Asymptotic, non-linear solutions for ambipolar diffusion in one dimension
Hoyos, Jaime; Valdivia, Juan
2010-01-01
We study the effect of the non-linear process of ambipolar diffusion (joint transport of magnetic flux and charged particles relative to neutral particles) on the long-term behavior of a non-uniform magnetic field in a one-dimensional geometry. Our main focus is the dissipation of magnetic energy inside neutron stars(particularly magnetars), but our results have a wider application, particularly to the interstellar medium and the loss of magnetic flux from collapsing molecular cloud cores. Our system is a weakly ionized plasma in which neutral and charged particles can be converted into each other through nuclear beta decays (or ionization-recombination processes). In the "weak-coupling" limit of infrequent inter-particle interactions, the evolution of the magnetic field is controlled by the beta decay rate and can be described by a non-linear partial integro-differential equation. In the opposite, "strong-coupling" regime, the evolution is controlled by the inter-particle collisions and can be modelled throu...
Asymptotic Stability of Interconnected Passive Non-Linear Systems
Isidori, A.; Joshi, S. M.; Kelkar, A. G.
1999-01-01
This paper addresses the problem of stabilization of a class of internally passive non-linear time-invariant dynamic systems. A class of non-linear marginally strictly passive (MSP) systems is defined, which is less restrictive than input-strictly passive systems. It is shown that the interconnection of a non-linear passive system and a non-linear MSP system is globally asymptotically stable. The result generalizes and weakens the conditions of the passivity theorem, which requires one of the systems to be input-strictly passive. In the case of linear time-invariant systems, it is shown that the MSP property is equivalent to the marginally strictly positive real (MSPR) property, which is much simpler to check.
Non-linear and signal energy optimal asymptotic filter design
Josef Hrusak
2003-10-01
Full Text Available The paper studies some connections between the main results of the well known Wiener-Kalman-Bucy stochastic approach to filtering problems based mainly on the linear stochastic estimation theory and emphasizing the optimality aspects of the achieved results and the classical deterministic frequency domain linear filters such as Chebyshev, Butterworth, Bessel, etc. A new non-stochastic but not necessarily deterministic (possibly non-linear alternative approach called asymptotic filtering based mainly on the concepts of signal power, signal energy and a system equivalence relation plays an important role in the presentation. Filtering error invariance and convergence aspects are emphasized in the approach. It is shown that introducing the signal power as the quantitative measure of energy dissipation makes it possible to achieve reasonable results from the optimality point of view as well. The property of structural energy dissipativeness is one of the most important and fundamental features of resulting filters. Therefore, it is natural to call them asymptotic filters. The notion of the asymptotic filter is carried in the paper as a proper tool in order to unify stochastic and non-stochastic, linear and nonlinear approaches to signal filtering.
This paper presents a non-linear analysis of elastically restrained imperfect shallow spherical shells on pasternak foundation. By adopting the asymptotic iteration method (AIM), an analytical expression concerning the external load and the central deflection of the shell is derived in a non-dimensional form. The solution incorporates the effects of involved parameters, such as geometrical imperfection, extensional and shear moduli of foundation and edge-restraint coefficients as well as structural geometry, and it can be used effectively to perform buckling analysis of such structures. For some classical boundary conditions, the resulting solution has been compared with data available resulting from various approximate methods including Alpha, Berger's method, modified Berger's method, Sinharay and Banerjee's approach and Galerkin's method. The evaluation of the effects of these parameters on critical buckling loads is made numerically. The results show that the present solution can be considered as a more exact solution for determination of non-linear behaviour of such structures
Periodic solutions of a non-linear wave equation with homogeneous boundary conditions
Rudakov, I A [M.V. Lomonosov Moscow State University, Moscow (Russian Federation)
2006-02-28
We prove the existence of time-periodic solutions of a non-linear wave equation with homogeneous boundary conditions. The non-linear term either has polynomial growth or satisfies a 'non-resonance' condition.
Breteaux, Sébastien
2014-01-01
We introduce a one parameter family of non-linear, non-local integro-differential equations and its limit equation. These equations originate from a derivation of the linear Boltzmann equation using the framework of bosonic quantum field theory. We show the existence and uniqueness of strong global solutions for these equations, and a result of uniform convergence on every compact interval of the solutions of the one parameter family towards the solution of the limit equation.
Non linear photons: a non singular cosmological solution
The validity of equivalence principle as principle of minimum coupling between field interactions, is discussed. The non minimum coupling between vector field and gravitational field, and some consequences of this coupling are analysed. Starting from spherical symmetry metric, the coupled field equations, obtaining exact solutions and interpreting these solutions, are solved. (M.C.K.)
陈化; 罗壮初
2002-01-01
In this paper the authors study a class of non-linear singular partial differential equation in complex domain Ct × Cnx. Under certain assumptions, they prove the existence and uniqueness of holomorphic solution near origin of Ct × Cnx.
Conjugated donor-acceptor chromophores in solution non-linearity at work
Terenziani, F; Terenziani, Francesca; Painelli, Anna
2001-01-01
We propose a model that, accounting for the intrinsic non-linearity of the electronic system, is able to rationalize steady-state electronic and vibrational spectra of polar chromophores in solution, as well as time-resolved experiments.
Wang, Jing; You, Jiangong
2016-07-01
We study the boundedness of solutions for non-linear quasi-periodic differential equations with Liouvillean frequencies. We proved that if the forcing is quasi-periodic in time with two frequencies which is not super-Liouvillean, then all solutions of the equation are bounded. The proof is based on action-angle variables and modified KAM theory.
Chen, Hua; Lua, Zhuangehu
2008-01-01
In this paper we study a class of non-linear singular partial differential equation in complex domain Csub(t) x C n sub(x). Under certain assumptions, we prove the existence and uniqueness of holomorphic solution near origin of Csub(t) x C n sub(x).
Solution of ground dynamics problems in case of non-linear materials behaviour due to transformation
A solution of dynamic problems in the frequency space is possible in closed form only for linear equations. For this reason, a method has been developed for non-linear material behaviour which permits iterative methods by means of repeated transformation of the differential equations established according to the initial strain procedure. (orig.)
The reduced system of the non linear resistive MHD equations is used in the 2-D one helicity approximation in the numerical computations of stationary tearing modes. The critical magnetic Raynolds number S (S=tausub(r)/tausub(H) where tausub(R) and tausub(H) are respectively the characteristic resistive and hydro magnetic times) and the corresponding linear solution are computed as a starting approximation for the full non linear equations. These equations are then treated numerically by an iterative procedure which is shown to be rapidly convergent. A numerical application is given in the last part of this paper
Series solutions of non-linear Riccati differential equations with fractional order
In this paper, based on the homotopy analysis method (HAM), a new analytic technique is proposed to solve non-linear Riccati differential equation with fractional order. Different from all other analytic methods, it provides us with a simple way to adjust and control the convergence region of solution series by introducing an auxiliary parameter h. Besides, it is proved that well-known Adomian's decomposition method is a special case of the homotopy analysis method when h = -1. This work illustrates the validity and great potential of the homotopy analysis method for the non-linear differential equations with fractional order. The basic ideas of this approach can be widely employed to solve other strongly non-linear problems in fractional calculus.
ON THE BOUNDEDNESS AND THE STABILITY OF SOLUTION TO THIRD ORDER NON-LINEAR DIFFERENTIAL EQUATIONS
无
2008-01-01
In this paper we investigate the global asymptotic stability,boundedness as well as the ultimate boundedness of solutions to a general third order nonlinear differential equation,using complete Lyapunov function.
Classical solutions of non-linear sigma-models and their quantum fluctuations
I study the properties of O(N) and CPsup(n-1) non-linear sigma-models in the two dimensional Euclidean space. All classical solutions of the equations of motion can be characterized and in the CPsup(n-1) model they can be expressed in a simple and explicit way in terms of holomorphic vectors. The topological winding number and the action of the general CPsup(n-1) solution can be evaluated and the latter turns out always to be a integer multiple of 2π. I further discuss the stability of the solutions and the problem of one-loop calculations of quantum fluctuations around classical solutions
We consider, in a 1+3 space time, arbitrary (finite) systems of nonlinear Klein-Gordon equations (respectively Schroedinger equations) with an arbitrary local and analytic non-linearity in the unknown and its first and second order space-time (respectively first order space) derivatives, having no constant or linear terms. No restriction is given on the frequency sign of the initial data. In the case of non-linear Klein-Gordon equations all masses are supposed to be different from zero. We prove, for such systems, that the wave operator (from t=infinite to t=0) exists on a domain of small entire test functions of exponential type and that the analytic Cauchy problem, in R+ x R3, has a unique solution for each initial condition (at t=0) being in the image of the wave operator. The decay properties of such solutions are discussed in detail. (orig.)
A solution to the non-linear equations of D=10 super Yang-Mills theory
Mafra, Carlos R
2015-01-01
In this letter, we present a formal solution to the non-linear field equations of ten-dimensional super Yang--Mills theory. It is assembled from products of linearized superfields which have been introduced as multiparticle superfields in the context of superstring perturbation theory. Their explicit form follows recursively from the conformal field theory description of the gluon multiplet in the pure spinor superstring. Furthermore, superfields of higher mass dimensions are defined and their equations of motion spelled out.
Numerical Asymptotic Solutions Of Differential Equations
Thurston, Gaylen A.
1992-01-01
Numerical algorithms derived and compared with classical analytical methods. In method, expansions replaced with integrals evaluated numerically. Resulting numerical solutions retain linear independence, main advantage of asymptotic solutions.
Impact of quadratic non-linearity on the dynamics of periodic solutions of a wave equation
For the non-linear telegraph equation with homogeneous Dirichlet or Neumann conditions at the end-points of a finite interval the question of the existence and the stability of time-periodic solutions bifurcating from the zero equilibrium state is considered. The dynamics of these solutions under a change of the diffusion coefficient (that is, the coefficient of the second derivative with respect to the space variable) is investigated. For the Dirichlet boundary conditions it is shown that this dynamics substantially depends on the presence - or the absence - of quadratic terms in the non-linearity. More precisely, it is shown that a quadratic non-linearity results in the occurrence, under an unbounded decrease of diffusion, of an infinite sequence of bifurcations of each periodic solution. En route, the related issue of the limits of applicability of Yu.S. Kolesov's method of quasinormal forms to the construction of self-oscillations in singularly perturbed hyperbolic boundary value problems is studied
We consider a two-dimensional model Schroedinger equation with logarithmic integral non-linearity. We find asymptotic expansions for its solutions (Airy polarons) that decay exponentially at the 'semi-infinity' and oscillate along one direction. These solutions may be regarded as new special functions, which are somewhat similar to the Airy function. We use them to construct global asymptotic solutions of Schroedinger equations with a small parameter and with integral non-linearity of Hartree type
Surface Tension of Acid Solutions: Fluctuations beyond the Non-linear Poisson-Boltzmann Theory
Markovich, Tomer; Podgornik, Rudi
2016-01-01
We extend our previous study of surface tension of ionic solutions and apply it to the case of acids (and salts) with strong ion-surface interactions. These ion-surface interactions yield a non-linear boundary condition with an effective surface charge due to adsorption of ions from the bulk onto the interface. The calculation is done using the loop-expansion technique, where the zero-loop (mean field) corresponds of the non-linear Poisson-Boltzmann equation. The surface tension is obtained analytically to one-loop order, where the mean-field contribution is a modification of the Poisson-Boltzmann surface tension, and the one-loop contribution gives a generalization of the Onsager-Samaras result. Our theory fits well a wide range of different acids and salts, and is in accord with the reverse Hofmeister series for acids.
Unsteady Solution of Non-Linear Differential Equations Using Walsh Function Series
Gnoffo, Peter A.
2015-01-01
Walsh functions form an orthonormal basis set consisting of square waves. The discontinuous nature of square waves make the system well suited for representing functions with discontinuities. The product of any two Walsh functions is another Walsh function - a feature that can radically change an algorithm for solving non-linear partial differential equations (PDEs). The solution algorithm of non-linear differential equations using Walsh function series is unique in that integrals and derivatives may be computed using simple matrix multiplication of series representations of functions. Solutions to PDEs are derived as functions of wave component amplitude. Three sample problems are presented to illustrate the Walsh function series approach to solving unsteady PDEs. These include an advection equation, a Burgers equation, and a Riemann problem. The sample problems demonstrate the use of the Walsh function solution algorithms, exploiting Fast Walsh Transforms in multi-dimensions (O(Nlog(N))). Details of a Fast Walsh Reciprocal, defined here for the first time, enable inversion of aWalsh Symmetric Matrix in O(Nlog(N)) operations. Walsh functions have been derived using a fractal recursion algorithm and these fractal patterns are observed in the progression of pairs of wave number amplitudes in the solutions. These patterns are most easily observed in a remapping defined as a fractal fingerprint (FFP). A prolongation of existing solutions to the next highest order exploits these patterns. The algorithms presented here are considered a work in progress that provide new alternatives and new insights into the solution of non-linear PDEs.
Approximate Analytical Solutions for Primary Chatter in the Non-Linear Metal Cutting Model
Warmiński, J.; Litak, G.; Cartmell, M. P.; Khanin, R.; Wiercigroch, M.
2003-01-01
This paper considers an accepted model of the metal cutting process dynamics in the context of an approximate analysis of the resulting non-linear differential equations of motion. The process model is based upon the established mechanics of orthogonal cutting and results in a pair of non-linear ordinary differential equations which are then restated in a form suitable for approximate analytical solution. The chosen solution technique is the perturbation method of multiple time scales and approximate closed-form solutions are generated for the most important non-resonant case. Numerical data are then substituted into the analytical solutions and key results are obtained and presented. Some comparisons between the exact numerical calculations for the forces involved and their reduced and simplified analytical counterparts are given. It is shown that there is almost no discernible difference between the two thus confirming the validity of the excitation functions adopted in the analysis for the data sets used, these being chosen to represent a real orthogonal cutting process. In an attempt to provide guidance for the selection of technological parameters for the avoidance of primary chatter, this paper determines for the first time the stability regions in terms of the depth of cut and the cutting speed co-ordinates.
Hartmann, Betti; Zakrzewski, Wojtek J.
2006-01-01
We study the non-linear Schroedinger equation in (1+1) dimensions in which the nonlinear term is taken in the form of a nonlocal interaction of the Coulomb or Yukawa-type. We solve the equation numerically and find that, for all values of the nonlocal coupling constant, and in all cases, the equation possesses solitonic solutions. We show that our results, for the dependence of the height of the soliton on the coupling constant, are in good agreement with the predictions based on an analytic ...
Hartmann, B; Hartmann, Betti; Zakrzewski, Wojtek J.
2006-01-01
We study the non-linear Schroedinger equation in (1+1) dimensions in which the nonlinear term is taken in the form of a nonlocal interaction of the Coulomb or Yukawa-type. We solve the equation numerically and find that, for all values of the nonlocal coupling constant, and in all cases, the equation possesses solitonic solutions. We show that our results, for the dependence of the height of the soliton on the coupling constant, are in good agreement with the predictions based on an analytic treatment in which the soliton is approximated by a gaussian.
Kozlowski, K.K. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Terras, V. [CNRS, ENS Lyon (France). Lab. de Physique
2010-12-15
We present a new method allowing us to derive the long-time and large-distance asymptotic behavior of the correlations functions of quantum integrable models from their exact representations. Starting from the form factor expansion of the correlation functions in finite volume, we explain how to reduce the complexity of the computation in the so-called interacting integrable models to the one appearing in free fermion equivalent models. We apply our method to the time-dependent zero-temperature current-current correlation function in the non-linear Schroedinger model and compute the first few terms in its asymptotic expansion. Our result goes beyond the conformal field theory based predictions: in the time-dependent case, other types of excitations than the ones on the Fermi surface contribute to the leading orders of the asymptotics. (orig.)
Kozlowski, K.K.
2010-12-15
Starting from the form factor expansion in finite volume, we derive the multidimensional generalization of the so-called Natte series for the zero-temperature, time and distance dependent reduced density matrix in the non-linear Schroedinger model. This representation allows one to read-off straightforwardly the long-time/large-distance asymptotic behavior of this correlator. Our method of analysis reduces the complexity of the computation of the asymptotic behavior of correlation functions in the so-called interacting integrable models, to the one appearing in free fermion equivalent models. We compute explicitly the first few terms appearing in the asymptotic expansion. Part of these terms stems from excitations lying away from the Fermi boundary, and hence go beyond what can be obtained by using the CFT/Luttinger liquid based predictions. (orig.)
Solution of Linear Programming Problems using a Neural Network with Non-Linear Feedback
S. A. Rahman
2012-12-01
Full Text Available This paper presents a recurrent neural circuit for solving linear programming problems. The objective is to minimize a linear cost function subject to linear constraints. The proposed circuit employs non-linear feedback, in the form of unipolar comparators, to introduce transcendental terms in the energy function ensuring fast convergence to the solution. The proof of validity of the energy function is also provided. The hardware complexity of the proposed circuit compares favorably with other proposed circuits for the same task. PSPICE simulation results are presented for a chosen optimization problem and are found to agree with the algebraic solution. Hardware test results for a 2–variable problem further serve to strengthen the proposed theory.
Hölder continuity of solutions of second-order non-linear elliptic integro-differential equations
Barles, Guy; Chasseigne, Emmanuel; Imbert, Cyril
2011-01-01
This paper is concerned with Hölder regularity of viscosity solutions of second-order, fully non-linear elliptic integro-differential equations. Our results rely on two key ingredients: first we assume that, at each point of the domain, either the equation is strictly elliptic in the classical fully non-linear sense, or (and this is the most original part of our work) the equation is strictly elliptic in a non-local non-linear sense we make precise. Next we impose some regularity and growth c...
Lorber, A.A.; Carey, G.F.; Bova, S.W.; Harle, C.H. [Univ. of Texas, Austin, TX (United States)
1996-12-31
The connection between the solution of linear systems of equations by iterative methods and explicit time stepping techniques is used to accelerate to steady state the solution of ODE systems arising from discretized PDEs which may involve either physical or artificial transient terms. Specifically, a class of Runge-Kutta (RK) time integration schemes with extended stability domains has been used to develop recursion formulas which lead to accelerated iterative performance. The coefficients for the RK schemes are chosen based on the theory of Chebyshev iteration polynomials in conjunction with a local linear stability analysis. We refer to these schemes as Chebyshev Parameterized Runge Kutta (CPRK) methods. CPRK methods of one to four stages are derived as functions of the parameters which describe an ellipse {Epsilon} which the stability domain of the methods is known to contain. Of particular interest are two-stage, first-order CPRK and four-stage, first-order methods. It is found that the former method can be identified with any two-stage RK method through the correct choice of parameters. The latter method is found to have a wide range of stability domains, with a maximum extension of 32 along the real axis. Recursion performance results are presented below for a model linear convection-diffusion problem as well as non-linear fluid flow problems discretized by both finite-difference and finite-element methods.
Wolfshtein, M.; Hirsh, R. S.; Pitts, B. H.
1975-01-01
A new method for the solution of non-linear partial differential equations by an ADI procedure is described. Although the method is second order accurate in time, it does not require either iterations or predictor corrector methods to overcome the nonlinearity of the equations. Thus the computational effort required for the solution of the non-linear problem becomes similar to that required for the linear case. The method is applied to a two-dimensional 'extended Burgers equation'. Linear stability is studied, and some numerical solutions obtained. The improved accuracy obtained by the 2nd order truncation error is clearly manifested.
On a non linear third - order parabolic equation
De Angelis, Monica
2012-01-01
Aim of this paper is the qualitative analysis of the solution of a boundary value problem for a third-order non linear parabolic equation which describes several dissipative models. When the source term is linear, the problem is explictly solved by means of a Fourier series with properties of rapid convergence. In the non linear case,appropriate estimates of this series allow to deduce the asymptotic behaviour of the solution.
Analytical vs. Simulation Solution Techniques for Pulse Problems in Non-linear Stochastic Dynamics
Iwankiewicz, R.; Nielsen, Søren R. K.
Advantages and disadvantages of available analytical and simulation techniques for pulse problems in non-linear stochastic dynamics are discussed. First, random pulse problems, both those which do and do not lead to Markov theory, are presented. Next, the analytical and analytically-numerical tec......Advantages and disadvantages of available analytical and simulation techniques for pulse problems in non-linear stochastic dynamics are discussed. First, random pulse problems, both those which do and do not lead to Markov theory, are presented. Next, the analytical and analytically......-numerical techniques suitable for Markov response problems such as moments equation, Petrov-Galerkin and cell-to-cell mapping techniques are briefly discussed. Usefulness of these techniques is limited by the fact that effectiveness of each of them depends on the mean rate of impulses. Another limitation is the size...... of the problem, i.e. the number of state variables of the dynamical systems. In contrast, the application of the simulation techniques is not limited to Markov problems, nor is it dependent on the mean rate of impulses. Moreover their use is straightforward for a large class of point processes, at...
An implicit meshless scheme for the solution of transient non-linear Poisson-type equations
Bourantas, Georgios
2013-07-01
A meshfree point collocation method is used for the numerical simulation of both transient and steady state non-linear Poisson-type partial differential equations. Particular emphasis is placed on the application of the linearization method with special attention to the lagging of coefficients method and the Newton linearization method. The localized form of the Moving Least Squares (MLS) approximation is employed for the construction of the shape functions, in conjunction with the general framework of the point collocation method. Computations are performed for regular nodal distributions, stressing the positivity conditions that make the resulting system stable and convergent. The accuracy and the stability of the proposed scheme are demonstrated through representative and well-established benchmark problems. © 2013 Elsevier Ltd.
Universal stability diagrams have been calculated and experimentally checked for Hill-Meissner type equations with square-wave coefficients. The study of these equations in the phase-plane has then made it possible to extend the periodic solution calculations to the case of non-linear differential equations with periodic square-wave coefficients. This theory has been checked experimentally. For non-linear coupled systems with constant coefficients, a search was first made for solutions giving an algebraic motion. The elliptical and Fuchs's functions solve such motions. The study of non-algebraic motions is more delicate, apart from the study of nonlinear Lissajous's motions. A functional analysis shows that it is possible however in certain cases to decouple the system and to find general solutions. For non-linear coupled systems with periodic square-wave coefficients it is then possible to calculate the conditions leading to periodic solutions, if the two non-linear associated systems with constant coefficients fall into one of the categories of the above paragraph. (author)
This research thesis reports the study of two mechanisms of non linear interaction of a laser wave with matter. More particularly, it reports the experimental investigation of non linear optical properties of organometallic molecules in solution, as well as the damage of perfect silica under laser irradiation by using simulation codes. As far as optical properties are concerned, the author highlights the influence of the electronic configuration of the metal present in the organometallic compound, and the influence of the ligand on the second-order non-linear response. As far as the simulation is concerned, some experimental results have been reproduced. This work can be useful for the investigation of the extrinsic damage of imperfect materials, and for the design of experiments of transient measurements of excited silica
Blow-up of solutions of non-linear equations of Kadomtsev-Petviashvili and Zakharov-Kuznetsov types
Korpusov, M. O.; Sveshnikov, A. G.; Yushkov, E. V.
2014-06-01
The Kadomtsev-Petviashvili equation and Zakharov-Kuznetsov equation are important in physical applications. We obtain sufficient conditions for finite-time blow-up of solutions of these equations in bounded and unbounded domains. We describe how the initial data influence the blow-up time. To do this, we use the non-linear capacity method suggested by Pokhozhaev and Mitidieri and combine it with the method of test functions, which was developed in joint papers with Galaktionov. Note that our results are the first blow-up results for many equations in this class.
Solutions of special asymptotics to the Einstein constraint equations
Huang, Lan-Hsuan
2010-01-01
We construct solutions with prescribed asymptotics to the Einstein constraint equations using a cut-off technique. Moreover, we give various examples of vacuum asymptotically flat manifolds whose center of mass and angular momentum are ill-defined.
H. M. Abdelhafez
2016-03-01
Full Text Available The modified differential transform method (MDTM, Laplace transform and Padé approximants are used to investigate a semi-analytic form of solutions of nonlinear oscillators in a large time domain. Forced Duffing and forced van der Pol oscillators under damping effect are studied to investigate semi-analytic forms of solutions. Moreover, solutions of the suggested nonlinear oscillators are obtained using the fourth-order Runge-Kutta numerical solution method. A comparison of the result by the numerical Runge-Kutta fourth-order accuracy method is compared with the result by the MDTM and plotted in a long time domain.
Exact solutions of SO(3) non-linear sigma model in a conic space background
Bezerra, V B; Romero, C
2005-01-01
We consider a nonlinear sigma model coupled to the metric of a conic space. We obtain restrictions for a nonlinear sigma model to be a source of the conic space. We then study nonlinear sigma model in the conic space background. We find coordinate transformations which reduce the chiral fields equations in the conic space background to field equations in Minkowski spacetime. This enables us to apply the same methods for obtaining exact solutions in Minkowski spacetime to the case of a conic spacetime. In the case the solutions depend on two spatial coordinates we employ Ivanov's geometrical ansatz. We give a general analysis and also present classes of solutions in which there is dependence on three and four coordinates. We discuss with special attention the intermediate instanton and meron solutions and their analogous in the conic space. We find differences in the total actions and topological charges of these solutions and discuss the role of the deficit angle.
Analytical solutions for non-linear differential equations with the help of a digital computer
Cromwell, P. C.
1964-01-01
A technique was developed with the help of a digital computer for analytic (algebraic) solutions of autonomous and nonautonomous equations. Two operational transform techniques have been programmed for the solution of these equations. Only relatively simple nonlinear differential equations have been considered. In the cases considered it has been possible to assimilate the secular terms into the solutions. For cases where f(t) is not a bounded function, a direct series solution is developed which can be shown to be an analytic function. All solutions have been checked against results obtained by numerical integration for given initial conditions and constants. It is evident that certain nonlinear differential equations can be solved with the help of a digital computer.
This paper describes a new Non-Linear Discontinuous Petrov-Galerkin (NDPG) method and application to the one-speed Boltzmann Transport Equation (BTE) for space-time problems. The purpose of the method is to remove unwanted oscillations in the transport solution which occur in the vicinity of sharp flux gradients, while improving computational efficiency and numerical accuracy. This is achieved by applying artificial dissipation in the solution gradient direction, internal to an element using a novel finite element (FE) Riemann approach. The amount of dissipation added acts internal to each element. This is done using a gradient-informed scaling of the advection velocities in the stabilisation term. This makes the method in its most general form non-linear. The method is designed to be independent of angular expansion framework. This is demonstrated for the both discrete ordinates (SN) and spherical harmonics (PN) descriptions of the angular variable. Results show the scheme performs consistently well in demanding time dependent and multi-dimensional radiation transport problems. (authors)
Bounds on the Fourier coefficients for the periodic solutions of non-linear oscillator equations
Mickens, R. E.
1988-01-01
The differential equations describing nonlinear oscillations (as seen in mechanical vibrations, electronic oscillators, chemical and biochemical reactions, acoustic systems, stellar pulsations, etc.) are investigated analytically. The boundedness of the Fourier coefficients for periodic solutions is demonstrated for two special cases, and the extrapolation of the results to higher-dimensionsal systems is briefly considered.
Abaker. A. Hassaballa.
2015-01-01
- In recent years, many more of the numerical methods were used to solve a wide range of mathematical, physical, and engineering problems linear and nonlinear. This paper applies the homotopy perturbation method (HPM) to find exact solution of partial differential equation with the Dirichlet and Neumann boundary conditions.
Filtering of non-linear instabilities. [from finite difference solution of fluid dynamics equations
Khosla, P. K.; Rubin, S. G.
1979-01-01
For Courant numbers larger than one and cell Reynolds numbers larger than two, oscillations and in some cases instabilities are typically found with implicit numerical solutions of the fluid dynamics equations. This behavior has sometimes been associated with the loss of diagonal dominance of the coefficient matrix. It is shown here that these problems can in fact be related to the choice of the spatial differences, with the resulting instability related to aliasing or nonlinear interaction. Appropriate 'filtering' can reduce the intensity of these oscillations and in some cases possibly eliminate the instability. These filtering procedures are equivalent to a weighted average of conservation and non-conservation differencing. The entire spectrum of filtered equations retains a three-point character as well as second-order spatial accuracy. Burgers equation has been considered as a model. Several filters are examined in detail, and smooth solutions have been obtained for extremely large cell Reynolds numbers.
Towards exact solutions of the non-linear Heisenberg-Pauli-Weyl spinor equation
In ''color geometrodynamics'' fundamental spinor fields are assumed to obey a GL(2f,C) x GL(2c,C) gauge-invariant nonlinear spinor equation of the Heisenberg-Pauli-Weyl type. Quark confinement, assimilating a scheme of Salam and Strathdee, is (partially) mediated by the tensor ''gluons'' of strong gravity. This hypothesis is incorporated into the model by considering the nonlinear Dirac equation in a curved space-time of hadronic dimensions. Disregarding internal degrees of freedom, it is then feasible, for a particular background space-time, to obtain exact solutions of the spherical bound-state problem. Finally, these solutions are tentatively interpreted as droplet-type solitons and remarks on their interrelation with Wheeler's geon construction are made. (author)
An Efficient Implementation of Non-Linear Limit State Analysis Based on Lower-Bound Solutions
Damkilde, Lars; Schmidt, Lotte Juhl
2005-01-01
Limit State analysis has been used in design for decades e.g. the yield line theory for concrete slabs or slip line solutions in geotechnics. In engineering practice manual methods have been dominating but in recent years the interest in numerical methods has been increasing. In this respect it i...... mandatory to formulate the methods using the well-known finite element concept in order to interface with other types of analysis....
Explosive Solutions of Elliptic Equations with Absorption and Non-Linear Gradient Term
Marius Ghergu; Constantin Niculescu; Vicenţiu Rădulescu
2002-08-01
Let be a non-decreasing $C^1$-function such that $f > 0$ on $(0, ∞), f(0) = 0, \\int_1^∞ 1/\\sqrt{F(t)}dt < ∞$ and $F(t)/f^{2/a}(t)→ 0$ as $t →∞$, where $F(t) = \\int_0^t f(s)ds$ and $a \\in (0,2]$. We prove the existence of positive large solutions to the equation $ u + q(x)|\
Numerical integration of asymptotic solutions of ordinary differential equations
Thurston, Gaylen A.
1989-01-01
Classical asymptotic analysis of ordinary differential equations derives approximate solutions that are numerically stable. However, the analysis also leads to tedious expansions in powers of the relevant parameter for a particular problem. The expansions are replaced with integrals that can be evaluated by numerical integration. The resulting numerical solutions retain the linear independence that is the main advantage of asymptotic solutions. Examples, including the Falkner-Skan equation from laminar boundary layer theory, illustrate the method of asymptotic analysis with numerical integration.
Implicit time-integration method for simultaneous solution of a coupled non-linear system
Watson, Justin Kyle
Historically large physical problems have been divided into smaller problems based on the physics involved. This is no different in reactor safety analysis. The problem of analyzing a nuclear reactor for design basis accidents is performed by a handful of computer codes each solving a portion of the problem. The reactor thermal hydraulic response to an event is determined using a system code like TRAC RELAP Advanced Computational Engine (TRACE). The core power response to the same accident scenario is determined using a core physics code like Purdue Advanced Core Simulator (PARCS). Containment response to the reactor depressurization in a Loss Of Coolant Accident (LOCA) type event is calculated by a separate code. Sub-channel analysis is performed with yet another computer code. This is just a sample of the computer codes used to solve the overall problems of nuclear reactor design basis accidents. Traditionally each of these codes operates independently from each other using only the global results from one calculation as boundary conditions to another. Industry's drive to uprate power for reactors has motivated analysts to move from a conservative approach to design basis accident towards a best estimate method. To achieve a best estimate calculation efforts have been aimed at coupling the individual physics models to improve the accuracy of the analysis and reduce margins. The current coupling techniques are sequential in nature. During a calculation time-step data is passed between the two codes. The individual codes solve their portion of the calculation and converge to a solution before the calculation is allowed to proceed to the next time-step. This thesis presents a fully implicit method of simultaneous solving the neutron balance equations, heat conduction equations and the constitutive fluid dynamics equations. It discusses the problems involved in coupling different physics phenomena within multi-physics codes and presents a solution to these problems
Harko, T.; Mak, M. K.
2015-11-01
We consider quasi-stationary (travelling wave type) solutions to a general nonlinear reaction-convection-diffusion equation with arbitrary, autonomous coefficients. The second order nonlinear equation describing one dimensional travelling waves can be reduced to a first kind first order Abel equation. By using two integrability conditions for the Abel equation (the Chiellini lemma and the Lemke transformation), several classes of exact travelling wave solutions of the general reaction-convection-diffusion equation are obtained, corresponding to different functional relations imposed between the diffusion, convection and reaction functions. In particular, we obtain travelling wave solutions for two non-linear second order partial differential equations, representing generalizations of the standard diffusion equation and of the classical Fisher-Kolmogorov equation, to which they reduce for some limiting values of the model parameters. The models correspond to some specific, power law type choices of the reaction and convection functions, respectively. The travelling wave solutions of these two classes of differential equation are investigated in detail by using both numerical and semi-analytical methods.
On Approximate Asymptotic Solution of Integral Equations
Jikia, Vagner
2013-01-01
It is well known that multi-particle integral equations of collision theory, in general, are not compact. At the same time it has been shown that the motion of three and four particles is described with consistent integral equations. In particular, by using identical transformations of the kernel of the Lipman-Schwinger equation for certain classes of potentials Faddeev obtained Fredholm type integral equations for three-particle problems $[1]$. The motion of for bodies is described by equations of Yakubovsky and Alt-Grassberger-Sandhas-Khelashvili $[2.3]$, which are obtained as a result of two subsequent transpormations of the kernel of Lipman-Schwinger equation. in the case of $N>4$ the compactness of multi-particle equations has not been proven yet. In turn out that for sufficiently high energies the $N$-particle $\\left( {N \\ge 3} \\right)$ dynamic equations have correct asymptotic solutions satisfying unitary condition $[4]$. In present paper by using the Heitler formalism we obtain the results briefly sum...
Asymptotic Solutions of Serial Radial Fuel Shuffling
Xue-Nong Chen
2015-12-01
Full Text Available In this paper, the mechanism of traveling wave reactors (TWRs is investigated from the mathematical physics point of view, in which a stationary fission wave is formed by radial fuel drifting. A two dimensional cylindrically symmetric core is considered and the fuel is assumed to drift radially according to a continuous fuel shuffling scheme. A one-group diffusion equation with burn-up dependent macroscopic coefficients is set up. The burn-up dependent macroscopic coefficients were assumed to be known as functions of neutron fluence. By introducing the effective multiplication factor keff, a nonlinear eigenvalue problem is formulated. The 1-D stationary cylindrical coordinate problem can be solved successively by analytical and numerical integrations for associated eigenvalues keff. Two representative 1-D examples are shown for inward and outward fuel drifting motions, respectively. The inward fuel drifting has a higher keff than the outward one. The 2-D eigenvalue problem has to be solved by a more complicated method, namely a pseudo time stepping iteration scheme. Its 2-D asymptotic solutions are obtained together with certain eigenvalues keff for several fuel inward drifting speeds. Distributions of the neutron flux, the neutron fluence, the infinity multiplication factor kinf and the normalized power are presented for two different drifting speeds.
A Lagrangian method is introduced for the integration of non-linear Fokker-Planck equations. Examples of exact solutions obtained in this way are given, and also the explicit scheme used for the computation of numerical solutions. The method is, in addition, shown to be of a Lie-admissible type
An asymptotic solution of large-N QCD
Bochicchio Marco
2014-01-01
Full Text Available We find an asymptotic solution for two-, three- and multi-point correlators of local gauge-invariant operators, in a lower-spin sector of massless large-N QCD, in terms of glueball and meson propagators, in such a way that the solution is asymptotic in the ultraviolet to renormalization-group improved perturbation theory, by means of a new purely field-theoretical technique that we call the asymptotically-free bootstrap, based on a recently-proved asymptotic structure theorem for two-point correlators. The asymptotically-free bootstrap provides as well asymptotic S-matrix amplitudes in terms of glueball and meson propagators. Remarkably, the asymptotic S-matrix depends only on the unknown particle spectrum, but not on the anomalous dimensions, as a consequence of the LS Z reduction formulae. Very many physics consequences follow, both practically and theoretically. In fact, the asymptotic solution sets the strongest constraints on any actual solution of large-N QCD, and in particular on any string solution.
The method of spherical harmonics as an ansatz for the solution of non-linear Boltzmann equations
A new coordinate-free representation of the differential scattering probability function of the binary self-collision leads to a scattering kernel which is particularly appropriate for the expansion in Legendre polynomials. Thus, the non-linear transport equation can be treated using the spherical harmonics method. Assuming the scattering in the centre-of-mass system to be isotropic, the non-linear moment equations of the particle distribution function are derived. (orig.)
Asymptotic solutions of magnetohydrodynamics equations near the derivatives discontinuity lines
Asymptotic solutions of one-dimensional and scalar magnetohydrodynamics equations near the derivatives discontinuity lines have been discussed. The equations of magnetohydrodynamics for the cases of finite and infinite conductivities are formulated and the problem of eigenvalues and eigenvectors is solved. The so called transport equations which describe the behaviour of derivatives in solutions of the quasilinear equations have been used to find the asymptotic solutions of the magnetohydrodynamics equations. (S.B.)
ASYMPTOTIC SOLUTION TO NONLINEAR ECOLOGICAL REACTION DIFFUSION SYSTEM
无
2010-01-01
Nonlinear ecological species group singularly perturbed initial boundary value problems for reaction diffusion systems are considered. Under suitable conditions, using the theory of differential inequalities, the existence and asymptotic behavior of solution to initial boundary value problems are studied.
Non-linear constitutive equations for gravitoelectromagnetism
Duplij, Steven; Di Grezia, Elisabetta; Esposito, Giampiero; Kotvytskiy, Albert
2013-01-01
This paper studies non-linear constitutive equations for gravitoelectromagnetism. Eventually, the problem is solved of finding, for a given particular solution of the gravity-Maxwell equations, the exact form of the corresponding non-linear constitutive equations.
Chi-Chang Wang
2013-09-01
Full Text Available This paper seeks to use the proposed residual correction method in coordination with the monotone iterative technique to obtain upper and lower approximate solutions of singularly perturbed non-linear boundary value problems. First, the monotonicity of a non-linear differential equation is reinforced using the monotone iterative technique, then the cubic-spline method is applied to discretize and convert the differential equation into the mathematical programming problems of an inequation, and finally based on the residual correction concept, complex constraint solution problems are transformed into simpler questions of equational iteration. As verified by the four examples given in this paper, the method proposed hereof can be utilized to fast obtain the upper and lower solutions of questions of this kind, and to easily identify the error range between mean approximate solutions and exact solutions.
Asymptotic traveling wave solution for a credit rating migration problem
Liang, Jin; Wu, Yuan; Hu, Bei
2016-07-01
In this paper, an asymptotic traveling wave solution of a free boundary model for pricing a corporate bond with credit rating migration risk is studied. This is the first study to associate the asymptotic traveling wave solution to the credit rating migration problem. The pricing problem with credit rating migration risk is modeled by a free boundary problem. The existence, uniqueness and regularity of the solution are obtained. Under some condition, we proved that the solution of our credit rating problem is convergent to a traveling wave solution, which has an explicit form. Furthermore, numerical examples are presented.
AN ASYMPTOTIC SOLUTION OF THE NONLINEAR REDUCED WAVE EQUATION
无
2001-01-01
This paper uses the boundary layer theory to obtain an asymptotic solution of the nonlinear educed wave equation. This solution is valid in the secular region where the geometrical optics result fails. However it agrees with the geometrical optics result when the field is away from the secular region. By using this solution the self-focusing length can also be obtained.
Du, Yigang
The theory for modeling non-linear acoustic propagation is addressed in the dissertation. The solutions to both the linear and non-linear wave equations have been found by an angular spectrum approach (ASA), in which an analytical expression can be derived. This makes the calculation complete...... without iteration steps. The ASA is implemented in combination with Field II and extended to simulate the pulsed ultrasound fields. The simulated results from a linear array transducer are made by the ASA based on Field II, and by a released non-linear simulation program- Abersim, respectively. The...... calculation speed of the ASA is increased approximately by a factor of 140. For the second harmonic point spread function the error of the full width is 1.5% at -6 dB and 6.4% at -12 dB compared to Abersim. To further investigate the linear and non-linear ultrasound fields, hydrophone measurements are...
On the Number of Solutions to Asymptotic Plateau Problem
Coskunuzer, Baris
2005-01-01
We give a simple topological argument to show that the number of solutions of the asymptotic Plateau problem in hyperbolic space is generically unique. In particular, we show that the space of codimension-1 closed submanifolds of sphere at infinity, which bounds a unique absolutely area minimizing hypersurface in hyperbolic n-space, is dense in the space of all codimension-1 closed submanifolds at infinity. In dimension 3, we also prove that the set of uniqueness curves in asymptotic sphere f...
This paper describes a Non-Linear Discontinuous Petrov-Galerkin method and its application to the one-speed Boltzmann Transport Equation (BTE) for space-time problems. The purpose of the method is to remove unwanted oscillations in the transport solution which occur in the vicinity of sharp flux gradients, while improving computational efficiency and numerical accuracy. This is achieved by applying artificial dissipation in the solution gradient direction, internal to an element using a novel finite element (FE) Riemann approach. The added dissipation is calculated at each node of the finite element mesh based on local behaviour of the transport solution on both the spatial and temporal axes of the problem. Thus a different dissipation is used in different elements. The magnitude of dissipation that is used is obtained from a gradient-informed scaling of the advection velocities in the stabilisation term. This makes the method in its most general form non-linear. The method is implemented within a very general finite element Riemann framework. This makes it completely independent of choice of angular basis function allowing one to use different descriptions of the angular variation. Results show the non-linear scheme performs consistently well in demanding time-dependent multi-dimensional neutron transport problems. (authors)
Simulation of non-linear ultrasound fields
Jensen, Jørgen Arendt; Fox, Paul D.; Wilhjelm, Jens E.;
2002-01-01
An approach for simulating non-linear ultrasound imaging using Field II has been implemented using the operator splitting approach, where diffraction, attenuation, and non-linear propagation can be handled individually. The method uses the Earnshaw/Poisson solution to Burgcrs' equation for the non-linear...... non-linear ultrasound imaging in 3D using filters or pulse inversion for any kind of transducer, focusing, apodization, pulse emission and scattering phantom. This is done by first simulating the non-linear emitted field and assuming that the scattered field is weak and linear. The received signal is...
Asymptotic behaviour of solutions of fourth order Dirichlet problems
Dall'Aglio, Paolo
2000-01-01
The asymptotic behaviour of solutions to fourth order Dirichlet elliptic problems, on varying domains, is studied through the decomposition into a system of second order ones, which leads to relaxed formulations with the introduction of measure terms. This allows to salve a shape optimization problem for a simply supported thin plate.
Asymptotic behaviour of solutions to cable stayed bridge equations
Malík, Josef
2006-01-01
Roč. 317, - (2006), s. 146-162. ISSN 0022-247X R&D Projects: GA AV ČR(CZ) 1ET400300415 Institutional research plan: CEZ:AV0Z30860518 Keywords : cable stayed bridge * vertical and torsional oscillations * asymptotic behaviour of solutions Subject RIV: BA - General Mathematics Impact factor: 0.758, year: 2006
The Asymptotic Behavior for Numerical Solution of a Volterra Equation
Da Xu
2003-01-01
Long-time asymptotic stability and convergence properties for the numerical solution of a Volterra equation of parabolic type are studied. The methods are based on the first-second order backward difference methods. The memory term is approximated by the convolution quadrature and the interpolant quadrature. Discretization of the spatial partial differential operators by the finite element method is also considered.
Processing Approach of Non-linear Adjustment Models in the Space of Non-linear Models
LI Chaokui; ZHU Qing; SONG Chengfang
2003-01-01
This paper investigates the mathematic features of non-linear models and discusses the processing way of non-linear factors which contributes to the non-linearity of a nonlinear model. On the basis of the error definition, this paper puts forward a new adjustment criterion, SGPE.Last, this paper investigates the solution of a non-linear regression model in the non-linear model space and makes the comparison between the estimated values in non-linear model space and those in linear model space.
The galactic fluid, in the early epochs of the Universe is treated, as a non-linear Stokesian fluid. Some general comments on fluids with viscosity are made. Then, an exact solution is examined and a qualitative analysis is given for Bianchi type-I cosmological model generated by a fluid with quadratic viscosity dependence on the deformation tensor. (Author)
Solution branches for nonlinear problems with an asymptotic oscillation property
Lin Gong
2015-10-01
Full Text Available In this article we employ an oscillatory condition on the nonlinear term, to prove the existence of a connected component of solutions of a nonlinear problem, which bifurcates from infinity and asymptotically oscillates over an interval of parameter values. An interesting and immediate consequence of such oscillation property of the connected component is the existence of infinitely many solutions to the nonlinear problem for all parameter values in that interval.
Efficient Non Linear Loudspeakers
Petersen, Bo R.; Agerkvist, Finn T.
2006-01-01
Loudspeakers have traditionally been designed to be as linear as possible. However, as techniques for compensating non linearities are emerging, it becomes possible to use other design criteria. This paper present and examines a new idea for improving the efficiency of loudspeakers at high levels...... by changing the voice coil layout. This deliberate non-linear design has the benefit that a smaller amplifier can be used, which has the benefit of reducing system cost as well as reducing power consumption....
Banerjee, Ayan; Jotania, Kanti; Sharma, Ranjan; Rahaman, Mosiur
2014-01-01
Gravitational analyzes in lower dimensions has become a field of active research interest ever since Banados, Teitelboim and Zanelli (BTZ) (Phys. Rev. Lett. 69, 1849, 1992) proved the existence of a black hole solution in (2 + 1) dimensions. The BTZ metric has inspired many investigators to develop and analyze circularly symmetric stellar models which can be matched to the exterior BTZ metric. We have obtained two new classes of solutions for a (2 + 1)-dimensional anisotropic star in anti-de Sitter background space-time which have been obtained by assuming that the equation of state (EOS) describing the material composition of the star could either be linear or non-linear in nature. By matching the interior solution to the BTZ exterior metric with zero spin, we have demonstrated that the solutions provided here are regular and well-behaved at the stellar interior.
Starting from the Lagrangian of a charged particle in an electromagnetic field, the Hamiltonian for non-linear coupled synchro-betatron oscillations of ultra-relativistic charged particles (protons) is derived. The canonical variables are x, psub(x), z, psub(z), sigma, eta which are well-known from the six dimensional linear theory (SLIM). Keeping only terms up to second order in the canonical momenta psub(x), psub(z), the equations of motion are then solved for various kinds of magnets (quadrupole, skew quadrupole, bending magnet, synchrotron-magnet, solenoid, sextupole, octupole, dipole kicker) and for cavities, taking into account the effect of energy deviation on the focusing strength. The equations so derived can serve to develop a non-linear, six dimensional (symplectic) tracking program for ultra-relativistic protons. (orig.)
Non-linear models: applications in economics
Albu, Lucian-Liviu
2006-01-01
The study concentrated on demonstrating how non-linear modelling can be useful to investigate the behavioural of dynamic economic systems. Using some adequate non-linear models could be a good way to find more refined solutions to actually unsolved problems or ambiguities in economics. Beginning with a short presentation of the simplest non-linear models, then we are demonstrating how the dynamics of complex systems, as the economic system is, could be explained on the base of some more advan...
Asymptotic Reissner-Nordstr\\"om solution within nonlinear electrodynamics
Kruglov, S I
2016-01-01
A model of nonlinear electrodynamics coupled with the gravitational field is studied. We obtain the asymptotic black hole solutions at $r\\rightarrow 0$ and $r\\rightarrow \\infty$. The asymptotic at $r\\rightarrow 0$ is shown, and we find corrections to the Reissner-Nordstr\\"om solution and Coulomb's law at $r\\rightarrow\\infty$. The mass of the black hole is evaluated having the electromagnetic origin. We investigate the thermodynamics of charged black holes and their thermal stability. The critical point corresponding to the second-order phase transition (where heat capacity diverges) is found. If the mass of the black hole is greater than the critical mass, the black hole becomes unstable.
Asymptotic Reissner-Nordström solution within nonlinear electrodynamics
Kruglov, S. I.
2016-08-01
A model of nonlinear electrodynamics coupled with the gravitational field is studied. We obtain the asymptotic black hole solutions at r →0 and r →∞ . The asymptotic at r →0 is shown, and we find corrections to the Reissner-Nordström solution and Coulomb's law at r →∞ . The mass of the black hole is evaluated having the electromagnetic origin. We investigate the thermodynamics of charged black holes and their thermal stability. The critical point corresponding to the second-order phase transition (where heat capacity diverges) is found. If the mass of the black hole is greater than the critical mass, the black hole becomes unstable.
An Asymptotic Solution for the Navier-Stokes Equation
Casuso Romate E.; Beckman J. E.
2009-01-01
We have used as the velocity field of a fluid the functional form derived in Casuso (2007), obtained by studying the origin of turbulence as a consequence of a new de- scription of the density distribution of matter as a modified discontinuous Dirichlet in- tegral. As an interesting result we have found that this functional form for velocities is a solution to the Navier-Stokes equation when considering asymptotic behaviour, i.e. for large values of time.
Asymptotics of Time Harmonic Solutions to a Thin Ferroelectric Model
Naïma Aïssa
2007-01-01
Full Text Available We introduce new model equations to describe the dynamics of the electric polarization in a ferroelectric material. We consider a thin cylinder representing the material with thickness ɛ and discuss the asymptotic behavior of the time harmonic solutions to the model when ɛ tends to 0. We obtain a reduced model settled in the cross-section of the cylinder describing the dynamics of the plane components of the polarization and electric fields.
Solute transport through porous media using asymptotic dispersivity
P K Sharma; Teodrose Atnafu Abgaze
2015-08-01
In this paper, multiprocess non-equilibrium transport equation has been used, which accounts for both physical and chemical non-equilibrium for reactive transport through porous media. An asymptotic distance dependent dispersivity is used to embrace the concept of scale-dependent dispersion for solute transport in heterogeneous porous media. Semi-analytical solution has been derived of the governing equations with an asymptotic distance dependent dispersivity by using Laplace transform technique and the power series method. For application of analytical model, we simulated observed experimental breakthrough curves from 1500 cm long soil column experiments conducted in the laboratory. The simulation results of break-through curves were found to deviate from the observed breakthrough curves for both mobile–immobile and multiprocess non-equilibrium transport with constant dispersion models. However, multiprocess non-equilibrium with an asymptotic dispersion model gives better fit of experimental breakthrough curves through long soil column and hence it is more useful for describing anomalous solute transport through hetero-geneous porous media. The present model is simpler than the stochastic numerical method.
S.A. Zahedi; M. Fazeli; Tolou, N.
2008-01-01
This study deals with analytical solution of time-dependent partial differential equations. The analyses are carried out by the means of Homotopy Analysis Method (HAM), Homotopy Perturbation Method (HPM) and Variational Iteration Method (VIM). The results have been compared and depicted graphically. It is shown that the presented approaches are very effective, straightforward and capable to the analytical solutions of the large classes of linear or nonlinear time-dependent partial diffe...
Webb, Garry; Sørensen, Mads Peter; Brio, Moysey;
2004-01-01
electromagnetic momentum and energy conservation laws, corresponding to the space and time translation invariance symmetries. The symmetries are used to obtain classical similarity solutions of the equations. The traveling wave similarity solutions for the case of a cubic Kerr nonlinearity, are shown to reduce to...... properties of Maxwell's equations in nonlinear optics, without resorting to the commonly used nonlinear Schr\\"odinger (NLS) equation approximation in which a high frequency carrier wave is modulated on long length and time scales due to nonlinear sideband wave interactions. This is important in femto......-second pulse propagation in which the NLS approximation is expected to break down. The canonical Hamiltonian description of the equations involves the solution of a polynomial equation for the electric field $E$, in terms of the the canonical variables, with possible multiple real roots for $E$. In order to...
Asymptotic shape of solutions to the perturbed simple pendulum problems
Tetsutaro Shibata
2007-05-01
Full Text Available We consider the positive solution of the perturbed simple pendulum problem $$ u''(r + frac{N-1}{r}u'(r - g(u(t + lambda sin u(r = 0, $$ with $0 < r < R$, $ u'(0 = u(R = 0$. To understand well the shape of the solution $u_lambda$ when $lambda gg 1$, we establish the leading and second terms of $Vert u_lambdaVert_q$ ($1 le q < infty$ with the estimate of third term as $lambda o infty$. We also obtain the asymptotic formula for $u_lambda'(R$ as $lambda o infty$.
Efficient Non Linear Loudspeakers
Petersen, Bo R.; Agerkvist, Finn T.
2006-01-01
Loudspeakers have traditionally been designed to be as linear as possible. However, as techniques for compensating non linearities are emerging, it becomes possible to use other design criteria. This paper present and examines a new idea for improving the efficiency of loudspeakers at high levels...
Scattering theory in the energy space for a class of non-linear wave equations
We study the asymptotic behaviour in time of the solutions and the theory of scattering in the energy space for the non-linear wave equation □φ+f(φ)=0 in Rn, n≥3. We prove the existence of the wave operators, asymptotic completeness for small initial data and, for n≥4, asymptotic completeness for arbitrarily large data. The assumptions on f cover the case where f behaves slightly better than a single power p=1+4/(n-2), both near zero and at infinity. (orig.)
Stokes Waves Revisited: Exact Solutions in the Asymptotic Limit
Davies, Megan
2016-01-01
Stokes perturbative solution of the nonlinear (boundary value dependent) surface gravity wave problem is known to provide results of reasonable accuracy to engineers in estimating the phase speed and amplitudes of such nonlinear waves. The weakling in this structure though is the presence of aperiodic secular variation in the solution that does not agree with the known periodic propagation of surface waves. This has historically necessitated increasingly higher ordered (perturbative) approximations in the representation of the velocity profile. The present article ameliorates this long standing theoretical insufficiency by invoking a compact exact $n$-ordered solution in the asymptotic infinite depth limit, primarily based on a representation structured around the third ordered perturbative solution, that leads to a seamless extension to higher order (e.g. fifth order) forms existing in the literature. The result from this study is expected to improve phenomenological engineering estimates, now that any desir...
Eusebio Eduardo Hernández Martinez
2013-01-01
Full Text Available In robotics, solving the direct kinematics problem (DKP for parallel robots is very often more difficult and time consuming than for their serial counterparts. The problem is stated as follows: given the joint variables, the Cartesian variables should be computed, namely the pose of the mobile platform. Most of the time, the DKP requires solving a non‐linear system of equations. In addition, given that the system could be non‐convex, Newton or Quasi‐Newton (Dogleg based solvers get trapped on local minima. The capacity of such kinds of solvers to find an adequate solution strongly depends on the starting point. A well‐known problem is the selection of such a starting point, which requires a priori information about the neighbouring region of the solution. In order to circumvent this issue, this article proposes an efficient method to select and to generate the starting point based on probabilistic learning. Experiments and discussion are presented to show the method performance. The method successfully avoids getting trapped on local minima without the need for human intervention, which increases its robustness when compared with a single Dogleg approach. This proposal can be extended to other structures, to any non‐linear system of equations, and of course, to non‐linear optimization problems.
Solution of the Gross-Pitaevskii equation in terms of the associated non-linear Hartree potential
Rawitscher, George
2013-01-01
The Gross-Pitaevskii equation (GP), that describes the wave function of a number of coherent Bose particles contained in a trap, contains the cube of the normalized wave function, times a factor proportional to the number of coherent atoms. The square of the wave function, times the above mentioned factor, is defined as the Hartree potential. A method implemented here for the numerical solution of the GP equation consists in obtaining the Hartree potential iteratively, starting with the Thomas Fermi approximation to this potential. The energy eigenvalues and the corresponding wave functions for each successive potential are obtained by a method described previously. After approximately 35 iterations a stability of eight significant figures for the energy eigenvalues is obtained.This method has the advantage of being physically intuitive, and could be extended to the calculation of a shell-model potential in nuclear physics, once the Pauli exclusion principle is allowed for.
Global, uniform, asymptotic wave-equation solutions for large wavenumbers
Klauder, John R.
1987-11-01
For each of a large class of linear wave equations-relevant, for example, to very general acoustical or optical propagation problems-we develop within a single expression a global, uniform, asymptotic solution for large wavenumbers (small wavelengths) based on coherentstate transformation techniques. Such techniques effectively separate the configuration-space field into its orientational components, and are thus analogous to a phase-space description of rays by their position and direction. The resultant coherent-state approximation offers distinct advantages over more traditional asymptotic approximations based on direct or Fourier transform techniques. In particular, coherent-state methods lead to an everywhere well-defined approximation independent of the complexity of the caustic structure, independent of whether there are a few or a vast number of relevant rays, or even in shadow regions where no conventional rays exist. For propagation in random media it is shown that coherent-state techniques also offer certain advantages. Approximations are developed for wave equations in an arbitrary number of space dimensions for single component fields as well as multicomponent fields that, for example, can account for backscattering. It is noteworthy that the coherentstate asymptotic approximation should lend itself to numerical studies as well.
Valat, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1960-12-15
Universal stability diagrams have been calculated and experimentally checked for Hill-Meissner type equations with square-wave coefficients. The study of these equations in the phase-plane has then made it possible to extend the periodic solution calculations to the case of non-linear differential equations with periodic square-wave coefficients. This theory has been checked experimentally. For non-linear coupled systems with constant coefficients, a search was first made for solutions giving an algebraic motion. The elliptical and Fuchs's functions solve such motions. The study of non-algebraic motions is more delicate, apart from the study of nonlinear Lissajous's motions. A functional analysis shows that it is possible however in certain cases to decouple the system and to find general solutions. For non-linear coupled systems with periodic square-wave coefficients it is then possible to calculate the conditions leading to periodic solutions, if the two non-linear associated systems with constant coefficients fall into one of the categories of the above paragraph. (author) [French] Pour les equations du genre de Hill-Meissner a coefficients creneles, on a calcule des diagrammes universels de stabilite et ceux-ci ont ete verifies experimentalement. L'etude de ces equations dans le plan de phase a permis ensuite d'etendre le calcul des solutions periodiques au cas des equations differentielles non lineaires a coefficients periodiques creneles. Cette theorie a ete verifiee experimentalement. Pour Jes systemes couples non lineaires a coefficients constants, on a d'abord cherche les solutions menant a des mouvements algebriques. Les fonctions elliptiques et fuchsiennes uniformisent de tels mouvements. L'etude de mouvements non algebriques est plus delicate, a part l'etude des mouvements de Lissajous non lineaires. Une analyse fonctionnelle montre qu'il est toutefois possible dans certains cas de decoupler le systeme et de
Error Bounds for Asymptotic Solutions of Second-Order Linear Difference Equations II: The First Case
Zhang JM; Cao LH
2010-01-01
We discuss in detail the error bounds for asymptotic solutions of second-order linear difference equation where and are integers, and have asymptotic expansions of the form , , for large values of , , and .
Asymptotic solution for EI Nino-southern oscillation of nonlinear model
MO Jia-qi; LIN Wan-tao
2008-01-01
A class of nonlinear coupled system for E1 Nino-Southern Oscillation (ENSO) model is considered. Using the asymptotic theory and method of variational iteration, the asymptotic expansion of the solution for ENSO models is obtained.
Non-linear transformations of the Schwartz distributions
The problem of non-linear transformations of the variables of the Schwartz distributions with point support is treated by means of the generalized asymptotic functions. To this aim, a variant of the latter functions for the case of many variables is presented and the existence of asymptotic analogues of the point distributions, consistent with the linear operations, is shown. In this scheme some results concerning the non-linear transformations of the point distributions are obtained. (author). 11 refs
Asymptotic solution for heat convection-radiation equation
Mabood, Fazle; Ismail, Ahmad Izani Md [School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Khan, Waqar A. [Department of Engineering Sciences, National University of Sciences and Technology, PN Engineering College, Karachi, 75350 (Pakistan)
2014-07-10
In this paper, we employ a new approximate analytical method called the optimal homotopy asymptotic method (OHAM) to solve steady state heat transfer problem in slabs. The heat transfer problem is modeled using nonlinear two-point boundary value problem. Using OHAM, we obtained the approximate analytical solution for dimensionless temperature with different values of a parameter ε. Further, the OHAM results for dimensionless temperature have been presented graphically and in tabular form. Comparison has been provided with existing results from the use of homotopy perturbation method, perturbation method and numerical method. For numerical results, we used Runge-Kutta Fehlberg fourth-fifth order method. It was found that OHAM produces better approximate analytical solutions than those which are obtained by homotopy perturbation and perturbation methods, in the sense of closer agreement with results obtained from the use of Runge-Kutta Fehlberg fourth-fifth order method.
Solution of internal erosion equations by asymptotic expansion
Dubujet P.
2012-07-01
Full Text Available One dimensional coupled soil internal erosion and consolidation equations are considered in this work for the special case of well determined sand and clay mixtures with a small proportion of clay phase. An enhanced modelling of the effect of erosion on elastic soil behavior was introduced through damage mechanics concepts. A modified erosion law was proposed. The erosion phenomenon taking place inside the soil was shown to act like a perturbation affecting the classical soil consolidation equation. This interpretation has enabled considering an asymptotic expansion of the coupled erosion consolidation equations in terms of a perturbation parameter linked to the maximum expected internal erosion. A robust analytical solution was obtained via direct integration of equations at order zero and an adequate finite difference scheme that was applied at order one.
Ground state solutions for asymptotically periodic Schrodinger equations with critical growth
Hui Zhang
2013-10-01
Full Text Available Using the Nehari manifold and the concentration compactness principle, we study the existence of ground state solutions for asymptotically periodic Schrodinger equations with critical growth.
The experiments described in this paper show that there are two types of non-linear three-wave processes: A. Disintegration of an electron plasma wave. In a plasma column of a density of 108 to 109 electrons/cm3, an electron temperature of the order of several eV, a length of 60 cm, a radius of 1 cm, which is confined by a magnetic field of 2500 G, a monochromatic electron plasma wave of frequency f1 is excited. A noise spectrum in a frequency band always below f1 due to the disintegration of this wave is observed. The resonance relations are verified. The threshold level and the energy transfer lengths are measured. The results of measurement show that the mechanism of disintegration should be interpreted without making use of the random-phase hypothesis. The shape of the spectrum is explained by varying the interaction coefficient as a function of the different phase velocities. In the same way, the parameter amplification of a wave pre-excited at one of the disintegration spectrum frequencies is studied. B. Non-linear generation of an electromagnetic wave. In a plasma with an electron density between 109 and 1011 electrons/cm3, which is confined by a magnetic field of the order of 4000 G and generated by a stationary high-frequency discharge, the interaction of two microwave beams propagated perpendicularly to the confining magnetic field and polarized both according to ordinary and extraordinary modes is brought about. The intersection of these beams defines the volume of interaction in which the third wave is generated. Two processes were studied, depending on the polarization of the two primary waves: (OX.O') and (OO', X). The measurements show that the conditions of resonance imposed on the frequencies and propagation vectors are satisfied. The power released is compared with the theoretical value. The polarization of the generated wave is in accordance with that expected from the structure of the interaction matrix. (author)
Exact solutions of dilaton gravity with (anti)-de Sitter asymptotics
Mignemi, S.
2009-01-01
We present a technique for obtaining spherically symmetric, asymptotically (anti)-de Sitter, black hole solutions of dilaton gravity with generic coupling to a Maxwell field, starting from exact asymptotically flat solutions and adding a suitable dilaton potential to the action.
Park Jong Yeoul
2007-01-01
Full Text Available We study the existence of global weak solutions for a hyperbolic differential inclusion with a source term, and then investigate the asymptotic stability of the solutions by using Nakao lemma.
Asymptotic Solution of the Theory of Shells Boundary Value Problem
I. V. Andrianov
2007-01-01
Full Text Available This paper provides a state-of-the-art review of asymptotic methods in the theory of plates and shells. Asymptotic methods of solving problems related to theory of plates and shells have been developed by many authors. The main features of our paper are: (i it is devoted to the fundamental principles of asymptotic approaches, and (ii it deals with both traditional approaches, and less widely used, new approaches. The authors have paid special attention to examples and discussion of results rather than to burying the ideas in formalism, notation, and technical details.
THE ASYMPTOTIC BEHAVIOR OF GLOBAL SMOOTH SOLUTIONS TO THE MACROSCOPIC MODELS FOR SEMICONDUCTORS
无
2001-01-01
The authors study the asymptotic behavior of the smooth solutions to the Cauchy problems for two macroscopic models (hydrodynamic and drift-diffusion models) for semiconductors and the related relaxation limit problem. First, it is proved that the solutions to these two systems converge to the unique stationary solution time asymptotically without the smallness assumption on doping profile. Then, very sharp estimates on the smooth solutions, independent of the relaxation time, are obtained and used to establish the zero relaxation limit.
Asymptotic Behavior of Periodic Wave Solution to the Hirota-Satsuma Equation
WU Yong-Qi
2011-01-01
The one- and two-periodic wave solutions (or the Hirota-Satsuma (HS) equation are presented by using the Hirota derivative and Riemann theta function. The rigorous proofs on asymptotic behaviors of these two solutions are given such that soliton solution can be obtained from the periodic wave solution in an appropriate limiting procedure.%@@ The one- and two-periodic wave solutions for the Hirota-Satsuma (HS) equation are presented by using the Hirota derivative and Riemann theta function.The rigorous proofs on asymptotic behaviors of these two solutions are g/ven such that soliton solution can be obtained from the periodic wave solution in an appropriate limiting procedure.
ASYMPTOTIC SOLUTION OF ACTIVATOR INHIBITOR SYSTEMS FOR NONLINEAR REACTION DIFFUSION EQUATIONS
Jiaqi MO; Wantao LIN
2008-01-01
A nonlinear reaction diffusion equations for activator inhibitor systems is considered. Under suitable conditions, firstly, the outer solution of the original problem is obtained, secondly, using the variables of multiple scales and the expanding theory of power series the formal asymptotic expansions of the solution are constructed, and finally, using the theory of differential inequalities the uniform validity and asymptotic behavior of the solution are studied.
Zhanhua Yu
2011-01-01
Full Text Available We study the almost surely asymptotic stability of exact solutions to neutral stochastic pantograph equations (NSPEs, and sufficient conditions are obtained. Based on these sufficient conditions, we show that the backward Euler method (BEM with variable stepsize can preserve the almost surely asymptotic stability. Numerical examples are demonstrated for illustration.
Asymptotic behaviour of the solutions of Schroedinger equation with impulse effect in a Banach space
The present paper studies the asymptotic behaviour of the solutions of linear homogeneous differential Schroedinger equation with impulse effect in a Banach space and finds a dependence between their asymptotic behaviour and the spectrum of the linear Hamiltonian operator. 6 refs
Quantum uncertainty and non-linear dissipative dynamics
We propose a non-linear generalization of the Schroedinger equation. From this view point all the stationary states of the Schroedinger equation appear as a kind of limit cycles, all semi stable, except the ground state which is stable. This model is applied to spin relaxation and to the damped harmonic oscillator. The first example gives a microscopic model of phenomenological theories of Bloch and Redfield, in particular the permanent states appear as asymptotic states. In the second example one shows that the solution corresponding to a coherent initial state is itself, at each time, a coherent state, and that it evolves like in the corresponding classical problem. This generalization of the Schroedinger equation is used to construct a dynamics of the quantum measurement process. In this model no statistical mixtures, nor quantum jumps appear, all the ''quantum indeterminism'' beeing related to the beginning of the measurement, at the time of the encounter of the system and the measurement apparatus
Asymptotically free scaling solutions in non-Abelian Higgs models
Gies, Holger; Zambelli, Luca
2015-07-01
We construct asymptotically free renormalization group trajectories for the generic non-Abelian Higgs model in four-dimensional spacetime. These ultraviolet-complete trajectories become visible by generalizing the renormalization/boundary conditions in the definition of the correlation functions of the theory. Though they are accessible in a controlled weak-coupling analysis, these trajectories originate from threshold phenomena which are missed in a conventional perturbative analysis relying on the deep Euclidean region. We identify a candidate three-parameter family of renormalization group trajectories interconnecting the asymptotically free ultraviolet regime with a Higgs phase in the low-energy limit. We provide estimates of their low-energy properties in the light of a possible application to the standard model Higgs sector. Finally, we find a two-parameter subclass of asymptotically free Coleman-Weinberg-type trajectories that do not suffer from a naturalness problem.
ASYMPTOTIC BEHAVIOR OF SOLUTION FOR A CLASS OF REACTION DIFFUSION EQUATIONS
MoJiaqi; LinWantao; ZhuJiang
2004-01-01
A class of initial boundary value problems for the reaction diffusion equations are considered. The asymptotic behavior of solution for the problem is obtained using the theory of differential inequality.
An asymptotic formula for decreasing solutions to coupled nonlinear differential systems
Matucci, S.; Řehák, Pavel
2012-01-01
Roč. 22, č. 2 (2012), s. 67-75. ISSN 1064-9735 Institutional research plan: CEZ:AV0Z10190503 Keywords : system of quasilinear equation s * strongly decreasing solutions * asymptotic equivalence Subject RIV: BA - General Mathematics
Sharp asymptotic estimates for vorticity solutions of the 2D Navier-Stokes equation
Yuncheng You
2008-12-01
Full Text Available The asymptotic dynamics of high-order temporal-spatial derivatives of the two-dimensional vorticity and velocity of an incompressible, viscous fluid flow in $mathbb{R}^2$ are studied, which is equivalent to the 2D Navier-Stokes equation. It is known that for any integrable initial vorticity, the 2D vorticity solution converges to the Oseen vortex. In this paper, sharp exterior decay estimates of the temporal-spatial derivatives of the vorticity solution are established. These estimates are then used and combined with similarity and $L^p$ compactness to show the asymptotical attraction rates of temporal-spatial derivatives of generic 2D vorticity and velocity solutions by the Oseen vortices and velocity solutions respectively. The asymptotic estimates and the asymptotic attraction rates of all the derivatives obtained in this paper are independent of low or high Reynolds numbers.
Guiling Chen
2011-01-01
We study a class of linear non-autonomous neutral delay differential equations, and establish a criterion for the asymptotic behavior of their solutions, by using the corresponding characteristic equation.
Asymptotic analysis of fundamental solutions of Dirac operators on even dimensional Euclidean spaces
We analyze the short distance asymptotic behavior of some quantities formed out of fundamental solutions of Dirac operators on even dimensional Euclidean spaces with finite dimensional matrix-valued potentials. (orig.)
Náprstek, Jiří; Fischer, Cyril; Král, Radomil; Pospíšil, Stanislav
Atheny: National Technical University of Athens, 2015 - (Papadrakakis, M.; Papadopoulos, V.; Plevris, V.), 1971-1982 ISBN 978-960-99994-7-2. [COMPDYN 2015. 5th international conference on computational methods in structural dynamics and earthquake engineering /5./. Hersonissos (GR), 25.05.2015-27.05.2015] R&D Projects: GA ČR(CZ) GA15-01035S; GA ČR(CZ) GP14-34467P Institutional support: RVO:68378297 Keywords : stochastic resonance * interwell hopping * non-linear vibration * aeroelastic divergence * Fokker-Planck equation Subject RIV: JM - Building Engineering
S-asymptotically -periodic Solutions of R-L Fractional Derivative-Integral Equation
WANG Bing
2015-01-01
The aim of this paper is to study the S-asymptotically ω-periodic solutions of R-L fractional derivative-integral equation:is a linear densely defined operator of sectorial type on a completed Banach space X, f is a continuous function satisfying a suitable Lipschitz type condition. We will use the contraction mapping theory to prove problem (1) and (2) has a unique S-asymptotically ω-periodic solution if the function f satisfies Lipshcitz condition.
Asymptotic Stability and Balanced Growth Solution of the Singular Dynamic Input-Output System＊
ChonghuiGuo; HuanwenTang
2004-01-01
The dynamic input-output system is well known in economic theory and practice. In this paper the asymptotic stability and balanced growth solution of the dynamic input-output system are considered. Under three natural assumptions, we obtain four theorems about asymptotic stability and balanced growth solution of the dynamic input-output system and bring together in a unified manner some contributions scattered in the literature.
Self-similar cosmological solutions with dark energy. I. Formulation and asymptotic analysis
Harada, Tomohiro; Maeda, Hideki; Carr, B. J.
2008-01-01
Based on the asymptotic analysis of ordinary differential equations, we classify all spherically symmetric self-similar solutions to the Einstein equations which are asymptotically Friedmann at large distances and contain a perfect fluid with equation of state p=(γ-1)μ with 0antigravity. This extends the previous analysis of spherically symmetric self-similar solutions for fluids with positive pressure (γ>1). However, in the latter case there is an additional parameter associated with the weak discontinuity at the sonic point and the solutions are only asymptotically “quasi-Friedmann,” in the sense that they exhibit an angle deficit at large distances. In the 0<γ<2/3 case, there is no sonic point and there exists a one-parameter family of solutions which are genuinely asymptotically Friedmann at large distances. We find eight classes of asymptotic behavior: Friedmann or quasi-Friedmann or quasistatic or constant-velocity at large distances, quasi-Friedmann or positive-mass singular or negative-mass singular at small distances, and quasi-Kantowski-Sachs at intermediate distances. The self-similar asymptotically quasistatic and quasi-Kantowski-Sachs solutions are analytically extendible and of great cosmological interest. We also investigate their conformal diagrams. The results of the present analysis are utilized in an accompanying paper to obtain and physically interpret numerical solutions.
Pulse Propagation in a Non-Linear Medium
Edah, Gaston; Adanhounmè, Villévo; Kanfon, Antonin; Guédjé, François; Hounkonnou, Mahouton Norbert
2015-02-01
This paper considers a novel approach to solving the general propagation equation of optical pulses in an arbitrary non-linear medium. Using a suitable change of variable and applying the Adomian decomposition method to the non-linear Schrödinger equation, an analytical solution can be obtained which takes into accountparameters such as attenuation factor, the second order dispersive parameter, the third order dispersive parameter and the non-linear Kerr effect coefficient. By analysing the solution, this paper establishes that this method is suitable for the study of light pulse propagation in a non-linear optical medium.
Self-similar cosmological solutions with dark energy. I. Formulation and asymptotic analysis
Based on the asymptotic analysis of ordinary differential equations, we classify all spherically symmetric self-similar solutions to the Einstein equations which are asymptotically Friedmann at large distances and contain a perfect fluid with equation of state p=(γ-1)μ with 01). However, in the latter case there is an additional parameter associated with the weak discontinuity at the sonic point and the solutions are only asymptotically 'quasi-Friedmann', in the sense that they exhibit an angle deficit at large distances. In the 0<γ<2/3 case, there is no sonic point and there exists a one-parameter family of solutions which are genuinely asymptotically Friedmann at large distances. We find eight classes of asymptotic behavior: Friedmann or quasi-Friedmann or quasistatic or constant-velocity at large distances, quasi-Friedmann or positive-mass singular or negative-mass singular at small distances, and quasi-Kantowski-Sachs at intermediate distances. The self-similar asymptotically quasistatic and quasi-Kantowski-Sachs solutions are analytically extendible and of great cosmological interest. We also investigate their conformal diagrams. The results of the present analysis are utilized in an accompanying paper to obtain and physically interpret numerical solutions
Pulse Propagation in a Non-Linear Medium
Edah Gaston; Adanhounmè Villévo; Kanfon Antonin; Guédjé François; Hounkonnou Mahouton Norbert
2015-01-01
This paper considers a novel approach to solving the general propagation equation of optical pulses in an arbitrary non-linear medium. Using a suitable change of variable and applying the Adomian decomposition method to the non-linear Schrödinger equation, an analytical solution can be obtained which takes into accountparameters such as attenuation factor, the second order dispersive parameter, the third order dispersive parameter and the non-linear Kerr effect coeffic...
王金良; 周笠
2003-01-01
In this paper,our main aim is to study the existence and uniqueness of the periodic solution of delayed Logistic equation and its asymptotic behavior.In case the coefficients are periodic,we give some sufficient conditions for the existence and uniqueness of periodic solution.Furthermore,we also study the effect of time-delay on the solution.
Asymptotic stability of a decaying solution to the Keller-Segel system of degenerate type
Ogawa, Takayoshi
2008-01-01
We discuss the global behavior of the weak solution of the Keller-Segel system of degenerate type. Asymptotic stability of the Barenblatt-Pattle solution and its convergence rate for the decaying weak solution in $L^1({\\mathbb R}^n)$ is shown for the degenerated case $1
Asymtotics of M-estmation in Non-linear Regression
Ying YANG
2004-01-01
Consider the standard non-linear regression model yi = g(xi,θo) +εi, i = 1,..., n where g(x,θ) is a continuous function on a bounded closed region X × , θo is the unknown parameter vector in Rp, {x1, x2, ... ,xn} is a deterministic design of experiment and {ε1, ε2 ,εn} is a sequence of independent random variables. This paper establishes the existences of M-estimates and the asymptotic uniform linearity of M-scores in a family of non-linear regression models when the errors are independent and identically distributed. This result is then used to obtain the asymptotic distribution of a class of M-estimators for a large class of non-linear regression models. At the same time, we point out that Theorem 2 of Wang (1995) (J. of Multivariate Analysis, vol. 54, pp. 227-238, Corrigenda. vol. 55, p. 350) is not correct.
Non-asymptotically AdS/dS Solutions and Their Higher Dimensional Origins
Cai, R G; Cai, Rong-Gen; Wang, Anzhong
2004-01-01
We look for and analyze in some details some exact solutions of Einstein-Maxwell-dilaton gravity with one or two Liouville-type dilaton potential(s) in an arbitrary dimension. Such a theory could be obtained by dimensionally reducing Einstein-Maxwell theory with a cosmological constant to a lower dimension. These (neutral/magnetic/electric charged) solutions can have a (two) black hole horizon(s), cosmological horizon, or a naked singularity. Black hole horizon or cosmological horizon of these solutions can be a hypersurface of positive, zero or negative constant curvature. These exact solutions are neither asymptotically flat, nor asymptotically AdS/dS. But some of them can be uplifted to a higher dimension, and those higher dimensional solutions are either asymptotically flat, or asymptotically AdS/dS with/without a compact constant curvature space. This observation is useful to better understand holographic properties of these non-asymptotically AdS/dS solutions.
General asymptotic solutions of the Einstein equations and phase transitions in quantum gravity
Podolsky, D.
2007-01-01
We discuss generic properties of classical and quantum theories of gravity with a scalar field which are revealed at the vicinity of the cosmological singularity. When the potential of the scalar field is exponential and unbounded from below, the general solution of the Einstein equations has quasi-isotropic asymptotics near the singularity instead of the usual anisotropic Belinskii - Khalatnikov - Lifshitz (BKL) asymptotics. Depending on the strength of scalar field potential, there exist tw...
Asymptotic solution for the El Niño time delay sea—air oscillator model
A sea—air oscillator model is studied using the time delay theory. The aim is to find an asymptotic solving method for the El Niño-southern oscillation (ENSO) model. Employing the perturbed method, an asymptotic solution of the corresponding problem is obtained. Thus we can obtain the prognoses of the sea surface temperature (SST) anomaly and the related physical quantities. (general)
Non-linear finite element analysis in structural mechanics
Rust, Wilhelm
2015-01-01
This monograph describes the numerical analysis of non-linearities in structural mechanics, i.e. large rotations, large strain (geometric non-linearities), non-linear material behaviour, in particular elasto-plasticity as well as time-dependent behaviour, and contact. Based on that, the book treats stability problems and limit-load analyses, as well as non-linear equations of a large number of variables. Moreover, the author presents a wide range of problem sets and their solutions. The target audience primarily comprises advanced undergraduate and graduate students of mechanical and civil engineering, but the book may also be beneficial for practising engineers in industry.
Asymptotic solution of the non-isothermal Cahn-Hilliard system
The non-isothermal Cahn-Hillard questions with a small parameter in the n-dimensional case (n = 2.3) are considered. The small parameter is proportional both to the relaxation time and to the linear scale of transition zone, so the large time process is examined. The asymptotic solution describing the free interface dynamics is constructed. As the small parameter tends to zero, the limiting solution satisfies the modified Stefan problem with corrected Gibbs-Thomson law. The justification of the asymptotic solution is proved. (author). 26 refs
无
2001-01-01
Based on the molecular theory of non-linear viscoelasticity with constrained entanglements in polymer melts, the material functions in simple shear flow were formulated, the theoretical relations between η(),ψ10()and shear rate(),and topologically constrained dimension number n＇and a were derived. Linear viscoelastic parameters (η0 and G0N)and topologically constrained dimension number (n＇,a and )as a function of the primary molecular weight(Mn),molecular weight between entanglements (Mc) and the entanglement sites sequence distribution in polymer chain were determined. A new method for determination of viscoelastic parameters (η0,ψ10,G0N and J0e),topologically constrained dimension number(n＇,a and v)and molecularweight (Mn, Mc and Me) from the shear flow measurements was proposed.It was used to determine those parameters and structures of HDPE, making a good agreement between these values and those obtained by other methods. The agreement affords a quantitative verification for the molecular theory of nonlinear viscoelasticity with constrained entanglement in polymer melts.
THE ASYMPTOTIC BEHAVIOR OF SOLUTION FOR THE NONLINEAR HEAT-CONDUCTION EQUATION AND ITS APPLICATION
陈方年; 段志文
2001-01-01
In this paper the nonlinear heat-conduction equations with Dirichlet boundary condition and the nonlinear boundary condition are studied. The asymptotic behavior of the global of solution are analyzed by using Lyapuunov function.As its application, the approximate solutions are constructed.
Zai-ying ZHOU; Jia-qi MO
2012-01-01
A class of differential-difference reaction diffusion equations initial boundary problem with a small time delay is considered.Under suitable conditions and by using method of the stretched variable,the formal asymptotic solution is constructed. And then,by using the theory of differential inequalities the uniformly validity of solution is proved.
ASYMPTOTIC BEHAVIOR OF SOLUTIONS FOR A CLASS OF DELAY DIFFERENCE EQUATION
ZhuHuiyan; HuangLihong
2005-01-01
We propose a class of delay difference equation with piecewise constant nonlinearity. Such a delay difference equation can be regarded as the discrete analog of a differential equation. The convergence of solutions and the existence of asymptotically stable periodic solutions are investigated for such a class of difference equation.
A class of asymptotic solution for the time delay wind field model of an ocean
A time delay model of a two-layer barotropic ocean with Rayleigh dissipation is built. Using the improved perturbation method, an analytic asymptotic solution of a better approximate degree is obtained in the mid-latitude wind field, and the physical meaning of the corresponding solution is also discussed. (general)
Modelling Loudspeaker Non-Linearities
Agerkvist, Finn T.
2007-01-01
This paper investigates different techniques for modelling the non-linear parameters of the electrodynamic loudspeaker. The methods are tested not only for their accuracy within the range of original data, but also for the ability to work reasonable outside that range, and it is demonstrated that...
Andersen, Steffen; Harrison, Glenn W.; Hole, Arne Risa;
2012-01-01
We develop an extension of the familiar linear mixed logit model to allow for the direct estimation of parametric non-linear functions defined over structural parameters. Classic applications include the estimation of coefficients of utility functions to characterize risk attitudes and discounting...
On Nonlinear Asymptotic Stability of the Lane-Emden Solutions for the Viscous Gaseous Star Problem
Luo, Tao; Xin, Zhouping; Zeng, Huihui
2015-01-01
This paper proves the nonlinear asymptotic stability of the Lane-Emden solutions for spherically symmetric motions of viscous gaseous stars if the adiabatic constant $\\gamma$ lies in the stability range $(4/3, 2)$. It is shown that for small perturbations of a Lane-Emden solution with same mass, there exists a unique global (in time) strong solution to the vacuum free boundary problem of the compressible Navier-Stokes-Poisson system with spherical symmetry for viscous stars, and the solution ...
Asymptotic properties of solutions of some iterative functional inequalities
Dobiesław Brydak; Bogdan Choczewski; Marek Czerni
2008-01-01
Continuous solutions of iterative linear inequalities of the first and second order are considered, belonging to a class \\(\\mathcal{F}_T\\) of functions behaving at the origin as a prescribed function \\(T\\).
Portilheiro, Manuel; Vazquez, Juan Luis
2010-01-01
We study a nonlinear porous medium type equation involving the infinity Laplacian operator. We first consider the problem posed on a bounded domain and prove existence of maximal nonnegative viscosity solutions. Uniqueness is obtained for strictly positive solutions with Lipschitz in time data. We also describe the asymptotic behaviour for the Dirichlet problem in the class of maximal solutions. We then discuss the Cauchy problem posed in the whole space. As in the standard porous medium equa...
An exact, asymptotically flat, vacuum solution of Einstein's equations with closed timelike curves
Solutions of Einstein's equations representing spacetimes with closed timelike curves (CTC) are commonly dismissed as unrealistic. Recently I published approximate solutions, containing CTC, which refer to ordinary sources. In this paper I present an exact vacuum solution, asymptotically flat, which contains CTC. It represents a massless rotating rod of finite length, and I give reasons why addition of mass would not abolish the CTC. I suggest that there is now an urgent need for a realistic physical interpretation of CTC in general relativity
Solution of the Falkner-Skan wedge flow by a revised optimal homotopy asymptotic method.
Madaki, A G; Abdulhameed, M; Ali, M; Roslan, R
2016-01-01
In this paper, a revised optimal homotopy asymptotic method (OHAM) is applied to derive an explicit analytical solution of the Falkner-Skan wedge flow problem. The comparisons between the present study with the numerical solutions using (fourth order Runge-Kutta) scheme and with analytical solution using HPM-Padé of order [4/4] and order [13/13] show that the revised form of OHAM is an extremely effective analytical technique. PMID:27186477
Processing of nuclear medicine images is generally performed by essentially linear methods with the non-negativity condition being applied as the only non-linear process. The various methods used: matrix methods in signal space and Fourier or Hadamard transforms in frequency or sequency space are essentially equivalent. Further improvement in images can be obtained by the use of inherently non-linear methods. The recent development of an approximation to a least-difference method (as opposed to a least-square method) has led to an appreciation of the effects of data bounding and to the development of a more powerful process. Data bounding (modification of statistically improbable data values) is an inherently non-linear method with considerable promise. Strong bounding depending on two-dimensional least-squares fitting yields a reduction of mottling (buttermilk effect) not attainable with linear processes. A pre-bounding process removing very bad points is used to protect the strong bounding process from incorrectly modifying data points due to the weight of an extreme but yet unbounded point as the fitting area approaches it
Asymptotic behavior of a generalized Burgers' equation solutions on a finite interval
The article is concerned with the study of asymptotic behavior of solutions of the Burgers equation and its generalizations with initial value — boundary problem on a finite interval, with constant boundary conditions. Since these equations take a dissipation into account, it is naturally to presuppose that any initial profile will evolve to an invariant time-independent solution with the same boundary values. Yet the answer happens to be slightly more complex. There are three possibilities: the initial profile may regularly decay to an invariant solution; or a Heaviside-type gap develops through a dispersive shock and multi-oscillations; or, exotically, an asymptotic limit is a 'frozen multi-oscillation' piecewise-differentiable solution, composed of different smooth invariant solutions
A new conformal-invariant non-linear spinor equation
We propose a new model for a spinor particle, based on a non-linear Dirac equation. We invoke group invariance and use symmetry reduction in order to obtain a multiparameter family of exact solutions of the proposed equation. (authors)
Banerjee, Ayan; Rahaman, Farook; Jotania, Kanti; Sharma, Ranjan; Rahaman, Mosiur
2014-01-01
Gravitational analyzes in lower dimensions has become a field of active research interest ever since Banados, Teitelboim and Zanelli (BTZ) (Phys. Rev. Lett. 69, 1849, 1992) proved the existence of a black hole solution in (2 + 1) dimensions. The BTZ metric has inspired many investigators to develop and analyze circularly symmetric stellar models which can be matched to the exterior BTZ metric. We have obtained two new classes of solutions for a (2 + 1)-dimensional anisotropic star in anti-de ...
MULTIPLICITY OF SOLUTIONS TO ASYMPTOTICALLY LINEAR SECOND-ORDER ORDINARY DIFFERENTIAL SYSTEM
无
2011-01-01
In this paper,we consider an asymptotically linear second-order ordinary differential system with Dirchlet boundary value conditions. Under some conditions,we show the multiplicity of solutions to the system by the Morse theory and an index theory.
ASYMPTOTIC BEHAVIOR OF GLOBAL SMOOTH SOLUTIONS TO THE EULER-POISSON SYSTEM IN SEMICONDUCTORS
琚强昌
2002-01-01
In this paper, we establish the global existence and the asymptotic behavior of smooth solution to the initial-boundary value problem of Euler-Poisson system which is used as the bipolar hydrodynamic model for semiconductors with the nonnegative constant doping profile.
The exact asymptotic behaviour of the unique solution to a singular Dirichlet problem
Yu Jianning; Zhang Zhijun
2006-01-01
By Karamata regular variation theory, we show the existence and exact asymptotic behaviour of the unique classical solution near the boundary to a singular Dirichlet problem , , , , where is a bounded domain with smooth boundary in , , , for each and some ; and for some , which is nonnegative on and may be unbounded or singular on the boundary.
Error estimates for asymptotic solutions of dynamic equations on time scales
Gro Hovhannisyan
2007-02-01
Full Text Available We establish error estimates for first-order linear systems of equations and linear second-order dynamic equations on time scales by using calculus on a time scales [1,4,5] and Birkhoff-Levinson's method of asymptotic solutions [3,6,8,9].
Full text: Calculational methods and Reduce software are described for determining polyhomogeneous asymptotic expansions of solutions of Einstein's equations in null characteristic transport form. As an example, results concerning peeling of gravitational radiation in Null Quasi-Spherical (NQS) spacetimes are presented
Existence of radial positive solutions vanishing at infinity for asymptotically homogeneous systems
Ali Djellit
2010-04-01
Full Text Available In this article we study elliptic systems called asymptotically homogeneous because their nonlinearities may not have polynomial growth. Using the Gidas-Spruck Blow-up method, we obtain a priori estimates, and then using Leray-Schauder topological degree theory, we obtain radial positive solutions vanishing at infinity.
Asymptotic behavior of increasing solutions to a system of n nonlinear differential equations
Řehák, Pavel
2013-01-01
Roč. 77, January 12 (2013), s. 45-58. ISSN 0362-546X Institutional support: RVO:67985840 Keywords : oncreasing solution * asymptotic formula * quasilinear system Subject RIV: BA - General Mathematics Impact factor: 1.612, year: 2013 http://www.sciencedirect.com/science/article/pii/S0362546X12003513
Asymptotic behavior of solutions to a degenerate quasilinear parabolic equation with a gradient term
Huilai Li
2015-12-01
Full Text Available This article concerns the asymptotic behavior of solutions to the Cauchy problem of a degenerate quasilinear parabolic equations with a gradient term. A blow-up theorem of Fujita type is established and the critical Fujita exponent is formulated by the spacial dimension and the behavior of the coefficient of the gradient term at infinity.
Asymptotically flat, stable black hole solutions in Einstein-Yang-Mills-Chern-Simons theory.
Brihaye, Yves; Radu, Eugen; Tchrakian, D H
2011-02-18
We construct finite mass, asymptotically flat black hole solutions in d=5 Einstein-Yang-Mills-Chern-Simons theory. Our results indicate the existence of a second order phase transition between Reissner-Nordström solutions and the non-Abelian black holes which generically are thermodynamically preferred. Some of the non-Abelian configurations are also stable under linear, spherically symmetric perturbations. PMID:21405506
TIME-ASYMPTOTIC BEHAVIOR OF SOLUTIONS FOR GENERAL NAVIER-STOKES EQUATIONS IN EVEN SPACE-DIMENSION
Xu Hongmei
2001-01-01
We study the time-asymptotic behavior of solutions to general NavierStokes equations in even and higher than two space-dimensions. Through the pointwise estimates of the Green function of the linearized system, we obtain explicit expressions of the time-asymptotic behavior of the solutions. The result coincides with weak Huygan's principle.
Symmetries in Non-Linear Mechanics
Aldaya, Victor; López-Ruiz, Francisco F; Cossío, Francisco
2014-01-01
In this paper we exploit the use of symmetries of a physical system so as to characterize the corresponding solution manifold by means of Noether invariants. This constitutes a necessary preliminary step towards the correct quantisation in non-linear cases, where the success of Canonical Quantisation is not guaranteed in general. To achieve this task "point symmetries" of the Lagrangian are generally not enough, and the notion of contact transformations is in order. The use of the Poincar\\'e-Cartan form permits finding both the symplectic structure on the solution manifold, through the Hamilton-Jacobi transformation, and the required symmetries, realized as Hamiltonian vector fields, associated with functions on the solution manifold (thus constituting an inverse of the Noether Theorem), lifted back to the evolution space through the inverse of this Hamilton-Jacobi mapping. In this framework, solutions and symmetries are somehow identified and this correspondence is also kept at a perturbative level. We prese...
Frid, Hermano; Rendón, Leonardo
We prove the asymptotic stability of nonplanar two-states Riemann solutions in BGK approximations of a class of multidimensional systems of conservation laws. The latter consists of systems whose flux-functions in different directions share a common complete system of Riemann invariants, the level surfaces of which are hyperplanes. The asymptotic stability to which the main result refers is in the sense of the convergence as t→∞ in Lloc1 of the space of directions ζ=x/t. That is, the solution z(t,x,ξ) of the perturbed Cauchy problem for the corresponding BGK system satisfies ∫z(t,tζ,ξ) dμ(ξ)→R(ζ) as t→∞, in Lloc1(R), where R(ζ) is the self-similar entropy solution of the two-states nonplanar Riemann problem for the system of conservation laws.
薛强; 梁冰; 刘晓丽; 李宏艳
2003-01-01
The process of contaminant transport is a problem of multicomponent and multiphase flow in unsaturated zone. Under the presupposition that gas existence affects water transport , a coupled mathematical model of contaminant transport in unsaturated zone has been established based on fluid-solid interaction mechanics theory. The asymptotical solutions to the nonlinear coupling mathematical model were accomplished by the perturbation and integral transformation method. The distribution law of pore pressure,pore water velocity and contaminant concentration in unsaturated zone has been presented under the conditions of with coupling and without coupling gas phase. An example problem was used to provide a quantitative verification and validation of the model. The asymptotical solution was compared with Faust model solution. The comparison results show reasonable agreement between asymptotical solution and Faust solution, and the gas effect and media deformation has a large impact on the contaminant transport. The theoretical basis is provided for forecasting contaminant transport and the determination of the relationship among pressure-saturation-permeability in laboratory.
Asymptotic behaviour of solutions for porous medium equation with periodic absorption
Wang Yifu
2001-04-01
Full Text Available This paper is concerned with porous medium equation with periodic absorption. We are interested in the discussion of asymptotic behaviour of solutions of the first boundary value problem for the equation. In contrast to the equation without sources, we show that the solutions may not decay but may be Ã‚Â“attractedÃ‚Â” into any small neighborhood of the set of all nontrivial periodic solutions, as time tends to infinity. As a direct consequence, the null periodic solution is Ã‚Â“unstable.Ã‚Â” We have presented an accurate condition on the sources for solutions to have such a property. Whereas in other cases of the sources, the solutions might decay with power speed, which implies that the null periodic solution is Ã‚Â“stable.Ã‚Â”
Quasi-Periodic Solutions and Asymptotic Properties for the Isospectral BKP Equation
In this paper, based on a Riemann theta function and Hirota's bilinear form, a straightforward way is presented to explicitly construct Riemann theta functions periodic waves solutions of the isospectral BKP equation. Once the bilinear form of an equation obtained, its periodic wave solutions can be directly obtained by means of an unified theta function formula and the way of obtaining the bilinear form is given in this paper. Based on this, the Riemann theta function periodic wave solutions and soliton solutions are presented. The relations between the periodic wave solutions and soliton solutions are strictly established and asymptotic behaviors of the Riemann theta function periodic waves are analyzed by a limiting procedure. The N-soliton solutions of isospectral BKP equation are presented with its detailed proof. (general)
Penyajian Integral dari Operator Non Linear
Budiman, Herdi; Sunusi, Nurtiti
2004-01-01
Fungsional linear kontinu pada suatu ruang fungsi dapat disajikan dengan suatu integral dan biasanya linear. Pada papaer ini akan diberikan penyajian integral dari suatu operator non linear, dengan cara mengkonstruksi integral non linear Henstock Kurzweil, fungsi f:[0,1] ---------> X, dengan X merupakan ruang Banach, dilanjutkan dengan penyajian integral dari operator non linear pada ruang C=C([0,1],X).
Yee, H. C.; Sweby, P. K.
1995-01-01
The global asymptotic nonlinear behavior of 1 1 explicit and implicit time discretizations for four 2 x 2 systems of first-order autonomous nonlinear ordinary differential equations (ODES) is analyzed. The objectives are to gain a basic understanding of the difference in the dynamics of numerics between the scalars and systems of nonlinear autonomous ODEs and to set a baseline global asymptotic solution behavior of these schemes for practical computations in computational fluid dynamics. We show how 'numerical' basins of attraction can complement the bifurcation diagrams in gaining more detailed global asymptotic behavior of time discretizations for nonlinear differential equations (DEs). We show how in the presence of spurious asymptotes the basins of the true stable steady states can be segmented by the basins of the spurious stable and unstable asymptotes. One major consequence of this phenomenon which is not commonly known is that this spurious behavior can result in a dramatic distortion and, in most cases, a dramatic shrinkage and segmentation of the basin of attraction of the true solution for finite time steps. Such distortion, shrinkage and segmentation of the numerical basins of attraction will occur regardless of the stability of the spurious asymptotes, and will occur for unconditionally stable implicit linear multistep methods. In other words, for the same (common) steady-state solution the associated basin of attraction of the DE might be very different from the discretized counterparts and the numerical basin of attraction can be very different from numerical method to numerical method. The results can be used as an explanation for possible causes of error, and slow convergence and nonconvergence of steady-state numerical solutions when using the time-dependent approach for nonlinear hyperbolic or parabolic PDES.
Weakly non-linear analysis of wind-driven gravity waves
Alexakis, A; Rosner, R; Alexakis, Alexandros; Young, Yuan-Nan; Rosner, Robert
2002-01-01
We study the weakly non-linear development of shear-driven gravity waves, and investigate the mixing properties of the finite amplitude solutions. Calculations to date have been restricted to the linear theory, which predicts that gravity waves are amplified by an influx of energy through the critical layer, where the velocity of the wind equals the wave phase velocity. Because of the presence of a critical layer, ordinary weakly non-linear methods fail; in this paper, we use a rescaling at the critical layer and matched asymptotics to derive an amplitude equation for the most unstable wave, under the simplifying assumption that the physical domain is periodic. These amplitude equations are solved numerically, in their quasi-steady limit, for the cases of small density ratio (applicable to oceanography), and for arbitrary density ratio but strong stratification (for more general physical/astrophysical situations). In addition to the familiar asymptotic growth found in other inviscid flow, we find that, for th...
Asymptotics of the nodal lines of solutions of 2-dimensional Schroedinger equations
Results on nodal properties of L2 solutions of two-dimensional Schroedinger equations obtained in a previous paper are refined. The generally unbounded nodal set of ψ is investigated for r → ∞ and shown that in this limit the nodal set consists of non-intersecting nodal lines which look asymptotically either like straight lines or like branches of parabolas. (G.Q.)
The generalized fractional elastic models govern the stochastic motion of several many-body systems, e.g., polymers, membranes, and growing interfaces. This paper focuses on the exact formulations and their asymptotic behaviors of the average of the solutions of the generalized fractional elastic models. So we directly analyze the Cauchy problem of the averaged generalized elastic model involving time fractional derivative and the convolution integral of a radially symmetric friction kernel with space fractional Laplacian. (general)
Asymptotic analysis for the strip problem related to a parabolic third - order operator
De Angelis, M.
2012-01-01
Aim of this paper is the qualitative analysis of a boundary value problem for a third order non linear parabolic equation which describes several dissipative models. When the source term is linear, the problem is explictly solved by means of a Fourier series with properties of rapid convergence. In the non linear case, appropriate estimates of this series allow to deduce the asymptotic behaviour of the solution.
Asymptotic Convergence of the Solutions of a Dynamic Equation on Discrete Time Scales
J. Diblík
2012-01-01
Full Text Available The paper investigates a dynamic equation Δy(tn=β(tn[y(tn−j−y(tn−k] for n→∞, where k and j are integers such that k>j≥0, on an arbitrary discrete time scale T:={tn} with tn∈ℝ, n∈ℤn0−k∞={n0−k,n0−k+1,…}, n0∈ℕ, tn
Asymptotic Behavior of Solutions to a Vector Integral Equation with Deviating Arguments
Cristóbal González
2013-01-01
Full Text Available In this paper, we propose the study of an integral equation, with deviating arguments, of the type y(t=ω(t-∫0∞f(t,s,y(γ1(s,…,y(γN(sds,t≥0, in the context of Banach spaces, with the intention of giving sufficient conditions that ensure the existence of solutions with the same asymptotic behavior at ∞ as ω(t. A similar equation, but requiring a little less restrictive hypotheses, is y(t=ω(t-∫0∞q(t,sF(s,y(γ1(s,…,y(γN(sds,t≥0. In the case of q(t,s=(t-s+, its solutions with asymptotic behavior given by ω(t yield solutions of the second order nonlinear abstract differential equation y''(t-ω''(t+F(t,y(γ1(t,…,y(γN(t=0, with the same asymptotic behavior at ∞ as ω(t.
Chae, Dongho
2013-01-01
We study scenarios of self-similar type blow-up for the incompressible Navier-Stokes and the Euler equations. The previous notions of the discretely (backward) self-similar solution and the asymptotically self-similar solution are generalized to the locally asymptotically discretely self-similar solution. We prove that there exists no such locally asymptotically discretely self-similar blow-up for the 3D Navier-Stokes equations if the blow-up profile is a time periodic function belonging to $...
The global non-linear stability of the Kerr-de Sitter family of black holes
Hintz, Peter
2016-01-01
We establish the full global non-linear stability of the Kerr-de Sitter family of black holes, as solutions of the initial value problem for the Einstein vacuum equations with positive cosmological constant, for small angular momenta, and without any symmetry assumptions on the initial data. We achieve this by extending the linear and non-linear analysis on black hole spacetimes described in a sequence of earlier papers by the authors: We develop a general framework which enables us to deal systematically with the diffeomorphism invariance of Einstein's equations. In particular, the iteration scheme used to solve Einstein's equations automatically finds the parameters of the Kerr-de Sitter black hole that the solution is asymptotic to, the exponentially decaying tail of the solution, and the gauge in which we are able to find the solution; the gauge here is a wave map/DeTurck type gauge, modified by source terms which are treated as unknowns, lying in a suitable finite-dimensional space.
Schöwe, Alexander
2012-01-01
We consider a hyperbolic quasilinear fluid model, that arises from a delayed version for the constitutive law for the deformation tensor in the incompressible Navier-Stokes equation. We prove global existence of small solutions and asymptotic results in $\\R^{3}$ and the half-space with slip boundary conditions. Futhermore we show that this relaxed system is close to the classical Navier-Stokes equation in the sense that for small times $t$ the solutions converge in high Sobolev norms to the s...
An invariant asymptotic formula for solutions of second-order linear ODE's
Gingold, H.
1988-01-01
An invariant-matrix technique for the approximate solution of second-order ordinary differential equations (ODEs) of form y-double-prime = phi(x)y is developed analytically and demonstrated. A set of linear transformations for the companion matrix differential system is proposed; the diagonalization procedure employed in the final stage of the asymptotic decomposition is explained; and a scalar formulation of solutions for the ODEs is obtained. Several typical ODEs are analyzed, and it is shown that the Liouville-Green or WKB approximation is a special case of the present formula, which provides an approximation which is valid for the entire interval (0, infinity).
Asymptotic Behaviors of the Solutions to Scalar Viscous Conservation Laws on Bounded Interval
Quansen Jiu; Tao Pan
2003-01-01
This paper concerns the asymptotic behaviors of the solutions to the initial-boundary value problem for scalar viscous conservations laws ut + f(u)x = uxx on [0, 1], with the boundary condition u(0, t) =u_,u(1,t) = u+ and the initial data u(x, 0) = u0(x), where u_ ≠ u+ and f is a given function satisfying f″ (u) ＞ 0 for u under consideration. By means of energy estimates method and under some more regular conditions on the initial data, both the global existence and the asymptotic behavior are obtained. When u_ ＜ u+, which corresponds to rarefaction waves in inviscid conservation laws, no smallness conditions are needed. While for u_ ＞ u+, which corresponds to shock waves in inviscid conservation laws, it is established for weak shock waves, which means that |u_ - u+| is small. Moreover, exponential decay rates are both given.
Non-linear Fields in Generalized Cosmologies
Fasiello, Matteo
2016-01-01
The perturbative approach to structure formation has recently received a lot of attention in the literature. In such setups the final predictions for observables like the power spectrum is often derived under additional approximations such as a simplified time dependence. Here we provide all-order perturbative integral solutions for density and velocity fields in generalized cosmologies. We go beyond the standard results based on extending the EdS-like approximations. As an illustrative example, we apply our findings to the calculation of the one-loop power spectrum. We find corrections close to $1\\%$ in the mildly non-linear regime of $\\Lambda$CDM cosmologies for the density power spectrum, while in the case of the density-momentum power spectrum effects can reach up to $1.5\\%$ for $k\\sim 0.2h/$Mpc.
Neighborhood approximations for non-linear voter models
Schweitzer, Frank
2016-01-01
Non-linear voter models assume that the opinion of an agent depends on the opinions of its neighbors in a non-linear manner. This allows for voting rules different from majority voting. While the linear voter model is known to reach consensus, non-linear voter models can result in the coexistence of opposite opinions. Our aim is to derive approximations to correctly predict the time dependent dynamics, or at least the asymptotic outcome, of such local interactions. Emphasis is on a probabilistic approach to decompose the opinion distribution in a second-order neighborhood into lower-order probability distributions. This is compared with an analytic pair approximation for the expected value of the global fraction of opinions and a mean-field approximation. Our reference case are averaged stochastic simulations of a one-dimensional cellular automaton. We find that the probabilistic second-order approach captures the dynamics of the reference case very well for different non-linearities, i.e for both majority an...
An inhomogeneous wave equation and non-linear Diophantine approximation
Beresnevich, V.; Dodson, M. M.; Kristensen, S.;
2008-01-01
A non-linear Diophantine condition involving perfect squares and arising from an inhomogeneous wave equation on the torus guarantees the existence of a smooth solution. The exceptional set associated with the failure of the Diophantine condition and hence of the existence of a smooth solution is...
Spinning Solitons of a Modified Non-Linear Schroedinger equation
Brihaye, Y; Zakrzewski, W J; Brihaye, Yves; Hartmann, Betti; Zakrzewski, Wojtek J.
2003-01-01
We study soliton solutions of a modified non-linear Schroedinger (MNLS) equation. Using an Ansatz for the time and azimuthal angle dependence previously considered in the studies of the spinning Q-balls, we construct multi-node solutions of MNLS as well as spinning generalisations.
Grava, T
2012-01-01
We study numerically the small dispersion limit for the Korteweg-de Vries (KdV) equation $u_t+6uu_x+\\epsilon^{2}u_{xxx}=0$ for $\\epsilon\\ll1$ and give a quantitative comparison of the numerical solution with various asymptotic formulae for small $\\epsilon$ in the whole $(x,t)$-plane. The matching of the asymptotic solutions is studied numerically.
Xu, Mei-Juan; Tian, Shou-Fu; Tu, Jian-Min; Ma, Pan-Li; Zhang, Tian-Tian
2015-08-01
In this paper, the (2+1)-dimensional Saweda-Kotera-Kadomtsev-Petviashvili (SK-KP) equation is investigated, which can be used to describe certain situations from the fluid mechanics, ocean dynamics and plasma physics. With the aid of generalized Bell's polynomials, the Hirota's bilinear equation and N-soliton solution are explicitly constructed to the SK-KP equation, respectively. Based on the Riemann theta function, a direct and lucid way is presented to explicitly construct quasi-periodic wave solutions for the SK-KP equation. The two-periodic waves admit two independent spatial periods in two independent horizontal directions, which are a direct generalization of one-periodic waves. Finally, the relationships between soliton solutions and periodic wave solutions are strictly established, which implies the asymptotic behaviors of the periodic waves under a limited procedure.
Frid, Hermano
2006-07-01
We prove the asymptotic stability of two-state nonplanar Riemann solutions for a class of multidimensional hyperbolic systems of conservation laws when the initial data are perturbed and viscosity is added. The class considered here is those systems whose flux functions in different directions share a common complete system of Riemann invariants, the level surfaces of which are hyperplanes. In particular, we obtain the uniqueness of the self-similar L ∞ entropy solution of the two-state nonplanar Riemann problem. The asymptotic stability to which the main result refers is in the sense of the convergence as t→∞ in L loc 1 of the space of directions ξ = x/t. That is, the solution u(t, x) of the perturbed problem satisfies u(t, t ξ)→R(ξ) as t→∞, in L loc 1(ℝ n ), where R(ξ) is the self-similar entropy solution of the corresponding two-state nonplanar Riemann problem.
On the non-linear scale of cosmological perturbation theory
We discuss the convergence of cosmological perturbation theory. We prove that the polynomial enhancement of the non-linear corrections expected from the effects of soft modes is absent in equal-time correlators like the power or bispectrum. We first show this at leading order by resumming the most important corrections of soft modes to an arbitrary skeleton of hard fluctuations. We derive the same result in the eikonal approximation, which also allows us to show the absence of enhancement at any order. We complement the proof by an explicit calculation of the power spectrum at two-loop order, and by further numerical checks at higher orders. Using these insights, we argue that the modification of the power spectrum from soft modes corresponds at most to logarithmic corrections at any order in perturbation theory. Finally, we discuss the asymptotic behavior in the large and small momentum regimes and identify the expansion parameter pertinent to non-linear corrections
On the non-linear scale of cosmological perturbation theory
Blas, Diego [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Garny, Mathias; Konstandin, Thomas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2013-04-15
We discuss the convergence of cosmological perturbation theory. We prove that the polynomial enhancement of the non-linear corrections expected from the effects of soft modes is absent in equal-time correlators like the power or bispectrum. We first show this at leading order by resumming the most important corrections of soft modes to an arbitrary skeleton of hard fluctuations. We derive the same result in the eikonal approximation, which also allows us to show the absence of enhancement at any order. We complement the proof by an explicit calculation of the power spectrum at two-loop order, and by further numerical checks at higher orders. Using these insights, we argue that the modification of the power spectrum from soft modes corresponds at most to logarithmic corrections. Finally, we discuss the asymptotic behavior in the large and small momentum regimes and identify the expansion parameter pertinent to non-linear corrections.
In this article, two reliable techniques, Haar wavelet method and optimal homotopy asymptotic method (OHAM) are presented. Haar wavelet method is an efficient numerical method for the numerical solution of fractional order partial differential equation like Fisher type. The approximate solutions of the fractional Fisher type equation are compared with the optimal homotopy asymptotic method as well as with the exact solutions. Comparisons between the obtained solutions with the exact solutions exhibit that both the featured methods are effective and efficient in solving nonlinear problems. However, the results indicate that OHAM provides more accurate value than Haar wavelet method
Zhihe Jin
2011-12-01
Full Text Available This work investigates transient heat conduction in a functionally graded plate (FGM plate subjected to gradual cooling/heating at its boundaries. The thermal properties of the FGM are assumed to be continuous and piecewise differentiable functions of the coordinate in the plate thickness direction. A linear ramp function describes the cooling/heating rates at the plate boundaries. A multi-layered material model and Laplace transform are employed to obtain the transformed temperatures at the interfaces between the layers. An asymptotic analysis and an integration technique are then used to obtain a closed form asymptotic solution of the temperature field in the FGM plate for short times. The thermal stress intensity factor (TSIF for an edge crack in the FGM plate calculated based on the asymptotic temperature solution shows that the asymptotic solution can capture the peak TSIFs under the finite cooling rate conditions.
Asymptotic behavior of positive solutions of a semilinear Dirichlet problem in the annulus
Safa Dridi
2015-01-01
Full Text Available In this paper, we establish existence and asymptotic behavior of a positive classical solution to the following semilinear boundary value problem: \\[-\\Delta u=q(xu^{\\sigma }\\;\\text{in}\\;\\Omega,\\quad u_{|\\partial\\Omega}=0.\\] Here \\(\\Omega\\ is an annulus in \\(\\mathbb{R}^{n}\\, \\(n\\geq 3\\, \\(\\sigma \\lt 1\\ and \\(q\\ is a positive function in \\(\\mathcal{C}_{loc}^{\\gamma }(\\Omega \\, \\(0\\lt\\gamma \\lt 1\\, satisfying some appropriate assumptions related to Karamata regular variation theory. Our arguments combine a method of sub- and supersolutions with Karamata regular variation theory.
A uniformly valid asymptotic solution of the surface wave problem due to underwater sources
The two-dimensional linearized problem of surface waves in water of finite (or infinite) depth due to a stationary periodic source situated at a finite depth below the free surface, is considered. The formal solution of the problem is derived by using Laplace and Fourier transforms. A uniformly valid asymptotic expansion of the wave integral is obtained by using the method of Bleistein in the case of finite depth and that of Vander Waerden in the case of infinite depth. Physical interpretation of the results so derived is given. (author)
Zhang Zhijiun
2008-01-01
By Karamata regular variation theory and constructing comparison functions, the author shows the existence and global optimal asymptotic behaviour of solutions for a semilinear elliptic problem △u = k(x)g(u),u>0, x∈Ω, u|(e)Ω = +∞, where Ω is a bounded domain with smooth boundary in RN; g ∈ C1[0,∞), g(0) = g'(0) = 0, and there exists p > 1, such that lims→∞ g(sξ)/g(s)=ξp, (A)ξ > 0, and k∈Cαloc(Ω) is non-negative non-trivial in Ω which may be singular on the boundary.
An Asymptotic Theory for the Re-Equilibration of a Micellar Surfactant Solution
Griffiths, I. M.
2012-01-01
Micellar surfactant solutions are characterized by a distribution of aggregates made up predominantly of premicellar aggregates (monomers, dimers, trimers, etc.) and a region of proper micelles close to the peak aggregation number, connected by an intermediate region containing a very low concentration of aggregates. Such a distribution gives rise to a distinct two-timescale reequilibration following a system dilution, known as the t1 and t2 processes, whose dynamics may be described by the Becker-Döring equations. We use a continuum version of these equations to develop a reduced asymptotic description that elucidates the behavior during each of these processes.© 2012 Society for Industrial and Applied Mathematics.
Asymptotic behavior of positive solutions of a semilinear Dirichlet problem outside the unit ball
Habib Maagli
2013-04-01
Full Text Available In this article, we are concerned with the existence, uniqueness and asymptotic behavior of a positive classical solution to the semilinear boundary-value problem $$displaylines{ -Delta u=a(xu^{sigma }quadext{in }D, cr lim _{|x|o 1}u(x= lim_{|x|o infty}u(x =0. }$$ Here D is the complement of the closed unit ball of $mathbb{R} ^n$ ($ngeq 3$, $sigma<1$ and the function a is a nonnegative function in $C_{m loc}^{gamma}(D$, $0
Fazle Mabood
2015-01-01
Full Text Available The heat flow patterns profiles are required for heat transfer simulation in each type of the thermal insulation. The exothermic reaction models in porous medium can prescribe the problems in the form of nonlinear ordinary differential equations. In this research, the driving force model due to the temperature gradients is considered. A governing equation of the model is restricted into an energy balance equation that provides the temperature profile in conduction state with constant heat source on the steady state. The proposed optimal homotopy asymptotic method (OHAM is used to compute the solutions of the exothermic reactions equation.
Oh, Myunghyun; Zumbrun, Kevin
2010-04-01
Under natural spectral stability assumptions motivated by previous investigations of the associated spectral stability problem, we determine sharp L p estimates on the linearized solution operator about a multidimensional planar periodic wave of a system of conservation laws with viscosity, yielding linearized L 1 ∩ L p → L p stability for all {p ≥q 2} and dimensions {d ≥q 1} and nonlinear L 1 ∩ H s → L p ∩ H s stability and L 2-asymptotic behavior for {p≥q 2} and {d≥q 3} . The behavior can in general be rather complicated, involving both convective (that is, wave-like) and diffusive effects.
Asymptotic solution of a sea-air oscillator for ENSO mechanism
Mo Jia-Qi; Lin Wan-Tao; Wang Hui
2007-01-01
The EI Ni(n)o/La Ni(n)a-Southern Oscillation (ENSO) is an interannual phenomenon involved in the tropical Pacific ocean-atmosphere interactions.In this paper,a class of coupled system of the ENSO mechanism is considered.Based on a class of oscillator of ENSO model,the asymptotic solution of a corresponding problem is studied by employing the approximate method.It is proved from the results that the perturbation method can be used for analysing the sea surface temperature anomaly in the equatorial eastern Pacific and the thermocline depth anomaly of the atmosphere-ocean oscillation for the ENSO model.
Oh, Myunghyun; Zumbrun, Kevin
2008-01-01
Under natural spectral stability assumptions motivated by previous investigations of the associated spectral stability problem, we determine sharp $L^p$ estimates on the linearized solution operator about a multidimensional planar periodic wave of a system of conservation laws with viscosity, yielding linearized $L^1\\cap L^p\\to L^p$ stability for all $p \\ge 2$ and dimensions $d \\ge 1$ and nonlinear $L^1\\cap H^s\\to L^p\\cap H^s$ stability and $L^2$-asymptotic behavior for $p\\ge 2$ and $d\\ge 3$....
Asymptotic solution of light transport problems in optically thick luminescent media
We study light transport in optically thick luminescent random media. Using radiative transport theory for luminescent media and applying asymptotic and computational methods, a corrected diffusion approximation is derived with the associated boundary conditions and boundary layer solution. The accuracy of this approach is verified for a plane-parallel slab problem. In particular, the reduced system models accurately the effect of reabsorption. The impacts of varying the Stokes shift and using experimentally measured luminescence data are explored in detail. The results of this study have application to the design of luminescent solar concentrators, fluorescence medical imaging, and optical cooling using anti-Stokes fluorescence
Budd, Christopher J
2015-01-01
We study the asymptotic behaviour of sharp front solutions arising from the nonlinear diffusion equation \\theta_t = (D(\\theta)\\theta_x)_x, where the diffusivity is an exponential function D({\\theta}) = D_o exp(\\beta\\theta). This problem arises in the study of unsaturated flow in porous media where {\\theta} represents the liquid saturation. For the physical parameters corresponding to actual porous media, the diffusivity at the residual saturation is D(0) = D_o << 1 so that the diffusion problem is nearly degenerate. Such problems are characterised by wetting fronts that sharply delineate regions of saturated and unsaturated flow, and that propagate with a well-defined speed. Using matched asymptotic expansions in the limit of large {\\beta}, we derive an analytical description of the solution that is uniformly valid throughout the wetting front. This is in contrast with most other related analyses that instead truncate the solution at some specific wetting front location, which is then calculated as part...
Impedance of strip-traveling waves on an elastic half space - Asymptotic solution
Crandall, S. H.; Nigam, A. K.
1973-01-01
The dynamic normal-load distribution across a strip that is required to maintain a plane progressive wave along its length is studied for the case where the strip is of infinite length and lies on the surface of a homogeneous isotropic elastic half space. This configuration is proposed as a preliminary idealized model for analyzing the dynamic interaction between soils and flexible foundations. The surface load distribution across the strip and the motion of the strip are related by a pair of dual integral equations. An asymptotic solution is obtained for the limiting case of small wavelength. The nature of this solution depends importantly on the propagation velocity of the strip-traveling wave in comparison with the Rayleigh wave speed, the shear wave speed and the dilatational wave speed. When the strip-traveling wave propagates faster than the Rayleigh wave speed, a pattern of trailing Rayleigh waves is shed from the strip. The limiting amplitude of the trailing waves is provided by the asymptotic solution.
Theoretical work based on the Freedericksz transition in a wedge of smectic C liquid crystal is presented. Continuum theory is employed in order to mathematically model the two-way interaction between the anisotropic fluid and an applied electric field. Asymptotic methods are used to obtain concise and informative explicit solutions for limiting regimes where (a) the applied voltage is just above threshold, and (b) a high voltage is applied. As is anticipated, in the case of a small dielectric anisotropy, the solution reduces to that obtained when the two-way interaction is neglected. Nevertheless, at voltages close to threshold, this interaction can have a significant effect upon the director profile. Realistic material, geometry and field parameters are adopted in order to display these solutions. By comparing them with those obtained using a numerical method, a high degree of accuracy can be found within the above regimes
On the asymptotic of solutions of elliptic boundary value problems in domains with edges
Solutions of elliptic boundary value problems in three-dimensional domains with edges may exhibit singularities. The usual procedure to study these singularities is by the application of the classical Mellin transformation or continuous Fourier transformation. In this paper, we show how the asymptotic behavior of solutions of elliptic boundary value problems in general three-dimensional domains with straight edges can be investigated by means of discrete Fourier transformation. We apply this approach to time-harmonic Maxwell's equations and prove that the singular solutions can fully be described in terms of Fourier series. The representation here can easily be used to approximate three-dimensional stress intensity factors associated with edge singularities. (author)
XUE RUYING; FANG DAOYUAN
2005-01-01
The authors study a resonant Klein-Gordon system with convenient nonlinearities in two space dimensions, prove that such a system has global solutions for small, smooth,compactly supported Cauchy data, and find that the asymptotic profile of the solution is quite different from that of the free solution.
FREE NON-LINEAR VIBRATION OF AXIALLY MOVING BEAMS WITH FIXED ENDS
Yang Xiaodong; Chen Liqun
2005-01-01
The free non-linear vibration of axially moving, elastic, and tensioned beams on fixed supports is investigated in this paper. Two types of non-linearity, namely, the differential type and integro-differential type, are analyzed. Approximate solutions are sought using the method of multiple scales. The contribution of non-linearity to the response increases with the axial speed,and grows most rapidly near the critical speed. It has been found that the differential type nonlinearity is stronger than the integro-differential type non-linearity by analyzing the non-linear effects on natural frequencies.
Neural Networks for Non-linear Control
Sørensen, O.
1994-01-01
This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process.......This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process....
Asymptotic solutions of glass temperature profiles during steady optical fibre drawing
Taroni, M.
2013-03-12
In this paper we derive realistic simplified models for the high-speed drawing of glass optical fibres via the downdraw method that capture the fluid dynamics and heat transport in the fibre via conduction, convection and radiative heating. We exploit the small aspect ratio of the fibre and the relative orders of magnitude of the dimensionless parameters that characterize the heat transfer to reduce the problem to one- or two-dimensional systems via asymptotic analysis. The resulting equations may be readily solved numerically and in many cases admit exact analytic solutions. The systematic asymptotic breakdown presented is used to elucidate the relative importance of furnace temperature profile, convection, surface radiation and conduction in each portion of the furnace and the role of each in controlling the glass temperature. The models derived predict many of the qualitative features observed in real industrial processes, such as the glass temperature profile within the furnace and the sharp transition in fibre thickness. The models thus offer a desirable route to quick scenario testing, providing valuable practical information about the dependencies of the solution on the parameters and the dominant heat-transport mechanism. © 2013 Springer Science+Business Media Dordrecht.
Neural network modelling of non-linear hydrological relationships
Abrahart, R. J.; See, L. M.
2007-09-01
Two recent studies have suggested that neural network modelling offers no worthwhile improvements in comparison to the application of weighted linear transfer functions for capturing the non-linear nature of hydrological relationships. The potential of an artificial neural network to perform simple non-linear hydrological transformations under controlled conditions is examined in this paper. Eight neural network models were developed: four full or partial emulations of a recognised non-linear hydrological rainfall-runoff model; four solutions developed on an identical set of inputs and a calculated runoff coefficient output. The use of different input combinations enabled the competencies of solutions developed on a reduced number of parameters to be assessed. The selected hydrological model had a limited number of inputs and contained no temporal component. The modelling process was based on a set of random inputs that had a uniform distribution and spanned a modest range of possibilities. The initial cloning operations permitted a direct comparison to be performed with the equation-based relationship. It also provided more general information about the power of a neural network to replicate mathematical equations and model modest non-linear relationships. The second group of experiments explored a different relationship that is of hydrological interest; the target surface contained a stronger set of non-linear properties and was more challenging. Linear modelling comparisons were performed against traditional least squares multiple linear regression solutions developed on identical datasets. The reported results demonstrate that neural networks are capable of modelling non-linear hydrological processes and are therefore appropriate tools for hydrological modelling.
Following the fractional cable equation established in the letter [B.I. Henry, T.A.M. Langlands, and S.L. Wearne, Phys. Rev. Lett. 100 (2008) 128103], we present the time-space fractional cable equation which describes the anomalous transport of electrodiffusion in nerve cells. The derivation is based on the generalized fractional Ohm's law; and the temporal memory effects and spatial-nonlocality are involved in the time-space fractional model. With the help of integral transform method we derive the analytical solutions expressed by the Green's function; the corresponding fractional moments are calculated; and their asymptotic behaviors are discussed. In addition, the explicit solutions of the considered model with two different external current injections are also presented. (general)
Hybrid resonance and long-time asymptotic of the solution to Maxwell's equations
Després, Bruno
2015-01-01
We study the long-time asymptotic of the solutions to Maxwell's equation in the case of a hybrid resonance in the cold plasma model. We base our analysis in the transfer to the time domain of the recent results of B. Despr\\'es, L.M. Imbert-G\\'erard and R. Weder, J. Math. Pures Appl. {\\bf 101} ( 2014) 623-659, where the singular solutions to Maxwell's equations in the frequency domain where constructed by means of a limiting absorption principle and a formula for the heating of the plasma in the limit of vanishing collision frequency was obtained. Currently there is considerable interest in these problems because hybrid resonances are a possible scenario for the heating of plasmas in the future ITER Tokamak.
A problem in non-linear Diophantine approximation
Harrap, Stephen; Hussain, Mumtaz; Kristensen, Simon
2015-01-01
In this paper we obtain the Lebesgue and Hausdorff measure results for the set of vectors satisfying infinitely many fully non-linear Diophantine inequalities. The set is also associated with a class of linear inhomogeneous partial differential equations whose solubility is related to a certain Diophantine condition. The failure of the Diophantine condition guarantees the existence of a smooth solution.
A third-order asymptotic solution of nonlinear standing water waves in Lagrangian coordinates
Chen Yang-Yih; Hsu Hung-Chu
2009-01-01
Asymptotic solutions up to third-order which describe irrotational finite amplitude standing waves are derived in Lagrangian coordinates. The analytical Lagrangian solution that is uniformly valid for large times satisfies the irrotational condition and the pressure p = 0 at the free surface, which is in contrast with the Eulerian solution existing under a residual pressure at the free surface due to Taylor's series expansion. In the third-order Lagrangian approximation, the explicit parametric equation and the Lagrangian wave frequency of water particles could be obtained. In particular, the Lagrangian mean level of a particle motion that is a function of vertical label is found as a part of the solution which is different from that in an Eulerian description. The dynamic properties of nonlinear standing waves in water of a finite depth, including particle trajectory, surface profile and wave pressure are investigated. It is also shown that the Lagrangian solution is superior to an Eulerian solution of the same order for describing the wave shape and the kinematics above the mean water level.
Non-Linear Finite Element Modeling of THUNDER Piezoelectric Actuators
Taleghani, Barmac K.; Campbell, Joel F.
1999-01-01
A NASTRAN non-linear finite element model has been developed for predicting the dome heights of THUNDER (THin Layer UNimorph Ferroelectric DrivER) piezoelectric actuators. To analytically validate the finite element model, a comparison was made with a non-linear plate solution using Von Karmen's approximation. A 500 volt input was used to examine the actuator deformation. The NASTRAN finite element model was also compared with experimental results. Four groups of specimens were fabricated and tested. Four different input voltages, which included 120, 160, 200, and 240 Vp-p with a 0 volts offset, were used for this comparison.
Mathematical problems in non-linear Physics: some results
The basic results presented in this report are the following: 1) Characterization of the range and Kernel of the variational derivative. 2) Determination of general conservation laws in linear evolution equations, as well as bounds for the number of polynomial conserved densities in non-linear evolution equations in two independent variables of even order. 3) Construction of the most general evolution equation which has a given family of conserved densities. 4) Regularity conditions for the validity of the Lie invariance method. 5) A simple class of perturbations in non-linear wave equations. 6) Soliton solutions in generalized KdV equations. (author)
Asymptotically anti-de Sitter Proca Stars
Duarte, Miguel
2016-01-01
We show that complex, massive spin-1 fields minimally coupled to Einstein's gravity with a negative cosmological constant, admit asymptotically anti-de Sitter self-gravitating solutions. Focusing on 4-dimensional spacetimes, we start by obtaining analytical solutions in the test-field limit, where the Proca field equations can be solved in a fixed anti-de Sitter background, and then find fully non-linear solutions numerically. These solutions are a natural extension of the recently found asymptotically flat Proca stars and share similar properties with scalar boson stars. In particular, we show that they are stable against spherically symmetric linear perturbations for a range of fundamental frequencies limited by their point of maximum mass. We finish with an overview of the behavior of Proca stars in $5$ dimensions.
Non-linear finite element modeling
Mikkelsen, Lars Pilgaard
The note is written for courses in "Non-linear finite element method". The note has been used by the author teaching non-linear finite element modeling at Civil Engineering at Aalborg University, Computational Mechanics at Aalborg University Esbjerg, Structural Engineering at the University of the...... Southern Denmark and in Medicine and Technology at the Technical University of Denmark. The note focus on the applicability to actually code routines with the purpose to analyze a geometrically or material non-linear problem. The note is tried to be kept on so brief a form as possible, with the main focus...
On "scattering law" for Kasner parameters appearing in asymptotics of an exact S-brane solution
Ivashchuk, V D
2007-01-01
Multidimensional cosmological model with scalar and form fields [1,2,3,4] is studied. An exact S-brane solution (either electric or magnetic one) in a model with l scalar fields and one antisymmetric form of rank m > 1 is considered. This solution is defined on a product manifold containing n Ricci-flat factor spaces M_1, ..., M_n. In the case when the kinetic term for scalar fields is positive definite we singled out a special solution governed by cosh-function. It is shown that this special solution has Kasner-like asymptotics in the limits \\tau \\to + 0 and \\tau \\to + \\infty, where \\tau is a synchronous time variable. A relation between two sets of Kasner parameters \\alpha_{\\infty} and \\alpha_0 is found. This relation, named as ``scattering law'' (SL) formula, is coinciding with the ``collision law'' (CL) formula obtained previously in Ref. [5] in a context of a billiard description of S-brane solutions near the singularity. A geometrical sense of SL formula is clarified: it is shown that SL transformation ...
A brief statement of the problem of time-independent scattering theory introduces the notation to be used. Product integration is then used to discover asymptotic forms of solutions of the radial Schroedinger equation. Finally, these solutions are used to demonstrate existence of ordinary and modified Moller wave operators for a wide class of long-range radial potentials
Characterising dynamic non-linearity in floating wind turbines
Fully coupled aero-hydro-control-elastic codes are being developed to cope with the new modelling challenges presented by floating wind turbines, but there is also a place for more efficient methods of analysis. One option is linearisation and analysis in the frequency domain. For this to be an effective method, the non-linearities in the system must be well understood. The present study focusses on understanding the dynamic response of the rotor to the overall platform motion, as would arise from wave loading, by using a simple model of a floating wind turbine with a rigid tower and flexible rotor (represented by hinged rigid blades). First, an equation of motion of the blade is derived and an approximate solution for the blade response is found using the perturbation method. Secondly, the full non-linear solution is found by time- domain simulation. The response is found to be linear at lower platform pitching frequencies, becoming non-linear at higher frequencies, with the approximate solution giving good results for weakly non-linear behaviour. Higher rotor speeds have a stabilising effect on the response. In the context of typical floating turbine parameters, it is concluded that the blade flapwise response is likely to be linear
Characterising dynamic non-linearity in floating wind turbines
Lupton, R. C.
2014-12-01
Fully coupled aero-hydro-control-elastic codes are being developed to cope with the new modelling challenges presented by floating wind turbines, but there is also a place for more efficient methods of analysis. One option is linearisation and analysis in the frequency domain. For this to be an effective method, the non-linearities in the system must be well understood. The present study focusses on understanding the dynamic response of the rotor to the overall platform motion, as would arise from wave loading, by using a simple model of a floating wind turbine with a rigid tower and flexible rotor (represented by hinged rigid blades). First, an equation of motion of the blade is derived and an approximate solution for the blade response is found using the perturbation method. Secondly, the full non-linear solution is found by time- domain simulation. The response is found to be linear at lower platform pitching frequencies, becoming non-linear at higher frequencies, with the approximate solution giving good results for weakly non-linear behaviour. Higher rotor speeds have a stabilising effect on the response. In the context of typical floating turbine parameters, it is concluded that the blade flapwise response is likely to be linear.
Optimal Stopping for Non-linear Expectations
Erhan Bayraktar; Song Yao
2009-01-01
We develop a theory for solving continuous time optimal stopping problems for non-linear expectations. Our motivation is to consider problems in which the stopper uses risk measures to evaluate future rewards.
Non-linear wave equations:Mathematical techniques
An account of certain well-established mathematical methods, which prove useful to deal with non-linear partial differential equations is presented. Within the strict framework of Functional Analysis, it describes Semigroup Techniques in Banach Spaces as well as variational approaches towards critical points. Detailed proofs are given of the existence of local and global solutions of the Cauchy problem and of the stability of stationary solutions. The formal approach based upon invariance under Lie transformations deserves attention due to its wide range of applicability, even if the explicit solutions thus obtained do not allow for a deep analysis of the equations. A compre ensive introduction to the inverse scattering approach and to the solution concept for certain non-linear equations of physical interest are also presented. A detailed discussion is made about certain convergence and stability problems which arise in importance need not be emphasized. (author)
Asymptotic solution for a class of sea-air oscillator model for El Nino-southern oscillation
The El Nino-Southern Oscillation (ENSO) is an interannual phenomenon involved in the tropical Pacific Ocean-atmosphere interactions. In this paper, an asymptotic method of solving the nonlinear equation for the ENSO model is used. And based on a class of oscillator of ENSO model, the approximate solution of a corresponding problem is studied by employing the perturbation method. Firstly, an ENSO model of nonlinear time delay equation of equatorial Pacific is introduced, Secondly, by using the perturbed method, the zeroth and first order asymptotic perturbed solutions are constructed. Finally, from the comparison of the values for a figure, it is seen that the first asymptotic perturbed solution using the perturbation method has a good accuracy. And it is proved from the results that the perturbation method can be used as an analytic operation for the sea surface temperature anomaly in the equatorial Pacific of the atmosphere-ocean oscillation for the ENSO model
Stability of non-linear integrable accelerator
Batalov, I.; Valishev, A.
2012-01-01
The stability of non-linear Integrable Optics Test Accelerator (IOTA) model was tested. The area of the stable region in transverse coordinates and the maximum attainable tune spread were found as a function of non-linear lens strength. Particle loss as a function of turn number was analyzed to determine whether a dynamic aperture limitation present in the system. The system was also tested with sextupoles included in the machine for chromaticity compensation. A method of evaluation of the be...
Non-linear analysis of concrete structures
Work in progress on the inelastic analysis of concrete structures using the finite element method is described. The study serves two objectives, the working stress design and the ultimate load analysis. The distribution of temperature, of particular importance in nuclear structures, is studied. The basis for the non linear analysis of instantaneous deformations is given, based in plasticity theory. Linear and non linear viscoelasticity based in the state variables approach are studied. Several numerical examples are presented. (Author)
Oh, Myunghyun; 10.1007/s00205-009-0229-6
2009-01-01
Under natural spectral stability assumptions motivated by previous investigations of the associated spectral stability problem, we determine sharp $L^p$ estimates on the linearized solution operator about a multidimensional planar periodic wave of a system of conservation laws with viscosity, yielding linearized $L^1\\cap L^p\\to L^p$ stability for all $p \\ge 2$ and dimensions $d \\ge 1$ and nonlinear $L^1\\cap H^s\\to L^p\\cap H^s$ stability and $L^2$-asymptotic behavior for $p\\ge 2$ and $d\\ge 3$. The behavior can in general be rather complicated, involving both convective (i.e., wave-like) and diffusive effects.
Asymptotic profiles for a travelling front solution of a biological equation
Chapuisat, Guillemette
2010-01-01
We are interested in the existence of depolarization waves in the human brain. These waves propagate in the grey matter and are absorbed in the white matter. We consider a two-dimensional model $u_t=\\Delta u + f(u) \\1_{|y|\\leq R} - \\alpha u \\1_{|y|>R}$, with $f$ a bistable nonlinearity taking effect only on the domain $\\Rm\\times [-R,R]$, which represents the grey matter layer. We study the existence, the stability and the energy of non-trivial asymptotic profiles of possible travelling fronts. For this purpose, we present dynamical systems technics and graphic criteria based on Sturm-Liouville theory and apply them to the above equation. This yields three different behaviours of the solution $u$ after stimulation, depending of the thickness $R$ of the grey matter. This may partly explain the difficulties to observe depolarization waves in the human brain and the failure of several therapeutic trials.
Elliptic boundary value problems on corner domains smoothness and asymptotics of solutions
Dauge, Monique
1988-01-01
This research monograph focusses on a large class of variational elliptic problems with mixed boundary conditions on domains with various corner singularities, edges, polyhedral vertices, cracks, slits. In a natural functional framework (ordinary Sobolev Hilbert spaces) Fredholm and semi-Fredholm properties of induced operators are completely characterized. By specially choosing the classes of operators and domains and the functional spaces used, precise and general results may be obtained on the smoothness and asymptotics of solutions. A new type of characteristic condition is introduced which involves the spectrum of associated operator pencils and some ideals of polynomials satisfying some boundary conditions on cones. The methods involve many perturbation arguments and a new use of Mellin transform. Basic knowledge about BVP on smooth domains in Sobolev spaces is the main prerequisite to the understanding of this book. Readers interested in the general theory of corner domains will find here a new basic t...
Non-linear diffusive shock acceleration with free escape boundary
Caprioli, D.; Amato, E.; P. Blasi(INAF Arcetri)
2009-01-01
We present here a semi-analytical solution of the problem of particle acceleration at non-linear shock waves with a free escape boundary at some location upstream. This solution, besides allowing us to determine the spectrum of particles accelerated at the shock front, including the shape of the cutoff at some maximum momentum, also allows us to determine the spectrum of particles escaping the system from upstream. This latter aspect of the problem is crucial for establishing a connection bet...
Cardone, G; Panasenko, G P
2012-01-01
The Stokes equation with the varying viscosity is considered in a thin tube structure, i.e. in a connected union of thin rectangles with heights of order $\\varepsilon<<1 $ and with bases of order 1 with smoothened boundary. An asymptotic expansion of the solution is constructed: it contains some Poiseuille type flows in the channels (rectangles) with some boundary layers correctors in the neighborhoods of the bifurcations of the channels. The estimates for the difference of the exact solution and its asymptotic approximation are proved.
Bochicchio, Marco
2016-05-01
Employing a new class of string theories we construct a family of S -matrix amplitudes that factorize over linear Regge trajectories, and that are good candidates to be asymptotically free, i.e. to lead to asymptotically-free correlation functions working out the LS Z formulae the other way around. In particular, we propose a candidate for a string solution of QCD with NF massless quarks in the large-N 't Hooft limit, for the glueball and meson spectrum, and for certain S-matrix amplitudes in the collinear limit. The solution extends to massive quarks of equal mass.
Rukolaine, Sergey A.
2016-05-01
In classical kinetic models a particle free path distribution is exponential, but this is more likely to be an exception than a rule. In this paper we derive a generalized linear Boltzmann equation (GLBE) for a general free path distribution in the framework of Alt's model. In the case that the free path distribution has at least first and second finite moments we construct an asymptotic solution to the initial value problem for the GLBE for small mean free paths. In the special case of the one-speed transport problem the asymptotic solution results in a diffusion approximation to the GLBE.
Non-linear effects for cylindrical gravitational two-soliton
Tomizawa, Shinya
2015-01-01
Using a cylindrical soliton solution to the four-dimensional vacuum Einstein equation, we study non-linear effects of gravitational waves such as Faraday rotation and time shift phenomenon. In the previous work, we analyzed the single-soliton solution constructed by the Pomeransky's improved inverse scattering method. In this work, we construct a new two-soliton solution with complex conjugate poles, by which we can avoid light-cone singularities unavoidable in a single soliton case. In particular, we compute amplitudes of such non-linear gravitational waves and time-dependence of the polarizations. Furthermore, we consider the time shift phenomenon for soliton waves, which means that a wave packet can propagate at slower velocity than light.
Non-linear DSGE Models and The Central Difference Kalman Filter
Andreasen, Martin Møller
This paper introduces a Quasi Maximum Likelihood (QML) approach based on the Cen- tral Difference Kalman Filter (CDKF) to estimate non-linear DSGE models with potentially non-Gaussian shocks. We argue that this estimator can be expected to be consistent and asymptotically normal for DSGE models...
Non-linear dynamic of rotor-stator system with non-linear bearing clearance
Sinou, Jean-Jacques
2008-01-01
The study deals with a rotor-stator contact inducing vibration in rotating machinery. A numerical rotor-stator system, including a non-linear bearing with Hertz contact and clearance is considered. To determine the non-linear responses of this system, non-linear dynamic equations can be integrated numerically. However, this procedure is both time consuming and costly to perform. The aim of this Note is to apply the Alternate Frequency/Time Method and the 'path following continuation' in order to obtain the non-linear responses to this problem. Then the orbits of rotor and stator responses at various speeds are investigated.
Non-linear electrorheological instability of two streaming cylindrical fluids
A weakly non-linear instability of surface waves propagating through two viscoelastic cylindrical dielectric fluids is investigated. The examination is conducted in the presence of a tangential electric field and uniform axial relative streaming. The influence of the surface tension is taken into account, while the gravitational forces are ignored. Weak viscoelastic effects on the interface are considered, so that their contributions are demonstrated through the boundary conditions. Therefore, the equations of motion are solved in the absence of the viscoelastic effects. The solutions of the linearized equations of motion under the non-linear boundary conditions lead to derivation of a non-linear equation governing the interfacial displacement. This characteristic equation has damping terms and complex coefficients, where the nonlinearity is kept up to the third order. The linear state leads to a dispersion relation, where the stability is analysed. Taylor's theory is adopted to expand the governing non-linear equation in the light of the multiple scale technique, to impose the well-known Schroedinger equation. Several special cases are reported upon appropriate data choices. The stability criteria are discussed theoretically and illustrated graphically in which stability diagrams are obtained. Regions of stability and instability are identified for the electric field intensity versus the wave number for the wave train of the disturbance
Is 3D true non linear traveltime tomography reasonable ?
Herrero, A.; Virieux, J.
2003-04-01
The data sets requiring 3D analysis tools in the context of seismic exploration (both onshore and offshore experiments) or natural seismicity (micro seismicity surveys or post event measurements) are more and more numerous. Classical linearized tomographies and also earthquake localisation codes need an accurate 3D background velocity model. However, if the medium is complex and a priori information not available, a 1D analysis is not able to provide an adequate background velocity image. Moreover, the design of the acquisition layouts is often intrinsically 3D and renders difficult even 2D approaches, especially in natural seismicity cases. Thus, the solution relies on the use of a 3D true non linear approach, which allows to explore the model space and to identify an optimal velocity image. The problem becomes then practical and its feasibility depends on the available computing resources (memory and time). In this presentation, we show that facing a 3D traveltime tomography problem with an extensive non-linear approach combining fast travel time estimators based on level set methods and optimisation techniques such as multiscale strategy is feasible. Moreover, because management of inhomogeneous inversion parameters is more friendly in a non linear approach, we describe how to perform a jointly non-linear inversion for the seismic velocities and the sources locations.
Asymptotics of self-similar solutions to coagulation equations with product kernel
McLeod, J B; Velázquez, J J L
2011-01-01
We consider mass-conserving self-similar solutions for Smoluchowski's coagulation equation with kernel $K(\\xi,\\eta)= (\\xi \\eta)^{\\lambda}$ with $\\lambda \\in (0,1/2)$. It is known that such self-similar solutions $g(x)$ satisfy that $x^{-1+2\\lambda} g(x)$ is bounded above and below as $x \\to 0$. In this paper we describe in detail via formal asymptotics the qualitative behavior of a suitably rescaled function $h(x)=h_{\\lambda} x^{-1+2\\lambda} g(x)$ in the limit $\\lambda \\to 0$. It turns out that $h \\sim 1+ C x^{\\lambda/2} \\cos(\\sqrt{\\lambda} \\log x)$ as $x \\to 0$. As $x$ becomes larger $h$ develops peaks of height $1/\\lambda$ that are separated by large regions where $h$ is small. Finally, $h$ converges to zero exponentially fast as $x \\to \\infty$. Our analysis is based on different approximations of a nonlocal operator, that reduces the original equation in certain regimes to a system of ODE.
Macroscopic and non-linear quantum games
Full text: We consider two models of quantum games. The first one is Marinatto and Weber's 'restricted' quantum game in which only the identity and the spin-flip operators are used. We show that this quantum game allows macroscopic mechanistic realization with the use of a version of the 'macroscopic quantum machine' described by Aerts already in 1980s. In the second model we use non-linear quantum state transformations which operate on points of spin-1/2 on the Bloch sphere and which can be used to distinguish optimally between two non-orthogonal states. We show that efficiency of these non-linear strategies out-perform any linear ones. Some hints on the possible theory of non-linear quantum games are given. (author)
Correlations and Non-Linear Probability Models
Breen, Richard; Holm, Anders; Karlson, Kristian Bernt
2014-01-01
Although the parameters of logit and probit and other non-linear probability models are often explained and interpreted in relation to the regression coefficients of an underlying linear latent variable model, we argue that they may also be usefully interpreted in terms of the correlations between...... the dependent variable of the latent variable model and its predictor variables. We show how this correlation can be derived from the parameters of non-linear probability models, develop tests for the statistical significance of the derived correlation, and illustrate its usefulness in two applications. Under...... certain circumstances, which we explain, the derived correlation provides a way of overcoming the problems inherent in cross-sample comparisons of the parameters of non-linear probability models....
We describe a practical implementation for finding parametric domain for asymptotic stability with probability one of zero solution of linear Ito stochastic differential equations based on Korenevskij and Mitropolskij's sufficient condition and our sufficient conditions. Numerical results show that all of these sufficient conditions are crucial in the implementation. (author)
A formal asymptotic expansion of a solution of the initial problem for a singularly perturbed differential-operational nonlinear equation in a small parameter has been constructed in the critical case. Splash functions of and boundary functions have been estimated of found and assessment of the residual member of the expansion has been obtained
Darwish, Mohamed Abdalla
2008-01-01
We study the solvability of a quadratic integral equation of fractional order with linear modification of the argument. This equation is considered in the Banach space of real functions defined, bounded and continuous on an unbounded interval. Moreover, we will obtain some asymptotic characterization of solutions.
2013-01-01
This book consists of twenty seven chapters, which can be divided into three large categories: articles with the focus on the mathematical treatment of non-linear problems, including the methodologies, algorithms and properties of analytical and numerical solutions to particular non-linear problems; theoretical and computational studies dedicated to the physics and chemistry of non-linear micro-and nano-scale systems, including molecular clusters, nano-particles and nano-composites; and, papers focused on non-linear processes in medico-biological systems, including mathematical models of ferments, amino acids, blood fluids and polynucleic chains.
NICE: Non-linear Independent Components Estimation
Dinh, Laurent; Krueger, David; Bengio, Yoshua
2014-01-01
We propose a deep learning framework for modeling complex high-dimensional densities called Non-linear Independent Component Estimation (NICE). It is based on the idea that a good representation is one in which the data has a distribution that is easy to model. For this purpose, a non-linear deterministic transformation of the data is learned that maps it to a latent space so as to make the transformed data conform to a factorized distribution, i.e., resulting in independent latent variables....
Non-linear high-frequency waves in the magnetosphere
S Moolla; R Bharuthram; S V Singh; G S Lakhina
2003-12-01
Using ﬂuid theory, a set of equations is derived for non-linear high-frequency waves propagating oblique to an external magnetic ﬁeld in a three-component plasma consisting of hot electrons, cold electrons and cold ions. For parameters typical of the Earth’s magnetosphere, numerical solutions of the governing equations yield sinusoidal, sawtooth or bipolar wave-forms for the electric ﬁeld.
Alarcón, Tomás [Centre de Recerca Matemàtica, Edifici C, Campus de Bellaterra, 08193 Bellaterra (Barcelona) (Spain); Departament de Matemàtiques, Universitat Atonòma de Barcelona, 08193 Bellaterra (Barcelona) (Spain)
2014-05-14
In this paper, we propose two methods to carry out the quasi-steady state approximation in stochastic models of enzyme catalytic regulation, based on WKB asymptotics of the chemical master equation or of the corresponding partial differential equation for the generating function. The first of the methods we propose involves the development of multiscale generalisation of a WKB approximation of the solution of the master equation, where the separation of time scales is made explicit which allows us to apply the quasi-steady state approximation in a straightforward manner. To the lowest order, the multi-scale WKB method provides a quasi-steady state, Gaussian approximation of the probability distribution. The second method is based on the Hamilton-Jacobi representation of the stochastic process where, as predicted by large deviation theory, the solution of the partial differential equation for the corresponding characteristic function is given in terms of an effective action functional. The optimal transition paths between two states are then given by those paths that maximise the effective action. Such paths are the solutions of the Hamilton equations for the Hamiltonian associated to the effective action functional. The quasi-steady state approximation is applied to the Hamilton equations thus providing an approximation to the optimal transition paths and the transition time between two states. Using this approximation we predict that, unlike the mean-field quasi-steady approximation result, the rate of enzyme catalysis depends explicitly on the initial number of enzyme molecules. The accuracy and validity of our approximated results as well as that of our predictions regarding the behaviour of the stochastic enzyme catalytic models are verified by direct simulation of the stochastic model using Gillespie stochastic simulation algorithm.
Felli, Veronica; Ferrero, Alberto; Terracini, Susanna
2008-01-01
Asymptotics of solutions to Schroedinger equations with singular magnetic and electric potentials is investigated. By using a Almgren type monotonicity formula, separation of variables, and an iterative Brezis-Kato type procedure, we describe the exact behavior near the singularity of solutions to linear and semilinear (critical and subcritical) elliptic equations with an inverse square electric potential and a singular magnetic potential with a homogeneity of order -1.
5D supersymmetric domain wall solution with active hyperscalars and mixed AdS/non-AdS asymptotics
BellorIn, Jorge; Colonnello, Claudia, E-mail: jorgebellorin@usb.v, E-mail: ccolonnello@sinata.fis.usb.v [Departamento de Fisica, Universidad Simon BolIvar, Valle de Sartenejas, 1080-A Caracas (Venezuela, Bolivarian Republic of)
2011-05-21
We find a new supersymmetric 5D solution of N= 2 supergravity coupled to one hypermultiplet that depends only on the fifth dimension (the energy scale in a holographic context). In one asymptotic limit the domain wall approaches to the AdS{sub 5} form but in the other one it does not. Similarly, the hyperscalars, which are all proportional between them, go asymptotically to a critical point of the potential only in one direction. The quaternionic Kaehler manifold of the model is the H{sup 4} hyperboloid. We use the standard metric of H{sup 4} in an explicit conformally flat form with several arbitrary parameters. We argue that the holographic dual of the domain wall is a RG flow of a D = 4, N= 1 gauge theory acquiring a conformal supersymmetry at the IR limit, which corresponds to the AdS{sub 5} asymptotic limit.
Non linearity between finance and growth
L. Deidda; B. Fattouh
2001-01-01
We present a simple model which establishes a non linear and possibly non monotonic relationship between financial development and economic growth. Applying a threshold regression model to King and Levine™s (1993) data set, we find evidence that is consistent with the main implications stemming from the theoretical model.
Non-linear Loudspeaker Unit Modelling
Pedersen, Bo Rohde; Agerkvist, Finn
2008-01-01
Simulations of a 6½-inch loudspeaker unit are performed and compared with a displacement measurement. The non-linear loudspeaker model is based on the major nonlinear functions and expanded with time-varying suspension behaviour and flux modulation. The results are presented with FFT plots of three...
Dark Energy and Non-linear Perturbations
BRUCK, C.; Mota, D. F.
2005-01-01
Dark energy might have an influence on the formation of non--linear structures during the cosmic history. For example, in models in which dark energy couples to dark matter, it will be non--homogeneous and will influence the collapse of a dark matter overdensity. We use the spherical collapse model to estimate how much influence dark energy might have.
Quasi-integrability in the modified defocusing non-linear Schr\\"odinger model and dark solitons
Blas, H
2015-01-01
The concept of quasi-integrability has been examined in the context of deformations of the defocusing non-linear Schr\\"odinger model (NLS). Our results show that the quasi-integrability concept, recently discussed in the context of deformations of the sine-Gordon, Bullough-Dodd and focusing NLS models, holds for the modified defocusing NLS model with dark soliton solutions and it exhibits the new feature of an infinite sequence of alternating conserved and asymptotically conserved charges. For the special case of two dark soliton solutions, where the field components are eigenstates of a space-reflection symmetry, the first four and the sequence of even order charges are exactly conserved in the scattering process of the solitons. Such results are obtained through analytical and numerical methods, and employ adaptations of algebraic techniques used in integrable field theories. We perform extensive numerical simulations and consider the scattering of dark solitons for the cubic-quintic NLS model with potentia...
Embedding Non-Linear Structures in f(R) Cosmologies
Clifton, Timothy
2015-01-01
When using Einstein's equations, there exist a number of techniques for embedding non-linear structures in cosmological backgrounds. These include Swiss cheese models, in which spherically symmetric vacua are patched onto Friedmann solutions, and lattice models, in which weak-field regions are joined together directly. In this talk we will consider how these methods work in f(R) theories of gravity. We will show that their existence places constraints on the large-scale expansion of the universe, and that it may not always be possible to consider the Friedmann solutions and weak-field solutions of a theory independently from each other.
Pressurized Poroelastic Inclusions: Short-term and Long-term Asymptotic Solutions
Bedayat, Houman; Dahi Taleghani, Arash
2015-11-01
This paper provides semi-analytical, asymptotic short-term and long-term solutions for the volume change and corresponding leak-off volume of a fluid-saturated, three-dimensional poroelastic inclusion, considering fluid exchange with the surrounding poroelastic medium. Considering possibly different material properties and different fluid pressure of hydrocarbon-bearing formations or proppant-filled fractures in comparison to those of the surrounding geological structures, fractures or whole reservoirs can be regarded as inclusions. The problem-solving approach used in our study is inspired by the theory of inclusions and modal decomposition technique previously developed and used to solve several poroelasticity problems. Previous studies on the topic, however, have not incorporated the hydraulic communication between the inclusion and the surrounding medium; therefore, fluid pressure changes in the surrounding rock due to fluid pressure changes in the inclusion were ignored. An example of this problem would be a pressurized stationary fracture, which, depending on pressure, might have fluid exchange with the surroundings. Numerical examples considering inclusions with different aspect ratios and material properties are provided to better describe the significance of fluid exchange.