in the other treatments. The total N and the isotope ratios 15 N/ 14 N were performed by mass spectrometry. The major part of absorbed N during the spring and summer was translocated to the new part of the orange trees, but in autumn and winter the absorbed N was concentrated in the old plant part. The redistribution of N from of old plant parts was more intensive during the autumn and winter. (author)

  3. Defining Data Access Pathways for Atmosphere to Electrons Wind Energy Data

    Science.gov (United States)

    Macduff, M.; Sivaraman, C.

    2016-12-01

    Atmosphere to Electrons (A2e), is a U.S. Department of Energy (DOE) Wind Program research initiative designed to optimize the performance of wind power plants by lowering the levelized cost of energy (LCOE). The Data Archive and Portal (DAP), managed by PNNL and hosted on Amazon Web Services, is a key capability of the A2e initiative. The DAP is used to collect, store, catalog, preserve and disseminate results from the experimental and computational studies representing a diverse user community requiring both open and proprietary data archival solutions(http://a2e.pnnl.gov). To enable consumer access to the data in DAP it is being built on a set of API's that are publically accessible. This includes persistent references for key meta-data objects as well as authenticated access to the data itself. The goal is to make the DAP catalog visible through a variety of data access paths bringing the data and metadata closer to the consumer. By providing persistent metadata records we hope to be able to build services that capture consumer utility and make referencing datasets easier.

  4. Isotope exchange investigation of nitrogen redistribution in expanded austenite

    International Nuclear Information System (INIS)

    Christiansen, T.L.; Drouet, M.; Martinavičius, A.; Somers, M.A.J.

    2013-01-01

    Sequential plasma and gaseous nitriding of Fe–18Cr–10Ni–3Mo stainless steel at 390 °C with 14 N and 15 N isotopes followed by denitriding in flowing hydrogen was investigated. Redistribution of plasma-inserted nitrogen atoms ( 15 N) by subsequent gaseous nitriding ( 14 N) was observed. Denitriding after plasma- and gaseous nitriding resulted in predominant retraction of 14 N, and only a minor amount of 15 N. The nitrogen isotope diffusion behaviour is explained by two different states of nitrogen bonding and short-range ordering between nitrogen and chromium

  5. Determination of cosmic ray (CR) ionization path and iono/atmospheric cut-off energy from CR intervals III, IV and V in the planetary environments

    International Nuclear Information System (INIS)

    Velinov, P.

    2001-01-01

    In this paper are determined the ionization path and cut-off energies of the cosmic ray (CR) nuclei in relation to the general interaction model 'CR - ionosphere-middle atmosphere'. Here the ionization path and the iono/atmospheric cut-off energies of the galactic CR, solar CR and anomalous CR are separately considered in each energetic range, without taking into account the particle transfer from one range in another. This more general approach will be the object of a further paper

  6. Analysis of an out-of-pile experiment for materials redistribution under core disruptive accident condition of fast breeder reactors

    International Nuclear Information System (INIS)

    Sawada, Tetsuo; Ninokata, Hisashi; Shimizu, Akinao

    1995-01-01

    Calculation of one of the SIMBATH experiments was performed using the SIMMER-II code. The experiments were intended to simulate the fuel pin disintegration, the molten materials relocation and following materials redistribution that could occur during core disruptive accidents assumed in fast breeder reactors. The calculation by SIMMER-II showed that the incorporated step-wise fuel pin disintegration model and the modified particle jamming model were capable of reproducing the course of materials relocation within the identified ranges of the parameters which governed the blockages formation, i.e. the characteristic radius of solid particles jamming and/or sieving out in the flow and the effective particle viscosity. In particular the final materials redistribution calculated by SIMMER-II very well reproduced the experiment. This fact made it possible to interpret theoretically the mechanisms of flow blockages formation and related materials redistribution. (author)

  7. Reverse Redistribution in Myocardial Perfusion Imaging: Revisited with 64-slice MDCT

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Min Kyung; Kim, Jeong Ho; Hwang, Kyung Hoon; Choi, In Suck; Choi, Soo Jin; Choe, Won Sick [Gachon University Gil Hospital, Incheon (Korea, Republic of); Yoon, Min Ki [Good Samaritan Hospital, Pohang (Korea, Republic of)

    2010-06-15

    The authors report myocardial perfusion imaging of a patient showing reverse redistribution (RR) and a 64-slice multidetector-row computed tomography (MDCT) with corresponding findings. The patient had subendocardial myocardial infarction (MI) with positive electrocardiogram (EMG) findings and elevated levels of cardiac isoenzymes. Experiencing this case emphasizes the importance of complementary correlation of a new diagnostic modality that helps us to understand the nature of RR.

  8. Measurement of the atmospheric {nu}{sub {mu}} energy spectrum from 100 GeV to 200 TeV with the ANTARES telescope

    Energy Technology Data Exchange (ETDEWEB)

    Adrian-Martinez, S.; Ardid, M.; Larosa, G.; Martinez-Mora, J.A. [Universitat Politecnica de Valencia, Institut d' Investigacio per a la Gestio Integrada de les Zones Costaneres (IGIC), Gandia (Spain); Albert, A.; Drouhin, D.; Racca, C. [GRPHE - Institut universitaire de technologie de Colmar, 34 rue du Grillenbreit, BP 50568, Colmar (France); Al Samarai, I.; Aubert, J.J.; Bertin, V.; Brunner, J.; Busto, J.; Carr, J.; Charif, Z.; Core, L.; Costantini, H.; Coyle, P.; Curtil, C.; Dornic, D.; Ernenwein, J.P.; Escoffier, S.; Lambard, E.; Riviere, C.; Vallee, C.; Yatkin, K. [Aix-Marseille Universite, CPPM, CNRS/IN2P3, Marseille (France); Andre, M. [Technical University of Catalonia, Laboratory of Applied Bioacoustics, Vilanova i la Geltru, Barcelona (Spain); Anghinolfi, M.; Sanguineti, M. [INFN - Sezione di Genova, Genova (Italy); Anton, G.; Classen, F.; Eberl, T.; Enzenhoefer, A.; Fehn, K.; Folger, F.; Fritsch, U.; Geisselsoeder, S.; Geyer, K.; Gleixner, A.; Graf, K.; Herold, B.; Hoessl, J.; James, C.W.; Kalekin, O.; Kappes, A.; Katz, U.; Lahmann, R.; Motz, H.; Neff, M.; Richter, R.; Roensch, K.; Schmid, J.; Schnabel, J.; Seitz, T.; Shanidze, R.; Sieger, C.; Spies, A.; Wagner, S. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erlangen (Germany); Anvar, S.; Louis, F. [CEA Saclay, Direction des Sciences de la Matiere - Institut de recherche sur les lois fondamentales de l' Univers - Service d' Electronique des Detecteurs et d' Informatique, Gif-sur-Yvette Cedex (France); Astraatmadja, T.; Bogazzi, C.; Bouwhuis, M.C.; Heijboer, A.J.; Jong, M. de; Michael, T.; Palioselitis, D.; Schulte, S.; Steijger, J.J.M.; Visser, E. [Nikhef, Amsterdam (Netherlands); Baret, B.; Bouhou, B.; Creusot, A.; Galata, S.; Kouchner, A.; Elewyck, V. van [Universite Paris Diderot, APC, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Paris (France); Barrios-Marti, J.; Bigongiari, C.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Lambard, G.; Mangano, S.; Sanchez-Losa, A.; Yepes, H.; Zornoza, J.D.; Zuniga, J. [CSIC - Universitat de Valencia, IFIC - Instituto de Fisica Corpuscular, Edificios Investigacion de Paterna, Valencia (Spain); Basa, S.; Marcelin, M.; Nezri, E. [Pole de l' Etoile Site de Chateau-Gombert, LAM - Laboratoire d' Astrophysique de Marseille, Marseille Cedex 13 (France); Biagi, S.; Fusco, L.A.; Giacomelli, G.; Margiotta, A.; Spurio, M. [INFN - Sezione di Bologna, Bologna (Italy); Dipartimento di Fisica dell' Universita, Bologna (Italy); Bruijn, R.; Decowski, M.P.; Wolf, E. de [Nikhef, Amsterdam (Netherlands); Universiteit van Amsterdam, Instituut voor Hoge-Energie Fysica, XG Amsterdam (Netherlands); Capone, A.; De Bonis, G.; Fermani, P.; Perrina, C.; Simeone, F. [INFN - Sezione di Roma, Roma (Italy); Dipartimento di Fisica dell' Universita La Sapienza, Roma (Italy); Caramete, L.; Pavalas, G.E.; Popa, V. [Institute for Space Sciences, Bucharest (Romania); Carloganu, C.; Dumas, A.; Gay, P.; Guillard, G. [Clermont Universite, Universite Blaise Pascal, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, BP 10448, Clermont-Ferrand (France); Cecchini, S.; Chiarusi, T. [INFN - Sezione di Bologna, Bologna (Italy); Charvis, P.; Deschamps, A.; Hello, Y. [Universite Nice Sophia-Antipolis, Geoazur, CNRS/INSU, IRD, Observatoire de la Cote d' Azur, Sophia Antipolis (France); Circella, M. [INFN - Sezione di Bari, Bari (Italy); Dekeyser, I.; Lefevre, D.; Martini, S.; Robert, A.; Tamburini, C. [Aix-Marseille University, Mediterranean Institute of Oceanography (MIO), Marseille Cedex 9 (France); Universite du Sud Toulon-Var, CNRS-INSU/IRD UM 110, La Garde Cedex (France); Distefano, C.; Lattuada, D.; Piattelli, P.; Sapienza, P.; Trovato, A. [INFN - Laboratori Nazionali del Sud (LNS), Catania (Italy); Donzaud, C. [Universite Paris Diderot, APC, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Paris (France); Univ Paris-Sud, Orsay Cedex (France); Dorosti, Q.; Loehner, H. [University of Groningen, Kernfysisch Versneller Instituut (KVI), Groningen (Netherlands); Flaminio, V. [INFN - Sezione di Pisa, Pisa (Italy); Dipartimento di Fisica dell' Universita, Pisa (Italy); Giordano, V. [INFN - Sezione di Catania, Catania (Italy); Haren, H. van [Royal Netherlands Institute for Sea Research (NIOZ), ' t Horntje (Texel) (Netherlands); Kadler, M. [Universitaet Wuerzburg, Institut fuer Theoretische Physik und Astrophysik, Wuerzburg (Germany); Kooijman, P. [Nikhef, Amsterdam (Netherlands); Universiteit Utrecht, Faculteit Betawetenschappen, Utrecht (Netherlands); Universiteit van Amsterdam, Instituut voor Hoge-Energie Fysica, XG Amsterdam (Netherlands); Kreykenbohm, I.; Mueller, C.; Wilms, J. [Universitaet Erlangen-Nuernberg, Dr. Remeis-Sternwarte and ECAP, Bamberg (Germany); Kulikovskiy, V. [INFN - Sezione di Genova, Genova (Italy); Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation); Leonora, E.; Lo Presti, D. [INFN - Sezione di Catania, Catania (Italy); Dipartimento di Fisica ed Astronomia dell' Universita, Catania (IT); Loucatos, S.; Schuessler, F.; Stolarczyk, T.; Vallage, B.; Vernin, P. [CEA Saclay, Direction des Sciences de la Matiere, Institut de recherche sur les lois fondamentales de l' Univers, Service de Physique des Particules, Gif-sur-Yvette Cedex (FR); Montaruli, T. [INFN - Sezione di Bari, Bari (IT); Universite de Geneve, Departement de Physique Nucleaire et Corpusculaire, Geneva (CH); Morganti, M. [INFN - Sezione di Pisa, Pisa (IT); Pradier, T. [Universite de Strasbourg et CNRS/IN2P3, IPHC-Institut Pluridisciplinaire Hubert Curien, 23 rue du Loess, BP 28, Strasbourg Cedex 2 (FR); Rostovtsev, A. [ITEP - Institute for Theoretical and Experimental Physics, Moscow (RU); Samtleben, D.F.E. [Nikhef, Amsterdam (NL); Universiteit Leiden, Leids Instituut voor Onderzoek in Natuurkunde, Leiden (NL); Taiuti, M. [INFN - Sezione di Genova, Genova (IT); Dipartimento di Fisica dell' Universita, Genova (IT); Tayalati, Y. [University Mohammed I, Laboratory of Physics of Matter and Radiations, B.P. 717, Oujda (MA)

    2013-10-15

    Atmospheric neutrinos are produced during cascades initiated by the interaction of primary cosmic rays with air nuclei. In this paper, a measurement of the atmospheric {nu}{sub {mu}} + anti {nu}{sub {mu}} energy spectrum in the energy range 0.1-200 TeV is presented, using data collected by the ANTARES underwater neutrino telescope from 2008 to 2011. Overall, the measured flux is {proportional_to}25 % higher than predicted by the conventional neutrino flux, and compatible with the measurements reported in ice. The flux is compatible with a single power-law dependence with spectral index {gamma}{sub meas}=3.58{+-}0.12. With the present statistics the contribution of prompt neutrinos cannot be established. (orig.)

  9. Rapid reduction of acute subdural hematoma and redistribution of hematoma: case report.

    Science.gov (United States)

    Watanabe, Arata; Omata, Tomohiro; Kinouchi, Hiroyuki

    2010-01-01

    An 88-year-old woman presented with acute subdural hematoma (ASDH) which showed rapid resolution on computed tomography (CT) and magnetic resonance (MR) imaging. She was transferred to our hospital after falling out of bed. On admission, she was comatose with Japan Coma Scale score of 200 and Glasgow Coma Scale score of E1V1M2. Brain CT showed a thick left frontotemporal ASDH. Conservative treatment consisted of 200 ml of glycerol administered intravenously twice a day, and maintenance in the approximately 20 degree head-up position to reduce intracranial pressure. Three days later, her consciousness recovered to Japan Coma Scale score of 30 and Glasgow Coma Scale score of E2V4M5. CT showed obvious reduction of the hematoma without brain or scalp swelling. Spinal MR imaging detected no redistribution of hematoma to the spine. The present case illustrates that rapid spontaneous reduction of ASDH may occur by redistribution of hematoma, mainly to the supratentorial subdural space because of brain atrophy.

  10. Spitzer and z' secondary eclipse observations of the highly irradiated transiting brown dwarf KELT-1b

    Energy Technology Data Exchange (ETDEWEB)

    Beatty, Thomas G.; Gaudi, B. Scott [Department of Astronomy, The Ohio State University, 140 W. 18th Ave., Columbus, OH 43210 (United States); Collins, Karen A.; Kielkopf, John F. [Department of Physics and Astronomy, University of Louisville, Louisville, KY 40292 (United States); Fortney, Jonathan [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Knutson, Heather [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Bruns, Jacob M. [Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80309 (United States); Showman, Adam P. [Lunar and Planetary Laboratory, 1629 E. University Blvd., University of Arizona, Tucson, AZ (United States); Eastman, Jason [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Dr., Suite 102, Santa Barbara, CA 93117 (United States); Pepper, Joshua [Department of Physics, Lehigh University, Bethlehem, PA 18015 (United States); Siverd, Robert J.; Stassun, Keivan G., E-mail: tbeatty@astronomy.ohio-state.edu [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States)

    2014-03-10

    We present secondary eclipse observations of the highly irradiated transiting brown dwarf KELT-1b. These observations represent the first constraints on the atmospheric dynamics of a highly irradiated brown dwarf, the atmospheres of irradiated giant planets at high surface gravity, and the atmospheres of brown dwarfs that are dominated by external, rather than internal, energy. Using the Spitzer Space Telescope, we measure secondary eclipse depths of 0.195% ± 0.010% at 3.6 μm and 0.200% ± 0.012% at 4.5 μm. We also find tentative evidence for the secondary eclipse in the z' band with a depth of 0.049% ± 0.023%. These measured eclipse depths are most consistent with an atmosphere model in which there is a strong substellar hotspot, implying that heat redistribution in the atmosphere of KELT-1b is low. While models with a more mild hotspot or even with dayside heat redistribution are only marginally disfavored, models with complete heat redistribution are strongly ruled out. The eclipse depths also prefer an atmosphere with no TiO inversion layer, although a model with TiO inversion is permitted in the dayside heat redistribution case, and we consider the possibility of a day-night TiO cold trap in this object. For the first time, we compare the IRAC colors of brown dwarfs and hot Jupiters as a function of effective temperature. Importantly, our measurements reveal that KELT-1b has a [3.6] – [4.5] color of 0.07 ± 0.11, identical to that of isolated brown dwarfs of similarly high temperature. In contrast, hot Jupiters generally show redder [3.6] – [4.5] colors of ∼0.4, with a very large range from ∼0 to ∼1. Evidently, despite being more similar to hot Jupiters than to isolated brown dwarfs in terms of external forcing of the atmosphere by stellar insolation, KELT-1b appears to have an atmosphere most like that of other brown dwarfs. This suggests that surface gravity is very important in controlling the atmospheric systems of substellar mass bodies.

  11. The atmospheric heat engine response to climate change

    Science.gov (United States)

    Pauluis, O. M.

    2014-12-01

    Moist convection is characterized by complex interactions between dynamics and thermodynamics. As air parcels within the atmosphere, they experience multiple thermodynamic transformations, such as compression and expansion, diabatic heating and cooling, condensation and mixing. These transformations correspond to those of a heat engine that produces kinetic energy while transporting energy from a warm source to a colder sink. This atmospheric heat engine is however directly affected by moist processes. First, falling precipitation acts as a break on the circulation by dissipating a significant amount of kinetic energy. Second, evaporation of unsaturated water and diffusion of water vapor are irrevesible processes that also reduce the amount of work that can be produced. An important challenge is to quantify the impacts that these two effects have on the generation of kinetic energy. Here, I will introduce a new technique - the Mean Air Flow As Lagragian Dynamics Approximation (MAFALDA) - that can be used to systematically analyze the thermodynamic behavior of complex atmospheric flows. This approach relies on sorting the upward mass transport in terms of the equivalent potential temperature of the air parcels to obtain an isentropic streamfunction. This streamfunction is then used to determine the thermodynamic evolution of air parcels as they move through the atmosphere. This approach is applied to analyze how convective systems would behave in a warmer climate. It is shown that an increase in atmospheric temperature lead to a significant increase of the amount of kinetic energy that is produced per unit of mass of air transported. At the same time, the total generation of kinetic energy is only slightly affected. Taken together, these findings imply that, in a warming atmosphere, the number of intense convective events will be reduced, while their intensity should increase. I will also discuss the new possibility of systematically studying the thermodynamic

  12. Development and analysis of prognostic equations for mesoscale kinetic energy and mesoscale (subgrid scale) fluxes for large-scale atmospheric models

    Science.gov (United States)

    Avissar, Roni; Chen, Fei

    1993-01-01

    Generated by landscape discontinuities (e.g., sea breezes) mesoscale circulation processes are not represented in large-scale atmospheric models (e.g., general circulation models), which have an inappropiate grid-scale resolution. With the assumption that atmospheric variables can be separated into large scale, mesoscale, and turbulent scale, a set of prognostic equations applicable in large-scale atmospheric models for momentum, temperature, moisture, and any other gaseous or aerosol material, which includes both mesoscale and turbulent fluxes is developed. Prognostic equations are also developed for these mesoscale fluxes, which indicate a closure problem and, therefore, require a parameterization. For this purpose, the mean mesoscale kinetic energy (MKE) per unit of mass is used, defined as E-tilde = 0.5 (the mean value of u'(sub i exp 2), where u'(sub i) represents the three Cartesian components of a mesoscale circulation (the angle bracket symbol is the grid-scale, horizontal averaging operator in the large-scale model, and a tilde indicates a corresponding large-scale mean value). A prognostic equation is developed for E-tilde, and an analysis of the different terms of this equation indicates that the mesoscale vertical heat flux, the mesoscale pressure correlation, and the interaction between turbulence and mesoscale perturbations are the major terms that affect the time tendency of E-tilde. A-state-of-the-art mesoscale atmospheric model is used to investigate the relationship between MKE, landscape discontinuities (as characterized by the spatial distribution of heat fluxes at the earth's surface), and mesoscale sensible and latent heat fluxes in the atmosphere. MKE is compared with turbulence kinetic energy to illustrate the importance of mesoscale processes as compared to turbulent processes. This analysis emphasizes the potential use of MKE to bridge between landscape discontinuities and mesoscale fluxes and, therefore, to parameterize mesoscale fluxes

  13. A Novel Load Capacity Model with a Tunable Proportion of Load Redistribution against Cascading Failures

    Directory of Open Access Journals (Sweden)

    Zhen-Hao Zhang

    2018-01-01

    Full Text Available Defence against cascading failures is of great theoretical and practical significance. A novel load capacity model with a tunable proportion is proposed. We take degree and clustering coefficient into account to redistribute the loads of broken nodes. The redistribution is local, where the loads of broken nodes are allocated to their nearest neighbours. Our model has been applied on artificial networks as well as two real networks. Simulation results show that networks get more vulnerable and sensitive to intentional attacks along with the decrease of average degree. In addition, the critical threshold from collapse to intact states is affected by the tunable parameter. We can adjust the tunable parameter to get the optimal critical threshold and make the systems more robust against cascading failures.

  14. Surface energy balances of three general circulation models: Current climate and response to increasing atmospheric CO2

    International Nuclear Information System (INIS)

    Gutowski, W.J.; Gutzler, D.S.; Portman, D.; Wang, W.C.

    1988-04-01

    The surface energy balance simulated by state-of-the-art general circulation models at GFDL, GISS and NCAR for climates with current levels of atmospheric CO 2 concentration (control climate) and with twice the current levels. The work is part of an effort sponsored by the US Department of Energy to assess climate simulations produced by these models. The surface energy balance enables us to diagnose differences between models in surface temperature climatology and sensitivity to doubling CO 2 in terms of the processes that control surface temperature. Our analysis compares the simulated balances by averaging the fields of interest over a hierarchy of spatial domains ranging from the entire globe down to regions a few hundred kilometers across

  15. Infiltration and redistribution of water in soils

    International Nuclear Information System (INIS)

    Stroosnijder, L.

    1976-01-01

    The flow of the liquid phase through a soil can be predicted from pressure gradients. Different ways of predicting infiltration for irrigation of a basin were compared: numerical approximation; semi-analytical and analytical. A partly empirical equation was developed for description of rate of infiltration, after examination of existing equations. Under certain conditions, infiltration was influenced by under or over pressure of the trapped gas phase and by swelling of clays. Complex models for redistribution were of little value in practice, since they could not be generalized and required too many physical data about the soil. A scheme was developed that grouped techniques for estimating physical properties of soil, according to cost and expertise required. A new experimental technique based on gamma transmission is described for estimating the physical properties of the soil. (Auth.)

  16. Usefulness of rest-redistribution on thallium myocardial scintigraphy in patients with acute myocardial infarction by SPECT; Analysis by bull's eye and unfolded map images

    Energy Technology Data Exchange (ETDEWEB)

    Tahara, Yorio; Taya, Makoto; Sasaki, Akira; Nishimura, Tooru; Shimoyama, Katsuya; Mizuno, Haruyoshi; Ono, Akifumi; Okada, Michio; Ishikawa, Kyozo (Kyorin Univ., Mitaka, Tokyo (Japan). School of Medicine)

    1990-01-01

    The purpose of this study was to clarify the clinical significance of rest-redistribution in myocardial scintigraphy (SPECT) in acute myocardial infarction (AMI). 30 patients with AMI within one week after the onset of attack were studied. SPECT images were obtained 10 min and 3hrs after injection of {sup 201}Tl. Bull's eye images and unfolded map images were prepared. A {sup 201}Tl uptake was studied at the infarct and non-infarct sites. Exercise SPECT and radionuclide angiography were performed in all patients one month after the onset of AMI, and the findings were compared with clinical and coronary angiographic (CAG) findings. Redistribution of Tl at rest was observed at the infarct sites in 9 of the 30 patients. Redistribution at rest was observed at the non-infarct sites in 8 patients. Redistribution at rest was observed during exercise SPECT one month after the onset of AMI in patients with redistribution at rest in the acute phase. In patients with redistribution at rest at the infarct site, left ventricular ejection fraction (EF) improved one month after the onset of AMI ({Delta}EF>5%), but it decreased slightly during exercise. Wall motion at the infarct site was not much impaired in patients who showed redistribution at rest at the infarct site. Angina pectoris and recurrence of myocardial infarction were observed more frequently on SPECT, but no characteristic findings were obtained on CAG in those with redistribution at rest. In conclusion, cardiac function and wall motion at the infarct site are better preserved in patients with redistribution of Tl at rest on SPECT in the acute stage of myocardial infarction, as compared with patients having fixed defects, but the EF decrease slightly during exercise and the frequency of post-infarction angina is greater in those patients. Resting SPECT in AMI is considered to provide useful information for predicting cardiac function and the clinical course following myocardial infarction. (author).

  17. Contributions from the Department of Wind Energy and Atmospheric Physics to EWEC `99 in Nice, France

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Gunner C; Westermann, Kirsten; Noergaard, Per [eds.

    1999-03-01

    The first conference following the merger of the series of European Union Wind Energy Conference and the European Wind Energy Conferences - EWEC`99 - was held in Nice, France during the period 1-5 March 1999. About 600 delegates, mainly from Europe but also from other parts of the world, attended the conference. The conference contributions included 96 oral presentations and 305 posters. The Department of Wind Energy and Atmospheric Physics contributed with 29 oral presentations and 36 posters with members of the department as authors or co-authors. The present report contains the set of these papers available at the deadline 19 March 1999. The contributions cover a wide spectrum of subjects including wind resources, aerodynamics, reliability and load assessment, grid connection, measurement methods, innovative wind turbines and market aspects. (au)

  18. Stress Redistribution Explains Anti-correlated Subglacial Pressure Variations

    Directory of Open Access Journals (Sweden)

    Pierre-Marie Lefeuvre

    2018-01-01

    Full Text Available We used a finite element model to interpret anti-correlated pressure variations at the base of a glacier to demonstrate the importance of stress redistribution in the basal ice. We first investigated two pairs of load cells installed 20 m apart at the base of the 210 m thick Engabreen glacier in Northern Norway. The load cell data for July 2003 showed that pressurisation of a subglacial channel located over one load cell pair led to anti-correlation in pressure between the two pairs. To investigate the cause of this anti-correlation, we used a full Stokes 3D model of a 210 m thick and 25–200 m wide glacier with a pressurised subglacial channel represented as a pressure boundary condition. The model reproduced the anti-correlated pressure response at the glacier bed and variations in pressure of the same order of magnitude as the load cell observations. The anti-correlation pattern was shown to depend on the bed/surface slope. On a flat bed with laterally constrained cross-section, the resulting bridging effect diverted some of the normal forces acting on the bed to the sides. The anti-correlated pressure variations were then reproduced at a distance >10–20 m from the channel. In contrast, when the bed was inclined, the channel support of the overlying ice was vertical only, causing a reduction of the normal stress on the bed. With a bed slope of 5 degrees, the anti-correlation occurred within 10 m of the channel. The model thus showed that the effect of stress redistribution can lead to an opposite response in pressure at the same distance from the channel and that anti-correlation in pressure is reproduced without invoking cavity expansion caused by sliding.

  19. Impact of atmospheric blocking events on the decrease of precipitation in the Selenga River basin

    Science.gov (United States)

    Antokhina, O.; Antokhin, P.; Devyatova, E.; Vladimir, M.

    2017-12-01

    The periods of prolonged deficiency of hydropower potential (HP) of Angara cascade hydroelectric plant related to low-inflow in Baikal and Angara basins threaten to energy sector of Siberia. Since 1901 was recorded five such periods. Last period began in 1996 and continues today. This period attracts the special attention, because it is the longest and coincided with the observed climate change. In our previous works we found that the reason of observed decrease of HP is low water content of Selenga River (main river in Baikal Basin). We also found that the variations of Selenga water-content almost totally depend of summer atmospheric precipitation. Most dramatic decrease of summer precipitation observed in July. In turn, precipitation in July depends on location and intensity of atmospheric frontal zone which separates mid-latitude circulation and East Asia monsoon system. Recently occur reduction this frontal zone and decrease of East Asia summer monsoon intensity. We need in the understanding of the reasons leading to these changes. In the presented work we investigate the influence of atmospheric blocking over Asia on the East Asian summer monsoon circulation in the period its maximum (July). Based on the analysis of large number of blocking events we identified the main mechanisms of blocking influence on the monsoon and studied the properties of cyclones formed by the interaction of air masses from mid latitude and tropics. It turned out that the atmospheric blockings play a fundamental role in the formation of the East Asia monsoon moisture transport and in the precipitation anomalies redistribution. In the absence of blockings over Asia East Asian monsoon moisture does not extend to the north, and in the presence of blockings their spatial configuration and localization completely determines the precipitation anomalies configuration in the northern part of East Asia. We also found that the weakening monsoon circulation in East Asia is associated with

  20. Direct visualization of redistribution and capping of fluorescent gangliosides on lymphocytes

    OpenAIRE

    1984-01-01

    Fluorescent derivatives of gangliosides were prepared by oxidizing the sialyl residues to aldehydes and reacting them with fluorescent hydrazides. When rhodaminyl gangliosides were incubated with lymphocytes, the cells incorporated them in a time- and temperature- dependent manner. Initially, the gangliosides were evenly distributed on the cell surface but were redistributed into patches and caps by antirhodamine antibodies. When the cells were then stained with a second antibody or protein A...

  1. A study on pharmacology and redistribution of a myocardial imaging agent 99TcmN (NOEt)2

    International Nuclear Information System (INIS)

    Wang Jincheng; Zhang Junbo; Mi Hongzhi; Wang Xuebin; Wang Qian

    2002-01-01

    Objective: To study the biological properties of the myocardial imaging agent 99 Tc m N(NOEt) 2 and compare its redistribution characters with 201 Tl. Methods: The 99 Tc m N(NOEt) 2 was prepared. Blood clearance, biodistribution, imaging and redistribution imaging with 99 Tc m N(NOEt) 2 or 201 Tl were studied in 5 dogs. Results: Radiochemical purity of 99 Tc m N(NOEt) 2 was (98.41 +- 0.46)%, blood clearance T(α) 1/2 (2.8 +- 0.1) min, T(β 1/2 = (142.7 +- 32.7) min, Cl = (292.3 +- 117.1) mL/h. Imaging studies demonstrated that 99 Tc m N(NOEt) 2 was distributed rapidly in the myocardium of the dogs, disappearance of pulmonary uptake was faster than that of myocardial uptake, the uptake was higher in liver. At 10, 30, 60, 90 and 120 min after injection the myocardial uptakes were (4.27 +- 0.21), (5.3 +- 1.48), (5.3 +- 0.66), (4.0 +- 0.53) and (3.67 +- 0.35)% ID; the heart-to-lung ratios and the heart-to-liver ratios of these time points were 1.24 +- 0.31, 2.03 +- 0.45, 2.33 +- 0.31, 2.23 +- 0.5, 2.07 +- 0.49, 0.94 +- 0.08, 0.78 +- 0.15, 0.56 +- 0.22, 0.53 +- 0.22, 0.38 +- 0.15, respectively, the myocardial images were most distinct at 30 and 60 min postinjection. The results of redistribution in ischemic myocardium of dogs with 99 Tc m N(NOEt) 2 or 201 Tl were about the same. Conclusion: 99 Tc m N(NOEt) 2 is very worth to be one of the new myocardial imaging agents, it has the re-distributive character just as that of 201 Tl

  2. An Analytical Framework for the Steady State Impact of Carbonate Compensation on Atmospheric CO2

    Science.gov (United States)

    Omta, Anne Willem; Ferrari, Raffaele; McGee, David

    2018-04-01

    The deep-ocean carbonate ion concentration impacts the fraction of the marine calcium carbonate production that is buried in sediments. This gives rise to the carbonate compensation feedback, which is thought to restore the deep-ocean carbonate ion concentration on multimillennial timescales. We formulate an analytical framework to investigate the impact of carbonate compensation under various changes in the carbon cycle relevant for anthropogenic change and glacial cycles. Using this framework, we show that carbonate compensation amplifies by 15-20% changes in atmospheric CO2 resulting from a redistribution of carbon between the atmosphere and ocean (e.g., due to changes in temperature, salinity, or nutrient utilization). A counterintuitive result emerges when the impact of organic matter burial in the ocean is examined. The organic matter burial first leads to a slight decrease in atmospheric CO2 and an increase in the deep-ocean carbonate ion concentration. Subsequently, enhanced calcium carbonate burial leads to outgassing of carbon from the ocean to the atmosphere, which is quantified by our framework. Results from simulations with a multibox model including the minor acids and bases important for the ocean-atmosphere exchange of carbon are consistent with our analytical predictions. We discuss the potential role of carbonate compensation in glacial-interglacial cycles as an example of how our theoretical framework may be applied.

  3. Atmospheric considerations regarding the impact of heat dissipation from a nuclear energy center

    International Nuclear Information System (INIS)

    Rotty, R.M.; Bauman, H.; Bennett, L.L.

    1976-05-01

    Potential changes in climate resulting from a large nuclear energy center are discussed. On a global scale, no noticeable changes are likely, but on both a regional and a local scale, changes can be expected. Depending on the cooling system employed, the amount of fog may increase, the amount and distribution of precipitation will change, and the frequency or location of severe storms may change. Very large heat releases over small surface areas can result in greater atmospheric instability; a large number of closely spaced natural-draft cooling towers have this disadvantage. On the other hand, employment of natural-draft towers makes an increase in the occurrence of ground fog unlikely. The analysis suggests that the cooling towers for a large nuclear energy center should be located in clusters of four with at least 2.5-mile spacing between the clusters. This is equivalent to the requirement of one acre of land surface per each two megawatts of heat being rejected

  4. Investigation of the influence of atmospheric stability and turbulence on land-atmosphere exchange

    Science.gov (United States)

    Osibanjo, O.; Holmes, H.

    2015-12-01

    Surface energy fluxes are exchanged between the surface of the earth and the atmosphere and impact weather, climate, and air quality. The radiation from the sun triggers the surface-atmosphere interaction during the day as heat is transmitted to the surface and the surface heats the air directly above generating wind (i.e., thermal turbulence) that transports heat, moisture, and momentum in the atmospheric boundary layer (ABL). This process is impacted by greenhouse gasses (i.e., water vapor, carbon dioxide and other trace gases) that absorb heat emitted by the earth's surface. The concentrations of atmospheric greenhouse gasses are increasing leading to changes in ABL dynamics as a result of the changing surface energy balance. The ABL processes are important to characterize because they are difficult to parameterize in global and regional scale atmospheric models. Empirical data can be collected using eddy covariance micrometeorological methods to measure turbulent fluxes (e.g., sensible heat, moisture, and CO2) and quantify the exchange between the surface and the atmosphere. The objective of this work is to calculate surface fluxes using observational data collected during one week in September 2014 from a monitoring site in Echo, Oregon. The site is located in the Columbia Basin with rolling terrain, irrigated farmland, and over 100 wind turbines. The 10m tower was placed in a small valley depression to isolate nighttime cold air pools. This work will present observations of momentum, sensible heat, moisture, and carbon dioxide fluxes from data collected at a sampling frequency of 10Hz at four heights. Atmospheric stability is determined using Monin-Obukov length and flux Richardson number, and the impact of stability on surface-atmosphere exchange is investigated. This work will provide a better understanding of surface fluxes and mixing, particularly during stable ABL periods, and the results can be used to compare with numerical models.

  5. Improvement of Polytetrafluoroethylene Surface Energy by Repetitive Pulse Non-Thermal Plasma Treatment in Atmospheric Air

    International Nuclear Information System (INIS)

    Yang Guoqing; Zhang Guanjun; Zhang Wenyuan

    2011-01-01

    Improvement of polytetrafluoroethylene surface energy by non-thermal plasma treatment is presented, using a nanosecond-positive-edge repetitive pulsed dielectric barrier discharge generator in atmospheric air. The electrical parameters including discharging power, peak and density of micro-discharge current were calculated, and the electron energy was estimated. Surface treatment experiments of polytetrafluoroethylene films were conducted for both different applied voltages and different treating durations. Results show that the surface energy of polytetrafluoroethylene film could be improved to 40 mJ/m 2 or more by plasma treatment. Surface roughness measurement and surface X-ray photoelectron spectroscopy analysis indicate that there are chemical etching and implantation of polar oxygen groups in the sample surface treating process, resulting in the improvement of the sample surface energy. Compared with an AC source of 50 Hz, the dielectric barrier discharges generated by a repetitive pulsed source could provide higher peak power, lower mean power, larger micro-discharge current density and higher electron energy. Therefore, with the same applied peak voltage and treating duration, the improvement of polytetrafluoroethylene surface energy using repetitive pulsed plasma is more effective, and the plasma treatment process based on repetitive pulsed dielectric barrier discharges in air is thus feasible and applicable.

  6. TCR triggering induces the formation of Lck-RACK1-actinin-1 multiprotein network affecting Lck redistribution

    Directory of Open Access Journals (Sweden)

    Ondrej Ballek

    2016-10-01

    Full Text Available The initiation of T-cell signaling is critically dependent on the function of the member of Src family tyrosine kinases (SFKs, Lck. Upon TCR triggering, Lck kinase activity induces the nucleation of signal-transducing hubs that regulate the formation of complex signaling network and cytoskeletal rearrangement. In addition, the delivery of Lck function requires rapid and targeted membrane redistribution, but the mechanism underpinning this process is largely unknown. To gain insight into this process, we considered previously described proteins that could assist in this process via their capacity to interact with kinases and regulate their intracellular translocations. An adaptor protein, Receptor for Activated C Kinase 1 (RACK1, was chosen as a viable option and its capacity to bind Lck and aid the process of activation-induced redistribution of Lck was assessed. Our microscopic observation showed that T-cell activation induces a rapid, concomitant and transient co-redistribution of Lck and RACK1 into the forming immunological synapse. Consistent with this observation, the formation of transient RACK1-Lck complexes were detectable in primary CD4+ T-cells with their maximum levels peaking 10 seconds after TCR-CD4 co-aggregation. Moreover, RACK1 preferentially binds to a pool of kinase active pY394Lck which co-purifies with high molecular weight cellular fractions. The formation of RACK1-Lck complexes depends on functional SH2 and SH3 domains of Lck and includes several other signaling and cytoskeletal elements that transiently bind the complex. Notably, the F-actin-crosslinking protein, α-actinin-1, binds to RACK1 only in the presence of kinase active Lck suggesting that the formation of RACK1-pY394Lck-α-actinin-1 complex serves as a signal module coupling actin cytoskeleton bundling with productive TCR/CD4 triggering. In addition, the treatment of CD4+ T-cells with nocodazole, which disrupts the microtubular network, also blocked the formation

  7. Application of the 137Cs technique to quantify soil redistribution rates in paleohumults from Central-South Chile

    International Nuclear Information System (INIS)

    Schuller, P.; Sepulveda, A.; Trumper, R.E.; Castillo, A.

    2000-01-01

    The objective of the present study was to evaluate the applicability of the 137 Cs technique in obtaining spatial distributed information on mean soil redistribution rates in Central-South Chile. For this purpose four fields of Palehumult soil and contrasting land use and management were selected in the Coastal Mountain Range of the 9th Region: Crop fields under subsistence and commercial management and non-permanent prairies under subsistence and commercial management. The spatial distribution of the soil redistribution rates obtained by the 137 Cs method was similar to the one obtained by pedological observations. Also, annual sediment fluxes measured at experimental plots were similar to the erosion rates determined by the 137 Cs method at adjacent points. The 137 Cs technique is seen as an efficient method to obtain long-term soil redistribution rates under the climatic conditions and the soil type selected in Chile. In the future, it is necessary to study the applicability of the method under other climatic conditions and soil types occurring in Chile in which erosion is not so evident, and to adjust the method to optimise costs and benefits. (author) [es

  8. Redistribution of cesium-137 in southeastern watersheds

    International Nuclear Information System (INIS)

    McHenry, J.R.; Ritchie, J.C.

    1975-01-01

    Sediment samples from 14 southeastern agricultural reservoirs and surface samples from representative soils from the contributing water shed areas were analyzed for 137 Cs. The concentrations of 137 Cs measured reflect the nature of the watershed, its cover, its use, and man's activities. Since the redistribution of 137 Cs was assumed to result from soil erosion, recent erosion rates can be calculated from the measured 137 Cs accumulations in sediments and from the decreases in the 137 Cs calculated to have been deposited on upland soils. Measured concentrations of 137 Cs ranged from 14 to 158 nCi/m 2 in surface soils. As much as 525 nCi/m 2 of 137 Cs was measured in the deposited sediment profile. Watershed budgets for 137 Cs were calculated for three representative watersheds using available sediment survey information and the measured 137 Cs concentrations

  9. An upper bound on the second order asymptotic expansion for the quantum communication cost of state redistribution

    Energy Technology Data Exchange (ETDEWEB)

    Datta, Nilanjana, E-mail: n.datta@statslab.cam.ac.uk [Statistical Laboratory, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Hsieh, Min-Hsiu, E-mail: Min-Hsiu.Hsieh@uts.edu.au [Centre for Quantum Computation and Intelligent Systems, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW 2007 (Australia); Oppenheim, Jonathan, E-mail: j.oppenheim@ucl.ac.uk [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Department of Computer Science and Centre for Quantum Technologies, National University of Singapore, Singapore 119615 (Singapore)

    2016-05-15

    State redistribution is the protocol in which given an arbitrary tripartite quantum state, with two of the subsystems initially being with Alice and one being with Bob, the goal is for Alice to send one of her subsystems to Bob, possibly with the help of prior shared entanglement. We derive an upper bound on the second order asymptotic expansion for the quantum communication cost of achieving state redistribution with a given finite accuracy. In proving our result, we also obtain an upper bound on the quantum communication cost of this protocol in the one-shot setting, by using the protocol of coherent state merging as a primitive.

  10. "These young chaps think they are just men, too": redistributing masculinity in Kgatleng bars.

    Science.gov (United States)

    Suggs, D N

    2001-07-01

    In the 19th century the BaKgatla polity was a chiefdom with a redistributional economy based on mixed agriculture. Sorghum beer was symbolic not only of the patrilineal core of their descent system and of the ideologies of reciprocity and redistribution, but also of masculinity and patriarchal control. With the establishment of a market economy, an industrial brewery and individual access to income, both beer and the act of drinking have been symbolically reconstructed. The ideology of redistribution was well suited to the support of the BaKgatla gerontocracy via alcohol production and consumption. The limits on production and consumption of beer inherent in the agricultural cycle and the control of young men's access by elders made alcohol an effective symbol of managerial competence from the limited context of household authority to that of the chiefdom as a whole. Today, young men's greater control of cash income has given them access to beer beyond the control of elders. As a result, the contrasting ideology of market exchange and competitive distribution of beer has contributed to the degradation of the power of seniors. After reviewing the historical background, this paper explores those changes. It argues that while the observed infrastructural changes have had a predictable impact on drinking behaviors and the symbolic structure of "seniority/masculinity", constructions of the "masculine community" in BaKgatla bars demonstrate continuity in key areas of mens' identities. If as anthropologists we see obvious discontinuities in behavior and ideology, the BaKgatla build selective bridges to "tradition" which seemingly ground the experience of change in relatively seamless continuity.

  11. Atmospheric Electricity

    Science.gov (United States)

    Aplin, Karen; Fischer, Georg

    2018-02-01

    Electricity occurs in atmospheres across the Solar System planets and beyond, spanning spectacular lightning displays in clouds of water or dust, to more subtle effects of charge and electric fields. On Earth, lightning is likely to have existed for a long time, based on evidence from fossilized lightning strikes in ancient rocks, but observations of planetary lightning are necessarily much more recent. The generation and observations of lightning and other atmospheric electrical processes, both from within-atmosphere measurements, and spacecraft remote sensing, can be readily studied using a comparative planetology approach, with Earth as a model. All atmospheres contain charged molecules, electrons, and/or molecular clusters created by ionization from cosmic rays and other processes, which may affect an atmosphere's energy balance both through aerosol and cloud formation, and direct absorption of radiation. Several planets are anticipated to host a "global electric circuit" by analogy with the circuit occurring on Earth, where thunderstorms drive current of ions or electrons through weakly conductive parts of the atmosphere. This current flow may further modulate an atmosphere's radiative properties through cloud and aerosol effects. Lightning could potentially have implications for life through its effects on atmospheric chemistry and particle transport. It has been observed on many of the Solar System planets (Earth, Jupiter, Saturn, Uranus, and Neptune) and it may also be present on Venus and Mars. On Earth, Jupiter, and Saturn, lightning is thought to be generated in deep water and ice clouds, but discharges can be generated in dust, as for terrestrial volcanic lightning, and on Mars. Other, less well-understood mechanisms causing discharges in non-water clouds also seem likely. The discovery of thousands of exoplanets has recently led to a range of further exotic possibilities for atmospheric electricity, though lightning detection beyond our Solar System

  12. Assessment of viability by quantitative evaluation of 24h-redistribution in 201-thallium myocardial scintigraphy (SPECT): A comparative study versus clinical follow-up after revascularisation

    International Nuclear Information System (INIS)

    Stirner, H.; Spreng, M.; Picker, D.; Pfafferott, C.

    1992-01-01

    Results of regional quantitative assessment of 24h-redistribution in routinely performed Thallium myocardial scintigraphy (SPECT) were compared to findings of coronary angiography/ventriculography and/or echocardiography as well as clinical status 6 months after revascularisation in up to now 34 patients. In respect of positive and negative predictive values evaluation of 24h-redistribution behaves best (81/100%) compared to perfusion and 3h-redistribution alone. Performing an additional 24h-study gives a gain of at least 80% of diagnostic information. (orig.) [de

  13. A glimpse through the veil of ignorance: equality of opportunity and support for redistribution

    NARCIS (Netherlands)

    Krawczyk, M.W.

    2007-01-01

    This study is an experimental investigation into preference for redistribution of income. It had been hypothesized that (belief in) equality of opportunity in a society diminishes support for the welfare state. This could potentially explain the low taxes and social benefits in the United States

  14. A glimpse through the veil of ignorance: Equality of opportunity and support for redistribution

    NARCIS (Netherlands)

    Krawczyk, M.W.

    2010-01-01

    This study is an experimental investigation into preference for redistribution of income. It had been hypothesized that (belief in) equality of opportunity in a society diminishes support for the welfare state. This could potentially explain the low taxes and social benefits in the United States

  15. The optimal fuel mix and redistribution of social surplus in the Korean power market

    International Nuclear Information System (INIS)

    Kim, Hyunsook; Kim, Sung-Soo

    2010-01-01

    This paper investigates the difference between the optimal fuel mix incorporating a pre-installed generation capacity constraint and the actual fuel mix in the Korean power market. Since the restructuring of the market, the fuel mix has been determined partly by investors and partly by the Basic Plan for Long-Term Electricity Supply and Demand (BPE). Both the system marginal price (SMP), and the capacity payment (CP), which has been based on the fixed cost of a specific gas turbine generator, were intended to provide an investment incentive in the market; however, they did not bring about an optimal fuel mix in Korea. Under the circumstances of a shortage of base load generators, these generators may garner excessive profits due to a high SMP level. However, the adjustment scheme of profit between KEPCO and Gencos left scant profit for generators. This paper suggests that a contract is needed to create the appropriate profit and tax levels for these base load generators. The redistribution of profit improves equality between consumers and generators, and the proper margin creates incentives for base load technology investment in Korea. - Research highlights: → This paper aims to determine the optimal fuel mix in Korea and shows the difference between the optimal and actual fuel mix; → We discovered that the optimal fuel mix ratio should be 63.5%:20.5%:16.0%for nuclear energy, coal, and LNG, respectively; → Because the pre-installed capacity is taken as given, the optimal fuel mix under the given installed capacity is an addition of a new nuclear unit to the current fuel mix; → The additional profit above the profit margin in the BPE should be collected and redistributed to consumers; → While we provide an incentive to build nuclear and coal units in Korea, we also suggest that a contract is needed to guarantee the profit level for generators based on a government regulation constraint, the BPE, to achieve a fair treatment.

  16. Atmosphere, Science (Experimental): 5343.08.

    Science.gov (United States)

    Reese, Sandra Kay

    This unit of instruction deals with a study of the general atmosphere by layers with an emphasis on physical characteristics. The formation of layers in the atmosphere and the energy relationships that exist between them are also discussed. No requisites for prior course work, experience, or courses to be taken concurrently are required for…

  17. Stochastic background of atmospheric cascades

    International Nuclear Information System (INIS)

    Wilk, G.; Wlodarczyk, Z.

    1993-01-01

    Fluctuations in the atmospheric cascades developing during the propagation of very high energy cosmic rays through the atmosphere are investigated using stochastic branching model of pure birth process with immigration. In particular, we show that the multiplicity distributions of secondaries emerging from gamma families are much narrower than those resulting from hadronic families. We argue that the strong intermittent like behaviour found recently in atmospheric families results from the fluctuations in the cascades themselves and are insensitive to the details of elementary interactions

  18. Understanding Microbial Contributions to Planetary Atmosphere

    Science.gov (United States)

    DesMarais, David J.

    2000-01-01

    Should our search of distant, extrasolar planetary atmospheres encounter evidence of life, that evidence will most likely be the gaseous products of microorganisms. Our biosphere was exclusively microbial for over 80 percent of its history and, even today, microbes strongly influence atmospheric composition. Life's greatest environmental impact arises from its capacity for harvesting energy and creating organic matter. Microorganisms catalyze the equilibration of C, S and transition metal species at temperatures where such reactions can be very slow in the absence of life. Sunlight has been harvested through photosynthesis to create enormous energy reservoirs that exist in the form of coexisting reservoirs of reduced, organic C and S stored in Earth's crust, and highly oxidized species (oxygen, sulfate and ferric iron) stored in the crust, oceans and atmosphere. Our civilization taps that storehouse of energy by burning fossil fuels. As astrobiologists, we identify the chemical consequences of distant biospheres as expressed in the atmospheres of their planets. Our approach must recognize that planets, biospheres and atmospheres evolve and change. For example, a tectonically more active early Earth hosted a thermophilic, non-photosynthetic biosphere and a mildly reducing, carbon dioxide-rich and oxygen-poor atmosphere. Microorganisms acquired energy by consuming hydrogen and sulfide and producing a broad array of reduced C and S gases, most notably, methane. Later, diverse types of bacterial photosynthesis developed that enhanced productivity but were incapable of splitting water to produce oxygen. Later, but still prior to 2.6 billion years ago, oxygenic photosynthesis developed. We can expect to encounter distant biospheres that represent various stages of evolution and that coexist with atmospheres ranging from mildly reducing to oxidizing compositions. Accordinaly, we must be prepared to interpret a broad range of atmospheric compositions, all containing

  19. Phase Curve Analysis of Super-Earth 55 Cancri e

    Science.gov (United States)

    Angelo, Isabel; Hu, Renyu

    2018-01-01

    One of the primary questions when characterizing Earth-sized and super-Earth-sized exoplanets is whether they have a substantial atmosphere like Earth and Venus, or a bare-rock surface that may come with a tenuous atmosphere like Mercury. Phase curves of the planets in thermal emission provide clues to this question, because a substantial atmosphere would transport heat more efficiently than a bare-rock surface. Analyzing phase curve photometric data around secondary eclipse has previously been used to study energy transport in the atmospheres of hot Jupiters. Here we use phase curve, Spitzer time-series photometry to study the thermal emission properties of the super-Earth exoplanet 55 Cancri e. We utilize a previously developed semi-analytical framework to fit a physical model to infrared photometric data of host star 55 Cancri from the Spitzer telescope IRAC 2 band at 4.5 μm. The model uses various parameters of planetary properties including Bond albedo, heat redistribution efficiency (i.e., the ratio between the radiative timescale and advective timescale of the photosphere), and atmospheric greenhouse factor. The phase curve of 55 Cancri e is dominated by thermal emission with an eastward-shifted hot spot located on the planet surface. We determine the heat redistribution efficiency to be ≈1.47, which implies that the advective timescale is on the same order as the radiative timescale. This requirement from the phase curve cannot be met by the bare-rock planet scenario, because heat transport by currents of molten lava would be too slow. The phase curve thus favors the scenario with a substantial atmosphere. Our constraints on the heat redistribution efficiency translate to a photosphere pressure of ~1.4 bar. The Spitzer IRAC 2 band is thus a window into the deep atmosphere of the planet 55 Cancri e.

  20. The reincorporation and redistribution of trace geoforensic particulates on clothing: an introductory study.

    Science.gov (United States)

    Morgan, R M; French, J C; O'Donnell, L; Bull, P A

    2010-12-01

    Two experimental studies were undertaken to investigate the processes of reincorporation and redistribution of trace evidence on garments when worn by a suspect or a victim (reincorporation) or after the garments have been seized and packaged for subsequent forensic analysis (redistribution). The first experiment utilised UV powder, an established proxy for geoforensic trace particulates and the second experiment utilised daffodil pollen transferred onto garments under conditions that mimicked forensic reality. It was demonstrated that reincorporation of trace particulates occurs from upper to lower parts of the same garment and also from upper garments to lower garments. Reincorporation also occurred to all areas of the lower garments, however the highest concentration of particulates was found to be the lap area of the jeans. Particulates also tended to be preserved around technical details such as stitching or relief design features of the garments. Thus the decay of particulates after a contact has been made does not necessarily involve a loss of those particulates from the entire system. These findings have implications for the interpretation of trace evidence when seeking to establish the source of initial contacts or the chronology of pertinent events. The second study demonstrated that folding and packaging items of clothing leads to a redistribution of any trace particulate evidence that is present thereby eliciting an alteration in the spatial distribution of that evidence. There is therefore a necessity to take the context of trace evidence into account and also to follow protocols that are sensitive to these aspects of trace evidence behaviour as a failure to do so may have consequences for the correct interpretation of such evidence. Copyright © 2010 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.

  1. Method and apparatus for simulating atmospheric absorption of solar energy due to water vapor and CO{sub 2}

    Science.gov (United States)

    Sopori, B.L.

    1995-06-20

    A method and apparatus for improving the accuracy of the simulation of sunlight reaching the earth`s surface includes a relatively small heated chamber having an optical inlet and an optical outlet, the chamber having a cavity that can be filled with a heated stream of CO{sub 2} and water vapor. A simulated beam comprising infrared and near infrared light can be directed through the chamber cavity containing the CO{sub 2} and water vapor, whereby the spectral characteristics of the beam are altered so that the output beam from the chamber contains wavelength bands that accurately replicate atmospheric absorption of solar energy due to atmospheric CO{sub 2} and moisture. 8 figs.

  2. Flux-redistribution in the focal region of a planar Fresnel ring mirror

    Energy Technology Data Exchange (ETDEWEB)

    Sastroamidjojo, M.S.A. (Gadjah Mada Univ., Indonesia); Lubis, W.

    1979-01-01

    The results of an investigation of flux redistribution at the focal region of a planar Fresnel ring mirror are reported. A parabolic mirror of large aperture was used to provide a parallel beam of light which was directed at the Fresnel test object. A cotton thread grid was used as a mapping aid to provide a 25 x 25 matrix of spatial data points. (SPH)

  3. Public speaking stress-induced neuroendocrine responses and circulating immune cell redistribution in irritable bowel syndrome.

    Science.gov (United States)

    Elsenbruch, Sigrid; Lucas, Ayscha; Holtmann, Gerald; Haag, Sebastian; Gerken, Guido; Riemenschneider, Natalie; Langhorst, Jost; Kavelaars, Annemieke; Heijnen, Cobi J; Schedlowski, Manfred

    2006-10-01

    Augmented neuroendocrine stress responses and altered immune functions may play a role in the manifestation of functional gastrointestinal (GI) disorders. We tested the hypothesis that IBS patients would demonstrate enhanced psychological and endocrine responses, as well as altered stress-induced redistribution of circulating leukocytes and lymphocytes, in response to an acute psychosocial stressor when compared with healthy controls. Responses to public speaking stress were analyzed in N = 17 IBS patients without concurrent psychiatric conditions and N = 12 healthy controls. At baseline, immediately following public speaking, and after a recovery period, state anxiety, acute GI symptoms, cardiovascular responses, serum cortisol and plasma adrenocorticotropic hormone (ACTH) were measured, and numbers of circulating leukocytes and lymphocyte subpopulations were analyzed by flow cytometry. Public speaking led to significant cardiovascular activation, a significant increase in ACTH, and a redistribution of circulating leukocytes and lymphocyte subpopulations, including significant increases in natural killer cells and cytotoxic/suppressor T cells. IBS patients demonstrated significantly greater state anxiety both at baseline and following public speaking. However, cardiovascular and endocrine responses, as well as the redistribution of circulating leukocytes and lymphocyte subpopulations after public speaking stress, did not differ for IBS patients compared with controls. In IBS patients without psychiatric comorbidity, the endocrine response as well as the circulation pattern of leukocyte subpopulations to acute psychosocial stress do not differ from healthy controls in spite of enhanced emotional responses. Future studies should discern the role of psychopathology in psychological and biological stress responses in IBS.

  4. Redistribution of carbon flux in Torulopsis glabrata by altering vitamin and calcium level.

    Science.gov (United States)

    Liu, Liming; Li, Yin; Zhu, Yang; Du, Guocheng; Chen, Jian

    2007-01-01

    Manipulation of cofactor (thiamine, biotin and Ca(2+)) levels as a potential tool to redistribute carbon flux was studied in Torulopsis glabrata. With sub-optimization of vitamin in fermentation medium, the carbon flux was blocked at the key node of pyruvate, and 69 g/L pyruvate was accumulated. Increasing the concentrations of thiamine and biotin could selectively open the valve of carbon flux from pyruvate to pyruvate dehydrogenase complex, the pyruvate carboxylase (PC) pathway and the channel into the TCA cycle, leading to the over-production of alpha-ketoglutarate. In addition, the activity of PC was enhanced with Ca(2+) present in fermentation medium. By combining high concentration's vitamins and CaCO(3) as the pH buffer, a batch culture was conducted in a 7-L fermentor, with the pyruvate concentration decreased to 21.8 g/L while alpha-ketoglutarate concentration increased to 43.7 g/L. Our study indicated that the metabolic flux could be redistributed to overproduce desired metabolites with manipulating the cofactor levels. Furthermore, the manipulation of vitamin level provided an alternative tool to realize metabolic engineering goals.

  5. Pathlength distributions of atmospheric neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Gaisser, T.K.; Stanev, Todor

    1999-01-01

    We discuss the distribution of the production heights of atmospheric neutrinos as a function of zenith angle and neutrino energy. The distributions can be used as the input for evaluation of neutrino propagation under various hypotheses for neutrino flavor oscillations. Their use may alter substantially the estimates of the oscillation parameters for almost horizontal atmospheric neutrinos.

  6. Investigation into Variations of Welding Residual Stresses and Redistribution Behaviors for Different Repair Welding Widths

    International Nuclear Information System (INIS)

    Park, Chiyong; Lee, Hweesueng; Huh, Namsu

    2014-01-01

    In this study, we investigated the variations in welding residual stresses in dissimilar metal butt weld due to width of repair welding and re-distribution behaviors resulting from similar metal welding (SMW) and mechanical loading. To this end, detailed two-dimensional axi-symmetric finite element (FE) analyses were performed considering five different repair welding widths. Based on the FE results, we first evaluated the welding residual stress distributions in repair welding. We then investigated the re-distribution behaviors of the residual stresses due to SMW and mechanical loads. It is revealed that large tensile welding residual stresses take place in the inner surface and that its distribution is affected, provided repair welding width is larger than certain value. The welding residual stresses resulting from repair welding are remarkably reduced due to SMW and mechanical loading, regardless of the width of the repair welding

  7. Reverse redistribution on planar thallium scintigraphy: relationship to resting thallium uptake and long-term outcome

    International Nuclear Information System (INIS)

    Dey, H.M.; Soufer, R.

    1995-01-01

    Reverse redistribution (RR) of thallium-201 has been associated with both acute and healed myocardial infarction, and with recent thrombolysis. The physiologic basis for RR in coronary artery disease (CAD) is unclear but may be related to an admixture of viable and scarred myocardium within the RR segment. We performed thallium reinjection imaging at rest to better characterize RR defects in patients with chronic CAD. We found enhanced uptake of 201 Tl in 52% of RR segments after reinjection, consistent with significant regional viability that was not evident on redistribution images. We then used a logistic multiple regression analysis to determine whether RR alone or in combination with other scintigraphic findings could predict patient outcome. The results showed that severe RR was an independent predictor of patient outcome. We conclude that RR may have prognostic significance in chronic CAD. (orig.)

  8. Internal Transport Barrier Driven by Redistribution of Energetic Ions

    International Nuclear Information System (INIS)

    Wong, K.L.; Heidbrink, W.W.; Ruskov, E.; Petty, C.C.; Greenfield, C.M.; Nazikian, R.; Budny, R.

    2004-01-01

    Alfven instabilities excited by energetic ions are used as a means to reduce the central magnetic shear in a tokamak via redistribution of energetic ions. When the central magnetic shear is low enough, ballooning modes become stable for any plasma pressure gradient and an internal transport barrier (ITB) with a steep pressure gradient can exist. This mechanism can sustain a steady-state ITB as demonstrated by experimental data from the DIII-D tokamak. It can also produce a shear in toroidal and poloidal plasma rotation. Possible application of this technique to use the energetic alpha particles for improvement of burning plasma performance is discussed

  9. Electrical Resistivity Tomography Reveals Upward Redistribution of Soil-Water by Coyote Brush in a Shrub-Grassland Ecotone

    Science.gov (United States)

    Manning, J. E.; Schulz, M. S.; Lambrecht, D. S.

    2016-12-01

    Species imbalance within many California plant assemblages may arise due to more intense wildfires as well as climate warming. Given this, coyote brush (Baccharis pilularis DC), a native evergreen shrub known as a ready colonizer of disturbed soil, may become more dominant. While prolonged spring soil moisture is required for seedling establishment, 1+ year-old coyote brush can withstand low soil water potentials (-1.2 MPa). Beyond this, little is known about its soil-water dynamics. Hydraulic redistribution of water within the soil profile by plant roots has been established in numerous species in the past 20 years. Recent quantification of the water quantity re-distributed by root systems are beginning to provide detail that could inform ET, weathering, and carbon cycling models. Electrical resistivity tomography (ERT) has been used to study soil hydraulics in natural as well as cropland settings. This study is the first known to use ERT to investigate hydraulic redistribution in coyote brush. One mid-size shrub surrounded by open grassland was selected at the study site, located on a coastal marine terrace west of Santa Cruz, CA. The soil profile, previously characterized with ERT and auger-based soil-water sampling, includes a clay-rich B horizon and is texturally non-uniform due to bioturbation to 0.6 meter. The 12-m ERT survey transect had 48 semi-permanent electrodes, with the 4-m wide shrub canopy at probes 16 to 32. Five repeats of evening and morning surveys were conducted. Heterogeneous texture and severe soil drying necessitated qualitative comparison across time. Overnight resistivity changes using differences plots of the modelled data revealed increased moisture beneath the shrub canopy during the night. Areas beyond the canopy—presumably outside the root zone—experienced variable overnight changes, with moisture increasing in the clay-rich horizon. Preliminary analysis suggests that coyote brush roots redistribute water upward within the soil

  10. Snow in a very steep rock face: accumulation and redistribution during and after a snowfall event

    Directory of Open Access Journals (Sweden)

    Christian Gabriel Sommer

    2015-12-01

    Full Text Available Terrestrial laser scanning was used to measure snow thickness changes (perpendicular to the surface in a rock face. The aim was to investigate the accumulation and redistribution of snow in extremely steep terrain (>60°. The north-east face of the Chlein Schiahorn in the region of Davos in eastern Switzerland was scanned before and several times after a snowfall event. A summer scan without snow was acquired to calculate the total snow thickness. An improved postprocessing procedure is introduced. The data quality could be increased by using snow thickness instead of snow depth (measured vertically and by consistently applying Multi Station Adjustment to improve the registration.More snow was deposited in the flatter, smoother areas of the rock face. The spatial variability of the snow thickness change was high. The spatial patterns of the total snow thickness were similar to those of the snow thickness change. The correlation coefficient between them was 0.86. The fresh snow was partly redistributed from extremely steep to flatter terrain, presumably mostly through avalanching. The redistribution started during the snowfall and ended several days later. Snow was able to accumulate permanently at every slope angle. The amount of snow in extremely steep terrain was limited but not negligible. Areas steeper than 60° received 15% of the snowfall and contained 10% of the total amount of snow.

  11. The eddy kinetic energy budget in the Red Sea

    KAUST Repository

    Zhan, Peng

    2016-06-09

    The budget of eddy kinetic energy (EKE) in the Red Sea, including the sources, redistributions and sink, is examined using a high-resolution eddy-resolving ocean circulation model. A pronounced seasonally varying EKE is identified, with its maximum intensity occurring in winter, and the strongest EKE is captured mainly in the central and northern basins within the upper 200 m. Eddies acquire kinetic energy from conversion of eddy available potential energy (EPE), from transfer of mean kinetic energy (MKE), and from direct generation due to time-varying (turbulent) wind stress, the first of which contributes predominantly to the majority of the EKE. The EPE-to-EKE conversion occurs almost in the entire basin, while the MKE-to-EKE transfer appears mainly along the shelf boundary of the basin (200 miso-bath) where high horizontal shear interacts with topography. The EKE generated by the turbulent wind stress is relatively small and limited to the southern basin. All these processes are intensified during winter, when the rate of energy conversion is about four to five times larger than that in summer. The EKE is redistributed by the vertical and horizontal divergence of energy flux and the advection of the mean flow. As a main sink of EKE, dissipation processes is ubiquitously found in the basin. The seasonal variability of these energy conversion terms can explain the significant seasonality of eddy activities in the Red Sea. This article is protected by copyright. All rights reserved.

  12. Numerical investigation of energy transfer for fast gas heating in an atmospheric nanosecond-pulsed DBD under different negative slopes

    International Nuclear Information System (INIS)

    Zhu, Yifei; Wu, Yun; Cui, Wei; Li, Yinghong; Jia, Min

    2013-01-01

    A validated one-dimensional air plasma kinetics model (13 species and 37 processes) for a nanosecond discharge under atmospheric pressure was developed to reveal the energy transfer mechanism for fast gas heating of a plane-to-plane dielectric barrier discharge (DBD). Calculations for voltage profiles with three different negative slopes were performed. Results have shown that 72% of the total heating energy goes to quench heating, which results in a temperature rise across the gap, the remaining 28% goes to ion collisions, thus heating the cathode sheath in a higher power density. The relationships between ion collision heating, quench heating and reduced electric field are given as two functions, which indicates that 10 13  W m −3 is the peak magnitude of power density produced by ion collisions in the nanosecond-pulsed DBD under atmospheric pressure, and a further increase in E/N does not increase the higher quench heating power. The steepness of the negative slope mainly affects the energy transfer efficiency, and the percentage of two heating sources in the total heating power. A short pulse will couple positive and negative slopes and provide a higher transient total heating power but lower energy transfer efficiency. By uncoupling the positive slope, steady stage and negative slope, the energy transfer efficiency under a certain voltage amplitude (20 kV in this paper) is found to have a maximum value of 68.5%. Two wave crests of temperature rise near the cathode sheath are observed, one is caused by a positive slope and the other by a negative slope. (paper)

  13. Decomposing Shortwave Top-of-Atmosphere Radiative Flux Variability in Terms of Surface and Atmospheric Contributions Using CERES Observations

    Science.gov (United States)

    Loeb, N. G.; Wong, T.; Wang, H.

    2017-12-01

    Earth's climate is determined by the exchange of radiant energy between the Sun, Earth and space. The absorbed solar radiation (ASR) fuels the climate system, providing the energy required for atmospheric and oceanic motions, while the system cools by emitting outgoing longwave (LW) radiation to space. A central objective of the Clouds and the Earth's Radiant Energy System (CERES) is to produce a long-term global climate data record of Earth's radiation budget along with the associated atmospheric and surface properties that influence it. CERES data products utilize a number of data sources, including broadband radiometers measuring incoming and reflected solar radiation and OLR, polar orbiting and geostationary spectral imagers, meteorological, aerosol and ozone assimilation data, and snow/sea-ice maps based on microwave radiometer data. Here we use simple diagnostic model of Earth's albedo and CERES Energy Balanced and Filled (EBAF) Ed4.0 data for March 2000-February 2016 to quantify interannual variations in SW TOA flux associated with surface albedo and atmospheric reflectance and transmittance variations. Surface albedo variations account for cloud properties over the Arctic Ocean.

  14. Convergence of the effect of root hydraulic functioning and root hydraulic redistribution on ecosystem water and carbon balance across divergent forest ecosystems

    Science.gov (United States)

    domec, J.; King, J. S.; Ogée, J.; Noormets, A.; Warren, J.; Meinzer, F. C.; Sun, G.; Jordan-Meille, L.; Martineau, E.; Brooks, R. J.; Laclau, J.; Battie Laclau, P.; McNulty, S.

    2012-12-01

    INVITED ABSTRACT: Deep root water uptake and hydraulic redistribution (HR) play a major role in forest ecosystems during drought, but little is known about the impact of climate change on root-zone processes influencing HR and its consequences on water and carbon fluxes. Using data from two old growth sites in the western USA, two mature sites in the eastern USA, one site in southern Brazil, and simulations with the process-based model MuSICA, our objectives were to show that HR can 1) mitigate the effects of soil drying on root functioning, and 2) have important implications for carbon uptake and net ecosystem exchange (NEE). In a dry, old-growth ponderosa pine (USA) and a eucalyptus stand (Brazil) both characterized by deep sandy soils, HR limited the decline in root hydraulic conductivity and increased dry season tree transpiration (T) by up to 30%, which impacted NEE through major increases in gross primary productivity (GPP). The presence of deep-rooted trees did not necessarily imply high rates of HR unless soil texture allowed large water potential gradients to occur, as was the case in the wet old-growth Douglas-fir/mixed conifer stand. At the Duke mixed hardwood forest characterized by a shallow clay-loam soil, modeled HR was low but not negligible, representing annually up to 10% of T, and maintaining root conductance high. At this site, in the absence of HR, it was predicted that annual GPP would have been diminished by 7-19%. At the coastal loblolly pine plantation, characterized by deep organic soil, HR limited the decline in shallow root conductivity by more than 50% and increased dry season T by up to 40%, which increased net carbon gain by the ecosystem by about 400 gC m-2 yr-1, demonstrating the significance of HR in maintaining the stomatal conductance and assimilation capacity of the whole ecosystem. Under future climate conditions (elevated atmospheric [CO2] and temperature), HR is predicted to be reduced by up to 50%; reducing the resilience of

  15. Transition from geostrophic turbulence to inertia–gravity waves in the atmospheric energy spectrum

    Science.gov (United States)

    Callies, Jörn; Ferrari, Raffaele; Bühler, Oliver

    2014-01-01

    Midlatitude fluctuations of the atmospheric winds on scales of thousands of kilometers, the most energetic of such fluctuations, are strongly constrained by the Earth’s rotation and the atmosphere’s stratification. As a result of these constraints, the flow is quasi-2D and energy is trapped at large scales—nonlinear turbulent interactions transfer energy to larger scales, but not to smaller scales. Aircraft observations of wind and temperature near the tropopause indicate that fluctuations at horizontal scales smaller than about 500 km are more energetic than expected from these quasi-2D dynamics. We present an analysis of the observations that indicates that these smaller-scale motions are due to approximately linear inertia–gravity waves, contrary to recent claims that these scales are strongly turbulent. Specifically, the aircraft velocity and temperature measurements are separated into two components: one due to the quasi-2D dynamics and one due to linear inertia–gravity waves. Quasi-2D dynamics dominate at scales larger than 500 km; inertia–gravity waves dominate at scales smaller than 500 km. PMID:25404349

  16. Influence of hadronic interaction models and the cosmic ray spectrum on the high energy atmospheric muon and neutrino flux

    OpenAIRE

    Fedynitch, Anatoli; Tjus, Julia Becker; Desiati, Paolo

    2012-01-01

    The recent observations of muon charge ratio up to about 10 TeV and of atmospheric neutrinos up to energies of about 400 TeV has triggered a renewed interest into the high-energy interaction models and cosmic ray primary composition. A reviewed calculation of lepton spectra produced in cosmic ray induced extensive air showers is carried out with a primary cosmic ray spectrum that fits the latest direct measurements below the knee. In order to achieve this, we used a full Monte Carlo method to...

  17. Atmospheric components of the surface energy budget over young sea ice: Results from the N-ICE2015 campaign

    Science.gov (United States)

    Walden, Von P.; Hudson, Stephen R.; Cohen, Lana; Murphy, Sarah Y.; Granskog, Mats A.

    2017-08-01

    The Norwegian young sea ice campaign obtained the first measurements of the surface energy budget over young, thin Arctic sea ice through the seasonal transition from winter to summer. This campaign was the first of its kind in the North Atlantic sector of the Arctic. This study describes the atmospheric and surface conditions and the radiative and turbulent heat fluxes over young, thin sea ice. The shortwave albedo of the snow surface ranged from about 0.85 in winter to 0.72-0.80 in early summer. The near-surface atmosphere was typically stable in winter, unstable in spring, and near neutral in summer once the surface skin temperature reached 0°C. The daily average radiative and turbulent heat fluxes typically sum to negative values (-40 to 0 W m-2) in winter but then transition toward positive values of up to nearly +60 W m-2 as solar radiation contributes significantly to the surface energy budget. The sensible heat flux typically ranges from +20-30 W m-2 in winter (into the surface) to negative values between 0 and -20 W m-2 in spring and summer. A winter case study highlights the significant effect of synoptic storms and demonstrates the complex interplay of wind, clouds, and heat and moisture advection on the surface energy components over sea ice in winter. A spring case study contrasts a rare period of 24 h of clear-sky conditions with typical overcast conditions and highlights the impact of clouds on the surface radiation and energy budgets over young, thin sea ice.

  18. Sea ice-atmospheric interaction: Application of multispectral satellite data in polar surface energy flux estimates

    Science.gov (United States)

    Steffen, Konrad; Key, J.; Maslanik, J.; Schweiger, A.

    1993-01-01

    This is the third annual report on: Sea Ice-Atmosphere Interaction - Application of Multispectral Satellite Data in Polar Surface Energy Flux Estimates. The main emphasis during the past year was on: radiative flux estimates from satellite data; intercomparison of satellite and ground-based cloud amounts; radiative cloud forcing; calibration of the Advanced Very High Resolution Radiometer (AVHRR) visible channels and comparison of two satellite derived albedo data sets; and on flux modeling for leads. Major topics covered are arctic clouds and radiation; snow and ice albedo, and leads and modeling.

  19. Hydraulic redistribution study in two native tree species of agroforestry parklands of West African dry savanna

    Science.gov (United States)

    Bayala, Jules; Heng, Lee Kheng; van Noordwijk, Meine; Ouedraogo, Sibiri Jean

    2008-11-01

    Hydraulic redistribution (HR) in karité ( Vitellaria paradoxa) and néré ( Parkia biglobosa) tree species was studied by monitoring the soil water potential ( ψs) using thermocouple psychrometers at four compass directions, various distances from trees and at different soil depths (max depth 80 cm) during the dry seasons of 2004 and 2005. A modified WaNuLCAS model was then used to infer the amount of water redistribued based on ψs values. Tree transpiration rate was also estimated from sap velocity using thermal dissipative probes (TDP) and sapwood area, and the contribution of hydraulically redistributed water in tree transpiration was determined. The results revealed on average that 46% of the psychrometer readings under karité and 33% under néré showed the occurrence of HR for the two years. Soil under néré displayed significantly lower fluctuations of ψs (0.16 MPa) compared to soil under karité (0.21 MPa). The results of this study indicated that the existence of HR leads to a higher ψs in the plant rhizosphere and hence is important for soil water dynamics and plant nutrition by making more accessible the soluble elements. The simulation showed that the amount of water redistributed would be approximately 73.0 L and 247.1 L per tree per day in 2005 for karité and néré, and would represent respectively 60% and 53% of the amount transpired a day. Even though the model has certainly overestimated the volume of water hydraulically redistributed by the two species, this water may play a key role in maintaining fine root viability and ensuring the well adaptation of these species to the dry areas. Therefore, knowledge of the extent of such transfers and of the seasonal patterns is required and is of paramount importance in parkland systems both for trees and associated crops.

  20. High Energy Laser Beam Propagation in the Atmosphere: The Integral Invariants of the Nonlinear Parabolic Equation and the Method of Moments

    Science.gov (United States)

    Manning, Robert M.

    2012-01-01

    The method of moments is used to define and derive expressions for laser beam deflection and beam radius broadening for high-energy propagation through the Earth s atmosphere. These expressions are augmented with the integral invariants of the corresponding nonlinear parabolic equation that describes the electric field of high-energy laser beam to propagation to yield universal equations for the aforementioned quantities; the beam deflection is a linear function of the propagation distance whereas the beam broadening is a quadratic function of distance. The coefficients of these expressions are then derived from a thin screen approximation solution of the nonlinear parabolic equation to give corresponding analytical expressions for a target located outside the Earth s atmospheric layer. These equations, which are graphically presented for a host of propagation scenarios, as well as the thin screen model, are easily amenable to the phase expansions of the wave front for the specification and design of adaptive optics algorithms to correct for the inherent phase aberrations. This work finds application in, for example, the analysis of beamed energy propulsion for space-based vehicles.

  1. Atmosphere Impact Losses

    Science.gov (United States)

    Schlichting, Hilke E.; Mukhopadhyay, Sujoy

    2018-02-01

    } ρ0 (π h R)^{3/2}, r_{cap}˜25 km for the current Earth), that are able to eject all the atmosphere above the tangent plane of the impact site, where h, R and ρ0 are the atmospheric scale height, radius of the target, and its atmospheric density at the ground. 3) Small impactors (m_{min}>4 πρ0 h3, r_{min}˜ 1 km for the current Earth), that are only able to eject a fraction of the atmospheric mass above the tangent plane. We demonstrate that per unit impactor mass, small impactors with r_{min} < r < r_{cap} are the most efficient impactors in eroding the atmosphere. In fact for the current atmospheric mass of the Earth, they are more than five orders of magnitude more efficient (per unit impactor mass) than giant impacts, implying that atmospheric mass loss must have been common. The enormous atmospheric mass loss efficiency of small impactors is due to the fact that most of their impact energy and momentum is directly available for local mass loss, where as in the giant impact regime a lot of energy and momentum is 'wasted' by having to create a strong shock that can transverse the entirety of the planet such that global atmospheric loss can be achieved. In the absence of any volatile delivery and outgassing, we show that the population of late impactors inferred from the lunar cratering record containing 0.1% M_{\\oplus } is able to erode the entire current Earth's atmosphere implying that an interplay of erosion, outgassing and volatile delivery is likely responsible for determining the atmospheric mass and composition of the early Earth. Combining geochemical observations with impact models suggest an interesting synergy between small and big impacts, where giant impacts create large magma oceans and small and larger impacts drive the atmospheric loss.

  2. Wind energy

    International Nuclear Information System (INIS)

    Portilla S, L.A.

    1995-01-01

    The wind energy or eolic energy is a consequence of solar energy, the one which is absorbed by the atmosphere and is transformed into energy of movement of large bulks of air. In this process the atmosphere acts as the filter to the solar radiation and demotes the ultraviolet beams that result fatal to life in the Earth. The ionosphere is the most external cap and this is ionized by means of absorption process of ultraviolet radiation arising to the Sun. The atmosphere also acts as a trap to the infrared radiation, it that results from the continual process of energetic degradation. In this way, the interaction between Earth - Atmospheres, is behaved as a great greenhouse, maintaining the constant temperatures, including in the dark nights. Processes as the natural convection (that occur by the thermodynamic phenomenon), equatorial calmness, trade winds and against trade winds and global distribution of the air currents are described. The other hand, techniques as the transformation of the wind into energy and its parameters also are shown

  3. Measurement of the redistribution of arsenic at nickel silicide/silicon interface by secondary ion mass spectrometry: artifact and optimized analysis conditions

    International Nuclear Information System (INIS)

    Hoummada, K.; Mangelinck, D.; Perrin, C.; Carron, V.; Holliger, P.

    2008-01-01

    The arsenic redistribution after NiSi formation has been measured by secondary ion mass spectrometry (SIMS). The NiSi film has been obtained by solid state reaction of a Ni thin film with a silicon substrate doped with As. An increase in the As SIMS signal at the NiSi/Si interface was observed for some experimental conditions. By varying the SIMS experimental parameters (incidence angle and the impact energy), the As signal at NiSi/Si interface was found to change. The SIMS experimental parameters have been optimized and were found to be an impact energy of 1 keV and an incidence angle superior to 50 deg. This allows us to minimize differences in sputtering rate and ion yield between NiSi and Si and to obtain a good depth resolution and dynamic range. Under these conditions the bump in the As signal does not appear: this illustrates the difficulty to measure concentration at interface by SIMS

  4. The Atmospheric Monitoring Strategy for the Cherenkov Telescope Array

    Science.gov (United States)

    Daniel, M. K.; CTA Consortium

    2015-04-01

    The Imaging Atmospheric Cherenkov Technique (IACT) is unusual in astronomy as the atmosphere actually forms an intrinsic part of the detector system, with telescopes indirectly detecting very high energy particles by the generation and transport of Cherenkov photons deep within the atmosphere. This means that accurate measurement, characterisation and monitoring of the atmosphere is at the very heart of successfully operating an IACT system. The Cherenkov Telescope Array (CTA) will be the next generation IACT observatory with an ambitious aim to improve the sensitivity of an order of magnitude over current facilities, along with corresponding improvements in angular and energy resolution and extended energy coverage, through an array of Large (23 m), Medium (12 m) and Small (4 m) sized telescopes spread over an area of order ~km2. Whole sky coverage will be achieved by operating at two sites: one in the northern hemisphere and one in the southern hemisphere. This proceedings will cover the characterisation of the candidate sites and the atmospheric calibration strategy. CTA will utilise a suite of instrumentation and analysis techniques for atmospheric modelling and monitoring regarding pointing forecasts, intelligent pointing selection for the observatory operations and for offline data correction.

  5. Redistributive Taxation vs. Education Subsidies: Fostering Equality and Social Mobility in an Intergenerational Model

    Science.gov (United States)

    Schneider, Andrea

    2010-01-01

    Redistributive taxation and education subsidies are common policies intended to foster education attendance of poor children. However, this paper shows that in an intergenerational framework, these policies can raise social mobility only for some investment situations but not in general. I also study the impact of both policies on the aggregate…

  6. Atmospheric corrosion monitoring at the US Department of Energy's Oak Ridge K-25 Site

    International Nuclear Information System (INIS)

    Rao, M.

    1995-01-01

    Depleted uranium hexafluoride (UF 6 ) at the US Department of Energy's K-25 Site at Oak Ridge, TN has been stored in large steel cylinders which have undergone significant atmospheric corrosion damage over the last 35 years. A detailed experimental program to characterize and monitor the corrosion damage was initiated in 1992. Large amounts of corrosion scale and deep pits are found to cover cylinder surfaces. Ultrasonic wall thickness measurements have shown uniform corrosion losses up to 20 mils (0.5 mm) and pits up to 100 mils (2.5 mm) deep. Electrical resistance corrosion probes, time-of-wetness sensors and thermocouples have been attached to cylinder bodies. Atmospheric conditions are monitored using rain gauges, relative humidity sensors and thermocouples. Long-term (16 years) data are being obtained from mild steel corrosion coupons on test racks as well as attached directly to cylinder surfaces. Corrosion rates have been found to intimately related to the times-of-wetness, both tending to be higher on cylinder tops due to apparent sheltering effects. Data from the various tests are compared, discrepancies are discussed and a pattern of cylinder corrosion as a function of cylinder position and location is described

  7. Re-motivation in tourist destinations, redistribution and power

    Directory of Open Access Journals (Sweden)

    Carmen Díaz Domínguez

    2016-09-01

    Full Text Available Tourist destinations are constantly required to renew their products, services and projected image. This is possible, among other processes, through business innovation and co-management between tour operators and administrations in order to reach markets. This paper focusses on case studies of two specialised agrotourism businesses located in Fuerteventura (Canary Islands, and shows how innovation in products is limited when tour operators also come to control the supply of small and medium-sized companies, at least in destinations where mass tourism predominate. Here remotivation is presented as a means of providing the tourist with local supply in the destination in a way that allows it to stand out, aid the creation of local businesses and products, enrich the tourist experience and redistribute the profits of tourism across the area.

  8. Effects of atmospheric variability on energy utilization and conservation. Final report, 1 November 1976--31 October 1977

    Energy Technology Data Exchange (ETDEWEB)

    Reiter, E.R.; Dreiseitl, E.; Johnson, G.R.; Leong, H.H.; Macdonald, B.C.; Somervell, W.L. Jr.; Starr, A.M.; Timbre, K.O.

    1978-02-01

    A space-heating energy-consumption model for Greeley, Colorado for the winter of 1976-77 was within 98.9 percent of actual natural gas consumption for that city. Modeling of Cheyenne, Wyoming, including the testing of a new statistical scheme to develop the building census required by the energy consumption model, has progressed to the point where reliable natural gas consumption estimates can be made with the model for that community. A detailed study of temperature and surface wind patterns in and near the city of Greeley, Colorado revealed that, at times, an urban heat island effect is present, in spite of the relatively small size of that town. Various feedback mechanisms between the oceans and the atmosphere were examined. Several of these mechanisms appear to be the cause of the interannual variability of the atmosphere's general circulation and of climatic changes on a time scale of several tens of years. A recent cooling trend in the North Pacific north of 40/sup 0/N, and sea-surface temperature fluctuations with an irregular periodicity of 2 to 4 years superimposed upon this trend were studied. To advance regional long-range forecasting skills January temperature anomalies over the eastern United States were correlated with flow patterns over the U.S. and Canada.

  9. Roots bridge water to nutrients: a study of utilizing hydraulic redistribution through root systems to extract nutrients in the dry soils

    Science.gov (United States)

    Yan, J.; Ghezzehei, T. A.

    2017-12-01

    The rhizosphere is the region of soil that surrounds by individual plant roots. While its small volume and narrow region compared to bulk soil, the rhizosphere regulates numerous processes that determine physical structure, nutrient distribution, and biodiversity of soils. One of the most important and distinct functions of the rhizosphere is the capacity of roots to bridge and redistribute soil water from wet soil layers to drier layers. This process was identified and defined as hydraulic lift or hydraulic redistribution, a passive process driven by gradients in water potentials and it has attracted much research attention due to its important role in global water circulation and agriculture security. However, while previous studies mostly focused on the hydrological or physiological impacts of hydraulic redistribution, limited research has been conducted to elucidate its role in nutrient cycling and uptake. In this study, we aim to test the possibility of utilizing hydraulic redistribution to facilitate the nutrient movement and uptake from resource segregated zone. Our overarching hypothesis is that plants can extract nutrients from the drier but nutrient-rich regions by supplying sufficient amounts of water from the wet but nutrient-deficient regions. To test our hypothesis, we designed split-root systems of tomatoes with unequal supply of water and nutrients in different root compartments. More specifically, we transplanted tomato seedlings into sand or soil mediums, and grew them under conditions with alternate 12-h lightness and darkness. We continuously monitored the temperature, water and nutrient content of soils in these separated compartments. The above and below ground biomass were also quantified to evaluate the impacts on the plant growth. The results were compared to a control with evenly supply of water and nutrients to assess the plant growth, nutrient leaching and uptake without hydraulic redistribution.

  10. Atmospheric radiation monitor

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, M.A. Leigui de; Peixoto, C.J. Todero; Leao, M.S.A.B.; Luzio, V.P. [Universidade Federal do ABC (UFABC), SP (Brazil); Barbosa, A.F.; Lima Junior, H.P.; Vilar, A.B.; Gama, R.G.; Ferraz, V.A. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    Full text: The Atmospheric Radiation Monitor (MonRAt) is a compact telescope designed to detect fluorescence photons generated in the atmosphere by ultra-high energy cosmic rays showers with energies in the interval between 10{sup 17} eV and 10{sup 18} eV. It is composite by a 64 pixels MultiAnodic PhotoMultiplier Tube (MAPMT) placed at the focus of a parabolic mirror mounted in a Newtonian telescope setup and the data acquisition system. In front of the MAPMT photocathode, filters will be positioned to select light with wavelength in the near ultraviolet region (300 nm < {lambda} < 450 nm) where the nitrogen fluorescent emissions occurs. The data acquisition system consists of a set of pre-amplifiers and FPGA-based boards able to record trigger times and waveforms from each channel and send the data to a computer by USB ports. MonRAt will be used to detect fluorescence photons under different atmospheric conditions (pressure, temperature, humidity, local geomagnetic field, etc) and will contribute with a detailed study of the fluorescence radiation yield. The assembly of the telescope is under way and we present in this work the status of the experiment and its first measurements in the laboratory. (author)

  11. Atmospheric radiation monitor

    International Nuclear Information System (INIS)

    Oliveira, M.A. Leigui de; Peixoto, C.J. Todero; Leao, M.S.A.B.; Luzio, V.P.; Barbosa, A.F.; Lima Junior, H.P.; Vilar, A.B.; Gama, R.G.; Ferraz, V.A.

    2011-01-01

    Full text: The Atmospheric Radiation Monitor (MonRAt) is a compact telescope designed to detect fluorescence photons generated in the atmosphere by ultra-high energy cosmic rays showers with energies in the interval between 10 17 eV and 10 18 eV. It is composite by a 64 pixels MultiAnodic PhotoMultiplier Tube (MAPMT) placed at the focus of a parabolic mirror mounted in a Newtonian telescope setup and the data acquisition system. In front of the MAPMT photocathode, filters will be positioned to select light with wavelength in the near ultraviolet region (300 nm < λ < 450 nm) where the nitrogen fluorescent emissions occurs. The data acquisition system consists of a set of pre-amplifiers and FPGA-based boards able to record trigger times and waveforms from each channel and send the data to a computer by USB ports. MonRAt will be used to detect fluorescence photons under different atmospheric conditions (pressure, temperature, humidity, local geomagnetic field, etc) and will contribute with a detailed study of the fluorescence radiation yield. The assembly of the telescope is under way and we present in this work the status of the experiment and its first measurements in the laboratory. (author)

  12. Democracy, Redistributive Taxation and the Private Provision of Public Goods

    DEFF Research Database (Denmark)

    Markussen, Thomas

    ) pointed to, is weakened and might even be reversed in this context. Also, the median voter may choose a negative tax rate, even if he is poorer than the mean, in order to stimulate public goods production. The relevance of the model is illustrated with an application to the finance of higher education.......The paper studies in a simple, Downsian model of political competition how the private provision of public goods is affected when it is embedded in a system of democracy and redistributive taxation. Results show that the positive effect of inequality on public goods production, which Olson (1965...

  13. Atmospheric CO2 Observations Reveal Strong Correlation Between Regional Net Biospheric Carbon Uptake and Solar-Induced Chlorophyll Fluorescence

    Science.gov (United States)

    Shiga, Yoichi P.; Tadić, Jovan M.; Qiu, Xuemei; Yadav, Vineet; Andrews, Arlyn E.; Berry, Joseph A.; Michalak, Anna M.

    2018-01-01

    Recent studies have shown the promise of remotely sensed solar-induced chlorophyll fluorescence (SIF) in informing terrestrial carbon exchange, but analyses have been limited to either plot level ( 1 km2) or hemispheric/global ( 108 km2) scales due to the lack of a direct measure of carbon exchange at intermediate scales. Here we use a network of atmospheric CO2 observations over North America to explore the value of SIF for informing net ecosystem exchange (NEE) at regional scales. We find that SIF explains space-time NEE patterns at regional ( 100 km2) scales better than a variety of other vegetation and climate indicators. We further show that incorporating SIF into an atmospheric inversion leads to a spatial redistribution of NEE estimates over North America, with more uptake attributed to agricultural regions and less to needleleaf forests. Our results highlight the synergy of ground-based and spaceborne carbon cycle observations.

  14. Current redistribution and generation of kinetic energy in the stagnated Z pinch.

    Science.gov (United States)

    Ivanov, V V; Anderson, A A; Papp, D; Astanovitskiy, A L; Talbot, B R; Chittenden, J P; Niasse, N

    2013-07-01

    The structure of magnetic fields was investigated in stagnated wire-array Z pinches using a Faraday rotation diagnostic at the wavelength of 266 nm. The distribution of current in the pinch and trailing material was reconstructed. A significant part of current can switch from the main pinch to the trailing plasma preheated by x-ray radiation of the pinch. Secondary implosions of trailing plasma generate kinetic energy and provide enhanced heating and radiation of plasma at stagnation. Hot spots in wire-array Z pinches also provide enhanced radiation of the Z pinch. A collapse of a single hot spot radiates 1%-3% of x-ray energy of the Z pinch with a total contribution of hot spots of 10%-30%.

  15. Simulation of infiltration and redistribution of intense rainfall using Land Surface Models

    Science.gov (United States)

    Mueller, Anna; Verhoef, Anne; Cloke, Hannah

    2016-04-01

    Flooding from intense rainfall (FFIR) can cause widespread damage and disruption. Numerical Weather Prediction (NWP) models provide distributed information about atmospheric conditions, such as precipitation, that can lead to a flooding event. Short duration, high intensity rainfall events are generally poorly predicted by NWP models, because of the high spatiotemporal resolution required and because of the way the convective rainfall is described in the model. The resolution of NWP models is ever increasing. Better understanding of complex hydrological processes and the effect of scale is important in order to improve the prediction of magnitude and duration of such events, in the context of disaster management. Working as part of the NERC SINATRA project, we evaluated how the Land Surface Model (LSM) components of NWP models cope with high intensity rainfall input and subsequent infiltration problems. Both in terms of the amount of water infiltrated in the soil store, as well as the timing and the amount of surface and subsurface runoff generated. The models investigated are SWAP (Soil Water Air Plant, Alterra, the Netherlands, van Dam 1997), JULES (Joint UK Land Environment Simulator a component of Unified Model in UK Met Office, Best et al. 2011) and CHTESSEL (Carbon and Hydrology- Tiled ECMWF Scheme for Surface Exchanges over Land, Balsamo et al. 2009) We analysed the numerical aspects arising from discontinuities (or sharp gradients) in forcing and/or the model solution. These types of infiltration configurations were tested in the laboratory (Vachaud 1971), for some there are semi-analytical solutions (Philip 1957, Parlange 1972, Vanderborght 2005) or reference numerical solutions (Haverkamp 1977, van Dam 2000, Vanderborght 2005). The maximum infiltration by the surface, Imax, is in general dependent on atmospheric conditions, surface type, soil type, soil moisture content θ, and surface orographic factor σ. The models used differ in their approach to

  16. Projecting the Dependence of Sage-steppe Vegetation on Redistributed Snow in a Warming Climate.

    Science.gov (United States)

    Soderquist, B.; Kavanagh, K.; Link, T. E.; Seyfried, M. S.; Strand, E. K.

    2015-12-01

    In mountainous regions, the redistribution of snow by wind can increase the effective precipitation available to vegetation. Moisture subsidies caused by drifting snow may be critical to plant productivity in semi-arid ecosystems. However, with increasing temperatures, the distribution of precipitation is becoming more uniform as rain replaces drifting snow. Understanding the ecohydrological interactions between sagebrush steppe vegetation communities and the heterogeneous distribution of soil moisture is essential for predicting and mitigating future losses in ecosystem diversity and productivity in regions characterized by snow dominated precipitation regimes. To address the dependence of vegetation productivity on redistributed snow, we simulated the net primary production (NPP) of aspen, sagebrush, and C3 grass plant functional types spanning a precipitation phase (rain:snow) gradient in the Reynolds Creek Experimental Watershed and Critical Zone Observatory (RCEW-CZO). The biogeochemical process model Biome-BGC was used to simulate NPP at three sites located directly below snowdrifts that provide melt water late into the spring. To assess climate change impacts on future plant productivity, mid-century (2046-2065) NPP was simulated using the average temperature increase from the Multivariate Adaptive Constructed Analogs (MACA) data set under the RCP 8.5 emission scenario. At the driest site, mid-century projections of decreased snow cover and increased growing season evaporative demand resulted in limiting soil moisture up to 30 and 40 days earlier for aspen and sage respectively. While spring green up for aspen occurred an average of 13 days earlier under climate change scenarios, NPP remained negative up to 40 days longer during the growing season. These results indicate that the loss of the soil moisture subsidy stemming from prolonged redistributed snow water resources can directly influence ecosystem productivity in the rain:snow transition zone.

  17. Strain redistribution around holes and notches in fiber-reinforced cross-woven brittle matrix composites

    DEFF Research Database (Denmark)

    Jacobsen, Torben Krogsdal; Brøndsted, Povl

    1997-01-01

    Mechanics, and an identification procedure based on a uni-axial tensile test and a shear test the strain redistribution around a hole or a notch due to matrix cracking can be predicted. Damage due to fiber breakage is not included in the model. Initial matrix damage in the C-f/SiCm material has...

  18. Assessment of an in-channel redistribution technique for large woody debris management in Locust Creek, Linn County, Missouri

    Science.gov (United States)

    Heimann, David C.

    2017-10-24

    The U.S. Geological Survey, in cooperation with the Missouri Department of Conservation and Missouri Department of Natural Resources, completed a study to assess a mechanical redistribution technique used for the management of large woody debris (LWD) jams in Locust Creek within Pershing State Park and Fountain Grove Conservation Area, Linn County, Missouri. Extensive LWD jams were treated from 1996 to 2009 using a low-impact technique in which LWD from the jams was redistributed to reopen the channel and to mimic the natural geomorphic process of channel migration and adjustment to an obstruction. The scope of the study included the comparison of selected channel geometry characteristics and bed material particle-size distribution in seven LWD treatment reaches with that of adjacent untreated reaches (unaffected by LWD accumulations) of Locust Creek. A comparison of 1996 and 2015 survey cross sections in treated and untreated reaches and photograph documentation were used to assess channel geomorphic change and the stability of redistributed LWD. The physical characteristics of LWD within jams present in the study reach during 2015–16 also were documented.Based on the general lack of differences in channel metrics between treated and untreated reaches, it can be concluded that the mechanical redistribution technique has been an effective treatment of extensive LWD jams in Locust Creek. Channel alterations, including aggradation, streamflow piracy, and diversions, have resulted in temporal and spatial changes in the Locust Creek channel that may affect future applications of the redistribution technique in Pershing State Park. The redistribution technique was used to effectively manage LWD in Locust Creek at a potentially lower financial cost and reduced environmental disturbance than the complete removal of LWD.A comparison of four channel metrics (bankfull cross-sectional area, channel width, streamflow capacity, and width-depth ratio) for individual treatment

  19. [Rainfall and soil moisture redistribution induced by xerophytic shrubs in an arid desert ecosystem].

    Science.gov (United States)

    Wang, Zheng Ning; Wang, Xin Ping; Liu, Bo

    2016-03-01

    Rainfall partitioning by desert shrub canopy modifies the redistribution of incident rainfall under the canopy, and may affect the distribution pattern of soil moisture around the plant. This study examined the distribution of rainfall and the response of soil moisture beneath the canopy of two dominant desert shrubs, Caragana korshinskii and Artemisia ordosica, in the revegetation area at the southeastern edge of the Tengger Desert. The results showed that throughfall and stemflow ave-ragely occupied 74.4%, 11.3% and 61.8%, 5.5% of the gross precipitation for C. korshinskii and A. ordosica, respectively. The mean coefficients of variation (CV) of throughfall were 0.25 and 0.30, respectively. C. korshinski were more efficient than A. ordosica on stemflow generation. The depth of soil wetting front around the stem area was greater than other areas under shrub canopy for C. korshinski, and it was only significantly greater under bigger rain events for A. ordosica. The shrub canopy could cause the unevenness of soil wetting front under the canopy in consequence of rainfall redistribution induced by xerophytic shrub.

  20. Planktivorous auklet Ptychoramphus aleuticus responses to ocean climate, 2005: Unusual atmospheric blocking?

    Science.gov (United States)

    Sydeman, William J.; Bradley, Russell W.; Warzybok, Pete; Abraham, Christine L.; Jahncke, Jaime; Hyrenbach, K. David; Kousky, Vernon; Hipfner, J. Mark; Ohman, Mark D.

    2006-10-01

    In spring-summer 2005, anomalous atmospheric-oceanographic coupling caused unprecedented reproductive failures and redistribution of a planktivorous marine bird in both central California (37°N) and southern British Columbia (50°N). At SE Farallon Island, CA, the birds abandoned the breeding colony en masse between 10-20 May, a unique behavioral response; for the first time in 35 years, reproductive success was zero. At Triangle Island, B.C., only 8% of the nesting pairs were successful, the worst year on record. Surveys of birds at sea revealed a peak in relative abundance south of Point Conception (34°N) in summer and fall, suggestive of emigration from the north. Prey (euphausiid crustacean) biomass in the Gulf of the Farallones was reduced, but remained high south of Point Conception. Change in predator and prey may be explained, in part, by unusual atmospheric blocking in the Gulf of Alaska in May, which caused the jet stream to shift southwards resulting in poor upwelling-favorable winds and anomalously warm SST. This study demonstrates the deleterious consequences of this climate event for a top marine predator in the central-northern California Current System.