Sample records for assessment numerical simulation

  1. China and the TPP: A Numerical Simulation Assessment of the Effects Involved

    Chunding Li; John Whalley


    The Trans-Pacific Partnership (TPP) is a new negotiation on cross border liberalization of goods and service flows going beyond WTO disciplines and focused on issues such as regulation and border controls. Though the US, Australia and other pacific countries are included, China is notable for its exclusion from the process thus far. This paper uses numerical simulation methods to assess the potential effects of a TPP agreement on China and the other participating countries. We use a numerical...

  2. Improvement of numerical simulation methods on safety assessment of the spent fuel storage facility

    Improvement of numerical simulation methods on safety assessment of the spent fuel storage facility is one of main objectives of JNES activities. For the thermal and structural analyses, the radiative heat transfer analysis code S-FOKS has been developed to reduce computing time and to avoid using large memory area. In order to simulate the specular reflection, a new model (called 'model-2') is planned to install to S-FOKS code. The theoretical values with the specular reflection in simple geometry were lead to verify S-FOKS model-2. (author)

  3. Nitrogen diffusion and nitrogen depth profiles in expanded austenite: experimental assessment, numerical simulation and role of stress

    Christiansen, Thomas; Dahl, Kristian Vinter; Somers, Marcel A. J.


    The present paper addresses the experimental assessment of the concentration dependent nitrogen diffusion coefficient in stress free expanded austenite foils from thermogravimetry, the numerical simulation of nitrogen concentration depth profiles on growth of expanded austenite into stainless ste...

  4. Confidence in Numerical Simulations

    Hemez, Francois M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    This PowerPoint presentation offers a high-level discussion of uncertainty, confidence and credibility in scientific Modeling and Simulation (M&S). It begins by briefly evoking M&S trends in computational physics and engineering. The first thrust of the discussion is to emphasize that the role of M&S in decision-making is either to support reasoning by similarity or to “forecast,” that is, make predictions about the future or extrapolate to settings or environments that cannot be tested experimentally. The second thrust is to explain that M&S-aided decision-making is an exercise in uncertainty management. The three broad classes of uncertainty in computational physics and engineering are variability and randomness, numerical uncertainty and model-form uncertainty. The last part of the discussion addresses how scientists “think.” This thought process parallels the scientific method where by a hypothesis is formulated, often accompanied by simplifying assumptions, then, physical experiments and numerical simulations are performed to confirm or reject the hypothesis. “Confidence” derives, not just from the levels of training and experience of analysts, but also from the rigor with which these assessments are performed, documented and peer-reviewed.

  5. Confidence in Numerical Simulations

    This PowerPoint presentation offers a high-level discussion of uncertainty, confidence and credibility in scientific Modeling and Simulation (M&S). It begins by briefly evoking M&S trends in computational physics and engineering. The first thrust of the discussion is to emphasize that the role of M&S in decision-making is either to support reasoning by similarity or to ''forecast,'' that is, make predictions about the future or extrapolate to settings or environments that cannot be tested experimentally. The second thrust is to explain that M&S-aided decision-making is an exercise in uncertainty management. The three broad classes of uncertainty in computational physics and engineering are variability and randomness, numerical uncertainty and model-form uncertainty. The last part of the discussion addresses how scientists ''think.'' This thought process parallels the scientific method where by a hypothesis is formulated, often accompanied by simplifying assumptions, then, physical experiments and numerical simulations are performed to confirm or reject the hypothesis. ''Confidence'' derives, not just from the levels of training and experience of analysts, but also from the rigor with which these assessments are performed, documented and peer-reviewed.

  6. Infiltration in layered loessial deposits: Revised numerical simulations and recharge assessment

    Dafny, Elad; Šimůnek, Jirka


    The objective of this study is to assess recharge rates and their timing under layered loessial deposits at the edge of arid zones. Particularly, this study is focused on the case of the coastal plain of Israel and Gaza. First, results of a large-scale field infiltration test were used to calibrate the van Genuchten parameters of hydraulic properties of the loessial sediments using HYDRUS (2D/3D). Second, optimized soil hydraulic parameters were used by HYDRUS-1D to simulate the water balance of the sandy-loess sediments during a 25-year period (1990-2015) for three environmental conditions: bare soil, and soil with both sparse and dense natural vegetation. The best inverse parameter optimization run fitted the infiltration test data with the RMSE of 0.27 d (with respect to a moisture front arrival) and R2 of 96%. The calibrated model indicates that hydraulic conductivities of the two soil horizons, namely sandy loam and sandy clay loam, are 81 cm/d and 17.5 cm/d, respectively. These values are significantly lower than those previously reported, based on numerical simulations, for the same site. HYDRUS-1D simulation of natural recharge under bare soil resulted in recharge estimates (to the aquifer) in the range of 21-93 mm/yr, with an average recharge of 63 mm/yr. Annual precipitation in the same period varied between 100 and 300 mm/yr, with an average of 185 mm/yr. For semi-stabilized dunes, with 26% of the soil surface covered by local shrub (Artemisia monosperma), the mean annual recharge was 28 mm. For the stabilized landscape, with as much as 50% vegetation coverage, it was only 2-3 mm/yr. In other words, loessial sediments can either be a source of significant recharge, or of no recharge at all, depending on the degree of vegetative cover. Additionally, the time lag between specific rainy seasons and corresponding recharge events at a depth of 22 m, increased from 2.5 to 5 years, and to about 20 years, respectively, with an increasing vegetative cover. For


    Flach, G.


    The Saltstone Disposal Facility Performance Assessment (PA) is being revised to incorporate requirements of Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA), and updated data and understanding of vault performance since the 1992 PA (Cook and Fowler 1992) and related Special Analyses. A hybrid approach was chosen for modeling contaminant transport from vaults and future disposal cells to exposure points. A higher resolution, largely deterministic, analysis is performed on a best-estimate Base Case scenario using the PORFLOW numerical analysis code. a few additional sensitivity cases are simulated to examine alternative scenarios and parameter settings. Stochastic analysis is performed on a simpler representation of the SDF system using the GoldSim code to estimate uncertainty and sensitivity about the Base Case. This report describes development of PORFLOW models supporting the SDF PA, and presents sample results to illustrate model behaviors and define impacts relative to key facility performance objectives. The SDF PA document, when issued, should be consulted for a comprehensive presentation of results.

  8. Assessment of the State-Of-The-Art of Numerical Simulation of Enhanced Geothermal Systems

    The reservoir features of importance in the operation of enhanced geothermal systems are described first (Section 2). The report then reviews existing reservoir simulators developed for application to HDR reservoirs (Section 3), hydrothermal systems (Section 4), and nuclear waste isolation (Section 5), highlighting capabilities relevant to the evaluation and assessment of EGS. The report focuses on simulators that include some representation of flow in fractures, only mentioning other simulators, such as general-purpose programs or groundwater models (Section 6). Following these detailed descriptions, the report summarizes and comments on the simulators (Section 7), and recommends a course of action for further development (Section 8). The references are included in Section 9. Appendix A contains contractual information, including a description of the original and revised scope of work for this study. Appendix B presents comments on the draft report from DOE reviewer(s) and the replies of the authors to those comments. [DJE-2005

  9. Assessment of the State-Of-The-Art of Numerical Simulation of Enhanced Geothermal Systems



    The reservoir features of importance in the operation of enhanced geothermal systems are described first (Section 2). The report then reviews existing reservoir simulators developed for application to HDR reservoirs (Section 3), hydrothermal systems (Section 4), and nuclear waste isolation (Section 5), highlighting capabilities relevant to the evaluation and assessment of EGS. The report focuses on simulators that include some representation of flow in fractures, only mentioning other simulators, such as general-purpose programs or groundwater models (Section 6). Following these detailed descriptions, the report summarizes and comments on the simulators (Section 7), and recommends a course of action for further development (Section 8). The references are included in Section 9. Appendix A contains contractual information, including a description of the original and revised scope of work for this study. Appendix B presents comments on the draft report from DOE reviewer(s) and the replies of the authors to those comments. [DJE-2005

  10. Numerical simulation of an industrial microwave assisted filter dryer: criticality assessment and optimization.

    Leonelli, Cristina; Veronesi, Paolo; Grisoni, Fabio


    Industrial-scale filter dryers, equipped with one or more microwave input ports, have been modelled with the aim of detecting existing criticalities, proposing possible solutions and optimizing the overall system efficiency and treatment homogeneity. Three different loading conditions have been simulated, namely the empty applicator, the applicator partially loaded by both a high-loss and low loss load whose dielectric properties correspond to the one measured on real products. Modeling results allowed for the implementation of improvements to the original design such as the insertion of a wave guide transition and a properly designed pressure window, modification of the microwave inlet's position and orientation, alteration of the nozzles' geometry and distribution, and changing of the cleaning metallic torus dimensions and position. Experimental testing on representative loads, as well as in production sites, allowed for the confirmation of the validity of the implemented improvements, thus showing how numerical simulation can assist the designer in removing critical features and improving equipment performances when moving from conventional heating to hybrid microwave-assisted processing. PMID:18350999

  11. The Ohio River Valley CO2 Storage Project AEP Mountaineer Plant, West Virginia Numerical Simulation and Risk Assessment Report

    Neeraj Gupta


    A series of numerical simulations of carbon dioxide (CO{sub 2}) injection were conducted as part of a program to assess the potential for geologic sequestration in deep geologic reservoirs (the Rose Run and Copper Ridge formations), at the American Electric Power (AEP) Mountaineer Power Plant outside of New Haven, West Virginia. The simulations were executed using the H{sub 2}O-CO{sub 2}-NaCl operational mode of the Subsurface Transport Over Multiple Phases (STOMP) simulator (White and Oostrom, 2006). The objective of the Rose Run formation modeling was to predict CO{sub 2} injection rates using data from the core analysis conducted on the samples. A systematic screening procedure was applied to the Ohio River Valley CO{sub 2} storage site utilizing the Features, Elements, and Processes (FEP) database for geological storage of CO{sub 2} (Savage et al., 2004). The objective of the screening was to identify potential risk categories for the long-term geological storage of CO{sub 2} at the Mountaineer Power Plant in New Haven, West Virginia. Over 130 FEPs in seven main classes were assessed for the project based on site characterization information gathered in a geological background study, testing in a deep well drilled on the site, and general site conditions. In evaluating the database, it was apparent that many of the items were not applicable to the Mountaineer site based its geologic framework and environmental setting. Nine FEPs were identified for further consideration for the site. These FEPs generally fell into categories related to variations in subsurface geology, well completion materials, and the behavior of CO{sub 2} in the subsurface. Results from the screening were used to provide guidance on injection system design, developing a monitoring program, performing reservoir simulations, and other risk assessment efforts. Initial work indicates that the significant FEPs may be accounted for by focusing the storage program on these potential issues. The

  12. Dose assessment of spent fuel transportation and hotcell manipulation through numerical simulations using ORIGEN-ARP and GEANT4 codes

    Certification process of PWR fuel requires irradiation experiments in test reactors in order to guarantee safety of facilities, workers and environment. In these tests, the fuel is submitted to stress conditions prior to its real usage in a commercial reactor. Post-irradiation examination of burned fuel is conducted in hot-cells. Dose assessment during fuel transportation and manipulation in hot-cells is required. This work simulated commercial (below 6 wt% enriched) PWR spent fuel fission products using ORIGEN-ARP code. Different scenarios, varying fuel burn-up and pool decay storage time, were simulated. The simulation results were used to determine the maximum amount of spent fuel allowed to be transported and manipulated inside a hot-cell. GEANT4, an open source Monte Carlo toolkit simulation package used to track particles, was used to assess radiation doses given to workers and environment. A commercial B(U) type Agnes - La Calhene transportation cask with storage capacity limited to three mini rods was considered. Fission products were classified according to three categories: short-lived radionuclides (half-life around months), medium-lived radionuclides (half-life around tenths of years) and long-lived radionuclides (half-life of hundreds of years and beyond). Short lived radionuclides are left to decay inside the reactor's pool while long-lived radionuclides present no real radioprotection concern, since they emit mainly alpha particles and have low activities compared with medium-lived radionuclides. In this work, activities around 1000 TBq were found. Considering current radioprotection limits, doses were numerically calculated using an anthropomorphic human phantom simulating an average person. (author)

  13. Numerical simulation of dusty plasmas

    Winske, D.


    The numerical simulation of physical processes in dusty plasmas is reviewed, with emphasis on recent results and unresolved issues. Three areas of research are discussed: grain charging, weak dust-plasma interactions, and strong dust-plasma interactions. For each area, we review the basic concepts that are tested by simulations, present some appropriate examples, and examine numerical issues associated with extending present work.

  14. Numerical simulation and impact assessment of a groundwater pollution based on MODFLOW

    Based on MODFLOW, SRTM3 DEM data and GIS tool, a saturated-zone groundwater flow and radionuclide transport numerical model in a research area had been developed to evaluate the migration trend and environmental impact. The results showed that 3H transporting with the groundwater had a fast velocity and a pulse concentration which can not reduce to acceptable level within short times. that may cause groundwater pollution in downstream region. However, 90Sr was transported slowly with the groundwater, and may only cause a pollution area of about 200 m around the source. (authors)

  15. Performance assessment of a small wind turbine with crossflow runner by numerical simulations

    Dragomirescu, A. [University Politehnica of Bucharest, Department of Hydraulics, Hydraulic Machinery and Environmental Engineering, Splaiul Independentei 313, 060042 Bucharest (Romania)


    Most of the classical wind turbines are not able to start at wind speeds as low as 2-3 m/s. Other turbines, like Savonius, have a low maximum efficiency, which renders them useless in poor wind conditions. Therefore, new turbine designs are required to harvest wind power even when the wind speed is low. A wind turbine having a crossflow runner, similar to the Banki water turbine, is studied numerically in this work in order to estimate its performance. The results obtained suggest that this turbine has a considerable high starting torque and its maximum power coefficient is comparable to those of horizontal axis wind turbines. Based on the results obtained, some improvements of the design are proposed in order to further increase turbine performance. (author)

  16. Combining Narrative and Numerical Simulation

    Hansen, Mette Sanne; Ladeby, Klaes Rohde; Rasmussen, Lauge Baungaard; Jacobsen, Peter

    Strategic simulation is the combination of narrative and numerical simulation and can be used as a tool to support strategic decision making by providing different scenarios in combination with computer modelling. The core of the combined simulation approach (CSA) is to make it possible for...... decision making in operations and production management by providing new insights into modelling and simulation based on the combined narrative and numerical simulation approach as a tool for strategy making. The research question asks, “How can the CSA be applied in a practical context to support strategy...

  17. Numerical simulation of welding

    Hansen, Jan Langkjær; Thorborg, Jesper

    , good predictions of the thermal field are obtained. This has been verified with experiments. The significance of the right fitting of the model to the topical welding process must be emphasized. With a mechanical model in ABAQUS based on a thermal model as described, distributions of both transient...... welding process. Various circumstances are process dependent and require not only knowledge of the process in practice butalso a thorough experience with the numerical modelling of the problem....

  18. Accurate Assessment of RSET for Building Fire Based on Engineering Calculation and Numerical Simulation

    Yan Zhenzhen


    Full Text Available In order to obtain the Required Safety Egress Time (RSET accurately, traditional engineering calculation method of evacuation time has been optimized in this paper. Several principles and fact situations were used to optimize the method, such as detecting principle of the fire detecting system, reaction characteristics of staff being in urgent situation, evacuating queuing theory, building structure and the plugging at the porthole. Taking a three-storey KTV as an example, two methods are used to illustrate the reliability and scientific reasonability of the calculation result. The result is deduced by comparing the error (less than 2% at an allowable range between two results. One result is calculated by a modified method of engineering calculation method, and the other one is given based on a Steering model of Pathfinder evacuation simulation software. The optimized RSET has a good feasibility and Accuracy.

  19. Microdosimetric assessment of the radiation quality of a therapeutic proton beam: Comparison between numerical simulation and experimental measurements

    Using protons for the treatment of ocular melanoma (especially of posterior pole tumours), the radiation quality of the beam must be precisely assessed to preserve the vision and to minimise the damage to healthy tissue. The radiation quality of a therapeutic proton beam at the Centre Antoine Lacassagne in Nice (France) was measured using microdosimetric techniques, i.e. a miniaturised version of a tissue-equivalent proportional counter. Measurements were performed in a 1-μm site at different depths in a Lucite phantom. Experimental data showed a significant increase in the beam quality at the distal edge of the spread-out Bragg peak (SOBP). In this paper, the numerical simulation of the experimental setup is done with the FLUKA Monte Carlo radiation transport code. The calculated microdosimetric spectra are compared with the measured ones at different depths in tissue for a monoenergetic proton beam (E=62 MeV) and for a modulated SOBP. Numerically and experimentally predicted relative biological effectiveness values are in good agreement. The calculated frequency-averaged and dose-averaged lineal energy mean values are consistent with measured data. (authors)

  20. Numerical simulation of laser resonators

    We developed numerical simulation packages for laser resonators on the bases of a pair of integral equations. Two numerical schemes, a matrix formalism and an iterative method, were programmed for finding numeric solutions to the pair of integral equations. The iterative method was tried by Fox and Li, but it was not applicable for high Fresnel numbers since the numerical errors involved propagate and accumulate uncontrollably. In this paper, we implement the matrix method to extend the computational limit further. A great number of case studies are carried out with various configurations of stable and unstable r;esonators to compute diffraction losses, phase shifts, intensity distributions and phases of the radiation fields on mirrors. Our results presented in this paper show not only a good agreement with the results previously obtained by Fox and Li, but also the legitimacy of our numerical procedures for high Fresnel numbers.

  1. Monte Carlo simulation and numerical integration

    Geweke, John F.


    This is a survey of simulation methods in economics, with a specific focus on integration problems. It describes acceptance methods, importance sampling procedures, and Markov chain Monte Carlo methods for simulation from univariate and multivariate distributions and their application to the approximation of integrals. The exposition gives emphasis to combinations of different approaches and assessment of the accuracy of numerical approximations to integrals and expectations. The survey illus...

  2. Numerical simulation of electrochemical desalination

    Hlushkou, D.; Knust, K. N.; Crooks, R. M.; Tallarek, U.


    We present an effective numerical approach to simulate electrochemically mediated desalination of seawater. This new membraneless, energy efficient desalination method relies on the oxidation of chloride ions, which generates an ion depletion zone and local electric field gradient near the junction of a microchannel branch to redirect sea salt into the brine stream, consequently producing desalted water. The proposed numerical model is based on resolution of the 3D coupled Navier–Stokes, Nernst–Planck, and Poisson equations at non-uniform spatial grids. The model is implemented as a parallel code and can be employed to simulate mass–charge transport coupled with surface or volume reactions in 3D systems showing an arbitrarily complex geometrical configuration.

  3. Numerical simulations in quantum chromodynamics

    One of the most outstanding challenges in physics today is to explain quantitatively the observed properties of protons, neutrons etc. generically called hadrons. A significant part of this challenge is also to explain so called Quark Confinement. Though there is very strong evidence that the correct theoretical description is provided by the so called Quantum Chromodynamics (QCD), it is an extremely difficult theory to solve by traditional analytical techniques. Great strides have been made over the last couple of decades in numerical simulations of this theory which require the fastest available supercomputers. In this paper I shall briefly describe QCD and also describe its numerical simulations and their complexity. I shall briefly describe the most recent results obtained on the Teraflop Linux cluster KABRU at IMSc. (author)

  4. Numerical simulations of strong Turbulence

    Jásenský, Václav; Trávníček, Pavel; Váňa, Ondřej

    Prague : Faculty of mathematics and physics, Charles University, 2001 - (Šafránková, J.), s. 378-380 [10th Annual Conference of Doctoral Students. Prague (CZ), 12.06.2001-15.06.2001] R&D Projects: GA ČR GA205/01/1064 Institutional research plan: CEZ:AV0Z3042911 Keywords : Strong Turbulence * Zakharov Equations * Numeric Simulations Solitons Subject RIV: BE - Theoretical Physics

  5. Numerical Simulation of Flame Propagation

    Uddholm, Per


    The effects of the temperature and length, of the preheat zone, on the deflagration to detonation transition are investigated through numerical simulation. The Navier-Stokes equations, with a reaction term, are solved in one dimension. The time integration is a one-dimensional adaptation of an existing two-dimensional finite volume method code. An iterative scheme, based on an overlap integral, is developed for the determination of the deflagration to detonation transition. The code is tested...

  6. 3-D numerical simulation of Yb:YAG active slabs with longitudinal doping gradient for thermal load effects assessment.

    Ferrara, P; Ciofini, M; Esposito, L; Hostaša, J; Labate, L; Lapucci, A; Pirri, A; Toci, G; Vannini, M; Gizzi, L A


    We present a study of Yb:YAG active media slabs, based on a ceramic layered structure with different doping levels. We developed a procedure allowing 3D numerical analysis of the slab optical properties as a consequence of the thermal load induced by the pump process. The simulations are compared with a set of experimental results in order to validate the procedure. These structured ceramics appear promising in appropriate geometrical configurations, and thus are intended to be applied in the construction of High Energy Diode Pumped Solid State Laser (DPSSL) systems working in high repetition-rate pulsed regimes. PMID:24663877

  7. Assessment of uniform temperature assumption in zoning on the numerical simulation of a walking beam reheating furnace

    The numerical simulation of the heating process of steel slabs in a walking beam reheating furnace is reported using two different models. In one model, the turbulent reactive flow in the furnace is simulated together with the heat conduction in the slabs. The calculations are performed using a commercial code and a user-defined function is used to simulate the periodic movement of the slabs by the walking beams in the furnace. Unsteady calculations are performed until a periodic transient solution is achieved. In the second model, the furnace is divided into a small number of zones and the average temperature and chemical composition are prescribed in every zone based on the results of the first model. The unsteady heating process of the slabs is modeled using the same software and accounting for radiative transfer in the furnace and heat conduction in the slabs. The results of the first model are taken as a benchmark for the second one. It is shown that the first model predicts radiative heat fluxes and temperatures of the slabs that are consistent with previous work. The two models yield volume average temperatures of the slabs leaving the furnace that differ by less than 3%, provided that accurate values of the temperature of the gases and walls are used. The second model is computationally more economical, requiring only about 5% of the computational time of the first one. - Highlights: • The heating process of steel slabs in a reheating furnace is numerically simulated. • Unsteady calculations accounting for the periodic movement of the slabs are reported. • We compare two models differing on how the thermochemical composition is obtained. • The models predict mean slab temperatures at the exit that differ by less than 3%. • The computational time of the fastest model is only about 5% of the slowest one

  8. An Observing System Simulation Experiment (OSSE to Assess the Impact of Doppler Wind Lidar (DWL Measurements on the Numerical Simulation of a Tropical Cyclone

    Lei Zhang


    Full Text Available The importance of wind observations has been recognized for many years. However, wind observations—especially three-dimensional global wind measurements—are very limited. A satellite-based Doppler Wind Lidar (DWL is proposed to measure three-dimensional wind profiles using remote sensing techniques. Assimilating these observations into a mesoscale model is expected to improve the performance of the numerical weather prediction (NWP models. In order to examine the potential impact of the DWL three-dimensional wind profile observations on the numerical simulation and prediction of tropical cyclones, a set of observing simulation system experiments (OSSEs is performed using the advanced research version of the Weather Research and Forecasting (WRF model and its three-dimensional variational (3DVAR data assimilation system. Results indicate that assimilating the DWL wind observations into the mesoscale numerical model has significant potential for improving tropical cyclone track and intensity forecasts.

  9. AGN feedback in numerical simulations

    Ciotti, L


    The passively evolving stellar population in elliptical galaxies (Es) provides a continuous source of fuel for accretion on the central supermassive black hole (SMBH), which is 1) extended over the entire galaxy life (but declining with cosmic time), 2) linearly proportional to the stellar mass of the host spheroid, 3) summing up to a total gas mass that is >100 times larger than the currently observed SMBH masses, 4) available independently of merging events. The main results of numerical simulations of Es with central SMBH, in which a physically based implementation of radiative and mechanical feedback effects is considered, are presented.

  10. Plasma modelling and numerical simulation

    Plasma modelling is an exciting subject in which virtually all physical disciplines are represented. Plasma models combine the electromagnetic, statistical and fluid dynamical theories that have their roots in the 19th century with the modern insights concerning the structure of matter that were developed throughout the 20th century. The present cluster issue consists of 20 invited contributions, which are representative of the state of the art in plasma modelling and numerical simulation. These contributions provide an in-depth discussion of the major theories and modelling and simulation strategies, and their applications to contemporary plasma-based technologies. In this editorial review, we introduce and complement those papers by providing a bird's eye perspective on plasma modelling and discussing the historical context in which it has surfaced. (editorial review)

  11. Numerical Simulation for Space Charge Effect Calculation

    Numerical simulation of space charge effect, analysis of three dimensional uniformly charged zero emittance ellipsoidal bunch as well as comparative analysis of numerical and analytical results are presented. (author)

  12. Numerical Simulation of a Hypersonic Air Intake

    Soumyajit Saha; Debasis Chakraborty


    Numerical simulations were carried out to study the unsteady flow in an intake of hypersonic air-breathing vehicle. Unsteady RANS simulations were performed to examine started flow of the intake when cowl surface is parallel to the ramp surface. Though started, the flow was unsteady due to flow separation bubbles inside intake. Intake with larger cowl opening at which intake unstarted was also simulated. Simulations indicated unstarted flow, with large pressure oscillations. The numerically s...

  13. Rocket Engine Numerical Simulator (RENS)

    Davidian, Kenneth O.


    Work is being done at three universities to help today's NASA engineers use the knowledge and experience of their Apolloera predecessors in designing liquid rocket engines. Ground-breaking work is being done in important subject areas to create a prototype of the most important functions for the Rocket Engine Numerical Simulator (RENS). The goal of RENS is to develop an interactive, realtime application that engineers can utilize for comprehensive preliminary propulsion system design functions. RENS will employ computer science and artificial intelligence research in knowledge acquisition, computer code parallelization and objectification, expert system architecture design, and object-oriented programming. In 1995, a 3year grant from the NASA Lewis Research Center was awarded to Dr. Douglas Moreman and Dr. John Dyer of Southern University at Baton Rouge, Louisiana, to begin acquiring knowledge in liquid rocket propulsion systems. Resources of the University of West Florida in Pensacola were enlisted to begin the process of enlisting knowledge from senior NASA engineers who are recognized experts in liquid rocket engine propulsion systems. Dr. John Coffey of the University of West Florida is utilizing his expertise in interviewing and concept mapping techniques to encode, classify, and integrate information obtained through personal interviews. The expertise extracted from the NASA engineers has been put into concept maps with supporting textual, audio, graphic, and video material. A fundamental concept map was delivered by the end of the first year of work and the development of maps containing increasing amounts of information is continuing. Find out more information about this work at the Southern University/University of West Florida. In 1996, the Southern University/University of West Florida team conducted a 4day group interview with a panel of five experts to discuss failures of the RL10 rocket engine in conjunction with the Centaur launch vehicle. The

  14. Numerical simulation of drifting sand

    Alhajraf, Salem


    Two-phase flows are involved in many industrial and natural flow phenomena varying from as specific as the transport of crude oil in pipelines to as general as the dispersion of pollutants in the atmosphere. Numerical modelling based on Computational Fluid Dynamics (CFD), has attracted the attention of scientists and engineers from a wide range of backgrounds over recent decades during which these models have been extensively developed, analysed and applied to many practical...

  15. Numerical simulation of conservation laws

    Chang, Sin-Chung; To, Wai-Ming


    A new numerical framework for solving conservation laws is being developed. This new approach differs substantially from the well established methods, i.e., finite difference, finite volume, finite element and spectral methods, in both concept and methodology. The key features of the current scheme include: (1) direct discretization of the integral forms of conservation laws, (2) treating space and time on the same footing, (3) flux conservation in space and time, and (4) unified treatment of the convection and diffusion fluxes. The model equation considered in the initial study is the standard one dimensional unsteady constant-coefficient convection-diffusion equation. In a stability study, it is shown that the principal and spurious amplification factors of the current scheme, respectively, are structurally similar to those of the leapfrog/DuFort-Frankel scheme. As a result, the current scheme has no numerical diffusion in the special case of pure convection and is unconditionally stable in the special case of pure diffusion. Assuming smooth initial data, it will be shown theoretically and numerically that, by using an easily determined optimal time step, the accuracy of the current scheme may reach a level which is several orders of magnitude higher than that of the MacCormack scheme, with virtually identical operation count.


    J.X. Zhou; R.X. Liu; L.L. Chen; D.M. Liao; H.S. Wei


    Numerical simulation of casting's mold filling process is the main and the most important aspect of the foundry CAE technology. But it is time-consuming; it may take dozens of hours or several days. While with the development of computer hardware, numerical simulation of casting' s mold filling process has made rapid progress. The simulation results, therefore, have become more and more practical. This study tries to find some clues of the computational time of mold filling process. Firstly, this paper introduces mathematic model and the basic route of numerical simulation of casting's mold filling process. Then the computational time of mold filling process has been carefully studied, and some new and useful results have been gained from the study of the computational time. Finally, this paper has given some real applications of numerical simulation of casting's mold filling process.

  17. Numerical methods in simulation of resistance welding

    Nielsen, Chris Valentin; Martins, Paulo A.F.; Zhang, Wenqi;


    Finite element simulation of resistance welding requires coupling betweenmechanical, thermal and electrical models. This paper presents the numerical models and theircouplings that are utilized in the computer program SORPAS. A mechanical model based onthe irreducible flow formulation is utilized....... From a resistance welding point of view, the most essential coupling between the above mentioned models is the heat generation by electrical current due to Joule heating. The interaction between multiple objects is anothercritical feature of the numerical simulation of resistance welding because it...... influences thecontact area and the distribution of contact pressure. The numerical simulation of resistancewelding is illustrated by a spot welding example that includes subsequent tensile shear testing...

  18. Numerical Simulations of HH 555

    Kajdic, Primoz


    We present 3D gasdynamic simulations of the Herbig Haro object HH 555. HH 555 is a bipolar jet emerging from the tip of an elephant trunk entering the Pelican Nebula from the adjacent molecular cloud. Both beams of HH 555 are curved away from the center of the H II region. This indicates that they are being deflected by a side-wind probably coming from a star located inside the nebula or by the expansion of the nebula itself. HH 555 is most likely an irradiated jet emerging from a highly embedded protostar, which has not yet been detected. In our simulations we vary the incident photon flux, which in one of our models is equal to the flux coming from a star 1 pc away emitting 5x10^48 ionizing (i. e., with energies above the H Lyman limit) photons per second. An external, plane-parallel flow (a ``side-wind'') is coming from the same direction as the photoionizing flux. We have made four simulations, decreasing the photon flux by a factor of 10 in each simulation. We discuss the properties of the flow and we co...

  19. Numerical simulation of hydraulic transients

    A numerical method suitable for the analysis of hydraulic transients in one-dimensional pipelines as well as some applications of the method are presented in this thesis. In the present method one-dimensional flow equations are solved in a characteristic form using a finite difference technique. A non-equilibrium two-phase flow model is used, which makes it possible to analyze the effect of vaporization. The motion of the pipe-wall, which is important in some types of hydraulic transients, can be taken into account approximately. The main application of the method has been the piping of nuclear reactors

  20. Design and numerical simulation of novel DBRs

    Wei Su (苏伟); Jingchang Zhong (钟景昌); Wenli Liu (刘文莉); Yan-Kuin Su (苏炎坤); Shoou-Jinn Chang (张守进); Hsin-Chieh Yu (龙信介); Liangwen Ji (姬梁文); Lin Li (李林); Yingjie Zhao (赵英杰)


    In this paper, a numerical simulation of the traditional graded distributed Bragg reflector (DBR) and a design of the novel DBR with short period superlattices (SPSs DBR) used by vertical cavity surface emitting laser (VCSEL) are reported. First, the optical characteristic matrix of the graded DBRs is derived using the theories of thin film optics. Second, its reflective spectrum is numerical simulated and it is found that the simulative results are similar with the experimental data. The difference of the cavity mode position between the experimental and simulative data is discussed. Finally, based on the simulative results of graded DBR, a novel DBR with 4.5-pair GaAs/AlAs SPSs is designed, and its reflective spectrum is numerical simulated and analyzed.

  1. Fracture assessment of laser welde joints using numerical crack propagation simulation with a cohesive zone model; Bruchmechanische Bewertung von Laserschweissverbindungen durch numerische Rissfortschrittsimulation mit dem Kohaesivzonenmodell

    Scheider, I.


    This thesis introduces a concept for fracture mechanical assessment of structures with heterogenuous material properties like weldments. It is based on the cohesive zone model for numerical crack propagation analysis. With that model the failure of examined structures due to fracture can be determined. One part of the thesis contains the extension of the capabilities of the cohesive zone model regarding modelling threedimensional problems, shear fracture and unloading. In a second part new methods are developed for determination of elastic-plastic and fracture mechanical material properties, resp., which are based on optical determination of the specimen deformation. The whole concept has been used successfully for the numerical simulation of small laser welded specimens. (orig.) [German] In der vorliegenden Arbeit wird ein Konzept vorgestellt, mit dem es moeglich ist, Bauteile mit heterogenen Materialeigenschaften, wie z.B. Schweissverbindungen, bruchmechanisch zu bewerten. Es basiert auf einem Modell zur numerischen Rissfortschrittsimulation, dem Kohaesivzonenmodell, um das Versagen des zu untersuchenden Bauteils infolge von Bruch zu bestimmen. Ein Teil der Arbeit umfasst die Weiterentwicklung des Kohaesivzonenmodells zur Vorhersage des Bauteilversagens in Bezug auf die Behandlung dreidimensionaler Probleme, Scherbuch und Entlastung. In einem zweiten Teil werden Methoden zur Bestimmung sowohl der elastischplastischen als auch der bruchmechanischen Materialparameter entwickelt, die zum grossen Teil auf optischen Auswertungsmethoden der Deformationen beruhen. Das geschlossene Konzept wird erfolgreich auf lasergeschweisste Kleinproben angewendet. (orig.)

  2. Numerical simulation of hydrogen combustion

    The aim of this paper is to present a combustion model of hydrogen developed using the Star-cd fluid mechanics code. The model involves a detailed reaction process (11 elementary reactions and 4 intermediate elements) and a procedure is developed to solve the set of fully coupled reactions. Then, a preliminary study allowed to determine ignition conditions needed to numerically trigger a detonation phenomenon. The detonation phenomenon is computed on a first test case and the comparison with literature and another code shows a good agreement (temperature, pressure and velocity of the reaction front). The validation process is still in progress by comparison with other available results. Furthermore, combustion calculations including the prior hydrogen diffusion process can be foreseen. (author)

  3. Visualization of numerically simulated aerodynamic flow fields

    The focus of this paper is to describe the development and the application of an interactive integrated software to visualize numerically simulated aerodynamic flow fields so as to enable the practitioner of computational fluid dynamics to diagnose the numerical simulation and to elucidate essential flow physics from the simulation. The input to the software is the numerical database crunched by a supercomputer and typically consists of flow variables and computational grid geometry. This flow visualization system (FVS), written in C language is targetted at the Personal IRIS Workstations. In order to demonstrate the various visualization modules, the paper also describes the application of this software to visualize two- and three-dimensional flow fields past aerodynamic configurations which have been numerically simulated on the NEC-SXIA Supercomputer. 6 refs

  4. Numerical tools for atomistic simulations.

    Fang, H. (Mississippi State University); Gullett, Philip Michael; Slepoy, Alexander (Sandia National Laboratories, Albuquerque, NM); Horstemeyer, Mark F. (Mississippi State University); Baskes, Michael I. (Los Alamos National Laboratory, Los Alamos, NM); Wagner, Gregory John; Li, Mo (Materials Science and Engineering, Atlanta, GA)


    The final report for a Laboratory Directed Research and Development project entitled 'Parallel Atomistic Computing for Failure Analysis of Micromachines' is presented. In this project, atomistic algorithms for parallel computers were developed to assist in quantification of microstructure-property relations related to weapon micro-components. With these and other serial computing tools, we are performing atomistic simulations of various sizes, geometries, materials, and boundary conditions. These tools provide the capability to handle the different size-scale effects required to predict failure. Nonlocal continuum models have been proposed to address this problem; however, they are phenomenological in nature and are difficult to validate for micro-scale components. Our goal is to separately quantify damage nucleation, growth, and coalescence mechanisms to provide a basis for macro-scale continuum models that will be used for micromachine design. Because micro-component experiments are difficult, a systematic computational study that employs Monte Carlo methods, molecular statics, and molecular dynamics (EAM and MEAM) simulations to compute continuum quantities will provide mechanism-property relations associated with the following parameters: specimen size, number of grains, crystal orientation, strain rates, temperature, defect nearest neighbor distance, void/crack size, chemical state, and stress state. This study will quantify sizescale effects from nanometers to microns in terms of damage progression and thus potentially allow for optimized micro-machine designs that are more reliable and have higher fidelity in terms of strength. In order to accomplish this task, several atomistic methods needed to be developed and evaluated to cover the range of defects, strain rates, temperatures, and sizes that a material may see in micro-machines. Therefore we are providing a complete set of tools for large scale atomistic simulations that include pre

  5. Numerical Simulations of Thermographic Responses in Composites

    Winfree, William P.; Cramer, K. Elliot; Zalameda, Joseph N.; Howell, Patricia A.


    Numerical simulations of thermographic responses in composite materials have been a useful for evaluating and optimizing thermographic analysis techniques. Numerical solutions are particularly beneficial for thermographic techniques, since the fabrication of specimens with realistic flaws is difficult. Simulations are presented with different ply layups that incorporated the anisotropic thermal properties that exist in each ply. The results are compared to analytical series solutions and thermal measurements on composites with flat bottom holes and delaminations.

  6. Numerical simulation of mechatronic sensors and actuators

    Kaltenbacher, Manfred


    Focuses on the physical modeling of mechatronic sensors and actuators and their precise numerical simulation using the Finite Element Method (FEM). This book discusses the physical modeling as well as numerical computation. It also gives a comprehensive introduction to finite elements, including their computer implementation.

  7. Anomalous fermion number violation and numerical simulations

    After discussing the problem of lattice regularization of chiral gauge theories, a simple model for anomalous fermion number violation is formulated which can be numerically studied with present day technique. Exploratory results of numerical simulations of a two-dimensional U(1) Higgs model are presented. (orig.)

  8. Numerical simulations of the reditron

    Kwan, Thomas J. T.; Davis, Harold A.


    The reflected-electrons discrimination microwave generator (reditron) is a high-power, narrow-band, and single-mode microwave generation that makes exclusive use of the oscillatory character of the virtual-cathode of a relativistic electron beam. The complex, nonlinear character of the virtual-cathode device necessitates particle-in-cell plasma simulation techniques. Investigations indicate two sources of the radiation: (1) the trapped electrons reflexing between the real and virtual cathodes, and (2) the oscillation of the virtual cathode. In the conventional design, the two mechanisms coexist and interfere with each other destructively, causing degradation of the efficiency of microwave generation. The authors have investigated a configuration with a slotted, thick anode and an external magnetic field, which effectively eliminates the reflexing electrons. Two-dimensional particle-in-cell simulations showed that such a configuration exploits the oscillation of the virtual cathode exclusively, and it generates single-mode, narrowbandwidth, and high-power microwave radiation with a potential efficiency over 10 percent. It was found that further optimization could be achieved by the use of a density (current) modulated electron beam at appropriate frequencies.

  9. Numerical simulation of autoigniting flames

    Asaithambi, Rajapandiyan; Mahesh, Krishnan


    Autoignition is highly sensitive to temperature and mixing. A density based method for DNS/LES of compressible chemically reacting flows is proposed with an explicit predictor step for advection and diffusion terms, and a semi-implicit corrector step for stiff chemical source terms. This segregated approach permits independent modification of the Navier-Stokes solver and the time integration algorithm for the chemical source term. The algorithm solves the total chemical and sensible energy equation and heat capacities of species are obtained from thermodynamic tables. Chemical mechanisms in the Chemkin format is parsed and source terms are automatically linearized allowing the ability to simulate multiple fuels with minimal effort. Validation of the algorithm is presented and results from autoigniting non-premixed flames in vitiated coflow with different fuels are discussed.

  10. Assessment of the portable radiophone users' exposure to electromagnetic fields, with use of numerical simulations and Directive 2013/35/EU requirements

    Patryk Zradziński


    Full Text Available Background: The assessment of electromagnetic field distribution near radiophones and their use warranted an analysis of thermal exposure hazards and related health effects, based on i.e. numerical calculations of specific energy absorption rate (SAR. Materials and Methods: The investigation concerned radiophones of conventional and trunked communication systems. Electromagnetic hazards assessment involved numerical simulations of SAR inside users' models (male and female for 5 radiophones locations - near the ear, arm, chest, hip and face. Results: Maximum SAR (10 g values depend on radiophone type, output power and locations. Near the chest, hip and face they are 6-, 2- and 2-fold higher than for location near the ear. SAR (10 g may exceed Directive 2013/35/EU limits at maximum (4 W output power of conventional radiophones, and the distance between antenna and worker's body shorter than 5 cm. SAR (10 g values near trunked radiophones do not exceed 35% of the Directive limits. The Polish safety and health regulations in particular cases of radiophones use and local exposure may not guarantee the compliance with Directive 2013/35/EU requirements, i.e. SAR (10 g may locally exceed exposure limit values (ELVs during exposure to electromagnetic fields of hazardous, and even intermediate zones. Conclusions: It was demonstrated that exposure of trunked radiophones users does not exceed the limits laid down in the Polish safety and health regulations and Directive 2013/35/EU, however, in particular scenarios of the conventional radiophones use overexposure can be observed. The results showed that in exposure to electromagnetic field emitted by sources located near workers' body there is a need for more detailed analysis of the compliance of Polish safety and health regulations with Directive 2013/35/EU requirements. Med Pr 2013;64(6:817–827

  11. Numerical Simulation of Nanostructure Growth

    Hwang, Helen H.; Bose, Deepak; Govindan, T. R.; Meyyappan, M.


    Nanoscale structures, such as nanowires and carbon nanotubes (CNTs), are often grown in gaseous or plasma environments. Successful growth of these structures is defined by achieving a specified crystallinity or chirality, size or diameter, alignment, etc., which in turn depend on gas mixture ratios. pressure, flow rate, substrate temperature, and other operating conditions. To date, there has not been a rigorous growth model that addresses the specific concerns of crystalline nanowire growth, while demonstrating the correct trends of the processing conditions on growth rates. Most crystal growth models are based on the Burton, Cabrera, and Frank (BCF) method, where adatoms are incorporated into a growing crystal at surface steps or spirals. When the supersaturation of the vapor is high, islands nucleate to form steps, and these steps subsequently spread (grow). The overall bulk growth rate is determined by solving for the evolving motion of the steps. Our approach is to use a phase field model to simulate the growth of finite sized nanowire crystals, linking the free energy equation with the diffusion equation of the adatoms. The phase field method solves for an order parameter that defines the evolving steps in a concentration field. This eliminates the need for explicit front tracking/location, or complicated shadowing routines, both of which can be computationally expensive, particularly in higher dimensions. We will present results demonstrating the effect of process conditions, such as substrate temperature, vapor supersaturation, etc. on the evolving morphologies and overall growth rates of the nanostructures.

  12. Numerical simulation of LIGO input optics

    None, Shivanand; Jamal, Nafis; Yoshida, Sanichiro


    Numerical analysis has been carried out to understand the performance of the Input Optics used in the first generation of LIGO (Laser Interferometer Gravitational-wave Observatory) detector. The input optics is a subsystem consisting of a mode cleaner and mode-matching telescope, where all the optics are suspended and installed in vacuum. Using the end-to-end package (LIGO programming language), computer codes have been made to simulate the input optics. Giving realistic seismic noise to the suspension point of the optics and using the length sensing/alignment sensing control for the mode cleaner, the performance of the input optics has been simulated under various scenarios such as with an order of magnitude higher seismic noise than the normal level, and with/without the alignment sensing control feedback from the arm cavity to the mode-matching telescope. The results are assessed in terms of the beam pointing fluctuation of the laser beam going into the arm cavities, and its influence on the optical coupling to the arm cavities and the noise level at the gravitational wave port signal.

  13. Boundary acquisition for setup of numerical simulation

    Diegert, C. [Sandia National Lab., Albuquerque, NM (United States)


    The author presents a work flow diagram that includes a path that begins with taking experimental measurements, and ends with obtaining insight from results produced by numerical simulation. Two examples illustrate this path: (1) Three-dimensional imaging measurement at micron scale, using X-ray tomography, provides information on the boundaries of irregularly-shaped alumina oxide particles held in an epoxy matrix. A subsequent numerical simulation predicts the electrical field concentrations that would occur in the observed particle configurations. (2) Three-dimensional imaging measurement at meter scale, again using X-ray tomography, provides information on the boundaries fossilized bone fragments in a Parasaurolophus crest recently discovered in New Mexico. A subsequent numerical simulation predicts acoustic response of the elaborate internal structure of nasal passageways defined by the fossil record. The author must both add value, and must change the format of the three-dimensional imaging measurements before the define the geometric boundary initial conditions for the automatic mesh generation, and subsequent numerical simulation. The author applies a variety of filters and statistical classification algorithms to estimate the extents of the structures relevant to the subsequent numerical simulation, and capture these extents as faceted geometries. The author will describe the particular combination of manual and automatic methods used in the above two examples.

  14. Numerical simulation of sand jet in water

    Azimi, A.H.; Zhu, D.; Rajaratnam, N. [Alberta Univ., Edmonton, AB (Canada). Dept. of Civil and Environmental Engineering


    A numerical simulation of sand jet in water was presented. The study involved a two-phase flow using two-phase turbulent jets. A literature review was also presented, including an experiment on particle laden air jet using laser doppler velocimetry (LDV); experiments on the effect of particle size and concentration on solid-gas jets; an experimental study of solid-liquid jets using particle image velocimetry (PIV) technique where mean velocity and fluctuations were measured; and an experimental study on solid-liquid jets using the laser doppler anemometry (LDA) technique measuring both water axial and radial velocities. Other literature review results included a photographic study of sand jets in water; a comparison of many two-phase turbulent flow; and direct numerical simulation and large-eddy simulation to study the effect of particle in gas jet flow. The mathematical model and experimental setup were also included in the presentation along with simulation results for sand jets, concentration, and kinetic energy. The presentation concluded with some proposed future studies including numerical simulation of slurry jets in water and numerical simulation of slurry jets in MFT. tabs., figs.

  15. Numerical Simulation of Underwater Explosion Loads

    XIN Chunliang; XU Gengguang; LIU Kezhong


    Numerical simulation of TNT underwater explosion was carried out with AUTODYN software.Influences of artificial viscosity and mesh density on simulation results were discussed.Detonation waves in explosive and shock wave in water during early time of explosion are high frequency waves.Fine meshes (less than 1 mm) in explosive and water nearby,and small linear viscosity coefficients and quadratic viscosity coefficients (0.02 and 0.1 respectively,1/10 of default values) are needed in numerical simulation model.According to these rules,numerical computing pressure profiles can match well with those calculated by Zamyshlyayev empirical formula.Otherwise peak pressure would be smeared off and upstream relative errors would be cumulated downstream to make downstream peak pressure lower.



    Direct numerical simulations have recently emerged as a viable tool to study finite Reynolds number multiphase flows. The approach parallels direct numerical simulations of turbulent flows, but the unsteady motion of a deformable phase boundary adds considerable complexity.Here, a front tracking method that has been used to study several multiphase flow problems is described. The Navier-Stokes equations are solved by a finite difference/front tracking technique that allows the inclusion of fully deformable interfaces and surface tension, in addition to inertial and viscous effects. A parallel version of the method makes it possible to use large grids and resolve flows containing a few hundred bubbles.``

  17. Numerically simulating the sandwich plate system structures

    Feng, Guo-Qing; Li, Gang; Liu, Zhi-Hui; Niu, Huai-Lei; Li, Chen-Feng


    Sandwich plate systems (SPS) are advanced materials that have begun to receive extensive attention in naval architecture and ocean engineering. At present, according to the rules of classification societies, a mixture of shell and solid elements are required to simulate an SPS. Based on the principle of stiffness decomposition, a new numerical simulation method for shell elements was proposed. In accordance with the principle of stiffness decomposition, the total stiffness can be decomposed into the bending stiffness and shear stiffness. Displacement and stress response related to bending stiffness was calculated with the laminated shell element. Displacement and stress response due to shear was calculated by use of a computational code write by FORTRAN language. Then the total displacement and stress response for the SPS was obtained by adding together these two parts of total displacement and stress. Finally, a rectangular SPS plate and a double-bottom structure were used for a simulation. The results show that the deflection simulated by the elements proposed in the paper is larger than the same simulated by solid elements and the analytical solution according to Hoff theory and approximate to the same simulated by the mixture of shell-solid elements, and the stress simulated by the elements proposed in the paper is approximate to the other simulating methods. So compared with calculations based on a mixture of shell and solid elements, the numerical simulation method given in the paper is more efficient and easier to do.

  18. Correcting Numerical Simulations for Known Expectations

    Myerscough, K.W.


    Predictions of the future climate require long-time simulation of a chaotic dynamical system. This poses a challenge for numerical simulations, as these do not necessarily capture the correct long-term behaviour of chaotic systems. This problem is exacerbated by the wide range of length scales present in atmospheric and oceanic dynamics. The modeling choices for small scale processes have a large impact on long term statistics of the scales of interest. This thesis studies the dynamics of two...

  19. Numerical simulation of radial compressor stage

    Luňáček O.; Syka T.


    Article describes numerical simulations of air flow in radial compressor stage in NUMECA CFD software. In simulations geometry variants with and without seals are used. During tasks evaluating was observed seals influence on flow field and performance parameters of compressor stage. Also is described CFDresults comparison with results from design software based on experimental measurements and monitoring of influence of seals construction on compressor stage efficiency.

  20. Spectral Methods in Numerical Plasma Simulation

    Coutsias, E.A.; Hansen, F.R.; Huld, T.;


    An introduction is given to the use of spectral methods in numerical plasma simulation. As examples of the use of spectral methods, solutions to the two-dimensional Euler equations in both a simple, doubly periodic region, and on an annulus will be shown. In the first case, the solution is expanded...

  1. Numerical simulations of compact object binaries

    Pfeiffer, Harald P.


    Coalescing compact object binaries consisting of black holes and/or Neutron stars are a prime target for ground-based gravitational wave detectors. This article reviews the status of numerical simulations of these systems, with an emphasis on recent progress.

  2. Numerical Simulations of a Vibrating Elasticum

    Sinclair, Robert


    Two robust numerical algorithms for simulating the dynamics of a clamped, massless, incompressibleelasticum with a unit point mass at the free end are presented, along with some first results concerning various modes of oscillation, and further data with some relevance to the question of whether ...

  3. Database application platform for earthquake numerical simulation

    LUO Yan; ZHENG Yue-jun; CHEN Lian-wang; LU Yuan-zhong; HUANG Zhong-xian


    @@ Introduction In recent years, all kinds of observation networks of seismology have been established, which have been continuously producing numerous digital information. In addition, there are many study results about 3D velocity structure model and tectonic model of crust (Huang and Zhao, 2006; Huang et al, 2003; Li and Mooney, 1998),which are valuable for studying the inner structure of the earth and earthquake preparation process. It is badly needed to combine the observed data, experimental study and theoretical analyses results by the way of numerical simulation and develop a database and a corresponding application platform to be used by numerical simulation,and is also a significant way to promote earthquake prediction.

  4. Fluid Dynamics Theory, Computation, and Numerical Simulation

    Pozrikidis, Constantine


    Fluid Dynamics: Theory, Computation, and Numerical Simulation is the only available book that extends the classical field of fluid dynamics into the realm of scientific computing in a way that is both comprehensive and accessible to the beginner. The theory of fluid dynamics, and the implementation of solution procedures into numerical algorithms, are discussed hand-in-hand and with reference to computer programming. This book is an accessible introduction to theoretical and computational fluid dynamics (CFD), written from a modern perspective that unifies theory and numerical practice. There are several additions and subject expansions in the Second Edition of Fluid Dynamics, including new Matlab and FORTRAN codes. Two distinguishing features of the discourse are: solution procedures and algorithms are developed immediately after problem formulations are presented, and numerical methods are introduced on a need-to-know basis and in increasing order of difficulty. Matlab codes are presented and discussed for ...

  5. Fluid dynamics theory, computation, and numerical simulation

    Pozrikidis, C


    Fluid Dynamics Theory, Computation, and Numerical Simulation is the only available book that extends the classical field of fluid dynamics into the realm of scientific computing in a way that is both comprehensive and accessible to the beginner The theory of fluid dynamics, and the implementation of solution procedures into numerical algorithms, are discussed hand-in-hand and with reference to computer programming This book is an accessible introduction to theoretical and computational fluid dynamics (CFD), written from a modern perspective that unifies theory and numerical practice There are several additions and subject expansions in the Second Edition of Fluid Dynamics, including new Matlab and FORTRAN codes Two distinguishing features of the discourse are solution procedures and algorithms are developed immediately after problem formulations are presented, and numerical methods are introduced on a need-to-know basis and in increasing order of difficulty Matlab codes are presented and discussed for a broad...

  6. Numerical Simulation of Asynchronous Simulated Moving Bed Chromatography



    Asynchronous simulated moving bed chromatography (ASMBC), known also as the "VARICOL" process, is more efficient and flexible than the well-known and traditional simulated moving bed chromatography (SMBC). A detailed model of ASMBC, taking account of non-linear competitive isotherms, mass transfer parameters, and complex port switching schedule parameters, was developed to simulate the complex dynamics of ASMBC.The simulated performance is in close agreement with the experimental data of chiral separation reported in the literature. The simulation results show that ASMBC can achieve the performance similar to SMBC with fewer columns and can achieve better performance than SMBC with the same total column number. All design and operation parameters can be chosen correctly by numerical simulation. This detailed ASMBC model and the numerical technique are useful for design, operation, optimization and scale-up of ASMBC.

  7. The direct numerical simulation of pipe flow

    LIU Zheng-gang; DU Guang-sheng; SHAO Zhu-feng


    The conservative difference scheme and the third-order Runge-Kutta scheme in combination with the the Crank-Nicholson scheme are used to directly simulate the flow field in a pipe with the Reynolds number of 2 600.The flow field,including the velocity distribution and the turbulence intensity,is obtained by the direct numerical simulation.From the calculated results,the ratio of the linear average velocity along the ultrasonic propagation path to the profile average velocity on the pipe cross-section is also obtained in an ultrasonic flow meter.It is concluded that the direct numerical simulation method can be used to study the ratio of the profile-linear average velocity at low Reynolds number conditions in the transition region and to improve the measurement accuracy of the ultrasonic flow meter.

  8. Numerical simulation of groundwater flow on MPPs

    Ashby, S.; Falgout, R.; Tompson, A. [Lawrence Livermore National Lab., CA (United States); Fogwell, T. [International Technology Corp., Martinez, CA (United States)


    Mathematical models are often used to aid in the design and management of engineered remediation procedures. This paper discusses the numerical simulation of groundwater flow in three-dimensional heterogeneous porous media. A portable and scalable code called PARFLOW is being developed for massively parallel computers to enable the detailed modeling of large sites. This code uses a turning bands algorithm to generate a statistically accurate subsurface realization, and preconditioned conjugate gradients to solve the linear system that yields the flow velocity field. Preliminary numerical results for the LLNL site are presented.

  9. Numerical simulation of groundwater flow on MPPs

    Mathematical models are often used to aid in the design and management of engineered remediation procedures. This paper discusses the numerical simulation of groundwater flow in three-dimensional heterogeneous porous media. A portable and scalable code called PARFLOW is being developed for massively parallel computers to enable the detailed modeling of large sites. This code uses a turning bands algorithm to generate a statistically accurate subsurface realization, and preconditioned conjugate gradients to solve the linear system that yields the flow velocity field. Preliminary numerical results for the LLNL site are presented

  10. Assessment of the performances of sub-grid scalar flux models for premixed flames with different global Lewis numbers: A Direct Numerical Simulation analysis

    Highlights: • DNS database of propagating turbulent premixed flames for a range of Lewis numbers. • A-priori analysis of 7 different algebraic LES sub-grid scalar flux models. • Gradient closure does neither capture the quantitative nor the qualitative trend. • Models based on a BML like expression tend to over-predict counter-gradient transport. • Models using a tensor diffusivity perform relatively better than alternative models. - Abstract: The statistical behaviours of sub-grid flux of reaction progress variable has been assessed for premixed turbulent flames with global Lewis number Le (=thermal diffusivity/mass diffusivity) ranging from 0.34 to 1.2 using a Direct Numerical Simulation (DNS) database of freely propagating statistically planar flames. It is known that the sub-grid scalar flux shows counter-gradient transport when the velocity jump across the flame due to heat release overcomes the effects of turbulent velocity fluctuation. The results show that the sub-grid scalar flux components exhibit counter-gradient transport for all cases considered here. The extent of counter-gradient transport increases with increasing filter width Δ and decreasing value of Le. This is due to the fact that flames with Le ≪ 1 (e.g. Le = 0.34) exhibit thermo-diffusive instabilities, which in turn increases the extent of counter-gradient transport. The effects of heat release and flame normal acceleration weaken with increasing Le. Several established algebraic models have been assessed in comparison to the sub-grid scalar flux components extracted from explicitly filtered DNS data in terms of their correlation coefficients at the vector level and their mean variation conditional on the Favre-filtered progress variable. The gradient transport closure does neither capture the quantitative nor the qualitative behaviour of the different sub-grid scalar flux components for all filter widths in all cases considered here. Models which account for local flame normal

  11. Numerical simulation of centrifugal casting of pipes

    A numerical simulation model for the horizontal centrifugal pipe casting process was developed with the commercial simulation package Flow3D. It considers - additionally to mass, energy and momentum conservation equations and free surface tracking - the fast radial and slower horizontal movement of the mold. The iron inflow is not steady state but time dependent. Of special importance is the friction between the liquid and the mold in connection with the viscosity and turbulence of the iron. Experiments with the mold at controlled revolution speeds were carried out using a high-speed camera. From these experiments friction coefficients for the description of the interaction between mold and melt were obtained. With the simulation model, the influence of typical process parameters (e.g. melts inflow, mold movement, melt temperature, cooling media) on the wall thickness of the pipes can be studied. The comparison to results of pipes from production shows a good agreement between simulation and reality.

  12. Numerical simulation of centrifugal casting of pipes

    Kaschnitz, E.


    A numerical simulation model for the horizontal centrifugal pipe casting process was developed with the commercial simulation package Flow3D. It considers - additionally to mass, energy and momentum conservation equations and free surface tracking - the fast radial and slower horizontal movement of the mold. The iron inflow is not steady state but time dependent. Of special importance is the friction between the liquid and the mold in connection with the viscosity and turbulence of the iron. Experiments with the mold at controlled revolution speeds were carried out using a high-speed camera. From these experiments friction coefficients for the description of the interaction between mold and melt were obtained. With the simulation model, the influence of typical process parameters (e.g. melts inflow, mold movement, melt temperature, cooling media) on the wall thickness of the pipes can be studied. The comparison to results of pipes from production shows a good agreement between simulation and reality.

  13. Numerical simulation of biped locomotion robot

    The Human Acts Simulation Program (HASP) has been performed since 1987 at JAERI. In this program, a human-shaped robot reads and understands instructions written in natural languages such as Japanese, planning and producing a required sequence of actions, approach to a device or an instrument recognizing its entity and does the ordered work for plant maintenance. All of these processes are simulated by logical and numerical computations. The major aim of the HASP is to develop fundamental technologies for design of intelligent robots. This report will describe the simulation methods and results of a human-shaped robot motions. The simulation methods of robot's arms and robot's start and stop motions have been newly developed based on the steady walking model with fixed arms developed by M. Vukobratovic. The influence of arm motions to the stable walking and the continuous connection from start to steady walking, etc. will be discussed. (author)

  14. Large scale numerical simulation for superfluid turbulence

    Large scale numerical simulation of quantum turbulence is performed by using 3-D time-dependent Gross-Pitaevskii equation. The energy spectrum obeying Kolmogorov law and large scale self-similar structure of quantum vortex tangle are found in a fully developed dumped turbulent state. We confirm that inertial range of the energy spectrum becomes large as the system size of the simulation becomes large that is consistent with the result of the normal fluid turbulence. On the other hand, bottleneck effect near coherent length prevents the inertial range from extending to smaller scale. (author)

  15. Numerical simulation of gaseous ionization detectors

    Here, various approaches adopted to numerically simulate the detailed device physics of gaseous ionization detectors. Related experimental efforts will also be mentioned. Mathematical formulations, algorithms and simulation frameworks will be touched upon, in general. In particular, focus on several physics issues that author have addressed in recent times, such as, a) effects of non-uniformities and imperfections on device response, b) estimation of gain, spatial, temporal and energy resolutions, c) effects of electronic heating on device performance, and d) estimation of ion backflow in Micromegas - (single and double mesh) and GEM - (single and layered) based detectors

  16. Contributions to reinforced concrete structures numerical simulations

    In order to be able to carry out simulations of reinforced concrete structures, it is necessary to know two aspects: the behaviour laws have to reflect the complex behaviour of concrete and a numerical environment has to be developed in order to avoid to the user difficulties due to the softening nature of the behaviour. This work deals with these two subjects. After an accurate estimation of two behaviour models (micro-plan and mesoscopic models), two damage models (the first one using a scalar variable, the other one a tensorial damage of the 2 order) are proposed. These two models belong to the framework of generalized standard materials, which renders their numerical integration easy and efficient. A method of load control is developed in order to make easier the convergence of the calculations. At last, simulations of industrial structures illustrate the efficiency of the method. (O.M.)

  17. Numerical Simulation of Piston Ring Lubrication

    Felter, Christian Lotz


    and the angle between the normals of the solid and the free surface. The numerical model is compared with the results from an analytical solution of Reynolds equation for a fixed incline slider bearing. Then results from a more compli- cated simulation of piston ring lubrication is given and discussed.......This paper describes a numerical method that can be used to model the lubrication of piston rings. Classical lubrication theory is based on the Reynolds equation which is ap- plicable to confined geometries and open geometries where the flooding conditions are known. Lubrication of piston rings...... extended to include also the oil film outside the piston rings. The numerical model consists of a 2D free surface code that solves the time dependent compressible Navier-Stokes equations. The equations are cast in Lagrangian form and discretized by a meshfree moving least squares method using the primitive...

  18. Numerical Simulation on CCOS Controllable Variable

    CHENG Hao-bo; FENG Zhi-jing


    On the basis of Preston hypothesis,the motion relationship between tool and workpiece upon the tool's motion in planar model is analyzed.The effect on computer controlled optical surfacing (CCOS) caused by controllable variable is simulated except for the dwelling time,thus,some reference on theory is provided to optimize the former numerical control (NC) model,and fast manufacturing of large departure aspherics is realized.

  19. Numerical simulation of spherical plasma focus diode

    A self-magnetically insulated, three-dimensionally-focused ion-beam diode, spherical plasma focus diode (SPFD), is studied by numerical simulation using a two-dimensional, electromagnetic, relativistic particle-in-cell computer code. The calculated results of the diode impedance, the ion-current efficiency, and the focusing characteristics of the ion beam are presented. These results, except the data of the ion-beam current, are in good agreement with the experimental results. (author)

  20. Numerical simulation of galvanized rebars pullout

    Hélder Pereira; Cunha, Vitor M. C. F.; Sena-Cruz, José


    The usage of rebars in construction is the most common method for reinforcing plain concrete and thus bridging the tensile stresses along the concrete crack surfaces. Usually design codes for modelling the bond behaviour of rebars and concrete suggest a local bond stress – slip relationship that comprises distinct reinforcement mechanisms, such as adhesion, friction and mechanical anchorage. In this work, numerical simulations of pullout tests were performed using the finite element method fr...

  1. Numerical simulation of cardiovascular baroreflex control

    Převorovská, Světlana; Maršík, František

    Vol. 3. Praha : UTAM AV ČR, 2000 - (Náprstek, J.; Minster, J.), s. 91-96 ISBN 80-86246-06-X. [International conference Engineering mechanics 2000. Svratka (CZ), 15.05.2000-18.05.2000] R&D Projects: GA ČR GA106/98/1373; GA AV ČR KSK1076602 Keywords : numerical simulation * baroreflex control * cardiovascular system Subject RIV: BO - Biophysics

  2. Numerical Simulation of the Atmospheric Boundary Layer

    Bauer, Petr

    Praha : Česká technika - nakladatelství ČVUT, 2006 - (Ambrož, P.; Masáková, Z.), s. 11-18 [Doktorandské dny 2006. Katedra matematiky FJFI ČVUT, Praha (CZ), 10.11.2006-24.11.2006] Institutional research plan: CEZ:AV0Z20760514 Keywords : atmospheric boundary layer * numerical simulation * finite element method Subject RIV: DI - Air Pollution ; Quality

  3. Numerical Simulations of Boundary-Driven Dynamos

    White, K.; Brummell, N.; Glatzmaier, G. A.


    An important topic of physics research is how magnetic fields are generated and maintained in the many astrophysical bodies where they are ubiquitously observed. Of particular interest, are reversals of magnetic fields of planets and stars, especially those of the Earth and the Sun. In an attempt to provide intuition on this problem, numerous physical dynamo experiments have been performed in different configurations. Recently, a tremendous breakthrough was made in the Von Karman sodium (VKS) experiments in France when the most realistic laboratory fluid dynamo to date was produced by driving an unconstrained flow in a cylinder of liquid sodium (Monchaux et al, 2007, PRL). One of the curiosities of the VKS experiment however is the effect of the composition of the impellers that drive the flow. Steel blades failed to produce a dynamo, but soft iron impellers, which have much higher magnetic permeability, succeeded. The role of the magnetic properties of the boundaries in boundary-driven dynamos is therefore clearly of interest. Kinematic and laminar numerical dynamo simulations (Giesecke et al, 2010, PRL & Gissinger et al, 2008 EPL) have shed some light but turbulent, nonlinear simulations are necessary. Roberts, Glatzmaier & Clune 2010 created a simplified model of the VKS setup by using three-dimensional numerical simulations in a spherical geometry with differential zonal motions of the boundary replacing the driving impellers of the VKS experiment. We have extended these numerical simulations further towards a more complete understanding of such boundary-forced dynamos. In particular, we have examined the effect of the magnetic boundary conditions - changes in the wall thickness, the magnetic permeability, and the electrical conductivity - on the mechanisms responsible for dynamo generation. Enhanced permeability, conductivity and wall thickness all help dynamo action to different degrees. We are further extending our investigations to asymmetric forcing to

  4. Efficient Numerical Inversion for Financial Simulations

    Derflinger, Gerhard; Hörmann, Wolfgang; Leydold, Josef; Sak, Halis


    Generating samples from generalized hyperbolic distributions and non-central chi-square distributions by inversion has become an important task for the simulation of recent models in finance in the framework of (quasi-) Monte Carlo. However, their distribution functions are quite expensive to evaluate and thus numerical methods like root finding algorithms are extremely slow. In this paper we demonstrate how our new method based on Newton interpolation and Gauss-Lobatto quadrature can be util...

  5. Numerical Simulations of Hyperfine Transitions of Antihydrogen

    Kolbinger, B; Diermaier, M; Lehner, S; Malbrunot, C; Massiczek, O; Sauerzopf, C; Simon, M C; Widmann, E


    One of the ASACUSA (Atomic Spectroscopy And Collisions Using Slow Antiprotons) collaboration's goals is the measurement of the ground state hyperfine transition frequency in antihydrogen, the antimatter counterpart of one of the best known systems in physics. This high precision experiment yields a sensitive test of the fundamental symmetry of CPT. Numerical simulations of hyperfine transitions of antihydrogen atoms have been performed providing information on the required antihydrogen events and the achievable precision.

  6. Numerical simulations of hyperfine transitions of antihydrogen

    One of the ASACUSA (Atomic Spectroscopy And Collisions Using Slow Antiprotons) collaboration’s goals is the measurement of the ground state hyperfine transition frequency in antihydrogen, the antimatter counterpart of one of the best known systems in physics. This high precision experiment yields a sensitive test of the fundamental symmetry of CPT. Numerical simulations of hyperfine transitions of antihydrogen atoms have been performed providing information on the required antihydrogen events and the achievable precision

  7. Numerical simulations of hyperfine transitions of antihydrogen

    Kolbinger, B., E-mail:; Capon, A.; Diermaier, M.; Lehner, S. [Stefan Meyer Institute for Subatomic Physics, Austrian Academy of Sciences (Austria); Malbrunot, C. [CERN (Switzerland); Massiczek, O.; Sauerzopf, C.; Simon, M. C.; Widmann, E. [Stefan Meyer Institute for Subatomic Physics, Austrian Academy of Sciences (Austria)


    One of the ASACUSA (Atomic Spectroscopy And Collisions Using Slow Antiprotons) collaboration’s goals is the measurement of the ground state hyperfine transition frequency in antihydrogen, the antimatter counterpart of one of the best known systems in physics. This high precision experiment yields a sensitive test of the fundamental symmetry of CPT. Numerical simulations of hyperfine transitions of antihydrogen atoms have been performed providing information on the required antihydrogen events and the achievable precision.

  8. Theoretical issues in Numerical Relativity simulations

    Alic, Daniela Delia


    In this thesis we address several analytical and numerical problems related with the general relativistic study of black hole space-times and boson stars. We have developed a new centered finite volume method based on the flux splitting approach. The techniques for dealing with the singularity, steep gradients and apparent horizon location, are studied in the context of a single Schwarzschild black hole, in both spherically symmetric and full 3D simulations. We present an extended study of ga...

  9. Numerical simulation of electrostatic waves in plasmas

    In this paper the propagation of electrostatic waves in plasmas and the non-linear interactions, which occur in the case of large wave amplitudes, are studied using a new numerical method for plasma simulation. This mathematical description is based on the Vlasov-model. Changes in the distribution-function are taken into account and thus plasma kinetic effects can be treated. (orig./HT)

  10. Advanced numerical techniques in core simulations

    The whole core simulations are one of the most CPU intensive calculations in reactor physics design and analyses. For a designer it is imperative to perform these calculations with good accuracy and in least time possible to try out various options. It is important for the code developers to use techniques involving minimum approximations and to use most recent numerical methods applied in tandem with huge computing power available today. In the presented paper, some of these methods are discussed. (author)

  11. Numerical schemes for large eddy simulation

    This thesis is devoted to the simulation of incompressible or low Mach turbulent flows, for nuclear safety applications. In particular, we focus on the development and analysis of performing numerical schemes for the Large Eddy Simulation technique. These schemes are based on fractional step methods of pressure correction type and on nonconforming low degree finite elements. Two requirements seems essential to build such schemes, namely a control of kinetic energy and the accuracy for convection dominated flows. Concerning the time marching algorithm, we propose a Crank-Nicolson like scheme for which we prove a kinetic energy control. This scheme has the advantage to be numerically low dissipative (numerical dissipation residual is second order in time). Concerning the low accuracy of the Rannacher-Turek discretization, two approaches are investigated in this work. The first one consists in building a penalized scheme constraining the velocity degrees of freedom tangent to the faces to be written as a linear combination of the normal ones. The second approach relies on the enrichment of the pressure approximation discrete space. Finally, various numerical tests are presented in both two and three dimensions and for general meshes, to illustrate the capacity of the schemes and compare theoretical and experimental results. (author)

  12. Numerical simulation of nuclear pebble bed configurations

    Shams, A., E-mail: [Nuclear Research and Consultancy Group (NRG), Petten (Netherlands); Roelofs, F., E-mail: [Nuclear Research and Consultancy Group (NRG), Petten (Netherlands); Komen, E.M.J., E-mail: [Nuclear Research and Consultancy Group (NRG), Petten (Netherlands); Baglietto, E., E-mail: emiliob@MIT.EDU [Massachusetts Institute of Technology (MIT) (United States)


    Highlights: • Numerical simulations of a single face cubic centred pebble bed are performed. • Wide range of turbulence modelling techniques are used to perform these calculations. • The methods include 1-DNS, 1-LES, 3-Hybrid (RANS/LES) and 3-RANS models, respectively. • The obtained results are extensively compared to provide guidelines for such flow regimes. • These guidelines are used to perform reference LES for a limited sized random pebble bed. - Abstract: High Temperature Reactors (HTRs) are being considered all over the world. An HTR uses helium gas as a coolant, while the moderator function is taken up by graphite. The fuel is embedded in the graphite moderator. A particular inherent safety advantage of HTR designs is that the graphite can withstand very high temperatures, that the fuel inside will stay inside the graphite pebble and cannot escape to the surroundings even in the event of loss of cooling. Generally, the core can be designed using a graphite pebble bed. Some experimental and demonstration reactors have been operated using a pebble bed design. The test reactors have shown safe and efficient operation, however questions have been raised about possible occurrence of local hot spots in the pebble bed which may affect the pebble integrity. Analysis of the fuel integrity requires detailed evaluation of local heat transport phenomena in a pebble bed, and since such phenomena cannot easily be modelled experimentally, numerical simulations are a useful tool. As a part of a European project, named Thermal Hydraulics of Innovative Nuclear Systems (THINS), a benchmarking quasi-direct numerical simulation (q-DNS) of a well-defined pebble bed configuration has been performed. This q-DNS will serve as a reference database in order to evaluate the prediction capabilities of different turbulence modelling approaches. A wide range of numerical simulations based on different available turbulence modelling approaches are performed and compared with

  13. Numerical simulation of nuclear pebble bed configurations

    Highlights: • Numerical simulations of a single face cubic centred pebble bed are performed. • Wide range of turbulence modelling techniques are used to perform these calculations. • The methods include 1-DNS, 1-LES, 3-Hybrid (RANS/LES) and 3-RANS models, respectively. • The obtained results are extensively compared to provide guidelines for such flow regimes. • These guidelines are used to perform reference LES for a limited sized random pebble bed. - Abstract: High Temperature Reactors (HTRs) are being considered all over the world. An HTR uses helium gas as a coolant, while the moderator function is taken up by graphite. The fuel is embedded in the graphite moderator. A particular inherent safety advantage of HTR designs is that the graphite can withstand very high temperatures, that the fuel inside will stay inside the graphite pebble and cannot escape to the surroundings even in the event of loss of cooling. Generally, the core can be designed using a graphite pebble bed. Some experimental and demonstration reactors have been operated using a pebble bed design. The test reactors have shown safe and efficient operation, however questions have been raised about possible occurrence of local hot spots in the pebble bed which may affect the pebble integrity. Analysis of the fuel integrity requires detailed evaluation of local heat transport phenomena in a pebble bed, and since such phenomena cannot easily be modelled experimentally, numerical simulations are a useful tool. As a part of a European project, named Thermal Hydraulics of Innovative Nuclear Systems (THINS), a benchmarking quasi-direct numerical simulation (q-DNS) of a well-defined pebble bed configuration has been performed. This q-DNS will serve as a reference database in order to evaluate the prediction capabilities of different turbulence modelling approaches. A wide range of numerical simulations based on different available turbulence modelling approaches are performed and compared with

  14. Advanced numerical simulations of selected metallurgical units

    G. Kokot


    Full Text Available Purpose: of this paper is to present numerical simulations of large structures in metallurgical industry. Some examples of finite element analysis are presented. The calculations were performed for the determining the stress effort of the metallurgical units mainly blast furnace, throath’s gas pipelines, hot blast stoves, etc. during the working conditions and for the repairing purpose.Design/methodology/approach: The way of conducting simulations and analysis were the finite element method connected with the optimization process.Findings: Performing the numerical analysis the changes in the structures design were applied what extremely influenced on the state effort and the durability of considered structures.Research limitations/implications: Development of the presented approach solving the coupled field and CFD problems, the application of the parallel computing and domain decomposition methods in the large structure simulations.Practical implications: Presented results shows the possibility of application the advanced computational methods in the computer aided engineering processes of designing and analysing the large structure as the metallurgical units are. It can dramatically influence on the recognizing of the effort stets and helps in the monitoring, overhauls and redesigning process. Those methods gives the global very precise information which cannot be obtain in other ways (analytical solutions, experimental methods.Originality/value: The paper present the original research results comes from the complex numerical simulations of the main metallurgical units in the blast furnace train. The original value of the paper is the introduction of the advanced finite element simulation in the field of iron steel industry structures design and developing.


    Petr Chmátal


    Full Text Available The aim of the research was to carry out a hydraulic design of rowing/sculling and paddling simulator. Nowadays there are two main approaches in the simulator design. The first one includes a static water with no artificial movement and counts on specially cut oars to provide the same resistance in the water. The second approach, on the other hand uses pumps or similar devices to force the water to circulate but both of the designs share many problems. Such problems are affecting already built facilities and can be summarized as unrealistic feeling, unwanted turbulent flow and bad velocity profile. Therefore, the goal was to design a new rowing simulator that would provide nature-like conditions for the racers and provide an unmatched experience. In order to accomplish this challenge, it was decided to use in-depth numerical modeling to solve the hydraulic problems. The general measures for the design were taken in accordance with space availability of the simulator ́s housing. The entire research was coordinated with other stages of the construction using BIM. The detailed geometry was designed using a numerical model in Ansys Fluent and parametric auto-optimization tools which led to minimum negative hydraulic phenomena and decreased investment and operational costs due to the decreased hydraulic losses in the system.

  16. Mathematical models and numerical simulation in electromagnetism

    Bermúdez, Alfredo; Salgado, Pilar


    The book represents a basic support for a master course in electromagnetism oriented to numerical simulation. The main goal of the book is that the reader knows the boundary-value problems of partial differential equations that should be solved in order to perform computer simulation of electromagnetic processes. Moreover it includes a part devoted to electric circuit theory  based on ordinary differential equations. The book is mainly oriented to electric engineering applications, going from the general to the specific, namely, from the full Maxwell’s equations to the particular cases of electrostatics, direct current, magnetostatics and eddy currents models. Apart from standard exercises related to analytical calculus, the book includes some others oriented to real-life applications solved with MaxFEM free simulation software.

  17. Numerical Simulation of a Seaway with Breaking

    Dommermuth, Douglas; O'Shea, Thomas; Brucker, Kyle; Wyatt, Donald


    The focus of this presentation is to describe the recent efforts to simulate a fully non-linear seaway with breaking by using a high-order spectral (HOS) solution of the free-surface boundary value problem to drive a three-dimensional Volume of Fluid (VOF) solution. Historically, the two main types of simulations to simulate free-surface flows are the boundary integral equations method (BIEM) and high-order spectral (HOS) methods. BIEM calculations fail at the point at which the surface impacts upon itself, if not sooner, and HOS methods can only simulate a single valued free-surface. Both also employ a single-phase approximation in which the effects of the air on the water are neglected. Due to these limitations they are unable to simulate breaking waves and air entrainment. The Volume of Fluid (VOF) method on the other hand is suitable for modeling breaking waves and air entrainment. However it is computationally intractable to generate a realistic non-linear sea-state. Here, we use the HOS solution to quickly drive, or nudge, the VOF solution into a non-linear state. The computational strategies, mathematical formulation, and numerical implementation will be discussed. The results of the VOF simulation of a seaway with breaking will also be presented, and compared to the single phase, single valued HOS results.

  18. Numerical simulation of the fouling process

    Brahim, Fahmi; Augustin, Wolfgang; Bohnet, Matthias [Institut fuer Chemische und Termische Verfahrenstechnik, Technische Universitaet Braunschweig, Langer Kamp 7, 38106, Braunschweig (Germany)


    Fouling of heat transfer surfaces causes serious technical and economic problems in industry. The goal of this work is to simulate the aforementioned fouling process using the CFD code FLUENT. The obtained numerical results assist in designing and running heat exchangers.Based on models for the calculation of deposition and removal mass rates [S. Krause, Internat. Chem. Engrg. 33 (1993)], the crystallization fouling of calcium sulfate on flat heat transfer surfaces was simulated. The induction period, which occurs with almost all fouling processes, was therefore not considered.The simulation of real crystal growth requires a continuous variation of the geometric flow model and therefore considerable computational effort. For that reason fictitious crystal growth was simulated instead. This numerical simplification enabled an unsteady simulation to be obtained, of the fouling process and a realistic description of the temporal modification of both the flow and temperature field due to the continuous crystal growth.Based on experimental results of Hirsch [M. Bohnet et al., in: T.R. Bott et al. (Eds.), Understanding Heat Exchanger Fouling and its Mitigation, United Engineering Foundation and Begell House, New York, 1997, pp. 201-208], a model was developed which enables the calculation of the density of the fouling layer not only as a function of the local position within the fouling layer, but also as a function of the time-dependent total thickness of the fouling layer. In addition a model was developed, that enables a realistic distribution of the heat flux along the heat transfer surface during the simulation. Both models provide a more exact description of the complicated fouling process.Results of the numerical simulation are the prediction of the fouling resistance as a function of time and the calculation of the temperature distribution within the fouling layer. In view of the complexity of the fouling process during the incrustation of heat transfer surfaces

  19. Direct numerical simulation of the Leidenfrost Effect

    Rueda Villegas, Lucia; Tanguy, Sébastien


    We present direct numerical simulations of the impact of a single droplet on a heated flat surface in the Leidenfrost regime. To that end, we solve the Navier-Stokes equations, the energy equation, and the species mass fraction equation. The Level Set method is used to track the liquid-gas interface motion and the Ghost Fluid Method is implemented to treat the jump conditions. To get rid of the temporal stability condition due to viscosity, an implicit temporal discretization is used. Some specific numerical methods have been developed to deal with droplet vaporization interface jump conditions. Since the vapor layer is very thin compared to the droplet size, a non-uniform structured grid strongly refined near the wall is used to capture the droplet bounce. We present numerical simulations that enable us to study accurately the bouncing dynamics by analyzing the momentum balance during the droplet bounce. Moreover, we determine from such computation the ratio of the droplet heat transfer flux by comparing the energy used for the phase change (latent heat) to the energy used for droplet heating (specific heat). We then compare the shape of the droplet during the impact with some experimental results.

  20. Numerical simulation of lower hybrid wave propagation

    Concerning the LHRH (Lower Hybrid Resonance Heating) in a tokamak, a numerical simulation is made of the propagation of a lower hybrid wave. By solving the system of two-fluid equations and Poisson's equation, ray trajectories of the lower hybrid waves are traced. The cases of cold plasma approximation, linear approximation and nonlinear two-fluid model are examined. The effect of density fluctuation due to the presence of a drift wave on the conical ray trajectories is also studied. Only the preliminary results are presented in this report. (auth.)

  1. Tornado structure interaction: a numerical simulation

    The effects of tornadoes on buildings are examined to determine the wind forces on structures. The American National Standards Institute (ANSI) has developed guidelines for building code requirements for the minimum wind loads a building must be designed to withstand. The conservatism or nonconservatism on the ANSI approach is evaluated by simulating tornado-structure interaction numerically with a two-dimensional fluid dynamics computer code and a vortex model. Only external pressures are considered. The computer calculations yield the following percentages of the ANSI design pressures: rigid frame, 50 to 90%; individual wall panels, 75 to 200%; and wall corners, 50 to 75%

  2. Numerical Simulations of Thermionic Electron Guns

    Jánský, Pavel; Lencová, Bohumila; Zlámal, J.

    Brno: Institute of Scientific Instruments AS CR, v.v.i, 2008 - (Mika, F.), s. 51-52 ISBN 978-80-254-0905-3. [International Seminar on Recent Trends in Charged Particle Optics and Surface Physics Instrumentation /11./. Skalský dvůr (CZ), 14.07.2008-18.07.2008] R&D Projects: GA AV ČR IAA100650805 Institutional research plan: CEZ:AV0Z20650511 Keywords : electron emission * electron gun * space charge * numerical simulations Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  3. Numerical considerations in simulating the global magnetosphere

    A. J. Ridley


    Full Text Available Magnetohydrodynamic (MHD models of the global magnetosphere are very good research tools for investigating the topology and dynamics of the near-Earth space environment. While these models have obvious limitations in regions that are not well described by the MHD equations, they can typically be used (or are used to investigate the majority of magnetosphere. Often, a secondary consideration is overlooked by researchers when utilizing global models – the effects of solving the MHD equations on a grid, instead of analytically. Any discretization unavoidably introduces numerical artifacts that affect the solution to various degrees. This paper investigates some of the consequences of the numerical schemes and grids that are used to solve the MHD equations in the global magnetosphere. Specifically, the University of Michigan's MHD code is used to investigate the role of grid resolution, numerical schemes, limiters, inner magnetospheric density boundary conditions, and the artificial lowering of the speed of light on the strength of the ionospheric cross polar cap potential and the build up of the ring current in the inner magnetosphere. It is concluded that even with a very good solver and the highest affordable grid resolution, the inner magnetosphere is not grid converged. Artificially reducing the speed of light reduces the numerical diffusion that helps to achieve better agreement with data. It is further concluded that many numerical effects work nonlinearly to complicate the interpretation of the physics within the magnetosphere, and so simulation results should be scrutinized very carefully before a physical interpretation of the results is made. Our conclusions are not limited to the Michigan MHD code, but apply to all MHD models due to the limitations of computational resources.

  4. The numerical simulation of accelerator components

    The techniques of the numerical simulation of plasmas can be readily applied to problems in accelerator physics. Because the problems usually involve a single component ''plasma,'' and times that are at most, a few plasma oscillation periods, it is frequently possible to make very good simulations with relatively modest computation resources. We will discuss the methods and illustrate them with several examples. One of the more powerful techniques of understanding the motion of charged particles is to view computer-generated motion pictures. We will show several little movie strips to illustrate the discussions. The examples will be drawn from the application areas of Heavy Ion Fusion, electron-positron linear colliders and injectors for free-electron lasers. 13 refs., 10 figs., 2 tabs

  5. Numerical Simulation of Level Magnetic Field


    According to Maxwell electromagnetic field theory and magnetic vector potential integral equation, a mathematical model of LMF (Level Magnetic Field) for EMBR (Electromagnetic brake) was proposed, and the reliable software for LMF calculation was developed. The distribution of magnetic flux density given by numerical simulation shows that the magnetic flux density is greater in the magnet and magnetic leakage is observed in the gap. The magnetic flux density is uniform in horizontal plane and a peak is observed in vertical plane. Furthermore, the effects of electromagnetic and structural parameters on magnetic flux density were discussed. The relationship between magnetic flux, electromagnetic parameters and structural parameters is obtained by dimensional analysis, simulation experiment and least square method.

  6. Highly focused supersonic microjets: numerical simulations

    Peters, Ivo R; Oudalov, Nikolai; Sun, Chao; Prosperetti, Andrea; Lohse, Detlef; van der Meer, Devaraj


    By focusing a laser pulse inside a capillary partially filled with liquid, a vapour bubble is created which emits a pressure wave. This pressure wave travels through the liquid and creates a fast, focused axisymmetric microjet when it is reflected at the meniscus. We numerically investigate the formation of this microjet using axisymmetric boundary-integral simulations, where we model the pressure wave as a pressure pulse applied on the bubble. We find a good agreement between the simulations and experimental results in terms of the time evolution of the jet and on all parameters that can be compared directly. We present a simple analytical model that accurately predicts the velocity of the jet after the pressure pulse and its maximum velocity.

  7. Numerical simulations of disc-planet interactions

    Paardekooper, Richard P Nelson Sijme-Jan


    The gravitational interaction between a protoplanetary disc and planetary sized bodies that form within it leads to the exchange of angular momentum, resulting in migration of the planets and possible gap formation in the disc for more massive planets. In this article, we review the basic theory of disc-planet interactions, and discuss the results of recent numerical simulations of planets embedded in protoplanetary discs. We consider the migration of low mass planets and recent developments in our understanding of so-called type I migration when a fuller treatment of the disc thermodynamics is included. We discuss the runaway migration of intermediate mass planets (so-called type III migration), and the migration of giant planets (type II migration) and the associated gap formation in the disc. The availability of high performance computing facilities has enabled global simulations of magnetised, turbulent discs to be computed, and we discuss recent results for both low and high mass planets embedded in such...

  8. Numerical simulation of attosecond nanoplasmonic streaking

    Skopalova, E; Lei, D Y; Witting, T; Arrell, C; Frank, F; Sonnefraud, Y; Maier, S A; Tisch, J W G; Marangos, J P, E-mail: [Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom)


    The characterization of the temporal profile of plasmonic fields is important both from the fundamental point of view and for potential applications in ultrafast nanoplasmonics. It has been proposed by Stockman et al (2007 Nat. Photonics 1 539) that the plasmonic electric field can be directly measured by the attosecond streaking technique; however, streaking from nanoplasmonic fields differs from streaking in the gas phase because of the field localization on the nanoscale. To understand streaking in this new regime, we have performed numerical simulations of attosecond streaking from fields localized in nanoantennas. In this paper, we present simulated streaked spectra for realistic experimental conditions and discuss the plasmonic field reconstruction from these spectra. We show that under certain circumstances when spatial averaging is included, a robust electric field reconstruction is possible.

  9. Numerical simulation of a sour gas flare

    Due to the limited amount of information in the literature on sour gas flares and the cost of conducting wind tunnel and field experiments on sour flares, this presentation presented a modelling project that predicted the effect of operating conditions on flare performance and emissions. The objectives of the project were to adapt an existing numerical model suitable for flare simulation, incorporate sulfur chemistry, and run simulations for a range of conditions typical of sour flares in Alberta. The study involved the use of modelling expertise at the University of Utah, and employed large eddy simulation (LES) methods to model open flames. The existing model included the prediction of turbulent flow field; hydrocarbon reaction chemistry; soot formation; and radiation heat transfer. The presentation addressed the unique features of the model and discussed whether LES could predict the flow field. Other topics that were presented included the results from a University of Utah comparison; challenges of the LES model; an example of a run time issue; predicting the impact of operating conditions; and the results of simulations. Last, several next steps were identified and preliminary results were provided. Future work will focus on reducing computation time and increasing information reporting. figs

  10. Study of numerical errors in direct numerical simulation and large eddy simulation

    YANG Xiao-long; FU Song


    By comparing the energy spectrum and total kinetic energy, the effects of numerical errors (which arise from aliasing and discretization errors), subgrid-scale (SGS) models, and their interactions on direct numerical simulation (DNS) and large eddy simulation (LES) are investigated. The decaying isotropic turbulence is chosen as the test case. To simulate complex geometries, both the spectral method and Pade compact difference schemes are studied. The truncated Navier-Stokes (TNS) equation model with Pade discrete filter is adopted as the SGS model. It is found that the discretization error plays a key role in DNS. Low order difference schemes may be unsuitable. However, for LES, it is found that the SGS model can represent the effect of small scales to large scales and dump the numerical errors. Therefore, reasonable results can also be obtained with a low order discretization scheme.

  11. Direct Numerical Simulations of Transient Dispersion

    Porter, M.; Valdes-Parada, F.; Wood, B.


    Transient dispersion is important in many engineering applications, including transport in porous media. A common theoretical approach involves upscaling the micro-scale mass balance equations for convection- diffusion to macro-scale equations that contain effective medium quantities. However, there are a number of assumptions implicit in the various upscaling methods. For example, results obtained from volume averaging are often dependent on a given set of length and time scale constraints. Additionally, a number of the classical models for dispersion do not fully capture the early-time dispersive behavior of the solute for a general set of initial conditions. In this work, we present direct numerical simulations of micro-scale transient mass balance equations for convection-diffusion in both capillary tubes and porous media. Special attention is paid to analysis of the influence of a new time- decaying coefficient that filters the effects of the initial conditions. The direct numerical simulations were compared to results obtained from solving the closure problem associated with volume averaging. These comparisons provide a quantitative measure of the significance of (1) the assumptions implicit in the volume averaging method and (2) the importance of the early-time dispersive behavior of the solute due to various initial conditions.

  12. Numerical simulation in tunneling - recent developments

    The paper presents recent findings of the Austrian joint research initiative 'Numerical Simulation in Tunneling'. The five year initiative, which was supported by the Austrian research fund, was started in 1997 with the main aim of developing and improving methods for the computer analysis of tunnels. The Problem areas that were looked at were: data acquisition and generation of input data, modeling strategies, visualization, material behavior and effects of water and air pressure. Only some topics are discussed here, others are presented in the mini-symposium Computational Methods in Tunneling. The topics that will be presented are: automatic acquisition of geological data (research performed at the institutes of rock mechanics and tunneling and the Institute for computer graphics and vision): a new system was developed that allows to create digital 3-D images of the tunnel face that can be interpreted by a geologist on a computer graphics work station. Some preliminary interpretation may be made by the software so that the work by the geologist is reduced. The interpreted data is used to generate the Input for numerical simulation models. Modeling strategies at the tunnel site (research performed at Institute of rock mechanics and tunneling): the feasibility of using three-dimensional modeling on site in order to interpret observation and measurements or to decide necessary support measures due to the occurrence of unforeseen geological features was investigated. The conclusion is, that if approached in an intelligent way three-dimensional modeling is feasible at the tunnel site and brings advantages. Visualization (research performed at the institute for structural analysis): numerical models of ten create a large amount of data, whose interpretation is difficult without advanced visualization techniques. The prototype of an advanced 3-D visualization system using virtual reality and a head-mounted display is presented. Refs. 2 (author)

  13. Direct numerical simulation of turbulent reacting flows

    Chen, J.H. [Sandia National Laboratories, Livermore, CA (United States)


    The development of turbulent combustion models that reflect some of the most important characteristics of turbulent reacting flows requires knowledge about the behavior of key quantities in well defined combustion regimes. In turbulent flames, the coupling between the turbulence and the chemistry is so strong in certain regimes that is is very difficult to isolate the role played by one individual phenomenon. Direct numerical simulation (DNS) is an extremely useful tool to study in detail the turbulence-chemistry interactions in certain well defined regimes. Globally, non-premixed flames are controlled by two limiting cases: the fast chemistry limit, where the turbulent fluctuations. In between these two limits, finite-rate chemical effects are important and the turbulence interacts strongly with the chemical processes. This regime is important because industrial burners operate in regimes in which, locally the flame undergoes extinction, or is at least in some nonequilibrium condition. Furthermore, these nonequilibrium conditions strongly influence the production of pollutants. To quantify the finite-rate chemistry effect, direct numerical simulations are performed to study the interaction between an initially laminar non-premixed flame and a three-dimensional field of homogeneous isotropic decaying turbulence. Emphasis is placed on the dynamics of extinction and on transient effects on the fine scale mixing process. Differential molecular diffusion among species is also examined with this approach, both for nonreacting and reacting situations. To address the problem of large-scale mixing and to examine the effects of mean shear, efforts are underway to perform large eddy simulations of round three-dimensional jets.

  14. Numerical Simulation of DC Coronal Heating

    Dahlburg, Russell B.; Einaudi, G.; Taylor, Brian D.; Ugarte-Urra, Ignacio; Warren, Harry; Rappazzo, A. F.; Velli, Marco


    Recent research on observational signatures of turbulent heating of a coronal loop will be discussed. The evolution of the loop is is studied by means of numerical simulations of the fully compressible three-dimensional magnetohydrodynamic equations using the HYPERION code. HYPERION calculates the full energy cycle involving footpoint convection, magnetic reconnection, nonlinear thermal conduction and optically thin radiation. The footpoints of the loop magnetic field are convected by random photospheric motions. As a consequence the magnetic field in the loop is energized and develops turbulent nonlinear dynamics characterized by the continuous formation and dissipation of field-aligned current sheets: energy is deposited at small scales where heating occurs. Dissipation is non-uniformly distributed so that only a fraction of thecoronal mass and volume gets heated at any time. Temperature and density are highly structured at scales which, in the solar corona, remain observationally unresolved: the plasma of the simulated loop is multi thermal, where highly dynamical hotter and cooler plasma strands are scattered throughout the loop at sub-observational scales. Typical simulated coronal loops are 50000 km length and have axial magnetic field intensities ranging from 0.01 to 0.04 Tesla. To connect these simulations to observations the computed number densities and temperatures are used to synthesize the intensities expected in emission lines typically observed with the Extreme ultraviolet Imaging Spectrometer (EIS) on Hinode. These intensities are then employed to compute differential emission measure distributions, which are found to be very similar to those derived from observations of solar active regions.

  15. Numerical simulations of convectively excited gravity waves

    Magneto-convection and gravity waves are numerically simulated with a nonlinear, three-dimensional, time-dependent model of a stratified, rotating, spherical fluid shell heated from below. A Solar-like reference state is specified while global velocity, magnetic field, and thermodynamic perturbations are computed from the anelastic magnetohydrodynamic equations. Convective overshooting from the upper (superadiabatic) part of the shell excites gravity waves in the lower (subadiabatic) part. Due to differential rotation and Coriolis forces, convective cell patterns propagate eastward with a latitudinally dependent phase velocity. The structure of the excited wave motions in the stable region is more time-dependent than that of the convective motions above. The magnetic field tends to be concentrated over giant-cell downdrafts in the convective zone but is affected very little by the wave motion in the stable region

  16. Numerical simulations of coupled problems in engineering


    This book presents and discusses mathematical models, numerical methods and computational techniques used for solving coupled problems in science and engineering. It takes a step forward in the formulation and solution of real-life problems with a multidisciplinary vision, accounting for all of the complex couplings involved in the physical description. Simulation of multifaceted physics problems is a common task in applied research and industry. Often a suitable solver is built by connecting together several single-aspect solvers into a network. In this book, research in various fields was selected for consideration: adaptive methodology for multi-physics solvers, multi-physics phenomena and coupled-field solutions, leading to computationally intensive structural analysis. The strategies which are used to keep these problems computationally affordable are of special interest, and make this an essential book.

  17. Numerical Simulation of Cyclic Thermodynamic Processes

    Andersen, Stig Kildegård


    engine, 2) optimal regenerator designs which takes into account the effects of the regenerator matrix temperature oscillations, 3) transverse asymmetry in the temperature profile of a regenerator in a pulse tube cooler, and 4) the appendix gap losses in a Stirling engine.......This thesis is on numerical simulation of cyclic thermodynamic processes. A modelling approach and a method for finding periodic steady state solutions are described. Examples of applications are given in the form of four research papers. Stirling machines and pulse tube coolers are introduced and...... oscillating, compressible flow in one space dimension is presented. The implementation produces models where all the equations, which are on a form that should be understandable to someone with a background in engineering thermodynamics, can be accessed and modified individually. The implementation was...

  18. The Beam Break-Up Numerical Simulator

    Travish, G.A.


    Beam Break-Up (BBU) is a severe constraint in accelerator design, limiting beam current and quality. The control of BBU has become the focus of much research in the design of the next generation collider, recirculating and linear induction accelerators and advanced accelerators. Determining the effect on BBU of modifications to cavities, the focusing elements or the beam is frequently beyond the ability of current analytic models. A computer code was written to address this problem. The Beam Break-Up Numerical Simulator (BBUNS) was designed to numerically solve for beam break-up (BBU) due to an arbitrary transverse wakefield. BBUNS was developed to be as user friendly as possible on the Cray computer series. The user is able to control all aspects of input and output by using a single command file. In addition, the wakefield is specified by the user and read in as a table. The program can model energy variations along and within the beam, focusing magnetic field profiles can be specified, and the graphical output can be tailored. In this note we discuss BBUNS, its structure and application. Included are detailed instructions, examples and a sample session of BBUNS. This program is available for distribution. 50 refs., 18 figs., 5 tabs.

  19. The Beam Break-Up Numerical Simulator

    Beam Break-Up (BBU) is a severe constraint in accelerator design, limiting beam current and quality. The control of BBU has become the focus of much research in the design of the next generation collider, recirculating and linear induction accelerators and advanced accelerators. Determining the effect on BBU of modifications to cavities, the focusing elements or the beam is frequently beyond the ability of current analytic models. A computer code was written to address this problem. The Beam Break-Up Numerical Simulator (BBUNS) was designed to numerically solve for beam break-up (BBU) due to an arbitrary transverse wakefield. BBUNS was developed to be as user friendly as possible on the Cray computer series. The user is able to control all aspects of input and output by using a single command file. In addition, the wakefield is specified by the user and read in as a table. The program can model energy variations along and within the beam, focusing magnetic field profiles can be specified, and the graphical output can be tailored. In this note we discuss BBUNS, its structure and application. Included are detailed instructions, examples and a sample session of BBUNS. This program is available for distribution. 50 refs., 18 figs., 5 tabs

  20. Numerical simulations of capillary barrier field tests

    Morris, C.E. [Univ. of Wollongong (Australia); Stormont, J.C. [Univ. of New Mexico, Albuquerque, NM (United States)


    Numerical simulations of two capillary barrier systems tested in the field were conducted to determine if an unsaturated flow model could accurately represent the observed results. The field data was collected from two 7-m long, 1.2-m thick capillary barriers built on a 10% grade that were being tested to investigate their ability to laterally divert water downslope. One system had a homogeneous fine layer, while the fine soil of the second barrier was layered to increase its ability to laterally divert infiltrating moisture. The barriers were subjected first to constant infiltration while minimizing evaporative losses and then were exposed to ambient conditions. The continuous infiltration period of the field tests for the two barrier systems was modelled to determine the ability of an existing code to accurately represent capillary barrier behavior embodied in these two designs. Differences between the field test and the model data were found, but in general the simulations appeared to adequately reproduce the response of the test systems. Accounting for moisture retention hysteresis in the layered system will potentially lead to more accurate modelling results and is likely to be important when developing reasonable predictions of capillary barrier behavior.

  1. Numerical simulation of turbulence over tensegrity fabric

    Luo, Haoxiang; Bewley, Thomas


    In this research we aim to reduce turbulent skin friction by designing and optimizing tensegrity fabrics. Such fabrics form a new class of compliant surfaces consisting of a weave of both members under tension and members under compression. Boundary conditions on the flow are handled with a time-dependent coordinate transformation. We first note that, when designing the numerical algorithm for approximating the Navier-Stokes equation in the flow domain (with moving boundaries), special care (intrinsic differentiation of a contravariant vector) is needed to handle the temporal differentiation of the momentum term when using a contravariant formulation. A Cartesian-based formulation may also be used, and has proven to be more tractable in the 3D setting. The spectral DNS flow code is coupled with a tensegrity simulation code to compute the flow/structure interaction; recent simulation results will be presented. A complex-step derivative (CSD) technique may then be used to optimize the response characteristics of the tensegrity structure in order to minimize the drag at the flow/structure interface; this strategy will also be discussed.

  2. Numerical simulations of capillary barrier field tests

    Numerical simulations of two capillary barrier systems tested in the field were conducted to determine if an unsaturated flow model could accurately represent the observed results. The field data was collected from two 7-m long, 1.2-m thick capillary barriers built on a 10% grade that were being tested to investigate their ability to laterally divert water downslope. One system had a homogeneous fine layer, while the fine soil of the second barrier was layered to increase its ability to laterally divert infiltrating moisture. The barriers were subjected first to constant infiltration while minimizing evaporative losses and then were exposed to ambient conditions. The continuous infiltration period of the field tests for the two barrier systems was modelled to determine the ability of an existing code to accurately represent capillary barrier behavior embodied in these two designs. Differences between the field test and the model data were found, but in general the simulations appeared to adequately reproduce the response of the test systems. Accounting for moisture retention hysteresis in the layered system will potentially lead to more accurate modelling results and is likely to be important when developing reasonable predictions of capillary barrier behavior

  3. 基于数值模拟的某垃圾填埋场渗漏性评价%Based on numerical simulation of a landfill leakage assessment

    杨泽; 杜泽; 陈正林


    基于对云南某拟建垃圾填埋场稳定渗流场的数值模拟,对该填埋场进行渗漏性评价,发现填埋场内渗滤液整体向垃圾坝方向运移,在分级堆积体每一级坡脚处运移方向发生突变,且会有部分渗滤液进入全风化岩层,导致地下水污染。针对所得结论,提出一定建议,以期为该垃圾填埋场的建设提供一定的参考。%Based on seepage numerical simulation of a proposed landfil in Yunnan, evaluating the leakage. We find that landfil percolate integraly migrate in the direction of refuse dam, and changing at the toe of slope in every platform. In addition, part of the percolate wil permeate into the seriously weathered sand rock stratum, leading to polute the underground water. Aiming at the conclusions, we give some suggestions, expecting to providing some references for the construction of the landfil.

  4. Numerical simulation of "An American Haboob"

    A. Vukovic


    Full Text Available A dust storm of fearful proportions hit Phoenix in the early evening hours of 5 July 2011. This storm, an American haboob, was predicted hours in advance because numerical, land-atmosphere modeling, computing power and remote sensing of dust events have improved greatly over the past decade. High resolution numerical models are required for accurate simulation of the small-scales of the haboob process, with high velocity surface winds produced by strong convection and severe downbursts. Dust productive areas in this region consist mainly of agricultural fields, with soil surfaces disturbed by plowing and tracks of land in the high Sonoran desert laid barren by ongoing draught. Model simulation of the 5 July 2011 dust storm uses the coupled atmospheric-dust model NMME-DREAM with 3.5 km horizontal resolution. A mask of the potentially dust productive regions is obtained from the land cover and the Normalized Difference Vegetation Index (NDVI data from the Moderate Resolution Imaging Spectroradiometer (MODIS. Model results are compared with radar and other satellite-based images and surface meteorological and PM10 observations. The atmospheric model successfully hindcasted the position of the front in space and time, with about 1 h late arrival in Phoenix. The dust model predicted the rapid uptake of dust and high values of dust concentration in the ensuing storm. South of Phoenix, over the closest source regions (~ 25 km, the model PM10 surface dust concentration reached ~ 2500 μg m−3, but underestimated the values measured by the PM10stations within the city. Model results are also validated by the MODIS aerosol optical depth (AOD, employing deep blue (DB algorithms for aerosol loadings. Model validation included Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO, equipped with the lidar instrument, to disclose the vertical structure of dust aerosols as well as aerosol subtypes. Promising results encourage further

  5. Numerical Simulations of Saturn's Polar Cyclones

    Brueshaber, Shawn R.; Sayanagi, Kunio M.


    Shawn R. Brueshaber, Department of Mechanical Engineering, Western Michigan UniversityKunio M. Sayanagi, Atmospheric and Planetary Sciences, Hampton UniversityCassini mission to Saturn has revealed evidences of a warm core cyclone centered on each of the poles of the planet. The morphology of the clouds in these cyclones resembles that of a terrestrial hurricane. The formation and maintenance mechanisms of these large polar cyclones are yet to be explained. Scott (2011, Astrophys. Geophys. Fluid Dyn) proposed that cyclonic vortices beta-drifting poleward can result in a polar cyclone, and demonstrated that beta-drifting cyclonic vortices can indeed cause accumulation of cyclonic vorticity at the pole using a 1-layer quasi-geostrophic model.The objectives of our project is to test Scott's hypothesis using a 1.5-layer shallow-water model and many-layer primitive equations model. We use the Explicit Planetary Isentropic Coordinate (EPIC) model (Dowling et al. 1998, 2004, Icarus) to perform direct numerical simulations of Saturn's polar atmosphere. To date, our project has focused on modifying the model to construct a polar rectangular model grid in order to avoid the problem of polar singularity associated with the conventional latitude-longitude grids employed in many general circulation models. We present our preliminary simulations, which show beta-drifting cyclones cause a poleward flux of cyclonic vorticity, which is consistent with Scott's results.Our study is partially supported by NASA Outer Planets Research Grant NNX12AR38G and NSF Astronomy and Astrophysics Grant 1212216 to KMS.

  6. Numerical simulation of magma chamber dynamics.

    Longo, Antonella; Papale, Paolo; Montagna, Chiara Paola; Vassalli, Melissa; Giudice, Salvatore; Cassioli, Andrea


    Magma chambers are characterized by periodic arrivals of deep magma batches that give origin to complex patterns of magma convection and mixing, and modify the distribution of physical quantities inside the chamber. We simulate the transient, 2D, multi-component homogeneous dynamics in geometrically complex dyke+chamber systems, by means of GALES, a finite element parallel C++ code solving mass, momentum and energy equations for multi-component homogeneous gas-liquid (± crystals) mixtures in compressible-to-incompressible flow conditions. Code validation analysis includes several cases from the classical engineering literature, corresponding to a variety of subsonic to supersonic gas-liquid flow regimes (see The model allows specification of the composition of the different magmas in the domain, in terms of ten major oxides plus the two volatile species H2O and CO2. Gas-liquid thermodynamics are modeled by using the compositional dependent, non-ideal model in Papale et al. (Chem.. Geol., 2006). Magma properties are defined in terms of local pressure, temperature, and composition including volatiles. Several applications are performed within domains characterized by the presence of one or more magma chambers and one or more dykes, with different geometries and characteristic size from hundreds of m to several km. In most simulations an initial compositional interface is placed at the top of a feeding dyke, or at larger depth, with the deeper magma having a lower density as a consequence of larger volatile content. The numerical results show complex patterns of magma refilling in the chamber, with alternating phases of magma ingression and magma sinking from the chamber into the feeding dyke. Intense mixing takes place in feeding dykes, so that the new magma entering the chamber is always a mixture of the deep and the initially resident magma. Buoyant plume rise occurs through the formation of complex convective

  7. Numerical simulation methods of fires in nuclear power plants

    Fire is a significant hazard to the safety of nuclear power plants (NPP). Fire may be serious accident as such, but even small fire at a critical point in a NPP may cause an accident much more serious than fire itself. According to risk assessments a fire may be an initial cause or a contributing factor in a large part of reactor accidents. At the Fire Technology and the the Nuclear Engineering Laboratory of the Technical Research Centre of Finland (VTT) fire safety research for NPPs has been carried out in a large extent since 1985. During years 1988-92 a project Advanced Numerical Modelling in Nuclear Power Plants (PALOME) was carried out. In the project the level of numerical modelling for fire research in Finland was improved by acquiring, preparing for use and developing numerical fire simulation programs. Large scale test data of the German experimental program (PHDR Sicherheitsprogramm in Kernforschungscentral Karlsruhe) has been as reference. The large scale tests were simulated by numerical codes and results were compared to calculations carried out by others. Scientific interaction with outstanding foreign laboratories and scientists has been an important part of the project. This report describes the work of PALOME-project carried out at the Fire Technology Laboratory only. A report on the work at the Nuclear Engineering Laboratory will be published separatively. (au)

  8. Proton decay: Numerical simulations confront grand unification

    The Grand Unified Theories of the electromagnetic, weak and strong interactions constitute a far reaching attempt to synthesize our knowledge of theoretical particle physics into a consistent and compelling whole. Unfortunately, many quantitative predictions of such unified theories are sensitive to the analytically intractible effects of the strong subnuclear theory (Quantum Chromodynamics or QCD). The consequence is that even ambitious experimental programs exploring weak and super-weak interaction effects often fail to give definitive theoretical tests. This paper describes large-scale calculations on a supercomputer which can help to overcome this gap between theoretical predictions and experimental results. Our focus here is on proton decay, though the methods described are useful for many weak processes. The basic algorithms for the numerical simulation of QCD are well known. We will discuss the advantages and challenges of applying these methods to weak transitions. The algorithms require a very large data base with regular data flow and are natural candidates for vectorization. Also, 32-bit floating point arithmetic is adequate. Thus they are most naturally approached using a supercomputer alone or in combination with a dedicated special purpose processor. (orig.)

  9. Transonic aeroelastic numerical simulation in aeronautical engineering

    An LU-SGS (lower-upper symmetric Gauss-Seidel) subiteration scheme is constructed for time-marching of the fluid equations. The HLLEW (Harten-Lax-van Leer-Einfeldt-Wada) scheme is used for the spatial discretization. The same subiteration formulation is applied directly to the structural equations of motion in generalized coordinates. Through subiteration between the fluid and structural equations, a fully implicit aeroelastic solver is obtained for the numerical simulation of fluid/structure interaction. To improve the ability for application to complex configurations, a multiblock grid is used for the flow field calculation and Transfinite Interpolation (TFI) is employed for the adaptive moving grid deformation. The infinite plate spline (IPS) and the principal of virtual work are utilized for the data transformation between the fluid and structure. The developed code was first validated through the comparison of experimental and computational results for the AGARD 445.6 standard aeroelastic wing. Then the flutter character of a tail wing with control surface was analyzed. Finally, flutter boundaries of a complex aircraft configuration were predicted. (author)

  10. Numerical simulation of noninvasive blood pressure measurement.

    Hayashi, Satoru; Hayase, Toshiyuki; Shirai, Atsushi; Maruyama, Masaru


    In this paper, a simulation model based on the partially pressurized collapsible tube model for reproducing noninvasive blood pressure measurement is presented. The model consists of a collapsible tube, which models the pressurized part of the artery, rigid pipes connected to the collapsible tube, which model proximal and distal region far from the pressurized part, and the Windkessel model, which represents the capacitance and the resistance of the distal part of the circulation. The blood flow is simplified to a one-dimensional system. Collapse and expansion of the tube is represented by the change in the cross-sectional area of the tube considering the force balance acting on the tube membrane in the direction normal to the tube axis. They are solved using the Runge-Kutta method. This simple model can easily reproduce the oscillation of inner fluid and corresponding tube collapse typical for the Korotkoff sounds generated by the cuff pressure. The numerical result is compared with the experiment and shows good agreement. PMID:16995754

  11. Numerical simulation of ball-racket impact

    Yu, Yingpang

    The collision of a ball with a tennis racket is usually modeled in terms of rigid body dynamics or an elastic system involving only a few springs. In this paper, we study the impact between a tennis ball and racket, by modeling the tennis ball in two different yaws. One method models the tennis ball as a Hertz elastic body and the other one models the ball by a more accurate finite element analysis. In the first model, we assume that the elastic properties of the ball obeys Hertz's law. In the finite element model, we consider the tennis ball as a shell witch is a elastic system constructed out of many isotropic small linear flat, elements, witch have both elastic and damping properties. The damping in each way is approximated as viscous term. In both methods, we study the static condition of deformation against a rigid surface before applying these models to dynamical processes. We compare these two methods and eventually determine how the racket parameters effect the performance of the racket, using numerical simulations. Comparison with experiment are show to confirm the general conclusion of the model.

  12. Direct numerical simulation of active fiber composite

    Kim, Seung J.; Hwang, Joon S.; Paik, Seung H.


    Active Fiber Composites (AFC) possess desirable characteristics for smart structure applications. One major advantage of AFC is the ability to create anisotropic laminate layers useful in applications requiring off-axis or twisting motions. AFC is naturally composed of two different constituents: piezoelectric fiber and matrix. Therefore, homogenization method, which is utilized in the analysis of laminated composite material, has been used to characterize the material properties. Using this approach, the global behaviors of the structures are predicted in an averaged sense. However, this approach has intrinsic limitations in describing the local behaviors in the level of the constituents. Actually, the failure analysis of AFC requires the knowledge of the local behaviors. Therefore, microscopic approach is necessary to predict the behaviors of AFC. In this work, a microscopic approach for the analysis of AFC was performed. Piezoelectric fiber and matrix were modeled separately and finite element method using three-dimensional solid elements was utilized. Because fine mesh is essential, high performance computing technology was applied to the solution of the immense degree-of-freedom problem. This approach is called Direct Numerical Simulation (DNS) of structure. Through the DNS of AFC, local stress distribution around the interface of fiber and matrix was analyzed.

  13. Numerical simulations of shocks encountering clumpy regions

    Alūzas, R; Hartquist, T W; Falle, S A E G; Langton, R


    We present numerical simulations of the adiabatic interaction of a shock with a clumpy region containing many individual clouds. Our work incorporates a sub-grid turbulence model which for the first time makes this investigation feasible. We vary the Mach number of the shock, the density contrast of the clouds, and the ratio of total cloud mass to inter-cloud mass within the clumpy region. Cloud material becomes incorporated into the flow. This "mass-loading" reduces the Mach number of the shock, and leads to the formation of a dense shell. In cases in which the mass-loading is sufficient the flow slows enough that the shock degenerates into a wave. The interaction evolves through up to four stages: initially the shock decelerates; then its speed is nearly constant; next the shock accelerates as it leaves the clumpy region; finally it moves at a constant speed close to its initial speed. Turbulence is generated in the post-shock flow as the shock sweeps through the clumpy region. Clouds exposed to turbulence ...

  14. Numerical simulations of a restarting jet

    The first self-consistent two-dimensional numerical simulation of an axisymmetric intermittent jet is presented. It is found that if the jet parameters at the jet nozzle do not vary widely from one duty cycle to the next, the restarted jet will always be overdense if the original jet is underdense relative to the quiescent intergalactic medium. Although the working surface advance speed of the restarted jet is greater than that of the original jet, the Mach number of the advance speed is less. Because the advance speed Mach number of the new working surface is relatively low, the bow shock excited by the new jet is weak regardless of the strength of the original bow shock in the quiescent ambient medium. Because the bow shock and terminal Mach disk must have comparable strengths, the brightness contrast of emission features associated with the shock should be roughly the same. Without the momentum flux of the jet, the hot spot expands in a time short compared with the duty cycle. 27 refs

  15. Direct numerical simulations of aeolian sand ripples.

    Durán, Orencio; Claudin, Philippe; Andreotti, Bruno


    Aeolian sand beds exhibit regular patterns of ripples resulting from the interaction between topography and sediment transport. Their characteristics have been so far related to reptation transport caused by the impacts on the ground of grains entrained by the wind into saltation. By means of direct numerical simulations of grains interacting with a wind flow, we show that the instability turns out to be driven by resonant grain trajectories, whose length is close to a ripple wavelength and whose splash leads to a mass displacement toward the ripple crests. The pattern selection results from a compromise between this destabilizing mechanism and a diffusive downslope transport which stabilizes small wavelengths. The initial wavelength is set by the ratio of the sediment flux and the erosion/deposition rate, a ratio which increases linearly with the wind velocity. We show that this scaling law, in agreement with experiments, originates from an interfacial layer separating the saltation zone from the static sand bed, where momentum transfers are dominated by midair collisions. Finally, we provide quantitative support for the use of the propagation of these ripples as a proxy for remote measurements of sediment transport. PMID:25331873

  16. ITER TF coil double pancake assembly: Laser welding numerical simulation

    In the frame of the ITER coils production, one crucial point is the cover plate welding to complete a coil layer, the so called double pancake (DP). The scope of the activity here described is the assessment of the deformation induced by this laser welding through a FE numerical simulation, in order to find the welding sequence that minimize the global distortion. At this concern, the Local-Global approach technique has been adopted using Abaqus Code, in order to be able to compare several long welding paths in acceptable CPU time increasing analysis speed and model definition easiness in spite of partial loss in the results accuracy. The numerical methodology has been tuned and assessed on experimental data from a welding sample in which a 2.5 mm deep welding has been performed and the deformation induced by 1 and 2 mm deep welds (the ones that will be used in the complete DP) has been extrapolated. These local strains have then been applied on the global models reproducing the middle and side DP, and their deformation has been computed. The rather good fitting between the experimental and numerical results is very promising, and a complete asses of the procedure could be performed in the frame of an experimental-numerical research campaign.

  17. Direct numerical simulation of turbulent aerosol coagulation

    Reade, Walter Caswell

    There are numerous systems-including both industrial applications and natural occurring phenomena-in which the collision/coagulation rates of aerosols are of significant interest. Two examples are the production of fine powders (such as titanium dioxide) and the formation of rain drops in the atmosphere. During the last decade, it has become apparent that dense aerosol particles behave much differently in a turbulent fluid than has been previously assumed. Particles with a response time on the order of the small-scale fluid time scale tend to collect in regions of low vorticity. The result is a particle concentration field that can be highly non-uniform. Sundaram and Collins (1997) recently demonstrated the effect that turbulence can have on the particle collision rate of a monodisperse system. The collision rates of finite-inertia particles can be as much as two orders of magnitude greater than particles that precisely follow the fluid streamlines. Sundaram and Collins derived a general collision expression that explicitly accounted for the two phenomena that affect the collision rate-changes in the particle concentration field and changes in the particle relative velocities. The result of Sundaram and Collins has generated further interest in the turbulent-aerosol problem. This thesis shows that, in addition to changing the rate that an aerosol size distribution might form, turbulence has the potential of dramatically changing the shape of the distribution. This result is demonstrated using direct numerical simulation of a turbulent-aerosol system over a wide range of particle parameters, and a moderate range of turbulence levels. Results show that particles with a small (but finite) initial inertia have the greatest potential of forming broad size distributions. The shape of the resulting size distribution is also affected by the initial size of the particles. Observations are explained using the statistics identified by Sundaram and Collins (1997). A major

  18. Restoration of cloud contaminated ocean color images using numerical simulation

    Yang, Xuefei; Mao, Zhihua; Chen, Jianyu; Huang, Haiqing


    It is very hard to access cloud-free remote sensing data, especially for the ocean color images. A cloud removal approach from ocean color satellite images based on numerical modeling is introduced. The approach removes cloud-contaminated portions and then reconstructs the missing data utilizing model simulated values. The basic idea is to create the relationship between cloud-free patches and cloud-contaminated patches under the assumption that both of them are influenced by the same marine hydrodynamic conditions. Firstly, we find cloud-free GOCI (the Geostationary Ocean Color Imager) retrieved suspended sediment concentrations (SSC) in the East China Sea before and after the time of cloudy images, which are set as initial field and validation data for numerical model, respectively. Secondly, a sediment transport model based on COHERENS, a coupled hydrodynamic-ecological ocean model for regional and shelf seas, is configured. The comparison between simulated results and validation images show that the sediment transport model can be used to simulate actual sediment distribution and transport in the East China Sea. Then, the simulated SSCs corresponding to the cloudy portions are used to remove the cloud and replace the missing values. Finally, the accuracy assessments of the results are carried out by visual and statistical analysis. The experimental results demonstrate that the proposed method can effectively remove cloud from GOCI images and reconstruct the missing data, which is a new way to enhance the effectiveness and availability of ocean color data, and is of great practical significance.

  19. Numerical simulation and experiment study of vircator

    A 2 1/2 dimensional, fully electromagnetic, relativistic CIC particle simulation code has been developed to simulate the virtual cathode oscillations and the HPM generations. Solid electron beams are used both in the simulations and the experiments. The microwave radiations whose average power is of the order of GW have been observed. The simulations are in agreement with the experiments

  20. Numerical simulation of 3D breaking waves

    Fraunie, Philippe; Golay, Frederic


    Numerical methods dealing with two phase flows basically can be classified in two ways : the "interface tracking" methods when the two phases are resolved separately including boundary conditions fixed at the interface and the "interface capturing" methods when a single flow is considered with variable density. Physical and numerical properties of the two approaches are discussed, based on some numerical experiments performed concerning 3D breaking waves. Acknowledgements : This research was supported by the Modtercom program of Region PACA.

  1. glsim: A general library for numerical simulation

    Grigera, Tomas S


    We describe glsim, a C++ library designed to provide routines to perform basic housekeeping tasks common to a very wide range of simulation programs, such as reading simulation parameters or reading and writing self-describing binary files with simulation data. The design also provides a framework to add features to the library while preserving its structure and interfaces.

  2. Model validation for the numerical simulation of the Double Punch Test

    Pros Parés, Alba; Díez, Pedro; Molins i Borrell, Climent


    The Double Punch test, an indirect traction test, is simulated numerically considering two different models (the nonlocal Mazars damage model and an heuristic crack model with joint elements). The test was designed to measure indirectly the tensile strength of concrete, hence, through these two numerical models, we are able to assess the tensile strength numerically. Experimental results present scattering when assessing the tensile strength, therefore, other tests are needed to set all...

  3. Numerical simulation of pressure pulsations in Francis turbines

    Magnoli, M. V.; Schilling, R.


    In the last decades, hydraulic turbines have experienced the increase of their power density and the extension of their operating range, leading the fluid and mechanical dynamic effects to become significantly more pronounced. The understanding of the transient fluid flow and of the associated unsteady effects is essential for the reduction of the pressure pulsation level and improvement of the machine dynamic behaviour. In this study, the instationary fluid flow through the complete turbine was numerically calculated for an existing Francis machine with high specific speed. The hybrid turbulence models DES (detached eddy simulation) and SAS (scale adaptive simulation) allowed the accurate simulation of complex dynamic flow effects, such as the rotor-stator-interaction and the draft tube instabilities. Different operating conditions, as full load, part load, higher part load and deep part load, were successfully simulated and showed very tight agreement with the experimental results from the model tests. The transient pressure field history, obtained from the CFD (computational fluid dynamics) simulation and stored for each time step, was used as input for the full instationary FEA (finite element analysis) of turbine components. The assessment of the machine dynamic motion also offered the possibility to contribute to the understanding of the pressure pulsation effects and to further increase the turbine stability. This research project was developed at the Institute of Fluid Mechanics of the TU München.

  4. Probing Strong Field Gravity Through Numerical Simulations

    Choptuik, Matthew W; Pretorius, Frans


    This article is an overview of the contributions numerical relativity has made to our understanding of strong field gravity, to be published in the book "General Relativity and Gravitation: A Centennial Perspective", commemorating the 100th anniversary of general relativity.

  5. Numerical Simulation of Rotating Vertical Bridgman Growth

    S. Nouri; P. Spiterri; Ghezal, A.


    The present work is proposed a numerical parametric study of heat and mass transfer in a rotating vertical cylinder during the solidification of a binary metallic alloy. The aim of this paper is to present an enthalpy formulation based on the fixed grid methodology for the numerical solution of convective-diffusion during the phase change in the case of the steady crucible rotation. The extended Darcy model including the time derivative and Coriolis terms was applied as momentum equation. It...

  6. Modular numerical tool for gas turbine simulation

    Sampedro Casis, Rodrigo


    In this work a free tool for the simulation of turboprops was implemented, capable of simulating the various components of a jet engine, separately or in conjunction, with different degrees of thermodynamic modelling or complexity, in order to simulate an entire jet engine. The main characteristics of this software includes its compatibility, open code and GNU license, non-existing in today's market. Furthermore, the tool was designed with a greater flexibility and a more adapted work environ...

  7. Numerical Simulation Of Cutting Of Gear Teeth

    Oswald, Fred B.; Huston, Ronald L.; Mavriplis, Dimitrios


    Shapes of gear teeth produced by gear cutters of specified shape simulated computationally, according to approach based on principles of differential geometry. Results of computer simulation displayed as computer graphics and/or used in analyses of design, manufacturing, and performance of gears. Applicable to both standard and non-standard gear-tooth forms. Accelerates and facilitates analysis of alternative designs of gears and cutters. Simulation extended to study generation of surfaces other than gears. Applied to cams, bearings, and surfaces of arbitrary rolling elements as well as to gears. Possible to develop analogous procedures for simulating manufacture of skin surfaces like automobile fenders, airfoils, and ship hulls.

  8. Numerical Simulation of Ground-Water Flow and Assessment of the Effects of Artificial Recharge in the Rialto-Colton Basin, San Bernardino County, California

    Woolfenden, Linda R.; Koczot, Kathryn M.


    The Rialto?Colton Basin, in western San Bernardino County, California, was chosen for storage of imported water because of the good quality of native ground water, the known storage capacity for additional ground-water storage in the basin, and the availability of imported water. To supplement native ground-water resources and offset overdraft conditions in the basin during dry periods, artificial-recharge operations during wet periods in the Rialto?Colton Basin were begun in 1982 to store surplus imported water. Local water purveyors recognized that determining the movement and ultimate disposition of the artificially recharged imported water would require a better understanding of the ground-water flow system. In this study, a finite-difference model was used to simulate ground-water flow in the Rialto?Colton Basin to gain a better understanding of the ground-water flow system and to evaluate the hydraulic effects of artificial recharge of imported water. The ground-water basin was simulated as four horizontal layers representing the river- channel deposits and the upper, middle, and lower water-bearing units. Several flow barriers bordering and internal to the Rialto?Colton Basin influence the direction of ground-water flow. Ground water may flow relatively unrestricted in the shallow parts of the flow system; however, the faults generally become more restrictive at depth. A particle-tracking model was used to simulate advective transport of imported water within the ground-water flow system and to evaluate three artificial-recharge alternatives. The ground-water flow model was calibrated to transient conditions for 1945?96. Initial conditions for the transient-state simulation were established by using 1945 recharge and discharge rates, and assuming no change in storage in the basin. Average hydrologic conditions for 1945?96 were used for the predictive simulations (1997?2027). Ground-water-level measurements made during 1945 were used for comparison with the

  9. Effects of chemical dispersants on oil spill drift paths in the German Bight—probabilistic assessment based on numerical ensemble simulations

    Schwichtenberg, Fabian; Callies, Ulrich; Groll, Nikolaus; Maßmann, Silvia


    Oil dispersed in the water column remains sheltered from wind forcing, so that an altered drift path is a key consequence of using chemical dispersants. In this study, ensemble simulations were conducted based on 7 years of simulated atmospheric and marine conditions, evaluating 2,190 hypothetical spills from each of 636 cells of a regular grid covering the inner German Bight (SE North Sea). Each simulation compares two idealized setups assuming either undispersed or fully dispersed oil. Differences are summarized in a spatial map of probabilities that chemical dispersant applications would help prevent oil pollution from entering intertidal coastal areas of the Wadden Sea. High probabilities of success overlap strongly with coastal regions between 10 m and 20 m water depth, where the use of chemical dispersants for oil spill response is a particularly contentious topic. The present study prepares the ground for a more detailed net environmental benefit analysis (NEBA) accounting also for toxic effects.

  10. Numerical simulation of tyre/road noise

    Schutte, Jan Henk


    In modern society, traffic noise has become an important issue for mental health. A significant contributor to this noise pollution is exterior tyre/road noise, which is caused by the interaction between tyre and road surface and. In order to reduce tyre/road noise at the source, accurate numerical

  11. Numerical simulation of the hepatic circulation

    Van Der Plaats, A; 'tHart, NA; Verkerke, GJ; Leuvenink, HGD; Verdonck, P; Ploeg, RJ; Rakhorst, G


    Availability of donor livers and the relatively short preservation time limit the success of liver transplantation. The use of hypothermic machine perfusion could pave the way for expansion of the donor pool. To better define optimal settings of such a device, the feasibility of using a numerical si

  12. Numerical simulation of AM1 microstructure

    Rougier Luc; Jacot Alain; Gandin Charles-André; Napoli Paolo Di; Ponsen Damien; Jaquet Virginie


    A modelling approach is developed for the description of microstructure formation in the industrial AM1 Ni-base superalloy. Solidification and homogenization simulations are first carried out using a microsegregation model, before using the local compositions as an input for precipitation calculations, in order to characterize the influence of segregation on precipitation. First, the precipitation model was validated by comparing simulated and measured evolutions of the average precipitate ra...

  13. A numerical simulation of a contrail

    Levkov, L.; Boin, M.; Meinert, D. [GKSS-Forschungszentrum Geesthacht GmbH, Geesthacht (Germany)


    The formation of a contrail from an aircraft flying near the tropopause is simulated using a three-dimensional mesoscale atmospheric model including a very complex scheme of parameterized cloud microphysical processes. The model predicted ice concentrations are in very good agreement with data measured during the International Cirrus Experiment (ICE), 1989. Sensitivity simulations were run to determine humidity forcing on the life time of contrails. (author) 4 refs.

  14. Numerical simulation of pump-intake vortices

    Rudolf Pavel; Klas Roman


    Pump pre-swirl or uneven flow distribution in front of the pump can induce pump-intake vortices. These phenomena result in blockage of the impeller suction space, deterioration of efficiency, drop of head curve and earlier onset of cavitation. Real problematic case, where head curve drop was documented, is simulated using commercial CFD software. Computational simulation was carried out for three flow rates, which correspond to three operating regimes of the vertical pump. The domain consists...

  15. Numerical simulations of a propeller wake impacting

    Hi, M.; Veitch, B.; Bose, N. [Memorial Univ. of Newfoundland, Faculty of Engineering and Applied Science, St. John' s, Newfoundland (Canada)]. E-mail:; Bruce, C.; Liu, P. [National Research Council Canada, Inst. for Ocean Technology, St. John' s, Newfoundland (Canada)


    This paper introduces a newly developed Wake Impingement Model (WIM) that aims to simulate of the dynamic loads induced by a three dimensional, unsteady, and strong vortical propeller wake. Simulations of loads on an ice class, tractor type podded propeller in straight ahead motion are presented consisting of mean loads on the propeller and side force on the pod and strut. The side force fluctuations for three different advance coefficients have also been predicted. These simulations were carried out by using a panel code, PROPELLA, with or without WIM. Simulated results were compared with and without WIM and with experimental data. The comparison of the propeller open water characteristics of two simulated results shown there is almost no difference between predictions with and without WIM. It was found by comparing with experimental data that the simulations of the side force on the pod and strut with WIM successfully captured the fluctuation which was dominated by the component at the blade passing frequency, although this was at a reduced level compared with the measurements. (author)

  16. Fastening elements in concrete structures - numerical simulations

    Ozbolt, Josko; Eligehausen, Rolf


    Anchoring elements such as headed and expansion studs and grouted or undercut anchors, are often used for local transfer of loads into concrete members. In order to better understand the failure mechanism, a large number of experiments have been carried out in the past. However, due to the complicated three-dimensional load transfer a very few or no numerical studies have been performed for a number of different fastening situations i.e. influence of the embedment depth, crack-width inftuence...

  17. Numerical simulation of hemorrhage in human injury

    Chong, Kwitae; Jiang, Chenfanfu; Santhanam, Anand; Benharash, Peyman; Teran, Joseph; Eldredge, Jeff


    Smoothed Particle Hydrodynamics (SPH) is adapted to simulate hemorrhage in the injured human body. As a Lagrangian fluid simulation, SPH uses fluid particles as computational elements and thus mass conservation is trivially satisfied. In order to ensure anatomical fidelity, a three-dimensional reconstruction of a portion of the human body -here, demonstrated on the lower leg- is sampled as skin, bone and internal tissue particles from the CT scan image of an actual patient. The injured geometry is then generated by simulation of ballistic projectiles passing through the anatomical model with the Material Point Method (MPM) and injured vessel segments are identified. From each such injured segment, SPH is used to simulate bleeding, with inflow boundary condition obtained from a coupled 1-d vascular tree model. Blood particles interact with impermeable bone and skin particles through the Navier-Stokes equations and with permeable internal tissue particles through the Brinkman equations. The SPH results are rendered in post-processing for improved visual fidelity. The overall simulation strategy is demonstrated on several injury scenarios in the lower leg.

  18. Numerical simulation of AM1 microstructure

    Rougier Luc


    Full Text Available A modelling approach is developed for the description of microstructure formation in the industrial AM1 Ni-base superalloy. Solidification and homogenization simulations are first carried out using a microsegregation model, before using the local compositions as an input for precipitation calculations, in order to characterize the influence of segregation on precipitation. First, the precipitation model was validated by comparing simulated and measured evolutions of the average precipitate radius during isothermal heat treatments at 1100 ∘C and 1210 ∘C. The chained microsegregation and precipitation simulations indicate that the global sequences of precipitation events remains are qualitatively the same at the different locations in the microstructure, but the growth and dissolution kinetics are strongly influenced by the local compositions. Local supersaturations have a larger effect on the average radius of the precipitates than certain stages of the precipitation heat treatment.

  19. A numerical simulation of auroral ionospheric electrodynamics

    Mallinckrodt, A. J.


    A computer simulation of auroral ionospheric electrodynamics in the altitude range 80 to 250 km has been developed. The routine will either simulate typical electron precipitation profiles or accept observed data. Using a model background ionosphere, ion production rates are calculated from which equilibrium electron densities and the Hall and Pedersen conductivities may be determined. With the specification of suitable boundary conditions, the entire three-dimensional current system and electric field may be calculated within the simulation region. The results of the application of the routine to a typical inverted-V precipitation profile are demonstrated. The routine is used to explore the observed anticorrelation between electric field magnitude and peak energy in the precipitating electron spectrum of an auroral arc.

  20. Numerical simulation of neutron penumbral imaging

    Penumbral imaging has high sensitivity, which will be the main technical method of neutron imaging in inertial confinement fusion (ICF) experiments. Based on the requirement of neutron penumbral imaging, two-dimensional image of neutrons transport in the coded aperture is simulated by Monte Carlo method, with the biased sampling skill and surface-flux replaced by volume-flux skill. The source image is obtained by reconstruction program. According to the simulation result, the 5 cm thick W bulk is selected as the shielding material and the optimized aperture outer radius is 1 cm. (authors)

  1. Pseudo-reconnection in MHD numerical simulation


    A class of pseudo-reconnections caused by a shifted mesh in magnetohydrodynamics (MHD) simulations is reported. In terms of this mesh system, some non-physical results may be obtained in certain circumstances, e.g. magnetic reconnection occurs without resistivity. After comparison, another kind of mesh is strongly recommended.

  2. A numerical simulation of ablation controlled arcs

    Godin, D.; Trepanier, J.Y. [Ecole Polytechnique, Dept. of Mechanical Engineering, Montreal, PQ (Canada); Eby, S.D. [Ecole Polytechnique, Centre de Recherche en Calcul Applique, Montreal, PQ (Canada); Robin-Jouan, P. [GEC-Alsthom T and D, Villeurbanne, (France)


    An approach to model the ablation phenomenon of ablation controlled arcs using computational fluid dynamics was presented. Ablation controlled arcs are found in high voltage electrical equipment such as fuses and circuit-breakers. A qualitative prediction of the ablation level is critical from an industrial point of view because deliberate use of ablation is made to increase the pressure in a circuit-breaker chamber to allow for an efficient extinction when the current returns to zero. The numerical model was validated by comparing results of published experimental data. 7 refs., 10 figs.

  3. Numerical simulations at CEBAF using PARMELA

    Liu, H.


    PARMELA has been used at CEBAF for numerical modeling of the nuclear physics injector chopping system, a possible FEL laser gun injector, and the rf steering and focusing effects of the standard CEBAF SRF cavities. These applications call for the code to input field data consistently from SUPERFISH, POISSON, and MAFIA, to properly treat a focusing solenoidal lens having an actual field profile either individually or together with its adjacent rf cavity, to deal with the space charge forces, to model the longitudinal phase space matching required for bunching electrons using a phase-compressor chicane, etc. In this paper, we describe in detail these issues of general interest.

  4. Numerical analysis and geotechnical assessment of mine scale model

    Khanal Manoj; Adhikary Deepak; Balusu Rao


    Various numerical methods are available to model,simulate,analyse and interpret the results; however a major task is to select a reliable and intended tool to perform a realistic assessment of any problem.For a model to be a representative of the realistic mining scenario,a verified tool must be chosen to perform an assessment of mine roof support requirement and address the geotechnical risks associated with longwall mining.The dependable tools provide a safe working environment,increased production,efficient management of resources and reduce environmental impacts of mining.Although various methods,for example,analytical,experimental and empirical are being adopted in mining,in recent days numerical tools are becoming popular due to the advancement in computer hardware and numerical methods.Empirical rules based on past experiences do provide a general guide,however due to the heterogeneous nature of mine geology (i.e.,none of the mine sites are identical),numerical simulations of mine site specific conditions would lend better insights into some underlying issues.The paper highlights the use of a continuum mechanics based tool in coal mining with a mine scale model.The continuum modelling can provide close to accurate stress fields and deformation.The paper describes the use of existing mine data to calibrate and validate the model parameters,which then are used to assess geotechnical issues related with installing a new high capacity longwall mine at the mine site.A variety of parameters,for example,chock convergences,caveability of overlying sandstones,abutment and vertical stresses have been estimated.

  5. Direct numerical simulation of flow past cactus--shaped cylinders

    Babu, Pradeep; Mahesh, Krishnan


    The Saguaro cacti are tall, have short root systems and can withstand high wind velocities (Bulk 1984, Talley et al. 2002). Their trunks are essentially cylindrical with V--shaped longitudinal cavities. The size and number of cavities on the Saguaro cacti vary so that they have a near--constant fraction cavity depth (l/D ratio of about 0.07, Geller & Nobel 1984). Direct numerical simulations is used to assess the aerodynamic effect of the grooves on the cactus. DNS is performed for cactus shaped cylinders with l/d ratio's of 0.07 and 0.105, and smooth cylinders (l/d=0) at the same Reynolds number. Presence of the V--shaped cavities is found to decrease the drag on the cylindrical trunk as well as affect the fluctuating lift forces. The talk will quantify these differences, and discuss the physical mechanisms by which V--shaped cavities on the surface influence the flow.

  6. Holistic simulation of geotechnical installation processes numerical and physical modelling


    The book provides suitable methods for the simulations of boundary value problems of geotechnical installation processes with reliable prediction for the deformation behavior of structures in static or dynamic interaction with the soil. It summarizes the basic research of a research group from scientists dealing with constitutive relations of soils and their implementations as well as contact element formulations in FE-codes. Numerical and physical experiments are presented providing benchmarks for future developments in this field. Boundary value problems have been formulated and solved with the developed tools in order to show the effectivity of the methods. Parametric studies of geotechnical installation processes in order to identify the governing parameters for the optimization of the process are given in such a way that the findings can be recommended to practice for further use. For many design engineers in practice the assessment of the serviceability of nearby structures due to geotechnical installat...

  7. Numerical simulation of avascular tumor growth

    Slezak, D Fernandez; Suarez, C; Soba, A; Risk, M; Marshall, G [Laboratorio de Sistemas Complejos, Departamento de Computacion, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (C1428EGA) Buenos Aires (Argentina)


    A mathematical and numerical model for the description of different aspects of microtumor development is presented. The model is based in the solution of a system of partial differential equations describing an avascular tumor growth. A detailed second-order numeric algorithm for solving this system is described. Parameters are swiped to cover a range of feasible physiological values. While previous published works used a single set of parameters values, here we present a wide range of feasible solutions for tumor growth, covering a more realistic scenario. The model is validated by experimental data obtained with a multicellular spheroid model, a specific type of in vitro biological model which is at present considered to be optimum for the study of complex aspects of avascular microtumor physiology. Moreover, a dynamical analysis and local behaviour of the system is presented, showing chaotic situations for particular sets of parameter values at some fixed points. Further biological experiments related to those specific points may give potentially interesting results.

  8. Numerical Simulation of Rotating Vertical Bridgman Growth

    S. Nouri


    Full Text Available The present work is proposed a numerical parametric study of heat and mass transfer in a rotating vertical cylinder during the solidification of a binary metallic alloy. The aim of this paper is to present an enthalpy formulation based on the fixed grid methodology for the numerical solution of convective-diffusion during the phase change in the case of the steady crucible rotation. The extended Darcy model including the time derivative and Coriolis terms was applied as momentum equation. It was found that the buoyancy driven flow and solute distribution can be affected significantly by the rotating cylinder. The problem is governed by the Navier-Stokes equations coupled with the conservation laws of energy and solute. The resulting system was discretized by the control volume method and solved by the SIMPLER algorithm proposed by Patankar. A computer code was developed and validated by comparison with previous studies. It can be observed that the forced convection introduced by rotation, dramatically changes the flow and solute distribution at the interface (liquid-mushy zone. The effect of Reynolds number on the Nusselt number, flow and solute distribution is presented and discussed.

  9. Radiative Transfer in 3D Numerical Simulations

    Stein, R; Stein, Robert; Nordlund, Aake


    We simulate convection near the solar surface, where the continuum optical depth is of order unity. Hence, to determine the radiative heating and cooling in the energy conservation equation, we must solve the radiative transfer equation (instead of using the diffusion or optically thin cooling approximations). A method efficient enough to calculate the radiation for thousands of time steps is needed. We assume LTE and a non-gray opacity grouped into 4 bins according to strength. We perform a formal solution of the Feautrier equation along a vertical and four straight, slanted, rays (at four azimuthal angles which are rotated 15 deg. every time step). We present details of our method. We also give some results: comparing simulated and observed line profiles for the Sun, showing the importance of 3D transfer for the structure of the mean atmosphere and the eigenfrequencies of p-modes, illustrating Stokes profiles for micropores, and analyzing the effect of radiation on p-mode asymmetries.

  10. Numerical simulation of jet flow using LES

    Louda, Petr; Kozel, K.; Příhoda, Jaromír

    Praha : Ústav termomechaniky AV ČR v. v. i., 2009 - (Jonáš, P.; Uruba, V.), s. 1-6 ISBN 978-80-87012-21-5. [Colloquium Fluid Dynamics 2009. Praha (CZ), 21.10.2009-23.10.2009] R&D Projects: GA ČR GA103/09/0977 Institutional research plan: CEZ:AV0Z20760514 Keywords : turbulence modelling * large eddy simulation * plane free jet Subject RIV: BK - Fluid Dynamics

  11. Numerical Simulation of Magnetic Pulse Welding

    Beyer, Eckhard; Brenner, Berndt; Göbel, Gunther; Körner, Julia


    The increasing demand for the use of lightweight materials and part designs, especially in the automotive industry, is a driving factor for the development of new joining techniques. One of the main challenges is joining of dissimilar materials. Magnetic pulse welding (MPW), a high-velocity, cold forming technique is a possible solution, as it is known for its ability to join dissimilar metals. To determine the potential of this technology for a certain application, simulation ...

  12. Numerical simulations of square arrayed rod bundles

    Highlights: ► CFD simulations with square arrayed rod bundles. ► Mesh dependency and turbulence model study by comparison with experiments. ► Gibson and Launder Reynolds stress model shows good agreement with experiments. ► Effect of pitch to diameter ratio and Reynolds number is correctly captured. - Abstract: Computational fluid dynamics (CFD) simulations were performed with square arrayed rod bundles featuring pitch to diameter (P/D) ratio of 1.194 and 1.326 in order to find an optimal mesh and turbulence model for simulations with more complex geometries in the future. With the tighter lattice a mesh sensitivity and turbulence model study were accomplished and the post processed turbulence quantities, velocity field and wall shear stress were compared with experimental data ( Developed single phase turbulent flow through a square-pitch rod cluster. Nuclear Engineering and Design 60, 365–379.). The comparisons show that Reynolds-Averaged Navier–Stokes method with the Reynolds stress model of Gibson and Launder in conjunction with an appropriate mesh can provide reasonable agreement with the experiment for this lattice. For pure bundle simulations the body fitted structured meshes are suggested, since slightly better agreement can be captured considering all quantities with the same number of cells. Based on the drawn conclusions the procession was repeated for P/D = 1.326, where, due to lack of experiment, just the correct tendencies of the turbulence quantities and velocity field were established. The results show Reynolds number independency correctly and the increase of P/D issues in more similar flow to axisymmetric pipe flow.

  13. Numerical Simulations of Europa Hydrothermal Plumes

    Goodman, J. C.; Lenferink, E.


    The liquid water interiors of Europa and other icy moons of the outer solar system are likely to be driven by geothermal heating from the sea floor, leading to the development of buoyant hydrothermal plumes. These plumes potentially control icy surface geomorphology, and are of interest to astrobiologists. We have performed a series of simulations of these plumes using the MITGCM. We assume in this experiment that Europa's ocean is deep (of order 100 km) and unstratified, and that plume buoyancy is controlled by temperature, not composition. A series of experiments was performed to explore a limited region of parameter space, with ocean depth H ranging from 50 to 100 km deep, source heat flux Q between 1 and 10 GW, and values of the Coriolis parameter f between 30% and 90% of the Europa average value. As predicted by earlier work, the plumes in our simulations form narrow cylindrical chimneys (a few km across) under the influence of the Coriolis effect. These plumes broaden over time until they become baroclinically unstable, breaking up into cone-shaped eddies when they become 20-35 km in diameter; the shed eddies are of a similar size. Large-scale currents in the region of the plume range between 1.5 and 5 cm/s; temperature anomalies in the plume far from the seafloor are tiny, varying between 30 and 160 microkelvin. Variations in plume size, shape, speed, and temperature are in excellent agreement with previous laboratory tank experiments, and in rough agreement with theoretical predictions. Plume dynamics and geometry are controlled by a "natural Rossby number" which depends strongly on depth H and Coriolis parameter f, but only weakly on source heat flux Q. However, some specific theoretical predictions are not borne out by these simulations. The time elapsed between startup of the source and the beginning of eddy-shedding is much less variable than predicted; also, the plume temperature varies with ocean depth H when our theory says it should not. Both of

  14. Numerical Simulation of Rocket Exhaust Interaction with Lunar Soil

    Liever, Peter; Tosh, Abhijit; Curtis, Jennifer


    This technology development originated from the need to assess the debris threat resulting from soil material erosion induced by landing spacecraft rocket plume impingement on extraterrestrial planetary surfaces. The impact of soil debris was observed to be highly detrimental during NASA s Apollo lunar missions and will pose a threat for any future landings on the Moon, Mars, and other exploration targets. The innovation developed under this program provides a simulation tool that combines modeling of the diverse disciplines of rocket plume impingement gas dynamics, granular soil material liberation, and soil debris particle kinetics into one unified simulation system. The Unified Flow Solver (UFS) developed by CFDRC enabled the efficient, seamless simulation of mixed continuum and rarefied rocket plume flow utilizing a novel direct numerical simulation technique of the Boltzmann gas dynamics equation. The characteristics of the soil granular material response and modeling of the erosion and liberation processes were enabled through novel first principle-based granular mechanics models developed by the University of Florida specifically for the highly irregularly shaped and cohesive lunar regolith material. These tools were integrated into a unique simulation system that accounts for all relevant physics aspects: (1) Modeling of spacecraft rocket plume impingement flow under lunar vacuum environment resulting in a mixed continuum and rarefied flow; (2) Modeling of lunar soil characteristics to capture soil-specific effects of particle size and shape composition, soil layer cohesion and granular flow physics; and (3) Accurate tracking of soil-borne debris particles beginning with aerodynamically driven motion inside the plume to purely ballistic motion in lunar far field conditions. In the earlier project phase of this innovation, the capabilities of the UFS for mixed continuum and rarefied flow situations were validated and demonstrated for lunar lander rocket

  15. Dimensionless numerical model for simulation of active magnetic regenerator refrigerator

    Sarlah, A.; Poredos, A. [Faculty of Mechanical Engineering, University of Ljubljana, Askerceva 6, SI-1000 Ljubljana (Slovenia)


    In order to obtain a better reliability, consistency and accuracy of results obtained with a numerical simulation of an AMRR (active magnetic regenerator refrigerator), a dimensionless numerical model was developed, which can equally be used for determination of regenerator's heat transfer coefficient and simulation of passive heat regenerators or AMRR operation. Regenerator's heat transfer coefficient {alpha}{sub f}, is a crucial input parameter in the simulation of AMRR operation and has a primal effect on the outcome of a solution. This paper deals with a derived dimensionless model and discusses errors involved when using different models for heat transfer coefficient and AMRR operation simulation. (author)

  16. Partial Differential Equations Modeling and Numerical Simulation

    Glowinski, Roland


    This book is dedicated to Olivier Pironneau. For more than 250 years partial differential equations have been clearly the most important tool available to mankind in order to understand a large variety of phenomena, natural at first and then those originating from human activity and technological development. Mechanics, physics and their engineering applications were the first to benefit from the impact of partial differential equations on modeling and design, but a little less than a century ago the Schrödinger equation was the key opening the door to the application of partial differential equations to quantum chemistry, for small atomic and molecular systems at first, but then for systems of fast growing complexity. Mathematical modeling methods based on partial differential equations form an important part of contemporary science and are widely used in engineering and scientific applications. In this book several experts in this field present their latest results and discuss trends in the numerical analy...

  17. Coherent Structures in Numerically Simulated Plasma Turbulence

    Kofoed-Hansen, O.; Pécseli, H.L.; Trulsen, J.


    Low level electrostatic ion acoustic turbulence generated by the ion-ion beam instability was investigated numerically. The fluctuations in potential were investigated by a conditional statistical analysis revealing propagating coherent structures having the form of negative potential wells which...... correspond to ion phase space vortices. The results demonstrate the importance of clump formation in ion phase space for the dynamics of the turbulence. The statistical analysis gives results in terms of averages over a conditionally selected subensemble. Because of the intermittent character of the...... turbulence it proved possible to devise a method, which permits recognition of essentially all coherent structures. With most of the structures recovered we are able to estimate their distributions of amplitude, width and velocity. A statistical evidence for interaction, i.e., binding, of phase space...

  18. Numerical simulation of distributed parameter processes

    Colosi, Tiberiu; Unguresan, Mihaela-Ligia; Muresan, Vlad


    The present monograph defines, interprets and uses the matrix of partial derivatives of the state vector with applications for the study of some common categories of engineering. The book covers broad categories of processes that are formed by systems of partial derivative equations (PDEs), including systems of ordinary differential equations (ODEs). The work includes numerous applications specific to Systems Theory based on Mpdx, such as parallel, serial as well as feed-back connections for the processes defined by PDEs. For similar, more complex processes based on Mpdx with PDEs and ODEs as components, we have developed control schemes with PID effects for the propagation phenomena, in continuous media (spaces) or discontinuous ones (chemistry, power system, thermo-energetic) or in electro-mechanics (railway – traction) and so on. The monograph has a purely engineering focus and is intended for a target audience working in extremely diverse fields of application (propagation phenomena, diffusion, hydrodyn...



    For the computation of the sediment quantity released from reservoirs, a vertical two-dimensional hydrodynamic model is combined with a sediment transport model. The hydrodynamic model is based on the equations of mass and momentum conservation along with a k - ε model for closure of the Reynolds stresses. The sediment transport model is based on the convection-diffusion equation of sediment concentration and the sediment continuity equation. Both the hydrodynamic and sediment transport models are developed in a boundary-fitted curvilinear co-ordinate system. Comparison of the predicted mean velocity field with laboratory results indicates that the present model captures most experimental trends with reasonable accuracy. Also good agreement is found in comparison of the sediment transport results for the numerical model and the experimental model.

  20. Dynamics of a compound vesicle: numerical simulations

    Veerapaneni, Shravan; Young, Yuan-Nan; Vlahovska, Petia; Blawzdziewicz, Jerzy


    Vesicles (self-enclosing lipid membranes) in simple linear flows are known to exhibit rich dynamics such as tank-treading, tumbling, trembling (swinging), and vacillating breathing. Recently, vesicles have been used as a multi-functional platform for drug-delivery. In this work, the dynamics of simplified models for such compound vesicles is investigated numerically using a state-of-the-art boundary-integral code that has been validated with high accuracy and efficiency. Results show that for a vesicle enclosing a rigid particle in a simple shear flow, transition from tank-treading to tumbling is possible even in the absence of viscosity mismatch in the interior and exterior fluids. We will discuss the shape transformations, multiple particle interactions and the flow properties. Comparison with results from analytical modeling gives insights to the underlying physics for such novel dynamics.

  1. Numerical simulation of vircator with the feedback

    By means of a 2,5-dimensional PIC-code the processes of dynamics of a relativistic electron beam in vircator, forming of two joined cylinders of different radiuses in the presence of a feedback across the field was modeled numerically. Modeling has shown that at model selected options the virtual cathode is formed at and around of step change of radius of a side surface of vircator. It is revealed that feedback introduction across the field gives the chance to change time of formation of the virtual cathode, and also its position in space by means of feedback factor changing. With increase in value of a feedback factor in a spectrum of oscillations of electric field the amplitude of high-frequency components increases that finally, can lead to breakdown of an electron bunch.

  2. The Lexington Benchmarks for Numerical Simulations of Nebulae

    Ferland, G; Contini, M; Harrington, J; Kallman, T; Netzer, H; Péquignot, D; Raymond, J; Rubin, R; Shields, G; Sutherland, R; Viegas, S


    We present the results of a meeting on numerical simulations of ionized nebulae held at the University of Kentucky in conjunction with the celebration of the 70th birthdays of Profs. Donald Osterbrock and Michael Seaton.

  3. Numerical simulation of an axial blood pump.

    Chua, Leok Poh; Su, Boyang; Lim, Tau Meng; Zhou, Tongming


    The axial blood pump with a magnetically suspended impeller is superior to other artificial blood pumps because of its small size. In this article, the distributions of velocity, path line, pressure, and shear stress in the straightener, the rotor, and the diffuser of the axial blood pump, as well as the gap zone were obtained using the commercial software, Fluent (version 6.2). The main focus was on the flow field of the blood pump. The numerical results showed that the axial blood pump could produce 5.14 L/min of blood at 100 mm Hg through the outlet when rotating at 11,000 rpm. However, there was a leakage flow of 1.06 L/min in the gap between the rotor cylinder and the pump housing, and thus the overall flow rate the impeller could generate was 6.2 L/min. The numerical results showed that 75% of the scalar shear stresses (SSs) were less than 250 Pa, and 10% were higher than 500 Pa within the whole pump. The high SS region appeared around the blade tip where a large variation of velocity direction and magnitude was found, which might be due to the steep angle variation at the blade tip. Because the exposure time of the blood cell at the high SS region within the pump was relatively short, it might not cause serious damage to the blood cells, but the improvement of blade profile should be considered in the future design of the axial pump. PMID:17584481

  4. Numerical simulation tests with light dynamical quarks

    Two generate flavours of quarks are simulated with small masses down to about one fifth of the strange quark mass by using the two-step multi-boson (TSMB) algorithm. The lattice size is 83 . 16 with lattice spacing about a ≅ 0.27 fm which is not far from the Nt = 4 thermodynamical cross-over line. Autocorrelations of different physical quantities are estimated as a function of the quark mass. The eigenvalue spectra of the Wilson-Dirac operator are investigated. (orig.)

  5. Numerical simulations of Klein-Gordon solitary-wave interactions

    Solitons of a non-linear Klein-Gordon equation are studied numerically using a cubic B-spline finite-element method. Test results indicate that, when solitary waves interact, the final state obtained depends on their relative velocity.The simulations confirm existing observations and produce new results. The numerical algorithm developed is efficient with an undemanding stability criterion

  6. Numerical simulations of cardiovascular diseases and global matter transport

    Simakov, S S; Evdokimov, A V; Kholodov, Y A


    Numerical model of the peripheral circulation and dynamical model of the large vessels and the heart are discussed in this paper. They combined together into the global model of blood circulation. Some results of numerical simulations concerning matter transport through the human organism and heart diseases are represented in the end.

  7. Numerical simulation of ventilation in blinding heading

    CHANG De-qiang; LIU Jing-xian; CHEN Bao-zhi


    The way of ventilation in all its forms and characteristics in the blinding heading was studied.On the basis of computational fluid dynamics (CFD) the turbulence model of restrained ventilation in blinding heading was set up,and the calculation boundary conditions were analyzed.According to the practice application the three-dimensional flow field of ventilation in blinding heading was simulated by the computational fluid dynamics software.The characteristics of the ventilation flow field such as the temperature field zone and the flow filed zone and the rule of the flow velocity were obtained.The ventilation in blinding heading under certain circumstances was calculated and simulated for optimization.The optimal ventilation form and related parameters under given condition were obtained.The rule of the ventilation in blinding heading was theoretical analyzed,which provided reference for the research on the process of mass transfer,the rule of hazardous substances transportation and ventilation efficiency,provided a new method for the study of reasonable and effective ventilation in blinding heading.

  8. Numerical Simulations of the Mechanics of Vitrectomy

    Young, Ethan; Eldredge, Jeff; Hubschman, Jean-Pierre


    Vitreous is the clear, gel-like substance that fills the cavity between the lens and retina in the eye. Treating certain eye abnormalities requires removing this substance using a minimally-invasive device called a vitreous cutter. Understanding the behavior of this viscoelastic biofluid during surgeries is essential to improving the effectiveness of the procedure. In this study, three-dimensional computational models of vitreous cutters are investigated using an immersed boundary method paired with a viscoelastic constitutive model. The solver uses a fractional-step method to satisfy continuity and traction boundary conditions to simulate the applied suction. The current work extends previous efforts to accurately model the rheological parameters measured by Sharif-Kashani et al. using the Giesekus constitutive equation [Retina, 2013]. The simulations were used to quantify both the average and time-varying flow rate through the device. Values for flow rate are compared with experimental results from Hubschman et al. [Retina, 2009]. Flow features associated with the cutting dynamics are of particular interest, as is the geometry of the cutter itself. These operational and design changes are a target for improving cutter efficacy while minimizing potential tissue damage.

  9. Numerical simulation of ventilation in blinding heading

    CHANG De-qiang; LIU Jing-xian; CHEN Bao-zhi


    The way of ventilation in all its forms and characteristics in the blinding heading was studied. On the basis of computational fluid dynamics (CFD) the turbulence model of restrained ventilation in blinding heading was set up, and the calculation boundary condi-tions were analyzed. According to the practice application the three-dimensional flow field of ventilation in blinding heading was simulated by the computational fluid dynamics soft-ware. The characteristics of the ventilation flow field such as the temperature field zone and the flow filed zone and the rule of the flow velocity were obtained. The ventilation in blinding heading under certain circumstances was calculated and simulated for optimiza-tion. The optimal ventilation form and related parameters under given condition were ob-tained. The rule of the ventilation in blinding heading was theoretical analyzed, which pro-vided reference for the research on the process of mass transfer, the rule of hazardous substances transportation and ventilation efficiency, provided a new method for the study of reasonable and effective ventilation in blinding heading.

  10. Gravity Currents with Convective Mixing: High-resolution Numerical Simulations

    Voskov, D.; Elenius, M. T.; Tchelepi, H.


    Due to challenges in performing direct numerical simulations for gravity currents with convective mixing, different attempts have been made to simplify the problem. In this work, the full problem is investigated with direct numerical simulations. Our simulations employ a recently developed capability in our General Purpose Research Simulator (AD-GPRS). The compositional approach is based on K-values and a linear density model. A shared-memory parallel implementation allows for high resolution simulations in a reasonable time frame. Our results indicate that it is important to consider the reduction in the dissolution rate after the fingers begin to interact with the bottom of the aquifer. Another important observation suggests considering a reduction in the dissolution rate where the plume thickness increases in time. In addition to the large-scale simulations, we performed convective-mixing simulations in relatively small domains to support the analysis of large-scale plume migration and CO2 trapping.

  11. Numerical 3D flow simulation of ultrasonic horns with attached cavitation structures and assessment of flow aggressiveness and cavitation erosion sensitive wall zones.

    Mottyll, Stephan; Skoda, Romuald


    As a contribution to a better understanding of cavitation erosion mechanisms, a compressible inviscid finite volume flow solver with barotropic homogeneous liquid-vapor mixture cavitation model is applied to ultrasonic horn set-ups with and without stationary specimen, that exhibit attached cavitation at the horn tip. Void collapses and shock waves, which are closely related to cavitation erosion, are resolved. The computational results are compared to hydrophone, shadowgraphy and erosion test data. At the horn tip, vapor volume and topology, subharmonic oscillation frequency as well as the amplitude of propagating pressure waves are in good agreement with experimental data. For the evaluation of flow aggressiveness and the assessment of erosion sensitive wall zones, statistical analyses of wall loads and of the multiplicity of distinct collapses in wall-adjacent flow regions are applied to the horn tip and the stationary specimen. An a posteriori projection of load collectives, i.e. cumulative collapse rate vs. collapse pressure, onto a reference grid eliminates the grid dependency effectively for attached cavitation at the horn tip, whereas a significant grid dependency remains at the stationary specimen. The load collectives show an exponential decrease towards higher collapse pressures. Erosion sensitive wall zones are well predicted for both, horn tip and stationary specimen, and load profiles are in good qualitative agreement with measured topography profiles of eroded duplex stainless steel samples after long-term runs. For the considered amplitude and gap width according to ASTM G32-10 standard, the analysis of load collectives reveals that the distinctive erosive ring shape at the horn tip can be attributed to frequent breakdown and re-development of a small portion of the tip-attached cavity. This partial breakdown of the attached cavity repeats at each driving cycle and is associated with relatively moderate collapse peak pressures, whereas the

  12. Numerical Simulations of a Flux Rope Ejection

    P. Pagano; D. H. Mackay; S. Poedts


    Coronal mass ejections (CMEs) are the most violent phenomena observed on the Sun. One of the most successful models to explain CMEs is the flux rope ejection model, where a magnetic flux rope is expelled from the solar corona after a long phase along which the flux rope stays in equilibrium while magnetic energy is being accumulated. However, still many questions are outstanding on the detailed mechanism of the ejection and observations continuously provide new data to interpret and put in the context. Currently, extreme ultraviolet (EUV) images from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamic Observatory (SDO) are providing new insights into the early phase of CME evolution. In particular, observations show the ejection of magnetic flux ropes from the solar corona and how they evolve into CMEs. However, these observations are difficult to interpret in terms of basic physical mechanisms and quantities, thus, we need to compare equivalent quantities to test and improve our models. In our work, we intend to bridge the gap between models and observations with our model of flux rope ejection where we consistently describe the full life span of a flux rope from its formation to ejection. This is done by coupling the global non-linear force-free model (GNLFFF) built to describe the slow low- formation phase, with a full MHD simulation run with the software MPI-AMRVAC, suitable to describe the fast MHD evolution of the flux rope ejection that happens in a heterogeneous regime. We also explore the parameter space to identify the conditions upon which the ejection is favoured (gravity stratification and magnetic field intensity) and we produce synthesised AIA observations (171 Å and 211 Å). To carry this out, we run 3D MHD simulation in spherical coordinates where we include the role of thermal conduction and radiative losses, both of which are important for determining the temperature distribution of the solar corona during a CME. Our model of flux

  13. Numerical simulation of supersonic gap flow.

    Xu Jing

    Full Text Available Various gaps in the surface of the supersonic aircraft have a significant effect on airflows. In order to predict the effects of attack angle, Mach number and width-to-depth ratio of gap on the local aerodynamic heating environment of supersonic flow, two-dimensional compressible Navier-Stokes equations are solved by the finite volume method, where convective flux of space term adopts the Roe format, and discretization of time term is achieved by 5-step Runge-Kutta algorithm. The numerical results reveal that the heat flux ratio is U-shaped distribution on the gap wall and maximum at the windward corner of the gap. The heat flux ratio decreases as the gap depth and Mach number increase, however, it increases as the attack angle increases. In addition, it is important to find that chamfer in the windward corner can effectively reduce gap effect coefficient. The study will be helpful for the design of the thermal protection system in reentry vehicles.

  14. Numerical simulation of permafrost depth at Olkiluoto

    This study provides a numerical estimation of the development of permafrost and frozen ground at Olkiluoto, where an underground repository for spent nuclear fuel is being designed at a depth of 420 metres. Calculations are carried out in 1-D for a 10 000 metres deep subsurface model using Olkiluoto's site-specific data. The time histories of ground level temperatures, ice sheet thickness, shoreline migration and vegetation covers effects are considered for two climate scenarios, Weichselian-R and Emissions-M. The model also includes the effects of decay heat from the spent fuel. Results are presented for the next 125 000 years for the Weichselian-R scenario and 200 000 years for the Emissions-M scenario. This study shows that in both Weichselian-R and Emissions-M scenarios the depth of the permafrost and frozen ground stays well above the repository level. The maximum permafrost depth is about 170 metres in the Weichselian-R scenario and 80 metres in the Emissions-M scenario. The depth of frozen ground is from a few metres to some twenty metres shallower than the permafrost depth, except during the glacial periods with warm-based ice-sheets when the subglacial permafrost remains completely unfrozen due to high water pressures induced by the ice load. (orig.)

  15. Numerical simulations on the magnetopause current layer

    One-dimensional particle simulations are carried out in order to study the current layer between a plasma and magnetic field such as seen at the magnetopause boundary layer. When a subsonic solar wind plasma flow impinges upon a vacuum dipole magnetic field, the width of the current layer is found much smaller than the ion gyroradius and is close to theoretically predicted geometric mean of the ion and electron gyroradii. The width remains essentially the same when the magnetic field is filled with a thermal plasma whose density is smaller than the incoming solar wind density. The width, therefore, remains much smaller than the ion gyroradius. It is found that a similar sharp current layer develops in a plasma confined in a magnetic field such as seen in laboratory and space plasmas. 15 refs., 11 figs

  16. AGN feedback in elliptical galaxies: numerical simulations

    Ciotti, L


    The importance of feedback (radiative and mechanical) from massive black holes at the centers of elliptical galaxies is not in doubt, given the well established relation among black hole mass and galaxy optical luminosity. Here, with the aid of high-resolution hydrodynamical simulations, we discuss how this feedback affects the hot ISM of isolated elliptical galaxies of different mass. The cooling and heating functions include photoionization plus Compton heating, the radiative transport equations are solved, and the mechanical feedback due to the nuclear wind is also described on a physical basis; star formation is considered. In the medium-high mass galaxies the resulting evolution is highly unsteady. At early times major accretion episodes caused by cooling flows in the recycled gas produced by stellar evolution trigger AGN flaring: relaxation instabilities occur so that duty cycles are small enough to account for the very small fraction of massive ellipticals observed to be in the QSO-phase, when the accr...

  17. Numerical simulation of aeolian sand ripples

    With a new horizontal saltation displacement vector, a model is implemented to simulate the initiation and evolution of aeolian sand ripples. In the model, saltation distance considers the effects of surface height and slope. A linear stability analysis is also carried out for formation of sand ripples. The results show that, the model can be able to successfully reproduce sand ripples which can increase in scale by merging of small ripples. The linear stability analysis indicates that sand ripples appear when the relaxation rate parameter is below a threshold value and wind strength parameter is larger than a critical value. The results also verified that the formation of sand ripples is a self-organization process

  18. Numerical simulation of strong proton rings

    Recent calculations suggest the possibility of achieving a Lawson breakeven condition by the magnetic compression of proton rings to field reversal. A physical model and computer code RING developed to study equilibria of strong proton rings and their behavior under an adiabatic increase in the external magnetic field are described. Ring ion motion is followed using a volume-weighted finite-size particle-in-cell method. Because of the very short electron time scale, the electrons are simulated by a simple fluid model using Ohm's law. Quasineutrality, current neutralization in the r-z plane, cylindrical symmetry and a magneto-static model are assumed. Preliminary results indicate that (a) equilibria tend to be intermediate between the long layer and bicycle tire cases; and (b) compression past field reversal on the axis is possible within the framework of this model. Some aspects of the formation and injection of proton rings have also been studied with this code. (author)

  19. Numerical simulation of synthesis gas incineration

    Kazakov, A. V.; Khaustov, S. A.; Tabakaev, R. B.; Belousova, Y. A.


    The authors have analysed the expediency of the suggested low-grade fuels application method. Thermal processing of solid raw materials in the gaseous fuel, called synthesis gas, is investigated. The technical challenges concerning the applicability of the existing gas equipment developed and extensively tested exclusively for natural gas were considered. For this purpose computer simulation of three-dimensional syngas-incinerating flame dynamics was performed by means of the ANSYS Multiphysics engineering software. The subjects of studying were: a three-dimensional aerodynamic flame structure, heat-release and temperature fields, a set of combustion properties: a flare range and the concentration distribution of burnout reagents. The obtained results were presented in the form of a time-averaged pathlines with color indexing. The obtained results can be used for qualitative and quantitative evaluation of complex multicomponent gas incineration singularities.

  20. Batman-cracks. Observations and numerical simulations

    Selvadurai, A. P. S.; Busschen, A. Ten; Ernst, L. J.


    To ensure mechanical strength of fiber reinforced plastics (FRP), good adhesion between fibers and the matrix is considered to be an essential requirement. An efficient test of fiber-matrix interface characterization is the fragmentation test which provides information about the interface slip mechanism. This test consists of the longitudinal loading of a single fiber which is embedded in a matrix specimen. At critical loads the fiber experiences fragmentation. This fragmentation will terminate depending upon the shear-slip strength of the fiber-matrix adhesion, which is inversely proportional to average fragment lengths. Depending upon interface strength characteristics either bond or slip matrix fracture can occur at the onset of fiber fracture. Certain particular features of matrix fracture are observed at the locations of fiber fracture in situations where there is sufficient interface bond strength. These refer to the development of fractures with a complex surface topography. The experimental procedure involved in the fragmentation tests is discussed and the boundary element technique to examine the development of multiple matrix fractures at the fiber fracture locations is examined. The mechanics of matrix fracture is examined. When bond integrity is maintained, a fiber fracture results in a matrix fracture. The matrix fracture topography in a fragmentation test is complex; however, simplified conoidal fracture patterns can be used to investigate the crack extension phenomena. Via a mixed-mode fracture criterion, the generation of a conoidal fracture pattern in the matrix is investigated. The numerical results compare favorably with observed experimental data derived from tests conducted on fragmentation test specimens consisting of a single glass fiber which is embedded in a polyester matrix.

  1. Numerical simulation of Glacial Isostatic Adjustment

    Miglio, E.


    In the Earth's crust, stress can be subdivided into tectonic background stress, overburden pressure, and pore-fluid pressure. The superposition of the first two and the variation of the third part are key factors in controlling movement along faults. Furthermore, stresses due to sedimentation and erosion contribute to the total stress field. In deglaciated regions, an additional stress must be considered: the rebound stress, which is related to rebounding of the crust and mantle after deglaciation. During the growth of a continental ice sheet, the lithosphere under the iceload is deformed and the removal of the ice load during deglaciation initiates a rebound process. The uplift is well known in formerly glaciated areas, e.g.North America and Scandinavia, and in currently deglaciating areas, e.g.Alaska, Antarctica, and Greenland. The whole process of subsiding and uplifting during the growth and melting of an iceload and all related phenomena is known as glacial isostatic adjustment. During the process of glaciation, the surface of the lithosphere is depressed underneath the ice load and compressional flexural stresses are induced in the upper lithosphere, whereas the bottom of the lithosphere experiences extensional flexural stresses; an additional vertical stress due to the ice load is present and it decreases to zero during deglaciation. During rebound, flexural stresses relax slowly. These stresses are able to change the original stress directions and regime.In this work we aim to study the effect of the GIA process in the context of petroleum engineering. The main aspect we will focus on is the mathematical and numerical modeling of the GIA including thermal effects. We plan also to include a preliminary study of the effect of the glacial erosion. All these phenomena are of paramount importance in petroleum engineering: for example some reservoir have been depleted due to tilting caused by both GIA, erosion and thermal effects.

  2. Numerical Simulation of Pulse Shortening in RBWOs

    GONG Yu-bin; ZHANG Zhang; WANG Wen-xiang; MENG Fan-bao; FAN Zhi-kai; HUANG Min-zhi


    Pulse shortening hinders improvement of microwave output energy for high power microwave tubes. So far, it is also an unresolved problem in the field of high power microwave devices. In this paper, relativistic backward wave tube (RBWO) is treated as an example to study the pulse shortening phenomena. The influences of gas existing in the tube and explosive emission in inner surface of RBWO are all investigated by means of the particle-in-cell method. Through the simulation results, it can be predicted that the background gas in the tube is one but not the most important factor resulting in pulse shortening, in order to broaden the pulse width of gas-filled RBWO, the pressure of the filled gas must be controlled in a proper value. The explosive emission in the surface of slow wave structure due to intense electric field is one of the most important factors causing pulse shortening in high power microwave tube.Some methods to overcome this find of explosive emission are also given.

  3. Numerical simulation of flow past circular duct

    Ze-gao YIN


    Full Text Available On the basis of Fluent software, Renormalization Group (RNGk-ε turbulent model and Volume of Fluid (VOF method are employed to simulate the flow past circular duct to obtain and analyze the hydraulic parameters. According to various upper and bottom gap-ratios, the force on duct is calculated. Firstly, when bottom gap-ratio is 0, drag force coefficient, lift force coefficient and composite force reach the maximum respectively and azimuth reaches the minimum. Secondly, with the increase of bottom gap-ratio from 0 to 1, drag force coefficient and composite force decrease sharply, lift force coefficient decreases a little, but azimuth increases dramatically. Thirdly, with the continuous increase of bottom gap-ratio from 1, drag force coefficient, lift force coefficient, composite force and azimuth vary little. So, bottom gap-ratio is the key factor influencing the force on circular duct. When bottom gap-ratio is less than 1, upper gap-ratio has the remarkable influence on the circular duct force. When bottom gap-ratio is greater than 1, the varation of upper gap-ratio has a little influence on the circular duct force.

  4. Numerical simulations for terrestrial planets formation

    Ji J.


    Full Text Available We investigate the formation of terrestrial planets in the late stage of planetary formation using two-planet model. At that time, the protostar has formed for about 3 Myr and the gas disk has dissipated. In the model, the perturbations from Jupiter and Saturn are considered. We also consider variations of the mass of outer planet, and the initial eccentricities and inclinations of embryos and planetesimals. Our results show that, terrestrial planets are formed in 50 Myr, and the accretion rate is about 60%–80%. In each simulation, 3–4 terrestrial planets are formed inside “Jupiter” with masses of 0.15–3.6 M⊕. In the 0.5–4 AU, when the eccentricities of planetesimals are excited, planetesimals are able to accrete material from wide radial direction. The plenty of water material of the terrestrial planet in the Habitable Zone may be transferred from the farther places by this mechanism. Accretion may also happen a few times between two giant planets only if the outer planet has a moderate mass and the small terrestrial planet could survive at some resonances over time scale of 108 yr.

  5. Numerical simulation of flow past circular duct

    Ze-gao YIN; Xian-wei Cao; Hong-da SHI; Jian MA


    The Renormalization Group(RNG)k-ε turbulence model and Volume of Fluid(VOF)method were employed to simulate the flow past a circular duct in order to obtain and analyze hydraulic parameters.According to various upper and bottom gap ratios,the force on the duct was calculated.When the bottom gap ratio is 0,the drag force coefficient,lift force coefficient,and composite force reach their maximum values,and the azimuth reaches its minimum.With an increase of the bottom gap ratio from 0 to 1,the drag force coefficient and composite force decrease sharply,and the lift force coefficient does not decreases so much,but the azimuth increases dramatically.With a continuous increase of the bottom gap ratio from 1 upward,the drag force coefficient,lift force coefficient,composite force,and azimuth vary little.Thus,the bottom gap ratio is the key factor influencing the force on the circular duct.When the bottom gap ratio is less than 1,the upper gap ratio has a remarkable influence on the force of the circular duct.When the bottom gap ratio is greater than 1,the variation of the upper gap ratio has little influence on the force of the circular duct.

  6. Numerical simulation of fundamental trapped sausage modes

    Cécere, M; Reula, O


    Context: We integrate the 2D MHD ideal equations of a straight slab to simulate observational results associated with fundamental sausage trapped modes. Aims: Starting from a non-equilibrium state with a dense chromospheric layer, we analyse the evolution of the internal plasma dynamics of magnetic loops, subject to line-tying boundary conditions, and with the coronal parameters described in Asai et al. (2001) and Melnikov et al. (2002) to investigate the onset and damping of sausage modes. Methods: To integrate the equations we used a high resolution shock-capturing (HRSC) method specially designed to deal appropriately with flow discontinuities. Results: Due to non-linearities and inhomogeneities, pure modes are difficult to sustain and always occur coupled among them so as to satisfy, e.g., the line-tying constraint. We found that, in one case, the resonant coupling of the sausage fundamental mode with a slow one results in a non-dissipative damping of the former. Conclusions: In scenarios of thick and den...




    Full Text Available This work consists in the simulation of the ice accretion in the leading edge of aerodynamic profiles and our proposed model encompasses: geometry generation, calculation of the potential flow around the body, boundary layer thickness computation, water droplet trajectory computation, heat and mass balances and the consequent modification of the geometry by the ice growth. The flow calculation is realized with panel methods, using only segments defined over the body contour. The viscous effects are considered using the Karman-Pohlhausen method for the laminar boundary layer. The local heat transfer coefficient is obtained by applying the Smith-Spalding method for the thermal boundary layer. The ice accretion limits and the collection efficiency are determined by computing water droplet trajectories impinging the surface. The heat transfer process is analyzed with an energy and a mass balance in each segment defining the body. Finally, the geometry is modified by the addition of the computed ice thickness to the respective panel. The process by repeating all the steps. The model validation is done using a selection of problems with experimental solution, CIRA (the CESAR project. Hereinafter, results are obtained for different aerodynamic profiles, angles of attack and meteorological parameters

  8. Numerical simulation of subcooled flow boiling

    Park, Won Cheol

    Sub-cooled flow boiling in a U-bend has been examined using numerical methods. An Eulerian/Eulerian mathematical description was used with a multiphase computational algorithm to predict several types of flows and to examine sub-cooled flow boiling. As a prelude to the study of sub-cooled boiling and two-phase flows, single-phase laminar and turbulent flows in a U-bend were investigated. Air-water bubbly up flow in a vertical straight duct followed by a U-bend with heat transfer was analyzed. In such a flow, as the flow develops through the U-bend the bubbles move from center and outer wall toward inner wall. After half way through the U-bend, the fluids do not have sufficient time for complete reorganization in the presence of centrifugal forces and the pressure gradients. After the U-bend, the bubbles finally reach the original distribution in about forty diameters. The heat transfer in the U-bend was also calculated and as expected heat transfer rate on the outer wall is higher than on the inner wall. For air-water bubbly two-phase flow, Nusselt numbers in the U-bend can be as high as 400 percent of the value in the straight duct on one of the walls. The method of partitioned wall heat flux was used to study sub-cooled flow boiling. For sub-cooled flow boiling in a U-bend, axial and lateral velocity distributions as well as quality and void fraction variations were analyzed. Computed axial and lateral variations of void fraction compare favorably with existing experimental data. As expected, the pressure drop for bubbly flow through the U-bend is larger than for single-phase flow by as much as fifty percent. Computed pressure drop for flow with phase change falls between the predictions of two different correlations in the literature, and thus seems reasonable. Predictions of heat transfer and void fraction under sub-cooled flow boiling using two-fluid models need better quantitative knowledge related to the mechanisms associated with bubble growth and

  9. Numerical simulation of photoexcited polaron states in water

    Zemlyanaya, E. V., E-mail:; Volokhova, A. V.; Amirkhanov, I. V.; Puzynin, I. V.; Puzynina, T. P.; Rikhvitskiy, V. S. [Laboratory of Information Technologies, Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Lakhno, V. D. [Institute of Mathematical Problems of Biology, Russian Academy of Science, Pushchino 142290 (Russian Federation); Atanasova, P. Kh. [Faculty of Mathematics and Informatics, Paisii Hilendarski University of Plovdiv 4003 (Bulgaria)


    We consider the dynamic polaron model of the hydrated electron state on the basis of a system of three nonlinear partial differential equations with appropriate initial and boundary conditions. A parallel numerical algorithm for the numerical solution of this system has been developed. Its effectiveness has been tested on a few multi-processor systems. A numerical simulation of the polaron states formation in water under the action of the ultraviolet range laser irradiation has been performed. The numerical results are shown to be in a reasonable agreement with experimental data and theoretical predictions.

  10. Three-Dimensional Numerical Simulation to Mud Turbine for LWD

    Yao, Xiaojiang; Dong, Jingxin; Shang, Jie; Zhang, Guanqi

    Hydraulic performance analysis was discussed for a type of turbine on generator used for LWD. The simulation models were built by CFD analysis software FINE/Turbo, and full three-dimensional numerical simulation was carried out for impeller group. The hydraulic parameter such as power, speed and pressure drop, were calculated in two kinds of medium water and mud. Experiment was built in water environment. The error of numerical simulation was less than 6%, verified by experiment. Based on this rationalization proposals would be given to choice appropriate impellers, and the rationalization of methods would be explored.

  11. Feasibility study for a numerical aerodynamic simulation facility. Volume 1

    Lincoln, N. R.; Bergman, R. O.; Bonstrom, D. B.; Brinkman, T. W.; Chiu, S. H. J.; Green, S. S.; Hansen, S. D.; Klein, D. L.; Krohn, H. E.; Prow, R. P.


    A Numerical Aerodynamic Simulation Facility (NASF) was designed for the simulation of fluid flow around three-dimensional bodies, both in wind tunnel environments and in free space. The application of numerical simulation to this field of endeavor promised to yield economies in aerodynamic and aircraft body designs. A model for a NASF/FMP (Flow Model Processor) ensemble using a possible approach to meeting NASF goals is presented. The computer hardware and software are presented, along with the entire design and performance analysis and evaluation.

  12. Numerical Simulation of Barotropic Tides around Taiwan

    Chih-Kai Hu


    Full Text Available A _ 2-D barotropic tide model was used to examine the characteristics of barotropic tides and to improve the accuracy of predicting tidal sea levels and currents in the seas around Taiwan. The form ratio suggests that tides are predominantly semidiurnal in the northern reaches of the Taiwan Strait and mixed of diurnal and semidiurnal elsewhere around Taiwan. When the dominant M2 wave enters the Strait from the north, its amplitude is magnified to ~2 m in the middle, and then decreases rapidly toward the south end of the Strait. The predominance of diurnal tides along the southwest to the south coast of Taiwan is attributed to the quasi-resonance of diurnal waves in the South China Sea. The tidal range is small and tidal currents are weak off the east coast of Taiwan. Barotropic tidal energy is mostly dissipated on the shallow banks of the southwestern Strait. Results summarized from sensitivity tests on the bottom drag coefficient (CD and horizontal eddy viscosity (AM indicate that CD = 0.0015 - 0.00175 and AM = 150 m2 s-1 lead to the best model-data fit when compared to the observed tidal sea levels at ten reference tide-gauge stations around Taiwan. The averaged root-mean-squared (RMS differences of the simulated tidal sea level for the six principal constituents of O1, P1, K1, N2, M2, and S2 are significantly reduced to 1.3, 0.7, 2.0, 1.6, 5.1, and 3.1 cm, respectively, compared to that calculated from a _ resolution global tide harmonic constant database, NAO.99b (Matsumoto et al. 2000. The averaged RMS differences of barotropic tidal currents (U, V for O1, K1, M2, and S2 are (0.92, 1.64, (1.17, 0.61, (3.88, 2.37, and (1.52, 1.20 cm s-1. A database of tidal sea levels and current harmonic constants, TWTIDE08, for Q1, O1, P1, K1, J1, OO1, 2N2, _ N2, _ M2, L2, T2, S2, and K2 is established with this study.

  13. The numerical simulation of the impact phenomena in nail penetration

    Powder actuated fastening is a quick and cost efficient method to fasten building materials together. In this method, a nail is placed in a hand-held tool and driven by a flying piston into hard construction materials such as steel and concrete. The piston is propelled by the explosive force of a powder cartridge. Numerical simulations are used to help engineers design better powder actuated tools and fastenings. These simulations require the numerical treatment of stress wave propagation, large strain, strain-rate material behaviour and sliding contact and impact. In this paper, the numerical contact algorithm implemented in an explicit dynamic finite element program used to simulate nail penetrations is described. The results of several example simulations are presented. ((orig.))

  14. Numerical simulation of turbulent flow in a cyclonic separator

    Bogdanov, Dmitry; Poniaev, Sergey


    Numerical simulation of a turbulent flow of air with dispersed particles through a cyclonic separator is presented. Because of a high streamline curvature in the separator it is difficult to simulate the flow by using the conventional turbulent models. In this work the curvature correction term was included into the k - ω - SST turbulence model implemented in the OpenFOAM® software. Experimental data and results of numerical simulation by the commercial ANSYS Fluent® solver for a turbulent flow in a U-duct were used to validate the model. The numerical simulation of the flow in the cyclonic separator demonstrates that the implemented turbulence model successfully predicts the cyclonic separator efficiency.

  15. Numerical relativity simulations in the era of the Einstein Telescope

    Hannam, Mark; Hawke, Ian


    Numerical-relativity (NR) simulations of compact binaries are expected to be an invaluable tool in gravitational-wave (GW) astronomy. The sensitivity of future detectors such as the Einstein Telescope (ET) will place much higher demands on NR simulations than first- and second-generation ground-based detectors. We discuss the issues facing compact-object simulations over the next decade, with an emphasis on estimating where the accuracy and parameter space coverage will be sufficient for ET a...

  16. Numerical Simulation of Carbon Dioxide Injection in the Western Section of the Farnsworth Unit

    White, Mark D.; McPherson, Brian J.; Grigg, Reid B.; Ampomah, William; Appold, Martin S.


    Numerical simulation is an invaluable analytical tool for scientists and engineers in making predictions about of the fate of carbon dioxide injected into deep geologic formations for long-term storage. Current numerical simulators for assessing storage in deep saline formations have capabilities for modeling strongly coupled processes involving multifluid flow, heat transfer, chemistry, and rock mechanics in geologic media. Except for moderate pressure conditions, numerical simulators for deep saline formations only require the tracking of two immiscible phases and a limited number of phase components, beyond those comprising the geochemical reactive system. The requirements for numerically simulating the utilization and storage of carbon dioxide in partially depleted petroleum reservoirs are more numerous than those for deep saline formations. The minimum number of immiscible phases increases to three, the number of phase components may easily increase fourfold, and the coupled processes of heat transfer, geochemistry, and geomechanics remain. Public and scientific confidence in the ability of numerical simulators used for carbon dioxide sequestration in deep saline formations has advanced via a natural progression of the simulators being proven against benchmark problems, code comparisons, laboratory-scale experiments, pilot-scale injections, and commercial-scale injections. This paper describes a new numerical simulator for the scientific investigation of carbon dioxide utilization and storage in partially depleted petroleum reservoirs, with an emphasis on its unique features for scientific investigations; and documents the numerical simulation of the utilization of carbon dioxide for enhanced oil recovery in the western section of the Farnsworth Unit and represents an early stage in the progression of numerical simulators for carbon utilization and storage in depleted oil reservoirs.



    This paper presents new weighting functions in grid generation and new discretizing scheme of momentum equations in numerical simulation of river flow. By using the new weighting functions, the curvilinear grid could be concentrated as desired near the assigned points or lines in physical plane. By using the new discretizing scheme, the difficulties caused by movable boundary and dry riverbed can be overcome. As an application, the flow in the Wuhan Section of Yangtze River is simulated. The computational results are in good agreement with the measured results. The new method is applicable to the numerical simulation of 2-D river flow with irregular region and moveable boundary.

  18. Numerical simulations of plasma brush behavior in hybrid armatures

    Hawke, R. S.; Pincosy, P. A.


    Hybrid armatures used to accelerate projectiles in railguns are often the consequence of using a solid armature or in some cases the preferred armature type. Although hybrid armatures are often used, their design has been empirical and their performance sporadic. As a first step towards understanding hybrid design and performance, we have begun a combined numerical simulation and experimental verification effort. This paper will describe numerical simulations performed with a quasi 1-D MHD code (CONFUSE) which has been applied to simulate the behavior of plasma brushes used in hybrid armatures. The simulations have provided estimates of the plasma brush length, resistive voltage drop and temperatures corresponding to a range of; 1) brush gap size, 2) fuse thickness, and 3) magnetic pressure. The results of these simulations is presented and discussed.

  19. Numerical simulations of plasma brush behavior in hybrid armatures

    Hawke, R.S.; Pincosy, P.A.


    Hybrid armatures used to accelerate projectiles in railguns are often the consequence of using a solid armature or in some cases the preferred armature type. Although hybrid armatures are often used, their design has been empirical and their performance sporadic. As a first step towards understanding hybrid design and performance, we have begun a combined numerical simulation and experimental verification effort This paper will describe numerical simulations performed with liquid 1-D MHD code (CONFUSE) which has been applied to simulate the behavior of plasma brushes used in hybrid armatures. The simulations have provided estimates of the plasma brush length, resistive voltage drop and temperatures corresponding to a range of; (1) brush gap size, (2) fuse thickness, and (3) magnetic pressure. The results of these simulations will be presented and discussed.

  20. Numerical simulations of bubbly flows using an averaged equations' model

    The paper discusses a numerical method for solving a two phase flow model based on the interpenetrating continua hypothesis. The model incorporates terms to account for the effects of virtual mass force, different pressures for the two phases and the viscous dissipation. Our numerical scheme extends the incremental projection scheme for the incompressible Navier-Stokes equation toward the multiphase flows. An optimal stability is obtained by slightly modifying the Galerkin formulation. The stabilized Galerkin technique we used is based on a two-level hierarchical decomposition of the approximation space. Numerical simulations of the three-dimensional bubbly flows in a periodic domain are presented. These simulations are compared with experiments. The stability of this flow with respect to 3D perturbations is studied numerically and a discussion of the results is presented. (author)

  1. Calibration of a pebble bed configuration for direct numerical simulation

    The appearance of hot spots in the pebble bed cores of High Temperature Reactors (HTR) may affect the integrity of the pebbles. A good prediction of the flow and heat transport in such a pebble bed core is a challenge for available turbulence models. Such models need to be validated in order to gain trust in the simulation of these types of flow configurations. Direct Numerical Simulation (DNS) can serve as a reference for validation, however, it poses restrictions in terms of flow parameters and numerical tools corresponding to the available computational resources. In the present study, a wide range of numerical simulations has been performed in order to calibrate a pebble bed configuration for DNS which may serve as reference for validation. (author)

  2. Numerical simulations of hydraulic transients in hydropower plant Jajce II

    Škifić, Jerko; Radošević, Adrijana; Brajković, Đani; Družeta, Siniša; Čavrak, Marko


    Hydraulic transients in hydropower plant Jajce II (Bosnia and Herzegovina) were simulated with 1D unsteady pipe flow model. High accuracy of the model was accomplished with the use of non-conservative formulation of an unsteady pipe flow model incorporating a modified instantaneous acceleration-based unsteady friction model and second order flux limited numerical scheme. In order to apply the model, complex dual surge tank geometry needed to be represented with a unified surge tank. The numer...

  3. On Numerical Simulation of Flow Through Oil Filters

    Iliev, O.; Laptev, V.


    This paper concerns numerical simulation of flow through oil filters. Oil filters consist of filter housing (filter box), and a porous filtering medium, which completely separates the inlet from the outlet. We discuss mathematical models, describing coupled flows in the pure liquid subregions and in the porous filter media, as well as interface conditions between them. Further, we reformulate the problem in fictitious regions method manner, and discuss peculiarities of the numerical algorithm...

  4. Numerical simulation of a synthetic jet with OpenFoam

    Liu, Qiong; Kazakidi, Asimina; Medeiros, Marcello A. F.; Theofilis, Vassilios


    Numerical simulations of flow surrounding a synthetic jet actuating device are presented. By modifying a dynamic mesh technique available in OpenFoam-a well-documented open-source solver for fluid dynamics, detailed computations of the sinusoidal motion of the synthetic jet diaphragm were possible. Numerical solutions were obtained by solving the two dimensional incompressible viscous N-S equations, with the use of a second order implicit time marching scheme and a central finite volume metho...

  5. Numerical simulation of the rheological behavior of fresh concrete

    Shyshko, Sergiy


    This thesis reports recent numerical investigation of the rheological behavior of fresh concrete using the Distinct Element Method (DEM). Some relevant questions of the concrete rheology e.g. the influence of the concrete composition on the rheological behavior of the fresh concrete, the experimental determination of the Bingham rheological constants as well as the use of these constants in the numerical simulation were discussed thoroughly. An important topic of the performed investigation w...

  6. Numerical Simulations of Unsteady Shock Reflection Processes by a Ramp

    Aso, Shigeru; Hayashi, Masanori; Takano, Masanori


    Numerical simulations of unsteady shock reflections by a ramp have been conducted. The two-dimensional Euler equations are solved numerically by a TVD scheme proposed by Harten with modified flux approach and resolution enhancement by artificial compression. The calculations have been carried out for regular reflections, single Mach reflections, complex Mach reflections and double Mach reflections under the conditions of shock Mach number from 1.34 to 3.10 and ramp angles from 35 to 48 degree...

  7. Numerical simulation of the countercurrent flow in a gas centrifuge

    Cloutman, L.D.; Gentry, R.A.


    We present a finite difference method for the numerical simulation of the axisymmetric countercurrent flow in a gas centrifuge. A time-marching technique is used to relax an arbitrary initial condition to the desired steady-state solution. All boundary layers can be resolved, and nonlinear effects may be included. Numerical examples are presented. We conclude that this technique is capable of predicting accurately the performance of a wide variety of machines under all operating conditions of interest.

  8. Numerical Simulation of Two-dimensional Nonlinear Sloshing Problems


    Numerical simulation of a two-dimensional nonlinearsloshing problem is preceded by the finite element method. Two theories are used. One is fully nonlinear theory; the other is time domain second order theory. A liquid sloshing in a rectangular container subjected to a horizontal excitation is simulated using these two theories. Numerical results are obtained and comparisons are made. It is found that a good agreement is obtained for the case of small amplitude oscillation. For the situation of large amplitude excitation, although the differences between using the two theories are obvious the second order solution can still exhibit typical nonlinear features of nonlinear wave.

  9. Numerical Simulations of a Possible Hypercomputational Quantum Algorithm

    Sicard, A; Vélez, M; Sicard, Andr\\'es; Ospina, Juan; V\\'elez, Mario


    The hypercomputers compute functions or numbers, or more generally solve problems or carry out tasks, that cannot be computed or solved by a Turing machine. Several numerical simulations of a possible hypercomputational algorithm based on quantum computations previously constructed by the authors are presented. The hypercomputability of our algorithm is based on the fact that this algorithm could solve a classically non-computable decision problem, Hilbert's tenth problem. The numerical simulations were realized for three types of Diophantine equations: with and without solutions in non-negative integers, and without solutions by way of various traditional mathematical packages.


    宋顺成; 高平; 才鸿年


    The numerical simulation for forming projectile of depleted uranium alloy with the SPH ( Smooth Particle Hydrodynamic ) algorithm was presented. In the computations the artificial pressures of detonation were used, i. e. , the spatial distribution and time distribution were given artificially. To describe the deformed behaviors of the depleted uranium alloy under high pressure and high strain rate, the Johnson-Cook model of materials was introduced. From the numerical simulation the formed projectile velocity,projectile geometry and the minimum of the height of detonation are obtained.

  11. Modeling and Numerical Simulation of Solid Rocket Motors Internal Ballistics



    In the design and development of solid propellant rocket motors, the use of numerical tools able to simulate, predict and reconstruct the behavior of a given motor in all its operative conditions is particularly important in order to decrease all the planning times and costs. This work is devoted to present an approach to the numerical simulation of SRM internal ballistic during the entire combustion time (ignition transient, quasi steady state and tail-off) by means of a Q1D unsteady nume...

  12. Numerical Simulation of the Submarine Pipeline under Wave Action

    Zhi-Yong Zhang


    Full Text Available A two-dimensional viscous numerical wave flume is established in this study. The Navier-Stokes equations are discretized by Finite Difference Method (FDM. The turbulence is considered by using the standard k-ε turbulence model. Volume of Fluid (VOF method is adopted to capture the free surface of water wave. A virtual inclined porous structure is devised to absorb the wave energy near the end of computational domain. The numerical wave flume was validated by the comparisons with analytical result. Based on the numerical wave flume, the wave field around submarine pipeline was simulated and the numerical results were compared with experimental data. The comparison results show that the present numerical model works well. The maximum horizontal wave force and vertical wave force increase with the wave height.

  13. Numerical simulation of tethered DNA in shear flow

    Litvinov, S; Hu, X Y; Adams, N A [Institute of Aerodynamics, Technische Universitaet Muenchen, D-85747 Garching (Germany)


    The behavior of tethered DNA in shear flow is investigated numerically by the smoothed dissipative particle dynamics (SDPD) method. Unlike numerical methods used in previous studies, SDPD models the solvent explicitly, takes into account the fully coupled hydrodynamic interactions and is free of the numerical artifact of wall sticking. Based on numerical simulations the static and dynamic properties of a tethered DNA is studied both qualitatively and quantitatively. The observed properties are in general agreement with previous experimental, numerical and theoretical work. Furthermore, the cyclic-motion phenomenon is studied by power spectrum density and cross-correlation function analysis, which suggest that there is only a very weak coherent motion of tethered DNA for a characteristic timescale larger than the relaxation time. Cyclic motion is more likely relevant as an isolated event than a typical mode of DNA motion.

  14. Processing biobased polymers using plasticizers: Numerical simulations versus experiments

    Desplentere, Frederik; Cardon, Ludwig; Six, Wim; Erkoç, Mustafa


    In polymer processing, the use of biobased products shows lots of possibilities. Considering biobased materials, biodegradability is in most cases the most important issue. Next to this, bio based materials aimed at durable applications, are gaining interest. Within this research, the influence of plasticizers on the processing of the bio based material is investigated. This work is done for an extrusion grade of PLA, Natureworks PLA 2003D. Extrusion through a slit die equipped with pressure sensors is used to compare the experimental pressure values to numerical simulation results. Additional experimental data (temperature and pressure data along the extrusion screw and die are recorded) is generated on a dr. Collin Lab extruder producing a 25mm diameter tube. All these experimental data is used to indicate the appropriate functioning of the numerical simulation tool Virtual Extrusion Laboratory 6.7 for the simulation of both the industrial available extrusion grade PLA and the compound in which 15% of plasticizer is added. Adding the applied plasticizer, resulted in a 40% lower pressure drop over the extrusion die. The combination of different experiments allowed to fit the numerical simulation results closely to the experimental values. Based on this experience, it is shown that numerical simulations also can be used for modified bio based materials if appropriate material and process data are taken into account.

  15. Numerical simulation of airfoil trailing edge serration noise

    Zhu, Wei Jun; Shen, Wen Zhong

    In the present work, numerical simulations are carried out for a low noise airfoil with and without serrated Trailing Edge. The Ffowcs Williams-Hawkings acoustic analogy is implemented into the in-house incompressible flow solver EllipSys3D. The instantaneous hydrodynamic pressure and velocity...... field are obtained using Large Eddy Simulation. To obtain the time history data of sound pressure, the flow quantities are integrated around the airfoil surface through the FW-H approach. The extended length of the serration is about 16.7% of the airfoil chord and the geometric angle of the serration is...... 28 degrees. The chord based Reynolds number is around 1.5x106. Simulations are compared with existing wind tunnel experiments at various angles of attack. Even though the airfoil under investigation is already optimized for low noise emission, numerical simulations and wind tunnel experiments show...


    PAN Yu-cun; ZHANG Huai-xin; ZHOU Qi-dou


    The submarine Hydrodynamic coefficients are predicted by numerical simulations.Steady and unsteady Reynolds Averaged Navier-Stokes (RANS) simulations are carried out to numerically simulate the oblique towing experiment and the Planar Motion Mechanism (PMM) experiment performed on the SUBOFF submarine model.The dynamic mesh method is adopted to simulate the maneuvering motions of pure heaving,pure swaying,pure pitching and pure yawing.The hydrodynamic forces and moments acting on the maneuvering submarine are obtained.Consequently,by analyzing these results,the hydrodynamic coefficients of the submarine maneuvering motions can be determined.The computational results are verified by comparison with experimental data,which show that this method can be used to estimate the hydrodynamic derivatives of a fully appended submarine.

  17. Numerical Simulations of the Digital Microfluidic Manipulation of Single Microparticles.

    Lan, Chuanjin; Pal, Souvik; Li, Zhen; Ma, Yanbao


    Single-cell analysis techniques have been developed as a valuable bioanalytical tool for elucidating cellular heterogeneity at genomic, proteomic, and cellular levels. Cell manipulation is an indispensable process for single-cell analysis. Digital microfluidics (DMF) is an important platform for conducting cell manipulation and single-cell analysis in a high-throughput fashion. However, the manipulation of single cells in DMF has not been quantitatively studied so far. In this article, we investigate the interaction of a single microparticle with a liquid droplet on a flat substrate using numerical simulations. The droplet is driven by capillary force generated from the wettability gradient of the substrate. Considering the Brownian motion of microparticles, we utilize many-body dissipative particle dynamics (MDPD), an off-lattice mesoscopic simulation technique, in this numerical study. The manipulation processes (including pickup, transport, and drop-off) of a single microparticle with a liquid droplet are simulated. Parametric studies are conducted to investigate the effects on the manipulation processes from the droplet size, wettability gradient, wetting properties of the microparticle, and particle-substrate friction coefficients. The numerical results show that the pickup, transport, and drop-off processes can be precisely controlled by these parameters. On the basis of the numerical results, a trap-free delivery of a hydrophobic microparticle to a destination on the substrate is demonstrated in the numerical simulations. The numerical results not only provide a fundamental understanding of interactions among the microparticle, the droplet, and the substrate but also demonstrate a new technique for the trap-free immobilization of single hydrophobic microparticles in the DMF design. Finally, our numerical method also provides a powerful design and optimization tool for the manipulation of microparticles in DMF systems. PMID:26241832

  18. 3-D MHD Numerical Simulations of Cloud-Wind Interactions

    Gregori, G.; Miniati, Francesco; Ryu, Dongsu; Jones, T. W.


    We present results from three-dimensional (3-D) numerical simulations investigating the magnetohydrodynamics of cloud-wind interactions. The initial cloud is spherical while the magnetic field is uniform and transverse to the cloud motion. A simplified analytical model that describes the magnetic energy evolution in front of the cloud is developed and compared with simulation results. In addition, it is found the interaction of the cloud with a magnetized interstellar medium (ISM) results in ...

  19. Dynamic Analysis and CFD Numerical Simulation on Backpressure Filling System

    Jing Qian; Lu, J. P.; Hui, S L; Ma, Y J; D. Y. Li


    A backpressure filling system is a kind of air type filling system which could be applied to power type, fine or coarse grain, or mixtures with fine and coarse components. The working principle of backpressure filling system was discussed based on fundamental hydromechanics. The research limit values of backpressure were achieved via mechanical analysis. Comparing with the exit velocity of material by theoretical analysis and numerical simulation, the CFD simulation model was confirmed and it...

  20. Numerical Simulation of slug flow in a micro-channel

    Carlson, Andreas


    Multiphase dynamics and characteristics of slug flow in micro channels are investigated computationally by means of advanced numerical simulation methods. Although, due to its importance in many engineering and biomedical applications, the topic has been studied previously, methods for robust and accurate simulation of slug flow remain elusive. Evaluation of current state-of-the-art Computational Multi Fluid Dynamics (CMFD) technology depicts deficiency with advanced computational methods (Vo...

  1. Numerical Simulation of the Double Slit Interference with Ultracold Atoms

    Gondran, Michel; Gondran, Alexandre


    We present a numerical simulation of the double slit interference experiment realized by F. Shimizu, K. Shimizu and H. Takuma with ultracold atoms. We show how the Feynman path integral method enables the calculation of the time-dependent wave function. Because the evolution of the probability density of the wave packet just after it exits the slits raises the issue of the interpreting the wave/particle dualism, we also simulate trajectories in the de Broglie-Bohm interpretation.


    C. Zhu; Z. Xu; D.E. Wu


    In this paper, using computer simulation and mathematic experiment method to solve the simplified one dimensional thermal conduction equation and to obtain the temperature distribution in a metal bar when its one end was heated. According to principle of hot expansion, a holograph of temperature distribution in the bar by laser holotechnique was taken. The results of numerical simulation and experiments are in good agreement and a new method for study on thermal conduction by laser holo-technique was found.

  3. Numerical simulation of deformation and figure quality of precise mirror

    Vit, Tomáš; Melich, Radek; Sandri, Paolo


    The presented paper shows results and a comparison of FEM numerical simulations and optical tests of the assembly of a precise Zerodur mirror with a mounting structure for space applications. It also shows how the curing of adhesive film can impact the optical surface, especially as regards deformations. Finally, the paper shows the results of the figure quality analysis, which are based on data from FEM simulation of optical surface deformations.

  4. Numerical simulations and modeling for stochastic biological systems with jumps

    Zou, Xiaoling; Wang, Ke


    This paper gives a numerical method to simulate sample paths for stochastic differential equations (SDEs) driven by Poisson random measures. It provides us a new approach to simulate systems with jumps from a different angle. The driving Poisson random measures are assumed to be generated by stationary Poisson point processes instead of Lévy processes. Methods provided in this paper can be used to simulate SDEs with Lévy noise approximately. The simulation is divided into two parts: the part of jumping integration is based on definition without approximation while the continuous part is based on some classical approaches. Biological explanations for stochastic integrations with jumps are motivated by several numerical simulations. How to model biological systems with jumps is showed in this paper. Moreover, method of choosing integrands and stationary Poisson point processes in jumping integrations for biological models are obtained. In addition, results are illustrated through some examples and numerical simulations. For some examples, earthquake is chose as a jumping source which causes jumps on the size of biological population.

  5. FEM and FVM compound numerical simulation of aluminum extrusion processes

    周飞; 苏丹; 彭颖红; 阮雪榆


    The finite element method (FEM) and the finite volume method (FVM) numerical simulation methods have been widely used in forging industries to improve the quality of products and reduce the costs. Because of very concentrative large deformation during the aluminum extrusion processes, it is very difficult to simulate the whole forming process only by using either FEM or FVM. In order to solve this problem, an FEM and FVM compound simulation method was proposed. The theoretical equations of the compound simulation method were given and the key techniques were studied. Then, the configuration of the compound simulation system was established. The tube extrusion process was simulated successfully so as to prove the validity of this approach for aluminum extrusion processes.

  6. Numerical simulation of piezoelectric effect of bone under ultrasound irradiation

    Hosokawa, Atsushi


    The piezoelectric effect of bone under ultrasound irradiation was numerically simulated using an elastic finite-difference time-domain method with piezoelectric constitutive equations (PE-FDTD method). First, to demonstrate the validity of the PE-FDTD method, the ultrasound propagation in piezoelectric ceramics was simulated and then compared with the experimental results. The simulated and experimental waveforms propagating through the ceramics were in good agreement. Next, the piezoelectric effect of human cortical bone on the ultrasound propagation was investigated by PE-FDTD simulation. The simulated result showed that the difference between the waveforms propagating through the bone without and with piezoelectricity was negligible. Finally, the spatial distributions of the electric fields in a human femur induced by ultrasound irradiation were simulated. The electric fields were changed by a bone fracture, which depended on piezoelectric anisotropy. In conclusion, the PE-FDTD method is considered to be useful for investigating the piezoelectric effect of bone.

  7. Numerical simulation and experimental study of thrust air bearings with multiple orifices

    CHARKI, Abderafi; DIOP, Khadim; CHAMPMARTIN, Stéphane; AMBARI, Abdelhak


    The objective of this paper is to provide a numerical simulation and an experimental study in order to assess stiffness and damping characteristics of thrust air bearings with multiple orifices. Finite element modeling is used to solve the non-linear Reynolds equation while taking into account the movement equation for the bearing. The numerical results obtained show that performance characteristics are related to bearing design type. An experimental investigation allows us to analyze the beh...

  8. Clinical learning & assessment in simulated & virtual worlds

    Harper, Mick; WILLIAMS Andy


    •To provide an overview of current simulation modalities available •To provide an understanding of the underpinning educational theory for learning & assessment in simulated & VR environments •To outline current research into learning & assessment through simulation

  9. Direct Numerical Simulation and Visualization of Subcooled Pool Boiling

    Tomoaki Kunugi


    Full Text Available A direct numerical simulation of the boiling phenomena is one of the promising approaches in order to clarify their heat transfer characteristics and discuss the mechanism. During these decades, many DNS procedures have been developed according to the recent high performance computers and computational technologies. In this paper, the state of the art of direct numerical simulation of the pool boiling phenomena during mostly two decades is briefly summarized at first, and then the nonempirical boiling and condensation model proposed by the authors is introduced into the MARS (MultiInterface Advection and Reconstruction Solver developed by the authors. On the other hand, in order to clarify the boiling bubble behaviors under the subcooled conditions, the subcooled pool boiling experiments are also performed by using a high speed and high spatial resolution camera with a highly magnified telescope. Resulting from the numerical simulations of the subcooled pool boiling phenomena, the numerical results obtained by the MARS are validated by being compared to the experimental ones and the existing analytical solutions. The numerical results regarding the time evolution of the boiling bubble departure process under the subcooled conditions show a very good agreement with the experimental results. In conclusion, it can be said that the proposed nonempirical boiling and condensation model combined with the MARS has been validated.

  10. Large eddy simulations and direct numerical simulations of high speed turbulent reacting flows

    Givi, P.; Frankel, S. H.; Adumitroaie, V.; Sabini, G.; Madnia, C. K.


    The primary objective of this research is to extend current capabilities of Large Eddy Simulations (LES) and Direct Numerical Simulations (DNS) for the computational analyses of high speed reacting flows. Our efforts in the first two years of this research have been concentrated on a priori investigations of single-point Probability Density Function (PDF) methods for providing subgrid closures in reacting turbulent flows. In the efforts initiated in the third year, our primary focus has been on performing actual LES by means of PDF methods. The approach is based on assumed PDF methods and we have performed extensive analysis of turbulent reacting flows by means of LES. This includes simulations of both three-dimensional (3D) isotropic compressible flows and two-dimensional reacting planar mixing layers. In addition to these LES analyses, some work is in progress to assess the extent of validity of our assumed PDF methods. This assessment is done by making detailed companions with recent laboratory data in predicting the rate of reactant conversion in parallel reacting shear flows. This report provides a summary of our achievements for the first six months of the third year of this program.